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licensed professional engineer, architect, or designer. The 
authors and publisher of this book make no warranty of 
any kind, expressed or implied, with regard to the mate-
rial contained in this book nor shall they be liable for any 
special, consequential, or exemplary damages resulting, in 
whole or in part, from the reader’s use of or reliance on 
this material.

T he information contained in this book has been 
prepared in accordance with recognized engi-
neering principles and is for general information 

only. Although it is believed to be accurate, this infor-
mation should not be used for any specific application 
without competent professional examination and veri-
fication of its accuracy, suitability, and applicability by a 
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Form design is an important consideration in most 
structural design problems involving concrete members, 
and Chapter 12 illustrates procedures for the design of job-
built forms for slabs, beams, and columns. Appropriate 
tables are included that will expedite the design process. 
In Chapter  14, we introduce practical considerations and 
rules of thumb for the design of reinforced concrete beams, 
girders, columns and one way slabs, and methods for 
strengthening existing reinforced concrete structures.

What’s New in the Eighth 
Edition:
●	 The entire text has been revised to conform to the latest 

ACI Code: ACI 318-11
●	 The quadratic equation solution approach for the design 

of rectangular beams is included in Section 2-14
●	 A new Chapter 14 that discusses practical considerations 

and rules of thumb for the design of reinforced concrete 
structures. Guidance is provided for the initial, prelimi-
nary sizing and layout of reinforced concrete structures

●	 The calculation of approximate moment and shears 
in concrete girders, which cannot be calculated using 
the ACI coefficients in Chapter 6, is introduced in 
Chapter 14

●	 Repair methods for existing reinforced concrete struc-
tures is introduced in Chapter 14

●	 A student reinforced concrete building design project 
problem has been added in Chapter 14

This book has been thoroughly tested over the years in 
engineering technology and applied engineering programs 
and should serve as a valuable design guide and resource 
for technologists, technicians, engineering and architec-
tural students, and design engineers. In addition, it will aid 
engineers and architects preparing for state licensing exami-
nations for professional registration.

T he primary objective of Reinforced Concrete Design, 
eighth edition, remains the same as that of the pre-
vious editions: to provide a basic understanding of 

the strength and behavior of reinforced concrete members 
and simple reinforced concrete structural systems.

With relevant reinforced concrete research and litera-
ture continuing to become available at a rapid rate, it is the 
intent of this book to translate this vast amount of informa-
tion and data into an integrated source that reflects the latest 
information available. It is not intended to be a comprehen-
sive theoretical treatise of the subject, because it is believed 
that such a document could easily obscure the fundamentals 
emphasized in engineering technology and applied engi-
neering programs. In addition, it is believed that adequate 
comprehensive books on reinforced concrete design do exist 
for those who seek the theoretical background, the research 
studies, and more rigorous applications.

This eighth edition has been prepared with the primary 
objective of updating its contents to conform to the latest 
Building Code Requirements for Structural Concrete (ACI 
318-11) of the American Concrete Institute. Because the 
ACI Code serves as the design standard in the United States, 
it is strongly recommended that the code be used as a com-
panion publication to this book.

In addition to the necessary changes to conform to the 
new code, some sections have been edited and a new student 
design project problem has been added and several drawings 
updated. Answers to selected problems are furnished at the 
back of the text.

Throughout the eight editions, the text content has 
remained primarily a fundamental, non-calculus, and 
practice-oriented approach to the design and analysis of 
reinforced concrete structural members using numer-
ous examples and a step-by-step solution format. In addi-
tion, there are chapters that provide a conceptual approach 
on such topics as prestressed concrete and detailing of 
reinforced concrete structures. The metric system (SI) is 
introduced in Appendix C with several example problems.

Preface
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e-mail including an instructor access code. Once you have 
received your code, locate your text in the online catalog and 
click on the Instructor Resources button on the left side of the 
catalog product page. Select a supplement, and a login page 
will appear. Once you have logged in, you can access instruc-
tor material for all Prentice Hall textbooks. If you have any 
difficulties accessing the site or downloading a supplement, 
please contact Customer Service at http://247pearsoned.
custhelp.com/

Abi O. Aghayere
George F. Limbrunner

As in the past, appreciation is extended to students, past 
and present, and colleagues who, with their constructive 
comments, criticisms, and enthusiasm, have provided input 
and encouragement for this edition.
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1-3  Cement and Water
Structural concrete uses, almost exclusively, hydraulic 
cement. With this cement, water is necessary for the chemi-
cal reaction of hydration. In the process of hydration, the 
cement sets and bonds the fresh concrete into one mass. 
Portland cement, which originated in England, is undoubt-
edly the most common form of cement. Portland cement 
consists chiefly of calcium and aluminum silicates. The 
raw materials are limestones, which provide calcium oxide 
(CaO), and clays or shales, which furnish silicon dioxide 
(SiO2) and aluminum oxide (Al2O3). Following processing, 
cement is marketed in bulk or in 94-lb (1-ft3) bags.

In fresh concrete, the ratio of the amount of water to the 
amount of cement, by weight, is termed the water/cement 
ratio. This ratio can also be expressed in terms of gallons 
of water per bag of cement. For complete hydration of the 
cement in a mix, a water/cement ratio of 0.35 to 0.40 (4 to 
4½ gal/bag) is required. To increase the workability of the 
concrete (the ease with which it can be mixed, handled, and 
placed), higher water/cement ratios are normally used.

1-4 A ggregates
In ordinary structural concretes, the aggregates occupy 
approximately 70% to 75% of the volume of the hardened 
mass. Gradation of aggregate size to produce close packing 
is desirable because, in general, the more densely the aggre-
gate can be packed, the better are the strength and durability.

Aggregates are classified as fine or coarse. Fine aggre-
gate is generally sand and may be categorized as consisting 
of particles that will pass a No. 4 sieve (four openings per 
linear inch). Coarse aggregate consists of particles that would 
be retained on a No. 4 sieve. The maximum size of coarse 
aggregate in reinforced concrete is governed by various ACI 

1-1  Concrete
Concrete consists primarily of a mixture of cement and fine 
and coarse aggregates (sand, gravel, crushed rock, and/or 
other materials) to which water has been added as a neces-
sary ingredient for the chemical reaction of curing. The bulk 
of the mixture consists of the fine and coarse aggregates. The 
resulting concrete strength and durability are a function of 
the proportions of the mix as well as other factors, such as 
the concrete placing, finishing, and curing history.

The compressive strength of concrete is relatively high. 
Yet it is a relatively brittle material, the tensile strength of 
which is small compared with its compressive strength. 
Hence steel reinforcing rods (which have high tensile and 
compressive strength) are used in combination with the 
concrete; the steel will resist the tension and the concrete the 
compression. Reinforced concrete is the result of this com-
bination of steel and concrete. In many instances, steel and 
concrete are positioned in members so that they both resist 
compression.

1-2 T he ACI Building Code
The design and construction of reinforced concrete build-
ings is controlled by the Building Code Requirements for 
Structural Concrete (ACI 318-11) of the American Concrete 
Institute (ACI) [1]. The use of the term code in this text 
refers to the ACI Code unless otherwise stipulated. The 
code is revised, updated, and reissued on a 3-year cycle. The 
code itself has no legal status. It has been incorporated into 
the building codes of almost all states and municipalities 
throughout the United States, however. When so incorpo-
rated, it has official sanction, becomes a legal document, and 
is part of the law controlling reinforced concrete design and 
construction in a particular area.

Materials and Mechanics 

of Bending

chapter One

	 1-1	 Concrete

	 1-2	 The Aci Building Code

	 1-3	 Cement and Water

	 1-4	 Aggregates

	 1-5	 Concrete In Compression

	 1-6	 Concrete In Tension

	 1-7	 Reinforcing Steel

	 1-8	 Beams: Mechanics 
of Bending Review



2	 chapter One

from 2500 to 9000 psi, with 3000 to 4000 psi being common 
for reinforced concrete structures and 5000 to 6000 psi being 
common for prestressed concrete members. Concretes of 
much higher strengths have been achieved under laboratory 
conditions. The curves shown in  Figure  1-1 represent the 
result of compression tests on 28-day standard cylinders for 
varying design mixes.

A review of the stress–strain curves for different-
strength concretes reveals that the maximum compressive 
strength is generally achieved at a unit strain of approxi-
mately 0.002 in./in. Stress then decreases, accompanied by 
additional strain. Higher-strength concretes are more brittle 
and will fracture at a lower maximum strain than will the 
lower-strength concretes. The initial slope of the curve var-
ies, unlike that of steel, and only approximates a straight 
line. For steel, where stresses are below the yield point and 
the material behaves elastically, the stress–strain plot will be 
a straight line. The slope of the straight line is the modu-
lus of elasticity. For concrete, however, we observe that the 
straight-line portion of the plot is very short, if it exists at 
all. Therefore, there exists no constant value of modulus of 
elasticity for a given concrete because the stress–strain ratio 
is not constant. It may also be observed that the slope of 
the initial portion of the curve (if it approximates a straight 
line) varies with concretes of different strengths. Even if we 
assume a straight-line portion, the modulus of elasticity is 
different for concretes of different strengths. At low and 
moderate stresses (up to about 0.5f′c ), concrete is commonly 
assumed to behave elastically.

The ACI Code, Section 8.5.1, provides the accepted 
empirical expression for modulus of elasticity:

Ec = w1.5
c 332f′c

where
Ec = �modulus of elasticity of concrete in compression 

(psi)
wc = unit weight of concrete (lb/ft3)
f′c  = compressive strength of concrete (psi)

Code requirements. These requirements are established 
primarily to ensure that the concrete can be placed with ease 
into the forms without any danger of jam-up between adja-
cent bars or between bars and the sides of the forms.

1-5 � Concrete in 
Compression

The theory and techniques relative to the design and 
proportioning of concrete mixes, as well as the placing, 
finishing, and curing of concrete, are outside the scope 
of this book and are adequately discussed in many other 
publications [2–5]. Field testing, quality control, and inspec-
tion are also adequately covered elsewhere. This is not to 
imply that these are of less importance in overall concrete 
construction technology but only to reiterate that the objec-
tive of this book is to deal with the design and analysis of 
reinforced concrete members.

We are concerned primarily with how a reinforced con-
crete member behaves when subjected to load. It is generally 
accepted that the behavior of a reinforced concrete member 
under load depends on the stress–strain relationship of the 
materials, as well as the type of stress to which it is subjected. 
With concrete used principally in compression, the com-
pressive stress–strain curve is of primary interest.

The compressive strength of concrete is denoted f′c  and 
is assigned the units pounds per square inch (psi). For calcu-
lations, f′c  is frequently used with the units kips per square 
inch (ksi).

A test that has been standardized by the American 
Society for Testing and Materials (ASTM C39) [6] is used to 
determine the compressive strength ( f′c ) of concrete. The test 
involves compression loading to failure of a specimen cylin-
der of concrete. The compressive strength so determined is 
the highest compressive stress to which the specimen is sub-
jected. Note in Figure 1-1 that f′c  is not the stress that exists 
in the specimen at failure but that which occurs at a strain of 
about 0.002. Currently, 28-day concrete strengths ( f′c ) range 

f �c = 3000 psi

f �c = 4000 psi

f �c = 5000 psi

f �c = 6000 psi
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Figure 1-1  Typical stress–strain 
curves for concrete.
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used to determine the tensile strength of lightweight aggre-
gate concrete and is generally accepted as a good measure 
of the true tensile strength. The split-cylinder test uses a 
standard 6-in.-diameter, 12-in.-long cylinder placed on its 
side in a testing machine. A compressive line load is applied 
uniformly along the length of the cylinder, with support fur-
nished along the full length of the bottom of the cylinder. 
The compressive load produces a transverse tensile stress, 
and the cylinder will split in half along a diameter when its 
tensile strength is reached.

The tensile stress at which splitting occurs is referred 
to as the splitting tensile strength, fct, and may be calculated 
by the following expression derived from the theory of 
elasticity:

fct =
2P
pLD

where
fct = �splitting tensile strength of lightweight aggregate 

concrete (psi)
P = applied load at splitting (lb)
L = length of cylinder (in.)
D = diameter of cylinder (in.)

Another common approach has been to use the mod-
ulus of rupture, fr (which is the maximum tensile bending 
stress in a plain concrete test beam at failure), as a measure 
of tensile strength (ASTM C78) [6]. The moment that pro-
duces a tensile stress just equal to the modulus of rupture 
is termed the cracking moment, Mcr, and may be calculated 
using methods discussed in Section 1-8. The ACI Code 
recommends that the modulus of rupture fr be taken as 
7.5l2f′c, where f′c  is in psi. Greek lowercase lambda (l) is 
a modification factor reflecting the lower tensile strength 
of lightweight concrete relative to normal-weight concrete. 
The values for λ are as follows:

Normal-weight concrete—1.0
Sand-lightweight concrete—0.85
All-lightweight concrete—0.75

Interpolation between these values is permitted. See 
ACI Code Section 8.6.1. for details. If the average splitting 
tensile strength fct is specified, then l = fct>(6.72f′c) … 1.0.

1-7 R einforcing Steel
Concrete cannot withstand very much tensile stress without 
cracking; therefore, tensile reinforcement must be embedded 
in the concrete to overcome this deficiency. In the United 
States, this reinforcement is in the form of steel reinforcing 
bars or welded wire reinforcing composed of steel wire. In 
addition, reinforcing in the form of structural steel shapes, 
steel pipe, steel tubing, and high-strength steel tendons is 
permitted by the ACI Code. Many other approaches have 
been taken in the search for an economical reinforcement 
for concrete. Principal among these are the fiber-reinforced 

This expression is valid for concretes having wc between 
90 and 160 lb/ft3. For normal-weight concrete, the unit 
weight wc will vary with the mix proportions and with the 
character and size of the aggregates. If the unit weight is 
taken as 144 lb/ft3, the resulting expression for modulus of 
elasticity is

Ec = 57,0002f′c  (see Table A@6 for values of Ec)

It should also be noted that the stress–strain curve for 
the same-strength concrete may be of different shapes if 
the condition of loading varies appreciably. With different 
rates of strain (loading), we will have different-shape curves. 
Generally, the maximum strength of a given concrete is 
smaller at slower rates of strain.

Concrete strength varies with time, and the specified 
concrete strength is usually that strength that occurs 28 days 
after the placing of concrete. A typical strength–time curve 
for normal stone concrete is shown in Figure 1-2. Generally, 
concrete attains approximately 70% of its 28-day strength in 
7 days and approximately 85% to 90% in 14 days.

Concrete, under load, exhibits a phenomenon termed 
creep. This is the property by which concrete continues to 
deform (or strain) over long periods of time while under 
constant load. Creep occurs at a decreasing rate over a 
period of time and may cease after several years. Generally, 
high-strength concretes exhibit less creep than do lower-
strength concretes. The magnitude of the creep deforma-
tions is proportional to the magnitude of the applied load as 
well as to the length of time of load application.

1-6  Concrete in Tension
The tensile and compressive strengths of concrete are not 
proportional, and an increase in compressive strength is 
accompanied by an appreciably smaller percentage increase 
in tensile strength. According to the ACI Code Commentary, 
the tensile strength of normal-weight concrete in flexure is 
about 10% to 15% of the compressive strength.

The true tensile strength of concrete is difficult to deter-
mine. The split-cylinder test (ASTM C496) [6] has been 
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4	 chapter One

is rolled onto grade 40 or 50 steel bars. Grade 75 bars can 
have either two grade lines through at least five deformation 
spaces or the grade mark 75. Reference [7] is an excellent 
resource covering the various aspects of bar identification.

Reinforcing bars are usually made from newly 
manufactured steel (billet steel). Steel types and ASTM 
specification numbers for bars are tabulated in Table A-1. 
Note that ASTM A615, which is billet steel, is available 
in grades 40, 60, 75, and 80. Grade 80 steel is allowed 
for non-seismic applications per ASTM 615 and ASTM 
706 [8]. (The full range of bar sizes is not available in grades 
40, 75 and 80, however.) Grade 75 steel is approximately 
20% stronger than Grade 60 steel requiring a correspond-
ing reduction in the required area of reinforcement, though 
the installed cost of Grade 75 steel reinforcement is slightly 
higher than the cost for Grade 60 steel. ASTM A706, low-
alloy steel, which was developed to satisfy the requirement 
for reinforcing bars with controlled tensile properties and 
controlled chemical composition for weldability, is avail-
able in only one grade. Tables A-2 and A-3 contain useful 
information on cross-sectional areas of bars.

The most useful physical properties of reinforcing 
steel for reinforced concrete design calculations are yield 
stress (fy) and modulus of elasticity. A typical stress–strain 
diagram for reinforcing steel is shown in Figure 1-3a. The 
idealized stress–strain diagram of Figure 1-3b is discussed 
in Chapter 2.

The yield stress (or yield point) of steel is determined 
through procedures governed by ASTM standards. For prac-
tical purposes, the yield stress may be thought of as that stress 
at which the steel exhibits increasing strain with no increase 
in stress. The yield stress of the steel will usually be one of the 
known (or given) quantities in a reinforced concrete design 
or analysis problem. See Table A-1 for the range of fy.

The modulus of elasticity of carbon reinforcing steel 
(the slope of the stress–strain curve in the elastic region) 
varies over a very small range and has been adopted as 
29,000,000 psi (ACI Code, Section 8.5.2).

concretes, where the reinforcement is obtained through 
the use of short fibers of steel or other materials, such as 
fiberglass. For the purpose of this book, our discussion will 
primarily include steel reinforcing bars and welded wire 
reinforcing. High-strength steel tendons are used mainly in 
prestressed concrete construction (see Chapter 11).

The specifications for steel reinforcement published by 
the ASTM are generally accepted for the steel used in rein-
forced concrete construction in the United States and are 
identified in the ACI Code, Section 3.5.

The steel bars used for reinforcing are, almost exclu-
sively, round deformed bars with some form of patterned 
ribbed projections rolled onto their surfaces. The patterns 
vary depending on the producer, but all patterns should 
conform to ASTM specifications. Steel reinforcing bars are 
readily available in straight lengths of 60 ft. Smaller sizes 
are also available in coil stock for use in automatic bending 
machines. The bars vary in designation from No. 3 through 
No. 11, with two additional bars, No. 14 and No. 18.

For bars No. 3 through No. 8, the designation repre-
sents the bar diameter in eighths of an inch. The No. 9, No. 
10, and No. 11 bars have diameters that provide areas equal 
to 1-in.-square bars, 1⅛-in.-square bars, and 1¼-in.-square 
bars, respectively. The No. 14 and No. 18 bars correspond to 
1½-in.-square bars and 2-in.-square bars, respectively, and 
are commonly available only by special order. Round, plain 
reinforcing bars are permitted for spirals (lateral reinforc-
ing) in concrete compression members.

ASTM specifications require that identification marks 
be rolled onto the bar to provide the following information: 
a letter or symbol indicating the producer’s mill, a number 
indicating the size of the bar, a symbol or letter indicating 
the type of steel from which the bar was rolled, and for grade 
60 bars, either the number 60 or a single continuous longitu-
dinal line (called a grade line) through at least five deforma-
tion spaces. The grade indicates the minimum specified yield 
stress in ksi. For instance, a grade 60 steel bar has a minimum 
specified yield stress of 60 ksi. No symbol indicating grade 
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Figure 1-3  Stress–strain diagram for reinforcing steel.
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conform to ASTM A497 and be made of wire conform-
ing to ASTM A496. Both materials have a yield strength of 
70,000 psi. For both materials, the code has assigned a yield 
strength value of 60,000 psi but makes provision for the use 
of higher-yield strengths provided the stress corresponds to 
a strain of 0.35%. The deformed wire is usually more expen-
sive, but it can be expected to have an improved bond with 
the concrete.

A rational method of designating wire sizes to replace 
the formerly used gauge system has been adopted by the wire 
industry. Plain wires are described by the letter W followed 
by a number equal to 100 times the cross-sectional area of 
the wire in square inches. Deformed wire sizes are similarly 
described, but the letter D is used. Thus a W9 wire has an 
area of 0.090 in.2 and a D8 wire has an area of 0.080 in.2 
A W8 wire has the same cross-sectional area as the D8 but is 
plain rather than deformed. Sizes between full numbers are 
given by decimals, such as W9.5.

Generally, the material is indicated by the symbol 
WWR, followed by spacings first of longitudinal wires, then 
of transverse wires, and last by the sizes of longitudinal and 
transverse wires. Thus WWR6 * 12-W16 * W8 indicates a 
plain WWR with 6-in. longitudinal spacing, 12-in. trans-
verse spacing, and a cross-sectional area equal to 0.16 in.2 for 
the longitudinal wires and 0.08 in.2 for the transverse wires.

Additional information about WWR, as well as tables 
relating size number with wire diameter, area, and weight, 
may be obtained through the Wire Reinforcement Institute 
[9] or the Concrete Reinforcing Steel Institute [9 and 10]. 
ACI 318-11 contains a useful chart that gives area (in.2/ft) 
for various WWR spacings (see Appendix E).

Most concrete is reinforced in some way to resist tensile 
forces [Figure 1-4]. Some structural elements, particularly 

Unhindered corrosion of reinforcing steel will lead to 
cracking and spalling of the concrete in which it is embed-
ded. Quality concrete, under normal conditions, provides 
good protection against corrosion for steel embedded in 
the concrete with adequate cover (minimum requirements 
are discussed in Chapter 2). This protection is attributed 
to, among other factors, the high alkalinity of the concrete. 
Where reinforced concrete structures (or parts of struc-
tures) are subjected to corrosive conditions, however, some 
type of corrosion protection system should be used to pre-
vent deterioration. Examples of such structures are bridge 
decks, parking garage decks, wastewater treatment plants, 
and industrial and chemical processing facilities.

One method used to minimize the corrosion of the 
reinforcing steel is to coat the bars with a suitable protec-
tive coating. The protective coating can be a nonmetallic 
material such as epoxy or a metallic material such as zinc 
(galvanizing). The ACI Code requires epoxy-coated rein-
forcing bars to comply with ASTM A775 or ASTM A934 
and galvanized bars to comply with ASTM A767. The bars 
to be epoxy coated or zinc coated (galvanized) must meet 
the code requirements for uncoated bars as tabulated in 
Table A-1.

Welded wire reinforcing (WWR) (commonly called 
mesh) is another type of reinforcement. It consists of cold-
drawn wire in orthogonal patterns, square or rectangular, 
resistance welded at all intersections. It may be supplied in 
either rolls or sheets, depending on wire size. WWR with 
wire diameters larger than about ¼ in. is usually available 
only in sheets.

Both plain and deformed WWR products are available. 
Plain WWR must conform to ASTM A185 and be made 
of wire conforming to ASTM A82. Deformed WWR must 

Figure 1-4  Concrete 
construction in progress. Note 
formwork, reinforcing bars, 
and pumping of concrete.   
(George Limbrunner)
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composed of a compressive force C above the neutral axis 
(assuming a single-span, simply supported beam that devel-
ops compressive stress above the neutral axis) and a parallel 
internal tensile force T below the neutral axis.

As with all couples, and because the forces acting on 
any cross section of the beam must be in equilibrium, C 
must equal T. The internal couple must be equal and oppo-
site to the bending moment at the same location, which is 
computed from the external loads. It represents a couple 
developed by the bending action of the beam.

The internal couple method of determining beam 
strength is more general and may be applied to homogeneous 
or nonhomogeneous beams having linear (straight-line) 
or nonlinear stress distributions. For reinforced concrete 
beams, it has the advantage of using the basic resistance 
pattern found in the beam.

The following three analysis examples dealing with plain 
(unreinforced) concrete beams provide an introduction 
to the internal couple method. Note that the unreinforced 
beams are considered homogeneous and elastic. This is valid 
if the moment is small and tensile bending stresses in the 
concrete are low (less than the tensile bending strength of 
the concrete) with no cracking of the concrete developing. 
For this condition, the entire beam cross section carries 
bending stresses. Therefore, the analysis for bending stresses 
in the uncracked beam can be based on the properties of 
the gross cross-sectional area using the elastic-based flexure 
formula. The use of the flexure formula is valid as long as 
the maximum tensile stress in the concrete does not exceed 
the modulus of rupture fr. If a moment is applied that causes 
the maximum tensile stress just to reach the modulus of 
rupture, the cross section will be on the verge of cracking. 
This moment is called the cracking moment, Mcr.

These examples use both the internal couple approach 
and the flexure formula approach so that the results may be 
compared.

Example 1-1

A normal-weight plain concrete beam is 6 in. * 12 in. in 
cross section, as shown in Figure 1-5. The beam is simply 
supported on a span of 4 ft and is subjected to a midspan 
concentrated load of 4500 lb. Assume f′c = 3000 psi.

	 a.	 Calculate the maximum concrete tensile stress using 
the internal couple method.

	 b.	 Repeat part (a) using the flexure formula approach.

	 c.	 Compare the maximum concrete tensile stress 
with the  value for modulus of rupture fr using the  
ACI-recommended value based on f′c.

Solution:

Calculate the weight of the beam (weight per unit length):

 weight of beam = volume per unit length * unit weight

 =
6 in.(12 in.)

144 in.2/ft2
 (150 lb/ft3)

 = 75 lb/ft

footings, are sometimes made of plain concrete, however. 
Plain concrete is defined as structural concrete with no rein-
forcement or with less reinforcement than the minimum 
amount specified for reinforced concrete. Plain concrete is 
discussed further in Chapter 10.

1-8 � Beams: Mechanics 
of Bending Review

The concept of bending stresses in homogeneous elastic 
beams is generally discussed at great length in all strength of 
materials textbooks and courses. Beams composed of mate-
rial such as steel or timber are categorized as homogeneous, 
with each exhibiting elastic behavior up to some limiting 
point. Within the limits of elastic behavior, the internal 
bending stress distribution developed at any cross section is 
linear (straight line), varying from zero at the neutral axis to 
a maximum at the outer fibers.

The accepted expression for the maximum bending 
stress in a beam is termed the flexure formula,

fb =
Mc
I

where
fb = �calculated bending stress at the outer fiber of the 

cross section
M = the applied moment

c = �distance from the neutral axis to the outside ten-
sion or compression fiber of the beam

I = �moment of inertia of the cross section about the 
neutral axis

The flexure formula represents the relationship between 
bending stress, bending moment, and the geometric prop-
erties of the beam cross section. By rearranging the flexure 
formula, the maximum moment that may be applied to the 
beam cross section, called the resisting moment, MR, may 
be found:

MR =
FbI
c

where Fb = the allowable bending stress.
This procedure is straightforward for a beam of known 

cross section for which the moment of inertia can easily be 
found. For a reinforced concrete beam, however, the use of 
the flexure formula presents some complications, because 
the beam is not homogeneous and concrete does not behave 
elastically over its full range of strength. As a result, a 
somewhat different approach that uses the beam’s internal 
bending stress distribution is recommended. This approach 
is termed the internal couple method.

Recall from strength of materials that a couple is a pure 
moment composed of two equal, opposite, and parallel 
forces separated by a distance called the moment arm, which 
is commonly denoted Z. In the internal couple method, 
the couple represents an internal resisting moment and is 
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ΣHF = 0). The two forces act together to form the 
internal couple (or internal resisting moment) of 
magnitude CZ or TZ.

	 3.	 The internal resisting moment must equal the 
bending moment due to external loads at any sec-
tion. Therefore

 M = CZ = TZ

 4650 ft@lb (12 in./ft) = C (8 in.)

from which

C = 6975 lb = T

	 4.	 C = �average stress * �area of beam on which 
stress acts

C = 1
2 ftop (6 in.)(6 in.) = 6975 lb

Solving for ftop yields

ftop = 388 psi = fbott

	 b.	 Flexure formula approach

 I =
bh3

12
=

6(123)

12
= 864 in.4

 ftop = fbott =
Mc

I
=

4650(12)(6)

864
= 388 psi

Calculate the maximum applied moment:

 Mmax =
PL
4

+
wL2

8

 =
4500 lb(4 ft)

4
+

75 lb/ft(4 ft)2

8

 = 4650 ft@lb

	 a.	 Internal couple method

	 1.	 Because the beam is homogeneous, elastic, and 
symmetrical with respect to both the X–X and 
Y–Y axes, the neutral axis (N.A.) is at midheight. 
Stresses and strains vary linearly from zero at the 
neutral axis (which is also the centroidal axis) to a 
maximum at the outer fiber. As the member is sub-
jected to positive moment, the area above the N.A. 
is stressed in compression and the area below the 
N.A. is stressed in tension. These stresses result 
from the bending behavior of the member and are 
shown in Figure 1-6.

	 2.	 C represents the resultant compressive force above 
the N.A. T represents the resultant tensile force 
below the N.A. C and T each act at the centroid 
of their respective triangles of stress distribution. 
Therefore Z = 8 in. C and T must be equal (since 

2'-0

4'-0

A

A
4500 lb

RA RB

x
N.A.

x

6"

6"

12"

Load Diagram
(a)

Section A–A
(b)

Figure 1-5  Sketch for Example 1-1.
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fbott
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2"

Figure 1-6  Sketch for Example 1-1.
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 C = T = 1
2 (0.474)(8)(7) = 13.27 kips

 Mcr = CZ = TZ =
13.27(9.34)

12
= 10.33 ft.@kips

	 b.	 Check using the flexure formula

 f =
Mc

I

 MR = Mcr =
fr I

c

 I =
bh3

12
=

8(14)3

12
= 1829 in.4

 Mcr =
fr I

c
=

0.474(1829)

7(12)
= 10.32 ft.@kips

The internal couple method may also be used to analyze 
irregularly shaped cross sections, although for homoge-
neous beams it is more cumbersome than the use of the 
flexure formula.

Example 1-3

Calculate the cracking moment (resisting moment) for the 
T-shaped unreinforced concrete beam shown in Figure 1-8. 
Use f′c = 4000 psi. Assume positive moment (compression 
in the top). Use the internal couple method and check using 
the flexure formula.

Solution:

The neutral axis must be located so that the strain and stress 
diagrams may be defined. The location of the neutral axis 
with respect to the noted reference axis is calculated from

 y =
Σ(Ay)

ΣA

 =
4(20)(22) + 5(20)(10)

4(20) + 5(20)

 = 15.33 in.

The bottom of the cross section is stressed in tension. 
Note that the stress at the bottom will be numerically larger 

	 c.	 The ACI-recommended value for the modulus of rupture 
(based on f′c ) is

 fr = 7.5l2f′c = 7.5 (1.0)13000

 fr = 411 psi

The calculated tensile stress (fbott) of 388 psi is about 
6% below the modulus of rupture, the stress at which flex-
ural cracking would be expected.

Example 1-1 is based on elastic theory and assumes the 
following: (1) a plane section before bending remains a plane 
section after bending (the variation in strain throughout 
the depth of the member is linear from zero at the neutral 
axis), and (2) the modulus of elasticity is constant; therefore, 
stress is proportional to strain and the stress distribution 
throughout the depth of the beam is also linear from zero at 
the neutral axis to a maximum at the outer fibers.

The internal couple approach may also be used to find 
the moment strength (resisting moment) of a beam.

Example 1-2

Calculate the cracking moment Mcr for the plain concrete 
beam shown in Figure 1-7. Assume normal-weight concrete 
and f′c = 4000 psi.

	 a.	 Use the internal couple method.

	 b.	 Check using the flexure formula.

Solution:

The moment that produces a tensile stress just equal to the 
modulus of rupture fr is called the cracking moment, Mcr. 
The modulus of rupture for normal-weight concrete is calcu-
lated from ACI Equation (9-10):

fr = 7.52f′c = 7.514000 = 474 psi

For convenience, we will use force units of kips (1 kip = 
1000 lb). Therefore, fr = 0.474 ksi.

	 a.	 Using the internal couple method

 Z = 14 - 2(2.33) = 9.34 in.

7"

8"

14"

C

T

Beam
Cross Section

(a)

Bending Stress
at Max. M

(b)

Internal
Couple

(c)

474 psi

474 psi

N.A.

2.33"

2.33"

Z

Figure 1-7  Sketch for Example 1-2.
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internal compressive forces, component internal couples, 
and MR may now be evaluated. The component forces are 
first calculated:

 C1 = 0.1444(20)(4) = 11.55 kips

 C2 = 1
2  (0.1236)(20)(4) = 4.94 kips

 C3 = 1
2  (0.1444)(5)(4.67) = 1.686 kips

 total C = C1 + C2 + C3 = 18.18 kips

 C ≈ T (O.K.)

Next we calculate the moment arm distance from each 
component compressive force to the tensile force T:

Z1 = 10.22 + 4.67 +  12 (4.00) = 16.89 in.

Z2 = 10.22 + 4.67 + 2
3 (4.00) = 17.56 in.

Z3 = 10.22 + 2
3 (4.67) = 13.33 in.

The magnitudes of the component internal couples are 
then calculated from force * moment arm as follows:

 MR1
= 11.55(16.89) = 195.1 in.@kips

 MR2
= 4.94(17.56) = 86.7 in.@kips

 MR3
= 1.686(13.33) = 22.5 in.@kips

 Mcr = MR = MR1
+ MR2

+ MR3
= 304 in.@kips

than at the top because of the relative distances from the N.A. 
The stress at the bottom of the cross section will be set equal 
to the modulus of rupture (l = 1.0 for normal-weight concrete):

fbott = fr = 7.5l2f′c = 7.5(1.0)14000 = 474 psi = 0.474 ksi

Using similar triangles in Figure 1-8b, the stress at the 
top of the flange is

ftop =
8.67
15.33

 (0.474) = 0.268 ksi

Similarly, the stress at the bottom of the flange is

fbott of flange =
4.67
15.33

 (0.474) = 0.1444 ksi

The total tensile force can be evaluated as follows:

 T = average stress * area

 = 1
2  (0.474)(15.33)(5) = 18.17 kips

and its location below the N.A. is calculated from

2
3 (15.33) = 10.22 in. (below the N.A.)

The compressive force will be broken up into compo-
nents because of the irregular area, as shown in Figure 1-9.  
Referring to both Figures 1-8 and 1-9, the component 
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+

+

20"
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Z

10.22"
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Cross Section
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at Max. M

(b)
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(c)
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Figure 1-8  Sketch for Example 1-3.
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Figure 1-9  Component compression forces for Example 1-3.
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Problems

Note: In the following problems, assume plain concrete to 
have a weight of 145 pcf (conservative) unless otherwise noted.
	 1-1.	 The unit weight of normal-weight reinforced con-

crete is commonly assumed to be 150 lb/ft3. Find the 

weight per lineal foot (lb/ft) for a normal weight rein-
forced concrete beam that:
a.	 Has a rectangular cross section 16 in. wide and 

28 in. deep.
b.	 Has a cross section as shown in the accompanying 

diagram.

6"

38"

26"

12"

PROBLEM 1-1

	 1-2.	 Develop a spreadsheet application that will display 
in a table the values of modulus of elasticity Ec for 
concrete having unit weight ranging from 95 pcf to 
155 pcf (in steps of 5 pcf) and compressive strength 
ranging from 3500 to 7000 psi (in steps of 500 psi). 
Display the modulus of elasticity rounded to the 
nearest 1000 psi.

	 1-3.	 A normal-weight concrete test beam 6 in. by 6 in. 
in cross section and supported on a simple span of 
24 in. was loaded with a point load at midspan. The 
beam failed at a load of 2100 lb. Using this informa-
tion, determine the modulus of rupture fr of the con-
crete and compare with the ACI-recommended value 
based on an assumed concrete strength f′c  of 3000 psi.

	 1-4.	 A plain concrete beam has cross-sectional dimen-
sions of 10 in. by 10 in. The concrete is known to have 
a modulus of rupture fr of 350 psi. The beam spans 
between simple supports. Determine the span length 
at which this beam will fail due to its own weight. 
Assume a unit weight of 145 pcf.

	 1-5.	 The normal-weight plain concrete beam shown is on 
a simple span of 10 ft. It carries a dead load (which 
includes the weight of the beam) of 0.5 kip/ft. There 
is a concentrated load of 2 kips located at midspan. 

As mentioned previously, the three examples are for 
plain, unreinforced, and uncracked concrete beams that 
are considered homogeneous and elastic within the bend-
ing stress limit of the modulus of rupture. The internal cou-
ple method is also applicable to nonhomogeneous beams 
with nonlinear stress distributions of any shape, however. 
Because reinforced concrete beams are nonhomogeneous, 
the flexure formula is not directly applicable. Therefore the 
basic approach used for reinforced concrete beams is the 
internal couple method.

Check using the flexure formula. The moment of inertia 
is calculated using the transfer formula from statics:

 I = Σ Io +  Σ Ad 2

 I = 1
12 (20)(43) + 1

12  (5)(203) + 4(20)(6.672) + 5(20)(5.332)

 = 9840 in.4

 Mcr = MR =
fr I

c
=

0.474(9840)

15.33
= 304 in.@kips

(Checks O.K.)
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Use f′c = 4000 psi. Compute the maximum bend-
ing stress. Use the internal couple method and check 
with the flexure formula.

8"

16"

PROBLEM 1-5

10"

16"

PROBLEM 1-6

	 1-6.	 Calculate the cracking moment (resisting moment) 
for the unreinforced concrete beam shown. Assume 
normal-weight concrete with f′c = 3000 psi. Use the 
internal couple method and check with the flexure 
formula.

	 1-7.	 Develop a spreadsheet application to solve Problem 
1-6. Set up the spreadsheet so a table will be gener-
ated in which the width of the beam varies from 
8 in. to 16 in. (1-in. increments) and the depth varies 
from 12 in. to 24 in. (1-in. increments.) The spread-
sheet should allow the user to input any value for f′c  
between 3000 and 8000 psi.

	 1-8.	 Rework Example 1-3 but invert the beam so that the 
flange is on the bottom and the web extends vertically 
upward. Calculate the cracking moment using the 
internal couple method and check using the flexure 
formula. Assume positive moment.

	 1-9.	 Calculate the cracking moment (resisting moment) 
for the U-shaped unreinforced concrete beam shown. 
Assume normal-weight concrete with f′c = 3500 psi. 
Use the internal couple method and check with the 
flexure formula. Assume positive moment.

7" 6"

6"

20"

7"

PROBLEM 1-9

	1-10.	 The plain concrete beam shown is used on a 12-ft 
simple span. The concrete is normal weight with 
f′c = 3000 psi. Assume positive moment.
a.	 Calculate the cracking moment.
b.	 Calculate the value of the concentrated load P at 

midspan that would cause the concrete beam to 
crack. (Be sure to include the weight of the beam.)

4"
P = ?Weight of beam

(wb)

4"

6'-0

4"12"

16"

12'-0

PROBLEM 1-10
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2-2 � Analysis and Design 
Method

In the beam examples in Chapter 1, we assumed both a 
straight-line strain distribution and straight-line stress dis-
tribution from the neutral axis to the outer fibers. This, in 
effect, stated that stress was proportional to strain. This 
analysis is sometimes called elastic design.

As stated in Chapter 1, elastic design is considered valid 
for the homogeneous plain concrete beam as long as the ten-
sile stress does not exceed the modulus of rupture, that stress 
at which tensile cracking commences. With homogeneous 
materials used in construction, such as structural steel and 
timber, the limit of stress–strain proportionality is gener-
ally termed the proportional limit. Note that the modulus of 
rupture for the plain concrete beam may be considered analo-
gous to the proportional limit for structural steel and timber 
with respect to the limit of stress–strain proportionality.

With structural steel, the proportional limit and yield 
stress have nearly the same value, and when using the allow-
able stress design (ASD) method, an allowable bending stress 
is determined by applying a factor of safety to the yield stress.

2-1 I ntroduction
When a beam is subjected to bending moments (also termed 
flexure), bending strains are produced. Under positive 
moment (as normally defined), compressive strains are pro-
duced in the top of the beam and tensile strains are produced 
in the bottom. These strains produce stresses in the beam, 
compression in the top, and tension in the bottom. Bending 
members must therefore be able to resist both tensile and 
compressive stresses.

For a concrete flexural member (beam, wall, slab, and 
so on) to have any significant load-carrying capacity, its 
basic inability to resist tensile stresses must be overcome. 
By embedding reinforcement (usually deformed steel bars) 
in the tension zones, a reinforced concrete member is cre-
ated. When properly designed and constructed, members 
composed of these materials perform very adequately when 
subjected to flexure.

Initially, we will consider simply supported single-span 
beams that, as they carry only positive moment (tension in 
the bottom), will be reinforced with steel bars placed near 
the bottom of the beam.
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approximate proportionality ceases to exist, and the com-
pressive stress diagram takes a shape similar to the concrete 
compressive stress–strain curve of Figure 1-1. Additional 
assumptions for strength design are discussed in Section 2-4.

A major difference between ASD and strength design 
lies in the way the applied loads (i.e., service loads—the 
loads that are specified in the general building code) are 
handled and in the determination of the capacity (strength) 
of the reinforced concrete members. In the strength design 
method, service loads are amplified using load factors. 
Members are then designed so that their practical strength at 
failure, which is somewhat less than the true strength at fail-
ure, is sufficient to resist the amplified loads. The strength 
at failure is still commonly called the ultimate strength, and 
the load at or near failure is commonly called the ultimate 
load. The stress pattern assumed for strength design is such 
that predicted strengths are in substantial agreement with 
test results.

2-3  Behavior Under Load
Before discussing the strength design method, let us review 
the behavior of a long-span, rectangular reinforced con-
crete beam as the load on the beam increases from zero 
to the magnitude that would cause failure. The reinforced 
concrete simple beam of Figure 2-1 is assumed subjected 
to downward loading, which will cause positive moment 
in the beam. Steel reinforcing, three bars in this example, is 
located near the bottom of the beam, which is the tension 
side. Note that the overall depth of the beam is designated h, 
whereas the location of the steel, referenced to the compres-
sion face, is defined by the effective depth, d. The effective 
depth is measured to the centroid of the reinforcing steel. In 
this example, the centroid is at the center of the single layer 
of bars. If there are multiple layers of bars, then the effective 
depth is measured from the compression face to the  cen-
troid of the bar group.

With timber, the determination of an allowable bend-
ing stress is less straightforward, but it may be thought of 
as some fraction of the breaking bending stress. Using the 
allowable bending stress and the assumed linear stress–
strain relationship, both the analysis and design of timber 
members and structural steel members (using the ASD 
method) are performed by a method that is similar to that 
used in the Chapter 1 examples.

Even though a reinforced concrete beam was known 
to be a nonhomogeneous member, for many years the elas-
tic behavior approach was considered valid for concrete 
design, and it was known as the working stress design (WSD) 
method. The basic assumptions for the WSD method were as 
follows: (1) A plane section before bending remains a plane 
section after bending; (2) Hooke’s law (stress is proportional 
to strain) applies to both the steel and the concrete; (3) the 
tensile strength of concrete is zero and the reinforcing steel 
carries all the tension; and (4) the bond between the con-
crete and the steel is perfect, so no slip occurs.

Based on these assumptions, the flexure formula was 
still used even though the beam was nonhomogeneous. This 
was accomplished by theoretically transforming one mate-
rial into another based on the ratio of the concrete and steel 
moduli of elasticity.

Although the WSD method was convenient and was 
used for many years, it has been replaced with a more mod-
ern and realistic approach for the analysis and design of 
reinforced concrete. One basis for this approach is that at 
some point in the loading, the proportional stress–strain 
relationship for the compressive concrete ceases to exist. 
When first developed, this method was called the ultimate 
strength design (USD) method. Since then, the name has 
been changed to the strength design method.

The assumptions for the strength design method are 
similar to those itemized for the WSD method, with one 
notable exception. Research has indicated that the compres-
sive concrete stress is approximately proportional to strain 
up to only moderate loads. With an increase in load, the 
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Figure 2-1  Flexural behavior at very small loads.
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significantly; the steel has yielded and will not return to its 
original length. If other members in the structure have simi-
larly reached their ultimate capacities, the structure itself 
is probably crumbling and in a state of distress or partial 
ruin, even though it may not have completely collapsed. 
Naturally, although we cannot ensure that this state will 
never be reached, factors are introduced to create the com-
monly accepted margins of safety. Nevertheless the ultimate 
capacities of members are, at present, the basis for rein-
forced concrete analysis and design. In this text, it is in such 
a context that we will speak of failures of members.

2-4 �S trength Design 
Method Assumptions

The development of the strength design approach depends 
on the following basic assumptions:

	 1.	 A plane section before bending remains a plane section 
after bending. That is, the strain throughout the depth of 
the member varies linearly from zero at the neutral axis. 
Tests have shown this assumption to be essentially correct.

	 2.	 Stresses and strains are approximately proportional only 
up to moderate loads (assuming that the concrete stress 
does not exceed approximately f′c>2). When the load is 
increased and approaches an ultimate load, stresses and 
strains are no longer proportional. Hence the variation 
in concrete stress is no longer linear.

	 3.	 In calculating the ultimate moment capacity of a beam, 
the tensile strength of the concrete is neglected.

At very small loads, assuming that the concrete has not 
cracked, both concrete and steel will resist the tension, and 
concrete alone will resist the compression. The stress distribu-
tion will be as shown in Figure 2-1. The strain variation will 
be linear from the neutral axis to the outer fiber. Note that 
stresses also vary linearly from zero at the neutral axis and are, 
for all practical purposes, proportional to strains. This will be 
the case when stresses are low (below the modulus of rupture).

At moderate loads, the tensile strength of the concrete 
will be exceeded, and the concrete will crack (hairline cracks) 
in the manner shown in Figure 2-2. Because the concrete can-
not transmit any tension across a crack, the steel bars will then 
resist the entire tension. The stress distribution at or near a 
cracked section then becomes as shown in Figure 2-2. This 
stress pattern exists up to approximately a concrete stress fc of 
about f′c>2. The concrete compressive stress is still assumed to 
be proportional to the concrete strain.

With further load increase, the compressive strains and 
stresses will increase; they will cease to be proportional, 
however, and some nonlinear stress curve will result on the 
compression side of the beam. This stress curve above the 
neutral axis will be essentially the same shape as the concrete 
stress–strain curve (see Figure 1-1). The stress and strain 
distribution that exists at or near the ultimate load is shown 
in Figure 2-3. Eventually, the ultimate capacity of the beam 
will be reached and the beam will fail. The actual mechanism 
of the failure is discussed later in this chapter.

At this point the reader may well recognize that the 
process of attaining the ultimate capacity of a member 
is irreversible. The member has cracked and deflected 
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Based on the preceding assumptions, it is possible that 
a beam may be loaded to the point where the maximum 
tensile steel unit stress equals its yield stress (as a limit) and 
the concrete compressive strain is less than 0.003 in./in. It is 
also possible that in another beam, the maximum concrete 
compressive strain will equal 0.003 in./in. and the tensile 
steel unit stress will be less than its yield stress fy. When 
either condition occurs, it implies a specific mode of failure, 
which will be discussed later.

As stated previously, the compressive stress distri-
bution above the neutral axis for a flexural member is 
similar to the concrete compressive stress–strain curve as 
depicted in Figure 1-1. As may be observed in Figure 2-4, 
the ultimate compressive stress f′c  does not occur at the 
outer fiber, neither is the shape of the curve the same for 
different-strength concretes. Actually, the magnitudes of the 
compressive concrete stresses are defined by some irregular 
curve, which could vary not only from concrete to concrete 
but also from beam to beam. Present theories accept that, at 
ultimate moment, compressive stresses and strains in con-
crete are not proportional. Although strains are assumed 
linear, with maximum strain of 0.003 in./in. at the extreme 
outer compressive fiber, the maximum concrete compres-
sive stress f′c  develops at some intermediate level near, but 
not at, the extreme outer fiber.

The flexural strength or resisting moment of a rectan-
gular beam is created by the development of these internal 
stresses that, in turn, may be represented as internal forces. 
As observed in Figure 2-4, NC represents a theoretical inter-
nal resultant compressive force that in effect constitutes the 
total internal compression above the neutral axis. NT repre-
sents a theoretical internal resultant tensile force that in effect 
constitutes the total internal tension below the neutral axis.

These two forces, which are parallel, equal, and opposite 
and separated by a distance Z, constitute an internal resist-
ing couple whose maximum value may be termed the nomi-
nal moment strength of the bending member. As a limit, 

	 4.	 The maximum usable concrete compressive strain at 
the extreme fiber is assumed equal to 0.003. This value 
is based on extensive testing, which indicated that the 
flexural concrete strain at failure for rectangular beams 
generally ranges from 0.003 to 0.004 in./in. Hence the 
assumption that the concrete is about to crush when the 
maximum strain reaches 0.003 is slightly conservative.

	 5.	 The steel is assumed to be uniformly strained to the 
strain that exists at the level of the centroid of the steel. 
Also, if the strain in the steel (Ps) is less than the yield 
strain of the steel (Py), the stress in the steel is EsPs. This 
assumes that for stresses less than fy, the steel stress is 
proportional to strain. For strains equal to or greater 
than Py, the stress in the reinforcement will be considered 
independent of strain and equal to fy. See the idealized 
stress–strain diagram for steel shown in Figure 1-3b.

	 6.	 The bond between the steel and concrete is perfect and 
no slip occurs.

Assumptions 4 and 5 constitute what may be termed 
code criteria with respect to failure. The true ultimate 
strength of a member will be somewhat greater than that 
computed using these assumptions. The strength method of 
design and analysis of the ACI Code is based on these crite-
ria, however, and consequently so is our basis for bending 
member design and analysis.

2-5 � Flexural Strength of 
Rectangular Beams

Based on the assumptions previously stated, we can now 
examine the strains, stresses, and forces that exist in a rein-
forced concrete beam subjected to its ultimate moment, 
that is, the moment that exists just prior to the failure of the 
beam. In Figure 2-4, the assumed beam has a width b and an 
effective depth d and it is reinforced with a steel area of As. 
(As is the total cross-sectional area of tension steel present.)
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Figure 2-4  Beam subjected to ultimate moment.
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2-6 �E quivalent Stress 
Distribution

For purposes of simplification and practical application, a fic-
titious but equivalent rectangular concrete stress distribution 
was proposed by Whitney [1] and subsequently adopted by 
the ACI Code (Sections 10.2.6 and 10.2.7). The ACI Code also 
stipulates that other compressive stress distribution shapes 
may be used, provided results are in substantial agreement 
with comprehensive test results. Because of the simplicity 
of the rectangular shape, however, it has become the more 
widely used fictitious stress distribution for design purposes.

With respect to this equivalent stress distribution as 
shown in Figure 2-5, the average stress intensity is taken as 
0.85 f′c  and is assumed to act over the upper area of the beam 
cross section defined by the width b and a depth of a. The 
magnitude of a may be determined by

a = b1c

where
c = �distance from the outer compressive fiber to the 

neutral axis
β1 = �a factor that is a function of the strength of the 

concrete as follows and as shown in Figure 2-6:

this nominal moment strength must be capable of resisting 
the design bending moment induced by the applied loads. 
Consequently, if we wish to design a beam for a prescribed 
loading condition, we must arrange its concrete dimensions 
and the steel reinforcements so that it is capable of devel-
oping a moment strength at least equal to the maximum 
bending moment induced by the loads.

The determination of the moment strength is complex 
because of the shape of the compressive stress diagram above 
the neutral axis. Not only is NC difficult to evaluate but its 
location relative to the tensile steel is difficult to establish. 
Because the moment strength is actually a function of the 
magnitude of NC and Z, however, it is not really necessary to 
know the exact shape of the compressive stress distribution 
above the neutral axis. To determine the moment strength, 
it is necessary to know only (1) the total resultant compres-
sive force NC in the concrete and (2) its location from the 
outer compressive fiber (from which the distance Z may be 
established). These two values may easily be established by 
replacing the unknown complex compressive stress distribu-
tion by a fictitious one of simple geometrical shape, provided 
the fictitious distribution results in the same total compres-
sive force NC applied at the same location as in the actual 
distribution when it is at the point of failure.

d

c

f�c
0.85f�c

NC = 0.85f�caba = �1c

fy fy

N.A.
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Stress Block
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a
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Figure 2-5  Equivalent 
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design and analysis.
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Solution:

	 1.	 We will assume that fy exists in the steel, subject to later 
check. By ΣH = 0,

 NC = NT

 (0.85 f′c) ab = Asfy

 a =
Asfy

0.85f′cb
=

2.37(60)

0.85(4)(10)
= 4.18 in.

This is the depth of the stress block that must exist if 
there is to be horizontal equilibrium.

	 2.	 Calculate the length of the lever arm, Z:

Z = d -
a
2

= 23 -
4.18

2
= 20.9 in.

	 3.	 Calculate Mn:

Mn = NCZ or NTZ

Based on the concrete,

 Mn = NCZ = (0.85f′c) ab (20.9)

 = 0.85(4.0)(4.18)(10)(20.9)

 = 2970 in.@kips

 
2970 in.@kips

12 in./ft
=  248 ft.@kips

or, based on the steel,

 Mn = Asfy Z

 = 2.37(60)(20.9)

 = 2970 in.@kips

	 4.	 In the foregoing computations, the assumption was 
made that the steel reached its yield strain (and there-
fore its yield stress) before the concrete reached its 
“ultimate” (by definition) strain of 0.003. This assump-
tion will now be checked by calculating the strain Pt in 
the steel when the concrete strain reaches 0.003. Pt is 
defined as the net tensile strain at the centroid of the 
extreme tension steel at nominal strength.

For 2500 psi … f′c … 4000 psi: b1 = 0.85.
For f′c 7 4000 psi:

b1 = 0.85 -
0.05( f ′c - 4000)

1000
Ú 0.65

It is in no way maintained that the compressive stresses 
are actually distributed in this most unlikely manner. It 
is maintained, however, that this equivalent rectangular 
distribution gives results close to those of the complex actual 
stress distribution. An isometric view of the accepted inter-
nal relationships is shown in Figure 2-7.

Using the equivalent stress distribution in combination 
with the strength design assumptions, we may now determine 
the nominal moment strength Mn of rectangular reinforced 
concrete beams that are reinforced for tension only.

The nominal moment strength determination is based 
on the assumption that the member will have the exact 
dimensions and material properties used in the design com-
putations. As discussed in Section 2-9, the nominal moment 
strength will be further reduced when it is used in practical 
analysis and design work.

Example 2-1

Determine Mn for a beam of cross section shown in Figure 2-8, 
where f′c = 4000 psi. Assume A615 grade 60 steel.

c a

b

N.A.

As
NT = As fy

NC = 0.85f�cab

Z

0.85f�c

a
2

Figure 2-7  Equivalent stress block for strength design and 
analysis.
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Figure 2-8  Sketch for Example 2-1.
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on the amount of tension steel in the cross section, as the 
stress block is just deep enough to ensure that the resul-
tant compressive force is equal to the resultant tensile force 
(ΣH = 0). If more tension bars are added to the bottom of a 
reinforced concrete cross section, the depth of the compres-
sive stress block will be greater, and therefore the neutral 
axis will be lower. Referring again to Figure 2-9, if there were 
just enough steel to put the neutral axis at a location where 
the yield strain in the steel and the maximum concrete strain 
of 0.003 existed at the same time, the cross section would 
be said to be balanced (see the ACI Code, Section 10.3.2). 
The amount of steel required to create this condition is rela-
tively large. However, the balanced condition is the dividing 
line between two distinct types of reinforced concrete beams 
that are characterized by their failure modes. If a beam has 
more steel than is required to create the balanced condition, 
the beam will fail in a brittle mode. The additional steel will 
cause the neutral axis to be low (see Figure 2-10). This will 
in turn cause the concrete to reach a strain of 0.003 before 
the steel yields. Should more moment (and therefore strain) 
be applied to the beam cross section, failure will be initi-
ated by a sudden crushing of the concrete. The brittle failure 
mode is undesirable.

If a beam has less steel than is required to create the 
balanced condition, the beam will fail in a ductile mode. 
The neutral axis will be higher than the balanced neutral 
axis, and the steel will reach its yield strain (and therefore 
its yield stress) before the concrete reaches a strain of 0.003. 
Figure 2-10 shows these variations in neutral axis location 
for beams that are on the verge of failure. In each case, the 
concrete has been strained to 0.003. Following the ductile 
failure mode case through to failure, we see that a slight 
additional load will cause the steel to stretch a considerable 
amount. The strains in the concrete and the steel continue 
to increase. The tensile force is not increasing, however, as 
the steel stress has reached fy and is not increasing. Because 

Referring to Figure 2-9, we may locate the neutral 
axis as follows:

 a = b1c    (ACI Code, Section 10.2.7)

 b1 = 0.85  because f′c = 4000 psi

Therefore

c =
a

0.85
=

4.18
0.85

= 4.92 in.

By similar triangles in the strain diagram, we may find 
the strain in the steel when the concrete strain is 0.003:

0.003
c

=
Pt

d - c

Then

 Pt =
d - c

c
 (0.003) =

23 - 4.92
4.92

  (0.003)

 = 0.011 in./in.

The strain at which the steel yields (Py) may be deter-
mined from the basic definition of the modulus of elasticity, 
E = stress/strain:

Py =
fy
Es

=
60,000

29,000,000
= 0.00207 in./in. (see Table A@1)

This represents the strain in the steel when the stress 
first reaches 60,000 psi.

Because the computed strain in the steel (0.011) is 
greater than the yield strain (0.00207), the steel reaches its 
yield stress before the concrete reaches its strain of 0.003, 
and the assumption that the stress in the steel is equal to the 
yield stress was correct. (See assumption 5 in Section 2-4 
and the idealized stress–strain diagram for steel shown in 
Figure 1-3b.)

2-7 � Balanced, Brittle, 
and Ductile Failure 
Modes

In Figure 2-9, the ratio between the steel strain and the 
maximum concrete strain is fixed once the neutral axis is 
established. The location of the neutral axis will vary based 

d N.A.

c

�t

a

NT

NC

0.85f�c
0.003
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Figure 2-9  Steel strain check.
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Figure 2-10  Strain distribution and failure modes in 
flexural members.
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For non-prestressed flexural members subjected to 
little or no axial load, the net tensile strain Pt at nominal 
strength shall not be less than 0.004. Because all values of 
Py for current reinforcing steel bars are less than 0.004, this 
ensures a tension-controlled flexural member, one that will 
exhibit ductility and fail by yielding of the steel.

Sections in which Pt falls between the compression- 
controlled strain limit Py and the tension-controlled limit 
0.005 constitute a transition region between compression-
controlled and tension-controlled sections. Whether a section 
is tension controlled, compression controlled, or in the transi-
tion region has implications, which are discussed shortly. See 
Figure 2-12 for a graphical representation of the strain limit 
definitions.

Example 2-2

For the beam cross section of Example 2-1, determine the 
amount of steel As required to cause the strain in the tension 
steel Pt to be 0.005 just as the maximum strain in the con-
crete reaches 0.003. f′c = 3000 psi and fy = 60,000 psi.

Solution:

The cross section, strain, stress, and internal couple are 
shown in Figure 2-13. Note that dt = d.

the compressive force cannot increase (ΣH = 0), and because 
the concrete strain and therefore its stress are increasing, the 
area under compression must be decreasing and the neu-
tral axis must rise. This process continues until the reduced 
area fails in compression as a secondary effect. This failure 
due to yielding is a gradual one, with the beam showing 
greatly increased deflection after the steel reaches the yield 
point; hence, there is adequate warning of impending fail-
ure. The steel, being ductile, will not actually pull apart even 
at failure of the beam. The ductile failure mode is desirable 
and is required by the ACI Code, as discussed in the follow-
ing section.

2-8 �D uctility 
Requirements

Although failure due to yielding of steel is gradual, with 
adequate warning of collapse, failure due to crushing of 
concrete is sudden and without warning. We have seen that 
flexural members with less steel than is required to produce 
the balanced condition will fail by yielding of the steel due 
to the strain in the steel exceeding the yield strain. The ACI 
Code (Section 10.3.4) defines a section as tension controlled 
when the net tensile strain Pt in the extreme tension steel 
is equal to or greater than 0.005 when the concrete has 
reached its assumed strain limit of 0.003. With reference to 
Figure 2-11, note that the extreme tension steel is located 
dt from the extreme compression face. For a single layer of 
steel, dt = d. For multiple layers of steel, dt 7 d.

Further, ACI Code (Section 10.3.3) defines a section as 
compression controlled when the net tensile strain Pt in the 
extreme tension steel is equal to or less than the yield strain 
Py of the steel just as the concrete in compression reaches its 
assumed strain limit of 0.003. See Table A-1 for values of Py. 
(The code permits Py to be taken as 0.002 for grade 60 steel.)

d dt
d

+

dt

Figure 2-11  Definition of extreme tension steel.
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0.002 0.003 0.004 0.005
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Figure 2-12  Strain–limit definitions.
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 Mn = 0.85f′cab ad -
a
2
b = 0.85(4)(8.36)(10)a23 -

8.36
2

b
 = 446 ft.@kips

For the beam of Example 2-1, Mn was 248 ft.-kips; 
therefore,

446 - 248
248

* 100 = 80% increase

Section 10.5.1 of the ACI Code also establishes a lower 
limit on the amount of tension reinforcement for flexural 
members. The code states that where tensile reinforcement 
is required by analysis, the steel area As shall not be less than 
that given by

As,min =
32f′c

fy
 bwd Ú

200
fy

 bwd

(Note that for rectangular beams, bw = b.)
As,min is conveniently calculated using Table A-5, 

where the larger of 32f′c>fy and 200>fy is tabulated. 
Note  that As,min is the product of the tabulated value 
and  bwd.

The lower limit guards against sudden failure essen-
tially by ensuring that a beam with a very small amount 
of tensile reinforcement has a greater moment strength as 
a reinforced concrete section than that of the correspond-
ing plain concrete section computed from its modulus 
of rupture. Alternatively, it is satisfactory to provide an 
area of tensile reinforcement that is one-third greater than 
that required by analysis (ACI Code, Section 10.5.3). This 
requirement applies especially to grade beams, wall beams, 
and other deep flexural members where the minimum rein-
forcement requirement specified in ACI 10.5.1 would result 
in an excessively large amount of steel.

Minimum required reinforcement in structural slabs 
(see Section 2-13) is governed by the required shrink-
age and temperature steel as outlined in the ACI Code, 
Section 7.12.

	 1.	 Determine the location of the neutral axis. By similar 
triangles:

 
c

0.003
=

23 - c
0.005

 0.005c = 0.003(23 - c)

 0.005c + 0.003c = 0.003(23) = 0.0690

from which

c =
0.0690
0.008

= 8.63 in.

	 2.	 Determine NC:

 a = b1c = 0.85(8.63) = 7.34 in.

 NC = 0.85 f′c ab

 = 0.85(3 kips/in.2)(7.34 in.)(10 in.) = 187.2 kips

	 3.	 Determine As:

 NC = NT = 187.2 kips

 NT = Asfy

 As =
NT

fy
=

187.2 kips

60 kips/in.2
= 3.12 in.2

For Pt to reach 0.005 just as the maximum concrete strain 
reaches 0.003, As must be 3.12 in.2. This is the maximum 
amount of steel for the section to be a tension-controlled 
section. Any steel in excess of 3.12 in.2 will cause Pt to be less 
than 0.005. Recall that the code does not allow Pt 6 0.004 in a 
non-prestressed flexural member with little or no axial load.

At this point, note again that heavily reinforced beams 
are less efficient than their more lightly reinforced coun-
terparts. One structural reason for this is that, for a given 
beam size, an increase in As is accompanied by a decrease in 
the lever arm of the internal couple (Z = d − a/2). This may 
be illustrated by doubling the tension steel for the beam of 
Example 2-1 and recalculating Mn:

 As = 2(2.37) = 4.74 in.2  (100% increase)

 a =
As fy

0.85f′cb
=

4.74(60)
0.85(4)(10)

= 8.36 in.

Cross Section Strain Stress I.C.

b = 10"

d = 23"

23 – c

c

As +

N.A.

0.003

0.005

NC

NT

0.85f�c

a

Figure 2-13  Sketch for Example 2-2.
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A second part of the overall safety provision, provided 
in the ACI Code, Section 9.3, is the reduction of the theoreti-
cal capacity of a structural element by a strength-reduction 
factor f. This provides for the possibility that small adverse 
variations in material strengths, workmanship, and dimen-
sions, although within acceptable tolerances and limits of 
good practice, may combine to result in undercapacity. In 
effect, the nominal strength of a member, when multiplied 
by the f factor, will furnish us with a practical strength that 
is obviously less than the nominal strength.

The ACI Code, Section 9.3, provides for these variables 
by using the following f factors:

Tension-controlled sections 0.90
Compression-controlled sections
  spirally reinforced 0.75
  other reinforced members 0.65
Shear and torsion 0.75
Bearing on concrete 0.65

Additionally, for sections in which Pt is between the limits for 
tension-controlled sections and compression-controlled sec-
tions, f shall be permitted to be linearly increased from that 
for compression-controlled sections to 0.90 as Pt increases 
from the compression-controlled strain limit to 0.005.

In each case, the practical strength of a reinforced con-
crete member will be the product of the nominal strength and 
the f factor. Therefore, in terms of moment, we can say that

practical moment strength = fMn

The individual values assigned to f factors are deter-
mined using statistical studies of structural resistances and 
loading variabilities tempered by subjective factors reflect-
ing the consequences of a structural failure.

The variation in f for tension-controlled sections, 
transition sections, and compression-controlled (nonspir-
ally reinforced) sections is shown in Figure 2-14. For the 

2-9 �S trength 
Requirements

The basic criterion for strength design may be expressed as

strength furnished Ú strength required

All members and all sections of members must be propor-
tioned to meet this criterion.

The required strength may be expressed in terms of 
design loads or their related moments, shears, and forces. 
Design loads may be defined as service loads multiplied by 
the appropriate load factors. (When the word design is used 
as an adjective [e.g., design load] throughout the ACI Code, 
it indicates that load factors are included.) The subscript u is 
used to indicate design loads, moments, shears, and forces.

The ACI Code, Section 9.2, specifies load factors to be 
used and load combinations to be investigated. Loads to 
be considered are dead loads, live loads, fluid loads, loads 
due to weight and pressure of soil, and snow loads, among 
others. For applications in this text, we will consider only 
dead load, live load, and loads due to weight and pressure 
of soil. For the combination of dead load and live load, the 
general representation is as follows:

U = 1.2D + 1.6L Ú 1.4D

where U is defined as the required strength to resist factored 
loads or related internal moments and forces, D is the 
service dead load, and L is the service live load. (The term 
service load generally refers to the load specified in applica-
ble building codes as representing minimum requirements.) 
The factors 1.2 and 1.6 (and 1.4) represent load factors. 
The load factors are part of the overall safety provision in 
reinforced concrete structures and are meant to reflect the 
variability in load effects. Dead loads can be more accurately 
estimated than live loads, and hence a lower load factor is 
used for dead load. Live loads have a greater variability than 
dead loads, and hence a higher load factor is used.

0.65

ey 0.005

0.90

f

et

Compression
controlled Transition Tension controlled

Figure 2-14 f v. Pt.
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We will now develop a modified expression for Mn 
(and fMn), which will then be adapted for table use. It is 
convenient to use the concept of reinforcement ratio r 
(lowercase Greek “rho”), the ratio of tension steel area to 
effective concrete area:

r =
As

bd

from which

As = rbd

Substituting this into the expression for a:

a =
As fy

(0.85f′c)b
=

rbdfy

(0.85f′c)b
=

rdfy

0.85f′c

Arbitrarily define ω (omega):

v = r
fy

f′c

Then

a =
vd

0.85

Substitute into the fMn expression:

fMn = f(0.85f′c)(b) 
vd

0.85
 cd -

vd
2(0.85)

d

Simplify and rearrange:

fMn = fbd2f′cv(1 - 0.59v)

Arbitrarily define k:

k = f′cv(1 - 0.59v)

The term k is sometimes called the coefficient of resis-
tance. It varies with r, f′c, and fy. The general expression for 
fMn can now be written as

fMn = fbd2k

Before introducing the tables, we discuss another important 
quantity that depends on these same three factors and that is 
included in the tables.

In Example 2-1, we calculated the strain Pt in the 
extreme tension steel at nominal strength (when the maxi-
mum concrete strain reaches 0.003). Assuming one layer of 
steel (d = dt), it can be shown that Pt is fixed if r, f′c, and fy are 
known. Referring to Figure 2-8 and Example 2-1:

Pt =
d - c

c  (0.003)

Also,

a = b1c

From which

c =
a
b1

transition section, an expression for f as a function of Pt can 
be developed:

f = 0.65 + a0.90 - 0.65
0.005 - Py

b(Pt - Py)

This is valid for the range of Py ≤ Pt ≤ 0.005. Assuming Py = 
0.002, this expression becomes:

f = 0.65 + (Pt - 0.002)a250
3

b

The calculation of Pt can also be simplified using the 
depth of the stress block a, which is commonly calculated in 
analysis problems. Refer to Figure 2-8 and set dt = d.

Pt =
dt - c

c  (0.003)

Substitute c = a/β1:

	 Pt =
dt -

a
b1

a
b1

 (0.003) =
0.003b1dt

a - 0.003� (2-1)

2-10 �R ectangular 
Beam Analysis for 
Moment (Tension 
Reinforcement Only)

The flexural analysis problem is characterized by knowing 
precisely what comprises the cross section of a beam. That 
is, the following data are known: tension bar size and num-
ber (or As), beam width (b), effective depth (d) or total depth 
(h), f′c, and fy. To be found, basically, is the beam strength, 
although this may be manifested in various ways: Find fMn, 
check the adequacy of the given beam, or find an allowable 
load that the beam can carry. The flexural design problem, on 
the other hand, requires the determination of one or more 
of the dimensions of the cross section or the determination 
of the main tension steel to use. It will be important to rec-
ognize the differences between these two types of problems 
because the methods of solution are different.

To expedite reinforced concrete analysis and design calcu-
lations, use is frequently made of tables of pertinent quantities. 
Tables find their greatest use in the design process, but because 
they are also useful for analysis, they are developed here.

In Example 2-1, we calculated the nominal moment 
strength Mn for a rectangular reinforced concrete section 
(tension steel only). Based on concrete:

Mn = 0.85f′c ab ad -
a
2
b

and

a =
Asfy

0.85 f′c b



	 Rectangular Reinforced Concrete Beams and Slabs: Tension Steel Only	 23

Example 2-3

Determine if the beam shown in Figure 2-15 is adequate as 
governed by the ACI Code (318-11). The loads shown are 
service loads. The uniformly distributed load is: DL = 0.65 
kip/ft, LL = 0.80 kip/ft. The dead load excludes the beam 
weight. The point load is a live load; f′c = 4000 psi, fy = 
60,000 psi.

Solution:

A logical approach to this type of problem is to compare 
the practical moment strength (fMn) with the applied 
design moment resulting from the factored loads. This latter 
moment will be noted Mu. If the beam is adequate for the 
moment, fMn Ú Mu. The procedure outlined here for fMn is 
summarized in Section 2-11.

Determination of fMn

	 1.	 Given:

 fy = 60,000 psi

 b = 12 in.

 d = 17.5 in.

 As = 3.16 in.2 (Table A@2)

 f′c = 4000 psi

	 2.	 To be found: fMn and Mu.

	 3.	 r =
As

bd
=

3.16
12(17.5)

= 0.01505

	 4.	 From Table A-5:

 As,min = 0.0033bwd

 = 0.0033(12)(17.5) = 0.69 in.2  (O.K.)

 3.16 in.2 7 0.69 in.2

	 5.	 From Table A-10, Pt is not tabulated; therefore Pt 7 0.005, 
the section is tension-controlled, and f = 0.90. Also from 

We previously developed

a =
rdfy

0.85f′c

By substitution,

c =
rdfy

0.85 f′cb1

Again by substitution,

Pt =
d - c

c  (0.003) =
ad -

rdfy

0.85 f′c b1
b

a
rdfy

0.85 f′cb1
b

 (0.003)

From which

Pt =
0.00255 f′cb1

rfy
- 0.003

Note, again, that this is based on the assumption that 
d = dt. For multiple layers of steel, use basic principles or 
Equation (2-1).

Tables A-7 through A-11 give the values of the coefficient 
of resistance k for values of r and various combinations of f′c  
and fy. The maximum tabulated value of r is that which cor-
responds to an Pt value of 0.004, the minimum value allowed 
by code for non-prestressed flexural members with little or 
no axial load (ACI Code, Section  10.3.5). Values of Pt are 
tabulated between 0.004 and 0.005 because in this transition 
region f must be determined (ACI Code, Section 9.3.2.2). 
When Pt 7 0.005, sections are tension-controlled and 
f = 0.90. Note that for the tables, it is assumed that d = dt, as 
it would be for one layer of steel. If there are multiple layers 
of steel (see Figure 2-11), then dt 7 d and Pt will be larger 
than the tabulated Pt. Therefore, the tables are conservative 
with regard to the determination of f based on Pt.

A

A

12 kips (LL)

Uniform load DL = 0.65 kip/ft
LL = 0.80 kip/ft

10' 10'

Beam Diagram

12"

20"
17.5"

4- #8
bars

Section A–A Stress and
Internal Couple

NC

NT

0.85f�c

Z

a

Figure 2-15  Sketch for 
Example 2-3.
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 =
2.36(20)2

8
+

19.2(20)

4

 = 214 ft.@kips 6 215 ft.@kips

Therefore the beam is adequate.

2-11 �S ummary of 
Procedure for 
Rectangular 
Beam Analysis 
for fMn (Tension 
Reinforcement Only)

	 1.	 List the known quantities. Use a sketch.
	 2.	 Determine what is to be found. (An “analysis” 

may require any of the following to be found: fMn, 
allowable service live load or dead load, maximum 
allowable span.)

	 3.	 Calculate the reinforcement ratio:

r =
As

bd

	 4.	 Calculate As,min and compare with As (use Table A–5).
	 5.	 Determine Pt by calculation or table (Pt Ú 0.004). 

Determine f. Select k if it is to be used.
	 6.	 Calculate fMn from fNCZ or fNTZ, where

 NC = 0.85f′cab
 NT = As fy

 a =
As fy

0.85f′cb

 Z = d -
a
2

or
calculate fMn from fMn = fbd2k.

A flow diagram of this procedure is presented in Appendix B.

2-12 S labs: Introduction
Slabs constitute a specialized category of bending members 
and are used in both structural steel and reinforced concrete 
structures. Probably the most basic and common type of 
slab is the one-way slab. A one-way slab may be described 
as a structural reinforced concrete slab supported on two 
opposite sides so that the bending occurs in one direction 
only—that is, perpendicular to the supported edges. One 
way slabs may exist as floor slabs and in concrete stairs.

If a slab is supported along all four edges, it may be 
designated as a two-way slab, with bending occurring in 
two directions perpendicular to each other. If the ratio of 
the lengths of the two perpendicular sides is in excess of 2, 

Table A-10, k = 0.7809. (It is conservative to use the 
lower tabulated value. An interpolation between 0.7809 
and 0.7853 could be done, but it is not warranted.)

	 6.	 Calculate fMn from fNCZ or fNTZ:

 a =
Asfy

0.85f′cb
=

3.16(60)

0.85(4)(12)
= 4.65 in.

 Z = d -
a
2

= 17.5 -
4.65

2
= 15.18 in.

Based on steel:

 Mn = AsfyZ

 = 3.16(60)(15.18) = 2880 in.@kips

 
2880
12

= 240 ft.@kips

 fMn = 0.90(240) = 216 ft.@kips

or
Calculate fMn using the coefficient of resistance k:

 fMn = fbd2k

 =
0.90(12 in.)(17.5 in.)2(0.7809 kips/in.2)

12 in./ft

 = 215 ft.@kips

Find Mu: Because the given service dead load excluded 
the beam weight, it will now be calculated. As the beam 
weight is a uniformly distributed load, it will be found in 
terms of weight per linear foot (kips/ft):

 beam weight = beam volume per foot of length
* 0.150 kip/ft3

 =
20 in.(12 in.)

144 
in.2

ft2

* 1 ft * 0.150 kip/ft3

 = 0.250 kip (per linear foot)

 = 0.250 kip/ft

Then summarizing the loads,

 superimposed service uniform dead load = 0.65 kip/ft

 total service uniform dead load = 0.250 + 0.65
= 0.90 kip/ft = wDL

 total service uniform live load = 0.80 kip/ft = wLL

Total factored uniform load:

 wu = 1.2wDL + 1.6wLL

 = 1.2(0.90) + 1.6(0.80) = 2.36 kips/ft

Superimposed concentrated live load = 12 kips = PLL.
Total factored concentrated load:

 Pu = 1.6PLL = 1.6(12) = 19.2 kips

 Mu =
wu/2

8
+

Pu/
4
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distributed load, the slab deflects so that it has curvature, 
and therefore bending moment, in only one direction. 
Hence the slab is analyzed and designed as though it were 
composed of 12-in.-wide segments placed side by side with 
a total depth equal to the slab thickness. With a width of 
12  in., the uniformly distributed load, generally specified 
in pounds per square foot (psf) for buildings, automatically 
becomes the load per linear foot (lb/ft) for the design of the 
slab (see Figure 2-17).

In the one-way slab, the main reinforcement for bend-
ing is placed perpendicular to the supports. Because analysis 
and design will be done for a typical 12-in.-wide segment, it 
will be necessary to specify the amount of steel in that seg-
ment. Reinforcing steel in slabs is normally specified by bar 
size and center-to-center spacing, and the amount of steel 
considered to exist in the 12-in.-wide typical segment is 
an average amount. Table A-4 is provided to facilitate this 
determination. For example, if a slab is reinforced with 
No. 7 bars spaced 15 in. apart (center to center), a typical 
12-in.-wide segment of the slab would contain an average 
steel area of 0.48 in.2 This is denoted 0.48 in.2/ft.

however, the slab may be assumed to act as a one-way slab 
with bending primarily occurring in the short direction.

A specific type of two-way slab is categorized as a flat 
slab. A flat slab may be defined as a concrete slab rein-
forced in two or more directions, generally without beams 
or girders to transfer the loads to supporting members. The 
slab, then, could be considered to be supported on a grid 
of shallow beams, which are themselves integral with and 
have the same depth as the slab. The columns tend to punch 
upward through the slab, resulting in a high shearing stress 
along with inclined slab cracking. (This “punching shear” is 
considered later in the discussion on column footings.) Thus 
it is common to both thicken the slab in the vicinity of the 
column, utilizing a drop panel, and at the same time enlarge 
the top of the column in the shape of an inverted frustum 
called a column capital (see Figure 2-16). Another type of 
two-way slab is a flat plate. This is similar to the flat slab, 
without the drop panels and column capitals; hence it is a 
slab of constant thickness supported directly on columns. 
Generally, the flat plate is used where spans are smaller 
and loads lighter than those requiring a flat slab design (see 
Figure 2-16).

2-13 �O ne-Way Slabs: 
Analysis for Moment

In our discussion of slabs, we will be primarily concerned 
with one-way slabs. Examples of such slabs are shown 
in Figure 2-17. Such a slab is assumed to be a rectangular 
beam with a width b = 12 in. When loaded with a uniformly 

Column capitalDrop panel
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Flat plate
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Figure 2-16  Reinforced concrete slabs.
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Figure 2-17b  Reinforced concrete stair.
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where fy is in units of psi. As an example, for simply 
supported solid one-way slabs of normal-weight concrete 
and grade 60 steel, the minimum thickness required when 
deflections are not computed equals //20, where / is the 
span length of the slab. Deflections are discussed further in 
Chapter 7.

The ACI Code, Section 7.7.1, discusses cover, concrete 
protection for the reinforcement against weather and other 
effects, which is measured from the surface of the steel to the 
nearest surface of the concrete. The cover for reinforcement 
in slabs must be not less than 3

4 in. for surfaces not exposed 
directly to the weather or in contact with the ground. This is 
applicable for No. 11 and smaller bars. For surfaces exposed 
to the weather or in contact with the ground, the minimum 
cover for reinforcement is 2 in. for No. 6 through No. 18 bars 
and 11

2 in. for No. 5 and smaller bars. If a slab is cast against 
and permanently exposed to the ground, the minimum con-
crete cover for all reinforcement is 3 in.

Example 2-4

A one-way structural interior slab having the cross section 
shown spans 12 ft. The steel is A615 grade 40. The concrete 
strength is 3000 psi, and the cover is 3

4 in. Determine the 
service live load (psf) that the slab can support.

Solution:

From Figure 2-18, the bars in this slab are No. 5 bars spaced 
7 in. apart. This is sometimes denoted “7 in. o.c.” (7 in. on 
center), meaning 7 in. center-to-center distance. They are 
perpendicular to the supports.

	 1.	 Given:

 As = 0.53 in.2/ft  (Table A@4)

 f′c = 3000 psi, fy = 40,000 psi

 b = 12 in.

 d = 6.5 - 0.75 -
0.625

2
= 5.44 in.

	 2.	 Find fMn and the permissible service live load.

In addition, the ACI Code stipulates that reinforcement 
for shrinkage and temperature stresses normal to the princi-
pal reinforcement must be provided in structural floor and 
roof slabs where the principal reinforcement extends in one 
direction only. The ACI Code (Section 7.12.2) further states 
that for grade 40 or 50 deformed bars, the minimum area of 
such steel must be As = 0.0020bh, and for grade 60 deformed 
bars, the minimum area must be As = 0.0018bh, where b = 
width of member (12 in. for slabs) and h = total slab thick-
ness. The ACI Code also stipulates that in structural slabs of 
uniform thickness, the minimum amount of reinforcement 
in the direction of the span (principal reinforcement) must 
not be less than that required for shrinkage and temperature 
reinforcement (ACI Code, Section 10.5.4). Further, accord-
ing to ACI Code, Section 7.6.5, the principal reinforcement 
shall not be spaced farther apart than three times the slab 
thickness nor more than 18 in. ACI Code, Section 7.12.2.2, 
requires that shrinkage and temperature reinforcement shall 
not be spaced farther apart than five times the slab thickness 
nor more than 18 in.

The required thickness of a one-way slab may depend 
on the bending, deflection, or shear strength requirements. 
The ACI Code imposes span/depth criteria in an effort to 
prevent excessive deflection, which might adversely affect 
the strength or performance of the structure at service loads. 
Table 9.5a of the ACI Code establishes minimum thick-
nesses for beams and one-way slabs in terms of fractions of 
the span length. These may be used for members not sup-
porting or attached to construction likely to be damaged by 
large deflections. If the member supports such construction, 
deflections must be calculated. For members of lesser thick-
ness than that indicated in the table, deflection should be 
computed, and if satisfactory, the member may be used. The 
tabular values are for use with non-prestressed reinforced 
concrete members made with normal-weight concrete and 
grade 60 reinforcement. If a different grade of reinforce-
ment is used, the tabular values must be multiplied by a 
factor equal to

0.4 +
fy

100,000

h = 6   "

"

Typical Section

#5 @ 7" o.c.

12"

12'-0"

12"

One-way Slab

3
4

1
2

clear

Figure 2-18  Sketch for Example 2-4.
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Because the segment is 12 in. wide, this is equivalent to 
220 psf. It will be noted that the procedure for finding fMn 
for a one-way slab is almost identical to that for a beam. See 
Section 2-11 for a summary of this procedure.

2-14 �R ectangular 
Beam Design for 
Moment (Tension 
Reinforcement Only)

In the design of rectangular sections for moment, with f′c  and 
fy usually prescribed, three basic quantities are to be deter-
mined: beam width, beam depth, and steel area. It should 
be recognized that there is a large multitude of combina-
tions of these three quantities that will satisfy the moment 
strength required in a particular application. Theoretically, 
a wide, shallow beam may have the same fMn as a narrow, 
deep beam. It must also be recognized that practical con-
siderations and code restraints will affect the final choices 
of these quantities. There is no easy way to determine the 
best cross section, because economy depends on much more 
than simply the volume of concrete and amount of steel in 
a beam.

We have previously developed the analysis expression 
for the resisting moment of a rectangular beam with tension 
reinforcement only:

fMn = fNCZ = fNTZ

We subsequently modified the equation for fMn for the use 
of tables (Tables A-7 through A-11):

fMn = fbd2k

This equation will now be used for the design of rectangular 
reinforced concrete sections. The first example is one where 
the cross-section width b and overall depth h are known by 
either practical or architectural considerations, leaving the 
selection of the reinforcing bars as the only unknown.

Material properties, sizes, and availability of reinforc-
ing steel in the form of bars and welded wire fabric were 
discussed in Section 1-7. In our discussion we will be con-
cerned with bars only and the ACI Code recommenda-
tions as to details governing minimum clearance and cover 
requirements for steel reinforcing bars. Clearance details are 
governed by the requirement for concrete to pass through 
a layer of bars without undue segregation of the aggregates. 
Cover details are governed by the necessity that the con-
crete must provide protection against corrosion for the bars. 
Required minimums of both spacing and cover also play a 
role in preventing the splitting of the concrete in the prox-
imity of highly stressed tension bars.

Spacing requirements in the ACI Code indicate that the 
clear space between bars in a single layer shall be not less than

	 1.	 The bar diameter, but not less than 1 in. (ACI Code, 
Section 7.6.1).

	 2.	 1 1
3 * maximum aggregate size (ACI Code, Section 3.3.2).

	 3.	 r =
As

bd
=

0.53
12(5.44)

= 0.0081

	 4.	 The minimum flexural reinforcement is slabs is that 
required for shrinkage and temperature steel:

 As,min = 0.0020bh = 0.0020(12)(6.5) = 0.16 in.2/ft

 0.53 in.2 7 0.16 in.2� (O.K.)

	 5.	 From Table A-7, for r = 0.0081, Pt is not tabulated. 
Therefore Pt 7 0.005, this section is tension controlled, 
and f = 0.90. Also from Table A-7, k = 0.3034 ksi.

	 6.	 Calculate a, Z, and fMn:

 a =
Asfy

0.85f′cb
=

0.53(40)

0.85(3)(12)
= 0.693 in.

 Z = d -
a
2

= 5.44 -
0.693

2
= 5.09 in.

 fMn = fAsfyZ = 0.9(0.53)(40)(5.09)

 = 97.1 in.@kips (per foot of slab width)

 fMn =
97.1 in.@kips

12 in./ft
= 8.09 ft.@kips

or
from Table A-7, k = 0.3034 ksi, from which

 fMn = fbd2k

 =
0.90(12 in.)(5.44 in.)2(0.3034 kips/in.2)

12 in./ft
= 8.08 ft.@kips

The service live load that the slab can support will be 
found next. (The notation Mu is used to denote moment 
resulting from factored applied loads.) As

Mu =
wu/2

8

the total factored design load that can be supported by the 
slab is

wu =
8Mu

/2

Because, as a limit, Mu = fMn,

wu =
8fMn

/2 =
8(8.09)

122 = 0.449 kip/ft

The slab weight is

wDL =
6.5(12)

144
 (0.150) = 0.0813 kip/ft

As the total factored design load is

wu = 1.2wDL + 1.6wLL

wLL may be found from

 wLL =
wu - 1.2wDL

1.6
=

0.449 - 1.2(0.0813)

1.6

 = 0.220 kip/ft
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	 3.	 From Table A-8, k of 0.6649 ksi will be provided if the 
steel ratio r = 0.0131. Therefore required r = 0.0131. 
Also from Table A-8, because Pt is not tabulated, Pt 7 
0.005, this is a tension-controlled section, and f = 0.90.

	 4.		   required As = rbd

 = 0.0131(10)(22) = 2.88 in.2

Check As,min. From Table A-5,

 As,min = 0.0033bwd

 = 0.0033(10)(22) = 0.73 in.2

	 5.	 Select the bars. Theoretically, any bar or combination 
of bars that provides at least 2.88 in.2 of steel area will 
satisfy the design requirements. Preferably, no fewer 
than two bars should be used. The bars should be of 
the same diameter and placed in one layer whenever 
possible. We next consider the bar selection based on 
the foregoing required As (2.88 in.2). The following com-
binations may be considered:

 2 No. 11 bars: As = 3.12 in.2

 3 No. 9 bars: As = 3.00 in.2

 4 No. 8 bars: As = 3.16 in.2

 5 No. 7 bars: As = 3.00 in.2

A review of Table A-3 indicates that the most accept-
able combination is three No. 9 bars. The minimum 
width of beam required for three No. 9 bars is 91

2 in., 
which is satisfactory.

At this point we should check the actual effective 
depth d and compare it with the estimated d:

 actual d = h - cover - stirrup - db>2

 = 25 - 1.5 - 0.38 -
1.128

2
= 22.6 in.

This is slightly in excess of the estimated d and is 
therefore conservative (on the safe side). Because of 
the small difference, no revision is either suggested or 
required.

	 6.	 Generally, concrete dimensions should be to an incre-
ment no smaller than 1

2 in. In this example, whole inch 
dimensions are given. The final design sketch should 
show the following (see Figure 2-19):

Also, should multiple layers of bars be necessary, a 1-in. 
minimum clear distance is required between layers (ACI 
Code, Section 7.6.2) and bars in the upper layers shall be 
placed directly above bars in the bottom layer. When mul-
tiple layers of steel are required, short transverse spacer 
bars may be used to separate the layers and support the 
upper layers. A No. 8 spacer bar will provide the minimum 
1-in. separation between layers. This detail is illustrated in 
Figure  3-6. In general, in this text, clear distance between 
layers of steel is noted with a dimension.

Cover requirements for cast-in-place concrete are stated 
in the ACI Code, Section 7.7.1. This listing is extensive. For 
beams, girders, and columns not exposed to the weather or 
in contact with the ground, however, the minimum concrete 
cover on any steel is 11

2 in. Cover requirements for slabs were 
discussed in Section 2-13 of this text.

Table A-3 combines spacing and cover requirements 
into a tabulation of minimum beam widths for multiples 
of various bars. The assumptions are stated. It should be 
noted that No. 3 stirrups are assumed. Stirrups are a spe-
cial form of reinforcement that primarily resist shear forces 
and will be discussed in Chapter 4. Stirrups are common in 
rectangular beams and will be assumed to exist in all further 
rectangular beam examples and problems in this text. One 
type of stirrup, called a loop stirrup, can be observed in 
Figure 2-19, in Example 2-5.

Example 2-5

Design a rectangular reinforced concrete beam to carry a 
service dead load moment of 100 ft.-kips (which includes 
the moment due to the weight of the beam) and a service 
live load moment of 75 ft.-kips. Architectural considerations 
require the beam width to be 10 in. and the total depth (h) to 
be 25 in. Use f′c = 3000 psi and fy = 60,000 psi.

Solution:

Of the three basic quantities to be found, two are speci-
fied in this example, and the solution for the required steel 
area is direct. The procedure outlined here is summarized in 
Section 2-15.

	 1.	 The total design moment is

 Mu = 1.2MDL + 1.6MLL

 = 1.2(100) + 1.6(75)

 = 240 ft.@kips

	 2.	 Estimate d to be equal to h − 3 in. This is conservative 
for a single layer of bars. The effective depth d in the 
resulting section will be a bit larger.

d = 25 - 3 = 22 in.

Because fMn = fbd2k and because fMn must equal Mu 
as a lower limit, the expression may be written as Mu =
fbd2k and, assuming f = 0.90, subject to later check,

required k =
Mu

fbd2 =
240(12)

0.9(10)(22)2
= 0.6612 ksi

Tie steel

#3 stirrup

1   " clear (typ.)

3- #9 bars

h = 25"

b = 10"

1
2

Figure 2-19  Design sketch for Example 2-5.
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This equation is derived from the equation

Mu = fMn = fAsfy ad -
a
2
b

by substituting fy of 60 ksi, assuming tension-controlled 
section or f = 0.9, and assuming the internal moment arm

ad -
a
2
b ≈ 0.9d

Both the quadratic equation and the rule of thumb 
methods can be used to determine the required area of 
flexural reinforcement for rectangular beams, T-beams, 
L-beams, and one-way slabs. Both methods will now be 
used to determine the required area of steel for the rectan-
gular beam in Example 2-5.

Quadratic Equation Method:

 a = 1

 b = -  a 
1.7 f c

= bd

fy
 b = -  

1.7(3 ksi)(10 in.)(22 in.)

60 ksi

= -  18.7 in.@kips

 c = a 
1.7 f c

= b

f f y
2  bMu =  

1.7(3 ksi)(10 in.)

0.9(60 ksi)2
 (240 ft.@kip)(12 in./ft)

 = 45.33 in.@kips

Therefore, As = 2.86 in.2 (the smaller of the two positive 
solutions). This required area of flexural steel compares well 
with 2.88 in.2 obtained using the Tables.

Rule of Thumb Method:

As (in.2) =  
Mu (ft.@kips)

4d(in.)
 =  

240(ft.@kips)

4(22 in.)
 = 2.73 in.2

This required area of flexural steel compares well with 
2.88 in.2 obtained using the Tables.

A second type of design problem is presented in 
Example 2-6. This may be categorized as a free design because 
of the three unknown variables: beam width, beam depth, 
and area of reinforcing steel. There is, therefore, a large num-
ber of combinations of these variables that will theoretically 
solve the problem. We do have some idea as to the required 
or desired relationships between these unknowns, however.

Whenever possible, flexural members should be pro-
portioned so they are tension-controlled sections (Pt Ú 
0.005.) This allows the strength-reduction factor f to be 
taken at its maximum value of 0.90. The reinforcement 
ratio r corresponding to Pt = 0.005 may be determined from 
Tables A-7 through A-11. Additionally, we know that the 
steel area must not be less than As,min (from Table A-5). 
This in effect establishes the range of the acceptable amount 
of steel. Table A-5 contains recommended values of r and 
associated values of k to use for design purposes. These are 
recommended maximum values. Try not to use larger r  
values. If larger values are used, a smaller concrete section 
will result, with potential deflection problems.

	a.	 Beam width

	b.	 Total beam depth

	c.	 Main reinforcement size and number of bars

	d.	 Cover on reinforcement

	e.	 Stirrup size

As a final note for Example 2-5, the reader has probably rec-
ognized that there is a direct solution that avoids the use of 
Tables A-7 through A-11. A quadratic equation results when 
the design expression is written as

Mu = fMn = fAsfy ad -
a
2
b

where	 a =
Asfy

0.85f′cb

With known quantities of Mu, f′c, fy, b, and d, the quadratic 
equation can be solved for the required steel area As. Generally, 
the use of the tables results in a much faster solution.

Rearranging the equation above yields,

Mu = fAsfy ad -  
Asfy

1.7 f c
=b

 b , from which we obtain the 

following quadratic equation:

As
2 - a 

1.7 f c
=bd

fy
 bAs + a 

1.7 f c
=b

f f y
2  bMu = 0

The quadratic equation can be represented as ax2 + bx + 
c = 0 for which the two solutions are:

x =  
-b { 2b2 - 4ac

2a

where,

x = As (in.2)

a = 1

b = -a 
1.7 f c

=bd

fy
 b (in.@kips)

c = a 
1.7 f c

=b

f f y
2  bMu (in.@kips)

f c
=  and fy are in ksi and Mu is in units of in.-kips.

Where there are two positive solutions to the quadratic 
equation, the smaller of the two solutions is the correct area 
of steel. In the case where one solution is positive and the 
second solution is negative, the positive solution is the cor-
rect area of steel.

A rule of thumb or approximate equation commonly 
used in design practice to determine the approximate area 
of flexural reinforcement is [2]

As =
Mu

4d

where

Mu = the factored moment in ft.-kips

d = the effective depth in inches

As = reinforcement area, in.2
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	 4.	 At this point we have two unknowns, b and d, which 
can be established using two different approaches. One 
approach is to assume b and then solve for d. This is 
logical as practical and architectural considerations 
often establish b within narrow limits. Assume f = 0.90, 
subject to later check.

Assuming that b = 11 in. and utilizing the relationship 
Mu = fbd2k,

required d = A Mu

fbk
= A 189(12)

0.9(11)(0.6438)
= 18.9 in.

A check of the d/b ratio gives 18.9/11 = 1.72, which is a 
reasonable value.

	 5.	 At this point, the beam weight may be estimated. Real-
izing that the total design moment will increase, the final 
beam size may be estimated to be about 11 in. * 23 in. 
for purposes of calculating its weight. Thus

beam dead load =
11(23)

144
 (0.150) = 0.264 kip/ft

	 6.	 The additional Mu due to beam weight is

 Mu = 1.2a0.264(18)2

8
b = 12.8 ft.@kips

 total Mu = 189 + 12.8 = 202 ft.@kips

	 7.	 Using the same r, k, and b as previously, compute the 
new required d:

required d = A Mu

fbk
= A 202(12)

0.9(11)(0.6438)
= 19.5 in.

A check of the d/b ratio gives 19.50/11 = 1.77, which is 
reasonable.

	 8.		   required As = rbd

 = 0.0120(11)(19.50) = 2.57 in.2

Check As,min. From Table A-5,

 As,min = 0.0033bwd

 = 0.0033(11)(19.50) = 0.71 in.2   (O.K.)

	 9.	 From Table A-2, select three No. 9 bars. Therefore 
As = 3.00 in.2. From Table A-3,

minimum required b = 9.5 in.    (O.K.)

These r values are based on a previous ACI Code, which 
stipulated that

 where r 7
0.18fc

fy
, deflection must be checked

 where r 6
0.18fc

fy
, deflection need not be checked

This stipulation was deleted in more current ACI 
Codes. Nevertheless, it remains a valid guide for selecting a 
preliminary value for the reinforcement ratio. The assump-
tion of a value for reinforcement ratio will reduce from three 
to two the number of unknown quantities to be determined 
(yet to be found are b and d).

Experience and judgment developed over the years 
have also established a range of acceptable and economical 
depth/width ratios for rectangular beams. Although there is 
no code requirement for the d/b ratio to be within a given 
range, rectangular beams commonly have d/b ratios between 
1 and 3. Desirable d/b ratios lie between 1.5 and 2.2. There 
are situations in which d/b ratios outside this range have 
applications, however; therefore it is the designer’s choice.

Example 2-6

Design a simply supported rectangular reinforced concrete 
beam with tension steel only to carry a service dead load of 
1.35 kips/ft and a service live load of 1.90 kips/ft. (The dead 
load does not include the weight of the beam.) The span 
is 18 ft. Assume No. 3 stirrups. Use f′c = 4000 psi and fy = 
60,000 psi. See Figure 2-20.

Solution:
	 1.	 Find the applied design moment Mu, temporarily 

neglecting the beam weight, which will be included at a 
later step:

 wu = 1.2wDL + 1.6wLL

 = 1.2(1.35) + 1.6(1.90) = 4.66 kips/ft

Note that this is the factored design load,

Mu =
wu/2

8
=

4.66(18)2

8
= 189 ft.@kips

	 2.	 Assume a value for r. Use r = 0.0120 (see Table A-5).

	 3.	 From Table A-5, the associated k value is 0.6438 ksi 
(alternatively, Table A-10 can be used).

18'-0"

Beam Diagram

A

A

Section A–A

?

?

?

Figure 2-20  Sketch for Example 2-6.
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Hence, assuming that b = 10 in., the required effective 
depth d can then be calculated in a manner similar to that 
previously used. Also, at step 7, with a width b and a depth 
h established, along with the related design moment Mu, 
we could revert to the procedure for design of a rectangular 
section where the area is known (see Example 2-5, step 2.)

2-15 �S ummary of 
Procedure for 
Rectangular 
Reinforced Concrete 
Beam Design for 
Moment (Tension 
Reinforcement Only)

	A.	 Cross Section (b and h) Known; Find the Required As

	 1.	 Convert the service loads or moments to design Mu 
(include the beam weight).

	 2.	 Based on knowing h, estimate d by using the rela-
tionship d = h − 3 in. (conservative for bars in a 
single layer). Calculate the required k using an 
assumed f value of 0.90, subject to later check.

required k =
Mu

fbd2

	 3.	 From Tables A-7 through A-11, find the required 
steel ratio r and ensure that Pt Ú 0.005. If Pt is 
within the range 0.004 ≤ Pt ≤ 0.005, then f will 
have to be reduced.

	 4.	 Compute the required As:

required As = rbd

Check As,min. Use Table A-5.
	 5.	 Select the bars. Check to see if the bars can fit into 

the beam in one layer (preferable). Check the actual 
effective depth and compare with the assumed 
effective depth. If the actual effective depth is 
slightly in excess of the assumed effective depth, 
the design will be slightly conservative (on the 
safe side). If the actual effective depth is less than 
the assumed effective depth, the design is on the 
unconservative side and should be revised.

	 6.	 Sketch the design. (See Example 2-5, step 6, for a 
discussion.)

	B.	 Design for Cross Section and Required As

	 1.	 Convert the service loads or moments to design 
moment Mu. An estimated beam weight may be 
included in the dead load if desired. Be sure to 
apply the load factor to this additional dead load.

	 2.	 Select a desired steel ratio r. (See Table A-5 for rec-
ommended values. Use the r values from Table A-5 
unless a small cross section or decreased steel is 
desired.)

	10.	 Determine the total beam depth h:

required h = 19.50 +
1.13

2
+ 0.38 + 1.5 = 21.95 in.

Rounding up by a 12 in. increment, we will use h = 22.0 in. 
The actual effective depth d may now be checked:

d = 22.0 - 1.5 - 0.38 -
1.13

2
= 19.55 in. 7 19.50 in.

(O.K.)

	11.	 A design sketch is shown in Figure 2-21. This design is 
not necessarily the best. The final r is

3.0
11(19.55)

= 0.01395

Check Pt: from Table A-10, Pt 7 0.005. Therefore, the 
assumed f is O.K. The final d/b ratio is

	
19.55

11
= 1.78� (O.K.)

The design moment was based on a section 11 in. * 23 in., 
where the designed beam turned out to be 11 in. * 22 in. 
Small modifications in proportions could very well make 
more efficient use of the steel and concrete provided.

The percentage of overdesign could be determined 
(not necessary, however) by analyzing the designed 
cross section and comparing moment strength with 
applied moment.

There are several alternative approaches to this 
problem. At step 4, we could establish a desired d/b 
ratio and then mathematically solve for b and d. For 
example, if we establish a desirable d/b ratio of 2.0, 
then d = 2b. Again using the relationship Mu = fbd2k,

required bd2 =
Mu

fk
=

189(12)

0.9(0.6438)
= 3914 in.3

We can substitute for d as follows:

 required bd2 = 3914 in.3

 b(2b)2 = 3914 in.3

 b3 =
3914

4
= 979 in.3

 required b = 13 979 = 9.93 in.

#3 stirrup

1   " clear (typ.)

3-#9 bars

11"

22"
1
2

Figure 2-21  Design sketch for Example 2-6.
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ACI Code allows to limit adverse deflections is the use of a 
minimum thickness (see Section 2-13). A slab that meets the 
minimum thickness requirement must still be designed for 
flexure. Deflections need not be calculated or checked unless 
the slab supports or is attached to construction likely to be 
damaged by large deflections, however.

Example 2-7 illustrates the use of the ACI minimum 
thickness for one-way slabs. With respect to the span length 
to be used for design, the ACI Code, Section 8.9.1, recom-
mends for beams and slabs not integral with supports

span length = clear span + depth of member

but not to exceed the distance between centers of supports. 
For design purposes, we will use the distance between cen-
ters of supports, as the slab thickness is not yet determined.

Example 2-7

Design a simple-span one-way slab to carry a uniformly 
distributed live load of 400 psf. The span is 10 ft (center-to-
center of supports). Use f′c = 4000 psi and fy = 60,000 psi. 
Select the thickness to be not less than the ACI minimum 
thickness requirement.

Solution:

Determine the required minimum h and use this to estimate 
the slab dead weight.

	 1.	 From ACI Table 9-5(a), for a simply supported, solid, 
one-way slab,

minimum h =
/

20
=

10(12)

20
= 6.0 in.

Try h = 6 in. and design a 12-in.-wide segment.

	 2.	 Determine the slab weight dead load:

6(12)

144
(0.150) = 0.075 kip/ft

The total design load is

 wu = 1.2wDL + 1.6wLL

 = 1.2(0.075) + 1.6(0.400)

 = 0.730 kip/ft

	 3.	 Determine the design moment:

Mu =
wu/2

8
=

0.730(10)2

8
= 9.13 ft.@kips

	 4.	 Establish the approximate d. Assuming No. 6 bars and 
minimum concrete cover on the bars of 3/4 in.,

assumed d = 6.0 - 0.75 - 0.375 = 4.88 in.

	 5.	 Determine the required k assuming f = 0.90:

 required k =
Mu

fbd2

 =
9.13(12)

0.90(12)(4.88)2
= 0.4260 ksi

	 3.	 From Table A-5 (or from Tables A-7 through 
A-11), find k.

	 4.	 Assume b and compute the d required:

required d = A Mu

fbk

If the d/b ratio is reasonable (1.5 to 2.2), use these 
values for the beam. If the d/b ratio is not reason-
able, increase or decrease b and compute the new 
required d.

	 5.	 Estimate h and compute the beam weight. Compare 
this with the estimated beam weight if an estimated 
beam weight was included.

	 6.	 Revise design Mu to include the moment due to 
the beam’s own weight using the latest weight 
determined. Note that at this point, one could go 
to step  2 in design procedure A, where the cross 
section is known.

	 7.	 Using b and k previously determined along with 
the new total design Mu, find the new required d:

required d = A Mu

fbk

Check to see if the d/b ratio is reasonable.
	 8.	 Find the required As:

required As = rbd

Check As,min. Use Table A-5.
	 9.	 Select the bars and check to see if the bars can fit 

into a beam of width b in one layer (preferable).
	10.	 Establish the final h, rounding this upward to the 

next 1
2 in. This will make the actual effective depth 

greater than the design effective depth, and the 
design will be slightly conservative (on the safe side).

	11.	 Check Pt. Check the f assumption. Sketch the 
design. (See Example 2-5, step 6, for a discussion.)

A flow diagram of this procedure is presented in Appendix B.

2-16 �D esign of One-Way 
Slabs for 
Moment (Tension 
Reinforcement Only)

As higher-strength steel and concrete have become avail-
able for use in reinforced concrete members, the sizes of 
the members have decreased. Deflections of members are 
affected very little by material strength but are affected 
greatly by the size of a cross section and its related moment 
of inertia. Therefore deflections will be larger for a member 
of high-strength materials than would be the deflections for 
the same member fabricated from lower-strength materi-
als, because the latter member will be essentially larger in 
cross-sectional area. Deflections are discussed in detail in 
Chapter  7. As discussed previously, one method that the 
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2-17 �S ummary of 
Procedure for 
Design of One-Way 
Slabs for Moment 
(To Satisfy ACI 
Minimum h)

	 1.	 Compute the minimum h based on the ACI Code, Table 
9.5(a). The slab thickness h can be rounded to the next  
higher 1

4 in. for slabs up to 6 in. thickness and to the 
next higher 12 in. for slabs thicker than 6 in.

	 2.	 Compute the slab weight and compute wu (total design 
load).

	 3.	 Compute the design moment Mu.
	 4.	 Calculate an assumed effective depth d (assuming No. 6 

bars and 3
4 in. cover) by using the relationship

d = h - 1.12 in.

	 5.	 Calculate the required k assuming f = 0.90:

required k =
Mu

fbd2

	 6.	 From Tables A-7 through A-11, find the required steel 
ratio r. Check Pt to verify the f assumption. If Pt 6 
0.005, the slab must be made thicker.

	 7.	 Compute the required As:

required As = rbd

	 8.	 Select the main steel (Table A-4). Check with maximum 
spacing of 3h or 18 in. Check the assumption of step 4.

	 9.	 Select shrinkage and temperature steel as per the ACI 
Code:

 required As = 0.0020bh (grade 40 and 50 steel)
 required As = 0.0018bh (grade 60 steel)

Check with maximum spacing of 5h or 18 in.
	10.	 The main steel area cannot be less than the area of steel 

required for shrinkage and temperature.
	11.	 Sketch the design.

2-18 S labs on Ground
The previous discussion primarily concerns itself with a struc-
tural slab. Another category of slabs, generally used as a floor, 
may be termed a slab on grade or a slab on ground. As the name 
implies, it is a slab that is supported throughout its entire area 
by some form of subgrade. The design of such a slab is signifi-
cantly different from the design of a structural slab.

A theoretical approach to determine the required floor 
slab thickness must consider the following factors:

	 1.	 Strength of subgrade and subbase
	 2.	 Strength of concrete
	 3.	 Magnitude and type of load (including contact area of 

loads)

	 6.	 From Table A-10, for a required k = 0.4260, the required 
r = 0.0077. (Note that the required r selected is the next 
higher value from Table A-10.) Also note that Pt is not tab-
ulated. Therefore, Pt 7 0.005, this is a tension-controlled 
section, and f = 0.90.

Use r = 0.0077.

	 7.	 required As = rbd = 0.0077(12)(4.88) = 0.45 in.2/ft

	 8.	 Select the main steel (from Table A-4). Select No. 5 
bars at 8 in. o.c. (As = 0.46 in.2). The assumption on 
bar size was satisfactory (actual d 7 assumed d). The 
code requirements for maximum spacing have been 
discussed in Section 2-13. Minimum spacing of bars in 
slabs, practically, should not be less than 4 in., although 
the ACI Code allows bars to be placed closer together, 
as discussed in Example 2-5. Check the maximum 
spacing (ACI Code, Section 7.6.5):

 maximum spacing = 3h or 18 in.

 3h = 3(6) = 18 in.� (O.K.)

 8 in. 6 18 in.

Therefore use No. 5 bars at 8 in. o.c.

	 9.	 Select shrinkage and temperature reinforcement (ACI 
Code, Section 7.12):

 required As = 0.0018bh

 = 0.0018(12)(6) = 0.13 in.2/ft

Select No. 3 bars at 10 in. o.c. (As = 0.13 in.2) or No. 4 
bars at 18 in. o.c. (As = 0.13 in.2):

maximum spacing = 5h or 18 in.

Use No. 3 bars at 10 in. o.c.

	10.	 The main steel area must exceed the area required 
for  shrinkage and temperature steel (ACI Code, 
Section 10.5.4):

	 0.46 in.2 > 0.13 in.2� (O.K.)

	11.	 A design sketch is shown in Figure 2-22.

Clear span

Bearing length

Concrete masonry wall

6"

#5 @ 8" o.c.

#3 @ 10" o.c.

" clear4
3

Figure 2-22  Design sketch for Example 2-7.
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Problems

In the following problems, consider moment only and tension 
reinforcing only. For beams, assume 11

2@in. cover and No. 3 
stirrups. For slabs, assume 34@in. cover. Unless noted otherwise, 
given loads are superimposed service loads and do not include 
weights of the members.
	 2-1.	 a.	 �The beam of the cross section shown has 

f′c = 3000 psi and fy = 60,000 psi. Neglect the ten-
sile strain check and As,min check. Calculate Mn.

b.	 Same cross section as part (a) but the steel is 
changed to four No. 10 bars. Calculate Mn. 
Calculate the percent increase in Mn and As.

4-#9

16"

24"

PROBLEM 2-1

c.	 Same cross section as part (a) but the depth d is 
increased to 28 in. Calculate Mn. Calculate the per-
cent increase in Mn and d.

thickness will be a function of the type of loading, magni-
tude of loading, and contact area of the load.

Reinforcing steel, in the form of welded wire reinforce-
ment or deformed bars in both directions, is usually placed 
in the slab for a number of reasons. The reinforcement may 
add to the strength of the slab, particularly when the slab 
spans soft spots in the subgrade. It also acts as crack con-
trol by minimizing the width of the cracks that may develop 
between joints. In addition, the use of reinforcement will 
allow an increased joint spacing. Despite several other rela-
tively minor advantages that result from the use of steel, 
questions have been raised as to whether reinforcement is 
always necessary, particularly with uniform support of the 
slab and short joint spacings. The steel does not prevent 
cracking nor does it add significantly to the load carrying 
capacity of the slab. It is also usually more economical to 
obtain increased strength in concrete slabs on ground by 
increasing the thickness of the slab.

Design aids and procedures (based primarily on 
research done for highway and airport pavements) have 
been developed and are available in specialized publications. 
(See references [3] through [8].)

The subgrade is the natural ground, graded and com-
pacted, on which the floor is built. The pressure on the 
subgrade is generally low due to the rigidity of the con-
crete floor slab. The floors do not necessarily require 
strong support from the subgrade. It is important that the 
subgrade support be reasonably uniform without abrupt 
changes, horizontally, from hard to soft, however. The 
upper portion of the subgrade should be of uniform mate-
rial and density.

The subbase is usually a thin layer of material placed 
on top of the prepared subgrade. It is generally used when 
a uniform subgrade cannot be developed by grading and 
compaction. It will serve to equalize minor surface defects as 
well as provide a capillary break and a working platform for 
construction activities. A 4-in. minimum thickness, com-
pacted to a high density, is suggested.

The concrete strength for industrial and commercial 
slabs on ground should not be less than 4000 psi at 28 days. 
This furnishes satisfactory wear resistance in addition to  
strength. Generally, in residential construction the slabs on 
ground will have concrete strengths of 2500 or 3000 psi.  
A minimum of 3000 psi is recommended. The required slab 
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d.	 Same cross section as part (a) but f′c  is increased 
to 4000 psi. Calculate Mn. Calculate the percent 
increase in Mn and f′c.

	 2-2.	 For the cross section of Problem 2-1(a), verify that 
the tension steel yields.

	 2-3.	 a.	 �Calculate the practical moment strength fMn for a 
rectangular reinforced concrete cross section hav-
ing a width b of 13 in. and an effective depth d of 
24 in. The tension reinforcing steel is four No. 8 
bars. f′c = 4000 psi and fy = 40,000 psi.

b.	 Same as part (a) but fy = 60,000 psi. Also calculate 
the percent increase in fMn and fy.

	 2-4.	 Determine fMn for a reinforced concrete beam 16 in. 
wide by 32 in. deep reinforced with seven No. 10 bars 
(placed in two layers: five in the bottom layer, two 
in the top layer, with 1 in. clear between layers). Use 
f′c = 4000 psi and fy = 60,000 psi.

	 2-5.	 A reinforced concrete beam having the cross section 
shown is on a simple span of 28 ft. It carries uniform 
service loads of 3.60 kips/ft live load and 2.20 kips/ft  
dead load. Check the adequacy of the beam with 
respect to moment. Use f′c = 3000 psi and fy = 
40,000 psi.
a.	 Reinforcing is six No. 10 bars.
b.	 Reinforcing is six No. 11 bars.

20"

42"

3"

PROBLEM 2-5

	 2-6.	 Develop a spreadsheet application that will allow a 
user to input the basic information for the analysis 
of a rectangular reinforced concrete cross section and 
that will then calculate the practical moment strength 
fMn. Set up the spreadsheet to be “user friendly” and 
fully label the output.

	 2-7.	 A 12-in.-wide by 20-in.-deep concrete beam is 
reinforced with three No. 8 bars. The beam sup-
ports a service live load of 2.5 kips/ft and a service 
dead load of 0.7 kip/ft on a simple span of 16 ft. Use 
f′c = 4000 psi and fy = 60,000 psi. Check the adequacy 
of the beam with respect to moment.

	 2-8.	 A reinforced concrete beam having the cross sec-
tion shown is on a simple span of 26.5 ft. It supports 
uniformly distributed service loads of 3.20 kips/ft 

live load and 1.80 kips/ft dead load (excluding the 
beam weight). Reinforcing is as shown. Check the 
adequacy of the beam with respect to moment. Use 
f′c = 3000 psi and fy = 60,000 psi.

5-#9

16"

35"

(a)

38"

4-#9

16"

34.4"

(b)

38"

2-#9

5-#9

16"

35"

(a)

38"

4-#9

16"

34.4"

(b)

38"

2-#9

PROBLEM 2-8

	 2-9.	 A rectangular reinforced concrete beam carries service 
loads on a span of 20 ft as shown. Use f′c = 3000 psi 
and fy = 60,000 psi; b = 14.5 in., h = 26 in., and rein-
forcing is three No. 10 bars. Determine whether the 
beam is adequate with respect to moment.

DL = 1.6 kips/ft LL = 2.8 kips/ft

6'-0" 14'-0"

PROBLEM 2-9

	2-10.	 A rectangular reinforced concrete beam 14 in. wide 
by 24 in. deep is to support a service dead load of 0.6 
kip/ft and a service live load of 1.4 kips/ft. Reinforcing 
is four A615 grade 60 No. 9 bars. Use f′c = 4000 psi. 
Determine the maximum simple span length on 
which this beam may be utilized.

	2-11.	 A 10-in.-thick one-way slab supports a superimposed 
service live load of 600 psf on a simple span of 16 ft. 
Reinforcement is No. 7 at 6 in. on center. Check the 
adequacy of the slab with respect to moment. Use 
f′c = 3000 psi and fy = 60,000 psi.
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addition to the beam weight). As before, check fMn 
for the beam designed.

	2-20.	 Design a simply supported rectangular reinforced con-
crete beam to span 22 ft and to carry uniform service 
loads of 1.6 kips/ft dead load and 1.4 kips/ft live load. 
The assumed dead load includes an estimated beam 
weight. Use A615 grade 60 steel and f′c = 3000 psi. 
Use the recommended r from Table A-5. Make the 
beam width 15 in. and keep the overall depth (h) to 
full inches. Assume No. 3 stirrups. Check the adequacy 
of the beam you design by comparing Mu with fMn. 
Sketch your design.

	2-21.	 Design a rectangular reinforced concrete beam for 
a simple span of 30 ft. The beam is to carry uniform 
service loads of 1.0 kip/ft dead load and 2.0 kips/ft live 
load. Because of column sizes, the beam width should 
not exceed 16 in. Use f′c = 3000 psi and fy = 60,000 psi. 
Sketch your design.

	2-22.	 Rework Problem 2-21 assuming that the total depth h 
is not to exceed 30 in. and that there is no limitation 
on the width b.

	2-23.	 Design a rectangular reinforced concrete beam 
for a simple span of 32 ft. Uniform service loads 
are 1.5  kips/ft dead load and 2.0 kips/ft live load. 
The width of the beam is limited to 18 in. Use 
f′c = 3000 psi and fy = 60,000 psi. Sketch your design.

	2-24.	 Rework Problem 2-23 assuming that the total depth h 
is not to exceed 32 in. and that there is no limitation 
on the width b.

	2-25.	 Design a rectangular reinforced concrete beam for 
a simple span of 40 ft. Uniform service loads are 
0.8 kip/ft dead load and 1.4 kips/ft live load. Use 
f′c = 4000 psi and fy = 60,000 psi. Sketch your design.

	2-26.	 Design a rectangular reinforced concrete beam (tension 
steel only) for the span and superimposed service loads 
shown. Use f′c = 5000 psi and A615 grade 60 steel.

	2-12.	 The one-way slab shown spans 12 ft from center of 
support to center of support. Calculate fMn and 
determine the service live load (psf) that the slab may 
carry. (Assume that the only dead load is the weight of 
the slab.) Use f′c = 3000 psi and fy = 40,000 psi.

	2-13.	 An 81
2-in.-thick one-way reinforced concrete slab 

overhangs a simple support. The span of the over-
hang is 8 ft. Drawings called for the reinforcement to 
be placed with top cover of 1 in. The steel was mis-
placed, however, and later was found to be as much 
as 31

2 in. below the top of the concrete. Find fMn for 
the slab as designed and as built and the percent of 
reduction in flexural strength. Use f′c = 4000 psi and 
fy = 60,000 psi. Bars are No. 7 at 11 in. o.c.

	2-14.	 Design a rectangular reinforced concrete beam to 
resist a total design moment Mu of 133 ft.-kips. 
(This includes the moment due to beam weight.) 
Architectural considerations require that the width 
(b) be 111

2 in. and the overall depth (h) be 23 in. Use 
f′c = 3000 psi and fy = 60,000 psi. Sketch your design.

	2-15.	 Rework Problem 2-14 with Mu = 400 ft.-kips, b = 16 
in., h = 28 in., f′c = 4000 psi, and fy = 60,000 psi.

	2-16.	 For the beam designed in Problem 2-15, if the main 
reinforcement were incorrectly placed so that the 
actual effective depth were 24 in., would the beam 
be adequate? Check by comparing Mu with the fMn 
resulting from the beam using actual steel, actual b, 
and d = 24 in.

	2-17.	 Design a rectangular reinforced concrete beam (ten-
sion steel only) for a simple span of 32 ft. Uniform 
service loads are 0.85 kip/ft dead load and 1.0 kip/ft  
live load. The beam is to be 111

2 in. wide and 
26  in.  deep overall (form reuse consideration). Use 
f′c = 4000 psi and fy = 60,000 psi. Calculate fMn for 
the beam designed.

	2-18.	 Design a rectangular reinforced concrete beam (ten-
sion steel only) for a simple span of 30 ft. There is no 
superimposed dead load (other than the weight of the 
beam) and the superimposed live load is 1.35 kips/ft. 
The beam is to be 12 in. wide and 27 in. deep over-
all. Use f′c = 5000 psi and A615 grade 60 steel. As a 
check, calculate fMn for the beam designed.

	2-19.	 Rework Problem 2-18 assuming that the superim-
posed live load has increased to 1.75 kips/ft and 
there is now a 1.0 kip/ft superimposed dead load (in 

Span for design = 12'-0"

A

A

" clear #8 @ 6" o.c.

8"

Section A–A
4
3

PROBLEM 2-12

12'

LL = 3.50 kips/ft

18'

DL = 2.00 kips/ft

PROBLEM 2-26
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load of 300 psf. Use f′c = 3000 psi and fy = 60,000 psi. 
Sketch your design.

	2-31.	 Design a simply supported one-way reinforced con-
crete floor slab to span 10 ft and carry a service live 
load of 175 psf and a service dead load of 25 psf. 
Use f′c = 3000 psi and fy = 60,000 psi. Make the slab 
thickness to 12-in. increments.
a.	 Design the slab for the ACI Code minimum 

thickness.
b.	 Design the thinnest possible slab allowed by the 

ACI Code.
	2-32.	 Design the simply supported one-way reinforced 

concrete slab as shown. The service live load is 
200 psf. Use f′c = 3000 psi and fy = 60,000 psi. Sketch 
your design.

	2-27.	 Design a 28-ft, simple-span, rectangular reinforced 
concrete beam to support a uniform live load of 
0.8 kip/ft and concentrated loads at midspan of 10 kips 
dead load and 14 kips live load. Use f′c = 5000 psi 
and fy = 60,000 psi.

	2-28.	 Design a simply supported rectangular reinforced 
concrete beam for the span and service loads shown. 
Use f′c = 3000 psi and fy = 60,000 psi.

6" bearing (typ.)

12" 12"12'-6" clear

Typical Section

Concrete block

PROBLEM 2-32

9'-0" 11'-0"

8 kips DL
10 kips LL 0.5 kip/ft LL and 0.3 kip/ft

DL (excludes beam weight)

PROBLEM 2-28

	2-29.	 Rework Problem 2-28 assuming that the beam is to be 
extended to overhang the right support by 10 ft. The 
uniform load also extends to the end of the overhang.

	2-30.	 Design a simply supported one-way reinforced con-
crete floor slab to span 8 ft and carry a service live 
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3-1 � T-Beams: 
Introduction

Floors and roofs in reinforced concrete buildings may 
be composed of slabs that are supported so that loads are 
carried to columns and then to the building foundation. As 
previously discussed, these are termed flat slabs or flat plates. 
The span of such a slab cannot become very large before its 
own dead weight causes it to become uneconomical. Many 
types of systems have been devised to allow greater spans 
without the problem of excessive weight.

One such system, called a beam and girder system, is com-
posed of a slab on supporting reinforced concrete beams and 
girders. The beam and girder framework, in turn, is supported 
by columns. In such a system, the beams and girders are com-
monly placed monolithically with the slab. Systems other 
than the monolithic system do exist, and these may make use 
of some precast and some cast-in-place concrete. These are 
generally of a proprietary nature. The typical monolithic sys-
tem is shown in Figure 3-1. The beams are commonly spaced 
so that they intersect the girders at the midpoint, third points, 
or quarter points, as shown in Figure 3-2.

	 3-1	 T-Beams: Introduction

	 3-2	 T-Beam Analysis

	 3-3	 Analysis of Beams Having 
Irregular Cross Sections

	 3-4	 T-Beam Design (For 
Moment)

	 3-5	 Summary of Procedure for 
Analysis of T-Beams (For 
Moment)

	 3-6	 Summary of Procedure for 
Design of T-Beams (For 
Moment)

	 3-7	 Doubly Reinforced Beams: 
Introduction

	 3-8	 Doubly Reinforced Beam 
Analysis for Moment 
(Condition I)

	 3-9	 Doubly Reinforced Beam 
Analysis for Moment 
(Condition II)

	3-10	 Summary of Procedure 
for Analysis of Doubly 
Reinforced Beams (For 
Moment)

	3-11	 Doubly Reinforced Beam 
Design for Moment

	3-12	 Summary of Procedure 
For Design of Doubly 
Reinforced Beams (For 
Moment)

	3-13	 Additional Code 
Requirements for Doubly 
Reinforced Beams

Reinforced Concrete 

Beams: T-Beams and Doubly 

Reinforced Beams

chapter Three

Column

Girder

Slab

Beam
Spandrel beam

Figure 3-1  Beam and 
girder floor system.
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the slab behaves as a bending member acting in two direc-
tions. It should also be noted that should the T-beam cross 
section be subjected to negative bending moment, the slab at 
the top of the stem will be in tension while the bottom of the 
stem is in compression. It will be seen that this situation will 
occur at interior supports of continuous beams, which are 
discussed later.

To simplify the complex two-way behavior of the flange, 
the ACI Code, for design and analysis purposes, has estab-
lished criteria whereby the flange, when acting together with 

In the analysis and design of such floor and roof systems, 
it is common practice to assume that the monolithically 
placed slab and supporting beam interact as a unit in resist-
ing positive bending moment. As shown in Figure 3-3, the 
slab becomes the compression flange, and the supporting 
beam becomes the web or stem. The interacting flange and 
stem produce the cross section having the typical T-shape 
from which the T-beam gets its name. It should be noted 
that the slab, which comprises the T-beam flange, must itself 
be designed to span across the supporting beams. Therefore 
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Figure 3-2  Common beam and girder layouts.
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for slab

Effective flange width bhf
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As

d

Web or stem

Figure 3-3  T-beam as part of a floor system.
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tensile reinforcement is required by analysis, the steel area, 
As, shall not be less than that given by

As,min =
32f′c

fy
 bwd Ú

200
fy

 bwd

Note that for T-beams, bw represents the width of the 
web. Also note that the first expression controls only if 
f′c 7 4440 psi. The above expressions for minimum steel 
also apply to continuous T-beams.

For negative moment (flange in tension) in statically 
determinate members,

As,min = the smaller of 
62f′c

fy
bwd or 

32f′c
fy

bd

The minimum steel requirements need not be applied if, at 
every section along the member, at least 33% more steel than 
is required by analysis is provided.

Because of the relatively large compression area available 
in the flange of the T-beam, the moment strength is usually 
limited by the yielding of the tensile steel. Therefore it is usual 
to assume that the tensile steel will yield before the concrete 
reaches its ultimate strain and crushes. The total tensile force, 
NT, at the ultimate condition may then be found by

NT = As fy

To proceed with the analysis, the shape of the com-
pressive stress block must be defined. As in our previous 
analyses, the total compressive force NC must be equal to 
the total tensile force NT. The shape of the stress block must 
be compatible with the area in compression. Two condi-
tions may exist: The stress block may be completely within 
the flange, or it may cover the flange and extend into the 
web. These two conditions will result in what we will term, 
respectively, a rectangular T-beam and a true T-beam. In 
addition to the shape of the stress block, the basic differ-
ence between the two is that the rectangular T-beam with 
effective flange width b is analyzed in the same way as is a 
rectangular beam of width b, whereas the analysis of the true 
T-beam must consider the T-shaped stress block.

Example 3-1

The T-beam shown in Figure 3-4 is part of a floor system. 
Determine the practical moment strength fMn if fy = 60,000 psi 
(A615 grade 60) and f′c = 3000 psi.

the web, will have a limited width that may be considered 
effective in resisting applied moment. This effective flange 
width for symmetrical shapes will always be equal to or less 
than the beam spacing (see Figure 3-3).

3-2  T-Beam Analysis
For purposes of analysis and design, the ACI Code, 
Section  8-12, has established limits on the effective flange 
width as follows:

	 1.	 The effective flange width must not exceed one-fourth 
of the span length of the beam, and the effective over-
hanging flange width on each side of the web must not 
exceed eight times the thickness of the slab nor one-half 
of the clear distance to the next beam. In other words, 
the effective flange width must not exceed
a.	 One-fourth of the span length.
b.	 bw + 16hf.
c.	 Center-to-center spacing of beams.
The smallest of the three values will control.

	 2.	 For beams having a flange on one side only, the effective 
overhanging flange width must not exceed one-twelfth 
of the span length of the beam, nor six times the  slab 
thickness, nor one-half of the clear distance to the 
next beam.

	 3.	 For isolated beams in which the T-shape is used only 
for the purpose of providing additional compressive 
area, the flange thickness must not be less than one-half 
of the width of the web, and the total flange width must 
not be more than four times the web width.

The ductility requirements for T-beams are similar to 
those for rectangular beams. To ensure ductile behavior, ACI 
Code, Section 10.3.5, requires a net tensile strain Pt Ú 0.004 
for flexural members. A section is tension controlled, that is, 
completely ductile when the net tensile strain Pt Ú 0.005. It 
is always desirable and more efficient in the design of flex-
ural members to strive for a tension-controlled section. The 
T-shape can be a factor in the determination of net tensile 
strain for a T-beam.

The procedure for determining the minimum steel for 
a T-beam is the same as for a rectangular beam when the 
T-beam flange is in compression (positive moment). Where 

b = 32"

d = 12"

bw = 10"
Beams 32" o.c.

3- #9
(As = 3.0 in.2)

hf = 2"

c
N.A.

y

Z

NC

NT

0.85f�c

a

Figure 3-4  Sketch for Example 3-1.



	 Reinforced Concrete Beams: T-Beams and Doubly Reinforced Beams	 41

	 7.	 Determine net tensile strain Pt (check ductility). Using the 
relationship a = b1c, which is approximate for T-beams:

c =
a
b1

=
2.66 in.

0.85
= 3.13 in. (See Figure 3@4.)

The distance dt of the extreme tensile reinforcement 
from the compression face is 12 in. Therefore, the net 
tensile strain in the extreme tensile reinforcement is

Pt = 0.003 
(dt - c)

c
= 0.003 

(12 - 3.13)

3.13
= 0.0085

	 8.	 Determine the strength reduction factor f: because 
0.0085 7 0.005, this is a tension-controlled section and 
f = 0.90 (see Section 2-9).

	 9.	 To calculate the magnitude of the internal couple, it is 
necessary to know the lever-arm distance between NC 
and NT. The location of NT is assumed at the centroid of 
the steel area, and we will locate NC at the centroid of the 
T-shaped compression area (see Figure 3-5a). Using a ref-
erence axis at the top of the section, the centroid may be 
located a distance y below the reference axis, as follows:

 y =
Σ(Ay)

ΣA

 A1 = 32(2) = 64 in.2, A2 = 10(0.66) = 6.6 in.2

 y =
64(1) + 6.6(2 + 0.33)

64 + 6.6
= 1.12 in.

This locates NC. Therefore

 Z = d - y

 = 12 - 1.12 = 10.88 in.

The nominal (or ideal) moment strength may be found:

Mn = NTZ =
180,000(10.88)

12,000
= 163 ft.@kips

from which the practical moment strength is

fMn = 0.9(163) = 147 ft.@kips

Solution:
	 1.	 Because the span length is not given, determine the 

effective flange width in terms of the flange thickness 
and beam spacing:

 bw + 16hf = 10 + 16(2) = 42 in.

 beam spacing = 32 in. o.c.

 Use b = 32 in.

	 2.	 Check As,min. From Table A-5:

 As,min = 0.0033bwd

 = 0.0033(10)(12) = 0.40 in.2

0.40 in.2 6 3.0 in.2� (O.K.)

	 3.	 Assume that the steel yields and find NT:

NT = Asfy = 3.00(60,000) = 180,000 lb

	 4.	 The flange alone, if fully stressed to 0.85 f′c, would pro-
duce a total compressive force of

 NCf = (0.85f′c)hfb

 = 0.85(3000)(2)(32) = 163,200 lb

	 5.	 Because 180,000 7 163,200, the stress block must 
extend below the flange far enough to provide the 
remaining compression:

180,000 - 163,200 = 16,800 lb

Hence the stress block extends below the flange and 
the analysis is one for a true T-beam.

	 6.	 The remaining compression (NT - NCf) may be obtained 
by the additional web area:

NT - NCf = (0.85f′c)bw(a - hf)

Solving for a, we obtain

 a =
NT - NCf

(0.85f′c)bw
+ hf =

16,800
0.85(3000)(10)

+ 2

 = 2.66 in.

10"

12"

2.66"

Zw

Zf 

NCf

0.85f�c

2"

32"

A1

A2

Reference axis

y

T-beam Compressive Area
(a)

Stress Block and
Internal Couples

(b)

NCw

NT

Figure 3-5  Sketch for Example 3-1.
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	 5.	 Because 612,000 7 360,000, the flange furnishes suffi-
cient compression area and the stress block lies entirely 
in the flange. Therefore analyze the T-beam as a rectan-
gular T-beam of width b = 60 in.

	 6.	 Solve for the depth of the stress block.

a =
Asfy

0.85f′cb
=

6.00(60,000)

0.85(3000)(60)
= 2.35 in.

	 7.	 Determine the net tensile strain (check ductility.) The 
depth to the extreme tension steel dt is determined 
using a #8 spacer bar between the two layers of #9 
bars, as shown in Figure 3-6.

 dt = 24 +
1.00

2
+

1.125
2

= 25.1 in.

 c =
a
b1

=
2.35
0.85

= 2.76 in.

 Pt =
0.003(dt - c)

c
=

0.003(25.1 - 2.76)

2.76
= 0.0243

(Or use Eq. [2-1] from Section 2-9.)
Because 0.0243 7 0.005, ductility is ensured, and 

this is a tension-controlled section.

	 8.	 Find f. Because Pt 7 0.005, f = 0.90.

	 9.	 Find fMn.

 fMn = fAsfy ad -
a
2
b

 =
0.90(6.00)(60)a24 -

2.35
2

b
12

= 616 ft.@kips

This T-beam behaves like a rectangular beam having a 
width b of 60 in., so the expression for fMn developed 
in Section 2-10 could be used at step 9:

 fMn = fbd2k

 r =
As

bd
=

6.00
60(24)

= 0.0042

From Table A-8, k = 0.2396 ksi and Pt 7 0.005. There-
fore, f = 0.90.

Then

fMn =
0.90(60)(24)2(0.2396)

12
= 621 ft.@kips

In the solution of Example 3-1, step 9 may be accom-
plished in a slightly different way. If the total internal 
couple Mn is assumed to be composed of two compo-
nent couples, a flange couple (using compressive force 
NCf in  Figure 3-5b) and a web couple (using compres-
sive force NCw in Figure 3-5b), then its magnitude can be 
calculated from

 Mn = flange couple + web couple
 = NCf Zf + NCw Zw

 = NCf ad -
hf

2
b + (NT - NCf) cd - hf - a

a - hf

2
b d

This avoids the calculation of the centroid location and 
results in the same moment strength. The concept of two 
component couples is used again in the design of true 
T-beams.

Example 3-2

For the T-beam shown in Figure 3-6, determine the practical 
moment strength fMn if f′c = 3000 psi and fy = 60,000 psi. 
The beam span length is 24 ft.

Solution:
	 1.	 Find the effective flange width:

  14 span length =
24(12)

4
= 72 in.

 bw + 16hf = 10 + 16(4) = 74 in.

 beam spacing = 60 in.

 Use b = 60 in.

	 2.	 Check As,min. From Table A-5:

 As,min = 0.0033bwd

 = 0.0033(10)(24) = 0.79 in.2

 0.79 in.2 6 6.00 in.2 � (O.K.)

	 3.	 Assume the steel yields and find NT.

NT = Asfy = 6.0(60,000) = 360,000 lb

	 4.	 The flange itself is capable of furnishing a compression 
force of

NCf = (0.85f′c)bhf = 0.85(3000)(60.0)(4) = 612,000 lb

10"

5'-0" (typ.)

d = 24"

hf = 4"

6- #9 bars
#8 spacer bar

Figure 3-6  Sketch for Example 3-2.
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	 6.	 The remaining compression will be furnished by 
additional beam area below the ledges. Referring to 
Figure 3-7,

 a =
NT - NCf

(0.85f′c)bw
+ hf

 =
168,600

0.85(3000)(17)
+ 4

 = 7.89 in. from top of beam

	 7.	 Check ductility.

c =
a
b1

=
7.89 in.

0.85
= 9.28 in.

The distance of the extreme tensile reinforcement from 
the compression face dt is 24 in. Therefore, the net 
tensile strain in the extreme tensile reinforcement is

Pt = 0.003 
(dt - c)

c
= 0.003 

(24 - 9.28)

9.28
= 0.00476

	 8.	 Therefore, this is a transition section (0.004 6 Pt 6 0.005), 
and the corresponding strength-reduction factor is

 f = 0.65 + (Pt - 0.002)a250
3

b

 = 0.65 + (0.00476 - 0.002)a250
3

b = 0.875

Note that 0.65 6 0.875 6 0.90.

	 9.	 fMn will be calculated considering two component 
internal couples, a flange couple and a web couple. 
Refer to Figure 3-8.

 fMn = f(NCf Zf + NCw Zw)

 = feNCf ad -
hf

2
b + (NT - NCf) cd - hf - aa - hf

2
b d f

 =
0.875e71.4 a24 -

4
2
b + 168.6 c24 - 4 - a3.89

2
b d f

12
 

 = 337 ft.@kips

3-3 �A nalysis of Beams 
Having Irregular 
Cross Sections

Beams having other than rectangular and T-shaped cross 
sections are common, particularly in structures using pre-
cast elements. The approach for the analysis of such beams 
is to use the internal couple in the normal way, taking into 
account any variation in the shape of the compressive stress 
block. The method is similar to that used for true T-beam 
analysis.

Example 3-3

The cross section shown in Figure 3-7 is sometimes referred 
to as an inverted T-girder. Find the practical moment strength 
fMn. (The ledges in the beam cross section will possibly be 
used for support of precast slabs.) Use fy = 60,000 psi (A615 
grade 60) and f′c = 3000 psi.

Solution:
	 1.	 The effective flange width may be considered to be 7 in.

	 2.	 Check As,min. From Table A-5:

 As,min = 0.0033bwd

 = 0.0033(17)(24) = 1.35 in.2

 1.35 in.2 6 4.00 in.2 � (O.K.)

	 3.	 Find NT:

NT = Asfy = 4.00(60,000) = 240,000 lb

	 4.	 Determine the amount of compression that the 7 in. × 4 in. 
area is capable of furnishing. (This is the area we are 
considering to be the flange.)

 NCf = (0.85f′c)hfb

 = 0.85(3000)(4)(7) = 71,400 lb

	 5.	 Because 240,000 lb 7 71,400 lb, the compressive stress 
block must extend below the ledges to provide the 
remaining compression (a 7 hf):

NT - NCf = 240,000 - 71,400 = 168,600 lb

Consider this area to
be a flange

4- #9 (As = 4.00 in.2)

bw = 17"

hf = 4"

d = 24"

b = 7"

3"

a

5"5"

Figure 3-7  Sketch for Example 3-3.
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is known (see Section 2-15). If the T-beam is determined to be 
a true T-beam, the design proceeds by designing a flange com-
ponent and a web component and combining the two.

Example 3-4

Design the T-beam for the floor system shown in Figure 3-9. 
The floor has a 4-in. slab supported by 22-ft-span-length 
beams cast monolithically with the slab. Beams are 8 ft-0 in. 
on center and have a web width of 12 in. and a total depth 
= 22 in.; f′c = 3000 psi and fy = 60,000 psi (A615 grade 60). 
Service loads are 0.125-ksf live load and 0.200-ksf dead 
load. The given dead load does not include the weight of 
the floor system.

Solution:
	 1.	 Establish the design moment:

 slab weight =
96(4)

144
 (0.150) = 0.400 kip/ft

 stem weight =
12(18)

144
 (0.150) = 0.225 kip/ft

total weight = 0.625 kip/ft

 service DL = 8(0.200) = 1.60 kips/ft

 service LL = 8(0.125) = 1.00 kip/ft

3-4 � T-Beam Design 
(For Moment)

The design of the T-sections involves the dimensions of the 
flange and web and the area of the tension steel, a total of 
five unknowns. In the normal progression of a design, the 
flange thickness is determined by the design of the slab, 
and the web size is determined by the shear and moment 
requirements at the end supports of a beam in continuous 
construction. Practical considerations, such as column sizes 
and forming, may also dictate web width. Therefore, when 
the T-section is designed for positive moment, most of the 
five unknowns have been previously determined.

As indicated previously, the ACI Code dictates per-
missible effective flange width b. The flange itself generally 
provides more than sufficient compression area; therefore 
the stress block usually lies completely in the flange. Thus 
most T-beams are wide rectangular beams with respect to 
flexural behavior.

The recommended method for the design of T-beams 
will depend on whether the T-beam behaves as a rectangu-
lar T-beam or a true T-beam. The first step will be to answer 
this question. If the T-beam is determined to be a rectangular 
T-beam, the design procedure is the same as for the tensile 
reinforced rectangular beam where the size of the cross section 

17"

7.89"

2"

Zw

Zf

NCf

0.85f ' 

4"

3.89"

5" 5"7"

Cross Section
(a)

Stress and Internal Couples
(b)

NCw

NT

c

Figure 3-8  Inverted T-girder, Example 3-3.

8'-0"

h = 22"

hf = 4"

bw = 12"

8'-0"

Figure 3-9  Typical floor section, Example 3-4.
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	 9.	 Calculate the required steel area:

 required As = rbd

 = 0.0025(66)(19) = 3.14 in.2

	10.	 Select the steel bars. Use four No. 8 bars (As = 3.16 in.2):
From Table A-3,

	 minimum bw = 11 in.� (O.K.)

Check the effective depth d. Assume a No. 3 stirrup and 
11

2@in. cover, as shown in Figure 3-11.

 d = 22 - 1.5 - 0.38 -
1.00

2
= 19.62 in.

 19.62 in. 7 19 in.� (O.K.)

	11.	 Check As,min. From Table A-5,

 As,min = 0.0033bwd

 = 0.0033(12)(19.62) = 0.78 in.2

 0.78 in.2 6 3.16 in.2 � (O.K.)

	12.	 Check Pt to ensure a tension-controlled section  
(Pt Ú 0.005.) From Section 2-10, for a rectangular section:

 Pt =
0.00255f′cb1

rfy
- 0.003

 =
0.00255(3)(0.85)

0.0025(60)
- 0.003 = 0.0404

Therefore, the net tensile strain is much larger than 
0.005; this is a tension-controlled section, and f = 0.90, 
as assumed. (Note that Pt 7 0.005 could also be con-
firmed from Table A-8.)

	13.	 Sketch the design (see Figure 3-11).

Example 3-5

Design a T-beam having a cross section as shown in 
Figure  3-12. Assume that the effective flange width given 
is acceptable. The T-beam will carry a total design moment 
Mu  of 340 ft.-kips. Use f′c = 3000 psi and fy = 60,000 psi. 
Use 11

2@in. cover and No. 3 stirrups.

Solution:
	 1.	 The design moment Mu = 340 ft.-kips (given).

	 2.	 Assume an effective depth of

d = 22 - 3 = 19 in.

Calculate the factored load and moment:

 wu = 1.2(0.625 + 1.60) + 1.6(1.00) = 4.27 kips/ft

 Mu =
wu/2

8
=

4.27(22)2

8
= 258 ft.@kips

	 2.	 Assume an effective depth d = h - 3 in.:

d = 22 - 3 = 19 in.

	 3.	 Determine the effective flange width:

  14 span length = 0.25(22)(12) = 66 in.

 bw + 16hf = 12 + 16(4) = 76 in.

 beam spacing = 96 in.

Use an effective flange width b = 66 in.

	 4.	 Assume a tension-controlled section—that is, the 
net tensile strain Pt Ú 0.005; this assumption will be 
checked later. The net tensile strain value of 0.005 gives 
a strength-reduction factor f = 0.90.

	 5.	 Determine whether the beam behaves as a true T-beam 
or as a rectangular beam by computing the practical 
moment strength fMnf with the full effective flange 
assumed to be in compression. This assumes that the 
bottom of the compressive stress block coincides with 
the bottom of the flange, as shown in Figure 3-10. Thus

 fMnf = f(0.85f′c)bhf ad -
hf

2
b

 =
0.9(0.85)(3)(66)(4)(19 - 4>2)

12
= 858 ft.@kips

	 6.	 Because 858 ft.-kips 7 258 ft.-kips, the total effective 
flange need not be completely utilized in compression 
(i.e., a 6 hf), and the T-beam behaves as a wide rectan-
gular beam with a width b of 66 in.

	 7.	 Design as a rectangular beam with b and d as known 
values (see Section 2-15):

required k =
Mu

fbd2 =
258(12)

0.9(66)(19)2
= 0.1444 ksi

	 8.	 From Table A-8, select the required steel ratio to provide 
a k of 0.1444 ksi:

required r = 0.0025

22"

12"

4- #8

#3 stirrup

4"

1   " clear (typ.)
1
2

Figure 3-11  Design sketch for Example 3-4.

hf = 4"
d = 19"

(assumed)

b = 66"

Figure 3-10  T-beam for Example 3-4.
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 required Asf =
fMnf

ffy Zf

 =
312(12)

0.9(60)(17.25)

 = 4.02 in.2

	 8.	 The web couple will be designed for the remaining 
applied moment (Mu - fMnf). The design is for a rect-
angular reinforced concrete beam having a depth hw = 
h - hf and a width of bw.

 hw = 22 - 3.5 = 18.5 in.

 estimated dw = hw - 3 in. = 18.5 - 3 = 15.5 in.

 required k =
Mu - fMnf

fbwd2
w

=
(340 - 312)(12)

0.9(12)(15.5)2

 = 0.1295 ksi

From Table A-8, the required r = 0.0023, from which we 
calculate

required Asw = rbwdw = 0.0023(12)(15.5) = 0.43 in.2

	 9.	 Total required

As = Asf + Asw = 4.02 + 0.43 = 4.45 in.2

	10.	 From Table A-2, select three No. 11 bars. As = 4.68 in.2 
and minimum bw is 11.0 in. Check d assuming No. 3 
stirrups and 11

2 in. cover:

 d = 22 - 1.5 - 0.38 -
1.41

2
= 19.42 in.

 19.42 in. 7 estimated df = 19.0 in.� (O.K.)

	11.	 Check As,min. From Table A-5,

 As,min = 0.0033bwd

 = 0.0033(12)(19.42) = 0.77 in.2

 0.77 in.2 6 4.68 in.2 � (O.K.)

	 3.	 The effective flange width = 27 in. (given).

	 4.	 Assume a tension-controlled section—that is, the 
net tensile strain Pt Ú 0.005; this assumption will be 
checked later. The net tensile strain value of 0.005 gives 
a strength reduction factor f = 0.90.

	 5.	 Determine fMnf assuming the effective flange to be in 
compression over its full depth:

 fMnf = f(0.85f′c)bhf ad -
hf

2
b

 =
0.9(0.85)(3)(27)(3.5)(19 - 3.5>2)

12
= 312 ft.@kips

	 6.	 fMnf 6 Mu; therefore, the beam must behave as a true 
T-beam.

	 7.	 Two component couples will be designed, a flange cou-
ple (subscript f ) and a web couple (subscript w). Refer 
to Figure 3-13.

Calculate the required steel area Asf for the flange 
couple:

 estimated df = h - 3 in. = 22 - 3 = 19 in.

 estimated Zf = df - hf>2 = 19 - 3.5>2 = 17.25 in.

bw = 12"

b = 27"

h = 22"

hf = 3    "1
2

Figure 3-12  Sketch for Example 3-5.

dh

hf

True T-beam
(a)

b

bw

Flange Couple
(b)

Web Couple
(c)

b

bw bw

AswAsfAs

df
hw

dw

Figure 3-13  True T-beam design, Example 3-5.
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Rectangular T-Beam
	 6.	 Solve for the depth of the stress block:

a =
As fy

0.85f′cb

	 7.	 Check ductility; find Pt.
	 8.	 Find f (0.65 … f … 0.90).
	 9.	 Calculate fMn.

fMn = fAs fyad -
a
2
b

Or, in place of steps 6-9, calculate r, obtain k, check Pt, 
determine f, and use

fMn = fbd2k

A flow diagram of this procedure is presented in 
Appendix B.

True T-Beam
	 6.	 Determine the depth of the compressive stress block:

a =
NT - NCf

0.85f′cbw
+ hf

	 7.	 Check ductility; find Pt.
	 8.	 Find f (0.65 … f … 0.90).
	 9.	 a.	� Locate the centroid of the total compressive area ref-

erenced to the top of the flange using the relationship

y =
Σ(Ay)

ΣA

from which

Z = d - y

Compute the practical moment strength fMn:

fMn = fNCZ or fNT Z

or
b.	 Calculate fMn using a summation of internal couples 

contributed by the flange and the web:

fMn = feNcf ad -
hf

2
b

+ (NT - NCf) cd - hf - a
a - hf

2
b d f

3-6 �S ummary of 
Procedure for 
Design of T-Beams 
(For Moment)

	 1.	 Compute the design moment Mu.
	 2.	 Assume that the effective depth d = h - 3 in.
	 3.	 Establish the effective flange width based on ACI criteria.

	12.	 Check Pt to ensure a tension-controlled section 
(Pt Ú 0.005):

 dt = d = 19.42 in.

 NT = Asfy = 4.68(60) = 281 kips

 NCf = 0.85f′cbhf = 0.85(3)(27)(3.5) = 241 kips

 a =
NT - NCf

0.85f′cbw
+ hf =

281 - 241
0.85(3)(12)

+ 3.5 = 4.81 in.

From Section 2-9, Equation (2-1):

 Pt =
0.003b1dt

a
- 0.003

 =
0.003(0.85)(19.42)

4.81
- 0.003 = 0.00730

0.00730 7 0.005; therefore, this is a tension-controlled 
section and f = 0.90, as assumed.� (O.K.)

	13.	 Sketch the design. See Figure 3-14.

3-5 �S ummary of 
Procedure for 
Analysis of T-Beams 
(For Moment)

	 1.	 Establish the effective flange width based on ACI criteria.
	 2.	 Check As,min. Use Table A-5.
	 3.	 To ensure ductility, assume a net tensile strain greater 

than or equal to 0.004; this assumption will be checked 
later. Compute the total tension in the steel:

NT = As fy

	 4.	 Compute the magnitude of the compression that the 
flange itself is capable of furnishing:

NCf = 0.85f′cbhf

	 5.	 If NT 7 NCf, the beam will behave as a true T-beam and 
the remaining compression, which equals NT - NCf, will 
be furnished by additional web area. If NT 6 NCf, the 
beam will behave as a rectangular beam of width b.

22"

12"

27"

3- #11

#3 stirrup

3  "1
2

1
21   " clear (typ.)

Figure 3-14  Design sketch for Example 3-5.
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	12.	 Check ductility. Find Pt. Determine the stress block 
depth a and use the expression for Pt at the end of 
Section 2-9.

	13.	 Sketch the design.

Flowcharts of these procedures are presented in Appendix B.

3-7 �D oubly Reinforced 
Beams: Introduction

As indicated in Chapter 2, the practical moment strength 
of a rectangular reinforced concrete beam reinforced with 
only tensile steel may be determined by the expression 
fMn = fbd2k, where k is a function of the steel ratio r, 
f′c, and fy.

If we assume a given rectangular section with tension-
only reinforcing that is tension-controlled, the upper limit 
of tension steel area can be established using the reinforce-
ment ratio r associated with net tensile strain Pt of 0.005. 
The maximum practical moment strength fMn for the sec-
tion may then be calculated using the associated value of k.

Occasionally, practical and architectural consider-
ations may dictate and limit beam sizes, whereby it becomes 
necessary to develop more moment strength from a given 
cross section. When this situation occurs, the ACI Code, 
Section  10.3.5.1, permits the addition of tensile steel over 
and above the code maximum provided that compression 
steel is also added in the compression zone of the cross 
section. The result constitutes a combined tensile and 
compressive reinforced beam commonly called a doubly 
reinforced beam.

Where beams span more than two supports (continu-
ous construction), practical considerations are sometimes 
the reason for the existence of main steel in compression 
zones. In Figure 3-15, positive moments exist at A and C; 
therefore, the main tensile reinforcement would be placed 
in the bottom of the beam. At B, however, a negative 
moment exists and the bottom of the beam is in compres-
sion. The tensile reinforcement must be placed near the 
top of the beam. It is general practice that at least some 
of the tension steel in each of these cases will be extended 
the length of the beam and will pass through compression 
zones. In this case the compression steel may sometimes be 

	 4.	 Assume a net tensile strain Pt Ú 0.005; this will give a 
strength reduction factor f = 0.90. This assumption will 
be checked later.

	 5.	 Compute the practical moment strength fMnf assum-
ing that the total effective flange is in compression:

fMnf = f(0.85f′c)bhf ad -
hf

2
b

	 6.	 If fMnf 7 Mu, the beam will behave as a rectangular 
T-beam of width b. If fMnf 6 Mu, the beam will behave 
as a true T-beam.

Rectangular T-Beam
	 7.	 Design as a rectangular beam with b and d as known 

values. Compute the required k:

required k =
Mu

fbd2

	 8.	 From the tables in Appendix A, determine the required 
r for the required k of step 7.

	 9.	 Compute the required As:

required As = rbd

	10.	 Select bars and check the beam width. Check the actual 
d and compare it with the assumed d. If the actual d is 
slightly in excess of the assumed d, the design will be 
slightly conservative (on the safe side). If the actual d 
is less than the assumed d, the design may be on the 
nonconservative side (depending on the steel provided) 
and should be more closely investigated for possible 
revision.

	11.	 Check As,min. Use Table A-5.
	12.	 Check ductility. Find Pt. If d = dt, Tables A-7 through A-11 

can be used, or use Equation (2-2) from Section 2-10. If 
d ≠ dt, use basic principles or Equation (2-1) from Section 
2-9. Check the assumed value of f.

	13.	 Sketch the design.

True T-Beam
	 7.	 Using an estimated df  =  h  -  3″ and Zf  =  df  -  hf /2, deter-

mine the steel area Asf  required for the flange couple:

required Asf =
fMnf

ffy Zf

	 8.	 Design the web couple as a rectangular reinforced con-
crete beam having a total depth hw = h - hf, using an 
estimated dw = hw - 3″ and a beam width of bw. Design 
for an applied moment of Mu - fMnf. Determine 
required k, required r, and required Asw.

	 9.	 Total required As = Asf + Asw.
	10.	 Select the bars. (Bars must fit into beam width bw.) 

Check d as in step 10 of the rectangular T-beam design.
	11.	 Check As,min. Use Table A-5.

Uniform load
A B C

Beam Load Diagram

Moment Diagram

Figure 3-15  Continuous beam.
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 As2 = amount of tension steel used by the steel9steel   
couple

 As = total tension steel cross@sectional area  
(As = As1 + As2)

 Mn1 = nominal moment strength of the concrete9steel  
couple

 Mn2 = nominal moment strength of the steel9steel   
couple

 Mn = nominal moment strength of the (doubly   
reinforced) beam

 Ps = unit strain at the centroid of the tension steel
 P′s = unit strain at the centroid of the compression   

steel

The total nominal moment strength may be developed as 
the sum of the two internal couples, neglecting the concrete 
displaced by the compression steel.

The strength of the steel–steel couple is evaluated as 
follows:

Mn2 = NT2 Z2

Assuming that fs = fy (tensile steel yields),

Mn2 = As2 fy(d - d′)

Also, because ΣHF = 0 and NC2 = NT2,

A′s f′s = As2 fy

If we assume that the compression steel yields and that 
f′s = fy, then

A′s fy = As2 fy

from which

A′s = As2

Therefore

Mn2 = A′s fy(d - d′)

The strength of the concrete–steel couple is evaluated 
as follows:

Mn1 = NT1Z1

used for additional strength. In Chapter 7 we will see that 
compression reinforcement aids significantly in reducing 
long-term deflections. In fact, the use of compression steel 
to increase the bending strength of a reinforced concrete 
beam is an inefficient way to utilize steel. More commonly, 
deflection control will be the reason for the presence of 
compression steel.

3-8 �D oubly Reinforced 
Beam Analysis for 
Moment (Condition I)

The basic assumptions for the analysis of doubly reinforced 
beams are similar to those for tensile reinforced beams. 
One additional significant assumption is that the compres-
sion steel stress ( f′s ) is a function of the strain at the level of 
the centroid of the compression steel. As discussed previ-
ously, the steel will behave elastically up to the point where 
the strain exceeds the yield strain Py. In other words, as a 
limit, f′s = fy when the compression steel strain P′s Ú Py. 
If P′s 6 Py, the compression steel stress f′s = P′sEs, where Es 
is the modulus of elasticity of the steel.

With two different materials, concrete and steel, resist-
ing the compressive force NC, the total compression will 
now consist of two forces: NC1, the compression resisted 
by the concrete, and NC2, the compression resisted by the 
compressive steel. For analysis, the total resisting moment 
of the beam will be assumed to consist of two parts or two 
internal couples: the part due to the resistance of the com-
pressive concrete and tensile steel, and the part due to the 
compressive steel and additional tensile steel. The two inter-
nal couples are illustrated in Figure 3-16.

Notation for doubly reinforced beams is as follows:

 A′s = total compression steel cross@sectional area
 d = effective depth of tension steel

 d′ = depth to centroid of compression steel from   
compression face of beam

 As1 = amount of tension steel used by the concrete9   
steel couple

Cross Section

(a)

Strain at Ultimate
Moment

(b)

Concrete–Steel
Couple

(c)

Steel–Steel
Couple

(d)

N.A.

�c = 0.003 0.85f�c

�s

��s

b

As

A�s

d�

NC1 = 0.85f�cab
NC 2 = A�s f �s

c a

d

NT1 = As1fy NT 2 = As2 fy

Z2 = d – d�
Z1 = d –    a

2

Figure 3-16  Doubly reinforced beam analysis.
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prior to the concrete strain reaching 0.003 is categorized as 
condition II (see Example 3-7). The maximum area of steel 
in the beam permitted by ACI Code is that area of steel that 
would result in a net tensile strain of 0.004.

Example 3-6

Compute the practical moment strength fMn for a beam 
having a cross section as shown in Figure 3-17. Use 
f′c = 3000 psi and fy = 60,000 psi.

Solution:
	 1.	 Assume that all the steel yields:

f′s = fy and fs = fy

Therefore As2 = A′s (see Figure 3-16d).

	 2.	  As = As1 + As2

 As1 = As - A′s
 = 6.00 - 2.54 = 3.46 in.2

From the concrete–steel couple, the stress block depth 
can be found:

a =
As1fy

(0.85f′c)b
=

3.46(60)

0.85(3.0)(11)
= 7.40 in.

	 3.	 Assuming that the same relationship (a = b1c) exists 
between the depth of the stress block and the beam’s 
neutral axis as existed in singly reinforced beams, the 
neutral axis may now be located for purposes of check-
ing the steel strains. From Figure 3-16 at the nominal 
moment,

c =
a
b1

=
a

0.85
=

7.40
0.85

= 8.71 in.

This value of c is based on the assumption in step 1 and 
will be verified in step 4.

	 4.	 Check the strains to determine whether the assump-
tions are valid and that both steels yield before the 

Assuming that the tensile steel yields and fs = fy,

Mn1 = As1 fy ad -
a
2
b

Also, because As = As1 + As2, then

As1 = As - As2

and because As2 = A′s, then

As1 = As - A′s

Therefore

Mn1 = (As - A′s)fy ad -
a
2
b

Summing the two couples, we arrive at the nominal moment 
strength of a doubly reinforced beam:

 Mn = Mn1 + Mn2

 = (As - A′s)fy ad -
a
2
b + A′s fy(d - d′)

The practical moment strength of fMn may then be 
calculated.

The foregoing expressions are based on the assump-
tion that both tension and compression steels yield prior 
to concrete strain reaching 0.003. This may be checked by 
determining the strains that exist at the nominal moment, 
which depend on the location of the neutral axis. The 
neutral axis may be located, as previously, by the depth 
of  the  compressive stress block and the relationship 
a = b1c. Thus

 NT = NC1 + NC2

 As fy = (0.85f′c)ab + A′s fy

 a =
(As - A′s)fy

(0.85f′c)b

which may also be expressed as

a =
As1 fy

(0.85f′c)b

With the calculation of the a distance, the neutral axis loca-
tion c may be determined and the assumptions checked.

Check the net tensile strain Pt in the extreme tensile rein-
forcement and ensure that Pt Ú 0.004 to satisfy ACI 318-11,  
Section 10.3.5.

Pt = 0.003 
(dt - c)

c

where dt = the distance of the extreme tensile reinforce-
ment from the compression face. The corresponding 
strenth-reduction factor is then calculated as described in 
Section 2-9.

The case where both tensile and compressive steels 
yield prior to the concrete strain reaching 0.003 will be cate-
gorized as condition I (see Example 3-6). The case where the 
tensile steel yields but the compressive steel does not yield 

2
1

2
1

b = 11"

3- #9

2- #10
(A�s = 2.54 in.2)

3- #9
(As = 6.00 in.2)

#3 stirrup
d = 20" dt = 21.1"

1"clear

d� = 2   "

1   " clear (typ.) 

Figure 3-17  Sketch for Example 3-6.
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3-9 �D oubly Reinforced 
Beam Analysis for 
Moment (Condition II)

As has been pointed out, usually the compression steel (A′s) 
will reach its yield stress before the concrete reaches a strain 
of 0.003. This may not occur in shallow beams reinforced 
with the higher-strength steels, however. Referring to Figure 
3-16b, if the neutral axis is located relatively high in the cross 
section, it is possible that P′s 6 Py at the nominal moment. 
The magnitude of P′s  (and therefore f′s ) depends on the loca-
tion of the neutral axis. The depth of the compressive stress 
block a also depends on c, because a = b1c.

The total compressive force must be equal to the total 
tensile force As fy, and an equilibrium equation can be writ-
ten to solve for the exact required value of c. This turns out 
to be a quadratic equation. This situation and its solution 
may be observed in the following example.

Example 3-7

Compute the practical moment strength fMn for a beam 
having a cross section as shown in Figure 3-18. Use 
f′c = 5000 psi and fy = 60,000 psi.

Solution:
	 1.	 Assume that all the steel yields. This results in

As2 = A′s

	 2.	 With reference to Figure 3-19b,

 a =
(As - A′s)fy
(0.85f′c)b

 =
3.10(60)

0.85(5)(11)

 = 3.98 in.

	 3.	 Locate the neutral axis:

 a = b1c, b1 = 0.80 (reference, ACI Code, 
	 Section 10.2.7.3)

 c =
a
b1

=
3.98
0.80

= 4.98 in.

concrete crushes (see Figure 3-16b). The strains calcu-
lated exist at the nominal moment:

 P′s =
c - d′

c
 (0.003)

 =
8.71 - 2.5

8.71
 (0.003) = 0.00214

Therefore, P′s 7 Py = 0.00207 (from Table A-1).
Check the ductility of the beam by calculating the 

net tensile strain in the extreme tensile reinforcement:

 Pt = 0.003 
(dt - c)

c
= 0.003 

(21.2 - 8.71)

8.71
= 0.0043

 0.0043 7 0.004� (O.K.)

Therefore, the tensile steel yields, and ductility is 
assured. Because 0.004 … Pt … 0.005, this is a transition 
section, and the strength reduction factor f, is calcu-
lated as follows:

 f = 0.65 + (Pt - 0.002)a250
3

b

 = 0.65 + (0.0043 - 0.002)a250
3

b = 0.84

 0.65 6 0.84 6 0.90� (O.K.)

Because P′s 7 Py, the compression steel will yield before 
the concrete strain reaches 0.003, and f′s = fy. There-
fore, the assumption concerning the compression steel 
stress is O.K.

	 5.	 From the concrete–steel couple:

 Mn1 = As1fyad -
a
2
b

 = 3.46(60)a20 -
7.40

2
b = 3384 in.@kips

 
3384
12

= 282 ft.@kips

From the steel–steel couple:

 Mn2 = A′sfy(d - d′) = 2.54(60)(20 - 2.5)

 = 2667 in.@kips

 
2667
12

= 222 ft.@kips

 Mn = Mn1 + Mn2

 = 282 + 222 = 504 ft.@kips

	 6.	  fMn = 0.84(504)

 = 423 ft.@kips

In this example, because both the compressive steel 
and tensile steel yield prior to the concrete reaching a 
compressive strain of 0.003 and because the net tensile 
strain Pt is greater than 0.004, a ductile failure mode is 
assured.

2
1

2
1

b = 11"

2- #8
(A�s = 1.58 in.2)

3- #11
(As = 4.68 in.2)

#3 stirrup
d = 20"

d� = 2   "

1   " clear 

Figure 3-18  Sketch for Example 3-7.
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Multiplying by c and expanding, we obtain

Asfyc = (0.85f′c)bb1c
2 + c(0.003)EsA′s - d′(0.003)EsA′s

Rearranging yields

(0.85f′cbb1)c
2 + (0.003EsA′s - Asfy)c - d′(0.003)EsA′s = 0

With Es = 29,000 ksi, the expression becomes

(0.85f′cbb1)c
2 + (87A′s - Asfy)c - 87d′A′s = 0

where

As = 4.68 in.2

fy = 60 ksi

f′c = 5 ksi

b = 11 in.

b1 = 0.80

A′s = 1.58 in.2

d′ = 2.5 in.

Substitution yields

[0.85(5)(11)(0.80)]c2 + [87(1.58) - 4.68(60)]c
 - 87(2.5)(1.58) = 0

 37.4c2 - 143.34c - 343.65 = 0

 c2 - 3.83c - 9.19 = 0

This may be solved using the usual formula for the roots 
of a quadratic equation:

-b { 2b2 - 4ac
2a

where the coefficients are

a = 1.0

b = -3.83

c = -9.19

Or the square may be completed as follows:

 c2 - 3.83c = 9.19

 c2 - 3.83c + a -3.83
2

b
2

= 9.19 + a -3.83
2

b
2

 c2 - 3.83c + 3.67 = 9.19 + 3.67 = 12.86

 (c - 1.92)2 = 12.86

 c - 1.92 = 212.86 = 3.59

 c = 5.51 in.

The solution of the quadratic equation for c may be 
simplified as follows:

c = {2Q + R2 - R

where

 R =
87A′s - Asfy

1.7f′cbb1

 Q =
87d′A′s

0.85f′cbb1

This value of c is based on the assumption in step 1 and 
will be verified in step 4.

	 4.	 By similar triangles of Figure 3-19a, check the steel 
strains:

 compressive steel: P′s =
0.003(c - d′)

c

 P′s =
2.48
4.98

 (0.003) = 0.0015

Calculate the net tensile strain in the extreme reinforce-
ment based on the depth of the neutral axis obtained in 
step 3. Note that dt = d and, therefore, Ps = Pt.

 Pt = 0.003 
(dt - c)

c
= 0.003 

(20 - 4.98)

4.98
= 0.009 

 0.009 7 0.004� (O.K.)

For grade 60 steel, Py = 0.00207 (from Table A-1). 
Because Ps 7 Py 6 P′s, the tensile steel has yielded and 
the compression steel has not yielded. Therefore the 
assumptions of step 1 are incorrect.

	 5.	 With the original assumptions incorrect, a solution for 
the location of the neutral axis must be established. 
With reference to Figure 3-16, c will be determined by 
using the condition that horizontal equilibrium exists. 
That is, πHF = 0. Thus

 NT = NC1 + NC2

 Asfy = (0.85f′c)ba + f′sA′s

But

a = b1c

and

f′s = P′eEs = c c - d′
c

 (0.003) dEs

Then, by substitution,

Asfy = (0.85f′c)bb1c + c c - d′
c

 (0.003) dEs A′s

Strain
(a)

Concrete–Steel Couple
(b)

�c = 0.003

�s

��s

NC1 = 0.85f�cab

c

d

d�
a

NT1 = As1fy

0.85f�c

Figure 3-19  Compatibility check, Example 3-7.
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This value of c is based on the assumption in step 1 and 
will be verified in step 4.

	 4.	 Using the strain diagram, check the strain in the com-
pression reinforcement and the net tensile strain in the 
extreme tensile reinforcement to determine whether the 
assumption in step 1 is valid:

 P′s =
0.003(c - d′)

c

 Pt =
0.003(dt - c)

c

It is required that Pt Ú 0.004. Therefore, the tensile steel 
has yielded (0.004 7 Py). The following two conditions 
may exist. In each of the two cases, the strength-reduction 
factor f must be determined as discussed in Section 2-9.
a.	 Condition I: P′s Ú Py. This indicates that the assump-

tion of step 1 is correct and the compression steel has 
yielded.

b.	 Condition II: P′s 6 Py. This indicates that the 
assumption of step 1 is incorrect and the compres-
sion steel has not yielded.

Condition I
	 5.	 If P′s and Ps both exceed Py, compute the nominal moment 

strengths Mn1 and Mn2. For a steel–steel couple:

Mn2 = A′s fy(d - d′)

For a concrete–steel couple:

Mn1 = As1 fy ad -
a
2
b

and

Mn = Mn1 + Mn2

	 6.	 Practical moment strength = fMn.

Condition II
	 5.	 If P′s  is less than Py and Ps Ú Py, compute c using the 

following formula:

(0.85f′cbb1)c2 + (87A′s - As fy)c - 87d′A′s = 0

and solve the quadratic equation for c, or use the simpli-
fied formula approach from Example 3-7, step 5. Note 
that the basic units are kips and inches.

	 6.	 Compute the compressive steel stress (to be less than fy):

f′s =
c - d′

c  (87)

	 7.	 Solve for a using

a = b1c

To check ductility, recalculate the net tensile strain,

Pt = 0.003 
(dt - c)

c

Note that basic units are kips and inches, so the value of 
fy, for instance, must be in ksi, not in psi.

	 6.	 With this value of c, all the remaining unknowns may be 
found:

 f′s =
c - d′

c
 (87) =

5.51 - 2.50
5.51

 (87)

 = 47.5 ksi 6 60 ksi (as expected)

	 7.	 a = b1c = 0.80(5.51) = 4.41 in.

The actual net tensile strain is calculated as

 Pt = 0.003 
(dt - c)

c
= 0.003 

(20 - 5.51)

5.51
= 0.0079

 0.0079 7 0.004� (O.K.)

Thus, the beam is ductile as assumed and because 
Pt  7 0.005, the strength-reduction factor f = 0.90, as 
discussed in Section 2-9.

	 8.	  NC1 = (0.85f′c)ab = 0.85(5)(4.41)(11.0) = 206.2 kips 
� (O.K.)

 NC2 = A′sf′s = 47.5(1.58) = 75.1 kips

 NC = 281.3 kips

 Check: NT = Asfy = 4.68(60) = 281 kips

 NT ≈ NC

	 9.	  Mn1 = NC1Z1 = NC1ad -
a
2
b = 206.2a20 -

4.41
2

b
 = 3670 in.@kips

 Mn2 = NC2Z2 = NC2(d - d′) = 75.1(20 - 2.5)
 = 1314 in.@kips

 Mn = 4984 in.@kips = 415.3 ft.@kips

	10.	  fMn = 0.9(415.3)

 = 373.8 ft.@kips

3-10 �S ummary of 
Procedure for 
Analysis of Doubly 
Reinforced Beams 
(For Moment)

	 1.	 Assume that all the steel yields, fs = f′s = fy. Therefore

As2 = A′s

	 2.	 Using the concrete–steel couple and As1 = As - A′s, 
compute the depth of the compression stress block:

a =
As1 fy

(0.85f′c )b
=

(As - A′s)fy

(0.85f′c )b

	 3.	 Compute the location of the neutral axis:

c =
a
b1
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Solution:
	 1.	 Assume that d = h - 4 = 26 in. (because of the probabil-

ity of two rows of steel).

	 2.	 The design moment Mu is given; Mu = 697 ft.-kips.

	 3.	 Determine if a singly reinforced beam will work. From 
Table A-8, maximum r for Pt = 0.005 is 0.01355. This is 
if d = dt. For dt 7 d, the maximum r for moment-strength 
calculation can be found by proportion. Assuming a #8 
bar, #3 stirrups, and 11

2-in. cover,

dt = 30 - 1.5 - 0.38 -
1.00

2
= 27.6 in.

Then

 rmax =
dt

d
 (rmax from Table A@8)

 =
27.6
26

 (0.01355) = 0.01438

The associated k (Table A-8) is 0.7177 ksi. Assuming a 
tension-controlled section (Pt Ú 0.005), f will be 0.90. 
This assumption will be checked later.

 maximum fMn = fbd2k

 =
0.90(14)(262)(0.7177)

12
= 509 ft.@kips

	 4.	 509 ft.-kips 6 697 ft.-kips. Therefore, a doubly reinforced 
beam is required.

	 5.	 Provide a concrete–steel couple having fMn1 of  
509 ft.-kips. Therefore, r = 0.01438 and k = 0.7177 ksi:

required As1 = rbd = 0.01438(14)(26) = 5.23 in.2

	 6.	 The steel–steel couple must be proportioned to have 
moment strength equal to the remainder of the design 
moment:

required fMn2 = Mu - fMn1 = 697 - 509 = 188 ft.@kips

	 7.	 Considering the steel–steel couple, we have

 fMn2 = fNC2(d - d′)

 NC2 =
fMn2

f(d - d′)
=

188(12)

0.90(26 - 3)
= 109.0 kips

	 8.	 Because NC2 = A′sf′s, compute f′s  using the neutral axis 
location of the concrete–steel couple and check the 
strain P′s in the compression steel (see Figure 3-21).

 a =
As1fy

0.85f′cb
=

5.23(60)

0.85(3)(14)
= 8.79 in.

 c =
a
b1

=
8.79
0.85

= 10.34 in.

 P′s =
(c - d′)

c
 (0.003) =

(10.34 - 3.00)

10.34
 (0.003)

 = 0.00213

Py = 0.00207 from Table A-1. Because P′s 7 Py, the 
compression steel will yield before the concrete strain 
reaches 0.003, and f′s = fy.

The strength-reduction factor f is determined as dis-
cussed in Section 2-9.

	 8.	 Compute the compressive forces:

 NC1 = (0.85f′c)ba
 NC2 = A′s f′s

Check these by computing the tensile force:

NT = As fy

Note that NT should equal NC1 + NC2.
	 9.	 Compute the ideal resisting moment strengths of the 

individual couples:

Mn1 = NC1ad -
a
2
b

and

 Mn2 = NC2(d - d′)
 Mn = Mn1 + Mn2

	10.	 Practical moment strength = fMn.

3-11 �D oubly Reinforced 
Beam Design for 
Moment

If a check shows that a singly reinforced rectangular section 
is inadequate and the size of the beam cannot be increased, 
a doubly reinforced section may be designed using a 
procedure that consists of the separate design of the two 
component couples such that their summation will result in 
a beam of the required strength.

Example 3-8

Design a rectangular reinforced concrete beam to carry 
a design moment Mu of 697 ft.-kips. Physical limitations 
require that b = 14 in. and h = 30 in. If compression steel is 
needed, d′ = 3 in. Use f′c = 3000 psi and fy = 60,000 psi. 
The beam cross section is shown in Figure 3-20.

b = 14"

h = 30"
d

d� = 3"

Figure 3-20  Sketch for Example 3-8.
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 P′s =
0.003(c - d′)

c
=

0.003(11.12 - 2.45)

11.12
 = 0.00234 7 0.00207� (O.K.)

 Pt =
0.003(dt - c)

c
=

0.003(27.5 - 11.12)

11.12
 = 0.00442 7 0.004

Therefore, this is in the transition zone and f must be 
reduced below 0.90:

 f = 0.65 + (Pt - 0.002)a250
3

b

 = 0.65 + (0.00442 - 0.002)a250
3

b = 0.852

 Mn1 = As1fyad -
a
2
b

 =
(7.62 - 2.00)(60)a26.4 -

9.45
2

b
12

= 609 ft.@kips

 Mn2 = A′sfy(d - d′) =
2.00(60)(26.4 - 2.45)

12

 = 240 ft.@kips

 fMn = f(Mn1 + Mn2) = 0.852(609 + 240)

 = 723 ft.@kips

 723 ft.@kips 7 697 ft.@kips
(O.K.)

	17.	 Figure 3-22 is a sketch of the design.

3-12 �S ummary of 
Procedure for 
Design of Doubly 
Reinforced Beams 
(For Moment)

The size of the beam cross section is fixed.

	 1.	 Assume that d = h - 4 in. Estimate dt.
	 2.	 Establish the total design moment Mu.

	 9.	 Determine the required compression steel:

required A′s =
NC2

f′s
=

NC2

fy
=

109.0
60

= 1.82 in.2

	10.	 Because f′s = fy, required AS2 = required A′s = 1.82 in.2

	11.	 The total required tension steel is

As = As1 + As2 = 5.23 + 1.82 = 7.05 in.2

	12.	 Select the compression steel. Two No. 9 bars will pro-
vide A′s = 2.00 in.2

	13.	 Select the tension steel. Six No. 10 bars will provide 
As  = 7.62 in.2 Place the tension steel in two layers of 
three bars each with 1 in. clear between layers. Minimum 
beam width for three #10 bars is 10.5 in., from Table A-3.

	14.	 Assume No. 3 stirrups and determine the actual depth 
to the centroid of the bar group by considering the total 
depth (30 in.), required cover (11

2 in.), stirrup size (No. 3), 
tension bar size (No. 10), and required 1-in. minimum 
clear space between layers:

actual d = 30 - 1.5 - 0.38 - 1.27 - 0.5 = 26.35 in.

The assumed d was 26 in.

	 26.35 in. 7 26 in.� (O.K.)

	15.	 Check dt.

dt = 30 - 1.5 - 0.38 -
1.27

2
= 27.5 in. ≈ 27.6 in.

� (Say O.K.)

Recalculating the design is an option. The differences 
will be very small.

	16.	 Check the assumption of step 3 (f = 0.90). We will 
use the cross section designed (see the design sketch: 
Figure 3-22).

 As = 7.62 in.2, A′s = 2.00 in.2

 d = 26.4 in. (step 14), dt = 27.5 in. (step 15)

 d′ = 1.5 + 0.38 + 1.13>2 = 2.45 in.

 Assume fs = f′s = fy; As2 = A′s

 a =
(As - A′s)fy

0.85f′cb
=

(7.62 - 2.00)(60)

0.85(3)(14)
= 9.45 in.

 c =
a
b1

=
9.45
0.85

= 1.12 in.

��s
c

d�

0.003

Figure 3-21  Concrete strain diagram for Example 3-8.

14"

1" clear

3- #10

2- #9

3- #10

#3 stirrup

30"

1    " clear (typ.) 1
2

Figure 3-22  Design sketch for Example 3-8.
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	10.	 Determine the required As2:

As2 =
f ′sA′s

fy

	11.	 Find the total tension steel required:

As = As1 + As2

	12.	 Select the compressive steel (A′s).
	13.	 Select the tensile steel (As). Check the required beam 

width. Preferably, place the bars in one layer.
	14.	 Check the actual d and compare it with the assumed d. 

If the actual d is slightly in excess of the assumed d, the 
design will be slightly conservative (on the safe side). 
If the actual d is less than the assumed d, the design 
may be on the unconservative side and an analysis and 
possible revision should be considered.

	15.	 Check dt and compare with the assumed dt.
	16.	 Check the f value assumption.
	17.	 Sketch the design.

3-13 �A dditional Code 
Requirements for 
Doubly Reinforced 
Beams

The compression steel in beams, whether it is in place to 
increase flexural strength or to control deflections, will act 
similarly to all typical compression members in that it will 
tend to buckle, as shown in Figure 3-23. Should this buck-
ling occur, it will naturally be accompanied by spalling of the 
concrete cover. To help guard against this type of failure, the 
ACI Code requires that the compression bars be tied into the 
beam in a manner similar to that used for reinforced con-
crete columns (discussed in Chapter 9). Compression rein-
forcement in beams or girders must be enclosed by ties or 
stirrups. The size of the ties or stirrups is to be at least No. 3 
for No. 10 longitudinal bars or smaller and No. 4 for No. 11 
longitudinal bars or larger. The spacing of the ties or stirrups 
is not to exceed the smaller of 16 longitudinal bar diameters, 
48 tie (or stirrup) bar diameters, or the least dimension of 
the beam. Alternatively, welded wire fabric of equivalent area 
may be used. The ties or stirrups are to be used throughout 
the area where compression reinforcement is required (see 
the ACI Code, Section 7.11).

	 3.	 Check to see if a doubly reinforced beam is necessary. 
Compute maximum fMn for a singly reinforced 
beam. Assume a tension-controlled section (net ten-
sile strain Pt Ú 0.005) and use the corresponding 
strength-reduction factor, f = 0.90; use maximum k 
from the tables in Appendix A and the correspond-
ing maximum steel ratio rmax for Pt = 0.005. If dt 7 d,  
adjust rmax for Pt = 0.005 and select maximum k 
accordingly.

maximum fMn = fbd2k

	 4.	 If fMn 6 Mu, design the beam as a doubly reinforced 
beam. If fMn Ú Mu, the beam can be designed as a 
beam reinforced with tension steel only.

For a Doubly Reinforced Beam
	 5.	 Provide a concrete–steel couple having the maximum 

fMn from step 3. This is fMn1.
Using r from step 3, find the steel required for the 

concrete–steel couple:

required As1 = rbd

	 6.	 Find the remaining moment that must be resisted by 
the steel–steel couple:

required fMn2 = Mu - fMn1

	 7.	 Considering the steel–steel couple, find the required 
compressive force in the steel (assume that d′ = 3 in.):

NC2 =
fMn2

f(d - d′)

	 8.	 Because NC2 = A′s f′s, compute f ′s  so that A′s  may even-
tually be determined. This can be accomplished by 
using the neutral-axis location of the concrete–steel 
couple and checking the strain P′s  in the compression 
steel with Py from Table A-1. Thus

 a =
As1 fy

(0.85f ′c)b

 c =
a
b1

 P′s =
0.003(c - d′)

c

If P′s Ú Py, the compressive steel has yielded at the 
nominal moment and f ′s = fy. If P′s 6 Py, then calculate 
f ′s = P′sEs and use this stress in the following steps.

	 9.	 Because NC2 = A′s f ′s,

required A′s =
NC2

f ′s

Compression steel

Figure 3-23  Possible failure mode for compression steel.
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a.	 Find the practical moment strength fMn.
b.	 How much steel would be required in this beam 

cross section to make the compressive stress block 
just completely cover the flange?

5- #9
5- #9

#3 stirrup

45"

40"

24"

6   "
2
1

PROBLEM 3-5

	 3-6.	 Find fMn for a typical T-beam in the floor system 
shown. The beams span 24 ft and are spaced 6′@0″ on 
center. Use f ′c = 3000 psi and fy = 60,000 psi.

Problems

In the following problems, unless otherwise noted, assume 
No. 3 stirrups, 11

2-in. cover for beams, and 1-in. clear space 
between layers of bars. In all problems, check the net ten-
sile strain Pt in the extreme tension steel to ensure that it 
is within the allowable limits. Unless otherwise noted or 
shown, dt = d.

	 3-1.	 Find fMn for the following T-beam: b = 36 in., 
bw = 12 in., hf = 4 in., d = 22 in., f′c = 4000 psi, and 
fy = 60,000 psi. The reinforcement is four No. 8 bars.

	 3-2.	 Rework Problem 3-1 with b = 48 in.
	 3-3.	 Rework Problem 3-1 with reinforcement of three 

No. 11 bars.
	 3-4.	 Rework Problem 3-1 with f′c = 5000 psi.
	 3-5.	 The simple-span T-beam shown is part of a floor 

system of span length 20 ft-0 in. and beam spacing 
45 in. o.c. Use b = 45 in., f′c = 3000 psi and fy = 60,000 
psi. The bars are placed with 1-in. clear space between 
layers.

16"

4"

#3

3-#10

6'–0" (typ.)

12"

PROBLEM 3-6

	 3-7.	 Find the practical moment strength fMn for the 
T-beam in the floor system shown. The beam span is 
31 ft-6 in. Use f ′c = 4000 psi and fy = 60,000 psi.

1
2

15"

8'�0" (typ.)

32"#3 stirrup

3- #9

3- #9

5   "

PROBLEM 3-7

	 3-8.	 The T-beam shown is on a simple span of 30 ft. Use 
f ′c = 3000 psi and fy = 60,000 psi. No dead load exists 
other than the weight of the floor system.

12"

7'�6" (typ.)

23.5"
27"

3- #9
3- #9

#3 stirrup

4"

PROBLEM 3-8
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12"

d = 25"

7- #11 bars
(3 layers)

#3 stirrup

4"

PROBLEM 3-9

Assume that the slab design is adequate.

a.	 Find the practical moment strength fMn.
b.	 Compute the permissible service live load that can 

be placed on the floor (psf).

	 3-9.	 The simple-span T-beam shown is part of a floor 
system of span length 20 ft-0 in. and beam spacing 
of 8 ft-0 in. o.c. Find the practical moment strength 
fMn. Use f′c = 3000 psi and fy = 60,000 psi. Assume 
dt = 27 in.

39"

3"

20"

3"

4"

(b)(a)

40"30"

12" 10- #9

3- #11

8" (typ.)

PROBLEM 3-10

	3-11.	 Determine fMn for the cross section that has a rect-
angular duct cast in it, as shown. Use f ′c = 3000 psi, 
fy = 60,000 psi, 1-in. clear space between bar layers,  
11

2-in. cover, and eight No. 7 bars, as shown.

26"

8"

6"

6" 6"

2-#7

#4 Duct

6-#7

4"

2
11   " clear (typ.)

PROBLEM 3-11

	3-12.	 Design a typical interior tension-reinforced T-beam 
to resist positive moment. A cross section of the 
floor system is shown. The service loads are 50 psf 
dead load (this does not include the weight of the 
beam and slab) and 325 psf live load. The beam is 
on a simple span of 18 ft. Use f ′c = 4000 psi and 
fy = 60,000 psi.

15"

8'-0" (typ.)

26"

4"

PROBLEM 3-12

	3-10.	 Find fMn for the beams of cross section shown. 
Assume that the physical dimensions are acceptable.

a.	 Spandrel beam with a flange on one side only. Use 
f ′c = 4000 psi and fy = 60,000 psi.

b.	 Box beam: f ′c = 3000 psi and fy = 60,000 psi.
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	3-16.	 Find fMn for the beam of cross section shown. Use 
f′c = 4000 psi and fy = 60,000 psi.

1
2

1
2

26"

1" clear

14"

4- #9

2- #8

#3 stirrup

4- #9

1   " clear (typ.)

2    "

PROBLEM 3-16

	3-13.	 A reinforced concrete floor system consists of a 
3-in. concrete slab supported by continuous-span 
T-beams of 24-ft spans. The T-beams are spaced 
4 ft-8 in. o.c. The web dimensions, determined by 
negative  moment and shear requirements at the 
supports, are shown. Select the steel required at 
midspan to resist a total positive design moment 
Mu of 575 ft.-kips (this includes the weight of 
the  floor system). Use f′c = 3000 psi and fy = 
60,000 psi.

22"

4"

16"

20"

Floor
penetration

PROBLEM 3-14

23"3"

18"

PROBLEM 3-13

	3-14.	 A reinforced concrete floor system is to have a 4-in.-
thick slab supported on 16-in.-wide beams, as shown. 
At one location, penetrations through the floor slab 

limit the effective flange width for the supporting 
beam to 20 in. (Use b = 20 in.) The positive factored 
moment Mu at this section is 320 ft.-kips. Design the 
T-beam using f′c = 3000 psi and fy = 60,000 psi.

	3-15.	 Select steel for the beams of cross section shown. 
The positive service moments are 160 ft.-kips live 
load and 100 ft.-kips dead load (this includes beam 
weight). Use f′c = 3000 psi and fy = 60,000 psi.

10"

(a) (b)

16" 8"4" 4"

5" 6"

28"

27   "
1
2

PROBLEM 3-15
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15"

30"

4-#11

#3

1   " clear (typ.)2
1

PROBLEM 3-19

	3-20.	 Compute the practical moment strength fMn for the 
simply supported precast inverted T-girder shown. 
Use f ′c = 3000 psi and fy = 60,000 psi.

16"

10"

16"

6"

2-#7

4-#9

2   "2
1

2   "2
1

PROBLEM 3-20

	3-21.	 Design a rectangular reinforced concrete beam to 
resist a total design moment Mu of 765 ft.-kips (this 
includes the moment due to the weight of the beam). 
The beam size is limited to 15 in. maximum width 
and 30 in. maximum overall depth. Use f ′c = 3000 psi 
and fy = 60,000 psi. If compression steel is required, 
make d′ = 21

2 in.
	3-22.	 Design a rectangular reinforced concrete beam to 

resist service moments of 150 ft.-kips dead load 
(includes moment due to weight of beam) and  
160  ft.-kips due to live load. Architectural consid-
erations require that width be limited to 11 in. and 
overall depth be limited to 23 in. Use f ′c = 3000 psi 
and fy = 60,000 psi.

	3-23.	 Design a rectangular reinforced concrete beam to 
carry service loads of 1.25 kips/ft dead load (includes 
beam weight) and 2.60 kips/ft live load. The beam 
is a simple span and has a span length of 18 ft. The 
overall dimensions are limited to width of 10 in. 
and overall depth of 20 in. Use f ′c = 3000 psi and 
fy = 60,000 psi.

	3-17.	 The beam of cross section shown is to span 28 ft on 
simple supports. The uniform load on the beam (in 
addition to its own weight) will be composed of equal 
service dead load and live load. Use f′c = 4000 psi 
and fy = 60,000 psi.

a.	 Find the service loads that the beam can carry (in 
addition to its own weight).

b.	 Compare the practical moment strength fMn of 
the beam as shown with fMn of a beam of simi-
lar size reinforced with the area of steel associated 
with (1) Pt = 0.005 and (2) Pt = 0.004.

1
2

1
2 24"

1" clear

12"

3- #10

2- #10

#3 stirrup

3- #10

1   " clear (typ.)

2    "

PROBLEM 3-17

	3-18.	 Find fMn for the beam cross section shown. Use 
f′c = 4000 psi and fy = 60,000 psi.

1
2

1
2

d = 18"

15"

2- #8

#3 stirrup

4- #11

1   " clear (typ.)

2    "

PROBLEM 3-18

	3-19.	 Compute the practical moment strength fMn for the 
beam of cross section shown. How much can fMn 
be increased if four No. 8 bars are added to the top 
of the beam? Use d′ = 21

2 in., f ′c = 3000 psi, and 
fy = 60,000 psi.
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18"

10"
4"

12"

6"+

+

As

A�s

2   "1
2

PROBLEM 3-25

	3-24.	 Redesign the beam of Problem 3-23 for tension rein-
forcing only and increased width. Keep an overall 
depth of 20 in.

	3-25.	 A simply supported precast inverted T-girder hav-
ing the cross section shown is subjected to a total 
positive design moment Mu of 280 ft.-kips. Select 
the required reinforcement (both tensile and com-
pressive). Assume a No. 3 stirrup and 11

2 in. cover on 
the tension side of the beam. Use f′c = 4000 psi and 
fy = 60,000 psi.
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that act on them are called principal stresses. The principal 
stresses in a beam subjected to shear and bending may be 
calculated using the following formula:

	 fpr =
f
2
{ B f 2

4
+ v2	 (4-2)

where fpr is the principal stress and f and v are the bend-
ing and shear stresses, respectively, calculated from 
Equation (4-1).

The orientation of the principal planes may be calcu-
lated using the following formula:

	 tan 2a =
2v
f

	 (4-3)

where α is the angle measured from the horizontal.
The magnitudes of the shearing stresses and bending 

stresses vary along the length of the beam and with distance 
from the neutral axis. It then follows that the inclination of 
the principal planes as well as the magnitude of the princi-
pal stresses will also vary. At the neutral axis the principal 
stresses will occur at a 45° angle. This may be verified by 
Equation (4-3), substituting f = 0, from which tan 2a = q 
and a = 45°.

In Figure 4-1 we isolate a small, square unit element 
from the neutral axis of a beam (where f = 0). The vertical 
shear stresses are equal and opposite on the two vertical 
faces by reason of equilibrium. If these were the only two 
stresses present, the element would rotate. Therefore there 

4-1  Introduction
In prior chapters we have been concerned primarily with the 
bending strength of reinforced concrete beams and slabs. 
The shear forces create additional tensile stresses that must 
be considered. In these members steel reinforcing must be 
added specifically to provide additional shear strength if the 
shear is in excess of the shear strength of the concrete itself.

The concepts of bending stresses and shearing stresses 
in homogeneous elastic beams are generally discussed 
at great length in most strength-of-materials texts. The 
accepted expressions are

	 f =
Mc

I
 and v =

VQ
Ib

	 (4-1)

where f, M, c, and I are as defined in Chapter 1; v is the shear 
stress; V is the external shear; Q is the statical moment of 
area about the neutral axis; and b is the width of the cross 
section.

All points in the length of the beam, where the shear 
and bending moment are not equal to zero, and at locations 
other than the extreme fiber or neutral axis, are subject to 
both shearing stresses and bending stresses. The combi-
nation of these stresses is of such a nature that maximum 
normal and shearing stresses at a point in a beam exist on 
planes that are inclined with respect to the axis of the beam. 
It can be shown that maximum and minimum normal 
stresses exist on two perpendicular planes. These planes 
are commonly called the principal planes, and the stresses 

Shear in Beams

	 4-1	 Introduction

	 4-2	 Shear Reinforcement 
Design Requirements

	 4-3	 Shear Analysis Procedure

	 4-4	 Stirrup Design Procedure

	 4-5	 Torsion of Reinforced 
Concrete Members

Unit element to
be isolated

Beam under Uniform Load
(a)

Stresses on Unit Element
(b)

N.A.

Figure 4-1  Shear stress relationship.
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not located where the large diagonal tension stresses (due 
to shear) occur. The problem then becomes one of furnish-
ing additional reinforcing steel to resist the diagonal tension 
stresses.

Considerable research over the years has attempted to 
establish the exact distribution of the shear stresses over the 
depth of the beam cross section. Despite extensive studies 
and ongoing research, the precise shear-failure mechanism 
is still not fully understood.

As with several previous codes, ACI 318-11 furnishes 
design guidelines for shear reinforcement based on the verti-
cal shear force Vu that develops at any given cross section 
of a member. Although it is really the diagonal tension for 
which shear reinforcing must be provided, diagonal tensile 
forces (or stresses) are not calculated. Historically, vertical 
shear force (and in older codes, vertical shear stress) has been 
taken to be a good indicator of the diagonal tension present.

4-2 � Shear Reinforcement 
Design Requirements

ACI 318-11, Chapter 11, addresses shear and torsion design 
provisions for both non-prestressed and prestressed con-
crete members. Our discussion in this chapter is limited to 
non-prestressed concrete members.

The design of bending members for shear is based on 
the assumption that the concrete resists part of the shear, 
and any excess over and above what the concrete is capable 
of resisting has to be resisted by shear reinforcement. The 
basic rationale for the design of the shear reinforcement, 
or web reinforcement as it is usually called in beams, is to 
provide steel to cross the diagonal tension cracks and sub-
sequently keep them from opening. Visualizing this basic 
rationale with reference to Figure 4-3, it is seen that the web 
reinforcement may take several forms.

The code allows vertical stirrups and welded wire rein-
forcement with wires located perpendicular to the axis of the 
member as well as spirals, circular ties, or hoops.

Additionally, for non-prestressed members, the code 
allows shear reinforcement to be composed of inclined or 
diagonal stirrups and main reinforcement bent to act as 
inclined stirrups.

The most common form of web reinforcement used is 
the vertical stirrup. The web reinforcement contributes very 

must exist equal and opposite horizontal shear stresses 
on the horizontal faces and of the same magnitude as the 
vertical shear stresses. (The concept of horizontal shear 
stresses equal in magnitude to the vertical shear stresses 
at any point in a beam can also be found in almost any 
strength-of-materials text.)

If we consider a set of orthogonal planes that are 
inclined at 45° with respect to the original element and 
resolve the shear stresses into components that are parallel 
and perpendicular to these planes, the effect will be as shown 
in Figure  4-2. Note that the components combine so that 
one of the inclined planes is in compression while the other 
is in tension. Concrete is strong in compression but weak in 
tension, and there is a tendency for the concrete to crack on 
the plane subject to tension should the stress become large 
enough. The tensile force resulting from the tensile stress 
acting on a diagonal plane has historically been designated 
as diagonal tension. When it becomes large enough, it will 
necessitate that shear reinforcing be provided.

As stated previously, tensile stresses of various inclina-
tions and magnitudes, resulting from either shear alone or 
the combined action of shear and bending, exist in all parts 
of a beam and must be taken into consideration in both 
analysis and design.

The preceding discussion is a fairly accurate concep-
tual description of what occurs in a plain concrete beam. In 
the beams with which we are concerned, where the length 
over which a shear failure could occur (the shear span) is 
in excess of approximately three times the effective depth, 
the diagonal tension failure would be the mode of failure 
in shear. Such a failure is shown in Figure 4-3. For shorter 
spans, the failure mode would actually be some combina-
tion of shear, crushing, and splitting. For the longer shear 
spans in plain concrete beams, cracks due to flexural tensile 
stresses would occur long before cracks due to the diagonal 
tension. The earlier flexural cracks would initiate the failure, 
and shear would be of little consequence. In a concrete beam 
reinforced for flexure (moment) where tensile strength is 
furnished by steel, however, tensile stresses due to flexure 
and shear will continue to increase with increasing load. 
The steel placed in the beam to reinforce for moment is 

This plane subject
to tension

Stress components (typ.)

Original shear stress (typ.)

This plane subject
to compression

Figure 4-2  Effect of shear stresses on inclined planes.

Shear span

Portion of span in which
shear is high

Figure 4-3  Typical diagonal tension failure.
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	 3.	 In beams with a total depth of not greater than 10 in.,  
21

2 times the flange thickness, or one-half the width of 
the web, whichever is greater

	 4.	 In beams built integral with the slab and with total 
depth not exceeding 24 in.

This provision of the code is primarily to guard against 
those cases where an unforeseen overload would cause 
failure of the member due to shear. Tests have shown the 
shear failure of a flexural member to be sudden and with-
out warning. In cases where it is not practical to provide 
shear reinforcement (footings and slabs) and sufficient 
thickness is provided to resist Vu, the minimum area of 
web reinforcement is not required. In cases where shear 
reinforcement is required for strength or because Vu 7  
1
2fVc, the minimum area of shear reinforcement shall be 
calculated from

	 Av = 0.752f′c 
bws
fyt

Ú
50bws

fyt
	 [ACI Eq. (11-13)]

In the preceding equation and with reference to 
Figure 4-4,

Av = �total cross-sectional area of web reinforcement 
within a distance s; for single-loop stirrups, 
Av = 2As, where As is the cross-sectional area of the 
stirrup bar (in.2)

bw = web width = b for rectangular sections (in.)
s = �center-to-center spacing of shear reinforcement in 

a direction parallel to the longitudinal reinforce-
ment (in.)

fyt = yield strength of web reinforcement steel (psi)

little to the shear resistance prior to the formation of the 
inclined cracks but appreciably increases the ultimate shear 
strength of a bending member.

For members of normal-weight concrete that are sub-
ject to shear and flexure only, the amount of shear force that 
the concrete alone, unreinforced for shear, can resist is Vc:

	 Vc = 2l2f′c bwd	 [ACI Eq. (11-3)]

In the expression for Vc, the terms are as previously defined 
with units for f′c  in psi and units for bw and d in inches. 
Lamda (l) is described in Chapter 1 and for normal-weight 
concrete, l = 1.0. In this chapter we will consider only 
normal-weight concrete and therefore l will be omitted. 
Vc will be in units of pounds. For rectangular beams, bw is 
equivalent to b. The nominal shear strength of the concrete 
will be reduced to a dependable shear strength by applying 
a strength-reduction factor f of 0.75 (ACI Code, Section 
9.3.2). Should members be subject to other effects of axial 
tension or compression, other expressions for Vc can be 
found in Section 11.2 of the code. Also, it is permitted to 
calculate Vc using a more detailed calculation (ACI 318-11, 
Section 11.2.2). For most designs, it is convenient and con-
servative to use ACI Equation (11-3).

The design shear force is denoted Vu and results from 
the application of factored loads. Values of Vu are most con-
veniently determined using a typical shear force diagram. 
Theoretically, no web reinforcement should be required if 
Vu … f Vc. The code, however, requires that a minimum area 
of shear reinforcement be provided in all reinforced concrete 
flexural members where Vu exceeds 12f Vc except as follows:

	 1.	 In slabs and footings
	 2.	 In concrete joist construction as defined by the ACI 

Code, Section 8.13

A

A

Elevation

Stirrups

Main steel

Section A–A

s

s

b

Main steel

Stirrups

b

Figure 4-4  Isometric section showing stirrups partially exposed.
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Because it is the required fVs that will be conveniently 
determined, the preceding expression is rewritten

required s =
fAv fytd

required fVs

or

required s =
fAv fytd

Vu - fVc

Similarly, for 45° stirrups,

required s =
1.414 fAv fytd

Vu - fVc

Note that these equations give maximum spacing of stirrups 
based on required strength.

4-3 � Shear Analysis 
Procedure

The shear analysis procedure involves checking the shear 
strength in an existing member and verifying that the vari-
ous code requirements have been satisfied. The member 
may be reinforced or plain.

Example 4-1

A reinforced concrete beam of rectangular cross section 
shown in Figure 4-5 is reinforced for moment only (no shear 
reinforcement). Beam width b = 18 in., d = 10.25 in., and 
the reinforcing is five No. 4 bars. Calculate the maximum 
factored shear force Vu permitted on the member by the ACI 
Code. Use f ′c = 4000 psi and fy = 60,000 psi.

Solution:

Because no shear reinforcement is provided, the ACI Code, 
Section 11.4.6.1, requires that Vu not exceed 0.5 fVc:

 maximum Vu = 0.5 fVc

 = 0.5 f(22f ′c bwd)

 = 0.5(0.75)(2)(14000)(18)(10.25)

 = 8750 lb

Note that for f′c … 4444 psi, the minimum area of shear 
reinforcement will be controlled by

50bws
fyt

When determining the shear strength Vc of reinforced 
or prestressed concrete beams and concrete joist construc-
tion, the value of 2f′c  is limited to 100 psi unless minimum 
web reinforcement is provided.

In any span, that portion in which web reinforcement is 
theoretically necessary can be determined by using the shear 
(Vu) diagram. When the applied shear Vu exceeds the capac-
ity of the concrete web fVc, web reinforcement is required. 
In addition, according to the code, web reinforcement at 
least equal to the minimum required must be provided else-
where in the span, where the applied shear is greater than 
one-half of fVc. The ACI Code, Section 11.1.1, states that 
the basis for shear design must be

	 fVn Ú Vu	 [ACI Eq. (11-1)]

where

	 Vn = Vc + Vs	 [ACI Eq. (11-2)]

from which

fVc + f Vs Ú Vu

where Vu, f, and Vc are as previously defined; Vn is the total 
nominal shear strength; and Vs is the nominal shear strength 
provided by shear reinforcement. In the design process, the 
design of the stirrups usually follows the selection of the 
beam size. Therefore, Vc can be determined, as can the com-
plete shear (Vu) diagram. The stirrups to be designed will 
provide the shear strength, Vs. Therefore, it is convenient to 
write the preceding expression as

required fVs = Vu - fVc

For vertical stirrups, Vs may be calculated from

	 Vs =
Av fyt d

s 	 [ACI Eq. (11-15)]

where all terms are as previously defined. Also, for inclined 
stirrups at 45°, Vs may be calculated using

Vs =
1.414Av fytd

s

from ACI Equation (11-16), where s is the horizontal 
center-to-center distance of stirrups parallel to the main 
longitudinal steel.

It will be more practical if ACI Equations (11-15) and 
(11-16) are rearranged as expressions for spacing, because 
the stirrup bar size, strength, and beam effective depth are 
usually predetermined. The design is then for stirrup spac-
ing. For vertical stirrups,

required s =
Av fytd

required Vs

5-#4

18"

10.25"

Figure 4-5  Cross section, Example 4-1.

Example 4-2

A reinforced concrete beam of rectangular cross section 
shown in Figure 4-6 is reinforced with seven No. 6 bars in 
a single layer. Beam width b = 18 in., d = 33 in., single-loop 
No. 3 stirrups are placed 12 in. on center, and typical cover 
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	 7.	 Determine the spacing requirements based on shear 
strength to be furnished by web reinforcing.

	 8.	 Establish the spacing pattern and show sketches.

Notes on Stirrup Design
	 1.	 Materials and maximum stresses

a.	 To reduce excessive crack widths in beam webs 
subject to diagonal tension, the ACI Code, Section 
11.4.2, limits the design yield strength of shear rein-
forcement to 60,000 psi. This increases to 80,000 psi 
for deformed welded wire reinforcing.

b.	 The value of Vs must not exceed 82f′cbwd irrespec-
tive of the amount of web reinforcement (ACI Code, 
Section 11.4.7.9).

	 2.	 Bar sizes for stirrups
a.	 The most common stirrup size used is a No. 3 bar. 

Under span and loading conditions where the shear 
values are relatively large, it may be necessary to use 
a No. 4 bar. Rarely is anything larger than a No. 4 
bar stirrup ever required, however. In large beams, 
multiple stirrup sets are sometimes provided in 
which a diagonal crack would be crossed by four or 
more vertical bars at one location of a beam. Single-
loop stirrups, as shown in Figure 4-4, are generally 
satisfactory for b … 24 in.; double-loop stirrups are 
satisfactory for 24 in. 6 b … 48 in.; and triple-loop 
stirrups are satisfactory for b 7 48 in.

b.	 When conventional single-loop stirrups are used, 
the web area Av provided by each stirrup is twice the 
cross-sectional area of the bar (No. 3 bars, Av = 0.22 
in.2; No. 4 bars, Av = 0.40 in.2) because each stirrup 
crosses a diagonal crack twice.

c.	 If possible, do not vary the stirrup bar sizes; use the 
same bar sizes unless all other alternatives are not 
reasonable. Spacing should generally be varied and 
size held constant.

	 3.	 Stirrup spacings
a.	 When stirrups are required, the maximum spacing 

for vertical stirrups must not exceed d/2 or 24 in., 
whichever is smaller (ACI Code, Section 11.4.5.1). 
If Vs exceeds 42f′cbwd, the maximum spacing must 
not exceed d/4 or 12 in., whichever is smaller (ACI 
Code, Section 11.4.5.3). The maximum spacing 
may  also be governed by ACI Equation (11-13), 
which gives

smax =
Av fyt

0.752f′cbw

…
Av fyt

50bw

b.	 It is usually undesirable to space vertical stirrups 
closer than 4 in.

c.	 It is generally economical and practical to compute 
the spacing required at several sections and to place 
stirrups accordingly in groups of varying spacing. 
Spacing values should be made to not less than 1-in. 
increments.

is 11
2 in. Find Vc, Vs, and the maximum factored shear force 

Vu permitted on this member. Use f ′c = 4000 psi and fy = 
60,000 psi.

Solution:

Vc and Vs will be expressed in units of kips.

 Vc = 22f ′cbwd =
214000(18)(33)

1000
= 75.1 kips

 Vs =
Avfytd

s
=

2(0.11)(60)(33)

12
= 36.3 kips

 maximum Vu = fVc + fVs = 0.75(75.1 + 36.3) = 83.6 kips

In the general case of shear analysis, one must ensure 
that at all locations in the member, fVc + fVs Ú Vu. In addi-
tion, all other details of the reinforcement pattern must be 
checked to ensure that they comply with code provisions. 
(Refer to “Notes on Stirrup Design” in Section 4-4.)

4-4 � Stirrup Design 
Procedure

In the design of stirrups for shear reinforcement, the end 
result is a determination of stirrup size and spacing pattern. 
A general procedure may be adopted as follows:

	 1.	 Determine the shear values based on clear span and 
draw a shear (Vu) diagram.

	 2.	 Determine if stirrups are required.
	 3.	 Determine the length of span over which stirrups are 

required (assuming that stirrups are required).
	 4.	 On the Vu diagram, determine the area representing 

“required fVs.” This will display the required strength 
of the stirrups to be provided.

	 5.	 Select the size of the stirrup. See item 2a in “Notes on 
Stirrup Design.” Find the spacing required at the critical 
section (a distance d from the face of the support). See 
“Notes on Stirrup Design” item 3b.

	 6.	 Establish the ACI Code maximum spacing requirements.

7-#6

#3 @ 12"

18"

11" cov.

33"

2

Figure 4-6  Cross section, Example 4-2.
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e.	 The actual stirrup pattern used in the beam is the 
designer’s choice. The choice will be governed by 
strength requirements and economy. Many patterns 
will satisfy the strength requirements. In most cases, 
the shear decreases from the support to the center of 
the span, indicating that the stirrup spacing could 
be continually increased from the critical section up 
to the maximum spacing allowed by the code. This 
would create tedious design, detailing, and bar plac-
ing operations, but would nevertheless result in the 
least steel used. This is not warranted economically or 
within the framework of the philosophy outlined in 
Appendix B. In the usual uniformly loaded beams, no 
more than two or three different spacings should be 
used within a pattern. Longer spans or concentrated 
loads may warrant more detailed spacing patterns.

Example 4-3

A simply supported rectangular concrete beam shown in 
Figure 4-7 is 16 in. wide and has an effective depth of 25 in. 
The beam supports a total factored load (wu) of 11.5 kips/ft 
on a clear span of 20 ft. The given load includes the weight 
of the beam. Design the web reinforcement. Use f ′c = 4000 
psi and fy = 60,000 psi.

d.	 The code permits (Section 11.1.3), when the sup-
port reaction introduces a vertical compression 
into the end region of a member, no concentrated 
load occurs between the face of the support and dis-
tance d from the face of the support, and the beam is 
loaded at or near the top, that the maximum shear 
to be considered is that at the section a distance d 
from the face of the support (except for brackets, 
short cantilevers, and special isolated conditions). 
For stirrup design, the section located a distance d 
from the face of the support will be called the critical 
section. Sections located less than a distance d from 
the face of the support may be designed for the same 
Vu as that at the critical section. Therefore, stirrup 
spacing should be constant from the critical section 
back to the face of the support based on the spacing 
requirements at the critical section. The first stirrup 
should be placed at a maximum distance of s/2 from 
the face of the support, where s equals the immedi-
ately adjacent required stirrup spacing (a distance of 
2 in. is commonly used). For the balance of the span, 
the stirrup spacing is a function of the shear strength 
required to be provided by the stirrups or the maxi-
mum spacing limitations.

A

A

x

*

25" = 2.08'

20' Clear

Beam Load Diagram 
(a)

Section A–A
(b)

Vu Diagram
(c)

6.70'

b = 16"

d = 25"

8.35'

91.1

37.9

18.95

Slope = 
11.5 kips/ft

SYM

wu = 11.5 kips/ft

F.O.S.

Req’d �Vs

Vu*

Vu
(kips)
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to this point
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Figure 4-7  Sketch for Example 4-3.
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We will use a 4-in. spacing. This is the spacing used 
in the portion of the beam between the face of the sup-
port and the critical section, which lies a distance d from 
the face of the support, and it is based on the amount 
of shear strength that must be provided by the shear 
reinforcing. Had the required spacing in this case turned 
out to be less than 4 in. (see item 3b in “Notes on Stirrup 
Design” in Section 4-4), a larger bar would have been 
selected for the stirrups.

	 6.	 Establish ACI Code maximum spacing requirements. 
Recall that if Vs is less than 42f ′cbwd, the maximum 
spacing is d/2 or 24 in., whichever is smaller. Therefore, 
compare V*s at the critical section with 42f ′cbwd:

 42f ′cbwd =
414000(16)(25)

1000
= 101.2 kips

 V*s =
fV*s
f

=
91.1 - 37.9

0.75
= 70.9 kips

Because 70.9 kips 6 101.2 kips, the maximum spacing 
should be the smaller of d/2 or 24 in.:

d
2

=
25
2

= 12.5 in.

Use 12 in.

A second criterion is based on the code minimum 
area requirement (ACI Code, Section 11.4.6.3). ACI 
Equation (11-13) may be rewritten in the form

smax =
Avfyt

0.752f ′cbw

 …  
Avfyt

50bw

where the units of fyt should be carefully noted as psi. 
Evaluate these two expressions:

 
Avfyt

0.752f ′cbw

=
0.22(60,000)

0.7514000(16)
= 17.39 in.

 
Avfyt

50bw
=

0.22(60,000)

50(16)
= 16.50 in.

Therefore, of these two, 16.50 in. controls.
Of the foregoing two maximum spacing criteria, the 

smaller value will control. Therefore the 12-in. maximum 
spacing controls throughout the beam wherever stir-
rups are required.

	 7.	 Determine the spacing requirements based on shear 
strength to be furnished. At this point we know that 
the spacing required at the critical section is 4.65 in., 
that the maximum spacing allowed in this beam is 
12 in. where stirrups are required, and that stirrups are 
required to 8.35 ft from the face of the support (F.O.S.)

To establish a spacing pattern for the rest of the 
beam, the spacing required should be established at 
various distances from the face of support. This will 
permit the placing of stirrups in groups, with each group 
having a different spacing. The number of locations 
at which the required spacing should be determined 

Solution:
	 1.	 Draw the shear force (Vu) diagram:

maximum Vu =
wu/
2

=
11.5(20)

2
= 115.0 kips

The quantities at the critical section (25 in. or 2.08 ft 
from the face of the support) are designated with an 
asterisk. Therefore

V*u = 115.0 - 2.08(11.5) = 91.1 kips

	 2.	 Determine if stirrups are required. The ACI Code, 
Section 11.4.6.1, requires that stirrups be supplied if 
Vu 7 0.5fVc. Thus

 fVc = f(22f ′cbwd) = 0.75 c 214000(16)(25)

1000
d = 37.9 kips

 0.5fVc = 0.5(37.9) = 18.95 kips

Therefore, because 91.1 kips 7 18.95 kips, stirrups are 
required.

	 3.	 Find the length of span over which stirrups are required. 
As stirrups must be provided to the point where Vu = 
0.5fVc = 18.95 kips, find where this shear exists on the 
Vu diagram of Figure 4-7c. From the face of the support,

115.0 - 18.95
11.5

= 8.35 ft

Note this location on the Vu diagram as well as the loca-
tion at 6.70 ft from the face of the support, where Vu = 
fVc = 37.9 kips.

	 4.	 Designate as “required fVs” the area enclosed by the 
fVc line, the V*u line, and the sloping Vu line. This shows 
the required strength of the shear reinforcing at any 
point along the span and graphically depicts the rela-
tionship

fVc + fVs Ú Vu

At any location, the required fVs can be determined from 
the diagram as the distance between the V*u (or Vu) line 
and the fVc line (the height of the crosshatched area). 
For this particular Vu diagram, designating the slope 
(kips/ft) as m, taking x (ft) from the face of the support, 
and considering the range 2.08 ft … x … 6.70 ft, we have

 required fVs = maximum Vu - fVc - mx

 = 115.0 - 37.9 - 11.5x

 = 77.1 - 11.5x

	 5.	 Assume a No. 3 vertical stirrup (Av = 0.22 in.2) and 
establish the spacing requirement at the critical section 
based on the required fVs. At this location the stirrups 
will be most closely spaced. From ACI Equation (11-15),

required s* =
fAvfytd

required fV *s
=

0.75(0.22)(60)(25)

91.1 - 37.9
= 4.65 in.

(Note that the denominator in the preceding expression, 
required fV*s, is equal to V*u = f Vc.)
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Similarly, required spacing may be found at other points 
along the beam. The results of these calculations are 
tabulated and plotted in Figure 4-8. Note that required 
spacings need not be determined beyond the point 
where smax (12 in.) has been exceeded.

	 8.	 The plot of Figure 4-8 may be readily used to aid in 
establishing a final pattern. For example, the 5-in. spac-
ing could be started about 2.4 ft from the face of the 
support (F.O.S.), and the maximum spacing of 12 in. 
could be started at about 4.9 ft from the face of the sup-
port. The first stirrup will be placed away from the face 
of the support a distance equal to one-half the required 
spacing at the critical section. The rest of the stirrup 
pattern may be selected using an approach as shown in 
the following table.

is based on judgment and should be a function of the 
shape of the required fVs portion of the Vu diagram.

To aid in the determination of an acceptable spac-
ing pattern, a plot is developed using the formula

required s =
fAvfytd

required fVs

where the denominator can be determined from the 
expression given in step 4.

For plotting purposes, the required spacing will 
arbitrarily be found at 1-ft intervals beyond the critical 
section. At 3 ft from the face of the support,

required s =
fAvfytd

required fVs
=

0.75(0.22)(60)(25)

77.1 - 11.5(3)
= 5.81 in.

No stirrups needed

Sym.

11

12

9

10

*
7

8

5

6

4

3
0 2 4 6 8 10 

x
(ft)

3
4
5

Req’d s 
(in.)

5.81
7.96

12.63

Figure 4-8  Stirrup spacing requirements for Example 4-3.

Spacing(in.)

Theoretical  
stopping point  
(from F.O.S.)

Length required  
to cover(in.)

Number of  
spaces to use

Actual length  
covered (in.)

Actual stopping 
point (inches  
from F.O.S.)

  2 — — 1   2     2
  4 2.4′ = 29″ 27 7 28   30
  5 4.9′ = 59″ 29 6 30   60
12 120″ 60 5 60 120

The spacings and theoretical stopping points for 
those spacings are determined from Figure 4-8. The 
4-in. spacing must run from the end of the 2-in. spacing 
(2  in. from the face of the support) to the theoretical 
stopping for the 4-in. spacing (29 in.). Therefore, the 
4-in. spacings must cover 27 in. For the 4-in. spac-
ing, the required number of spaces is then calculated 
from 27/4 = 6.75 spaces; use 7 spaces. This places the 
last stirrup of the 4-in. spacing group at 30 in. from the 

face of the support, where the 5-in. spacing will begin. 
The final pattern for No. 3 single-loop stirrups is: one at 
2 in., seven at 4 in., six at 5 in., and five at 12 in. This 
places the last stirrup in the 12-in. spacing group on the 
beam centerline—thus, remembering symmetry about 
the centerline, providing stirrups across the full length of 
the beam. This is common practice and is conservative. 
The final stirrup pattern is shown in the design sketch 
of Figure 4-9.
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Example 4-3, we can compute where a 5-in. spacing may 
begin relative to the face of the support,

x =
115.0 - 37.9 -

0.75(0.22)(60)(25)
5

11.5
= 2.40 ft

and a 12-in. spacing may begin at

x =
115.0 - 37.9 -

0.75(0.22)(60)(25)
12

11.5
= 4.91 ft

Note that Figure 4-8 may be generated equally well with 
these data.

Example 4-4

A continuous reinforced concrete beam shown in Figure 4-10 
is 15-in. wide and has an effective depth of 31 in. The fac-
tored loads are shown. (The factored uniform load includes 

An alternative approach to stirrup spacing is to select 
a desired spacing (in this case between 4 and 12 in.) and to 
compute the distance from the face of the support at which 
that spacing may begin. This can be accomplished by rewrit-
ing the expression

 required s =
fAv fytd

required fVs

 =
fAv fytd

(max Vu - fVc - mx)

in the form

x =
max Vu - fVc -

fAv fytd
s

m

This expression will furnish the distance x at which 
any desired stirrup spacing s may commence. Returning to 

Tie steel
#3 stirrup

A

Sym.

A
2"

Face of support
10'-0"

Main reinforcing steel

#3 stirrup

16"

28"

Section A–A

1   " clear1
2

7 sp, @ 4"
2'-4"

6 sp, @ 5"
2'-6"

5 spaces @ 12" = 5'-0"

Figure 4-9  Design sketch for Example 4-3.

d = 31"

b = 15"

As

Section A–A

Beam Load Diagram

A

A

5'-0" 5'-0" 5'-0"
100 kips 100 kips

15'-0" clear span
(typical)

1.0 kip/ft

Figure 4-10  Sketch for Example 4-4.
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	 6.	 Establish ACI Code maximum spacing requirements:

 42f ′cbwd =
414000(15)(31)

1000
= 117.6 kips

 V*s =  
fV*s
f

 =  
104.9 - 44.1

0.75
 = 81.1 kips

Because 81.1 kips 6 117.6 kips, the maximum spacing 
should be the smaller of d/2 or 24 in.:

d
2

=
31
2

= 15.5 in.

Also check smax. Because f ′c 6 4444 psi,

smax =
Avfyt

50bw
=

0.22(60,000)

50(15)
= 17.6 in.

Therefore, use a maximum spacing of 15 in.

	 7.	 Determine the spacing requirements between the 
critical section and the concentrated load based on 
shear strength to be furnished. The denominator of the 
following formula for required spacing uses the expres-
sion for required fVs from step 4:

required s =
fAvfytd

required fVs
=

0.75(0.22)(60)(31)

63.4 - 1.0x

The results of these calculations are tabulated and plot-
ted in Figure 4-12.

	 8.	 With reference to Figure 4-12, no stirrups are required 
in the portion of the beam between the point load and 
center of the beam. A spacing of 5 in. will be used 
between the face of support and the point load. In the 
center portion of the beam, between the point loads, 
stirrups will be placed at a spacing slightly less than 
the maximum spacing as a conservative measure and 
to create a convenient spacing pattern. The design 
sketches are shown in Figure 4-13. Note the symmetry 
about the span centerline.

the weight of the beam.) Design the web reinforcement using 
the Vu diagram shown in Figure 4-11. Use f ′c = 4000 psi and 
fy = 60,000 psi.

Solution:
	 1.	 Note that, by reason of symmetry, it is necessary to 

show only half of the Vu diagram.

	 2.	 Determine if stirrups are required:

 fVc = f22f ′cbwd =
0.75(214000)(15)(31)

1000
= 44.1 kips

 0.5fVc = 0.5(44.1) = 22.1 kips

Therefore, because 104.9 kips 7 22.1 kips, stirrups are 
required.

	 3.	 Find the length of span over which stirrups are required. 
Stirrups are required to the point where

Vu = 0.5fVc = 22.1 kips

From Figure 4-11, the point where Vu is equal to 
22.1  kips may be determined by inspection to be at 
the concentrated load, 5 ft-0 in. from the face of the 
support. No stirrups are required between the two con-
centrated loads.

	 4.	 Designate “required fVs” on the Vu diagram:

 required fVs = maximum Vu = fVc - mx

 = 107.5 - 44.1 - 1.0x

 = 63.4 - 1.0x   �   (applies for the range 
2.58 ft … x … 5.0 ft)

	 5.	 Assume a No. 3 vertical stirrup (Av = 0.22 in.2):

 required s* =
fAvfytd

required fV*s
=

0.75(0.22)(60)(31)

104.9 - 44.1

 = 5.05 in.

Use 5 in.

104.9

2.5

Sym.

5.0' 2.5'

44.1

102.5

22.1

Slope = 1.0 kip/ft

Req’d �Vs

Vu*
*

Vu
(kips)

�Vc

107.5

0 0

x

�Vc

31" = 2.58'

1
2

Figure 4-11  Vu diagram for Example 4-4.
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12
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Figure 4-12  Stirrup spacing requirements for Example 4-4.
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fully installed on one side of the beam before being installed 
on the adjacent side of the beam. Rectangular and L-beams 
are more susceptible to torsion than T-beams. In the ACI 
Code, the design for torsion in solid and hollow concrete 
beams is based on a thin-walled tube space truss model (see 
Figures 4-15 and 4-16). In the thin-walled space truss model, 
the outer concrete cross section that is centered on the stir-
rups is assumed to resist the torsion while the concrete in 
the core is neglected because after cracking, this core is rela-
tively ineffective in resisting torsion. Torsional moments 
cause additional shear stresses that result in diagonal tension 
stresses in the concrete member. These diagonal tension 
stresses cause spiral inclined cracks to form around the sur-
face of the concrete member, as shown in Figure 4-16. After 
cracking, the torsional resistance of a concrete member is 
provided by the outermost closed stirrups and the longitu-
dinal reinforcement located near the surface of the beam, 

4-5 �T orsion of 
Reinforced Concrete 
Members

The torsion or twisting of reinforced concrete members is 
caused by a torsional moment that acts about the longitudi-
nal axis of the member due to unbalanced loads applied to 
the member. The torsional moment usually acts in combi-
nation with bending moment and shear force as shown in 
Figure 4-14.

A typical example of torsion in concrete members 
occurs in a rectangular beam supporting precast hollow-core 
slabs (or planks). The torsion may be due to unequal live 
loads on adjacent spans of the hollow-core planks or due to 
unequal adjacent spans of the hollow-core planks supported 
on the beam. Torsion in such beams could also be due to 
the construction sequence that has the hollow-core planks 

Face of support

12 spaces @ 5" = 5'-0"

A

A

2"

7'-6"

Sym.

#3 stirrup

34"

15"

Section A–A

1'-2" 1'-2"

1  " clear1
2

Figure 4-13  Design sketches for Example 4-4.

Approximately 45�

Failure section due
to shear and torsionFixed support

Long. axis

Load

Figure 4-14  Cantilever beam subject to combined shear, moment, and torsion.
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xo and yo are the width and height of the space truss model 
measured between the centerlines of the tube walls—that is, 
the centerlines of the longitudinal corner bars.

There are two conditions that may occur in the design 
of reinforced concrete members for torsion: primary or 
equilibrium torsion and secondary or compatibility torsion.

Compatibility Torsion
Compatibility torsion occurs in statically indeterminate 
structures, and the design torque, which cannot be obtained 
from statics alone, may be reduced due to redistribution 
of internal forces to maintain compatibility of deforma-
tions. Members subjected to compatibility torsion may be 
designed for the cracking torque multiplied by the resis-
tance factor (i.e., fTcr), but the redistribution of internal 
forces due to the reduction of the torque to fTcr must be 
taken into account in the design of all the adjoining struc-
tural members. One example of compatibility torsion occurs 
in spandrel beams (see Figure 4-17), where the rotation of 
the slab is restrained by the spandrel beam. For compatibil-
ity, the restraining moment at the exterior end of the slab 

and this is modeled by the space truss shown in Figure 4-16, 
where the longitudinal reinforcement acts as the truss ten-
sion members, the stirrups act as the tension web members, 
and the inclined concrete struts between the diagonal cracks 
act as the compression web members of the space truss.

In the thin-walled tube model, the shear flow q, which is 
assumed to be constant around the perimeter of the beam, is 
equal to the product of the shear stress τ and the wall thick-
ness, t. Using the thin-walled tube model, and summing the 
torques, the equilibrium of torsional moments yields

T - (q xo)yo - (q yo)xo = 0

or

T = 2q xoyo = 2q Ao

Therefore,

	 q = T>2Ao	 (4-4)

where
Ao = �area enclosed by centerline of the shear flow  

path = xoyo

q = �shear flow (i.e., force per unit length)

Concrete in the core
is neglected after
cracking.

Area enclosed
by centerline of
thin-walled tube
model, Ao

Shear flow q

Wall thickness, t

h

b

yo

xo

T

Torque, T

yo

xo

Centerline
of wall

Figure 4-15  Thin-walled tube model.

xo
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V3

yo

s
�

Stirrups

Spiral torsional
cracks

Concrete diagonal
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reinforcement

V2

V1

T

Figure 4-16  Space truss model for torsion.
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moments and forces is not possible in such structures, and 
in order to maintain equilibrium, the full design torque has 
to be resisted by the beam. This is called equilibrium torsion. 
Examples of concrete members in equilibrium torsion are 
shown in Figures 4-18 and 4-19.

Torsion Design of Reinforced Concrete 
Members (ACI Code Section, 11.5)
The ACI Code design approach for torsion follows a similar 
approach to the design for shear. Like shear, the critical sec-
tion for torsion is located at a distance d from the face of a 

is equal to the uniform torsional moment per unit length 
on the spandrel beam. As the slab rotates and cracks, and 
the slab moments are redistributed, the torsional moment 
on the spandrel beam is reduced until it reaches the crack-
ing torque of the spandrel beam, at which point a hinge is 
formed at the exterior end of the slab.

Equilibrium Torsion
For statically determinate structures, the design torque, 
which can be obtained from statics considerations alone, 
cannot be reduced because redistribution of internal 

Design the spandrel beam for reduced torque
due to redistribution of slab moments

Figure 4-17  Compatibility torsion in spandrel beams.

Figure 4-18  Equilibrium torsion.  (George Limbrunner)
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Varies
(3"±)

Concrete
beam with
 ledge

Topping

Eccentric loads cause 
torsion in beam

Centerline
 of beam

Eccentricity Eccentricity

Precast plank

(b)

Figure 4-19  Equilibrium torsion.
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due to combined shear and torsion, the ACI Code requires 
that solid concrete beam cross-sectional dimensions be such 
that ACI Code Equations (11-18) and (11-19) are satisfied. 
The size of the beam should be increased if these relation-
ships are not satisfied.Ca Vu

bwd
b

2
+ a Tuph

1.7(Aoh)2 b
2

… f a Vc

bwd
+ 82f′cb

� [ACI Eq. (11-18)]

Similarly, the cross-sectional dimensions of hollow con-
crete beams are limited as follows:

Vu

bwd
+

Tuph

1.7(Aoh)2 … f a Vc

bwd
+ 82f′cb

� [ACI Eq. (11-19)

where
Vc = 2l2f′c bwd

Aoh = �area enclosed by the centerline of the outermost 
closed stirrup = x1y1

ph = 2(x1 + y1)

x1 and y1 are the width and height of the space truss 
model measured to the centerline of the outermost closed 
stirrup as shown in Figure 4-20. It should be noted that the 
nominal concrete shear strength, Vc, is assumed to be unaf-
fected by torsion.

For hollow sections with varying wall thickness, ACI 
Equation (11-19) shall be evaluated at a location where the 

support, but where a concentrated torque occurs within a 
distance of d from the face of a support, the critical section 
for torsion shall be at the face of the support. Torsion can be 
neglected if the factored torque is less than or equal to one-
quarter of the cracking torque of the beam section. That is, if

	 Tu … 0.25fTcr	 (4-5)

where the cracking torque for non-prestressed members not 
subject to axial tension or compression force is

	 Tcr = 4l2f′c 
(Acp)2

pcp
	 (4-6)

Thus, torsion may be neglected when

	 Tu … 0.25 f a4l2f′c 
(Acp)2

pcp
b = lf2f′c 

(Acp)2

pcp
	 (4-7)

where
f = 0.75 (ACI Code, Section 9.3.2.3)

Acp = �area of outside perimeter of the cross section  
= bh (for rectangular beams not cast mono-
lithic with a slab)

pcp = �outside perimeter of the cross section  
= 2(b + h)

b and h = �cross section width and depth (see  
Figure 4-15)

For isolated beams cast monolithic with a slab, the area, Acp, 
can be determined from ACI, Sections 11.5.1.1 and 13.2.4.

l is the lightweight aggregate factor discussed in 
Chapter 1, and for normal weight concrete, l = 1.0. When 
the torque is small enough such that Equation (4-5) or (4-7) 
is satisfied, closed stirrups are not required.

Torsional reinforcement is required to resist the full 
applied torsional moment as specified in ACI, Section 
11.5.2.1, when

	 Tu 7 lf2f′c 
(Acp)2

pcp
	 (4-8)

To reduce unsightly cracks on the surface of the beam 
and to prevent crushing of the surface concrete from stresses 
in the inclined concrete compression struts (see Figure 4-16) 

y1

x1

hd

b � bw

Clear cover �    stirrup diameter1
2

Clear cover �    stirrup diameter1
2

Figure 4-20  Definition of x1 and y1.

+

Eccentric loads 
cause torsion in
box girder

Center of gravity 
of box girder

Bridge box girder

(c)

Figure 4-19  Continued.
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From Equation (4-4) and noting that the shear flow is con-
stant, V2 can be calculated as

	 V2 = q yo = a T
2Ao

byo	 (4-10)

Substituting Equation (4-10) into (4-9) and rearrang-
ing yields, the ratio of the area of the torsional stirrup to the 
spacing of the stirrup as

	
At

s =
T

2Ao fyt cot u
	 (4-11)

Horizontal Equilibrium of Forces
Considering a free body diagram of the horizontal forces act-
ing on the front wall of the space truss model (Figure 4-16) 
as shown in Figure 4-22, the equilibrium of the horizontal 
forces yields

A/ fy/ = ΣVi cot u = Σ(q yi) cot u = q cot u Σyi	 (4-12)

Substituting Equation (4-4) into Equation (4-12) yields

 A/ fy/ = a T
2Ao

b  cot u Σyi

 = a T
2Ao

b  cot u (xo + xo + yo + yo)

Therefore,

	 A/ fy/ = a T
2Ao

b  cot u [2(xo + yo)]	 (4-13)

Substituting for the torque, T, in Equation (4-13) using 
Equation (4-11) gives

A/ fy/ = c aAt

s b fyt cot u d  cot u [2(xo + yo)]

or

	 A/ = aAt

s b
fyt

fy/
 cot2 u [2(xo + yo)]	 (4-14)

left-hand side of the equation is at its maximum value. If the 
wall thickness of the hollow concrete beam, t, is less than 
Aoh/ph at the location where the torsional stresses are being 
determined, the second term in ACI Equation (11-19) shall 
be taken as Tu/(1.7Aoh t).

Torsion Reinforcement
The reinforcement required for torsion shall be added to 
that required for other load effects that act in combination 
with the torsional moment, and the most restrictive spacing 
requirements must be satisfied (ACI Code, Section 11.5.3.8). 
The torsional reinforcement is determined using the space 
truss model shown in Figure 4-16. The yield strength of the 
torsional reinforcement shall not be greater than 60,000 psi 
per ACI Code, Section 11.5.3.4. The torsional reinforcement 
consists of closed stirrups and longitudinal reinforcement at 
the corners of the beam.

Vertical Equilibrium of Forces
Considering a free body diagram of the vertical forces act-
ing on the front wall of the space truss model (Figure 4-16) 
as  shown in Figure 4-21, the equilibrium of the vertical 
forces yields

	 V2 = At fyta
yo cot u

s b 	 (4-9)

Vi Vi
yo

FDi
FDi 

= Vi/ sin �
  N

i 
= Vi/ tan �

 
= Vi cot �

  V
i 
= qyi

Ni
2  

Ni Ni
2  

Longitudinal
reinforcement

Diagonal
compression struts

Diagonal cracks Longitudinal
reinforcement

�

�

Figure 4-22  Free body diagram for horizontal equilibrium of forces in the 
space truss model.

V2
yo

s

At fytAt̂ fyt

     � yo cot �
yo

tan �

Longitudinal
rebar

Longitudinal rebar

�

Figure 4-21  Free body diagram for vertical equilibrium of 
forces in the space truss model.
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Avt

s =
Av

s +
2At

s Ú
50bw

fyt

	  Ú 0.752f′c 
 bw

fyt
	 (4-17)

where
Avt = �area of two legs of closed stirrups required for 

combined shear plus torsion
At = �area of one leg of closed stirrups required for 

torsion
Av = �area of two legs of closed stirrups required for shear
fyt = yield strength of stirrups = 60,000 psi
bw = width of beam stem

s = �spacing of stirrups … ph/8 and 12 in. (ACI Code, 
Section 11.5.6.1)

Note that Av/s is a slightly modified form for the stirrup 
requirement for shear from Section 4-2.

Additional Longitudinal Reinforcement 
Required for Torsion
The additional longitudinal reinforcement required to resist 
torsion, and to be added to the reinforcement required 
for  bending, is obtained from ACI Equations (11-22) and 
(11-24) as

	  A/ = aAt

s bph 
fyt

fy/
 cot2 u	 [ACI Eq. (11-22)]

	  Ú 52f′c 
Acp

fy/
- aAt

s bph 
fyt

fy/
	 [ACI Eq. (11-24)]

where
At
s  = torsion stirrup area from Equation (4-11)

 Ú 25bw>fyt

 ph = 2(x1 + y1)
 Acp = bh
 bw = width of beam stem
 fyt = stirrup yield strength, psi
 fy/ = longitudinal steel yield strength, psi

The following should be noted with regard to the 
required torsional reinforcement:

●	 The additional longitudinal reinforcement must be 
distributed around the surface of the beam with a 
maximum spacing of 12 in., and there should be at least 
one longitudinal bar in each corner of the closed stirrups 
to help transfer the compression strut forces into the 
stirrups.

●	 The additional longitudinal reinforcement diameter 
should be at least 0.042 times the stirrup spacing (i.e., 
0.042s), but not less than a 38 in. diameter bar (ACI Code, 

It should be recalled that xo and yo are the width and 
height measured to the centerlines of the tube wall in the 
thin-walled tube model, while x1 and y1 are the width and 
height measured to the centerlines of the outermost closed 
stirrup. After cracking, the shear flow path is defined more 
by the center-to-center dimensions between the outer most 
closed stirrup. Therefore, in subsequent equations, assum-
ing that xo = x1 and yo = y1 yields the equation for the 
longitudinal torsion reinforcement as

	 A/ = aAt

s b
fyt

fy/
 cot2 u  [2(x1 + y1)]	 (4-15)

That is,

	 A/ = aAt

s b
fyt

fy/
 cot2 u (ph)  [ACI Eq. (11-22)]

Transverse Reinforcement Required 
for Torsion (Stirrups)
Using Equation (4-11) and the limit states design require-
ment that the design torsional strength, fTn be greater than 
or equal to the factored torsional moment, Tu yields the 
required torsional stirrup area,

	
At

s =
Tu

2f Ao fyt cot u
	 (4-16)

where
At = �area of one leg of the torsional or outermost 

closed stirrups, in.2

s = stirrup spacing
θ = �30° to 60°; use θ = 45° for non-prestressed  

members (ACI Code, Section 11.5.3.6[a])
fyt = yield strength of stirrups = 60,000 psi
Tu = factored torque at the critical section

The critical section for torsion is permitted to be at a 
distance d from the face of the beam support provided no 
concentrated torque occurs within a distance of d from the 
face of the support. If a concentrated torque occurs within a 
distance d from the face of support, the critical section will 
be at the face of the support (ACI Code, Section 11.5.2.4).

 d = effective depth of the beam
 Ao ≈ 0.85 Aoh = 0.85 x1y1

 Aoh = Area enclosed by the centerline of outermost 
	 closed stirrup

The nominal torsional strength, Tn, is obtained from 
Equation (4-11) as

	 Tn =
2AoAt fyt

s  cot u  [ACI Eq. (11-21)]

The total equivalent transverse reinforcement or stirrups 
required for combined shear plus torsion is obtained from 
the ACI Code, Section 11.5.5.2, as
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Example 4-5

Design of Beams for Torsion

The floor framing in the operating rooms in a hospital 
building consists of reinforced concrete beams 18″ × 24″ 
deep that support precast concrete planks as shown in 
Figure 4-23. The clear span of the beam is 27 ft between 
columns. The planks are 10 in. deep with 2-in. topping 
and supports stud wall partitions that weigh 10 psf and 
mechanical/electrical equipment that weigh 5 psf. The 
weight of the precast planks is 70 psf. The centerline to 
centerline span of the planks is 30 ft on the left-hand side 
of the beam and 24 ft on the right-hand side of the beam. 
Design the beam for torsion and shear assuming normal 
weight concrete (i.e., l = 1.0) and f ′c  = 4000 psi. Assume 
the beam has already been designed for bending. The live 
load for hospital operating rooms is 60 psf.

Solution:
	 1.	 Determine the maximum factored concentrated or uni-

formly distributed torsional load and the corresponding 
factored gravity load that occurs simultaneously.

Dead Load

 10 in. plank + 2 in. topping = 95 psf

 Mechanical and electrical = 5 psf

 Stud wall partitions = 10 psf

 Total dead load, D = 110 psf

 Floor live load (operating room), L = 60 psf

Tributary Widths (TW) of Beam

TW (due to the 30@ft@span hollow@core plank) =
30 ft

2
= 15 ft

TW (due to the 24@ft@span hollow@core plank) =
24 ft

2
= 12 ft

A review of Figure 4-23 shows that the torsion in this 
beam is equilibrium torsion caused by the eccentricity 
of the plank loads.

Eccentricity of the Hollow-Core Plank Load

Eccentricity, e =
18 in.

2
+

3 in.
2

= 10.5 in. = 0.88 ft

Section 11.5.6.2) to prevent buckling of the longitudinal 
reinforcement due to the horizontal component of the 
diagonal compression strut force.

●	 The additional longitudinal rebar area should be 
added to the longitudinal rebar area required for 
bending.

●	 The closed torsional stirrups should be enclosed with 
135° hooks (ACI Code, Section 11.5.4.1) and there 
should be at least one longitudinal bar enclosed by and 
at each corner of the stirrup. Note that 90° hooks are 
ineffective after the corners of the beam spall off due to 
torsion failure.

Torsion Design Procedure
The design procedure for torsion is as follows:

	 1.	 Determine the maximum factored concentrated or uni-
formly distributed torsional load and the corresponding 
factored gravity load that occurs simultaneously.

Note that pattern or checkered live loading may 
need to be considered to maximize the torsional load 
and moment.

	 2.	 Determine the factored torsional moment, Tu, the fac-
tored shear, Vu, and the factored bending moment, Mu.

	 3.	 Determine the reinforcement required to resist the fac-
tored bending moment Mu.

	 4.	 Calculate the concrete shear strength, fVc.
	 5.	 Determine the cracking torque, Tcr and if torsion can be 

neglected (check if Tu … 0.25Tcr).
	 6.	 Determine if the torsion in the member is caused by 

compatibility torsion or by equilibrium torsion:
a.	 For compatibility torsion, redistribution of inter-

nal forces is possible because the torsional moment 
is not required to maintain equilibrium; therefore, 
design the member for a reduced torque of fTcr.

b.	 For equilibrium torsion, redistribution of internal 
forces is not possible because the torsional moment 
is required to maintain equilibrium; therefore, the 
member must be designed for the full torsional 
moment, Tu, calculated in step 1.

	 7.	 Check the limits of the member cross section using ACI 
Code Equation (11-18) to prevent crushing of the diag-
onal concrete compression struts.

	 8.	 Determine the required torsional stirrup area, At/s, the 
stirrup area required for shear, Av/s, and the total stir-
rup area required for combined shear and torsion, Avt/s. 
Check that maximum stirrup spacing is not exceeded, 
and check minimum stirrup area. Using the torsional 
moment diagram and shear force diagram, the required 
stirrup spacing can be laid out to match the variation in 
shear and torsional moment.

	 9.	 Determine the additional longitudinal reinforcement 
required for torsion.

	10.	 Draw the detail of the torsional reinforcement.

3"±
(typ)

bearing 

2" topping

24"

24'–0"30'–0"

10" plank
(typ) e

BM

Eccentricity, e

18"

Figure 4-23  Beam section for Example 4-5.
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 0.25fTcr = lf2f ′c  
(Acp)2

pcp

 = (1.0)(0.75)(14000) 
(18 in. * 24 in.)2

2(18 in. + 24 in.)

 = 105.4 in.@kips = 8.8 ft.@kips

Because Tu = 13.1 ft.-kips 7 8.8 ft.-kips, this beam 
therefore, must be designed for torsion.

	 6.	 This is equilibrium torsion as redistribution of internal 
forces is not possible because the torsional moment is 
required to maintain equilibrium. The member thus must 
be designed for the full torsional moment, Tu, calculated 
in step 1.

	 7.	 Check the limits of the member cross section using ACI 
Code Equation (11-18) to prevent crushing of the diago-
nal concrete compression struts:

 b = 18 in.

 h = 24 in.

Effective depth, d = 24 - 3.5 in. (assuming 2 layers of 
rebar) = 20.5 in.

 u = 45°

 f = 0.75

 x1 = 18 in. - (2 sides)a1.5@in. cover +
0.5@in. stirrup

2
b

 = 14.5 in.

 y1 = 24 in. - (2 sides)a1.5@in. cover +
0.5@in. stirrup

2
b

 = 20.5 in.

 fyt = fyv = 60,000 psi

 Aoh = x1y1 = (14.5 in.)(20.5 in.) = 297.3 in.2

 Ao = 0.85Aoh = 0.85x1y1 = 0.85(14.5 in.)(20.5 in.)
 = 252.7 in.2

 ph = 2(x1 + y1) = 2(14.5 + 20.5) = 70 in.

 Acp = bh = (18 in.)(24 in.) = 432 in.2

The limits on the beam cross-sectional dimensions will 
now be checked using ACI Equation (11-18):Ca Vu

bwd
b

2

+ a Tuph

1.7(Aoh)
2 b

2

… fa Vc

bwd
+ 82f ′cb

That is,Ca65.8 kips(1000)

(18 in.)(20.5 in.)
b

2

+ a (13.1 ft.@kips)(12,000)(70 in.)

1.7(297.3 in.2)2
b

2

 …
35 kips(1000)

(18 in.)(24 in.)
+ 8(0.75)14000

	  192.8 psi 6 460.5 psi� (O.K.)

Thus, the diagonal concrete compression struts are not 
crushed and the size of the beam is adequate to resist 
the torsional moments.

	 8.	 Determine the required torsional stirrup area, At/s, the 
stirrup area required for shear, Av/s, and the total stirrup 

The maximum uniform torsional loading will occur due 
to checkerboard or partial loading on the hollow core 
slabs in which the full design live load is assumed on the 
30-ft-span hollow-core slab and one-half of the design 
live load is assumed on the 24-ft-span hollow core 
slab. This is common practice among some designers 
and will generally result in a slightly more conservative 
design. This partial loading is similar to what is pre-
scribed in Section 7.5 of the ASCE 7 Load Standard. 
The maximum torsion will be considered together with 
the corresponding maximum uniform vertical load that 
occurs at the same time.

The maximum factored uniform torsional load is

 wtu = {[1.2(110 psf) + 1.6(60 psf)](15 ft)
 - [1.2(110 psf) +  1.611

22 (60 psf)](12 ft)}
 * 0.88 ft = 1109 ft@lb/ft = 1.11 ft.@kips/ft

The corresponding maximum factored uniform vertical 
load is

 wu = [1.2(110 psf) + 1.6(60 psf)](15 ft) + [1.2(110 psf)
 + 1.611

22 (60 psf)](12 ft)

 = 5580 lb/ft = 5.58 kips/ft

	 2.	 Determine the factored torsional moment, Tu, the 
factored shear, Vu, and the factored bending 
moment, Mu:

Assuming 2 layers of reinforcement, d = 24 in. - 
3.5 in. = 20.5 in. For torsion and shear, use a reduced 
span commencing at d from the face of the beam sup-
ports. This reduced span is

/ = 27 ft -
2(20.5 in.)

12
= 23.6 ft

Maximum design torsional moment,

 Tu =
wtu/

2
=

1.11 ft.@kips/ft (23.6 ft)

2
= 13.1 ft.@kips

Maximum design shear that occurs at the same time as 
the maximum torsion is

Vu =
wu/
2

=
5.58 kips/ft (23.6 ft)

2
= 65.8 kips

	 3.	 The reinforcement required to resist the bending 
moment is assumed to have previously been designed 
and is not calculated here.

	 4.	 The concrete shear strength is

 fVc = 0.75(2)14000(18 in.)(20.5 in.) = 35,000 lb
 = 35 kips

	 5.	 Torsion can be neglected if the factored torsional 
moment is less than or equal to the concrete torsional 
strength, that is, if Tu … 0.25fTcr, where the concrete 
torsional strength is
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 = 514000  
432 in.2

60,000
- (0.0075 in.)(70 in.) 

60,000
60,000

 = 1.75 in.2

Therefore, the required additional longitudinal steel is 
A/ = 1.75 in.2

This additional longitudinal reinforcement should 
be distributed at the corners of the beam but the spac-
ing between these bars should be no greater than 12 in. 
Where the spacing exceeds 12 in., provide additional 
longitudinal bars at the midwidth or middepth of the 
beam as required. This longitudinal reinforcement is 
in addition to the reinforcement required to resist the 
bending moments on the beam.

If the additional reinforcement is concentrated on 
the top and bottom layers, therefore, the total areas of 
the top and bottom longitudinal reinforcement in the 
beam are calculated as

 As,top = As,top(due to bending) + 0.5(1.75 in.2)

 = As,top(due to bending) + 0.88 in.2

 As,bottom = As,bottom(due to bending) + 0.5(1.75 in.2)

 = As,bottom(due to bending) + 0.88 in.2

However, for the beam in this example, the spacing of 
the longitudinal reinforcement will exceed the maximum 
12 in. because the center-to-center distance between 
the top and bottom rebars is approximately 18 in. The 
additional longitudinal reinforcement should thus be 
distributed as follows:

 As,top = As,top(due to bending) + a1
3
b (1.75 in.2)

 = As,top(due to bending) + 0.58 in.2

 As,midheight = a1
3
b (1.75 in.2 ) = 0.58 in.2

 As,bottom = As,bottom(due to bending) + a1
3
b (1.75 in.2)

 = As,bottom(due to bending) + 0.58 in.2

The minimum diameter of the longitudinal reinforcement 
is the largest of the following:

0.042 s = 0.042(8 in.) = 0.34 in.

or 38 in. (controls)

	10.	 Torsional reinforcement detail is shown in Figure 4-24.

area required for combined shear and torsion, Avt/s. 
Check that maximum stirrup spacing is not exceeded, 
and check minimum stirrup area.

From Equation (4-16), the torsional stirrup required is

 
At

s
=

Tu

2fAofyt cot u
=

13.1 ft.@kips(12,000)

2(0.75)(252.7)(60,000) cot 45°

 = 0.0069

The stirrup area required to resist the maximum fac-
tored shear acting with the maximum torsion is

Av

s
=

Vu - fVc

ffyvd
=

(65.8 kips - 35 kips)(1000)

(0.75)(60,000)(20.5 in.)
= 0.033

The total stirrup area required (2-leg stirrups) is calcu-
lated from

 
Avt

s
=

Av

s
+

2At

s
= 0.033 + 2(0.0069) = 0.047

 Ú
50bw

fyt
=

50(18 in.)

60,000
= 0.015

 Ú 0.752f ′c 
bw

fyt
= 0.7514000  

18 in.
60,000

= 0.014  (O.K.)

Using No. 4 stirrups, Avt (2 legs) = 2 (0.2 in.2) = 0.4 in.2, 
the spacing of the stirrups required to resist the maxi-
mum combined shear and torsion is calculated as

 s =
0.4 in.2

0.047
= 8.5 in. (controls)

 … ph>8 = 70 in.>8 = 8.75 in.� (O.K.)

 … 12 in. � (O.K.)

Therefore, use No. 4 closed stirrups at 8-in. on center.
The shear and torsion are at their maximum values 

at the face of the beam support and decrease linearly 
to zero at the midspan of the beam; the stirrup spacing 
thus can be varied accordingly, as done previously in 
the shear design examples.

	 9.	 Additional Longitudinal Reinforcement

 bw = width of beam stem = 18 in.

 fyt = stirrup yield strength = 60,000 psi

 fy/ = longitudinal steel yield strength = 60,000 psi

 
At

s
= 0.0069 (as previously calculated) 6

25bw

fyt

 =
25(18 in.)

60,000
= 0.0075

Therefore use 0.0075.
From ACI Equations (11-22) and (11-24) the addi-

tional longitudinal reinforcement is calculated as

 A/ = aAt

s
bph

fyt

fy/
 cot2 u = (0.0075 in.)(70 in.)

60,000
60,000

 cot2 45°

 = 0.53 in.2

 Ú 52f ′c 
Acp

fy/
- aAt

s
bph

fy t

fy/

Provide additional
torsional longitudinal
rebar, in addition to bending
reinforcement

No. 4 @ 8" o.c. stirrups 
to resist combined
torsion and shear

Figure 4-24  Beam torsional reinforcement detail.
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Problems

	 4-1.	 A reinforced concrete beam of rectangular cross sec-
tion is reinforced for moment only and subjected to 
a shear Vu of 9000 lb. Beam width b = 12 in., d = 7.25 
in., f′c = 3000 psi, and fy = 60,000 psi. Is the beam 
satisfactory for shear?

	 4-2.	 An 8-in.-thick one-way slab is reinforced for positive 
moment with No. 6 bars at 6 in. on center. Cover is 
1  in. Determine the maximum shear Vu permitted. 
Use f′c = 4000 psi and fy = 60,000 psi.

	 4-3.	 Assume that the beam of Problem 4-1 has an effective 
depth of 18 in. and is reinforced with No. 3 single-
loop stirrups spaced at 10 in. on center. Determine 
the maximum shear Vu permissible.

	 4-4.	 The simply supported beam shown is on a clear span 
of 30 ft. The beam carries uniformly distributed ser-
vice loads of 1.9 kips/ft live load and 0.7 kip/ft dead 
load (excluding the weight of the beam). Additionally, 
the beam carries two concentrated service loads of 
8 kips dead load each, one load being placed 5 ft in 
from the face of each support. The beam is reinforced 
with No. 3 single-loop stirrups placed in the following 
pattern, starting at the face of the support (symmetry 
about midspan): one space at 2 in., five spaces at 
8 in., four spaces at 10 in., and eight spaces at 12 in. 
Beam width b = 15 in., h = 28 in., and d = 25.4 in. Use 
f′c = 4000 psi and fy = 60,000 psi.

5' 5'20'

1.9 kips/ft LL
0.7 kip/ft DL

8 kips DL 8 kips DL

PROBLEM 4-4

a.	 Draw an elevation view of the beam showing the 
stirrup layout.

b.	 Draw the Vu diagram.
c.	 Calculate f(Vc + Vs) for each spacing group (omit 

the 2-in. spacing).
d.	 Superimpose the results from part (c) on the Vu 

diagram and comment on the results.

	 4-5.	 A uniformly loaded beam is subjected to a shear Vu 
of 60 kips at the face of the support. Clear span is 32 
ft. Beam width b = 12 in., d = 22 in., f′c = 4000 psi, 
and fy = 60,000 psi. Determine the maximum spacing 
allowed for No. 3 single-loop stirrups at the critical 
section.

	 4-6.	 A simply supported, rectangular, reinforced concrete 
beam having d = 24 in. and b = 15 in. supports a uni-
formly distributed load wu of 7.50 kips/ft as shown. 

The given load includes the beam weight. Assume 
No. 3 single-loop stirrups. The concrete strength is 
4000 psi and the steel is grade 60.

a.	 Select the stirrup spacing to use at the critical sec-
tion (d distance from the face of support).

b.	 Determine the maximum stirrup spacing allowed 
for this beam.

c.	 Using the two spacings determined in parts (a) 
and (b), devise an appropriate stirrup spacing lay-
out for this beam.

28'-0"

7.5 kips/ft

PROBLEM 4-6

	 4-7.	 A simply supported beam carries a total factored load 
wu of 5.0 kips/ft. The span length is 28 ft center to 
center of supports, and the supports are 12-in. wide. 
Beam width b = 14 in., d = 20 in., f′c = 4000 psi, and 
fy = 60,000 psi. Determine spacings required for No. 3 
stirrups and show the pattern with a sketch. (Recall 
that clear span is used for determining shears.)

	 4-8.	 A simply supported rectangular reinforced concrete 
beam, 13-in. wide and having an effective depth of 
20 in., supports a total factored load (wu) of 4.5 kips/
ft on a 30-ft clear span. (The given load includes the 
weight of the beam.) Design the web reinforcement if 
f′c = 3000 psi and fy = 40,000 psi.

	 4-9.	 A rectangular reinforced concrete beam supports a 
total factored load (wu) of 10 kips/ft on a simple clear 
span of 40 ft. (The given load includes the weight of 
the beam.) The effective depth d = 40 in., b = 24 in., 
f′c = 3000 psi, and fy = 60,000 psi. Design double-
loop No. 3 stirrups.

	4-10.	 Design stirrups for the beam shown. The supports are 
12-in. wide, and the loads shown are service loads. 
The dead load includes the weight of the beam. Beam 
width b = 16 in., d = 20 in., f′c = 4000 psi, and fy = 
60,000 psi. Sketch the stirrup pattern.

12" (typ.)

11'-6" 11'-6"

1.7 kips/ft DL
2.1 kips/ft LL

24 kips DL

PROBLEM 4-10

	4-11.	 For the beam shown, check moment and design 
single-loop stirrups. The loads shown are factored 
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bottom steel. Use f′c = 3000 psi and fy = 60,000 psi. 
Sketch the stirrup arrangement.

	4-13.	 Design stirrups for the beam shown. The supports are 
12-in. wide, and the loads shown are factored design 
loads. The dead load includes the weight of the beam. 
Beam width b = 14 in., d = 24 in., f′c = 3000 psi, and 
fy = 60,000 psi. Sketch the stirrup pattern.

loads. Assume the supports to be 12-in. wide. Use 
f′c = 3000 psi and fy = 60,000 psi. The uniformly dis-
tributed load includes the beam weight.

	4-12.	 Design stirrups for the beam shown. Service loads 
are 1.5 kips/ft dead load (includes beam weight) and 
1.9  kips/ft live load. The supports are 12-in. wide. 
Beam width b = 13 in. and d = 24 in. for both top and 

A

A20" (typ.)

LL = 56 kips
DL = 56 kipsLL = 3 kips/ft

DL = 1.8 kips/ft

b = 20"
Section A–A

+

d = 30"

20' 6'

PROBLEM 4-14

	4-14.	 The beam shown is supported on pedestals 20-in. wide. 
The loads are service loads, and the distributed load 
includes the beam weight. The clear span is 24′-4″. Use 
f′c = 4000 psi; the reinforcing steel is A615 Grade 60. 
Design shear reinforcing for the beam:

a.	 Between the point load and the left reaction
b.	 Between the point load and the right reaction

Show design sketches, including the stirrup pattern.

	4-15.	 Design the rectangular reinforced concrete beam 
for moment and shear. Use only tension steel for 
flexure. The loads shown are service loads. The uni-
form load is composed of 1 kip/ft dead load (does 
not include beam weight) and 1 kip/ft live load. The 
concentrated loads are dead load. Assume the sup-
ports to be 12-in. wide. Use f′c = 4000 psi and fy = 
60,000 psi. Show design sketches, including the stir-
rup pattern.

A

A

6 @ 5'-0 = 30'-0 clear span

2.50 kips/ft

15
kips

15
kips

20
kips

15
kips

15
kips

14"

Section A–A

1   " Clr.

4#11

d = 32"

1
2

PROBLEM 4-11

Pu = 40 kips Pu = 40 kips

wu = 6 kips/ft

12" (typ.)

21'-0"

Sym.

6'-6" 6'-6"4'-0" 4'-0"

PROBLEM 4-13

8'-0" 8'-0"22'-0"

PROBLEM 4-12
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the beam is 27 ft between columns. The planks are 
10-in. deep with 2-in. topping and supports stud wall 
partitions that weigh 10 psf and mechanical/electri-
cal equipment that weigh 5 psf. The weight of the 
precast planks is 70 psf. The centerline to centerline 
span of the planks is 30 ft on the left-hand side of the 
beam and 10 ft on the right-hand side of the beam. 
The live load on the 30-ft span is 50 psf while the live 
load on the 10-ft corridor span is 100 psf. Design the 
beam for torsion and shear assuming normal weight 
concrete (i.e., l = 1.0), f′c  = 4000 psi and fy = 60,000 
psi. Assume the beam has already been designed for 
bending.

	4-16.	 Explain, with examples, the difference between equi-
librium and compatibility torsion.

	4-17.	 A rectangular reinforced concrete beam 14 in. × 20 
in. deep is subject to a maximum factored torque of 
24 ft-k. Calculate the cracking torque, Tcr, and deter-
mine if torsion can be neglected in the design of this 
beam. Assume normal-weight concrete (i.e., l = 1.0) 
and f′c  = 4000 psi.

	4-18.	 The floor framing in an office building consists of 
reinforced concrete beams 18 in. × 24 in. deep that 
support precast concrete planks on a 3-in. ledge simi-
lar to that shown in Figure 4-23. The clear span of 
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on this assumption, it follows that some form of bond stress 
exists at the contact surface between the concrete and the 
steel bars. In beams, this bond stress is caused by the change 
in bending moment along the length of the beam and the 
accompanying change in the tensile stress in the bars and 
has historically been termed flexural bond. The actual 

5-1 � Development Length: 
Introduction

One of the fundamental assumptions of reinforced concrete 
design is that at the interface of the concrete and the steel 
bars, perfect bonding exists and no slippage occurs. Based 

Development, Splices, and 

Simple-Span Bar Cutoffs

	 5-1	 Development Length: 
Introduction

	 5-2	 Development Length: 
Tension Bars

	 5-3	 Development Length: 
Compression Bars

	 5-4	 Development Length: 
Standard Hooks In Tension

	 5-5	 Development of Web 
Reinforcement

	 5-6	 Splices

	 5-7	 Tension Splices

	 5-8	 Compression Splices

	 5-9	 Simple-Span Bar Cutoffs 
and Bends

	5-10	 Code Requirements for 
Development of Positive 
Moment Steel at Simple 
Supports

Figure 5-1  90° bends for 
development of No. 18 
bars. Seabrook station, 
New Hampshire.   
(George Limbrunner)
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Section 12.2.3. Therefore the development length /d compu-
tation used in this text will be based on ACI Equation (12-1):

/d =
3

40
 a

fy

l2f′c
b £

ψtψeψs

a cb + Ktr

db
b §db

in which the term (cb + Ktr)>db shall not be taken greater 
than 2.5 and where

/d = development length (in.)
fy = �specified yield strength of non-prestressed rein-

forcement (psi)
f′c  = �specified compressive strength of concrete (psi); 

the value of 2f′c  shall not exceed 100 psi (ACI 
Code, Section 12.1.2)

db = nominal diameter of bar or wire (in.)

The other factors used in Equation (12-1) are defined as 
follows (ψ is lowercase Greek psi):

	 1.	 ψt is a reinforcement location factor that accounts for 
the position of the reinforcement in freshly placed 
concrete.

Where horizontal reinforcement is so placed that 
more than 12 in. of fresh concrete is cast in the mem-
ber below the development length or splice, use ψt = 1.3  
(ACI Code, Section 12.2.4). This is because this condi-
tion lends itself to the formation of entrapped air and 
moisture on the underside of the bars, resulting in 
partial loss of bond between the concrete and steel.

For other reinforcement, use ψt = 1.0.
	 2.	 ψe is a coating factor reflecting the effects of epoxy coat-

ing. Studies of the anchorage of epoxy-coated bars show 
that bond strength is reduced because the coating pre-
vents adhesion and friction between the bar and the 
concrete.

For epoxy-coated reinforcement having cover less 
than 3db or clear spacing between bars less than 6db, use 
ψe = 1.5.

For all other conditions, use ψe = 1.2.
For uncoated and galvanized reinforcement, use 

ψe = 1.0.
The product of ψt and ψe need not be taken greater 

than 1.7 (ACI Code, Section 12.2.4).
	 3.	 ψs is a reinforcement size factor.

Where No. 6 and smaller bars are used, use ψs = 0.8.
Where No. 7 and larger bars are used, use ψs = 1.0.

	 4.	 Lambda (l) is the lightweight-aggregate concrete fac-
tor and has been discussed in Section 1-6 of Chapter 1. 
For purposes of development length calculation where 
lightweight concrete is used, l shall not exceed 0.75 
unless average fct is specified, in which case it can be 
calculated (see Section 1-6).

	 5.	 The factor cb represents a spacing or cover dimension 
(in.).

The value of cb will be the smaller of either the dis-
tance from the center of the bar to the nearest concrete 

distribution of bond stresses along the reinforcing steel is 
highly complex, due primarily to the presence of concrete 
cracks. Research has indicated that large local variations 
in bond stress are caused by flexural and diagonal cracks, 
and very high bond stresses have been measured adjacent 
to these cracks. These high bond stresses may result in small 
local slips adjacent to the cracks, with resultant widening of 
cracks as well as increased deflections. Generally, this will 
be harmless as long as failure does not propagate all along 
the bar with resultant complete loss of bond. It is possible, if 
end anchorage is reliable, that the bond can be severed along 
the entire length of bar, excluding the anchorage, without 
endangering the carrying capacity of the beam. The result-
ing behavior is similar to that of a tied arch.

End anchorage may be considered reliable if the bar is 
embedded into concrete a prescribed distance known as the 
development length, /d, of the bar. If in the beam the actual 
extended length of a bar is equal to or greater than this 
required development length, no premature bond failure 
will occur—that is, the predicted strength of the beam will 
not be controlled by bond but rather by some other factor.

Hence the main requirement for safety against bond 
failure is that the length of the bar from any point of given 
steel stress fs (or, as a maximum, fy) to its nearby free end 
must be at least equal to its development length. If this 
requirement is satisfied, the magnitude of the flexural bond 
stress along the beam is of only secondary importance, 
because the integrity of the member is assured even in the 
face of possible minor local failures. If the actual available 
length is inadequate for full development, however, special 
anchorages, such as hooks, must be provided to ensure ade-
quate strength.

Current design methods based on the ACI Code  
(318-11) disregard high localized bond stress even though 
it may result in localized slip between steel and concrete 
adjacent to the cracks. Instead, attention is directed toward 
providing adequate length of embedment, past the location 
at which the bar is fully stressed, which will ensure develop-
ment of the full strength of the bar.

5-2 � Development Length: 
Tension Bars

The ACI Code, Section 12.2.1, specifies that the develop-
ment length /d for deformed bars and deformed wires in 
tension shall be determined using either the tabular criteria 
of Section 12.2.2 or the general equation of Section 12.2.3, 
but in either case, /d shall not be less than 12 in.

The general equation of Section 12.2.3 (ACI Equation 
[12-1]) offers a simple approach that allows the user to see 
the effect of all variables controlling the development length. 
The tabular criteria of Section 12.2.2 also offer a simple, con-
servative approach that recognizes commonly used practical 
construction techniques. Based on a sampling of numerous 
cases, the authors have found that significantly shorter devel-
opment lengths are computed using ACI Equation (12-1) of 
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development length computations, we designate a portion 
of ACI Equation (12-1) as KD, where

KD =
3

40
  

fy2f′c

Values of KD as a function of various combinations of fy and 
f′c  are tabulated in Table 5-1.

A reduction in the development length /d is permitted 
where reinforcement is in excess of that required by analysis 
(except where anchorage or development for fy is specifically 
required or where the design includes provisions for seismic 
considerations). We designate this reduction factor as KER. 
Excess reinforcement factor KER does not apply for develop-
ment of positive moment reinforcement at supports (ACI 
Code, Section 12.11.2) or for development of shrinkage and 
temperature reinforcement (ACI Code, Section 7.12.2.3). 
Although KER is not reflected in ACI Equation (12-1), it may 
be calculated from

KER =
As required
As provided

and subsequently applied to the /d computed from ACI 
Equation (12-1).

When bundled bars are used, the ACI Code, Section 
12.4, stipulates that calculated development lengths are to be 
made for individual bars within a bundle (either in tension 
or in compression) and then increased by 20% for three-bar 
bundles and by 33% for four-bar bundles. Bundled bars con-
sist of a group of not more than four parallel reinforcing bars 

surface (cover) or one-half the center-to-center spacing 
of the bars being developed (spacing).

The bar spacing will be the actual center-to-center 
spacing between the bars if adjacent bars are all being 
developed at the same location. If, however, an adjacent 
bar has been developed at another location, the spac-
ing to be used will be greater than the actual spacing 
to the adjacent bar. Note in Figure 5-2 that the spacing 
for bars Y may be taken the same as for bars X, because 
bars Y are developed in length AB, whereas bars X are 
developed at a location other than AB.

	 6.	 The transverse reinforcement index Ktr is computed 
from

40Atr

sn

where
Atr = �total cross-sectional area of all transverse rein-

forcement that is within the spacing s and that 
crosses the potential plane of splitting through 
the reinforcement being developed (in.2)

s = �maximum center-to-center spacing of trans-
verse reinforcement within /d (in.)

n = �number of bars or wires being developed along 
the plane of splitting

To simplify the design, the ACI Code permits the 
use of Ktr = 0. This is conservative and may be used even 
if transverse reinforcement is present. To further simplify 

A B
Bars Y

Plan View

Bars X

s

s

Bars X (continuous)
Bars Y

(Bars Y)
d

Elevation View

A

A

Single layer

Section A–A

s (Bars Y)

Figure 5-2  Spacing criteria for bars being developed.
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as shown in Figure 5-3. The clear cover is 2 in., and the 
clear space between bars is 3 in. Use fy = 60,000 psi and 
f ′c = 4000 psi. Stirrups are No. 4 bars. All bars are uncoated. 
fct is not specified.

Solution:

Use ACI Equation (12-1) and follow the procedural outline 
that precedes this example.

	 1.	 From Table 5-1, KD = 71.2.

	 2.	 Establish values for the factors ψt, ψe, ψs, and l.

	a.	 ψt = 1.3 (the bars are top bars).

	b.	 The bars are uncoated; ψe = 1.0.

	c.	 The bars are No. 8; ψs = 1.0.

	d.	 Lightweight-aggregate concrete is used; l = 0.75.

	 3.	 The product ψt * ψe = 1.3 6 1.7. (O.K.)

	 4.	 Determine cb. Based on cover (center of bar to nearest 
concrete surface), consider the clear cover, the No. 4 
stirrup diameter, and one-half the diameter of the 
No. 8 bar:

cb = 2 + 0.5 + 0.5 = 3.0 in.

Based on bar spacing (one-half the center-to-center 
distance),

cb = 0.5[3 + 2(0.5)] = 2.0 in.

Therefore use cb = 2.0 in.

	 5.	 In the absence of data needed for a calculation, Ktr may 
be conservatively taken as zero.

in contact with each other and assumed to act as a unit. For 
determining the appropriate factors as discussed previously, 
a unit of bundled bars shall be treated as a single bar of a 
diameter derived from the equivalent total area. Additional 
criteria for bundled bars are furnished in the ACI Code, 
Section 7.6.6.

Summary of Procedures for Calculation of /d  
[Using ACI Equation (12-1)]
	 1.	 Determine KD from Table 5-1.
	 2.	 Determine applicable factors (use 1.0 unless otherwise 

determined).
a.	 Use ψt = 1.3 for top reinforcement, when applicable.
b.	 Coating factor ψe applies to epoxy-coated bars. Use 

ψe = 1.5 if cover 6 3db or clear space 6 6db. Use ψ = 
1.2 otherwise.

c.	 Use ψs = 0.8 for No. 6 bars and smaller.
d.	 Use l = 0.75 for lightweight concrete with fct not 

specified and l = 1.0 for normal-weight concrete. Use

l = fct>(6.72f′c) … 1.0

for lightweight concrete with fct specified.
	 3.	 Check ψt ψe … 1.7.
	 4.	 Determine cb, the smaller of cover or half-spacing (both 

referenced to the center of the bar).
	 5.	 Calculate Ktr = 40Atr/(sn), or use Ktr = 0 (conservative).
	 6.	 Check (cb + Ktr)/db … 2.5.
	 7.	 Calculate KER if applicable:

KER =
As required
As provided

	 8.	 Calculate /d:

/d =
KD

l £
ψtψeψs

a cb + Ktr

db
b §KER db Ú 12 in.

Example 5-1

Calculate the tensile development length /d required for 
No. 8 top bars (more than 12 in. of fresh concrete to be cast 
below the bars) in a lightweight-aggregate concrete beam 

Table 5-1  Coefficient KD for ACI Code Equation (12-1)

KD =
3

40
 

fy2 f′c

f′c (psi) fy = 40,000 psi fy = 50,000 psi fy = 60,000 psi fy = 75,000 psi

3000 54.8 68.5 82.2 102.7

4000 47.4 59.3 71.2   88.9

5000 42.4 53.0 63.6   79.5

6000 38.7 48.4 58.1   72.6

#8 bars

#4 stirrup

3" clear (typ.)

2" clear (typ.)

>12"

Figure 5-3  Partial cross section.
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	 3.	 Check the product of ψt and ψe:

ψt * ψe = 1.3(1.5) = 1.95 7 1.7

Therefore use ψt * ψe = 1.7.

	 4.	 Determine cb. Based on cover (center of bar to nearest 
concrete surface), consider the clear cover and one-half 
the diameter of the No. 9 bar:

cb = 0.75 +
1.128

2
= 1.314 in.

Based on bar spacing (one-half the center-to-center 
distance),

cb = 0.5(8.0) = 4.0 in.

Therefore use cb = 1.314 in.

	 5.	 Ktr is taken as zero. (There is no transverse reinforce-
ment crossing the plane of splitting.)

	 6.	 Check (cb + Ktr)/db … 2.5:

cb + Ktr

db
=

1.314 + 0
1.128

= 1.165 6 2.5  (O.K.)

	 7.	 The excess reinforcement factor is assumed not appli-
cable and is omitted.

	 8.	 Calculate /d (recall that ψt * ψe will be taken as 1.7 from 
step 3):

 /d =
KD

l
£ ψtψeψs

ac + Ktr

db
b §db

 =
71.2
1.0

 c 1.7(1.0)

1.165
d (1.128) = 117.2 in. 7 12 in. (O.K.)

Example 5-3

Calculate the development length required for the interior 
two No. 7 bars in the beam shown in Figure 5-5. The two 
No. 7 outside bars are continuous for the full length of the 

	 6.	 Check (cb + Ktr)/db … 2.5:

cb + Ktr

db
=

2.0 + 0
1.0

= 2.0 6 2.5     (O.K.)

	 7.	 The excess reinforcement factor is assumed not appli-
cable and is omitted.

	 8.	 Calculate /d:

 /d =
KD

l £
ψtψeψs

acb + Ktr

db
b §db

 =
71.2
0.75

 c 1.3(1.0)(1.0)

2.0
d (1.0) = 61.7 in. 7 12 in. (O.K.)

Example 5-2

Calculate the development length required for the No. 9 
bars in the top of a 15-in.-thick reinforced concrete slab (see 
Figure 5-4). Note that these bars are the tension reinforce-
ment for negative moment in the slab at the supporting beam. 
As this is a slab, no stirrups are used. Use fy = 60,000 psi and 
f ′c = 4000 psi (normal-weight concrete). The bars are epoxy 
coated.

Solution:
	 1.	 From Table 5-1, KD = 71.2.

	 2.	 Establish values for the factors ψt, ψe, ψs, and l.

	a.	 ψt = 1.3 (the bars are top bars).

	b.	 The bars are epoxy coated. Compare cover (3/4 in.) 
with 3db. If necessary, calculate clear space and 
compare with 6db.

 3db = 3(1.13) = 3.39 in.

 0.75 in. 6 3.39 in.

Therefore use ψe = 1.5.

	c.	 The bars are No. 9. Use ψs = 1.0.

	d.	 Normal-weight concrete is used. l = 1.0.

fy at this point

Temperature steel

3
4

 clear 15" slab
d

A

A

#9 @ 8" o.c.

#9 @ 8" o.c.
Edge bar

Face of
slab

3" clear

Temperature steel
Section A–A

"

Figure 5-4  Sketch for Example 5-2.
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	 7.	 Calculate the excess reinforcement factor:

KER =
As required

As provided
=

2.28 in.2

2.40 in.2
= 0.95

	 8.	 Calculate /d:

 /d =
KD

l £
ψtψeψs

acb + Ktr

db
b §KERdb

 =
71.2
1.0

 c 1.3(1.0)(1.0)

2.5
d (0.95)(0.875) = 30.8 in. 7 12 in.

(O.K.)

5-3 � Development Length: 
Compression Bars

Whereas tension bars produce flexural tension cracking 
in the concrete, this effect is not present with compression 
bars, and thus shorter development lengths are allowed. For 
deformed bars in compression, the development length /dc 
is calculated from

/dc = a
0.02fy

l2f′c
bdb Ú 0.0003fydb

in inches, where all quantities are as described previously for 
tension development length. This value of /dc is tabulated in 
Table A-12 for l = 1.0, grade 60 bars, and various values of 
f′c. The required compression development length may be 
further reduced by multiplying /dc by the following modifi-
cation factors:

	 1.	 Reinforcement in excess of that required:

As required
As provided

	 2.	 Bars enclosed within a spiral that is not less than 1
4 in. 

in diameter and not more than 4 in. in pitch or within 
No. 4 ties in conformance with ACI, Section 7.10.5, and 
spaced at not more than 4 in. on center: Use 0.75.

The value of /dc shall not be less than 8 in.

beam. Use fy = 60,000 psi and f ′c = 4000 psi (normal-weight 
concrete. The bars are uncoated. Assume that, from the 
design of this member, the required tension steel area was 
2.28 in.2.

Solution:
	 1.	 From Table 5-1, KD = 71.2.

	 2.	 Establish values for the factors ψt, ψe, ψs, and l.

	a.	 ψt = 1.3 (the bars are top bars).

	b.	 The bars are uncoated; ψe = 1.0.

	c.	 The bars are No. 7; ψs = 1.0.

	d.	 Normal-weight concrete is used; l = 1.0.

	 3.	 The product ψt * ψe = 1.3 6 1.7. (O.K.)

	 4.	 Determine cb. Based on cover (center of bar to 
nearest concrete surface), consider the clear cover, the 
No. 4 stirrup diameter, and one-half the diameter of the 
No. 7 bar:

cb = 1.5 + 0.5 +
0.875

2
= 2.44 in.

Based on bar spacing (one-half the center-to-center 
distance),

 cb =
13 - 2(1.5) - 2(0.5) - 2 a0.875

2
b

3(2)

 = 1.354 in.

Therefore use cb = 1.354 in.

	 5.	 Using data on stirrups from Figure 5-5:

Ktr =
40Atr

(sn)
=

40(0.40)

(6)(2)
= 1.333

	 6.	 Check (cb + Ktr)/db … 2.5:

cb + Ktr

db
=

1.354 + 1.333
0.875

= 3.07 7 2.5

Therefore, use 2.5.

One layer

2-#7 bars

2-#7 bars
(continuous)

Stirrups within
development length

d (inner 2-#7 bars)

1.5" clear

Closed stirrup
#4 @ 6" o.c.

24"

C to C spacing

13"

Figure 5-5  Sketch for Example 5-3.
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Table A-13 gives values of /dh for various values of 
f′c, fy = 60,000 psi, ψe = 1.0, and l = 1.0. The length /dh 
may be further reduced by multiplication by the following 
modification factors. The final /dh shall not be less than 8db 
nor less than 6 in.

	 1.	 Cover. For bars No. 11 and smaller with side cover 
(normal to the plane of the hook) not less than 21

2 in., 
and for a 90° hook with cover on the extension beyond 
the hook not less than 2 in.: 0.7.

	 2.	 Enclosure for 90° hooks for No. 11 and smaller bars 
within ties or stirrups perpendicular to the bar being 
developed, spaced not more than 3db along /dh; or 
enclosed within ties or stirrups parallel to the bar being 
developed, spaced not more than 3db along the tail 
extension plus the bend: 0.8.

	 3.	 Enclosure for 180° hooks for No. 11 and smaller bars 
within ties or stirrups perpendicular to the bar being 
developed, with spacing not greater than 3db along /dh 
of the hook: 0.8.

	 4.	 Where anchorage or development of fy is not specifi-
cally required, reinforcement in excess of that required 
by analysis:

As(required)

As(provided)

5-4 � Development Length: 
Standard Hooks in 
Tension

In the event that the desired development length in tension 
cannot be furnished, it is necessary to provide mechanical 
anchorage at the end of the bars. Although the ACI Code 
(Section 12.6) allows any mechanical device to serve as 
anchorage if its adequacy is verified by testing, anchorage for 
reinforcement is usually accomplished by means of a 90° or 
180° hook. The dimensions and bend radii for these hooks 
have been standardized by the ACI Code. Additionally, 90° 
and 135° hooks have been standardized for stirrups and tie 
reinforcement. Hooks in compression bars are ineffective 
and cannot be used as anchorage. Standard reinforcement 
hooks are shown in Figure 5-6. The bend diameters are 
measured on the inside of the bar.

The ACI Code, Section 12.5, specifies that the devel-
opment length /dh (see Figure 5-6) for deformed bars in 
tension, which terminate in a standard hook, be computed 
from the following expression:

/dh = c
0.02 ψe fy

l2f′c
d  db

where ψe = 1.2 for epoxy-coated reinforcing (1.0 otherwise)
l = 0.75 for lightweight concrete (1.0 otherwise)

Critical
section

180 Hook

Free end

Free end

Hook

db

D

4db � 2  "1
2

Hook

dh dh

db

D

Critical
section

12db

90 HookAll steels

D = 6db for #3 to #8            
D = 8db for #9 to #11         
D = 10db for #14 and #18

Primary Reinforcement

db

D D

6db for #3 through #5

12db for #6, #7, #8

Free end

For all other sizes, see hooks for
primary reinforcement

For bar sizes #3 through #5 only:
D � 4db

135

6db for #3 through #8 

Ties and Stirrups

Figure 5-6  ACI standard hooks.
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Solution:
	 a.	 Anchorage of top bars into the exterior column

	 1.	 From Table 5-1, KD = 82.2.

	 2.	 Establish values for the factors ψt, ψe, ψs, and l.

	a.	ψt = 1.3 (the bars are top bars).

	b.	The bars are uncoated; ψe = 1.0.

	c.	The bars are No. 8; ψs = 1.0.

	d.	Normal-weight concrete is used; l = 1.0.

	 3.	 The product ψt * ψe = 1.3 6 1.7 (O.K.).

	 4.	 Determine cb. Based on cover (center of bar to 
nearest concrete surface), consider the clear cover, 
the No. 4 stirrup diameter, and one-half the diam-
eter of the No. 8 bar:

cb = 2.0 + 0.5 +
1.0
2

= 3.0 in.

Based on bar spacing (one-half the center-to-center 
distance),

cb =
14 - 2(2.0) - 2(0.5) - 2(0.5)

2(2)
= 2.0 in.

Therefore use cb = 2.0 in.

	 5.	 Figure 5-8 shows stirrups in the beam. However, 
there are no stirrups in the column and Ktr is 
taken as 0.

	 6.	 Check (cb + Ktr)/db … 2.5:

cb + Ktr

db
=

2.0 + 0
1.0

= 2.0 6 2.5  (O.K.)

	 7.	 The excess reinforcement factor is assumed not 
applicable and is omitted.

	 8.	 Calculate /d:

 /d =
KD

l £
ψtψeψs

acb + Ktr

db
b §db

 =
82.2
1.0

 c1.3(1.0)(1.0)

2.0
d (1.0) = 53.4 in. 7 12 in. (O.K.)

Because 53.4 in. 7 24 in. column width, use a stan-
dard hook, either a 90° hook or a 180° hook.

In the preceding items 2 and 3, db is the diameter of the 
hooked bar, and the first tie or stirrup shall enclose the 
bent portion of the hook, within 2db of the outside of 
the bend. This is illustrated in Figure 5-7.

In addition, the ACI Code, Section 12.5.4, establishes 
criteria for hooked bars that terminate at the discontinuous 
ends of members such as simply supported beams, free ends 
of cantilevers, and ends of members that frame into a joint 
where the member does not extend beyond the joint. If the 
full strength (fy) of the hooked bar must be developed and 
if both the side cover and the top (or bottom) cover over 
the hook are less than 21

2 in., closed ties or stirrups, perpen-
dicular to the bar being developed, spaced at 3db maximum 
are required over the development length /dh. The first tie 
or stirrup shall enclose the bent portion of the hook, within 
2db of the bend. This does not apply to the discontinuous 
ends of slabs with concrete confinement provided by the 
slab continuous on both sides perpendicular to the plane of 
the hook. Also, the 0.8 MF of the preceding items 2 and 3 
does not apply.

Example 5-4

Determine the anchorage or development length required for 
the tension (top) bars for the conditions shown in Figure 5-8. 
Use f ′c = 3000 psi (normal-weight concrete) and fy = 60,000 
psi. The No. 8 bars may be categorized as top bars. Assume 
a side cover on the main bars of 21

2 in. minimum. Bars are 
uncoated.

dh

db

�2db �3db

Figure 5-7  Enclosure for 180º hook; modification  
factor = 0.8º.

#8 barsfy assumed
here

(min.)
d

(min.)
d

24" Stirrups

Column

Beam

18"
2" clear (typ.)

3-#8 bars

#4 stirrups
@ 5" o.c.

14"

Figure 5-8  Sketch for Example 5-4.
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5-5 � Development of Web 
Reinforcement

Anchorage of web reinforcement must be furnished in 
accordance with the ACI Code, Section 12.13. Stirrups must 
be carried as close to the compression and tension surfaces 
as possible. Close proximity to the compression face is nec-
essary as flexural tension cracks penetrate deeply as ultimate 
load is approached.

The ACI Code stipulates that ends of single-leg, simple 
U-, or multiple U-stirrups shall be anchored by one of the 
following means (see Figure 5-10):

	 1.	 For a No. 5 bar or smaller, and for Nos. 6, 7, and 8 bars 
of fy = 40,000 psi or less, anchorage is provided by a 
standard stirrup hook, bent around a longitudinal bar 
(ACI Code, Section 12.13.2.1).

	 2.	 For Nos. 6, 7, and 8 stirrups with fy 7 40,000 psi, anchor-
age is provided by a standard stirrup hook bent around 
a longitudinal bar plus an embedment between mid-
height of the member and the outside end of the hook 
equal to or greater than

0.014db 

fy

(l2f′c)

A 135° or a 180° hook is preferred, but a 90° hook is 
acceptable provided that the free end of the hook 
is extended the full 12db as required in ACI Code, 
Section 7.1.3 (ACI Code, Section 12.13.2.2).

It should be noted that the ACI standard hooks for ties 
and stirrups, as shown in Figure 5-10, include 90° and 135° 
hooks only. This does not imply that the 180° hook is not 
acceptable. The 135° hook is easier to fabricate. Many stirrup 
bending machines now in use are not designed to fabricate 
a 180° hook. The anchorage strength of either a 135° or 180° 
hook is approximately the same.

In addition, the ACI Code, Section 12.13.5, establishes 
criteria with respect to lapping of double U-stirrups or ties 
(without hooks) to form a closed stirrup. Legs shall be con-
sidered properly spliced when lengths of lap are 1.3 /d, as 
depicted in Figure 5-9c. Each bend of each simple U-stirrup 
must enclose a longitudinal bar. If the lap of 1.3 /d cannot 
fit within the depth of a shallow member, provided that the 
depth of the member is at least 18 in., double U-stirrups may 
be used if each U-stirrup extends the full available depth of 
the member and the force in each leg does not exceed 9000 
lb (i.e., Abfy … 9000 lb).

Where torsional reinforcing is required or desired, a 
commonly used alternative stirrup is the one-piece closed 
stirrup. Use of the one-piece closed stirrup is disadvanta-
geous, however, in that the entire beam reinforcing (longi-
tudinal steel and stirrups) may have to be prefabricated as 
a cage and then placed as a unit. This may not be practical 
if the longitudinal bars have to be passed between column 
bars. Alternatively, and at a greater cost, the longitudinal 
bars could be threaded through the closed stirrups and 

	 b.	 Anchorage using a standard 180° hook

	 1.	 The development length /dh for the hook shown in 
Figure 5-9 is calculated from

/dh =
0.02ψe fy

l2f ′c
db

The bars are uncoated and the concrete is normal 
weight. Therefore, both ψe and l are 1.0:

/dh =
0.02(60,000)13000

 (1.00) = 21.9 in.

(Check this with Table A-13.)

	 2.	 The only applicable modification factor is based 
on side cover (normal to the plane of the hook) of 
21

2 in. Use a modification factor of 0.7 (ACI Code, 
Section 12.5.3a).

	 3.	 The required development length is then calculated 
from

/dh = 21.9(0.7) = 15.33 in.

Check minimum:

minimum /dh = 8db Ú 6 in.

8db = 8 in. 6 15.33 in.    (O.K.)

The minimum width of column required is

15.33 + 2.5 = 17.83 in. 6 24 in.   (O.K.)

The hook therefore will fit into the column and the 
detail is satisfactory.

Anchorage into beam: The development length required if 
bars are straight is (conservatively) 53.4 in., as determined 
previously. Therefore, the bars must extend at least this 
distance into the span. The ACI Code has additional require-
ments for the extension of tension bars in areas of negative 
moments. These requirements are covered in the discussion 
on continuous construction in Chapter 6.

fy

" cover2 1
2

24"

18"

#8 bars

Req’d = 15.33" min.
dh

Figure 5-9  Sketch for Example 5-4.
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Figure 5-11a. Otherwise, 135º standard hooks around a lon-
gitudinal bar are required (Figure 5-11b). Numbers 6, 7, and 
8 stirrups with fy 7 40,000 psi require additional anchorage, 
as previously described. See ACI Code, Section 11.5.4.2, for 
full details.

column bars. Two commonly used types of one-piece closed 
stirrups are shown in Figure 5-11. If spalling of the member 
at the transverse torsional reinforcement anchorage (hooks) 
is restrained by a flange or similar member, 90º standard 
hooks around a longitudinal bar are allowed, as shown in 

Longitudinal
bar

Standard
stirrup hook

For #5 stirrups and smaller
and #6, #7, #8 stirrups with

fy � 40,000 psi
(ACI 12.13.2.1)

(a)

Overlapping U-stirrups to
form a closed stirrup

(ACI 12.13.5)
(c)

Longitudinal
bar

Outside end
of hook

Standard
stirrup hook

For #6, #7, #8 stirrups 
with fy > 40,000 psi

(ACI 12.13.2.2)
(b)

h

h
2 �0.014db

fy

f �c

1.3  d

Figure 5-10  Web reinforcement anchorage.

Main
longitudinal
bars

Stirrup

T-beam
Slab

Rectangular beam

Closed Stirrup
with 90 Hook

Closed Stirrup
with 135 Hook Figure 5-11  Closed stirrups.
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mechanical and welded splices for tensile reinforcement are 
contained in the ACI Code, Sections 12.14.3 and 12.15. In 
addition, splices in “tension tie members” must be made 
with a full welded splice or full mechanical splice, and their 
locations must be staggered a distance of at least 30 in., in 
accordance with the ACI Code, Section 12.15.6. Staggering 
of all tension splices in all types of members is encouraged.

5-8 C ompression Splices
The ACI Code, Section 12.16, contains requirements for lap 
splices for compression bars. For f′c = 3000 psi or more, the 
following lap lengths, in multiples of bar diameters db, are 
required:

 fy = 40,000 psi: 20db

 fy = 60,000 psi: 30db

 fy = 75,000 psi: 44db

but not less than 12 in. For f′c 6 3000 psi, the length of 
lap should be increased by one-third. Within ties of spe-
cific makeup or spirals (ACI Code, Sections 12.17.2.4 and 
12.17.2.5), these laps may be reduced to 0.83 or 0.75, respec-
tively, of the foregoing values, but must not be less than 12 in.

Compression splices may also be of the end-bearing 
type, where bars are cut square, then butted together and 
held in concentric contact by a suitable device. End-bearing 
splices must not be used except in members containing 
closed ties, closed stirrups, or spirals. Welded splices and 
mechanical connections are also acceptable and are subject 
to the requirements of the ACI Code, Section 12.16. Special 
splice requirements for columns are furnished by the ACI 
Code, Section 12.17.

5-9 �Si mple-Span Bar 
Cutoffs and Bends

The maximum required As for a beam is needed only where 
the moment is maximum. This maximum steel may be 
reduced at points along a bending member where the bend-
ing moment is smaller. This is usually accomplished by 
either stopping or bending the bars in a manner consistent 
with the theoretical requirements for the strength of the 
member, as well as the requirements of the ACI Code.

Bars can theoretically be stopped or bent in flexural 
members whenever they are no longer needed to resist 
moment. The ACI Code, Section 12.10.3, however, requires 
that each bar be extended beyond the point at which it is 

5-6 S plices
The need to splice reinforcing steel is a reality due to the 
limited lengths of steel available. All bars are readily avail-
able in lengths up to 60 ft; No. 3 and No. 4 bars will tend to 
bend in handling when longer than 40 ft, however. Typical 
stock straight lengths are as follows:

No. 3 bar: 20, 40, 60 ft
No. 4 bar: 30, 40, 60 ft
Nos. 5 to 18 bars: 60 ft

Splicing may be accomplished by welding, by mechani-
cal means, or, most commonly for No. 11 bars and smaller, 
by lapping bars, as shown in Figure 5-12. Lap splices may 
not be used for bars larger than No. 11 except for com-
pression splices at footings, as provided in the ACI Code, 
Section 15.8.2.3, and for compression splices of bars of dif-
ferent sizes, as provided in the ACI Code, Section 12.16.2. 
The splice composed of lapped bars is usually more econom-
ical than the other types. The lapped bars are commonly tied 
in contact with each other. They may, however, be spaced 
apart up to one-fifth of the lap length, with an upper limit 
of 6 in. Splices in regions of maximum moment preferably 
should be avoided.

The ACI Code (Section 1.2.1) requires that the design 
drawings show the location and length of lap splices and 
the type and location of mechanical and welded splices of 
reinforcement.

5-7 T ension Splices
The required length of lap is based on the class in which the 
splice is categorized. The required lap length increases with 
increased stress and increased amount of steel spliced in 
close proximity. Lap length is expressed in terms of the ten-
sile development length /d for the particular bar, as shown 
in Section 5-2. The 12-in. minimum for the /d calculation is 
not considered, nor is the excess reinforcement factor con-
sidered for tension splices, as the splice classification already 
reflects any excess reinforcement at the splice location.

The ACI Code, Section 12.15, directs that lap splices be 
class B (lap length = 1.3/d) except that class A (lap length = 
1.0/d) splices are allowed if (1) the area of reinforcement 
provided is twice that required for the entire length of the 
splice and (2) not more than 50% of the total reinforcement 
is spliced within the required lap length.

The minimum length of lap for tension lap splices 
is 12 in. (ACI Code, Section 12.15.1). Requirements for 

Abfy Abfy

fy

fs = 0

fs = 0

Lap fy
db

Figure 5-12  Stress transfer in tension lap splice.
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one-third of the positive moment steel extend into the 
support a distance of 6 in. In practice, this requirement is 
generally exceeded. Normally, recommended bar details for 
single-span solid concrete slabs indicate that all bottom bars 
should extend into the support. See Figure 5-13 for recom-
mended bar details.

Economy sometimes dictates that reinforcing steel 
should be cut off in a simple span. Example 5-5 shows one 
approach to this problem.

Example 5-5

A simple-span, uniformly loaded beam, shown in Figure 5-14a  
and b, requires six No. 7 bars for tensile reinforcement. If 
the effective depth d is 18 in., determine where the bars 
may be stopped. Use f ′c = 4000 psi and fy = 60,000  psi. 
Assume that there is no excess steel (required As = furnished  
As  =  3.60 in.2). Assume normal-weight concrete and that 
the stirrups extend to the end of the beam at the support. 
The bars are uncoated.

Solution:

We will try to establish a bar cutoff scheme whereby the 
two center bars are cut first, followed by the cutting of 
the other two inside bars. The two corner bars are to run the 
full length of the beam. First, we check the minimum steel 
requirement. From Table A-5:

As,min = 0.0033 bd = 0.0033(16.5)(18) = 0.98 in.2

The two corner bars provide a steel area of 1.20 in.2 
Therefore the minimum steel area requirement is met.

	 1.	 Determine where the first two bars may be cut off. 
The first two bars may be stopped where only four are 
required. This distance from the centerline of the span 
is designated x1 in Figure 5-14d.

As the moment diagram is a second-degree curve 
(a parabola), offsets to the line tangent to the curve at 
the point of maximum moment vary as the squares of 

no longer required for flexure for a distance equal to the 
effective depth of the member or 12db, whichever is greater, 
except at supports of simple spans and at free ends of canti-
levers. In effect, this prohibits the cutting off of a bar at the 
theoretical cutoff point but can be interpreted as permitting 
bars to be bent at the theoretical cutoff point. If bars are to 
be bent, a general practice that has evolved is to commence 
the bend at a distance equal to one-half the effective depth 
beyond the theoretical cutoff point. The bent bar should be 
anchored or made continuous with reinforcement on the 
opposite face of the member. It should be pointed out, how-
ever, that the bending of reinforcing bars in slabs and beams 
to create truss bars (see types 3 through 7, Figure 13-5) has 
fallen into disfavor over the years because of placement 
problems and the labor involved. It is more common to use 
straight bars and place them in accordance with the strength 
requirements.

With simple-span flexural members of constant dimen-
sions, we can assume that the required As varies directly 
with the bending moment and that the shape of a required 
As curve is identical with that of the moment diagram. The 
moment diagram (or curve) may then be used as the required 
As curve by merely changing the vertical scale. Steel areas 
may be used as ordinates, but it is more convenient to use 
the required number of bars (assuming that all bars are of 
the same diameter). The necessary correlation is established 
by using the maximum ordinate of the curve as the maxi-
mum required As in terms of the required number of bars. 
Because of possible variations in the shape of the moment 
diagram, either a graphical or a mathematical approach may 
be more appropriate. A graphical approach requires that 
the moment diagram be plotted to scale. Example 5-5 lends 
itself to a mathematical solution.

In determining bar cutoffs, it should be remembered 
that the stopping of bars should be accomplished by using 
a symmetrical pattern so that the remaining bars will also 
be in a symmetrical pattern. In addition, the ACI Code, 
Section  12.11.1, requires that for simple spans, at least 

Standard
end hook Temperature steel

Sym.

Extend all bottom bars
into support

One-third of the positive movement
steel, but not less than #4 @ 12" o.c. 
or the temperature steel

h

3
4

  clear (typ.)

6"
(min.)

1" clear
(min.)

0.25  n

n = clear span

"

Figure 5-13  Recommended bar details: one-way simple-span slabs; 
tensile-reinforced simple-span beams similar.
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Therefore the minimum distance from the centerline of 
the span to the cutoff of the next two bars is

9.80 + 1.50 = 11.30 ft

	 3.	 A check must be made of the required development 
length /d for the first two bars. Because the bar cutoff 
occurs 8.43 ft from the centerline of the span, /d must 
be less than 8.43 ft for the stress fy to be developed at 
the centerline.

	a.	 From Table 5-1, KD = 71.2.

	b.	 Establish values for the factors ψt, ψe, ψs, and l.

1.	 ψt = 1.0 (the bars are not top bars).

2.	 The bars are uncoated; ψe = 1.0.

3.	 The bars are No. 7; ψs = 1.0.

4.	 Normal-weight concrete is used; l = 1.0.

	c.	 The product ψt * ψe = 1.0 6 1.7. (O.K.)

	d.	 Determine cb. Based on cover (center of bar to 
nearest concrete surface), consider the clear cover, 
the No. 4 stirrup, and one-half the diameter of the 
No. 7 bar:

cb = 1.5 + 0.5 +
0.875

2
= 2.44 in.

Based on bar spacing (one-half the center-to-center 
distance),

the distances from the centerline of the span. The solu-
tion for the distance x1 may be formulated as follows:

 
(x1)

2

a /
2
b

2 =
y1

Y

 
(x1)

2

122 =
2 bars
6 bars

from which x1 = 6.93 ft. This locates the theoretical point 
where two bars may be terminated. Additionally, bars 
must be extended past this point a distance d or 12db, 
whichever is larger. Thus

 12 bar diameters = 12(0.875)

 = 10.5 in.

Because d = 18 in., the bars should be extended 18 in. 
(1.50 ft). Then the minimum distance from the centerline 
of the span to the cutoff of the first two bars is

6.93 + 1.50 = 8.43 ft

	 2.	 Determine where the next two bars may be cut off. The 
two remaining bars, which are the corner bars, will con-
tinue into the support. With reference to Figure 5-14d:
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2
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4
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Figure 5-14  Sketches for Example 5-5.
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/d past this point. Again measured from the center-
line, the bars must extend at least

6.93 + 2.21 = 9.14 ft

Because this is less than the actual distance to the 
cutoff point (11.30 ft), the cutoff for the second pair is 
satisfactory (see Figure 5-15).

	 4.	 The remaining pair of corner bars, representing one-
third of the positive moment steel, must continue into 
the support. As the corner bars are stressed to fy at 
a distance of 9.80 ft from the centerline of the span 
(where the second pair of bars may be theoretically 
cut), however, the development length of these bars 
must be satisfied from the end of the bar back to the 
point of maximum stress fy. The development length 
required is again conservatively taken as 2.21 ft. The 
straight development length furnished (or available) 
is 2.58 ft (see Figure 5-15). Because 2.58 ft 7 2.21 ft, 
there is adequate development length available. If the 
development length available were insufficient, either 
of two solutions could be used: (a) Provide a standard 
180° hook at the end of each of the two corner bars or 
(b) extend all four of the outside bars to the end of the 
beam (thereby cutting only the two center bars).

Example 5-5 could also be solved by plotting the Mu 
diagram to scale and superimposing on the Mu diagram the 
values of fMn for four bars and two bars. The theoretical 
cut points are established where the fMn lines intersect the 
Mu curve. For instance, the theoretical cut point for the two 
center bars is established where the fMn line for four bars 
intersects the Mu curve. This method has several advantages: 
(1) Any excess flexural steel in the design will result in the 
two center bars being cut closer to the midpoint of the beam, 
thus saving steel; (2) the calculation of fMn better reflects 
the available moment strength than does the division of the 

cb =
16.5 - 2(1.5) - 2(0.5) - 2a0.875

2
b

5(2)
= 1.163 in.

Therefore use cb = 1.163 in.

	e.	 Using data on stirrups from Figure 5-14:

Ktr =
40Atr

sn
=

40(0.40)

(9)(2)
= 0.889

	f.	 Check (cb + Ktr)/db … 2.5:

cb + Ktr

db
=

1.163 + 0.889
0.875

= 2.35 6 2.5 (O.K.)

	g.	 The excess reinforcement factor is neglected (con-
servative).

	h.	 Calculate /d:

 /d =
KD

l £
ψtψeψs

acb + Ktr

db
b §db

 =
71.2
1.0

c 1.0(1.0)(1.0)

2.35
d (0.875)

 = 26.5 in. 7 12 in. � (O.K.)

 26.5 in. = 2.21 ft

As the required tensile development length of 2.21 
ft is much less than the distance from the centerline 
to the actual cutoff point (8.43 ft), the cutoff for the 
first two bars is satisfactory. Similarly, if we consider 
the second two bars, for which /d can conservatively 
be taken as 2.21 ft (conservative, as the cb distance, 
based on bar spacing, is larger for these two bars 
than for the first two cut bars), the point at which they 
are stressed to maximum (the theoretical cutoff point 
for the first two bars), measured from the centerline, 
is 6.93 ft. The second two bars must extend at least 

6" 6"

12'-0"

1  " clear
2.58' 1.5'

1.5'

11.30'

8.43' ( d min. = 2.21')

6.93'

( d min. = 2.21')
9.80'

fy

0" 0"fyfy

fs = 0

fs = 0

span

bearing

1
2

Figure 5-15  Sketch for Example 5-5.
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Also, because maximum s = d/(8βb),

Ns(min.) =
0.75d

a d
8bb

b
+ 1 = 6bb + 1

The larger resulting Ns controls.

Example 5-6

In the beam shown in Figure 5-16, the location at which the 
top layer of two No. 9 bars is to be terminated is in a tension 
zone. At the cutoff point, Vu = 52 kips and the No. 3 stirrups 
are spaced at 11 in. on center. Check shear in accordance 
with the ACI Code, Section 12.10.5, and redesign the stirrup 
spacing if necessary. Assume that f ′c = 3000 psi and fy = 
60,000 psi.

Solution:

In accordance with the ACI Code, Section 12.10.5.1, check 
Vu … 2

3f(Vc + Vs):

 23f(Vc + Vs) = 2
3 (0.75)a22f ′cbd +

Avfytd

s
b

 = 2
3(0.75) c213000 (12)(26) +

(0.22)(60,000)(26)

11
d

 = 32,700 lb

 = 32.7 kips 6 52 kips� (N.G.)

Therefore, add excess stirrups over a length of 0.75d along 
the terminated bars from the cut end in accordance with ACI 
12.10.5.2:

 Ns = a45bwd

Avfyt
+ 1b  or (6bb + 1)

 
45(12)(26)

0.22(60,000)
+ 1 = 2.06

 611
32 + 1 = 3

Add three stirrups over a length of 0.75d = 19.5 in. Find the 
new spacing required in the 19.5-in. length:

19.5
11

= 1.77 stirrups at 11@in. spacing

+ 3.00 additional stirrups

4.77 stirrups in 19.5@in. length

Mu diagram ordinate into six equal parts (in Example 5-5); 
and (3) it can be used for any shape Mu diagram.

The bars in Example 5-5 are terminating in a tension 
zone. When this occurs, the member undergoes a reduc-
tion in shear capacity. Therefore special shear and stirrup 
calculations must be performed in accordance with the ACI 
Code, Section 12.10.5, which stipulates that no flexural rein-
forcement shall be terminated in a tension zone unless one 
of the following conditions is satisfied:

(12.10.5.1) Factored shear at the cutoff point does not 
exceed two-thirds of the design shear strength fVn. 
This may be written as

Vu … 2
3f(Vc + Vs)

(12.10.5.2) Stirrup area in excess of that required is 
provided along each bar terminated over a distance 
equal to three-fourths the effective depth of the mem-
ber (0.75d) from the point of bar cutoff. The excess 
stirrup area shall not be less than 60bws/fy. The spac-
ing s shall not exceed d/(8βb), where βb is the ratio 
of reinforcement cutoff to total area of tension rein-
forcement at the section.

(12.10.5.3) For No. 11 bars and smaller, the continu-
ing reinforcement provides double the area required 
for flexure at the cutoff point and factored shear 
does not exceed three-quarters of the design shear 
strength fVn.

With respect to the preceding conditions, the first is 
interpreted as a check only. Although the Vs term could 
be varied, the code is not specific concerning the length of 
beam over which this Vs must exist. The third condition 
involves moving the cutoff point to another location. The 
second condition is a design method whereby additional 
stirrups may be introduced if the shear strength is inad-
equate as determined by the ACI Code, Section 12.10.5.1. 
This condition will be developed further.

It is convenient to determine the number of additional 
stirrups to be added in the length 0.75d along the end of 
the bar from the cutoff point. The required excess stirrup 
area is

Av =
60bws

fyt

Assuming that the size of the stirrup (and therefore Av) is 
known, the maximum spacing is

s =
Av fyt

60bw

Therefore, the number of stirrups Ns to be added in the 
length 0.75d is

Ns =
0.75d

s + 1 =
0.75d

a
Avfyt

60bw
b

+ 1 = a 45bwd
Avfyt

b + 1

26"

12"

#3 @ 11" o.c.

2-#9
2-#9

Figure 5-16  Sketch for Example 5-6.
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	 /d …
Mn

Vu
+ /a� [ACI Eq. (12-5)]

where
Mn = �nominal moment strength cAs fyad -

a
2
b d  

assuming all reinforcement at the section to be 
stressed to fy

Vu = total applied design shear force at the section
/a = �(at a support) the embedment length beyond the 

center of the support
/a = �(at a point of inflection) the effective depth of the 

member or 12db, whichever is greater

This requirement need not be satisfied for reinforcement 
terminating beyond the centerline of simple supports by a 
standard hook or a mechanical anchorage at least equivalent 
to a standard hook.

The effect of this code restriction is to require that bars 
be small enough so that they can become fully developed 
before the applied moment has increased to the magnitude 
where they must be capable of carrying fy. The Mn/Vu term 
approximates the distance from the section in question to 
the location where applied moment Mu exists that is equal to 
fMn (and where fy must exist in the bars).

Therefore the distance from the end of the bar to the 
point where the bar must be fully developed is (Mn/Vu) + 
/a, and bars must be chosen so that their /d is less than this 
distance. The code allows Mn/Vu to be increased by 30% 
when the ends of the reinforcement are confined by a com-
pressive reaction such as is found in a simply supported 
beam (a beam supported by a wall).

Example 5-7

At the support of a simply supported beam, a cross section 
exists as shown in Figure 5-18. Check the bar diameters in 
accordance with the ACI Code, Section 12.11.3. Assume 
a support width of 12 in., 11

2@in.cover, f ′c = 4000 psi, and 
fy = 60,000 psi. Assume that Vu at the support is 80 kips. 
Normal-weight concrete is used. The stirrups begin at 3 in. 
from the face of the support. The bars are uncoated.

The new stirrup spacing is

19.5
4.77

= 4.09 in.

Use 4 in.

The stirrup pattern originally designed should now be 
altered to include the 4-in. spacing along the last 19.5 in. of 
the cut bars.

The problems associated with terminating bars in a 
tension zone may be avoided by extending the bars in accor-
dance with the ACI Code, Section 12.10.5.3, or by extending 
them into the support.

In summary, a general representation of the bar cutoff 
requirements for positive moment steel in a simple span 
may be observed in Figure 5-17. If bars A are to be cut off, 
they must (1) project /d past the point of maximum posi-
tive moment and (2) project beyond their theoretical cutoff 
point a distance equal to the effective depth of the member or 
12 bar diameters, whichever is greater. The remaining posi-
tive moment bars B must extend /d past the theoretical cutoff 
point of bars A and extend at least 6 in. into the support.

5-10 �C ode Requirements 
for Development 
of Positive Moment 
Steel at Simple 
Supports

The ACI Code, Section 12.11.3, contains requirements con-
cerning the development of straight, positive moment bars 
at simple supports and at points of inflection. The intent of 
this code section is the same as the check on the development 
of the two bars extending into the support in Example 5-5. 
The method of Example 5-5 may be used if we are working 
with the actual moment diagram. The code approach does 
not require the use of a moment diagram.

The ACI Code requirement places a restriction on the 
size of the bar that may be used such that the tension devel-
opment length

d (min.)

Bars Bfs = 0

d or 12db fy

fy 0"

Bars A

6" (min.)

Minimum of one-third
of +M steel must

extend into the support
a distance of at least 6 in.

Theoretical point where
bars A are no longer needed

span

d (min.)

Figure 5-17  Bar cutoff requirements for simple spans (positive 
moment steel).
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	 6.	 Check (cb + Ktr)/db … 2.5:

cb + Ktr

db
-

2.64 + 0
1.27

= 2.08 6 2.5   (O.K.)

	 7.	 The excess reinforcement factor is not applicable and is 
omitted.

	 8.	 Calculate /d:

 /d =
KD

l £
ψtψeψs

acb + Ktr

db
b §db

 =
71.2
1.0

c 1.0(1.0)(1.0)

2.08
d (1.27)

 = 43.5 in. 7 12 in. � (O.K.)

Now check ACI Equation (12-5):

 r =
As

bd
=

2.54
15(26)

= 0.0065

 k = 0.3676 ksi

 Mn = bd2k = 15(26)2(0.3676) = 3728 in.@kips

The maximum permissible required /d is

 1.3 
Mn

Vu
+ /a = 1.3a3728

80
b + 4.5 = 65.1 in.

 65.1 in. 7 43.5 in.           (O.K.)

Therefore, the bar diameter is adequately small and the bar 
can be developed as required. (If the required /d were in 
excess of 65.1 in., the use of a standard hook beyond the 
centerline of support would satisfy the development require-
ment and this code section would not apply. Also, the use of 
smaller bars would result in a smaller required /d.)

Solution:

Because this beam has its ends confined by a compressive 
reaction, we will check ACI Equation (12-3):

/d … 1.3aMn

Vu
b + /a

We next calculate the required tensile development 
length /d:

	 1.	 From Table 5-1, KD = 71.2.

	 2.	 Establish values for the factors ψt, ψe, ψs, and l.

	a.	 ψt = 1.0 (the bars are not top bars).

	b.	 The bars are uncoated; ψe = 1.0.

	c.	 The bars are No. 10; ψs = 1.0.

	d.	 Normal-weight concrete is used; l = 1.0.

	 3.	 The product ψt * ψe = 1.0 6 1.7 (O.K.).

	 4.	 Determine c. Based on cover (center of bar to nearest 
concrete surface), consider the clear cover, the No. 4 
stirrup, and one-half the diameter of the No. 10 bar:

cb = 1.5 + 0.5 +
1.27

2
= 2.64 in.

Based on bar spacing (one-half the center-to-center 
distance),

cb =
15 - 2(1.5) - 2(0.5) - 2a1.27

2
b

2
= 4.87 in.

Therefore use cb = 2.64 in.

	 5.	 Ktr is taken as zero, as stirrups do not extend to the 
ends of the bars.

A

A

d = 26"

Section A–A

b = 15"

12" support width

#4 stirrups @ 6" o.c.

1.5" clear

1.5" clear

Beam

2-#10

2-#10

Figure 5-18  Sketch for Example 5-7.
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	 5-3.	 The exterior balcony/canopy shown is to be con-
structed of lightweight concrete (fct not specified). 
The bars are epoxy coated. The design-required ten-
sion steel As was 0.67 in.2. Determine the required 
development length /d from the point of maximum 
stress in the bars. Specify the minimum required side 
cover. Shrinkage and temperature steel is not shown. 
f′c = 4000 psi, fy = 60,000 psi.

	 5-4.	 Calculate the required development length (/d) into 
the beam for the negative moment steel shown so 
as to develop the tensile strength of the steel at the 
face of the column. Required As = 2.75 in.2, and 
f′c = 4000 psi.

Problems

For the following problems, unless otherwise noted, concrete is 
normal weight and steel is uncoated grade 60 (fy = 60,000 psi).
	 5-1.	 Determine the tension development length required 

for the No. 8 bars in the T-beam shown in Figure 3-11  
of Example 3-4. Use f′c = 3000 psi. Assume that the 
No. 3 stirrups are spaced at 8 in. throughout. Concrete 
is normal weight. Neglect the compression steel.

	 5-2.	 A 12-in.-thick concrete wall is supported on a contin-
uous footing as shown. Use f′c = 3000 psi. Determine 
if the development length is adequate if the steel is 
No. 6 bars at 8 in. o.c. Assume that the critical section 
for moment (fy is developed) is at the face of the wall.

21"

14"

#4 stirrups

3-#9

1.5" clear
(typ.)

21" column

#4 stirrups full
length of beam

3-#9 bars

d

#4 stirrups @ 4   " o.c. spacing
for development length ( d)

1
2

Problem 5-4

1'-6"

2'-3" 12" 2'-3"

3" clear fy
3" clear

Problem 5-2

d�9"

2" cov.
fy

5"

#6 @ 71
2"

Problem 5-3

18"

18"

fy

2" clear

" clear11
2

d

Problem 5-5

	 5-5.	 Considering the anchorage of the beam bars into 
the column, determine the largest bar that can be 
used without a hook. Use f′c = 4000 psi. Clear space 
between bars is 3 in. (minimum). Side cover is 2 in.

	 5-6.	 Seven No. 11 vertical compression bars extend 
from a column into the supporting footing. Use 
f′c = 5000 psi. The As required was 10.2 in.2 There 
is no lateral reinforcing enclosing the vertical bars 
in the footing. Determine the required compression 
development length.
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2 in., and cover from the end of the wall to the edge 
bar, measured in the plane of the bars, is 3 in.
a.	 Calculate the required length of splice.
b.	 Find the hook development length /dh required 

for a 180° hook in the footing.

Lap

Stem

Footing
0"

2" clear

#9 @ 7"

#9 @ 7"

Problem 5-8

	 5-9.	 Design the tension splices at points A and B in the beam 
shown, assuming, for purposes of this problem, that the 
splices must be located as shown. Positive Mu at A is 
120 ft.-kips; negative Mu at B is 340 ft.-kips. Assume that 
50% of the steel is spliced at the designated locations. 
Use f′c = 4000 psi. Assume f = 0.90 for moment.

	 5-7.	 Determine the development length required in the 
column for the bars shown. If the available develop-
ment length is not sufficient to develop the tensile 
strength of the steel (fy), design an anchorage using a 
180° hook and check its adequacy. Use f′c = 4000 psi. 
The clear space between the No. 10 bars is 3 in. with a 
side cover of 21

2 in.

18"

4'-3"

fy

2" clear

#10 bars

d

" clear11
2

Problem 5-7

	 5-8.	 The tension bars in the stem of the reinforced con-
crete retaining wall are No. 9 at 7 in. o.c. and are to be 
lap spliced to similar dowels extending up from the 
footing. Required As = 1.50 in.2/ft. Use f′c = 3000 psi. 
Cover on the bars from the rear face of the wall is 

C

C

Section C–C
(b)

(a)

d = 26"

b = 16"

Lap

#4 stirrups
@ 7" o.c.

4-#9

4-#9

" clear (typ.)1 1
2

B

Lap

A

Problem 5-9
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	5-12.	 For the overhanging beam shown, find the theoreti-
cal cutoff point for the center No. 9 bar. Assume the 
section of maximum moment to be at the face of sup-
port. Use f′c = 5000 psi.

	5-13.	 A simply supported, uniformly loaded beam carries 
a total factored load of 4.8 kips/ft (this includes the 
beam weight) on a clear span of 34 ft. The cross sec-
tion has been designed and is shown. The required 
tension steel area for the design was 5.48 in.2 The 
supports are 12-in. wide. Use f′c = 3000 psi.
a.	 Determine the cutoff location for the two center 

bars (indicated in the sketch).
b.	 Design the shear reinforcement and check whether 

code requirements are met for bars terminated in a 
tension zone. Redesign the stirrups if necessary.

	5-14.	 The beam shown is to carry a total factored uniform 
load of 10 kips/ft (includes beam weight) and factored 
concentrated loads of 20 kips. Use f′c = 4000 psi. The 
supports are 12-in. wide.
a.	 Design a rectangular beam (tension steel only).
b.	 Determine bar cutoffs (use the graphical 

approach).
c.	 Design the shear reinforcement and check bar cut-

offs in tension zones if necessary.

	5-10.	 A wall is reinforced with No. 7 bars at 12 in. o.c. in 
each face as shown. The bars are in compression and 
are to be spliced to dowels of the same size and spac-
ing in the footing. Use f′c = 3000 psi. Determine the 
required length of splice.

12"

#7 @ 12" E.F.

#7 @ 12" dowels E.F.

Footing

Wall

Problem 5-10

	5-11.	 Number 9 compression bars in a column are to be 
lap spliced. There is no excess steel, and the bars are 
enclosed by a spiral of 3

8@in.@diameter wire having 
a pitch of 3 in. Use f′c = 4000 psi. Determine the 
required length of splice.

Face of
support

A

A

Pu = 18 kips

3-#9

10'-0

1  " clear

19   "

12"

#3

3-#9

Section A–A

1

1

2

2

Problem 5-12

1  "

17"

#3

1
2

33
.6

"

#96

Problem 5-13

Pu = 20 kips Pu = 20 kips
wu = 10 kips/ft

8'-0" 8'-0"8'-0"12'-0"8'-0"

Problem 5-14
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for negative moment. The application of the equations is 
limited to the following:

	 1.	 The equations can be used for two or more approxi-
mately equal spans (with the larger of two adjacent 
spans not exceeding the shorter by more than 20%).

	 2.	 Loads must be uniformly distributed (therefore, girders 
are excluded).

	 3.	 The maximum allowable ratio of live load to dead load 
is 3:1 (based on service loads).

	 4.	 Members must be prismatic.

The ACI moment and shear coefficients give the enve-
lopes of the maximum moments and shears, respectively, at 
critical locations on the flexural member. These maximum 
moments and shears at the different critical locations along 
the flexural member do not necessarily occur under the 
same loading condition. These shear and moment equations 
generally give reasonably conservative values for the stated 
conditions. If more precision is required, or desired, for 
economy, or because the stipulated conditions are not satis-
fied, a more theoretical and precise analysis must be made. 
The moment and shear equations are depicted in Figure 6-1. 
Their use will be demonstrated later in this chapter.

For approximate moments and shears for girders, See 
Section 14-2.

6-2 � Continuous-Span Bar 
Cutoffs

Using a design approach similar to that for simple spans, the 
area of main reinforcing steel required at any given point is a 
function of the design moment. As the moment varies along 
the span, the steel may be modified or reduced in accordance 
with the theoretical requirements of the member’s strength 
and the requirements of the ACI Code.

6-1 I ntroduction
A common form of concrete cast-in-place building 
construction consists of a continuous one-way slab cast 
monolithically with supporting continuous beams and 
girders. In this type of system, all members contribute in 
carrying the floor load to the supporting columns (see 
Figure 3-1). The slab steel runs through the beams, the beam 
steel runs through the girders, and the steel from both the 
beams and girders runs through the columns. The result 
is that the whole floor system is tied together, forming a 
highly indeterminate and complex type of rigid structure. 
The behavior of the members is affected by their rigid con-
nections. Not only will loads applied directly on a member 
produce moment, shear, and a definite deflected shape, but 
loads applied to adjacent members will produce similar 
effects because of the rigidity of the connections. The shears 
and moments transmitted through a joint will depend on 
the relative stiffnesses of all the members framing into that 
joint. With this type of condition, a precise evaluation of 
moments and shears resulting from a floor loading is exces-
sively time-consuming and is outside the scope of this text. 
Several commercial computer programs are available to 
facilitate these analysis computations.

In an effort to simplify and expedite the design phase, 
the ACI Code, Section 8.3.3, permits the use of standard 
moment and shear equations whenever the span and 
loading conditions satisfy stipulated requirements. This 
approach applies to continuous non-prestressed one-way 
slabs and beams. It is an approximate method and may 
be used for buildings of the usual type of construction, 
spans, and story heights. The ACI moment equations result 
from the product of a coefficient and wu/2

n. Similarly, the 
ACI shear equations result from the product of a coeffi-
cient and wu/n. In these equations, wu is the factored design 
uniform load and /n is the clear span for positive moment 
(and shear) and the average of two adjacent clear spans 

Continuous Construction 

Design Considerations

	 6-1	 Introduction 	 6-2	 Continuous-Span Bar 
Cutoffs

	 6-3	 Design Of Continuous 
Floor Systems
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(Figure 6-2a) are to be cut off, they must extend at least 
a full development length /d beyond the face of the sup-
port. In addition, they must extend a distance equal to the 
effective depth of the member or 12 bar diameters, which-
ever is larger, beyond the theoretical cutoff point defined 
by the moment diagram. The remaining negative moment 
bars D (minimum of one-third of total negative steel) must 
extend at least /d beyond the theoretical point of cutoff of 
bars C and, in addition, must extend a distance equal to the 
effective depth of the member, 12 bar diameters, or one-
sixteenth of the clear span, whichever is the greater, past 
the point of inflection. Where negative moment bars are 
cut off before reaching the point of inflection, the situa-
tion is analogous to the simple beam cutoffs where the 

Bars can theoretically be stopped or bent in flexural 
members whenever they are no longer needed to resist 
moment. A general representation of the bar cutoff require-
ments for continuous spans (both positive and negative 
moments) is shown in Figure 6-2.

In continuous members the ACI Code, Section 12.11.1, 
requires that a minimum of one-fourth of the positive 
moment steel be extended into the support a distance of 
at least 6 in. The ACI Code, Section 12.12.3, also requires 
that at least one-third of the negative moment steel be 
extended beyond the extreme position of the point of 
inflection a distance not less than one-sixteenth of the 
clear span, the effective depth of the member d, or 12 bar 
diameters, whichever is greater. If negative moment bars C 
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Support is spandrel beam
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End span at first interior support
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Figure 6-1  ACI Code coefficients and equations for shear and moment for 
continuous beams and one-way slabs.
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6-3 �D esign of 
Continuous Floor 
Systems

One common type of floor system consists of a continuous, 
cast-in-place, one-way reinforced concrete slab supported 
by monolithic, continuous reinforced concrete beams. 
Assuming that the floor system parameters and loading con-
ditions satisfy the criteria for application of the ACI Code 
coefficients, the design of the system may be based on these 
coefficients. Example 6-1 furnishes a complete design of a 
typical one-way slab and beam floor system.

Example 6-1

The floor system shown in Figure 6-4 consists of a con-
tinuous one-way slab supported by continuous beams. 
The service loads on the floor are 25 psf dead load (does 
not include weight of slab) and 250 psf live load. Use 
f ′c = 3000 psi (normal-weight concrete) and fy = 60,000 psi. 
The bars are uncoated.

	 a.	 Design the continuous one-way floor slab.

	 b.	 Design the continuous supporting beam.

reinforcing bars are being terminated in a tension zone. 
The reader is referred to Example 5-5.

In Figure 6-2b, if positive moment bars A are to be cut 
off, they must project /d past the point of maximum positive 
moment as well as a distance equal to the effective depth of 
the member or 12 bar diameters, whichever is larger, beyond 
their theoretical cutoff point. Recall that the location of the 
theoretical cutoff point depends on the amount of steel to 
be cut and the shape of the applied moment diagram. The 
remaining positive moment bars B must extend /d past 
the theoretical cutoff point of bars A and extend at least 
6 in. into the support. Comments on terminating bars in a 
tension zone again apply. Additionally, the size of the posi-
tive moment bars at the point of inflection must meet the 
requirements of the ACI Code, Section 12.11.3.

Because the determination of cutoff and bend points 
constitutes a relatively time-consuming chore, it has become 
customary to use defined cutoff points that experience has 
indicated are safe. These defined points may be used where 
the ACI moment coefficients have application but must be 
applied with judgment where parameters vary. The recom-
mended bar details and cutoffs for continuous spans are 
shown in Figure 6-3.

Bars D

Bars C

d or
12 db

d or
12 db

or 12 db

Point of inflection
Larger of

Minimum of one-third of
negative moment steel

Theoretical point
where bars A are no

longer needed

6" min.

Theoretical point
where bars C are no

longer needed

Negative Moment Steel
(a)

0"

fy fy

d,   n,1
16d (min.)

d (min.)

d (min.)

d (min.)

n
2

Bars A

Bars B

Minimum of one-fourth of positive
moment steel must extend a

distance of at least 6 in. into support

Positive Moment Steel
(b)

0" fy
fy

span

span

Figure 6-2  Bar cutoff requirements for continuous slabs (ACI Code).
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Minimum of one-fourth of
positive moment steel

Continuous-Interior Spans
(a)

0"
6"

min.

n = clear span

0.125 n

Sym. about

Temperature steel

"clear3
4

"clear3
4

"clear3
4

"clear3
4

Minimum of one-fourth of
positive moment steel

Continuous-End Spans
(b)

0"
6"

min.
6"

min.

n = clear span

0.10 n

Temperature steel

Hook if
necessary

Extend all bottom
bars into support

0.25 n 0.3 n
*

0.3 n
*

*If adjacent spans have different span lengths, use the larger of the two.

Figure 6-3  Recommended bar details and cutoffs, one-way slabs; tensile reinforced 
beams similar.
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11'-0" 11'-0"
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24'-0"

12'-0"

12'-0"

24'-0" C to C columns

Assumed

12"12" 12"

Assumed

Interior span

Partial Plan
(a)

See
Fig. 6-8

B B

A

A

12'-0" C to C
beams

Section A–A
(b)

Multiply all
coefficients

by wu  2n

1
11

1
11

1
11

1
10

1
16

1
14

1
24

n = 11'-0"

Figure 6-4  Sketches for Example 6-1.
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whereas at all other supports,

Vu =
wu/n

2
= 0.513a11

2
b = 2.82 kips

	 4.	 Design the slab. Using the assumed slab thickness 
of 51

2 in., find the approximate d. Assume No. 5 
bars for main steel and 3

4@in. cover for the bars in 
the slab. Thus

d = 5.5 - 0.75 - 0.31 = 4.44 in.

	 5.	 Design the steel reinforcing. Assume a tension-
controlled section (Pt Ú 0.005) and f = 0.90. Select 
the point of maximum moment. This is a negative 
moment and occurs in the end span at the first 
interior support, and

 Mu =
wu/2

n

10
= 6.21 ft.@kips

 fMn = fbd2k

Because for design purposes Mu = fMn as a limit, 
then

 required k =
Mu

fbd2 =
6.21(12)

0.90(12)(4.44)2

 = 0.3500 ksi

From Table A-8,

 r = 0.0063 6 rmax = 0.01355  (O.K.)

 required As = rbd = 0.0063(12)(4.44)

 As = 0.34 in.2

As the steel area required at all other points will be 
less, the preceding process will be repeated for the 
other points. The expression

required k =
Mu

fbd2

can be simplified because all values are constant 
except Mu:

required k =
Mu(12)

0.9(12)(4.44)2
=

Mu

17.74

where Mu must be in ft-kips. In the usual manner, 
the required steel ratio r and the required steel 
area As may then be determined. The results of 
these calculations are listed in Table 6-1.

Minimum reinforcement for slabs of constant 
thickness is that required for shrinkage and tem-
perature reinforcement:

 minimum required As = 0.0018bh

 = 0.0018(12)(5.5) = 0.12 in.2

Also, maximum r = 0.01355, corresponding to 
a net tensile strain Pt of 0.005 (see Table A-8). 
Therefore the slab steel requirements for flex-
ure as shown in Table 6-1 are within acceptable 

Solution:

The primary difference in this design from previous flexural 
designs is that, because of continuity, the ACI coefficients 
and equations will be used to determine design shears and 
moments.

	 a.	 Continuous one-way floor slab

	 1.	 Determine the slab thickness. The slab will be 
designed to satisfy the ACI minimum thickness 
requirements from Table 9.5(a) of the Code and 
this thickness will be used to estimate slab weight.

With both ends continuous,

minimum h =
1
28

 /n =
1
28

 (11)(12) = 4.71 in.

With one end continuous,

minimum h =
1
24

 /n =
1
24

 (11)(12) = 5.5 in.

Try a 51
2@in.@thick slab. Design a 12-in.-wide seg-

ment (b = 12 in.).

	 2.	 Determine the load:

 slab dead load =
5.5
12

 (150) = 68.8 psf

 total dead load = 25.0 + 68.8 = 93.8 psf

 wu = 1.2wDL + 1.6wLL

 = 1.2(93.8) + 1.6(250)

 = 112.6 + 400

 = 512.6 psf (design load)

Because we are designing a slab segment that is 
12-in. wide, the foregoing loading is the same as 
512.6 lb/ft or 0.513 kip/ft.

	 3.	 Determine the moments and shears. Moments 
are determined using the ACI moment equations. 
Refer to Figures 6-1 and 6-4. Thus

 +Mu =
1
14

 wu/2
n =

1
14

 (0.513)(11)2 = 4.43 ft.@kips

 +Mu =
1
16

 wu/2
n =

1
16

 (0.513)(11)2 = 3.88 ft.@kips

 -Mu =
1
10

 wu/2
n =

1
10

 (0.513)(11)2 = 6.21 ft.@kips

 -Mu =
1
11

 wu/2
n =

1
11

 (0.513)(11)2 = 5.64 ft.@kips

 -Mu =
1
24

 wu/2
n =

1
24

 (0.513)(11)2 = 2.59 ft.@kips

Similarly, the shears are determined using the 
ACI shear equations. In the end span at the face of 
the first interior support,

Vu = 1.15 
wu/n

2
= 1.15(0.513)a11

2
b = 3.24 kips
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(the smaller of 3h or 18 in.). A work sketch (see 
Figure 6-5) is recommended to establish steel 
pattern and cutoff points. With regard to the steel 
selection, note that in the positive moment areas of 
both the end span and interior span, No. 4 bars at 9 
in. could be used. If alternate bars were terminated, 
however, the spacing of the bars remaining would 
exceed the maximum spacing of 16.5 in. The use 
of No. 4 bars at 8 in. avoids this problem. The steel 
selected is conservative.

	 8.	 Check anchorage into the spandrel beam. The steel 
is No. 4 bars at 15 in. o.c. Refer to the procedure for 
development length calculation in Section 5-2.

	a.	From Table 5-1, KD = 82.2.

	b.	Establish values for the factors ψt, ψe, ψs, and l.

1.	 ψt = 1.3 (the bars are top bars).

2.	 The bars are uncoated; ψe = 1.0.

3.	 The bars are No. 4; ψs = 0.8.

4.	 Normal-weight concrete is used; l = 1.0.

	c.	The product ψt * ψe = 1.3 6 1.7. (O.K.)

	d.	Determine cb. Based on cover (center of bar to 
nearest concrete surface),

cb =
3
4

+
0.5
2

= 1 in.

limits. The shrinkage and temperature steel may be 
selected based on the preceding calculation:

use No. 3 bars at 11 in. o.c. (As = 0.12 in.2)

Recall that the maximum spacing allowed is the 
smaller of 5h or 18 in. Because 5h = 5(5.5) = 27.5 in.,  
the 18 in. would control and the spacing is 
acceptable.

	 6.	 Check the shear strength. From step 3, maximum 
Vu = 3.24 kips at the face of the support. A check 
of shear at the face of the support, rather than at 
the critical section that is at a distance equal to the 
effective depth of the member from the face of the 
support, is conservative. Slabs are not normally 
reinforced for shear; therefore

 fVn = fVc = f22f ′c bwd

 =
0.75(213000)(12)(4.44)

1000
= 4.38 kips

 fVn 7 Vu

Therefore the thickness is O.K.

	 7.	 Select the main steel. Using Table A-4, establish a 
pattern in which the number of bar sizes and the 
number of different spacings are kept to a minimum. 
The maximum spacing for the main steel is 16.5 in.  

Table 6-1  Slab Steel Area Requirements

Location Moment equation k (ksi) Required r As (in.2/ft)

End span

At spandrel - 1
24wu/2

n
0.1460 0.0025 0.13

Midspan + 1
14wu/2

n
0.2497 0.0044 0.24

Interior spans

Interior support - 1
11wu/2

n
0.3179 0.0057 0.30

Midspan + 1
16wu/2

n
0.2187 0.0038 0.20

Req,d As = 0.13 in.2

Furn. As = 0.16 in.2
#4 @ 15" o.c.

Req,d As = 0.34 in.2

Furn. As = 0.37 in.2
#5 @ 10" o.c.

Req,d As = 0.24 in.2

Furn. As = 0.30 in.2
#4 @ 8" o.c.

Req,d As = 0.20 in.2

Furn. As = 0.30 in.2
#4 @ 8" o.c.

Req,d As = 0.30 in.2

Furn. As = 0.37 in.2
#5 @ 10" o.c.

12"
Assumed

Spandrel beam

Note: Bar cutoffs and temperature steel may be observed in the design sketch, Fig. 6-7.

Figure 6-5  Work sketch for Example 6-1.
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	10.	 Determine the bar cutoff points. For the normal 
type of construction for which the typical bar cutoff 
points shown in Figure 6-3 are used, the cutoff 
points are located so that all bars terminate in 
compression zones. Thus, the requirements of the 
ACI Code, Section 12.10.5, need not be checked, 
and the recommended bar cutoff points, as shown 
in Figure 6-3, are used.

	11.	 Prepare the design sketches. The final design 
sketch for the slab is shown in Figure 6-7. For 
clarity, the interior and end spans are shown 
separately.

	 b.	 Continuous supporting beam: The second part of 
Example 6-1 involves the design of the continuous 
supporting beam. From Figure 6-4a, it is seen that 
these beams span between columns. The ACI coeffi-
cients to be used for moment determination are shown 
in Figure 6-8.

	 1.	 Determine the loading:

 service live load = 250 psf * 12 = 3000 lb/ft

 service dead load = 25 psf * 12 = 300 lb/ft

 weight of slab = a5.5
12

b (150)(12) = 825 lb/ft

Assuming a beam width of 12 in. and an overall 
depth of 30 in. for purposes of member weight esti-
mate (see Figure 6-9),

 weight of beam =
12(30 - 5.5)

144
 (150)

 = 306.3 lb/ft

 total service live load = 3000 lb/ft

 total service dead load = 1431.3 lb/ft say, 1431 lb/ft

	 2.	 Calculate the design load:

 wu = 1.2wDL + 1.6wLL

 = 1.2(1431) + 1.6(3000)

 = 1717 + 4800

 = 6517 lb/ft say, 6.5 kips/ft

The loaded beam is depicted in Figure 6-10.

Based on bar spacing (one-half the center-to-
center distance),

cb = 1
2(15) = 7.5 in.

Therefore use cb = 1.0 in.

	e.	Ktr is taken as zero. There is no transverse steel 
that crosses the potential plane of splitting.

	 f.	Check (cb + Ktr)/db … 2.5:

cb + Ktr

db
=

1.0 + 0
0.5

= 2.0 6 2.5  (O.K.)

	g.	Calculate the excess reinforcement factor:

KER =
As required

As provided
=

0.130
0.160

= 0.813

	h.	Calculate /d:

 /d =
KD

l £
ψtψeψs

acb + Ktr

db
b §KERdb

 =
82.2
1.0

c 1.3(1.0)(0.8)

2.0
d (0.813)(0.5)

 = 17.4 in. 7 12 in.       (O.K.)

Use /d = 18 in. (minimum).

	 9.	 Because the 18-in. length cannot be furnished, a 
hook will be provided. Determine if a 180° standard 
hook will be adequate.

	a.	Calculate /dh.

/dh = a
0.02ψe fy

l2f ′c
bd

	b.	The bars are uncoated and the concrete is 
normal weight. Therefore ψe and l are both 1.0.

	c.	Modification factors are as follows:

1.	 Assume the concrete side cover is 21
2 in. 

normal to the plane of the hook; use 0.7.

2.	 For excess steel, use

As required

As provided
=

0.13
0.16

= 0.813

	d.	Therefore, the required development length is

 /dh = a0.02(1.0)(60,000)

(1.0) 13000
b (0.50)(0.7)(0.813)

 = 6.23 in.

Minimum /dh is 6 in. or 8db, whichever is greater:

8db = 811
22 = 4 in.

Therefore the minimum is 6 in.:

6.23 in. 7 6 in.      (O.K.)

	e.	Check the total width of beam required at the 
discontinuous end (see Figure 6-6):

6.23 + 2 = 8.23 in. 6 12 in.    (O.K.)

2" clear Req,d   dh = 6.23"

fy

#4 bar

Slab

Spandrel beam
12"

Figure 6-6  Hook detail for Example 6-1.
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1
25   " slab

thickness #5 @ 10" o.c.

#4 @ 16" o.c.
#4 @ 16" o.c.

#5 @ 10" o.c.
#3 @ 11" o.c.

as shown

3
4  " clear

(T. & B.)

3
4  " clear

(T. & B.)

0.3  n

0.125  n
= 1'-5"

= 3'-4"
3'-4"

0"
6" min.

(typ.)
Alternate

11'-0"12" 12"
11'-0"11'-0"

Reinforcing-Interior Span
(a)

Reinforcing-End Span
(b)

#4 @ 15" o.c.

#4 @ 16" o.c.
#4 @ 16" o.c.

#5 @ 10" o.c.

#3 @ 11" o.c. as shown

0.3  n

0.10  n
= 1'-1"

= 3'-4"
0.25  n
= 2'-9"

0"

6" min.6" min. Alternate

11'-0"12" 12"
11'-0"

2"
clear

Std. ACI
hook

Figure 6-7  Design sketches for Example 6-1.

Exterior column Interior column

Interior spanEnd span

SlabSpandrel
beam

ACI
moment

coefficients

Assumed

14"
Assumed

Multiply by
wu  2n

1 1 1 1 1 1
16 14 10 11 16 11

16"
Assumed

16"
Assumed

16"
Assumed

n = 22'-8" n = 22'-8"

Figure 6-8  Section B–B from Figure 6-4a.

30"

12"

1
25  "

Figure 6-9  Sketch for Example 6-1.

wu = 6.5 kips/ft

22'-8" 22'-8" 22'-8" 22'-8"

Figure 6-10  Beam design load and spans.



112	c hapter Six

1.	 At the first interior support, based on an 
assumed r of 0.0090 (see the preceding 
step 4),

 required As = rbd

 = 0.0090(12)(28) = 3.0 in.2

From Table A-5,

 As,min = 0.0033(12)(28) = 1.11 in.2

 3.0 in.2 7 1.11 in.2� (O.K.)

2.	 At the other interior supports, -Mu = 303.7 
ft.-kips:

 required k =
Mu

fbd2 =
303.7(12)

0.9(12)(28)2

 = 0.4304 ksi

From Table A-8, r = 0.0079. Check r with rmax:

0.0079 6 0.01355     (O.K.)

Therefore

 required As = rbd

 = 0.0079(12)(28) = 2.65 in.2

Check the required As with As,min. From 
Table A-5,

As,min = 0.0033(12)(28) = 1.11 in.2

2.65 in.2 7 1.11 in.2       (O.K.)

3.	 At the exterior support (exterior column), 
-Mu = 208.8 ft.-kips:

 required k =
Mu

fbd2 =
208.8(12)

0.9(12)(28)2

 = 0.2959 ksi

From Table A-8, r = 0.0053. Check r with rmax:

0.0053 6 0.01355     (O.K.)

Therefore

 required As = rbd

 = 0.0053(12)(28) = 1.78 in.2

Check the required As with As,min. From 
Table A-5,

 As,min = 0.0033(12)(28) = 1.11 in.2

 1.78 in.2 7 1.11 in.2         (O.K.)

	g.	Design steel reinforcing for points of posi-
tive moment as follows: At points of positive 
moment, the top of the beam is in compression; 
therefore, the design will be that of a T-beam.

1.	 End-span positive moment:

a.	 Design moment = 238.6 ft.-kips = Mu.

b.	 Effective depth d = 28 in. (see negative 
moment design).

	 3.	 Calculate the design moments and shears. The 
design moments and shears are calculated by 
using the ACI equations:

 +Mu =
1
14

 wu/2
n =

1
14

 (6.5)(22.67)2 = 238.6 ft.@kips

 +Mu =
1
16

 wu/2
n =

1
16

 (6.5)(22.67)2 = 208.8 ft.@kips

 -Mu =
1
10

 wu/2
n =

1
10

 (6.5)(22.67)2 = 334.1 ft.@kips

 -Mu =
1
11

 wu/2
n =

1
11

 (6.5)(22.67)2 = 303.7 ft.@kips

 Vu =
wu/n

2
=

6.5(22.67)

2
= 73.7 kips

 Vu = 1.15
wu/n

2
= 1.15(6.5)a22.67

2
b = 84.7 kips

	 4.	 Design the beam. Establish concrete dimensions 
based on the maximum bending moment. This 
occurs in the end span at the first interior support 
where the negative moment Mu = wu/2

n>10. Since 
the top of the beam is in tension, the design will be 
that of a rectangular beam.

	a.	Maximum moment (negative) = 334.1 ft.-kips.

	b.	From Table A-5, assume that r = 0.0090 (which is 
less than rmax of 0.01355 from Table A-8). A check 
of minimum steel required will be made shortly.

	c.	From Table A-8, k = 0.4828 ksi.

	d.	Assume that b = 12 in.:

 required d = C Mu

fbk
= C 334.1(12)

0.9(12)(0.4828)

 = 28.0 in.

 d>b ratio =
28.0
12

= 2.34, which is within the
acceptable range

	e.	Check the estimated beam weight assuming 
one layer of No. 11 bars and No. 3 stirrups:

 required h = 28.0 +
1.41

2
+ 0.38 + 1.5

 = 30.6 in.

Use h = 31 in. with an assumed d of 28 in. 
Also, check the minimum h from the ACI Code, 
Table 9.5(a):

 minimum h =
1

18.5
 (22.67)(12)

 = 14.7 in. 6 31 in.� (O.K.)

Note that the estimated beam weight based on 
b = 12 in. and h = 30 in. is slightly on the low side 
but may be considered acceptable.

	 f.	Design the steel reinforcing for points of nega-
tive moment as follows:



	 Continuous Construction Design Considerations	 113

l.	 Check Pt and f. From Table A-8, with 
r  =  0.001, Pt Ú 0.005. Therefore, the 
assumed f of 0.90 is O.K.

2.	 Interior span positive moment:

a.	 Design moment = 208.8 ft.-kips = Mu.

b.	 through (e) See the end-span positive 
moment computations. Use an effective 
flange width b = 68 in. and an effective 
depth d = 28 in. Also, for total flange in 
compression, fMn = 1806 ft.-kips 7 Mu. 
Therefore, this member also behaves as a 
rectangular T-beam.

c.	  required k =
Mu

fbd2

 =
208.8(12)

0.9(68)(28)2
= 0.0522 ksi

d.	 From Table A-8,

required r = 0.0010

e.	 The required steel area is

 required As = rbd

 = 0.0010(68)(28) = 1.90 in.2

f.	 Use three No. 8 bars (As = 2.37 in.2):

required b = 9.0 in.    (O.K.)

g.	 through 1. are identical to those for the 
end-span positive moment.

	 5.	 Check the distribution of negative moment steel. 
The ACI Code, Section 10.6.6, requires that where 
flanges are in tension, a part of the main tension 
reinforcement be distributed over the effective 
flange width or a width equal to one-tenth of the 
span, whichever is smaller. The use of smaller bars 
spread out into part of the flange will also be advan-
tageous where a beam is supported by a spandrel 
girder or exterior column and the embedment length 
for the negative moment steel is limited. Thus

 
span

10
=

22.67(12)

10
= 27 in.

 effective flange width = b = 68 in.

Therefore distribute the negative moment bars over 
a width of 27 in. Figure 6-12 shows suitable bars 
and patterns to use to satisfy the foregoing code 
requirement and furnish the cross-sectional area of 
steel required for flexure.

The ACI Code also stipulates that if the effective 
flange width exceeds one-tenth of the span, some 
longitudinal reinforcement shall be provided in the 
outer portions of the flange. In this design no addi-
tional steel will be furnished. In the authorsí opinion, 
this requirement is satisfied by the slab temperature 
and shrinkage steel (see Figures 6-7 and 6-18).

c.	 Effective flange width:

 14 span length = 0.25(22.67)(12) = 68 in.

 bw + 16hf = 12 + 16(5.5) = 100 in.

 beam spacing = 144 in.

Use an effective flange width b = 68 in. 
(see Figure 6-11).

d.	 Assuming total flange in compression, Pt = 
0.005, and f = 0.90:

 fMnf = f(0.85f ′c)bhf ad -
hf

2
b

 = 0.9(0.85)(3)(68)(5.5)a28 - 5.5>2
12

b

 = 1806 ft.@kips

e.	 Because 1806 7 238.6, the member 
behaves as a wide rectangular T-beam 
with b = 68 in. and d = 28 in.

f.	  required k =
Mu

fbd2

 =
238.6(12)

0.9(68)(28)2
= 0.0597 ksi

g.	 From Table A-8,

required r = 0.0010

h.	 The required steel area is

 required As = rbd

 = 0.0010(68)(28) = 1.90 in.2

i.	 Use three No. 8 bars (As = 2.37 in.2):

required b = 9.0 in.    (O.K.)

j.	 Check d. With a No. 3 stirrup and 11
2@in. 

cover,

 d = 31 - 1.5 - 0.38 - 1.00>2
 = 28.6 in. 7 28 in.      (O.K.)

k.	 Check the required As with As,min. From 
Table A-5,

 As,min = 0.0033(12)(28) = 1.11 in.2

 2.37 in.2 7 1.11 in.2       (O.K.)

h = 31" d = 28"

bw = 12"

b = 68"

hf  =  5   "1
2

Figure 6-11  Beam cross section.
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	d.	Determine cb. Based on cover (center of bar to 
nearest concrete surface), assume 11

2@in. clear 
cover and a No. 3 stirrup:

cb = 1.5 + 0.375 +
0.75

2
= 2.25 in.

Based on bar spacing (one-half the center-to-
center distance), refer to Figures 6-12. Consider 
the three No. 6 bars that are located within the 
No. 3 loop stirrup. Here

 cb = c 12 - 2(1.5) - 2(0.375) - 0.75

2
d a1

2
b

 = 1.875 in.

Therefore use cb = 1.875 in.

	e.	Ktr may be conservatively taken as zero.

	 f.	Check (cb + Ktr)/db … 2.5:

cb + Ktr

db
=

1.875 + 0
0.75

= 2.5(… 2.5)  (O.K.)

	g.	Determine the excess reinforcement factor:

KER =
As required

As provided
=

1.78
2.20

= 0.809

	h.	Calculate /d:

 /d =
KD

l £
ψtψeψs

acb + Ktr

db
b §dbKER

 =
82.2
1.0

c 1.3(1.0)(0.8)

2.5
d (0.75)(0.809)

 = 20.7 in. 7 12 in.       (O.K.)

Use /d = 21 in. (minimum).
With 2.0 in. clear at the end of the bar, the 

embedment length available in the column is 
16.0 - 2.0 = 14.0 in.

	 8.	 Because 21 in. 7 14.0 in., a hook is required. 
Determine if a 90° standard hook will be adequate.

	 6.	 Prepare the work sketch. A work sketch is devel-
oped in Figure 6-13, which includes the bars 
previously chosen.

	 7.	 Check the anchorage into the exterior column.

	a.	From Table 5-1, KD = 82.2.

	b.	Establish values for the factors ψt, ψe, ψs, and l.

1.	 ψt = 1.3 (the bars are top bars).

2.	 The bars are uncoated; ψe = 1.0.

3.	 The bars are No. 6; ψs = 0.8.

4.	 Normal-weight concrete is used; l = 1.0.

	c.	The product ψt * ψe = 1.3 6 1.7. (O.K.)

27"

Exterior Column
(a)

Req,d As = 1.78 in.2

Use 5-#6
(As = 2.20 in.2) 

27"

First Interior Support
(b)

Req,d As = 3.0 in.2

Use 7-#6
(As = 3.08 in.2) 

27"

Other Interior Supports
(c)

Req,d As = 2.65 in.2

Use 7-#6
(As = 3.08 in.2)

Figure 6-12  Negative moment steel for beam of 
Example 6-1.

14" spandrel beam
(assumed)

Req,d As = 1.78 in.2

Furn. As = 2.20 in.2

5-#6 bars

Req,d As = 3.0 in.2

Furn. As = 3.08 in.2

7-#6 bars

Req,d As = 1.90 in.2

Furn. As = 2.37 in.2 
3-#8 bars

Req,d As = 1.90 in.2

Furn. As = 2.37 in.2

3-#8 bars

Req,d As = 2.65 in.2

Furn. As = 3.08 in.2

7-#6 bars

16"
assumed

Figure 6-13  Work sketch for beam design of Example 6-1.
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the span, and the point of zero shear does not 
occur at the midspan of the beam. Furthermore, 
the point of zero shear for the right-hand section 
of the end span of the beam occurs at 13.03 ft. 
(that is, 84.7 kips/wu = 84.7/6.5) from the face 
of the first interior support. It should be noted 
that the point of zero shear for the left-hand 
section of the beam occurs at 11.34 ft. (that is, 
73.7 kips/6.5) from the interior face of the end 
support. The points of zero shears for both 
sections of the beam occur at different loca-
tions because of the approximate nature of the 
ACI shear coefficients as pointed out earlier. The 
stirrup design will be based on shear in the inte-
rior portion of the end span where the maximum 
values occur. The resulting stirrup pattern will be 
used throughout the continuous beam. Only the 
applicable portion of the Vu diagram is shown.

	b.	Determine if stirrups are required:

 fVc = f22f ′c bwd =
0.75(213000)(12)(28)

1000

 = 27.6 kips

 12fVc = 1
2 (27.6) = 13.8 kips

At the critical section d distance (28 in.) from the 
face of the support,

V*u = 84.7 -
28
12

 (6.5) = 69.5 kips

	a.	From Table A-13, /dh = 16.4 in.

	b.	Modification factors (MF) to be used are

1.	 Assume concrete cover Ú 21
2 in. and cover 

on the bar extension beyond the hook = 2 in.; 
use 0.7.

2.	 For excess steel, use

required As

provided As
=

1.78
2.20

= 0.809

	c.	The required development length for the hook is

/dh = 16.4(0.7)(0.809) = 9.29 in.

Minimum /dh is 6 in. or 8db, whichever is greater:

 8db = 8(34) = 6 in.

 9.29 in. 7 6 in.         (O.K.)

	d.	Check the total width of column required (see 
Figure 6-14):

9.29 + 2 = 11.3 in. 6 16 in.    (O.K.)

For other points along the continuous beam, use 
bar cutoff points recommended in Figure 6-3 and 
as shown in Figure 6-18.

	 9.	 Prepare the stirrup design. Established values are 
bw = 12 in., effective depth d = 28 in., f ′c = 3000 psi,
and fy = 60,000 psi.

	a.	The shear force Vu diagram may be observed 
in Figure 6-15. Note that the shear diagram is 
unsymmetrical with respect to the centerline of 

dh = 9.29"

2" clear

16" col.

#6 bar

fy

Figure 6-14  Anchorage at column.

69.5

x

13.03'

11.33'

10.91'

8.78'

13.8

27.6

6.5 kips

6.5 kips

73.7 kips

1'

1'

00

84.7 (max. Vu)

Vu*

   Vc

Vu (kips) 

Face of
support

*

wu = 6.5 kips/ft

Vc
1
2

2.34'

Req,d    Vs

Figure 6-15  Vu diagram for stirrup design (Example 6-1).
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Because 55.9 kips 6 73.6 kips, the maximum 
spacing should be the smaller of d/2 or 24 in.:

d
2

=
28
2

= 14 in.

Also check:

 smax =
Avfyt

0.752f ′c bw

…
Avfyt

50bw

 
Avfyt

0.752f ′c bw

=
0.22(60,000)

0.7513000(12)
= 26.7 in.

and

Avfyt

50bw
=

0.22(60,000)

50(12)
= 22.0 in.

Therefore, use a maximum spacing of 14 in.

	g.	Determine the spacing requirements based on 
shear strength to be furnished. The denomina-
tor of the following formula for required spacing 
uses the expression for required fVs from step d:

 required s =
fAvfytd

required fVs

 =
0.75(0.22)(60)(28)

57.1 - 6.5x
-

277.2
57.1 - 6.5x

The results for several arbitrary values of x are 
shown tabulated and plotted in Figure 6-16.

	h.	Using Figure 6-16, the stirrup pattern shown 
in Figure 6-17 is developed. Despite the lack 
of symmetry in the shear diagram, the stirrup 
pattern is symmetrical with respect to the 
centerline of the span. This is conservative and 
will be used for all spans.

The design sketches are shown in Figure 6-18. As 
with the slab design, the typical bar cutoff points of 
Figure 6-3 are used for this beam. All bars therefore 
terminate in compression zones, and the require-
ments of the ACI Code, Section 12.10.5, need not 
be checked.

(Quantities at the critical section are designated 
with an asterisk.) Stirrups are required because

V*u 7 1
2fVc (69.4 kips 7 13.8 kips)

	c.	Find the length of span over which stirrups 
are required. Stirrups are required to the point 
where

Vu = 1
2fVc = 13.8 kips

From Figure 6-15 and referencing from the face 
of the support, Vu = 13.8 kips at

84.7 - 13.8
6.5

= 10.91 ft

The distance from the face of the support to 
where Vu = fVc = 27.6 kips is

84.7 - 27.6
6.5

= 8.78 ft

	d.	On the Vu diagram, designate the area between 
the fVc line, the V*u line, and the sloping Vu line 
as “Req’d fVs.” At locations between 2.34 ft and 
8.78 ft from the face of the support, the required 
fVs varies. Designating the slope of the Vu dia-
gram as m (kips/ft) and taking x (ft) from the face 
of the support (2.34 … x … 8.78) yields

 required fVs =  maximum Vu - fVc - mx

 = 84.7 - 27.6 - 6.5x

 = 57.1 - 6.5x

	e.	Assume a No. 3 vertical stirrup (Av = 0.22 in.2):

 required s* =
Avfytd

Vs

 =
fAvfytd

required fV*s

 =
fAvfytd

V*u - fVc

 =
0.75(0.22)(60)(28)

69.5 - 27.6
= 7.57 in.

Use 61
2@in. spacing between the critical section 

and the face of the support.

	 f.	Establish ACI Code maximum spacing require-
ments:

42f ′c bwd =
413000 (12)(28)

1000
= 73.6 kips

Calculating V*s at the critical section yields

 fV*s = V*u - fVc

 = 69.5 - 27.6 = 41.9 kips

 V*s =
fV*s
f

=
41.9
0.75

= 55.9 kips

15.3
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6
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x
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6.62
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11.27
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Figure 6-16  Stirrup spacing requirements for Example 6-1.
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Figure 6-17  Stirrup spacing 
for Example 6-1 end span 
(interior spans similar).
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1
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Figure 6-18  Design sketches 
for Example 6-1 (stirrup 
spacings not shown).
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	 6-2.	 For the continuous beam shown, determine all 
moments and shears for service loads of 2.00 kips/ft  
dead load (includes weight of beam and slab) and 
3.00 kips/ft live load.

	 6-3.	 Using the ACI coefficients, design a continuous rein-
forced concrete beam that will span four supports. 
The end spans are 24-ft long; the center span is 28-ft 

Problems

For the following problems, all concrete is normal weight and 
all steel is grade 60 (fy = 60,000 psi).
	 6-1.	 For the one-way slab shown, determine all moments 

and shears for service loads of 100 psf dead load 
(includes the slab weight) and 300 psf live load.

6 spaces @ 12'-0"
1'-0" (typ.)

PROBLEM 6-1

Beam Girder

1'-6" column 1'-6" (typ.)

30'-0" 30'-0" 30'-0" 30'-0"

PROBLEM 6-2

long (spans are measured center to center of sup-
ports). The exterior support (a spandrel beam) and 
the interior supporting girders have widths b of 18 
in. The service loads are 0.90 kip/ft dead load (not 
including the weight of the beam) and 1.10 kip/ft live 
load. Use f′c = 3000 psi. Use only tension reinforc-
ing. Design for moment only. Use the recommended 
bar cutoffs shown in Figure 6-3.

	 6-4.	 A floor system is to consist of beams, girders, and a 
slab; a partial floor plan is shown. Service loads are to 
be 45 psf dead load (does not include the weight of the 
floor system) and 160 psf live load. Use f′c = 4000 psi.
a.	 Design the continuous one-way slab.
b.	 Design the continuous beam along column line 2.
Be sure to include complete design sketches.

A B C

1

2

3

32'-0" 32'-0"
Typical

16'-0"

16'-0" (typ.)

Beam

Girder

Partial Floor Plan

PROBLEM 6-4
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chapter Seven

7-1  Introduction
The ACI Code, Section 9.1, requires that bending members 
have structural strength adequate to support the antici-
pated factored design loads and that they have adequate 
performance at service load levels. Adequate performance, 
or serviceability, relates to deflections and cracking in rein-
forced concrete beams and slabs. It is important to realize 
that serviceability is to be assured at service load levels, not 
at ultimate strength. At service loads, deflections should 
be held to specified limits because of many considerations, 
among which are aesthetics, effects on nonstructural ele-
ments such as windows and partitions, undesirable vibra-
tions, and proper functioning of roof drainage systems. Any 
cracking should be limited to hairline cracks for reasons 
of appearance and to ensure protection of reinforcement 
against corrosion.

7-2 D eflections
Guidelines for the control of deflections are found in the 
ACI Code, Section 9.5. In addition, Table 9.5(b) of the 
Code indicates the maximum permissible deflections. For 
the purpose of following the Code guidelines, either of two 
methods may be used: (1) using the minimum thickness (or 
depth of member) criteria as established in Table 9.5(a) of 
the Code, which will result in sections that are sufficiently 
deep and stiff so that deflections will not be excessive; and 
(2) calculating expected deflections using standard deflec-
tion formulas in combination with the Code provisions for 
moment of inertia and the effects of the load/time history of 
the member.

Minimum thickness (depth) guidelines are simple and 
direct and should be used whenever possible. Note that the 
tabulated minimum thicknesses apply to non-prestressed, 
one-way members that do not support and are not attached 
to partitions or other construction likely to be damaged by 
large deflections. For members not within these guidelines, 
deflections must be calculated.

For the second method, in which deflections are calcu-
lated, the ACI Code stipulates that the members should have 
their deflections checked at service load levels. Therefore 
the properties at service load levels must be used. Under 
service loads, concrete flexural members still exhibit gener-
ally elastic-type behavior (see Figure 1-1) but will have been 
subjected to cracking in tension zones at any point where 
the applied moment is large enough to produce tensile stress 
in excess of concrete tensile strength. The cross section for 
moment-of-inertia determination then has the shape shown 
in Figure 7-1.

The moment of inertia of the cracked section of 
Figure  7-1 is designated Icr. It is determined based on the 
assumption that the concrete is cracked to the neutral axis. 
In other words, the concrete is assumed to have no tensile 
strength, and the small tension zone below the neutral axis 
and above the upper limit of cracking is neglected.

The moment of inertia of the cracked section described 
represents one end of a range of values that may be used for 
deflection calculations. At the other end of the range, as a 
result of a small bending moment and a maximum flexural 
stress less than the modulus of rupture, the full uncracked 
section may be considered in determining the moment of 
inertia to resist deflection. This is termed the moment of 
inertia of the gross cross section and is designated Ig.

In reality, both Icr and Ig occur in a bending member in 
which the maximum moment is in excess of the cracking 

Serviceability

	 7-1	 Introduction

	 7-2	 Deflections

	 7-3	 Calculation of Icr

	 7-4	 Immediate Deflection

	 7-5	 Long-Term Deflection

	 7-6	 Deflections for Continuous 
Spans

	 7-7	 Crack Control

Upper limit of
cracking

Tension steel

Uncracked
concrete

Cracked
concrete

Compression

Neutral axis

Tension

Figure 7-1  Typical cracked cross section.



120	 chapter Seven

the following relationships can be established:

P2 =
fs

Es
 and P2 =

fc(tens)

Ec

Equating these two expressions and solving for fs yields

 
fs

Es
=

fc(tens)

Ec

 fs =
Es

Ec
 [ fc(tens)]

The ratio Es/Ec is normally called the modular ratio and 
is denoted n. Therefore

fs = nfc(tens)

Values of n may be taken as the nearest whole number (but 
not less than 6). Values of n for normal-weight concrete are 
tabulated in Table A-6.

As we are replacing the steel (theoretically) with an 
equivalent concrete area, the equivalent concrete area Aeq 
must provide the same tensile resistance as that provided by 
the steel.

Therefore

Aeq fc(tens) = fs As

Substituting, we obtain

Aeq fc(tens) = nfc(tens)As

from which

Aeq = nAs

This defines the equivalent area of concrete with which we 
are replacing the steel. Another way of visualizing this is 
to consider the steel to be transformed into an equivalent 
concrete area of nAs. The resulting transformed concrete 
cross section is composed of a single (although hypotheti-
cal) material and may be dealt with in the normal fashion 
for neutral-axis and moment-of-inertia determinations. 
Figure  7-3 depicts the transformed section. Because the 
steel is normally assumed to be concentrated at its centroid, 
which is a distance d from the compression face, the replac-
ing equivalent concrete area must also be assumed to act at 
the same location. Therefore the representation of this area 
is shown as a thin rectangle extending out past the beam 

moment. The Icr occurs at or near the cracks, whereas 
the Ig occurs between the cracks. Research has indicated 
that due  to the presence of the two extreme conditions, 
a more realistic value of a moment of inertia lies some-
where between these values. The ACI Code recommends 
that deflections be calculated using an effective moment of 
inertia, Ie, where

Ig 7 Ie 7 Icr

Once the effective moment of inertia is determined, 
the member deflection may be calculated by using standard 
deflection expressions. The effective moment of inertia will 
depend on the values of the moment of inertia of the gross 
section and the moment of inertia of the cracked section. 
The gross (or uncracked) moment of inertia for a rectangu-
lar shape may be easily calculated from

Ig =
bh3

12

This expression neglects the presence of any reinforcing steel.

7-3 C alculation Of Icr

The moment of inertia of the cracked cross section can 
also be calculated in the normal way once the problem of 
the differing materials (steel and concrete) is overcome. To 
accomplish this, the steel area will be replaced by an equiva-
lent area of concrete Aeq. This is a fictitious concrete that can 
resist tension. The determination of the magnitude of Aeq is 
based on the theory (from strength of materials) that when 
two differing elastic materials are subjected to equal strains, 
the stresses in the materials will be in proportion to their 
moduli of elasticity.

In Figure 7-2 P1 is the compressive strain in the con-
crete at the top of the beam and P2 is a tensile strain at the 
level of the steel. Using the notation

 fs = tensile steel stress
 fc(tens) = theoretical tensile concrete stress

at the level of the steel
 Es = steel modulus of elasticity (29,000,000 psi)
 Ec = concrete modulus of elasticity

Neutral
axis

fs

fc(tens.)

fc(comp.)

Beam Strain Stress

� 2

� 1

As

Figure 7-2  Beam bending: elastic theory.

N.A.

As

b b

d

nAs

Beam Cross Section Transformed Cross Section

Figure 7-3  Method of transformed section.
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The moment of inertia of the cracked section may now be 
found (all units are inches):

 Icr =
by3

3
+ nAs(d - y )2

 =
8(6.78)3

3
+ 18(17 - 6.78)2

 = 831.1 + 1880

 = 2711 in.4

If the beam cross section contains compression steel, 
this steel may also be transformed and the neutral-axis 
location and cracked moment-of-inertia calculations can 
be carried out as before. Because the compression steel 
displaces concrete that is in compression, it should theo-
retically be transformed using (n - 1)A′s  rather than nA′s. 
For deflection calculations, which are only approximate, 
however, the use of nA′s  will not detract from the accuracy 
expected. The resulting transformed section will appear as 
shown in Figure 7-6.

The neutral axis location y may be determined from the 
solution of

b
2

 y2 + nA′s y - nA′sd′ - nAsd + nAsy = 0

and the moment of inertia with respect to the neutral 
axis from

Icr =
by3

3
+ nAs(d - y)2 + nA′s(y - d′)2

sides. Recalling that the cross section is assumed cracked up 
to the neutral axis, the resulting effective area is as shown in 
Figure 7-4 and the neutral axis will be located a distance y 
down from a reference axis at the top of the section.

The neutral axis may be determined by taking a 
summation of moments of the effective areas about the 
reference axis:

 y =
Σ(Ay)

ΣA
=

(by)
y
2

+ nAsd

by + nAs

 b(y2) + nAsy =
b(y2)

2
+ nAsd

 
b(y2)

2
+ nAsy - nAsd = 0

This is a quadratic equation of the form ax2 + bx + c = 0, and 
it may be solved either by completion of the square, as was 
done in Example 3-7, or by using the formula for roots of a 
quadratic equation, which will result in the following useful 
expression:

y =
nAs cA1 + 2 

bd
nAs

- 1 d
b

Once the neutral axis is located, the moment of inertia (Icr) 
may be found using the familiar transfer formula from engi-
neering mechanics.

Example 7-1

Find the cracked moment of inertia for the cross section 
shown in Figure 7-5a. Use As = 2.00 in.2, n = 9 (Table A-6), 
and f ′c = 3000 psi.

Solution:

With reference to the transformed section, shown in 
Figure 7-5b, the neutral axis is located as follows:

 y =
nAs c A1 + 2 

bd
nAs

- 1 d
b

 =
9(2.0) c A1 + 2 

(8)(17)

9(2.0)
- 1 d

8

 = 6.78 in.

y

d

b

N.A.

nAs

Reference 
axis

Figure 7-4  Effective area.
Beam Cross Section

(a)

Transformed Cross Section

(b)

8" 8"

17" 17"

y

2- #9 nAs = 18 in.2

N.A.

Figure 7-5  Sketches for Example 7-1.

A�s

As

b d�

d

y

nA�s

nAs

N.A.

Beam Cross Section Transformed Cross Section

Figure 7-6  Doubly reinforced beam.
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7-5 �L ong-Term 
Deflection

In addition to deflections that occur immediately, rein-
forced concrete members are subject to added deflections 
that occur gradually over long periods. These additional 
deflections are due mainly to creep and shrinkage and 
may eventually become excessive. The additional (or long-
term) deflections are computed based on two items: (1) the 
amount of sustained dead and live load and (2) the amount 
of compression reinforcement in the beam. The additional 
long-term deflections may be estimated as follows:

∆LT = l∆∆i = a j

1 + 50r′
b∆i

where
ΔLT = additional long-term deflection

Δi = immediate deflection due to sustained loads
lΔ = �a multiplier for additional long-term deflections 

[ACI Eq. (9-11)]
r′= �non-prestressed compression reinforcement 

ratio (A′s>bd)
j = time-dependent factor for sustained loads:  
	 5 years or more	 2.0

	 12 months	 1.4
	 6 months	 1.2
	 3 months	 1.0

Some judgment will be required in determining just what 
portion of the live loads should be considered sustained. In 
a residential application, 20% sustained live load might be 
a logical estimate, whereas in storage facilities, 100% sus-
tained live load would be reasonable.

The calculated deflections must not exceed the maxi-
mum permissible deflections that are found in the ACI 
Code, Table 9.5(b). This table sets permissible deflections in 
terms of fractions of span length. These limitations guard 
against damage to the various parts of the system (both 
structural and nonstructural parts) as a result of excessive 
deflection. In the case of attached nonstructural elements, 
only the deflection that takes place after such attachment 
needs to be considered.

Example 7-2

Determine which of the ACI Code deflection criteria will be 
satisfied by the non-prestressed reinforced concrete beam 
having a cross section shown in Figure 7-7 and subjected to 
maximum moments of MDL = 20 ft.-kips and MLL = 15 ft.-kips. 
Assume a 50% sustained live load and a sustained load 
time period of more than 5 years. Assume normal-weight 
concrete. Use f ′c = 3000 psi and fy = 60,000 psi. The beam 
is on a simple span of 30 ft.

Solution:
	 1.	 The maximum service moments at midspan are

MDL = 20 ft.@kips and MLL = 15 ft.@kips

7-4  Immediate Deflection
Immediate deflection is the deflection that occurs as soon as 
load is applied on the member. For all practical purposes, the 
member is elastic. The ACI Code, Section 9.5.2.3, states that 
this deflection may be calculated using a concrete modulus 
of elasticity Ec as specified in Section 8.5.1 and an effective 
moment of inertia Ie computed as follows:

Ie = e aMcr

Ma
b

3
Ig + c 1 - aMcr

Ma
b

3
d Icr f … Ig

� [ACI Eq. (9-8)]

where
Ie = effective moment of inertia

Icr = �moment of inertia of the cracked section trans-
formed to concrete

Ig = �moment of inertia of the gross (uncracked) 
concrete cross section about the centroidal axis, 
neglecting all steel reinforcement

Ma = �maximum moment in the member at the stage 
for which the deflection is being computed

Mcr = �moment that would initially crack the cross sec-
tion computed from

	 Mcr =
frIg

yt
	 [ACI Eq. (9-9)]

where
fr = modulus of rupture for the concrete = 7.5 l2f′c
l = 1.0 for normal-weight concrete

= 0.85 for sand-lightweight concrete
= 0.75 for all-lightweight concrete

Values for the modulus of rupture for normal-weight 
concrete are tabulated in Table A-6.
yt = �distance from the neutral axis of the uncracked 

cross section (neglecting steel) to the extreme 
tension fiber

Inspection of the formula for the effective moment of 
inertia will show that if the maximum moment is low with 
respect to the cracking moment Mcr, the moment of iner-
tia of the gross section Ig will be the dominant factor. If the 
maximum moment is large with respect to the cracking 
moment, however, the moment of inertia of the cracked sec-
tion Icr will be dominant. In any case, Ie will lie somewhere 
between Icr and Ig. For continuous beams, the use of the 
average value of the effective moments of inertia existing at 
sections of critical positive and negative moments is recom-
mended. The use of midspan sectional properties for simple 
and continuous spans, and at the support for cantilevers, 
will also give satisfactory results.

The actual calculation of deflections will be made 
using the standard deflection methods for elastic members. 
Deflection formulas of the type found in standard hand-
books may be suitable, or we may use more rigorous tech-
niques when necessary.
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Determination of the moment of inertia of the gross sec-
tion results in

Ig =
bh3

12
=

1
12

 (10)(16.5)3 = 3743 in.4

The moment that would initially crack the cross section 
may be determined next:

Mcr =
fr Ig
yt

where

 yt =
16.5

2
= 8.25 in.

 fr = 7.5l2f ′c = 0.411 ksi (from Table A@6 for l = 1)

Therefore

Mcr =
0.411(3743)

8.25(12)
= 15.5 ft.@kips

We will assume that Ma = 35 ft.-kips on the basis that 
it is the maximum moment that the beam must carry 
that will establish the crack pattern. This is not in strict 
accordance with the ACI Code, which indicates that 
Ma should be the maximum moment occurring at the 
stage  the deflection is computed. It is logical that, as 
the cracking pattern is irreversible, the use of the effec-
tive moment of inertia based on the full maximum 
moment is more realistic. This approach is conservative 
and will furnish a lower Ie, which will subsequently result 
in a larger computed deflection.

	 4.	 Determine the effective moment of inertia:

 Ie = aMcr

Ma
b

3

Ig + c1 - aMcr

Ma
b

3

d Icr

 = a15.5
35

b
3

3743 + c1 - a15.5
35

b
3

d (2082) = 2226 in.4

	 5.	 Compute the immediate dead load deflection  
(MDL = 20 ft.-kips):

∆ =
5w/4

384EcIe
=

5M/2

48EcIe

where M is the moment due to a uniform load and Ec 
may be found in Table A-6. Thus

∆ =
5(20 ft.@kips)(30 ft)2(1728 in.3/ft3)

48(3120 kips/in.2)(2226 in.4)
= 0.467 in.

	 6.	 Compute the immediate live load deflection  
(MLL = 15 ft.-kips). By proportion,

∆ =
15
20

 (0.467) = 0.350 in.

	 7.	 The total immediate DL + LL deflection is

0.467 + 0.350 = 0.817 in.

	 2.	 Check the beam depth based on the ACI Code 
Table 9.5(a):

minimum h =
/

16
=

30(12)

16
= 22.5 in.

Because 22.5 in. 7 16.5 in., deflection must be calculated.

	 3.	 The effective moment of inertia will be calculated using

Ie = aMcr

Ma
b

3

Ig + c1 - aMcr

Ma
b

3

d  Icr

Therefore we first must compute the various terms 
within the expression. The moment of inertia of the 
cracked transformed section will be determined with 
reference to Figure 7-8.

The steel area of 2.37 in.2 and a modular ratio n of 9 
(see Table A-6) will result in a transformed area of

nAs = 9(2.37) = 21.3 in.2

The neutral-axis location is determined as follows:

 y =
nAs c A1 + 2 

bd
nAs

- 1 d
b

 =
21.3 c B1 + 2 

(10)(14)

21.3
- 1 d

10

 = 5.88 in.

The moment of inertia of the cracked transformed sec-
tion is then determined:

 Icr =
10(5.88)3

3
+ 21.3(14 - 5.88)2

 = 2082 in.4

14"

10"

3-#8 bars
As = 2.37 in.2 

16   "1
2

Figure 7-7  Sketch for Example 7-2.

y

14"

10"

N.A.

nAs = 21.3 in.2

Figure 7-8  Transformed section for Example 7-2.
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w = uniformly distributed service load
Ie = �effective moment of inertia; use the average value 

of Ie at positive moment area and Ie at negative 
moment area

In a similar manner, for long-term deflections the 
long-term deflection multiplier should be averaged for the 
different locations.

7-7 C rack Control
With the advent of higher-strength reinforcing steels, where 
more strain is required to produce the higher stresses, crack-
ing of reinforced concrete flexural members has become 
more troublesome.

It seems logical that cracking would have an effect on 
corrosion of the reinforcing steel. However, there is no clear 
correlation between corrosion and surface crack widths 
in the usual range found in structures with reinforcement 
stresses at service load levels. Further, there is no clear 
experimental evidence available regarding the crack width 
beyond which a corrosion danger exists. Exposure tests 
indicate that concrete quality, adequate consolidation, and 
ample concrete cover may be more important in corrosion 
considerations than is crack width.

Rather than a small number of large cracks, it is more 
desirable to have only hairline cracks and to accept more 
numerous cracks, if necessary. To achieve this, the current 
ACI Code (Section 10.6) directs that the flexural tension 
reinforcement be well distributed in the maximum ten-
sion zones of a member. Section 10.6.4 contains a provision 
for maximum spacing s that is intended to control surface 

	 8.	 The long-term (LT) deflection (DL + sustained LL) 
multiplier is

l∆ =
j

1 + 50r′
=

2.0
1 + 0

= 2.0

Because MDL = 20 ft.-kips and 50% MLL = 7.5 ft.-kips, the 
sustained moment for long-term deflection = 27.5 ft.-kips. 
Then

∆LT =
27.5
20

 (0.467)(2.0) = 1.28 in.

	 9.	 A comparison of actual deflections to maximum 
permissible deflections may now be made. In the com-
parison, made in Table 7-1, the maximum permissible 
deflections are from the ACI Code, Table 9.5(b). Case 1  
in Table 7-1 applies to flat roofs not supporting or 
attached to nonstructural elements likely to be dam-
aged by large deflections. Case 2 applies to floors not 
supporting or attached to nonstructural elements likely 
to be damaged by large deflections. As the permissible 
deflection is not exceeded in case 1 or case 2, the beam 
of Example 7-2 is limited to usage as defined by those 
two cases.

7-6 �D eflections for 
Continuous Spans

To compute deflections for continuous spans subject to uni-
formly distributed loads such as the beam in Figure 7-9, the 
following approximate approach may be used:

∆ =
5w/4

n

384EcIe
-

M/2
n

8EcIe

where
M = �negative moment at suppports (based on service 

loads) for span being investigated; if values are 
different, use average moment

/n = clear span
Ec = �modulus of elasticity for concrete (see Table A-6 

for normal-weight concrete)

Table 7-1  Permissible Versus Actual Deflection (Example 7-2)

Case Maximum permissible deflection* Actual computed deflection

1 /
180

=
30(12)

180
= 2 in.

¢LL = 0.35 in. (immediate LL)

2 /
360

=
30(12)

360
= 1 in.

¢LL = 0.35 in. (immediate LL)

3 /
480

=
30(12)

480
= 0.75 in.

¢LL + ΔLT = 0.35 + 1.28 = 1.63 in.

4 /
240

=
30(12)

240
= 1.5 in.

¢LL + ΔLT = 0.35 + 1.28 = 1.63 in.

*From ACI 318-08, Table 9.5(b).

n n n n

Figure 7-9  Continuous beam.
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	 2.	 Assume positive moment and calculate the concrete 
clear cover from the bottom (tension) face of the beam 
to the surface of the nearest tension reinforcement:

cc = 1.5 + 0.375 = 1.875 in.

	 3.	 Calculate fs using 23 of fy:

fs =
2
3
  fy =

2
3
 (60,000) = 40,000 psi

	 4.	 Calculate maximum spacing allowed using ACI Equa-
tion (10-4):

 s = 15a40,000
fs

b - 2.5cc = 15a40,000
40,000

b - 2.5(1.875)

 = 10.31 in.

Check the upper limit for ACI Equation (10-4):

12a40,000
fs

b = 12a40,000
40,000

b = 12 in. 7 10.31 in.

(O.K.)

And lastly:

3.37 in. 6 10.31 in.       (O.K.)

When beams are relatively deep, there exists the pos-
sibility for surface cracking in the tension zone areas away 
from the main reinforcing. ACI 318-11, Section 10.6.7, 
requires, for beams having depths h in excess of 36 in., the 
placing of longitudinal skin reinforcing along both side faces 
for a distance h/2 from the tension face of the beam. The 
spacing s between these longitudinal bars or wires shall not 
exceed the spacing as provided in ACI 318-11, Section 10.6.4 
[ACI Equation (10-4)]. Bar sizes ranging from No. 3 to 
No. 5 (or welded wire reinforcement with a minimum area 
of 0.1 in.2 per foot of depth) are typically used.

Example 7-4

Select skin reinforcement for the cross section shown in 
Figure 7-11a. Flexural tension reinforcement is 5 No. 9 bars 
and fy = 60,000 psi.

Solution:

Because h 7 36 in., skin reinforcement is required. The skin 
reinforcing must cover the tension surface for a minimum of 
h/2, or 20.5 in., up from the tension face of the beam. This 

cracks to a width that is generally acceptable in practice. The 
maximum spacing is limited to

s = 15a 40,000
fs

b - 2.5cc … 12a 40,000
fs

b

[ACI Eq. (10-4)]

where
s = �center-to-center spacing of flexural tension 

reinforcement nearest to the tension face, in.
fs = �calculated stress, psi. This may be taken as 23 of the 

specified yield strength.
cc = �clear cover from the nearest surface in tension to 

the surface of the flexural tension reinforcement, in.

ACI 318-11, Section 10.6.5, cautions that if a structure is 
designed to be watertight or if it is to be subjected to very 
aggressive exposure, the provisions of Section 10.6.4 are 
not sufficient and special investigations and precautions are 
required.

Example 7-3

Check the steel distribution for the beam shown in  
Figure 7-10 to establish whether reasonable control of flexural 
cracking is accomplished in accordance with the ACI Code, 
Section 10.6. Use fy = 60,000 psi. Assume d = 30 in.

Solution:
	 1.	 Calculate the center-to-center spacing between the No. 

9 bars:

s =
15 - 2(1.5) - 2(0.375) - 2a1.128

2
b

3
= 3.37 in.

4-#9

4-#9

#3 stirrup

b = 15"

1   " clear (typ.)
1
2

1" clear 

Figure 7-10  Sketch for Example 7-3.

5#9

#3

18"

20.5" (min.)

41"
1  " Cov.

1
2

Cross section
(a)

20.5"
9"

9"

Design sketch
(b)

4#3

Figure 7-11  Sketch 
for Example 7-4.



126	 chapter Seven

The distance from the tension face of the beam to the 
centroid of the tension reinforcement is

1.5 + 0.375 +
1.128

2
= 2.44 in.

Therefore, the required number of spaces N is

N =
20.5 - 2.44

10.31
= 1.75 spaces (Use 2 spaces)

The actual spacing provided is

20.5 - 2.44
2 spaces

≈ 9 in. 6 10.31 in.     (O.K.)

The design is shown in Figure 7-11b.

is shown in Figure 7-11a. Assume No. 3 bars (Ab = 0.11 in.2) 
for the skin reinforcing and calculate the maximum spacing 
s as follows:

 cc = 1.5 + 0.375 = 1.875 in.

 fs =
2
3

 fy =
2
3
 (60,000) = 40,000 psi

 s = 15a40,000
fs

b - 2.5cc = 15a40,000
40,000

b - 2.5(1.875)

 = 10.31 in.

Check upper limit:

12a40,000
fs

b = 12a40,000
40,000

b = 12 in. 7 10.31 in. (O.K.)

15"

24"

#3 stirrup

#3 stirrup

1  " clear (typ.)
1
2

2   "
1
2

  " clear
3
4

8-#10

1" clear

12"

18"

2-#7
#6 @ 8" o.c.

8-#7

1  " 
clear 
(typ.)

1
2

1" clear

6"

(a) (b) (c)

PROBLEM 7-1

Problems

For the following problems, unless otherwise noted, assume 
normal-weight concrete.
	 7-1.	 Locate the neutral axis and calculate the moment of 

inertia for the cracked transformed cross sections 
shown. Use f′c = 4000 psi and fy = 60,000 psi.

	 7-2.	 Find Ig and Icr for the T-beam shown. The effective 
flange width is 60 in., and f′c = 4000 psi.

	 7-3.	 The beam of cross section shown is on a simple span 
of 20 ft and carries service loads of 1.5 kips/ft dead 
load (includes beam weight) and 1.0 kip/ft live load. 
Use f′c = 3000 psi and fy = 60,000 psi.

a.	 Compute the immediate deflection due to dead 
load and live load.

b.	 Compute the long-term deflection due to the dead 
load. Assume the time period for sustained loads 
to be in excess of 5 years.

12"

21"

3-#10

3"

PROBLEM 7-3

4-#9

12"

1
219   " 22"

4"

PROBLEM 7-2
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are 0.6 kip/ft dead load (does not include the beam 
weight) and 1.40 kips/ft live load. Assume that the 
live load is 60% sustained for 6-month periods. Use 
f′c = 3000 psi and fy = 60,000 psi.
a.	 Check the beam for deflections.
b.	 If the beam is unsatisfactory, redesign it so that 

it meets both flexural strength and deflections 
requirements.

	 7-6.	 Calculate the expected long-term deflection due 
to dead load and sustained live load for (a) the slab 
and (b) the beam of the floor system designed for 
Problem 6-4. Assume 10% sustained live load and a 
time period in excess of 5 years.

	 7-7.	 Check the cross sections of Problems 7-1(a) and (b) 
for acceptability under the ACI Code provisions for 
distribution of flexural reinforcement (crack control).

	 7-8.	 Check the distribution of flexural reinforcement for 
the members designed in Problems 2-21 and 2-25. If 
necessary, redesign the steel.

	 7-4.	 Rework Problem 7-3 using a beam on a simple span 
of 26 ft, service load of 0.8 kip/ft dead load (includes 
beam weight) over the full span, and a point live load 
of 12 kips at midspan. Assume tensile reinforcing to 
be three No. 9 bars and f′c = 4000 psi.

	 7-5.	 The floor beam shown is on a simple span of 16 ft. 
The beam supports nonstructural elements likely to 
be damaged by large deflections. The service loads 

11"

17.6" 20"

2  "
1
2

2-#5

3-#9

PROBLEM 7-5
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chapter Eight

these walls is to maintain a difference in the elevation of the 
ground surface on each side of the wall. The earth whose 
ground surface is at the higher elevation is commonly called 
the backfill, and the wall is said to retain this backfill.

All the walls shown in Figure 8-1 have applications in 
either building or bridge projects. They do not necessarily 

8-1  Introduction
Walls are generally used to provide lateral support for an 
earth fill, embankment, or some other material and to sup-
port vertical loads. Some of the more common types of 
walls are shown in Figure 8-1. One primary purpose for 

Walls

	 8-1	 Introduction

	 8-2	 Lateral Forces on 
Retaining Walls

	 8-3	 Design of Reinforced 
Concrete Cantilever 
Retaining Walls

	 8-4	 Design Considerations for 
Bearing Walls

	 8-5	 Design Considerations for 
Basement Walls

	 8-6	 Shear Walls
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Figure 8-1  Common 
types of walls.
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The basement or foundation wall (Figure 8-1e) may act 
as a cantilever retaining wall. The first floor may provide 
an additional horizontal reaction similar to the basement 
floor slab, however, thereby making the wall act as a vertical 
beam. This wall would then be designed as a simply sup-
ported member spanning between the first floor and the 
basement floor slab.

The bridge abutment (Figure 8-1f) is similar in some 
respects to the basement wall. The bridge superstructure 
induces horizontal as well as vertical loads, thus altering the 
normal cantilever behavior.

The bearing wall (Figure 8-1g) may exist with or with-
out lateral loads. A bearing wall may be defined as a wall 
that supports any vertical load in addition to its own weight. 
Depending on the magnitudes of the vertical and lateral 
loads, the wall may have to be designed for combined bend-
ing and axial compression. Bearing walls and basement walls 
are further discussed later in this chapter.

8-2 � Lateral Forces on 
Retaining Walls

The design of a retaining wall must account for all the applied 
loads. The load that presents the greatest problem and is of 
primary concern is the lateral earth pressure induced by the 
retained soil. The comprehensive earth pressure theories 
evolving from the original Coulomb and Rankine theories 
can be found in almost any textbook on soil mechanics.

The magnitude and direction of the pressures as well 
as the pressure distribution exerted by a soil backfill upon a 
wall are affected by many variables. These variables include, 
but are not limited to, the type of backfill used, the drainage 

behave in an identical manner under load, but still serve the 
same basic function of providing lateral support for a mass 
of earth or other material that is at a higher elevation behind 
the wall than the earth or other material in front of the wall. 
Hence they all may be broadly termed retaining structures 
or retaining walls. Some retaining walls may support verti-
cal loads in addition to the lateral loads from the retained 
materials.

The gravity wall (Figure 8-1a) depends mostly on its 
own weight for stability. It is usually made of plain concrete 
and is used for walls up to approximately 10 ft in height. 
The semigravity wall is a modification of the gravity wall 
in which small amounts of reinforcing steel are introduced. 
This, in effect, reduces the massiveness of the wall.

The cantilever wall (Figures 8-1b and 8-2) is the most 
common type of retaining structure and generally is used for 
walls in the range from 10 to 25 ft in height. It is so named 
because its individual parts (toe, heel, and stem) behave as, 
and are designed as, cantilever beams. Aside from its stabil-
ity, the capacity of the wall is a function of the strength of its 
individual parts.

The counterfort wall (Figure 8-1c) may be economical 
when the wall height is in excess of 25 ft. The counterforts 
are spaced at intervals and act as tension members to sup-
port the stem. The stem is then designed as a continuous 
member spanning horizontally between the counterforts.

The buttress wall (Figure 8-1d) is similar to the coun-
terfort wall except that the buttresses are located on the side 
of the stem opposite to the retained material and act as com-
pression members to support the stem. The counterfort wall 
is more commonly used because it has a clean, uncluttered 
exposed face and allows for more efficient use of space in 
front of the wall.

Figure 8-2  Cantilever retaining wall (hw = 12′-0″).  (George Limbrunner)
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where Ka, the coefficient of active earth pressure, has been 
established by both Rankine and Coulomb to be

	 Ka =
1 - sin f
1 + sin f

= tan2 a45° -
f

2
b 	 (8-2)

and

 we = unit weight of earth (lb/ft3)
 f = angle of internal friction (soil on soil)

Ka usually varies from 0.27 to 0.40. The term Kawe in 
Equation (8-1) is generally called an equivalent fluid weight, 
because the resulting pressure is identical to that which 
would occur in a fluid of that weight (units are lb/ft3).

In a similar manner, the total passive earth pressure 
force may be established as

	 Hp = 1
2Kpwe(h′)2	 (8-3)

where h′ is the height of earth and Kp is the coefficient of pas-
sive earth pressure:

Kp =
1 + sin f
1 - sin f

= tan2 a45° +
f

2
b =

1
Ka

Note that Kp usually varies from 2.5 to 4.0.
The total force in each case is assumed to act at one-

third the height of the triangular pressure distribution, as 
shown in Figure 8-3.

Sloping Backfill
If we consider a sloping backfill, the assumed active 
earth pressure distribution is shown in Figure 8-4, where 
Hs = 1

2Kaweh2
b, hb is the height of the backfill at the back of 

the footing, and Ka is the coefficient of active earth pressure. 
Thus

Ka = cos ua cos u - 2cos2 u - cos2 f

cos u + 2cos2 u - cos2 f
b

where u is the slope angle of the backfill and f is as previ-
ously defined. Note that Hs is shown acting parallel to the 
slope of the backfill.

of the backfill material, the level of the water table, the slope 
of the backfill material, added loads applied on the backfill, 
the degree of soil compaction, and movement of the wall 
caused by the action of backfill.

An important consideration is that water must be pre-
vented from accumulating in the backfill material. Walls are 
rarely designed to retain saturated material, which means 
that proper drainage must be provided. It is generally agreed 
that the best backfill material behind a retaining structure is 
a well-drained, cohesionless material. Hence it is the con-
dition that is usually specified and designed for. Materials 
that contain combinations of types of soil will act like the 
predominant material.

The lateral earth pressure can exist and develop in three 
different categories: active state, at rest, and passive state. If 
a wall is absolutely rigid, earth pressure at rest will develop. 
If the wall should deflect or move a very small amount away 
from the backfill, active earth pressure will develop and 
in effect reduce the lateral earth pressure occurring in the 
at-rest state. Should the wall be forced to move toward the 
backfill for some reason, passive earth pressure will develop 
and increase the lateral earth pressure appreciably above 
that occurring in the at-rest state. As indicated, the magni-
tude of earth pressure at rest lies somewhere between active 
and passive earth pressures.

Under normal conditions, earth pressure at rest is of 
such a magnitude that the wall deflects slightly, thus reliev-
ing itself of the at-rest pressure. The active pressure results. 
For this reason, retaining walls are generally designed for 
active earth pressure due to the retained soil.

Because of the involved nature of a rigorous analysis 
of an earth backfill and the variability of the material and 
conditions, assumptions and approximations are made with 
respect to the nature of lateral pressures on a retaining struc-
ture. It is common practice to assume linear active and pas-
sive earth pressure distributions. The pressure intensity is 
assumed to increase with depth as a function of the weight 
of the soil in a manner similar to that which would occur in 
a fluid. Hence this horizontal pressure of the earth against 
the wall is frequently called an equivalent fluid pressure. 
Experience has indicated that walls designed on the basis of 
these assumptions and those of the following discussion are 
safe and relatively economical.

Level Backfill
If we consider a level backfill (of well-drained cohensionless 
soil), the assumed pressure diagram is shown in Figure 8-3. 
The unit pressure intensity py in any plane a distance y down 
from the top is

py = Kawey

Therefore, the total active earth pressure acting on a 1-ft 
width of wall may be calculated as the product of the average 
pressure on the total wall height hw and the area on which 
this pressure acts:

	 Ha = 1
2Kaweh2

w	 (8-1)

Kpweh� Kawehw

Ha 

Hp 

hw

h� 
hw

3

y

Unit
pressure

(passive state)

Unit
pressure

(active state)

Figure 8-3  Analysis of forces acting on walls: level backfill.
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A uniform surcharge over the adjacent area adds the 
same effect as an additional (equivalent) height of earth. 
This equivalent height of earth hsu may be obtained by

hsu =
ws

we

where
ws = surcharge load (lb/ft2)
we = unit weight of earth (lb/ft3)

In effect, this adds a rectangle of pressure behind the 
wall with a total lateral surcharge force assumed acting at 
its midheight, as shown in Figure 8-5. Surcharge loads far 
enough removed from the wall cause no additional pressure 
acting on the wall.

For walls approximately 20 ft in height or less, it is rec-
ommended that the horizontal force component HH simply 
be assumed equal to Hs and be assumed to act at hb/3 above 
the bottom of the footing, as shown in Figure 8-4. The effect 
of the vertical force component HV is neglected. This is a 
conservative approach.

Assuming a well-drained, cohensionless soil backfill 
that has a unit weight of 110 lb/ft3 and an internal friction 
angle f of 33°40′, values of equivalent fluid weight for slop-
ing backfill may be determined as listed in Table 8-1.

Level Backfill with Surcharge
Loads are often imposed on the backfill surface behind a 
retaining wall. They may be either live loads or dead loads. 
These loads are generally termed a surcharge and theoreti-
cally may be transformed into an equivalent height of earth.

Assume equal
to backfill

angle
�

�

Hv

hb
hw

Hs

HH

Kawehb

hb
3

Figure 8-4  Analysis of forces acting on walls: sloping backfill.

Table 8-1 � Kawe Values for Sloping Backfill

u (deg) Kawe (lb/ft3)

  0 32

10 33

20 38

30 54

hw

ws = surcharge
(psf)

Kawehw Kawehsu

hw

3

hw

2

Ha

Hsu

Equivalent height
of earth hsu

Ha =    Kawehw
2 

(due to level backfill)

1
2 Hsu = Kawehsuhw 

(due to surcharge)

Figure 8-5  Forces acting on wall: level backfill and surcharge.
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	 5.	 Assuming that all previous steps are satisfactory, design 
the component parts of the cantilever retaining wall, 
stem, toe, and heel as cantilever beams.

Using a procedure similar to that used for one-way 
slabs, the analysis and design of cantilever retaining walls is 
based on a 12-in. (1-ft)-wide strip measured along the length 
of wall. The tentative proportions of a cantilever retaining 
wall may be obtained from the following rules of thumb (see 
Figure 8-6):

	 1.	 Footing width L: Use 12hw to 23hw.
	 2.	 Footing thickness h: Use 1

10hw.
	 3.	 Stem thickness G (at top of footing): Use 1

12hw.
	 4.	 Toe width A: Use 14L to 13L.
	 5.	 Use a minimum wall batter of 1

4 in./ft to improve the 
efficiency of the stem as a bending member and to 
decrease the quantity of concrete required.

	 6.	 The top of stem thickness D should not be less than 
10 in.

The given rules of thumb will usually result in walls 
that can reasonably be designed. Depending on the spe-
cific conditions, however, dimensions may have to be 
adjusted somewhat to accommodate such design criteria 
as reinforcement limits, shear strength, anchorage, and 
development. One common alternative design approach is 
to assume a footing thickness and then immediately design 
the stem thickness for an assumed steel ratio. Once the stem 
thickness is established, the wall stability can be checked. 
Whichever procedure is used, adjustment of dimensions 
during the design is not uncommon.

Example 8-1

Design a retaining wall for the conditions shown in Figure 8-7. 
Use f ′c = 3000 psi and fy = 60,000 psi. Other design data are 
given in step 2. Assume normal-weight concrete.

Solution:
	 1.	 The general shape of the wall, as shown, is that of a 

cantilever wall, because the overall height of 18 ft is 
within the range in which this type of wall is normally 
economical.

8-3 �D esign of Reinforced 
Concrete Cantilever 
Retaining Walls

A retaining wall must be stable as a whole, and it must have 
sufficient strength to resist the forces acting on it. Four 
possible modes of failure will be considered. Overturning 
about the toe, point O, as shown in Figure 8-6, could occur 
due to lateral loads. The stabilizing moment must be suf-
ficiently in excess of the overturning moment so that an 
adequate factor of safety against overturning is provided. 
The factor of safety should never be less than 1.5 and should 
preferably be 2.0 or more. Sliding on the base of the footing, 
surface OM in Figure 8-6, could also occur due to lateral 
loads. The resisting force is based on an assumed coefficient 
of friction of concrete on earth. The factor of safety against 
sliding should never be less than 1.5 and should preferably 
be 2.0 or more. Excessive soil pressure under the footing 
will lead to undesirable settlements and possible rotation 
of the wall. Actual soil pressures should not be allowed to 
exceed specified allowable pressures, which depend on the 
characteristics of the underlying soil. The structural failure 
of component parts of the wall such as stem, toe, and heel, 
each acting as a cantilever beam, could occur. These must 
be  designed to have sufficient strength to resist all antici-
pated loads.

A general design procedure for specific, known condi-
tions may be summarized as follows:

	 1.	 Establish the general shape of the wall based on the 
desired height and function.

	 2.	 Establish the site soil conditions, loads, and other 
design parameters. This includes the determination of 
allowable soil pressure, earth-fill properties for active 
and passive pressure calculations, amount of surcharge, 
and the desired factors of safety.

	 3.	 Establish the tentative proportions of the wall.
	 4.	 Analyze the stability of the wall. Check factors of safety 

against overturning and sliding and compare actual soil 
pressure with allowable soil pressure.

Surcharge

hw = 18'-0"

Figure 8-7  Sketch for Example 8-1.
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Figure 8-6  Cantilever retaining wall proportions.
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the horizontal loads are said to create an overturning 
moment about the toe. Any vertical loads will tend to 
create rotation about the toe in the opposite direction 
and are therefore said to provide a stabilizing moment.

The factor of safety (FS) against overturning is 
then expressed as

FS =
stabilizing moment

overturning moment

The required minimum factor of safety against 
overturning is normally governed by the applicable 
building code. A minimum of 1.5 is generally consid-
ered good practice. The passive earth resistance of 
the soil in front of the wall is generally neglected in 
stability computations because of the possibility of 
its removal by erosion or excavation.

As discussed previously, the surcharge may be 
converted into an equivalent height of earth,

hsu =
ws

we
=

400
100

= 4 ft

thus adding a rectangle of earth pressure behind 
the wall.

The various vertical and horizontal forces and 
their associated moments are shown in Tables 8-2 
and 8-3 (see Figure 8-9). Note that soil on the toe is 

	 2.	 The design data are unit weight of earth we = 100 lb/ft3,  
allowable soil pressure = 4000 psf, equivalent fluid weight 
Kawe = 30 lb/ft3, and surcharge load ws = 400 psf. The 
desired minimum factor of safety against overturning is 
2.0 and against sliding is 1.5.

	 3.	 Establish tentative proportions for the wall.

	a.	 Footing width:

1
2 to 23 of wall height

1
2(18) to 23(18) = 9 to 12 ft

Use 11 ft-0 in.

	b.	 Footing thickness:

1
10(18) = 1.8 ft

Use 1 ft-9 in.

	c.	 Stem thickness at top of footing:

1
12(18) = 1.5 ft

Use 1 ft-6 in.

	d.	 Toe width:

1
4 to 13 footing width

1
4(11) to 13(11) = 2.75 to 3.67 ft

Use 3 ft-0 in.

	e.	 Use a batter for the rear face of wall approximately 
1
2 in./ft.

	f.	 Top of stem thickness, based on G and a batter of 
1
2 in./ft:

 D = G - (hw - h)12
 = 18 in. - (18 ft - 1.75 ft)12 in./ft = 9.88 in.

Use 10 in. Therefore the calculated batter is

total batter
stem height

=
18 in. - 10 in.
18 ft - 1.75 ft

= 0.492 in./ft

The preliminary wall proportions are shown in  
Figure 8-8.

	 4.	 For the stability analysis, use unfactored weights and 
loads in accordance with the ACI Code, Section 15.2.2.

	a.	 Factor of safety against overturning: The tendency of 
the wall to overturn is a result of the horizontal loads 
acting on the wall. An assumption is made that in 
overturning, the wall will rotate about the toe, and 

10"

18'-0"

3'-0" 1'-6"

1'-9"

11'-0"

6'-6"

Figure 8-8  Tentative wall proportions, Example 8-1.

Table 8-2  Stabilizing Moments (Vertical Forces)

Force Magnitude (lb) Lever arm (ft) Moment (ft-lb)

W1 0.833(16.25)(150) =    2030   3.42 6940

W2 7.17(16.25 + 4.0)(100) = 14,520   7.42 107,700

W3 11
2 2 (16.25)(0.67)(50) =      272   4.05 1102

W4 11.0(1.75)(150) =    2890 5.5   15,900

πW = 19,710 πM = 131,600
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The factor of safety against sliding may be 
expressed as

 FS =
resisting force F

actual horizontal force ΣH

 =
9860
7020

= 1.40

The required minimum factor of safety for this prob-
lem is 1.5; hence, the resistance against sliding is 
inadequate.

One solution to this problem is to repropor-
tion the wall until the requirements are met. Rather 
than change the wall, we will use a base shear key 
to mobilize the passive resistance of the soil and 
in effect increase the resisting force F and subse-
quently increase the factor of safety. The design of 
the base shear key will be one of the last steps in the 
design of the retaining wall.

	c.	 Soil pressures and location of resultant force: The 
soil pressure under the footing of the wall is a func-
tion of the location of the resultant force, which in 
turn is a function of the vertical forces and horizontal 
forces. It is generally desirable and usually required 
that for walls on soil, the resultant of all the forces 
acting on the wall must lie within the middle third of 
the base. When this occurs, the resulting pressure 
distribution could be either triangular, rectangular, 

neglected. Both stabilizing and overturning moments 
are calculated with respect to point O in Figure 8-9.

In Table 8-2, note that W2 is the weight of soil 
and surcharge on the heel from the right-hand edge 
of the heel to the vertical dashed line in the stem. The 
weight difference between reinforced concrete and 
soil (50 lb/ft3) in the triangular portion that is the back 
of the stem is represented by W3.
The factor of safety against overturning is

FS =
131,600
48,600

= 2.71 7 2.0    (O.K.)

	b.	 Factor of safety against sliding: The tendency of the 
wall to slide is primarily a result of the horizontal 
forces, whereas the vertical forces cause the fric-
tional resistance against sliding.

The total frictional force available (or resisting 
force) may be expressed as

F = f(ΣW)

where f = coefficient of friction between the concrete 
and soil and πW = summation of vertical forces (see 
Figure 8-9). A typical value for the coefficient of fric-
tion is f = 0.50. Then the resisting force F can be 
calculated:

 F = f(ΣW )

 0.50(19,710) = 9860 lb

W1

W3

W4

W2

10"

10" 8"

3'-0" 6'-6"

1'-9"

11'-0"
O

hw = 18'-0"
H2 =

Kawehsuhw

Kawehsu

H1 =    Kaweh2
w

1
2

Kawehw

Figure 8-9  Stability analysis diagram.

Table 8-3  Overturning Moments (Horizontal Forces)

Force Magnitude (lb) Lever arm (ft) Moment (ft-lb)

H1 1/2(30)(18)2 = 4860 6.0 29,200

H2 4(30)(18) = 2160 9.0 19,440

πH = 7020 πM = 48,600
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With a footing length of 11 ft, the middle third has 
a length of 11

3 = 3.667 ft. Eccentricity e is measured 
from the centerline of the footing and because

e = 1.29 ft …
3.667 ft

2
= 1.834 ft

the resultant lies in the middle third of the footing, 
and the resulting pressure distribution is trapezoidal. 
If the resultant intersected the base at the edge of 
the middle third (i.e., e = L

6 = 1.833 ft), the pressure 
distribution would have been triangular, and if e = 0, 
the pressure distribution would have been rectangu-
lar, indicating a uniform soil pressure distribution.

The pressures may now be calculated consider-
ing πW applied as an eccentric load on a rectangular 
section 11 ft long by 1 ft wide (this is a typical 1-ft-wide 
strip of the wall footing). The pressures are obtained 
by using the basic equations for bending and axial 
compression:

p =
P
A
{ Mc

I

where

p = unit soil pressure intensity under the footing

P = total vertical load (πW)

A = footing cross-sectional area [(L)(1.0)]

M = moment due to eccentric load [(πW)(e)]

c = �distance from centerline of footing to outside 
edge (L/2)

I = �moment of inertia of footing with respect to its 
centerline [(1.0)(L)3/12]

The expression given previously may be rewritten as

p =
ΣW

(L)(1.0)
{

(ΣW)(e)(L>2)

1.0(L)3>12

Simplifying and rearranging yields

p =
ΣW
L

 a1 { 6e
L
b

Substituting, we obtain

 p =
19,710

11
 c1 { 6(1.29)

11
d

 =  1792(1 { 0.704)

 maximum p = 1792(1.704) = 3050 psf

 minimum p = 1792(0.296) = 530 psf

The resulting pressures are less than 4000 psf and 
are therefore satisfactory. The resulting pressure dis-
tribution beneath the footing is shown in Figure 8-11.

	 5.	 Design the component parts.

	a.	 Design of heel: The load on the heel is primarily earth 
dead load and surcharge, if any, acting vertically 
downward. With the assumed straight-line pressure 
distribution under the footing, the downward load is 

or trapezoidal in shape, with the soil in compression 
under the entire width of the footing. The resulting 
maximum foundation pressure must not exceed the 
safe bearing capacity of the soil.

The first step is to locate the point at which the 
resultant of the vertical forces πW and the horizon-
tal forces πH intersects the bottom of the footing. 
This may be visualized with reference to Figure 8-10. 
Note that πW and πH are first combined to form the  
resultant force R. Because R may be moved 
anywhere along its line of action, it is moved to the 
bottom of the footing, where it is then resolved back 
into its components πW and πH. The moment about 
point O due to the resultant force acting at the bot-
tom of the footing must be the same as the moment 
effect about point O of the components πW and πH. 
Therefore, using the components in the plane of the 
bottom of the footing, the location of the resultant 
that is a distance x from point O may be determined. 
Note that the moment due to πH at the bottom of the 
footing is zero:

ΣW(x) = ΣWm - ΣHn

As may be observed, πWm is the stabilizing 
moment of the vertical forces with respect to point O 
and πHn is the overturning moment of the horizontal 
forces with respect to the same point. Hence, this 
expression may be rewritten as

 ΣW(x) = stabilizing M - overturning M

 x =
stabilizing M - overturning M

ΣW

With reference to Figure 8-9,

x =
131,600 - 48,600

19,710
= 4.21 ft from toe

Therefore the eccentricity e with respect to the 
centerline of the footing is

e = 5.5 - 4.21 = 1.29 ft

�W

�W

�H

�H

R

R

L

ex

n

m

O

footing width

Figure 8-10  Resultant of forces acting on wall.
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The bending of the heel is such that tension occurs 
in the top of the footing.

The maximum shear may be obtained by taking 
a summation of vertical forces on the heel side of 
point A (using service loads):

V = 13,160 + 1706 = 14,870 lb

The maximum moment and shear must be mod-
ified for strength design. As the loads on the heel 
are predominantly dead load, a load factor of 1.2 is 
used. This in effect considers the surcharge to be a 
dead load. This is acceptable, however, because of 
the conservative nature of the design. Thus

 Mu = 48,300(1.2) = 58,000 ft@lb

 Vu = 14,870(1.2) = 17,840 lb

The footing size and reinforcement (for heel) will 
be determined next. Because it commonly occurs 
that shear strength will be the controlling factor 
with respect to footing thickness, the shear will be 
checked first. The heel effective depth available, 
assuming 2-in. cover (ACI Code, Section 7.7.1) and 
No. 8 bars, is

d = 21 - 2 - 0.5 = 18.5 in.

The shear strength fVu of the heel, if no shear 
reinforcing is provided, is the shear strength of the 
concrete alone:

 fVn = fVc = f(22f ′c)bd

 =  0.75(2)13000(12)(18.5)

 fVn = 18,240 lb

Therefore fVn 7 Vu (O.K.).
The tensile reinforcement requirement may now 

be determined in the normal way. Assuming f = 0.90:

 required k =
Mu

fbd2 =
58.0(12)

0.9(12)(18.5)2

 = 0.1883 ksi

Therefore, from Table A-8, the required r = 0.0033, 
Pt 7 0.005, and f = 0.90 (O.K.). The required steel 
area is then calculated from

required As = rbd = 0.0033(12)(18.5) = 0.73 in.2

The minimum area of steel required by the ACI Code, 
Section 10.5.1, may be obtained using Table A-5:

As,min = 0.0033(12)(18.5) = 0.73 in.2

As discussed in Section 2-8, As,min must be provided 
wherever reinforcement is needed, except where 
such reinforcement is at least one-third greater 
than  that required by analysis (see the ACI Code, 
Section 10.5.3).

The ACI Code, Section 10.5.4, also permits 
the use of a minimum reinforcement equal to that 
required for shrinkage and temperature steel in 

reduced somewhat by the upward-acting pressure. 
For design purposes, the heel is assumed to be a 
cantilever beam 1 ft in width and with a span length 
equal to 6 ft-6 in. fixed at the rear face of the wall 
(point A in Figure 8-11).

The weight of the footing is

1.75(150)(6.50) = 1706 lb

The earth and surcharge weight is

6.50(20.25)(100) = 13,160 lb

The slope of pressure distribution under the 
footing is

3050 - 530
11

= 229 psf/linear foot

Thus far, all analysis has been based on ser-
vice (unfactored) loads because allowable soil 
pressures are determined using a certain factor of 
safety against reaching pressures that will cause 
unacceptable settlements. Reinforced concrete, 
however, is designed on the basis of factored loads. 
The ACI Code, Section 9.2.1, specifies that where 
lateral earth pressure H must be included in design 
and adds to the primary load effect, the strength U 
shall be at least equal to 1.2D + 1.6L + 1.6H. Where 
the lateral earth pressure H opposes the primary load 
effect, a load factor of 0.9 should be used on H when 
the lateral earth pressure is permanent and a load 
factor of zero on H for all other conditions.

A conservative approach to the design of the 
heel is to use factored loads, as required, and to 
ignore the relieving effect of the upward pressure 
under the heel. This is the unlikely condition that 
would exist if there occurred a lateral force overload 
(and no associated increased vertical load) causing 
uplift of the heel.

The maximum moment may be obtained by 
taking a summation of moments about point A 
(utilizing service loads):

M = (13,160 + 1706) 
6.50

2
= 48,300 ft@lb

1 ft
229 psf/ft

530 psf

1706 lb

13,160 lb
A

6'-6"

1'-9"

3050
psf

Figure 8-11  Pressure distribution under footing.
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procedure of using 1.6 is recommended. In addition, 
as the weight of the footing reduces the effect of the 
horizontal earth pressure, a factor of 0.9 is used for 
the footing dead load, as recommended by the ACI 
Code (Section 9.2.1).

The design moment Mu is then calculated as

 Mu = 1.611
22 (3050)(3.0)212

32
 + 1.611

22 (2360)(3.0)211
32 - 0.9(788)a3.0

2
b

 = 19,240 ft@lb

The bending of the toe is such that tension occurs in 
the bottom of the footing.

The design shear Vu is obtained by a summa-
tion of vertical forces on the toe side of point B and 
applying load factors, as previously discussed:

 Vu = 1.611
22 (3050)(3.0)

 + 1.611
22 (2360)(3.0) - 0.9(788)

 = 12,270 lb

Footing size and reinforcement, based on the 
requirements of the toe, are treated as they were for 
the heel. The shear strength fVn of the toe is calcu-
lated from

 fVn = fVc = f(22f ′c)bd

 = 0.75(2)13000(12)(17.5)

 fVn = 17,250 lb

 fVn 7 Vu

Therefore the thickness of the footing is satisfactory.
Based on the determined Mu, and assuming 

f = 0.90:

 required k =
Mu

fbd2 =
19.24(12)

0.9(12)(17.5)2

 = 0.0698 ksi

Therefore, from Table A-8,

required r = 0.0012

structural slabs of uniform thickness as furnished 
in the ACI Code, Section 7.12. This will always 
be somewhat less than that required by the ACI 
Code, Section 10.5.1, but not necessarily less than 
that specified by the ACI Code, Section 10.5.3. 
For footings, the shrinkage and temperature steel 
requirement for slabs of uniform thickness will be 
used as an absolute minimum in this text.

For the heel reinforcement for this retaining wall, 
because the required steel area is equal to As,min, we 
will select No. 7 bars at 9 in. o.c. (As = 0.80 in.2).

	b.	 Design of toe: The load on the toe is primarily a result 
of the soil pressure distribution on the bottom of the 
footing acting in an upward direction. For design 
purposes, the toe is assumed to be a cantilever 
beam 1 ft in width and with a span length equal to 
3 ft-0 in. fixed at the front face of the wall (point B 
in   Figure  8-12). The soil on the top of the toe is 
conservatively neglected. Forces and pressures are 
calculated with reference to Figure 8-12.

As the reinforcing steel will be placed in the 
bottom of the footing, the effective depth available, 
assuming a 3-in. cover and No. 8 bars, is

d = 21 - 3 - 0.5 = 17.5 in.

The weight of footing for the toe design is

1.75(3.0)(150) = 788 lb

The soil pressure directly under point B, recalling 
that the slope of the pressure diagram is 229 psf/ft, is

3050 - 3.0(229) = 2360 psf

The design moment Mu may be obtained by a 
summation of moments about point B in Figure 8-12.  
Both the moment and the shear must be modified 
for strength design. According to the ACI Code,  
Section 9.2.1, a load factor of 1.6 should be used 
for horizontal earth pressure and for live load, 
whereas 1.2 should be used for dead load. Because 
the soil pressure under the toe is largely the result 
of horizontal earth pressure, however, a conservative 

1 ft
229 psf/ft

530 psf

788 lb

B
3'-0"

1'-9"

3050 psf

Face of wall

2360 psf

Figure 8-12  Pressure distribution for toe design.
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The design moment Mu in the stem may be 
obtained by a summation of moments about the top 
of the footing. Both shears and moments must be 
modified for strength design. Because the forces are 
due to lateral earth pressure, a factor of 1.6 should 
be used. Mu may then be calculated as

 Mu = 1.6(3960)(5.42) + 1.6(1950)(8.125)

 = 59,700 ft@lb

The design shear Vu is obtained by a summation 
of the horizontal forces acting on the stem above the 
top of the footing:

 Vu = 1.6(3960) + 1.6(1950)

 = 9460 lb

The stem size and reinforcement requirements 
will be determined next. Because the stem is assumed 
to be a cantilever slab, Vu as a limit may equal fVn, 
where Vn = Vc. It is not practical to reinforce the stem 
for shear; therefore, if shear strength is inadequate, 
stem thickness must be increased. The effective 
depth of the stem at the top of the footing, assuming 
2-in. cover and No. 8 bars, is

d = 18 - 2 - 0.5 = 15.5 in.

The shear strength fVn of the stem (at the top of 
the footing), if no shear reinforcement is provided, is 
the shear strength of the concrete alone:

 fVn = fVc = f22f ′c bd

  = 0.75(2)13000(12)(15.5)

 fVn = 15,280 lb

 fVn 7 Vu

Thus, the stem thickness need not be increased. 
Based on Mu at the bottom of the stem and assum-
ing f = 0.90,

 required k =
Mu

fbd2 =
59.7(12)

0.9(12)(15.5)2

 =  0.2761 ksi

Therefore, from Table A-8, the required r = 0.0049, 
and Pt 7 0.005, so f = 0.90. The required steel area is

required As = rbd = 0.0049(12)(15.5) = 0.91 in.2

The minimum area of steel required may be 
obtained using Table A-5:

As,min = 0.0033(12)(15.5) = 0.61 in.2

Because required As 7 As,min, the calculated required 
As controls. Use No. 7 bars at 71

2 in. o.c. (As = 0.96 in.2).
The stem reinforcement pattern will be investi-

gated more closely. As the moment and shear vary 
along the height of the wall, it is only logical that the 
steel requirements also vary. A pattern is usually 

Note that Pt 7 0.005. Therefore f = 0.90. The required 
steel area is

required As = rbd = 0.0012(12)(17.5) = 0.25 in.2

The minimum area of steel required may be obtained 
using Table A-5:

As,min = 0.0033(12)(17.5) = 0.69 in.2

Because required As 6 As,min, other minimum steel 
criteria should be checked to establish a controlling 
minimum value:

1.	 Provide one-third additional reinforcing as out-
lined in the ACI Code, Section 10.5.3:

As,min = 1.33(0.25) = 0.33 in.2

2.	 Check the required steel area based on the abso-
lute minimum of shrinkage and temperature steel 
required for structural slabs of uniform thickness 
(ACI Code, Section 7.12):

 required As = 0.0018bh

 = 0.0018(12)(21) = 0.45 in.2

As we consider the shrinkage and temperature steel 
requirement as an absolute minimum, use No. 7 bars 
at 16 in. o.c. (As = 0.45 in.2).

	c.	 Design of stem: The load on the stem is primarily lat-
eral earth pressure acting (in this problem) horizon-
tally. For design purposes, the stem is assumed to 
be a vertical cantilever beam 1 ft in width and with a 
span length equal to 16 ft-3 in. fixed at the top of the 
footing.

The loads acting on the stem from the top of 
the  wall to the top of the footing are depicted in 
Figure  8-13. The magnitudes of the horizontal 
forces are

 Hs1 = 1
2 (30)(16.25)2 = 3960 lb

 Hs2 = 4(30)(16.25) = 1950 lb

Hs1

Hs2

Kawehsu  = 30(4) psf
Kawehs  = 30(16.25) psf

5.42'
8.125'

Top of footing

hs = 16'-3"

Figure 8-13  Forces acting on stem.
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Summing the moments about a plane 5 ft below 
the top of the wall and introducing the appropriate 
load factor,

 Mu = 1.6(375)a5.0
3

b + 1.6(600)a5.0
2

b

 = 3400 ft@lb

With reference to Figure 8-15, the moment at 10 ft 
below the top of the wall may be calculated:

 Hs1 = 1
2 (30)(10.0)2 = 1500 lb

 Hs2 = 4(30)(10.0) = 1200 lb

and

 Mu = 1.6(1500)a10.0
3

b + 1.6(1200)a10.0
2

b

 = 17,600 ft@lb

The three Mu values may now be plotted as the 
solid curve in Figure 8-16. This diagram will reflect 

created whereby some of the stem reinforcement 
is cut off where it is no longer required. The actual 
pattern used is the choice of the designer, based on 
various practical constraints.

A typical approach to the creation of a stem 
reinforcement pattern is first to draw the complete 
Mu diagram for the stem and then to determine 
bar cutoff points using the procedure discussed in 
Chapter 5. Stem moments due to the external loads 
will be calculated at 5 ft from the top of the wall and 
at 10 ft from the top of the wall. These distances are 
arbitrary and should be chosen so that a sufficient 
number of points will be available to draw the Mu 
diagram.

With reference to Figure 8-14, the moment at 
5  ft from the top of the wall is calculated by first 
determining the horizontal forces:

 Hs1 = 1
2 (30)(5.0)2 = 375 lb

 Hs2 = 4(30)(5.0) = 600 lb

hx = 5'-0"
Hs2

Hs1

2.5'
1.67'

30(4)
Kawehsu

30(5)
Kawehx

Figure 8-14  Stem analysis.

30(4)
Kawehsu

30(10)
Kawehx

5.0'

3.33'

Hs2

Hs1

hx = 10'-0"

Figure 8-15  Stem analysis.
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Because the effective depth of the stem steel at 
the top of the footing is 15.5 in. and the wall batter is 
approximately 0.492 in./ft, the effective depth of the 
stem steel at 4.25 ft above the top of the footing may 
be calculated as follows:

 d = 15.5 - 4.25(0.492) = 13.4 in.

 12db = 12(0.875) = 10.5 in.

Therefore the required length of bar above the top of 
the footing would be

4.25 +
13.4
12

= 5.37 ft

Use 5 ft 5 in. (5.42 ft).
Check the required minimum area of steel, 

As,min, at the theoretical cutoff point to ensure that 
discontinuing half of the steel will not violate this 
code requirement. Once alternate bars have been 
terminated, the remaining steel will be No. 7 bars at 
15 in. (As = 0.48 in.2). At the theoretical cutoff point 
4.25 ft above the top of the footing, the effective 
depth d = 13.4 in. From Table A-5,

 As,min = 0.0033bd

 = 0.0033(12)(13.4) = 0.53 in.2

This is unsatisfactory, because the steel area 
provided is less than As,min. However, recall from 
previous discussions that the minimum reinforcing 
requirement need not be applied if the reinforcing 
provided is one-third greater than that required by 
analysis. Therefore, a simple solution is to move the 
cutoff point upward to where the reinforcing pro-
vided is one-third greater than required. This can 
be accomplished by drawing a 1.33 * Mu curve and 
reestablishing the theoretical cutoff point for alter-
nate No. 7 bars. At this cutoff point, one-third more 
steel is provided than is required; therefore the mini-
mum steel requirement does not apply.

Multiplying the previously determined design 
moments Mu by 1.33, the following moments are 
obtained:

At 5 ft below the top of the wall:

Mu = 1.33(3400) = 4520 ft@lb

At 10 ft below the top of the wall:

Mu = 1.33(17,600) = 23,400 ft@lb

At the top of the footing:

Mu = 1.33(59,700) ft@lb = 79,400 ft@lb

Plotting this moment curve (see the dashed line on 
Figure 8-16) and scaling the distance above the top 
of the footing to theoretical cutoff point, we arrive at 
a value of 5.75 ft, or 5 ft-9 in. The bars must extend 
past this theoretical cutoff point a distance equal to 

both the design moment and moment strength with 
respect to the distance from the top of the wall and 
must be plotted to scale.

The moment strength fMn of the stem at various 
locations may be computed from the expression

fMn = fbd2k

Because we are primarily attempting to establish a 
cutoff location for some vertical stem reinforcement, 
the moment strength will be based on a pattern of 
alternate vertical bars being cut off. With alternate 
bars cut off, the remaining reinforcement pattern is 
No. 7 bars at 15 in. o.c., which furnishes an As = 
0.48 in.2 Caution must be exercised that the spacing 
of the remaining bars does not exceed three times 
the wall thickness or 18 in., whichever is less.

The moment strength will be computed at the 
top of the wall and at the top of the footing, neglect-
ing minimum steel requirements at this time. As the 
rear face of the wall is battered, the effective depth 
varies and may be computed as follows:

 top of wall: d = 10 - 2 - 0.5 = 7.5 in.

 top of footing: d = 18 - 2 - 0.5 = 15.5 in.

At the top of the wall, with half of the stem bars cut off:

r =
As

bd
=

0.48
12(7.5)

= 0.0053

Therefore, from Table A-8, k = 0.2982 ksi. Then

 fMn =
0.9(12)(7.5)2

12
 (0.2982)

 = 15.10 ft.@kips

At the top of the footing,

r =
As

bd
=

0.48
12(15.5)

= 0.0026

Therefore, from Table A-8, k = 0.1512 ksi. Then

 fMn =
0.9(12)(15.5)2

12
 (0.1512)

 = 32.7 ft.@kips

These two values (fMn) may now be plotted in 
Figure 8-16. A straight line will be used to approxi-
mate the variation of f Mn for No. 7 bars at 15 in. o.c. 
from the top to the bottom of the wall.

The intersection of the f Mn line and the Mu solid 
curve establishes a theoretical cutoff point for alter-
nate vertical bars based on strength requirements. 
This location may be determined graphically by scal-
ing on Figure 8-16. The scaled distance is 12.0 ft 
below the top of the wall or 4 ft-3 in. above the top 
of the footing. The No. 7 bar must be extended past 
this theoretical cutoff point a distance equal to the 
effective depth of the member or 12 bar diameters, 
whichever is larger.
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	d.	 Additional design details: Check the anchor-
age requirements for the stem steel (No. 7 bars at 
71

2 in.  o.c.). Assume all steel is uncoated. Note that 
anchorage requirements into the stem and into the 
footing may differ for these bars. Anchorage length 
required in the stem will be equal to or greater than that 
required in the footing and will also impact the splice 
length. Therefore, stem anchorage will be checked.

1.	 From Table 5-1, KD = 82.2.

2.	 Establish values for the factors ψt, ψe, ψs, l.

a.	 ψt = 1.0 (the bars are not top bars).

b.	 The bars are uncoated; ψe = 1.0.

c.	 The bars are No. 7.; ψs = 1.0.

d.	 Normal-weight concrete is used; l = 1.0.

3.	 The product ψt * ψe = 1.0 6 1.7. (O.K.)

4.	 Determine cb. Based on cover (center of bar to 
nearest concrete surface), consider the clear cov-
er and one-half the diameter of the No. 7 bar:

cb = 2 +
0.875

2
= 2.44 in.

Based on bar spacing (one-half the center-to-
center distance):

cb = 0.5(7.5) = 3.75 in.

Therefore use cb = 2.44 in.

5.	 Ktr is taken as zero. There is no transverse steel 
crossing the potential plane of splitting.

6.	 Check (cb + Ktr)/db … 2.5:

cb + Ktr

db
=

2.44 + 0
0.875

= 2.79 7 2.5

Use 2.5.

7.	 Calculate the excess reinforcement factor:

KER =
As required

As provided
=

0.91
0.96

= 0.95

8.	 Calculate /d.

a.	 Omitting KER (this calculated value of /d will be 
used shortly for splice length determination):

 /d =
KD

l £
ψtψeψs

acb + Ktr

db
b §db

 =
82.2
1.0

 a1.0(1.0)(1.0)

2.5
b (0.875)

 = 28.8 in. 7 12 in.      (O.K.)

b.	 Including KER from step 7, the required anchor-
age length is

/d = 28.8(0.95) = 27.4 in. 7 12 in.  (O.K.)

Use /d = 28 in. (minimum).
With the footing thickness equal to 21 in. 

and a minimum of 3 in. of cover required for 

the greater of the effective depth of the member or 
12 bar diameters.

 d = 15.5 - 5.75(0.492) = 12.67 in.

 12db = 12(0.875) = 10.5 in.

Adding 12.67 in. to the previously determined 
theoretical cutoff point above the top of the footing, 
we have

5.75 +
12.67

12
= 6.81 ft

Use 6 ft-10 in. (6.83 ft).
Therefore, terminate alternate No. 7 bars at 

6 ft-10 in. above the top of the footing.
The ACI Code, Section 12.10.5, stipulates that 

flexural reinforcement must not be terminated in a 
tension zone unless one of several conditions is sat-
isfied. One of these conditions is that the shear at the 
cutoff point does not exceed two-thirds of the shear 
permitted. Therefore check the shear at the actual 
cutoff point, 6.83 ft above the top of the footing 
(9.42 ft below the top of the wall; see Figure 8-17).

For the shear strength calculation, the wall 
thickness at a height of 6.83 ft above the top of the 
footing is

18.0 - 6.83 (0.492) = 14.64 in.

from which d may be calculated as

 d = 14.64 - 2 - 0.5 = 12.14 in.

 Hs1 = 1
2(30)(9.42)2 = 1331 lb

 Hs2 = 4(30)(9.42) = 1130 lb

 total = 2460 lb

 Vu = 2460(1.6) = 3940 lb

 23fVn = 2
3fVc = 2

3f(22f ′c)bd

 = 2
3(0.75)(2)13000(12)(12.14)

 23fVn = 7980 lb

 23fVn 7  Vu

In summary, alternate vertical stem reinforcing 
bars may be stopped at 6 ft-10 in. above the top 
of the footing (see the typical wall section shown in 
Figure 8-21 later in this chapter).

9.42'

6.83'
1'-6" 30(4) 30(9.42)

Batter = 0.492 in./ft

Hs2
Hs1

Figure 8-17  Shear at bar cutoff point.
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For vertical steel,

 0.0012(12)(14) = 0.20 in.2/ft of horizontal length

 = (0.20)(0.67) = 0.14 in.2

Use No. 4 bars at 17 in. (As = 0.14 in.2) in 
the front face. No additional vertical steel is 
needed in the rear face.

Rear face of wall, not exposed, for hori-
zontal steel,

0.34(0.33) = 0.11 in.2

Use No. 4 bars at 18 in. (As = 0.13 in.2).
Longitudinal reinforcement in the foot-

ing should provide a steel area equal to that 
required for shrinkage and temperature in 
slabs. This is a conservative and acceptable 
approach because temperature and shrinkage 
exposure are ordinarily less severe for footings 
than for slabs. These bars serve chiefly as bar 
supports and spacers to hold the main steel in 
place during construction. Thus

 required As = 0.0018(11 ft)(1.75 ft)(144 in.2/ft)

 = 4.99 in.2

Use 12 No. 6 bars (As = 5.28 in.2), as shown in 
Figure 8-20 later in this chapter.

Transverse reinforcement in the footing 
need not run the full width of the footing. Prop-
er anchorage length must be provided from the 
point of maximum tensile stress, however.

Check anchorage for the top transverse (heel) steel in 
the footing (No. 7 bars at 9 in. o.c.). This calculation  
for /d follows the eight-step procedure presented  
in Chapter 5, Section 5-2, and is summarized as 
follows:

1.	 KD = 82.2

2.	 ψt = 1.3, ψe = 1.0, ψs = 1.0, l = 1.0

3.	 ψt * ψe = 1.3 (O.K.)

4.	 cb = 2.44 in.

5.	 Ktr = 0

6.	 (cb + Ktr)/db = 2.79 in. Use 2.5 in.

7.	 KER = 0.91

8.	 /d = 34 in.

Check the anchorage of the bottom transverse (toe) 
steel in the footing (No. 7 bars at 16 in. o.c. As before, 
this /d calculation follows the procedure presented in 
Chapter 5 and is summarized as follows:

1.	 KD = 82.2

2.	 ψt = 1.0, ψe = 1.0, ψs = 1.0, l = 1.0

3.	 ψt * ψe = 1.0 (O.K.)

4.	 cb = 3.44 in.

5.	 Ktr = 0

the steel at the bottom of the footing, the 
anchorage length available is 21 - 3 = 18 in. 
This anchorage length is not adequate. Rather 
than hook the bars, however, the bars will be 
extended into a footing base shear key that 
will be used to increase the sliding resistance 
of the wall (see the check on factor of safety 
against sliding).

The length of splice required for main 
stem reinforcing steel (see the typical wall sec-
tion shown in Figure 8-21 later in this chapter) 
may be calculated recognizing that the class 
B splice is applicable for this condition (see 
Chapter 5, Section 5-7). Therefore the required 
length of the splice is calculated from

1.3(28.8) = 37.4 in.

Use 38 in. Note that the preceding calculation 
omits the effect of excess reinforcement.

Stem face steel in the form of horizontal 
and vertical reinforcement will be provided 
as per the ACI Code, Section 14.3. The mini-
mum horizontal reinforcement is specified in 
Section 14.3.3. Although the minimum vertical 
reinforcement requirement of Section 14.3.2 
does not strictly apply to reinforced concrete 
cantilever retaining walls, it is considered good 
practice to provide some vertical bars in the 
exposed face of the wall. The minimum rec-
ommended steel for deformed bars not larger 
than No. 5 with specified yield strength of not 
less than 60,000 psi is as follows:

horizontal bars (per foot of height of wall):
As = 0.0020bt

vertical bars (per foot of wall horizontally):
As = 0.0012bt

where t = thickness of the wall.
The code also stipulates that walls more 

than 10-in. thick, except basement walls, 
must have reinforcement for each direction in 
each face of the wall. The exposed face must 
have a minimum of one-half and a maximum 
of two-thirds the total steel required for each 
direction. The maximum spacing for the steel 
must not exceed three times the wall thickness 
nor 18 in. (ACI Code, Section 14.3.5) for both 
vertical bars and horizontal bars. For the front 
face of the wall (exposed face), use two-thirds 
of the total steel required and an average stem 
thickness = 14 in.

For horizontal steel,

 0.0020(12)(14) = 0.34 in.2/ft of height

 = 0.34(0.67) = 0.23 in.2

Use No. 4 bars at 10 in. (As = 0.24 in.2).
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will be provided in the form of dowels. (A dowel is 
defined as a short bar that connects two separately 
cast sections of concrete.) The dowels will be placed 
approximately perpendicular to the shear plane.

As a limit,

Vu = fVn

where Vu is shear force applied at the cracked plane. 
Substituting for Vn,

Vu = fAvffym

Solving for Avf,

 required Avf =
Vu

ffym

 =
9460

(0.75)(60,000)(1.0)

 = 0.21 in.2 per ft

It is desirable to distribute the shear-friction rein-
forcement across the width of the contact surface. 
Therefore provide 0.21/2 = 0.11 in.2/ft in each face. 
Use No. 4 bars at 18 in. in each face. This will provide 
0.13 in.2/ft in each face for a total of 0.26 in.2/ft. Then

 shear strength Vn = Avf fym

 = (0.26)(60,000)(1.0)

 = 15,600 lb

The ACI Code, Section 11.6.5, stipulates that the 
maximum Vn for concrete placed monolithically or 
against hardened concrete intentionally roughened as 
previously described, shall not exceed the smallest of

0.2f ′cAc, (480 + 0.08f ′c)Ac, and 1600 Ac

where Ac is the contact area resisting the shear 
transfer, and for all other cases, Vn shall not exceed 
the smaller of

0.2f ′cAc and 800 Ac

Thus, checking the upper limit for Vn:

 0.2f ′cAc = 0.2(3000)(12)(18) = 129,600 lb

 (480 + 0.08f ′c)Ac = [480 + 0.08(3000)](12)(18)

 = 155,500 lb

 1600 Ac = 1600(12)(18) = 346,000 lb

 Calculated Vn = 15,600 lb V 129,600 lb (O.K.)

The development length for the No. 4 dowels 
(18 in. o.c.) must be furnished into both the stem and 
the footing. These are considered to be tension bars. 
This calculation for /d follows the eight-step pro-
cedure presented in Chapter 5, Section 5-2, and is 
summarized as follows:

1.	 KD = 82.2

2.	 ψt = 1.0, ψe = 1.0, ψs = 0.8, l = 1.0

3.	 ψt * ψe = 1.0 (O.K.)

6.	 (cb + Ktr)/db = 3.93 Use 2.5

7.	 KER = 1.0

8.	 /d= 28.8 in. Use 29 in.

These details are included in the typical wall 
section, Figure 8-21.

The stem and the footing are elements cast at dif-
ferent times and a shear key will be used between the 
two. This is common practice. We will use a depressed 
key formed by a 2 * 6 plank (dressed dimensions 
11

2 * 51
2), as shown in Figure 8-21. The need for a 

shear key is questionable, because considerable slip 
is required to develop the key for purposes of later-
al force transfer. It may be considered as an added 
mechanical factor of safety, however.

The shear-friction design method of the ACI 
Code Section 11.6 should be used to design for the 
transfer of the horizontal force between the stem and 
the footing. This approach eliminates the need for 
the traditional shear key. The shear-friction approach 
assumes that all of the horizontal force will be trans-
ferred through friction that develops on the contact 
surface between the two elements. The magnitude 
of the force that can be so transmitted will depend 
on the characteristics of the contact surfaces and on 
the existence of adequate shear-friction reinforcing 
Avf crossing those surfaces. The angle at which the 
shear-friction reinforcing crosses the contact surface 
also plays a role. For our example, we assume the 
dowels will be placed perpendicular to the top of 
the footing.

The code allows for two possible contact- 
surface conditions that could exist in a situation such 
as between stem and footing in our retaining wall, 
either not intentionally roughened, though clean and 
free of laitance, or intentionally roughened. The latter 
assumption requires the interface to be roughened 
to a full amplitude of approximately 14 in. This may be 
accomplished by raking of the fresh concrete or by 
some other means.

Assuming normal-weight concrete and shear-
friction reinforcement placed perpendicular to the 
interface, the nominal shear strength (or friction force 
that resists sliding) may be computed from

	 Vn = Avf fym	 [ACI Eq. (11-25)]

where

Avf = �area of shear-friction reinforcement

μ = �coefficient of friction in accordance with the 
ACI Code, Section 11.6.4.3; it may be taken as 
1.0 for normal-weight concrete placed against 
hardened concrete roughened as described 
previously

Note that Avf is steel that is provided for the shear-
friction development and that it is in addition to any 
other steel already provided. This additional steel 



144	 chapter Eight

The passive earth resistance may be expressed 
in terms of an equivalent fluid weight. Because Kawe = 
30 lb/ft3 and we = 100 lb/ft3,

Ka =
30
100

= 0.3

The coefficient of passive earth resistance is

Kp =
1 + sin f

1 - sin f
=

1
Ka

=
1

0.3
= 3.33

and

 Kpwe = 3.33(100) = 333 lb/ft3

 Hp = 1
2Kpweh2

k = 1
2 (333)h2

k

The unfactored horizontal force πH = 7020 lb. 
Therefore, the required resistance to sliding that will 
furnish a factor of safety of 1.5 is

1.5(7020) = 10,530 lb

The frictional resistance furnished is 9860 lb (see 
the discussion of stability analysis). Thus, the resistance 
that must be furnished by the base shear key and the 
passive earth resistance is

10,530 - 9860 = 670 lb

With reference to Figure 8-19, the height hk required to 
furnish this resistance may be obtained by establishing 
horizontal equilibrium (πH = 0).

 12(333)(hk)
2 = 670

 h2
k = 4.02

 required hk = 2.01 ft

Use 2 ft-0 in.
The key must be designed for moment and shear. 

The worst case would be the situation where excava-
tion had not taken place and the full height of earth in 
front of the wall was available to develop passive pres-
sure. This is shown in Figure 8-20. A 1-ft depth of earth 
has been assumed on top of the footing. Assuming the 
key as a vertical cantilever beam, taking a summation of 
moment about the plane of the bottom of footing, and 
applying a load factor of 1.6,

 Mu = 1.6(916)(2.0)(1.0) + 1.611
22 (666)(2.0)12

32 (2.0)

 = 4350 ft@lb

Assume a 10-in. width of key and a No. 8 bar, which 
provides an effective depth d = 10 - 3 - 0.5 = 6.5 in. 
Assume f = 0.90.

required k =
Mu

fbd2 =
4350

0.9(12)(6.5)2
= 0.1144 ksi

From Table A-8, the required r = 0.0020, Pt 7 0.005; 
therefore, f = 0.90. Now we can calculate the required 
steel area:

required As = rbd = 0.0020(12)(6.5) = 0.16 in.2

4.	 cb = 2.25 in.

5.	 Ktr = 0

6.	 (cb + Ktr)/db = 4.50 Use 2.5

7.	 KER = 0.808

8.	 /d = 10.6 in. 6 12 in. Use 12 in.

The No. 4 dowels are depicted in Figure 8-18.

	 6.	 Design the footing base shear key. The footing base 
shear key (sometimes called a bearing lug) is primar-
ily used to prevent a sliding failure. The magnitude of 
the additional resistance to sliding offered by the key is 
questionable and is a function of the subsoil material. 
The key, cast in a narrow trench excavated below the 
bottom of footing elevation, becomes monolithic with 
the footing. The excavation for a key will generally dis-
turb the subsoil during construction and conceivably 
will do more harm than good. Hence the use of the key 
for the purpose intended is controversial.

An acceptable design approach is to use the pas-
sive earth resistance Hp in front of the key (from the 
bottom of the footing to the bottom of the key) as the 
additional resistance to sliding (see Figure 8-19). This 
neglects any earth in front of the footing and reflects the 
case where excavation or scour has removed the earth 
to the level of the bottom of the footing.

12"

12"

Stem

Horizontal force

Shear plane
roughened surface

Footing

#4 dowels @ 18" o.c. (each face)

Vu

Figure 8-18  Shear-friction reinforcement.

Hphk

Kpwehk

Neglect

Figure 8-19  Base shear key force analysis.
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bars and exceeds the requirement of 28 in. (see typical 
wall section in Figure 8-21). The steel furnished in the 
key, therefore, is No. 7 bars at 71

2 in. o.c. (As = 0.96 in.2).
If we conservatively neglect the effect of the greater 

cover (3.0 in.) in the key, calculations for the required 
anchorage length at the top of the key are identical to 
those for the stem, except that the excess reinforce-
ment factor KER = 0.26/0.96 = 0.27, from which the final 
/d calculation yields

/d = 28.8(0.27) = 7.8 in. 6 12 in.

The minimum area of steel required by the ACI Code, 
Section 10.5.1, may be obtained using Table A-5:

As,min = 0.0033(12)(6.5) = 0.26 in.2

Therefore As,min of 0.26 in.2 controls. This is a very small 
amount of steel, and it will be more practical to extend 
some existing stem bars into the key. All stem bars must 
be extended into the key for anchorage reasons, how-
ever. Therefore, all the bars will be extended to within 
3 in. of the bottom of the key. This provides 42 in. of 
anchorage below the bottom of the stem for the No. 7 

333(2.0) = 666

333(2.75) = 916

666 psf 916 psf

2.0'

1.75'

1.0'

(Assumed)

Figure 8-20  Base shear key force design.
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#7 @ 15"

#4 @ 17"
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18'-0"
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6'-6"3'-0" 1'-6"
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18" o.c. E.F.

1'-9"

1'-9"

2'-5"

2'-10"

2'-0"

6'-1"

2" clear

#7 @ 16"

#7 @ 15"

#7 @ 9"

#6 as shown3" clear

10"

12"

12"

1
2

1
2

Key 1  "� 5  "

Figure 8-21  Typical wall section.
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Where the wall is subject to concentrated loads, 
the effective length of wall for each concentration must 
not exceed the center-to-center distance between loads 
nor exceed the width of bearing plus four times the wall 
thickness.

The following requirements applicable to bearing walls 
are prescribed, among others, by the ACI Code, Chapter 14:

	 1.	 Reinforced concrete bearing walls must have a thick-
ness of at least 1

25 of the unsupported height or width, 
whichever is shorter, and not less than 4 in.

	 2.	 Thickness of nonbearing walls shall not be less than 
4 in. nor less than 1

30 times the least distance between 
members that provide lateral support.

	 3.	 The area of horizontal reinforcement must be at least 
0.0025 times the area of the wall (0.0025bh per foot) 
and the area of vertical reinforcement not less than 
0.0015 times the area of the wall (0.0015bh per foot), 
where b = 12 in. and h is the wall thickness. These values 
may be reduced to 0.002 and 0.0012, respectively, if the 
reinforcement is deformed bars not larger than No. 5 
with fy not less than 60,000 psi or if the reinforcement is 
welded wire reinforcement larger than W31 or D31.

	 4.	 Exterior basement walls and foundation walls must not 
be less than 71

2@in. thick.
	 5.	 Reinforced concrete walls must be anchored to inter-

secting elements such as floors and roofs or to columns, 
pilasters, buttresses, intersecting walls, and to footings.

	 6.	 Walls more than 10-in. thick, except for basement 
walls, must have reinforcement in each direction for 
each face. The exterior surface shall have a minimum of 
one-half and a maximum of two-thirds of the total steel 
required, with the interior surface having the balance of 
the reinforcement.

	 7.	 Vertical reinforcement must be enclosed by lateral ties 
if in excess of 0.01 times the gross concrete area or when 
it is required as compression reinforcement.

Additionally, from the ACI Code, Section 10.14, the 
design-bearing strength of concrete under a bearing plate 
may be taken as f (0.85 f′c  A1), where A1 is the loaded area. 
An exception occurs when the supporting surface is wider 
on all sides than the loaded area. In that case, the forego-
ing expression for bearing strength may be multiplied 
by1A2>A1 … 2.0, where A2 is a concentric and geometri-
cally similar support area that is the lower base of a frustum 
(upper base of which is A1) of a pyramid having 1:2 sloping 
sides and fully contained within the support.

Example 8-2

Design a reinforced concrete bearing wall to support a series 
of steel wide-flange beams at 8 ft-0 in. o.c. Each beam 
rests on a bearing plate 6 in. * 12 in. The wall is braced top 
and bottom against lateral translation. Assume the bottom 
end fixed against rotation. The wall height is 15 ft and the 
design (factored) load Pu from each beam is 115 kips. Use 
f ′c = 3000 psi and fy = 60,000 psi. See Figure 8-22.

Use /d = 12 in. The available anchorage length is 
24 - 3 = 21 in., which exceeds the requirements of 12 in.
The shear strength of the key is

 fVn = fVc

 = f(2l2f ′c)bd

 = 0.75(2)(1.0)(13000)(12)(6.5)

 = 6410 lb

The factored shear is

 Vu = (1.6)(916)(2.0) + 1.611
22 (666)(2) = 4000 lb

 fVn 7 Vu (O.K.)

8-4 �D esign 
Considerations for 
Bearing Walls

Bearing walls (Figure 8-1g) were briefly described at the 
beginning of this chapter as those walls that carry vertical 
load in addition to their own weight. Recommendations 
for the empirical design of such walls are presented in 
Chapter 14 of the ACI Code (318-11) and apply primarily to 
relatively short walls spanning vertically and subject to ver-
tical loads only, such as those resulting from the reactions 
of floor or roof systems supported on walls. Walls, other 
than short walls carrying “reasonably concentric” loads, 
should be designed as compression members for axial load 
and flexure in accordance with ACI 318-11, Chapter 10. 
“Reasonably concentric” implies that the resultant factored 
load falls within the middle third of the cross section.

The design axial load strength or capacity of such a wall 
will be

	 fPn = 0.55ff′cAg c 1 - a k/c

32h
b

2
d 	 [ACI Eq. (14-1)]

where
f = �strength-reduction factor corresponding to 

compression-controlled sections in accordance 
with ACI Code, Section 9.3.2.2; 0.75 for members  
with spiral reinforcement and 0.65 for other 
reinforced members

h = thickness of wall (in.)
/c = vertical distance between supports (in.)

Ag = gross area of section (in.2)
k = effective length factor

The effective length factor k shall be

	 1.	 For walls braced top and bottom against lateral transla-
tion and
a.	 Restrained against rotation at one or both ends  

(top and/or bottom)� 0.8
b.	 Unrestrained against rotation at both ends� 1.0

	 2.	 For walls not braced against lateral translation� 2.0
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	 6.	 The reinforcing steel (ACI Code, Section 14.3), assum-
ing No. 5 bars or smaller, can be found: For the vertical 
reinforcement per foot of wall length,

 required As = 0.0012bh

 = 0.0012(12)(8) = 0.12 in.2

For the horizontal reinforcement per foot of wall height,

 required As = 0.002bh

 = 0.002(12)(8) = 0.19 in.2

The maximum spacing of reinforcement must not 
exceed three times the wall thickness nor 18 in. (ACI 
Code, Section 14.3.5). Thus

3(8) = 24 in.

Use 18 in.
To select reinforcing,

vertical steel: Use No. 4 bars at 18 in. 
(As = 0.13 in.2)

horizontal steel: Use No. 4 bars at 12 in.
(As = 0.20 in.2)

The steel may be placed in one layer, as the wall is 
less than 10-in. thick (see Figure 8-23).

Solution:
	 1.	 Assume an 8-in.-thick wall with full concentric bearing.

	 2.	 From our previous discussion, the bearing strength of 
the concrete under the bearing plate, neglecting the 1A2>A1 multiplier, is

 f(0.85)f ′cA1 = 0.65(0.85)(3000)(6)(12)

 = 119,300 lb

 factored bearing load Pu = 115,000 lb

 119,300 7 115,000 (O.K.)

	 3.	 The effective length of the wall (ACI Code, Section 
14.2.4) must not exceed the center-to-center distance 
between loads nor the width of bearing plus four times 
the wall thickness. Beam spacing = 96 in. Thus

12 + 4(8) = 44 in.

Therefore, use 44 in.

	 4.	 The minimum thickness required is 1
25 times the shorter 

of the unsupported height or width. Assume, for our 
case, that width does not control. Then

hmin =
/c

25
=

15(12)

25
= 7.2 in.

Also, hmin = 4 in. Therefore, the 8-in. wall is satisfactory.

	 5.	 The capacity of wall is calculated from

fPn = 0.55ff ′cAg c1 - a k/c

32h
b

2

d

The strength-reduction factor f for compression- 
controlled sections is discussed in Section 2-9 of this 
text. In this case, because the wall will not contain spiral 
lateral reinforcing, f is taken as 0.65.

 fPn = 0.55(0.65)(3)(44)(8)e1 - c 0.8(15)(12)2

32(8)
d f

 = 378(1 - 0.316)

 = 258 kips

 fPn 7 Pu (O.K.)

8'-0"

8'-0"

Figure 8-22  Bearing wall.

8"
Bearing plate

#4 @ 12"

#4 @ 18"

Figure 8-23  Section of wall.
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8-6 S hear Walls
Concrete or masonry walls fixed at their base are used to 
resist lateral wind and seismic loads in building structures 
parallel to the plane of the shear wall, in addition to support-
ing gravity loads. These lateral load resisting elements may 
consist of single walls located internally within the building 
or on the exterior face of the building, or they could be the 
stair and elevator core walls. Shear walls are very efficient 
lateral load resisting elements that resist lateral loads by act-
ing as a vertical cantilever. Sometimes, the walls may be per-
forated by door or window openings or corridors, and when 
these walls are joined together with deep beams spanning the 
openings or corridor, they are called “coupled shear” walls. 
The strength of a coupled shear wall depends on the stiffness 
of the coupled walls and the stiffness of the coupling beams 
and lies between the strength of a moment frame and that 
of an unperforated shear wall. Figures 8-26 and 8-27 show 
some typical shear wall layout and typical shear wall eleva-
tions, respectively, in building structures. Single shear walls 
could be laid out between column lines as shown in Figure 
8-27. Where the shear wall extends to and is built integrally 
with the columns, the column at both ends of the wall will 
serve as the boundary members for the shear wall and the 
vertical reinforcement in the columns will serve as the verti-
cal end reinforcement in the shear wall.

8-5 �D esign 
Considerations for 
Basement Walls

A basement wall is a type of retaining wall in which there is 
lateral support assumed to be provided at bottom and top by 
the basement floor slab and first-floor construction, respec-
tively. As previously mentioned, the wall would be designed 
as a simply supported member with a loading diagram and 
moment diagram as shown in Figure 8-24.

If the wall is part of a bearing wall, the vertical load will 
relieve some of the tension in the vertical reinforcement. 
This may be neglected because its effect may be small com-
pared with the uncertainties in the assumption of loads. If 
the vertical load is of a permanent nature and of significant 
magnitude, its effect should be considered in the design.

When a part of the basement wall is above ground, the 
lateral bending moment may be small and may be computed 
as shown in Figure 8-25. This assumes that the wall is span-
ning in a vertical direction. Depending on the type of con-
struction, the basement wall may also span in a horizontal 
direction and may behave as a slab reinforced in either one 
or two directions. If the wall design assumes two horizontal 
reactions, as shown, caution must be exercised that the two 
supports are in place prior to backfilling behind the wall.

0.42hw

hThw

Kawehw

Ha =    Kaweh2
w

hw = hT

1
2

hw

3

Moment

M = 0.128 Hahw
(maximum)

Figure 8-24  Basement wall with full height backfill: forces and moment 
diagram.
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Figure 8-25  Basement wall with partial backfill: forces and moment 
diagram.
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Stair/Elevator
Core

(a)

Stair/Elevator
Core

Shear wall located from column to column

Shear wall located
between columns

(b)

(c) Shear wall (Typical)

(d)

Stair/Elevator
Core

Figure 8-26  Typical shear wall layout in buildings.
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the stiffness, K, consists of a flexural stiffness component 
and a shear stiffness component, and is calculated as

K =
3EI
h3

w
+

GA
1.2hw

If the total lateral force on the building at level x is Fx, 
the lateral force at level x is distributed to each shear wall 
that is parallel to the lateral load as follows:

Fshear wall,x =
Kwall

ΣKwall
 Fx

where
hw = �overall or total height of shear wall from top of 

footing to the top of the wall (see Figure 8-28a)
E = modulus of elasticity
I = �moment of inertia of the wall about the strong 

axis =
h/3

w

12
/w = overall length of shear wall (see Figure 8-28a)
h = �wall thickness (minimum practical wall thick-

ness is 8 in.; see Figure 8-28b)
A = gross cross-sectional area of the wall = h/w

G = shear modulus of elasticity =
E

2(1 + n)
ν = Poisson’s ratio for concrete ≈ 0.20.

Kwall = stiffness of the shear wall being considered
πKwall = �sum of the stiffnesses of all the shear walls 

parallel to the lateral load

The following practical considerations should be 
taken into account when laying out shear walls in concrete 
buildings:

●	 Locate shear walls to minimize the effect on architectural 
features in the building such as doors and windows.

●	 Utilize stair and elevator shaft walls as shear walls. Shear 
walls can also be located on the outer perimeter of a 
building, but this may reduce the number of available 
windows in a building and therefore lead to a reduction 
in natural light and exterior views.

Typical concrete buildings have floor and roof slabs that 
can be considered rigid in the horizontal plane, and thus 
the floors and roofs can be modeled as rigid diaphragms. 
For buildings with rigid diaphragms, the lateral load acting 
on the building is distributed to the lateral force resisting 
elements parallel to the lateral load in proportion to the stiff-
ness of the lateral force resisting element. For shear walls, 

Shear Wall

Shear
Wall

Column

ColumnColumn

Cast Shear Wall
to underside
of beam

Cast Shear Wall
to underside
of slab

Beam or
Girder

Column

clear distance between
columns

Girder

Slab

Slab

Shear Wall

Length of shear wall equals

less than distance
between columns

Length of shear
wall

Beam or Girder

Shear
Wall

Figure 8-27  Typical shear wall elevations in concrete 
buildings.

Shear wall (Typical)

(e) Figure 8-26  Continued.
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For low-rise concrete buildings, the effect of the interac-
tion of the gravity loads with the shear or bending moment 
capacity of the wall will be minimal, and therefore, it is prac-
tical to consider the load effects just listed separately for 
low-rise buildings. However, for high-rise buildings where 
the gravity load on the wall could be substantial, the inter-
actions between the axial load and bending moment and 
shear capacities of the wall have to be considered, and in that 
case, the shear wall is usually designed as a “column” with 
combined axial load and moment, and a column-type inter-
action diagram is used.

Reinforcement in Shear Walls
The reinforcement in shear walls consists of distributed 
horizontal reinforcement used to resist shear forces in the 
wall, distributed vertical reinforcement used to resist gravity 
loads and to control shrinkage and cracking, and concen-
trated vertical end reinforcement used to resist the bend-
ing moment due to lateral loads. The typical shear wall 
reinforcement is shown in the wall elevation and section in 
Figure 8-28, and the typical reinforcement details at the cor-
ners and at the ends of shear walls are shown in Figure 8-29.

Minimum Reinforcement in Shear Walls
The minimum ratio of distributed transverse or horizontal 
reinforcement, rt in the wall to the gross cross-sectional area 
of the wall perpendicular to the reinforcement is given in 
ACI 11.9.9.2:

rt =
Av

sh
Ú 0.0025

●	 Locate shear walls in each orthogonal direction as sym-
metrically as possible to minimize twisting or torsional 
deformations of the building from lateral loads. If a 
symmetrical arrangement is not feasible because of 
architectural or other constraints, the building should 
be analyzed for the resulting inplane twisting forces, 
and these would lead to additional lateral forces in the 
shear walls.

●	 Shear walls or other forms of lateral force resisting sys-
tems are required in both orthogonal directions of the 
building.

Shear Wall Design Considerations (ACI 11.9)
The shear wall design considerations in this chapter 
pertain to ordinary reinforced concrete shear walls as 
presented in ACI Code, Section 11.9. The design consid-
erations for ductile or special shear walls used in highly 
seismic zones are presented in ACI Code, Section 21.9. 
The following load effects should be considered in the 
design of shear walls:

●	 The varying horizontal shear force that is maximum at 
the base of the wall.

●	 The bending moment that is maximum at the base of 
the wall. This produces compression at the end zone at 
one end of the wall and tension at the end zone at the 
opposite end. The location of the tension and compres-
sion forces will change depending on the direction of the 
lateral load.

●	 The gravity or vertical loads (i.e., roof and floor dead and 
live loads) that cause compression on the wall.

Longitudinal Shear
reinforcing

Transverse Shear
reinforcing

(b)

(a) Elevation

Slab-on-grade

footing

Dowels to match wall
vertical reinforcement

hw

lw

A

A

s

s2

Transverse
Shear reinforcing

Additional
vertical
reinforcement
in the end zone.

h

Longitudinal
Shear reinforcing

s2

Figure 8-28  Shear wall reinforcement.
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For 8-in.- or 10-in.-thick walls, although ACI Code, 
Section 14.3.4 implies that the horizontal and vertical 
reinforcement be placed at the center of the wall, it is com-
mon in design practice to use two layers of reinforcement 
(i.e., reinforcement on both faces of the wall) for 8-in.- and 
10-in.-thick shear walls.

Strength of Shear Walls
In the limit states design for shear, the ACI Code requires 
the design shear strength, fVn to be greater than or equal 
to the required shear strength or factored shear, Vu. That is,

fVn Ú Vu

where
f = 0.75

Vn = �nominal shear strength = Vc + Vs … 102f′c hd 
(ACI 11.9.3)

Vc = concrete shear strength = 2l2f′chd
Vs = shear strength of shear reinforcing
d = effective depth = 0.8/w (ACI 11.9.4)
l = �lightweight concrete modification factor defined 

in Chapter 1 and is 1.0 for normal-weight 
concrete

The minimum ratio of distributed vertical or longitudi-
nal reinforcement, r/ in the wall to the gross cross-sectional 
area of the wall perpendicular to the reinforcement is given 
in ACI 11.9.9.4:

r/ =
Av

s2h
= 0.0025

+ 0.5 a2.5 -
hw

/w
b(rt - 0.0025) Ú 0.0025

but need not be greater than rt.

where
Av = �area of distributed transverse reinforcement

s = �center-to-center spacing of the transverse or hori-
zontal reinforcement

s2 = �center-to-center spacing of the vertical 
reinforcement

and h, /w, and hw are as previously defined.
The size of the distributed horizontal and vertical rein-

forcement is usually No. 4 or larger bars. The maximum 
spacing of the horizontal reinforcement allowed by the Code 
(s maximum) is the smallest of /w>5, 3h, or 18 in, and the 
maximum spacing of the vertical reinforcement allowed by 
the Code (s2 maximum) is the smallest of /w>3, 3h, or 18 in.

Typical Reinforcement

Ties/J-Ties

(a) Wall Corner Reinforcement

(b) Wall end Reinforcement

Specify enough end zone length
to accommodate vertical end
reinforcement

Typ. steel HEF and VEF

6" min.
(End zone)

Additional ties

Clear spacing
between vertical
end bars

�6" maximum
�1.5 × bar diameter
minimum

Additional
reinforcement,
vertical each
face (VEF)
(8 bars shown)

Concrete
cover

Figure 8-29  Typical added reinforcement 
at the corners and ends of shear walls.
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lateral forces for shear walls W1 or W2, including the 
seismic load factor, are calculated as follows:

 Roof: Fr = 1.0 *
K
2K

 (50 kips) = 25 kips

 Third floor: F3 = 1.0 *
K
2K

 (50 kips) = 25 kips

 Second floor: F2 = 1.0 *
K
2K

 (100 kips) = 50 kips

For high-rise buildings, the wall reinforcement is typi-
cally specified or designed for two or three story lifts, 
but for this low-rise building, only the reinforcement at 
the base of the wall will be designed and this reinforce-
ment will be used throughout the full height of the shear 
wall. The factored shear wall lateral loads and load 
effects are shown in Figure 8-31.

	 3.	 Select wall thickness: Assume h = 8 in. (the reinforce-
ment will be placed on both faces of the wall).

When Vu … fVc, minimum horizontal reinforc-
ing should be provided in the shear wall per ACI Sections 
11.9.9.2 and 11.9.9.3.

When Vu 7 fVc, the required horizontal reinforcing is 
calculated as follows:

The limit states design equation for shear requires that

fVn = fVc + fVs Ú Vu

Therefore, fVs Ú Vu - fVc, and as a limit

Vs =
Vu - fVc

f

From Chapter 4, the strength of any shear reinforcing is 
determined from

Vs =
Av fy d

s

Therefore, by substitution,

Vu - fVc

f
=

Av fy d
s

and

Av

s =
Vu - fVc

ffy d

After selecting the size of the horizontal reinforcement 
(usually No. 4 or larger bars), the cross-sectional area of the 
horizontal reinforcement, Av, can be obtained as well as 
the required spacing of the reinforcement using the above 
equation.

The end zone vertical reinforcement due to the bending 
moment in the shear wall is determined using the rectangu-
lar beam design procedure in Chapter 2.

Example 8-3

Shear Wall Design

The shear wall layout for a three-story building and the 
unfactored north–south lateral seismic loads acting on the 
building are shown in Figure 8-30. Design the north–south 
shear walls for the seismic lateral loads shown. Assume 
normal-weight concrete; f ′c is 4000 psi and fy is 60,000 psi. 
Assume all shear walls are of equal thickness.

Solution:
	 1.	 The maximum load factor for seismic loads from ACI 

Section 9.2.1 is 1.0 (1.0 for wind loads calculated per 
the ASCE 7–10 Standards). Because this is a low-rise 
building, the effect of the vertical loads on the moment 
capacity of the shear walls will be small; thus, the inter-
action between the gravity loads and the moment is 
assumed to be negligible and hence the load effects on 
the wall will be considered separately.

	 2.	 As the length, thickness, and total height of the 
north–south shear walls, W1 and W2, are equal, their 
stiffness,  K, will also be equal. The factored seismic 

Plan

W2

W3W4

W1

W1

10
'

10
'

12
'

8'50 kips

50 kips

100 kips

EAST ELEV

N

Figure 8-30  Shear wall layout and unfactored lateral loads 
for Example 8-3.
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	 7.	 Determine distributed vertical shear reinforcement. The 
required vertical reinforcement ratio is

 r/ =
Av

s2h
= 0.0025 + 0.5a2.5 -

hw

/w
b (rt - 0.0025)

 = 0.0025 + 0.5a2.5 -
32 ft
8 ft

b (0.0028 - 0.0025)

 = 0.00228

r/ must not be less than 0.0025 and need not be greater 
than rt. Therefore, use r/ = 0.0025 = Av>s2h.

Av

s2
= (0.0025)(h) = (0.0025)(8 in.) = 0.02 in.

Try No. 4 vertical bar both face of wall; therefore, Av = 2 
faces * 0.2 in.2 = 0.4 in.2

Therefore, the required spacing of the vertical shear 
reinforcement is

s2 required =
0.4
0.02

= 20 in.

The maximum spacing vertical reinforcement allowed by 
the Code ( s2 maximum) is the smallest of the following:

●	
/w

3
=

96 in.
3

= 32 in.

●	 3h = (3)(8 in.) = 24 in.
●	 18 in. (Controls)

Because maximum spacing = 18 in. 6 s2 required = 20 in.; 
therefore, use s2 = 18 in.

For the distributed vertical reinforcement, provide 
No. 4 VEF @ 18 in. o.c. (VEF = vertical each face of wall.)

	 8.	 Design the shear wall for flexure or bending and deter-
mine the end zone vertical reinforcement. The maximum 
factored bending moment at the base of the wall due to 
the factored seismic lateral load is

Mu = 1950 ft.@kips

The limit states design equation for flexure requires that 
fMn =  fhd2k Ú Mu . Initially, assume f = 0.9 (this will 

	 4.	 Check the maximum allowed shear strength of the wall. 
The effective depth, d = 0.8 * length of shear wall = (0.8)
(8 ft)(12 in./ft) = 76.8 in.

Total maximum allowable shear strength = 10f2f ′chd

 = 10(0.75)14000 (8 in.) (76.8 in.) = 291.4 kips

Required shear strength Vu at the base of the shear wall

= 100 kips 6 291.4 kips  (O.K.)

	 5.	 Calculate shear strength provided by concrete alone.

 fVc = 2f2f ′c hd = 2(0.75)14000 (8 in.)(76.8 in.)

 = 58.3 kips

Because Vu = 100 kips 7 fVc, shear reinforcement 
therefore is required in the wall.

	 6.	 Determine the required horizontal shear reinforcement, Av:

Av

s
=

Vu - fVc

ffyd
=

100 kips - 58.3 kips

(0.75)(60 ksi)(76.8 in.)
= 0.0121

Try No. 4 horizontal bars on both faces of the wall; 
therefore, Av = 2 faces * 0.2 in.2 = 0.4 in.2. The required 
spacing of the horizontal shear reinforcement is

s required =
0.4

0.0121
= 33 in.

The maximum spacing of the horizontal reinforcement 
that is allowed by the Code (s maximum) is the smallest 
of the following:

●	
/w

5
=

96 in.
5

= 19.2 in.

●	 3h = (3)(8 in.) = 24 in.
●	 18 in. (Controls)

Therefore, Try s = 18 in.
The corresponding horizontal reinforcement ratio 

provided is

rt =
Av

sh
=

0.4 in.2

(18 in.)(8 in.)
= 0.0028 Ú 0.0025  (O.K.)

For the distributed horizontal reinforcement, provide No. 
4 HEF @ 18 in. o.c. (HEF = horizontal each face of wall.)

10
'

10
'

12
'

25 kips
25 kips

50 kips

100 kips

250 ft.-kips

1950 ft.-kips

750 ft.-kips

Roof

3rd

2nd

Gnd

25 kips

50 kips

Shear Force Diagram, Vu Bending Moment Diagram, Mulw

Figure 8-31  Shear wall lateral loads and load effects.
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length of 16 in. has been assumed. This will be checked 
below. The concentrated vertical reinforcement must be 
provided at both ends of the shear wall as the lateral 
load can reverse direction and each end of the shear 
wall will be subjected to tension or compression forces 
depending on the direction of the lateral load. From 
Figure 8-32, the clear spacing between the concen-
trated vertical bars is

16 in.@0.75 in. cover@0.5 in. tie@0.5 in. tie@4 bars(1 in. diameter)

3 spaces

= 3.42 in. 7 1.5(1 in. diameter) = 1.5 in.  (O.K.)

Therefore, the assumed end zone length of 16 in. is 
adequate.

Shearwall footings have to be designed to resist 
the combined effects of gravity load, lateral load, and 
overturning moment. Rather than using a continuous 
strip footing to resist the combined load effects, some 
engineers prefer to use spread footings at the ends of 
the shearwall to resist the force-couple from the over-
turning moment, while the gravity load is resisted by the 
strip footings between the spread footings. The lateral 
load on the shearwall is resisted by a combination of 
soil friction at the base of the shearwall footing, the hori-
zontal restraint provided by other parts of the building 
such as basement floors, and the passive resistance on 
the end of the shearwall footing. The design of footings 
is discussed in Chapter 10.

be checked later after Pt is determined) and then calcu-
late the required k as follows:

k =
Mu

fhd2 =
1950(12)

(0.9)(8 in.)(76.8 in.)2
= 0.55

From Table A-10, we obtain r = 0.0101 and Pt W 0.005;  
therefore, f = 0.9, as initially assumed. The concen-
trated vertical reinforcement required at each end zone 
of the shear wall is

As required = rhd = (0.0101)(8 in.)(76.8 in.) = 6.21 in.2

The minimum area of concentrated steel required for 
bending at the ends of the shear wall is

 As,min =
32f ′c

fy
 hd Ú

200
fy

 hd

 =
314000
60,000

 (8)(76.8) = 1.94 in.2

 Ú
200

60,000
 (8)(76.8) = 2.05 in.2

Because As required = 6.21 in.2 7 As,min = 2.05 in.2, As 
required = 6.21 in.2

Try 8 No. 8 vertical reinforcement at each end of 
the wall (i.e., 4 No. 8 VEF) Total area of steel provided 
at each end of the wall = 6.32 in.2 7 As required (O.K.).

A plan detail showing the reinforcement provided 
in the shear wall is shown in Figure 8-32. An end zone 

(4)-# 8 VEF
and #4 ties
(typ. each end)

# 4 @ 18" VEF

3/4" cover (Typical)

8"

# 4 @ 18" HEF16" End Zone

Figure 8-32  Shear wall reinforcement detail.

Problems

	 8-1.	 Compute the active earth pressure horizontal force 
on the wall shown for the following conditions. Use 
we = 100 lb/ft3.

Case f u ws (psf) hw(ft)

(a) 25   0 400 15
(b) 28 10     0 18
(c) 30   0 200 20
(d) 33 20     0 25

ws

�

6'

h�

hw

PROBLEM 8-1
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h′ = 4 ft, Ka = 0.30, and the allowable soil pressure is 
4 ksf. Use a coefficient of friction of concrete on soil of 
0.5, f′c = 3000 psi, and fy = 60,000 psi. The required 
factor of safety against overturning is 2.0 and against 
sliding is 1.5. The wall batter should be between 14 and 
1
2 in./ft. The design is to be in accordance with the ACI 
Code (318-08).

	 8-7.	 Develop a spreadsheet application that will deter-
mine the location of the theoretical cutoff point for 
alternate bars in the stem of Example 8-1 (refer to 
Figure  8-16). Set up the spreadsheet so that a user 
could input any typical design data for a reinforced 
concrete cantilever retaining wall.

	 8-8.	 Design a reinforced concrete bearing wall to support 
a series of precast single tees spaced 7 ft-6 in. on cen-
ters. The stem of each tee section is 8-in. wide and 
bears on the full thickness of wall. The wall is braced 
top and bottom against lateral translation. Assume 
the bottom end to be fixed against rotation and the 
top to be unrestrained against rotation. The wall 
height is 14 ft, and Pu from each tee is 65 kips. Use 
f′c = 4000 psi and fy = 60,000 psi.

	 8-9.	 Design the first story shear wall for a three-story 
building with unfactored north–south lateral wind 
loads of 20 kips, 40 kips, 40 kips at the roof, third 
floor, and second floor, respectively. The floor-to-
floor height is 12 ft and all shear walls have equal 
thickness and an equal length of 15 ft. Assume 
normal-weight concrete; f′c  is 3000 psi and fy is 
60,000  psi. Draw the detail of the shear wall rein-
forcement showing the required vertical end zone 
reinforcement and the distributed vertical and hori-
zontal face reinforcement.

	 8-2.	 Find the passive earth pressure force in front of the 
wall for Problem 8-1(a), if h′ = 4 ft.

	 8-3.	 For the wall shown, determine the factors of safety 
against overturning and sliding and determine the 
soil pressures under the footing. Use Ka = 0.3 and 
we  = 100 lb/ft3. The coefficient of friction f = 0.50.

6'-0"

1'-0"

3'-0"

1'-0"

hw = 10'-0"

PROBLEM 8-3

	 8-4.	 Same as Problem 8-3, but the toe is 2 ft-0 in.
	 8-5.	 In Problem 8-1(c), assume a footing depth of 2 ft. 

Design the stem steel for Mu at the top of the foot-
ing. Check the anchorage into the footing. Disregard 
other stem steel details. Use f′c = 4000 psi and 
fy = 60,000 psi. Use thickness at top of stem = 12 in. 
and thickness at bottom of stem = 1 ft-9 in.

	 8-6.	 Completely design the cantilever retaining wall 
shown. The height of wall hw is 22 ft, the back-
fill is level, the surcharge is 600 psf, we = 100 lb/ft3,  

h�

hw

PROBLEM 8-6
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The three basic types of reinforced concrete columns 
are shown in Figure 9-1. Tied columns (Figure 9-1a) are 
reinforced with longitudinal bars enclosed by horizontal, 
or lateral, ties placed at specified spacings. Spiral columns 
(Figure 9-1b) are reinforced with longitudinal bars enclosed 
by a continuous, rather closely spaced, steel spiral. The spi-
ral is made up of either wire or bar and is formed in the 
shape of a helix. A third type of reinforced concrete column, 
a composite column, is shown in Figure 9-1c. This type of 
column encompasses compression members reinforced 
longitudinally with structural steel shapes, pipes, or tubes 
with or without longitudinal bars. Code requirements for 
composite compression members are found in Section 10.13.  

9-1  Introduction
The main vertical load-carrying members in buildings are 
called columns. The ACI Code defines a column as a mem-
ber used primarily to support axial compressive loads and 
with a height at least three times its least lateral dimension. 
The code further defines a pedestal as an upright compres-
sion member having a ratio of unsupported height to least 
lateral dimension of 3 or less. The code definition for col-
umns will be extended to include members subjected to 
combined axial compression and bending moment (in other 
words, eccentrically applied compressive loads), because, for 
all practical purposes, no column is truly axially loaded.

chapter Nine

Columns

	 9-1	 Introduction

	 9-2	 Strength of Reinforced 
Concrete Columns: Small 
Eccentricity

	 9-3	 Code Requirements 
Concerning Column 
Details

	 9-4	 Analysis of Short Columns: 
Small Eccentricity

	 9-5	 Design of Short Columns: 
Small Eccentricity

	 9-6	 Summary of Procedure for 
Analysis and Design of 
Short Columns with Small 
Eccentricities

	 9-7	 The Load–Moment 
Relationship

	 9-8	 Columns Subjected to 
Axial Load at Large 
Eccentricity

	 9-9	 f Factor Considerations

	9-10	 Analysis of Short Columns: 
Large Eccentricity

	9-11	 The Slender Column

Section Section

Elevation
Tied Column

(a)

Elevation
Spiral Column

(b)

Composite Columns
(c)

Sections

Longitudinal
bars

Ties

Spirals

Pitch

Figure 9-1  Column types.
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the longitudinal axis, however, there is a tendency for the 
column to bend due to the moment M = Pe. This distance e 
is called the eccentricity. Unlike the zero eccentricity condi-
tion, the compressive stress is not uniformly distributed over 
the cross section but is greater on one side than the other. 
This is analogous to our previously discussed eccentricity of 
applied loads with respect to retaining wall footings, where 
the eccentrically applied load resulted in a nonuniform soil 
pressure under the footing.

We consider an axial load to be a load that acts par-
allel to the longitudinal axis of a member but need not be 
applied at any particular point on the cross section, such as 
a centroid or a geometric center. The column that is loaded 
with a compressive axial load at zero eccentricity is prob-
ably nonexistent, and even the axial load/small eccentricity 
(axial load/small moment) combination is relatively rare. 
Nevertheless, we first consider the case of columns that are 
loaded with compressive axial loads at small eccentricities, 
further defining this situation as that in which the induced 
moments, although they are present, are so small that they 
are of little significance. Earlier codes have defined small 
eccentricity as follows:

For spirally reinforced columns: e/h … 0.05
For tied columns: e/h … 0.10

where h is the column dimension perpendicular to the axis 
of bending.

The fundamental assumptions for the calculation of 
column axial load strength (small eccentricities) are that 
at nominal strength the concrete is stressed to 0.85f′c  and 
the steel is stressed to fy. For the cross sections shown in 

Our discussion is limited to the first two types: tied and spiral 
columns. Tied columns are generally square, rectangular or 
circular, whereas spiral columns are normally circular. This 
is not a hard-and-fast rule, however, as square, spirally rein-
forced columns, and circular tied columns do exist, as do 
other shapes, such as octagonal and L-shaped columns.

We initially discuss the analysis and design of col-
umns that are short. A column is said to be short when its 
length is such that lateral buckling need not be considered. 
The ACI Code does, however, require that the length of 
columns be a design consideration. It is recognized that as 
length increases, the usable strength of a given cross section 
is decreased because of the buckling problem. By their very 
nature, concrete columns are more massive and therefore 
stiffer than their structural steel counterparts. For this rea-
son, slenderness is less of a problem in reinforced concrete 
columns. It has been estimated that more than 90% of typi-
cal reinforced concrete columns existing in braced frame 
buildings may be classified as short columns, and slender-
ness effects may be neglected.

9-2 � Strength of 
Reinforced Concrete 
Columns: Small 
Eccentricity

If a compressive load P is applied coincident with the longi-
tudinal axis of a symmetrical column, it theoretically induces 
a uniform compressive stress over the cross-sectional area. If 
the compressive load is applied a small distance e away from 

Figure 9-2  Foundation columns, turbine generator building. Seabrook Station, New 
Hampshire.  (George Limbrunner)
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The code directs that the basic load–strength relation-
ship be

fPn Ú Pu

where Pn is the nominal axial load strength at a given eccen-
tricity and fPn is designated as the design axial load strength. 
Logically, for the case of zero eccentricity, if it could exist, Pn 
would equal P0. The ACI Code recognizes that no practi-
cal column can be loaded with zero eccentricity, however. 
Therefore, in addition to imposing the strength reduction 
factor f, the code directs that the nominal strengths be 
further reduced by factors of 0.80 and 0.85 for tied and spiral 
columns, respectively. This results in the following expres-
sions for usable axial load strengths.

For spiral columns,

fPn(max) = 0.85f[0.85f′c(Ag - Ast) + fyAst]
[ACI Eq. (10-1)]

For tied columns,

fPn(max) = 0.80f[0.85f′c(Ag - Ast) + fyAst]
[ACI Eq. (10-2)]

These expressions provide the magnitude of the maxi-
mum design axial load strength that may be realized from 
any column cross section. This will be the design axial load 
strength at small eccentricity. Should the eccentricity (and 
the associated moment) become larger, fPn will have to be 
reduced, as shown in Section 9-9. It may be recognized that 
the code equations for fPn(max) provide for an extra margin 
of axial load strength. This will, in effect, provide some 
reserve strength to carry small moments.

9-3 �C ode Requirements 
Concerning Column 
Details

Main (longitudinal) reinforcing should have a cross-sectional 
area so that rg will be between 0.01 and 0.08. The minimum 
number of longitudinal bars is four within rectangular or 
circular ties, three within triangular ties, and six for bars 
enclosed by spirals. The foregoing requirements are stated in 
the ACI Code, Section 10.9. Although not mentioned in the 
present code, the 1963 code recommended a minimum bar 
size of No. 5.

The clear distance between longitudinal bars must not 
be less than 1.5 times the nominal bar diameter nor 11

2 in. 
(ACI Code, Section 7.6.3). This requirement also holds true 
where bars are spliced. Table A-14 may be used to determine 
the maximum number of bars allowed in one row around 
the periphery of circular or square columns.

Cover shall be 11
2 in. minimum over primary reinforce-

ment, ties, or spirals (ACI Code, Section 7.7.1).
Tie requirements are discussed in detail in the ACI 

Code, Section 7.10.5. The minimum size is No. 3 for longitu-
dinal bars No. 10 and smaller; otherwise, minimum tie size 
is No. 4 (see Table A-14 for a suggested tie size). Usually, 

Figure 9-1a and b, the nominal axial load strength at small 
eccentricity is a straightforward sum of the forces existing in 
the concrete and longitudinal steel when each of the materi-
als is stressed to its maximum. The following ACI notation 
will be used:

 Ag = gross area of the column section (in.2)
 Ast = total area of longitudinal reinforcement (in.2)
 P0 = nominal, or theoretical, axial load strength  

	 at zero eccentricity
 Pn = nominal, or theoretical, axial load strength  
	 at given eccentricity
 Pu = factored applied axial load at given eccentricity

For convenience, we will use the following longitudinal steel 
reinforcement ratio:

rg = ratio of total longitudinal reinforcement area to
 cross@sectional area of column (Ast>Ag)

The nominal, or theoretical, axial load strength for the 
special case of zero eccentricity may be written as

P0 = 0.85f′c(Ag - Ast) + fy Ast

This theoretical strength must be further reduced to a maxi-
mum usable axial load strength using two different strength 
reduction factors.

Extensive testing has shown that spiral columns are 
tougher than tied columns, as depicted in Figure 9-3. Both 
types behave similarly up to the column yield point, at which 
time the outer shell spalls off. At this point, the tied column 
fails through crushing and shearing of the concrete and 
through outward buckling of the bars between the ties. The 
spiral column, however, has a core area within the spiral that 
is effectively laterally supported and continues to withstand 
load. Failure occurs only when the spiral steel yields follow-
ing large deformation of the column. Naturally, the size and 
spacing of the spiral steel will affect the final load at failure. 
Although both columns have exceeded their usable strengths 
once the outer shell spalls off, the ACI Code recognizes the 
greater tenacity of the spiral column in Section 9.3.2, where 
it directs that a strength-reduction factor of 0.75 be used for 
a spiral column, whereas the strength-reduction factor for 
the tied column is 0.65.

Tied column

Column yield point

Spiral column

L
oa

d

Strain

Figure 9-3  Load–strain relationship for columns.
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where

rs =
volume of spiral steel in one turn

volume of column core in height (s)
s = �center-to-center spacing of spiral (in.) (some-

times called the pitch)
Ag = gross cross-sectional area of the column (in.2)

Ach = �cross-sectional area of the core (in.2) (out-to-out 
of spiral)

fyt = spiral steel yield point (psi) … 60,000 psi
f′c  = compressive strength of concrete (psi)

This particular spiral steel ratio will result in a spiral that will 
make up the strength lost due to the spalling of the outer 
shell (see Figure 9-3).

An approximate formula for the calculated spiral steel 
ratio in terms of physical properties of the column cross sec-
tion may be derived from the preceding definition of rs. In 
Figure 9-5, we denote the overall core diameter (out-to-out 
of spiral) as Dch and the spiral diameter (center to center) 
as Ds. The cross-sectional area of the spiral bar or wire is 
denoted Asp. From the definition of rs:

calculated rs =
AsppDs

(pD2
ch>4)(s)

No. 5 is a maximum. The center-to-center spacing of ties 
should not exceed the smaller of 16 longitudinal bar diam-
eters, 48 tie-bar diameters, or the least column dimension. 
Furthermore, rectilinear ties shall be arranged so that every 
corner and alternate longitudinal bar will have lateral sup-
port provided by the corner of a tie having an included angle 
of not more than 135°, and no bar shall be farther than 6 in. 
clear on each side from such a laterally supported bar. See 
Figure 9-4 for typical rectilinear tie arrangements.

Individual circular ties are permitted per ACI Code 
7.10.5.4 where longitudinal column reinforcements are 
located around the perimeter of a circle. The ends of the cir-
cular ties should be terminated with standard hooks around 
a longitudinal column bar and should overlap by at least 6 in. 
The overlaps around the ends of adjacent circular ties should 
be staggered.

Spiral requirements are discussed in the ACI Code, 
Sections 7.10.4. and 10.9.3. The minimum spiral size is 3

8 in. 
in diameter for cast-in-place construction (5

8 in. is usually 
maximum). Clear space between spirals must not exceed 3 
in. or be less than 1 in. The spiral steel ratio rs must not be 
less than the value given by

rs(min) = 0.45a
Ag

Ach
- 1b  

f′c
fyt

    [ACI Eq. (10-5)]

� 6" > 6"

4 bars 6 bars 6 bars

> 6"� 6"

6" max. 6" max.

8 bars 8 bars 10 bars

12 bars 12 bars 14 bars Figure 9-4  Typical tie arrangements.
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	 3.	 The maximum design axial load strength may now be 
calculated:

 fPn(max) = 0.80f[0.85f ′c(Ag - Ast) + fyAst]

 = 0.80(0.65)[0.85(4)(256 - 8) + 60(8)]

 = 688 kips

	 4.	 Check the ties. Tie size of No. 3 is acceptable for longitu-
dinal bar size up to No. 10. The spacing of the ties must 
not exceed the smaller of

 48 tie@bar diameters = 4813
82 = 18 in.

 16 longitudinal@bar diameters = 16(1.128) = 18 in.

 least column dimension = 16 in.

Therefore the tie spacing is O.K. The tie arrangement 
for this column may be checked by ensuring that the 
clear distance between longitudinal bars does not 
exceed 6  in. Clear space in excess of 6 in. would 
require additional ties in accordance with the ACI Code, 
Section 7.10.5.3. Thus

 clear distance =
16 - 2111

22 - 213
82 - 3(1.128)

2

 = 4.4 in. 6 6 in.

Therefore no extra ties are needed.

Example 9-2

Determine whether the spiral column of cross section shown 
in Figure 9-7 is adequate to carry a factored axial load (Pu) of 
540 kips. Assume small eccentricity. Check the spiral. Use 
f ′c = 4000 psi and fy = 60,000 psi.

Solution:
	 1.	 From Table A-2, Ast = 5.53 in.2, and from Table A-14, a 

diameter of 15 in. results in a circular area Ag = 176.7 in.2. 
Therefore

 rg =
5.53
176.7

= 0.0313

 0.01 6 0.0313 6 0.08        (O.K.)

	 2.	 From Table A-14, using a 12-in. core, seven No. 8 bars 
are satisfactory.

If the small difference between Dch and Ds is neglected, 
then in terms of Dch,

calculated rs =
4Asp

Dchs

9-4 �A nalysis of Short 
Columns: Small 
Eccentricity

The analysis of short columns carrying axial loads that have 
small eccentricities involves checking the maximum design 
axial load strength and the various details of the reinforcing. 
The procedure is summarized in Section 9-6.

Example 9-1

Find the maximum design axial load strength for the tied 
column of cross section shown in Figure 9-6. Check the ties.  
Assume a short column. Use f ′c = 4000 psi and fy = 60,000 psi 
for both longitudinal steel and ties.

Solution:
	 1.	 Check the steel ratio for the longitudinal steel:

 rg =
Ast

Ag
=

8.00

(16)2
= 0.0313

 0.01 6 0.0313 6 0.08        (O.K.)

	 2.	 From Table A-14, using a 13-in. core (column size less 
cover on each side), the maximum number of No. 9 
bars is eight. Therefore the number of longitudinal bars 
is satisfactory.

Spiral

Ds

Dch

Figure 9-5  Definition of Dch and Ds.

16"

16"

#3 @ 16"

8-#9 bars

1  " cover1
2

Figure 9-6  Sketch for Example 9-1.
15"

7-#8 bars 1 " cover1
2

"� @ 2"3
8

Figure 9-7  Sketch for Example 9-2.
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Similarly for spiral columns,

required Ag =
Pu

0.85f[0.85f′c(1 - rg) + fyrg]

It should be recognized that there can be many valid 
choices for the size of column that will provide the neces-
sary strength to carry any load Pu. A low rg will result in a 
larger required Ag and vice versa. Other considerations will 
normally affect the practical choice of column size. Among 
them are architectural requirements and the desirability of 
maintaining column size from floor to floor so that forms 
may be reused.

The procedure for the design of short columns for loads 
at small eccentricities is summarized in Section 9-6.

Example 9-3

Design a square tied column to carry axial service loads of 
320 kips dead load and 190 kips live load. There is no identi-
fied applied moment. Assume that the column is short. Use 
rg about 0.03, f ′c = 4000 psi, and fy = 60,000 psi.

Solution:
	 1.	 Material strengths and approximate rg are given.

	 2.	 The factored axial load is

Pu = 1.6(190) + 1.2(320) = 688 kips

	 3.	 The required gross column area is

 required Ag =
Pu

0.80f[0.85f ′c(1 - rg) + fyrg]

 =
688

0.80(0.65)[0.85(4)(1 - 0.03) + 60(0.03)]

 = 260 in.2

	 4.	 The required size of the square column would be1260 = 16.1 in.

Use a 16-in.-square column. This choice will require 
that the actual rg be slightly in excess of 0.03:

actual Ag = (16 in.)2 = 256 in.2

	 5.	 The load on the concrete area (this is approximate since 
rg will increase slightly) is

 load on concrete = 0.80f(0.85f ′c)Ag(1 - rg)

 = 0.80(0.65)(0.85)(4)(256)(1 - 0.03)

 = 439 kips

Therefore the load to be carried by the steel is

688 - 439 = 249 kips

Because the maximum design axial load strength of the 
steel is (0.80fAstfy), the required steel area may be cal-
culated as

required Ast =
249

0.80(0.65)(60)
= 7.98 in.2

	 3.	 Find the maximum design axial load strength:

 fPn(max) = 0.85f[0.85f ′c(Ag - Ast) + fyAst]

 = 0.85(0.75)[0.85(4)(176.7 - 5.53) + 60(5.53)]

 = 583 kips

The strength is O.K. because 583 kips > 540 kips.

	 4.	 Check the spiral steel. The 3
8@in. diameter is O.K. (ACI 

Code, Section 7.10.4.2; and Table A-14). The minimum 
rs is calculated using Table A-14 for the value of Ach:

 rs(min) = 0.45a
Ag

Ach
- 1b  

f ′c
fyt

 = 0.45 a176.7
113.1

- 1b 
4
60

= 0.0169

 actual rs =
4Asp

Dchs
=

4(0.11)

12(2)
= 0.0183

 0.0183 7 0.0169            (O.K.)

The clear distance between spirals must not be in 
excess of 3 in. nor less than 1 in.:

clear distance = 2.0 - 3
8 = 15

8 in.    (O.K.)

The column is satisfactory for the specified conditions.

9-5 �D esign of Short 
Columns: Small 
Eccentricity

The design of reinforced concrete columns involves the 
proportioning of the steel and concrete areas and the selec-
tion of properly sized and spaced ties or spirals. Because the 
ratio of steel to concrete area must fall within a given range 
(0.01 … rg … 0.08), the strength equation given in Section 9-2 
is modified to include this term. For a tied column,

 fPn(max) = 0.80f[0.85f′c(Ag - Ast) + fy(Ast)]

 rg =
Ast

Ag

from which

Ast = rgAg

Therefore

 fPn(max) = 0.80f[0.85f′c(Ag - rgAg) + fyrgAg]
 = 0.80fAg[0.85f′c(1 - rg) + fyrg]

As

Pu … fPn(max)

an expression can be written for required Ag in terms of the 
material strengths, Pu and rg. For tied columns,

required Ag =
Pu

0.80f[0.85f′c(1 - rg) + fyrg]
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	 5.	  Load on concrete = 0.85f(0.85)f ′cAg(1 - rg)

 = 0.85(0.75)(0.85)(4)(254.5)(1 - 0.03)

 = 535 kips

 load on steel = 688 - 535 = 153 kips

 required Ast =
153

0.85ffy

 =
153

0.85(0.75)60
= 4.00 in.2

Use seven No. 7 bars (Ast = 4.20 in.2). Table A-14 indi-
cates a maximum of 13 No. 7 bars for a circular core 
15 in. in diameter (O.K.).

	 6.	 Design the spiral. From Table A-14, select a 38@in.@diameter 
spiral. The spacing will be based on the required spiral 
steel ratio. Here Ach is from Table A-14. Thus

 rs(min) = 0.45a
Ag

Ach
- 1b 

f ′c
fyt

 = 0.45a254.5
176.7

- 1b 
4
60

= 0.0132

The maximum spiral spacing may be found by setting 
the calculated rs equal to rs(min):

calculated rs =
4Asp

Dchs

from which

 smax =
4Asp

Dchrs(min)

 =
4(0.11)

15(0.0132)
= 2.22 in.

Use a spiral spacing of 2 in. The clear space between 
spirals must not be less than 1 in. nor more than 3 in.:

clear space = 2 - 3
8 = 15

8 in.     (O.K.)

	 7.	 The design sketch is shown in Figure 9-9.

We will distribute bars of the same size evenly around the 
perimeter of the column and must therefore select bars 
in multiples of four. Use eight No. 9 bars (Ast = 8.0 in.2). 
Table A-14 indicates a maximum of eight No. 9 bars for 
a 13-in. core (O.K.).

	 6.	 Design the ties. From Table A-14, select a No. 3 tie. The 
spacing must not be greater than

 48 tie@bar diameters = 4813
82 = 18 in.

 16 longitudinal@bar diameters = 16 (1.128) = 18.0 in.

 least column dimension = 16 in.

Use No. 3 ties spaced 16 in. o.c. Check the arrangement 
with reference to Figure 9-8. The clear space between 
adjacent bars in the same face is

16 - 3 - 0.75 - 3(1.13)

2
= 4.43 in. 6 6.0 in.

Therefore no additional ties are required by the ACI 
Code, Section 7.10.5.3.

	 7.	 The design sketch is shown in Figure 9-8.

Example 9-4

Redesign the column of Example 9-3 as a circular, spirally 
reinforced column.

Solution:
	 1.	 Use f ′c = 4000 psi, fy = 60,000 psi, and rg approximately 

0.03.

	 2.	 Pu = 688 kips, as in Example 9-3.

	 3.	  required Ag =
Pu

0.85f[0.85f ′c(1 - rg) + fyrg]

 =
688

0.85(0.75)[0.85(4)(1 - 0.03) + 60(0.03)]

 = 212 in.2

	 4.	 From Table A-14, use an 18-in.-diameter column. Thus

Ag = 254.5 in.2

16"

16"
#3 ties @ 16" o.c.

8-#10 bars

1 " cover1
2

Figure 9-8  Design sketch for Example 9-3.

18"

7-#7 bars 1 " cover1
2

"    @ 2"3
8

Figure 9-9  Design sketch for Example 9-4.
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centroid of the cross section (Figure 9-10c). The original 
eccentric force Pu may now be combined with the upward 
force Pu to form a couple, Pue, that is a pure moment. This 
will leave remaining one force, Pu, acting downward at the 
centroid of the cross section. It can therefore be seen that if 
a force Pu is applied with an eccentricity e, the situation that 
results is identical to the case where an axial load of Pu at the 
centroid and a moment of Pue are simultaneously applied 
(Figure 9-10d). If we define Mu as the factored moment to be 
applied on a compression member along with a factored axial 
load of Pu at the centroid, the relationship between the two is

e =
Mu

Pu

We have previously spoken of a column’s nominal axial 
load strength at zero eccentricity P0. Temporarily neglecting 
the strength reduction factors that must be applied to P0, let 
us assume that we may apply a load Pu with zero eccentric-
ity on a column of nominal axial load strength P0 (where 
Pu = P0). If we now move the load Pu away from the zero 
eccentricity position a distance of e, the column must resist 
the load Pu and, in addition, a moment Pue. Because Pu = P0 
(in our hypothetical case), it is clear that there is no addi-
tional strength to carry the moment and that the column is 
overloaded. For this particular column to not be overloaded 
when subjected to load at eccentricity e, we must reduce Pu 
to the point where the column can carry both Pu and Pue. 
The amount of the required decrease in Pu will depend on 
the magnitude of the eccentricity.

The preceding discussion must be modified because 
the ACI Code imposes fPn(max) as the upper limit of axial 
load strength for any column. Nevertheless, the strength of 
any column cross section is such that it will support a broad 
spectrum of load and moment (or load and eccentricity) 
combinations. In other words, we may think of a column 
cross section as having many different axial load strengths, 
each with its own related moment strength.

9-8 �C olumns Subjected 
to Axial Load at 
Large Eccentricity

At one time the ACI Code stipulated that compression mem-
bers be designed for an eccentricity e of not less than 0.05h 
for spirally reinforced columns or 0.10h for tied columns, 

9-6 � Summary of 
Procedure for 
Analysis and 
Design of Short 
Columns with Small 
Eccentricities

Analysis
	 1.	 Check rg within acceptable limits:

0.01 … rg … 0.08

	 2.	 Check the number of bars within acceptable limits for 
the clear space (see Table A-14). The minimum number 
is four for bars with rectangular or circular ties and six 
for bars enclosed by spirals.

	 3.	 Calculate the maximum design axial load strength 
fPn(max). See Section 9-2.

	 4.	 Check the lateral reinforcing. For ties, check size, spac-
ing, and arrangement. For spirals, check size, rs, and 
clear distance.

Design
	 1.	 Establish the material strengths. Establish the desired rg 

(if any).
	 2.	 Establish the factored axial load Pu.
	 3.	 Determine the required gross column area Ag.
	 4.	 Select the column dimensions. Use full-inch increments.
	 5.	 Find the load carried by the concrete and the load 

required to be carried by the longitudinal steel. Determine 
the required longitudinal steel area. Select the longitudi-
nal steel.

	 6.	 Design the lateral reinforcing (ties or spiral).
	 7.	 Sketch the design.

9-7 �T he Load–Moment 
Relationship

The equivalency between an eccentrically applied load and 
an axial load–moment combination is shown in Figure 9-10.  
Assume that a force Pu is applied to a cross section at a 
distance e (eccentricity) from the centroid, as shown in 
Figure 9-10a and b. Add equal and opposite forces Pu at the 

(a) (b)

=

(c) (d)

Pu

Pu

e

e e

PuPu

Pu

Pu

=

Pue

Figure 9-10  Load–moment–eccentricity relationship.
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f factors correspond to the compression-controlled strain 
limit or a net tensile strain in the extreme tension reinforce-
ment, Pt … 0.002. Eccentrically loaded columns, however, 
carry both axial load and moment. For values of Pt larger 
than 0.002, the f equations from ACI Code, Section 9.3.2, 
discussed in Chapter 2 will give higher values than indicated 
above. The f equations are repeated here as follows:

Tied columns:

 f = 0.65 + (Pt - 0.002)a 250
3

b
 0.65 … f … 0.90

Spiral columns:

 f = 0.75 + (Pt - 0.002)a 200
3

b

 0.75 … f … 0.90

9-10 �A nalysis of Short 
Columns: Large 
Eccentricity

The first step in our investigation of short columns carry-
ing loads at large eccentricity is to determine the strength 
of a given column cross section that carries loads at various 
eccentricities. This may be thought of as an analysis pro-
cess. For this development, we will find the design axial load 
strength fPn, where Pn is defined as the nominal axial load 
strength at a given eccentricity.

Example 9-5

Find the design axial load strength fPn for the tied column 
for the following conditions: (a) small eccentricity (e = 0 
to 0.10h); (b) e = 5 in.; (c) the balanced strain condition or 
compression-controlled strain limit, Pt = 0.002; (d) Pt = 0.004; 
(e) the tension-controlled strain limit, Pt = 0.005; and (f) pure 
moment. The column cross section is shown in Figure 9-12. 
Assume a short column. Bending is about the Y–Y axis. Use 
f ′c = 4000 psi and fy = 60,000 psi.

but at least 1 in. in any case. Here h is defined as the over-
all dimension of the column. These specified minimum 
eccentricities were originally intended to serve as a means 
of reducing the axial load design strength of a section in 
pure compression. The effect of the minimum eccentricity 
requirement was to limit the maximum axial load strength 
of a compression member.

Under the 2011 ACI Code, as we have discussed, the 
maximum design axial load strength fPn(max) is given by 
ACI Equations (10-1) and (10-2). These two equations apply 
when eccentricities are not in excess of approximately the 
0.10h and 0.05h minimum eccentricity limits previously 
discussed. Therefore small eccentricities may be considered 
as those eccentricities up to about 0.10h and 0.05h for tied 
and spiral columns, respectively. We will consider cases of 
large eccentricities as those in which ACI Equations (10-1) 
or (10-2) no longer apply and where fPn must be reduced 
below fPn(max).

The occurrence of columns subjected to eccentricities 
sufficiently large so that moment must be a design consider-
ation is common. Even interior columns supporting beams 
of equal spans will receive unequal loads from the beams 
due to applied live load patterns. These unequal loads could 
mean that the column must carry both load and moment, 
as shown in Figure 9-11a, and the resulting eccentricity of 
the loads could be appreciably in excess of our definition 
of small eccentricity. Another example of a column car-
rying both load and moment is shown in Figure 9-11b. In 
both cases, the rigidity of the joint will require the column 
to rotate along with the end of the beam that it is support-
ing. The rotation will induce moment in the column. A 
third and  very practical example can be found in precast 
work (Figure 9-11c), where the beam reaction can clearly be 
seen to be eccentrically applied on the column through the 
column bracket.

9-9 � f Factor 
Considerations

Columns discussed so far have had strength-reduction fac-
tors applied in a straightforward manner. That is, f = 0.75 
for spiral columns, and f = 0.65 for tied columns. These 

Column

Beam

(a) (b) (c)

Bracket

DL only

Deflected
column

Vertical

DL + LL

Figure 9-11  Eccentrically loaded columns.
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The unknown quantities are Pn and c.
Using basic units of kips and inches, the ten-

sile and compressive forces are evaluated. Force C2 
is the force in the compressive steel accounting for 
the concrete displaced by the steel. With reference to 
Figure 9-14c,

 C1 = 0.85f ′cab = 0.85(4)(0.85c)(14) = 40.46c

 C2 = fyA′s - 0.85f ′cA′s = A′s(fy - 0.85f ′c)

 = 3[60 - 0.85(4)] = 169.8

 T = fsAs = PsEsAs = 87ad - c
c

bAs

 = 87a17 - c
c

b  3 = 261a17 - c
c

b

From π forces = 0 in Figure 9-14,

 Pn = C1 + C2 - T

 = 40.46c + 169.8 - 261a17 - c
c

b

From π moments = 0, taking moments about T in 
Figure 9-14,

 Pn(12) = C1ad -
a
2
b + C2(14)

 Pn =
1
12

 c40.46(c)a17 -
0.85c

2
b + 169.8(14) d

Solution:
	 a.	 The analysis of the small eccentricity condition is similar 

to the analyses of Examples 9-1 and 9-2. We can calcu-
late the design axial load strength from

 fPn = fPn (max)

 = 0.80f[0.85f ′c(Ag - Ast) + fyAst]

 = 0.80(0.65)[0.85(4)(280 - 6) + 60(6)]

 = 672 kips

The corresponding maximum moment:

fMn = fPne = 672(0.10)a20
12

b = 112 ft.@kips

	 b.	 The situation of e = 5 in. is shown in Figure 9-13. In part 
(a) of this example, all steel was in compression. As 
eccentricity increases, the steel on the side of the 
column  away from the load is subjected to less com-
pression. Therefore there is some value of eccentricity 
at  which this steel will change from compression to 
tension. Because this value of eccentricity is not known, 
the strain situation shown in Figure 9-14 is assumed 
and will be verified (or disproved) by calculation.

The assumptions at nominal strength are

	 1.	 Maximum concrete strain = 0.003.

	 2.	 P′s 7 Py. Therefore f ′s = fy.

	 3.	 Ps is tensile.

	 4.	 Ps 6 Py. Therefore fs 6 fy.

20"

14"

14"

3"3"

X X

Y

Y

Ties not shown

6-#9 bars

Figure 9-12  Column cross section for Example 9-5.

Pu

Y

Y

5"

Figure 9-13  Example 9-5b, e = 5 in.
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14"
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 0
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Figure 9-14  Example 9-5b, e = 5 in.
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	 c.	 The compression-controlled strain limit (balanced con-
dition) exists when the concrete reaches a strain of 
0.003 at the same time the extreme tension steel reach-
es a strain of 0.002, as shown in Figure 9-15c. Here Pb 
is defined as nominal axial load strength at the balanced 
condition, eb is the associated eccentricity, and cb is 
the distance from the compression face to the balanced 
neutral axis.

Using the strain diagram in Figure 9-15, we may 
calculate the value of cb:

0.003
cb

=
0.002

17 - cb

from which cb = 0.6(17) = 10.2 in.
For Pt = 0.002, the tied column strength-reduction 

factor f is 0.65.
We then may determine P ′s:

P ′s =
7.2
10.2

 (0.003) = 0.0021

Because 0.0021 > 0.00207, the compression steel has 
yielded and f ′s = fy = 60 ksi.

Summarize the forces in Figure 9-15d and let C2 
account for the force in the concrete displaced by the 
three No. 9 bars:

 C1 = 0.85(4)(0.85)(10.20)(14) = 413 kips

 C2 = 60(3) - 0.85(4)(3) = 170 kips

 T = 60(3) = 180 kips

 Pb = C1 + C2 - T = 413 + 170 - 180

 = 403 kips

The value of eb may be established by summing 
moments about T:

 Pb(eb + 7) = C1ad -
0.85cb

2
b + C2(14)

 403(eb + 7) = 413 c17 -
0.85(10.20)

2
d + 170(14)

The preceding two equations for Pn may be equated 
and the resulting cubic equation solved for c by trial or 
by some other iterative method. The solution will yield 
c = 14.86 in., which will result in a value for Pn (from 
either equation) of 733 kips. The net tensile strain in the 
extreme tension reinforcement may be calculated from

 Pt = 0.003ad - c
c

b = 0.003a17 - 14.86
14.86

b

 = 0.00043 6 0.002

For Pt … 0.002, the corresponding tied column strength-
reduction factor f is 0.65. Therefore,

 fPn = 0.65(733)

 = 476 kips

Check the assumptions that were made:

 P′s = a14.86 - 3
14.86

b  (0.003) = 0.0024

 Py = 0.00207

Because P′s 7 Py,

f ′s = fy           (O.K.)

Based on the location of the neutral axis, the steel away 
from the load is in tension and

fs = 87a17 - 14.86
14.86

b = 12.53 ksi 6 60 ksi  (O.K.)

All assumptions are verified.
We may also determine the design moment strength 

for an eccentricity of 5 in. as follows:

 fPne =
476(5)

12

 = 198 ft.@kips

Therefore the given column has a design load–moment  
combination strength of 476 kips axial load and 
198 ft.-kips moment. This assumes that the moment is 
applied about the Y–Y axis.

(a) (b)

3"

3"

0.003Pb

14"

14"

Strain

(c)

Stress and Force

(d)

a b
 =

 0
.8

5c
b

eb cb

T

��s

0.85f �c

C1

C2

d = 17"

�t =
0.002

Figure 9-15  Example 9-5c, balanced condition.
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For Pt = 0.004,

 f = 0.65 + (0.004 - 0.002)a250
3

b = 0.82

 0.65 6 0.82 6 0.9             (O.K.)

Therefore, at Pt = 0.004,

 fPn = 0.82(258) = 212 kips

 fMn = fPne = 212 a16.7
12

b = 295 ft.@kips

	 e.	 Net tensile strain in the extreme tension steel Pt is 0.005, 
and a corresponding compression strain of 0.003 exists 
in the compression face.

Using the strain diagram in Figure 9-16, the neutral 
axis depth, c, is calculated as follows:

0.003
c

=
0.005

17 - c

from which c = 0.375(17) = 6.38 in.
We may then determine P ′s:

 P ′s = 0.003 a6.38 - 3
6.38

b = 0.00159 6 Py

 f ′s = E P ′s = 29,000 (0.00159) = 46.1 ksi

Using similar equations from case (b), the forces in the 
concrete, compression steel, and tension steel are as 
follows:

 C1 = 0.85(4)(0.85)(6.38)(14) = 258 kips

 C2 = 46.1(3) - (0.85)(4)(3) = 128 kips

 T = 60(3) = 180 kips

From π forces = 0 in Figure 9-16,

 Pn = C1 + C2 - T

 = 258 + 128 - 180 = 206 kips

from which eb = 11.88 in. Therefore, at the balanced 
condition,

 fPb = 0.65(403) = 262 kips

 fPbeb =
262
12

 (11.88) = 259 ft.@kips

	 d.	 Net tensile strain in the extreme tension steel, Pt = 0.004 
and a corresponding compression strain of 0.003 in the 
compression face.

Using the strain diagram in Figure 9-16, the neutral 
axis depth, c is calculated as follows:

0.003
c

=
0.004

17 - c

from which c = 0.429(17) = 7.29 in.
We may then determine P ′s:

 P′s = 0.003 
(7.29 - 3)

7.29
= 0.00177 6 Py

 f ′s = E P ′s = 29,000 (0.00177) = 51.2 ksi

Using similar equations from case (b), the forces in the 
concrete, compression steel, and tension steel are as 
follows:

 C1 = 0.85(4)(0.85)(7.29)(14) = 295 kips

 C2 = 51.2(3) - (0.85)(4)(3) = 143 kips

 T = 60(3) = 180 kips

From π forces = 0 in Figure 9-16,

 Pn = C1 + C2 - T

 = 295 + 143 - 180 = 258 kips

From π moments = 0, taking moments about T in 
Figure 9-16,

 Pn(e + 7) = C1ad -
0.85c

2
b + C2(14)

 258 (e + 7) = 295 cd -
0.85(7.29)

2
d + 143(14)

from which e = 16.7 in.

(a) (b)
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Figure 9-16  Examples 9-5d and 9-5e.
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Because

f ′s = EsP′s

substituting yields

 f ′s = 29,000(0.003) 
(c - 3)

c

 = 87 
(c - 3)

c

For equilibrium in Figure 9-18d,

C1 + C2 = T

Substituting into the foregoing and accounting for the 
concrete displaced by the compression steel, we obtain

 (0.85f ′c)(0.85c)(b) + f ′sA′s - 0.85f ′cA′s = fyAs

 (0.85)(4)(0.85c)(14) + 87ac - 3
c

b (3) - 0.85(4)(3) = 3(60)

Solving the preceding equation for the one unknown 
quantity c yields

c = 3.62 in.

The net tensile strain in the extreme tension reinforce-
ment may be calculated from

Pt = 0.003ad - c
c

b = 0.003a17 - 3.62
3.62

b = 0.011

For Pt Ú 0.005, the corresponding strength reduction 
factor f is 0.90.

Therefore

f ′s = 87a3.62 - 3
3.62

b = 14.90 ksi  (compression)

Summarizing the forces,

 C1 = 0.85f ′c(0.85)cb = 0.85(4)(0.85)(3.62)(14) =  146.5 kips

 displaced concrete = 0.85f ′cA′s = 0.85(4)(3) =  -10.2 kips

 C2 = f ′sA′s = 14.90(3) =    44.7 kips

   181.0 kips

 T = fyAs = 60(3.0) =  180 kips

The slight error between T and (C1 + C2) will be neglected.

From π moments = 0, taking moments about T in 
Figure 9-16,

 Pn(e + 7) = C1ad -
0.85c

2
b + C2(14)

 206(e + 7) = 258 cd -
0.85(6.38)

2
d + 128(14)

from which e = 19.6 in.
For Pt Ú 0.005, f = 0.90. Therefore, at Pt = 0.005,

 fPn = 0.90(206) = 185 kips

 fMn = fPne = 185 a19.6
12

b = 302 ft.@kips

	 f.	 The analysis of the pure moment condition is similar to 
the analysis of the case where eccentricity e is infinite, 
shown in Figure 9-17. We will find the design moment 
strength fMn, because Pu and fPn will both be zero.

With reference to Figure 9-18d, notice that for pure 
moment the bars on the load side of the column are in 
compression, whereas the bars on the side away from 
the load are in tension. The total tensile and compressive 
forces must be equal to each other. Since As = A′s, A′s 
must be at a stress less than yield. Assume that As is at 
yield stress. Then

 C1 = concrete compressive force

 C2 = steel compressive force

 T = steel tensile force

Referring to the compressive strain diagram portion of 
Figure 9-18c and noting that the basic units are kips 
and inches,

P′s = 0.003 
(c - 3)

c

Pu

e = �

Figure 9-17  Column of Example 9-5 loaded with pure 
moment.

(a) (b)

3" 3"

(c)

0.003 0.85f �c

(d)

c

As

�y T

A�s ��s

Z1

C1

Z2

C2

  Mn

17"

14"

or more

Strain Stress and Force

0.85c

Figure 9-18  Example 9-5f, e = ∞.
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The results of the six parts of Example 9-5 are tabu-
lated (see Table 9-1) and plotted in Figure 9-19. All design 
axial load strengths are denoted fPn, and all design moment 
strengths are denoted fPne. This plot is commonly called an 
interaction diagram. It applies only to the column analyzed, 
but it is a representation of all combinations of axial load 
and moment strengths for that column cross section.

In Figure 9-19, any point on the solid line represents 
an allowable combination of load and moment. Any point 
within the solid line represents a load–moment combi-
nation that is also allowable, but for which this column is 
overdesigned. Any point outside the solid line represents an 
unacceptable load–moment combination or a load–moment 
combination for which this column is underdesigned. The 
value of fPn(max), which we calculated in part (a), is super-
imposed on the plot as the horizontal line.

Radial lines from the origin represent various eccen-
tricities. (Actually, the slopes of the radial lines are equal 
to fPn/fPne or 1/e.) The intersection of the e = eb line 

Summarizing the internal couples,

 Mn1 = C1Z1

 =
146.5

12
 c17 -

0.85(3.62)

2
d

 = 188.8 ft.@kips

 Mn2 = C2Z2

 = (44.7 - 10.2)a14
12

b

 = 40.3 ft.@kips

 Mn = Mn1 + Mn2

 = 188.8 + 40.3

 = 229 ft.@kips

The design moment strength becomes

 fMn = 0.90(229)

 = 206 ft.@kips

Table 9-1  Column Axial Load–Moment Interaction for Example 9-5

Eccentricity,  
e

Net tensile 
strain in extreme 
tension steel, `t

Strength-  
reduction 
factor f

Axial load  
strength,  

(fPn, kips)

Moment  
strength, 

(fPne, ft.-kips)

Small 0.65 672 112

(i.e., 0 to 0.10h)5″ 0.00043 0.65 476 198

11.88″ (balanced) 0.002 0.65 262 259

16.7″ 0.004 0.82 212 295

19.6″ 0.005 0.90 185 302

Infinite (pure moment) W0.005 0.90     0 206
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Figure 9-19  Column interaction diagram.
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with load–moment–strength combinations above this line 
are compression-controlled (f = 0.65 for tied columns; 0.75 
for spiral columns). Columns with load–moment–strength 
combinations between these two lines are in the transition 
zone. The line labeled Kmax indicates the maximum allow-
able nominal load strength [fPn(max)] for columns loaded 
with small eccentricities. A horizontal line drawn through 
the intersection of the Kmax line and a rg curve corresponds 
to the horizontal line near the top of the interaction diagram 
in Figure 9-19.

The following three examples illustrate the use of the 
ACI interaction diagrams for analysis and design of short 
reinforced concrete columns.

Example 9-6

Using the interaction diagrams of Appendix A, find 
the axial load strength fPn and the moment strength 
fMn for  the  column cross section with six No. 9 bars, 
as shown  in Figure  9-20. Eccentricity e = 5 in., and use 
f ′c = 4000 psi and fy = 60,000 psi. Compare the results with 
Example 9-5b.

Solution:

First, determine which interaction diagram to use, based on 
the type of cross section, the material strengths, and the 
factor g.

 gh = 14 in.

 g =
14
20

= 0.7

Therefore, use interaction Diagram A-15.

 rg =
6.00

14(20)
= 0.0214

 0.01 … 0.0214 … 0.08        (O.K.)

Next, calculate the slope of the radial line from the origin, 
which relates h and e:

slope =
h
e

=
20
5

= 4

A straight edge and some convenient values (e.g., Kn = 1.0 
and Rn = 0.25) may be used to intersect this radial line with 
an estimated rg = 0.0214 curve. At this intersection, we read 
Kn ≈ 0.64 and Rn ≈ 0.16. Because this combination of load 

with the solid line represents the balanced condition. Any 
eccentricity less than eb will result in compression control-
ling the column. For eccentricities between eb (11.88 in.)  
and  19.6  in., the column will be in the transition zone 
(0.002 … Pt … 0.005). For eccentricities greater than 19.6 in., 
the column will be tension-controlled.

The calculations involved with column loads at large 
eccentricities are involved and tedious. The previous exam-
ples were analysis examples. Design of a cross section using 
the calculation approach would be a trial-and-error method 
and would become exceedingly tedious. Therefore design 
and analysis aids have been developed that shorten the 
process to a great extent. These aids may be found in the 
form of tables and charts. A chart approach is developed in 
ACI Publication SP-17(97), ACI Design Handbook [1]. The 
design aids are based on the assumptions of ACI 318-95 and 
on the principles of static equilibrium; they are developed 
in a fashion similar to what was done in Example 9-5. No 
f factors are incorporated into the diagrams. Eight interac-
tion diagrams are included in Appendix A (Diagrams A-15 
through A-22.)

The diagrams take on the general form of Figure 9-19 but 
are generalized to be applicable to more situations. Referring 
to Diagram A-15, which corresponds to our Figure 9-19, the 
following definitions will be useful:

rg =
Ast

Ag

h = column dimension perpendicular to the bending axis
 (see the sketch included on Diagram A@15)

g = ratio of distance between centroids of outer rows of 
bars and column dimension perpendicular to 
the bending axis

Note that the vertical axis and the horizontal axis are in 
general terms of Kn and Rn, where

 Kn =
Pn

f′cAg

 Rn =
Pne

f′cAgh

Note also that Pn and Pne are nominal axial load strength 
and nominal moment strength. The slope of a radial line 
from the origin can be represented as follows:

slope =
rise
run =

a Pn

f′cAg
b

a Pne
f′c Ag h

b
=

h
e

Curves are shown for the range of allowable rg values 
from 0.01 to 0.08. A line near the horizontal axis labeled 
Pt  =  0.0050 indicates the limit for tension-controlled sec-
tions. Columns with load–moment–strength combinations 
below this line are tension-controlled (f = 0.90). The line 
labeled fs/fy = 1.0 indicates the balanced condition. Columns 

20"

14"

14"

Figure 9-20  Sketch for Example 9-6.
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Recognizing that required Pn = Pu/f and required Pne = Mu/f, 
we can calculate the values of required Kn and Rn:

 required Kn =
Pu

ff ′cAg
=

1100
0.75(4)(452)

= 0.811

 required Rn =
Mu

ff ′cAgh
=

285(12)

0.75(4)(452)(24)
= 0.105

From Diagram A-21, rg = 0.024. Note that this is well above 
the fs/fy = 1.0 line; therefore, the column is compression- 
controlled and the assumption that f = 0.75 is O.K.

required As = rgAg = 0.024(452) = 10.85 in.2

Select 11 No. 9 bars (As = 11.00 in.2). Check the maxi-
mum number of No. 9 bars from Table A-14: 15 (O.K.).

Design the spiral. Use a 38@in.@diameter spiral.
The concrete core diameter is Dch = 24 - 2111

22 = 21 in.

 required rs = 0.45 a
Ag

Ach
- 1b  

f ′c
fyt

= 0.45 a452
346

- 1b  
4
60

 = 0.0092

 required s =
4Asp

Dchrs
=

4(0.11)

21(0.0092)
= 2.27

Use 21
4@in. spacing. The design is shown in Figure 9-22.

Example 9-8

Design a square-tied reinforced concrete column to sup-
port a design load Pu = 1300 kips and a design moment 
Mu = 550 ft.-kips. Use f ′c = 4000 psi and fy = 60,000 psi.

Solution:

Estimate the column size required based on rg = 1% and 
axial load only.

 required Ag =
Pu

0.80f[0.85 f ′c (1 - rg) + fyrg]

 =
1300

0.80 (0.65)[0.85(4)(0.99) + 60(0.01])

 = 631 in.2

Try a 26-in.-square column (Ag = 676 in.2).

and moment is above the fs/fy = 1.0 line, this is a compression- 
controlled section and f = 0.65.

 fPn = fKnf ′cAg

 = 0.65 (0.64)(4)(20)(14) = 466 kips

 fMn = fRnf ′cAgh

 =
0.65(0.160)(4)(20)(14)(20)

12 in./ft
= 194 ft.@kips

or

fMn = fPne =
466 ft.@kips (5 in.)

12 in./ft
= 194 ft.@kips

This compares reasonably well with the results of 
Example 9-5b: fPn = 476 kips and fMn = 198 ft.-kips.

Example 9-7

Design a circular spirally reinforced concrete column to sup-
port a design load Pu = 1100 kips and a design moment 
Mu = 285 ft.-kips. Use f ′c = 4000 psi and fy = 60,000 psi.

Solution:

Estimate the column size required based on rg = 1% and 
axial load only.

 required Ag =
Pu

0.85f[0.85f ′c(1 - rg) + fyrg]

 =
1100

0.85 (0.75)[0.85(4)(0.99) + 60(0.01)]

 = 435 in.2

Try a 24-in.-diameter column (Ag = 452 in.2).
If No. 9 bars are eventually chosen (refer to Figure 9-21),

 gh = 24 - 2(11
22 - 2a3

8
b - 1.13 = 19.12 in.

 g =
19.12

h
=

19.12
24

= 0.797

Therefore, use Diagram A-21 from Appendix A (ACI 
Interaction Diagram C4-60.8). Next, determine the required 
rg. Assume that this column will be compression-controlled 
(f = 0.75) subject to later check.

h = 24"

�h

11-#9 bars

1 " cover to
   spiral

1
2

"   spiral @ 23
8

"o.c.1
4

Figure 9-22  Design sketch for Example 9-7.

h = 24"

�h

#9 bars

1 " cover to
   spiral

1
2

"spiral3
8

Figure 9-21  Sketch for Example 9-7.
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9-11 T he Slender Column
Thus far, our design and analysis have been limited to short 
columns that require no consideration of necessary strength 
reduction due to the possibility of buckling. All compres-
sion members will experience the buckling phenomenon as 
they become longer and more flexible. These are sometimes 
termed slender columns. A column may be categorized as 
slender if its cross-sectional dimensions are small in com-
parison to its unsupported length. The degree of slenderness 
may be expressed in terms of the slenderness ratio

k/u

r

where
k = effective length factor for compression members

/u = �the unsupported length of a compression member, 
which shall be taken as the clear distance between 
floor slabs, beams, or other members capable of 
providing lateral support in the direction being 
considered (ACI Code, Section 10.1.1)

r = �radius of gyration of the cross section of the 
compression members, which may be taken 
as 0.30h, where h is the overall dimension of 
a rectangular column in the direction of the 
moment, or 0.25D, where D is the diameter of a 
circular column (ACI Code, Section 10.1.2)

The numerator k/u is termed the effective length. It is a 
function not only of the unsupported length and end condi-
tions of the column but also a function of whether or not 
sidesway exists. Sidesway may be described as a kind of 
deformation whereby one end of a member moves laterally 
with respect to the other. Sidesway is also termed lateral drift.

The ACI Code, Section 10.6.3, states that for compres-
sion members braced against sidesway, k may be taken as 
1.0. This is conservative. The ACI Code, Section 10.7.2, 
states that for compression members not braced against 
sidesway, the effective length must be greater than 1.0. 
Therefore, as a rule, compression members free to buckle in 
a sidesway mode are appreciably weaker than when braced 
against sidesway.

A simple example is a column fixed at one end and 
entirely free at the other (cantilever column or flagpole). Such 
a column will buckle, as shown in Figure 9-25. The upper end 
would move laterally with respect to the lower end. This lat-
eral movement is the sidesway (or lateral drift). In reinforced 
concrete structures, it is common to deal with indeterminate 
rigid frames, such as illustrated by the simple portal frame in 
Figure 9-26. The upper end of the frame can move sideways 
as it is unbraced. This type of frame is sometimes termed a 
sway frame, and it depends on the rigidity of the joints for 
stability. The lower ends of the columns may be theoretically 
pin corrected, fully restrained, or somewhere in between.

As an example of how the effective length of a column 
is influenced by sidesway, consider the simple case of a sin-
gle member, as shown in Figure 9-27. The member braced 

If No. 9 bars are eventually chosen (refer to Figure 9-23):

 gh = 26 - 2111
22 - 2a3

8
b - 1.13 = 21.12 in.

 g =
21.12

h
=

21.12
26

= 0.812

Therefore, use Diagram A-18 from Appendix A (ACI 
Interaction Diagram R4-60.8).

Next, determine the required rg. Assume that this col-
umn will be compression-controlled (f = 0.65) subject to 
later check.

Recognizing that required Pn = Pu/f and required Pue = 
Mu/f, we can calculate the values of required Kn and Rn:

 required Kn =
Pu

ff ′cAg
=

1300
0.65(4)(676)

= 0.740

 required Rn =
Mu

ff ′cAgh
=

550 (12)

0.65(4)(676)(26)
= 0.144

From Diagram A-18, rg ≈ 0.023. Note that this is well above 
the fs/fy = 1.0 line; therefore, the column is compression-
controlled and the assumption that f = 0.65 is O.K.

required As = rgAg = 0.023(676) = 15.55 in.2

Select 16 No. 9 bars (As = 16.00 in.2). Check the maxi-
mum number of No. 9 bars from Table A-14: 20 (O.K.).

Design the ties. Use a 3
8@in.@diameter tie, because the 

vertical bar size (No. 9 bar) is not greater than a No. 10.
The maximum tie spacing is the smallest of the following:

 16 (bar diameter) = 16 * 1.13 = 18 in.

 48 (tie diameter) = 48 *
3
8

= 18 in.

 least column dimension = 26 in.

Therefore, use No. 3 ties at 18-in. spacing. The design is 
shown in Figure 9-24.

26"

�h

Figure 9-23  Sketch for Example 9-8.

#3 ties @ 18-in.
spacing

16-#9 bars

1 " cover to ties1
2

Figure 9-24  Design sketch for Example 9-8.
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against sidesway (Figure 9-27a) has an effective length half 
that of the member without sidesway bracing (Figure 9-27b) 
and has four times the axial-load capacity based on the Euler 
critical column load theory.

If we consider the column shown in Figure 9-27b to be 
part of a frame and give the sidesway the notation ¢ as shown 
in Figure 9-28, it is seen that the axial load now acts eccen-
trically and creates end moments of Pu¢. This is referred to 
as the P-delta effect. These moments are also referred to as 
“second-order end moments” because they are in addition 
to any primary (first-order) end moments that result from 
applied loads on the frame with no consideration of geom-
etry change (sidesway).

Actual structures are rarely completely braced (non-
sway) or completely unbraced (sway). Sidesway may be 

u

Pu

Pu

Figure 9-25  Fixed-free column.

u

Pu

Frame Unloaded

(a)

Frame Loaded, Unbraced

(b)

Pu

Pu

Pu

Figure 9-26  Sidesway on portal frame.
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Rotation
fixed

(k = 1.0)

(k = 0.5)
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fixed

Pu
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�

P.I.

P.I.

Pu

Effective u= k
= 1.0 u

Effective
u= k

= 0.5 u

Figure 9-27  Sidesway and effective length.
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Fortunately, for ordinary beam and column sizes and 
typical story heights of concrete framing systems, effects of 
slenderness may be neglected in more than 90% of columns 
in braced (nonsway) frames and in about 40% of columns in 
unbraced (sway) frames [2].

In cases where slenderness must be considered, the 
ACI Code gives the methods that can be used. These range 
from an approximate method (ACI 318-11, Section 10.10.5) 
in which moments are magnified to account for slender-
ness to a nonlinear second-order analysis. The approximate 
method uses a moment magnification factor that amplifies 
the factored moment computed from a conventional elastic 
analysis. In turn, the combination of the magnified factored 
moment and the factored axial load is used in the design of 
the compression member. Although the approximate analy-
ses have been the traditional design methods of the past, 
more exact analyses have become possible and practical with 
the increased availability of sophisticated computer methods.

The design of slender reinforced concrete columns 
is one of the more complex aspects of reinforced concrete 
design and is not within the intended scope of this book. For 
the more rigorous theoretical background and applications 
relative to slender columns, the reader is referred to other 
comprehensive texts on reinforced concrete design that may 
offer a different emphasis and orientation.

minimized in various ways. The common approach is to 
use walls or partitions sufficiently strong and rigid in their 
own planes to prevent the horizontal displacement. Another 
method is to use a rigid central core that is capable of resist-
ing lateral loads and lateral displacements due to unsym-
metrical loading conditions. For those cases when it is not 
readily apparent whether a structure is braced or unbraced, 
the ACI Code (Sections 10.10.1 and 10.10.5) provides ana-
lytical methods to aid in the decision.

For braced columns, slenderness effects may be 
neglected when

	
k/u

r … 34 - 12 aM1

M2
b 	 [ACI Eq. (10-7)]

where M1 is the smaller end moment and M2 is the larger 
end moment, both obtained by an elastic frame analysis. The 
ratio M1/M2 is positive if the column is bent in single curva-
ture, is negative if bent in double curvature (see Figure 9-29), 
and the term [34 − 12M1/M2] shall not be taken greater than 
40. For columns in sway frames (not braced against side-
sway), slenderness effects may be neglected when k/u>r is 
less than 22 (ACI 318-11, Section 10.10.1).

Pu

Pu

Pu �

Pu �

�

Figure 9-28  Column subjected to sidesway.

Single-curvature
bending

Double-curvature
bending

Figure 9-29  Column curvature.
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Problems

	 9-1.	 Compute the maximum design axial load strength 
of the tied columns shown. Assume that the col-
umns are short. Check the tie size and spacing. Use 
f′c = 4000 psi and fy = 60,000 psi.
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	 9-4.	 A short, circular spiral column having a diameter of 
18 in. is reinforced with eight No. 9 bars. The cover is 
11

2 in., and the spiral is 38 in. in diameter spaced 2 in. o.c. 
Find the maximum design axial load strength and 
check the spiral. Use f′c = 3000 psi and fy = 40,000 psi.

	 9-5.	 Same as Problem 9-4, but f′c = 4000 psi and fy = 
60,000 psi.

	 9-6.	 Compute the maximum axial compressive service 
live load that may be placed on the column shown. 
The column is short and is subjected to an axial 
service dead load of 200 kips. Check the ties. Use 
f′c = 3000 psi and fy = 40,000 psi.

18"

#3 @ 18"
(3 per set)

10-#9 bars

24"

1 " clear1
2

PROBLEM 9-6

	 9-7.	 Design a short, square tied column to carry a total 
factored design load Pu of 905 kips. Space and practi-
cal limitations require a column size of 18 in. * 18 in. 
Use f′c = 4000 psi and fy = 60,000 psi.

	 9-8.	 Design a short, square tied column for service loads 
of 205 kips dead load and 165 kips live load. Use rg 

	 9-2.	 Compute the maximum design axial load strength 
for the tied column shown. The column is short. 
Check the tie size and spacing. Use f′c = 4000 psi and 
fy = 60,000 psi.

1
2

#4 @ 18" o.c. (2 per set) 12– #10 bars

18"

24"

1 " clear

PROBLEM 9-2

	 9-3.	 Find the maximum axial compressive service loads 
that the column of cross section shown can carry. 
The column is short. Assume that the service dead 
load and live load are equal. Check the ties. Use 
f′c = 4000 psi and fy = 60,000 psi.

16"

#3 @ 16" o.c.

4-#11 bars
16"

1 " clear1
2

PROBLEM 9-3

14"

#3 @ 12" o.c.4-#11 bars

14"

22"

#3 @ 18"
(3 per set)

8-#10 bars

(a)

(c)

(b)

22"

18"

#3 @ 15"
(2 per set)

8-#8 bars

18"

1 " clear1
2

1 " clear1
2

1 " clear1
2

PROBLEM 9-1
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	9-12.	 Design a short square tied column to carry a fac-
tored axial design load Pu of 890 kips and a factored 
design moment Mu of 390 ft.-kips. Place the longi-
tudinal reinforcing uniformly in the four faces. Use 
f′c = 4000 psi and fy = 60,000 psi.

	9-13.	 Same as Problem 9-12, but design a circular spiral 
column.

	9-14.	 For the short tied column of cross section shown, 
find the design axial load strength fPn for an eccen-
tricity of 14 in. Use f′c = 4000 psi and fy = 60,000 psi. 
Assume that the ties and bracket design are adequate.

of about 0.04, f′c = 3000 psi, and fy = 60,000 psi. 
Assume that eccentricity is small.

	 9-9.	 Same as Problem 9-8, but use f′c = 4000 psi, fy = 
60,000 psi, and a rg of about 0.03.

	9-10.	 Design a short, circular spiral column for service loads 
of 175 kips dead load and 325 kips live load. Assume 
that the eccentricity is small. Use f′c = 4000 psi and 
fy = 60,000 psi. Make rg about 3%.

	9-11.	 For the short column of cross section shown, find 
fPn and eb at the balanced condition using basic 
principles. Use f′c = 4000 psi and fy = 60,000 psi. 
Bending is about the strong axis.

20"

14"
20"

14"

14"

6-#9 bars

Section A–A
A A

Pu

Elevation

PROBLEM 9-14

22"

16"

8-#10 bars

#4 @ 16" o.c.

1  " clear1
2

PROBLEM 9-11
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last, or nearly the last, structural element of the foundation 
through which the loads pass. A footing has as its function 
the requirement of spreading out the superimposed load so 
as not to exceed the safe capacity of the underlying material, 
usually soil, to which it delivers the load. Additionally, the 
design of footings must take into account certain practical 
and, at times, legal considerations. Our discussion is con-
cerned only with spread footings depicted in Figure 10-1. 
Footings supported on piles will not be discussed.

10-1  Introduction
The purpose of the structural portion of every building is to 
transmit applied loads safely from one part of the structure 
to another. The loads pass from their point of application 
into the superstructure, then to the foundation, and then into 
the underlying supporting material. We have discussed the 
superstructure and foundation walls to some extent. The 
foundation is generally considered the entire lowermost 
supporting part of the structure. Normally, a footing is the 
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10-2  Wall Footings
Wall footings are commonly required to support direct con-
centric loads. An exception to this is the footing for a retain-
ing wall. A wall footing may be of either plain or reinforced 
concrete. Because it has bending in only one direction, it is 
generally designed in much the same manner as a one-way 
slab, by considering a typical 12-in.-wide strip along the 
length of wall. Footings carrying relatively light loads on 
well-drained cohesionless soil are often made of plain con-
crete—that is, concrete without reinforcing. This material is 
referred to as structural plain concrete.

A wall footing under concentric load behaves simi-
larly to a cantilever beam, where the cantilever extends 
out from the wall and is loaded in an upward direction by 
the  soil pressure. The flexural tensile stresses induced in 
the bottom of the footing are acceptable for a plain con-
crete footing.

From the ACI Code, Section 22.5, the nominal flexural 
design strength of a plain concrete cross section is calcu-
lated from

Mn = 5l2f′c Sm

The more common types of footings may be catego-
rized as follows:

	 1.	 Individual column footings (Figure 10-1a) are often 
termed isolated spread footings and are generally square. 
If space limitations exist, however, the footing may be 
rectangular in shape.

	 2.	 Wall footings support walls that may be either bearing 
or nonbearing walls (Figure 10-1b).

	 3.	 Combined footings support two or more columns 
and may be either rectangular or trapezoidal in shape 
(Figure 10-1c and d). If two isolated footings are joined 
by a strap beam, the footing is sometimes called a canti-
lever footing (Figure 10-1e).

	 4.	 Mat foundations are large continuous footings that 
support all columns and walls of a structure. They are 
commonly used where undesirable soil conditions pre-
vail (Figure 10-1f).

	 5.	 Pile caps or pile footings serve to transmit column loads 
to a group of piles, which will in turn transmit the loads 
to the supporting soil through friction or to underlying 
rock in bearing (Figure 10-1g).

Figure 10-2  Column and wall footings. 
The Health, Physical Education and 
Recreation Complex, Hudson Valley 
Community College, Troy, New York.   
(George Limbrunner)
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Example 10-1

Design a plain normal-weight concrete wall footing to 
carry a 12-in. concrete block masonry wall, as shown in 
Figure 10-3. The service loading may be taken as 10 kips/ft  
dead load (which includes the weight of the wall) and 
20 kips/ft live load. Use f ′c = 3000 psi. The gross allowable 
soil pressure is 5000 psf (5.0 ksf), and the weight of earth 
we = 100 lb/ft3.

Solution:
	 1.	 Compute the factored load:

 wu = 1.2wDL + 1.6wLL

 = 1.2(10) + 1.6(20)

 = 44 kips/ft

	 2.	 Assume a footing thickness of 3 ft-0 in. This will be 
checked later in the design. The footing weight is

0.150(3) = 0.450 ksf

Assuming the bottom of the footing to be 4 ft-0 in. 
below the finished ground line, the weight of the soil on 
top of the footing is

(1)(100) = 100 psf = 0.100 ksf

Therefore the net allowable soil pressure for superim-
posed service loads is

5.00 - 0.45 - 0.100 = 4.45 ksf

Sometimes, the geotechnical engineering report for 
a project may specify the net allowable soil pressure 
directly, thus obviating the need for the calculations in 
this step.

	 3.	 The maximum allowable soil pressure for strength 
design must now be found. It must be modified in a 
manner consistent with the modification of the service 
loads. This may be accomplished by multiplying by 
the ratio of the total design load (44 kips) to the total 
service load (30 kips). We then obtain a maximum allow-
able soil pressure solely for use in the strength design of 

if tension controls and

Mn = 0.85 f′c Sm

if compression controls. The quantity Sm is the elastic sec-
tion modulus of the section. Lamda (l) is the modification 
factor reflecting the lower tensile strength of lightweight 
concrete relative to normal-weight concrete and is described 
in Chapter 1. For normal-weight concrete, l = 1.0. In this 
chapter we will consider only normal-weight concrete; 
therefore, l will be omitted in the examples. These formulas 
are based on the flexure formula,

fb =
Mc
I

rewritten

M = fb S

where 5l2f′c  and 0.85f′c  are limiting stress fb values in 
tension and compression, respectively. Similarly, nominal 
shear strength for beam action for a plain concrete member 
is calculated from

Vn =
4
3
 l2f′cbh

This is based on the general shear formula for a rectangular 
section:

fv =
3V
2bh

which is rewritten

V =
2
3
 fvbh

where the limiting shear stress value is 2l2f′c , a familiar 
value from our previous discussions of shear in flexural 
members and l = 1.0 for normal-weight concrete.

In each case, the basis for the design must be

fMn Ú Mu and fVn Ú Vu

as applicable. The strength-reduction factor for plain con-
crete is 0.60 (ACI Code Section 9.3.5).

In a reinforced concrete wall footing, the behavior is 
identical to that just described. Reinforcing steel is placed 
in the bottom of the footing in a direction perpendicular to 
the wall, however, thereby resisting the induced flexural ten-
sion, similar to a reinforced concrete beam or slab.

In either case, the cantilever action is based on the max-
imum bending moment occurring at the face of the wall if 
the footing supports a concrete wall or at a point halfway 
between the middle of the wall and the face of the wall if the 
footing supports a masonry wall. This difference is primarily 
because a masonry wall is somewhat less rigid than a con-
crete wall.

For each type of wall, the critical section for shear in the 
footing may be taken at a distance from the face of the wall 
equal to the effective depth of the footing.

3"

2'-10   " 2'-10   "1'-0"

6'-9"

    masonry wall
and     footing

Critical section
for moment

6.52 ksf6.52 ksf

h

1
2

1
2

Figure 10-3  Plain concrete wall footing for Example 10-1.
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With reference to Figure 10-4, if the critical section for 
shear is considered a distance equal to the depth of the 
member h from the face of the wall and if the depth is 
taken as 34.1 in. (the required h), it may be observed 
that the critical section is outside the edge of the footing. 
Therefore the shear check may be neglected.

	10.	 It is common practice to use some longitudinal steel 
in continuous wall footings whether or not transverse 
steel is present. This will somewhat enhance the struc-
tural integrity by limiting differential movement between 
parts of the footing should transverse cracking occur. 
It will also lend some flexural strength in the longitudi-
nal direction. The rationale for this stems from the many 
uncertainties that exist in both the supporting soil and 
the applied loads.

As a guide, this longitudinal steel may be computed 
in a manner similar to that for temperature and shrink-
age steel in a one-way slab, where

required As = 0.0018bh  (using fy = 60,000 psi)

The total longitudinal steel required for the 6-ft-9-in. 
footing width is

As = 0.0018(6.75)(12 in./ft)(38) = 5.54 in.2

Use 13 No. 6 bars (As = 5.72 in.2). This would satisfy any 
longitudinal steel requirement. It is obvious, however, 
that this large steel requirement does not lend itself to 
an economical footing design, but rather leads us to 
conclude that we should question the use of plain con-
crete wall footings when superimposed loads are heavy.

A redesign using a reinforced concrete wall footing is 
accomplished in the following problem.

Example 10-2

Design a normal-weight reinforced concrete wall footing 
to carry a 12-in. concrete block masonry wall, as shown 
in Figure 10-5. The service loading is 10 kips/ft dead 
load (which includes the weight of the wall) and 20 kips/ft  
live load. Use f ′c = 3000 psi, fy = 60,000 psi, weight of 
earth = 100 lb/ft3, and gross allowable soil pressure = 5000 
psf (5.0 ksf). The bottom of the footing is to be 4 ft-0 in. 
below the finished ground line.

the footing. This soil pressure should not be construed 
as an actual allowable soil pressure. Thus

4.45a44
30

b = 6.53 ksf

	 4.	 We may now determine the required footing width:

44.0
6.53

= 6.74 ft

Use 6 ft-9 in.

	 5.	 Determine the factored soil pressure to be used for the 
footing design if the footing width is 6 ft-9 in.:

44.0
6.75

= 6.52 ksf 6 6.53 ksf     (O.K.)

	 6.	 With the factored soil pressure known, the bending 
moment in the footing may be calculated. For concrete 
block masonry walls, the critical section for moment 
should be taken at the quarter-point of wall thickness 
(ACI Code, Section 15.4.2b).

With reference to Figure 10-3, the factored moment 
is determined as follows:

Mu =
6.52(3.125)2

2
= 31.8 ft@kips

	 7.	 Find the required footing thickness based on the required 
moment strength. Assuming that tension controls:

fMn = f52f ′cSm = f52f ′c 
bh2

6

Setting fMn = Mu and considering a typical 12-in.-wide 
strip:

f52f ′c 
(12)(h2)

6
= 31.8 ft@kips

from which

 required h = C(31.8 ft@kips)(12 in./ft)(1000 lb/kip)(6)

0.60(5) 13000 (12 in.)

 = 34.1 in.

	 8.	 It is common practice to assume that the bottom 
1 or 2  in. of concrete placed against the ground may 
be of poor quality and therefore may be neglected for 
strength purposes. The total required footing thickness 
may then be determined:

34.1 + 2.0 = 36.1 in.

We will use h = 38 in. This checks closely with the 
assumed thickness of 36 in. No revision of the calcula-
tions is warranted.

	 9.	 Shear is generally of little significance in plain concrete 
footings because of the large concrete footing thickness. 

2'-10   " 2'-10   "
1'-0"

6'-9"

3'-2"

1
2

1
2

Figure 10-4  Plain concrete wall footing for Example 10-1.
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Code, Section 7.7.1(a)] and one-half of the bar diameter 
(No. 8 assumed) from the total thickness:

d = 18 - 3 - 0.5 = 14.5 in.

	 7.	 Because required thicknesses of reinforced concrete 
footings are generally controlled by shear requirements, 
the shear should be checked first.

With reference to Figure 10-5, as the wall footing 
carries shear in a manner similar to that of a one-way slab 
or beam, the critical section for shear will be taken at a dis-
tance equal to the effective depth of the footing (14.5 in.) 
from the face of the wall (ACI Code, Section 11.1.3):

Vu = 1.63(1)(6.60) = 10.75 kips/ft of wall

The total nominal shear strength Vn is the sum of 
the shear strength of the concrete Vc and the shear 
strength of any shear reinforcing Vs.

 Vn = Vc + Vs

 fVn = fVc + fVs

Assuming no shear reinforcing,

fVn = fVc

In footings, shear reinforcing is not required if

fVc 7 Vu

Computing fVc,

 fVc = f22f ′cbd

 = 0.75(2)13000 (12)(14.5)

 = 14.30 kips/ft of wall

 14.30 kips 7 10.75 kips

Therefore

fVc 7 Vu

Thus the assumed thickness of footing is satisfactory 
for shear, and no revisions are necessary with respect 
to footing weight.

	 8.	 With reference to Figure 10-6, the critical section for 
moment is taken at the quarter-point of wall thickness 

Solution:
	 1.	 Compute the factored load:

 wu = 1.2wDL + 1.6wLL

 = 1.2(10) + 1.6(20)

 = 44 kips/ft

	 2.	 Assume a total footing thickness = 18 in. Therefore the 
footing weight is

0.150(1.5) = 0.225 ksf

Because the bottom of the footing is to be 4 ft below 
the finished ground line, there will be 30 in. of earth on 
top of the footing. This depth of earth has a weight of

30(100)

12
= 250 psf = 0.250 ksf

The net allowable soil pressure for superimposed ser-
vice loads is

5.00 - 0.225 - 0.250 = 4.53 ksf

	 3.	 As in Example 10-1, we use the ratio of factored load to 
service load to determine the soil pressure for strength 
design:

44(4.53)

30
= 6.64 ksf

	 4.	 The required footing width is

44.0
6.64

= 6.63 ft

Use 6 ft-8 in.

	 5.	 The factored soil pressure to be used for the footing 
design is

44.0
6.67

= 6.60 ksf

	 6.	 The assumed effective depth d for the footing is deter-
mined by subtracting the concrete cover [see the ACI 

2'-10" 2'-10"

1'-2   "

1'-7   " = 1.63'
1'-0"

    masonry wall
and     footing

Critical section
for shear

6.60 ksf

1
2

1
2

Figure 10-5  Reinforced concrete wall footing for 
Example 10-2.

3" 2'-10"

6'-8"
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Figure 10-6  Reinforced concrete wall footing for 
Example 10-2.
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The development length provided, measured from the 
critical section for moment and allowing for 3-in. end 
cover, is 34 in. Because 34 in. 7 19.1 in., the develop-
ment length provided is adequate.

	11.	 Although not specifically required in footings by the ACI 
Code, longitudinal steel will be provided on the same 
basis as for one-way slabs (Section 7.12). Thus

 required As = 0.0018bh

 = 0.0018(6.67 ft)(12 in./ft)(18 in.) = 2.59 in.2

Use nine No. 5 bars (As = 2.79 in.2) spaced equally. The 
footing design is shown in Figure 10-7.

10-3 � Wall Footings 
Under Light Loads

A relatively common situation is one in which a lightly 
loaded wall is supported on average soil. As previously indi-
cated in this chapter, a design would result in a very small 
footing thickness and width.

In such a situation, experience has shown that for 
footings carrying plain concrete or block masonry walls, 
the minimum recommended dimensions shown in Figure 
10-8 should be used. The minimum depth or thickness of 
footing should be 8 in. but not less than the wall thickness. 
The minimum width of footing should equal twice the wall 
thickness.

(ACI Code, Section 15.4.2b). The maximum factored 
moment, assuming the footing to be a cantilever 
beam, is

Mu =
6.60(3.08)2

2
= 31.3 ft@kips

	 9.	 The required area of tension steel is then determined in 
the normal way, using d = 14.5 in. and b = 12 in., and 
assuming f = 0.90:

 required k =
Mu

fbd2 =
31.3(12)

0.9(12)(14.5)2

 = 0.1645 ksi

From Table A-8, the required r = 0.0029, and Pt 7 0.005; 
therefore f = 0.90 (O.K.).

 required As = rbd

 = 0.0029(12)(14.5)

 = 0.50 in.2/ft of wall

We will use the ACI Code minimum reinforcement 
requirement for beams as being applicable for footings. 
From Table A-5,

 As,min = 0.0033(12)(14.5)

 = 0.57 in.2/ft of wall

Finally, as discussed in Chapter 8, the provisions 
of the ACI Code, Section 10.5.4, for minimum rein-
forcement in structural slabs of uniform thickness may 
be considered applicable for footings such as this that 
transmit vertical loads to the underlying soil. In this text, 
this will be used only as an absolute minimum. Checking 
the provision of the code for the minimum reinforcement 
required for grade 60 steel gives us

 required As = 0.0018bh = 0.0018(12)(18)

 = 0.39 in.2/ft of wall

Therefore, considering the minimum reinforce-
ment ratio for beams as applicable, use required As = 
0.57 in.2 per ft of wall and use No. 6 bars at 9 in. o.c. 
(As = 0.59 in.2).

	10.	 The development length should be checked for the bars 
selected. Assume uncoated bars. This calculation for /d 
follows the eight-step procedure presented in Chapter 5, 
Section 5-2, and is summarized as follows:

	 1.	 KD = 82.2

	 2.	 ψt = 1.0, ψe = 1.0, ψs = 0.8, l = 1.0

	 3.	 ψt * ψe = 1.0 (O.K.)

	 4.	 cb = 3.38 in.

	 5.	 Ktr = 0

	 6.	 (cb + Ktr)/db = 4.51 in. Use 2.5 in.

	 7.	 KER = 0.97

	 8.	 /d = 19.1 in. 7 12 in. (O.K.)

2'-10"
1'-0"

2'-10"

9-#5 bars spaced
equally

1'-6"

#6 @ 9" 3" clear

6'-8"

Figure 10-7  Design sketch for Example 10-2.

T

2T

T (8" min.)

Figure 10-8  Recommended minimum footing dimensions 
for walls carrying light loads.
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where
bc = �ratio of the long side to the short side of the con-

centrated load or reaction area (loaded area)
b0 = �perimeter of critical section for two-way shear 

action in the footing
as = �40 for interior columns, 30 for edge columns, and 

20 for corner columns

and Vc, f′c , l, and d are as previously defined. Note that the 
terms interior, edge, and corner columns in ACI 11.11.2.1(b) 
refer to the location of the column relative to the edges of 
the spread footing. Therefore, interior, edge, and corner  
columns will have four-, three-, and two-sided critical 
sections, respectively.

The introduction of shear reinforcement in footings is 
impractical and undesirable purely on an economic basis. 
It is general practice to design footings based solely on the 
shear strength of the concrete.

The one-way (or beam) shear may be compared with 
the shear in a beam or one-way slab. The critical section 
for this one-way shear is taken on a vertical plane extend-
ing across the entire width of the footing and located at a 
distance equal to the effective depth of the footing from the 
face of the concentrated load or reaction area (ACI Code, 
Section  11.1). As in a beam or one-way slab, the shear 
strength provided by the footing concrete may be taken as

	 Vc = 2l2f′c bwd	 [ACI Eq. (11-33)]

For both one- and two-way action, if we assume no 
shear  reinforcement, the basis for the shear design will be 
fVn 7 Vu, where Vn = Vc.

Moment and Development of Bars
The size and spacing of the footing reinforcing steel is pri-
marily a function of the bending moment induced by the 
net upward soil pressure. The footing behaves as a cantile-
ver beam in two directions. It is loaded by the soil pressure. 
The fixed end, or critical section for the bending moment, is 
located as follows (ACI Code, Section 15.4.2):

	 1.	 At the face of the column or pedestal, for a footing sup-
porting a concrete column or pedestal (see Figure 10-9a).

	 2.	 Halfway between the face of the column and the edge 
of a steel base plate, for a footing supporting a column 
with a steel base plate (see Figure 10-9b).

The ACI Code, Section 15.6.3, stipulates that the criti-
cal section for development length of footing reinforcement 
shall be assumed to be at the same location as the critical 
section for bending moment.

Transfer of Load from Column into Footing
All loads applied to a column must be transferred to the top 
of the footing (through a pedestal, if there is one) by com-
pression in the concrete, by reinforcement, or by both.

10-4 � Individual 
Reinforced 
Concrete Footings 
for Columns

An individual reinforced concrete footing for a column, 
also termed an isolated spread footing, is probably the most 
common, simplest, and most economical of the various 
types of footings used for structures. Individual column 
footings are generally square in plan. Rectangular shapes 
are sometimes used where dimensional limitations exist, 
however. The footing is a slab that directly supports a col-
umn. At times, a pedestal is placed between a column and 
a footing so that the base of the column need not be set 
below grade.

The footing behavior under concentric load is that of 
two-way cantilever action extending out from the column 
or pedestal. The footing is loaded in an upward direction by 
the soil pressure. Tensile stresses are induced in each direc-
tion in the bottom of the footing. Therefore the footing is 
reinforced by two layers of steel perpendicular to each other 
and parallel to the edges. The required footing–soil contact 
area is a function of, and determined by, the allowable soil 
bearing pressure and the column loads being applied to 
the footing.

Shear
Because the footing is subject to two-way action, two dif-
ferent types of shear strength must be considered: two-way 
shear and one-way shear. The footing thickness (depth) 
is generally established by the shear requirements. The 
two-way shear is commonly termed punching shear, because 
the column or pedestal tends to punch through the foot-
ing, inducing stresses around the perimeter of the column 
or pedestal. Tests have verified that, if failure occurs, the 
fracture takes the form of a truncated pyramid with sides 
sloping away from the face of the column or pedestal. The 
critical section for this two-way shear is taken perpendicular 
to the plane of the footing and located so that its perimeter, 
b0, is a minimum but does not come closer to the edge of the 
column or pedestal than one-half the effective depth of the 
footing (ACI Code, Section 11.11.1.2).

The design of the footing for two-way action is based 
on a shear strength Vn, which is not to be taken greater than 
Vc unless shear reinforcement is provided. Vc may be deter-
mined from the ACI Code, Section 11.11.2, and shall be the 
smallest of

	 a.		   Vc = a2 +
4
bc
bl2f′c b0d	 [ACI Eq. (11-31)]

	 b.		   Vc = aasd
b0

+ 2bl2f′c b0d	 [ACI Eq. (11-32)]

	 c.		   Vc = 4l2f′c b0d	 [ACI Eq. (11-33)]
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or not), the ACI Code, Section 15.8.2.1, requires a minimum 
area of reinforcement crossing the bearing surface of 0.005 
of the column cross-sectional area. It is generally recom-
mended that a minimum of four bars be used. These four 
bars should preferably be dowels for the four corner bars of 
a square column.

The development length of the dowels must be suf-
ficient on both sides of the bearing surface to provide the 
necessary development length for bars in compression (see 
Chapter 5).

When the dowel carries excess load into the footing, it 
must be spliced to the column bar using the necessary com-
pression splice. The same procedure applies where a column 
rests on a pedestal and where a pedestal rests on a footing.

Where structural steel columns and column base plates 
are used, the total load is usually transferred entirely by 
bearing on the concrete contact area. The design-bearing 
strength as stipulated previously also applies in this case. 
Where a column base detail is inadequate to transfer the 
total load, adjustments may be made as follows:

	 1.	 Increase column base plate dimensions.
	 2.	 Use higher-strength concrete (f′c ) for the pedestal or 

footing.
	 3.	 Increase the supporting area with respect to the base 

plate area until the ratio reaches the maximum allowed 
by the ACI Code.

In building design, it is common practice to use a con-
crete pedestal between the footing and the column. The ped-
estal, in effect, distributes the column load over a larger area 
of the footing, thereby contributing to a more economical 
footing design. Pedestals may be either plain or reinforced. 
If the ratio of height to least lateral dimension is in excess 
of 3, the member is by definition a column and must be 
designed and reinforced as a column (see Chapter 9). If the 
ratio is less than 3, it is categorized as a pedestal and theo-
retically may not require any reinforcement.

The cross-sectional area of a pedestal is usually estab-
lished by the concrete-bearing strength as stipulated in ACI 
Code, Section 10.14, by the size of a steel column base plate, 
or by the desire to distribute the column load over a larger 
footing area. It is common practice to design a pedestal in a 
manner similar to a column using a minimum of four cor-
ner bars (for a square or rectangular cross section) anchored 
into the footing and extending up through the pedestal. 
Ties should be provided in pedestals according to the same 
requirements as in columns.

10-5 �S quare Reinforced 
Concrete Footings

In isolated square footings, the reinforcement should be 
uniformly distributed over the width of the footing in each 
direction. Because the bending moment is the same in each 
direction, the reinforcing bar size and spacing should be the 

The bearing strength of the concrete contact area of sup-
porting and supported member cannot exceed f(0.85f′cA1) 
as directed by the ACI Code, Section 10.14.1. When the 
supporting surface is wider on all sides than is the loaded 
area, the design-bearing strength on the loaded area may 
be multiplied by 1A2>A1 … 2.0, as discussed in Chapter 8, 
Section 8-4. Therefore in no case can the design-bearing 
strength for the loaded area be in excess of

f(0.85f′cA1)(2)

where f = 0.65 for bearing on concrete and f′c  is as previ-
ously defined.

It is common for the footing concrete to be of a lower 
strength ( f′c) than the supported column concrete. This sug-
gests that both supporting and supported members should 
be considered in determining load transfer.

Where a reinforced concrete column cannot transfer the 
load entirely by bearing, the excess load must be transferred 
by reinforcement where the required As = (excess load)/fy.  
This may be accomplished by furnishing dowels, one per 
column bar if necessary but not larger than No. 11 (ACI 
Code, Section 15.8.2.3).

To provide a positive connection between a reinforced 
concrete column and footing (whether dowels are required 
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Steel base 
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Figure 10-9  Critical sections for design of reinforced 
concrete footings supporting columns or pedestals.
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Therefore, the net allowable soil pressure for the super-
imposed loads becomes

5.00 - 0.300 - 0.200 = 4.50 ksf

The required area of footing may be determined using 
service loads and allowable soil pressure or by modifying 
both the service loads and the allowable soil pressure 
with the ACI load factors. Using the service loads,

required A =
225 + 175

4.50
= 88.9 ft2

Use a 9 ft-6 in. square footing. This furnishes an actual 
area A of 90.3 ft2.

	 3.	 The factored soil pressure from superimposed loads to 
be used for the footing design may now be calculated:

pu =
Pu

A
=

1.2(225) + 1.6(175)

90.3
= 6.09 ksf

	 4.	 The footing thickness is usually determined by shear 
strength requirements. Therefore, using the assumed 
footing thickness, check the shear strength. The thick-
ness h was assumed to be 24 in. Therefore the effective 
depth, based on a 3-in. cover for bottom steel and No. 8 
bars in each direction, is

d = 24 - 3 - 1 = 20 in.

This constitutes an average effective depth that will be 
used for design calculations for both directions.

	 5.	 The shear strength of individual column footings is 
governed by the more severe of two conditions: two-
way action (punching shear) or one-way action (beam 
shear). The location of the critical section for each type 
of behavior is depicted in Figure 10-11. For two-way 
action (Figure 10-11a),

 B = column width + ad
2
b  2

 = 18 + 20 = 38 in. = 3.17 ft

The total factored shear acting on the critical section is

 Vu = pu(W
2 - B2)

 = 6.09(9.52 - 3.172)

 = 488 kips

The shear strength of the concrete is taken as the 
smallest of

	a.	�   Vc = a2 +
4
bc

b2f ′cb0d

�  = a2 +
4
1
b13000 (38)(4)(20) = 999,000 lb

	b.	 With as = 40 for an interior column,

 Vc = aasd

b0
+ 2b2f ′c b0d

 = c 40(20)

38(4)
+ 2 d 13000 (38)(4)(20) = 1,209,000 lb

same in each direction. In reality, the effective depth is not 
the same in both directions. It is common practice to use the 
same average effective depth for design computations for 
both directions, however.

It is also common practice to assume that the minimum 
tensile reinforcement for beams is applicable to two-way foot-
ings for each of the two directions, unless the reinforcement 
provided is one-third greater than required. As discussed in 
Section 2-8 (and in the ACI Code, Section 10.5.1), the mini-
mum tensile reinforcement is determined from

As,min =
32f′c

fy
bwd Ú

200
fy

bwd

The use of this minimum is conservative for footings. The 
ACI Code, Section 10.5.4, permits the use of a minimum 
reinforcement equal to that required for shrinkage and 
temperature steel in structural slabs of uniform thickness. 
This will always be somewhat less than that required by 
As,min, but not necessarily less than that specified by the ACI 
Code, Section 10.5.3. In this book the criteria of the ACI 
Code, Section 10.5.4, will be used in isolated footing cases 
only as an absolute minimum of steel area to be provided.

Example 10-3

Design a square reinforced concrete footing to support 
an  18-in.-square tied concrete column, as shown in 
Figure 10-10. The column is a typical interior column in a 
building. Assume normal-weight concrete.

Solution:
	 1.	 The design data are as follows: service dead load =  

225  kips, service live load = 175 kips, allowable soil 
pressure = 5000 psf (5.00 ksf), f ′c for the column =  
4000  psi and for the footing = 3000 psi, fy for all 
steel = 60,000 psi, and longitudinal column steel con-
sists of No. 8 bars. The weight of earth = 100 lb/ft3.

	 2.	 Assume a total footing thickness of 24 in. The footing 
weight may then be calculated as

0.150(2.0) = 0.300 ksf

Because the bottom of the footing is to be 4 ft below the 
finished ground line, there will be 24 in. of earth on top 
of the footing. This depth of earth has a weight of

24
12(0.100) = 0.200 ksf

4'-0"

Finished ground line
18" square column

Figure 10-10  Sketch for Example 10.3.
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 = 250,000 lb

 = 250 kips

 fVn = fVc = 0.75(250) = 187.5 kips

Therefore

fVn 7 Vu         (O.K.)

The 24-in.-deep footing is satisfactory with respect 
to  shear. Our assumption of step 2 with regard to 
weight of the footing and the soil on the footing is 
satisfactory.

	 6.	 The critical section for bending moment may be taken 
at the face of the column, as depicted in Figure 10-12. 
Using the factored soil pressure and assuming the foot-
ing to act as a wide cantilever beam in both directions, 
the design moment may be computed:

 Mu = puF aF
2
b  (W )

 = 6.09(4) a4
2
b  (9.5)

 = 463 ft@kips

	c.	�  Vc = 42f ′cb0d = 413000 (4)(38)(20) = 666,000 lb 

from which Vc = 666,000 lb = 666 kips. Thus

fVn = fVc = 0.75(666) = 500 kips

Therefore

fVn 7 Vu         (O.K.)

When Vu is relatively close to the shear strength of the 
concrete (fVc), it indicates that the assumed footing 
thickness is approximately equal to that required for 
shear. If these two values were significantly different, 
the assumed footing thickness should be modified.

For one-way action, the total factored shear acting 
on the critical section is distance d from the face of the 
column:

 Vu = puWG

 = 6.09(9.5)(2.33)

 = 134.8 kips

The shear strength of the concrete is

 Vc = 22f ′cbwd

 = 213000 (9.5)(12)(20)

Plan View

18" col.

Load for shear as
two-way footing

Critical section

W = 9'-6"

B

d
2

d
2

Plan View

18" col.

Load for shear as
one-way footing

Critical
section

W = 9'-6"

G = 2'-4"

d

(a) (b)

Figure 10-11  Footing shear analysis.

AA

Plan View

18" col.

Load for moment

Critical section

W = 9'-6"

4'-0"

4'-0" 4'-0"

F =

Section A–A

6.09 ksf

F

18" col.

9'-6"

Figure 10-12  Footing moment analysis.
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Use /d = 27.6 in. (minimum). The development length 
provided is 45 in., which is in excess of that required 
(O.K.).

	 8.	 The concrete bearing strength at the base of the column 
cannot exceed

f(0.85f ′cA1)

except where the supporting surface is wider on all sides 
than the loaded area, for which case the concrete bear-
ing strength of the supporting surface cannot exceed

f(0.85f ′cA1) AA2

A1

As described in Section 8-4, A2 is the lower base of the 
frustum of a pyramid having 1:2 sloping sides and fully 
contained within the support as shown in Figure 10-14. 
In this case, A2 is the same as the area of the footing andAA2

A1
= A90.3

2.25
= 6.3 7 2.0

Therefore use 2.0. Then

 footing bearing strength = f(0.85f ′cA1)(2.0)

 = 0.65(0.85)(3.0)(18)2(2.0)

 = 1074 kips

	 7.	 Assume f = 0.90 and design the tension steel as follows:

 required k =
Mu

fbd2 =
463(12)

0.9(9.5)(12)(20)2

 = 0.1354 ksi

From Table A-8, the required r = 0.0024, Pt 7 0.005, and 
f = 0.90. Therefore

 required As = rbd

 = 0.0024(9.5)(12)(20)

 = 5.47 in.2

Check the ACI Code minimum reinforcement require-
ment. From Table A-5,

 As,min = 0.0033(9.5)(12)(20)

 = 7.52 in.2

Of the two steel areas, the larger (7.52 in.2) controls.
Because the footing is square and an average 

effective depth was used, the steel requirements in the 
other direction may be assumed to be identical. There-
fore use 13 No. 7 bars each way (As = 7.80 in.2 in each 
direction) and distribute the bars uniformly across the 
footing in each direction, as shown in Figure 10-13a.

Check the development length for the No. 7 bars.
This calculation for /d follows the eight-step pro-

cedure presented in Chapter 5, Section 5-2, and is 
summarized as follows:

	 1.	 KD = 82.2

	 2.	 ψt = 1.0, ψe = 1.0, ψs = 1.0, l = 1.0

	 3.	 ψt * ψe = 1.0 (O.K.)

	 4.	 cb = 3.44 in.

	 5.	 Ktr = 0

	 6.	 (cb + Ktr)/db = 3.93 in. Use 2.5 in.

	 7.	 KER = 0.96

	 8.	 /d = 27.6 in. 7 12 in. (O.K.)

Plan View

(a) (b)
Elevation

9'-6"

18"

9'-6"
3" clear12" min.

18"
col.

12 equal spaces

4-#8 dowels
12 equal spaces

13-#7 bars
each way

3" clear (typ.)

12
equal
spaces

2'-0"

12" min.

9'-6"

Figure 10-13  Design sketch for Example 10-3.

2
1

A1

A2

18"

9'-6"

2'-0"

Figure 10-14  Determination of A2.
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10-6 �R ectangular 
Reinforced 
Concrete Footings

Rectangular footings are generally used where space limita-
tions require it. The design of these footings is very similar to 
that of the square column footing with the one major excep-
tion that each direction must be investigated independently. 
Shear is checked for two-way action in the normal way, but 
for one-way action, it is checked across the shorter side only. 
The bending moment must be considered separately for 
each direction. Each direction will generally require a dif-
ferent area of steel. The reinforcing steel running in the long 
direction should be placed below the short-direction steel so 
that it may have the larger effective depth to carry the larger 
bending moments in that direction.

In rectangular footings, the distribution of the rein-
forcement is different than for square footings (ACI Code, 
Section 15.4.4). The reinforcement in the long direction 
should be uniformly distributed over the shorter footing 
width. A part of the required reinforcement in the short 
direction is placed in a band equal to the length of the short 
side of the footing. The portion of the total required steel 
that should go into this band is

2
b + 1

where b is the ratio of the long side to the short side of the 
footing. The remainder of the reinforcement is uniformly 
distributed in the outer portions of the footing. This dis-
tribution is depicted in Figure 10-15. Other features of the 
design are similar to those for the square column footing.

Example 10-4

Design a reinforced concrete footing to support an 
18-in.-square tied interior concrete column, as shown in 
Figure 10-16. One dimension of the footing is limited to a 
maximum of 7 ft. Assume normal-weight concrete.

Solution:
	 1.	 The design data are as follows: service dead load = 

175  kips, service live load = 175 kips, allowable soil 
pressure = 5000 psf (5.00 ksf), f ′c for both footing and 
column = 3000 psi, fy for all steel = 60,000 psi, and 
longitudinal column steel consists of No. 8 bars. The 
weight of earth = 100 lb/ft3.

The column-bearing strength is computed as follows:

f(0.85)f ′cA1 = 0.65(0.85)(4.0)(18)2 = 716 kips

The calculated design-bearing load is

 Pu = 1.2(225) + 1.6(175)

 = 550 kips

Because 550 6 716 6 1074, the entire column load can 
be transferred by concrete alone. The ACI Code, how-
ever, requires a minimum dowel area of

 required As = 0.005Ag

 = 0.005(18)2 = 1.62 in.2

Use a minimum of four bars. Four No. 6 bars, As = 
1.76 in.2, is satisfactory. It is general practice in a situ-
ation such as this, however, to use dowels of the same 
diameter as the column steel. Therefore use four No. 8 
dowels, and place one in each corner (As = 3.16 in.2).

The development length for dowels into the column 
and footing must be adequate even though full load 
transfer can be made without dowels. The bars are in 
compression. The compression development length 
for the No. 8 dowels into the footings is /dc from Table 
A-12 and may be reduced by any applicable modifica-
tion factors. We will use the modification factor for the 
case where the steel provided is in excess of the steel 
required:

required As

provided As
=

1.62
3.16

= 0.51

Therefore,

required /dc = 21.9(0.51) = 11.2 in.

For bars in compression, /dc must not be less than 8 in. 
Therefore, use /dc of 12 in. into both the column and the 
footing, because f ′c for the column concrete is higher 
and the required /dc for the bars into the column would 
be less than that into the footing. The actual anchorage 
used may be observed in Figure 10-13b. The dowels 
should be placed adjacent to the corner longitudinal 
bars. Generally, these dowels are furnished with a 90° 
hook at their lower ends and are placed on top of the 
main footing reinforcement. This will tie the dowel in 
place and will reduce the possibility of the dowel being 
dislodged during construction. The hook cannot be 
considered effective as part of the required develop-
ment length (ACI Code, Section 12.5.5).

Bars
uniformly
spaced

Bars
uniformly

spaced

b
Band width

b

Figure 10-15  Rectangular footing plan.
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	 4.	 The footing thickness h was assumed to be 24 in. 
Therefore the effective depth, based on a 3-in. cover for 
bottom steel and 1-in.-diameter bars in each direction, 
will be

d = 24 - 3 - 1 = 20 in.

This constitutes an average effective depth, which will 
be used for design calculations for both directions.

	 5.	 Checking the shear strength for two-way action (with 
reference to Figure 10-17a),

 B = column width + ad
2
b  2

 = 18 + 20 = 38 in. = 3.17 ft

The total factored shear acting on the critical section is

 Vu = pu(A - B2)

 = 6.09(80.5 - 3.172)

 = 429 kips

The shear strength of the concrete is taken as the 
smallest of

	a.	�   Vc = a2 +
4
bc

b2f ′c b0d

�  = a2 +
4
1
b13000 (38)(4)(20) = 999,000 lb

	b.	 With as = 40 for an interior column,

 Vc = aasd

b0
+ 2b2f ′c b0d

 = a40(20)

38(4)
+ 2b13000 (38)(4)(20) = 1,209,000 lb

	 2.	 Assume a total footing thickness h of 24 in. subject to 
later check. The footing weight may then be calculated as

0.150(2.0) = 0.300 ksf

Because the bottom of the footing is to be 4 ft below the 
finished ground line, there will be 24 in. of earth on top 
of the footing. This depth of earth has a weight of

24
12  (0.100)50.200 ksf

Therefore the net allowable soil pressure for the super-
imposed loads becomes

5.00 - 0.300 - 0.200 = 4.50 ksf

Based on service loads, the required area of footing 
may be calculated:

required A =
175 + 175

4.50
= 77.8 ft2

Use a rectangular footing 7 ft-0 in. by 11 ft-6 in. This 
furnishes an actual area A of 80.5 ft2.

	 3.	 The factored soil pressure from superimposed loads to 
be used for the footing design may now be calculated:

pu =
Pu

A
=

1.2(175) + 1.6(175)

80.5
= 6.09 ksf

4'-0"

Finished ground line

h

Figure 10-16  Sketch for Example 10-4.

Plan View

(a)

Plan View

(b)

18" col.

G = 3'-4"

d

L = 11'-6"

Critical section

Load for shear
one-way action

W = 7'-0"

18" col.

B = 3'-2"
L = 11'-6"

Critical
section

Load for shear
two-way action

W = 7'-0" 3'-2" = B
d
2

Figure 10-17  Footing shear 
analysis.
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This is unsatisfactory. We will determine the required d 
based on one-way shear using fVc = Vu.

fVn = f22f ′c bwd = Vu = 142.0 kips

from which

 Required d =
Vu

f22f ′cbw

=
142.0(1000 lb/kip)

0.75(2)13000 (7.0)(12)

 = 20.6 in.

Therefore, the required h = 20.6 + 3 + 1 = 24.6 in. Use 
h = 25 in. The effect of this change on the previous 
calculations is small and no other revisions are consid-
ered warranted.

new d = 25 - 1 - 3 = 21.0 in.

	 6.	 For bending moment, each direction must be consid-
ered independently, with the critical section taken at 
the face of the column. Using the actual factored soil 
pressure and assuming the footing to act as a wide 
cantilever beam in each direction, the design moment 
may be calculated. With reference to Figure 10-18b, for 
moment in the long direction,

 Mu = puF aF
2
b  (W)

 = 6.09(5) a5
2
b  (7.0)

 = 533 ft@kips

	c.	�  Vc = 42f ′c b0d = 413000 (38)(4)(20) = 666,000 lb

from which Vc = 666,000 lb = 666 kips. Thus

fVn = fVc = 0.75(666) = 500 kips

Therefore

fVn 7 Vu            (O.K.)

For one-way action, consider shear across the short 
side only. The critical section is at a distance equal to 
the effective depth of the member from the face of the 
column (see Figure 10-17b).

The total factored shear acting on the critical 
section is

 Vu = puWG

 = 6.09(7.0)(3.33)

 = 142.0 kips

The nominal shear strength of the concrete is

 Vc = 22f ′c bwd

 = 213000 (7.0)(12)(20)

 = 184,000 lb

 = 184 kips

from which

 fVn = fVc = 0.75(184) = 138.0 kips

 fVn 6 Vu

B

A

A

B

Plan View

Section B–B

6.09 ksf

18" col.

L = 11'-6"

F = 5'-0"

Critical section
Load for moment

W = 7'-0"

Critical section

Section A–A

6.09
ksf

F = 2'-9"

Critical section
Plan View

(a)

(b)

18" col.

L = 11'-6"

F

Critical section

Load for moment 18" col.

W = 7'-0"

Figure 10-18  Footing moment 
analysis.
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From Table A-8, the required r = 0.0010, Pt 6 0.005, and 
f = 0.90. Therefore

 required As = rbd

 = 0.0010 (11.5)(12)(21)

 = 2.90 in.2

Check the ACI Code minimum reinforcement require-
ment. From Table A-5,

 As,min = 0.0033(11.5)(12)(21)

 = 9.56 in.2

The As,min requirement need not be applied if the area 
of steel provided is at least one-third greater than that 
required (ACI Code, Section 10.5.3), however. There-
fore, the required steel area may be calculated from

required As = 1.33(2.90) = 3.86 in.2

Checking further, using the ACI Code, Section 10.5.4, 
as an absolute minimum, the required steel area is

As = 0.0018bh = 0.0018(11.5)(12)(25) = 6.21 in.2

Therefore 6.21 in.2 controls. Use 15 No. 6 bars 
(As = 6.60 in.2). These bars will run in the short direc-
tion but will not be distributed uniformly across the 
11 ft-6 in. side.

In rectangular footings, a portion of the total rein-
forcement required in the short direction is placed in a 
band centered on the column and having a width equal 
to the short side. The portion of the total required steel 
that goes into this band is

2
b + 1

where

b =
long@side dimension

short@side dimension
=

11.5
7.0

= 1.64

from which

2
b + 1

=
2

1.64 + 1
= 0.757 = 75.7%

Therefore 75.7% of 15 No. 6 bars must be placed in a 
band width = 7 ft-0 in. The balance of the required bars 
will be distributed equally in the outer portions of the 
footing. Thus

(0.757)(15) = 11.4 bars

Use 12 bars in the 7 ft-0 in. band width. Because 
reinforcing should be symmetrical with respect to 
the centerline of the footing, use two bars on each 
side of the 7 ft-0 in. band width: Therefore, the total 
steel used in the short direction will be 16 No. 6 bars 
(As  =  7.04  in.2). The bar arrangement is depicted in 
Figure 10-19.

For moment in the short direction (Figure 10-18a),

 Mu = puF aF
2
b  (L)

 = 6.09(2.75) a2.75
2

b  (11.5)

 = 265 ft@kips

	 7.	 Assume f = 0.90 and design the tension steel as fol-
lows. For the long direction, where Mu = 533 ft-kips,

 required k =
Mu

fbd2 =
533(12)

(0.9)(7)(12)(21)2

 = 0.1918 ksi

From Table A-8, the required r = 0.0034, Pt 7 0.005, and 
f = 0.90. Therefore

 required As = rbd

 = 0.0034(7)(12)(21)

 = 6.00 in.2

Check the ACI Code minimum reinforcement require-
ment. From Table A-5,

 As,min = 0.0033(7)(12)(21)

 = 5.82 in.2

Of the two steel areas, the larger (6.00 in.2) controls; 
therefore use 10 No. 7 bars (As = 6.00 in.2). These bars 
will run in the long direction and will be distributed uni-
formly across the 7 ft-0 in. width. They will be placed in 
the bottom layer where they will have the advantage of 
slightly greater effective depth. The development length 
must be checked for these bars. Assume uncoated bars. 
This calculation for /d follows the eight-step procedure 
presented in Chapter 5, Section 5-2, and is summarized 
as follows:

	 1.	 KD = 82.2

	 2.	 ψt = 1.0, ψe = 1.0, ψs = 1.0, l = 1.0

	 3.	 ψt * ψe = 1.0 (O.K.)

	 4.	 cb = 3.44 in.

	 5.	 Ktr = 0

	 6.	 (cb + Ktr)/db = 3.93 Use 2.5

	 7.	 KER = 1.00

	 8.	 /d = 28.8 in. 7 12 in. (O.K.)

The development length furnished is 60 - 3 = 57 in., 
which is in excess of that required (O.K.).

For the short direction, where Mu = 265 ft-kips,

 required k =
Mu

fbd2 =
265(12)

0.9(11.5)(12)(21)2

 = 0.0581 ksi
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The factored bearing load is

 Pu = 1.2(175) + 1.6(175)

 = 490 kips

Because 490 kips 6 537 kips 6 1074 kips, the entire 
column load can be transferred by concrete alone.

For proper connection between column and 
footing, use four No. 8 dowels (to match the column 
steel), one in each corner. The development length 
requirement for the No. 8 dowels is identical to that of 
Example 10-3.

10-7 �E ccentrically 
Loaded Footings

Where footings are subject to eccentric vertical loads or to 
moments transmitted by the supported column, the design 
varies somewhat from that of the preceding sections. The 
soil pressure is no longer uniform across the footing width, 
but may be assumed to vary linearly. The resultant force 
should be within the middle one-third of the footing base 
to ensure a positive contact surface between the footing and 
the soil. With the soil pressure distribution known, the foot-
ing must be designed to resist all moments and shears, as 

The development length will be checked for the 
No. 6 bars in the center band. Assume uncoated bars. 
This calculation for /d follows the eight-step procedure 
presented in Chapter 5, Section 5-2, and is summarized 
as follows:

	 1.	 KD = 82.2

	 2.	 ψt = 1.3, ψe = 1.0, ψs = 0.8, l = 1.0

	 3.	 ψt * ψe = 1.0 (O.K.)

	 4.	 cb = 3.38 in.

	 5.	 Ktr = 0

	 6.	 (cb + Ktr)/db = 4.51 Use 2.5

	 7.	 KER = 0.882

	 8.	 /d = 17.4 in. 7 12 in. (O.K.)

Use /d = 17.4 in. (minimum). The development length 
furnished = 33 - 3 = 30 in., which is in excess of that 
required. (O.K.)

	 8.	 Because the supporting surface is wider on all sides, 
the bearing strength for the footing may be computed 
as follows:

footing bearing strength = f(0.85f ′cA1)CA2

A1

where A2 is calculated with reference to Figure 10-20 
and is seen to be a square, 7 ft-0 in. on each side.CA2

A1
= C49.0

2.25
= 4.67 7 2.0

Therefore use 2.0. Then,

 footing bearing strength = f(0.85f ′cA1)(2.0)

 = 0.65(0.85)(3.0)(18)2(2.0)

 = 1074 kips

The column bearing strength is computed as follows:

f(0.85)f ′cA1 = 0.65(0.85)(3)(18)2 = 537 kips

4-#8 dowels

10-#7 bars
equally spaced

12-#6 bars

#6 bars
(typ.)

2'-0"

7'-0"

3" clear

3" clear (typ.)

2 equal
spaces

2 equal
spaces

12" min.

12" min.

5'-0"5'-0" 1'-6"

11'-6"

Figure 10-19  Design sketch for Example 10-4.
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Figure 10-20  Determination of A2.
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	 2.	 Locate the resultant column load by a summation of 
moments at point Z in Figure 10-19:

ΣMz = 300(2) + 500(18) = 800(x)

from which

x = 12 ft@0 in. (measured from Z )

	 3.	 Assuming a rectangular shape, establish the length of 
footing L so that the centroid of the footing area coin-
cides with the line of action of resultant force R:

required L = 12(2) = 24 ft@0 in.

	 4.	 Assume a footing thickness of 3 ft-0 in. Therefore its 
weight = 0.150(3) = 0.450 ksf, and the net allowable 
soil pressure for superimposed loads = 6.00 - 0.450 = 
5.55 ksf. This neglects any soil on the footing.

	 5.	 The footing area required is

R
5.55

=
800
5.55

= 144.1 ft2

	 6.	 With a length = 24 ft-0 in., the footing width W required is

144.1
24

= 6 ft@0 in.

	 7.	 The actual uniform soil pressure is

800
6(24)

+ 0.450 = 6.00 ksf      (O.K.)

Example 10-6

Using the design data from Example 10-5, determine the 
proportions of a combined footing if the footing length is 
limited to 22 ft.

Solution:
	 1.	 The resultant column load is located as in Example 10-5 

at a point 12 ft-0 in. from point Z.

	 2.	 Assume a footing thickness of 3 ft-0 in. Therefore its 
weight = 3(0.150) = 0.450 ksf, and the allowable soil 
pressure for superimposed loads is 6.00 - 0.450 = 
5.55 ksf.

	 3.	 The footing area required is then

800
5.55

= 144.1 ft2

	 4.	 Assume a trapezoidal shape. The area A of a trapezoid 
is (see Figure 10-22)

A =
(b + b1)L

2

from which

b + b1 =
2A
L

=
2(144.1)

22
= 13.1 ft

	 5.	 The center of gravity of the trapezoid and the resultant 
force of the column loads are to coincide. The location 

were the concentrically loaded footings. The effects of load 
eccentricity on isolated footings may result in an undesir-
able large rotation of the footing, but this can be mitigated 
by connecting or strapping the eccentrically loaded footing 
to an adjacent concentrically loaded footing as discussed in 
Section 10-9.

10-8 C ombined Footings
Combined footings are footings that support more than one 
column or wall. The two-column type of combined footing, 
which is relatively common, generally results from necessity. 
Two conditions that may lead to its use are (1) an exterior 
column that is immediately adjacent to a property line 
where it is impossible to use an individual column footing 
and (2)  two columns that are closely spaced, causing their 
individual footings to be closely spaced. In these situations, 
a rectangular or trapezoidal combined footing would usually 
be used. The choice of which shape to use is based on the 
difference in column loads as well as on physical (dimen-
sional) limitations. If the footing cannot be rectangular, a 
trapezoidal shape would then be selected.

The physical dimensions (except thickness) of the com-
bined footing are generally established by the allowable soil 
pressure. In addition, the centroid of the footing area should 
coincide with the line of action of the resultant of the two 
column loads. These dimensions are usually determined 
using service loads in combination with an allowable soil 
pressure.

Example 10-5

Determine the shape and proportions of a combined footing 
subject to two column loads, as shown in Figure 10-21.

Solution:
	 1.	 The design data are as follows: Service load on the foot-

ing from column A is 300 kips and from column B is 
500 kips, and the allowable soil pressure is 6.00 ksf.

C.G. of footing

2'-0"

Z

R

L

16'-0"

10'-0"

Column B
20" square

Column A
18" square

Property line

500 kips

300 kips

Uniform soil
pressure

W

Figure 10-21  Sketch for Example 10-5.
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described, is a generally used approach to simplify the 
design of the footing.

In Figure 10-22, the columns are positioned relatively 
close to the ends of the footing. Assuming the columns 
as the supports and the footing subjected to an upward, 
uniformly distributed load caused by the uniform soil pres-
sure, moments that create tension in the top of the footing 
will predominate in the longitudinal direction. Therefore 
the principal longitudinal reinforcement will be placed in 
the top of the footing equally distributed across the foot-
ing width. Somewhat smaller moments in the transverse 
direction will cause compression in the top of the footing. 
Transverse steel will be placed under each column in the 
bottom of the footing to distribute the column load in the 
transverse direction using the provisions for individual col-
umn footings. In effect, this makes the combined footing 
act as a wide rectangular beam in the longitudinal direction, 
which may then be designed using the ACI Code provisions 
for flexure.

Pertinent design considerations may be summarized as 
follows:

	 1.	 Main reinforcement (uniformly distributed) is placed 
in a longitudinal direction in the top of the footing, 
assuming the footing to be a longitudinal beam.

	 2.	 Shear should be checked considering both one-way 
shear at a distance d from the face of the column and 
two-way (punching) shear on a perimeter d/2 from the 
face of the column.

	 3.	 Stirrups or bent bars are frequently required to main-
tain an economical footing thickness. This assumes 
that the shear effect is uniform across the width of the 
footing.

	 4.	 Transverse reinforcement is generally uniformly placed 
in the bottom of the footing within a band having a 
width not greater than the column width plus twice 
the effective depth of the footing. The design treat-
ment in the transverse direction is similar to the design 
treatment of the individual column footing, assum-
ing dimensions equal to the band width as previously 
described and the transverse footing width.

	 5.	 Longitudinal steel is also placed in the bottom of the 
footing to tie together and position the stirrups and 
transverse steel. Although the required steel areas may 
be rather small, the effects of cantilever moments in the 
vicinity of the columns should be checked.

10-9 �C antilever or Strap 
Footings

A third type of combined footing is generally termed a 
cantilever or strap footing. This is an economical type of 
footing when the proximity of a property line precludes the 
use of other types. For instance, an isolated column foot-
ing may be too large for the area available, and the nearest 
column is too distant to allow a rectangular or trapezoidal 

of the center of gravity, a distance c from point Z, may 
be written

c =
L(2b + b1)

3(b + b1)
=

L(b + b + b1)

3(b + b1)
= 12 ft

	 6.	 We now have two equations that contain b and b1. The 
equation of step 5 may easily be solved for b by substi-
tution of L = 22 ft and (b + b1) = 13.1 ft:

22(b + 13.1)

3(13.1)
= 12

from which

b =
12(3)(13.1)

22
- 13.1 = 8.34 ft

and

b1 = 13.1 - 8.34 = 4.76 ft

Use b = 8 ft-4 in. and b1 = 4 ft-9 in. Thus

actual A =
22(4.75 + 8.33)

2
= 143.9 ft2

The footing is very slightly undersized. No revision is 
warranted.

The structural design of the rectangular and trapezoidal 
combined footings is generally based on a uniform soil pres-
sure, even though loading combinations will almost always 
introduce some eccentricity with respect to the centroid 
of the footing. The determination of the footing thickness 
and reinforcement must be based on factored loads and 
soil pressure to be consistent with the ACI strength method 
approach. The assumed footing behavior, which is briefly 

C.G.

2'-0"

Z

R

L = 22'-0"

c

10'-0"

16'-0"
4'-0"

Column B
Column A

Property line

Uniform soil
pressure

bb1

Figure 10-22  Sketch for Example 10-6.
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and from a summation of vertical forces,

Re = Pe + V

Then, by substitution,

Re = Pe +
Pee

L - e

Note that V acting downward on the strap beam also means 
that V is an uplift force on the interior footing. Therefore

Ri = Pi - V

and, by substitution,

Ri = Pi -
Pee

L - e

In summary, Re becomes greater than Pe by a magnitude of V, 
whereas Ri becomes less than Pi by a magnitude equal to V.

The footing areas required are merely the reactions 
Re  and Ri based on service loads divided by the effec-
tive allowable soil pressure. These values are based on an 
assumed trial e and may have to be recomputed until the 
trial e and the actual e are the same.

The structural design of the interior footing is simply 
the design of an isolated column footing subject to a load Ri. 
The exterior footing is generally considered as under one-
way transverse bending similar to a wall footing with 
longitudinal steel furnished by extending the strap steel into 
the footing. The selection of footing thickness and reinforce-
ment should be based on factored loads to be consistent 
with the ACI strength design approach.

The strap beam is assumed to be a flexural member with 
no bearing on the soil underneath. Many designers make a 
further simplifying assumption that the beam weight is car-
ried by the underlying soil; hence, the strap is designed as a 
rectangular beam subject to a constant shearing force and 
a linearly varying negative bending moment based on fac-
tored loads.

combined footing to be economical. The strap footing may 
be regarded as two individual column footings connected 
by a strap beam.

In Figure 10-23, the exterior footing is placed eccentri-
cally under the exterior column so that it does not violate 
the property-line limitations. This would produce a non-
uniform pressure distribution under the footing, which 
could lead to footing rotation. To balance this rotational 
or overturning effect, the exterior footing is connected by 
a stiff beam, or strap, to the nearest interior footing, and 
uniform soil pressures under the footings are assumed. 
The strap, which may be categorized as a flexural member, 
is subjected to both bending moment and shear, resulting 
from the forces Pe and Re acting on the exterior footing. 
As shown in Figure 10-23, the applied moment is counter-
clockwise, and the shear will be positive because Re 7 Pe. 
At the interior column, there is no eccentricity between 
the column load Pi and the resultant soil pressure force Ri. 
Therefore we will assume that no moment is induced in the 
strap at the interior column.

We define V as the vertical shear force necessary to 
keep the strap in equilibrium, as shown in Figure 10-24. 
Then, with Pe known, V and Re may be calculated using the 
principles of statics. A moment summation about Re yields

 Pee = V(L - e)

 V =
Pee

L - e

Strap beam

Footing A Footing B

Z

L

L – ee

Interior column
Exterior
column

Property line

Pe Pi

Re Ri

Figure 10-23  Cantilever footing.

L

L – e

Pe

Re

V

e

Figure 10-24  Strap beam.
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	 5.	 The footing reactions are

 Re = Pe + V = 150 + 21.4 = 171.4 kips

 Ri = Pi - V = 250 - 21.4 = 228.6 kips

	 6.	 For the exterior footing, the required area is

171.4
3.7

= 46.3 ft2

Use a footing 7 ft-0 in. by 7 ft-0 in. (A = 49 ft2). Note in 
Figure 10-25 that the actual e is then the same as the 
assumed e, and no revision of calculations is necessary.

For the interior footing, the required area is

228.6
3.7

= 61.8 ft2

Use a footing 8 ft-0 in. by 8 ft-0 in. (A = 64 ft2).

Example 10-7

Determine the size of the exterior and interior footings of a 
strap footing for the conditions and design data furnished in 
Figure 10-25.

Solution:
	 1.	 The design data are as follows: Service load on the foot-

ing from column A is 150 kips and from column B is 
250 kips, and the allowable soil pressure is 4.00 ksf.

	 2.	 Assume that e = 2 ft-6 in. and that the footing thickness 
is 2 ft-0 in. Therefore the footing weight = 2(0.150) = 
0.300 ksf.

	 3.	 The net allowable soil pressure for superimposed loads 
= 4.0 - 0.300 = 3.70 ksf.

	 4.	 Determine the strap beam shear V:

V =
Pee

L - e
=

150(2.5)

17.5
= 21.4 kips

Strap beam

L = 20'-0"

Assumed e = 2'-6"

Column A Column B

Property line

1'-0"

Pe = 150 kips Pi = 250 kips

Re Ri

Figure 10-25  Sketch for Example 10-7.

Problems

Note: Assume that all steel is uncoated and the soil pressures 
given are gross allowable soil pressures.
	10-1.	 Design a plain concrete wall footing to carry a 

12-in.-thick reinforced concrete wall. Service loads 
are 2.3 kips/ft dead load (includes the weight of the 
wall) and 2.3 kips/ft live load. Use f′c = 3000 psi and 
an allowable soil pressure of 4000 psf. Assume that 
the bottom of the footing is to be 4 ft below grade. 
The weight of earth we = 100 lb/ft3.

	10-2.	 Redesign the footing for the wall of Problem 10-1. 
Service loads are 8.0 kips/ft dead load and 8.0 kips/ft 
live load.

	10-3.	 Design a reinforced concrete footing for the wall of 
Problem 10-1 if the service loads are 6 kips/ft dead 
load (includes wall weight) and 15 kips/ft live load. 
Use fy = 60,000 psi.

	10-4.	 Design a square individual column footing (rein-
forced concrete) to support an 18-in.-square rein-
forced concrete tied interior column. Service loads 
are 200 kips dead load and 350 kips live load. Use 
f′c = 3000 psi and fy = 60,000 psi. The allowable soil 
pressure is 3500 psf, and we = 100 lb/ft3. The column, 
reinforced with eight No. 8 bars, has f′c = 5000 psi 
and fy = 60,000 psi. The bottom of the footing is to be 
4 ft below grade.

	10-5.	 Design a square individual column footing (rein-
forced concrete) to support a 16-in.-square rein-
forced concrete tied interior column. Service loads 
are 200 kips dead load and 160 kips live load. 
Both column and footing have f′c = 4000 psi and  
fy = 60,000 psi. The allowable soil pressure is 5000 psf, 
and we = 100 lb/ft3. The bottom of the footing is to be 
4 ft below grade. The column is reinforced with eight 
No. 7 bars.
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appropriate footing size and layout if the service load 
from column A is 700 kips and from column B is 
800 kips. Assume thickness and disregard reinforc-
ing. The allowable soil pressure is 4000 psf.

	10-11.	 For the column layout shown, D = 24 ft. The foot-
ing for the 18-in.-square column A must be placed 
flush with the left side of the column. Service loads 
are 200 kips for column A and 300 kips for column 
B. The allowable soil pressure is 4500 psf. Assume 
a footing thickness of 2 ft-6 in. and determine an 
appropriate size, type, and layout for the footing.

Column A Column B

D

W

PROBLEMS 10-8 TO 10-11

	10-6.	 Design for load transfer from a 14-in.-square tied 
column to a 13-ft-0-in.-square reinforced concrete 
footing. Use Pu = 650 kips, footing f′c = 3000 psi, 
column f′c = 5000 psi, and fy = 60,000 psi (all steel). 
The column is reinforced with eight No. 8 bars.

	10-7.	 Redesign the footing of Problem 10-5 if there is a 
7-ft-0-in. restriction on the width of the footing.

	10-8.	 Footings are to be designed for two columns A and B 
spaced with D = 16 ft as shown. There are no dimen-
sional limitations. The service load from column 
A is 100 kips and from column B is 150 kips. The 
allowable soil pressure is 4000 psf. Determine the 
appropriate footing(s) size, type, and layout. Assume 
thickness and disregard reinforcing.

	10-9.	 Same as Problem 10-8, except service loads are 
700 kips from column A and 900 kips from column B, 
and D = 14 ft.

	10-10.	 For the column layout shown, there is a width 
restriction W of 16 ft. Here D = 14 ft. Determine an 
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also be met, however. Therefore, at some point, the design 
must be checked using appropriate load factors and strength 
reduction factors.

The normal method for applying prestress force to a 
concrete member is through the use of steel tendons. There 
are two basic methods of arriving at the final prestressed 
member: pretensioning and post-tensioning.

Pretensioning may be defined as a method of prestress-
ing concrete in which the tendons are tensioned before the 
concrete is placed. This operation, which may be performed 
in a casting yard, is basically a five-step process:

	 1.	 The tendons are placed in a prescribed pattern on 
the casting bed between two anchorages. The tendons 
are then tensioned to a value not to exceed 94% of the 
specified yield strength, but not greater than the lesser 
of 80% of the specified tensile strength of the tendons 
and the maximum value recommended by the manu-
facturer of the prestressing tendons or anchorages (ACI 
Code, Section 18.5.1). The tendons are then anchored 
so that the load in them is maintained.

	 2.	 If the concrete forms are not already in place, they may 
then be assembled around the tendons.

	 3.	 The concrete is then placed in the forms and allowed 
to cure. Proper quality control must be exercised, and 
curing may be accelerated with the use of steam or 
other methods. The concrete will bond to the tendons.

	 4.	 When the concrete attains a prescribed strength, nor-
mally within 24 hours or less, the tendons are cut at the 
anchorages. Because the tendons are now bonded to the 
concrete, as they are cut from their anchorages the high 
prestress force must be transferred to the concrete. As 
the high tensile force of the tendon creates a compressive 
force on the concrete section, the concrete will tend to 
shorten slightly. The stresses that exist once the tendons 

11-1  Introduction
According to the ACI definition, prestressed concrete is a 
material that has had internal stresses induced to balance 
out, to a desired degree, tensile stresses due to externally 
applied loads. Because tensile stresses are undesirable in 
concrete members, the object of prestressing is to create 
compressive stresses (prestress) at the same locations as the 
tensile stresses within the member so that the tensile stresses 
will be diminished or will disappear altogether. The dimin-
ishing or elimination of tensile stresses within the concrete 
will result in members that have fewer cracks or are crack-
free at service load levels. This is one of the advantages of 
prestressed concrete over reinforced concrete, particularly 
in corrosive atmospheres. Prestressed concrete offers other 
advantages. Because beam cross sections are primarily in 
compression, diagonal tension stresses are reduced and the 
beams are stiffer at service loads. In addition, sections can be 
smaller, resulting in less dead weight.

Despite the advantages, we must consider the higher 
unit cost of stronger materials, the need for expensive acces-
sories, the necessity for close inspection and quality control, 
and, in the case of precasting, a higher initial investment 
in plant.

11-2 �D esign Approach 
and Basic Concepts

As most of the advantages of prestressed concrete are at 
service load levels and as permissible stresses in the “green” 
concrete often control the amount of prestress force to be 
used, the major part of analysis and design calculations is 
made using service loads, permissible stresses, and basic 
assumptions as outlined in Sections 18.2 through 18.5 of 
the ACI Code. The strength requirements of the code must 
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Figure 11-2 depicts the various stages in the manufac-
ture of a precast, pretensioned member.

Post-tensioning may be defined as a method of 
prestressing concrete in which the tendons are tensioned 
after the concrete has cured. (Refer to Figure 11-3.) The 
operation is commonly a six-step process:

	 1.	 Concrete forms are assembled with flexible hollow 
tubes (metal or plastic) placed in the forms and held at 
specified locations.

	 2.	 Concrete is then placed in the forms and allowed to 
cure to a prescribed strength.

	 3.	 Tendons are placed in the tubes. (In some systems, a 
complete tendon assembly is placed in the forms prior 
to the placing of the concrete.)

	 4.	 The tendons are tensioned by jacking against an 
anchorage device or end plate that, in some cases, has 

have been cut are often called the stresses at transfer. 
Because there is no external load at this stage, the stresses 
at transfer include only those due to prestressing forces 
and those due to the weight of the member.

	 5.	 The prestressed member is then removed from the 
forms and moved to a storage area so that the casting 
bed can be prepared for further use.

Pretensioned members are usually manufactured at a 
casting yard or plant that is somewhat removed from the 
job site where the members will eventually be used. In this 
case, they are usually delivered to the job site ready to be set 
in place. Where a project is of sufficient magnitude to war-
rant it economically, a casting yard may be built on the job 
site, thus decreasing transportation costs and allowing larger 
members to be precast without the associated transportation 
problems.

Figure 11-1  Precast bridge girder components for post-tensioning.  (George Limbrunner)

Tendon Tensioned between Anchorages

(a)

Forms Assembled and Concrete Placed in Forms

(b)

Tendons Cut and Compression Transferred to Member

(c) Figure 11-2  Pretensioned member.
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Figure 11-4  Sketches for Example 11-1.

been previously embedded in the end of the member. 
The anchorage device will incorporate some method for 
gripping the tendon and holding the load.

	 5.	 If the tendons are to be bonded, the space in the tubes 
around the tendons may be grouted using a pumped 
grout. Some members use unbonded tendons.

	 6.	 The end anchorages may be covered with a protective 
coating.

Although post-tensioning is sometimes performed in a 
plant away from the project, it is most often done at the job 
site, particularly for units too large to be shipped assembled 
or for unusual applications.

The tensioning of the tendons is normally done with 
hydraulic jacks. Many patented devices are available to 
accomplish the anchoring of the tendon ends to the concrete.

11-3 �S tress Patterns 
in Prestressed 
Concrete Beams

The stress pattern existing on the cross section of a 
prestressed concrete beam may be determined by superim-
posing the stresses due to the loads and forces acting on the 
beam at any particular time. For our purposes, the following 
sign convention will be adopted:

Tensile stresses are positive (+).
Compressive stresses are negative (-).

Because we will assume a crack-free cross section at service 
load level, the entire cross section will remain effective 
in carrying stress. Also, the entire concrete cross section 
will be used in the calculation of centroid and moment 
of inertia.

For purposes of explanation, we will consider a rectan-
gular shape with tendons placed at the centroid of the sec-
tion, and we will investigate the induced stresses. Although 
the rectangular shape is used for some applications, it is 
often less economical than the more complex shapes.

Example 11-1

For the section shown in Figure 11-4, determine the stresses 
due to prestress immediately after transfer and the stresses 
at midspan when the member is placed on a 20-ft simple 
span. Use f ′c = 5000 psi and assume that the concrete has 
attained a strength of 4000 psi at the time of transfer. Use a 
central prestressing force of 100 kips.

Solution:
	 1.	 Compute the stress in the concrete at the time of ini-

tial prestress. With the prestressing force Ps applied at 
the centroid of the section and assumed acting on the 
gross section Ac, the concrete stress will be uniform 
over the entire section. Thus

f =
Ps

Ac
=

-100
12(18)

= -0.463 ksi

	 2.	 Compute the stresses due to the beam dead load:

 Weight of beam: wDL =
12(18)

144
 (0.150)

 = 0.225 kip/ft

 Moment due to dead load: MDL =
wDL/2

8
=

0.225(20)2

8

 = 11.25 ft@kips

Compute the moment of inertia I of the beam using the 
gross cross section and neglecting the transformed 

Hollow tubes for tendons
(may be draped as shown)

End anchorage

Figure 11-3  Post-tensioned member.
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Cross Section Dead Load Initial Prestress
(Axial)

DL + Prestress

(a) (b) (c) (d)

–0.208 –0.463 –0.671

+0.208 –0.463 –0.255

Figure 11-5  Midspan stresses for Example 11-1.

area of the tendons (as the steel is at the centroid, it will 
have no effect on the moment of inertia):

 Ig =
bh3

12
=

12(18)3

12
= 5832 in.4

 Dead load stresses: f =
Mc

I
=

11.25(12)(9)

5832

 = {0.208 ksi

	 3.	 Compute the stresses due to prestress plus dead load:

 f(initial prestress+DL) = -0.463 { 0.208

 = -0.671 ksi  (compression, top)

 = -0.255 ksi  (compression, bottom)

These results are shown on the stress summation dia-
gram of Figure 11-5.

The tensile stresses due to the DL moment in the bot-
tom of the beam have been completely canceled out and 
compression exists on the entire cross section. A limited 
additional positive moment may be carried by the beam 
without resulting in a net tensile stress in the bottom of 
the  beam. This situation may be further improved on by 
lowering the location of the tendon to induce additional com-
pressive stresses in the bottom of the beam.

Example 11-1 reflects two stages of the prestress pro-
cess. The transfer stage occurs in a pretensioned member 
when the tendons are cut at the ends of the member and the 
prestress force has been transferred to the beam, as shown 
in Figure 11-2. When the beam in this problem is removed 
from the forms (picked up by its end points), dead load 
stresses are introduced, and in this second stage, both the 
beam weight (dead load) and the prestress force are con-
tributors to the stress pattern within the beam. This stage 
is important because it occurs early in the life of the beam 
(sometimes within 24 hours of casting), and the concrete 
stresses must be held within permissible values as specified 
in the ACI Code, Section 18.4.

If the prestress force were placed below the neutral axis 
in Example 11-1, negative bending moment would occur in 
the member at transfer, causing the beam to curve upward 
and pick up its dead load. Hence, for a simple beam such as 

this, where the prestress force is eccentric, the stresses due 
to the initial prestress would never exist alone without the 
counteracting stresses from the dead load moment.

11-4 �P restressed 
Concrete Materials

The application of the prestress force both strains or 
“stretches” the tendons and at the same time induces tensile 
stresses in them. If the tendon strain is reduced for some 
reason, the stress will also be reduced. In prestressed con-
crete, this is known as a loss of pre-stress. This loss occurs 
after the prestress force has been introduced. Contributory 
factors to this loss are creep and shrinkage of the concrete, 
elastic compression of the concrete member, relaxation of 
the tendon stress, anchorage seating loss, and friction losses 
due to intended or unintended curvature in post-tensioning 
tendons. Estimates on the magnitudes of these losses vary. 
It is generally known, however, that an ordinary steel bar 
tensioned to its yield strength (40,000 psi) would lose its 
entire prestress by the time all stress losses had taken place. 
Therefore for prestressed concrete applications, it is neces-
sary to use very high-strength steels, where the previously 
mentioned strain losses will result in a much smaller per-
centage of change in the original prestress force.

The most commonly used steel for pretensioned pre-
stressed concrete is in the form of a seven-wire, uncoated, 
stress-relieved strand having a minimum tensile strength 
( fpu) of 250,000 psi or 270,000 psi, depending on grade. The 
seven-wire strand is made up of seven cold-drawn wires. 
The center wire is straight, and the six outside wires are 
laid helically around it. All six outside wires are the same 
diameter, and the center wire is slightly larger. This in effect 
guarantees that each of the outside wires will bear on and 
grip the center wire.

Prestressing steel does not exhibit the definite yield 
point characteristic found in the normal ductile steel used 
in reinforcing steel (see Figure 11-6). The yield strength for 
prestressing wire and strand is a “specified yield strength” 
that is obtained from the stress–strain diagram at 1% strain, 
according to the American Society for Testing and Materials 
(ASTM). Nevertheless, the specified yield point is not as 
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important in prestressing steel as is the yield point in the 
ductile steels. It is a consideration when determining the 
ultimate strength of a beam. For more information on pre-
stressing wire and strand, the reader is referred to ASTM 
Standards A416 and A421 [1].

In normal reinforced concrete members designed to 
ensure tension failures, the strength of the concrete is sec-
ondary in importance to the strength of the steel in the 
determination of the flexural strength of the member. In 
prestressed applications, concrete in the range from 4000 
to 6000 psi is commonly used. Some of the reasons for this 
are as follows: (1) volumetric changes for higher-strength 
concrete are smaller, which will result in smaller prestress 
losses; (2) bearing and development stresses are higher; 
and (3) higher-strength concrete is more easily obtained in 
precast work than in cast-in-place work because of better 
quality control. In addition, high early strength cement 
(type III) is normally used to obtain as rapid a turnover time 
as possible for optimum use of forms.

11-5 � Analysis of 
Rectangular 
Prestressed 
Concrete Beams

The analysis of flexural stresses in a prestressed member 
should be performed for different stages of loading—that is, 
the initial service load stage, which includes dead load plus 
prestress before losses; the final service load stage, which 

includes dead load plus prestress plus live load after losses; 
and finally the factored load stage, which involves load and 
strength-reduction factors. Generally, checking of pre-
stressed members is accomplished at the service load level 
based on unfactored loads. The nominal strength of a mem-
ber should be checked, however, using the same strength 
principles as for non-prestressed reinforced concrete 
members.

Example 11-2

For the beam of cross section shown in Figure 11-7, analyze 
the flexural stresses at midspan at transfer and in ser-
vice. Neglect losses. Use a prestressed steel area Aps of 
2.0  in.2, use f ′c = 6000 psi, and assume that the concrete 
has attained a strength of 5000 psi at the time of transfer. 
The initial prestress force = 250 kips. The service dead 
load = 0.25 kip/ft, which does not include the weight of the 
beam. The service live load = 1.0 kip/ft. Use n = 7. Assume 
that the entire cross section is effective and use the trans-
formed area (neglecting displaced concrete) for the moment 
of inertia.

Solution:
	 1.	 The beam weight is

wDL =
20(12)

144
 (0.150) = 0.25 kip/ft

The moment due to the beam weight is

MDL =
wDL/2

8
=

0.25(30)2

8
= 28.1 ft@kips

The moment due to superimposed loads (DL + LL) is

MDL+LL =
w(DL+LL)/2

8
=

1.25(30)2

8
= 140.6 ft@kips

	 2.	 The location of the neutral axis is

y =
Σ(Ay)

ΣA

Using the top of the section as the reference axis,

y =
12(20)(10) + 14(15)

12(20) + 14
= 10.28 in.

Strain

St
re

ss

Ductile steel

Prestressing steel

0

Figure 11-6  Comparative stress–strain curves.
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Figure 11-7  Sketches for Example 11-2.
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Figure 11-8  Midspan stress summary for Example 11-2.

The eccentricity e of the strands from the neutral axis is

15 - 10.28 = 4.72 in.

The moment of inertia about the neutral axis is

 I =
12(20)3

12
+ 12(20)a10.28 -

20
2
b

2

+ 14(4.72)2

 = 8331 in.4

	 3.	 The stresses may now be calculated. These are sum-
marized in Figure 11-8.

	a.	 Initial prestress: As a result of the eccentric prestress-
ing force, the induced stress at the initial prestress 
stage will not be uniform but may be computed from

 f = -  
Ps

Ac
{ Mc

I

 = -
Ps

Ac
{

Ps(e)c

I

where Ps/Ac represents the axial effect of the pre-

stress force and 
Ps(e)c

I
 is the eccentric, or moment, 

effect. Then

 -  
Ps

Ac
= -  

250
12(20)

= -1.04 ksi

(compression top and bottom)

 +  
Ps(e)c

I
=

250(4.72)(10.28)

8331
= +1.46 ksi

(tension in top)

 -  
Ps(e)c

I
= -  

250(4.72)(9.72)

8331
= -1.38 ksi

(compression in bottom)

	b.	 The stresses due to the beam weight are

 f = {Mc
I

 = +
28.1(12)(9.72)

8331
= +0.39 ksi

(tension in bottom)

 = -
28.1(12)(10.28)

8331
= -0.42 ksi

(compression in top)

Summarizing the initial service load stage at the 
time of transfer [prestress plus beam weight (DL)]:

Top of beam: -1.04 + 1.46 - 0.42 = 0
Bottom of beam: -1.04 - 1.38 + 0.39 = -2.03 ksi 
� (compression)

The permissible stresses (ACI Code, Sec-
tion 18.4) immediately after prestress transfer (before 
losses) are in terms of f ′ci, which is the specified 
compressive strength (psi) of concrete at the time of 
initial prestress:

 compression = 0.60 f ′ci

 = 0.60(5000) = 3000 psi = 3.0 ksi

 tension = 32f ′ci

 = 315000 = 212 psi = 0.212 ksi

Because 2.03 ksi 6 3.0 ksi and 0 6 0.212 ksi, the 
beam is satisfactory at this stage. Should the tensile 
stress exceed 32f ′ci, additional bonded reinforce-
ment shall be provided.

Note in Figure 11-8c that no tensile stress exists 
at transfer.

	c.	 In service, the stresses due to the superimposed 
loads (DL + LL) are

 f = {Mc
I

 = +  
140.6(12)(9.72)

8331
= +1.97 ksi

(tension in bottom)

 = -  
140.6(12)(10.28)

8331
= -2.08 ksi

(compression in top)

Summarizing the second service load stage when the 
beam has had service loads applied (prestress plus 
beam dead load plus superimposed loads) gives us

Top of beam: 0 - 2.08 = -2.08 ksi (compression)
Bottom of beam: -2.03 + 1.97 = −0.06 ksi  
� (compression)
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The permissible compressive stress in the concrete at 
the service load level (ACI Code, Section 18.4.2) due to 
prestress plus total load is 0.60 f ′c:

0.60(6000) = 3600 psi = 3.60 ksi

The permissible stress just given assumes that losses 
have been accounted for. Our analysis has neglected 
losses. Aside from this, the stresses in the beam would 
be satisfactory, because 2.08 ksi 6 3.60 ksi, and no ten-
sile stress exists.

The final stress distribution (Figure 11-8e) in the beam 
of Example 11-2 shows that the entire beam cross section 
is under compression. This is the stress pattern that exists 
at midspan (as the applied moments calculated were mid-
span moments). It is evident that moments will decrease 
toward the supports of a simply supported beam and that 
the stress pattern will change drastically. For example, if 
the eccentricity of the tendon were constant in the beam in 

question, the net prestress (Figure 11-8a) would exist at the 
beam ends, where moment due to beam weight and applied 
loads is zero. Because the tensile stress is undesirable, the 
location of the tendon is changed in the area of the end of 
the beam, so that eccentricity is decreased. This results in 
a curved or draped tendon within the member, as shown 
in Figure 11-9. Post-tensioned members may have curved 
tendons accurately placed to satisfy design requirements, 
but in pretensioned members, because of the nature of the 
fabrication process, only approximate curves are formed by 
forcing the tendon up or down at a few points.

Although shear was not included in the beam analysis, 
the reader should be aware that the draping of the tendons, 
in addition to affecting the flexural stresses at the beam 
ends, produces a force acting vertically upward, which has 
the effect of reducing the shear force due to dead and live 
loads. Prestressed concrete flexural members are available in 
numerous shapes suitable for various applications. A few of 
the more common ones are shown in Figure 11-10.

Pretensioned

(a)

Post-tensioned

(b)

Figure 11-9  Draped tendons.
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Figure 11-10  Typical precast, prestressed flexural members.
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11-6 � Alternative Methods 
of Elastic Analysis: 
Load Balancing 
Method

The ACI Code requires that prestressed beams be analyzed 
elastically to establish whether the stresses developed by the 
combined action of service loads and prestressing force are 
within specified allowable stresses. In effect, this limit on the 
magnitude of stress, specifically at transfer or with service 
loads in place, controls cracking and subsequently prevents 
crushing of the concrete.

The analysis method used in Section 11-5 is often 
designated the method of superposition or the combined load-
ing concept. To explain briefly, it is based on superimposing 
the stresses created by the applied loads with those created 
by the prestressing force. As previously shown, all these 
stresses are computed independently and then combined. 
This method provides the designer a complete picture of 
stress variation under various loading conditions.

A second method of elastic analysis is called the load 
balancing method. According to the Post-Tensioning Institute, 
this method is by far the most widely used method for analy-
sis and design of post-tensioned structures. It is a technique 
of balancing the external load by selecting a prestressing force 
and tendon profile that creates a transverse load acting oppo-
site to the external load. This transverse load may be equal to 
either the full external applied load or only part of it.

For example, to balance a uniformly distributed load (w) 
acting on a simply supported beam, a parabolic tendon 
profile with zero end eccentricities would be selected. The 

prestressing force Ps needed would be a function of the load 
to be balanced as well as the acceptable sag of the tendon. If 
the transverse load created by the tendons exactly balanced 
the external load, a uniform compressive stress distribution 
Ps/Ag will develop over the beam cross section, and the beam 
will remain essentially level with no deflection or camber. 
To balance the load, the end eccentricities should be zero; 
otherwise, an end moment will be developed that disturbs 
the uniform stress distribution.

If only a portion of the external load is balanced, a net 
moment in the beam at any point will develop from that 
portion of the load that is not balanced by the prestressing. 
It is only this net moment that must be considered in com-
puting the bending stress. Therefore the stress acting at any 
point on a cross section may be expressed as

f =
Ps

Ag
{

Mnet y
Ig

where
Ps = �prestressing force applied to the member (this is 

also designated T)
Mnet = net unbalanced moment on the section

and Ag, y, and Ig are as previously defined. The computed 
stress due to the uniform compression and the unbalanced 
moment must then (as in the other methods) be compared 
with code-allowable stresses.

The externally applied load that will be balanced need 
not necessarily be uniformly distributed. It can also be a 
concentrated load or be a combination of both types. For 
a uniformly distributed load, a shallow parabolic tendon 

Centroidal axis of
parabolic tendons

Centroidal axis
of tendons

Balancing of Uniformly Distributed Load

Balancing of Concentrated Load

Centroidal axis
(gross Ac)

P = Pp

Pp = 2Ps sin �

Centroidal axis
(gross Ac)

�

Transverse component (wp)

Ps cos �

Ps sin �

Ps

�

Ps cos �

Ps sin �

Ps

�

Ps cos �

Ps sin �

Ps

�

Ps cos �

Ps sin �

Ps

�

Transverse component (Pp)

Uniformly distributed load (w)

Span length (  )

(a)

(b)

Figure 11-11  Load balancing: 
(a) balancing of concentrated 
load; (b) balancing of uniformly 
distributed load.
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profile is generally selected, whereas a linear profile with 
a sharp directional change is used for a concentrated load. 
These are illustrated in Figure 11-11.

With respect to the balancing of a concentrated load, 
note the sharp directional change of the tendon under the 
external load at midspan. This creates an upward component

Pp = 2Ps sin u

In the case shown, Pp exactly balances the applied load P. 
Therefore, if we neglect its own weight, the beam is not 
subject to net transverse load. At the ends of the beam, the 
horizontal components of Ps, which are shown as Ps cos θ 
(and which are collinear with the centroidal axis of the 
beam), create a uniform compressive stress along the entire 
length of the beam. Therefore the stress in the beam at any 
section may be expressed as

f =
Ps cos u

Ag

and for small values of θ,

f =
Ps

Ag

If any additional external load is applied, the beam will act 
as an elastic, homogeneous concrete beam (up to the point 
of cracking), and a bending stress will develop, which can be 
evaluated by

f =
Mnetc

Ig

where Mnet is the moment developed by any load applied in 
addition to P.

With respect to the balancing of the uniformly distrib-
uted load, note that the tendon profile is that of a parabolic 
curve whose upward transverse component wp in lb/ft is 
given by

	 wp =
8Psd

/2 	 (11-1)

Assuming that the externally applied load w, including 
the weight of the beam, is exactly balanced by the trans-
verse component wp, there is no bending in the beam, and 

the beam is subject to a uniform compressive stress calcu-
lated from

f =
Ps

Ag

If the transverse component is different from the 
applied external load, the bending moment developed will 
induce a bending stress, which can be evaluated by

f =
Mnetc

Ig

where Mnet is the moment developed by a load applied over 
and above w.

It is questionable as to what portion of the external 
load should be balanced by the prestress. If too much of the 
applied load, such as DL plus 1

2LL is to be balanced, exces-
sive prestress may be required. The designer must exercise 
judgment in determining the proper amount of loading to 
be balanced by prestressing.

Example 11-3

The rectangular prestressed beam shown in Figure 11-12 
carries uniformly distributed service loads of 1.0 kip/ft LL 
and 1.0 kip/ft DL (which includes the weight of the beam). 
A parabolic tendon, configured as shown, will be used. The 
tendon is to furnish a uniformly distributed upward balanc-
ing load of 1.5 kips/ft (DL + 1

2LL). Calculate the required pre-
stressing force and determine the net moment at midspan.

Solution:

Solving Equation (11-1) for required Ps:

required Ps =
wp/2

8d
=

1.5(75)2

8(15>12)
= 844 kips

The net moment at midspan is calculated from

M =
w/2

8
=

(2.0 - 1.5)(75)2

8
= 352 ft@kips

Example 11-4 illustrates the two methods of elastic anal-
ysis. In this example, we will neglect the transformed area of 
the steel as well as any displaced concrete, and we will use 
the gross properties of the cross section to compute stresses. 
Note that this varies from the solution of Example 11-2.

Parabolic
tendons

� = 15"

75'-0"

wp = 1.5 kips/ft

w = 2.0 kips/ft

Figure 11-12  Sketch for Example 11-3.
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Parabolic tendons

Centroidal axis of concrete

25'-0"

Beam Section
at Midspan

w = 2.0 kips/ft (LL)

c = 14"

c = 14"
e = 6"

b = 18"

Beam Elevation View

Figure 11-13  Sketches for Example 11-4.

Example 11-4

A rectangular prestressed concrete beam shown in 
Figure 11-13 is simply supported and has a span length of 
25 ft-0 in. The beam carries a superimposed service LL of 
2.0 kips/ft. The only service DL is the weight of the beam. 
The parabolic prestressing tendon is located as shown 
and is subjected to an effective prestress force of 300 kips 
(neglect any prestress losses). Determine the outer fiber 
flexural stresses at midspan at transfer (prestress + beam 
weight) and when the member is under full service load con-
ditions (prestress + beam weight + service LL).

Solution:

	 a.	 Using the method of superposition

	 1.	 Calculate moments after determining the beam 
weight:

wDL =
28(18)

144
 (0.150) = 0.525 kip/ft

The moment due to beam weight is

MDL =
wDL/2

8
=

0.525(25)2

8
= 41.0 ft@kips

The moment due to superimposed LL is

MLL =
wLL/2

8
=

2.0(25)2

8
= 156.3 ft@kips

	 2.	 Using the gross concrete section and neglecting 
the transformed steel area, the neutral axis coin-
cides with the centroidal axis. Therefore, the dis-
tance from the neutral axis to the outer fiber is 14 
in. The eccentricity e of the tendon is given as 6 
in. The moment of inertia about the neutral axis is 
found from

Ig =
18(28)3

12
= 32,928 in.4

	 3.	 Calculate the stresses.

	a.	At transfer, the prestressing stress is determined 
from

 f = -  
Ps

Ag
{

Psec

Ig

 = -  
300

18(28)
{

300(6)(14)

32,928

 = -0.595 { 0.765

from which

 stress at top = -0.595 + 0.765 = 0.170 ksi
(tension)

 stress at bottom = -0.595 - 0.765 = -1.36 ksi
(compression)

The stress due to the service DL (beam weight) 
is calculated from

f = {Mc
I

= {
41.0(12)(14)

32,928
= {  0.209 ksi

Combining the preceding stresses for the trans-
fer condition gives us

 stress at top = +0.170 - 0.209 = -0.039 ksi
(compression)

 stress at bottom = -1.36 + 0.209 = -1.15 ksi
(compression)

	b.	Under full service load conditions, stress due to 
superimposed LL is calculated from

f = {Mc
I

= {
156.3(12)(14)

32,928
= {0.797 ksi

Combining the preceding stresses for the full 
service load condition gives us

 stress at top = -0.039 - 0.797 = -0.836 ksi
(compression)

 stress at bottom = -1.15 + 0.797 = -0.353 ksi
(compression)

	 b.	 Using the load balancing method

	 1.	 Let e = d = 6 in. The parabolic tendons produce 
an upward balancing load of

wp =
8Psd

/2 =
8(300)(0.5)

252 = 1.92 kips/ft
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	a.	At transfer, the unbalanced load on the beam is

1.92 - 0.525 = 1.395 kips/ft  (upward)

The net moment at midspan is

Mnet =
1.395(25)2

8
= 109.0 ft@kips (tension on top)

The bending stress due to the net moment is

f = {
Mnetc

Ig
= {

109(12)(14)

32,928
= {0.556 ksi

The uniform compressive stress is

 -  
Ps

Ag
= -  

300
18(28)

= -0.595 ksi

 stress at top = -0.595 + 0.556 = -0.039 ksi
(compression)

 stress at bottom = -0.595 - 0.556 = -1.15 ksi
(compression)

	b.	Under full service load, the unbalanced load on 
the beam is

2.0 + 0.525 - 1.92 = 0.605 kip/ft (downward)

The net moment at midspan is

Mnet =
0.605(25)2

8
= 47.3 ft@kips

(tension on bottom)

The bending stress due to the net moment is

f = {
Mnetc

Ig
= {

47.3(12)(14)

32,928
= {0.241 ksi

The uniform compressive stress is

 -
Ps

Ag
= -

300
18(28)

= -0.595 ksi

 stress at top = -0.595 - 0.241 = -0.836 ksi
(compression)

 stress at bottom = -0.595 + 0.241 = -0.354 ksi
(compression)

Note that the results agree (with slight round-off 
error) using the three elastic analysis methods.

The load balancing method offers advantages of sim-
plicity and clarity when with continuous beams and slabs. 
It is the recommended method for those situations, particu-
larly for preliminary designs. For simple spans, none of the 
three methods has any particular advantage over the others; 
all are equally applicable.

11-7 �F lexural Strength 
Analysis

As part of the design and analysis procedure of a prestressed 
concrete beam, the ACI Code requires that the moment due 
to factored service loads, Mu, not exceed the flexural design 
strength fMn of the member. The design strength of pre-
stressed beams may be computed using strength equations 
similar to those for reinforced concrete members, discussed 
in Chapter 2. The checking of the flexural (nominal) strength 
of a prestressed beam ensures that the beam is designed with 
an adequate factor of safety against failure.

The expression for the nominal bending strength of a 
rectangular-shaped prestressed beam is developed from the 
internal couple of an underreinforced beam at failure, as 
shown in Figure 11-14.

Assuming failure is initiated by the steel yielding, the 
magnitude of the internal couple is

Mn = Aps fpsadp -
a
2
b

where
Aps = �area of prestressed reinforcement in the tension 

zone
dp = �distance from extreme compression fiber to the 

centroid of the prestressed reinforcement
a = �depth of stress block, determined by equating T 

and C and calculated from

a =
Aps fps

0.85f′cb

fps = �stress in the prestressed reinforcement at nominal 
strength

b

c a C = 0.85f �c ab

 T = Apsfps

Aps

dp

�c

�s

0.85f �c

N.A.

Z = dp –
a
2

a
2

Figure 11-14  Equivalent stress block for strength analysis.
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tension-controlled sections) through the use of a reinforce-
ment index vp, where

vp =
rpfps

f ′c

A reinforcement index of 0.32b1 corresponds to a net tensile 
stain of 0.005, the lower limit for a tension-controlled sec-
tion. Therefore, checking vp:

 vp =
rpfps

f ′c
=

0.00340(245,000)

5000
= 0.167

 0.32b1 = 0.32(0.80) = 0.256

Because vp 6 0.256, this is a tension-controlled section and 
f = 0.90.

Compute the nominal moment strength:

 a =
Apsfps

0.85f ′cb
=

1.224(245)

0.85(5)(18)
= 3.92 in.

 Mn = Apsfpsadp -
a
2
b

 = 1.224(245)a20 -
3.92

2
b

 = 5410 in.@kips

 = 451 ft@kips

 fMn = 0.90(451) = 406 ft@kips

Compute the factored service load moment:

 Mu = 1.2MDL + 1.6MLL

 = 1.2(41.0) + 1.6(156.3) = 299 ft@kips

Thus Mu 6 fMn (299 ft-kips 6 406 ft-kips). Therefore O.K.

If a prestressed beam is satisfactorily designed based 
on service loads and then, when checked by the strength 
equations, is found to have insufficient strength to resist 
the factored loads, non-prestressed reinforcement may be 
added to increase the factor of safety. In addition, the ACI 
Code, Section 18.8.2, requires that the total amount of rein-
forcement (prestressed and non-prestressed) be sufficient 
to develop a factored load equal to at least 1.2 times the 
cracking load calculated from the modulus of rupture of the 
concrete. It is permissible to waive this requirement when 
a flexural member has shear and flexural strength at least 
twice that required by Code Section 9.2.

11-8 �N otes on 
Prestressed 
Concrete Design

Because the shape and dimensions of a prestressed concrete 
member may be established by a trial procedure or even 
assumed based on physical limitations, the design may be 
reduced to finding the prestress force, tendon profile, and 

For members with bonded prestressing tendons and no 
non-prestressed tension or compression reinforcement, the 
value of fps can be obtained from

	 fps = fpu a1 -
gp

b1
 rp 

fpu

f′c
b   [Mod. ACE Eq. (18-3)]

where
fpu = ultimate tensile strength of the prestressing steel
gp = �factor based on the type of prestressing steel: 0.55 

when fpy/fpu is not less than 0.80, 0.40 when fpy/fpu 
is not less than 0.85, and 0.28 when fpy/fpu is not 
less than 0.90, where fpy is the specified yield stress 
of the prestressing tendons (psi)

ρp = reinforcement ratio Aps/bdp

and b1 is as defined in Chapter 2, Section 2-6. The expres-
sion for fps is valid when fse 7 fpu/2, where fse is the effective 
stress in prestressing steel after losses. Here fps represents the 
average stress in the prestressing steel at failure. It is analo-
gous to fy, but as the high-strength prestressing steels do not 
have a well-defined yield point, it can be predicted using 
ACI Equation (18-3).

Example 11-5

Calculate the flexural strength fMn of the prestressed beam 
of Example 11-4 and compare with Mu. Use f ′c = 5000 psi 
(normal-weight concrete) and seven-wire-strand grade 270 
with fpu = 270,000 psi (ordinary strand with fpy = 0.85fpu). 
Use bonded prestressing tendons and neglect all prestress 
losses. Therefore, for the purpose of this problem, fse = fpu. 
Use Aps = 1.224 in.2. The beam has no non-prestressed 
tension or compression steel.

Solution:

Because prestress losses are neglected, fse 7 fpu/2. 
Therefore ACI Equation (18-3) is applicable. For the given 
conditions, gp = 0.40 and b1 = 0.80. The reinforcement ratio 
is calculated from

 rp =
Aps

bdp
=

1.224
18(20)

= 0.00340

 fps = fpu a1 -
gp

b1
 rp 

fpu

f ′c
b

 = 270 c1 -
0.40
0.80

 (0.00340)a270
5

b d

 = 245 ksi

Prestressed concrete sections are subject to the same 
conditions of being tension-controlled, compression-
controlled, or transition sections as regular reinforced 
concrete sections, as discussed in Section 2-8. The appro-
priate values of f, as previously discussed, apply. It is 
convenient to check the net tensile strain limit of 0.005 (for 
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Therefore, many significant topics normally considered in 
an analysis or design problem have been omitted. These 
include total and design procedures, along with shear design, 
deflection, prestress loss, and block stresses. These topics are 
beyond the scope of our text. References [3] through [6] are 
among many other texts and publications available for fur-
ther reading.

the amount of the prestress steel area. The design problem 
then is further reduced to an analysis-type problem whereby 
service load stresses are checked at various stages and the 
flexural strength of the member is checked against the 
moment due to the factored service loads.

The intent of this chapter, however, is to furnish a 
conceptual approach to prestressed concrete members. 
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Problems

	11-1.	 The plain concrete beam shown having a rectangular 
cross section 10-in. wide and 18-in. deep is simply 
supported on a single span of 20 ft. Assuming no 
loads other than the dead load of the beam itself, find 
the bending stresses that exist at midspan.

A

A
20'-0"

Section A–A

18"
13"

10"

18"
11"

10"

18"
9"

10"

18"

10"

PROBLEMS 11-1 TO 11-4

	11-2.	 A beam identical to that of Problem 11-1 is pre-
stressed with a force Ps of 185 kips. The tendons are 
located at the center of the beam. Use Aps = 1.23 in.2. 
Find the stresses in the beam at midspan at transfer. 
There is no load other than the weight of the beam. 
Draw complete stress diagrams.

	11-3.	 The tendons in the beam of Problem 11-2 are 
placed 11 in. below the top of the beam at midspan. 
Assuming that no tension is allowed, determine the 
maximum service uniform load that the beam can 
carry in addition to its own weight as governed by 
the stresses at midspan. Assume that f′ci = 3500 psi 
and f′c = 5000 psi.

	11-4.	 Same as Problem 11-3, except that the tendons are 
13 in. below the top of the beam at midspan and 
permissible stresses are as defined in the ACI Code, 
Section 18.4.

	11-5.	 For the beam shown, calculate the outer fiber 
stresses at midspan and at the end supports at the 
following stages: (a) transfer (prestress + beam 
weight) and (b) under full service load. The beam 
is simply supported with a span length of 20 ft-0 in. 
and carries a superimposed live load of 2.7 kips/ft.  
The tendon is straight and located 9 in. below the 
neutral axis of the beam. The prestress force is 
250 kips. Neglect prestress losses and use the gross 
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weight of the beam of 0.21 kip/ft. Calculate the outer 
fiber stresses at midspan under full service load. Use 
the gross properties of the cross section. Use the load 
balancing method.

	11-7.	 For the beam of Problem 11-5, calculate the outer 
fiber stresses at midspan for the following stages: 
(a) transfer and (b) under full service load. Assume 
the prestress tendons are parabolically draped with 
a midspan eccentricity of 9 in. as shown and zero 
eccentricity at the end supports. Neglect prestress 
losses and use the gross concrete section proper-
ties. The prestress force is still 250 kips. Use the load 
balancing method.

	11-8.	 Calculate the flexural strength fMn of the prestressed 
beam shown and compare it with the factored 
design  moment Mu. The service load moments are 
125 ft-kips for dead load and 383 ft-kips for live  
load.  Use f′c = 5000 psi (normal-weight concrete) 
and grade 270 seven-wire strand with fpu = 270,000 
psi (fpy = 0.85fpu). The tendons are bonded. Neglect 
all prestress losses.

Aps = 2.30 in.2

15"

15"

20"

10"

PROBLEM 11-8

concrete section properties. Use the method of 
superposition for the solution.

N.A. 24"

12"

9"

PROBLEM 11-5

	11-6.	 The simply supported beam having a midspan cross 
section as shown is prestressed by a parabolic ten-
don with an effective prestress force of 233 kips. 
The beam has a span length of 30 ft and carries a 
total service load of 1.20 kips/ft, which includes the 

10"

10"

10"

4"

PROBLEM 11-6
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which the forms are built. The designer (engineer or 
architect) should specify the allowable tolerances in 
form dimensions for form design and construction, but 
not make these tolerances finer than necessary, as this 
could add unnecessarily to formwork cost as well as 
delay the project.

	 2.	 Rigid: Forms must be sufficiently rigid to prevent move-
ment, bulging, or sagging during the placing of con-
crete. Formwork must therefore be adequately propped, 
braced, and tied. Special consideration may have to be 
given to such items as corner details and the effect of 
any uplift pressures.

	 3.	 Tight jointed: Joints that are insufficiently tight will leak 
cement paste. The surface of the concrete will thus be 
disfigured by fins of the cement paste, and honeycomb-
ing may result adjacent to the leaking joint.

	 4.	 Properly finished: The formwork in contact with the 
concrete should be so arranged and jointed as to pro-
duce a concrete surface of good appearance. Wires, 
nails, screws, and form surface flaws must not be 
allowed to disfigure the concrete surface. In some cases 
a provision of special form lining may be necessary to 
achieve the desired surface finish.

Safety in formwork requires that the forms be

	 1.	 Strong: To ensure the safety of the structure and the 
protection of the workers, it is essential that formwork 
be designed to carry the full load and side pressures 
from freshly placed concrete, together with construc-
tion traffic and any necessary equipment. On large jobs 
the design of formwork is usually left to a specialist, but 
on smaller or routine jobs it may be left to the carpenter 
supervisor using rule-of-thumb methods.

	 2.	 Sound: The materials used to construct the forms must 
be of the correct size and quantity, of good quality, and 
sufficiently durable for the job.

12-1  Introduction
Forms are temporary structures whose purpose is to provide 
containment for the fresh concrete and to support it until it 
can support itself. Forms usually must be engineered struc-
tures as they are required to support loads composed of the 
fresh concrete, construction materials, equipment, workers, 
impact of various kinds, and sometimes wind. The forms 
must support all the applied loads without collapse or exces-
sive deflection. In addition, the forms must provide for the 
molding of the concrete to the desired dimensions, shape, 
and surface finish.

The cost of formwork is significant, generally amount-
ing to anywhere from 40% to 60% of the cost of a concrete 
structure. Economy in formwork design depends partly on 
the ingenuity and experience of the form designer, whether 
a contractor or an engineer. Judgment with respect to the 
development of a forming system could both expedite a proj-
ect and reduce costs. Although forms may be job built (design 
examples are presented later in this chapter), many propri-
etary forming systems are available. Specialty companies 
will design and construct forms using patented systems. In 
multiple-reuse situations, steel formwork has replaced wood 
formwork to some degree, although the use of wood is still 
substantial because of its availability and ease of fabrication.

Whatever the eventual type of forming may be, 
economy in formwork begins when the architect/engineer, 
during the design of the structure, examines each member 
and considers ease of forming and reuse of forms.

12-2 � Formwork 
Requirements

The essential requirements of good formwork may be cat-
egorized as quality, safety, and economy.

Quality in formwork requires that the forms be

	 1.	 Accurate: The size, shape, position, and alignment of 
structural elements will depend on the accuracy with 
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Plywood is available as flat panels (4 ft * 8 ft sheets) 
made of thin sheets of wood (called plies) with a total thick-
ness ranging from 1

4 in. to 11
8 in. It is commonly used for 

sheathing or lining forms because it gives smooth concrete 
surfaces that require a minimum of hand finishing and 
because the relatively large sheets are economical and easy 
to use. U.S. plywood is built up of an odd number of plies 
with the grain of adjacent layers perpendicular. The plies are 
dried and joined under pressure with glues that make the 
joints as strong or stronger than the wood itself. The alter-
nating direction of the grains of adjoining layers equalizes 
strains and thus minimizes shrinkage and warping of the 
plywood panels. Generally, the grain direction of the outer 
layers is parallel to the long dimension of the panel. For 
maximum strength, the direction of the grain in the face lay-
ers should be placed parallel to the span.

The plywood should be the exterior grade because of its 
waterproof glue. It should also be factory treated with a form 
oil or parting compound. With proper care, plywood can be 
reused many times.

Coated plywood is occasionally used. Called overlaid or 
plastic coated, it is ordinary exterior plywood with a resin-
impregnated fiber facing material fused to one or both sides 
of the plywood sheet. The overlay covers the grain of the 
wood, resulting in a smoother and more durable forming 
surface. The resins used in overlay production are hard 
and resist water, chemicals, and abrasion. Two grades, high 
density and medium density, are available, and their dif-
ference is in the density of the surfacing material. Coated 
plywood is generally reused considerably more than the 
plain plywood form.

Nearly any exterior type of plywood can be used for 
concrete forming. A special panel called plyform is manu-
factured specifically for that purpose, however. Plyform is 
exterior-type plywood limited to certain wood species and 
veneer grades to ensure high performance and is manufac-
tured in two classes, class I and class II. Class I is the stron-
gest, stiffest, and most widely available type. Both classes 
have smooth, solid surfaces and can have many reuses. They 
are mill-oiled unless otherwise specified. Plyform is manu-
factured in thicknesses ranging from 15

32 in. to 11
8 in., and 

the most commonly used thicknesses are 58 in. and 34 in.
Plyform can also be manufactured with a high-density 

overlaid (HDO) surface (on one side or both sides). HDO 
plyform has an exceptionally smooth, hard surface for the 
smoothest possible concrete finishes and the maximum 
number of reuses. The HDO surface is a hard, semiopaque 
resin-fiber overlay heat-fused to panel faces. It can have 
as many as 200 reuses, and light oiling between pours is 
recommended.

Structural I plyform is stronger and stiffer than plyform 
class I or II and is sometimes used when the face grain must 
be parallel to supports and there is a heavy loading against 
the forms. It is also available with HDO faces.

Hardboard (fiberboard) is made up of wood particles 
that have been impregnated, pressed, and baked. When used 
as a form liner, which is generally the case, hardboard must 

Economy in formwork requires that the forms be

	 1.	 Simple: For formwork construction to be economical, 
it must be designed to be simple to erect and dismantle. 
Modular dimensions should be used.

	 2.	 Easily handled: The sizes of form panels or units should 
be such that they are not too heavy to handle.

	 3.	 Standardized: Comparative ease of assembly and the 
possibility of reuse will lower formwork costs when 
sizes are standardized.

	 4.	 Reusable: Formwork intended for reuse should be 
designed for easy removal. If formwork panels have to 
be ripped down, the concrete may be damaged, materi-
als will be wasted, time will be lost, and expense will be 
incurred in repairing and replacing damaged panels.

12-3 � Formwork 
Materials and 
Accessories

Materials used for forms for concrete structures include 
lumber, plywood, hardboard, fiberglass, plastic and rubber 
liners, steel, paper and cardboard, aluminum, fiber forms, 
and plaster of Paris. Additional materials include nails, 
bolts, screws, form ties, form clamps, anchors, various types 
of inserts, and various types of form oils and compounds as 
well as their accessories. Forms frequently involve the use of 
two or more materials, such as plywood facing attached to 
steel frames for wall panels.

Form lumber generally consists of the softwoods with 
the species used being the type available in the local area. 
Various species are usually grouped together for grading 
and marketing purposes. Some of these groups and their 
included species commonly used for formwork are

	 1.	 Douglas fir–larch (Douglas fir, western larch)
	 2.	 Douglas fir–south (only Douglas fir from southern 

growth areas)
	 3.	 Hem–fir (Western hemlock, California red fir, grand 

fir, noble fir, white fir, Pacific silver fir)
	 4.	 Spruce–pine–fir (alpine fir, balsam fir, black spruce, 

Englemann spruce, jack pine, lodge-pole pine, red 
spruce, white spruce)

	 5.	 Southern pine (loblolly pine, longleaf pine, shortleaf 
pine, slash pine)

Form lumber is made up of standard sizes, either rough 
or dressed, with the grading quality of construction grade or 
No. 2 grade usually specified. Shoring or falsework requiring 
greater capacity should be of select structural grade lumber. 
Partially seasoned wood should be used because it has been 
found to be the most stable. Green lumber will warp and 
crack, whereas kiln-dried lumber will swell excessively when 
it becomes wet. Boards of various thicknesses may be used 
for sheathing when the imprint of the boards on the con-
crete surface is desired for architectural reasons.
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from manufacturers’ catalogs as well as local concrete con-
struction specialties distributors.

Some of the more common types of accessories are fas-
teners, spreaders, ties, anchors, hangers, clamps, and inserts. 
The most common fastener used is the double-headed nail, 
which may be withdrawn with a minimum of effort and little 
damage to the forms. Spreaders are braces that are inserted 
in forms to keep the faces a proper distance apart until the 
concrete is placed. Preferably, they are removed during or 
after the placement of the concrete so that they are not cast 
in the concrete. They may be wood blocks or proprietary 
metal pieces. Ties are tensile units adapted to holding con-
crete forms secure against the lateral pressure of the fresh 
concrete, with or without provision for spacing the forms 
a definite distance apart. They pass through the concrete 
and are fastened on each side. Various types of ties are avail-
able, many of which are patented items. Anchors are devices 
used to secure formwork to previously placed concrete of 
adequate strength and are normally embedded in concrete 
during placement. There are two basic parts, the embed-
ded anchoring device and the external fastener, which is 
removed after use. Hangers are devices used for suspending 
one object from another, such as the hardware attached to a 
building frame to support forms. Inserts are of many designs 
and are attached to the forms in such a way that they remain 
in the concrete when the forms are stripped. They provide 
for anchorage of brick or stone veneers, pipe hangers, sus-
pended ceilings, duct work, and any building hardware or 
components that must be firmly attached to the concrete. 
Clamps consist of many varied devices but serve a similar 
purpose to that of the tie. Beam form clamps firmly hold the 
beam sides and bottom together with a minimum of nailing 
required. Column clamps or yokes encircle column forms 
and hold them together securely, withstanding the lateral 
pressure of the freshly placed concrete.

12-4 �L oads and Pressures 
on Forms

The concrete form is a structure. Like all structures, it 
must be designed and constructed with due regard to the 
effects of the imposed loads. A well-designed form must 
have adequate strength to resist failure; in addition, it must 
have sufficient stiffness so that deflection will not be exces-
sive. Efficient and economical use of the material of which 
the forms are built is also an integral part of the design 
process.

The first consideration in the design of a form for 
concrete is the load to be supported. The loads may be con-
sidered in two categories: vertical loads and lateral loads. 
The lateral loads may be further categorized as externally 
applied load (such as wind) and internally applied pressure 
due to the contained fresh concrete. These loads must be 
carried to the ground by the formwork system or resisted 
by in-place construction that has adequate strength for 
the purpose.

be backed with sheathing of some kind because it does not 
have the strength that plywood has. Tempered hardboard, 
which is preferred for formwork, has been impregnated 
with drying oil or other material that makes the board less 
absorbent and improves its strength. Hardboard has limited 
reuse capability.

Fiberglass is a glass-fiber-reinforced plastic. It is espe-
cially suitable for repetitive production of complicated 
shapes, particularly precast elements. The initial cost is high, 
but the extensive reuse of one mold without evidence of wear 
contributes to economy. Suitable reinforcement and back-
ing must be provided so that the mold will not be deformed 
when it is handled. Molds can be used with or without form 
oil. Wear of the mold surface will be slightly less if an oil 
is used.

Plastic and rubber form liners generally come in sheets, 
either flexible or rigid, and are attached to the solid form 
sheathing. The term form liners includes any sheet, plate, 
or layer of material attached directly to the inside face of 
forms to improve or alter the surface texture and quality of 
the finished concrete. Substances that are applied by brush-
ing, dipping, mopping, or spraying to preserve the form 
material and to make form stripping easier are referred to 
as form coatings. Some of these coatings are so effective as 
to approximate the form liner in function. Repetitive use, a 
great variety of textures and patterns, and ease of stripping 
are among the advantages of these form liners.

Various types of rigid insulation board are used as form 
liners and attached to the form sheathing. The boards are 
generally left in place, either bonded to the concrete or held 
in place by form plank clips.

Steel forms have been widely used as special-purpose 
forms. Steel panel systems have been fabricated and used, 
and steel framing and bracing are important in the construc-
tion of many wood and plywood panel systems. Patented 
steel pans and dome components form the underside of 
waffle slabs and pan joists. Corrugated steel sheets serve as 
permanent bottom forms for decks—that is, they remain 
in place after the concrete has been placed. Fabricated steel 
form systems are extensively used in the precast and pre-
stressed concrete industries due to their suitability for being 
reused extensively.

Earth as a form is used in subsurface construction 
where the soil is stable enough to retain the desired shape 
of the concrete structure. With the resulting rough surface 
finish, the use of earth as a form is generally limited to foot-
ings and foundations.

Fiber forms are composed of multiple layers of heavy 
paper bonded together and impregnated with waxes and 
resins to create a water-repellent cardboard. These are gen-
erally single-use, cylindrical-shape molds for columns or 
other applications where preformed shapes are desirable. 
“Sonotube” fiber forms are patented lightweight units that 
can be adapted to various applications.

Form accessories consist of a multitude of items 
necessary for form planning and construction. Types, avail-
ability, and detailed information can usually be obtained 



216	c hapter Twelve

formwork can be designed for a lateral pressure as follows:

	 1.	 For columns (note that a column, for purposes of 
applying the pressure formulas, is defined as a vertical 
element with no plan dimension exceeding 6.5 ft),

	 pmax = CWCC c 150 + 9000 
R
T
d   [ACI 347-04 Eq. (2.2)]

with a minimum of 600 CW lb/ft2, but in no case greater 
than wh.

	 2.	 For walls, with a rate of placement of less than 7 ft/hr 
and a placement height not exceeding 14 ft,

	 pmax = CWCC c 150 +
9000R

T
d   [ACI 347-04 Eq. (2.3)]

with a minimum of 600CW lb/ft2, but in no case greater 
than wh.

	 3.	 For walls with a placement rate of less than 7 ft/h, where 
placement height exceeds 14 ft, and for all walls with a 
placement rate of 7 to 15 ft/h,

	 pmax = CWCC c 150 +
43,400

T
+

2800R
T

d 	

  [ACI 347-04 Eq. (2.4)]

with a minimum of 600 CW lb/ft 2, but in no case greater 
than wh.

The unit weight coefficient CW has the value of 1.0 
for concretes having a unit weight in the range of 140 to 
150 lb/ft3. For concrete unit weights outside this range, see 
Table 2.1 in ACI 347-04. The chemistry coefficient CC has 
the value of 1.0 for Types I, II, and III cements without 
retarders. For other types of cements or blends contain-
ing slag or fly ash, see Table 2.2 in ACI 347-04. For the 
illustrations in this text, we will assume both CW and CC 
equal to 1.0.

Formwork should also be designed to resist all foresee-
able lateral loads, such as seismic forces, wind, cable tensions, 
inclined supports, dumping of concrete, and impact due to 
equipment. ACI 347-04 recommends for slabs a minimum 
horizontal design load of 100 lb per lineal foot of floor edge 
or 2% of the total dead load of the floor, whichever is greater. 
Wall forms exposed to the elements should be designed for 
a minimum wind load of 15 psf, and bracing for wall forms 
should be designed for a lateral load of at least 100 lb per 
lineal foot of wall applied at the top.

In addition, formwork should be designed for any 
special loads likely to occur, such as unsymmetrical place-
ment of concrete and uplift. Form designers must be alert to 
provide for any and all special loading conditions.

12-5 �T he Design 
Approach

The design of job-built forms may be considered largely 
as beam and post design. The bending members usually 
span several supports and are therefore indeterminate. 

Vertical loads consist of dead load and live load. The 
dead load consists of the weight of the formwork and the 
freshly placed concrete. Live load consists of the weight of 
workers and equipment, stored materials, and impact due to 
moving loads. ACI 347-04. Guide to Formwork for Concrete 
[1], recommends that the formwork be designed for the 
following:

	 1.	 Minimum live load of 50 psf of horizontal projection 
(75 psf if motorized carts are used for delivery of the 
concrete).

	 2.	 Minimum combined dead and live load of 100 psf 
(125 psf if motorized carts are used for delivery of the 
concrete).

Note that these minimum design loads would be appli-
cable to the design of structural floor and roof slabs (not to 
the design of slabs on ground).

Lateral pressure is exerted on all nonhorizontal surfaces 
that contain the fresh concrete. The pressures are imposed 
on wall and column forms and in essence are hydraulic 
loadings. The amount of lateral pressure is influenced by 
the weight, chemistry, and temperature of the concrete, 
the vertical rate of placement, size and shape of the form, 
height of the form, and method of consolidation (hand 
spaded or mechanically vibrated). The amount and loca-
tion of reinforcing also affect lateral pressure, although their 
effect is small and is usually neglected. ACI 347-04 provides 
formulas that can be used to reasonably predict concrete 
pressure on wall forms and column forms. In the formulas, 
the following notation is used:

 p = lateral pressure (psf)
 R = rate of placement (ft/h)
 T = temperature of concrete in the forms (°F)
 h = height of fluid or plastic concrete above  
	  point considered (ft)

 w = unit weight of fresh concrete (pcf)
 CC = chemistry coefficient
 CW = unit weight coefficient

A liquid head formula is the basis for lateral pressure 
calculations:

	 p = wh	 [ACI 347-04 Eq. (2.1)]

This formula will apply where a form is filled rapidly, 
before any hardening of the concrete occurs, and in situa-
tions where the conditions of Equation (2.2), Equation (2.3) 
and Equation (2.4) are not met. The limits stated for 
Equation  (2.2), Equation (2.3) and Equation (2.4) do not 
apply to Equation (2.1).

For the special conditions of

	 a.	 concrete having a slump of 7 in. or less and
	 b.	 placed with normal internal vibration to a depth of 4 ft 

or less,
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distributed load w (lb/ft), expressions can be derived for the 
maximum allowable span length. Therefore, knowing the 
design loads and member section properties, a maximum 
allowable span length can be computed.

Table 12-1 contains expressions for maximum allow-
able span length as governed by moment, shear, and deflec-
tion. The reader may wish to derive these expressions from 
basic principles. The moment expressions are based on the 
maximum positive or negative moment. The maximum 
shear considered is the shear that exists at d distance from 
the support, where d is the depth of the member. Shear 
considerations for plywood vary from those accorded sawn 
lumber because of the cross-directional way in which the 
plies of the plywood are assembled. When plywood is loaded 
in flexure, the plies with the grain perpendicular to the 
direction of the span are the weakest aspect of the plywood 
with respect to shear. The wood fibers in these plies roll at 
stresses below the fiber shear strength parallel to the grain, 
hence the name rolling shear. For a discussion of the proper-
ties of plywood with respect to shear, see [2]. Deflection of 
forms must be limited to minimize unsightly bulges in the 
resulting concrete surface. The deflection limit may be spec-
ified as a fraction of span (that is, />240), as a limit (1

8 in.)
, or as the smaller of the two. The architect/engineer must 
decide on the deflection limits for the formwork based on 
bulging and sagging that can be tolerated in the surfaces of 
the finished structure. The casting of test panels may be war-
ranted in some cases. Limiting deflection to 1

360 of the span is 
acceptable in many cases where surfaces are coarse-textured 
and there is little reflection of light. Three design equations 
for deflection are given in Table 12-1. Alternatively, the 
designer may wish to compute the required size of the mem-
bers when the design loads and span lengths are known. The 
same basic principles apply.

Section properties for selected thicknesses of plyform 
are given in Table 12-2. These section properties reflect that 
various species of wood used in manufacturing plywood 
have different stiffness and strength properties. Those spe-
cies with similar properties are assigned to a species group. 
To simplify plywood design, the effects of using different 
species groups in a given panel as well as the effects of the 
cross-banded construction of the panel have been taken into 
consideration in establishing the section properties.

In calculating these section properties, all plies were 
transformed to properties of the face ply. As a result, the 
designer need not be concerned with the actual panel layup 
but only with the allowable stresses for the face ply and the 
given section properties of Table 12-2. The section proper-
ties of Table 12-2 are generally the minimums that can be 
expected. Hence the actual panel obtained in the market-
place will usually have a section property greater than that 
represented in the table.

The plyform design values presented in Table 12-2 
are based on wet strength and 7 day load duration, so no 
further adjustment in these values is required except for the 
modulus of elasticity. The modulus shown is an adjusted 
value based on the assumption that shear deflection is 

Assumptions and approximations are made that simplify 
the calculations and facilitate the design process.

After establishing the appropriate design loads, the 
sheathing and supporting members are analyzed or designed 
in sequence. Bending members (sheathing, joists, studs, 
stringers, or wales) are considered uniformly loaded and 
supported on (1) a single span, (2) two spans, or (3) three 
or more spans. The uniform load assumption is common 
practice unless the spacing of point loads exceeds one-third 
to one-half of the span between supports, in which case the 
worst loading condition is investigated.

Each bending member should be analyzed or designed 
for bending moment, shear, and deflection. In addition, 
vertical supports (shoring) and lateral bracing (if applicable) 
must be analyzed or designed for either compressive or ten-
sile loads. Bearing stresses at supports must be investigated 
(except for the sheathing).

In the analysis or design of the component parts, the 
traditional stress equations are used (see any strength of 
materials text). These expressions for stress are as follows.

For bending stress:

fb =
M
S

For shear stress:

 fv =
1.5V

A
  (for rectangular wood members)

 fv =
VQ
Ib
 or 

V
Ib>Q

  (for plywood)

For compression stress (both parallel and perpendicu-
lar to the grain):

fcomp =
P
A

For tension stress:

ftens =
P
A

where
fb = calculated unit stress in bending (psi)
fv = calculated unit stress in shear (psi)

fcomp = �calculated unit stress in compression (either 
parallel or perpendicular to the grain) (psi)

ftens = calculated unit stress in tension (psi)
M = maximum bending moment (in.-lb)
S = section modulus (in.3)
P = concentrated load (lb)
V = maximum shear (lb)
A = cross-sectional area (in.2)

Ib/Q = rolling shear constant (in.2/ft)

If we equate allowable unit stresses to the maximum 
unit stresses developed in a beam subjected to a uniformly 
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Table 12-1  Concrete Form Design Equations (to Determine Allowable Span Length)

One span Two spans Three or more spans

Bending moment / = 9.8 CFbS

w
/ = 9.8CFhS

w
/ = 10.95CFbS

w

Shear / =
16Fv A

w
+ 2d

/a =
24Fv(Ib>Q)

w
+ 2d

/ =
12.8Fv A

w
+ 2d

/a =
19.2Fv(Ib>Q)

w
+ 2d

/ =
13.3Fv A

w
+ 2d

/a =
20Fv(Ib>Q)

w
+ 2d

Deflection ∆all. =
/

240 / = 1.57 3AEI
w

/ = 2.10 3AEI
w

/ = 1.94 3AEI
w

Deflection ∆all. =
/

360 / = 1.37 3AEI
w

/ = 1.83 3AEI
w

/ = 1.69 3AEI
w

When deflection ¢ (in.)  
is specified / = 5.51 4A∆EI

w
/ = 6.86 4A∆EI

w
/ = 6.46 4A∆EI

w

Notes: /, span length (center to center of supports) (in.); Fb, allowable bending stress (psi); S, section modulus (in.3); w, uniform load (lb/ft); Fv, allowable 
shear stress (psi); A, cross-sectional area (in.2); d, depth of member (in.); E, modulus of elasticity (psi); I, moment of inertia (in.4); Ib/Q, rolling shear constant 
for plywood (in.2/ft); ¢, deflection (in.).
aFor plywood only.

Table 12-2  Section Properties and Design Values for Plyform

Properties for stress applied parallel with  
face grain

Properties for stress applied perpendicular to 
face grain

Thickness  
t (in.)

Approx.  
weight  

(psf)

Moment 
of inertia I  

(in.4/ft)

Effective 
section modulus 

KS (in.3/ft)

Rolling shear 
const. Ib/Q  

(in.2/ft)

Moment 
of inertia I  

(in.4/ft)

Effective  
section modulus  

KS (in.3/ft)

Rolling shear 
const. Ib/Q  

(in.2/ft)

Class I

1/2 1.5 0.077 0.268 5.153 0.024 0.130 2.739

5/8 1.8 0.130 0.358 5.717 0.038 0.175 3.094

3/4 2.2 0.199 0.455 7.187 0.092 0.306 4.063

7/8 2.6 0.296 0.584 8.555 0.151 0.422 6.028

1 3.0 0.427 0.737 9.374 0.270 0.634 7.014

Class II

1/2 1.5 0.075 0.267 4.891 0.020 0.167 2.727

5/8 1.8 0.130 0.357 5.593 0.032 0.225 3.074

3/4 2.2 0.198 0.454 6.631 0.075 0.392 4.049

7/8 2.6 0.300 0.591 7.990 0.123 0.542 5.997

1 3.0 0.421 0.754 8.614 0.220 0.812 6.987

Structural I

1/2 1.5 0.078 0.271 4.908 0.029 0.178 2.725

5/8 1.8 0.131 0.361 5.258 0.045 0.238 3.073

3/4 2.2 0.202 0.464 6.189 0.108 0.418 4.047

7/8 2.6 0.317 0.626 7.539 0.179 0.579 5.991

1 3.0 0.479 0.827 7.978 0.321 0.870 6.981

Design values

Plyform class I Plyform class II Structural I plyform

Modulus of elasticity (psi) 1,650,000 1,430,000 1,650,000

Bending stress (psi) 1930 1330 1930

Rolling shear stress (psi) 72 72 102

Source: APA—The Engineered Wood Association [3].

Note: All properties adjusted to account for reduced effectiveness of plies with grain perpendicular to applied stress.
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The product of the base design value (Fb for moment or 
Fv for shear) and any applicable adjustment factors provides 
an allowable unit stress for use in the design and analysis 
of wood members. The allowable unit stress is denoted as a 
primed value (e.g., F′b), which indicates that it is an adjusted 
design value calculated for specific conditions. For instance, 
for allowable shear stress,

F′v = FvCDCMCtCi

If no adjustment factors apply, then the allowable unit 
stress will be equal to the tabulated base design value (e.g., 
F′v = Fv). One required value that is not an allowable stress 
is modulus of elasticity E. It will be determined in a similar 
fashion as the product of a base design value and applicable 
adjustment factors.

Determination of Allowable Bending  
Stress F′b
Applicable adjustment factors for allowable bending stress 
are load duration, wet service, temperature, size, flat use, 
repetitive member, and beam stability.

The load duration factor, CD, for 7 days or less duration 
of load (common for form design) is given in Table 12-4.

The wet service factor, CM, is applicable when the mois-
ture content of the wood is more than 19% (which would 
occur in a wet service situation such as when the wood is 
in contact with fresh concrete) and the wood is at ordinary 
temperature. Table 12-4 shows CM factors.

computed separately from bending deflection. These values 
should be used for bending deflection calculations (which is 
the usual case). To calculate shear deflection, the modulus 
should be reduced to 1,500,000 psi for class I and structural 
plyform and to 1,300,000 for class II plyform.

Section properties for selected members of standard 
dressed (S4S) sawn lumber are given in Table 12-3. Typical 
base design values for visually graded dimension lumber are 
furnished in Table 12-4. This table is simplified and brief 
and is primarily intended as a resource to accompany the 
examples and problems of this text. Those who require more 
detailed information with respect to section properties and 
design values should obtain Reference [4].

The base design values in Table 12-4 must be modified 
by applicable adjustment factors that are appropriate for 
the conditions under which the wood is used. Among the 
adjustment factors itemized in [4] are

 CD = load duration factor
 CM = wet service factor
 Ct = temperature factor
 CF = size factor (not applicable to southern pine)
 Cfu = flat use factor
 Cr = repetitive member factor
 CL = beam stability factor
 CP = column stability factor
 Ci = incising factor
 Cb = bearing area factor

Table 12-3  Properties of Structural Lumber

Nominal  
size (in.)

Standard dressed  
size (S4S) (in.)

Area of section,  
A (in.2)

Moment of  
inertia,a I (in.4)

Section  
Modulus,a S (in.3)

Weightb  
(lb/ft)

2 * 4 11
2 * 31

2   5.25   5.36   3.06   1.28

2 * 6 11
2 * 51

2   8.25 20.80   7.56   2.01

2 * 8 11
2 * 71

4 10.88 47.63 13.14   2.64

2 * 10 11
2 * 91

4 13.88 98.93 21.39   3.37

2 * 12 11
2 * 111

4 16.88 178.0 31.64   4.10

3 * 6 21
2 * 51

2 13.75 34.66 12.60   3.34

3 * 8 21
2 * 71

4 18.13 79.39 21.90   4.41

3 * 10 21
2 * 91

4 23.13 164.9 35.65   5.62

3 * 12 21
2 * 111

4 28.13 296.6 52.73   6.84

4 * 4 31
2 * 31

2 12.25 12.51   7.15   2.98

4 * 6 31
2 * 51

2 19.25 48.53 17.65   4.68

4 * 8 31
2 * 71

4 25.38 111.1 30.66   6.17

4 * 10 31
2 * 91

4 32.38 230.8 49.91   7.87

4 * 12 31
2 * 111

4 39.38 415.3 73.83   9.57

6 * 6 51
2 * 51

2 30.25 76.26 27.73   7.35

6 * 8 51
2 * 71

2 41.25 193.4 51.56 10.03

6 * 10 51
2 * 91

2 52.25 393.0 82.73 12.70

6 * 12 51
2 * 111

2 63.25 697.1 121.2 15.37

aI and S are about the strong axis.
bWeight in lb/ft when the unit weight of wood is 35 lb/ft3.
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The beam stability factor, CL, is essentially a reduction 
factor for Fb where insufficient lateral restraint is furnished 
for the bending member. Because formwork assemblies are 
usually designed to meet lateral support criteria as prescribed 
by the National Design Specification for Wood Construction 
[4], the use of CL is generally not applicable. For the purpose 
of this text, all form bending-members are assumed to have 
adequate lateral support.

Determination of Allowable Shear Stress F′v
Applicable adjustment factors for allowable shear stress are 
wet service, load duration, temperature, and incising factor.

The wet service factor CM and the load duration factor 
CD are furnished in Table 12-4. The temperature factor is 
generally not applicable in form design.

The temperature factor, Ct, is generally not applicable 
in form design and may be disregarded.

The size factor, CF, is based on member size and is 
shown in Table 12-5. Construction-grade-material allow-
able stresses are not adjusted for the size of the member. 
Southern pine base design values shown in Table 12-4 have 
size adjustments already included. The size factor CF applies 
only to visually graded sawn lumber members.

The flat use factor, Cfu, is also shown in Table 12-5 and 
is applicable when dimension lumber 2 in. to 4 in. thick is 
loaded on the wide face.

The repetitive member factor, Cr, applies only to Fb and 
to members 2 in. to 4 in. thick. ACI Committee 347, how-
ever, recommends against application of Cr for cases where 
base stresses have already been increased the 25% permitted 
for short-duration loads [5].

Table 12-4  �Base Design Values for Visually Graded Dimension Lumber 
(Normal Load Duration and Dry Service Condition)

#2 Grade (2––4– thick, 2– and wider)
Design values (psi)

Species Fb Ft Fv Fc� Fc E

Douglas fir–larch 900 575 180 625 1350 1,600,000

Douglas fir–south 850 525 180 520 1350 1,200,000

Hem–fir 850 525 150 405 1300 1,300,000

Spruce–Pine–fir 875 450 135 425 1150 1,400,000

Construction grade (2––4– thick, 2––4– wide)
Design values (psi)

Species Fb Ft Fv Fc� Fc E

Douglas fir–larch 1000 650 180 625 1650 1,500,000

Douglas fir–South   975 600 180 520 1650 1,200,000

Hem–fir   975 600 150 405 1550 1,300,000

Spruce–pine–fir 1000 500 135 425 1400 1,300,000

Southern pine (2––4– thick)
Design values (psi)

#2 Grade Fb Ft Fv Fc� Fc E

2––4– wide 1500 825 175 565 1650 1,600,000

5––6– wide 1250 725 175 565 1600 1,600,000

8– wide 1200 650 175 565 1550 1,600,000

10– wide 1050 575 175 565 1500 1,600,000

12– wide   975 550 175 565 1450 1,600,000

Construction grade 4– wide 1100 625 175 565 1800 1,500,000

Adjustment factors Fb Ft Fv Fc� Fc E

Load duration CD* 1.25 1.25 1.25 — 1.25 —

Wet service CM 0.85** 1.0 0.97 0.67 0.80*** 0.90

Source: Courtesy of American Forest & Paper Association, Washington, D.C. [4].

*Values shown are typical for forming applications.

**When Fb(CF) … 1150 psi, CM = 1.0.

***When Fc(CF) … 750 psi, CM = 1.0; for southern pine, when Fc … 750 psi, CM = 1.0
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12-6 �D esign of Formwork 
for Slabs

Figure 12-1 shows a typical structural system for job-built 
forms for elevated slabs. The sequence of design is first to 
consider a strip of sheathing of the specified thickness and 
12 in. in width. The maximum allowable span may then 
be determined based on the allowable values of bending 
stress, shear stress, and deflection for the sheathing. The 
lower of the computed values will determine the maximum 
spacing of the joists. This span value, usually rounded 
down to some lower modular value, becomes the spacing 
of the joists.

Based on the joist spacing used, the joist itself is ana-
lyzed to determine its maximum allowable span. Each joist 
must support the load from the sheathing halfway over to 
the adjacent joist on either side. Therefore, the width of the  
load area carried by the joist is equal to the spacing  of 
the joists. The joist span selected becomes the spacing 
of the stringers. Again, a modular value is selected for 
stringer spacing.

Based on the selected stringer spacing, the process is 
repeated to determine the maximum stringer span (distance 
between vertical supports or shores). Notice in the design 
of the stringers that the joist loads are actually applied to 
the stringer as a series of concentrated loads at the points 
where the joists rest on the stringer. It is simpler and suf-
ficiently accurate to treat the load on the stringer as a uni-
formly distributed load, however. Again, the width of the 
uniform design load applied to the stringer is equal to the 
stringer spacing. The calculated stringer span must next be 
checked against the capacity of the shores used to support 
the stringers. The load on each shore is equal to the shore 
spacing multiplied by the load per foot of stringer. Thus the 
maximum shore spacing (or stringer span) is limited to the 
lower span length as governed by stringer strength or shore 
strength. In addition, it is necessary to check the bearing at 

The incising adjustment factor Ci is a measure of the 
incisions that have to be made in a wood member to enhance 
its ability to receive pressure treatment. Thus, incising is 
used to increase the depth of penetration of wood preser-
vatives in a wood member. The Ci factor is taken as 1.0 for 
non-incised wood, such as in the examples and problems of 
this chapter.

Determination of Allowable Stress 
for Compression Perpendicular to  
the Grain F′c#
Applicable adjustment factors for allowable stress perpen-
dicular to the grain are wet service, temperature, and bearing 
area. Note that the stress increase for short-term loading 
does not apply to Fc# .

The wet service factor CM is furnished in Table 12-4. 
Again, the temperature factor is generally not applicable in 
form design.

The bearing area factor, Cb, is applicable where the 
bearing length is less than 6 in. long and at least 3 in. from 
the end of the member. It may be calculated from

Cb =
/b + 0.375

/b

where /b is the length of the bearing (in.) measured parallel 
to the grain. For bearing at the end of a member and lengths 
of bearing equal to 6 in. or more, use Cb = 1.0. Note that Cb 
will never be less than 1.0. Therefore, it is conservative to 
omit it.

Determination of Modulus of Elasticity E′
The only applicable adjustment factor for modulus of 
elasticity in form design is the wet service CM. It is shown 
in Table 12-4.

Table 12-5  Size and Flat Use Factors for Bending Stress Fb

Width of lumber

Size factor CF
a Flat use factor Cfu

b

2––3– thick 4– thick 2––3– thick 4– thick

2––3– 1.5 1.5 1.0 —

  4– 1.5 1.5 1.1 1.0

  5– 1.4 1.4 1.1 1.05

  6– 1.3 1.3 1.15 1.05

  8– 1.2 1.3 1.15 1.05

10– 1.1 1.2 1.2 1.1

12– 1.0 1.1 1.2 1.1

Source: Courtesy of American Forest & Paper Association, Washington, D.C. [4].
aApplicable to No. 2 grade.
bApplicable to No. 2 grade and construction grade.
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Determination of Allowable Stress for 
Compression Parallel to the Grain F′c
Applicable adjustment factors for allowable stress for com-
pression parallel to the grain are load duration, wet service, 
temperature, size, and column stability. This may be 
expressed as

F′c = FcCDCMCtCFCP

where
Fc = �base design value for compression parallel to the 

grain (psi)
Cp = column stability factor

and all other quantities have been previously defined. This 
allowable stress is applicable to all values of the slender-
ness ratio (≤50) and replaces the previously used short-, 
intermediate-, and long-column equations of earlier design 
specifications. Note that although the slenderness ratio /e>d 
for solid columns shall not exceed 50, during construction 
this limit is increased to 75.

Because wood shores (columns) are generally reused 
repeatedly, ACI Committee 347 does not recommend the 
use of any adjustment factor that provides increased stresses 
for short load duration [5]. In addition, temperature and 

the point where each joist rests on the stringer. This is done 
by dividing the load at this point by the bearing area and 
comparing the resulting stress with the allowable unit stress 
in compression perpendicular to the grain. A similar proce-
dure is applied at the point where each stringer rests on a 
vertical support.

The stringers shown in Figure 12-1 are supported by 
solid, rectangular wood shores that are columns (which we 
will assume are axially loaded). As with all axially loaded 
columns, the allowable load is a function of the slenderness 
ratio />d, the ratio of the unbraced length of the member 
to its least lateral dimension (not to exceed 50). The slen-
derness ratio />d is further modified and expressed as /e>d,  
where /e represents an effective unbraced column length 
and is defined as

/e = Ke/

where Ke is an effective length factor based on column end 
conditions that affect rotation and translation. Factor Ke can 
be obtained from Table 12-6.

The following design approach applies for the deter-
mination of the allowable stress for compression parallel to 
the grain for simple, solid-sawn lumber columns, as recom-
mended in [4].

Mudsill

Wedges

Bracing as required

Shores

Stringers

Joists

Sheathing (plywood, boards, or planks)

Figure 12-1  Typical job-built form for elevated slab.
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The column stability factor CP for solid-sawn lumber 
can be calculated from Equation (3.7-1) in [4]. For conve-
nience, and to use with the limited properties of Table 12-4, 
this equation is modified and written as

CP =
1 + a

1.6
- Ca 1 + a

1.6
b

2
-

a

0.8

where

a =
0.3 E′

a /e

d
b

2
F*c

and F*c  is the adjusted base value of compression stress par-
allel to the grain before application of CP.

Various tables are available to simplify the design 
approach and to expedite the selection of the formwork 
structural members [5]. These should be used with cau-
tion because of job-specific conditions and possible tabular 
limitations.

Example 12-1

Design the formwork for a 6-in. structural concrete floor 
slab. The floor system is of the type shown in Figure 12-1. 
Use 34@in. class I plyform for the sheathing and No. 2 Douglas 
fir–larch for the rest of the lumber. The maximum deflection 
for the sheathing may be taken as 1

240 of the span. The maxi-
mum deflection for other bending members is taken as 1

360 of 
the span. Based on end conditions, the effective unbraced 

wet service adjustments for wood shores are generally not 
required or considered. Therefore only the column size 
factor and the column stability factor are normally consid-
ered in shore design.

The size factor, CF, for compression parallel to the grain 
for the two grades indicated can be taken from Table 12-7.

The column stability factor, Cp, is a function of the 
effective slenderness ratio /e>d of the shore, the adjusted 
modulus of elasticity E′, and the adjusted base value of com-
pression parallel to the grain before Cp is applied.

The unadjusted modulus of elasticity is normally used 
for wood shore design as shores are rarely in the wet service 
condition. Therefore E′ = E.

Table 12-6  Effective Length Factor Ke

Buckling modes

Theoretical Ke value 0.5 0.7 1.0 1.0 2.0 2.0

Recommended design Ke when 
ideal conditions approximated

0.65 0.80 1.2 1.0 2.10 2.4

End condition code Rotation fixed, translation fixed

Rotation free, translation fixed

Rotation fixed, translation free

Rotation free, translation free

Source: Courtesy of American Forest & Paper Association, Washington, D.C. [4].

Table 12-7  Size Factor CF for Compression 
Parallel to the Grain

Width of lumber

Size factor CF

No. 2 grade Const. grade

2––4– 1.15 1.0

5– 1.1 —

6– 1.1 —

8– 1.05 —

10– 1.0 —

12– 1.0 —

Source: Courtesy of American Forest & Paper Association, Washington, 
D.C. [4].
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Deflection controls. The maximum spacing of sup-
porting joists should not exceed 26.8 in. Use joists 
at 24 in. o.c.

	 2.	 Joist design (find the stringer spacing): Assume 2 * 8 
(S4S) joists and a 7-day maximum duration of load. 
Consider the joists as uniformly loaded beams con-
tinuous over three or more spans (the supports are the 
stringers).

	a.	 Obtain allowable stresses using base design values 
from Table 12-4 and appropriate adjustment factors.

1.	 Bending: Fb = 900 psi. Adjustment factors:

a.	 Load duration factor from Table 12-4: CD = 1.25.

b.	 Size factor from Table 12-5: CF = 1.2.

Therefore

 F′b = FbCDCF

 = 900(1.25)(1.2) = 1350 psi

2.	 Shear: Fv = 180 psi. Adjustment factor:
Load duration factor from Table 12-4: 
CD = 1.25.
Therefore

F′v = FvCD = 180(1.25) = 225 psi

3.	 Modulus of elasticity: E = 1,600,000 psi. No 
adjustment factors apply. Thus

E′ = E = 1,600,000 psi

Properties for the 2 * 8 (S4S) from Table 12-3 are

 S = 13.14 in.3

 I = 47.63 in.4

 A = 10.88 in.2

	b.	 Loading: Because joists support a 2-ft width of 
sheathing, the loading on the joist is

w = 125 psf (2) = 250 lb/ft

Assume the weight of the sheathing and joists to be 
5 psf. Then

w = 250 + 5(2) = 260 lb/ft

	c.	 The maximum stringer spacing based on bending 
moment is

 / = 10.95CF′bS

w

 = 10.95C1350(13.14)

260
= 90.4 in.

	d.	 The maximum stringer spacing based on shear is

 / =
13.3F′v A

w
+ 2d

 =
13.3(225)(10.88)

260
+ 2(7.25)

 = 139.7 in.

length of the shores may be taken as 10 ft. The following 
conditions for design have been established:

	 1.	 Joists and stringers will be designed based on adequate 
lateral support.

	 2.	 Joists, stringers, and shores are used under dry service 
conditions.

Solution:
	 1.	 Sheathing design (find the joist spacing): Consider 

a 12-in.-wide strip of sheathing perpendicular to the 
supporting joists. The sheathing acts as a beam and 
is continuous over three or more supports. Determine 
the maximum allowable span for the sheathing. This 
becomes the maximum spacing for the joists (which 
support the sheathing).

	a.	 The design values for 3
4@in. class I plyform (see 

Table 12-2) are

 E = 1,650,000 psi  (modulus of elasticity)

 Fb = 1930 psi  (bending stress)

 Fv = 72 psi  (rolling shear stress)

The plyform properties with face grain parallel to 
span (perpendicular to the joists) are

 I = 0.199 in.4/ft

 S = 0.455 in.3/ft

 Ib>Q = 7.187 in.2/ft  (rolling shear constant)

 ws = 2.2 psf  (weight of sheathing: for a 12 in. 
	  strip, this will be lb/ft)	

	b.	 The loading on the sheathing is

DL (slab): (6>12)(150)  =  75 psf

LL (min.):  =  50 psf

Neglect sheathing weight 125 psf = w

	c.	 The maximum joist spacing based on the bending 
moment formula (from Table 12-1) is

 / = 10.95CFbs

w

 = 10.95C1930(0.455)

125
= 29 in.

	d.	 The maximum joist spacing based on shear is

 / =
20Fv(Ib>Q)

w
+ 2d

 =
20(72)(7.187)

125
+ 2(0.75) = 84.3 in.

	e.	 The maximum joist spacing based on deflection 
(maximum deflection is 1

240 of the span) is

 / = 1.94 A3 EI
w

 = 1.94 A3 1,650,000(0.199)

125

 = 26.8 in.
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	d.	 The maximum shore spacing based on shear is

 / =
13.3F′vA

w
+ 2d

 =
13.3(225)(25.38)

910
+ 2(7.25) = 98.0 in.

	e.	 The maximum shore spacing based on deflection is

 / = 1.69 C3 EI
w

 = 1.69 C3 1,600,000(111.1)

910
= 98.1 in.

Bending governs. Therefore the maximum spacing 
of supporting shores cannot exceed 76.9 in. Use a 
shore spacing of 6 ft-0 in. (72.0 in.).

	 4.	 Design of shores: The stringers are spaced at 6 ft-6 in. 
on center and are supported by shores at 6 ft-0 in. on 
center. Therefore each shore must support a floor area of

7.0(6.0) = 42 ft2

Again, assuming formwork weight of 5 psf, the load per 
shore is calculated as

42(125 + 5) = 5460 lb

Although commercial shores are usually readily avail-
able to support this load, we will design 4 * 4 wood 
shores. The effective unbraced length of the shore, /e, 
is 10 ft-0 in. in each direction. The capacity of the 4 * 4 
(S4S) shore is calculated using the recommendations of 
Reference [4], as discussed previously.

	a.	 The base design value for compression parallel to 
the grain from Table 12-4 is Fc = 1350 psi.

	b.	 Adjustment factors:

1.	 Size factor from Table 12-7: CF = 1.15.

2.	 For the column stability factor CP, initially the 
following items must be established:

a.	 For modulus of elasticity, there is no adjust-
ment factor:

E′ = E = 1,600,000 psi

b.	 Find F*c:

F *
c = FcCF = 1350(1.15) = 1553 psi

c.	�
/e

d
=

10(12)

3.5
= 34.3 6 50    (O.K.)

d.	 Solve for a:

 a =
0.3E′

a /e

d
b

2

F*c

 =
0.3(1,600,000)

34.32(1553)

 = 0.263

	e.	 The maximum stringer spacing based on deflection 
(maximum deflection is 1

360 of the span) is

 / = 1.69 A3 E′I
w

 = 1.69 A3 1,600,000(47.63)

260

 = 112.3 in.

Bending governs. Therefore the maximum spacing 
of supporting stringers cannot exceed 90.4 in. Use a 
stringer spacing of 7 ft-0 in. (84 in.).

	 3.	 Stringer design (find the shore spacing): Use 4 in. * 8 in. 
(S4S) stringers and a 7-day maximum duration of 
load. Consider the stringers to be uniformly loaded 
beams continuous over three or more supports. The 
supports are the shores. The loads from the joists are 
concentrated loads, but for simplicity, we will assume a 
uniformly distributed load.

	a.	 Obtain allowable stresses using base design values 
from Table 12-4 and appropriate adjustment factors.

1.	 Bending: Fb = 900 psi. Adjustment factors:

a.	 Load duration factor from Table 12-4: 
CD = 1.25.

b.	 Size factor from Table 12-5: CF = 1.3.
Therefore

 F′b = FbCDCF

 = 900(1.25)(1.3) = 1463 psi

2.	 Shear: Fv = 180 psi. Adjustment factor:
Load duration factor from Table 12-4: 

CD = 1.25.
Therefore

F′v = FvCD = 180(1.25) = 225 psi

3.	 Modulus of elasticity: E = 1,600,000 psi. No 
adjustment factors apply. Thus

E′ = E = 1,600,000 psi

Properties for the 4 * 8 (S4S) from Table 12-3 are

 S = 30.66 in.3

 I = 111.1 in.4

 A = 25.38 in.2

	b.	 Loading: Each stringer supports a 7 ft-0 in.-wide 
strip of design load. Assuming a formwork weight of 
5 psf, the uniformly distributed load on a stringer is 
calculated from

w = 7.0(125 + 5) = 910 lb/ft

	c.	 The maximum shore spacing based on bending (of 
the stringers) is

 / = 10.95CF′bS

w

 = 10.95C1463(30.66)

910
= 76.9 in.
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Recalling from the design of the joists that the load-
ing on each joist was 260 lb/ft, the load on the 
stringer from each joist is

260(7.0) = 1820 lb

The actual bearing stress perpendicular to the 
grain is

1820
5.25

= 347 psi

Determine the allowable bearing stress perpendic-
ular to the grain. Because the calculated bearing 
stress is low relative to the 625 psi base design value 
for F ′c# , the increase in F ′c#  due to Cb may be disre-
garded. Thus

347 psi 6 625 psi       (O.K.)

	 6.	 Lateral bracing: For floor systems, the minimum load to 
be used in designing lateral bracing is the greater of 100 
lb per lineal foot of floor edge or 2% of the total dead 
load of the floor. We will assume the slab to be 80 ft * 
100 ft and placed in one operation. Guy wire bracing 
capable of carrying a load of 4000 lb each will be used 
on all four sides of the slab area attached at slab eleva-
tion and making a 45° angle with the ground. Guy wires 
can resist only tensile forces.

Calculating lateral load H as 2% of the dead load 
of the floor, again assuming the formwork to be 5 psf, 
yields

H = 0.02(75 + 5)(80)(100) = 12,800 lb

Distributing this load along the long side yields

12,800
100

= 128 lb/ft 7 100 lb/ft

and along the short side yields

12,800
80

= 160 lb/ft 7 100 lb/ft

These results are shown in Figure 12-2a. For determina-
tion of the guy wire spacing, the 160 lb/ft lateral load will 
be used. From Figure 12-2b, the tension in the guy wire 
T is calculated as

 
T

1.414
=

160
1

 T = 226.2 lb per ft of slab being braced

The maximum spacing for the guy wires is

4000
226.2

= 17.7 ft

Use guy wires spaced at 15 ft (max.) on center on all 
sides.

Solve for CP:

 CP =
1 + a

1.6
- Ca1 + a

1.6
b

2

-
a

0.8

 =
1 + 0.263

1.6
- Ca1 + 0.263

1.6
b

2

-
0.263
0.8

 = 0.247

	c.	 Compute the allowable stress F′c:

F′c = FcCFCP = 1350(1.15)(0.247) = 383 psi

Therefore the allowable load is

 P = F ′cA = 383(3.5)2 = 4690 lb    (N.G.)

 4690 lb 6 5460 lb

There are several possible solutions. The shore size 
could be increased (try a 4 * 6 [S4S]), use lateral 
bracing (horizontal lacing) at midheight to reduce 
the effective length of the shore, or reduce the shore 
spacing. The latter choice is the simplest approach.

new required spacing =
4690
5460

 (72 in.) = 61.8 in.

If a shore spacing of 5 ft-0 in. is used,

 load per shore = 7.0(5.0)(125 + 5) = 4550 lb

 4550 lb 6 4690 lb         (O.K.)

Use 4 * 4(S4S) shores at 5 ft-0 in. on center.

	 5.	 Bearing stresses:

	a.	 Where stringers bear on shores (4 * 8 stringers on 
4 * 4 shores),

 contact area = 3.5(3.5) = 12.25 in.2

 total load on shore = 4550 lb

The actual bearing stress perpendicular to the grain 
of the stringer is

4550
12.25

= 371 psi

Determine the allowable bearing stress perpen-
dicular to the grain of the stringer. From Table 12-4, 
Fc# = 625 psi. The adjustment factor applicable in 
this case is Cb, since the length of bearing /b is 3.5 in.:

Cb =
/b + 0.375

/b
=

3.88
3.5

= 1.107

Therefore

 F ′c# = 625(1.107) = 692 psi    (O.K.)

 371 psi 6 692 psi

	b.	 Where joists bear on stringers (2 * 8 joists on 4 * 8 
stringers),

contact area = 1.5(3.5) = 5.25 in.2
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Beam bottoms (or soffits) are usually made to the exact 
width of the beam. They may be composed of one or more 
2-in. planks, or they may be of plywood backed by 2 * 4s. In 
the following example, the soffit is made of a 2 * 12, which 
is finished on two sides (S2S), giving it final dimensions of 
11

2 in. * 12 in.

Example 12-2

Design forms to support the 12 in. * 20 in. beam shown 
in Figure 12-4. The beam is to support a 4-in.-thick rein-
forced concrete slab. Use Douglas fir–larch No. 2 grade. 
The maximum allowable deflection is to be 1

360 of the span 
for bending members. The unsupported shore height will 
be based on an assumed floor-to-floor height of 10 ft, from 
which the depth of the beam will be subtracted. All bend-
ing members are to be designed based on adequate lateral 
support.

12-7 �D esign of Formwork 
for Beams

Figure 12-3 shows one of several common types of beam 
forms. The usual design procedure involves consideration 
of the vertical loads, with the following components to be 
designed: the beam bottom, the ledger that supports joists, 
and the supporting shores. Bearing stresses must also be 
checked.

For the deeper beams (24 in. and more), consideration 
should also be given to the lateral pressure produced by the 
fresh concrete, which must be resisted by the beam sides. The 
beam sides would be designed in much the same way as the 
sheathing in a wall form. Also of importance in Figure 12-3 
are the kickers, which hold the beam sides in place against 
the pressure of the concrete, and blocking, which serves to 
transmit the slab load from the ledgers to the T-head shores.

Guy wire

14.14'

45°
10'

10'

160 lb/ft

1.0
1.0

1.414

T

80'

100'

160 lb/ft

128 lb/ft

Plan View

(a)

Guy Wire Diagram

(b)

Figure 12-2  Floor slab lateral bracing design.

Beam side

Slab sheathing

Joist

Ledger

Blocking

Kicker

Chamfer strip

Beam bottom
(soffit)

Shore

Shore head

T-head shore

Brace

Figure 12-3  Typical beam formwork.
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3.	 Modulus of elasticity: E = 1,600,000 psi. Adjust-
ment factor: CM = 0.9. Therefore

E′ = ECM = 1,600,000(0.9) = 1,440,000 psi

Properties for the 2 * 12 (S2S) are

 S =
bh2

6
=

12(1.5)2

6
= 4.5 in.3

 I =
bh3

12
=

12(1.5)3

12
= 3.38 in.4

	b.	 The loading on the beam soffit is calculated as

DL (reinforced concrete beam):

 
12(20)

144
 (150) = 250 lb/ft

 LL (use 50 psf): 
12
12

 (50) = 50 lb/ft

 total load = 250 + 50 = 300 lb/ft

Solution:
	 1.	 Beam bottom design (compute the maximum spacing 

between shores): Assume a 7-day maximum duration of 
load. Assume the plank to be continuous over three or 
more supports.

	a.	 Obtain allowable stresses using base design values 
from Table 12-4 and appropriate adjustment factors 
from Tables 12-4 and 12-5.

1.	 Bending: Fb = 900 psi. Adjustment factors: 
CD = 1.25, CF = 1.0, Cfu = 1.2. Because FbCF 6 
1150  psi, CM  =  1.0 (see footnote, Table  12-4). 
Therefore

 F ′b = FbCDCF CMCfu

 = 900(1.25)(1.0)(1.0)(1.2)

 = 1350 psi

2.	 Shear: Fv = 180 psi. Adjustment factors: CD = 1.25 
and CM = 0.97. Therefore

F ′v = FvCDCM = 180(1.25)(0.97) = 218.3 psi

Stringer
spacing

2 � 4 joists @
2'-0" o.c.

4" slab

SheathingSheathing-beam
sides

Ledger (2 � 4)

2 � 4 blocking
at each shore

Kicker (2 � 4 flat)

Beam bottom
(soffit)

20"

12"

Knee braces (1 � 4)

Scab (2 � 4)

T-head shore

Shore
4 � 4 (S4S)

4 � 4 (S4S)

4'-0"

Typical Beam Forms

(a)

Plywood bottom
backed by 2 � 4s 

T-head

Alternate Beam Bottom

(b)

Figure 12-4  Beam form design.
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	b.	 Loading: The 2 * 4 joists are supported by the 
ledger, as shown in Figure 12-4. Although the led-
ger is loaded with point loads, a uniform load will 
be assumed for simplicity. The loading on the slab 
sheathing is

 DL (slab): a 4
12

b (150) =  50 psf

 LL (min.) =  50 psf

 assume sheathing weight =  5 psf

105 psf

Because the span of the joists from the ledger to the 
adjacent stringer is 4 ft-0 in. (see Figure 12-4), the 
load to the ledger is calculated as

w = 1
2(4)(105) = 210 lb/ft

	c.	 The maximum blocking spacing based on bending is

 / = 10.95CF ′bS

w

 = 10.95C1688(3.06)

210

 = 54.3 in.

	d.	 The maximum blocking spacing based on shear is

 / =
13.3F ′vA

w
+ 2d

 =
13.3(225)(5.25)

210
+ 2(3.5)

 = 81.8 in.

	e.	 The maximum blocking spacing based on deflec-
tion is

 / = 1.69 C3 E′I
w

 = 1.69 C3 1,600,000(5.36)

210

 = 58.2 in.

Because all the three foregoing spacings exceed 
42  in., the 2 * 4 ledgers supported by blocking at 
42 in. on center are satisfactory.

	 3.	 Design of the shores: The shores are spaced 42 in. 
(or 3.5 ft) on center, and each must support a loading of

 from beam bottom: 300(3.5) = 1050 lb

 from slab forms (two sides): 210(3.5)(2) = 1470 lb

 total load per shore = 1050 + 1470 = 2520 lb

Assume 4 * 4 (S4S) wood shores. The unsupported 
shore height will be based on an assumed floor-to-floor 
height of 10 ft-0 in., from which the depth of the beam 
will be subtracted. The unsupported height is

/ = 10(12) - 20 = 100 in. = 8.33 ft

	c.	 The maximum shore spacing based on bending is

 / = 10.95AF ′bS

w

 = 10.95A1350(4.5)

300

 = 49.3 in.

	d.	 The maximum shore spacing based on shear is

 / =
13.3F ′vA

w
+ 2d

 =
13.3(218.3)(12)(1.5)

300
+ 2(1.5)

 = 177.2 in.

	e.	 The maximum shore spacing based on deflection is

 / = 1.69 A3 E′I
w

 = 1.69A3 1,440,000(3.38)

300

 = 42.8 in.

Deflection governs. Try shore spacing at 42 in. o.c.

	 2.	 Ledger design: Use 3
4@in. plyform sheathing (vertically) 

for the beam sides and 2 * 4 kickers as shown. The 
ledger is supported at each shore by a blocking piece. 
Because the shores are to be 42 in. o.c., the ledger will 
be continuous over three or more spans. Use 2 * 4s 
(S4S) for the ledger as shown. Compute the required 
spacing for the ledger supports and compare with the 
42-in. spacing previously determined. Neglect the con-
nection of the ledger to the vertical sheathing.

	a.	 Obtain allowable stresses using base design values 
from Table 12-4 and appropriate adjustment factors 
from Tables 12-4 and 12-5.

1.	 Bending: Fb = 900 psi. Adjustment factors: CD = 
1.25 and CF = 1.5. Therefore

 F ′b = FbCDCF

 = 900(1.25)(1.5) = 1688 psi

2.	 Shear: Fv = 180 psi. Adjustment factor: CD = 1.25. 
Therefore

F ′v = FvCD = 180(1.25) = 225 psi

3.	 Modulus of elasticity: E = 1,600,000 psi. No 
adjustment factors apply. Thus

E′ = E = 1,600,000 psi

Properties for the 2 * 4 (S4S) from Table 12-3 are

 A = 5.25 in.2

 I = 5.36 in.4

 S = 3.06 in.3
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bearing area (due to Cb 7 1.0 because 31
2 in. 6 6 in.). 

Therefore, use F ′c# = 625 psi. Thus

206 psi 6 625 psi      (O.K.)

	b.	 Check bearing stress between the 2 * 4 ledger and 
the 2 * 4 blocking. The load from the ledger to the 
blocking is 210 (3.5) = 735 lb. The actual bearing 
stress perpendicular to the grain of the ledger is

load
contact area

=
735

1.5(3.5)
= 140 psi

The allowable bearing stress, from part a, is 625 psi. 
Thus,

140 psi 6 625 psi       (O.K.)

	c.	 Check bearing stress between the 2 * 4 joists and 
the 2 * 4 ledger. The joist loading is (105 psf)(2 ft) = 
210 lb/ft, and the span of the joist is 4 ft. Therefore,  
the load from the joist to the ledger is (210 lb/ft) 
(2 ft) = 420 lb. The actual bearing stress perpendicu-
lar to the grain of the ledger (and the joists) is

load
contact area

=
420

1.5(1.5)
= 186.7 psi

The allowable bearing stress is determined as in part 
a (the bearing area adjustment factor Cb is not appli-
cable because this is end bearing):

186.7 psi 6 625 psi      (O.K.)

	d.	 Check the bearing of the beam soffit on the 4 * 4 
(S4S) T-heads. The load from the beam soffit is 
(300 lb/ft)(3.5 ft) = 1050 lb. The actual bearing stress 
perpendicular to the grain of the T-head is

load
contact area

=
1050

12(3.5)
= 25 psi

For the allowable bearing stress, we will neglect the 
bearing area adjustment factor. The contact surface 
may be subjected to a wet condition, so this adjust-
ment factor (CM = 0.67 from Table 12-4) will be used:

 F ′c# = Fc#CM = 625(0.67) = 419 psi

 25 psi 6 419 psi           (O.K.)

12-8 W all form Design
The design procedure for wall forms is similar to that used 
for slab forms, substituting studs for joists, wales for string-
ers, and ties for shores. See Figure 12-5 for locations of these 
members.

The maximum lateral pressure against the sheathing 
must be determined first. We will assume conditions such 
that CC and CW are both 1.0. With the sheathing thickness 
specified, the maximum allowable span for the sheathing 
is computed based on bending, shear, and deflection. This 
will be the maximum stud spacing. (An alternative approach 

We will assume the shores are pin-connected. From 
Table 12-6, Ke = 1.0. Therefore, the effective unbraced 
length is

/e = Ke/ = 1.0(8.33) = 8.33 ft

	a.	 The base design value for compression parallel to 
the grain from Table 12-4 is Fc = 1350 psi.

	b.	 Adjustment factors:

1.	 Size factor from Table 12-7: CF = 1.15.

2.	 For the column stability factor CP, initially the 
following items must be established:

a.	 For modulus of elasticity, there is no adjustment 
factor:

E′ = E = 1,600,000 psi

b.	 Find F *
c:

F *
c = FcCF = 1350(1.15) = 1553 psi

c.	�
/e

d
=

8.33(12)

3.5
= 28.6 6 50    (O.K.)

d.	 Solve for a:

 a =
0.3E′

a /e

d
b

2

F *
c

 =
0.3(1,600,000)

28.62(1553)

 = 0.378

Solve for CP:

 Cp =
1 + a

1.6
- Ca1 + a

1.6
b

2

-
a

0.8

 =
1 + 0.378

1.6
- Ca1 + 0.378

1.6
b

2

-
0.378
0.8

 = 0.342

	c.	 Compute the allowable stress F ′c:

F ′c = FcCFCP = 1350(1.15)(0.342) = 531 psi

Therefore the allowable load is

 P = F ′cA = 531(3.5)2 = 6500 lb    (O.K.)

 6500 lb 7 2520 lb

Use 4 * 4 (S4S) shores spaced 42 in. on center.

	 4.	 Bearing stresses:

	a.	 Assume 4 * 4 (S4S) T-heads on the 4 * 4 (S4S) 
shores. Actual bearing stress perpendicular to the 
grain of the T-head is calculated as

shore load
contact area

=
2520

3.52 = 206 psi

From Table 12-4, the base design value for Fc#  is 
625  psi. We will neglect the adjustment factor for 
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based on wale size and loading. (An alternative approach 
would be to preselect the tie spacing and then calculate the 
wale size.) Double wales are commonly used to avoid the 
necessity of drilling wales for tie insertion.

The load supported by each tie must be computed and 
compared with the tie capacity. The load on each tie is calcu-
lated as the design load (psf) multiplied by the tie spacing (ft) 
and wale spacing (ft). If the load exceeds the tie strength, a 
stronger tie must be used or the tie spacing must be reduced.

would be to establish the stud spacing and then calculate the 
required thickness of the sheathing.)

Next, the maximum allowable stud span is calculated 
based on stud size and loading, considering bending, shear, 
and deflection. This will be the maximum wale spacing. (An 
alternative approach would be to establish the wale spacing 
and then calculate the required size of the studs.)

The next step is to determine the maximum allowable 
spacing of wale supports (tie spacing). This is calculated 

Brace

Sheathing (plywood
or board)

Spacer for
anchor bolt

Stud

Wale

Brace

Wall Form with Wales

A

(a)

Sheathing
Tie wedge

Stud

Wale

Tie

Section A–A

(b)

A

Tie

Figure 12-5  Typical wall forms.
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150(h) controls. The length in which the decreased 
pressure could be used may be calculated as

600
150

= 4.0 ft  (from the top of the form)

It is conservative to design the full height for 600 psf, 
however.

	c.	 The maximum stud spacing based on bending is

 / = 10.95CFbS

w

 = 10.95C1930(0.455)

600
= 13.25 in.

	d.	 The maximum stud spacing based on shear is

 / =
20Fv(Ib>Q)

w
+ 2d

 =
20(72)(7.187)

600
+ 2(0.75) = 18.75 in.

	e.	 The maximum stud spacing based on deflection is

 / = 1.69 C3 EI
w

 = 1.69 C3 1,650,000(0.199)

600
= 13.82 in.

Bending is critical. Use a stud spacing of 12 in. o.c.

	 2.	 Stud design (compute the wale spacing): Assume 2 * 4 
(S4S) studs and a 7-day maximum duration of load.

	a.	 Obtain allowable stresses using base design values 
from Table 12-4 and appropriate adjustment factors 
from Tables 12-4 and 12-5.

1.	 Bending: Fb = 900 psi. Adjustment factors: 
CD = 1.25 and CF = 1.5. Therefore

 F ′b = FbCDCF

 = 900(1.25)(1.5) = 1688 psi

2.	 Shear: Fv = 180 psi. Adjustment factor: CD = 1.25. 
Therefore

F ′v = FvCD = 180(1.25) = 225 psi

3.	 Modulus of elasticity: E = 1,600,000 psi. No 
adjustment factors apply. Thus

E′ = E = 1,600,000 psi

For the 2 * 4 lumber, from Table 12-3,

 A = 5.25 in.2

 I = 5.36 in.4

 S = 3.06 in.3

	b.	 Loading: Since the stud spacing is 12 in. o.c., the 
load w will be 600 lb/ft (see step 1, part [b]).

Bearing stresses must also be checked where the studs 
bear on the wales and where the tie ends bear on the wales. 
Maximum bearing stress must not exceed the allowable 
compression stress perpendicular to the grain or crushing 
will result.

Finally, lateral bracing must be designed to resist any 
expected lateral loads, such as wind loads.

Example 12-3

Design formwork for an 8-ft-high wall. Refer to Figure 12-5.  
The concrete is to be placed at a rate of 4 ft/h and will be 
internally vibrated. Concrete temperature is expected to 
be  90°F. The maximum allowable deflection of bending 
members is to be 1

360 of the span. Use 3
4@in. class I plyform 

for the sheathing and No. 2 Douglas fir–larch for the rest of 
the lumber. Assume all bending members to be supported 
on three or more spans. The following conditions for design 
have been established:

	 1.	 Studs and wales are to be designed based on adequate 
lateral support.

	 2.	 Studs, wales, and bracing are to be used under dry ser-
vice conditions.

Solution:
	 1.	 Sheathing design (find the stud spacing): Consider a 

12-in.-wide strip of sheathing perpendicular to the sup-
porting studs and acting as a beam continuous over 
three or more spans. The sheathing spans horizontally. 
Place the face grain perpendicular to studs.

	a.	 The design values for 3
4@in. class I plyform (see 

Table 12-2) are

 E = 1,650,000 psi

 Fb = 1930 psi

 Fv = 72 psi

Plyform properties for face grain parallel to the 
span are

 I = 0.199 in.4

 S = 0.455 in.3

 Ib>Q = 7.187 in.2/ft

	b.	 Loading: The sheathing will be designed for concrete 
pressure, which is the lesser of 150h (where h will be 
taken as 8 ft), 2000 psf, or as determined by formula 
(noting that R 6 7 ft/h and h 6 14 ft):

 p = 150 +
9000R

T
= 150 +

9000(4)

90

 = 550 psf 6 600 psf

 150(h) = 150(8) = 1200 psf

Use the ACI-recommended minimum of 600 psf for 
the sheathing design load, although the pressure 
could be decreased near the top of the form where 
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	b.	 Loading: Each wale will support a strip of wall 
form that has a height equal to the spacing of the 
wales:

w =
24
12

 (600) = 1200 lb/ft

	c.	 The maximum tie spacing based on bending is

 / = 10.95CF ′bS

w

 = 10.95C1688(6.12)

1200
= 32.1 in.

	d.	 The maximum tie spacing based on shear is

 / =
13.3F ′v A

w
+ 2d

 =
13.3(225)(10.5)

1200
+ 2(3.5) = 33.2 in.

	e.	 The maximum tie spacing based on deflection is

 / = 1.69 C3 E′I
w

 = 1.69 C3 1,600,000(10.72)

1200
= 41.0 in.

Bending governs. A modular spacing of 24 in. would 
be desirable. Use tie spacing of 24 in. o.c.

	 4.	 Check the load on the ties (Ptie) with the capacity of the 
ties. Assume the tie capacity to be 3000 lb (ties of various 

	c.	 The maximum wale spacing based on bending is

 / = 10.95CF ′bS

w

 = 10.95C1688(3.06)

600
= 32.1 in.

	d.	 The maximum wale spacing based on shear is

 / =
13.3F ′v A

w
+ 2d

 =
13.3(225)(5.25)

600
+ 2(3.5) = 33.2 in.

	e.	 The maximum wale spacing based on deflection is

 / = 1.69C3 E′I
w

 = 1.69 C3 1,600,000(5.36)

600
= 41.0 in.

Therefore, bending governs. Use a wale spacing of 
24 in. o.c. (maximum).

	 3.	 Wale design (compute the tie spacing): Double 2 * 4 
(S4S) wales will be assumed, and the allowable stresses 
will be adjusted for a 7-day maximum duration of load.

	a.	 Design values: Allowable stresses and E will be the 
same as for the studs. Properties for the wales will 
be twice those for the studs because the wales are 
doubled. Thus

 A = 10.5 in.2

 I = 10.72 in.4

 S = 6.12 in.3

Figure 12-6  Wall forms and bracing.  (George Limbrunner)
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the wall. If wooden strut bracing is used, it can resist 
tension or compression and therefore single-side brac-
ing may be used.

In this problem use single-side strut bracing, as 
shown in Figure 12-7, and design for compression. The 
horizontal load H on the strut at point A is calculated by 
considering moment taken at the base of the wall:

 H(6.5) = 100(8)

 H = 123 lb

The force F in the strut, using the slope triangle shown, 
is determined from

F
8.2

=
123
5

Therefore F = 202 lb (per foot of wall).
Use double 2 * 4 (S4S) lumber for the strut and 

compute the capacity as a compression member. (This 
will be adequate for tension also.) For No. 2 grade 
Douglas fir–larch:

	a.	 The base design value for compression parallel to 
the grain from Table 12-4 is Fc = 1350 psi.

	b.	 Adjustment factors:

1.	 Size factor from Table 12-7: CF = 1.15.

2.	 For the column stability factor CP, initially the 
following items must be established:

a.	 For modulus of elasticity, there is no adjust-
ment factor:

E′ = E = 1,600,000 psi

b.	 Find F *
c:

F *
c = FcCF = 1350(1.15) = 1553 psi

capacities are widely available). Also assume that the ties 
have 11

2@in. wedges bearing on the wales. Then

 Ptie = (wale spacing) * (tie spacing) * (pressure)

 =
24
12

 a24
12

b (600) = 2400 lb

 2400 lb 6 3000 lb

Therefore, the capacity of the tie is satisfactory.

	 5.	 Check bearing stresses.

	a.	 Where tie wedges bear on wales (wedges are 11
2 in. 

wide),

 Ptie = 2400 lb

 bearing contact area = (2)(1.5)(1.5) = 4.5 in.2

 bearing stress (actual) =
2400
4.5

= 533 psi

The allowable compressive stress perpendicular 
to the grain is F′c# = 625 psi (neglect bearing area 
adjustment factor). Thus

533 psi 6 625 psi       (O.K.)

	b.	 Where studs bear on wales (double wales),

bearing contact area = (2)(1.5)(1.5) = 4.5 in.2

The load on the wale from the stud is

 P = (load/ft on stud) * (wale spacing)

 = 600 a24
12

b = 1200 lb

 actual bearing stress =
1200
4.5

= 267 psi

As in part (a), F′c# = 625 psi.Thus

267 psi 6 625 psi        (O.K.)

	 6.	 Lateral bracing should be designed for wall forms based 
on the greater of wind load (using 15 psf as a minimum) 
or 100 lb/ft applied at the top of the wall. Calculate wind 
load on wall forms using the minimum 15 psf:

wind load = (15 psf)(1 ft)(8 ft) = 120 lb per ft of wall

This load would be considered to act at midheight of the 
wall, 4 ft above the base, and would create an overturn-
ing moment about the base of

MOT = 120 lb/ft(4 ft) = 480 ft@lb  (per ft of wall)

The equivalent force, acting at the top of the wall, that 
would create the same overturning moment is

 force =
480 ft@lb

8 ft
= 60 lb  (per ft of wall)

 60 lb/ft 6 100 lb/ft

Therefore use 100 lb/ft. This load, assumed to act at 
the top of the wall, can act in either direction. If guy 
wires are used, they must be placed on both sides of 

1
2

8'-0"

6'-6"

5'-0"

100 lb/ft

123 lb/ft

Strut bracing

5'

8.2'6.5'

A

3   "

Figure 12-7  Lateral bracing for wall form.
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Single 2 * 4 struts could have been used if 
an intermediate brace were used to reduce the 
unbraced length.

12-9  Forms for Columns
Concrete columns are usually one of five shapes: square, 
rectangular, L-shaped, octagonal, or round. Forms for the 
first four shapes are generally made of sheathing, consist-
ing of vertical planks or plywood, with wood yokes and steel 
bolts, patented steel clamps, or steel bands used to resist the 
concrete pressure acting on the sheathing. Forms for round 
columns may be wood, steel plate, or patented fiber tubes.

Because forms for columns are usually filled rapidly, 
frequently in less than 60 min, the pressure on the sheathing 
will be high, especially for tall columns. The ACI recom-
mendations for lateral concrete pressure in column forms 
were discussed in Section 12-4. AC1 347-04 (Equation [2.2])  
is applicable for concrete having a slump of 7 in. or less and 
placed with normal internal vibration to a depth of 4  ft or 
less. However, assuming normal weight concrete (150 pcf), 
the pressure should not be taken as greater than 150h (psf), 
where h is the depth in feet below the upper surface of 
the freshly placed concrete. Thus the maximum pres-
sure at the bottom of a form 10-ft high should be taken as 
150(10) = 1500 psf regardless of the rate of filling the form 
or concrete temperature. It is suggested that the pressure be 
conservatively calculated using the equation

p = 150h

Figure 12-8a illustrates typical construction of a column 
form using plywood sheathing backed by vertical stiffening 
members and clamped with adjustable metal column clamps. 
The sheathing must be selected to span between the stiffening 

c.	 Assume that the ends are pin connected. 
Therefore, Ke = 1.0 and /e = 8.2 ft. Then

/e

d
=

8.2(12)

3.0
= 32.8 6 50    (O.K.)

d.	 Solve for a:

 a =
0.3E′

a /e

d
b

2

F *
c

 =
0.3(1,600,000)

32.82(1553)

 = 0.287

Solve for CP:

 CP =
1 + a

1.6
- Ca1 + a

1.6
b

2

-
a

0.8

 =
1 + 0.287

1.6
- Ca1 + 0.287

1.6
b

2

-
0.287
0.8

 = 0.267

	c.	 Compute the allowable stress F ′c:

F ′c = FcCFCP = 1350(1.15)(0.267) = 415 psi

Therefore the allowable load is

P = F ′cA = 415(2)(5.25) = 4360 lb

The maximum allowable strut spacing is calculated 
from

4360 lb
202 lb/ft

= 21.6 ft

Use struts at 21 ft-0 in. on center.

Typical Construction for Larger Column Forms
(a)

Typical Construction for Smaller Column Forms
(b)

Chamfer strip Chamfer strip

Plywood

Battens

Adjustable column
clamps

Cleats

Ties

Cut panel for
cleanout “door”

Plywood column sides
stiffened by vertical 2 � 4s

Cleanout
door

Cleanout detail

Template for
positioning form Template for

positioning form Figure 12-8  Typical 
column forms.  
(Source: Courtesy of 
the American Concrete 
Institute)
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The sheathing span length / may be calculated for 
moment, shear, and deflection, with the shortest of these 
span lengths being the controlling value.

Because the pressure against the forms varies with 
height, however, the determination of the optimum clamp 
spacing becomes laborious. As a result, tables have been 
developed that aid in quick determination of support 
(clamp) spacing. Table 12-8 is an example of one such table 
specifically set up for plywood sheathing. The tabular values 
are based on the assumption that the lateral pressure is uni-
form between clamps and of an intensity equal to that at the 
lower clamp.

Clamps must also be investigated to determine if they 
can resist the applied loads. The manufacturer usually has 

members using the concrete pressure that exists at the bottom 
of the column form. The vertical stiffening members must 
span between the column clamps, the spacing of which can be 
increased as the pressure decreases toward the top of the form.

Figure 12-8b illustrates a method suitable for form-
ing smaller columns where no vertical stiffening members 
are required and the plywood sheathing is backed directly 
by battens that are part of a wood and bolt column yoke. 
Column clamps can be used in this situation as well. If the 
thickness of the sheathing is selected, the design consists 
of determining the maximum safe spacing of the column 
clamps considering the pressure from the concrete as well 
as the permissible deflection, allowable bending stress, and 
allowable shearing stress.

Table 12-8  �Safe Span in Inches for Class I Plyform, Continuous 
over Four or More Supports

Stress parallel to gain Stress perpendicular to gain

Pressure (psf) 1/2 in. 5/8 in. 3/4 in. 1 in. 1/2 in. 5/8 in. 3/4 in. 1 in.

75 20 24 26 32 14 16 21 28

100 18 22 24 30 12 14 19 26

125 17 20 23 28 12 13 18 25

150 16 19 22 27 11 13 17 24

175 15 18 21 26 10 12 16 23

200 15 17 20 25 10 11 15 22

300 13 15 17 22 9 10 13 19

400 12 14 16 20 8 9 12 18

500 11 13 15 18 7 8 11 16

600 10 12 13 17 7 8 11 15

700 9 11 12 16 6 8 10 14

800 9 10 11 15 6 7 9 14

900 8 10 11 14 5 6 8 13

1000 8 9 10 13 5 6 7 12

1100 8 9 10 12 5 5 7 11

1200 7 8 9 12 4 5 6 10

1300 7 8 9 11 4 5 6 10

1400 6 7 9 11 4 4 6 9

1500 6 7 8 11 4 4 5 9

1600 6 6 8 10 — 4 5 8

1700 5 6 8 10 — 4 5 8

1800 5 6 7 9 — 4 5 8

1900 5 6 7 9 — 4 5 7

2000 5 5 7 9 — — 4 7

2200 4 5 6 8 — — 4 7

2400 4 5 6 8 — — 4 6

2600 4 4 5 7 — — 4 6

2800 4 4 5 7 — — 4 6

3000 — 4 5 6 — — — 5

Notes: Fb = 1930 psi; Fv = 72 psi; E = 1,650,000 psi; allowable deflection = span/360 but not greater 
than 1

16 in. Safe spans less than 4 in. are not shown. Tabulated spans are rounded to the nearest inch.
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p = wh

where

w = unit weight of concrete (pcf)

h = depth of fresh concrete (ft)

	 2.	 Denoting the vertical distance from the bottom of the 
form as y (ft), the pressure is determined from

p = wh = 150(12 - y)

For some arbitrary values of y, the calculated pres-
sures and the maximum spans (clamp spacings) from 
Table 12-8 are shown in Table 12-9.

	 3.	 A plot of maximum clamp spacing as a function of 
distance above top-of-footing is shown in Figure 12-9.  
The final clamp layout, also shown in Figure 12-9, is 
determined by trial and error. This procedure is simi-
lar to stirrup design (Chapter 4). One should attempt 
to minimize the number of clamps without having too 
many different-size spacings.

recommended capacities for steel column clamps. Wood-
yoke-type clamps with tie rods must be designed.

Generally, the type of forming system is a function of 
column size and height. As column size increases, either 
the thickness of the sheathing must be increased or verti-
cal stiffeners must be added to prevent sheathing deflection. 
If vertical supports or stiffeners are used (see Figure 12-8) 
in combination with a plywood sheathing, the sheathing 
should span between the vertical supports and the plywood 
face grain should be horizontal (in the direction of the span) 
for maximum strength. The clamp spacing is then a function 
of the vertical support member strength. If plywood sheath-
ing spans between clamps (without vertical supports), the 
face grain should be vertical (in the direction of the span) for 
maximum strength.

Example 12-4

Determine a clamp spacing pattern for column form sheath-
ing made up of 3

4@in.@thick plywood. The column height is to 
be 12 ft-0 in. Assume the sheathing continuous over four 
or more supports and its face grain parallel to the span 
(vertical). Use class I plyform design values of

 Fb = 1930 psi

 Fv = 72 psi

 E = 1,650,000 psi

with allowable deflection of span/360 but not greater 
than   1

16 in.

Solution:
	 1.	 Table 12-8 is used to determine the maximum span 

of the plywood between clamps. This depends on the 
pressure on the form, which is determined from

Table 12-9  Clamp Spacing Determination

ya(ft) Pressure (psf) Maximum clamp spacing (in.)b

0 1800   7

3 1350   9

6   900 11

9   450 15

11.5     75 26

aQuantity y is measured upward from the bottom of the form.
bFrom Table 12-8.
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Figure 12-9  Sketch for Example 12-4.
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	12-3.	 A 6-in.-thick concrete slab is to be formed using ply-
wood supported on 2 * 8 (S4S) joists that are spaced 
1 ft-6 in. on center. Find the maximum allowable 
stringer spacing if maximum allowable deflection is 
1/240 of the span. Draw a sketch of the formwork.

	12-4.	 For the slab of Problem 12-3, assume that double 
2 * 10 stringers spaced 5 ft-0 in. o.c. will support the 
joists. Determine the maximum shore spacing. Draw 
a sketch of the formwork. (Neglect shore capacity.)

	12-5.	 In Problem 12-4, if the shores were to be spaced 
6 ft-0 in. o.c., select a new stringer size. The stringer 
may be either doubled 2-in.-thick planks or a single 
wood beam.

	12-6.	 Compare the capacities of 6 ft-0 in. and 12 ft-0 in. 
4 * 4 (S4S) wooden shores. What are the capacities if 
the shores are full nominal size (4 in. * 4 in.)?

	12-7.	 Design a soffit (beam bottom) for an 111
4 in. * 24 in. 

reinforced concrete beam form. Use a 2 * 12. 
Determine the maximum shore spacing. Draw a sec-
tional view through the beam.

	12-8.	 Design a plywood beam bottom form shown as 
an alternative in Figure 12-4. The beam will be 
14  in.  *  24 in. First design the class I plyform to 
span the clear span between 2 * 4s (single span, 
maximum deflection of 1

16 in.). Then determine 
maximum shore spacing assuming that the weight 
of the beam is supported by the 2 * 4s, which back 
the beam bottom.

	12-9.	 In Problem 12-8, replace the 2 * 4s with 2 * 6s and 
determine the new maximum shore spacing.

	12-10.	 A 12-ft-high concrete wall is to be placed at a rate of 
6 ft/h, and the temperature is expected to be 90°F. 
What is the maximum lateral pressure due to fresh 
concrete for which the wall forms must be designed? 
Draw a diagram showing lateral pressure versus dis-
tance from the bottom of the wall for the full 12-ft 
height of wall.

	12-11.	 Design the formwork for an 8-in.-thick reinforced 
concrete floor slab. Use 3

4@in. class II plyform and 
No. 2 grade Douglas fir–larch for the other lumber. 
Use 2 * 8 joists and double 2 * 8 stringers. Use 4 * 4 
shores with an unsupported height of 10 ft. Assume 
that the slab will be 120 ft * 120 ft in plan. Use guy 
wire bracing (at 45° to the 10-ft height) that has a 
tensile capacity of 4400 lb.

	12-12.	 Design forms to support reinforced concrete 
beams as shown in Figure 12-4a with the following 
changes. The beam will be 111

4 in. * 22 in., joists are 
1 ft-8 in. o.c., and stringers are spaced 7 ft-0 in. o.c. 
Shores will be full nominal size 4 * 4s with an unsup-
ported height of 10 ft. All lumber will be No. 2 grade 
Southern Pine.

References

	 [1]	 Guide to Formwork for Concrete (ACI 347-04). 
American Concrete Institute, 38800 Country Club 
Drive, Farmington Hills, MI 48331.

	 [2]	 Plywood Design Specification. APA—The Engineered 
Wood Association, P.O. Box 11700, Tacoma, WA 
98411-0700, January 1997.

	 [3]	 Concrete Forming. APA—The Engineered Wood 
Association, P.O. Box 11700, Tacoma, WA 98411-
0700, 2004.

	 [4]	 National Design Specification for Wood Construction 
(ANSI/AF&PA NDS-2012), with supplements and 
commentary. American Forest & Paper Association/
American Wood Council, 1111 19th Street, N.W., 
Suite 800, Washington, D.C. 20036, 2012.

	 [5]	 M. K. Hurd, Formwork for Concrete, SP-4, 6th ed. 
American Concrete Institute, 38800 Country Club 
Drive, Farmington Hills, MI 48331, 1995.

Problems

Where applicable in these problems, and unless otherwise 
noted, assume:

	 1.	 The vertical live load is to be 75 psf (motorized carts).
	 2.	 Bending members are continuous over three or more 

spans and are assumed to have adequate lateral support.
	 3.	 There is a 7-day duration of load.
	 4.	 Lumber is No. 2 grade hem-fir.
	 5.	 The forming weight is 5 psf; neglect sheathing weight.
	 6.	 The maximum deflection is 1

360 of the span.
	 7.	 All lumber is (S4S).
	 8.	 Plywood is placed with the face grain perpendicular to 

the supports.
	 9.	 No available information exists with respect to wood 

splits, checks, and shakes. Assume Ci = 1.0, CC = 1.0, 
and CW = 1.0.

	12-1.	 Using basic principles, derive the equations of 
Table 12-1 for allowable span length / as governed 
by moment, shear, and deflection. Handbooks (such 
as the AISC Manual) may be helpful for moment, 
shear, and deflection equations. Show load diagrams.

a.	 One span
b.	 Two spans
c.	 Three spans

	12-2.	 A slab form is to be built for an 8-in.-thick concrete 
slab. The plywood sheathing face grain is perpen-
dicular to the joists. The maximum allowed deflec-
tion is to be the smaller of 1

360 of the span or 1
8 in. 

Compare the maximum allowable joist spacing for 
class II plyform 1

2 in. thick and 1 in. thick. Draw a 
sectional view showing slab, sheathing, and joists.
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a guy wire (at 45° to the 10-ft height) that has a ten-
sile capacity of 4400 lb.

	12-14.	 Determine a clamp spacing pattern for a column 
form that has sheathing of 1-in.-thick plywood. The 
column height is to be 14 ft-0 in. Use Table 12-8.  
Assume that Fb = 1930 psi, Fv = 72 psi, and 
E = 1,650,000 and that the face grain is parallel to the 
span between clamps.

	12-13.	 Design the formwork for a 12-ft-high reinforced 
concrete wall. Concrete will be placed at a rate not 
to exceed 5 ft/h and will be internally vibrated. 
Temperature is expected to be 80°F. Use 3

4@in. class 
I plyform for the sheathing and No. 2 grade Douglas 
fir–larch for the rest of the lumber. Use 2 * 4s for 
studs and doubled 2 * 6s for wales. Ties will have a 
capacity of 5000 lb (2-in.-wide wedges). For lateral 
bracing design, assume the wind to be 15 psf and use 
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reinforced concrete structures, two of which are detailing 
and fabricating of the reinforcing steel. As described in the 
ACI Detailing Manual-2004 [SP-66(04)] [1], detailing con-
sists of the preparation of placing drawings, reinforcing bar 
details, and bar lists that are used for the fabrication and 
placement of the reinforcement in a structure. Fabricating 
consists of the actual shopwork required for the reinforcing 
steel, such as cutting, bending, bundling, and tagging.

Most bar fabricators not only supply the reinforc-
ing steel but also prepare the placing drawings and bar 
lists, fabricate the bars, and deliver to the project site. 

13-1  Introduction
The contract documents package for a typical building 
as developed by an architect/engineer’s office commonly 
includes both drawings and specifications. The drawings 
typically concern the following areas: site, architectural, 
structural, mechanical, and electrical. The specifications 
supplement and amplify the drawings. The contract docu-
ments package is the product that results from what may be 
categorized as the planning and design phase of a project.

The next sequential phase may be categorized as the 
construction phase. It includes many subcategories for 
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Figure 13-1  Reactor containment foundation mat. Seabrook Station, New Hampshire.
(George Limbrunner)
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this chapter. Information relative to bar supports may also 
be included. Figure 13-3 illustrates a placing drawing that 
includes placing data for bar supports, as well as a bending 
details schedule.

Placing drawings, in addition to controlling the 
placement of the steel in the forms, serve as the basis for 
ordering the steel. Therefore, a proper interpretation of the 
contract documents by the fabricator is absolutely essential. 
Generally, all placing drawings are submitted to the archi-
tect or engineer for checking and review for conformance 
to the specifications and contract documents before shop 
fabrication begins.

13-3 � Marking Systems 
and Bar Marks

With respect to buildings, two identification systems are 
required. The first involves the identification of the various 
structural members, and the second involves the identi-
fication of the individual bars within the members. The 
marking system for the structural members may consist 
of an alphabetical-numerical identification for each beam, 
girder, and slab, with the columns designated numerically 
as in Figures 13-2 and 13-3. Also used is a system of alpha-
betical and numerical coordinates in which the centerlines 
of columns are numbered consecutively in one direction 
and lettered consecutively in the other. A coordinate system 
may be observed in the foundation-engineering drawing of 
Figure 13-4, where a column may have a coordinate desig-
nation such as B2 or C3. The system is generally established 
on the architectural and structural drawings and adopted by 
the detailer, unless the detailer requires a more precise iden-
tification system.

Footings, as may be observed in Figure 13-4, are gener-
ally designated with an F prefix followed by a number, such 
as F1 and F3, without regard to a coordinate system. Footing 
piers or pedestals may be identified using the coordinate 
system, such as B2 or D4, or may be designated with a P 
prefix followed by a number, such as P1 or P3. Beams, joists, 
girders, lintels, slabs, and walls are generally given designa-
tions that indicate the specific floor in the building, the type 
of member, and an identifying number. For example, 1G2 
indicates a first-floor girder numbered 2, and RB4 indicates 
a roof beam numbered 4.

In some situations, the floor designation is omitted, as 
shown in Figures 13-2 and 13-3. The beams and girders are 
then designated with a prefix B or G, respectively, followed 
by a number (for example, B4 or G2). In some cases, suffixes 
have been added, such as G2A, indicating that there is a dif-
ference in the member.

Along with a marking system established for the struc-
tural members, a system of identifying and marking the 
reinforcing bars must be established. In buildings, only bent 
bars are furnished with a mark number or designation. The 
straight bar has its own identification by virtue of its size 

In some cases, the bar fabricator may also act as the placing 
subcontractor.

It is general practice in the United States for all rein-
forced concrete used in building projects to be designed, 
detailed, and fabricated in accordance with the latest ACI 
Code. In addition, the Concrete Reinforcing Steel Institute 
regularly publishes its Manual of Standard Practice [2], 
which contains the latest recommendations of the rein-
forcing steel industry for standardization of materials 
and practices.

Techniques have also been developed that make use of 
electronic computers and other data-processing equipment 
to facilitate the generation of bar lists and other components 
of the detailing process. This not only aids in standardiza-
tion and accuracy of the documents produced but also can 
be readily incorporated into the stock control system and 
the shopwork planning of the reinforcing steel fabricator.

13-2 � Placing or Shop 
Drawings

The placing drawing (commonly called a shop drawing) 
consists of a plan view with sufficient sections to clarify and 
define bar placement. As such, it is the guide that the iron-
workers will use as they place the reinforcing steel on the 
job. In addition, the placing drawing will contain typical 
views of beams, girders, joists, columns, and other members 
as necessary. Frequently, tabulations called “schedules” are 
used to list similar members, which vary in size, shape, and 
reinforcement details. A bar list, bending details, or both 
may or may not be shown on the placing drawing, as some 
fabricators not only have their own preferred format but 
prefer the list to be prepared as a separate entity.

The preparation of the placing drawing is based on 
the complete set of contract documents and generally con-
tains only the information necessary for bar fabrication and 
placing. Building dimensions are not shown unless they are 
necessary to locate the steel properly.

The structural drawing (Figure 13-2), which is a part 
of the structural plans of the contract documents, is the 
drawing on which the placing drawing is based. Figure 13-3  
shows a placing drawing of the same system shown in 
Figure 13-2. This building is an example of a framing sys-
tem that uses girders between columns to support beams, 
which in turn support one-way slabs. The girders support 
only two-thirds of the beams; the remainder frame directly 
into the columns.

The structural drawing, as may be observed, shows the 
floor plan view locating and identifying the structural ele-
ments, along with views of typical beams, girders, and slabs 
and their accompanying schedules. The placing drawing 
supplements the structural drawing by furnishing all the 
information necessary for bar fabrication and placement. 
The precise size, shape, dimensions, and location of each 
bar are furnished, using a marking system discussed later in 
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Figure 13-2  Structural drawing for beam and girder framing.  (Courtesy of the American Concrete Institute)
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Figure 13-3  Placing drawing for beam and girder framing.  (Courtesy of the American Concrete Institute)
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Figure 13-4  Structural engineering drawing for foundations.  (Courtesy of the American Concrete Institute)
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drawing schedules. They are merely a convenient technique 
of presenting information for a group of similar items, 
such as groups of beams, girders, columns, and footings. 
The schedule format will vary somewhat to conform to the 
requirements of a particular job.

A schedule for all structural components may not be 
necessary on a placing drawing. In Figure 13-3 the slab rein-
forcement is shown directly on the plan, so there is no need 
for a slab schedule.

13-5 � Fabricating 
Standards

The fabrication process consists of cutting, bending, bun-
dling, and tagging the re-inforcing steel. Our discussion 
will primarily be limited to the cutting and bending because 
of their effect on a member’s structural capacity. Bending, 
which includes the making of standard hooks, is generally 
accomplished in accordance with the requirements of the 
ACI Code, the provisions of which have been discussed in 
Chapter 5.

In the fabricating shop, bars to be bent are first cut 
to length as stipulated and then sent to a special bending 
department, where they are bent as designated in the bend-
ing details schedule or bar lists. The common types of bent 
bars have been standardized throughout the industry, and 
applicable configurations are generally incorporated in the 
placing drawing or bar lists in conjunction with the bend-
ing details (see Figure 13-3). Each configuration, sometimes 
called a bar type, has a designation such as 7, 8, or 9 and S1 
or T1, with each dimension designated by a letter. Typical 
bar bends are shown in Figure 13-5. In addition, standards 
have been established with respect to the details of the hooks 
and bends. The ACI Code (Sections 7.1, 7.2, and 7.3) estab-
lishes minimum requirements and is graphically portrayed 
in Figure 13-6. This table also shows the extra length of bar 
needed for the hook (A or G), which must be added to the 
sum of all other detailed dimensions to arrive at the total 
length of bar. It is common practice to show all bar dimen-
sions as out to out (meaning outside to outside) of the bar. 
The ACI Code also stipulates that bars must be bent cold 
unless indicated otherwise by the engineer. Field bend-
ing of bars partially embedded in concrete is not allowed 
unless  specifically permitted by the engineer (ACI Code, 
Section 7.3).

Straight bars are cut to the prescribed length from lon-
ger stock-length bars, which are received in the fabricating 
shop from the mills. Tolerances in fabrication of reinforcing 
steel are generally standardized and are given in Figure 13-7.  
For instance, the cutting tolerance for straight bars is the 
specified length ±1 in., unless special tolerances are called 
for. Due consideration for these tolerances must be made by 
both the engineer and contractor in the design and construc-
tion phases.

and length. Numerous systems are in use throughout the 
industry, with the system choice generally a function of the 
building type, size, and complexity as well as the standards 
of each fabricator.

One common system is the use throughout the proj-
ect of an arbitrary letter such as K followed by consecutive 
numbers, without regard to bar location or shape. This sys-
tem may be observed in the placing drawing of Figure 13-3. 
The letter is prefixed with the size of the bar. For example, 
8K19 represents a No. 8 bar whose shape and dimensions 
may be observed in the bending details schedule and whose 
location, in this case, may be established by the beam and 
girder schedule as being the top reinforcing at the noncon-
tinuous end of the B6 members.

An alternative system is to use many letters rather than 
one arbitrary letter. Column bars may be designated with a 
C and footing bars with an F. For example, a 7F5 would be 
a No. 7 footing bar, whose shape and dimensions would be 
established in a bending details schedule and whose loca-
tion would be observed in a footing schedule, typical footing 
details, or the foundation plan.

Other acceptable systems are currently being used. Of 
primary importance in any system that is chosen is that it 
should be simple, logical, easy to understand, and not lead to 
ambiguity or confusion.

13-4  Schedules
Schedules generally appear both on engineering drawings 
and placing drawings. Typical schedules may be observed in 
Figures 13-2, 13-3, and 13-4. On the engineering drawings 
(Figure 13-2), it is a tabular form indicating a member mark 
number, concrete dimensions, and the member reinforcing 
steel size and location. Specific design details pertinent to 
the member reinforcing may also be furnished in the sched-
ule. On the engineering drawing, the schedule must be 
correlated with a typical section and plan view to be mean-
ingful. Schedules are generally used for the typical members, 
among which are slabs, beams, girders, joists, columns, foot-
ings, and piers. Typical footing and pier schedules may be 
observed in Figure 13-4, and typical beam, girder, and slab 
schedules may be observed in Figure 13-2.

Similar schedules are used on the placing draw-
ings, but additional information is furnished. The placing 
drawing schedule is more detailed and generally indicates 
the number of bars, member mark number, and physi-
cal dimensions of member reinforcing steel. In addition, it 
indicates size and length of straight bars, mark numbers (if 
bent bars), location of bars, and spacing, along with all spe-
cific notes and comments relative to the reinforcing bars. 
This schedule must also be worked together with typical 
sections and plan views. The schedules are generally accom-
panied by a bar list, indicating bending details that may or 
may not be presented on the placing drawing. There is no 
standard format for either engineering drawing or placing 
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The bar list generally includes both straight and bent 
bars and indicates all bar dimensions and bends as well 
as the grade of steel and the number of pieces. A bar list 
of this type may be used in addition to a bending detail 
schedule on the placing drawing. Some fabricators, how-
ever, prefer not to use a bending detail schedule. With this 
system, the detailers will use sketches until the drawing is 
complete and then transfer the information to separate bar 
lists. Two bar lists are prepared, one for straight bars and 

13-6  Bar Lists
The bar list serves several purposes. It is used for fabrica-
tion, including cutting, bending, and shipping, as well as 
placement and inspection. It represents a bill of materials 
indicating complete descriptions of the various bar items. 
The information in a bar list is obtained from the placing 
drawing or while the placing drawing is being prepared. A 
typical bar list form is shown in Figure 13-8; its similarity to 
the bending details schedule of Figure 13-3 is apparent.

Figure 13-5  Typical bar bends.  (Courtesy of the American Concrete Institute)
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pound of steel, light bending charges per pound are apprecia-
bly more than the charges for heavy bending. According to 
the ACI, heavy bending is defined as bar sizes No. 4 through 
No. 18 that are bent at not more than six points, radius bent 
to one radius, and bending not otherwise defined. Light 
bending includes all No. 3 bars, all stirrups and column ties, 
and all bars No. 4 through No. 18 that are bent at more than 
six points, bent in more than one plane, radius bent with 
more than one radius in any one bar, or a combination of 
radius and other bending. Special fabrication includes fabri-
cation of bars specially suited to conditions for a given proj-
ect. This may include special tolerances and variations from 
minimum standards as well as unusual bends and spirals.

one for bent bars. Dimensions less than 12 in. are given in 
inches; over 12 in. they are given in feet and inches.

13-7 E xtras
Bars are sold on the basis of weight. To a base price are added 
various extra charges (extras) dependent principally on the 
amount of effort required to produce the final product. Among 
these extras are bending extras and special fabrication extras.

Bent bars are generally classified as heavy bending or 
light bending. Extra charges are made for all shop bend-
ing, with the charge a function of the classification. Due to 
the increased amount of handling and number of bends per 

Figure 13-5  Continued
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information relative to bar supports may be found in the 
CRSI publications Placing Reinforcing Bars [3] and Manual 
of Standard Practice [2].

13-9 C omputer Detailing
The term computer detailing is somewhat of a misnomer. 
Although computers and other electronic data-processing 
equipment have been used in the bar fabricating industry 
for many years, it has not been until recently that the actual 
detailing has been done with computers. The generation of 
the placing drawings is well within the capability of currently 
available computer-aided design and drafting (CADD) soft-
ware, but only the larger steel bar companies, which can 
afford to dedicate staff to this function, use CADD in this 
way. The most beneficial aspect of the use of computers 
in the bar fabrication business concerns the handling and 

13-8 � Bar Supports and 
Bar Placement

Bar supports are used to hold the bars firmly at their desig-
nated locations before and during the placing of concrete. 
These supports may be of metal, plastic, precast concrete, 
or other approved materials. The most commonly used 
bar supports are factory-made wire bar supports, which 
are available in various sizes and types and which may be 
provided some corrosion resistance by having exposed 
parts covered or capped with plastic or being made wholly 
or in part of galvanized or stainless steel. The Concrete 
Reinforcing Steel Institute (CRSI) publishes information 
intended to serve as a guide for the selection and utiliza-
tion of steel wire bar supports used to position reinforcing 
steel. It is a general practice that unless the engineers’ draw-
ings or specifications show otherwise, bar supports will be 
furnished in accordance with CRSI standards. More detailed 

Figure 13-6  Standard hook details.  (Courtesy of the American Concrete Institute)
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the cutting schedule to minimize waste (which is very 
important in the high-volume, low-margin rebar fabricat-
ing business). In addition, information can be generated 
that will limit bar bundles based on maximum weight and 
configuration.

The process begins with the preparation of the placing 
drawing (see Figure 13-3), whether by CADD or manual 
drafting. For ease of use, it is preferable to furnish the labels 
on the placing drawing. If the drawing is complex, the 
detailer will label a reinforcing bar or a group of bars with 
a single letter or number, which is then keyed to a label list 
and becomes part of the placing drawing. Data are keyed 
directly into the computer or recorded on a standard input 
form, which is then followed by the keyboarding operation. 
Older systems used punched tape or punched cards.

manipulation of data and fabrication management in the 
shop. Several commercially available programs perform at 
various levels of sophistication, and bar fabricators some-
times create their own in-house software to perform unique 
functions geared to their own needs. Each package and 
each in-house program is different, and the person enter-
ing the field can expect to receive training on the particu-
lar equipment and software that the company is using. The 
development and availability of increasingly sophisticated 
software can be expected.

The functions most widely performed by computers 
in the bar fabricating business involve the generation and 
printing of notes and labels, schedules (beam, column, slab, 
pier, footing, joist, and the like), bending details, bar tags, 
and weight summaries. The software will also optimize 

Figure 13-7  Standard fabricating tolerances for bar sizes No. 3 through No. 11 (No. 10 
through No. 36).  (Courtesy of the American Concrete Institute)
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Several illustrations provide examples of the types of 
documents that are commonly used in the bar fabricating 
business. Figure 13-3 shows a placing drawing and has been 
previously discussed. A computer program can also gener-
ate a rebar shearing schedule and a rebar shearing schedule 
summary (weight summary). The cutting of the 60-ft-long 
bars is optimized to minimize the scrap.

Computers have become an indispensable tool in the 
bar fabricating business. They allow for more productive use 
of the detailer’s talents, freeing the detailer from tedious and 
repetitive clerical tasks.

The data become part of a database, which then pro-
vides information for the various other operations. A bill of 
material, or bar list, is commonly generated on which the 
bars are segregated by grade and size in descending order. 
Some programs allow the merging of rebar requirements 
for several jobs; lower-level (and less expensive) programs 
may not have this capability. It is not difficult to imagine 
the complexities involved. The bar shop must keep orderly 
track of bars that vary in grade (40 or 60), type (uncoated, 
epoxy coated, galvanized), shape (see Figure 13-5), length, 
and size.

Figure 13-7  Continued
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square bays, where possible. In one-way slab construc-
tion, the columns are usually spaced a maximum of 
approximately 35 ft apart for economy.

	 4.	 Since concrete formwork constitutes a major compo-
nent of the cost of reinforced concrete construction 
(about 60% of the total cost), it is more cost effective to 
use the same depth for the beams and girders through-
out the height of the building and vary the beam width 
and/or reinforcement where necessary.

	 5.	 Where possible, column sizes should be kept constant 
for multiple stories of the building, varying the con-
crete strength where higher capacity is required. Where 
changes in column sizes need to be made, it is cost effec-
tive to change only one dimension at a time and to limit 
the size change to increments of 2 in. [5].

	 6.	 Using the charts in Reference [5], the preliminary col-
umn size (square column) in inches for normal height 
columns (less than or equal to 15 ft story height) can be 
calculated as a function of the sum of the tributary areas 
supported by the column as follows:

C = 0.0025 TA +  5

where,
C = square column dimension in inches

TA = �sum of the total tributary floor/roof area 
in ft2 supported by the column.

	 7.	 A concrete building structure is considered “braced” 
if the stiffness of the shearwalls is at least equal to or 
greater than twelve times the sum of the gross stiff-
ness of the columns in a given direction within a story 

14.1 � Rules of Thumb 
and Practical 
Considerations 
for Reinforced 
Concrete Design

In reinforced concrete construction, simplicity and repeti-
tiveness are the keys to economy [1,2,3]. In beam and girder 
framing schemes with one way slabs, the following should 
be considered:

	 1.	 When laying out reinforced concrete beams and girders 
in one-way slab systems, the girders should span in the 
shorter direction along the column lines and the beams 
should span in the longer direction. See Figure 3-2 
for typical one-way slab framing schemes. For greater 
economy, bay sizes are typically 20–35 ft maximum for 
beam and girder framing schemes with one-way slabs in 
residential and office buildings [3,4]. The beam spacing 
determines the span of the one-way slabs and typically 
ranges from 10 ft to 16 ft maximum in order to keep the 
slab depth to a reasonable size.

	 2.	 The depths of reinforced concrete beams and one-way 
slabs should be determined using the minimum depths 
specified in ACI Code Table 9.5a. The depths should be 
chosen in increments of 2 in. The preliminary widths of 
reinforced concrete beams and girders should be cho-
sen to match the width of the column for simplicity of 
formwork. Even sizes for the beam width and depth are 
more commonly used.

	 3.	 The concrete columns should be laid out in a regular 
orthogonal grid, as much as possible, preferably with 
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	14.	 Coordinate placement of mechanical ducts and piping 
to avoid interference with location of reinforcement in 
slabs, beams, girders, and columns.

	15.	 For typical concrete buildings, a one-week construction 
sequence or cycle (that is, waiting a week for concrete to 
cure before going on to the next phase) is preferred by 
many contractors.

	16.	 The most economical formwork is achieved when the 
beam or girder has the same width as the column [3]. 
Care should be taken when the beam or girder width is 
much larger than the column width because only a por-
tion of the girder top reinforcement will be developed 
within the column width. If in the modeling and analy-
sis of such a girder–column connection, a full moment 
connection was assumed, this assumption would be 
incorrect because the connection will have less than a full 
moment capacity since all the girder top reinforcement 
cannot be fully developed within the column width.

Example 14-1

Preliminary Sizing of Columns

Determine the preliminary size of the first floor typical interior 
column for a 10-story building with 30-ft square bay dimen-
sions, considering axial loads only. The concrete and steel 
strengths are 4000 psi and 60,000 psi, respectively. Assume 
a dead load of 100 psf and a live load of 50 psf.

Solution:

The factored floor load, wu = 1.2 (100 psf) + 1.6 (50 psf) = 
200 psf

The tributary floor area of a typical interior column = (30-ft)
(30 ft) = 900 ft2

Sum of tributary area of first floor interior column = (10 floors)
(900 ft2) = 9000 ft2

The preliminary square column size, C = (0.0025)(9000) + 
5 = 27.5 in.

Therefore, use 28– × 28– column at the ground floor 
level.

Total factored axial load on the typical interior ground 
floor column, Pu = (9000 ft2)(200 psf) = 1800 kips

It should be noted that the self-weight of the column has 
been neglected in this example, and the tributary area method 
for calculating the column load above neglects to account for 
the self-weight of the beam and girder stems below the soffit 
of the slab. The self-weight of the beam and girder stems will 
add, approximately, an additional 5% to 10% to the factored 
load calculated above. Furthermore, the first interior columns 
will also support a higher load than the typical interior columns. 
An additional 7.5% should be added to the factored load for 
the first interior columns to account for the higher shears in the 
end-span beams and girders at the first interior columns (see 
the ACI shear coefficients for beams in Figure 6-1).

In the example just cited, the load-reducing effect of 
live load reduction permitted by the building codes has not 
been taken into account. Taking advantage of the live load 
reduction will result in a smaller column size.

(ACI  Code 10.10.1). Since in reinforced concrete 
buildings the elevator or stair walls typically function 
as shearwalls, most of these small to moderate height 
buildings are usually “braced” by the shearwalls. For 
columns in “braced” frames bent in double curvature 
with approximately equal end moments, the maximum 
story heights to neglect slenderness in the design of the 
column are given in Table 14-1 [3]:

	 8.	 Visualize the construction sequence for the structure 
and its elements and how the reinforcement will be 
placed. This will help ensure constructability.

	 9.	 Provide adequate spacing between adjacent reinforc-
ing bars to ensure free passage of concrete between the 
rebars and to prevent voids from forming.

	10.	 Draw to scale the detail of reinforcing in slabs, beams, 
girders, and columns in order to catch any potential 
congestion of the reinforcing steel.

	11.	 Avoid the use of 180° hooks in concrete slabs because 
of the difficulty in placing these bars around the edge 
reinforcement in the slab in the perpendicular direc-
tion. When using 90° hooks in reinforced concrete 
slabs, using a small enough rebar with hook length no 
greater than 80% of the slab thickness will ensure that 
the hook will fit within the thickness of the slab. If the 
length of the hook is greater than the slab thickness, the 
90° hook would need to be oriented at an angle in order 
to fit within the slab thickness.

	12.	 Though the ACI Code allows up to 8% of reinforcing steel 
to be used in columns (which amounts to 4% when lap 
splices are used), use between 1% and 2% of vertical rein-
forcing steel in reinforced concrete columns for economy 
and to avoid congestion of reinforcement, especially at 
beam–column connections [3, 4]. Instead of using more 
than 2% reinforcement in a column, consider increasing 
the concrete strength and/or the size of the column.

	13.	 Instead of using bundled vertical bars in columns, 
increase the size of the column to obviate the need for 
bundled bars.

Table 14-1  �Maximum Clear Story Height 
for Columns in Braced Frames 
(Slenderness Neglected)

Column size (in.), C Maximum Clear Height, Lu (ft)

10 11.67

12 14.0

14 16.33

16 18.67

18 21.0

20 23.33

22 25.67

24 28

Source: David B. Fanella and S. K. Ghosh. Simplified Design—
Reinforced Concrete Buildings of Moderate Size and Height. Skokie, IL: 
Portland Cement Association, 1993.
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of the girder stem and cladding loads. Consequently, the 
ACI coefficients, introduced in Chapter 6, are not applicable 
to girders. The approximate moments and shears in contin-
uous girders can be obtained from Tables 14-2A and 14-2B, 
respectively [6].

The moment for which the columns are designed, in 
addition to the axial loads, can be obtained by calculating 

14.2 �Appr oximate 
Moments and 
Shears in Girders

Girders usually frame into columns and support the concen-
trated reactions from the supported beams, in addition to 
any other uniformly distributed loads from the self-weight 

Table 14-2a  Factored Moment for Continuous Girders

Positive Moment

At end spans:

Mu
+ =  

wu/n
2

14
 +  

/n

6
 aPu

At interior spans:

Mu
+ =  

wu/n
2

16
 +  

/n

7
 aPu

Negative Moment at Supports

At interior face of external column or perpendicular structural wall:

Mu
+ =  

wu/n
2

16
 +  

/n

10
 aPu

At exterior face of first internal column or perpendicular structural wall, only two spans:

Mu
+ =  

wu/n
2

9
 +  

/n

6
 aPu

At faces of internal columns or perpendicular structural walls, more than two spans:

Mu
+ =  

wu/n
2

10
 +  

/n

6.5
 aPu

At faces of structural walls parallel to the plane of the frame:

Mu
+ =  

wu/n
2

12
 +  

/n

7
 aPu

At support of girder cantilevers:

Mu
+ =  

3wu/n
2

4
 + /naPu

Source: Essential Requirements for Reinforced Concrete Buildings (International Publication Series 
IPS-1), American Concrete Institute, P.O. Box 9094, Farmington Hills, MI 48333-9094, 2002.

Table 14-2b  Factored Shear for Continuous Girders

At exterior face of first interior column:

Vu = 1.15 
wu/n

2
 + 0.80 ΣPu

At faces of all other columns:

Vu =  
wu/n

2
 + 0.75 ΣPu

At supports of girder cantilevers:

Vu = wu/n + ΣPu

Where,
wu = factored uniformly distributed load on girder (kips/ft)

ΣPu = sum of all the factored concentrated loads acting on the girder span (kips)
/n = clear span of the girder (ft)

Source: Essential Requirements for Reinforced Concrete Buildings (International Publication 
Series IPS-1), American Concrete Institute, P.O. Box 9094, Farmington Hills, MI 48333-9094, 2002.
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and the adjacent reinforced concrete beams should also 
be evaluated for torsion and a reduced moment capacity 
due to the floor opening.

	 2.	 For reinforced concrete beams and girders, the follow-
ing options are possible:
a.	 Add a steel plate bonded with epoxy to the underside 

of an existing concrete beam or girder.
b.	 Provide Carbon Fiber Reinforced Polymer (CFRP) 

reinforcement on the sides, top, or bottom of exist-
ing concrete beams or girders to resist bending and 
shear. For shear, the CFRP strips are placed at an 
angle on the two vertical sides of the beam. CFRPs 
are preferred to bonded steel plates because no cor-
rosion protection is required and they possess good 
fatigue properties. CFRPs are also lighter than steel 
plates and therefore more easily handled on site.

c.	 Externally post-tension the concrete beam or girder 
using parabolic cables to relieve the beam/girder of 
some of the existing dead loads.

d.	 Enlarge the size of the beam or girder by casting 
additional concrete around the existing member. 
The surfaces of the existing member would need to 
be roughened and dowels provided to bond the new 
concrete to the existing concrete.

	 3.	 For reinforced concrete columns, the methods of 
strengthening or repair include the use of CFRP wraps 
around existing columns. Fiber Reinforced Polymer 
(FRP) laminates are also used where the FRP acts like a 
jacket around the existing column and the annular gap 
between the laminate and the face of the existing column 
is filled with resin or grout [9]. Concrete columns can 
also be strengthened using steel jackets around the exist-
ing column. The annular space between the steel jacket 
and the existing column is filled with grout or epoxy 
resin. These wrap-around help to confine the concrete, 
thus increasing the compressive strength of the column.

Reinforced concrete columns can also be strength-
ened or repaired by concrete jacketing or encasement of 
the existing existing column. To assure composite action 
between an existing reinforced concrete member and a 
new concrete jacket, it is recommended that the surface 
of the existing concrete be roughened with a bonding 
agent applied.

Examples of structural details for the repair and strength-
ening of damaged or degraded reinforced concrete columns, 
beams and girders [10, 11] are shown in Figures 14-1 and 14-2.

14.4 �St udent Design 
Project Problem

In this section, we introduce a reinforced concrete building 
project for the student to work on. The design brief for the 
project is as follows:

	 1.	 Residential Building: A two-story reinforced concrete 
residential building with plan dimensions of 135 ft by 
57 ft. The floor-to-floor height is 15 ft (see Figure 14-3).

the unbalanced moment in the column due to the factored 
vertical loads on the girders. The factored live loads on the 
girder should be alternated to create the maximum value for 
the unbalanced moments in the column at the column-girder 
connection. The two cases to be considered are as follows: in 
the first case, the odd spans of the girder should be loaded 
with the factored live loads (i.e., the beam factored live load 
reactions), in addition to the factored uniform dead load and 
the beam-factored dead load reaction on all girder spans; in 
the second case, the even spans of the girder should be loaded 
with the factored live loads (i.e., the beam factored live load 
reactions), in addition to the factored uniform dead load and 
the beam-factored dead load reaction on all girder spans. 
The unbalanced moment, ¢Mu, in the column at a girder-
column connection is the maximum difference between the 
girder-factored moments on both sides of the column. This 
unbalanced moment is distributed to the column above and 
below the floor level under consideration in proportion to the 
stiffness ratios of the columns above and below the floor (i.e., 
Ic,above/habove: Ic,below/hbelow), where Ic is the moment of inertia 
of the column for bending in the plane of the girder and h is 
the floor-to-floor height of the column. For roof girders, the 
top floor columns resist all the unbalanced moment, ¢Mu.

14.3 �Str engthening and 
Rehabilitation of 
Existing Reinforced 
Concrete Structures

The use of a reinforced concrete structure may change dur-
ing the life of the structure necessitating modifications to the 
structure in cases where the change results in increased loads. 
Converting a building from office use to a library or for stor-
age, for example, will result in a significant increase in the 
applied loads on the structure. A floor opening may need to 
be cut in the slabs of an existing building to provide natural 
lighting, which may reduce the capacity of the existing slab, 
beams, or girders. Also, the structural members in a building 
may be degraded due to exposure to a corrosive environment 
or damaged due to a seismic event, or they may need to be 
upgraded to meet new code requirements. Consequently, the 
existing slabs, beams, girders, and columns in a reinforced 
concrete building may need to be repaired and/or strength-
ened. There are several options available for increasing the 
strength of reinforced concrete structural elements:

	 1.	 For reinforced concrete slabs, Carbon Fiber Reinforced 
Polymer (CFRP) strips, could be applied to the top or 
bottom surface of the slab to add flexural capacity to an 
existing slab [7]. Steel plates with drilled epoxy anchors 
installed at the bottom and top surfaces of a reinforced 
concrete slab can also be used to increase the moment 
capacity of the slab [8]. For slabs with large openings, steel 
beam framing at the underside of the slab at the edges of 
the floor opening could be used to increase the load car-
rying capacity of the slab. In addition to reinforcing and 
strengthening the edges of the slab opening, the adjacent 
slabs should be evaluated for redistribution of moments, 
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●	 Gravity and Lateral Loads: Provide a load sum-
mation table for the floor and roof loads (gravity) 
and the wind and seismic loads (lateral). Provide a 
column load summation table.

●	 Floor and Roof Slabs: Continuous one-way slabs, 
check deflections against ACI requirements on 
the floors; framing plans should show typical slab 
reinforcing.

●	 Floor Beams: Design the Interior “T” beams and 
girders, and the exterior “L” beams and girders. 
Draw the shear force diagrams for each and check 
deflections against Code requirements; show final 
beam and girder sizes in a beam schedule.

●	 Columns: Show the column loads in a load summa-
tion table and show final column sizes in a column 
schedule.

●	 Foundations: Design column footings, wall footings 
for shearwalls, and exterior wall footings and show 
final footing sizes in a footing schedule.

●	 Shearwalls: Design for lateral loads in both orthogo-
nal directions and show reinforcing details.

●	 Check the development lengths for all flexural 
reinforcements.

●	 Provide quantities of rebar and concrete and cost 
estimates of each (installed cost).

	 5.	 Analysis and Design considerations:
●	 For simplicity, the box-type behavior of the stair 

and elevator walls is ignored.
●	 For the analysis of the slabs, beams, and girders, 

use a computer analysis to more accurately deter-
mine the shears, moments, and deflections, and 
compare the results with the approximate moments 
and shears obtained from the ACI coefficients 
(Figure 6-1) and Tables 14-2A and 14-2B.

●	 Provide line diagrams of the slabs, beams, and gird-
ers showing the loads and other input data used for 
either hand calculations or the computer analysis.

●	 The following deflection limits are 
recommended:Total Loads: L/240, Live Load: 
L/360, Brick plus Live Load: L/600 or 0.3 inch (use 
the smaller value) for members supporting brick 
cladding.

●	 Shearwalls should be modeled with lateral and grav-
ity loads to design the footings. The footings are 
designed as a continuous wall footing and should be 
checked for overturning.

A tabular project checklist is presented in Table 14-3 
together with a suggested grading scheme. The authors have 
used this checklist for grading the student design projects 
in their reinforced concrete design course, and they also 
serve as a guide to the students for completing their design 
projects.

●	 Building is located in Philadelphia, PA.
●	 The second floor and roof are one-way slab con-

struction supported on beams and girders.
●	 Lateral loads are to be resisted by shearwalls that are 

symmetrically located as indicated.
●	 The ACI 318 specification and the ASCE-7 load 

standard should be used.
●	 Assume that the stair located outside the 135-ft by 

57-ft footprint will be designed by others.
●	 Determine the critical lateral loading—seismic or 

wind—and use this to design the lateral force resist-
ing systems or shearwalls.

●	 Member Properties: Use f′c = 4000 psi and fy = 60 ksi.

	 2.	 Drawings and details: May be either large size, fold-
out size, or on 8-1/2– × 11– and should include the 
following:

●	 Framing Floor and Roof Plans that show the floor 
and roof slabs, floor and roof beams and girders, 
columns, and shearwalls.

●	 Provide appropriate marks for all of the framing 
members (e.g. B-1, B-2, G-1, etc.)

●	 Foundation Plans that show the slab-on-grade and 
foundations.

●	 Show control joint locations in the slab-on-grade.
●	 Schedules: Slab, beam, girder, column, and footing 

schedules.
●	 Sections, Details, and Elevations that show typical 

beams, slabs, columns, footings, and shearwalls with 
reinforcing sizes and placement, as well as cover 
requirements and lap splice details.

	 3.	 Loads:
●	 Calculate the dead and live loads (floor live loads 

and roof live loads).
●	 Use a design live load of 50 psf for the second floor 

except at the corridor between grids 2 and 3 where 
the live load of 100 psf is required.

●	 Use at least 15 psf for partitions and 10 psf for 
mechanical and electrical fixtures.

●	 Follow the ASCE-7 Load standard to calculate the 
wind load, snow load, and seismic load.

●	 Assume a net allowable soil bearing capacity of 
3000 psf.

●	 Assume the perimeter cladding (4” brick wall with 
steel stud backing), which weighs 40 psf, will be 
supported by the perimeter (spandrel) beams and 
girders only.

	 4.	 Checklist of Design Items:
●	 Provide the following at the front of the project sub-

mission: cover page, an executive summary, design 
assumptions and a table of contents.
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Table 14-3  Reinforced Concrete Design Project Checklist

Design Item Description
Maximum  

Grade Grade Comments

Project Description Title page, Table of contents, Executive summary, Design 
assumptions

    5

Design Loads Dead, Live, Snow, Wind   15

Slab Design Continuous design, shear/moment diagrams, Bending, strain, 
shear, main steel, temp steel

  30

Beams Line diagrams, Continuous design, shear/moment diagrams, 
Bending, strain, shear, deflection

  40

Girders Line diagrams, Continuous design, shear/moment diagrams, 
Bending, strain, shear, deflection

  40

Columns Load summation tables, compression, ties   25

Footings (spread & wall ftgs.) 1 & 2 way shear, bending   25

Shearwalls Load diagrams (lateral & gravity), shear/moment diagrams, shear, 
bending

  25

Slab on Grade Joints, reinforcing   10

Bond/Anchorage lap splices & dowels: columns, walls; dev length: footings; slabs 
and beams: follow textbook fig. 6-3

  15

Schedules slab, beams, girders, columns, footings   15

Drawings & Details Plans: marks for beams, columns, footings; Slabs: rebar layout in 
plan & section; Beams: rebar & stirrup layout in an elevation & sec-
tion; Shearwalls: plan section detail; Columns: section; Slab on 
grade: Joints & reinforcing; Footings: sections Show dimensions!

  25

Spreadsheets/computer  
analysis

Line diagrams for analysis input, shear/moment diagrams for out-
put; show beam marks where appropriate; clearly identify variables

  25

Quantities cubic yards of concrete, tons of reinforcing   10

Peer evaluations Groups only   10

Overall Pages numbered & organized, calculations/spreadsheets clearly 
labeled, hand calculations legible, clear and legible sketches & 
line diagrams; performance evaluations

  15

Total 330
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Tables and Diagrams

	 A-1	 Reinforcing Steel

	 A-2	 Areas of Multiples of 
Reinforcing Bars

	 A-3	 Minimum Required Beam 
Widths

	 A-4	 Areas of Reinforcing Bars 
Per Foot of Slab

	 A-5	 Design Constants

	 A-6	 Properties and Constants 
for Normal-Weight 
Concrete

	 A-7	 Through A-11 Coefficient 
Of Resistance (k) Versus 
Reinforcement Ratio (R)

	A-12	 Development Length for 
Compression Bars

	A-13	 Development Length for 
Hooked Bars

	A-14	 Preferred Maximum 
Number of Column Bars 
In One Row

	A-15	 Through A-22 Column 
Interaction Diagrams

Table A-1  Reinforcing Steel

Type of steel and 
ASTM specification 

number Bar sizes Grade

Minimum 
Tensile 

strength (psi)

Minimum 
yield strength 

fy (psi)
Yield strain 

`y

Billet Steel A615

Nos. 3–6 40   70,000 40,000 0.00138

Nos. 3–18 60   90,000 60,000 0.00207

Nos. 6–18 75 100,000 75,000 0.00259

Low-Alloy Steel 
A706

Nos. 3–18 60   80,000  
(Min.: 1.25 fy)

60,000 
(Max.: 78,000)

0.00207

Bar number 3 4 5 6 7 8 9 10 11 14 18

Unit weight per 
foot (lb)

0.376 0.668 1.043 1.502 2.044 2.670 3.400 4.303 5.313 7.65 13.60

Diametera (in.) 0.375 0.500 0.625 0.750 0.875 1.000 1.128 1.270 1.410 1.693 2.257

Area (in.2) 0.11 0.20 0.31 0.44 0.60 0.79 1.00 1.27 1.56 2.25 4.00

aThe nominal dimensions of a deformed bar (diameter and area) are equivalent to those of a plain round bar having the same weight per 
foot as the deformed bar.
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Table A-2  Areas of Multiples of Reinforcing Bars (in.2)

Number 
of bars

Bar number

#3 #4 #5 #6 #7 #8 #9 #10 #11

  1 0.11 0.20 0.31 0.44 0.60 0.79 1.00 1.27 1.56

  2 0.22 0.40 0.62 0.88 1.20 1.58 2.00 2.54 3.12

  3 0.33 0.60 0.93 1.32 1.80 2.37 3.00 3.81 4.68

  4 0.44 0.80 1.24 1.76 2.40 3.16 4.00 5.08 6.24

  5 0.55 1.00 1.55 2.20 3.00 3.93 5.00 6.35 7.80

  6 0.66 1.20 1.86 2.64 3.60 4.74 6.00 7.62 9.36

  7 0.77 1.40 2.17 3.08 4.20 5.53 7.00 8.89 10.9

  8 0.88 1.60 2.48 3.52 4.80 6.32 8.00 10.2 12.5

  9 0.99 1.80 2.79 3.96 5.40 7.11 9.00 11.4 14.0

10 1.10 2.00 3.10 4.40 6.00 7.90 10.0 12.7 15.6

11 1.21 2.20 3.41 4.84 6.60 8.69 11.0 14.0 17.2

12 1.32 2.40 3.72 5.28 7.20 9.48 12.0 15.2 18.7

13 1.43 2.60 4.03 5.72 7.80 10.3 13.0 16.5 20.3

14 1.54 2.80 4.34 6.16 8.40 11.1 14.0 17.8 21.8

15 1.65 3.00 4.65 6.60 9.00 11.8 15.0 19.0 23.4

16 1.76 3.20 4.96 7.04 9.60 12.6 16.0 20.3 25.0

17 1.87 3.40 5.27 7.48 10.2 13.4 17.0 21.6 26.5

18 1.98 3.60 5.58 7.92 10.8 14.2 18.0 22.9 28.1

19 2.09 3.80 5.89 8.36 11.4 15.0 19.0 24.1 29.6

20 2.20 4.00 6.20 8.80 12.0 15.8 20.0 25.4 31.2

Table A-3  Minimum Required Beam Widths (in.)

Number of bars 
in one layer

Bar number

#3 and #4 #5 #6 #7 #8 #9 #10 #11

  2   6.0   6.0   6.5   6.5   7.0   7.5   8.0   8.0

  3   7.5   8.0   8.0   8.5   9.0   9.5 10.5 11.0

  4   9.0   9.5 10.0 10.5 11.0 12.0 13.0 14.0

  5 10.5 11.0 11.5 12.5 13.0 14.0 15.5 16.5

  6 12.0 12.5 13.5 14.0 15.0 16.5 18.0 19.5

  7 13.5 14.5 15.0 16.0 17.0 18.5 20.5 22.5

  8 15.0 16.0 17.0 18.0 19.0 21.0 23.0 25.0

  9 16.5 17.5 18.5 20.0 21.0 23.0 25.5 28.0

10 18.0 19.0 20.5 21.5 23.0 25.5 28.0 31.0

Note: Tabulated values based on No. 3 stirrups, minimum clear distance of 1 in., and a 11
2 in. cover.
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Table A-4  Areas of Reinforcing Bars per Foot of Slab (in.2)

Bar spacing 
(in.)

Bar number

#3 #4 #5 #6 #7 #8 #9 #10 #11

2 0.66 1.20 1.86

21
2 0.53 0.96 1.49 2.11

3 0.44 0.80 1.24 1.76 2.40 3.16 4.00

31
2 0.38 0.69 1.06 1.51 2.06 2.71 3.43 4.35

4 0.33 0.60 0.93 1.32 1.80 2.37 3.00 3.81 4.68

41
2 0.29 0.53 0.83 1.17 1.60 2.11 2.67 3.39 4.16

5 0.26 0.48 0.74 1.06 1.44 1.90 2.40 3.05 3.74

51
2 0.24 0.44 0.68 0.96 1.31 1.72 2.18 2.77 3.40

6 0.22 0.40 0.62 0.88 1.20 1.58 2.00 2.54 3.12

61
2 0.20 0.37 0.57 0.81 1.11 1.46 1.85 2.34 2.88

7 0.19 0.34 0.53 0.75 1.03 1.35 1.71 2.18 2.67

71
2 0.18 0.32 0.50 0.70 0.96 1.26 1.60 2.03 2.50

8 0.16 0.30 0.46 0.66 0.90 1.18 1.50 1.90 2.34

9 0.15 0.27 0.41 0.59 0.80 1.05 1.33 1.69 2.08

10 0.13 0.24 0.37 0.53 0.72 0.95 1.20 1.52 1.87

11 0.12 0.22 0.34 0.48 0.65 0.86 1.09 1.39 1.70

12 0.11 0.20 0.31 0.44 0.60 0.79 1.00 1.27 1.56

13 0.10 0.18 0.29 0.41 0.55 0.73 0.92 1.17 1.44

14 0.09 0.17 0.27 0.38 0.51 0.68 0.86 1.09 1.34

15 0.09 0.16 0.25 0.35 0.48 0.64 0.80 1.02 1.25

16 0.08 0.15 0.23 0.33 0.45 0.59 0.75 0.95 1.17

17 0.08 0.14 0.22 0.31 0.42 0.56 0.71 0.90 1.10

18 0.07 0.13 0.21 0.29 0.40 0.53 0.67 0.85 1.04
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Table A-5  Design Constants

f′c (psi)
c 32f′c

f
Ú

200
f

d
Recommended design values

R k (ksi)

fy = 40,000 psi

3000 0.0050 0.0135 0.4828

4000 0.0050 0.0180 0.6438

5000 0.0053 0.0225 0.8047

6000 0.0058 0.0270 0.9657

fy = 50,000 psi

3000 0.0040 0.0108 0.4828

4000 0.0040 0.0144 0.6438

5000 0.0042 0.0180 0.8047

6000 0.0046 0.0216 0.9657

fy = 60,000 psi

3000 0.0033 0.0090 0.4828

4000 0.0033 0.0120 0.6438

5000 0.0035 0.0150 0.8047

6000 0.0039 0.0180 0.9657

fy = 75,000 psi

3000 0.0027 0.0072 0.4828

4000 0.0027 0.0096 0.6438

5000 0.0028 0.0120 0.8047

6000 0.0031 0.0144 0.9657

aDoes not apply to T-beams with flanges in tension (see Section 3-2). To compute 
As,min, see Section 2-8.

Table A-6  Properties and Constants for Normal-Weight Concrete

f ′c (psi)

3000 3500 4000 5000

Ec (psi)a 3,120,000 3,370,000 3,605,000 4,030,000

nb 9 9 8 7

7.52f′c  (ksi)c 0.411 0.444 0.474 0.530

aEc for normal-weight concrete = 57,0002f ′c.
bNearest whole number.
cModulus of rupture (fr).
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Table A-7  Coefficient of Resistance (k) Versus Reinforcement Ratio (r)  
(f′c = 3000 psi; fy = 40,000 psi; units of k are ksi)

R k R k R k

0.0010 0.0397 0.0054 0.2069 0.0098 0.3619

0.0011 0.0436 0.0055 0.2105 0.0099 0.3653

0.0012 0.0476 0.0056 0.2142 0.0100 0.3686

0.0013 0.0515 0.0057 0.2178 0.0101 0.3720

0.0014 0.0554 0.0058 0.2214 0.0102 0.3754

0.0015 0.0593 0.0059 0.2251 0.0103 0.3787

0.0016 0.0632 0.0060 0.2287 0.0104 0.3821

0.0017 0.0671 0.0061 0.2323 0.0105 0.3854

0.0018 0.0710 0.0062 0.2359 0.0106 0.3887

0.0019 0.0749 0.0063 0.2395 0.0107 0.3921

0.0020 0.0788 0.0064 0.2431 0.0108 0.3954

0.0021 0.0826 0.0065 0.2467 0.0109 0.3987

0.0022 0.0865 0.0066 0.2503 0.0110 0.4020

0.0023 0.0903 0.0067 0.2539 0.0111 0.4053

0.0024 0.0942 0.0068 0.2575 0.0112 0.4086

0.0025 0.0980 0.0069 0.2611 0.0113 0.4119

0.0026 0.1019 0.0070 0.2646 0.0114 0.4152

0.0027 0.1057 0.0071 0.2682 0.0115 0.4185

0.0028 0.1095 0.0072 0.2717 0.0116 0.4218

0.0029 0.1134 0.0073 0.2753 0.0117 0.4251

0.0030 0.1172 0.0074 0.2788 0.0118 0.4283

0.0031 0.1210 0.0075 0.2824 0.0119 0.4316

0.0032 0.1248 0.0076 0.2859 0.0120 0.4348

0.0033 0.1286 0.0077 0.2894 0.0121 0.4381

0.0034 0.1324 0.0078 0.2929 0.0122 0.4413

0.0035 0.1362 0.0079 0.2964 0.0123 0.4445

0.0036 0.1399 0.0080 0.2999 0.0124 0.4478

0.0037 0.1437 0.0081 0.3034 0.0125 0.4510

0.0038 0.1475 0.0082 0.3069 0.0126 0.4542

0.0039 0.1512 0.0083 0.3104 0.0127 0.4574

0.0040 0.1550 0.0084 0.3139 0.0128 0.4606

0.0041 0.1587 0.0085 0.3173 0.0129 0.4638

0.0042 0.1625 0.0086 0.3208 0.0130 0.4670

0.0043 0.1662 0.0087 0.3243 0.0131 0.4702

0.0044 0.1699 0.0088 0.3277 0.0132 0.4733

0.0045 0.1736 0.0089 0.3311 0.0133 0.4765

0.0046 0.1774 0.0090 0.3346 0.0134 0.4797

0.0047 0.1811 0.0091 0.3380 0.0135 0.4828

0.0048 0.1848 0.0092 0.3414 0.0136 0.4860

0.0049 0.1885 0.0093 0.3449 0.0137 0.4891

0.0050 0.1922 0.0094 0.3483 0.0138 0.4923

0.0051 0.1958 0.0095 0.3517 0.0139 0.4954

0.0052 0.1995 0.0096 0.3551 0.0140 0.4985

0.0053 0.2032 0.0097 0.3585 0.0141 0.5016
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R k R k R k `*t

0.0142 0.5047 0.0173 0.5981 0.02033 0.6836 0.00500

0.0143 0.5078 0.0174 0.6011   0.0204 0.6855 0.00497

0.0144 0.5109 0.0175 0.6040   0.0205 0.6882 0.00493

0.0145 0.5140 0.0176 0.6069   0.0206 0.6909 0.00489

0.0146 0.5171 0.0177 0.6098   0.0207 0.6936 0.00485

0.0147 0.5202 0.0178 0.6126   0.0208 0.6963 0.00482

0.0148 0.5233 0.0179 0.6155   0.0209 0.6990 0.00478

0.0149 0.5264 0.0180 0.6184   0.0210 0.7017 0.00474

0.0150 0.5294 0.0181 0.6213   0.0211 0.7044 0.00470

0.0151 0.5325 0.0182 0.6241   0.0212 0.7071 0.00467

0.0152 0.5355 0.0183 0.6270   0.0213 0.7097 0.00463

0.0153 0.5386 0.0184 0.6298   0.0214 0.7124 0.00460

0.0154 0.5416 0.0185 0.6327   0.0215 0.7150 0.00456

0.0155 0.5447 0.0186 0.6355   0.0216 0.7177 0.00453

0.0156 0.5477 0.0187 0.6383   0.0217 0.7203 0.00449

0.0157 0.5507 0.0188 0.6412   0.0218 0.7230 0.00446

0.0158 0.5537 0.0189 0.6440   0.0219 0.7256 0.00442

0.0159 0.5567 0.0190 0.6468   0.0220 0.7282 0.00439

0.0160 0.5597 0.0191 0.6496   0.0221 0.7308 0.00436

0.0161 0.5627 0.0192 0.6524   0.0222 0.7334 0.00432

0.0162 0.5657 0.0193 0.6552   0.0223 0.7360 0.00429

0.0163 0.5687 0.0194 0.6580   0.0224 0.7386 0.00426

0.0164 0.5717 0.0195 0.6608   0.0225 0.7412 0.00423

0.0165 0.5746 0.0196 0.6635   0.0226 0.7438 0.00419

0.0166 0.5776 0.0197 0.6663   0.0227 0.7464 0.00416

0.0167 0.5805 0.0198 0.6691   0.0228 0.7490 0.00413

0.0168 0.5835 0.0199 0.6718   0.0229 0.7515 0.00410

0.0169 0.5864 0.0200 0.6746   0.0230 0.7541 0.00407

0.0170 0.5894 0.0201 0.6773   0.0231 0.7567 0.00404

0.0171 0.5923 0.0202 0.6800   0.0232 0.7592 0.00401

0.0172 0.5952 0.0203 0.6828 0.02323 0.7600 0.00400

*d = dt.

Table A-7  Continued
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Table A-8  Coefficient of Resistance (k) Versus Reinforcement Ratio (r) 
(f′c = 3000 psi; fy = 60,000 psi; units of k are ksi)

R k R k R k `*t

0.0010 0.0593 0.0059 0.3294 0.0108 0.5657

0.0011 0.0651 0.0060 0.3346 0.0109 0.5702

0.0012 0.0710 0.0061 0.3397 0.0110 0.5746

0.0013 0.0768 0.0062 0.3449 0.0111 0.5791

0.0014 0.0826 0.0063 0.3500 0.0112 0.5835

0.0015 0.0884 0.0064 0.3551 0.0113 0.5879

0.0016 0.0942 0.0065 0.3602 0.0114 0.5923

0.0017 0.1000 0.0066 0.3653 0.0115 0.5967

0.0018 0.1057 0.0067 0.3703 0.0116 0.6011

0.0019 0.1115 0.0068 0.3754 0.0117 0.6054

0.0020 0.1172 0.0069 0.3804 0.0118 0.6098

0.0021 0.1229 0.0070 0.3854 0.0119 0.6141

0.0022 0.1286 0.0071 0.3904 0.0120 0.6184

0.0023 0.1343 0.0072 0.3954 0.0121 0.6227

0.0024 0.1399 0.0073 0.4004 0.0122 0.6270

0.0025 0.1456 0.0074 0.4054 0.0123 0.6312

0.0026 0.1512 0.0075 0.4103 0.0124 0.6355

0.0027 0.1569 0.0076 0.4152 0.0125 0.6398

0.0028 0.1625 0.0077 0.4202 0.0126 0.6440

0.0029 0.1681 0.0078 0.4251 0.0127 0.6482

0.0030 0.1736 0.0079 0.4300 0.0128 0.6524

0.0031 0.1792 0.0080 0.4348 0.0129 0.6566

0.0032 0.1848 0.0081 0.4397 0.0130 0.6608

0.0033 0.1903 0.0082 0.4446 0.0131 0.6649

0.0034 0.1958 0.0083 0.4494 0.0132 0.6691

0.0035 0.2014 0.0084 0.4542 0.0133 0.6732

0.0036 0.2069 0.0085 0.4590 0.0134 0.6773

0.0037 0.2123 0.0086 0.4638 0.0135 0.6814

0.0038 0.2178 0.0087 0.4686 0.01355 0.6835 0.00500

0.0039 0.2233 0.0088 0.4734 0.0136 0.6855 0.00497

0.0040 0.2287 0.0089 0.4781 0.0137 0.6896 0.00491

0.0041 0.2341 0.0090 0.4828 0.0138 0.6936 0.00485

0.0042 0.2396 0.0091 0.4876 0.0139 0.6977 0.00480

0.0043 0.2450 0.0092 0.4923 0.0140 0.7017 0.00474

0.0044 0.2503 0.0093 0.4970 0.0141 0.7057 0.00469

0.0045 0.2557 0.0094 0.5017 0.0142 0.7097 0.00463

0.0046 0.2611 0.0095 0.5063 0.0143 0.7137 0.00458

0.0047 0.2664 0.0096 0.5110 0.0144 0.7177 0.00453

0.0048 0.2717 0.0097 0.5156 0.0145 0.7216 0.00447

0.0049 0.2771 0.0098 0.5202 0.0146 0.7256 0.00442

0.0050 0.2824 0.0099 0.5248 0.0147 0.7295 0.00437

0.0051 0.2876 0.0100 0.5294 0.0148 0.7334 0.00432

0.0052 0.2929 0.0101 0.5340 0.0149 0.7373 0.00427

0.0053 0.2982 0.0102 0.5386 0.0150 0.7412 0.00423

0.0054 0.3034 0.0103 0.5431 0.0151 0.7451 0.00418

0.0055 0.3087 0.0104 0.5477 0.0152 0.7490 0.00413

0.0056 0.3139 0.0105 0.5522 0.0153 0.7528 0.00408

0.0057 0.3191 0.0106 0.5567 0.0154 0.7567 0.00404

0.0058 0.3243 0.0107 0.5612 0.01548 0.7597 0.00400

*d = dt.
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Table A-9  Coefficient of Resistance (k) Versus Reinforcement Ratio (r) 
(f′c = 4000 psi; fy = 40,000 psi; units of (k) are ksi)

R k R k R k R k

0.0010 0.0398 0.0054 0.2091 0.0098 0.3694 0.0142 0.5206

0.0011 0.0437 0.0055 0.2129 0.0099 0.3729 0.0143 0.5239

0.0012 0.0477 0.0056 0.2166 0.0100 0.3765 0.0144 0.5272

0.0013 0.0516 0.0057 0.2204 0.0101 0.3800 0.0145 0.5305

0.0014 0.0555 0.0058 0.2241 0.0102 0.3835 0.0146 0.5338

0.0015 0.0595 0.0059 0.2278 0.0103 0.3870 0.0147 0.5372

0.0016 0.0634 0.0060 0.2315 0.0104 0.3906 0.0148 0.5405

0.0017 0.0673 0.0061 0.2352 0.0105 0.3941 0.0149 0.5438

0.0018 0.0712 0.0062 0.2390 0.0106 0.3976 0.0150 0.5471

0.0019 0.0752 0.0063 0.2427 0.0107 0.4011 0.0151 0.5504

0.0020 0.0791 0.0064 0.2464 0.0108 0.4046 0.0152 0.5536

0.0021 0.0830 0.0065 0.2501 0.0109 0.4080 0.0153 0.5569

0.0022 0.0869 0.0066 0.2538 0.0110 0.4115 0.0154 0.5602

0.0023 0.0908 0.0067 0.2574 0.0111 0.4150 0.0155 0.5635

0.0024 0.0946 0.0068 0.2611 0.0112 0.4185 0.0156 0.5667

0.0025 0.0985 0.0069 0.2648 0.0113 0.4220 0.0157 0.5700

0.0026 0.1024 0.0070 0.2685 0.0114 0.4254 0.0158 0.5733

0.0027 0.1063 0.0071 0.2721 0.0115 0.4289 0.0159 0.5765

0.0028 0.1102 0.0072 0.2758 0.0116 0.4323 0.0160 0.5798

0.0029 0.1140 0.0073 0.2795 0.0117 0.4358 0.0161 0.5830

0.0030 0.1179 0.0074 0.2831 0.0118 0.4392 0.0162 0.5863

0.0031 0.1217 0.0075 0.2868 0.0119 0.4427 0.0163 0.5895

0.0032 0.1256 0.0076 0.2904 0.0120 0.4461 0.0164 0.5927

0.0033 0.1294 0.0077 0.2941 0.0121 0.4495 0.0165 0.5959

0.0034 0.1333 0.0078 0.2977 0.0122 0.4530 0.0166 0.5992

0.0035 0.1371 0.0079 0.3013 0.0123 0.4564 0.0167 0.6024

0.0036 0.1410 0.0080 0.3049 0.0124 0.4598 0.0168 0.6056

0.0037 0.1448 0.0081 0.3086 0.0125 0.4632 0.0169 0.6088

0.0038 0.1486 0.0082 0.3122 0.0126 0.4666 0.0170 0.6120

0.0039 0.1524 0.0083 0.3158 0.0127 0.4701 0.0171 0.6152

0.0040 0.1562 0.0084 0.3194 0.0128 0.4735 0.0172 0.6184

0.0041 0.1600 0.0085 0.3230 0.0129 0.4768 0.0173 0.6216

0.0042 0.1638 0.0086 0.3266 0.0130 0.4802 0.0174 0.6248

0.0043 0.1676 0.0087 0.3302 0.0131 0.4836 0.0175 0.6279

0.0044 0.1714 0.0088 0.3338 0.0132 0.4870 0.0176 0.6311

0.0045 0.1752 0.0089 0.3374 0.0133 0.4904 0.0177 0.6343

0.0046 0.1790 0.0090 0.3409 0.0134 0.4938 0.0178 0.6375

0.0047 0.1828 0.0091 0.3445 0.0135 0.4971 0.0179 0.6406

0.0048 0.1866 0.0092 0.3481 0.0136 0.5005 0.0180 0.6438

0.0049 0.1904 0.0093 0.3517 0.0137 0.5038 0.0181 0.6469

0.0050 0.1941 0.0094 0.3552 0.0138 0.5072 0.0182 0.6501

0.0051 0.1979 0.0095 0.3588 0.0139 0.5105 0.0183 0.6532

0.0052 0.2016 0.0096 0.3623 0.0140 0.5139 0.0184 0.6563

0.0053 0.2054 0.0097 0.3659 0.0141 0.5172 0.0185 0.6595
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R k R k R k `*t

0.0186 0.6626 0.0229 0.7927 0.0271 0.9113 0.00500

0.0187 0.6657 0.0230 0.7956 0.0272 0.9140 0.00497

0.0188 0.6688 0.0231 0.7985 0.0273 0.9167 0.00494

0.0189 0.6720 0.0232 0.8014 0.0274 0.9194 0.00491

0.0190 0.6751 0.0233 0.8043 0.0275 0.9221 0.00488

0.0191 0.6782 0.0234 0.8072 0.0276 0.9248 0.00485

0.0192 0.6813 0.0235 0.8101 0.0277 0.9275 0.00482

0.0193 0.6844 0.0236 0.8130 0.0278 0.9302 0.00480

0.0194 0.6875 0.0237 0.8159 0.0279 0.9329 0.00477

0.0195 0.6905 0.0238 0.8188 0.0280 0.9356 0.00474

0.0196 0.6936 0.0239 0.8217 0.0281 0.9383 0.00471

0.0197 0.6967 0.0240 0.8245 0.0282 0.9410 0.00469

0.0198 0.6998 0.0241 0.8274 0.0283 0.9436 0.00466

0.0199 0.7029 0.0242 0.8303 0.0284 0.9463 0.00463

0.0200 0.7059 0.0243 0.8331 0.0285 0.9490 0.00461

0.0201 0.7090 0.0244 0.8360 0.0286 0.9516 0.00458

0.0202 0.7120 0.0245 0.8388 0.0287 0.9543 0.00455

0.0203 0.7151 0.0246 0.8417 0.0288 0.9569 0.00453

0.0204 0.7181 0.0247 0.8445 0.0289 0.9596 0.00450

0.0205 0.7212 0.0248 0.8473 0.0290 0.9622 0.00447

0.0206 0.7242 0.0249 0.8502 0.0291 0.9648 0.00445

0.0207 0.7272 0.0250 0.8530 0.0292 0.9675 0.00442

0.0208 0.7302 0.0251 0.8558 0.0293 0.9701 0.00440

0.0209 0.7333 0.0252 0.8586 0.0294 0.9727 0.00437

0.0210 0.7363 0.0253 0.8615 0.0295 0.9753 0.00435

0.0211 0.7393 0.0254 0.8643 0.0296 0.9779 0.00432

0.0212 0.7423 0.0255 0.8671 0.0297 0.9805 0.00430

0.0213 0.7453 0.0256 0.8699 0.0298 0.9831 0.00427

0.0214 0.7483 0.0257 0.8727 0.0299 0.9857 0.00425

0.0215 0.7513 0.0258 0.8754 0.0300 0.9883 0.00423

0.0216 0.7543 0.0259 0.8782 0.0301 0.9909 0.00420

0.0217 0.7572 0.0260 0.8810 0.0302 0.9935 0.00418

0.0218 0.7602 0.0261 0.8838 0.0303 0.9961 0.00415

0.0219 0.7632 0.0262 0.8865 0.0304 0.9986 0.00413

0.0220 0.7662 0.0263 0.8893 0.0305 1.0012 0.00411

0.0221 0.7691 0.0264 0.8921 0.0306 1.0038 0.00408

0.0222 0.7721 0.0265 0.8948 0.0307 1.0063 0.00406

0.0223 0.7750 0.0266 0.8976 0.0308 1.0089 0.00404

0.0224 0.7780 0.0267 0.9003 0.0309 1.0114 0.00401

0.0225 0.7809 0.0268 0.9031 0.03096 1.0130 0.00400

0.0226 0.7839 0.0269 0.9058

0.0227 0.7868 0.0270 0.9085

0.0228 0.7897

*d = dt.

Table A-9  Continued
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Table A-10  Coefficient of Resistance (k) Versus Reinforcement Ratio (r) 
(f′c = 4000 psi; fy = 60,000 psi; units of k are ksi)

R k R k R k R k

0.0010 0.0595 0.0039 0.2259 0.0068 0.3835 0.0097 0.5322

0.0011 0.0654 0.0040 0.2315 0.0069 0.3888 0.0098 0.5372

0.0012 0.0712 0.0041 0.2371 0.0070 0.3941 0.0099 0.5421

0.0013 0.0771 0.0042 0.2427 0.0071 0.3993 0.0100 0.5471

0.0014 0.0830 0.0043 0.2482 0.0072 0.4046 0.0101 0.5520

0.0015 0.0889 0.0044 0.2538 0.0073 0.4098 0.0102 0.5569

0.0016 0.0946 0.0045 0.2593 0.0074 0.4150 0.0103 0.5618

0.0017 0.1005 0.0046 0.2648 0.0075 0.4202 0.0104 0.5667

0.0018 0.1063 0.0047 0.2703 0.0076 0.4254 0.0105 0.5716

0.0019 0.1121 0.0048 0.2758 0.0077 0.4306 0.0106 0.5765

0.0020 0.1179 0.0049 0.2813 0.0078 0.4358 0.0107 0.5814

0.0021 0.1237 0.0050 0.2868 0.0079 0.4410 0.0108 0.5862

0.0022 0.1294 0.0051 0.2922 0.0080 0.4461 0.0109 0.5911

0.0023 0.1352 0.0052 0.2977 0.0081 0.4513 0.0110 0.5959

0.0024 0.1410 0.0053 0.3031 0.0082 0.4564 0.0111 0.6008

0.0025 0.1467 0.0054 0.3086 0.0083 0.4615 0.0112 0.6056

0.0026 0.1524 0.0055 0.3140 0.0084 0.4666 0.0113 0.6104

0.0027 0.1581 0.0056 0.3194 0.0085 0.4718 0.0114 0.6152

0.0028 0.1638 0.0057 0.3248 0.0086 0.4768 0.0115 0.6200

0.0029 0.1695 0.0058 0.3302 0.0087 0.4819 0.0116 0.6248

0.0030 0.1752 0.0059 0.3356 0.0088 0.4870 0.0117 0.6296

0.0031 0.1809 0.0060 0.3409 0.0089 0.4921 0.0118 0.6343

0.0032 0.1866 0.0061 0.3463 0.0090 0.4971 0.0119 0.6391

0.0033 0.1922 0.0062 0.3516 0.0091 0.5022 0.0120 0.6438

0.0034 0.1979 0.0063 0.3570 0.0092 0.5072 0.0121 0.6485

0.0035 0.2035 0.0064 0.3623 0.0093 0.5122 0.0122 0.6532

0.0036 0.2091 0.0065 0.3676 0.0094 0.5172 0.0123 0.6579

0.0037 0.2148 0.0066 0.3729 0.0095 0.5222 0.0124 0.6626

0.0038 0.2204 0.0067 0.3782 0.0096 0.5272 0.0125 0.6673
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R k R k R k `*t

0.0126 0.6720 0.0154 0.7985 0.01806 0.9110 0.00500

0.0127 0.6766 0.0155 0.8029 0.0181 0.9126 0.00498

0.0128 0.6813 0.0156 0.8072 0.0182 0.9167 0.00494

0.0129 0.6859 0.0157 0.8116 0.0183 0.9208 0.00490

0.0130 0.6906 0.0158 0.8159 0.0184 0.9248 0.00485

0.0131 0.6952 0.0159 0.8202 0.0185 0.9289 0.00481

0.0132 0.6998 0.0160 0.8245 0.0186 0.9329 0.00477

0.0133 0.7044 0.0161 0.8288 0.0187 0.9369 0.00473

0.0134 0.7090 0.0162 0.8331 0.0188 0.9410 0.00469

0.0135 0.7136 0.0163 0.8374 0.0189 0.9450 0.00465

0.0136 0.7181 0.0164 0.8417 0.0190 0.9490 0.00461

0.0137 0.7227 0.0165 0.8459 0.0191 0.9529 0.00457

0.0138 0.7272 0.0166 0.8502 0.0192 0.9569 0.00453

0.0139 0.7318 0.0167 0.8544 0.0193 0.9609 0.00449

0.0140 0.7363 0.0168 0.8586 0.0194 0.9648 0.00445

0.0141 0.7408 0.0169 0.8629 0.0195 0.9688 0.00441

0.0142 0.7453 0.0170 0.8671 0.0196 0.9727 0.00437

0.0143 0.7498 0.0171 0.8713 0.0197 0.9766 0.00434

0.0144 0.7543 0.0172 0.8754 0.0198 0.9805 0.00430

0.0145 0.7587 0.0173 0.8796 0.0199 0.9844 0.00426

0.0146 0.7632 0.0174 0.8838 0.0200 0.9883 0.00422

0.0147 0.7676 0.0175 0.8879 0.0201 0.9922 0.00419

0.0148 0.7721 0.0176 0.8921 0.0202 0.9961 0.00415

0.0149 0.7765 0.0177 0.8962 0.0203 0.9999 0.00412

0.0150 0.7809 0.0178 0.9003 0.0204 1.0038 0.00408

0.0151 0.7853 0.0179 0.9044 0.0205 1.0076 0.00405

0.0152 0.7897 0.0180 0.9085 0.0206 1.0114 0.00401

0.0153 0.7941 0.02063 1.0126 0.00400

*d = dt.
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Table A-11  Coefficient of Resistance (k) Versus Reinforcement Ratio (r) 
(f′c = 5000 psi; fy = 60,000 psi; units of k are ksi)

R k R k R k R k

0.0010 0.0596 0.0048 0.2782 0.0086 0.4847 0.0124 0.6789

0.0011 0.0655 0.0049 0.2838 0.0087 0.4899 0.0125 0.6838

0.0012 0.0714 0.0050 0.2894 0.0088 0.4952 0.0126 0.6888

0.0013 0.0773 0.0051 0.2950 0.0089 0.5005 0.0127 0.6937

0.0014 0.0832 0.0052 0.3005 0.0090 0.5057 0.0128 0.6986

0.0015 0.0890 0.0053 0.3061 0.0091 0.5109 0.0129 0.7035

0.0016 0.0949 0.0054 0.3117 0.0092 0.5162 0.0130 0.7084

0.0017 0.1008 0.0055 0.3172 0.0093 0.5214 0.0131 0.7133

0.0018 0.1066 0.0056 0.3227 0.0094 0.5266 0.0132 0.7182

0.0019 0.1125 0.0057 0.3282 0.0095 0.5318 0.0133 0.7231

0.0020 0.1183 0.0058 0.3338 0.0096 0.5370 0.0134 0.7280

0.0021 0.1241 0.0059 0.3393 0.0097 0.5422 0.0135 0.7328

0.0022 0.1300 0.0060 0.3448 0.0098 0.5473 0.0136 0.7377

0.0023 0.1358 0.0061 0.3502 0.0099 0.5525 0.0137 0.7425

0.0024 0.1416 0.0062 0.3557 0.0100 0.5576 0.0138 0.7473

0.0025 0.1474 0.0063 0.3612 0.0101 0.5628 0.0139 0.7522

0.0026 0.1531 0.0064 0.3667 0.0102 0.5679 0.0140 0.7570

0.0027 0.1589 0.0065 0.3721 0.0103 0.5731 0.0141 0.7618

0.0028 0.1647 0.0066 0.3776 0.0104 0.5782 0.0142 0.7666

0.0029 0.1704 0.0067 0.3830 0.0105 0.5833 0.0143 0.7714

0.0030 0.1762 0.0068 0.3884 0.0106 0.5884 0.0144 0.7762

0.0031 0.1819 0.0069 0.3938 0.0107 0.5935 0.0145 0.7810

0.0032 0.1877 0.0070 0.3992 0.0108 0.5986 0.0146 0.7857

0.0033 0.1934 0.0071 0.4047 0.0109 0.6037 0.0147 0.7905

0.0034 0.1991 0.0072 0.4100 0.0110 0.6088 0.0148 0.7952

0.0035 0.2048 0.0073 0.4154 0.0111 0.6138 0.0149 0.8000

0.0036 0.2105 0.0074 0.4208 0.0112 0.6189 0.0150 0.8047

0.0037 0.2162 0.0075 0.4262 0.0113 0.6239 0.0151 0.8094

0.0038 0.2219 0.0076 0.4315 0.0114 0.6290 0.0152 0.8142

0.0039 0.2276 0.0077 0.4369 0.0115 0.6340 0.0153 0.8189

0.0040 0.2332 0.0078 0.4422 0.0116 0.6390 0.0154 0.8236

0.0041 0.2389 0.0079 0.4476 0.0117 0.6440 0.0155 0.8283

0.0042 0.2445 0.0080 0.4529 0.0118 0.6490 0.0156 0.8329

0.0043 0.2502 0.0081 0.4582 0.0119 0.6540 0.0157 0.8376

0.0044 0.2558 0.0082 0.4635 0.0120 0.6590 0.0158 0.8423

0.0045 0.2614 0.0083 0.4688 0.0121 0.6640 0.0159 0.8469

0.0046 0.2670 0.0084 0.4741 0.0122 0.6690 0.0160 0.8516

0.0047 0.2726 0.0085 0.4794 0.0123 0.6739 0.0161 0.8562
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R k R k R k `*t

0.0162 0.8609 0.0194 1.0047 0.02125 1.0838 0.00500

0.0163 0.8655 0.0195 1.0090 0.0213 1.0859 0.00498

0.0164 0.8701 0.0196 1.0134 0.0214 1.0901 0.00494

0.0165 0.8747 0.0197 1.0177 0.0215 1.0943 0.00491

0.0166 0.8793 0.0198 1.0220 0.0216 1.0985 0.00487

0.0167 0.8839 0.0199 1.0263 0.0217 1.1026 0.00483

0.0168 0.8885 0.0200 1.0307 0.0218 1.1068 0.00480

0.0169 0.8930 0.0201 1.0350 0.0219 1.1110 0.00476

0.0170 0.8976 0.0202 1.0393 0.0220 1.1151 0.00473

0.0171 0.9022 0.0203 1.0435 0.0221 1.1192 0.00469

0.0172 0.9067 0.0204 1.0478 0.0222 1.1234 0.00466

0.0173 0.9112 0.0205 1.0521 0.0223 1.1275 0.00462

0.0174 0.9158 0.0206 1.0563 0.0224 1.1316 0.00459

0.0175 0.9203 0.0207 1.0606 0.0225 1.1357 0.00456

0.0176 0.9248 0.0208 1.0648 0.0226 1.1398 0.00452

0.0177 0.9293 0.0209 1.0691 0.0227 1.1438 0.00449

0.0178 0.9338 0.0210 1.0733 0.0228 1.1479 0.00446

0.0179 0.9383 0.0211 1.0775 0.0229 1.1520 0.00442

0.0180 0.9428 0.0212 1.0817 0.0230 1.1560 0.00439

0.0181 0.9473 0.0231 1.1601 0.00436

0.0182 0.9517 0.0232 1.1641 0.00433

0.0183 0.9562 0.0233 1.1682 0.00430

0.0184 0.9606 0.0234 1.1722 0.00426

0.0185 0.9651 0.0235 1.1762 0.00423

0.0186 0.9695 0.0236 1.1802 0.00420

0.0187 0.9739 0.0237 1.1842 0.00417

0.0188 0.9783 0.0238 1.882 0.00414

0.0189 0.9827 0.0239 1.1922 0.00411

0.0190 0.9872 0.0240 1.1961 0.00408

0.0191 0.9916 0.0241 1.2001 0.00405

0.0192 0.9959 0.0242 1.2041 0.00402

0.0193 1.0003 0.02429 1.2076 0.00400

*d = dt.
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Table A-12 � Development Length (/dc) for Compression 
Bars with fy = 60,000 psi (in.)

Bar 
Size

f′c (normal-weight concrete), psi

3000 4000 5000 6000

  3   8.2   7.1   6.8   6.8

  4 11.0   9.5   9.0   9.0

  5 13.7 11.9 11.3 11.3

  6 16.4 14.2 13.5 13.5

  7 19.2 16.6 15.8 15.8

  8 21.9 19.0 18.0 18.0

  9 24.7 21.4 20.3 20.3

10 27.8 24.1 22.9 22.9

11 30.9 26.8 25.4 25.4

14 37.1 32.1 30.5 30.5

18 49.4 42.8 40.6 40.6

Note: See Chapter 5 for calculation of development length for compression bars.

Table A-13  Development Length (/dh) for Hooked Bars 
with fy = 60,000 psi (in.)

Bar 
Number

f′c (psi)

3000 4000 5000 6000

  3   8.2   7.1   6.4   5.8

  4 11.0   9.5   8.5   7.7

  5 13.7 11.9 10.6   9.7

  6 16.4 14.2 12.7 11.6

  7 19.2 16.6 14.8 13.6

  8 21.9 19.0 17.0 15.5

  9 24.7 21.4 19.1 17.5

10 27.8 24.1 21.6 19.7

11 30.9 26.8 23.9 21.8

Note: Modification factors may apply.
/dh * applicable modification factors Ú larger of 8db or 6 in. See Chapter 5 for 
calculation of development length for hooked bars.
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Table A-14  Preferred Maximum Number of Column Bars in One Row

Recommended 
spiral or tie bar 

number

Core size (in.) 
= column size 

Size − 2 × cover
Circular 

area (in.2)

1
2 1

2

Cover

1  bar diameters

or 1   in.

Square 
area (in.2)

Cover

Bar number Bar number

#5 #6 #7 #8 #9 #10 #11 #5 #6 #7 #8 #9 #10 #11a

  3a   9   63.6   8   7   7   6 — — —   81   8   8   8   8   4   4   4

10   78.5 10   9   8   7   6 — — 100 12   8   8   8   8   4   4

11   95.0 11 10   9   8   7   6 — 121 12 12   8   8   8   8   4

12 113.1 12 11 10   9   8   7   6 144 12 12 12   8   8   8   8

13 132.7 13 12 11 10   8   7   6 169 16 12 12 12   8   8   8

14 153.9 14 13 12 11   9   8   7 196 16 16 12 12 12   8   8

15 176.7 15 14 13 12 10   9   8 225 16 16 16 12 12 12   8

4 16 201.1 16 15 14 12 11   9   8 256 20 16 16 16 12 12   8

17 227.0 18 16 15 13 12 10   9 289 20 20 16 16 12 12   8

18 254.5 19 17 15 14 12 11 10 324 20 20 16 16 16 12 12

19 283.5 20 18 16 15 13 11 10 361 24 20 20 16 16 12 12

20 314.2 21 19 17 16 14 12 11 400 24 24 20 20 16 12 12

21 346.4 22 20 18 17 15 13 11 441 28 24 20 20 16 16 12

22 380.1 23 21 19 18 15 14 12 484 28 24 24 20 20 16 12

5 23 415.5 24 22 21 19 16 14 13 529 28 28 24 24 20 16 16

24 452.4 25 23 21 20 17 15 13 576 32 28 24 24 20 16 16

25 490.9 26 24 22 20 18 16 14 625 32 28 28 24 20 20 16

26 530.9 28 25 23 21 19 16 14 676 32 32 28 24 24 20 16

27 572.6 29 26 24 22 19 17 15 729 36 32 28 28 24 20 16

a No. 4 tie required for No. 11 or larger longitudinal reinforcement (ACI Section 7.10.5.1).
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Source: Diagrams A-15 through A-22 are from the ACI Design Handbook  
SP-17(97) and are reprinted here with the permission of the American Concrete 
Institute.
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With the foregoing in mind, the following has been 
suggested by the Concrete Reinforcing Steel Institute as a 
rough guide for numerical accuracy in reinforced concrete 
calculations:

	 1.	 Loads to the nearest 1 psf; 10 lb/ft; 100 lb concentration
	 2.	 Span lengths to about 0.1 ft
	 3.	 Total loads and reactions to 0.1 kip or three-figure 

accuracy
	 4.	 Moments to the nearest 0.1 ft-kip or three-figure 

accuracy
	 5.	 Individual bar areas to 0.01 in.2

	 6.	 Concrete sizes to 12 in.
	 7.	 Effective beam depth of 0.1 in.
	 8.	 Column loads to the nearest 1.0 kip

In general (admittedly, not always), the reader will 
find that in this text we have represented numbers used in 
calculations to an accuracy of three significant digits. If the 
number begins with 1, then four significant digits are shown. 
We round intermediate and final numerical solutions in 
accordance with this rule of thumb. When working on a 
calculator, however, one will normally maintain all digits 
and round only the final answer. For this reason, the reader 
may frequently obtain numerical results that are slightly dif-
ferent from those printed in the text. This should not cause 
undue concern.

B-2  Flow Diagrams
The step-by-step procedures for the analysis and design of 
reinforced concrete members may be presented in the form 
of flow diagrams (see Figures B-1 to B-4). To aid the reader in 
grasping the overall calculation approach, which may some-
times include cycling steps, flow diagrams for the analysis 
and design of rectangular beams and T-beams are presented 
here. These flow diagrams represent, on an elementary level, 
the type of organization required to develop computer pro-
grams to aid in analysis and design calculations.

B-1 �A ccuracy for 
Computations for 
Reinforced Concrete

The widespread availability and use of electronic calcula-
tors and computers for even the simplest of calculations has 
led to the use of numbers that represent a very high order 
of accuracy. For instance, a calculator having an eight-digit 
display will yield the following:

8
0.7

= 11.428571

It should be recognized that the numerator and denomi-
nator, each of one-figure accuracy, resulted in a number 
that indicates eight-figure accuracy. Because the quotient 
cannot be expected to be more accurate than the numbers 
that produced it, the result as represented may lead one 
into a false sense of security associated with numbers of 
very high accuracy. For instance, it is illogical to calculate 
a required steel area to four-figure accuracy when the loads 
were to two-figure accuracy and the bars to be chosen have 
areas tabulated to two- (sometimes three-) figure accuracy. 
Likewise, the involved mathematical expressions developed 
in this book and those presented by the ACI Code should 
be thought of in a similar light. They deal with a material, 
concrete, that

	 1.	 Is made on site or plant-made, is subject to varying 
amounts of quality control, and will vary from the 
design strength.

	 2.	 Is placed in forms that may or may not produce the 
design dimensions.

	 3.	 Contains reinforcing steel of a specified minimum 
strength but that may vary above that strength.

In addition, the reinforced concrete member has reinforcing 
steel that may or may not be placed at the design location, 
and the design itself is generally based on loads that may be 
only “best estimates.”

Appendix B

Supplementary Aids 

and Guidelines

	 B-1	 Accuracy for Computations for 
Reinforced Concrete

	 B-2	 Flow Diagrams



284	A ppendix B

No

No

Yes

Yes

Cross section known?
As, h, d, f'c, fy, b

Design:
see Fig. B-2
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Figure B-1  Rectangular beam analysis for moment (tension steel 
only).



	 Supplementary Aids and Guidelines	 285

Find Mu (include
beam weight)

Calculate or
assume �

Check �t;
verify �

Make beam
larger

Find Mu may include
estimated beam weight

Preferred b and h
known?

Select desired �
(Table A-5)

Required As  = �bd

Assume �
Estimate d

Determine f�           
if not knownDesign

Yes

Yes

No

No

Obtain required
 k from tables

 Tables A-7 to A-11:
k > tabulated values?

Required k =
�bd2

Mu

Sketch

Check  d

Select bars

Make beam
smaller

OR
USE 
As, min

Yes

No

Compute
required d =

�bk

Mu

Estimate h and compute
beam weight; check with
estimated beam weight;
revise Mu if necessary

Assume b

No

d
b1.5 � � 2.2?

Or make
beam smaller

Sketch

Check �t: verify �

As  = �bd

Select bars

As � As,min? 

Calculate h
(round up to

next    ")

Yes

Yes

No

Use As, min

1
2

c and fy

Obtatin required �

Required As � As,min?

Figure B-2  Rectangular beam design for moment (tension steel only).
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Figure B-3  T-beam analysis for moment.
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Figure B-4  T-beam design for moment.
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The American Society of Civil Engineers (ASCE) 
resolved in 1970 to actively support conversion to SI 
and to adopt the revised edition of the American Society 
for Testing and Materials (ASTM) Metric Practice 
guide. In 1988 Congress passed the Omnibus Trade and 
Competitiveness Act that, among other things, mandated 
that by the end of fiscal 1992, the federal government 
would require metric specifications on all the goods it 
purchased. In 1991, President George H. W. Bush signed 
Executive Order 12770, Metric Usage in Federal Government 
Programs, which required federal agencies to develop spe-
cific timetables and milestones for the transition to metric. 
A deadline of the year 2000 was set by the Federal Highway 
Administration for state implementation of the metric sys-
tem for the design and construction of federally funded 
highway projects. Under the influence of vigorous lobbying, 
Congress cancelled this deadline in 1998. Currently, in state 
departments of transportation (DOTs), there is no unifor-
mity of systems. Some use the U.S. Customary System, some 
use SI, and some allow either system. Most federal building 
construction is metricated, while very few private construc-
tion projects are being built using metric units [1].

Metric conversion involves two distinct aspects. On the 
one hand, the new units will affect design calculations and 
detailing practices. Many publications such as specifications, 
building codes, and design handbooks (and their associated 
software) are in various stages of production based on SI. 
This is essentially a paper (and electronic) change and is 
called a “soft” conversion. On the other hand, the physi-
cal sizes of some products will be affected (for instance, 
plywood will change from a 4-ft width to a slightly smaller 
1200-mm width); this is called a “hard” conversion.

Metric reinforcing steel sizes have been standardized 
based on a soft conversion rather than a hard conversion. 
That is, the physical sizes of the eleven (Nos. 3–11, No. 14, 
and No. 18) inch-pound bars remain the same, but the 
designations change and the dimensions (diameter, area, 
and so on) are specified in metric units. The metric bar 
number is the nominal diameter rounded to the nearest mm. 
Virtually all new reinforcing steel is labeled in metric units 
(see Figure C-1.) Table C-1 provides in inch-pound bar sizes 
the soft metric bar sizes and soft metric bar data.

C-1 � The International 
System of Units (SI)

The United States Customary System (or “inch-pound 
system”) of weights and measures has been used as the 
primary unit system in this book. This system developed 
from the English system (British), which had been intro-
duced in the original 13 colonies when they were under 
British rule. Even though the English system was spread 
to many parts of the world during the past three centuries, 
it was widely recognized that there was a need for a single 
international coordinated measurement system. As a result, 
a second system of weights and measures, known as the 
metric system, was developed by a commission of French 
scientists and was adopted by France as the legal system of 
weights and measures in 1799.

Although the metric system was not accepted with enthu-
siasm at first, adoption by other nations occurred steadily 
after France made its use compulsory in 1840. In the United 
States, an Act of Congress in 1866 made it lawful throughout 
the land to employ the weights and measures of the metric 
system in all contracts, dealings, or court proceedings.

By 1900 a total of 35 nations, including the major 
nations of continental Europe and most of South America, 
had officially accepted the metric system. In 1971 the 
secretary of commerce, in transmitting to Congress the 
results of a 3-year study authorized by the Metric Study Act 
of 1968, recommended that the United States change to pre-
dominant use of the metric system through a coordinated 
national program. Congress responded by enacting the 
Metric Conversion Act of 1975 that established a U.S. Metric 
Board to carry out the planning, coordination, and public 
education that would facilitate a voluntary conversion to a 
modern metric system. Today, with the exception of a few 
small countries, the entire world is using the metric system 
or is changing to its use. Because of the many versions of 
the metric system that developed, an International General 
Conference on Weights and Measures in 1960 adopted an 
extensive revision and simplification of the system. The 
name Le Système International d’Unités (International 
System of Units), with the international abbreviation SI, was 
adopted for this modernized metric system.

Appendix C
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Table C-1  �Inch-Pound Bar Designation Versus Soft Metric Bar 
Designation (with Soft Metric Bar Data)

Soft metric

Inch-pound bar 
designation Bar designation

Nominal diameter 
(mm)

Nominal area 
(mm2)

#3 #10   9.5     71

#4 #13 12.7   129

#5 #16 15.9   199

#6 #19 19.1   284

#7 #22 22.2   387

#8 #25 25.4   510

#9 #29 28.7   645

#10 #32 32.3   819

#11 #36 35.8 1006

#14 #43 43.0 1452

#18 #57 57.3 2581

Type of steel

(Produced to ASTM A615/A615M)

Producer's mill designation

(Marion Steel Company)

Size designation

(No. 32)

Figure C-1  Identification marks. This 
bar has a single longitudinal grade 
line (indicating grade 420 steel) on its 
opposite side (hidden in this photo).
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in reinforced concrete design are listed in Table C-5. From 
Table C-5, it is clear that there is a choice of ways to pres-
ent numbers. It is preferable to use numbers between 1 and 
1000, whenever possible, by selecting the appropriate prefix. 
For example, 18 m is preferred to 0.018 km or 18,000 mm.

A brief note must be made at this point concerning the 
presentation of numbers with many digits. It is common 
practice in the United States to separate digits into groups 
of three by means of commas. To avoid confusion with the 
widespread European practice of using a comma on the line 
as the decimal marker, the method of setting off groups of 
three digits with a gap, as shown in Table C-5, is recom-
mended international practice. Note that this method is 
used on both the left and right sides of the decimal marker 
for any string of five or more digits. A group of four digits 
on either side of the decimal marker need not be separated.

A significant difference between SI and other 
measurement systems is the use of explicit and dis-
tinctly separate units for mass and force. The SI base unit 
kilogram  (kg) denotes the base unit of mass, which is the 
quantity of matter of an object. This is a constant quan-
tity that is independent of gravitational attraction. The 
derived SI unit newton (N) denotes the absolute derived 

Minimum yield strengths have been established as 
420 MPa (grade 420) and 520 MPa (grade 520). These values 
are intended to be equivalent to inch-pound grade 60 and 
grade 75 materials, respectively. ASTM A615/A615M-04b 
also includes a grade 280 (280 MPa), which is equivalent to 
inch-pound grade 40. These minimum yield strengths are 
summarized in Table C-2.

C-2 � SI Style and Usage
The SI consists of a limited number of base units that estab-
lish fundamental quantities and a large number of derived 
units, which come from the base units, to describe other 
quantities.

The SI base units pertinent to reinforced concrete 
design are listed in Table C-3, and the SI-derived units per-
tinent to reinforced concrete design are listed in Table C-4.

Because the orders of magnitude of many quantities 
cover wide ranges of numerical values, SI prefixes have 
been established to deal with decimal-point placement. 
SI prefixes representing steps of 1000 are recommended to 
indicate orders of magnitude. Those recommended for use 

Table C-2  �Minimum Yield Strengths (ASTM 
A615/A615M-04b)

Metric (MPa) Inch-pound equivalent (psi)

520 (grade 520) 75,400 (grade 75)

420 (grade 420) 60,900 (grade 60)

280 (grade 280) 40,600 (grade 40)

Table C-3  SI Units and Symbols

Quantity Unit SI symbol

Length meter m

Mass kilogram kg

Time second s

Anglea radian rad

aIt is also permissible to use the arc degree and its decimal submultiples 
when the radian is not convenient.

Table C-4  SI-Derived Units

Quantity Unit SI symbol Formula

Acceleration meter per second squared — m/s2

Area square meter — m2

Density (mass per unit volume) kilogram per cubic meter — kg/m3

Force newton N kg·m/s2

Pressure or stress pascal Pa N/m2

Volume cubic meter — m3

Section modulus meter to third power — m3

Moment of inertia meter to fourth power — m4

Moment of force, torque newton meter — N·m

Force per unit length newton per meter — N/m

Mass per unit length kilogram per meter — kg/m

Mass per unit area kilogram per square meter — kg/m2
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This represents a mass per unit volume (density) where 
the unit volume is 1 cubic meter, m3. To use the density of 
the concrete to obtain a force per cubic meter, Newton’s law 
must be applied:

 F = mass times acceleration of gravity
 = mg
 = 2400(9.81)

 = 23,500 
kg # m
s2m3

 = 23,500 N/m3

 = 23.5 kN/m3

The dead load per unit length of a beam of dimensions 
b = 500 mm and h = 1000 mm can then be determined:

a 500
1000

b a 1000
1000

b(23.5) = 11.75 kN/m

Thus the load or force per unit length (1 meter) equals 
11.75 kN.

C-3 � Conversion Factors
Table C-6 contains conversion factors for the conversion of 
the U.S. Customary System units to SI units for quantities 
frequently used in reinforced concrete design.

unit of force (mass times acceleration: kg·m/s2). The term 
weight should be avoided since it is confused with mass and 
because it describes a particular force that is related solely 
to gravitational acceleration, which varies on the surface of 
the earth. For the conversion of mass to force, the recom-
mended value for the acceleration of gravity in the United 
States may be taken as g = 9.81 m/s2.

As an example, we will consider the mass of reinforced 
concrete, which, in the design of bending members, must 
be considered as a load or force per unit length of span. 
In the U.S. Customary System, reinforced concrete weighs 
150 lb/ft3. This is equivalent in the SI to

150 
lb
ft3 * a 3.2808 ft

1 m
b

3
*

1 kg
2.2046 lb

≈ 2400 
kg
m3

Table C-5  SI Prefixes

Prefix SI symbol Factor

mega M 1,000,000 = 106

kilo k 1000 = 103

milli m 0.001 = 10–3

micro m 0.000 001 = 10–6

Table C-6  Conversion Factors: U.S. Customary to SI Units

Multiply By To Obtain

Length inches * 25.4 = millimeters

feet * 0.3048 = meters

yards * 0.9144 = meters

miles (statute) * 1.609 = kilometers

Area square inches * 645.2 = square millimeters

square feet * 0.0929 = square meters

square yards * 0.8361 = square meters

Volume cubic inches * 16,387. = cubic millimeters

cubic feet * 0.028 32 = cubic meters

cubic yards * 0.7646 = cubic meters

gallons (U.S. liquid) * 0.003 785 = cubic meters

Force pounds * 4.448 = newtons

kips * 4,448. = newtons

Force per unit length pounds per foot * 14.594 = newtons per meter

kips per foot * 14,594. = newtons per meter

Load per unit volume pounds per * 0.157 14 = kilonewtons per

  cubic foot * cubic meter

Bending moment or torque inch-pounds * 0.1130 = newton meters

foot-pounds * 1.356 = newton meters

inch-kips * 113.0 = newton meters
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Solution:
	 1.		   fy = 420 N/mm2

 fc = 20 N/mm2

 b = 250 mm, d = 500 mm

 h = 570 mm, As = 1530 mm2

	 2.	 To be found: fMn.

	 3.		  r =
As

bd
=

1530
250(500)

= 0.0122

	 4.	 Check As,min (ACI 318M-11, section 10.5):

 As,min =
0.252f′c

fy
 bwd Ú

1.4
fy

 bwd

 
0.252f′c

fy
=

0.25120
(420)

= 0.00266

 
1.4
fy

=
1.4
420

= 0.00333

Therefore use 0.00333. Then

As,min = 0.00333(250 mm) (500 mm) = 416 mm2

1530 mm2 7 416 mm2             (O.K.)

	 5.	 Determine Pt from Equation (2-2) (Chapter 2):

 Pt =
0.00255 f′c b1

r fy
- 0.003

 =
0.00255(20 N/mm2)(0.85)

0.0122(420 N/mm2)
- 0.003

 = 0.00546 7 0.005

Therefore, f = 0.90

Although specified in the SI, the pascal is not universally 
accepted as the unit of stress. Because section dimensions 
and properties are generally in millimeters, it is more con-
venient to express stress in newtons per square millimeter 
(1 N/mm2 = 1 MPa).

Reference is made to the metric version of the code, 
ACI 318M-11 [2]. The metric version of the code furnishes 
equivalents for equations and data necessary for use in 
the SI. Other reference sources that contain treatment of the 
many aspects of metrication in the design and construction 
field are listed at the end of this appendix [3,4].

Example C-1

Find fMn for the beam of cross section shown in Figure C-2. 
The steel is grade 420, and f′c = 20 N/mm2.

Multiply By To Obtain

foot-kips * 1356. = newton meters

inch-kips * 0.1130 = kilonewton meters

foot-kips * 1.356 = kilonewton meters

Stress, pressure, loading  
(force per unit area)

pounds per square inch * 6895. = pascals

pounds per square inch * 6.895 = kilopascals

pounds per square inch * 0.006 895 = megapascals

kips per square inch * 6.895 = megapascals

pounds per square foot * 47.88 = pascals

pounds per square foot * 0.047 88 = kilopascals

kips per square foot * 47.88 = kilopascals

kips per square foot * 0.047 88 = megapascals

Mass pounds * 0.454 = kilograms

Mass per unit volume (density) pounds per cubic foot * 16.02 = kilograms per cubic meter

pounds per cubic yard * 0.5933 = kilograms per cubic meter

Moment of inertia inches4 * 416,231. = millimeters4

Mass per unit length pounds per foot * 1.488 = kilograms per meter

Mass per unit area pounds per square foot * 4.882 = kilograms per square meter

Table C-6  Continued

500 mm

570 mm

250 mm

3-#25 bars
(As = 1530 mm2)

Figure C-2  Cross section for Example C-1.
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Converting to SI (see Table C-6),

k = 0.4828(6.895) = 3.329 N/mm2

	 4.	 Assume that b = 400 mm:

required d = C Mu

fbk

Substituting quantities in terms of meters and newtons 
yields

 required d = C 876 * 103

0.9(0.400)(3.329 * 106)
= 0.855 m

 = 855 mm

 
d
b

 ratio =
855
400

= 2.14            (O.K.)

	 5.	 Estimate the total beam depth for purposes of deter-
mining the beam dead load. Assume a No. 36 main bar, 
a No. 10 stirrup, and a minimum cover of 40 mm. Then

h = 855 + 35.8>2 + 9.5 + 40 = 922 mm

Use a beam depth of 950 mm. From Section C-2, the 
dead load due to reinforced concrete is 23.5 kN/m3. 
Therefore, the dead load of the beam per meter length is

0.400(0.950)(23.5) = 8.93 kN/m

	 6.	 The additional Mu due to the beam dead load is

 Mu =
1.4wDL/2

8
=

1.4(8.93)(10)2

8

 = 156.3 kN # m
 total Mu = 876 + 156.3 = 1032 kN # m

	 7.	 Using r, k, and b as before, the effective depth 
required is

 required d = C 1.032 * 106

0.9(0.400)(3.329 * 106)
= 0.928 m

 = 928 mm

 
d
b

 ratio =
928
400

= 2.32           (O.K.)

	 8.	  required As = r bd

 = 0.0090(400)(928)

 = 3340 mm2

Check As,min (use Table A-5 because the given values 
of f ′c and fy correspond approximately to 3000 psi and 
60,000 psi):

 As,min = 0.0033bwd

 = 0.0033(400 mm)(928 mm)

 = 1225 mm2

 3340 mm2 7 1225 mm2         (O.K.)

	 9.	 Use four No. 36 bars:

As = 1006(4) = 4024 mm2

	 6.	  a =
Asfy

0.85f ′c b
=

1530(420)

0.85(20.0)(250)
= 151.2 mm

 Z = d -
a
2

= 500 -
151.2

2
= 424 mm

 Mn = AsfyZ

 f  Mn = 0.9(AsfyZ)

All the quantities needed for the fMn calculation have 
been determined, but some conversion is required to 
make prefixes compatible. Rather than set up prefix 
conversion for each lengthy calculation, it is suggested 
for situations such as this that quantities be substituted 
in units of meters and newtons. The results will be in the 
same units. This method also lends itself to the use of 
numerical values expressed in powers-of-10 notation. 
For the fMn calculation,

 As = 1.530 * 10-3 m2, fy = 420 * 106 N/m2,

 Z = 0.424 m

from which

 fMn = 0.9(1.530 * 10-3)(420 * 106)(0.424)

 = 245 * 103 N # m
 = 245 kN # m

Note that the final fMn is changed to kN·m. The kilo 
prefix is the most appropriate prefix for the majority of 
flexural problems that are presented in this book using 
the U.S. Customary System of units (see “Bending 
moment or torque” in Table C-6 of this text for compari-
son with ft-kips).

Example C-2

Design a rectangular reinforced concrete beam for a simple 
span of 10 m to carry service loads of 17.1 kN/m dead load 
(does not include the dead load of the beam) and 31.0 kN/m 
live load. The maximum width of beam desired is 400 mm. 
Use f ′c = 20.0 N/mm2 and fy = 420 N/mm2. Assume a 
No.  10 stirrup and sketch the design. (See Chapter 2 for 
design procedure.)

Solution
	 1.	  wu = 1.2 wDL + 1.6 wLL

 = 1.2(17.1) + 1.6(31.0)

 = 70.1 kN/m

 Mu =
wu/2

8
=

70.1(10)2

8
= 876 kN # m

	 2.	 Assume that r = 0.0090 (Table A-5). Note that the 
given f ′c and fy correspond approximately to 3000 psi 
and 60,000 psi, respectively.

	 3.	 From Table A-5 (or A-8):

required k = 0.4828 ksi
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From Equation (2-2) (Chapter 2):

 Pt =
0.00255 f ′c  bt

rfy
- 0.003

 =
0.00255(20 N/mm2)(0.85)

0.01078(420 N/mm)2
- 0.003

 = 0.0066 7 0.005

Therefore, f = 0.90 as assumed.
The design sketch is shown in Figure C-3.

Example C-3

A simply supported, rectangular, reinforced concrete beam 
300 mm wide and having an effective depth of 500 mm 
carries a total factored load wu of 70 kN/m on a 9.0-m clear 
span. (The given load includes the dead load of the beam.) 
Design the web reinforcement (stirrups). The steel is grade 
280, and f ′c = 20N/mm2.

Solution
	 1.	 Draw the shear force Vu diagram (see Figure C-4):

Vu =
wu/
2

=
70(9)

2
= 315 kN

At the critical section

V*u = 315 -
500
1000

 (70) = 280 kN

	 2.	 Determine if stirrups are required:

 Vc = 0.172f ′cbwd

 = 0.17120(300)(500) = 114 * 103 N = 114 kN

 fVc = 0.75(114) = 85.5 kN

The minimum beam width for four No. 36 bars may be 
determined (closely) from Table A-3, noting that a No. 36 
bar is approximately equivalent to a No. 11 bar. Thus

minimum b = 14(25.4) = 356 mm 6 400 mm (O.K.)

	10.	 The total beam depth h may be taken as the effective 
depth required, plus minimum concrete cover, plus stir-
rup diameter, plus one-half the main steel diameter:

required h = 928 + 40 + 9.5 + 35.8>2 = 995 mm

Use h = 1000 mm.

	11.	 Check Pt by calculation. Due to rounding of h, 
d = 928 + 5 = 933 mm. The final r is

r =
As

bd
=

4024 mm2

400 mm(933 mm)
= 0.01078

#10 stirrup

40 mm clear (typ.)

4-#36 bars

1000 mm

400 mm

Figure C-3  Design sketch for Example C-2.

Stirrups required
to this point

Face of
support

00

1 m

70 kNReq’d fVs

Vu*

Vu
(kN)

fVc

4.50 m

3.89 m 0.61 m

3.28 m

x

500 mm = 0.50 m

315

85.5

42.8

280 Sym.

Critical section

*

0.5 fVc

Figure C-4  Vu diagram.
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 0.332f ′cbwd = 0.33120.0(300)(500)

 = 221 * 103 N

 = 221 kN

At the critical section, the required Vs is

 V*s =
fVs

f
=

V*u - fVc

f

 =
280 - 85.5

0.75
= 259 kN

Because 259 kN 7 221 kN, the maximum spacing will 
be d>4 or 300 mm, whichever is smaller, from the face 
of the support out to where the required Vs drops below 
221 kN. This maximum spacing is

d
4

=
500
4

= 125 mm

125 mm is less than 300; therefore, use 125 mm. Next, 
determine where Vs = 221 kN, which is where the maxi-
mum spacing can be increased to the smaller of d>2 or 
600 mm.

d
2

=
500
2

= 250 mm

250 mm 6 600 mm; therefore, use 250 mm.

Vs =
fVs

f
=

Vu - fVc

f
=

(315 - 70x) - fVc

f
= 221 kN

from which

x =
f221 + fVc - 315

-70
= 0.911 m

Therefore, the maximum spacing allowed increases to 
250 mm at 0.911 m from the face of the support.

A second criterion for maximum spacing is based 
on the code minimum area requirement (ACI 318M-11, 
Section 11.4.6.3).The governing equation may be rewrit-
ten in the form

smax …
Avfyt

0.0622f ′cbw

=
258(280)

0.062120(300)
= 868 mm

Check the upper limit:

smax =
Avfyt

0.35bw
=

258(280)

0.35(300)
= 688 mm

Of the foregoing maximum spacing criteria, the smallest 
value will control. Maximum spacing requirements are 
summarized in Figure C-5.

	 7.	 Next, determine the spacing requirements based on 
shear strength. At the critical section, the required 
spacing is 130 mm. The maximum spacing is 125 mm 
to 0.911 m from the face of support and 250 mm 
thereafter. At other points along the span (x meters from 

Stirrups must be provided if Vu 7 0.5fVc:

0.5 fVc = 0.5(85.5) = 42.8 kN

Stirrups are required, as 280 7 42.8.

	 3.	 Find the length of span over which stirrups are required, 
referencing from the face of the support:

315 - 42.8
70

= 3.89 m

Note this location on the Vu diagram as well as the 
location where Vu = fVc = 85.5 kN. This location is 
obtained from

315 - 85.5
70

= 3.28 m

	 4.	 Designate “Req’d fVs” on the Vu diagram:

 required fVs = max.Vu - fVc - mx

 = 315 - 85.5 - 70x

 = 230 - 70x

This applies in the range

500 mm … x … 3280 mm

	 5.	 Assume a No. 10 stirrup (Av = 2As = 142 mm2) and 
compute the spacing requirement at the critical section 
based on the required fV*s. At this location, the stirrups 
will be most closely spaced. From ACI Equation (11-15),

required s* =
Avfytd

V*s
=

fAvfytd

required fV*s

where the denominator is determined with reference to 
Figure C-4:

required fV*s = V*u - fVc

Using basic units of meters and newtons,

 required s* =
0.75(142 * 10-6)(280 * 106)(0.500)

(280 - 85.5) * 103

 = 0.077 m = 77 mm

This is less than our 100-mm (4-in.) minimum spacing 
rule of thumb. Therefore, increase the stirrup size to a 
No. 13 bar (Av = 258 mm2). Then

 required s* =
0.75(258 * 10-6)(280 * 106)(0.500)

(280 - 85.5) * 103

 = 0.139 m = 139 mm

We will use a 130-mm spacing as the stirrup spacing 
between the face-of-support and the critical section, 
subject to further checks.

	 6.	 Establish the ACI Code maximum spacing require-
ments. From the ACI Code (318M-11), Section 11.4.5, 
if Vs is less than 0.332f ′cbwd, the maximum spacing is 
d>2 or 600 mm, whichever is smaller; otherwise, the 
maximum spacing will be the smaller of d>4 or 300 mm.



296	A ppendix C

Using basic units of meters and newtons, the calcula-
tion for required spacing results in

 required s =
0.75(258 * 10-6)(280 * 106)(0.500)

230 * 103 - (70 * 103)x

 =
27.1 * 103

230 * 103 - (70 * 103)x

 =
27.1

230 - 70x

where the resulting spacing is in meters.
The results for several arbitrary values of x are 

shown tabulated and plotted in Figure C-5. As an exam-
ple, compute the required stirrup spacing at a distance 
of 1 m from the face-of-support (x = 1 m):

required s =
27.1

230 - 70(1)
= 0.169 m = 169 mm

Similarly, the required spacing may be found at other 
points along the beam (see Figure C-5).

	 8.	 Using Figure C-5, the stirrup pattern shown in 
Figure  C-6 may be developed. Stirrups have been 
placed the full length of the span, which is a common, 
conservative practice.

the face of the support), the required spacing may be 
determined as follows:

required s =
Avfytd

required Vs
=

fAvfytd

required fVs

where the denominator can be determined from the 
expression given in step 4, where

required fVs = 230 - 70x

*

Sym.

x (m)

0.9

1.0

1.5

1.75

Req’d s (mm)

162

169

217

252

0.61 m

No stirrups req’d.

smax 

120 

180 

140 

260 

200 

240 

160 

220 

0 5.02.01.00.5 3.0 4.0

Dist. from F.O.S. (m)

Sp
ac

in
g 

s 
(m

m
)

F.O.S.

Figure C-5  Stirrup spacing requirements for Example C-3.

Sym.

60 mm

F.O.S.

105 mm

4500 mm

125 mm

Main reinforcing
steel

10 @ 250 mm7 @

160 mm

6 @

Figure C-6  Stirrup spacing, Example C-3.
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	 3-9.	 fMn = 1120 ft-kips
	 3-11.	 fMn = 422 ft-kips
	 3-13.	 6 No. 10
	 3-15.	 a.	 4 No. 9 bars (two layers)
	 	 b.	 4 No. 8 bars (one layer)
	 3-17.	 a.	 wLL = wDL = 1.87 kips/ft
		  b.	 1.  fMn = 341 ft-kips
			   2.  fMn = 344 ft-kips
	 3-19.	 a.	 fMn = 582 ft-kips
		  b.	 with 4 No. 8 compression bars, fMn = 696 ft-kips
	 3-21.	 3 No. 8 (compression steel), 5 No. 11 (tension steel 

2 layers, 2 up, 3 down)
	 3-23.	 2 No. 9 bars (compression steel), 4 No. 9 bars  

(two layers, tension steel)
	 3-25.	 2 No. 10 bars (compression steel), 5 No. 9 bars  

(tension steel, in one layer)

Chapter 4
	 4-1.	 7150 lb 6 9000 lb (N.G. in shear)
	 4-3.	 Max. Vu = 35.6 kips
	 4-5.	 s = 7.76-in. spacing
	 4-7.	 No. 3 stirrups (from F.O.S.): 3 in., 8 sp @ 6 in.,  

11 sp @ 10 in.
	 4-9.	 Double-loop No. 3 stirrups (from F.O.S.): 4 in.,  

11 sp @ 9 in., 6 sp @ 20 in.
	 4-11.	 No. 3 stirrups (from F.O.S.): 2 in., 7 sp @ 9 in.,  

7 sp @ 16 in.
	 4-13.	 No. 3 stirrups (from F.O.S.): 2 in., 6 sp @ 6 in.,  

5 sp @ 8 in., 3 sp @ 12 in.
	 4-15.	 No. 3 stirrups (from F.O.S.): 4 in., 14 sp @ 13 in.
	 4-17.	 Tcr = 24.3 ft-k: torsion may not be neglected

Chapter 5
	 5-1.	 55.4 in.
	 5-3.	 32.7 in. Use 2-in. (min.) side cover.
	 5-5.	 No. 4
	 5-7.	 /d = 69.6 in. 7 49.5 in. (N.G.); 180° hook: 

/dh = 16.9 in.
	 5-9.	 At A, req’d lap = 32.2 in.; at B: req’d lap = 54.3 in.
	 5-11.	 Req’d lap = 25.4 in.
	 5-13.	 a.	 Cut 2 No. 9 @ 13 ft-0 in. from centerline.
		  b.	� No. 3 stirrups (from F.O.S.): 3 in., 3 sp @ 15 in.,  

6 sp @ 5 in., 8 sp @ 15 in.

Chapter 1
	 1-1.	 a.	 w = 467 lb/ft
		  b.	 w = 488 lb/ft
	 1-3.	 fr = 0.356 ksi; ACI fr = 0.411 ksi
	 1-5.	 ftop = 0.396 ksi
	 1-9.	 Mcr = 531 in.-kips

Chapter 2
	 2-1.	 a.	 Mn = 421 ft-kips
		  b.	 Mn = 515 ft-kips (+22%); (As: +27%)
		  c.	 Mn = 501 ft-kips (+19%); (d: +16.7%)
	 	 d.	� Mn = 436 ft-kips (+3.6%); ( f′c:+33.3%)
	 2-3.	 a.	 fMn = 213 ft-kips
		  b.	 fMn = 310 ft-kips (+45.5%); (fy: +50%)
	 2-5.	 Mu = 939 ft-kips
		  a.	 fMn = 894 ft-kips (N.G.)
	 	 b.	 fMn = 1072 ft-kips (O.K.)
	 2-7.	 Mu = 164.5 ft-kips

fMn = 169 ft-kips (O.K.)
	 2-9.	 fMn = 350 ft-kips 7 304 ft-kips (O.K.)
	 2-11.	 fMn = 41.4 ft-kips 7 35.5 ft-kips (O.K.)
	 2-13.	 As designed, fMn = 19.32 ft-kips; as built,  

fMn = 11.96 ft-kips (−38.1%)
	 2-15.	 4 No. 9
	 2-17.	 3 No. 11 fMn = 417 ft-kips
	 2-19.	 6 No. 9 (two layers, 1-in. clear.) fMn = 540 ft-kips
	 2-21.	 b = 16 in., h = 32 in., 5 No. 9
	 2-23.	 b = 18 in., h = 35 in., 6 No. 9
	 2-25.	 b = 16 in., h = 34 in., 5 No. 10
	 2-27.	 b = 12 in., h = 27 in., 3 No. 11
	 2-29.	 (+Moment): b = 11 in., h = 24 in., and 2 No. 9  

(−Moment): same b and h, and 2 No. 6
	 2-31.	 a.	� 6 in. slab, No. 5 @ 15 in. o.c. main steel, No. 4  

@ 18 in. o.c. shrinkage and temperature steel
		  b.	� 4 in. slab, No. 6 @ 12 in. o.c. main steel, No. 3  

@ 14 in. o.c. shrinkage and temperature steel

Chapter 3
	 3-1.	 fMn = 303 ft-kips
	 3-3.	 fMn = 439 ft-kips
	 3-5.	 a.	 fMn = 1527 ft-kips
		  b.	 As = 12.43 in.2

	 3-7.	 fMn = 856 ft-kips

Appendix D

Answers to Selected 

Problems
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	 9-9.	 Use a column 14 in. * 14 in., 6 No. 9 bars, No. 3 ties 
@ 14 in. o.c.

	 9-11.	 eb = 13.29 in., fPn = 341 kips
	 9-13.	 Use a column 24 in. diameter; 10 No. 10 bars,  

3
8 in. diameter spiral at 2 14 in. o.c.

Chapter 10
	 10-1.	 Width = 24 in., depth = 12 in., longitudinal steel: 

3 No. 4 bars
	 10-3.	 Width = 6 ft-0 in depth = 1¿-3–, transverse steel:  

No. 6 @ 11 in. o.c.; longitudinal steel: 7 No. 5 bars
	 10-5.	 9 ft-0 in. square, depth = 2 ft-0 in., 11 No. 7 bars 

each way
	 10-7.	 Rectangular footing, 7 ft-0 in * 11 ft.-6 in., 

depth = 2 ft-0 in., 9 No. 8 bars (long direction),  
15 No. 6 bars (short direction)

	 10-9.	 Rectangular footing, 19 ft-6 in. * 23 ft- 9 in.
	10-11.	 Footing for column A: 7 ft-6 in. square; footing for 

column B: 8 ft-2 in. square

Chapter 11
	 11-1.	 f = ;0.209 ksi
	 11-3.	 w = 1.34 kips/ft
	 11-5.	 Midspan (transfer): ftop = 0.929 ksi (tens),  

fbott = 2.66 ksi (comp); midspan (full load):  
ftop = 0.477 ksi (comp), fbott = 1.259 ksi (comp);  
at end supports (only prestressing stresses exist):  
ftop = 1.085 ksi (tension), fbott = 2.82 ksi (comp)

	 11-7.	 ftop = 2.20 ksi (comp), fbott = 0.132 ksi (comp)
	 11-9.	 fMn = 889 ft-kips, Mu = 763 ft-kips (O.K.)

Chapter 12
	 12-3.	 Max. stringer spacing = 92.9 in.
	 12-5.	 Use 4 * 10(S4S)
	 12-7.	 Max. shore spacing = 37.0 in.
	 12-9.	 Max. shore spacing = 35.4 in.
	12-11.	 Joists @ 16 in. o.c., stringers @ 5 ft-9 in. o.c.,  

4 * 4 (S4S) shores @ 4 ft-6 in. o.c., guy wire brac-
ing @ 12 ft (max.) o.c. on all sides

	12-13.	 Studs @ 12 in. o.c., wales @ 28 in. o.c., max. tie 
spacing = 32 in. o.c., guy wire bracing @ 25 ft 
(max.) o.c. on each side of the wall

Chapter 6
	 6-1.	 Mu = -3.03 ft-kips, +5.19 ft-kips, -7.26 ft-kips, 

+4.54 ft-kips, -6.60 ft-kips; Vu = 3.30 kips, 3.8 kips
	 6-3.	 b = 12 in., h = 24 in.; end span: 2 No. 6 bars for -M 

@ end support (with 180° hook), 2 No. 8 bars for 
+M: interior span: 3 No. 8 bars for −M @ interior 
support, 2 No. 8 bars for +M

Chapter 7
	 7-1.	 a.	� y = 11.61 in., Icr = 20,350 in.4

	 	 b.	� y = 1.68 in., Icr = 72.7 in.4

		  c.	� y = 7.63 in., Icr = 6159 in.4

	 7-3.	 a.	 ¢ = 0.36 in.
		  b.	 ¢ = 0.43 in.
	 7-5.	 ¢ = 0.34 in. 6 0.40 in. (O.K.)
	 7-7.	 a.	 s = 3.3 in.; max. s = 10.31 in. (O.K.)
		  b.	 s = 8.0 in.; max. s = 12 in. (O.K.)

Chapter 8
	 8-1.	 a.	 Total H = 7.01 kips/ft
		  b.	 Total H = 6.9 kips/ft
	 	 c.	 Total H = 8.0 kips/ft
		  d.	 Total H = 12.5 kips/ft
	 8-3.	 Overturning F.S. = 3.29, sliding F.S. = 1.35,  

pmax = 0.80 ksf, pmin = 0.55 ksf
	 8-5.	 No. 7 @ 8 in. o.c.; use a 90° standard hook
	 8-9.	 No. 4 HEF @ 18 in. o.c., No. 4 VEF @18 in. o.c., 

6 No. 9 vertical bars each end of wall spread over an 
end zone length of 12 in. (required minimum end 
zone length is 6 in.)

Chapter 9
	 9-1.	 a.	� fPn(max) = 530 kips, required ties are No. 4  

@ 14 in. o.c.
		  b.	� fPn(max) = 1156 kips, required ties are No. 3  

@ 18 in. o.c. (three per set)
		  c.	� fPn(max) = 759 kips, required ties are No. 3  

@ 16 in o.c. (two per set)
	 9-3.	 fPn(max) = 636 kips, required ties = No. 4 @ 16 in. o.c.,  

PDL = PLL = 227 kips
	 9-5.	 fPn(max) = 840 kips, required spiral = 3

8 in. diam.  
@ 2 in. o.c.

	 9-7.	 Use 12 No. 9 bars (four per face), required ties are 
No. 3 @ 18 in. o.c. (three per set)



299

A
Av defined, 64
Accuracy of computations, see Reinforced 

concrete
ACI Building Code (318-11), 1
Aggregates for concrete, 1–2
Allowable bending stress, 6, 219–220
Allowable soil pressure, 180, 189
Allowable stress design, 12
Allowable stresses for form lumber, 

220, 222
Anchorage of bars, see Development length
Anchors, 215
Answers to selected problems, 297
Approximate moments in continuous 

girders, 257
Approximate shears in continuous 

girders, 257
ASTM, 2, 4, 10, 266
Axial load on columns defined, 158

B
β1, value of, 16–17
Balanced beam, see Beams, reinforced 

concrete
Balanced failure mode, 18–19
Bar

fabricator, 240–241
lists, 241, 248–249
marks, 241–248
sizes, 4
supports, 251
tags, 252
typical bends, 248

Bar cutoffs, 94
in continuous spans, 104
at simple supports, 99
in tension zones, 98

Bars, areas of
per foot of slab, 26, 268
for multiples of bars, 267

Basement walls, 148

Base SI units, 290
Basic development length

compression bars, 89, 279
hooked bars, 89, 279

Beams, reinforced concrete, 12
analysis and design methods, 12
analysis for moment

doubly reinforced, 48, 49
rectangular, 24

flow diagram, 284
T-beam, 40

flow diagram, 286
balanced, 18
behavior under load, 13
crack control, 124
design of (rectangular)

depth-width ratios, 30
recommended ρ values, 30, 269

doubly reinforced, 48
additional code requirements, 56
compression steel not yielding, 51
design for moment, 54
summary of analysis procedure, 53
summary of design procedure, 55

equivalent stress distribution, 16
failure of, 15
formwork design example, 227
irregular cross-sections, 43
methods of analysis and design, 12
minimum steel requirement, 20
practical moment strength, 21
rectangular (tension steel only)

analysis for moment, 22
design for moment, 27

sketch for, 30
flexural strength, 15
free design, 29
summary of analysis procedure, 24
summary of design procedure, 31

shear in, 62
strength requirements, 21
torsion design procedure, 78

Bearing lug, 144
Bearing strength, see Footings
Bearing walls, 129, 146, 147
Bending, heavy/light, 250
Bends, typical, 249
Billet steel, 4
Brittle failure mode, 18
Buildings, reinforced concrete, 255–264
Bundled bars, see Development length
Buttress wall, 129

C
Cantilever retaining walls

design of, procedure, 132
additional details, 141
footing base shear key, 144
heel, 135
soil pressures, 134
stability analysis, 133
stem, 138
stem bar cutoffs, 139
toe, 132

rules of thumb for proportioning, 132
Code, see ACI Building Code (318-11)
Coefficient of

active earth pressure, 130
passive earth pressure, 130

Coefficient of resistance, 22
tabulated values for, 270–278

Coefficients for shear and moment, 105
Column capital, 25
Columns

analysis of, short, 161
code requirements for, 159
composite, 157
cover requirements, see Cover 

requirements
design of, short, 162
effective length, 173
footings for, 184
forms for, 235
interaction diagram, 170

Index
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rectangular, 189
square, 185
steel distribution in, 189, 192
trapezoidal, 194
types of, 179
unreinforced concrete, 179
wall, 179

under light loads, 183
Form liners, 215
Formwork, 213

for beams, 227
for columns, 235
deflections in, 217
design approach for, 216
design equations for, 217–218
guy wire design, 226
loads and pressures on, 215
lumber for, 214

allowable stresses, 219
base design values for, 220
properties of, 219

materials and accessories, 214
plywood for, 214
requirements for, 213
for slabs, 221
for walls, 230
wood shore design, 222, 225

G
Galvanized reinforcing, 5
Girders, 28, 38, 257
Grade line, 4, 289

H
Hangers, 215
Hardboard, 214
Heavy bending, 250
High-density overlaid (HDO) plyform, 214
Hook details, standard, 251
Hooks, 90
Hydration, 1

I
I, see Moment of Inertia
Idealized stress-strain diagram for steel, 4
Immediate deflection, 122
Inch-pound system, 288
Incising factor, 220
Inserts, 215
Internal couple method, 6
Inverted T-girder, 44
Irregular cross sections, 43
Isolated spread footings, 179

J
Jacketing of concrete members, 256

K
Ke defined, 222
k, see Coefficient of resistance
Keys in walls, 143
Kickers, 227

immediate, 122
long term, 122

Deformed bars, 4
Derived SI units, 290
Design loads, 21
Detailing concrete structures, 240
Development length, 84

bundled bars, 86
compression bars, 89
hooks, 90
at simple supports, 99
tension bars, 85
of web reinforcement, 92

Diagonal tension, 63
Doubly reinforced beams, see Beams
Dowels, 143, 185, 189
Drop panel, 25
Ductile failure mode, 18
Ductility requirements, 19

E
E, modulus of elasticity, see Concrete
Earth pressure, see Walls, lateral forces on
Eccentrically loaded columns, 164, 165
Effective depth, 13
Effective length for formwork shores, 223
Elastic design of beams, 12
End anchorage, 85, 201
Epoxy-coated reinforcing, 5, 85
Equilibrium torsion, 74
Equivalent fluid pressure, 130
Equivalent fluid weight, 130
Equivalent stress distribution, see Beams
Excess reinforcement factor, 86
Extras, 250
Extreme tension steel, defined, 19
Pt defined, 33

F
F*c defined, 223
Fabricating standards, 248
Fabricating tolerances, 251
Fins, 213
Flat plate, 25
Flat slab, 25
Flexural bond, 84
Flexure, 12
Flexure formula, 6
Floor slab formwork design example, 

223–227
Flow diagrams

rectangular beam analysis, 284
rectangular beam design, 285
T-beam analysis, 286
T-beam design, 287

Footing base shear key, 144
Footings

bearing strength, 185, 188
cantilever (strap), 196
combined, 194
eccentrically loaded, 193
individual column, 184

Columns (continued)
large eccentricity, 164

analysis, 165
design, 170

load-moment relationship, 164
minimum spiral steel reinforcement 

ratio, 160
f factor considerations, 165
preliminary sizing, 256
reinforcing details, 159
short, 158
slender, 173
strength of axially loaded, small 

eccentricity, 158
typical tie arrangements for, 160

Column stability factor, 223
Compatibility torsion, 73
Composite columns, see Columns
Compression-controlled section, 

defined, 19
Compression splices, 94
Compression steel, 49
Compressive strength of concrete, see 

Concrete
Computation accuracy, 283
Computer detailing, 251
Concrete, 1

aggregates for, 1
in compression, 2
compressive strength of, 2–3
creep in, 3, 122
design constants, 269
modulus of elasticity, 2
modulus of rupture, 3
plain, see Plain concrete
strength-time relationship, 3
stress-strain curve, 2
in tension, 3
weight of, 2

Continuous construction, 104
coefficients for shear and moment, 105

Continuous floor systems, 106
Continuous-span bar cutoffs, 104
Contract documents, 240
Conversion factors (U.S. Customary  

to SI), 291
Corrosion of reinforcing steel, 5
Counterfort wall, 129
Cover requirements

beams and girders, 28
columns, 159
slabs, 26

Crack control, 124
in deep beams, 125

Cracking moment, 3, 6, 122
Creep, see Concrete
Critical section for shear, 67

D
Deflections, 119

for continuous spans, 124
cracking moment Mcr, 122
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Repair of concrete structures, see 
Strengthening of concrete 
structures

Resisting moment, 6
Retaining walls, 129

lateral forces on, 129
r, see Reinforcement ratio
Rolling shear, 217
Rules of thumb, 255

S
Schedules, 248
Serviceability, 119
Service loads, 13, 21, 119
Shear

analysis procedure, 65
design for

in beams, see Beams, reinforced 
concrete

in footings, 181, 182, 184
in slabs, 64, 109

in girders, 257
Shear and moment equations, 105
Shear friction, 143
Shear reinforcement

design requirements, 63
Shear span, 63
Shear strength in footings, 184
Shearing schedule, 253
Shear walls, 148

design considerations, 151
design example, 153
layout, 149
strength of, 152

Shop drawing, 241
Shores, see Formwork, wood shore design
Short column, defined, 158
Shrinkage and temperature steel, see Slabs
SI, 288

prefixes, 290
style and usage, 290

Sidesway, 173
Slabs, 24

cover requirements, 26
on ground, 33
minimum reinforcement, 26
minimum thickness, 26
one-way, 25

analysis for moment, 26
design for moment, 33
shrinkage and temperature steel, 26
thickness selection, 33

two-way, 24
Slender columns, see Columns
Slenderness ratio, 173
Sliding factor of safety, 134
Spacing requirements for bars, 27

in slabs, 26
Span length of beams and slabs, 32
Special fabrication, 250
Spiral columns, 157
Spirals, 157, 159

Placing drawings, 241
Plain concrete, 6, 179
Plastic coated plywood, 214
Plyform, 214

section properties and design  
values, 218

safe span, table, 236
Plywood, 214
Portland cement, 1
Post-tensioning, 200
Practical moment strength of beams, see 

Beams, reinforce concrete
Pressure on formwork, 215
Prestressed concrete, 199

cracks in, 199
design notes, 210
draped tendons, 205
flexural strength analysis, 210
load balancing method, 206
loading stages, 203
materials, 202
method of superposition, 206
rectangular beam analysis, 203
typical precast members, 205

Prestress losses, 205
Pretensioning, 199
Principal planes, 62
Principal stresses, 62
Project for the students, reinforced 

concrete buildings, 258–264
Proportional limit, 12
Punching shear, 48, 184

R
Rectangular beams, see Beams
Rectangular T-beam, 40
Reinforced concrete, 1, 12

accuracy of computations, 283
buildings, practical considerations, 

255–264
rules of thumb, 255
columns, preliminary sizing of, 254
girders, 253
project for the students, 258–264
strengthening and rehabilitation, 258

weight, 10
Reinforcement

ratio, defined, 22
for torsion, 76
in shear walls, 151

Reinforcing bars, 4
anchorage, see Development length
areas of, see Bars, areas of
cover required, see Cover,  

requirements
distribution in tension flanges, 113
lengths available, 4, 94
metric, 288
properties and specifications, 266
selection of, for beams, 28
tolerances, 248
typical bends, 249

L
/a defined, 99
/d, see Development length
/db, see Basic development length
/dh basic development length for hooks, 90
/e defined, 222
lambda (λ) defined, 3
Lateral drift, 173
Light bending, 250
Load factors, 21
Loads on formwork, 215
Loop stirrup, 28
Lumber for formwork, see Formwork, lum-

ber for

M
Mcr, 6, 122
Marking systems, 241
Mass, 290
Maximum number of column bars in one 

row, 280
Mesh, see Welded wire reinforcing
Metrication, 288
Minimum area of shear reinforcement, 64
Minimum flexural tension steel area

one-way slabs, 25
rectangular beams, 20
T-beams, 40

Minimum required beam widths, 267
Minimum thickness for slabs, 26, 32
Modular ratio, 120
Modulus of elasticity

for concrete, see Concrete
for reinforcing steel, 4

Modulus of rupture for concrete, see 
Concrete

Moment arm, 6
Moment of inertia

cracked section, 119, 120
effective, 120
gross section, 10, 120

Multiple-loop stirrups, 66

N
n, see Modular ratio
Net tensile strain, 17, 19
Neutral axis, 6, 14, 19
Neutral axis, transformed section, 121
Nominal moment strength, 15

O
One-way slabs

analysis for moment, 25
design for moment, 32

Overlaid plywood, 214
Overturning factor of safety, 133

P
Pascal, 292
P-delta effect, 174
Pedestal, 157, 185
f, see Strength reduction factor
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Transformed concrete cross-section, 
120, 201

True T-beam, 40
Truss bars, 95
Two-way slab, 24

U
Ultimate load, 13
Ultimate strength design, 13

W
Wall footings, 179

longitudinal steel in, 181, 183
under light loads, 183

Wall form design, 230
Walls

lateral forces on, 129
retaining, see Retaining walls
types of, 128

Water-cement ratio, 1
Web reinforcement, 63

development of, 92
Weight

of concrete, 2
of reinforced concrete, see Reinforced 

concrete, weight
versus mass, 291

Welded wire reinforcing, 5
Workability of concrete, 1
Working stress design (WSD), 13

Y
Yield stress, 4

doubly reinforced beam design, 55
one-way slab design, 33
rectangular beam analysis, 24
rectangular beam design, 31
short column analysis and design, 164
stirrup design, 66
T-beam analysis for moment, 47
T-beam design for moment, 47
torsion design, 78

Surcharge, 131
Sustained live load, 122
Sway frame, 173

T
T-beams, 38

analysis, 40
design for moment, 44
distribution of tension steel in  

flange, 113
effective flange width, 40
minimum steel, 40
rectangular, 40

Tendons, 205
Tensile strength of concrete, 3
Tension-controlled section,  

defined, 19
Tied columns, 157
Ties

in columns, 160
in forms, 215

Torsion, 72
design procedure, 78

Transfer stage, 200, 202
Transition region, 19

Splices, 94
Split-cylinder test, 3
Splitting tensile strength, 3
Spreaders, 215
Steel ratio, see Reinforcement, ratio  

defined
Stirrup design

notes on, 66
procedure, 66
requirements at bar cutoffs, 98

Strain in concrete, maximum, 15
Strand, tensile strength, 202
Strap footing, see Footings, cantilever 

(strap)
Strength design method assumptions, 14
Strength of columns, 158
Strength reduction factor (f), 21
Strength requirements for beams, see 

Beams, reinforced concrete
Strengthening of concrete structures, 256
Stress-strain curve

for concrete, see Concrete
for reinforcing steel, 4

Structural drawings, 241
Structural lumber, see Formwork, 

lumber for
Structural steel

on bearing walls, 146
columns on footings, 184
composite columns, 157

Student design project problem, 256–259
Summary of procedure

calculation of tension /d, 87
doubly reinforced beam analysis, 53
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