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Preface

INTENDED AUDIENCE

Engineers play a significant role in the modern world. They are responsible for the design and
development of most of the products that our society uses, as well as the manufacturing
processes that make these products. Engineers are also involved in many aspects of the man-
agement of both industrial enterprises and business and service organizations. Fundamental
training in engineering develops skills in problem formulation, analysis, and solution that are
valuable in a wide range of settings.

Solving many types of engineering problems requires an appreciation of variability and
some understanding of how to use both descriptive and analytical tools in dealing with variabil-
ity. Statistics is the branch of applied mathematics that is concerned with variability and its
impact on decision making. This is an introductory textbook for a first course in engineering
statistics. Although many of the topics we present are fundamental to the use of statistics in other
disciplines, we have elected to focus on meeting the needs of engineering students by allowing
them to concentrate on the applications of statistics to their disciplines. Consequently, our exam-
ples and exercises are engineering based, and in almost all cases, we have used a real problem
setting or the data either from a published source or from our own consulting experience.

Engineers in all disciplines should take at least one course in statistics. Indeed, the
Accreditation Board on Engineering and Technology is requiring that engineers learn about
statistics and how to use statistical methodology effectively as part of their formal undergrad-
uate training. Because of other program requirements, most engineering students will take
only one statistics course. This book has been designed to serve as a text for the one-term 
statistics course for all engineering students.

The Fifth edition has been extensively revised and includes some new examples and many
new problems. In this revision we have focused on rewriting topics that our own teaching 
experience or feedback from others indicated that students found difficult.

ORGANIZATION OF THE BOOK

The book is based on a more comprehensive text (Montgomery, D. C., and Runger, G. C.,
Applied Statistics and Probability for Engineers, Fifth Edition, Hoboken, NJ: John Wiley &
Sons, 2011) that has been used by instructors in a one- or two-semester course. We have taken
the key topics for a one-semester course from that book as the basis of this text. As a result of
this condensation and revision, this book has a modest mathematical level. Engineering
students who have completed one semester of calculus should have no difficulty reading
nearly all of the text. Our intent is to give the student an understanding of statistical method-
ology and how it may be applied in the solution of engineering problems, rather than the math-
ematical theory of statistics. Margin notes help to guide the student in this interpretation and

x
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PREFACE xi

understanding. Throughout the book, we provide guidance on how statistical methodology is
a key part of the problem-solving process.

Chapter 1 introduces the role of statistics and probability in engineering problem solving.
Statistical thinking and the associated methods are illustrated and contrasted with other engi-
neering modeling approaches within the context of the engineering problem-solving method.
Highlights of the value of statistical methodologies are discussed using simple examples.
Simple summary statistics are introduced.

Chapter 2 illustrates the useful information provided by simple summary and graphical
displays. Computer procedures for analyzing large data sets are given. Data analysis methods
such as histograms, stem-and-leaf plots, and frequency distributions are illustrated. Using these
displays to obtain insight into the behavior of the data or underlying system is emphasized.

Chapter 3 introduces the concepts of a random variable and the probability distribution that
describes the behavior of that random variable. We introduce a simple 3-step procedure for struc-
turing a solution to probability problems. We concentrate on the normal distribution, because of its
fundamental role in the statistical tools that are frequently applied in engineering. We have tried to
avoid using sophisticated mathematics and the event–sample space orientation traditionally used to
present this material to engineering students. An in-depth understanding of probability is not nec-
essary to understand how to use statistics for effective engineering problem solving. Other topics in
this chapter include expected values, variances, probability plotting, and the central limit theorem.

Chapters 4 and 5 present the basic tools of statistical inference: point estimation, confi-
dence intervals, and hypothesis testing. Techniques for a single sample are in Chapter 4, and
two-sample inference techniques are in Chapter 5. Our presentation is distinctly applications
oriented and stresses the simple comparative-experiment nature of these procedures. We want
engineering students to become interested in how these methods can be used to solve real-
world problems and to learn some aspects of the concepts behind them so that they can see
how to apply them in other settings. We give a logical, heuristic development of the tech-
niques, rather than a mathematically rigorous one. In this edition, we have focused more
extensively on the P-value approach to hypothesis testing because it is relatively easy to un-
derstand and is consistent with how modern computer software presents the concepts.

Empirical model building is introduced in Chapter 6. Both simple and multiple linear re-
gression models are presented, and the use of these models as approximations to mechanistic
models is discussed. We show the student how to find the least squares estimates of the regres-
sion coefficients, perform the standard statistical tests and confidence intervals, and use the
model residuals for assessing model adequacy. Throughout the chapter, we emphasize the use
of the computer for regression model fitting and analysis.

Chapter 7 formally introduces the design of engineering experiments, although much of
Chapters 4 and 5 was the foundation for this topic. We emphasize the factorial design and, in
particular, the case in which all of the experimental factors are at two levels. Our practical ex-
perience indicates that if engineers know how to set up a factorial experiment with all factors
at two levels, conduct the experiment properly, and correctly analyze the resulting data, they
can successfully attack most of the engineering experiments that they will encounter in the
real world. Consequently, we have written this chapter to accomplish these objectives. We also
introduce fractional factorial designs and response surface methods.

Statistical quality control is introduced in Chapter 8. The important topic of Shewhart
control charts is emphasized. The and R charts are presented, along with some simple control
charting techniques for individuals and attribute data. We also discuss some aspects of estimating
the capability of a process.

The students should be encouraged to work problems to master the subject matter. The book
contains an ample number of problems of different levels of difficulty. The end-of-section exercises
are intended to reinforce the concepts and techniques introduced in that section. These exercises

X
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xii PREFACE

are more structured than the end-of-chapter supplemental exercises, which generally require more
formulation or conceptual thinking. We use the supplemental exercises as integrating problems to
reinforce mastery of concepts as opposed to analytical technique. The team exercises challenge
the student to apply chapter methods and concepts to problems requiring data collection. As noted
later, the use of statistics software in problem solution should be an integral part of the course.

NEW TO THIS EDITION

• New Introductions in each chapter demonstrate the relevancy of the statistics chap-
ter topic to engineering.

• Caculating Probability in Excel: New example demonstrate calculating probability
in Excel, in Chapter 3.

• Practical Interpretation included in example problems provide better linking of the
statistical conclusions in an example to the actual engineering decision that results
from this.

• Design of Experiments content has been revised and additional material has been
added to help students better interpret computer software related to ANOVA.

• Approximately 80 new exercises: New exercises include exercises related to biology
and healthcare in most chapters.

USING THE BOOK

We strongly believe that an introductory course in statistics for undergraduate engineering
students should be, first and foremost, an applied course. The primary emphasis should be on
data description, inference (confidence intervals and tests), model building, designing engineer-
ing experiments, and statistical quality control because these are the techniques that they as
practicing engineers will need to know how to use. There is a tendency in teaching these courses
to spend a great deal of time on probability and random variables (and, indeed, some engineers,
such as industrial and electrical engineers, do need to know more about these subjects than stu-
dents in other disciplines) and to emphasize the mathematically oriented aspects of the subject.
This can turn an engineering statistics course into a “baby math-stat” course. This type of
course can be fun to teach and much easier on the instructor because it is almost always easier
to teach theory than application, but it does not prepare the student for professional practice.

In our course taught at Arizona State University, students meet twice weekly, once in a
large classroom and once in a small computer laboratory. Students are responsible for reading
assignments, individual homework problems, and team projects. In-class team activities in-
clude designing experiments, generating data, and performing analyses. The supplemental
problems and team exercises in this text are a good source for these activities. The intent is to
provide an active learning environment with challenging problems that foster the development
of skills for analysis and synthesis.

USING THE RESOURCES

Icons in the text margin help students and instructors identify when resources outside the text
are available and relevant to support student understanding.

Icons in the text pinpoint: 

Exercises included in the Student Solutions Manual

Animations on the book Web site or WileyPLUS
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PREFACE xiii

FEATURED IN THIS BOOK

Learning Objectives
Learning Objectives at the start of each

chapter guide the students in what they are

intended to take away from this chapter

and serve as a study reference.

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:

1. Identify the role that statistics can play in the engineering problem-solving process.

2. Discuss how variability affects data collected and used in making decisions.

3. Discuss the methods that engineers use to collect data.

4. Explain the importance of random samples.

5. Identify the advantages of designed experiments in data collection.

6. Explain the difference between mechanistic and empirical models.

7. Explain the difference between enumerative and analytic studies.

Exercises (and specifically GO Tutorial problems) available for instructors to assign in
WileyPLUS

Exercises for which it is recommended computer software be used

Exercises for which summary statistics are given, and the complete sample of data is available
on the book Web site 

USING THE COMPUTER

In practice, engineers use computers to apply statistical methods in solving problems.
Therefore, we strongly recommend that the computer be integrated into the course.
Throughout the book, we have presented output from Minitab as typical examples of what can
be done with modern computer software. In teaching, we have used Statgraphics, Minitab,
Excel, and several other statistics packages or spreadsheets. We did not clutter the book with
examples from many different packages because how the instructor integrates the software
into the class is ultimately more important than which package is used. All text data and the
instructor manual are available in electronic form.

In our large-class meeting times, we have access to computer software. We show the student
how the technique is implemented in the software as soon as it is discussed in class. We
recommend this as a teaching format. Low-cost student versions of many popular software pack-
ages are available, and many institutions have statistics software available on a local area net-
work, so access for the students is typically not a problem.

Computer software can be used to do many exercises in this text. Some exercises,
however, have small computer icons in the margin. We highly recommend using software in
these instances.

The second icon is meant to represent the book Web site. This icon marks problems for
which summary statistics are given, and the complete sample of data is available on the book
Web site. Some instructors may wish to have the students use the data rather than the summary
statistics for problem solutions.
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xiv PREFACE

Table 6-1 Salt Concentration in Surface Streams and
Roadway Area

Observation Salt Concentration ( y) Roadway Area (x)

1 3.8 0.19

2 5.9 0.15

3 14.1 0.57

4 10.4 0.40

5 14.6 0.70

6 14.5 0.67

7 15.1 0.63

8 11.9 0.47

9 15.5 0.75

10 9.3 0.60

11 15.6 0.78

12 20.8 0.81

13 14.6 0.78

14 16.6 0.69

15 25.6 1.30

16 20.9 1.05

17 29.9 1.52

18 19.6 1.06

19 31.3 1.74

20 32.7 1.62 
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Figure 6-1 Scatter diagram of the salt concentration in

surface streams and roadway area data in Table 6-1.
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x = 1.25x = 1.00
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 True regression line

Y⎜x =  0 +  1x
        = 3 + 15x

β βμ

          y

(Salt conc.)

  x (Roadway area)

Figure 6-2 The

distribution of Y for a

given value of x for the

salt concentration–

roadway area data.

Figures
Numerous figures throughout the text illustrate

statistical concepts in multiple formats.

Definitions, Key Concepts,
and Equations
Throughout the text,

definitions, key concepts,

and equations are highlighted by

a box to emphasize their

importance.

y g

than the estimator is more likely to produce an estimate close to the true value �. A

logical principle of estimation, when selecting among several estimators, is to choose the

estimator that has minimum variance.

®̂1®̂2,
1

If we consider all unbiased estimators of �, the one with the smallest variance is

called the minimum variance unbiased estimator (MVUE).

Minimum
Variance
Unbiased

Estimator

The concepts of an unbiased estimator and an estimator with minimum variance are

extremely important. There are methods for formally deriving estimates of the parameters

of a probability distribution. One of these methods, the method of maximum likelihood,
produces point estimators that are approximately unbiased and very close to the minimum

variance estimator. For further information on the method of maximum likelihood, see

Montgomery and Runger (2011).

In practice, one must occasionally use a biased estimator (such as S for �). In such cases,

the mean square error of the estimator can be important. The mean square error of an

estimator is the expected squared difference between and �.®̂®̂

The mean square error of an estimator of the parameter � is defined as

(4-3)MSE(®̂) � E(®̂ 	 �)2

®̂
Mean Square

Error of an
Estimator

Margin Notes
Margin notes help to guide

the students in

interpreting and

understanding statistics.

transformation—that is, analyzing the data in a different metric. For example, if the variabil-

ity in the residuals increases with a transformation such as log y or should be consid-

ered. In some problems, the dependency of residual scatter on the observed mean is very

important information. It may be desirable to select the factor level that results in maximum

response; however, this level may also cause more variation in response from run to run.

The independence assumption can be checked by plotting the residuals against the time

or run order in which the experiment was performed. A pattern in this plot, such as sequences

of positive and negative residuals, may indicate that the observations are not independent. This

suggests that time or run order is important or that variables that change over time are impor-

tant and have not been included in the experimental design.

A normal probability plot of the residuals from the paper tensile strength experiment is

shown in Fig. 5-9. Figures 5-10 and 5-11 present the residuals plotted against the factor levels

and the fitted value respectively. These plots do not reveal any model inadequacy or unusual

problem with the assumptions.

yi.

yi.

1yyi.,

Normal Probability 
Plot Interpretation
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PREFACE xv

Minitab Output
Throughout the book, we have presented

output from Minitab as typical examples of

what can be done with modern statistical

software and have also included analysis of

Minitab output in the homework exercises.

Table 7-13 Analysis for Example 7-3 Plasma Etch Experiment

Analysis of Variance

Source Sum of Squares Degrees of Freedom Mean Square f0 P-Value

Model 521234 10 52123.40 25.58 0.000

Error 10187 5 2037.40

Total 531421 15

Independent Effect Coefficient Standard Error t for H0

Variable Estimate Estimate of Coefficient Coefficient � 0 P-Value

Intercept 776.06 11.28 68.77 0.000

A �101.63 �50.81 11.28 �4.50 0.006

B �1.63 �0.81 11.28 �0.07 0.945

C 7.38 3.69 11.28 0.33 0.757

D 306.12 153.06 11.28 13.56 0.000

AB �7.88 �3.94 11.28 �0.35 0.741

AC �24.87 �12.44 11.28 �1.10 0.321

AD �153.62 �76.81 11.28 �6.81 0.001

BC �43.87 �21.94 11.28 �1.94 0.109

BD �0.62 �0.31 11.28 �0.03 0.979

CD �2.12 �1.06 11.28 �0.09 0.929

6-32. Use the following partially complete Minitab output

to answer the following questions.

(a) Find all of the missing values.

(b) Find the estimate of 

(c) Test for significance of regression. Use 

(d) Test for significance of and using a t-test with

Comment on these results.

(e) Construct a 95% CI on Use this CI to test for signifi-

cance.

(f) Construct a 95% CI on Use this CI to test for signifi-

cance.

(g) Construct a 95% CI on Use this CI to test for signifi-

cance.

(h) Comment on results found in parts (c)–(g). Is this regres-

sion model appropriate? What is your recommended next

step in the analysis?

Predictor Coef SE Coef T P

Constant 6.188 2.704 2.29 0.027

x1 9.6864 0.4989 ? ?

x2 0.2339 ? ?

x3 2.9447 0.2354 ? ?

Analysis of Variance

Source DF SS MS F P

Regression 3 363.01 121.00 ? ?

Residual Error 44 36.62 ?

Total 47 399.63

R � Sq 1adj2 � 90.2%R � Sq � ?S � ?

�0.3796

�3.

�2.

�1.

� � 0.05.

�3�2,�1,

� � 0.05.

�2.

To determine a probability for a random variable, it can be helpful to apply three steps:

1. Determine the random variable and distribution of the random variable.

2. Write the probability statement in terms of the random variable.

3. Compute the probability using the probability statement and the distribution.

These steps are shown in the solutions of some examples in this chapter. In other exam-

ples and exercises you might use these steps on your own.

Problem-Solving Procedures
The text introduces a sequence of steps in solving

probability problems and applying hypothesis-testing

methodology and explicitly exhibits these procedure in

examples.

3-Step
Procedure for Probability

EXAMPLE 3-2 Let the continuous random variable X denote the current measured in a thin copper wire in milliamperes.

Assume that the range of X is [0, 20 mA], and assume that the probability density function of X is f (x) �
0.05 for 0 � x � 20. What is the probability that a current measurement is less than 10 milliamperes?

Solution. The random variable is the current measurement with distribution given by f (x). The pdf is

shown in Fig. 3-8. It is assumed that f (x) � 0 wherever it is not specifically defined. The probability 

requested is indicated by the shaded area in Fig. 3-8.

As another example,

�P(5 6 X 6 10) � �
10

0

f (x)dx � 0.25

P(X 6 10) � �
10

0

f (x)dx � 0.5

Define the random
variable and 
distribution.

Write the probability
statement.

Compute the 
probability.

Current in a Wire
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EXERCISES FOR SECTION 2-3

2-26. Construct a cumulative frequency plot and histogram

for the weld strength data from Exercise 2-14.

(a) Use 8 bins.

(b) Use 16 bins and compare with part (a).

2-27. Construct a cumulative frequency plot and histogram

using the failure data from Exercise 2-15.

2-28. Construct a cumulative frequency plot and histogram

2-30. Construct a cumulative frequency plot and histogram

for the gene expression data from each group separately in

Exercise 2-8. Comment on any differences.

2-31. Construct a cumulative frequency plot and histogram

for the solar intensity data in Exercise 2-7. Use 6 bins.

2-32. The following information on structural defects in 

automobile doors is obtained: dents, 4; pits, 4; parts assembled

f 6 d i d 21 i i h l / l 8

EXAMPLE 4-3 Aircrew escape systems are powered by a solid propellant. The burning rate of this propellant is an im-

portant product characteristic. Specifications require that the mean burning rate must be 50 cm/s. We

know that the standard deviation of burning rate is � � 2 cm/s. The experimenter decides to specify a

type I error probability or significance level of � � 0.05. He selects a random sample of n � 25 and

obtains a sample average burning rate of cm/s. What conclusions should he draw?

Solution. We may solve this problem by following the seven-step procedure outlined in Section 4-3.5.

This results in the following:

1. Parameter of interest: The parameter of interest is �, the mean burning rate.

2. Null hypothesis, H0: � � 50 cm/s

x � 51.3

Propellant
Burning Rate

End-of-Section Exercises
Exercises at the end of each

section emphasize the

material in that section.

Supplemental Exercises
At the end of each chapter,

a set of supplemental

exercises covers the scope

of the chapter topics and

requires the students to

make a decision about the

approach they will use to

solve the problem.

SUPPLEMENTAL EXERCISES

2-56. The pH of a solution is measured eight times by one

operator using the same instrument. She obtains the following

data: 7.15, 7.20, 7.18, 7.19, 7.21, 7.20, 7.16, and 7.18.

(a) Calculate the sample mean. Suppose that the desirable

value for this solution was specified to be 7.20. Do you

think that the sample mean value computed here is close

enough to the target value to accept the solution as con-

forming to target? Explain your reasoning

(c) Subtract 35 from each of the original resistance measure-

ments and compute s2 and s. Compare your results with

those obtained in parts (a) and (b) and explain your findings.

(d) If the resistances were 450, 380, 470, 410, 350, and 430

ohms, could you use the results of previous parts of this

problem to find s2 and s? Explain how you would proceed.

2-58. The percentage mole conversion of naphthalene to

maleic anhydride from Exercise 2-34 follows: 4.2, 4.7, 4.7,

Example Problems
A set of example problems

provides the students 

detailed solutions and

comments for interesting,

real-world situations.

3. Alternative hypothesis, H1:

4. Test statistic: The test statistic is

5. Reject H0 if: Reject H0 if the P-value is smaller than 0.05. (Note that the corresponding critical

region boundaries for fixed significance level testing would be �z0.025 � �1.96 and z0.025 � 1.96.)

6. Computations: Since and 	 � 2,

z0 �
51.3 � 50

2
125
�

1.3

0.4
� 3.25

x � 51.3

z0 �
x � �0

	
1n

� � 50 cm/s

xvi PREFACE

7-Step
Procedure for
Hypothesis Testing

This chapter develops hypothesis testing procedures for many practical problems. Use of the

following sequence of steps in applying hypothesis testing methodology is recommended:

1. Parameter of interest: From the problem context, identify the parameter of interest.

2. Null hypothesis, H0: State the null hypothesis, H0.

3. Alternative hypothesis, H1: Specify an appropriate alternative hypothesis, H1.

4. Test statistic: State an appropriate test statistic.

5. Reject H0 if: Define the criteria that will lead to rejection of H0.

6. Computations: Compute any necessary sample quantities, substitute these into the

equation for the test statistic, and compute that value.

7. Conclusions: Decide whether or not H0 should be rejected and report that in the

problem context. This could involve computing a P-value or comparing the test sta-

tistic to a set of critical values.

Steps 1–4 should be completed prior to examination of the sample data. This sequence of steps

will be illustrated in subsequent sections.
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STUDENT RESOURCES

• Data Sets Data sets for all examples and exercises in the text. Visit the student section
of the book Web site at www.wiley.com/college/montgomery to access these materials.

• Student Solutions Manual Detailed solutions to all of the odd-numbered exercises
in the book. The Student Solutions Manual may be purchased from the Web site at
www.wiley.com/college/montgomery.

This icon in the book shows which exercises are included in the accompanying Student Solutions
Manual.

INSTRUCTOR RESOURCES

The following resources are available only to instructors who adopt the text:

• Solutions Manual All solutions to exercises in the text.

• Data Sets Data sets for all examples and exercises in the text.

• Image Gallery of Text Figures

• PowerPoint Lecture Slides

These instructor-only resources are password-protected. Visit the instructor section of the
book website at www.wiley.com/college/montgomery to register for a password to access
these materials.

MINITAB

A Student Version of Minitab is available as an option to purchase in a set with this text.
Student versions of software often do not have all the functionality that full versions do.
Consequently, student versions may not support all the concepts presented in this text. If you
would like to adopt for your course the set of this text with the Student Version of Minitab,
please contact your local Wiley representative at www.wiley.com/college/rep.

Alternatively, students may find information about how to purchase the professional ver-
sion of the software for academic use at www.minitab.com.

Team Exercises
At the end of each chapter,

these exercises challenge

students to apply chapter

methods and concepts to

problems requiring data

collection.

Important Terms 
and Concepts
At the end of each chapter 

is a list of important terms

and concepts for an easy

self-check and study tool.

Adjusted R2

All possible regressions
Analysis of variance

(ANOVA)
Backward elimination
Coefficient of 

2

Confidence interval on
mean response

Confidence interval 
on regression 
coefficients

Contour plot

Cook’s distance 
measure, Di

Cp statistic
Empirical model
Forward selection
Indicator variables

fl l b

Interaction
Intercept
Least squares normal

equations
Mechanistic model
Method of least squares

d l

IMPORTANT TERMS AND CONCEPTS

TEAM EXERCISES

5-118. Construct a data set for which the paired t-test

statistic is very large, indicating that when this analysis

is used, the two population means are different; however,

t0 for the two-sample t-test is very small, so the incorrect

analysis would indicate that there is no significant differ-

miles per gallon in urban driving than Car Type B. The

standard or claim may be expressed as a mean (average),

variance, standard deviation, or proportion. Collect two

appropriate random samples of data and perform a hy-

pothesis test. Report on your results. Be sure to include
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WileyPLUS

WileyPLUS is an innovative, research-based, online environment for effective teaching and
learning.

What do students receive with WileyPLUS? 

A Research-based Design. WileyPLUS provides an online environment that integrates rele-
vant resources, including the entire digital textbook, in an easy-to-navigate framework that
helps students study more effectively. 

• WileyPLUS adds structure by organizing textbook content into smaller, more manage-
able “chunks”. 

• Related media, examples, and sample practice items reinforce the learning objectives. 

• Innovative features such as calendars, visual progress tracking and self-evaluation
tools improve time management and strengthen areas of weakness. 

One-on-one Engagement. With WileyPLUS for Engineering Statistics, 5th Edition, students
receive 24/7 access to resources that promote positive learning outcomes. Students engage with
related examples (in various media) and sample practice items, including:

• Animations illustrating key statistics concepts

• Office Hours Videos, created by Dr. Craig Downing, including: video sample prob-
lems and video discussions of key concepts and topics

• Guided Online (GO) Tutorial problems

Measurable Outcomes. Throughout each study session, students can assess their progress and
gain immediate feedback. WileyPLUS provides precise reporting of strengths and weaknesses,
as well as individualized quizzes, so that students are confident they are spending their time on
the right things. With WileyPLUS, students always know the exact outcome of their efforts.

What do instructors receive with WileyPLUS? 

WileyPLUS provides reliable, customizable resources that reinforce course goals inside and
outside of the classroom as well as visibility into individual student progress. Pre-created 
materials and activities help instructors optimize their time:

Customizable Course Plan: WileyPLUS comes with a pre-created Course Plan designed by a
subject matter expert uniquely for this course.  Simple drag-and-drop tools make it easy to 
assign the course plan as-is or modify it to reflect your course syllabus. 

Pre-created Activity Types Include:

• Questions

• Readings and resources

Course Materials and Assessment Content:

• Lecture Notes PowerPoint Slides 

• Image Gallery 

• Instructor's Solutions Manual

• Gradable Reading Assignment Questions (embedded with online text) 

• Question Assignments: selected end-of-chapter problems coded algorithmically with
hints, links to text, whiteboard/show work feature and instructor controlled problem
solving help.
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Gradebook: WileyPLUS provides instant access to reports on trends in class performance,
student use of course materials and progress towards learning objectives, helping inform deci-
sions and drive classroom discussions.

WileyPLUS. Learn More. www.wileyplus.com. Powered by proven technology and built 
on a foundation of cognitive research, WileyPLUS has enriched the education of millions of
students, in over 20 countries around the world. 
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1 The Role of
Statistics in
Engineering

BRIDGING THE GAPS

Engineering is about bridging the gaps between problems and solutions, and that process requires
an approach called the scientific method.

In 2009 Eileen Huffman, an undergraduate student in civil engineering at Virginia Tech,
applied the scientific method to her study of an antique bridge. The Ironto Wayside Footbridge
was built in 1878 and is the oldest standing metal bridge in Virginia. Although it has now been
restored as a footbridge, in its former life it routinely carried heavy wagonloads, three tons or
more, of goods and materials. Ms. Huffman conducted a historical survey of the bridge and
found that a load-bearing analysis had never been done. Her problem was to conduct the first
known load-bearing analysis of the bridge.

After gathering the available structural data on the bridge, she created a computer model
stress analysis based on typical loads that it would have carried. After analyzing her results,
she tested them on the bridge itself to verify her model. She set up dial gauges under the cen-
ter of each truss. She then had a 3.5-ton truck, typical of the load weight the bridge would have
carried, drive over the bridge.

The results from this test will be contributed to the Adaptive Bridge Use Project based at
the University of Massachusetts Amherst and supported by the National Science Foundation
(www.ecs.umass.edu/adaptive_bridge_use/). Her results and conclusions will be helpful in
maintaining the bridge and in helping others to restore and study historic bridges. Her adviser
Cris Moen points out that her computer model can be used to create structural models to test
other bridges.

Ms. Huffman’s study reflects careful use of the scientific method in the context of an
engineering project. It is an excellent example of using sample data to verify an engineering
model.

CHAPTER OUTLINE

1-1 THE ENGINEERING METHOD AND 
STATISTICAL THINKING

1-2 COLLECTING ENGINEERING DATA

1-2.1 Retrospective Study

1-2.2 Observational Study

1-2.3 Designed Experiments

1-2.4 Random Samples

1-3 MECHANISTIC AND EMPIRICAL MODELS

1-4 OBSERVING PROCESSES OVER TIME
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2 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:

1. Identify the role that statistics can play in the engineering problem-solving process.

2. Discuss how variability affects data collected and used in making decisions.

3. Discuss the methods that engineers use to collect data.

4. Explain the importance of random samples.

5. Identify the advantages of designed experiments in data collection.

6. Explain the difference between mechanistic and empirical models.

7. Explain the difference between enumerative and analytic studies.

Develop
a clear 

description
of the problem 

Identify
the important

factors

Propose or
refine

a model

Collect data

Manipulate
the model

Confirm
the solution

Draw
conclusions
and make

recommendations

1-1 THE ENGINEERING METHOD AND STATISTICAL THINKING

Engineers solve problems of interest to society by the efficient application of scientific princi-
ples. The engineering or scientific method is the approach to formulating and solving these
problems. The steps in the engineering method are as follows:

1. Develop a clear and concise description of the problem.

2. Identify, at least tentatively, the important factors that affect this problem or that may
play a role in its solution.

3. Propose a model for the problem, using scientific or engineering knowledge of the
phenomenon being studied. State any limitations or assumptions of the model.

4. Conduct appropriate experiments and collect data to test or validate the tentative
model or conclusions made in steps 2 and 3.

5. Refine the model on the basis of the observed data.

6. Manipulate the model to assist in developing a solution to the problem.

7. Conduct an appropriate experiment to confirm that the proposed solution to the prob-
lem is both effective and efficient.

8. Draw conclusions or make recommendations based on the problem solution.

Figure 1-1 The engineering problem-solving method.
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1-1 THE ENGINEERING METHOD AND STATISTICAL THINKING 3

The steps in the engineering method are shown in Fig. 1-1. Note that the engineering method
features a strong interplay between the problem, the factors that may influence its solution, a
model of the phenomenon, and experimentation to verify the adequacy of the model and the
proposed solution to the problem. Steps 2–4 in Fig. 1-1 are enclosed in a box, indicating that
several cycles or iterations of these steps may be required to obtain the final solution.
Consequently, engineers must know how to efficiently plan experiments, collect data, analyze
and interpret the data, and understand how the observed data are related to the model they have
proposed for the problem under study.

The field of statistics involves the collection, presentation, analysis, and use of data to
make decisions and solve problems.

Statistics is the science of data.
Definition

Many aspects of engineering practice involve collecting, working with, and using data in the
solution of a problem, so knowledge of statistics is just as important to the engineer as
knowledge of any of the other engineering sciences. Statistical methods are a powerful aid
in model verification (as in the opening story for this chapter), designing new products and
systems, improving existing designs, and designing, developing, and improving production
operations.

Statistical methods are used to help us describe and understand variability. By variabil-
ity, we mean that successive observations of a system or phenomenon do not produce exactly
the same result. We all encounter variability in our everyday lives, and statistical thinking
can give us a useful way to incorporate this variability into our decision-making processes.
For example, consider the gasoline mileage performance of your car. Do you always get 
exactly the same mileage performance on every tank of fuel? Of course not—in fact, sometimes
the mileage performance varies considerably. This observed variability in gasoline mileage
depends on many factors, such as the type of driving that has occurred most recently (city
versus highway), the changes in condition of the vehicle over time (which could include fac-
tors such as tire inflation, engine compression, or valve wear), the brand and/or octane num-
ber of the gasoline used, or possibly even the weather conditions that have been experienced
recently. These factors represent potential sources of variability in the system. Statistics
gives us a framework for describing this variability and for learning about which potential
sources of variability are the most important or have the greatest impact on the gasoline
mileage performance.

We also encounter variability in most types of engineering problems. For example,
suppose that an engineer is developing a rubber compound for use in O-rings. The O-rings
are to be employed as seals in plasma etching tools used in the semiconductor industry, so
their resistance to acids and other corrosive substances is an important characteristic. The
engineer uses the standard rubber compound to produce eight O-rings in a development
laboratory and measures the tensile strength of each specimen after immersion in a nitric
acid solution at 30�C for 25 minutes [refer to the American Society for Testing and
Materials (ASTM) Standard D 1414 and the associated standards for many interesting as-
pects of testing rubber O-rings]. The tensile strengths (in psi) of the eight O-rings are 1030,
1035, 1020, 1049, 1028, 1026, 1019, and 1010. As we should have anticipated, not all the
O-ring specimens exhibit the same measurement of tensile strength. There is variability in
the tensile strength measurements. Because the measurements exhibit variability, we say

Many of the engineering
sciences are employed in
the engineering problem-
solving method:
● mechanical sciences,

such as statics and 
dynamics

● fluid science
● thermal sciences such

as thermodynamics and
heat transfer

● electrical sciences
● materials science
● chemical sciences
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4 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

that tensile strength is a random variable. A convenient way to think of a random variable,
say X, which represents a measured quantity, is by using the model

where � is a constant and � is a random disturbance, or “noise” term. The constant remains
the same, but small changes in the environmental conditions and test equipment, differences
in the individual O-ring specimens, and potentially many other factors change the value of �.
If none of these disturbances were present, the value of � would always equal zero, and X
would always be equal to the constant �. However, this never happens in engineering practice,
so the actual measurements we observe exhibit variability. We often need to describe, quantify,
and in many problems ultimately (because variability is often detrimental to our final objectives)
reduce variability.

Figure 1-2 is a dot diagram of the O-ring tensile strength data. The dot diagram is a
very useful plot for displaying a small body of data, say, up to about 20 observations. This
plot allows us to easily see two important features of the data: the location, or the middle,
and the scatter or variability. When the number of observations is small, it is usually dif-
ficult to see any specific pattern in the variability, although the dot diagram is a very con-
venient way to observe data features such as outliers (observations that differ considerably
from the main body of the data) or clusters (groups of observations that occur closely 
together).

The need for statistical thinking arises often in the solution of engineering problems.
Consider the engineer developing the rubber O-ring material. From testing the initial
specimens, he knows that the average tensile strength is 1027.1 psi. However, he thinks that
this may be too low for the intended application, so he decides to consider a modified formula-
tion of the rubber in which a Teflon additive is included. Eight O-ring specimens are made
from this modified rubber compound and subjected to the nitric acid emersion test 
described earlier. The tensile test results are 1037, 1047, 1066, 1048, 1059, 1073, 1070,
and 1040.

The tensile test data for both groups of O-rings are plotted as a dot diagram in Fig. 1-3.
This display gives the visual impression that adding the Teflon to the rubber compound has
led to an increase in the tensile strength. However, there are some obvious questions to ask.
For instance, how do we know that another set of O-ring specimens will not give different
results? In other words, are these results due entirely to chance? Is a sample of eight O-rings
adequate to give reliable results? If we use the test results obtained thus far to conclude that
adding the Teflon to the rubber formulation will increase the tensile strength after exposure
to nitric acid, what risks are associated with this decision? For example, is it possible (or
even likely) that the apparent increase in tensile strength observed for the modified formu-
lation is only due to the inherent variability in the system and that including this additional
ingredient (which would increase both the cost and the manufacturing complexity) really

X � � � �

Graphical methods help
uncover patterns in data.

1010 10301020 1040 1050

Tensile strength (psi)

10201010

Modified

Original

1030 1040

Tensile strength (psi)

1050 1060 1070

Figure 1-2 Dot diagram of the O-ring tensile strength data
for the original rubber compound.

Figure 1-3 Dot diagram of O-ring tensile strength data for
the original and modified rubber compounds.
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1-1 THE ENGINEERING METHOD AND STATISTICAL THINKING 5

has no effect on tensile strength? Statistical thinking and methodology can help answer
these questions.

Often, physical laws (such as Ohm’s law and the ideal gas law) are applied to help design
products and processes. We are familiar with this reasoning from general laws to specific
cases. However, it is also important to reason from a specific set of measurements to more gen-
eral cases to answer the previous questions. This reasoning is from a sample (such as the eight
rubber O-rings) to a population (such as the O-rings that will be sold to customers) and is re-
ferred to as statistical inference. See Fig. 1-4. Clearly, reasoning based on measurements
from some objects to measurements on all objects can result in errors (called sampling errors).
However, if the sample is selected properly, these risks can be quantified and an appropriate
sample size can be determined.

Engineers and scientists are also often interested in comparing two different conditions to
determine whether either condition produces a significant effect on the response that is 
observed. These conditions are sometimes called “treatments.” The rubber O-ring tensile
strength problem illustrates such a situation; the two different treatments are the two formula-
tions of the rubber compound, and the response is the tensile strength measurement. The pur-
pose of the study is to determine whether the modified formulation results in a significant 
effect—increased tensile strength. We can think of each sample of eight O-rings as a random
and representative sample of all parts that will ultimately be manufactured. The order in which
each O-ring was tested was also randomly determined. This is an example of a completely
randomized designed experiment.

When statistical significance is observed in a randomized experiment, the experimenter
can be confident in the conclusion that it was the difference in treatments that resulted in the
difference in response. That is, we can be confident that a cause-and-effect relationship has
been found.

Sometimes the objects to be used in the comparison are not assigned at random to the
treatments. For example, the September 1992 issue of Circulation (a medical journal pub-
lished by the American Heart Association) reports a study linking high iron levels in the body
with increased risk of heart attack. The study, done in Finland, tracked 1931 men for 5 years
and showed a statistically significant effect of increasing iron levels on the incidence of heart
attacks. In this study, the comparison was not performed by randomly selecting a sample of
men and then assigning some to a “low iron level” treatment and the others to a “high iron
level” treatment. The researchers just tracked the subjects over time. This type of study is
called an observational study. Designed experiments and observational studies are discussed
in more detail in the next section.

It is difficult to identify causality in observational studies because the observed statis-
tically significant difference in response between the two groups may be due to some other 

Statistical inference is
the process of deciding if
observed features in the
data are due only to
chance.

Figure 1-4
Statistical inference is
one type of reasoning.
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6 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

underlying factor (or group of factors) that was not equalized by randomization and not due to
the treatments. For example, the difference in heart attack risk could be attributable to the dif-
ference in iron levels or to other underlying factors that form a reasonable explanation for the
observed results—such as cholesterol levels or hypertension.

1-2 COLLECTING ENGINEERING DATA

In the previous section, we illustrated some simple methods for summarizing and visualizing
data. In the engineering environment, the data are almost always a sample that has been se-
lected from some population. In the previous section we introduced some simple methods for
summarizing and visualizing data. In the engineering environment, the data are almost always
a sample that has been selected from some population.

A population is the entire collection of objects or outcomes about which data are
collected.
A sample is a subset of the population containing the observed objects or the outcomes
and the resulting data.

Definition

Generally, engineering data are collected in one of three ways:

● Retrospective study based on historical data
● Observational study
● Designed experiment

A good data collection procedure will usually result in a simplified analysis and help ensure
more reliable and generally applicable conclusions. When little thought is put into the data
collection procedure, serious problems for both the statistical analysis and the practical inter-
pretation of results can occur.

Montgomery, Peck, and Vining (2006) describe an acetone-butyl alcohol distillation col-
umn. A schematic of this binary column is shown in Fig. 1-5. We will use this distillation column
to illustrate the three methods of collecting engineering data identified earlier. There are three
factors that may influence the concentration of acetone in the distillate (output product) stream
from the column. These are the reboil temperature (controlled by steam flow), the condensate
temperature (controlled by coolant flow), and the reflux rate. For this column, production person-
nel maintain and archive the following records:

● The concentration of acetone (in g/l) in a test sample taken every hour from the prod-
uct stream

● The reboil temperature controller log, which is a record of the reboil temperature ver-
sus time

● The condenser temperature controller log
● The nominal reflux rate each hour

The process specifications require that the nominal reflux rate is held constant for this process.
The production personnel very infrequently change this rate.
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1-2 COLLECTING ENGINEERING DATA 7

1-2.1 Retrospective Study

A retrospective study uses either all or a sample of the historical process data from some period
of time. The objective of this study might be to determine the relationships among the two
temperatures and the reflux rate on the acetone concentration in the output product stream. In
most such studies, the engineer is interested in using the data to construct a model relating the
variables of interest. For example, in this case the model might relate acetone concentration
(the dependent variable) to the three independent variables, reboil temperature, condenser
temperature, and reflux rate. These types of models are called empirical models, and they are
illustrated in more detail in Section 1-3.

A retrospective study takes advantage of previously collected, or historical, data. It has the
advantage of minimizing the cost of collecting the data for the study. However, there are several
potential problems:

1. We really cannot isolate the effect of the reflux rate on concentration because it prob-
ably did not vary much over the historical period.

2. The historical data on the two temperatures and the acetone concentration do not
correspond directly. Constructing an approximate correspondence would probably
require making several assumptions and a great deal of effort, and it might be impos-
sible to do reliably.

3. Production maintains both temperatures as tightly as possible to specific target values
through the use of automatic controllers. Because the two temperatures do not vary

Figure 1-5 Acetone-
butyl alcohol distilla-
tion column.
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8 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

very much over time, we will have a great deal of difficulty seeing their real impact
on the concentration.

4. Within the narrow ranges that they do vary, the condensate temperature tends to in-
crease with the reboil temperature. Because the temperatures vary together, it will be
difficult to separate their individual effects on the acetone concentration.

Retrospective studies, although often the quickest and easiest way to collect engineering
process data, often provide limited useful information for controlling and analyzing a
process. In general, their primary disadvantages are as follows:

1. Some of the important process data often are missing.

2. The reliability and validity of the process data are often questionable.

3. The nature of the process data often may not allow us to address the problem at hand.

4. The engineer often wants to use the process data in ways that they were never in-
tended to be used.

5. Logs, notebooks, and memories may not explain interesting phenomena identified by
the data analysis.

Using historical data always involves the risk that, for whatever reason, some of the important
data were not collected or were lost or were inaccurately transcribed or recorded.
Consequently, historical data often suffer from problems with data quality. These errors also
make historical data prone to outliers.

Just because data are convenient to collect does not mean that these data are useful. Often,
data that are not considered essential for routine process monitoring and that are not conven-
ient to collect have a significant impact on the process. Historical data cannot provide this 
information if information on some important variables was never collected. For example, the
ambient temperature may affect the heat losses from the distillation column. On cold days, the
column loses more heat to the environment than during very warm days. The production logs
for this acetone-butyl alcohol column do not routinely record the ambient temperature. Also,
the concentration of acetone in the input feed stream has an effect on the acetone concentra-
tion in the output product stream. However, this variable is not easy to measure routinely, so it
is not recorded either. Consequently, the historical data do not allow the engineer to include 
either of these factors in the analysis even though potentially they may be important.

The purpose of many engineering data analysis efforts is to isolate the root causes underly-
ing interesting phenomena. With historical data, these interesting phenomena may have occurred
months, weeks, or even years earlier. Logs and notebooks often provide no significant insights
into these root causes, and memories of the personnel involved fade over time. Analyses based
on historical data often identify interesting phenomena that go unexplained.

Finally, retrospective studies often involve very large (indeed, even massive) data sets. The
engineer will need a firm grasp of statistical principles if the analysis is going to be successful.

1-2.2 Observational Study

We could also use an observational study to collect data for this problem. As the name implies,
an observational study simply observes the process or population during a period of routine
operation. Usually, the engineer interacts or disturbs the process only as much as is required to
obtain data on the system, and often a special effort is made to collect data on variables that
are not routinely recorded, if it is thought that such data might be useful. With proper planning,
observational studies can ensure accurate, complete, and reliable data. On the other hand,
these studies still often provide only limited information about specific relationships among
the variables in the system.
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1-2 COLLECTING ENGINEERING DATA 9

In the distillation column example, the engineer would set up a data collection form that would
allow production personnel to record the two temperatures and the actual reflux rate at specified
times corresponding to the observed concentration of acetone in the product stream. The data col-
lection form should provide the ability to add comments to record any other interesting phenomena
that may occur, such as changes in ambient temperature. It may even be possible to arrange for the
input feed stream acetone concentration to be measured along with the other variables during this
relatively short-term study. An observational study conducted in this manner would help ensure 
accurate and reliable data collection and would take care of problem 2 and possibly some aspects
of problem 1 associated with the retrospective study. This approach also minimizes the chances of
observing an outlier related to some error in the data. Unfortunately, an observational study cannot
address problems 3 and 4. Observational studies can also involve very large data sets.

1-2.3 Designed Experiments

The third way that engineering data are collected is with a designed experiment. In a designed
experiment, the engineer makes deliberate or purposeful changes in controllable variables
(called factors) of the system, observes the resulting system output, and then makes a decision
or an inference about which variables are responsible for the changes that he or she observes in
the output performance. An important distinction between a designed experiment and either an
observational or retrospective study is that the different combinations of the factors of interest
are applied randomly to a set of experimental units. This allows cause-and-effect relationships
to be established, something that cannot be done with observational or retrospective studies.

The O-ring example is a simple illustration of a designed experiment. That is, a deliber-
ate change was introduced into the formulation of the rubber compound with the objective of
discovering whether or not an increase in the tensile strength could be obtained. This is an 
experiment with a single factor. We can view the two groups of O-rings as having the two formu-
lations applied randomly to the individual O-rings in each group. This establishes the desired
cause-and-effect relationship. The engineer can then address the tensile strength question by
comparing the mean tensile strength measurements for the original formulation to the mean
tensile strength measurements for the modified formulation. Statistical techniques called 
hypothesis testing and confidence intervals can be used to make this comparison. These
techniques are introduced and illustrated extensively in Chapters 4 and 5.

A designed experiment can also be used in the distillation column problem. Suppose that
we have three factors: the two temperatures and the reflux rate. The experimental design must
ensure that we can separate out the effects of these three factors on the response variable, the
concentration of acetone in the output product stream. In a designed experiment, often only
two or three levels of each factor are employed. Suppose that two levels of the temperatures
and the reflux rate are used and that each level is coded to a �1 (or low, high) level. The best
experimental strategy to use when there are several factors of interest is to conduct a factorial
experiment. In a factorial experiment, the factors are varied together in an arrangement that
tests all possible combinations of factor levels.

Figure 1-6 illustrates a factorial experiment for the distillation column. Because all three fac-
tors have two levels, there are eight possible combinations of factor levels, shown geometrically as
the eight corners of the cube in Fig. 1-6a. The tabular representation in Fig. 1-6b shows the test 
matrix for this factorial experiment; each column of the table represents one of the three factors,
and each row corresponds to one of the eight runs. The � and � signs in each row indicate the low
and high settings for the factors in that run. The actual experimental runs would be conducted in
random order, thus establishing the random assignment of factor-level combinations to experi-
mental units that is the key principle of a designed experiment. Two trials, or replicates, of the 
experiment have been performed (in random order), resulting in 16 runs (also called observations).
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10 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

Some very interesting tentative conclusions can be drawn from this experiment. First, com-
pare the average acetone concentration for the eight runs with condenser temperature at the high
level with the average concentration for the eight runs with condenser temperature at the low
level (these are the averages of the eight runs on the left and right faces of the cube in Fig. 1-6a,
respectively), or 44.1 � 43.45 � 0.65. Thus, increasing the condenser temperature from the low
to the high level increases the average concentration by 0.65 g/l. Next, to measure the effect of
increasing the reflux rate, compare the average of the eight runs in the back face of the cube with
the average of the eight runs in the front face, or 44.275 � 43.275 � 1. The effect of increasing
the reflux rate from the low to the high level is to increase the average concentration by 1 g/l; that
is, reflux rate apparently has an effect that is larger than the effect of condenser temperature. The
reboil temperature effect can be evaluated by comparing the average of the eight runs in the top
of the cube with the average of the eight runs in the bottom, or 44.125 � 43.425 � 0.7. The 
effect of increasing the reboil temperature is to increase the average concentration by 0.7 g/l.
Thus, if the engineer’s objective is to increase the concentration of acetone, there are apparently
several ways to do this by making adjustments to the three process variables.

There is an interesting relationship between reflux rate and reboil temperature that can be
seen by examination of the graph in Fig. 1-7. This graph was constructed by calculating the 

Figure 1-6 A factorial design for the distillation column.
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1-2 COLLECTING ENGINEERING DATA 11

average concentration at the four different combinations of reflux rate and reboil temperature,
plotting these averages versus the reflux rate, and then connecting the points representing the two
temperature levels with straight lines. The slope of each of these straight lines represents the 
effect of reflux rate on concentration. Note that the slopes of these two lines do not appear to be
the same, indicating that the reflux rate effect is different at the two values of reboil temperature.
This is an example of an interaction between two factors. The interpretation of this interaction
is very straightforward; if the low level of reflux rate (�1) is used, reboil temperature has little
effect, but if the high level of reflux rate (�1) is used, increasing the reboil temperature has a
large effect on average concentration in the output product stream. Interactions occur often in
physical and chemical systems, and factorial experiments are the only way to investigate their 
effects. In fact, if interactions are present and the factorial experimental strategy is not used, 
incorrect or misleading results may be obtained.

We can easily extend the factorial strategy to more factors. Suppose that the engineer
wants to consider a fourth factor, the concentration of acetone in the input feed stream.
Figure 1-8 illustrates how all four factors could be investigated in a factorial design. Because
all four factors are still at two levels, the experimental design can still be represented geomet-
rically as a cube (actually, it’s a hypercube). Note that as in any factorial design, all possible
combinations of the four factors are tested. The experiment requires 16 trials. If each combi-
nation of factor levels in Fig. 1-8 is run one time, this experiment actually has the same num-
ber of runs as the replicated three-factor factorial in Fig. 1-6.

Generally, if there are k factors and they each have two levels, a factorial experimental
design will require 2k runs. For example, with k � 4, the 24 design in Fig. 1-8 requires 16
tests. Clearly, as the number of factors increases, the number of trials required in a factorial
experiment increases rapidly; for instance, eight factors each at two levels would require 256
trials. This amount of testing quickly becomes unfeasible from the viewpoint of time and
other resources. Fortunately, when there are four to five or more factors, it is usually unnec-
essary to test all possible combinations of factor levels. A fractional factorial experiment is
a variation of the basic factorial arrangement in which only a subset of the factor combinations
are actually tested. Figure 1-9 shows a fractional factorial experimental design for the four-
factor version of the distillation column experiment. The circled test combinations in this figure
are the only test combinations that need to be run. This experimental design requires only 
8 runs instead of the original 16; consequently, it would be called a one-half fraction. This is
an excellent experimental design in which to study all four factors. It will provide good 
information about the individual effects of the four factors and some information about how
these factors interact.

Factorial and fractional factorial experiments are used extensively by engineers and scientists
in industrial research and development, where new technology, products, and processes are 

Figure 1-8 A four-factor factorial experiment for the distillation column.
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12 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

designed and developed and where existing products and processes are improved. Because so
much engineering work involves testing and experimentation, it is essential that all engineers
understand the basic principles of planning efficient and effective experiments. Chapter 7 
focuses on these principles, concentrating on the factorial and fractional factorials that we
have introduced here.

1-2.4 Random Samples

As the previous three sections have illustrated, almost all statistical analysis is based on the
idea of using a sample of data that has been selected from some population. The objective is
to use the sample data to make decisions or learn something about the population. Recall that
the population is the complete collection of items or objects from which the sample is taken.
A sample is just a subset of the items in the population.

For example, suppose that we are manufacturing semiconductor wafers, and we want to
learn about the resistivity of the wafers in a particular lot. In this case, the lot is the population.
Our strategy for learning about wafer resistivity would be to select a sample of (say) three
wafers and measure the resistivity on those specific wafers. This is an example of a physical
population; that is, the population consists of a well-defined, often finite group of items all of
which are available at the time the sample is collected.

Data are often collected as a result of an engineering experiment. For example, recall the
O-ring experiment described in Section 1-1. Initially eight O-rings were produced and sub-
jected to a nitric acid bath, following which the tensile strength of each O-ring was determined.
In this case the eight O-ring tensile strengths are a sample from a population that consists of all
the measurements on tensile strength that could possibly have been observed. This type of pop-
ulation is called a conceptual population. Many engineering problems involve conceptual
populations. The O-ring experiment is a simple but fairly typical example. The factorial exper-
iment used to study the concentration in the distillation column in Section 1-2.3 also results in
sample data from a conceptual population.

The way that samples are selected is also important. For example, suppose that you
wanted to learn about the mathematical skills of undergraduate students at Arizona State
University (ASU). Now, this involves a physical population. Suppose that we select the sam-
ple from all of the students who are currently taking an engineering statistics course. This is
probably a bad idea, as this group of students will most likely have mathematical skills that
are quite different than those found in the majority of the population. In general, samples
that are taken because they are convenient, or that are selected through some process involv-
ing the judgment of the engineer, are unlikely to produce correct results. For example, the
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1-2 COLLECTING ENGINEERING DATA 13

sample of engineering statistics students would likely lead to a biased conclusion regarding
mathematical skills in the population. This usually happens with judgment or convenience
samples.

In order for statistical methods to work correctly and to produce valid results, random
samples must be used. The most basic method of random sampling is simple random sam-
pling. To illustrate simple random sampling, consider the mathematical skills question dis-
cussed previously. Assign an integer number to every student in the population (all of the
ASU undergraduates). These numbers range from 1 to N. Suppose that we want to select a
simple random sample of 100 students. We could use a computer to generate 100 random in-
tegers from 1 to N where each integer has the same chance of being selected. Choosing the
students who correspond to these numbers would produce the simple random sample. Notice
that every student in the population has the same chance of being chosen for the sample.
Another way to say this is that all possible samples of size n � 100 have the same chance of
being selected.

A simple random sample of size n is a sample that has been selected from a popu-
lation in such a way that each possible sample of size n has an equally likely chance
of being selected.

Definition

In Chapter 3, Section 3-13, we will provide a more mathematical definition of a simple
random sample and discuss some of its properties.

EXAMPLE 1-1 An electrical engineer measures the current flowing through a simple circuit several times and observes
that the current measurements are different each time. Can we view these measurements as a simple ran-
dom sample? What is the population?

Solution. If the circuit is the same each time the measurement is made, and if the characteristics of the
ammeter are unchanged, then we can view the current measurements as a simple random sample. The
population is conceptual—it consists of all of the current measurements that could be made on this cir-
cuit with this ammeter.

EXAMPLE 1-2 Consider the distillation column described in Section 1-2. Suppose that the engineer runs this column
for 24 consecutive hours and records the acetone concentration at the end of each hour. Is this a random
sample?

Solution. This is also an example involving a conceptual population—all of the hourly concentration
observations that will ever be made. Only if you are very sure that these consecutive readings are taken
under identical and unchanging conditions and are unlikely to differ from future observations on the
process would it be reasonable to think of these data as a random sample. We have observed 24 consec-
utive readings and it is very possible that these concentration readings may be different from future
readings because chemical processes (and other processes as well) often tend to “drift” over time and
may operate differently in different time periods due to changes in raw material sources, environmental
factors, or operating conditions that the engineers make as they learn more through experience about
how best to run the process.

Current
Measurements

Distillation
Column
Measurements

c01TheRoleofStatisticsinEngineering.qxd  11/9/10  11:16 PM  Page 13



14 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

It is not always easy to obtain a random sample. For example, consider the lot of semicon-
ductor wafers. If the wafers are packaged in a container, it may be difficult to sample from the
bottom, middle, or sides of the container. It is tempting to take the sample of three wafers off the
top tray of the container. This is an example of a convenience sample, and it may not produce 
satisfactory results, because the wafers may have been packaged in time order of production and
the three wafers on top may have been produced last, when something unusual may have been
happening in the process.

Retrospective data collection may not always result in data that can be viewed as a random
sample. Often, retrospective data are data of convenience, and they may not reflect current
process performance. Data from observational studies are more likely to reflect random sampling,
because a specific study is usually being conducted to collect the data. Data from a designed
experiment can usually be viewed as data from a random sample if the individual observa-
tions in the experiment are made in random order. Completely randomizing the order of the
runs in an experiment helps eliminate the effects of unknown forces that may be varying
while the experiment is being run, and it provides assurance that the data can be viewed as a
random sample.

Collecting data retrospectively on a process or through an observational study, and even
through a designed experiment, almost always involves sampling from a conceptual popula-
tion. Our objective in many of these data studies is to draw conclusions about how the sys-
tem or process that we are studying will perform in the future. An analytic study is a study
or experiment where the conclusions are to be drawn relative to a future population. For
example, in the distillation column experiment we want to make conclusions about the con-
centration of future production quantities of acetone that will be sold to customers. This is
an analytic study involving a conceptual population that does not yet exist. Clearly, in addi-
tion to random sampling there must be some additional assumption of stability of this
process over time. For example, it might be assumed that the sources of variability currently
being experienced in production are the same as will be experienced in future production.
In Chapter 8 we introduce control charts, an important statistical technique to evaluate the
stability of a process or system.

The problem involving sampling of wafers from a lot to determine lot resistivity is
called an enumerative study. The sample is used to make conclusions about the population
from which the sample was drawn. The study to determine the mathematical abilities of
ASU undergraduates is also an enumerative study. Note that random samples are required in
both enumerative and analytic studies, but the analytic study requires an additional assumption
of stability. Figure 1-10 provides an illustration.

Figure 1-10 Enumerative versus analytic study.
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1-3 MECHANISTIC AND EMPIRICAL MODELS 15

1-3 MECHANISTIC AND EMPIRICAL MODELS

Models play an important role in the analysis of nearly all engineering problems. Much of the
formal education of engineers involves learning about the models relevant to specific fields
and the techniques for applying these models in problem formulation and solution. As a sim-
ple example, suppose we are measuring the current flow in a thin copper wire. Our model for
this phenomenon might be Ohm’s law:

or

(1-1)

We call this type of model a mechanistic model because it is built from our underlying knowl-
edge of the basic physical mechanism that relates these variables. However, if we performed
this measurement process more than once, perhaps at different times or even on different days,
the observed current could differ slightly because of small changes or variations in factors that
are not completely controlled, such as changes in ambient temperature, fluctuations in per-
formance of the gauge, small impurities present at different locations in the wire, and drifts in
the voltage source. Consequently, a more realistic model of the observed current might be

(1-2)

where � is a term added to the model to account for the fact that the observed values of current
flow do not perfectly conform to the mechanistic model. We can think of � as a term that includes
the effects of all the unmodeled sources of variability that affect this system.

Sometimes engineers work with problems for which there is no simple or well-understood
mechanistic model that explains the phenomenon. For instance, suppose we are interested in
the number average molecular weight (Mn ) of a polymer. Now we know that Mn is related to
the viscosity of the material (V ) and that it also depends on the amount of catalyst (C ) and the
temperature (T ) in the polymerization reactor when the material is manufactured. The rela-
tionship between Mn and these variables is

(1-3)

say, where the form of the function f is unknown. Perhaps a working model could be devel-
oped from a first-order Taylor series expansion, which would produce a model of the form

(1-4)

where the 	s are unknown parameters. As in Ohm’s law, this model will not exactly describe
the phenomenon, so we should account for the other sources of variability that may affect the
molecular weight by adding a random disturbance term to the model; thus,

(1-5)

is the model that we will use to relate molecular weight to the other three variables. This type of
model is called an empirical model; that is, it uses our engineering and scientific knowledge of
the phenomenon, but it is not directly developed from our theoretical or first-principles 
understanding of the underlying mechanism. Data are required to estimate the 	s in equation 1-5.

Mn � 	0 � 	1V � 	2C � 	3T � �

Mn � 	0 � 	1V � 	2C � 	3T

Mn � f (V, C, T )

I � E
R � �

I � E
R

Current � voltage
resistance
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16 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

These data could be from a retrospective or observational study, or they could be generated by
a designed experiment.

To illustrate these ideas with a specific example, consider the data in Table 1-1. This table
contains data on three variables that were collected in an observational study in a semiconductor
manufacturing plant. In this plant, the finished semiconductor is wire bonded to a frame. The vari-
ables reported are pull strength (a measure of the amount of force required to break the bond), the
wire length, and the height of the die. We would like to find a model relating pull strength to wire
length and die height. Unfortunately, there is no physical mechanism that we can easily apply
here, so it doesn’t seem likely that a mechanistic modeling approach will be successful.

Figure 1-11a is a scatter diagram of the pull strength y from Table 1-1 versus the wire
length x1. This graph was constructed by simply plotting the pairs of observations (yi, x1i), 
i � 1, 2, . . . , 25 from Table 1-1. We used the computer package Minitab to construct this plot.
Minitab has an option that produces a dot diagram along the right and top edges of the scatter
diagram, allowing us to easily see the distribution of each variable individually. So in a sense,
the scatter diagram is a two-dimensional version of a dot diagram.

Figure 1-11 Scatter plots of the wire bond pull strength data in Table 1-1.
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Table 1-1 Wire Bond Data

Observation Pull Strength, Wire Length, Die Height,
Number y x1 x2

1 9.95 2 50
2 24.45 8 110
3 31.75 11 120
4 35.00 10 550
5 25.02 8 295
6 16.86 4 200
7 14.38 2 375
8 9.60 2 52
9 24.35 9 100

10 27.50 8 300
11 17.08 4 412
12 37.00 11 400
13 41.95 12 500

Observation Pull Strength, Wire Length, Die Height,
Number y x1 x2

14 11.66 2 360
15 21.65 4 205
16 17.89 4 400
17 69.00 20 600
18 10.30 1 585
19 34.93 10 540
20 46.59 15 250
21 44.88 15 290
22 54.12 16 510
23 56.63 17 590
24 22.13 6 100
25 21.15 5 400
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1-4 OBSERVING PROCESSES OVER TIME 17

The scatter diagram in Fig. 1-11a reveals that as the wire length increases, the pull
strength of the wire bond also increases. Similar information is conveyed by the scatter dia-
gram in Fig. 1-11b, which plots pull strength y against die height x2. Figure 1-12 is a three-
dimensional scatter diagram of the observations on pull strength, wire length, and die
height. Based on these plots, it seems reasonable to think that a model such as

would be appropriate as an empirical model for this relationship. In general, this type of empir-
ical model is called a regression model. In Chapter 6 we show how to build these models and
test their adequacy as approximating functions. Chapter 6 presents a method for estimating the
parameters in regression models, called the method of least squares, that traces its origins to
work by Karl Gauss. Essentially, this method chooses the parameters (the 	s) in the empirical
model to minimize the sum of the squared distances between each data point and the plane rep-
resented by the model equation. Applying this technique to the data in Table 1-1 results in

(1-6)

where the “hat,” or circumflex, over pull stength indicates that this is an estimated quantity.
Figure 1-13 is a plot of the predicted values of pull strength versus wire length and die

height obtained from equation 1-6. Note that the predicted values lie on a plane above the wire
length–die height space. From the plot of the data in Fig. 1-12, this model does not appear 
unreasonable. The empirical model in equation 1-6 could be used to predict values of pull
strength for various combinations of wire length and die height that are of interest. Essentially,
the empirical model can be used by an engineer in exactly the same way that a mechanistic
model can be used.

1-4 OBSERVING PROCESSES OVER TIME

Data are often collected over time in many practical situations. Perhaps the most familiar of
these are business and economic data reflecting daily stock prices, interest rates, the monthly
unemployment and inflation rates, and quarterly sales volume of products. Newspapers and
business publications such as The Wall Street Journal typically display these data in tables and
graphs. In many engineering studies, the data are also collected over time. Phenomena that
might affect the system or process often become more visible in a time-oriented plot of the data,
and the stability of the process can be better judged. For example, the control chart is a tech-
nique that displays data over time and permits the engineer to assess the stability of a process.

Pull strength
^

� 2.26 � 2.74 (wire length) � 0.0125(die height)

Pull strength � 	0 � 	1(wire length) � 	2(die height) � �

Figure 1-12 Three-dimensional scatter diagram of the wire
and pull strength data.

Figure 1-13 Plot of estimated values of pull strength from
the empirical model in equation 1-6.
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18 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

Figure 1-14 is a dot diagram of acetone concentration readings taken hourly from the
binary distillation column described in Section 1-2. The large variation displayed on the dot
diagram indicates a possible problem, but the chart does not help explain the reason for the
variation. Because the data are collected over time, they are called a time series. A graph of
the data versus time, as shown in Fig. 1-15, is called a time series plot. A possible downward
shift in the process mean level is visible in the plot, and an estimate of the time of the shift
can be obtained.

The famous quality authority W. Edwards Deming stressed that it is important to under-
stand the nature of variation in processes over time. He conducted an experiment in which he
attempted to drop marbles as close as possible to a target on a table. He used a funnel mounted
on a ring stand and the marbles were dropped into the funnel. See Fig. 1-16. The funnel was
aligned as closely as possible with the center of the target. Deming then used two different
strategies to operate the process. (1) He never moved the funnel. He simply dropped one mar-
ble after another and recorded the distance from the target. (2) He dropped the first marble and
recorded its location relative to the target. He then moved the funnel an equal and opposite dis-
tance in an attempt to compensate for the error. He continued to make this type of adjustment
after each marble was dropped.

After both strategies were completed, Deming noticed that the variability in the distance
from the target for strategy 2 was approximately twice as large as for strategy 1. The adjust-
ments to the funnel increased the deviations from the target. The explanation is that the error
(the deviation of the marble’s position from the target) for one marble provides no information
about the error that will occur for the next marble. Consequently, adjustments to the funnel do
not decrease future errors. Instead, they tend to move the funnel farther from the target.

This interesting experiment points out that adjustments to a process based on random dis-
turbances can actually increase the variation of the process. This is referred to as overcontrol

Figure 1-14 A dot diagram illustrates variation but
does not identify the problem.

Figure 1-15 A time series plot of acetone concentration
provides more information than the dot diagram.

Figure 1-16
Deming’s funnel 
experiment.
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1-4 OBSERVING PROCESSES OVER TIME 19

or tampering. Adjustments should be applied only to compensate for a nonrandom shift in the
process—then they can help. A computer simulation can be used to demonstrate the lessons of
the funnel experiment. Figure 1-17 displays a time plot of 100 measurements (denoted as y)
from a process in which only random disturbances are present. The target value for the process
is 10 units. The figure displays the data with and without adjustments that are applied to the
process mean in an attempt to produce data closer to the target. Each adjustment is equal and
opposite to the deviation of the previous measurement from the target. For example, when the
measurement is 11 (one unit above target), the mean is reduced by one unit before the next
measurement is generated. The overcontrol has increased the deviations from the target.

Figure 1-18 displays the data without adjustment from Fig. 1-17, except that the measure-
ments after observation number 50 are increased by two units to simulate the effect of a shift

Figure 1-17 Adjustments applied to random disturbances overcontrol the process and
increase the deviations from the target.
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Figure 1-18 Process mean shift is detected at observation number 57, and one adjustment
(a decrease of two units) reduces the deviations from the target.
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20 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

in the mean of the process. When there is a true shift in the mean of a process, an adjustment
can be useful. Figure 1-18 also displays the data obtained when one adjustment (a decrease of
two units) is applied to the mean after the shift is detected (at observation number 57). Note
that this adjustment decreases the deviations from the target.

The question of when to apply adjustments (and by what amounts) begins with an under-
standing of the types of variation that affect a process. A control chart is an invaluable way to
examine the variability in time-oriented data. Figure 1-19 presents a control chart for the con-
centration data from Fig. 1-14. The center line on the control chart is just the average of the
concentration measurements for the first 20 samples when the process is stable.
The upper control limit and the lower control limit are a pair of statistically derived limits
that reflect the inherent, or natural, variability in the process. These limits are located three
standard deviations of the concentration values above and below the center line. If the process
is operating as it should, without any external sources of variability present in the system, the
concentration measurements should fluctuate randomly around the center line, and almost all
of them should fall between the control limits.

In the control chart of Fig. 1-19, the visual frame of reference provided by the center line
and the control limits indicates that some upset or disturbance has affected the process around
sample 20 because all the following observations are below the center line and two of them 
actually fall below the lower control limit. This is a very strong signal that corrective action is
required in this process. If we can find and eliminate the underlying cause of this upset, we can
improve process performance considerably.

Control charts are critical to engineering analyses for the following reason. In some
cases, the data in our sample are actually selected from the population of interest. The sample
is a subset of the population. For example, a sample of three wafers might be selected from a
production lot of wafers in semiconductor manufacturing. Based on data in the sample, we
want to conclude something about the lot. For example, the average of the resistivity measure-
ments in the sample is not expected to exactly equal the average of the resistivity measure-
ments in the lot. However, if the sample average is high, we might be concerned that the lot
average is too high.

In many other cases, we use the current data to make conclusions about the future per-
formance of a process. For example, not only are we interested in the acetone concentration
measurements produced by the binary distillation column, but we also want to make conclu-
sions about the concentration of future production of acetone that will be sold to customers.
This population of future production does not yet exist. Clearly, this is an analytic study, and
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Figure 1-19 A control chart for the chemical process
concentration data.
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1-4 OBSERVING PROCESSES OVER TIME 21

the analysis requires some notion of stability as an additional assumption. A control chart is
the fundamental tool to evaluate the stability of a process.

Control charts are a very important application of statistics for monitoring, control-
ling, and improving a process. The branch of statistics that makes use of control charts 
is called statistical process control, or SPC. We will discuss SPC and control charts in
Chapter 8.

EXERCISES FOR CHAPTER 1

1-7. An engineer wants to obtain a random sample of the
output of a process manufacturing digital cameras. She sam-
ples on three different days, and on each day she selects five
cameras at random between 3 P.M. and 4 P.M. from the produc-
tion line output. Is this a random sample?

1-8. List three mechanistic models that you have used in
your engineering studies.

1-9. A population has four members, a, b, c, and d.

(a) How many different samples are there of size n � 2 from
this population? Assume that the sample must consist of
two different objects.

(b) How would you take a random sample of size n � 2 from
this population?

1-10. An automobile company analyzes warranty claim
data reported by its dealer network to determine potential 
design problems with its vehicles.

(a) Can warranty data be viewed as a random sample of failures?
(b) Is this an enumerative study or an analytic study?
(c) Is this an observational study or a retrospective study?

1-11. An engineer draws a simple random sample of 50
bearings from a large production run and measures their inside
diameter. She finds that three of them are outside the diameter
specifications. Since 6% of the sample units are defective, she
reports to the manufacturing manager that exactly 6% of the
production is defective. Is this the correct conclusion to draw
from these data?

1-12. A quality control technician is instructed to sample a
soft-drink bottling process by going to the production line
once each hour and selecting the three most recently produced
bottles. Is this a simple random sample of the bottles being
produced?

1-13. A student in a laboratory course on quality control
methods measures the length of a bolt several times with a 
micrometer. When would it be reasonable to consider these
measurements a random sample? What is the population?

1-14. A new process is run on consecutive mornings for five
days and the yields and other performance data are recorded.
When the process goes into full-scale operation, it will be run
continuously 24 hours a day. Is it reasonable to consider the
yield and performance data from the five morning runs a simple
random sample?

1-1. The Department of Industrial Engineering at a major
university wants to develop an empirical model to predict the
success of its undergraduate students in completing their 
degrees.

(a) What would you use as the response or outcome variable
in this study?

(b) What predictor variables would you recommend using?
(c) Discuss how you would collect data to build this model. Is

this a retrospective study or an observational study?

1-2. A city has 20 neighborhoods. How could the city tax
appraiser select a random sample of single-family homes that
could be used in developing an empirical model to predict the
appraised value of a house?

(a) What characteristics of the house would you recommend
that the tax appraiser consider using in the model?

(b) Is this an enumerative study or an analytic study?

1-3. Are the populations in Exercises 1-1 and 1-2 concep-
tual or physical populations?

1-4. How would you obtain a sample of size 20 from all of
the possible distances that you might throw a baseball? Is the
population that you are sampling from conceptual or physical?

1-5. A group of 100 dental patients is randomly divided into
two groups. One group (the “treatment” group) receives sup-
plemental fluoride treatments monthly for two years, while
the other group (the “control” group) receives standard semi-
annual dental care. At the end of the two-year study period,
each patient’s tooth decay is evaluated and the two groups are
compared.

(a) Does this study involve a conceptual or a physical popula-
tion?

(b) What is the purpose of randomly dividing the patients into
two groups?

(c) Do you think that the study results would be valid if the
patients elected which group they belonged to?

(d) Why are two groups needed? Couldn’t valid results be ob-
tained just by putting all 100 patients into the “treatment”
group?

1-6. List two examples of conceptual populations and 
two examples of physical populations. For each population,
describe a question that could be answered by sampling
from the population. Describe how a random sample could
be obtained.

c01TheRoleofStatisticsinEngineering.qxd  11/10/10  9:36 AM  Page 21



22 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

Analytic study
Control chart
Designed experiment
Dot diagram

Empirical model
Engineering or scientific

method
Enumerative study

Factorial experiment
Mechanistic model
Observational study
Retrospective study

Scatter diagram
Sources of variability
Statistical thinking
Variability

IMPORTANT TERMS AND CONCEPTS FOR THIS CHAPTER

IMPORTANT TERMS AND CONCEPTS DISCUSSED FURTHER IN SUBSEQUENT CHAPTERS

Confidence interval
Control chart
Designed experiment
Empirical model
Factorial experiment

Fractional factorial 
experiment

Hypothesis testing
Interaction

Mechanistic model
Model
Random variable
Replication

Response variable
Sample
Scatter diagram
Variability
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2
GLOBAL TEMPERATURE

We will see that there are both numerical methods for summarizing data and a number of
powerful graphical techniques. The graphical techniques are particularly important. Any good
statistical analysis of data should always begin with plotting the data.

James Watt invented the steam engine in the early nineteenth century, and in the 1820s
fossil fuels began to power industry and transportation. The industrial revolution was under
way literally at full steam. Since then, as Fig. 2-1 shows, carbon dioxide has been spewing
into the atmosphere in ever greater amounts. The graph also shows that global temperatures
have been rising in apparent synchrony with increasing levels of this greenhouse gas. The
data displayed here in this single graph have helped to convince the public, political and
business leaders, and entrepreneurs that a serious problem exists. A global consensus is
forming that controlling carbon dioxide emissions should be a major goal in the coming
years and that we must actively develop new technologies to tap renewable sources of
energy that do not emit greenhouse gases. But leaders on all fronts will need to see consis-
tent, clear, and convincing displays of data that support arguments for funding. More exten-
sive and newer displays of data will be needed to get the ball rolling and to keep it rolling
on thousands of new ventures.

Data Summary 
and Presentation

Figure 2-1 Global mean air temperature anomaly and global CO2 concentration, 1880–2004.
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24 CHAPTER 2 DATA SUMMARY AND PRESENTATION

CHAPTER OUTLINE

2-1 DATA SUMMARY AND DISPLAY

2-2 STEM-AND-LEAF DIAGRAM

2-3 HISTOGRAMS

2-4 BOX PLOT

2-5 TIME SERIES PLOTS

2-6 MULTIVARIATE DATA

As always, engineers will be and are making the connections between thinking and doing.
Solar power and wind power are two promising sources of renewable energy with virtually
zero emissions. Engineering innovation will be crucial to the development of these clean
sources of energy. At each step of the way colleagues in engineering will be exchanging ideas
and data with one another, and engineers will be making presentations to decision makers who
have no background in engineering. The quality and clarity of displayed data will play a large
role in the pace of progress.

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:

1. Compute and interpret the sample mean, sample variance, sample standard deviation, sample median, and
sample range.

2. Explain the concepts of sample mean, sample variance, population mean, and population variance.

3. Construct and interpret visual data displays, including the stem-and-leaf display, the histogram, and the box
plot and understand how these graphical techniques are useful in uncovering and summarizing patterns in data.

4. Explain how to use box plots and other data displays to visually compare two or more samples of data.

5. Know how to use simple time series plots to visually display the important features of time-oriented data.

6. Construct scatter plots and compute and interpret a sample correlation coefficient.

2-1 DATA SUMMARY AND DISPLAY

Well-constructed graphics and data summaries are essential to good statistical thinking
because they focus the engineer on important features of the data. They help the engineer
make sense of the data and can provide insight about potential problem-solving approaches or
the type of model that should be used.

The computer has become an important tool in the presentation and analysis of data.
Although many statistical techniques require only a handheld calculator, this approach can be
time consuming. Computers can perform the tasks more efficiently. Most statistical analysis is
done using a prewritten library of statistical programs. The user enters the data and then
selects the types of analysis and output displays that are of interest. Statistical software pack-
ages are available for both mainframe machines and personal computers. Among the most
popular and widely used packages are SAS (Statistical Analysis System) for both servers and
personal computers (PCs) and Minitab for the PC. We will present some examples of output
from Minitab throughout the book. We will not discuss its hands-on use for entering and
editing data or using commands. You will find Minitab or other similar packages available at
your institution, along with local expertise in their use.
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2-1 DATA SUMMARY AND DISPLAY 25

The sample mean is the average value of all the observations in the data set. Usually, these
data are a sample of observations that have been selected from some larger population of
observations. Here the population might consist of all the O-rings that will be sold to
customers. Sometimes there is an actual physical population, such as a lot of silicon wafers
produced in a semiconductor factory. We could also think of calculating the average value of
all the observations in a population. This average is called the population mean, and it is
denoted by the Greek letter � (mu).

When there is a finite number of observations (say, N ) in the population, the population
mean is

(2-2)� �
a
N

i�1

xi

N

We can describe data features numerically. For example, we can characterize the location
or central tendency in the data by the ordinary arithmetic average or mean. Because we almost
always think of our data as a sample, we will refer to the arithmetic mean as the sample mean.

If the n observations in a sample are denoted by x1, x2, . . . , xn, the sample mean is

(2-1) �
a

n

i�1

xi

n

 x �
x1 � x2 � p � xn

n

Sample Mean

EXAMPLE 2-1 Consider the O-ring tensile strength experiment described in Chapter 1. The data from the modified
rubber compound are shown in the dot diagram (Fig. 2-2). The sample mean strength (psi) for the eight
observations on strength is

A physical interpretation of the sample mean as a measure of location is shown in Fig. 2-2. Note
that the sample mean can be thought of as a “balance point.” That is, if each observation
represents 1 pound of mass placed at the point on the x-axis, a fulcrum located at would exactly balance
this system of weights. ■

x
x � 1055

 �
8440

8
� 1055.0 psi

 x �
x1 � x2 � p xn

n
�
a

8

i�1

xi

8
�

1037 � 1047 � p � 1040

8

O-Ring Strength:
Sample Mean

Figure 2-2 Dot dia-
gram of O-ring tensile
strength. The sample
mean is shown as a
balance point for a
system of weights.
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x = 1055
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26 CHAPTER 2 DATA SUMMARY AND PRESENTATION

The units of measurement for the sample variance are the square of the original units of
the variable. Thus, if x is measured in psi, the units for the sample variance are (psi)2. The stan-
dard deviation has the desirable property of measuring variability in the original units of the
variable of interest, x (psi).

How Does the Sample Variance Measure Variability?
To see how the sample variance measures dispersion or variability, refer to Fig. 2-3, which
shows the deviations for the O-ring tensile strength data. The greater the amount of
variability in the O-ring tensile strength data, the larger in absolute magnitude some of the
deviations will be. Because the deviations always sum to zero, we must use a
measure of variability that changes the negative deviations to nonnegative quantities.
Squaring the deviations is the approach used in the sample variance. Consequently, if s2 is
small, there is relatively little variability in the data, but if s2 is large, the variability is
relatively large.

xi � xxi � x

xi � x

The sample mean, , is a reasonable estimate of the population mean, �. Therefore, the engi-
neer investigating the modified rubber compound for the O-rings would conclude, on the 
basis of the data, that an estimate of the mean tensile strength is 1055 psi.

Although the sample mean is useful, it does not convey all of the information about a
sample of data. The variability or scatter in the data may be described by the sample variance
or the sample standard deviation.

x

If the n observations in a sample are denoted by x1, x2, . . . , xn, then the sample vari-
ance is

(2-3)

The sample standard deviation, s, is the positive square root of the sample variance.

s2 �
a

n

i�1

(xi � x)2

n � 1

Sample
Variance and

Sample
Standard
Deviation

EXAMPLE 2-2 Table 2-1 displays the quantities needed to calculate the sample variance and sample standard devia-
tion for the O-ring tensile strength data. These data are plotted in a dot diagram in Fig. 2-3. The
numerator of s2 is

so the sample variance is

and the sample standard deviation is

■s � 2192.57 � 13.9 psi

s2 �
1348

8 � 1
�

1348

7
� 192.57 psi2

a
8

i�1

(xi � x)2 � 1348

O-Ring Strength:
Sample Variance
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2-1 DATA SUMMARY AND DISPLAY 27

The computation of s2 requires calculation of , n subtractions, and n squaring and adding
operations. If the original observations or the deviations are not integers, the deviations

may be tedious to work with, and several decimals may have to be carried to ensure
numerical accuracy. A more efficient computational formula for the sample variance is
found as follows:

and because this simplifies to

(2-4)

Note that equation 2-4 requires squaring each individual xi, then squaring the sum of the xi,
subtracting from and finally dividing by n � 1. Sometimes this computational
formula is called the shortcut method for calculating s2 (or s).

©  x2
i ,(©  xi)

2�n

s2 �
a

n

i�1

xi
2 �

aa
n

i�1

xib
2

n

n � 1

x � (1/n) a
n

i�1
 xi,

s2 �
a

n

i�1

(xi � x)2

n � 1
�
a

n

i�1

(xi
2 � x2 � 2xxi)

n � 1
�
a

n

i�1

xi
2 � nx2 � 2xa

n

i�1

xi

n � 1

xi � x
xi � x

x

Figure 2-3 How the sample variance measures variability
through the deviations .xi � x
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x1 x2

x3

x5 x6

x7 x8

x4

Table 2-1 Calculation of Terms for the Sample Variance and
Sample Standard Deviation

i xi

1 1048 �7 49
2 1059 4 16
3 1047 �8 64
4 1066 11 121
5 1040 �15 225
6 1070 15 225
7 1037 �18 324
8 1073 18 324

8440 0.0 1348 

(xi � x)2xi � x

A simple computing
formula for the sample
variance and standard
deviation

EXAMPLE 2-3 We will calculate the sample variance and standard deviation for the O-ring tensile strength data using
the shortcut method, equation 2-4. The formula gives

and

These results agree exactly with those obtained previously. ■

s � 1192.57 � 13.9 psi

s2 �
a

n

i�1

xi
2 �

aa
n

i�1

xib
2

n

n � 1
�

8,905,548 �
(8440)2

8

7
�

1348

7
� 192.57 psi2

O-Ring Strength:
Alternative
Variance
Calculation
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28 CHAPTER 2 DATA SUMMARY AND PRESENTATION

Analogous to the sample variance s2, there is a measure of variability in the population
called the population variance. We will use the Greek letter �2 (sigma squared) to denote the
population variance. The positive square root of �2, or �, will denote the population standard
deviation. When the population is finite and consists of N values, we may define the popula-
tion variance as

(2-5)

A more general definition of the variance �2 will be given later. We observed previously
that the sample mean could be used as an estimate of the population mean. Similarly, the
sample variance is an estimate of the population variance.

Note that the divisor for the sample variance is the sample size minus 1, (n � 1), whereas
for the population variance it is the population size, N. If we knew the true value of the popu-
lation mean, �, we could find the sample variance as the average squared deviation of the
sample observations about �. In practice, the value of � is almost never known, and so the sum
of the squared deviations about the sample average must be used instead. However, the
observations xi tend to be closer to their average, , than to the population mean, �. Therefore,
to compensate for this we use n � 1 as the divisor rather than n. If we used n as the divisor in
the sample variance, we would obtain a measure of variability that is, on the average,
consistently smaller than the true population variance �2.

Another way to think about this is to consider the sample variance s2 as being based on
n � l degrees of freedom. The term degrees of freedom results from the fact that the n devia-
tions always sum to zero, and so specifying the values of any n � 1
of these quantities automatically determines the remaining one. This was illustrated in Table
2-1. Thus, only n � 1 of the n deviations, are freely determined.xi � x,

x1 � x, x2 � x, . . . , xn � x

x
x

�2 �
a
N

i�1

(xi � �)2

N

EXERCISES FOR SECTION 2-1

2-1. An important quality characteristic of water is the
concentration of suspended solid material in mg/l. Twelve
measurements on suspended solids from a certain lake are as
follows: 42.4, 65.7, 29.8, 58.7, 52.1, 55.8, 57.0, 68.7, 67.3,
67.3, 54.3, and 54.0. Calculate the sample average and sample
standard deviation. Construct a dot diagram of the data.

2-2. In Applied Life Data Analysis (Wiley, 1982), Wayne
Nelson presents the breakdown time of an insulating fluid
between electrodes at 34 kV. The times, in minutes, are as fol-
lows: 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50,
7.35, 8.01, 8.27, 12.06, 31.75, 32.52, 33.91, 36.71, and 72.89.
Calculate the sample average and sample standard deviation.
Construct a dot diagram of the data.

2-3. Seven oxide thickness measurements of wafers are
studied to assess quality in a semiconductor manufacturing
process. The data (in angstroms) are 1264, 1280, 1301, 1300,
1292, 1307, and 1275. Calculate the sample average and sam-
ple standard deviation. Construct a dot diagram of the data.

2-4. An article in the Journal of Structural Engineering
(Vol. 115, 1989) describes an experiment to test the yield
strength of circular tubes with caps welded to the ends. The

first yields (in kN) are 96, 96, 102, 102, 102, 104, 104, 108,
126, 126, 128, 128, 140, 156, 160, 160, 164, and 170.
Calculate the sample average and sample standard deviation.
Construct a dot diagram of the data.

2-5. An article in Human Factors (June 1989) presented data
on visual accommodation (a function of eye movement) when
recognizing a speckle pattern on a high-resolution CRT screen.
The data are as follows: 36.45, 67.90, 38.77, 42.18, 26.72,
50.77, 39.30, and 49.71. Calculate the sample average and
sample standard deviation. Construct a dot diagram of the data.

2-6. Preventing fatigue crack propagation in aircraft struc-
tures is an important element of aircraft safety. An engineering
study to investigate fatigue crack in n � 9 cyclically loaded
wing boxes reported the following crack lengths (in mm):
2.13, 2.96, 3.02, 1.82, 1.15, 1.37, 2.04, 2.47, and 2.60.
Calculate the sample average and sample standard deviation.
Construct a dot diagram of the data.

2-7. The following data are direct solar intensity measurements
on different days at a location in southern Spain: 562,

869, 708, 775, 775, 704, 809, 856, 655, 806, 878, 909, 918, 558,
768, 870, 918, 940, 946, 661, 820, 898, 935, 952, 957, 693, 835,

(watts/m2)
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2-2 STEM-AND-LEAF DIAGRAM 29

2-2 STEM-AND-LEAF DIAGRAM

The dot diagram is a useful data display for small samples, up to (say) about 20 observations.
However, when the number of observations is moderately large, other graphical displays may
be more useful.

For example, consider the data in Table 2-2. These data are the compressive strengths in
pounds per square inch (psi) of 80 specimens of a new aluminum-lithium alloy undergoing

905, 939, 955, 960, 498, 653, 730, and 753. Calculate the sample
mean and sample standard deviation. Prepare a dot diagram of
these data. Indicate where the sample mean falls on this diagram.
Provide a practical interpretation of the sample mean.

2-8. An article in Nature Genetics (Vol. 34(1), 2003, pp.
85–90), “Treatment-Specific Changes in Gene Expression
Discriminate in Vivo Drug Response in Human Leukemia
Cells,” reported the study of gene expression as a function of
treatments for leukemia. One group received a high dose of the
drug while the control group received no treatment. Expression
data (measures of gene activity) from one gene are shown in the
accompanying table (for all of the treated subjects and some of
the control subjects). Compute the sample mean and standard
deviation for each group separately. Construct a dot diagram for
each group separately. Comment on any differences between
the groups.

High Dose Control

16.1 297.1

134.9 491.8

52.7 1332.9

14.4 1172.0

124.3 1482.7

99.0 335.4

24.3 528.9

16.3 24.1

15.2 545.2

47.7 92.9

12.9 337.1

72.7 102.3

High Dose Control

126.7 255.1

46.4 100.5

60.3 159.9

23.5 168.0

43.6 95.2

79.4 132.5

38.0 442.6

58.2 15.8

26.5 175.6

25.1 131.1

2-9. For each of Exercises 2-1 through 2-8, discuss whether the
data result from an observational study or a designed experiment.

2-10. Suppose that everyone in a company receives a pay
raise of $200 per month. How does that affect the mean
monthly pay for that organization? How does it affect the stan-
dard deviation of monthly pay?

2-11. Does the sample mean always equal one of the values
in the sample? Give an example to support your answer.

2-12. The results of a set of measurements (in cm) are as
follows: 20.1, 20.5, 20.3, 20.5, 20.6, 20.1, 20.2, and 20.4.
Calculate the sample mean and sample standard deviation.
Now suppose that these measurements were converted to
inches (1 in. � 2.54 cm). What impact does this change in scale
have on the sample mean and the sample standard deviation?

2-13. Suppose that everyone in a company receives an
annual pay raise of 5%. How does this affect the mean annual
pay for that organization? How does it affect the standard
deviation of annual pay?

Table 2-2 Compressive Strength of 80 Aluminum-Lithium Alloy Specimens

105 221 183 186 121 181 180 143
97 154 153 174 120 168 167 141

245 228 174 199 181 158 176 110
163 131 154 115 160 208 158 133
207 180 190 193 194 133 156 123
134 178 76 167 184 135 229 146
218 157 101 171 165 172 158 169
199 151 142 163 145 171 148 158
160 175 149 87 160 237 150 135
196 201 200 176 150 170 118 149
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EXAMPLE 2-4 To illustrate the construction of a stem-and-leaf diagram, consider the alloy compressive strength data in
Table 2-2. We will select as stem values the numbers 7, 8, 9, . . . , 24. The resulting stem-and-leaf diagram
is presented in Fig. 2-4. The last column in the diagram is a frequency count of the number of leaves 
associated with each stem.

Practical interpretation: Inspection of this display immediately reveals that most of the compressive
strengths lie between 110 and 200 psi and that a central value is somewhere between 150 and 160 psi.
Furthermore, the strengths are distributed approximately symmetrically about the central value. The
stem-and-leaf diagram enables us to determine quickly some important features of the data that were not
immediately obvious in the original display in the table. ■

evaluation as a possible material for aircraft structural elements. The data were recorded in the
order of testing, and in this format they do not convey much information about compressive
strengths. Questions such as “What percentage of the specimens fail below 120 psi?” are not
easy to answer. Because there are many observations, constructing a dot diagram of these data
would be relatively inefficient; more effective displays are available for large data sets.

A stem-and-leaf diagram is a good way to obtain an informative visual display of a data
set x1, x2, . . . , xn, where each number xi consists of at least two digits. To construct a stem-
and-leaf diagram, use the following steps:

1. Divide each number xi into two parts: a stem, consisting of one or more of the
leading digits, and a leaf, consisting of the remaining digit.

2. List the stem values in a vertical column.

3. Record the leaf for each observation beside its stem.

4. Write the units for stems and leaves on the display.

Steps for
Constructing
a Stem-and-

Leaf Diagram

Figure 2-4 Stem-
and-leaf diagram for 
the compressive 
strength data in 
Table 2-2.

To illustrate, if the data consist of percent defective information between 0 and 100 on lots of
semiconductor wafers, we can divide the value 76 into the stem 7 and the leaf 6. In general, we
should choose relatively few stems in comparison with the number of observations. It is usually
best to choose between 5 and 20 items. Once a set of stems has been chosen, the stems are listed
along the left-hand margin of the diagram. Beside each stem all leaves corresponding to the 
observed data values are listed in the order in which they are encountered in the data set.

Compressive
Strength

7

Stem Leaf Frequency

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1
1
1
2
3
3
6
8
12
10
10
7
6
4
1
3
1
1

6
7
7
5
5
1
4
2
4
3
8
0
9
7
8
1
7
5

1
8
0
1
9
7
0
5
3
6
1

8

0
3
3
5
1
7
4
6
0
0

9

5
8
3
3
4
1
9
8

3
3
4
0
1
4
3

5
1
0
5
6
1
4

9
8
8
1

6
7
0

0 88
9
6

6
8
0
2
0
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EXAMPLE 2-5 Figure 2-5 illustrates the stem-and-leaf diagram for 25 observations on batch yields from a chemical
process. In Fig. 2-5a we used 6, 7, 8, and 9 as the stems. This results in too few stems, and the stem-and-
leaf diagram does not provide much information about the data. In Fig. 2-5b we divided each stem into
two parts, resulting in a display that more adequately displays the data. Figure 2-5c illustrates a stem-
and-leaf display with each stem divided into five parts. There are too many stems in this plot, resulting
in a display that does not tell us much about the shape of the data. ■
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Figure 2-5 Stem-
and-leaf displays for
Example 2-5.
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(a)
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Stem Leaf

3

1

3

3

5

3

4

5

5

7

6

7

8

8 98

8

4

1

4

5

4

9

(b)

Stem Leaf

(c)

Stem Leaf

In some data sets, it may be desirable to provide more classes or stems. One way to do this is
to modify the original stems as follows: Divide the stem 5 (say) into two new stems, 5L and 5U.
The stem 5L has leaves 0, 1, 2, 3, and 4, and stem 5U has leaves 5, 6, 7, 8, and 9. This will double
the number of original stems. We could increase the number of original stems by 4 by defining five
new stems: 5z with leaves 0 and 1, 5t (for two and three) with leaves 2 and 3, 5f (for four and five)
with leaves 4 and 5, 5s (for six and seven) with leaves 6 and 7, and 5e with leaves 8 and 9.

Figure 2-6 shows a stem-and-leaf display of the compressive strength data in Table 2-2 pro-
duced by Minitab. The software uses the same stems as in Fig. 2-4. Note also that the computer
orders the leaves from smallest to largest on each stem. This form of the plot is usually called
an ordered stem-and-leaf diagram. This ordering is not usually done when the plot is con-
structed manually because it can be time consuming. The computer adds a column to the left of
the stems that provides a count of the observations at and above each stem in the upper half of
the display and a count of the observations at and below each stem in the lower half of the dis-
play. At the middle stem of 16, the column indicates the number of observations at this stem.

The ordered stem-and-leaf display makes it relatively easy to find data features such as
percentiles, quartiles, and the median. The median is a measure of central tendency that
divides the data into two equal parts, half below the median and half above. If the number of
observations is even, the median is halfway between the two central values. From Fig. 2-6 we

Batch Yield
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32 CHAPTER 2 DATA SUMMARY AND PRESENTATION

find the 40th and 41st values of strength as 160 and 163, so the median is (160 � 163)�2 � 161.5.
If the number of observations is odd, the median is the central value. The range is a measure of
variability that can be easily computed from the ordered stem-and-leaf display. It is the maximum
minus the minimum measurement. From Fig. 2-6 the range is 245 � 76 � 169.

We can also divide data into more than two parts. When an ordered set of data is divided into
four equal parts, the division points are called quartiles. The first or lower quartile, q1, is a value
that has approximately 25% of the observations below it and approximately 75% of the observa-
tions above. The second quartile, q2, has approximately 50% of the observations below its value.
The second quartile is exactly equal to the median. The third or upper quartile, q3, has approxi-
mately 75% of the observations below its value. As in the case of the median, the quartiles may
not be unique. The compressive strength data in Fig. 2-6 contains n � 80 observations. Minitab
software calculates the first and third quartiles as the (n � 1)�4 and 3(n � 1)�4 ordered obser-
vations and interpolates as needed. For example, (80 � 1)�4 � 20.25 and 3(80 � 1)�4 � 60.75.
Therefore, Minitab interpolates between the 20th and 21st ordered observations to obtain q1 �
143.50 and between the 60th and 61st observations to obtain q3 � 181.00. The interquartile
range (IQR) is the difference between the upper and lower quartiles, and it is sometimes used as
a measure of variability. In general, the 100kth percentile is a data value such that approximately
100k% of the observations are at or below this value and approximately 100(1 � k)% of them
are above it. For example, to find the 95th percentile for this sample data we use the formula
0.95(80 � 1) � 76.95 to determine that we need to interpolate between the 76th and 77th obser-
vations, 221 and 228, respectively. Hence, approximately 95% of the data is below 227.65 and
5% is above. It should be noted that when the percentile falls between two sample observations,
it is common practice to use the midpoint (in contrast to the Minitab procedure of interpolation)
of the two sample observations as the percentile. Using this simplified approach on these sample
data, the sample first and third quartiles and the 95th percentile are 144, 181, and 224.5, respec-
tively. In this text, we use the Minitab interpolation procedure.

Many statistics software packages provide data summaries that include these quantities. The
output obtained for the compressive strength data in Table 2-2 from Minitab is shown in Table 2-3.
Note that the results for the median and the quartiles agree with those given previously. SE mean is
an abbreviation for the standard error of the mean, and it will be discussed in a later chapter.

Figure 2-6 A stem-
and-leaf diagram from
Minitab.

1

Character Stem-and-Leaf Display

Stem-and-Leaf of Strength    N = 80
Leaf Unit = 1.0
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The interquartile range is
a measure of variability.
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2-14.* The shear strengths of 100 spot welds in a titanium alloy
follow. Construct a stem-and-leaf diagram for the weld strength
data and comment on any important features that you notice.

5408 5431 5475 5442 5376 5388 5459 5422 5416 5435

5420 5429 5401 5446 5487 5416 5382 5357 5388 5457

5407 5469 5416 5377 5454 5375 5409 5459 5445 5429

5463 5408 5481 5453 5422 5354 5421 5406 5444 5466

5399 5391 5477 5447 5329 5473 5423 5441 5412 5384

5445 5436 5454 5453 5428 5418 5465 5427 5421 5396

5381 5425 5388 5388 5378 5481 5387 5440 5482 5406

5401 5411 5399 5431 5440 5413 5406 5342 5452 5420

5458 5485 5431 5416 5431 5390 5399 5435 5387 5462

5383 5401 5407 5385 5440 5422 5448 5366 5430 5418

Construct a stem-and-leaf display for these data.

2-15. The following data are the numbers of cycles to failure
of aluminum test coupons subjected to repeated alternating
stress at 21,000 psi, 18 cycles per second:

1115 1567 1223 1782 1055

1310 1883 375 1522 1764

1540 1203 2265 1792 1330

1502 1270 1910 1000 1608

1258 1015 1018 1820 1535

1315 845 1452 1940 1781

1085 1674 1890 1120 1750

798 1016 2100 910 1501

1020 1102 1594 1730 1238

865 1605 2023 1102 990

2130 706 1315 1578 1468

1421 2215 1269 758 1512

1109 785 1260 1416 1750

1481 885 1888 1560 1642

(a) Construct a stem-and-leaf display for these data.
(b) Does it appear likely that a coupon will “survive” beyond

2000 cycles? Justify your answer.
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Table 2-3 Summary Statistics for the Compressive Strength 
Data from Minitab

Variable N Mean Median StDev SE Mean
80 162.66 161.50 33.77 3.78

Min Max Q1 Q3
76.00 245.00 143.50 181.00

EXERCISES FOR SECTION 2-2

2-16. An important quality characteristic of water is the
concentration of suspended solid material. Following are 60
measurements on suspended solids from a certain lake.
Construct a stem-and-leaf diagram for these data and com-
ment on any important features that you notice.

42.4 65.7 29.8 58.7 52.1 55.8 57.0 68.7 67.3 67.3

54.3 54.0 73.1 81.3 59.9 56.9 62.2 69.9 66.9 59.0

56.3 43.3 57.4 45.3 80.1 49.7 42.8 42.4 59.6 65.8

61.4 64.0 64.2 72.6 72.5 46.1 53.1 56.1 67.2 70.7

42.6 77.4 54.7 57.1 77.3 39.3 76.4 59.3 51.1 73.8

61.4 73.1 77.3 48.5 89.8 50.7 52.0 59.6 66.1 31.6

2-17. The data that follow represent the yield on 90 consec-
utive batches of ceramic substrate to which a metal coating has
been applied by a vapor-deposition process. Construct a stem-
and-leaf display for these data.

94.1 87.3 94.1 92.4 84.6 85.4

93.2 84.1 92.1 90.6 83.6 86.6

90.6 90.1 96.4 89.1 85.4 91.7

91.4 95.2 88.2 88.8 89.7 87.5

88.2 86.1 86.4 86.4 87.6 84.2

86.1 94.3 85.0 85.1 85.1 85.1

95.1 93.2 84.9 84.0 89.6 90.5

90.0 86.7 78.3 93.7 90.0 95.6

92.4 83.0 89.6 87.7 90.1 88.3

87.3 95.3 90.3 90.6 94.3 84.1

86.6 94.1 93.1 89.4 97.3 83.7

91.2 97.8 94.6 88.6 96.8 82.9

86.1 93.1 96.3 84.1 94.4 87.3

90.4 86.4 94.7 82.6 96.1 86.4

89.1 87.6 91.1 83.1 98.0 84.5

2-18. Construct a stem-and-leaf display for the gene expres-
sion data in Exercise 2-8 for each group separately and comment
on any differences.

2-19. Construct a stem-and-leaf display for the solar intensity
data in Exercise 2-7 and comment on the shape.

*Please remember that the computer icon indicates that the data are available on the book Web site and the problem should be solved using 
software.
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2-3 HISTOGRAMS

A histogram is a more compact summary of data than a stem-and-leaf diagram. To construct a his-
togram for continuous data, we must divide the range of the data into intervals, which are usually
called class intervals, cells, or bins. If possible, the bins should be of equal width to enhance the
visual information in the histogram. Some judgment must be used in selecting the number of bins
so that a reasonable display can be developed. The number of bins depends on the number of ob-
servations and the amount of scatter or dispersion in the data. A histogram that uses either too few
or too many bins will not be informative. We usually find that between 5 and 20 bins is satisfactory
in most cases and that the number of bins should increase with n. Choosing the number of bins 
approximately equal to the square root of the number of observations often works well in practice.*

Once the number of bins and the lower and upper boundary of each bin have been deter-
mined, the data are sorted into the bins and a count is made of the number of observations in
each bin. To construct the histogram, use the horizontal axis to represent the measurement
scale for the data and the vertical scale to represent the counts, or frequencies. Sometimes the
frequencies in each bin are divided by the total number of observations (n), and then the ver-
tical scale of the histogram represents relative frequencies. Rectangles are drawn over each
bin, and the height of each rectangle is proportional to frequency (or relative frequency). Most
statistics packages construct histograms.

EXAMPLE 2-6 The United States Golf Association tests golf balls to ensure that they conform to the rules of golf. Balls are
tested for weight, diameter, roundness, and conformance to an overall distance standard. The overall 
distance test is conducted by hitting balls with a driver swung by a mechanical device nicknamed Iron By-
ron, after the legendary great player Byron Nelson, whose swing the machine is said to emulate. Table 2-4

2-20. Find the median, the quartiles, and the 5th and 95th
percentiles for the weld strength data in Exercise 2-14.

2-21. Find the median, the quartiles, and the 5th and 95th
percentiles for the failure data in Exercise 2-15.

2-22. Find the median and sample average for the water
quality data in Exercise 2-16. Explain how these two measures
of location describe different features in the data.

2-23. Find the median, the quartiles, and the 5th and 95th
percentiles for the yield data in Exercise 2-17.

2-24. Under what circumstances can the sample median be
exactly equal to one of the data values in the sample?

2-25. Five observations are as follows: 20.25, 21.38, 22.75,
20.89, and 25.50. Suppose that the last observation is erro-
neously recorded as 255.0. What effect does this data recording
error have on the sample mean and standard deviation? What
effect does it have on the sample median?

Golf Ball
Distance

Table 2-4 Golf Ball Distance Data

291.5 274.4 290.2 276.4 272.0 268.7 281.6 281.6 276.3 285.9
269.6 266.6 283.6 269.6 277.8 287.8 267.6 292.6 273.4 284.4
270.7 274.0 285.2 275.5 272.1 261.3 274.0 279.3 281.0 293.1
277.5 278.0 272.5 271.7 280.8 265.6 260.1 272.5 281.3 263.0
279.0 267.3 283.5 271.2 268.5 277.1 266.2 266.4 271.5 280.3
267.8 272.1 269.7 278.5 277.3 280.5 270.8 267.7 255.1 276.4
283.7 281.7 282.2 274.1 264.5 281.0 273.2 274.4 281.6 273.7
271.0 271.5 289.7 271.1 256.9 274.5 286.2 273.9 268.5 262.6
261.9 258.9 293.2 267.1 255.0 269.7 281.9 269.6 279.8 269.9
282.6 270.0 265.2 277.7 275.5 272.2 270.0 271.0 284.3 268.4

*There is no universal agreement about how to select the number of bins for a histogram. Some basic statistics text-
books suggest using Sturges’s rule, which sets the number of bins where n is the sample size. There
are many variations of Sturges’s rule. Computer software packages use many different algorithms to determine the
number and width of bins, and some of them may not be based on Sturges’s rule.

h � 1 � log2 n,
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2-3 HISTOGRAMS 35

gives the distances achieved (in yards) by hitting 100 golf balls of a particular brand in the overall dis-
tance test. Because the data set contains 100 observations and we suspect that about 10 bins
will provide a satisfactory histogram, so we selected the Minitab option that allows the user to specify
the number of bins. The Minitab histogram for the golf ball distance data is shown in Fig. 2-7. Notice
that the midpoint of the first bin is 250 yards and that the histogram only has 9 bins that contain a
nonzero frequency. A histogram, like a stem-and-leaf plot, gives a visual impression of the shape of the
distribution of the measurements, as well as information about the inherent variability in the data. Note
the reasonably symmetric or bell-shaped distribution of the golf ball distance data. ■

Most computer packages have a default setting for the number of bins. Figure 2-8 is the
Minitab histogram obtained with the default setting, which leads to a histogram with 16 bins.
Histograms can be relatively sensitive to the choice of the number and width of the bins. For
small data sets, histograms may change dramatically in appearance if the number and/or width
of the bins changes. For this reason, we prefer to think of the histogram as a technique best
suited for larger data sets containing, say, 75 to 100 or more observations. Because the num-
ber of observations in the golf ball distance data set is moderately large (n � 100), the choice
of the number of bins is not especially important, and the histograms in Figs. 2-7 and 2-8 con-
vey very similar information.

Notice that in passing from the original data or a stem-and-leaf diagram to a histogram,
we have in a sense lost some information because the original observations are not preserved
on the display. However, this loss in information is usually small compared with the concise-
ness and ease of interpretation of the histogram, particularly in large samples.

Histograms are always easier to interpret if the bins are of equal width. If the bins are of
unequal width, it is customary to draw rectangles whose areas (as opposed to heights) are pro-
portional to the number of observations in the bins.

Figure 2-9 shows a variation of the histogram available in Minitab (i.e., the cumulative
frequency plot). In this plot, the height of each bar represents the number of observations that
are less than or equal to the upper limit of the bin. Cumulative frequencies are often very use-
ful in data interpretation. For example, we can read directly from Fig. 2-9 that about 15 of the
100 balls tested traveled farther than 280 yards.

Frequency distributions and histograms can also be used with qualitative, categorical, or
count (discrete) data. In some applications there will be a natural ordering of the categories
(such as freshman, sophomore, junior, and senior), whereas in others the order of the cate-
gories will be arbitrary (such as male and female). When using categorical data, the bars
should be drawn to have equal width.
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Figure 2-7 Minitab histogram for the golf ball distance 
data in Table 2-4.

Figure 2-8 Minitab histogram with 16 bins for the golf ball
distance data.

Histograms are best used
with large samples.
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36 CHAPTER 2 DATA SUMMARY AND PRESENTATION

To construct a histogram for discrete or count data, first determine the frequency (or rel-
ative frequency) for each value of x. Each of the x values corresponds to a bin. The histogram
is drawn by plotting the frequencies (or relative frequencies) on the vertical scale and the val-
ues of x on the horizontal scale. Then above each value of x, draw a rectangle whose height is
the frequency (or relative frequency) corresponding to that value.
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Figure 2-9 A cumulative frequency plot of the golf ball
distance data from minitab.

Figure 2-10 Histogram of the number of strikeouts by
Randy Johnson, 2002 baseball season.

EXAMPLE 2-7 During the 2002 baseball season, the Arizona Diamondbacks’ Randy Johnson won the National League
“triple crown” for pitchers by winning 24 games, striking out 334 opposing batters, and compiling a 2.32
earned-run average. Table 2-5 contains a game-by-game summary of Johnson’s performance for all 35
games in which he was the starting pitcher. Figure 2-10 is a histogram of Johnson’s strikeouts. Notice
that the number of strikeouts is a discrete variable. From either the histogram or the tabulated data, we
can determine the following:

and

These proportions are examples of relative frequencies. ■

Proportion of games with between 8 and 14 strikeouts �
23

35
� 0.6571

Proportion of games with at least 10 strikeouts �
15

35
� 0.4286

An important variation of the histogram is the Pareto chart. This chart is widely used in
quality and process improvement studies where the data usually represent different types of
defects, failure modes, or other categories of interest to the analyst. The categories are ordered
so that the category with the largest number of frequencies is on the left, followed by the cat-
egory with the second largest number of frequencies, and so forth. These charts are named after
the Italian economist V. Pareto, and they usually exhibit “Pareto’s law”; that is, most of the
defects can usually be accounted for by a few of the categories.
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DATE OPPONENT SCORE IP H R ER HR BB SO

4/1 San Diego W, 2-0 (C) 9.0 6 0 0 0 1 8
4/6 @ Milwaukee W, 6-3 7.0 5 1 1 1 3 12
4/11 @ Colorado W, 8-4 7.0 3 2 2 0 2 9
4/16 St. Louis W, 5-3 7.0 8 3 3 1 1 5
4/21 Colorado W, 7-1(C) 9.0 2 1 0 0 1 17
4/26 @ Florida W, 5-3 7.0 4 1 1 0 3 10

5/6 Pittsburgh L, 2-3 7.0 7 3 2 1 0 8
5/11 @ Philadelphia ND, 6-5 (10) 7.0 8 4 4 2 2 8
5/16 Philadelphia W, 4-2 7.0 6 1 1 1 4 8
5/21 San Francisco W, 9-4 7.0 6 3 3 0 3 10
5/26 Los Angeles ND, 10-9 (10) 5.0 8 7 7 3 2 5
5/31 @ Los Angeles W, 6-3 8.0 6 3 0 1 1 4

6/5 Houston ND, 5-4 (13) 8.0 6 3 3 1 0 11
6/10 @ N.Y. Yankees L, 5-7 7.2 7 5 5 2 3 8
6/15 Detroit W, 3-1 7.0 7 1 0 0 2 13
6/20 Baltimore W, 5-1 7.0 5 1 1 1 2 11
6/26 @ Houston W, 9-1 8.0 3 0 0 0 3 8
7/1 Los Angeles L, 0-4 7.0 9 4 3 0 0 6

7/6 San Francisco ND, 2-3 7.0 7 2 2 1 2 10
7/11 @ Los Angeles ND, 4-3 6.0 6 3 3 2 2 5
7/16 @ San Francisco W, 5-3 7.0 5 3 3 2 3 7
7/21 @ San Diego L, 9-11 5.0 8 8 8 1 6 9
7/26 San Diego W, 12-0 7.0 4 0 0 0 1 8
7/31 @ Montreal W, 5-1 (C) 9.0 8 1 1 0 3 15

8/5 @ New York W, 2-0 (C) 9.0 2 0 0 0 2 11
8/10 Florida W, 9-2 8.0 5 2 2 1 2 14
8/15 @ Cincinnati W, 7-2 8.0 2 2 1 1 2 11
8/20 Cincinnati ND, 5-3 7.0 5 2 2 1 3 12
8/25 Chicago W, 7-0 (C) 9.0 6 0 0 0 2 16
8/30 San Francisco L, 6-7 5.1 9 7 6 0 3 6

9/4 Los Angeles W, 7-1 (C) 9.0 3 1 1 1 0 8
9/9 San Diego W, 5-2 7.0 8 1 1 1 3 7
9/14 Milwaukee W, 5-0 (C) 9.0 3 0 0 0 2 17
9/19 @ San Diego W, 3-1 7.0 4 1 1 1 0 9
9/26 Colorado W, 4-2 (C) 9.0 6 2 0 0 2 8

Season Totals 24-5, 2.32 260.0 197 78 67 26 71 334

Table 2-5 Pitching Performance for Randy Johnson in 2002

Key: W � won, L � lost, ND � no decision; C � complete game, IP � innings pitched, H � hits, R � runs,
ER � earned runs, HR � home runs, BB � base on balls, and SO � strikeouts.

EXAMPLE 2-8 Table 2-6 presents data on aircraft accident rates taken from an article in The Wall Street Journal (“Jet’s
Troubled History Raises Issues for the FAA and the Manufacturer,” 19 September 2000). The table pres-
ents the total number of accidents involving hull losses between 1959 and 1999 for 22 types of aircraft
and the hull loss rate expressed as the number of hull losses per million departures. Figure 2-11 shows a
Pareto chart of the hull losses per million departures. Clearly, the first three aircraft types account for a
large percentage of the incidents on a per-million-departures basis. An interesting fact about the first
three aircraft types is that the 707/720 and the DC-8 were mid-1950s’ designs and are not in regular 

Aircraft Accidents
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38 CHAPTER 2 DATA SUMMARY AND PRESENTATION

passenger service today in most of the world, whereas the MD-11 was introduced into passenger service
in 1990. Between 1990 and 1999, five of the global fleet of 198 MD-11s were destroyed in crashes, lead-
ing to the high accident rate (an excellent discussion of potential root causes of these accidents is in The
Wall Street Journal article). The purpose of most Pareto charts is to help the analyst separate the sources
of defects or incidents into the vital few and the relatively “insignificant many.” There are many varia-
tions of the Pareto chart; for some examples, see Montgomery (2009a). ■

Table 2-6 Aircraft Accident Data

Actual Number of Hull Losses/Million
Aircraft Type Hull Losses Departures

MD-11 5 6.54

707/720 115 6.46

DC-8 71 5.84

F-28 32 3.94

BAC 1-11 22 2.64

DC-10 20 2.57

747-Early 21 1.90

A310 4 1.40

A300-600 3 1.34

DC-9 75 1.29

A300-Early 7 1.29

737-1 & 2 62 1.23

727 70 0.97

A310/319/321 7 0.96

F100 3 0.80

L-1011 4 0.77

BAe 146 3 0.59

747-400 1 0.49

757 4 0.46

MD-80/90 10 0.43

767 3 0.41

737-3, 4 & 5 12 0.39
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chart for the aircraft 
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c02DataSummaryandPresentation.qxd  10/12/10  8:22 AM  Page 38



2-4 BOX PLOT 39

Animation 2: Understanding Means, Standard Deviations, and Histograms

EXERCISES FOR SECTION 2-3

2-26. Construct a cumulative frequency plot and histogram
for the weld strength data from Exercise 2-14.

(a) Use 8 bins.
(b) Use 16 bins and compare with part (a).

2-27. Construct a cumulative frequency plot and histogram
using the failure data from Exercise 2-15.

2-28. Construct a cumulative frequency plot and histogram
for the water quality data in Exercise 2-16.

2-29. Construct a cumulative frequency plot and histogram
for the yield data in Exercise 2-17.

2-30. Construct a cumulative frequency plot and histogram
for the gene expression data from each group separately in
Exercise 2-8. Comment on any differences.

2-31. Construct a cumulative frequency plot and histogram
for the solar intensity data in Exercise 2-7. Use 6 bins.

2-32. The following information on structural defects in 
automobile doors is obtained: dents, 4; pits, 4; parts assembled
out of sequence, 6; parts undertrimmed, 21; missing holes/slots, 8;
parts not lubricated, 5; parts out of contour, 30; and parts not 
deburred, 3. Construct and interpret a Pareto chart.

2-4 BOX PLOT

The stem-and-leaf display and the histogram provide general visual impressions about a data set,
whereas numerical quantities such as provide information about only one feature of the
data. The box plot is a graphical display that simultaneously describes several important features
of a data set, such as center, spread, departure from symmetry, and identification of observations
that lie unusually far from the bulk of the data. (These observations are called “outliers.”)

A box plot displays the three quartiles on a rectangular box, aligned either horizontally or
vertically. The box encloses the interquartile range (IQR) with the left (or lower) edge at the first
quartile, q1, and the right (or upper) edge at the third quartile, q3. A line is drawn through the
box at the second quartile (which is the 50th percentile, or the median). A line, or whisker,
extends from each end of the box. The lower whisker is a line from the first quartile to the small-
est data point within 1.5 interquartile ranges from the first quartile. The upper whisker is a line
from the third quartile to the largest data point within 1.5 interquartile ranges from the third
quartile. Data farther from the box than the whiskers are plotted as individual points. A point
beyond a whisker, but less than three interquartile ranges from the box edge, is called an out-
lier. A point more than three interquartile ranges from a box edge is called an extreme outlier.
See Fig. 2-12. Occasionally, different symbols, such as open and filled circles, are used to iden-
tify the two types of outliers. Sometimes box plots are called box-and-whisker plots. Generally,
outliers are observations that are different from most of the data. Outliers always deserve special
consideration. In some cases they result from data recording or reporting errors. Sometimes
they are just very atypical values. In some cases, study of outliers leads to useful discoveries.

Figure 2-13 presents the box plot from Minitab for the alloy compressive strength data
shown in Table 2-2. This box plot indicates that the distribution of compressive strengths is

x or s

Whisker extends to
smallest data point within
1.5 interquartile ranges from 
first quartile

First quartile Second quartile Third quartile

Whisker extends to
largest data point within
1.5 interquartile ranges 
from third quartile

IQR1.5 IQR 1.5 IQR 1.5 IQR 1.5 IQR

Outliers Outliers Extreme outlier
Figure 2-12
Description of a box
plot.
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40 CHAPTER 2 DATA SUMMARY AND PRESENTATION

fairly symmetric around the central value because the left and right whiskers and the lengths
of the left and right boxes around the median are about the same. There are also outliers on ei-
ther end of the data.

Box plots are very useful in graphical comparisons among data sets because they have
high visual impact and are easy to understand. For example, Fig. 2-14 shows the comparative
box plots for a manufacturing quality index on semiconductor devices at three manufacturing
plants. Inspection of this display reveals that there is too much variability at plant 2 and that
plants 2 and 3 need to raise their quality index performance.

Figure 2-13 Box plot for compressive
strength data in Table 2-2.

Figure 2-14 Comparative box plots of a qual-
ity index at three plants.
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EXERCISES FOR SECTION 2-4

2-33. The following data are the joint temperatures of the 
O-rings (�F) for each test firing or actual launch of the space
shuttle rocket motor (from Presidential Commission on the
Space Shuttle Challenger Accident, Vol. 1, pp. 129–131): 84, 49,
61, 40,  83, 67, 45, 66, 70, 69, 80, 58, 68, 60, 67, 72, 73, 70, 57,
63, 70, 78, 52, 67, 53, 67, 75, 61, 70, 81, 76, 79, 75, 76, 58, 31.

(a) Compute the sample mean and sample standard deviation.
(b) Find the upper and lower quartiles of temperature.
(c) Find the median.
(d) Set aside the smallest observation (31�F) and recompute

the quantities in parts (a), (b), and (c). Comment on your
findings. How “different” are the other temperatures from
this smallest value?

(e) Construct a box plot of the data and comment on the pos-
sible presence of outliers.

2-34. An article in the Transactions of the Institution of
Chemical Engineers (Vol. 34, 1956, pp. 280–293) reported
data from an experiment investigating the effect of several
process variables on the vapor phase oxidation of naphthalene.
A sample of the percentage mole conversion of naphthalene to
maleic anhydride follows: 4.2, 4.7, 4.7, 5.0, 3.8, 3.6, 3.0, 5.1,
3.1, 3.8, 4.8, 4.0, 5.2, 4.3, 2.8, 2.0, 2.8, 3.3, 4.8, and 5.0.

(a) Calculate the sample mean.
(b) Calculate the sample variance and sample standard deviation.
(c) Construct a box plot of the data.

2-35. The “cold start ignition time” of an automobile engine
is being investigated by a gasoline manufacturer. The follow-
ing times (in seconds) were obtained for a test vehicle: 1.75,
1.92, 2.62, 2.35, 3.09, 3.15, 2.53, and 1.91.

(a) Calculate the sample mean and sample standard deviation.
(b) Construct a box plot of the data.

2-36. The nine measurements that follow are furnace tem-
peratures recorded on successive batches in a semiconductor
manufacturing process (units are �F): 953, 950, 948, 955, 951,
949, 957, 954, and 955.

(a) Calculate the sample mean, variance, and standard deviation.
(b) Find the median. How much could the largest temperature

measurement increase without changing the median value?
(c) Construct a box plot of the data.

2-37. An article in the Journal of Aircraft (1988) describes
the computation of drag coefficients for the NASA 0012 air-
foil. Different computational algorithms were used at Ma � 0.7
with the following results (drag coefficients are in units of
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drag counts; that is, 1 count is equivalent to a drag coefficient
of 0.0001): 79, 100, 74, 83, 81, 85, 82, 80, and 84.

(a) Calculate the sample mean, variance, and standard deviation.
(b) Find the upper and lower quartiles of the drag coefficients.
(c) Construct a box plot of the data.
(d) Set aside the largest observation (100) and redo parts (a),

(b), and (c). Comment on your findings.

2-38. The following data are the temperatures of effluent at
discharge from a sewage treatment facility on consecutive days:

43 47 51 48 52 50 46 49

45 52 46 51 44 49 46 51

49 45 44 50 48 50 49 50

(a) Calculate the sample mean and median.
(b) Calculate the sample variance and sample standard deviation.
(c) Construct a box plot of the data and comment on the infor-

mation in this display.
(d) Find the 5th and 95th percentiles of temperature.

2-39. The inside diameter (in inches) of 50 lightweight
snaps used in assembling computer cases are measured and
sorted with the following resulting data:

0.0395 0.0443 0.0450 0.0459 0.0470

0.0485 0.0486 0.0487 0.0489 0.0496

0.0499 0.0500 0.0503 0.0504 0.0504

0.0516 0.0529 0.0542 0.0550 0.0571

(a) Compute the sample mean and sample variance.
(b) Find the sample upper and lower quartiles.
(c) Find the sample median.
(d) Construct a box plot of the data.
(e) Find the 5th and 95th percentiles of the inside diameter.

2-40. Eighteen measurements of the disbursement rate (in
cm3/sec) of a chemical disbursement system are recorded and
sorted:

6.50 6.77 6.91 7.38 7.64 7.74 7.90 7.91 8.21

8.26 8.30 8.31 8.42 8.53 8.55 9.04 9.33 9.36

(a) Compute the sample mean and sample variance.
(b) Find the sample upper and lower quartiles.
(c) Find the sample median.
(d) Construct a box plot of the data.
(e) Find the 5th and 95th percentiles of the inside diameter.

2-41. A battery-operated pacemaker device helps the human
heart to beat in regular rhythm. The activation rate is important
in stimulating the heart, when necessary. Fourteen activation
rates (in sec.) were collected on a newly designed device:

0.670 0.697 0.699 0.707 0.732 0.733 0.737

0.747 0.751 0.774 0.777 0.804 0.819 0.827

(a) Compute the sample mean and sample variance.
(b) Find the sample upper and lower quartiles.
(c) Find the sample median.
(d) Construct a box plot of the data.
(e) Find the 5th and 95th percentiles of the inside diameter.

2-42. Consider the solar intensity data in Exercise 2.7.

(a) Compute the sample mean, variance, and standard deviation.
(b) Find the sample upper and lower quartiles.
(c) Find the sample median.
(d) Construct a box plot of the data.
(e) Find the 5th and 95th percentiles.

2-43. Consider the gene expression data in Exercise 2.8.
Use each group separately and calculate the following.
Comment on any differences between the groups.

(a) Compute the sample mean, variance, and standard deviation.
(b) Find the sample upper and lower quartiles.
(c) Find the sample median.
(d) Construct a box plot of the data.
(e) Find the 5th and 95th percentiles.

2-5 TIME SERIES PLOTS

The graphical displays that we have considered thus far such as histograms, stem-and-leaf
plots, and box plots are very useful visual methods for showing the variability in data.
However, we noted previously in Chapter 1 that time is an important factor that contributes to
variability in data, and those graphical methods do not take this into account. A time series or
time sequence is a data set in which the observations are recorded in the order in which they
occur. A time series plot is a graph in which the vertical axis denotes the observed value of
the variable (say, x) and the horizontal axis denotes the time (which could be minutes, days,
years, etc.). When measurements are plotted as a time series, we often see trends, cycles, or
other broad features of the data that we could not see otherwise.

For example, consider Fig. 2-15a, which presents a time series plot of the annual sales of
a company for the last 10 years. The general impression from this display is that sales show an
upward trend. There is some variability about this trend, with some years’ sales increasing
over those of the last year and some years’ sales decreasing. Figure 2-15b shows the last 3
years of sales reported by quarter. This plot clearly shows that the annual sales in this business
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42 CHAPTER 2 DATA SUMMARY AND PRESENTATION

exhibit a cyclic variability by quarter, with the first- and second-quarter sales generally greater
than sales during the third and fourth quarters.

Sometimes it can be very helpful to combine a time series plot with some of the other
graphical displays that we have considered previously. J. Stuart Hunter (The American
Statistician, Vol. 42, 1988, p. 54) has suggested combining the stem-and-leaf plot with a time
series plot to form a digidot plot.

Figure 2-16 shows a digidot plot for the observations on compressive strength from Table
2-2, assuming that these observations are recorded in the order in which they occurred. This
plot effectively displays the overall variability in the compressive strength data and simultane-
ously shows the variability in these measurements over time. The general impression is that
compressive strength varies around the mean value of 162.67, and there is no strong obvious
pattern in this variability over time.

The digidot plot in Fig. 2-17 tells a different story. This plot summarizes 30 observations on
concentration of the output product from a chemical process, where the observations are recorded
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Figure 2-15 Company sales by year (a) and by quarter (b).
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Figure 2-16 A digidot plot of the compressive strength data in Table 2-2.
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at 1-hour time intervals. This plot indicates that during the first 20 hours of operation this process
produced concentrations generally above 85 g/l, but that following sample 20 something may have
occurred in the process that resulted in lower concentrations. If this variability in output product
concentration can be reduced, operation of this process can be improved. The control chart, which
is a special kind of time series plot, of these data was shown in Fig. 1-19 of Chapter 1.

The digidot plot is not supported in Minitab or other widely used software. However, a
very similar plot can be constructed by using the marginal plot in Minitab. This plot displays
the variable on a graph in time or observation order and will plot either a histogram, a box plot,
or a dot diagram for the y-axis variable (or x-axis, or both x- and y-axes) in the graph margin.
Figure 2-18 is the marginal plot from Minitab that corresponds to Fig. 2-16.

Figure 2-17 A digidot plot of chemical process concentration readings, observed hourly.
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Figure 2-18 Marginal plot from Minitab for the compressive strength data 
in Table 2-2.
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EXERCISES FOR SECTION 2-5

2-44. Consider a server at Arizona State University. Response
times for 20 consecutive jobs done on the system were recorded
and are shown next in order. (Read down, then left to right.)

5.3 5.0 9.5 10.1 5.8 6.2 5.9

7.2 10.0 12.2 8.5 4.7 11.2 7.3

6.4 12.4 3.9 8.1 9.2 10.5

Construct and interpret a time series plot of these data.

2-45. The following data are the viscosity measurements for a
chemical product observed hourly. (Read down, then left to right.)

47.9 47.9 48.6 48.0 48.4 48.1 48.0 48.6
48.8 48.1 48.3 47.2 48.9 48.6 48.0 47.5
48.6 48.0 47.9 48.3 48.5 48.1 48.0 48.3
43.2 43.0 43.5 43.1 43.0 42.9 43.6 43.3
43.0 42.8 43.1 43.2 43.6 43.2 43.5 43.0
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44 CHAPTER 2 DATA SUMMARY AND PRESENTATION

(a) Construct and interpret either a digidot plot (or a marginal
plot) or a separate stem-and-leaf and time series plot of
these data.

(b) Specifications on product viscosity are at 48 	 2. What
conclusions can you make about process performance?

2-46. The pull-off force for a connector is measured in a
laboratory test. Data for 40 test specimens are shown next.
(Read down the entire column, then left to right.)

241 258 237 210 194 225 248 203

195 249 220 194 245 209 201 195

255 245 235 220 249 251 238 210

198 199 183 213 236 245 209 212

185 187 218 190 175 178 175 190

(a) Construct a time series plot of the data.
(b) Construct and interpret either a digidot plot (or a marginal

plot) or a stem-and-leaf and time series plot of the data.

2-47. In their book Time Series Analysis, Forecasting, and
Control (Holden-Day, 1976), G. E. P. Box and G. M. Jenkins
present chemical process concentration readings made every 

2 hours. Some of these data are shown next. (Read down, then
left to right.)

17.0 16.6 16.3 16.1 17.1 16.9 16.8 17.4

17.1 17.0 16.7 17.4 17.2 17.4 17.4 17.0

17.3 17.2 17.4 16.8 17.1 17.4 17.4 17.5

17.4 17.6 17.4 17.3 17.0 17.8 17.5 18.1

17.5 17.4 17.4 17.1 17.6 17.7 17.4 17.8

17.6 17.5 16.5 17.8 17.3 17.3 17.1 17.4

16.9 17.3

Construct and interpret either a digidot plot or a stem-and-leaf
and time series plot of these data.

2-48. The annual Wolfer sunspot numbers from 1770 to
1869 are shown in Table 2-7. (For an interesting analysis and
interpretation of these numbers, see the book by Box and
Jenkins referenced in Exercise 2-47. The analysis requires some
advanced knowledge of statistics and statistical model building.)

(a) Construct a time series plot of these data.
(b) Construct and interpret either a digidot plot (or a marginal

plot) or a stem-and-leaf and time series plot of these data.

Table 2-7 Annual Sunspot Numbers

1770 101 1795 21 1820 16 1845 40
1771 82 1796 16 1821 7 1846 62
1772 66 1797 6 1822 4 1847 98
1773 35 1798 4 1823 2 1848 124
1774 31 1799 7 1824 8 1849 96
1775 7 1800 14 1825 17 1850 66
1776 20 1801 34 1826 36 1851 64
1777 92 1802 45 1827 50 1852 54
1778 154 1803 43 1828 62 1853 39
1779 125 1804 48 1829 67 1854 21
1780 85 1805 42 1830 71 1855 7
1781 68 1806 28 1831 48 1856 4
1782 38 1807 10 1832 28 1857 23
1783 23 1808 8 1833 8 1858 55
1784 10 1809 2 1834 13 1859 94
1785 24 1810 0 1835 57 1860 96
1786 83 1811 1 1836 122 1861 77
1787 132 1812 5 1837 138 1862 59
1788 131 1813 12 1838 103 1863 44
1789 118 1814 14 1839 86 1864 47
1790 90 1815 35 1840 63 1865 30
1791 67 1816 46 1841 37 1866 16
1792 60 1817 41 1842 24 1867 7
1793 47 1818 30 1843 11 1868 37
1794 41 1819 24 1844 15 1869 74
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2-5 TIME SERIES PLOTS 45

2-49. In their book Forecasting and Time Series Analysis,
2nd ed. (McGraw-Hill, 1990), D. C. Montgomery, L. A.
Johnson, and J. S. Gardiner analyze the data in Table 2-8,
which are the monthly total passenger airline miles flown in
the United Kingdom, 1964–1970 (in millions of miles).

(a) Draw a time series plot of the data and comment on any
features of the data that are apparent.

(b) Construct and interpret either a digidot plot (or a marginal
plot) or a stem-and-leaf and time series plot of these data.

2-50. The following table shows U.S. petroleum imports,
imports as a percentage of total, and Persian Gulf imports as a
percentage of all imports by year since 1973 (source: U.S.
Department of Energy Web site http://www.eia.doe.gov/).
Construct and interpret either a digidot plot (or a marginal
plot) or a separate stem-and-leaf and time series plot for each
column of data.

Petroleum Total Petroleum Petroleum Imports
Imports Imports as Percent from Persian Gulf

(thousand of Petroleum as Percent of Total
barrels Products Supplied Petroleum Imports

Year per day) (percent) (percent)

1973 6256 36.1 13.5

1974 6112 36.7 17.0

1975 6055 37.1 19.2

1976 7313 41.8 25.1

1977 8807 47.7 27.8

1978 8363 44.3 26.5

1979 8456 45.6 24.4

1980 6909 40.5 21.9

1981 5996 37.3 20.3

1982 5113 33.4 13.6

1983 5051 33.1 8.7

Petroleum Total Petroleum Petroleum Imports
Imports Imports as Percent from Persian Gulf

(thousand of Petroleum as Percent of Total
barrels Products Supplied Petroleum Imports

Year per day) (percent) (percent)

1984 5437 34.5 9.3

1985 5067 32.2 6.1

1986 6224 38.2 14.6

1987 6678 40.0 16.1

1988 7402 42.8 20.8

1989 8061 46.5 23.0

1990 8018 47.1 24.5

1991 7627 45.6 24.1

1992 7888 46.3 22.5

1993 8620 50.0 20.6

1994 8996 50.7 19.2

1995 8835 49.8 17.8

1996 9478 51.7 16.9

1997 10162 54.5 17.2

1998 10708 56.6 19.9

1999 10852 55.5 22.7

2000 11459 58.1 21.7

2001 11871 60.4 23.2

2002 11530 58.3 19.6

2003 12264 61.2 20.3

2004 13145 63.4 18.9

2005 13714 65.9 17.0

2006 13707 66.3 16.1

2007 13468 65.1 16.1

2008 12915 66.2 18.4

Table 2-8 United Kingdom Airline Miles Flown

1964 1965 1966 1967 1968 1969 1970

Jan. 7.269 8.350 8.186 8.334 8.639 9.491 10.840

Feb. 6.775 7.829 7.444 7.899 8.772 8.919 10.436

Mar. 7.819 8.829 8.484 9.994 10.894 11.607 13.589

Apr. 8.371 9.948 9.864 10.078 10.455 8.852 13.402

May 9.069 10.638 10.252 10.801 11.179 12.537 13.103

June 10.248 11.253 12.282 12.953 10.588 14.759 14.933

July 11.030 11.424 11.637 12.222 10.794 13.667 14.147

Aug. 10.882 11.391 11.577 12.246 12.770 13.731 14.057

Sept. 10.333 10.665 12.417 13.281 13.812 15.110 16.234

Oct. 9.109 9.396 9.637 10.366 10.857 12.185 12.389

Nov. 7.685 7.775 8.094 8.730 9.290 10.645 11.594

Dec. 7.682 7.933 9.280 9.614 10.925 12.161 12.772
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46 CHAPTER 2 DATA SUMMARY AND PRESENTATION

2-6 MULTIVARIATE DATA

The dot diagram, stem-and-leaf diagram, histogram, and box plot are descriptive displays for
univariate data; that is, they convey descriptive information about a single variable. Many 
engineering problems involve collecting and analyzing multivariate data, or data on several
different variables. The acetone-butyl alcohol distillation column discussed in Section 1-2 and
the wire bond pull strength problem in Section 1-3 are typical examples of engineering studies
involving multivariate data. The wire bond pull strength data are reproduced for convenience
in Table 2-9. In engineering studies involving multivariate data, often the objective is to deter-
mine the relationships among the variables or to build an empirical model, as we discussed in
Section 1-3.

The scatter diagram introduced in Section 1-3 is a simple descriptive tool for multivariate
data. The diagram is useful for examining the pairwise (or two variables at a time) relationships
between the variables in a multivariate data set. Scatter diagrams for the wire bond pull strength
data in Table 2-9 are shown in Fig. 2-19. These plots were constructed using the marginal plot
in Minitab, and the option to display box plots for each individual variable in the margins of the
plot was specified. As we observed previously in Section 1-3, both scatter diagrams convey the
impression that there may be an approximate linear relationship between bond pull strength and
wire length and between bond strength and die height. The strength of these relationships 
appears to be stronger for pull strength and length than it does for pull strength and die height.

The strength of a linear relationship between two variables, y and x, can be described by
the sample correlation coefficient r. Suppose that we have n pairs of observations on two
variables It would be logical to say that y and x have a positive 
relationship if large values of y occur together with large values of x and small values of y occur
with small values of x. Similarly, a negative relationship between the variables is implied if
large values of y occur together with small values of x and small values of y occur with large
values of x. The corrected sum of cross-products given by

Sxy � a
n

i�1

(xi � x)( yi � y) � a
n

i�1

xi yi � aa
n

i�1

xib aa
n

i�1

yib �n

(y1, x1), (y2, x2), p , (yn, xn).

Table 2-9 Wire Bond Data

Observation Pull Strength, Wire Length, Die Height, Observation Pull Strength, Wire Length, Die Height,
Number y x1 x2 Number y x1 x2

1 9.95 2 50 14 11.66 2 360

2 24.45 8 110 15 21.65 4 205

3 31.75 11 120 16 17.89 4 400

4 35.00 10 550 17 69.00 20 600

5 25.02 8 295 18 10.30 1 585

6 16.86 4 200 19 34.93 10 540

7 14.38 2 375 20 46.59 15 250

8 9.60 2 52 21 44.88 15 290

9 24.35 9 100 22 54.12 16 510

10 27.50 8 300 23 56.63 17 590

11 17.08 4 412 24 22.13 6 100

12 37.00 11 400 25 21.15 5 400

13 41.95 12 500

c02DataSummaryandPresentation.qxd  10/12/10  8:22 AM  Page 46



2-6 MULTIVARIATE DATA 47

can reflect these types of relationships. To see why this is so, suppose that the relationship 
between y and x is strongly positive, as in the case of pull strength and length in Fig. 2-19a. In
this situation, a value of above the mean will tend to occur along with a value of that is
above the mean , so the cross-product will be positive. This will also occur
when both and are below their respective means. Consequently, a positive relationship 
between y and x implies that will be positive. A similar argument will show that when the
relationship is negative, most of the cross-products will be negative, so 
will be negative. Now the units of Sxy are the units of x times the units of y, so it would be difficult
to interpret as a measure of the strength of a relationship because a change in the units of
either x and/or y will affect the magnitude of . The sample correlation coefficient r simply
scales to produce a dimensionless quantity.Sxy

Sxy

Sxy

Sxy(xi � x )( yi � y )
Sxy

yixi

(xi � x )( yi � y)y
yixxi

Figure 2-19 Scatter diagrams and box plots for the wire bond pull strength data in Table 1-1. (a) Pull strength versus length.
(b) Pull strength versus die height.
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Given n pairs of data , the sample correlation coeffi-
cient r is defined by

(2-6)

with �1 
 r 
 �1.

r �
Sxy

B
aa

n

i�1

(xi � x)2b aa
n

i�1

( yi � y )2b
�

Sxy

2SxxSyy

( y1, x1), ( y2, x2) , p , ( yn, xn)
Sample

Correlation
Coefficient

The value is achieved only if all the observations lie exactly along a straight line with
positive slope, and similarly, the value r � �1 is achieved only if all the observations lie exactly
along a straight line with negative slope. Thus, r measures the strength of the linear relationship
between x and y. When the value of r is near zero, it may indicate either no relationship among
the variables or the absence of a linear relationship. Refer to Fig. 2-20.

As an illustration, consider calculating the sample correlation coefficient between pull
strength and wire length. From the data in Table 2-9, we find that

 a
25

i�1

x 2
i � 2396 a

25

i�1

x � 206 a
25

i�1

y2
i � 27179 a

25

i�1

yi � 725.82 a
25

i�1

xi yi � 8008.5

r � �1

Calculating the sample 
correlation coefficient
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48 CHAPTER 2 DATA SUMMARY AND PRESENTATION

The sample correlation coefficient between wire bond pull strength and wire length is

A similar calculation reveals that the sample correlation between wire bond pull strength and
die height is r � 0.493.

Generally, we consider the correlation between two variables to be strong when
, weak when , and moderate otherwise. Therefore, there is a strong

correlation between the wire bond pull strength and wire length and a relatively weak to mod-
erate correlation between pull strength and die height.

0 � r � 0.50.8 � r � 1

r �
Sxy

2SxxSyy

�
2027.74

2(698.56)(6106.41)
� 0.982
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n

i�1

xiyi �
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n

i�1

xib
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n
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yib
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Figure 2-20 Scatter diagrams for different values of the sample correlation coefficient r. (a) r is near �1. (b) r is near �1. 
(c) r is near 0; y and x are unrelated. (d) r is near 0; y and x are nonlinearly related.
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EXAMPLE 2-9 Table 2-10 shows the global mean air temperature anomaly and the global CO2 concentration for the
years 1880 to 2004. These data were first shown in a time series plot as Figure 2-1. Figure 2-21 is a
scatter diagram of the global mean air temperature anomaly versus global CO2 concentration. The
graph illustrates positive correlation between the two variables. Applying equation 2-6 to these data,
we find that the sample correlation coefficient is r � 0.852, a moderately strong correlation. You must
be careful not to read too much into this positive correlation; correlation does not imply causality.
There are many instances of variables that are strongly correlated but there is no cause-and-effect 
relationship between the variables. Designed experiments, in which the levels or values of a variable
are deliberately changed and the changes in another variable are observed, are required to establish
causality. ■

Global
Temperature
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Table 2-10 Global Mean Air Temperature Anomaly and Global CO2 Concentration, 1880–2004

Year Anomaly CO2 Conc Year Anomaly CO2 Conc Year Anomaly CO2 Conc

1880 �0.11 290.7 1922 �0.09 303.8 1964 �0.25 319.2

1881 �0.13 291.2 1923 �0.16 304.1 1965 �0.15 320.0

1882 �0.01 291.7 1924 �0.11 304.5 1966 �0.07 321.1

1883 �0.04 292.1 1925 �0.15 305.0 1967 �0.02 322.0

1884 �0.42 292.6 1926 0.04 305.4 1968 �0.09 322.9

1885 �0.23 293.0 1927 �0.05 305.8 1969 0.00 324.2

1886 �0.25 293.3 1928 0.01 306.3 1970 0.04 325.2

1887 �0.45 293.6 1929 �0.22 306.8 1971 �0.10 326.1

1888 �0.23 293.8 1930 �0.03 307.2 1972 �0.05 327.2

1889 0.04 294.0 1931 0.03 307.7 1973 0.18 328.8

1890 �0.22 294.2 1932 0.04 308.2 1974 �0.06 329.7

1891 �0.55 294.3 1933 �0.11 308.6 1975 �0.02 330.7

1892 �0.40 294.5 1934 0.05 309.0 1976 �0.21 331.8

1893 �0.39 294.6 1935 �0.08 309.4 1977 0.16 333.3

1894 �0.32 294.7 1936 0.01 309.8 1978 0.07 334.6

1895 �0.32 294.8 1937 0.12 310.0 1979 0.13 336.9

1896 �0.27 294.9 1938 0.15 310.2 1980 0.27 338.7

1897 �0.15 295.0 1939 �0.02 310.3 1981 0.40 339.9

1898 �0.21 295.2 1940 0.14 310.4 1982 0.10 341.1

1899 �0.25 295.5 1941 0.11 310.4 1983 0.34 342.8

1900 �0.05 295.8 1942 0.10 310.3 1984 0.16 344.4

1901 �0.05 296.1 1943 0.06 310.2 1985 0.13 345.9

1902 �0.30 296.5 1944 0.10 310.1 1986 0.19 347.2

1903 �0.35 296.8 1945 �0.01 310.1 1987 0.35 348.9

1904 �0.42 297.2 1946 0.01 310.1 1988 0.42 351.5

1905 �0.25 297.6 1947 0.12 310.2 1989 0.28 352.9

1906 �0.15 298.1 1948 �0.03 310.3 1990 0.49 354.2

1907 �0.41 298.5 1949 �0.09 310.5 1991 0.44 355.6

1908 �0.30 298.9 1950 �0.17 310.7 1992 0.16 356.4 

1909 �0.31 299.3 1951 �0.02 311.1 1993 0.18 357.0 

1910 �0.21 299.7 1952 0.03 311.5 1994 0.31 358.9 

1911 �0.25 300.1 1953 0.12 311.9 1995 0.47 360.9 

1912 �0.33 300.4 1954 �0.09 312.4 1996 0.36 362.6 

1913 �0.28 300.8 1955 �0.09 313.0 1997 0.40 363.8 

1914 �0.02 301.1 1956 �0.18 313.6 1998 0.71 366.6 

1915 0.06 301.4 1957 0.08 314.2 1999 0.43 368.3 

1916 �0.20 301.7 1958 0.10 314.9 2000 0.41 369.5 

1917 �0.46 302.1 1959 0.05 315.8 2001 0.56 371.0 

1918 �0.33 302.4 1960 �0.02 316.6 2002 0.70 373.1 

1919 �0.09 302.7 1961 0.10 317.3 2003 0.66 375.6 

1920 �0.15 303.0 1962 0.05 318.1 2004 0.60 377.4 

1921 �0.04 303.4 1963 0.03 318.7 
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50 CHAPTER 2 DATA SUMMARY AND PRESENTATION

There are several other useful graphical methods for displaying multivariate data. To illus-
trate the use of these methods consider the shampoo data in Table 2-11. These data were collected
during a sensory evaluation experiment conducted by a scientist. The variables foam, scent, color,
and residue (a measure of the extent of the cleaning ability) are descriptive properties evaluated
on a 10-point scale. Quality is a measure of overall desirability of the shampoo, and it is the nom-
inal response variable of interest to the experimenter. Region is an indicator for a qualitative vari-
able identifying whether the shampoo was produced in an eastern (1) or western (2) plant.

Figure 2-21 Scatter diagram of global mean air temperature
anomaly versus global CO2 concentration.
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Table 2-11 Data on Shampoo

Foam Scent Color Residue Region Quality

6.3 5.3 4.8 3.1 1 91
4.4 4.9 3.5 3.9 1 87
3.9 5.3 4.8 4.7 1 82
5.1 4.2 3.1 3.6 1 83
5.6 5.1 5.5 5.1 1 83
4.6 4.7 5.1 4.1 1 84
4.8 4.8 4.8 3.3 1 90
6.5 4.5 4.3 5.2 1 84
8.7 4.3 3.9 2.9 1 97
8.3 3.9 4.7 3.9 1 93
5.1 4.3 4.5 3.6 1 82
3.3 5.4 4.3 3.6 1 84
5.9 5.7 7.2 4.1 2 87
7.7 6.6 6.7 5.6 2 80
7.1 4.4 5.8 4.1 2 84
5.5 5.6 5.6 4.4 2 84
6.3 5.4 4.8 4.6 2 82
4.3 5.5 5.5 4.1 2 79
4.6 4.1 4.3 3.1 2 81
3.4 5.0 3.4 3.4 2 83
6.4 5.4 6.6 4.8 2 81
5.5 5.3 5.3 3.8 2 84
4.7 4.1 5.0 3.7 2 83
4.1 4.0 4.1 4.0 2 80 
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2-6 MULTIVARIATE DATA 51

Figure 2-22 is a matrix of scatter plots for the shampoo data, produced by Minitab. This
display reveals the pairwise relationships between all of the variables in Table 2-11. The indi-
vidual scatter plots in this matrix reveal that there may be a positive relationship between
shampoo quality and foam and negative relationships between quality and scent and between
quality and the indicator variable identifying the region in which it was produced. There may
also be relationships between some of the property variables, such as color and residue.
Minitab will also calculate all of the pairwise correlations between these variables. The results
of this are as follows:

Foam Scent Color Residue Region

Scent 0.002
Color 0.328 0.599
Residue 0.193 0.500 0.524
Region �0.032 0.278 0.458 0.165
Quality 0.512 �0.252 �0.194 �0.489 �0.507

Notice that none of the correlations is strong.
Figure 2-23 is a scatter diagram of shampoo quality versus foam. In this scatter diagram

we have used two different plotting symbols to identify the observations associated with the
two different regions, thus allowing information about three variables to be displayed on a
two-dimensional graph. The display in Fig. 2-23 reveals that the relationship between sham-
poo quality and foam may be different in the two regions. Another way to say this is that there
may be an interaction between foam and region (you may find it helpful to reread the discus-
sion of interaction in Section 1-2.3). Obviously, this technique could be extended to more than
three variables by defining several additional plotting symbols.

The variation of the scatter diagram in Fig. 2-23 works well when the third variable is dis-
crete or categorical. When the third variable is continuous, a coplot may be useful. A coplot
for the shampoo quality data is shown in Fig. 2-24. In this display, shampoo quality is plotted
against foam, and as in Fig. 2-23, different plotting symbols are used to identify the two pro-
duction regions. The descriptive variable residue in Table 2-11 is not necessarily a desirable
characteristic of shampoo, and higher levels of residue would receive a rating of between 4 and
4.5 or greater in Table 2-11. The graph in Fig. 2-24a uses all of the observations in Table 2-11
for which the residue variable is less than or equal to 4.6, and the graph in Fig. 2-24b uses all of
the observations for which the residue is greater than or equal to 4. Notice that there is overlap
in the values of residue used in constructing the coplot; this is perfectly acceptable. Using more

Figure 2-22 Matrix of scatter plots for the shampoo data
in Table 2-11. Figure 2-23 Scatter diagram of shampoo quality versus foam.
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52 CHAPTER 2 DATA SUMMARY AND PRESENTATION

than two categories may be useful as well in some problems. The coplot indicates that the pos-
itive relationship between shampoo quality and foam is much stronger for the lower range of
residue, perhaps indicating that too much residue doesn’t always result in a good shampoo.

Figure 2-24 A coplot for the shampoo data. (a) Residue is � 4.6. (b) Residue is � 4.
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EXERCISES FOR SECTION 2-6

2-51. An engineer at a semiconductor company wants to
model the relationship between the device HFE (y) and three
parameters: Emitter-RS (x1), Base-RS (x2), and Emitter-to-
Base RS (x3). The data are shown in the following table.

x1 x2 x3 y
Emitter-RS Base-RS E-B-RS HFE-1M-5V

14.620 226.00 7.000 128.40
15.630 220.00 3.375 52.62
14.620 217.40 6.375 113.90
15.000 220.00 6.000 98.01
14.500 226.50 7.625 139.90
15.250 224.10 6.000 102.60
16.120 220.50 3.375 48.14
15.130 223.50 6.125 109.60
15.500 217.60 5.000 82.68
15.130 228.50 6.625 112.60
15.500 230.20 5.750 97.52
16.120 226.50 3.750 59.06
15.130 226.60 6.125 111.80
15.630 225.60 5.375 89.09
15.380 229.70 5.875 101.00
14.380 234.00 8.875 171.90
15.500 230.00 4.000 66.80
14.250 224.30 8.000 157.10
14.500 240.50 10.870 208.40
14.620 223.70 7.375 133.40

(a) Construct scatter plots of each x versus y and comment on
any relationships.

(b) Compute and interpret the three sample correlation coef-
ficients between each x and y.

2-52. Establishing the properties of materials is an important
problem in identifying a suitable substitute for biodegradable
materials in the fast-food packaging industry. Consider the
following data on product density (g/cm3) and thermal con-
ductivity K-factor (W/mK) published in Materials Research
and Innovation (1999, pp. 2–8).

Thermal Conductivity, y Product Density, x

0.0480 0.1750
0.0525 0.2200
0.0540 0.2250
0.0535 0.2260
0.0570 0.2500
0.0610 0.2765

(a) Create a scatter diagram of the data. What do you
anticipate will be the sign of the sample correlation
coefficient?

(b) Compute and interpret the sample correlation coefficient.

2-53. A study was performed on wear of a bearing y and its
relationship to viscosity and The follow-
ing data were obtained.

x2 � load.x1 � oil

Animation 14: The Correlation Game
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y x1 x2

193 1.6 851
230 15.5 816
172 22.0 1058
91 43.0 1201

113 33.0 1357
125 40.0 1115

(a) Create two scatter diagrams of the data. What do you 
anticipate will be the sign of each sample correlation 
coefficient?

(b) Compute and interpret the two sample correlation coeffi-
cients.

2-54. To investigate fuel efficiency, the following data were
collected.

MPG, Weight, Horsepower, MPG, Weight, Horsepower,
y x1 x2 y x1 x2

29.25 2464 130 17.00 4024 394

21.00 3942 235 17.00 3495 294

32.00 2604 110 18.50 4300 362

21.25 3241 260 16.00 4455 389

26.50 3283 200 10.50 3726 485

23.00 2809 240 12.50 3522 550
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(a) Create two scatter diagrams of the data. What do you antici-
pate will be the sign of each sample correlation coefficient?

(b) Compute and interpret the two sample correlation coeffi-
cients.

2-55. The weight and systolic blood pressure of 26 ran-
domly selected males in the age group 25 to 30 are shown in
the following table.

Systolic Systolic
Subject Weight BP Subject Weight BP

1 165 130 14 172 153

2 167 133 15 159 128

3 180 150 16 168 132

4 155 128 17 174 149

5 212 151 18 183 158

6 175 146 19 215 150

7 190 150 20 195 163

8 210 140 21 180 156

9 200 148 22 143 124

10 149 125 23 240 170

11 158 133 24 235 165

12 169 135 25 192 160

13 170 150 26 187 159

(a) Create a scatter diagram of the data. What do you antici-
pate will be the sign of the sample correlation coefficient?

(b) Compute and interpret the sample correlation coefficient.

SUPPLEMENTAL EXERCISES

2-56. The pH of a solution is measured eight times by one
operator using the same instrument. She obtains the following
data: 7.15, 7.20, 7.18, 7.19, 7.21, 7.20, 7.16, and 7.18.

(a) Calculate the sample mean. Suppose that the desirable
value for this solution was specified to be 7.20. Do you
think that the sample mean value computed here is close
enough to the target value to accept the solution as con-
forming to target? Explain your reasoning.

(b) Calculate the sample variance and sample standard devia-
tion. What do you think are the major sources of variability
in this experiment? Why is it desirable to have a small
variance of these measurements?

2-57. A sample of six resistors yielded the following resist-
ances (ohms): 
and 

(a) Compute the sample variance and sample standard devia-
tion using the method in equation 2-4.

(b) Compute the sample variance and sample standard devia-
tion using the definition in equation 2-3. Explain why the
results from both equations are the same.

x6 � 43.
 x5 � 35,x4 � 41,x3 � 47, x2 � 38,x1 � 45,

(c) Subtract 35 from each of the original resistance measure-
ments and compute s2 and s. Compare your results with
those obtained in parts (a) and (b) and explain your findings.

(d) If the resistances were 450, 380, 470, 410, 350, and 430
ohms, could you use the results of previous parts of this
problem to find s2 and s? Explain how you would proceed.

2-58. The percentage mole conversion of naphthalene to
maleic anhydride from Exercise 2-34 follows: 4.2, 4.7, 4.7,
5.0, 3.8, 3.6, 3.0, 5.1, 3.1, 3.8, 4.8, 4.0, 5.2, 4.3, 2.8, 2.0, 2.8,
3.3, 4.8, and 5.0.

(a) Calculate the sample range, variance, and standard deviation.
(b) Calculate the sample range, variance, and standard deviation

again, but first subtract 1.0 from each observation. Compare
your results with those obtained in part (a). Is there anything
“special” about the constant 1.0, or would any other arbitrar-
ily chosen value have produced the same results?

2-59. Suppose that we have a sample and we
have calculated and for the sample. Now an (n � 1)st obser-
vation becomes available. Let and be the sample mean
and sample variance for the sample using all n � 1 observations.

s2
n�1xn�1

s2
nxn

x1, x2, p , xn
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(a) Show how can be computed using and .

(b) Show that 

(c) Use the results of parts (a) and (b) to calculate the new
sample average and standard deviation for the data of
Exercise 2-57, when the new observation is 

2-60. The Trimmed Mean. Suppose that the data are
arranged in increasing order, T % of the observations are re-
moved from each end, and the sample mean of the remaining
numbers is calculated. The resulting quantity is called a
trimmed mean. The trimmed mean generally lies between the
sample mean and the sample median Why?

(a) Calculate the 10% trimmed mean for the yield data in
Exercise 2-17.

(b) Calculate the 20% trimmed mean for the yield data in
Exercise 2-17 and compare it with the quantity found in
part (a).

(c) Compare the values calculated in parts (a) and (b) with the
sample mean and median for the data in Exercise 2-17. Is
there much difference in these quantities? Why?

(d) Suppose that the sample size n is such that the quantity
nT�100 is not an integer. Develop a procedure for obtain-
ing a trimmed mean in this case.

2-61. Consider the two samples shown here:

Sample 1: 20, 19, 18, 17, 18, 16, 20, 16

Sample 2: 20, 16, 20, 16, 18, 20, 18, 16

(a) Calculate the range for both samples. Would you conclude
that both samples exhibit the same variability? Explain.

(b) Calculate the sample standard deviations for both sam-
ples. Do these quantities indicate that both samples have
the same variability? Explain.

(c) Write a short statement contrasting the sample range versus
the sample standard deviation as a measure of variability.

2-62. An article in Quality Engineering (Vol. 4, 1992, 
pp. 487–495) presents viscosity data from a batch chemical
process. A sample of these data is presented next. (Read down
the entire column, then left to right.)

(a) Draw a time series plot of all the data and comment on any
features of the data that are revealed by this plot.

13.3 14.9 15.8 16.0 14.3 15.2 14.2 14.0
14.5 13.7 13.7 14.9 16.1 15.2 16.9 14.4
15.3 15.2 15.1 13.6 13.1 15.9 14.9 13.7
15.3 14.5 13.4 15.3 15.5 16.5 15.2 13.8
14.3 15.3 14.1 14.3 12.6 14.8 14.4 15.6
14.8 15.6 14.8 15.6 14.6 15.1 15.2 14.5
15.2 15.8 14.3 16.1 14.3 17.0 14.6 12.8
14.5 13.3 14.3 13.9 15.4 14.9 16.4 16.1
14.6 14.1 16.4 15.2 15.2 14.8 14.2 16.6
14.1 15.4 16.9 14.4 16.8 14.0 15.7 15.6

(b) Consider the notion that the first 40 observations were
generated from a specific process, whereas the last 

x.x

x7 � 46.

ns2
n�1 � (n � 1)s2

n �
n

n � 1
(xn�1 � xn)

2.

xn�1xnxn�1 40 observations were generated from a different process.
Does the plot indicate that the two processes generate sim-
ilar results?

(c) Compute the sample mean and sample variance of the first
40 observations; then compute these values for the second
40 observations. Do these quantities indicate that both
processes yield the same mean level and the same vari-
ability? Explain.

2-63. A manufacturer of coil springs is interested in imple-
menting a quality control system to monitor the production
process. As part of this quality system, the manufacturer 
decided to record the number of nonconforming coil springs
in each production batch of size 50. During production, 
40 batches of data were collected and are reported here. (Read
down the entire column, then left to right.)

9 13 9 8 7 7 10 9 17 17
10 4 8 9 9 9 6 11 12 19
9 11 10 4 8 10 8 4 16 16
9 8 7 9 7 11 6 8 13 15

(a) Construct a stem-and-leaf plot of the data.
(b) Find the sample average and sample standard deviation.
(c) Construct a time series plot of the data. Is there evidence

that there was an increase or decrease in the average num-
ber of nonconforming springs made during the 40 days?
Explain.

2-64. A communication channel is being monitored by
recording the number of errors in a string of 1000 bits. Data for
20 of these strings are given here. (Read the data left to right,
then down.)

3 2 4 1 3 1 3 1 0 1
3 2 0 2 0 1 1 1 2 3

(a) Construct a stem-and-leaf plot of the data.
(b) Find the sample average and sample standard deviation.
(c) Construct a time series plot of the data. Is there evidence

that there was an increase or decrease in the number of 
errors in a string? Explain.

2-65. Will exactly half of the observations in a sample 
always fall below the mean? Provide an example to illustrate
your answer.

2-66. For any set of sample data values, is it possible for the
sample standard deviation to be larger than the sample mean?
Give an example.

2-67. In their book Introduction to Time Series Analysis and
Forecasting (Wiley, 2008), D. C. Montgomery, C. L. Jennings,
and M. Kulahci present the data on the drowning rate for chil-
dren between 1 and 4 years old per 100,000 of population in
Arizona from 1970 to 2004. The data are 19.9, 16.1, 19.5,
19.8, 21.3, 15.0, 15.5, 16.4, 18.2, 15.3, 15.6, 19.5, 14.0, 13.1,
10.5, 11.5, 12.9, 8.4, 9.2, 11.9, 5.8, 8.5, 7.1, 7.9, 8.0, 9.9, 8.5,
9.1, 9.7, 6.2, 7.2, 8.7, 5.8, 5.7, and 5.2.
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(a) Perform an appropriate graphical analysis of the data.
(b) Calculate and interpret the appropriate numerical sum-

maries.
(c) Notice that the rate appears to decrease dramatically start-

ing about 1990. Discuss some potential reasons why this
could have happened.

(d) If there has been a real change in the drowning rate 
beginning about 1990, what impact does this have on the
summary statistics that you calculated in part (b)?

2-68. In 1879, A. A. Michelson made 100 determinations of
the velocity of light in air using a modification of a method
proposed by the French physicist Foucault. He made the 
measurements in five trials of 20 measurements each. The 
observations (in kilometers per second) follow. Each value has
299,000 subtracted from it.

Trail 1

850 900 930 950 980

1000 930 760 1000 960

740 1070 850 980 880

980 650 810 1000 960

Trail 2

960 960 880 850 900

830 810 880 800 760

940 940 800 880 840

790 880 830 790 800

Trail 3

880 880 720 620 970

880 850 840 850 840

880 860 720 860 950

910 870 840 840 840

Trail 4

890 810 800 760 750

910 890 880 840 850

810 820 770 740 760

920 860 720 850 780

Trail 5

890 780 760 790 820

870 810 810 950 810

840 810 810 810 850

870 740 940 800 870

The currently accepted true velocity of light in a vacuum is
299,792.5 kilometers per second. Stigler (1977, The Annals of
Statistics) reported that the “true” value for comparison to
these measurements is 734.5. Construct comparative box plots
of these measurements. Does it seem that all five trials are con-
sistent with respect to the variability of the measurements? Are
all five trials centered on the same value? How does each group
of trials compare to the true value? Could there have been
“start-up” effects in the experiment that Michelson performed?
Could there have been bias in the measuring instrument?

TEAM EXERCISES

2-69. As an engineering student you have frequently
encountered data (e.g., in engineering or science labora-
tory courses). Choose one of these data sets or another
data set of interest to you. Describe the data with appro-
priate numerical and graphical tools.

2-70. Select a data set that is time ordered. Describe
the data with appropriate numerical and graphical tools.
Discuss potential sources of variation in the data.

2-71. Consider the data on weekly waste (percent) for
five suppliers of the Levi-Strauss clothing plant in
Albuquerque and reported at the Web site http://lib.stat
.cmu.edu/DASL/Stories/wasterunup.html. Generate box
plots for the five suppliers.

2-72. Thirty-one consecutive daily carbon monoxide
measurements were taken by an oil refinery northeast of

San Francisco and reported at the Web site http://
lib.stat.cmu.edu/DASL/Datafiles/Refinery.html. Draw a
time series plot of the data and comment on features of
the data that are revealed by this plot.

2-73. Consider the famous data set listing the time 
between eruptions of the geyser “Old Faithful” found at
http://lib.stat.cmu.edu/DASL/Datafiles/differencetestdat
.html from the article by A. Azzalini and A. W. Bowman,
“A Look at Some Data on the Old Faithful Geyser,”
Applied Statistics, Vol. 39, 1990, pp. 357–365.

(a) Construct a time series plot of all the data.
(b) Split the data into two data sets of 100 observations

each. Create two separate stem-and-leaf plots of the
subsets. Is there reason to believe that the two sub-
sets are different?
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Box plot
Degrees of freedom
Digidot plot
Dot diagram
Frequency
Histogram
Interquartile range,

IQR
Marginal plot
Matrix of scatter plots

Median
Multivariate data
Ordered stem-and-leaf

diagram
Pareto chart
Percentile
Population mean, �
Population standard 

deviation, 
Population variance, 

Quartiles
Range
Relative frequency
Sample correlation 

coefficient
Sample mean, 
Sample standard 

deviation, s
Sample variance, s2

Scatter diagram

Stem-and-leaf diagram
Time sequence
Time series plot
Univariate data

x
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�

IMPORTANT TERMS AND CONCEPTS
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3
FIRST GOAL SCORED

Sports commentators are known to argue about whether or not the first team to score a goal in
a hockey match or soccer game, both low-scoring games, has a better chance of winning. Two
researchers at the Royal Military College of Canada developed a method of looking into this
statistically (Can Mathematicians Spot the Winning Team Better Than Sports Commentators?
http://www.sciencedaily.com/releases/2009/06/090602112301.htm).

In hockey playoffs two teams are matched more closely than in the regular season, so 
researchers start by assuming that each team has an equal chance of winning. But they found
that, if a team scores early in the game, say in the first 5 minutes, its chances of winning increase
to 70%. A team that scores the first goal in the second period, with only 25 minutes remaining in
the match, boosts its chances of winning to 80%.

Researchers found that the total number of goals follows a Poisson distribution and, because
playoff teams are closely matched and highly motivated, each has an equal chance of scoring 
after the first goal. There are other factors that the researchers considered, such as seasonal per-
formance and league standing. Their investigation required understanding many topics in statistics,
including the exponential, Poisson, and binomial distributions.

Engineers encounter similar problems in models of events (such as arrivals, particles, or
defects), as well as in models for continuous measurements, and the probability concepts in
this chapter provide important tools.

Random Variables
and Probability
Distributions

CHAPTER OUTLINE

3-1 INTRODUCTION

3-2 RANDOM VARIABLES

3-3 PROBABILITY

3-4 CONTINUOUS RANDOM VARIABLES

3-4.1 Probability Density Function

3-4.2 Cumulative Distribution Function

3-4.3 Mean and Variance

3-5 IMPORTANT CONTINUOUS DISTRIBUTIONS

3-5.1 Normal Distribution

3-5.2 Lognormal Distribution

3-5.3 Gamma Distribution

3-5.4 Weibull Distribution

3-5.5 Beta Distribution

3-6 PROBABILITY PLOTS

3-6.1 Normal Probability Plots

3-6.2 Other Probability Plots

3-7 DISCRETE RANDOM VARIABLES

3-7.1 Probability Mass Function

3-7.2 Cumulative Distribution Function

3-7.3 Mean and Variance
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3-8 BINOMIAL DISTRIBUTION

3-9 POISSON PROCESS

3-9.1 Poisson Distribution

3-9.2 Exponential Distribution

3-10 NORMAL APPROXIMATION TO THE 
BINOMIAL AND POISSON DISTRIBUTIONS

3-11 MORE THAN ONE RANDOM VARIABLE AND
INDEPENDENCE

3-11.1 Joint Distributions

3-11.2 Independence

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:

1. Determine probabilities for discrete random variables from probability mass functions and for continuous 
random variables from probability density functions, and use cumulative distribution functions in both cases.

2. Calculate means and variances for discrete and continuous random variables.

3. Understand the assumptions for each of the probability distributions presented.

4. Select an appropriate probability distribution to calculate probabilities in specific applications.

5. Use the table (or software) for the cumulative distribution function of a standard normal distribution to calculate
probabilities.

6. Approximate probabilities for binomial and Poisson distributions.

7. Interpret and calculate covariances and correlations between random variables.

8. Calculate means and variances for linear combinations of random variables.

9. Approximate means and variances for general functions of several random variables.

10. Understand statistics and the central limit theorem.

3-12 FUNCTIONS OF RANDOM VARIABLES

3-12.1 Linear Functions of Independent Random
Variables

3-12.2 Linear Functions of Random Variables That
Are Not Independent

3-12.3 Nonlinear Functions of Independent Random
Variables

3-13 RANDOM SAMPLES, STATISTICS, AND THE
CENTRAL LIMIT THEOREM

Earlier in this book, numerical and graphical summaries were used to summarize data. A sum-
mary is often needed to transform the data to useful information. Furthermore, conclusions
about the process that generated the data are often important; that is, we might want to draw
conclusions about the long-term performance of a process based on only a relatively small sample
of data. Because only a sample of data is used, there is some uncertainty in our conclusions.
However, the amount of uncertainty can be quantified and sample sizes can be selected or modified
to achieve a tolerable level of uncertainty if a probability model is specified for the data. The
objective of this chapter is to describe these models and present some important examples.

3-1 INTRODUCTION

The measurement of current in a thin copper wire is an example of an experiment. However,
the results might differ slightly in day-to-day replicates of the measurement because of small
variations in variables that are not controlled in our experiment—changes in ambient temperatures,
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3-1 INTRODUCTION 59

slight variations in gauge and small impurities in the chemical composition of the wire, current
source drifts, and so forth. Consequently, this experiment (as well as many we conduct) can be
considered to have a random component. In some cases, the random variations that we experience
are small enough, relative to our experimental goals, that they can be ignored. However, the
variation is almost always present and its magnitude can be large enough that the important
conclusions from the experiment are not obvious. In these cases, the methods presented in this
book for modeling and analyzing experimental results are quite valuable.

An experiment that can result in different outcomes, even though it is repeated in the same
manner every time, is called a random experiment. We might select one part from a day’s
production and very accurately measure a dimensional length. Although we hope that the
manufacturing operation produces identical parts consistently, in practice there are often small
variations in the actual measured lengths due to many causes—vibrations, temperature fluctu-
ations, operator differences, calibrations of equipment and gauges, cutting tool wear, bearing
wear, and raw material changes. Even the measurement procedure can produce variations in
the final results.

No matter how carefully our experiment is designed and conducted, variations often occur.
Our goal is to understand, quantify, and model the type of variations that we often encounter.
When we incorporate the variation into our thinking and analyses, we can make informed judg-
ments from our results that are not invalidated by the variation.

Models and analyses that include variation are not different from models used in other 
areas of engineering and science. Figure 3-1 displays the relationship between the model and
the physical system it represents. A mathematical model (or abstraction) of a physical system
need not be a perfect abstraction. For example, Newton’s laws are not perfect descriptions of
our physical universe. Still, these are useful models that can be studied and analyzed to quantify
approximately the performance of a wide range of engineered products. Given a mathematical
abstraction that is validated with measurements from our system, we can use the model to under-
stand, describe, and quantify important aspects of the physical system and predict the response
of the system to inputs.

Throughout this text, we discuss models that allow for variations in the outputs of a sys-
tem, even though the variables that we control are not purposely changed during our study.
Figure 3-2 graphically displays a model that incorporates uncontrollable variables (noise) that
combine with the controllable variables to produce the output of our system. Because of the
noise, the same settings for the controllable variables do not result in identical outputs every
time the system is measured.

For the example of measuring current in a copper wire, our model for the system might
simply be Ohm’s law,

Current � voltage�resistance

Physical system

Model

Measurements Analysis

Controlled
variables

Noise
variables

OutputInput System

Figure 3-1 Continuous iteration between model
and physical system.

Figure 3-2 Noise variables affect the
transformation of inputs to outputs.
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Ohm’s law might be a suitable approximation. However, if the variations are large relative to
the intended use of the device under study, we might need to extend our model to include the
variation. See Fig. 3-3. It is often difficult to speculate on the magnitude of the variations with-
out empirical mea surements. With sufficient measurements, however, we can approximate the
magnitude of the variation and consider its effect on the performance of other devices, such as
amplifiers, in the circuit. We are therefore sanctioning the model in Fig. 3-2 as a more useful
description of the current measurement.

As another example, in the design of a communication system, such as a computer network
or a voice communication network, the information capacity available to service individuals using
the network is an important design consideration. For voice communication, sufficient external
lines need to be purchased to meet the requirements of a business. Assuming each line can carry
only a single conversation, how many lines should be purchased? If too few lines are purchased,
calls can be delayed or lost. The purchase of too many lines increases costs. Increasingly, design
and product development are required to meet customer requirements at a competitive cost.

In the design of the voice communication system, a model is needed for the number of calls
and the duration of calls. Even knowing that, on average, calls occur every 5 minutes and that
they last 5 minutes is not sufficient. If calls arrived precisely at 5-minute intervals and lasted for
precisely 5 minutes, one phone line would be sufficient. However, the slightest variation in call
number or duration would result in some calls being blocked by others. See Fig. 3-4. A system
designed without considering variation will be woefully inadequate for practical use.

3-2 RANDOM VARIABLES

In an experiment, a measurement is usually denoted by a variable such as X. In a random 
experiment, a variable whose measured value can change (from one replicate of the experiment
to another) is referred to as a random variable. For example, X might denote the current
measurement in the copper wire experiment. A random variable is conceptually no different from
any other variable in an experiment. We use the term “random” to indicate that noise disturbances
can change its measured value. An uppercase letter is used to denote a random variable.

Voltage

C
ur

re
nt 0 5 10 15 20

1 2 3 4

Minutes

Call

Call duration

Time

0 5 10 15 20

1 2 3

Minutes

Call

Call duration

Time

Call 3 blocked

Figure 3-3 A closer examination of the system
identifies deviations from the model. Figure 3-4 Variation causes disruptions in the system.

A random variable is a numerical variable whose measured value can change from
one replicate of the experiment to another.

Random 
Variable
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After the experiment is conducted, the measured value of the random variable is denoted
by a lowercase letter such as x � 70 milliamperes. We often summarize a random experiment
by the measured value of a random variable.

This model can be linked to data as follows. The data are the measured values of a random
variable obtained from replicates of a random experiment. For example, the first replicate might
result in a current measurement of x1 � 70.1, the next day x2 � 71.2, the third day x3 � 71.1, and
so forth. These data can then be summarized by the descriptive methods discussed in Chapter 2.

Often, the measurement of interest—current in a copper wire experiment, length of a 
machined part—is assumed to be a real number. Then arbitrary precision in the measurement
is possible. Of course, in practice, we might round off to the nearest tenth or hundredth of a
unit. The random variable that represents this type of measurement is said to be a continuous
random variable.

In other experiments, we might record a count such as the number of transmitted bits that
are received in error. Then the measurement is limited to integers. Or we might record that a pro-
portion such as 0.0042 of 10,000 transmitted bits were received in error. Then the mea surement
is fractional, but it is still limited to discrete points on the real line. Whenever the measurement
is limited to discrete points on the real line, the random variable is said to be a discrete random
variable.

A discrete random variable is a random variable with a finite (or countably infinite)
set of real numbers for its range.
A continuous random variable is a random variable with an interval (either finite or
infinite) of real numbers for its range.

Discrete and
Continuous

Random
Variables

In some cases, the random variable X is actually discrete but, because the range of possible
values is so large, it might be more convenient to analyze X as a continuous random variable. For
example, suppose that current measurements are read from a digital instrument that displays the
current to the nearest one-hundredth of a milliampere. Because the possible measurements are
limited, the random variable is discrete. However, it might be a more convenient, simple approx-
imation to assume that the current measurements are values of a continuous random variable.

Examples of continuous random variables:
electrical current, length, pressure, temperature, time, voltage, weight

Examples of discrete random variables:
number of scratches on a surface, proportion of defective parts among 1000

tested, number of transmitted bits received in error

Examples of
Random

Variables

Decide whether a discrete or continuous random variable is
the best model for each of the following variables.

3-1. The lifetime of a biomedical device after implant in a
patient.

3-2. The number of times a transistor in a computer memory
changes state in a time interval.

3-3. The strength of a concrete specimen.

EXERCISES FOR SECTION 3-2

3-4. The number of convenience options selected by an 
automobile buyer.

3-5. The proportion of defective solder joints on a circuit board.

3-6. The weight of an injection-molded plastic part.

3-7. The number of molecules in a sample of gas.

3-8. The energy generated from a reaction.

3-9. The concentration of organic solids in a water sample.
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3-3 PROBABILITY

A random variable is used to describe a measurement. Probability is used to quantify the like-
lihood, or chance, that a measurement falls within some set of values. “The chance that X, the
length of a manufactured part, is between 10.8 and 11.2 millimeters is 25%” is a statement that
quantifies our feeling about the possibility of part lengths. Probability statements describe the
likelihood that particular values occur. The likelihood is quantified by assigning a number
from the interval [0, 1] to the set of values of the random variable. Higher numbers indicate
that the set of values is more likely.

The probability of a result can be interpreted as our subjective probability, or degree of 
belief, that the result will occur. Different individuals will no doubt assign different probabilities
to the same result. Another interpretation of probability can be based on repeated replicates of the
random experiment. The probability of a result is interpreted as the proportion of times the result
will occur in repeated replicates of the random experiment. For example, if we assign probability
0.25 to the result that a part length is between 10.8 and 11.2 millimeters, we might interpret this
assignment as follows. If we repeatedly manufacture parts (replicate the random experiment an
infinite number of times), 25% of them will have lengths in this interval. This example provides
a relative frequency interpretation of probability. The proportion, or relative frequency, of 
repeated replicates that fall in the interval will be 0.25. Note that this interpretation uses a long-
run proportion, the proportion from an infinite number of replicates. With a small number of
replicates, the proportion of lengths that actually fall in the interval might differ from 0.25.

To continue, if every manufactured part length will fall in the interval, the relative fre-
quency, and therefore the probability, of the interval is 1. If no manufactured part length will fall
in the interval, the relative frequency, and therefore the probability, of the interval is 0. Because
probabilities are restricted to the interval [0, 1], they can be interpreted as relative frequencies.

A probability is usually expressed in terms of a random variable. For the part length 
example, X denotes the part length and the probability statement can be written in either of the
following forms:

Both equations state that the probability that the random variable X assumes a value in [10.8, 11.2]
is 0.25.

Probabilities for a random variable are usually determined from a model that describes
the random experiment. Several models will be considered in the following sections. Before
that, several general probability properties are stated that can be understood from the relative
frequency interpretation of probability. These properties do not determine probabilities; prob-
abilities are assigned based on our knowledge of the system under study. However, the prop-
erties enable us to easily calculate some probabilities from knowledge of others.

The following terms are used. Given a set E, the complement of E is the set of elements
that are not in E. The complement is denoted as E�. The set of real numbers is denoted as R.
The sets E1, E2,..., Ek are mutually exclusive if the intersection of any pair is empty. That is,
each element is in one and only one of the sets E1, E2, . . . , Ek.

P(X � [10.8, 11.2]) � 0.25  or  P(10.8 � X � 11.2) � 0.25

1. P(X � R) � 1, where R is the set of real numbers.

2. for any set E. (3-1)

3. If E1, E2, . . . , Ek are mutually exclusive sets,

P(X � E1 � E2 � . . . � Ek) � P(X � E1) � . . . � P(X � Ek).

0 � P(X � E ) � 1

Probability
Properties
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Property 1 can be used to show that the maximum value for a probability is 1. Property 2 implies
that a probability can’t be negative. Property 3 states that the proportion of measurements that
fall in E1�E2 � . . . � Ek is the sum of the proportions that fall in E1 and E2, . . ., and Ek, when-
ever the sets are mutually exclusive. For example,

Property 3 is also used to relate the probability of a set E and its complement E�. Because
E and E� are mutually exclusive and E�E�� R, 1 � P(X � R) � P(X � E �E�) � P(X � E)
� P(X � E�). Consequently,

For example, P(X � 2) � 1 � P(X � 2). In general, for any fixed number x,

Let 	 denote the null set. Because the complement of R is 	, P(X � 	) � 0.
Assume that the following probabilities apply to the random variable X that denotes the 

life in hours of standard fluorescent tubes: P(X � 5000) � 0.1, P(5000 
 X � 6000) � 0.3,
P(X � 8000) � 0.4. The following results can be determined from the probability properties.
It may be helpful to graphically display the different sets.

The probability that the life is less than or equal to 6000 hours is

from Property 3. The probability that the life exceeds 6000 hours is

The probability that the life is greater than 6000 and less than or equal to 8000 hours is 
determined from the fact that the sum of the probabilities for this interval and the other three
intervals must equal 1. That is, the union of the other three intervals is the complement of the
set {x 6000 
 x � 8000}. Therefore,

The probability that the life is less than or equal to 5500 hours cannot be determined exactly.
The best we can state is that

If it were also known that P(5500 
 X � 6000) � 0.15, we could state that

Outcomes and Events
A measured value is not always obtained from an experiment. Sometimes, the result is only
classified (into one of several possible categories). For example, the current measurement

 � 0.1 � 0.3 � 0.15 � 0.25

 P(X � 5500) � P(X � 5000) � P(5000 6 X � 6000) � P(5500 6 X � 6000)

P(X � 5500) � P(X � 6000) � 0.4   and   0.1 � P(X � 5000) � P(X � 5500)

P(6000 6 X � 8000) � 1 � (0.1 � 0.3 � 0.4) � 0.2

|

P(X 7 6000) � 1 � P(X � 6000) � 1 � 0.4 � 0.6

 � 0.4

 P(X � 6000) � P(X � 5000) � P(5000 6 X � 6000) � 0.1 � 0.3

P(X � x) � 1 � P(X 7 x)

P(X � E¿) � 1 � P(X � E)

P(X � 10) � P(X � 0) � P(0 6 X � 5) � P(5 6 X � 10)

Applying Probability
Properties
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might only be recorded as low, medium, or high; a manufactured electronic component might
be classified only as defective or not; and a bit transmitted through a digital communication
channel is received either in error or not. The possible categories are usually referred to as out-
comes, and a set of one or more outcomes is called an event. The concept of probability can
be applied to events and the relative frequency interpretation is still appropriate.

If 1% of the bits transmitted through a digital communications channel are received in 
error, the probability of an error would be assigned 0.01. If we let E denote the event that a bit
is received in error, we would write

Probabilities assigned to events satisfy properties analogous to those in equation 3-1 so
that they can be interpreted as relative frequencies. Let � denote the set of all possible out-
comes from the experiment. Then

1.

2. for any event E.

3. If E1, E2, …, Ek are mutually exclusive events,

The events, E1, E2, . . . , Ek, are mutually exclusive when the intersection of each pair is null.
Suppose that the probability of low, medium, and high results are 0.1, 0.7, and 0.2, respec-
tively, and that the events are mutually exclusive. The probability of a medium or high result is
denoted as P(medium or high) and

P(medium or high) � P(medium) � P(high) � 0.7 � 0.2 � 0.9

P(E1 � E2 p � Ek) � P(E1 or E2
p  or Ek) � P(E1) � P(E2) � p � P(Ek).

0 � P(E ) � 1

P(�) � 1.

P(E ) � 0.01

EXAMPLE 3-1 The following table summarizes visits to emergency departments at four hospitals in Arizona. People may
leave without being seen by a physician, and those visits are denoted as LWBS. The remaining visits are serv-
iced at the emergency department, and the visitor may or may not be admitted for a stay in the hospital.

Hospital Emergency
Visits

Hospital

1 2 3 4 Total

Total 5292 6991 5640 4329 22,252

LWBS 195 270 246 242 953

Admitted 1277 1558 666 984 4485

Not admitted 3820 5163 4728 3103 16,814

Let A denote the event that a visit is to Hospital 1 and let B denote the event that the result of the visit is
LWBS. Calculate the number of outcomes in and 

Thc evcnt consists of the 195 visits to Hospital 1 that result in LWBS. The event consists
of the visits to Hospitals 2, 3 and 4 and contains 6991 � 5640 � 4329 � 16,690 visits. The event 
consists of the visits to Hospital 1 or the visits that result in LWBS, or both, and contains 5292 � 270 �
246 � 242 � 6050 visits. Notice that the last result can also be calculated as the number of visits in A plus
the number of visits in B minus the number of visits (that would otherwise be counted twice) �
5292 � 953 � 195 � 6050.

A � B

A � B
A¿A � B

A � B.A � B, A¿,
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3-3 PROBABILITY 65

Assume that each of the 22,252 outcomes in the table are equally likely. Then the count of outcomes
in these events can be used to calculate probabilities. For example,

and 

Practical Interpretation: Hospitals track visits that result in LWBS to understand resource needs and to
improve patient services. ■

P (A¿) � 16,690�22,252 � 0.7500 and P(A � B) � 6050/22,252 � 0.2719

P(A � B) � 195�22,252 � 0.0088

EXERCISES FOR SECTION 3-3

3-10. State the complement of each of the following sets:

(a) Engineers with less than 36 months of full-time employment.
(b) Samples of cement blocks with compressive strength less

than 6000 kilograms per square centimeter.
(c) Measurements of the diameter of forged pistons that do

not conform to engineering specifications.
(d) Cholesterol levels that measure greater than 180 and less

than 220.
3-11. If P(X � A) � 0.4, and P(X � B) � 0.6 and the inter-
section of sets A and B is empty,

(a) Are sets A and B mutually exclusive?
(b) Find P(X � A�).
(c) Find P(X � B�).
(d) Find P(X � A � B).

3-12. If P(X � A) � 0.3, P(X � B) � 0.25, P(X � C) � 0.60,
P(X � A � B) � 0.55, and P(X � B � C ) � 0.70, determine
the following probabilities.

(a) P(X � A�) (b) P(X � B�) (c) P(X � C�)
(d) Are A and B mutually exclusive?
(e) Are B and C mutually exclusive?

3-13. Let P(X � 15) � 0.3, P(15 � X � 24) � 0.6, and 
P(X � 20) � 0.5.

(a) Find P(X � 15).
(b) Find P(X � 24).
(c) Find P(15 � X � 20).
(d) If P(18 � X � 24) � 0.4, find P (X � 18).

3-14. Suppose that an ink cartridge is classified as being
overfilled, medium filled, or underfilled with a probability of
0.40, 0.45, and 0.15, respectively.

(a) What is the probability that a cartridge is classified as not
underfilled?

(b) What is the probability that a cartridge is either overfilled
or underfilled?

3-15. Let X denote the life of a semiconductor laser (in
hours) with the following probabilities: 
and 

(a) What is the probability that the life is less than or equal to
7000 hours?

(b) What is the probability that the life is greater than 5000
hours?

(c) What is P(5000 � X � 7000)?

P(X 7 7000) � 0.45.
P(X � 5000) � 0.05

3-16. Let E1 denote the event that a structural component
fails during a test and E2 denote the event that the component
shows some strain but does not fail. Given P(E1) � 0.15 and
P(E2) � 0.30,

(a) What is the probability that a structural component does
not fail during a test?

(b) What is the probability that a component either fails or
shows strain during a test?

(c) What is the probability that a component neither fails nor
shows strain during a test?

3-17. Let X denote the number of bars of service on your
cell phone whenever you are at an intersection with the follow-
ing probabilities:

x 0 1 2 3 4 5

P(X � x) 0.1 0.15 0.25 0.25 0.15 0.1

Determine the following probabilities:
(a) Two or three bars
(b) Fewer than two bars
(c) More than three bars
(d) At least one bar

3-18. Let X denote the number of patients who suffer an in-
fection within a floor of a hospital per month with the following
probabilities:

x 0 1 2 3

P(X � x) 0.7 0.15 0.1 0.05

Determine the following probabilities:
(a) Less than one infection
(b) More than three infections
(c) At least one infection
(d) No infections

3-19. Let X denote the number of unique visitors to a 
Web site in a month with the following probabilities:

. Determine
the following probabilities:

(a)
(b)
(c)
(d) More than 39 unique visitors

P(20 � X � 29)
P(10 � X � 19)
P(X 7 50)

0.8, P(0 � X � 39) � 0.9, P(0 � X � 49) � 1
P(0 � X � 9) � 0.4, P(0 � X � 19) � 0.7, P(0 � X � 29)�
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66 CHAPTER 3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

3-20. Consider the hospital emergency room data in
Example 3-1. Let A denote the event that a visit is to Hospital
4 and let B denote the event that a visit results in LWBS (at any
hospital). Determine the following probabilities.

3-4 CONTINUOUS RANDOM VARIABLES

As mentioned in Section 3-2 a continuous random variable is one with an interval (either 
finite or infinite) of real numbers for its range. This section presents important properties for
continuous random variables.

3-4.1 Probability Density Function

The probability distribution or simply distribution of a random variable X is a description
of the set of the probabilities associated with the possible values for X. The probability distri-
bution of a random variable can be specified in more than one way.

Density functions are commonly used in engineering to describe physical systems. For
example, consider the density of a loading on a long, thin beam as shown in Fig. 3-5. For any
point x along the beam, the density can be described by a function (in grams/cm). Intervals
with large loadings correspond to large values for the function. The total loading between
points a and b is determined as the integral of the density function from a to b. This integral is
the area under the density function over this interval, and it can be loosely interpreted as the
sum of all the loadings over this interval.

Similarly, a probability density function f (x) can be used to describe the probability dis-
tribution of a continuous random variable X. The probability that X is between a and b is 
determined as the integral of f (x) from a to b. See Fig. 3-6. The notation follows.

(a)
(b)
(c)
(d)
(e) P(A¿ � B¿)

P(A � B¿)
P(A � B)
P(A¿)
P(A � B)

The probability density function (or pdf) f(x) of a continuous random variable X is
used to determine probabilities as follows:

(3-2)

The properties of the pdf are

(1) f (x) � 0

(2) �

�
   f (x) dx � 1

P(a 6 X 6 b) � �
b

a

 f (x) dx

Probability
Density 

Function

A histogram is an approximation to a pdf. See Fig. 3-7. For each interval of the histogram,
the area of the bar equals the relative frequency (proportion) of the measurements in the inter-
val. The relative frequency is an estimate of the probability that a measurement falls in the in-
terval. Similarly, the area under f (x) over any interval equals the true probability that a mea
surement falls in the interval.

A probability density function provides a simple description of the probabilities associ-
ated with a random variable. As long as f (x) is nonnegative and �

� f (x) dx � 1,
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3-4 CONTINUOUS RANDOM VARIABLES 67

so the probabilities are properly restricted. A pdf is zero for x values
that cannot occur, and it is assumed to be zero wherever it is not specifically defined.

The important point is that f (x) is used to calculate an area that represents the probability
that X assumes a value in [a, b]. For the current measurements of Section 3-1, the probability
that X results in [14 mA, 15 mA] is the integral of the probability density function of X, f (x),
over this interval. The probability that X results in [14.5 mA, 14.6 mA] is the integral of the
same function, f (x), over the smaller interval. By appropriate choice of the shape of f (x), we
can represent the probabilities associated with a random variable X. The shape of f (x) deter-
mines how the probability that X assumes a value in [14.5 mA, 14.6 mA] compares to the
probability of any other interval of equal or different length.

For the density function of a loading on a long, thin beam, because every point has zero
width, the integral that determines the loading at any point is zero. Similarly, for a continuous
random variable X and any value x,

Based on this result, it might appear that our model of a continuous random variable is useless.
However, in practice, when a particular current measurement is observed, such as 14.47 
milliamperes, this result can be interpreted as the rounded value of a current measurement that
is actually in a range such as 14.465 � x � 14.475. Therefore, the probability that the rounded
value 14.47 is observed as the value for X is the probability that X assumes a value in the interval
[14.465, 14.475], which is not zero. Similarly, our model of a continuous random variable also
implies the following.

P(X � x) � 0

0 � P(a 6 X 6 b) � 1,

Figure 3-7 A histogram approxi-
mates a probability density function.
The area of each bar equals the rela-
tive frequency of the interval. The
area under f (x) over any interval
equals the probability of the interval.

Figure 3-5 Density func-
tion of a loading on a long,
thin beam.

Figure 3-6 Probability determined from the area
under f(x).

Lo
ad

in
g

x

f(x)
P(a < X < b)

a b x

 f(x)

 x

If X is a continuous random variable, for any x1 and x2,

P(x1 � X � x2) � P(x1 6 X � x2) � P(x1 � X 6 x2) � P(x1 6 X 6 x2)

To determine a probability for a random variable, it can be helpful to apply three steps:

1. Determine the random variable and distribution of the random variable.

2. Write the probability statement in terms of the random variable.

3. Compute the probability using the probability statement and the distribution.

These steps are shown in the solutions of some examples in this chapter. In other exam-
ples and exercises you might use these steps on your own.
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68 CHAPTER 3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

3-4.2 Cumulative Distribution Function

Another way to describe the probability distribution of a random variable is to define a
function (of a real number x) that provides the probability that X is less than or equal to x.

EXAMPLE 3-2 Let the continuous random variable X denote the current measured in a thin copper wire in milliamperes.
Assume that the range of X is [0, 20 mA], and assume that the probability density function of X is f (x) �
0.05 for 0 � x � 20. What is the probability that a current measurement is less than 10 milliamperes?

Solution. The random variable is the current measurement with distribution given by f(x). The pdf is
shown in Fig. 3-8. It is assumed that f (x) � 0 wherever it is not specifically defined. The probability 
requested is indicated by the shaded area in Fig. 3-8.

As another example,

■P(5 6 X 6 10) � �
10

0
 

f (x)dx � 0.25

P(X 6 10) � �
10

0
 

f (x)dx � 0.5

EXAMPLE 3-3 Let the continuous random variable X denote the distance in micrometers from the start of a track on a
magnetic disk until the first flaw. Historical data show that the distribution of X can be modeled by a pdf

For what proportion of disks is the distance to the first flaw greater than 

1000 micrometers?

Solution. The density function and the requested probability are shown in Fig. 3-9.
Now,

What proportion of parts is between 1000 and 2000 micrometers?
Solution. Now,

Because the total area under f (x) equals 1, we can also calculate P(X 
 1000) � 1 � P(X � 1000) �
1 � 0.607 � 0.393. ■

P(1000 6 X 6 2000) � �
2000

1000

 f (x) dx � �e�x �2000 ` 2000

1000

� e�1�2 � e�1 � 0.239

P(X 7 1000) � �


1000

 f (x) dx � �


1000

 
e�x�2000

2000
 dx � �e�x�2000 ` 

1000

� e�1�2 � 0.607

f (x) �
1

2000
 e�x /2000, x � 0.

Define the random
variable and 
distribution.

Write the probability
statement.

Compute the 
probability.

Current in a Wire

Flaw on a
Magnetic Disk
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3-4 CONTINUOUS RANDOM VARIABLES 69

For a continuous random variable X, the definition can also be F(x) � P(X 
 x) because
P(X � x) � 0.

The cumulative distribution function F(x) can be related to the probability density func-
tion f (x) and can be used to obtain probabilities as follows.

Furthermore, the graph of a cdf has specific properties. Because F(x) provides probabilities, it
is always nonnegative. Furthermore, as x increases, F(x) is nondecreasing. Finally, as x tends
to infinity, F (x) � P(X � x) tends to 1. Also, the pdf can be recovered from the cdf through the
fundamental theorem of calculus. That is,

d

dx
F(x) � �

x

�

f (u)du � f  (x)

P(a 6 X 6 b) � �
b

a

 f (x) dx � �
b

�

 f (x) dx �  �
a

�
 

f (x) dx � F(b) � F(a)

Figure 3-9 Probability density function
for Example 3-3.

Figure 3-8 Probability density function
for Example 3-2.

f(x)

0 10 20 x

0.05

0

f (x)

x1000

1/2000

The cumulative distribution function (or cdf) of a continuous random variable X
with probability density function f (x) is

for � 
 x 
.

F(x) � P(X � x) � �
x

�

f (u)du

Cumulative
Distribution

Function of a
Continuous

Random
Variable

EXAMPLE 3-4 Consider the distance to flaws in Example 3-3 with pdf

for The cdf is determined from

for It can be checked that d
dx F(x) � f (x).x � 0.

F(x) � �
x

0

1

2000
 exp (�u�2000)du � 1 � exp (�x�2000)

x � 0.

f (x) �
1

2000
 exp (�x�2000)

Flaw on a
Magnetic Disk
Distribution
Function
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A graph of F(x) is shown in Fig. 3-10. Note that F(x) � 0 for x � 0. Also, F(x) increases to 1 as mentioned.
The following probabilities should be compared to the results in Example 3-3. Determine the probability
that the distance until the first surface flaw is less than 1000 microme ters.

Solution. The random variable is the distance until the first surface flaw with distribution given by F(x).
The requested probability is

Determine the probability that the distance until the first surface flaw exceeds 2000 micrometers.

Solution. Now we use

Determine the probability that the distance is between 1000 and 2000 micrometers.

Solution. The requested probability is

■ � exp(�0.5) � exp(�1) � 0.239

 P(1000 6 X 6 2000) � F(2000) � F(1000) � 1 � exp(�1) � [1 � exp(�0.5)]

� exp(�1) � 0.368

 P(2000 6 X ) � 1 � P(X � 2000) � 1 � F(2000) � 1 � [1 � exp(�1)]

P(X 6 1000) � F(1000) � 1 � expa�1

2
b � 0.393

3-4.3 Mean and Variance

Just as it is useful to summarize a sample of data by the mean and variance, we can summarize
the probability distribution of X by its mean and variance. For sample data x1, x2, . . ., xn, the
sample mean can be written as

That is, uses equal weights of 1�n as the multiplier of each measured value xi. The mean of
a random variable X uses the probability model to weight the possible values of X. The mean
or expected value of X, denoted as � or E(X ), is

The integral in E(X ) is analogous to the sum that is used to calculate .x

� � E(X ) � �


�

xf (x)dx

x

x �
1

n
x1 �

1

n
x2 �  p �

1

n
xn

Define the random 
variable and 
distribution.

Write the probability
statement.

Compute the 
probability.

Figure 3-10 Cumulative distribution function for Example 3-4.

–4000
0

–2000 0 2000 4000 6000 8000
x

0.2

0.4

0.6

0.8

1

F
(x

)

c03RandomVariablesandProbabilityDistributions.qxd  9/21/10  9:34 AM  Page 70



3-4 CONTINUOUS RANDOM VARIABLES 71

Recall that is the balance point when an equal weight is placed at the location of each
measurement along a number line. Similarly, if f (x) is the density function of a loading on a long,
thin beam, E(X ) is the point at which the beam balances. See Fig. 3-5. Consequently, E(X ) 
describes the “center” of the distribution of X in a manner similar to the balance point of a loading.

For sample data x1, x2, . . . , xn, the sample variance is a summary of the dispersion or scatter
in the data. It is

That is, s2 uses equal weights of 1�(n � 1) as the multiplier of each squared deviation
As mentioned previously, deviations calculated from tend to be smaller than those

calculated from �, and the weight is adjusted from 1�n to 1�(n � 1) to compensate.
The variance of a random variable X is a measure of dispersion or scatter in the possible

values for X. The variance of X, denoted as or V(X ), is

V(X ) uses weight f (x) as the multiplier of each possible squared deviation (x ��)2. The inte-
gral in V(X ) is analogous to the sum that is used to calculate s2.

Properties of integrals and the definition of can be used to show that

The last integral is written as and we obtain V(X ) � E(X 2) � �2.E(X 2)

 � �


�

x2f (x) dx � 2�2 � �2 � �


�

x2f (x) dx � �2

 � �


�

x2f (x) dx � 2� �


�

xf (x) dx � �


�

�2f (x) dx

 V(X ) � �


�

 (x � �)2f (x) dx

�

�2 � V(X ) � �


�

 (x � �)2f (x) dx

�2

x(xi � x )2.

s2 �
1

n � 1
 (x1 � x )2 �

1

n � 1
 (x2 � x )2 � p �

1

n � 1
 (xn � x)2

x

Suppose X is a continuous random variable with pdf f (x). The mean or expected
value of X, denoted as � or E(X ), is

(3-3)

The variance of X, denoted as V(X ) or �2, is

The standard deviation of X is �.

�2 � V(X ) � �


�

 (x � �)2 f (x) dx � E(X 2) � �2

� � E(X ) � �


�

xf (x) dx

Mean and
Variance of a

Continuous
Random
Variable
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72 CHAPTER 3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

EXERCISES FOR SECTION 3-4

Current in a Wire:
Mean

EXAMPLE 3-5 For the copper current measurement in Example 3-2, the mean of X is

The variance of X is

■V(X ) � �


�

 (x � �)2 f (x) dx � �
20

0

 (x � 10)2 a 1

20
b dx � 0.05(x � 10) 3�3 ` 20

0

� 33.33

E(X ) � �


�

x f (x)dx � �
20

0

x  a 1

20
b  dx � 0.05x2�2 `

0

20

� 10

EXAMPLE 3-6 For the distance to a flaw in Example 3-2, the mean of X is

A table of integrals or integration by parts can be used to show that

The variance of X is

A table of integrals or integration by parts can be applied twice to show that

■V(X ) � 20002 � 4,000,000

V(X ) � �


�

 (x � �)2 f  (x) dx � �


0

 (x � 2000)2 
e�x�2000

2000
 dx

E(X ) � �xe�x�2000 `


0

� �


0

e�x�2000dx � 0 � 2000 e�x�2000 `


0

� 2000

E(X ) � �


0

 x f (x) dx � �


0

 x 
e�x�2000

2000
 dx

Current in a Wire:
Variance

3-21. Show that the following functions are probability den-
sity functions for some value of k and determine k. Then 
determine the mean and variance of X.

(a) f (x) � kx2 for 0 
 x 
 4
(b) f (x) � k (1 � 2x) for 0 
 x 
 2
(c) f (x) � ke�x for 0 
 x
(d) f (x) � k where k � 0 and 100 
 x 
 100 � k

3-22. For each of the density functions in Exercise 3-21,
perform the following.

(a) Graph the density function and mark the location of the
mean on the graph.

(b) Find the cumulative distribution function.
(c) Graph the cumulative distribution function.

3-23. Suppose that f (x) � e�(x�6) for 6 
 x and f (x) � 0 for
x � 6. Determine the following probabilities.

(a) P(X � 6) (b) P(6 � X 
 8)
(c) P(X 
 8) (d) P(X � 8)
(e) Determine x such that P(X 
 x) � 0.95.

3-24. Suppose that f (x) � 1.5x2 for �1 
 x 
 1 and f (x) � 0
otherwise. Determine the following probabilities.

(a) P(0 
 X ) (b) P(0.5 
 X )
(c) P(�0.5 � X � 0.5) (d) P(X 
 �2)
(e) P(X 
 0 or X � �0.5)
(f ) Determine x such that P(x 
 X ) � 0.05.

3-25. The pdf of the time to failure of an electronic compo-
nent in a copier (in hours) is f (x) � [exp (�x�3000)]�3000
for x � 0 and f (x) � 0 for x � 0. Determine the probability that

(a) A component lasts more than 1000 hours before failure.
(b) A component fails in the interval from 1000 to 2000

hours.
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3-4 CONTINUOUS RANDOM VARIABLES 73

(c) A component fails before 3000 hours.
(d) Determine the number of hours at which 10% of all com-

ponents have failed.
(e) Determine the mean.

3-26. The probability density function of the net weight in
ounces of a packaged compound is f (x) � 2.0 for 19.75 
 x 

20.25 ounces and f (x) � 0 for x elsewhere.

(a) Determine the probability that a package weighs less than
20 ounces.

(b) Suppose that the packaging specifications require that the
weight be between 19.9 and 20.1 ounces. What is the
probability that a randomly selected package will have a
weight within these specifications?

(c) Determine the mean and variance.
(d) Find and graph the cumulative distribution function.

3-27. The temperature readings from a thermocouple in a
furnace fluctuate according to a cumulative distribution
function

Determine the following.
(a) P(X 
 805) (b) P(800 
 X � 805) (c) P(X � 808)
(d) If the specifications for the process require that the fur-

nace temperature be between 802 and 808�C, what is the
probability that the furnace will operate outside of the
specifications?

3-28. The thickness measurement of a wall of plastic tub-
ing, in millimeters, varies according to a cumulative distribu-
tion function

Determine the following.
(a) P(X � 2.0080) (b) P(X � 2.0055)
(c) If the specification for the tubing requires that the thick-

ness measurement be between 2.0090 and 2.0100 mil-
limeters, what is the probability that a single measurement
will indicate conformance to the specification?

3-29. Suppose that contamination particle size (in micro-
meters) can be modeled as f (x) � 2x�3 for 1 
 x and f (x) � 0
for x � 1.

(a) Confirm that f(x) is a probability density function.
(b) Give the cumulative distribution function.
(c) Determine the mean.
(d) What is the probability that the size of a random particle

will be less than 5 micrometers?
(e) An optical device is being marketed to detect contamina-

tion particles. It is capable of detecting particles exceeding

F(x) � •
0 x 6 2.0050

200x � 401 2.0050 � x � 2.0100

1 x 7 2.0100

F(x) � •
0 x 6 800°C

0.1x � 80 800°C � x 6 810°C

1 x 7 810°C

7 micrometers in size. What proportion of the particles
will be detected?

3-30. (Integration by parts is required in this exercise.) The
probability density function for the diameter of a drilled hole
in millimeters is 10e�10(x�5) for x � 5 mm and zero for x � 5
mm. Although the target diameter is 5 millimeters, vibrations,
tool wear, and other factors can produce diameters larger than
5 millimeters.

(a) Determine the mean and variance of the diameter of the
holes.

(b) Determine the probability that a diameter exceeds 5.1 mil-
limeters.

3-31. Suppose the cumulative distribution function of the
length (in millimeters) of computer cables is

(a) Determine P(x 
 1208).
(b) If the length specifications are 1195 
 x 
 1205 millime-

ters, what is the probability that a randomly selected com-
puter cable will meet the specification requirement?

3-32. The thickness of a conductive coating in micrometers
has a density function of 600x�2 for 100 �m 
 x 
 120 �m
and zero for x elsewhere.

(a) Determine the mean and variance of the coating thick-
ness.

(b) If the coating costs $0.50 per micrometer of thickness on
each part, what is the average cost of the coating per part?

3-33. A medical linear accelerator is used to accelerate elec-
trons to create high-energy beams that can destroy tumors
with minimal impact on surrounding healthy tissue. The beam
energy fluctuates between 200 and 210 MeV (million electron
volts). The cumulative distribution function is

Determine the following.
(a) P(X 
 209) (b) P(200 
 X 
 208) (c) P(X � 209)
(d) What is the probability density function?
(e) Graph the probability density function and the cumulative

distribution function.
(f ) Determine the mean and variance of the beam energy.

3-34. The probability density function of the time a cus-
tomer arrives at a terminal (in minutes after 8:00 A.M.) is

for Determine the probability that

(a) The customer arrives by 9:00 A.M.
(b) The customer arrives between 8:15 A.M. and 8:30 A.M.
(c) Determine the time at which the probability of an earlier

arrival is 0.5.

x 7 0.f (x) � 0.1e�x�10

F(x) � •
0 x 6 200

0.1x � 20 200 � x � 210

1 x 7 210

F(x) � •
0 x � 1200

0.1x � 120 1200 6 x � 1210

1 x 7 1210

c03RandomVariablesandProbabilityDistributions.qxd  9/21/10  9:34 AM  Page 73



74 CHAPTER 3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

3-5 IMPORTANT CONTINUOUS DISTRIBUTIONS

3-5.1 Normal Distribution

Undoubtedly, the most widely used model for the distribution of a random variable is a normal
distribution. In Chapter 2, several histograms are shown with similar symmetric, bell shapes.
A fundamental result, known as the central limit theorem, implies that histograms often have
this characteristic shape, at least approximately. Whenever a random experiment is replicated,
the random variable that equals the average (or total) result over the replicates tends to have 
a normal distribution as the number of replicates becomes large. De Moivre presented initial 
results in 1733 and Gauss developed a normal distribution nearly 100 years later. Consequently,
a normal distribution is also referred to as a Gaussian distribution.

When do we average (or total) results? Almost always. In Example 2-1 the average of the
eight tensile strength measurements was calculated to be 1055.0 psi. If we assume that each
measurement results from a replicate of a random experiment, the normal distribution can be
used to make approximate conclusions about this average. Such conclusions are the primary
topics in the subsequent chapters of this book.

Furthermore, sometimes the central limit theorem is less obvious. For example, assume
that the deviation (or error) in the length of a machined part is the sum of a large number of
infinitesimal (small) effects, such as temperature and humidity drifts, vibrations, cutting angle
variations, cutting tool wear, bearing wear, rotational speed variations, mounting and fixturing
variations, variations in numerous raw material characteristics, and variation in levels of con-
tamination. If the component errors are independent and equally likely to be positive or nega-
tive, the total error can be shown to have an approximate normal distribution. Furthermore, the
normal distribution arises in the study of numerous basic physical phenomena. For example,
the physicist Maxwell developed a normal distribution from simple assumptions regarding the
velocities of molecules.

The theoretical basis of a normal distribution is mentioned to justify the somewhat com-
plex form of the probability density function. Our objective now is to calculate probabilities
for a normal random variable. The central limit theorem will be stated more carefully later in
this chapter.

(d) Determine the cumulative distribution function and use
the cumulative distribution function to determine the
probability that the customer arrives between 8:15 A.M.
and 8:30 A.M.

(e) Determine the mean and standard deviation of the number
of minutes until the customer arrives.

3-35. The probability density function of the weight of
packages delivered by a post office is for

(a) What is the probability a package weighs less than 10
pounds?

(b) Determine the mean and variance of package weight.
(c) If the shipping cost is $3 per pound, what is the average

shipping cost of a package?

3-36. Given the cdf F(x) � 0 for for
determine the following:0 6 x,

x 6 0, 1 � exp(�x�2)

1 6 x 6 70 pounds.
f (x) � 70�(69x2 )

(a)
(b)
(c)
(d) x such that 
(e) pdf

3-37. The waiting time until service at a hospital emergency
department is modeled with the pdf f (x) � (1�9)x for

hours and for 
Determine the following: 

(a) Probability the wait is less than 4 hours
(b) Probability the wait is more than 5 hours
(c) Probability the wait is less than or equal to 30 minutes
(d) Waiting time that is exceeded by only 10% of patients
(e) Mean waiting time

3 6 x 6 6.f (x) � 2�3 � (1�9)x0 6 x 6 3

P(X 6 x) � 0.95
P(1 � X 6 2)
P(X 7 2)
P(X 6 1)
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3-5 IMPORTANT CONTINUOUS DISTRIBUTIONS 75

The notation N(�, �2) is often used to denote a normal distribution with mean � and
variance �2.

EXAMPLE 3-7 Assume that the current measurements in a strip of wire follow a normal distribution with a mean of 10
milliamperes and a variance of 4 milliamperes2. What is the probability that a measurement exceeds 13
milliamperes?

Solution. Let X denote the current in milliamperes. The requested probability can be represented as 
P(X � 13). This probability is shown as the shaded area under the normal probability density function in
Fig. 3-12. Unfortunately, there is no closed-form expression for the integral of a normal pdf, and proba-
bilities based on the normal distribution are typically found numerically or from a table (which we will
introduce later). ■

Some useful results concerning a normal distribution are summarized in Fig. 3-13.
Numerical analysis can be used to show that for any normal random variable,

 P(� � 3� 6 X 6 � � 3�) � 0.9973

 P(� � 2� 6 X 6 � � 2�) � 0.9545

 P(� � � 6 X 6 � � �) � 0.6827

Figure 3-11 Normal probability density functions for
selected values of the parameters � and �2.

   = 5 x

f(x)

   = 15� �

σ2 = 1

σ2 = 9

σ2 = 1

Random variables with different means and variances can be modeled by normal proba-
bility density functions with appropriate choices of the center and width of the curve. The
value of E(X ) �� determines the center of the probability density function and the value of
V(X ) ��2 determines the width. Figure 3-11 illustrates several normal probability density
functions with selected values of � and �2. Each has the characteristic symmetric, bell-shaped
curve, but the centers and dispersions differ. The following definition provides the formula for
normal pdfs.

A random variable X with probability density function

(3-4)

has a normal distribution (and is called a normal random variable) with
parameters � and �, where � 
� 
 , and � � 0. Also,

The mean and variance of the normal distribution are derived at the end of this
section.

E(X ) � �  and  V(X ) � �2

f (x) �
1

22��
 e

�(x � �)2

2�2

 for � 6 x 6 

Normal
Distribution

Current in a Wire:
Normal
Distribution
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76 CHAPTER 3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Also, from the symmetry of f (x), P(X � �) � P(X 
 �) � 0.5. Because f (x) is positive for all x,
this model assigns some probability to each interval of the real line. However, the probability
density function decreases as x moves farther from �. Consequently, the probability that a
measurement falls far from � is small, and at some distance from � the probability of an interval
can be approximated as zero. The area under a normal pdf beyond 3� from the mean is quite
small. This fact is convenient for quick, rough sketches of a normal probability density function.
The sketches help us determine probabilities. Because more than 0.9973 of the probability of a
normal distribution is within the interval (�� 3�, � � 3�), 6� is often referred to as the width of
a normal distribution. It can also be shown that the area under the normal pdf from � 
 x 
  is 1.

An important special case is a normal distribution with � � 0 and �2 � 1.

Figure 3-12 Probability that X � 13 for a normal random
variable with � � 10 and �2 � 4 in Example 3-7.

Figure 3-13 Probabilities associated with a normal distri-
bution.

10 x

f(x)

13 – 3 x

f(x)

� � – 2� � – � � � +� � + 2� � + 3� �

68%

95%

99.7%

A normal random variable with � � 0 and �2 � 1 is called a standard normal random
variable. A standard normal random variable is denoted as Z.

Standard
Normal

Random
Variable

Appendix A Table I provides cumulative probabilities for a standard normal random variable.
The use of Table I is illustrated by the following example.

EXAMPLE 3-8 Assume that Z is a standard normal random variable. Appendix A Table I provides probabilities of the form
P(Z � z). The use of Table I to find P(Z � 1.5) is illustrated in Fig. 3-14. We read down the z column to the
row that equals 1.5. The probability is read from the adjacent column, labeled 0.00 to be 0.93319.

The column headings refer to the hundredth’s digit of the value of z in P(Z � z). For example,
P(Z � 1.53) is found by reading down the z column to the row 1.5 and then selecting the probability
from the column labeled 0.03 to be 0.93699. ■

Standard Normal
Distribution

The function

is used to denote the cumulative distribution function of a standard normal random
variable. A table (or computer software) is required because the probability cannot be
calculated in general by elementary methods.

£(z) � P(Z � z)

Standard
Normal

Cumulative
Distribution

Function
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3-5 IMPORTANT CONTINUOUS DISTRIBUTIONS 77

Probabilities that are not of the form P(Z � z) are found by using the basic rules of prob-
ability and the symmetry of the normal distribution along with Appendix A Table I (or soft-
ware). The following examples illustrate the method.

z0

= shaded area
P(Z ≤ 1.5) = Φ (1.5)

1.5

0.00 0.01 0.02

0

1.5

z

0.93319

. 
. 

.

. 
. 

.

0.93448 0.93574

0.50000 0.50399 0.50398

0.03

0.93699

0.51197

Figure 3-14 Standard normal probability density function.

(1) (5)

0 –3.99

(2)

0 0

(3) (7)

0 0 0

0 0 0

1.26 0 1.26

–0.86

0.05

z ≅ 1.65

z ≅ 2.58

0.0050.005

– z

0.99

–1.37

=

1.37

=

0.37–1.25 –1.250.37

–

= –

(4)

–4.6 0

(6)

1

Figure 3-15 Graphical displays for Example 3-9.

EXAMPLE 3-9 The following calculations are shown pictorially in Fig. 3-15. In practice, a probability is often rounded
to one or two significant digits.

(1) P(Z � 1.26) � 1 � P(Z � 1.26) � 1 � 0.89616 � 0.10384

(2) P(Z 
 �0.86) � 0.19490

(3) P(Z � �1.37) � P(Z 
 1.37) � 0.91465

Normal
Distribution
Probabilities
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78 CHAPTER 3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

(4) P(�1.25 
 Z 
 0.37). This probability can be found from the difference of two areas, P(Z 

0.37) � P(Z 
 �1.25). Now,

Therefore,

(5) P(Z � �4.6) cannot be found exactly from Table I. However, the last entry in the table can be
used to find that P(Z � �3.99) � 0.00003. Because P(Z � �4.6) 
 P(Z � �3.99), P(Z � �4.6)
is nearly zero.

(6) Find the value z such that P(Z � z) � 0.05. This probability equation can be written as P(Z �
z) � 0.95. Now, Table I is used in reverse. We search through the probabilities to find the value
that corresponds to 0.95. The solution is illustrated in Fig. 3-15b. We do not find 0.95 exactly;
the nearest value is 0.95053, corresponding to z � 1.65.

(7) Find the value of z such that P(�z 
 Z 
 z) � 0.99. Because of the symmetry of the normal
distribution, if the area of the shaded region in Fig. 3-15(7) is to equal 0.99, the area in each tail
of the distribution must equal 0.005. Therefore, the value for z corresponds to a probability of
0.995 in Table I. The nearest probability in Table I is 0.99506, when z � 2.58. ■

The preceding examples show how to calculate probabilities for standard normal ran-
dom variables. Using the same approach for an arbitrary normal random variable would 
require a separate table for every possible pair of values for � and �. Fortunately, all normal
probability distributions are related algebraically, and Appendix A Table I can be used to find
the probabilities associated with an arbitrary normal random variable by first using a simple
transformation.

P(�1.25 6 Z 6 0.37) � 0.64431 � 0.10565 � 0.53866

P(Z 6 0.37) � 0.64431 and P(Z 6 �1.25) � 0.10565

If X is a normal random variable with E(X ) � � and V(X ) � �2, the random variable

is a normal random variable with E(Z ) � 0 and V(Z ) � 1. That is, Z is a standard
normal random variable.

Z �
X � �

�

Standard
Normal

Random
Variable

Creating a new random variable by this transformation is referred to as standardizing. The
random variable Z represents the distance of X from its mean in terms of standard deviations.
It is the key step in calculating a probability for an arbitrary normal random variable.

EXAMPLE 3-10 Suppose the current measurements in a strip of wire are assumed to follow a normal distribution with a
mean of 1 milliamperes and a variance of What is the probability that a measurement
will exceed 13 milliamperes?

Solution. Let X denote the current in milliamperes. The requested probability can be represented as
P(X 7 13).

4 milliamperes2.Current in a Wire:
Normal Distri-
bution Probability
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3-5 IMPORTANT CONTINUOUS DISTRIBUTIONS 79

Let The relationship between several values of X and the transformed values of Z
are shown in Fig. 3-16. We note that corresponds to Therefore, from Table I,

The calculation can be written more simply as

■

In the preceding example, the value 13 is transformed to 1.5 by standardizing, and 1.5 is
often referred to as the z-value associated with a probability. The following box summarizes
the calculation of probabilities derived from normal random variables.

P(X 7 13) � Pa X � 10

2
7

13 � 10

2
b � P(Z 7 1.5) � 0.06681

P(X 7 13) � P(Z 7 1.5) � 1 � P(Z � 1.5) � 1 � 0.93319 � 0.06681

Z 7 1.5.X 7 13
Z � (X � 10)�2.

0 1.5

Distribution of = Z
X – μ

σ

Distribution of X

10 13 x

z

Figure 3-16 Standardizing a normal random variable.

Suppose X is a normal random variable with mean � and variance �2. Then

(3-5)

where

Z is a standard normal random variable, and

z � (x ��)�� is the z-value obtained by standardizing x.

The probability is obtained by entering Appendix A Table I with z � (x ��)��.

P(X � x) � PaX � �

�
�

x � �

�
b � P(Z � z)

Standardizing

EXAMPLE 3-11 Continuing the previous example, what is the probability that a current measurement is between 9 and
11 milliamperes?

Solution. The probability statement is . Proceeding algebraically, we have

As a second exercise, determine the value for which the probability that a current measurement is
below this value is 0.98.

 � P(Z 6 0.5) � P(Z 6 � 0.5) � 0.69146 � 0.30854 � 0.38292

 P (9 6 X 6 11) � P a9 � 10

2
6

X � 10

2
6

11 � 10

2
b � P(�0.5 6 Z 6 0.5)

P(9 6 x 6 11)

Current in a Wire:
Normal
Distribution
Probability

Define the random variable
and distribution.
Write the probability 
statement.
Compute the probability.
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Solution. The requested value is shown graphically in Fig. 3-17. We need the value of x such that
By standardizing, this probability expression can be written as

Table I is used to find the z-value such that The nearest probability from Table I
results in

Therefore, and the standardizing transformation is used in reverse to solve for x.
The result is

■x � 2(2.05) � 10 � 14.1 milliamperes

(x � 10)�2 � 2.05,

P(Z 6 2.05) � 0.97982

P(Z 6 z) � 0.98.

P(X 6 x) � PaX � 10

2
6

x � 10

2
b � PaZ 6

x � 10

2
b � 0.98

P(X 6 x) � 0.98.
Define the random
variable and distribution.

Write the probability
statement.

Compute the probability.

10 x

z = = 2.05
x – 10

2

0.98

Standardized distribution of
N

0.45

z–z 0

0 x–x

Distribution of N

Figure 3-17 Determining the value of x to meet a specified
probability, Example 3-11.

Figure 3-18 Determining the value of x to meet a
specified probability, Example 3-12.

EXAMPLE 3-12 In the transmission of a digital signal, assume that the background noise follows a normal distribution with
a mean of 0 volt and standard deviation of 0.45 volt. If the system assumes that a digital 1 has been trans-
mitted when the voltage exceeds 0.9, what is the probability of detecting a digital 1 when none was sent?

Solution. Let the random variable N denote the voltage of noise. The requested probability is

This probability can be described as the probability of a false detection.

Determine symmetric bounds about 0 that include 99% of all noise readings.

Solution. The question requires us to find x such that P(�x 
 N 
 x) � 0.99. A graph is shown in 
Fig. 3-18. Now,

P(�x 6 N 6 x) � P a� x

0.45
6

N

0.45
6

x

0.45
b � P a� 

x

0.45
6 Z 6

x

0.45
b � 0.99

P(N 7 0.9) � Pa N

0.45
7

0.9

0.45
b � P(Z 7 2) � 1 � 0.97725 � 0.02275

Voltage of Noise
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From Table I

Therefore,

and

Suppose a digital 1 is represented as a shift in the mean of the noise distribution to 1.8 volts. What
is the probability that a digital 1 is not detected? Let the random variable S denote the voltage when a
digital 1 is transmitted.

Solution. Then

This probability can be interpreted as the probability of a missed signal. ■

P(S 6 0.9) � PaS � 1.8

0.45
6

0.9 � 1.8

0.45
b � P(Z 6 �2) � 0.02275

x � 2.58(0.45) � 1.16
x

0.45
� 2.58

P(�2.58 6 Z 6 2.58) � 0.99

EXAMPLE 3-13 The diameter of a shaft in a storage drive is normally distributed with mean 0.2508 inch and standard 
deviation 0.0005 inch. The specifications on the shaft are 0.2500 � 0.0015 inch. What proportion of
shafts conforms to specifications?

Solution. Let X denote the shaft diameter in inches. The requested probability is shown in Fig. 3-19 and

Most of the nonconforming shafts are too large, because the process mean is located very near to the upper
specification limit. If the process is centered so that the process mean is equal to the target value of 0.2500,

By recentering the process, the yield is increased to approximately 99.73%. ■

Software such as Minitab can also be used to calculate probabilities. For example, to ob-
tain the probability in Example 3-10 we set the mean, standard deviation, and value for the
probability as follows:

 � 0.99865 � 0.00135 � 0.9973

 � P(�3 6 Z 6 3) � P(Z 6 3) � P(Z 6 �3)

 P(0.2485 6 X 6 0.2515) � Pa0.2485 � 0.2500

0.0005
6 Z 6

0.2515 � 0.2500

0.0005
b

 � 0.91924 � 0.0000 � 0.91924

 � P(�4.6 6 Z 6 1.4) � P(Z 6 1.4) � P(Z 6 �4.6)

 P(0.2485 6 X 6 0.2515) � Pa0.2485 � 0.2508

0.0005
6 Z 6

0.2515 � 0.2508

0.0005
b

Diameter of 
a Shaft

Figure 3-19 Distribution for Example 3-13.

0.2515

f (x)

0.2508
0.25

0.2485 x

Specifications
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The result is the probability as shown:X 6 13

Also, a value that solves a probability equation can be determined as in Example 3-11. The
Minitab input is

Cumulative Distribution Function
Normal with mean � 10 and standard deviation � 2
x P(X 
� x)
13 0.933193
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The result from Minitab is shown:

Inverse Cumulative Distribution Function
Normal with mean � 10 and standard deviation � 2
P(X 
� x)       x

0.98  14.1075

The same results can also be obtained with the following Excel functions. Note that the “%”
symbol is added only to display the function. The parameter TRUE in the NORMDIST func-
tion indicate that a probability is requested (instead of the pdf f (x) at x � 13).

%=NORMDIST(13,10,2,TRUE) %=NORMINV(0.98,10,2)
0.933192799 14.10749782

Mean and Variance of the Normal Distribution
We show that the mean and variance of a normal random variable are � and �2, respectively.
The mean of x is

By making the change of variable , the integral becomes

The first integral in the previous expression equals 1 because the integrand is the standard normal
pdf, and the second integral is found to be 0 by either formally making the change of variable 
u ��y2�2 or noticing the symmetry of the integrand about y � 0. Therefore, E(X ) ��.

The variance of X is

By making the change of variable , the integral becomes

From a table of integrals or upon integrating by parts with u � y and V(X ) is

found to be �2.

dv � y 
e�y2�2

12�
 dy,

V(X ) � �2 �


�

y2 
e�y2�2

22�
 dy

y � (x � �)��

V(X ) � �


�

(x � �)2 
e�(x��)2�2�2

12��
 dx

E(X ) � � �


�

e�y2�2

22�
 dy � � �



�

y 
e�y2�2

22�
 dy

y � (x � �)��

E(X ) � �


�

x 
e�(x��)2�2�2

22��
 dx
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3-5.2 Lognormal Distribution

Variables in a system sometimes follow an exponential relationship as x � exp(w). If 
the exponent is a random variable, say W, then X � exp(W ) is a random variable and the
distribution of X is of interest. An important special case occurs when W has a normal dis-
tribution. In that case, the distribution of X is called a lognormal distribution. The name
follows from the transformation ln (X ) � W. That is, the natural logarithm of X is normally
distributed.

Probabilities for X are obtained from the transformation to W, but we need to recognize
that the range of X is (0, ). Suppose that W is normally distributed with mean � and variance �2;
then the cumulative distribution function for X is

for x � 0, where Z is a standard normal random variable. Therefore, Appendix A Table I can
be used to determine the probability. Also, F(x) � 0, for x � 0.

The lognormal pdf can be obtained from the derivative of F(x). This derivative is applied
to the last term in the expression for F(x) (the integral of the standard normal density func-
tion) and the fundamental theorem of calculus is applied. Once we know the pdf, the mean
and variance of X can be derived. The details are omitted, but a summary of results follows.

 � P cZ �
ln (x) � �

�
d � £ c ln (x) � �

�
d

 F(x) � P [X � x ] � P [exp(W) � x ] � P [W � ln (x)]

Let W have a normal distribution with mean � and variance �2; then X � exp(W ) is a
lognormal random variable with probability density function

(3-6)

The mean and variance of X are

(3-7)E(X ) � e���2�2   and   V(X) � e2���2

(e�2

� 1)

f (x) �
1

x�22�
 exp c�(ln (x) � �)2

2�2 d  0 6 x 6 

Lognormal
Distribution

The parameters of a lognormal distribution are � and �2, but care is needed to interpret
that these are the mean and variance of the normal random variable W. The mean and variance
of X are the functions of these parameters shown in (3-7). Figure 3-20 illustrates lognormal
distributions for selected values of the parameters.

The lifetime of a product that degrades over time is often modeled by a lognormal ran
dom variable. For example, this is a common distribution for the lifetime of a semiconductor
laser. Other continuous distributions can also be used in this type of application. However, 
because the lognormal distribution is derived from a simple exponential function of a normal
random variable, it is easy to understand and easy to evaluate probabilities.

Animation 5: Understanding the Normal Distribution
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Figure 3-20 Lognormal probability density functions
with � = 0 for selected values of �2.

EXAMPLE 3-14 The lifetime of a semiconductor laser has a lognormal distribution with �� 10 and � � 1.5 hours. What
is the probability the lifetime exceeds 10,000 hours?

Solution. The random variable X is the lifetime of a semiconductor laser. From the cumulative distribution
function for X

What lifetime is exceeded by 99% of lasers?

Solution. Now the question is to determine x such that P(X � x) � 0.99. Therefore,

From Appendix Table I, 1 ��(z) � 0.99 when z ��2.33. Therefore,

Determine the mean and standard deviation of lifetime.

Solution. Now,

so the standard deviation of X is 197,661.5 hours. Notice that the standard deviation of lifetime is large
relative to the mean. ■

V(X ) � e2���2

(e�2

� 1) � exp(20 � 2.25)[exp(2.25) � 1] � 39,070,059,886.6

E(X ) � e���2�2 � exp(10 � 1.125) � 67,846.3

ln(x) � 10

1.5
� �2.33 and x � exp(6.505) � 668.48 hours

P(X 7 x) � P [exp(W ) 7 x ] � P [W 7 ln (x)] � 1 � £a ln (x) � 10

1.5
b � 0.99

 � £a ln (10,000) � 10

1.5
b � 1 � £(�0.52) � 1 � 0.30 � 0.70

 P(X 7 10,000) � 1 � P [exp(W ) � 10,000] � 1 � P [W � ln(10,000)]

Lifetime of a Laser
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It can be shown that the integral in the definition of �(r) is finite. Furthermore, by using inte-
gration by parts it can be shown that

This result is left as an exercise. Therefore, if r is a positive integer �(r) � (r � 1)!. Also,
�(1) � 0! � 1 and it can be shown that �(1�2) ��1�2. Consequently, the gamma function can
be thought of as a generalized factorial function that can be calculated even when r is not an
integer.

Now the gamma pdf can be stated.

�(r) � (r � 1)�(r � 1)

3-5.3 Gamma Distribution

To define the gamma distribution, we require a generalization of the factorial function.

The gamma function is

(3-8)�(r) � �


0
 

xr�1e�x  dx,  for r 7 0

Gamma
Function

The random variable X with probability density function

(3-9)

is a gamma random variable with parameters � � 0 and r � 0. The mean and vari-
ance are

(3-10)� � E(X ) � r��  and  �2 � V(X ) � r��2

f (x) �
�rx r�1e��x

�(r)
,  for x 7 0

Gamma
Distribution

Sketches of the gamma distribution for several values of � and r are shown in Fig. 3-21.
The gamma distribution is very useful for modeling a variety of random experiments.

Furthermore, the chi-squared distribution is a special case of the gamma distribution in
which �� 1�2 and r equals one of the values 1/2, 1, 3/2, 2, . . . . This distribution is used 
extensively in interval estimation and tests of hypotheses that are discussed in Chapters 4 and
5. When the parameter r is an integer, the gamma distribution is called the Erlang distribution
(after A. K. Erlang, who first used the distribution in the telecommunications field).

3-5.4 Weibull Distribution

The Weibull distribution is often used to model the time until failure of many different physical
systems. The parameters in the distribution provide a great deal of flexibility to model systems in
which the number of failures increases with time (bearing wear), decreases with time (some semi-
conductors), or remains constant with time (failures caused by external shocks to the system).
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The random variable X with probability density function

(3-11)

is a Weibull random variable with scale parameter � � 0 and shape parameter � � 0.

f (x) �
�

�
ax

�
b��1

 exp c�ax

�
b� d , for x 7 0

Weibull
Distribution

Figure 3-21 Gamma probability density func-
tions for selected values of � and r.
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Figure 3-22 Weibull probability density func-
tions for selected values of � and �.

The flexibility of the Weibull distribution is illustrated by the graphs of selected probability
density functions in Fig. 3-22.

The cumulative distribution function is often used to compute probabilities. The follow-
ing result can be obtained.

If X has a Weibull distribution with parameters � and �,

(3-12)� � �� a1 �
1

�
b and �2 � �2� a1 �

2

�
b � �2 c� a1 �

1

�
b d 2

If X has a Weibull distribution with parameters � and �, the cumulative distribution
function of X is

F(x) � 1 � exp c�ax

�
b� d

Weibull
Cumulative

Distribution
Function

The mean and variance of the Weibull distribution are as follows.
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88 CHAPTER 3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

The shape parameters � and � allow the probability density function to assume many different
shapes. Figure 3-23 provides some examples. If � � � the distribution is symmetric about 
x � 0.5, and if � � � � 1 the beta distribution equals a continuous uniform distribution. The
figure illustrates that other parameter choices generate nonsymmetric distributions.

EXAMPLE 3-15 The time to failure (in hours) of a bearing in a mechanical shaft is satisfactorily modeled as a Weibull
random variable with �� 1�2 and �� 5000 hours. Determine the mean time until failure.

Solution. From the expression for the mean,

Determine the probability that a bearing lasts at least 6000 hours.

Solution. Now

Consequently, only 33.4% of all bearings last at least 6000 hours. ■

P(X 7 6000) � 1 � F(6000) � exp c�a6000

5000
b1�2 d � e�1.095 � 0.334

E(X ) � 5000� [1 � (1�0.5)] � 5000� [3] � 5000 � 2! � 10,000 hours

3-5.5 BETA DISTRIBUTION

A continuous distribution that is flexble, but bounded over a finite range, is useful for proba-
bility models. The proportion of solar radiation absorbed by a material and the proportion (of
the maximum time) required to complete a task in a project are examples of continuous ran-
dom variables over the interval [0, 1].

The random variable X with probability density function

for x � [0,1]

is a beta random variable with parameters � � 0 and � � 0.

f (x) �
� (� � �)

�(�)�(�)
x��1(1 � x)��1,

Figure 3-23 Beta
probability density
functions for selected
values of the parame-
ters � and �. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

= 0.5, = 0.5α β
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EXAMPLE 3-16 Consider the completion time of a large commercial development. The proportion of the maximum 
allowed time to complete a task is modeled as a beta random variable with � � 2.5 and � � 1. What is
the probability that the proportion of the maximum time exceeds 0.7?

Suppose X denotes the proportion of the maximum time required to complete the task. The
probability is

■ � 1 � 0.72.5 � 0.59

 �
2.5(1.5)(0.5)1�

(1.5)(0.5)1� 
 

1

2.5
x2.5 ` 1

0.7

 � �
1

0.7

�(3.5)

�(2.5) �(1)
 x1.5

 P(X 7 0.7) � �
1

0.7

�(� � �)

�(�) �(�)
 x��1(1 � x)��1

In general, there is a not a closed-form expression for the cumulative distribution function,
and probabilities for beta random variables need to be computed numerically. The exercises
provide some special cases where the probability density function is more easily handled.

EXAMPLE 3-17 Consider the proportion of time required to complete the task described in the previous example. Calcu-
late the mean and variance of this random variable.

From the expression for the mean and variance,

■	2 �
2.5

3.52(4.5)
� 0.045
 �

2.5

2.5 � 1
� 0.71

If X has a beta distribution with parameters � and �,


 � E(X ) �
�

� � �
	2 � V(X ) �

��

(� � �)2(� � � � 1)

If � � 1 and � � 1, the mode (peak of the density) is in the interior of [0, 1] and equals

This expression is useful to relate the peak of the density to the parameters. For the distribu-
tion used previously for the proportion of time required to complete a task, � � 2.5 and � � 1
and the mode of this distribution is (2.5 � 1)�(3.5 � 2) � 1. Also, although a beta random
variable X is defined over the interval [0, 1], a random variable W defined over the finite inter-
val [a, b] can be constructed from W � a � (b � a) X.

Mode �
� � 1

� � � � 2

EXERCISES FOR SECTION 3-5

3-38. Use Appendix A Table I to determine the following
probabilities for the standard normal random variable Z.

(a) P(�1 � Z � 1) (b) P(�2 � Z � 2)
(c) P(�3 � Z � 3) (d) P(Z � �3)
(e) P(0 � Z  3)

3-39. Assume that Z has a standard normal distribution. Use
Appendix A Table I to determine the value for z that solves
each of the following.

(a) P(Z � z) � 0.50000 (b) P(Z � z) � 0.001001
(c) P(Z � z) � 0.881000 (d) P(Z � z) � 0.866500
(e) P(�1.3 � Z � z) � 0.863140

3-40. Assume that Z has a standard normal distribution. Use
Appendix A Table I to determine the value for z that solves
each of the following.

(a) P(�z � Z � z) � 0.95 (b) P(�z � Z � z) � 0.99
(c) P(�z � Z � z) � 0.68 (d) P(�z � Z � z) � 0.9973

Proportion of
Time for a Task

Mean and Variance
of the Proportion
of Time for a Task
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3-41. Assume that X is normally distributed with a mean of
20 and a standard deviation of 2. Determine the following.

(a) P(X � 24) (b) P(X � 18)
(c) P(18 � X � 22) (d) P(14 � X � 26)
(e) P(16 � X � 20) (f) P(20 � X � 26)

3-42. Assume that X is normally distributed with a mean of
20 and a standard deviation of 2. Determine the value for x that
solves each of the following.

(a) P(X � x) � 0.5 (b) P(X � x) � 0.95
(c) P(x � X � 20) � 0.2

3-43. Assume that X is normally distributed with a mean of
37 and a standard deviation of 2. Determine the following.

(a) P(X � 31) (b) P(X � 30)
(c) P(33 � X � 37) (d) P(32 � X � 39)
(e) P(30 � X � 38)

3-44. Assume that X is normally distributed with a mean of
6 and a standard deviation of 3. Determine the value for x that
solves each of the following.

(a) P(X � x) � 0.5 (b) P(X � x) � 0.95
(c) P(x � X � 9) � 0.2 (d) P(3 � X � x) � 0.8

3-45. The compressive strength of samples of cement can
be modeled by a normal distribution with a mean of 6000 kilo-
grams per square centimeter and a standard deviation of 100
kilograms per square centimeter.

(a) What is the probability that a sample’s strength is less than
6250 kg/cm2?

(b) What is the probability that a sample’s strength is between
5800 and 5900 kg/cm2?

(c) What strength is exceeded by 95% of the samples?

3-46. The tensile strength of paper is modeled by a normal
distribution with a mean of 35 pounds per square inch and a
standard deviation of 2 pounds per square inch.

(a) What is the probability that the strength of a sample is less
than 39 lb/in.2?

(b) If the specifications require the tensile strength to exceed
29 lb/in.2, what proportion of the sample is scrapped?

3-47. The line width of a tool used for semiconductor
manufacturing is assumed to be normally distributed with 
a mean of 0.5 micrometer and a standard deviation of 0.05
micrometer.

(a) What is the probability that a line width is greater than
0.62 micrometer?

(b) What is the probability that a line width is between 0.47
and 0.63 micrometer?

(c) The line width of 90% of samples is below what value?

3-48. The fill volume of an automated filling machine used
for filling cans of carbonated beverage is normally distributed
with a mean of 12.4 fluid ounces and a standard deviation of
0.1 fluid ounce.

(a) What is the probability that a fill volume is less than 12
fluid ounces?

(b) If all cans less than 12.1 or greater than 12.6 ounces are
scrapped, what proportion of cans is scrapped?

(c) Determine specifications that are symmetric about the
mean that include 99% of all cans.

3-49. Consider the filling machine in Exercise 3-48.
Suppose that the mean of the filling operation can be adjusted
easily, but the standard deviation remains at 0.1 ounce.

(a) At what value should the mean be set so that 99.9% of all
cans exceed 12 ounces?

(b) At what value should the mean be set so that 99.9% of all
cans exceed 12 ounces if the standard deviation can be re-
duced to 0.05 fluid ounce?

3-50. The reaction time of a driver to visual stimulus is nor-
mally distributed with a mean of 0.4 second and a standard
deviation of 0.05 second.

(a) What is the probability that a reaction requires more than
0.5 second?

(b) What is the probability that a reaction requires between
0.4 and 0.5 second?

(c) What is the reaction time that is exceeded 90% of the
time?

3-51. The length of an injected-molded plastic case that
holds tape is normally distributed with a mean length of 90.2
millimeters and a standard deviation of 0.1 millimeter.

(a) What is the probability that a part is longer than 90.3 mil-
limeters or shorter than 89.7 millimeters?

(b) What should the process mean be set at to obtain the great-
est number of parts between 89.7 and 90.3 millimeters?

(c) If parts that are not between 89.7 and 90.3 millimeters are
scrapped, what is the yield for the process mean that you
selected in part (b)?

3-52. Operators of a medical linear accelerator are inter-
ested in estimating the number of hours until the first software
failure. Prior experience has shown that the time until failure
is normally distributed with mean 1000 hours and standard de-
viation 60 hours.

(a) Find the probability that the software will not fail before
1140 hours of operation.

(b) Find the probability that the software will fail within 900
hours of operation.

3-53. A device that monitors the levels of pollutants has
sensors that detect the amount of CO in the air. Placed in a
particular location, it is known that the amount of CO is nor-
mally distributed with a mean of 6.23 ppm and a variance of
4.26 ppm2.

(a) What is the probability that the CO level exceeds 9 ppm?
(b) What is the probability that the CO level is between 5.5

ppm and 8.5 ppm?
(c) An alarm is to be activated if the CO levels exceed a cer-

tain threshold. Specify the threshold such that it is 3.75
standard deviations above the mean.
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3-54. The life of a semiconductor laser at a constant power
is normally distributed with a mean of 7000 hours and a stan-
dard deviation of 600 hours.

(a) What is the probability that a laser fails before 5000 hours?
(b) What is the life in hours that 95% of the lasers exceed?

3-55. The diameter of the dot produced by a printer is nor-
mally distributed with a mean diameter of 0.002 inch and a
standard deviation of 0.0004 inch.

(a) What is the probability that the diameter of a dot exceeds
0.0026 inch?

(b) What is the probability that a diameter is between 0.0014
and 0.0026 inch?

(c) What standard deviation of diameters is needed so that the
probability in part (b) is 0.995?

3-56. The weight of a human joint replacement part is nor-
mally distributed with a mean of 2 ounces and a standard de-
viation of 0.05 ounce.

(a) What is the probability that a part weighs more than 2.10
ounces?

(b) What must the standard deviation of weight be for the com-
pany to state that 99.9% of its parts are less than 2.10 ounces?

(c) If the standard deviation remains at 0.05 ounce, what must
the mean weight be for the company to state that 99.9% of
its parts are less than 2.10 ounces?

3-57. Suppose that X has a lognormal distribution with
parameters �� 5 and �2 � 9. Determine the following:

(a) P(X � 13,300)
(b) The value for x such that P(X � x) � 0.95
(c) The mean and variance of X

3-58. Suppose that X has a lognormal distribution with pa-
rameters �� 2 and �2 � 4. Determine the following:

(a) P(X � 500)
(b) P(500 � X � 1000)
(c) P(1500 � X � 2000)
(d) What does the difference of the probabilities in parts (a),

(b), and (c) imply about the probabilities of lognormal
random variables?

3-59. The length of time (in seconds) that a user views a
page on a Web site before moving to another page is a lognor-
mal random variable with parameters �� 0.5 and �2 � 1.

(a) What is the probability that a page is viewed for more than
10 seconds?

(b) What is the length of time that 50% of users view the page?
(c) What is the mean and standard deviation of the time until

a user moves from the page?

3-60. The lifetime of a semiconductor laser has a lognormal
distribution, and it is known that the mean and standard devi-
ation of lifetime are 10,000 and 20,000 hours, respectively.

(a) Calculate the parameters of the lognormal distribution.
(b) Determine the probability that a lifetime exceeds 10,000

hours.
(c) Determine the lifetime that is exceeded by 90% of lasers.

3-61. Suppose that X has a Weibull distribution with � � 0.2
and � � 100 hours. Determine the mean and variance of X.

3-62. Suppose that X has a Weibull distribution with �� 0.2
and � � 100 hours. Determine the following:

(a) P(X � 10,000) (b) P(X 	 5000)

3-63. Assume that the life of a roller bearing follows a
Weibull distribution with parameters �� 2 and � � 10,000
hours.

(a) Determine the probability that a bearing lasts at least 8000
hours.

(b) Determine the mean time until failure of a bearing.
(c) If 10 bearings are in use and failures occur independently,

what is the probability that all 10 bearings last at least
8000 hours?

3-64. The life (in hours) of a computer processing unit
(CPU) is modeled by a Weibull distribution with parameters
�� 3 and �� 900 hours.

(a) Determine the mean life of the CPU.
(b) Determine the variance of the life of the CPU.
(c) What is the probability that the CPU fails before 500

hours?

3-65. An article in the Journal of the Indian Geophysical
Union, titled “Weibull and Gamma Distributions for Wave
Parameter Predictions” (Vol. 9, 2005, 55–64), used the Weibull
distribution to model ocean wave heights. Assume that the
mean wave height at the observation station is 2.5 meters and
the shape parameter equals 2. Determine the standard deviation
of wave height.

3-66. Use integration by parts to show that 
(r) � (r � 1)�

(r � 1).

3-67. Use the properties of the gamma function to evaluate
the following:

(a) 
(6) (b) 
(5�2) (c) 
(9�2)

3-68. Suppose that X has a gamma distribution with � 3
and r � 6. Determine the mean and variance of X.

3-69. Suppose that X has a gamma distribution with � 2.5
and r � 3.2. Determine the mean and variance of X.

3-70. Suppose that X represents diameter measurements
from a gamma distribution with a mean of 3 millimeters and a
variance of 1.5 millimeters 2. Find the parameters  and r.

3-71. Suppose that X represents length measurements from
a gamma distribution with a mean of 4.5 inches and a variance
of 6.25 inches2. Find the parameters  and r.

3-72. Suppose that X represents time measurements from a
gamma distribution with a mean of 4 minutes and a variance
of 2 minutes2. Find the parameters  and r.

3-73. Suppose X has a beta distribution with parameters
� � 2.5 and � � 1. Determine the following:

(a) P(X � 0.25)
(b) P(0.25 � X � 0.75)
(c) Mean and variance
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3-74. Suppose X has a beta distribution with parameters
� � 1 and � � 4.2. Determine the following:

(a) P(X � 0.25)
(b) P(0.5 � X )
(c) Mean and variance

3-75. A European standard value for a low-emission window
glazing uses 0.59 as the proportion of solar energy that enters
a room. Suppose that the distribution of the proportion of 
solar energy that enters a room is a beta random variable.

(a) Calculate the mode, mean, and variance of the distribution
for � � 3 and � � 1.4.

(b) Calculate the mode, mean, and variance of the distribution
for � � 10 and � � 6.25.

(c) Comment on the difference in dispersion in the distribu-
tions from the previous parts.

3-76. The length of stay at an emergency department is the
sum of the waiting and service times. Let X denote the propor-
tion of time spent waiting and assume a beta distribution with
� � 10 and � � 1. Determine the following:

(a) P(X � 0.9)
(b) P(X � 0.5)
(c) Mean and variance

3-77. The maximum time to complete a task in a project is
2.5 days. Suppose that the completion time as a proportion of
this maximum is a beta random variable with � � 2 and � � 3.
What is the probability that the task requires more than 2 days
to complete?

3-78. Suppose X has a beta distribution with parameters
� � 2.5 and � � 2.5. Sketch an approximate graph of the
probability density function. Is the density symmetric?

3-79. An article under review for Air Quality, Atmosphere &
Health titled “Linking Particulate Matter (PM10) and Childhood
Asthma in Central Phoenix” used PM10 (particulate matter �
10 �m in diameter) air quality data measured hourly form 
sensors in Phoenix, Arizona. The 24-hour (daily) mean PM10
for a centrally located sensor was 50.9 �g/m3 with a standard 
deviation of 25.0. Assume that the daily mean of PM10 is nor-
mally distributed.

(a) What is the probability of a daily mean of PM10 greater
than 100 �g/m3?

(b) What is the probability of a daily mean of PM10 less than
25 �g/m3?

(c) What daily mean of PM10 value is exceeded with proba-
bility 5%?

3-80. The length of stay at a specific emergency department
in Phoenix, Arizona, in 2009 had a mean of 4.6 hours with a
standard deviation of 2.9. Assume that the length of stay is
normally distributed.

(a) What is the probability of a length of stay greater than 10
hours?

(b) What length of stay is exceeded by 25% of the visits?
(c) From the normally distributed model, what is the proba-

bility of a length of stay less than 0 hours? Comment on
the normally distributed assumption in this example.

3-6 PROBABILITY PLOTS

3-6.1 Normal Probability Plots

How do we know whether a normal distribution is a reasonable model for data? Probability
plotting is a graphical method for determining whether sample data conform to a hypothe-
sized distribution based on a subjective visual examination of the data. The general procedure
is very simple and can be performed quickly. Probability plotting typically uses special graph
paper, known as probability paper, that has been designed for the hypothesized distribution.
Probability paper is widely available for the normal, lognormal, Weibull, and various chi-
square and gamma distributions. In this section we illustrate the normal probability plot.
Section 3-6.2 discusses probability plots for other continuous distributions.

To construct a probability plot, the observations in the sample are first ranked from small-
est to largest. That is, the sample x1, x2, . . . , xn is arranged as x(1), x(2), . . . , x(n), where x(1) is the
smallest observation, x(2) is the second smallest observation, and so forth, with x(n) the largest.
The ordered observations x(j) are then plotted against their observed cumulative frequency 
( j � 0.5)�n on the appropriate probability paper. If the hypothesized distribution adequately
describes the data, the plotted points will fall approximately along a straight line; if the plotted
points deviate significantly and systematically from a straight line, the hypothesized model is
not appropriate. Usually, the determination of whether or not the data plot as a straight line is
subjective. The procedure is illustrated in the following example.
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3-6 PROBABILITY PLOTS 93

A normal probability plot can also be constructed on ordinary graph paper by plotting the
standardized normal scores zj against x(j), where the standardized normal scores satisfy

For example, if ( j � 0.5)/n � 0.05, �(zj) � 0.05 implies that zj ��1.64. To illustrate, consider
the data from the previous example. In the table at the top of page 94 we show the standardized
normal scores in the last column. Figure 3-25 presents the plot of zj versus x(j). This normal
probability plot is equivalent to the one in Fig. 3-24.

A very important application of normal probability plotting is in verification of 
assumptions when using statistical inference procedures that require the normality
assumption.

j � 0.5

n
� P(Z � zj) � £(zj)

EXAMPLE 3-18 Ten observations on the effective service life in minutes of batteries used in a portable personal computer
are as follows: 176, 191, 214, 220, 205, 192, 201, 190, 183, 185. We hypothesize that battery life is ad-
equately modeled by a normal distribution. To use probability plotting to investigate this hypothesis, first
arrange the observations in ascending order and calculate their cumulative frequencies ( j � 0.5)�10 as
shown in the table at the top of the page.

The pairs of values x( j ) and ( j � 0.5)�10 are now plotted on normal probability paper. This plot is
shown in Fig. 3-24. Most normal probability paper plots 100( j � 0.5)/n on the left vertical scale and
100[1 � ( j � 0.5)/n] on the right vertical scale, with the variable value plotted on the horizontal scale.
A straight line, chosen subjectively as a “best fit” line, has been drawn through the plotted points. In
drawing the straight line, you should be influenced more by the points near the middle of the plot than
by the extreme points. A good rule of thumb is to draw the line approximately between the 25th and
75th percentile points. This is how the line in Fig. 3-24 was determined. In assessing the systematic de-
viation of the points from the straight line, imagine a fat pencil lying along the line. If all the points are
covered by this imaginary pencil, a normal distribution adequately describes the data. Because the
points in Fig. 3-24 would pass the fat pencil test, we conclude that the normal distribution is an appro-
priate model. ■

Service Life of a
Battery

Figure 3-24 Normal probability plot for the battery
life.
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j x( j) ( j � 0.5)�10

1 176 0.05
2 183 0.15
3 185 0.25
4 190 0.35
5 191 0.45
6 192 0.55
7 201 0.65
8 205 0.75
9 214 0.85
10 220 0.95
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3-6.2 Other Probability Plots

Probability plots are extremely useful and are often the first technique used when we need to
determine which probability distribution is likely to provide a reasonable model for data. In
using probability plots, usually the distribution is chosen by subjective assessment of the
probability plot. More formal goodness-of-fit techniques can be used in conjunction with
probability plotting. We will describe a very simple goodness-of-fit test in Section 4-10.

To illustrate how probability plotting can be useful in determining the appropriate distri-
bution for data, consider the data on crack elongation in an aluminum alloy shown in Table
3-1. Figure 3-26 is a normal probability plot of the crack-length data. Notice how the data in
the tails of the plot bend away from the straight line; this is an indication that the normal dis-
tribution is not a good model for the data. Figure 3-27 is a lognormal probability plot of the
crack-length data, obtained from Minitab. The data fall much closer to the straight line in this
plot, particularly the observations in the tails, suggesting that the lognormal distribution is
more likely to provide a reasonable model for the crack-length data than is the normal distri-
bution.

Finally, Fig. 3-28 is a Weibull probability plot for the crack-length data (also generated by
Minitab). The observations in the lower tail of this plot are not very close to the straight line,
suggesting that the Weibull is not a very good model for the data. Therefore, based on the three
probability plots that we have constructed, the lognormal distribution appears to be the most
appropriate choice as a model for the crack-length data.

Figure 3-25 Normal probability plot 
obtained from standardized normal scores.

180
–3.30

0

1.65

3.30

–1.65

190 200 210 220170
x( j)

zj

j x( j) ( j � 0.5)�10 zj

1 176 0.05 �1.64
2 183 0.15 �1.04
3 185 0.25 �0.67
4 190 0.35 �0.39
5 191 0.45 �0.13
6 192 0.55 0.13
7 201 0.65 0.39
8 205 0.75 0.67
9 214 0.85 1.04

10 220 0.95 1.64 

Table 3-1 Crack Length (mm) for an Aluminum Alloy

81 98 291 101 98 118 158 197 139 249
249 135 223 205 80 177 82 64 137 149
117 149 127 115 198 342 83 34 342 185
227 225 185 240 161 197 98 65 144 151
134 59 181 151 240 146 104 100 215 200 

Interpeting a 
Probability Plot
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Figure 3-28 Weibull probability plot for the crack-length
data in Table 3-1.

Figure 3-26 Normal probability plot for the crack-length
data in Table 3-1.

Figure 3-27 Lognormal probability plot for the crack-
length data in Table 3-1.
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EXERCISES FOR SECTION 3-6

3-81. A soft-drink bottler is studying the internal pressure
strength of 1-liter glass bottles. A random sample of 16 bottles
is tested, and the pressure strengths are obtained. The data are
shown next. Plot these data on normal probability paper. Does
it seem reasonable to conclude that pressure strength is nor-
mally distributed?

226.16 208.15 211.14 221.31

202.20 195.45 203.62 204.55

219.54 193.71 188.12 202.21

193.73 200.81 224.39 201.63

3-82. Samples of 20 parts are selected from two machines,
and a critical dimension is measured on each part. The data

are shown next. Plot the data on normal probability paper.
Does this dimension seem to have a normal distribution?
What tentative conclusions can you draw about the two 
machines?

Machine 1

99.4 101.5 102.3 96.7

99.1 103.8 100.4 100.9

99.0 99.6 102.5 96.5

98.9 99.4 99.7 103.1

99.6 104.6 101.6 96.8
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Machine 2

90.9 100.7 95.0 98.8

99.6 105.5 92.3 115.5

105.9 104.0 109.5 87.1

91.2 96.5 96.2 109.8

92.8 106.7 97.6 106.5

3-83. After examining the data from the two machines in
Exercise 3-82, the process engineer concludes that machine 2
has higher part-to-part variability. She makes some adjust-
ments to the machine that should reduce the variability, and
she obtains another sample of 20 parts. The measurements on
those parts are shown next. Plot these data on normal proba-
bility paper and compare them with the normal probability
plot of the data from machine 2 in Exercise 3-82. Is the normal
distribution a reasonable model for the data? Does it appear
that the variance has been reduced?

103.4 107.0 107.7 104.5

108.1 101.5 106.2 106.6

103.1 104.1 106.3 105.6

108.2 106.9 107.8 103.7

103.9 103.3 107.4 102.6

3-84. In studying the uniformity of polysilicon thickness on
a wafer in semiconductor manufacturing, Lu, Davis, and
Gyurcsik (Journal of the American Statistical Association,
Vol. 93, 1998) collected data from 22 independent wafers:
494, 853, 1090, 1058, 517, 882, 732, 1143, 608, 590, 940,
920, 917, 581, 738, 732, 750, 1205, 1194, 1221, 1209, 708. Is
it reasonable to model these data using a normal probability
distribution?

3-85. A quality control inspector is interested in maintain-
ing a flatness specification for the surface of metal disks.
Thirty flatness measurements in (0.001 inch) were collected.
Which probability density model—normal, lognormal, or
Weibull—appears to provide the most suitable fit to the data?

2.49 2.14 1.63

4.46 3.69 4.58

1.28 1.28 1.59

0.82 2.23 7.55

2.20 4.78 5.24

1.54 3.81 2.13

1.45 2.21 6.65

6.40 2.06 4.06

2.66 1.66 2.38

6.04 2.85 3.70

3-86. Twenty-five measurements of the time a client waits
for a server is recorded in seconds. Which probability density
model—normal, lognormal, or Weibull—appears to provide the
most suitable fit to the data?

1.21 4.19 1.95 6.88 3.97

9.09 6.91 1.90 10.60 0.51

2.23 13.99 8.22 8.08 4.70

4.67 0.50 0.92 4.15 7.24

4.86 1.89 6.44 0.15 17.34

3-87. The duration of an inspection task is recorded in min-
utes. Determine which probability density model—normal,
lognormal, or Weibull—appears to provide the most suitable fit
to the data.

5.15 0.30 6.66 3.76

4.29 9.54 4.38 0.60

7.06 4.34 0.80 5.12

3.69 5.94 3.18 4.47

4.65 8.93 4.70 1.04

3-88. Thirty measurements of the time-to-failure of a criti-
cal component in an electronics assembly are recorded.
Determine which probability density model—normal, lognor-
mal, or Weibull—appears to provide the most suitable fit to the
data.

1.9 20.7

3.0 11.9

6.3 0.4

8.3 2.3

1.6 5.3

4.6 1.9

5.1 4.0

1.9 3.8

4.1 0.9

10.9 9.0

6.6 1.3

0.5 2.9

2.1 1.2

1.2 2.5

0.8 4.4

3-89. The following data are direct solar intensity measure-
ments on different days at a location in southern
Spain that was analyzed in Chapter 2: 562, 869, 708, 775, 775,

(watts/m2)
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704, 809, 856, 655, 806, 878, 909, 918, 558, 768, 870, 918,
940, 946, 661, 820, 898, 935, 952, 957, 693, 835, 905, 939,
955, 960, 498, 653, 730, 753. Does a normal distribution pro-
vide a reasonable model for these data? Why or why not?

3-90. The following data are the temperatures of effluent at
discharge from a sewage treatment facility on consecutive
days:

3-7 DISCRETE RANDOM VARIABLES

As mentioned in Section 3-2 a discrete random variable is one with a finite (or countably infinite)
set of real numbers for its range. Examples were provided previously in this chapter and others
follow. This section presents properties for discrete random variables that are analogous to those
presented for continuous random variables.

43 47 51 48 52 50 46 49

45 52 46 51 44 49 46 51

49 45 44 50 48 50 49 50

Determine which of the probability models studied appears to
provide the most suitable fit to the data.

EXAMPLE 3-19 A voice communication network for a business contains 48 external lines. At a particular time, the sys-
tem is observed and some of the lines are being used. Let the random variable X denote the number of
lines in use. Then X can assume any of the integer values 0 through 48. ■Voice Network

Semiconductor
Wafer
Contamination

EXAMPLE 3-20 The analysis of the surface of a semiconductor wafer records the number of particles of contamination that
exceed a certain size. Define the random variable X to equal the number of particles of contamination.

The possible values of X are integers from 0 up to some large value that represents the maximum
number of these particles that can be found on one of the wafers. If this maximum number is very large,
it might be convenient to assume that any integer from zero to  is possible. ■

3-7.1 Probability Mass Function

As mentioned previously, the probability distribution of a random variable X is a description
of the probabilities associated with the possible values of X. For a discrete random variable,
the distribution is often specified by just a list of the possible values along with the probability
of each. In some cases, it is convenient to express the probability in terms of a formula.

Bit Transmission
Errors

EXAMPLE 3-21 There is a chance that a bit transmitted through a digital transmission channel is received in error. Let X
equal the number of bits in error in the next 4 bits transmitted. The possible values for X are {0, 1, 2, 3, 4}.
Based on a model for the errors that is presented in the following section, probabilities for these values
will be determined. Suppose that the probabilities are

The probability distribution of X is specified by the possible values along with the probability of
each. A graphical description of the probability distribution of X is shown in Fig. 3-29. ■

P(X � 4) � 0.0001P(X � 3) � 0.0036

P(X � 2) � 0.0486P(X � 1) � 0.2916P(X � 0) � 0.6561
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Suppose a loading on a long, thin beam places mass only at discrete points. See Fig. 3-30.
The loading can be described by a function that specifies the mass at each of the discrete
points. Similarly, for a discrete random variable X, its distribution can be described by a func-
tion that specifies the probability at each of the possible discrete values for X.

x0 1 2 3 4

f(x)

0.2916 0.0036
0.0001

0.0486

0.6561
Loading

x

Figure 3-29 Probability distribution
for X in Example 3-21.

Figure 3-30 Loadings at discrete points on a
long, thin beam.

For a discrete random variable X with possible values x1, x2, . . . , xn, the probability
mass function (or pmf) is

(3-13)f (xi) � P(X � xi)

Probability 
Mass 

Function

Because f (xi) is defined as a probability, f (xi) � 0 for all xi and

The reader should check that the sum of the probabilities in the previous example equals 1.
The steps to determine a probability for a random variable described in Section 3-4.1

apply equally well to discrete random variables. The steps are repeated here:

1. Determine the random variable and distribution of the random variable.

2. Write the probability statement in terms of the random variable.

3. Compute the probability using the probability statement and the distribution.

These steps are shown in the solutions of several examples in this chapter. In other exam-
ples and exercises you might use these steps on your own.

3-7.2 Cumulative Distribution Function

A cumulative distribution function (cdf ) can also be used to provide the probability distribu-
tion of a discrete random variable. The cdf at a value x is the sum of the probabilities at all
points less than or equal to x.

a
n

i�1
 f (xi) � 1

The cumulative distribution function of a discrete random variable X is

F(x) � P(X � x) � a
xi�x

 f (xi)

Cumulative
Distribution

Function of a
Discrete
Random
Variable
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EXAMPLE 3-22 In the previous example, the probability mass function of X is

Therefore,

Even if the random variable can assume only integer values, the cdf is defined at noninteger values. For
example,

The graph of F(x) is shown in Figure 3-31. Note that the graph has discontinuities (jumps) at the discrete
values for X. It is a piecewise continuous function. The size of the jump at a point x equals the probability
at x. For example, consider x � 1. Here F(1) � 0.9477, but for 0 � x � 1, F(x) � 0.6561. The change is
P(X � 1) � 0.2916. ■

F(1.5) � P(X � 1.5) � P(X � 1) � 0.9477

F(4) � 1F(3) � 0.9999F(2) � 0.6561 � 0.2916 � 0.0486 � 0.9963

F(1) � 0.6561 � 0.2916 � 0.9477F(0) � 0.6561

P(X � 4) � 0.0001P(X � 3) � 0.0036

P(X � 2) � 0.0486P(X � 1) � 0.2916P(X � 0) � 0.6561
Bit Transmission
Errors

3-7.3 Mean and Variance

The mean and variance of a discrete random variable are defined similarly to a continuous ran-
dom variable. Summation replaces integration in the definitions.

x

F(x)

0.2

0.4

0.6

0.8

1.0

–3 –2 –1 0 1 2 3 4 5

Figure 3-31 Cumulative distribution function for x in
Example 3-22.

Let the possible values of the random variable X be denoted as x1, x2, . . . , xn. The pmf
of X is f (x), so f (xi) � P(X � xi).

The mean or expected value of the discrete random variable X, denoted as � or
E(X ), is

(3-14)

The variance of X, denoted as �2 or V(X ), is

The standard deviation of X is �.

�2 � V(X ) � E(X 	 �)2 � a
n

i�1

(xi 	 �)2f  (xi) � a
n

i�1

x2
i  f (xi) 	 �2

� � E(X ) � a
n

i�1

xi f (xi)

Mean and
Variance of a

Discrete
Random
Variable
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100 CHAPTER 3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

The mean of X can be interpreted as the center of mass of the range of values of X. That is, if
we place mass equal to f (xi) at each point xi on the real line, E(X ) is the point at which the real
line is balanced. Therefore, the term “probability mass function” can be interpreted by this
analogy with mechanics.

Product Revenue

Bit Transmission
Errors: Mean and
Variance

EXAMPLE 3-23 For the number of bits in error in the previous example,

Although X never assumes the value 0.4, the weighted average of the possible values is 0.4.
To calculate V(X ), a table is convenient.

 � 0.4

 � 0(0.6561) � 1(0.2916) � 2(0.0486) � 3(0.0036) � 4(0.0001)

 � � E(X ) � 0f (0) � 1f (1) � 2f (2) � 3f (3) � 4 f (4)

x x 	 0.4 (x 	 0.4)2 f (x) f (x)(x 	 0.4)2

0 	0.4 0.16 0.6561 0.104976

1 0.6 0.36 0.2916 0.104976

2 1.6 2.56 0.0486 0.124416

3 2.6 6.76 0.0036 0.024336

4 3.6 12.96 0.0001 0.001296 

■V(X ) � �2 � a
5

i�1
 f  (xi)(xi 	 0.4)2 � 0.36

EXAMPLE 3-24 Two new product designs are to be compared on the basis of revenue potential. Marketing feels that the
revenue from design A can be predicted quite accurately to be $3 million. The revenue potential of design
B is more difficult to assess. Marketing concludes that there is a probability of 0.3 that the revenue from
design B will be $7 million, but there is a 0.7 probability that the revenue will be only $2 million. Which
design would you choose?

Solution. Let X denote the revenue from design A. Because there is no uncertainty in the revenue from
design A, we can model the distribution of the random variable X as $3 million with probability one.
Therefore, E(X ) � $3 million.

Let Y denote the revenue from design B. The expected value of Y in millions of dollars is

Because E(Y ) exceeds E(X ), we might choose design B. However, the variability of the result from 
design B is larger. That is,

and.

■� � 15.25 � 2.29 millions of dollars

�2 � (7 	 3.5)2(0.3) � (2 	 3.5)2(0.7) � 5.25 millions of dollars squared

E(Y ) � $7(0.3) � $2(0.7) � $3.5
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EXERCISES FOR SECTION 3-7

Verify that the functions in Exercises 3-91 through 3-94 are
probability mass functions, and determine the requested values.

3-91. x 1 2 3 4

f (x) 0.326 0.088 0.019 0.251

x 5 6 7

f (x) 0.158 0.140 0.018

(a) P(X � 3) (b) P(3 � X � 5.1)
(c) P(X � 4.5) (d) Mean and variance
(e) Graph F(x).

3-92. x 0 1 2 3

f (x) 0.025 0.041 0.049 0.074

x 4 5 6 7

f (x) 0.098 0.205 0.262 0.123

x 8 9

f (x) 0.074 0.049

(a) P(X � 1) (b) P(2 � X � 7.2)
(c) P(X � 6) (d) Mean and variance
(e) Graph F(x).

3-93. f (x) � (8�7)(1�2)x, x � 1, 2, 3

(a) P(X � 1) (b) P(X � 1)
(c) Mean and variance (d) Graph F(x).

3-94. f (x) � (1�2)(x�5), x � 1, 2, 3, 4

(a) P(X � 2) (b) P(X � 3)
(c) P(X � 2.5) (d) P(X � 1)
(e) Mean and variance (f) Graph F(x).

3-95. Customers purchase a particular make of automobile
with a variety of options. The probability mass function of the
number of options selected is

x 7 8 9 10

f (x) 0.040 0.130 0.190 0.240

x 11 12 13

f (x) 0.300 0.050 0.050

(a) What is the probability that a customer will choose fewer
than 9 options?

(b) What is the probability that a customer will choose more
than 11 options?

(c) What is the probability that a customer will choose between
8 and 12 options, inclusively?

(d) What is the expected number of options chosen? What is
the variance?

3-96. Marketing estimates that a new instrument for the
analysis of soil samples will be very successful, moderately
successful, or unsuccessful, with probabilities 0.4, 0.5, and
0.1, respectively. The yearly revenue associated with a very
successful, moderately successful, or unsuccessful product is

$10 milllion, $5 million, and $1 million, respectively. Let the
random variable X denote the yearly revenue of the product.

(a) Determine the probability mass function of X.
(b) Determine the expected value and the standard deviation

of the yearly revenue.
(c) Plot the pmf and mark the location of the expected value.
(d) Graph F(x).

3-97. Let X denote the number of bars of service on your
cell phone whenever you are at an intersection with the follow-
ing probabilities:

x 0 1 2 3 4 5

0.1 0.15 0.25 0.25 0.15 0.1

Determine the following:

(a) F(x)
(b) Mean and variance
(c) P(X � 2)
(d) P(X � 3.5)

3-98. Let X denote the number of patients who suffer an 
infection within a floor of a hospital per month with the fol-
lowing probabilities:

x 0 1 2 3

0.7 0.15 0.1 0.05

Determine the following:
(a) F(x)
(b) Mean and variance
(c) P(X � 1.5)
(d) P(X � 2.0)

3-99. Let X denote the time in minutes (rounded to the near-
est half minute) for a blood sample to be taken. The probability
mass function for X is

x 0 0.5 1 1.5 2 2.5

f (x) 0.1 0.2 0.3 0.2 0.1 0.1

Determine the following:

(a) P(X � 2.25)
(b) P(0.75 � X � 1.5)
(c) F(x)
(d) E(X )

3-100. Let X denote the waiting time in seconds (rounded to
the nearest tenth) for a large database update to completed.
The probability mass function for X is

x 0.1 0.2 0.3 0.4 0.5 0.6

f (x) 0.1 0.1 0.3 0.2 0.2 0.1

Determine the following:

(a) P(X � 0.25)
(b) P(0.15 � X � 4.5)
(c) F(x)
(d) E(X)

P(X � x)

P(X � x)

3-7 DISCRETE RANDOM VARIABLES 101
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102 CHAPTER 3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

3-8 BINOMIAL DISTRIBUTION

A widely used discrete random variable is introduced in this section. Consider the following
random experiments and random variables.

1. Flip a fair coin 10 times. Let X � the number of heads obtained.

2. A worn machine tool produces 1% defective parts. Let X � the number of defective
parts in the next 25 parts produced.

3. Water quality samples contain high levels of organic solids in 10% of the tests. Let X �
number of samples high in organic solids in the next 18 tested.

4. Of all bits transmitted through a digital transmission channel, 10% are received in er-
ror. Let X � the number of bits in error in the next 4 bits transmitted.

5. A multiple choice test contains 10 questions, each with four choices, and you guess
at each question. Let X � the number of questions answered correctly.

6. In the next 20 births at a hospital, let X � the number of female births.

7. Of all patients suffering a particular illness, 35% experience improvement from a par-
ticular medication. In the next 30 patients administered the medication, let X � the
number of patients who experience improvement.

These examples illustrate that a general probability model that includes these experiments as
particular cases would be very useful.

Each of these random experiments can be thought of as consisting of a series of repeated,
random trials: 10 flips of the coin in experiment 1, the production of 25 parts in experiment 2,
and so forth. The random variable in each case is a count of the number of trials that meet a
specified criterion. The outcome from each trial either meets the criterion that X counts or it
does not; consequently, each trial can be summarized as resulting in either a success or a failure,
respectively. For example, in the multiple choice experiment, for each question, only the
choice that is correct is considered a success. Choosing any one of the three incorrect choices
results in the trial being summarized as a failure.

The terms “success” and “failure” are merely labels. We can just as well use “A” and “B”
or “0” or “1.” Unfortunately, the usual labels can sometimes be misleading. In experiment 2,
because X counts defective parts, the production of a defective part is called a success.

A trial with only two possible outcomes is used so frequently as a building block of a random
experiment that it is called a Bernoulli trial. It is usually assumed that the trials that constitute the
random experiment are independent. This implies that the outcome from one trial has no effect
on the outcome to be obtained from any other trial. Furthermore, it is often reasonable to assume
that the probability of a success on each trial is constant.

In item 5, the multiple choice experiment, if the test taker has no knowledge of the material
and just guesses at each question, we might assume that the probability of a correct answer is
1�4 for each question.

To analyze X, recall the relative frequency interpretation of probability. The proportion of
times that question 1 is expected to be correct is 1�4 and the proportion of times that question
2 is expected to be correct is 1�4. For simple guesses, the proportion of times both questions
are correct is expected to be

Furthermore, if one merely guesses, the proportion of times question 1 is correct and question
2 is incorrect is expected to be

(1�4)(3�4) � 3�16

(1�4)(1�4) � 1�16
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3-8 BINOMIAL DISTRIBUTION 103

Similarly, if one merely guesses, then the proportion of times question 1 is incorrect and ques-
tion 2 is correct is expected to be

Finally, if one merely guesses, then the proportion of times question 1 is incorrect and ques-
tion 2 is incorrect is expected to be

We have accounted for all of the possible correct and incorrect combinations for these two
questions, and the four probabilities associated with these possibilities sum to 1:

This approach is used to derive the binomial distribution in the following example.

1�16 � 3�16 � 3�16 � 9�16 � 1

(3�4)(3�4) � 9�16

(3�4)(1�4) � 3�16

EXAMPLE 3-25 In Example 3-21, assume that the chance that a bit transmitted through a digital transmission channel is
received in error is 0.1. Also assume that the transmission trials are independent. Let X � the number of
bits in error in the next 4 bits transmitted. Determine P(X � 2).

Solution. Let the letter E denote a bit in error, and let the letter O denote that the bit is okay—that is, re-
ceived without error. We can represent the outcomes of this experiment as a list of four letters that indicate
the bits that are in error and okay. For example, the outcome OEOE indicates that the second and fourth
bits are in error and the other two bits are okay. The corresponding values for x are

Bit Transmission
Errors

Outcome x Outcome x

OOOO 0 EOOO 1

OOOE 1 EOOE 2

OOEO 1 EOEO 2

OOEE 2 EOEE 3

OEOO 1 EEOO 2

OEOE 2 EEOE 3

OEEO 2 EEEO 3

OEEE 3 EEEE 4

The event that X � 2 consists of the six outcomes:

Using the assumption that the trials are independent, the probability of {EEOO} is

Also, any one of the six mutually exclusive outcomes for which X � 2 has the same probability of occurring.
Therefore,

and for this example

■P(X � x) � (number of outcomes that result in x errors) � (0.1)x(0.9)4	x

P(X � 2) � 6(0.0081) � 0.0486

P(EEOO) � P(E )P(E )P(O)P(O) � (0.1)2(0.9)2 � 0.0081

5EEOO, EOEO, EOOE, OEEO, OEOE, OOEE6
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104 CHAPTER 3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

To complete a general probability formula (and complete Example 3-25), a general
expression is needed for the number of outcomes that contain exactly x successes in n trials.
An outcome that contains x successes can be constructed by selecting x trials (such as trials
2 and 4) to contain the successes from the n trials (say trials 1, 2, 3, and 4). The other n 	 x
trials contain the failures. The number of ways of selecting x objects from n (without
replacement) is

and this is the number of possible outcomes with x successes. Therefore, to complete the ex-
ample we have

Note that , as was found previously. The probability mass function of X

was shown in Fig. 3-29.
The previous example motivates the following result.

a4
2
b � 4!/ [2! 2!] � 6

P(X � x) � a4
x
b(0.1)x(0.9)4	x

an
x
b �

n!

x!(n 	 x)!

A random experiment consisting of n repeated trials such that

1. the trials are independent,

2. each trial results in only two possible outcomes, labeled as success and
failure, and

3. the probability of a success on each trial, denoted as p, remains constant

is called a binomial experiment.
The random variable X that equals the number of trials that result in a success has a

binomial distribution with parameters p and n where 0 � p � 1 and n �{1, 2, 3, . . .}.
The pmf of X is

(3-15)f (x) � an
x
b px(1 	 p)n	x, x � 0, 1, p , n

Binomial
Distribution

As before, equals the number of sequences (orderings) of outcomes that contain x

successes and n 	 x failures. The number of sequences that contain x successes and n 	 x 
failures times the probability of each sequence equals P(X � x).

It can be shown (by using the binomial expansion formula) that the sum of the probabili-
ties for a binomial random variable is 1. Furthermore, because each trial in the experiment is
classified into two outcomes, {success, failure}, the distribution is called a “bi”-nomial. A more
general distribution with multiple (two or more) outcomes is by analogy called the multinomial
distribution. The multinomial distribution is covered by Montgomery and Runger (2011).

an
x
b
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Examples of binomial distributions are shown in Fig. 3-32. For a fixed n, the distribution
becomes more symmetric as p increases from 0 to 0.5 or decreases from 1 to 0.5. For a fixed
p, the distribution becomes more symmetric as n increases.

Figure 3-32 Binomial distribution for selected values of n and p.
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EXAMPLE 3-26 Several examples using the binomial coefficient follow.

■ a100

4
b � 100!� [4! 96!] � (100 � 99 � 98 � 97)�(4 � 3 � 2) � 3,921,225

 a15

10
b � 15!� [10! 5!] � (15 � 14 � 13 � 12 � 11)�(5 � 4 � 3 � 2) � 3003

 a10

3
b � 10!� [3! 7!] � (10 � 9 � 8)�(3 � 2) � 120

an
x
b

EXAMPLE 3-27 Each sample of water has a 10% chance of containing high levels of organic solids. Assume that the
samples are independent with regard to the presence of the solids. Determine the probability that in the
next 18 samples, exactly 2 contain high solids.

Solution. Let X � the number of samples that contain high solids in the next 18 samples analyzed. Then
X is a binomial random variable with p � 0.1 and n � 18. Therefore,

Now Therefore,

Determine the probability that at least four samples contain high solids.

P(X � 2) � 153(0.1)2(0.9)16 � 0.284

a18

2
b � (18!� [2! 16!]) � 18(17)�2 � 153.

P(X � 2) � a18

2
b (0.1)2(0.9)16

Binomial
Coefficient

Organic Solids

Define the random 
variable and 
distribution.

Write the probability
statement.

3-8 BINOMIAL DISTRIBUTION 105

Compute the probability.
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106 CHAPTER 3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Solution. The requested probability is

However, it is easier to use the complementary event,

Determine, the probability that 3 � X � 7.

Solution.

■ � 0.168 � 0.070 � 0.022 � 0.005 � 0.265

 P(3 � X 6 7) � a
6

x�3

a18

x
b (0.1)x(0.9)18	x

 � 1 	 [0.150 � 0.300 � 0.284 � 0.168] � 0.098

 P(X � 4) � 1 	 P(X 6 4) � 1 	 a
3

x�0

a18

x
b (0.1)x(0.9)18	x

P(X � 4) � a
18

x�4

a18

x
b  (0.1)x(0.9)18	x

Software such as Minitab is useful for binomial probability calculations. In Example 3-27
is determined in Minitab as as shown:P(X � 3)P(X 6 4)

Cumulative Distribution Function
Binomial with n = 18 and p = 0.1
X P(X < = x)
3 0.901803
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This probability is subtracted from 1 to obtain the result for P(X � 4) in the example.
The same results can also be obtained with the following Excel function. Note that the

“%” symbol is added only to display the function. The parameter TRUE requests the cumula-
tive probability P(X � x). The setting FALSE requests P(X � x).

%=BINOMDIST(3,18,0.1,TRUE)
0.901803159

The mean and variance of a binomial random variable depend only on the parameters p
and n. The following result can be shown.

If X is a binomial random variable with parameters p and n,

� � E(X ) � np and �2 � V(X ) � np(1 	 p) 

EXAMPLE 3-28 For the number of transmitted bits received in error in Example 3-21, n � 4 and p � 0.1 so

The variance of the number of defective bits is

These results match those that were calculated directly from the probabilities in Example 3-23. ■

V(X  ) � 4(0.1)(0.9) � 0.36

E(X ) � 4(0.1) � 0.4
Bit Transmission
Errors: Binomial
Mean and
Variance

EXERCISES FOR SECTION 3-8

3-101. For each scenario described, state whether or not the
binomial distribution is a reasonable model for the random
variable and why. State any assumptions you make.

(a) A production process produces thousands of temperature
transducers. Let X denote the number of nonconforming
transducers in a sample of size 30 selected at random from
the process. 

(b) From a batch of 50 temperature transducers, a sample of
size 30 is selected without replacement. Let X denote the
number of nonconforming transducers in the sample.

(c) Four identical electronic components are wired to a con-
troller. Let X denote the number of components that have
failed after a specified period of operation.

(d) Let X denote the number of express mail packages
received by the post office in a 24-hour period.

(e) Let X denote the number of correct answers by a student
taking a multiple choice exam in which a student can elim-
inate some of the choices as being incorrect in some ques-
tions and all of the incorrect choices in other questions.

(f) Forty randomly selected semiconductor chips are tested.
Let X denote the number of chips in which the test finds at
least one contamination particle.

(g) Let X denote the number of contamination particles found
on 40 randomly selected semiconductor chips.

(h) A filling operation attempts to fill detergent packages to
the advertised weight. Let X denote the number of deter-
gent packages that are underfilled.

(i) Errors in a digital communication channel occur in bursts
that affect several consecutive bits. Let X denote the num-
ber of bits in error in a transmission of 100,000 bits.

(j) Let X denote the number of surface flaws in a large coil of
galvanized steel.

3-102. The random variable X has a binomial distribution
with n � 10 and p � 0.5.

(a) Sketch the probability mass function of X.
(b) Sketch the cumulative distribution.
(c) What value of X is most likely?
(d) What value(s) of X is (are) least likely?
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Animation 4: Understanding the Binomial Distribution
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3-103. The random variable X has a binomial distribution
with n � 20 and p � 0.5. Determine the following probabilities.

(a) P(X � 15) (b) P(X � 12)
(c) P(X � 19) (d) P(13 � X � 15)
(e) Sketch the cumulative distribution function.

3-104. Given that X has a binomial distribution with n � 10
and p � 0.01

(a) Sketch the probability mass function.
(b) Sketch the cumulative distribution function.
(c) What value of X is most likely?
(d) What value of X is least likely?

3-105. The random variable X has a binomial distribution
with n � 10 and p � 0.1. Determine the following probabilities.

(a) P(X � 5) (b) P(X � 2)
(c) P(X � 9) (d) P(3 � X � 5)

3-106. An electronic product contains 40 integrated cir-
cuits. The probability that any integrated circuit is defective is
0.01, and the integrated circuits are independent. The product
operates only if there are no defective integrated circuits.
What is the probability that the product operates?

3-107. A hip joint replacement part is being stress-tested in
a laboratory. The probability of successfully completing the
test is 0.80. Seven randomly and independently chosen parts
are tested. What is the probability that exactly two of the seven
parts successfully complete the test?

3-108. The phone lines to an airline reservation system are
occupied 45% of the time. Assume that the events that the
lines are occupied on successive calls are independent.
Assume that eight calls are placed to the airline.

(a) What is the probability that for exactly two calls the lines
are occupied?

(b) What is the probability that for at least one call the lines
are occupied?

(c) What is the expected number of calls in which the lines
are occupied?

3-109. Batches that consist of 50 coil springs from a produc-
tion process are checked for conformance to customer require-
ments. The mean number of nonconforming coil springs in a
batch is five. Assume that the number of nonconforming
springs in a batch, denoted as X, is a binomial random variable.

(a) What are n and p?
(b) What is P(X � 2)?
(c) What is P(X � 49)?

3-110. In a statistical process control chart example, sam-
ples of 20 parts from a metal punching process are selected
every hour. Typically, 1% of the parts require rework. Let X
denote the number of parts in the sample of 20 that require 
rework. A process problem is suspected if X exceeds its mean
by more than three standard deviations.

(a) If the percentage of parts that require rework remains at
1%, what is the probability that X exceeds its mean by
more than three standard deviations?

(b) If the rework percentage increases to 4%, what is the prob-
ability that X exceeds 1?

(c) If the rework percentage increases to 4%, what is the prob-
ability that X exceeds 1 in at least one of the next 5 hours
of samples?

3-111. Because not all airline passengers show up for their
reserved seat, an airline sells 125 tickets for a flight that holds
only 120 passengers. The probability that a passenger does not
show up is 0.10, and the passengers behave independently.

(a) What is the probability that every passenger who shows
up gets a seat?

(b) What is the probability that the flight departs with empty
seats?

(c) What are the mean and standard deviation of the number
of passengers who show up?

3-112. This exercise illustrates that poor quality can affect
schedules and costs. A manufacturing process has 100 cus-
tomer orders to fill. Each order requires one component part
that is purchased from a supplier. However, typically, 2% of
the components are identified as defective, and the compo-
nents can be assumed to be independent.

(a) If the manufacturer stocks 100 components, what is the
probability that the 100 orders can be filled without
reordering components?

(b) If the manufacturer stocks 102 components, what is the
probability that the 100 orders can be filled without re-
ordering components?

(c) If the manufacturer stocks 105 components, what is the
probability that the 100 orders can be filled without
reordering components?

3-113. The probability of successfully landing a plane using
a flight simulator is given as 0.80. Nine randomly and inde-
pendently chosen student pilots are asked to try to fly the plane
using the simulator.

(a) What is the probability that all the student pilots success-
fully land the plane using the simulator?

(b) What is the probability that none of the student pilots suc-
cessfully lands the plane using the simulator?

(c) What is the probability that exactly eight of the student 
pilots successfully land the plane using the simulator?

3-114. Traffic engineers install 10 streetlights with new
bulbs. The probability that a bulb fails within 50,000 hours of
operation is 0.25. Assume that each of the bulbs fails inde-
pendently.

(a) What is the probability that fewer than two of the original
bulbs fail within 50,000 hours of operation?

(b) What is the probability that no bulbs will have to be
replaced within 50,000 hours of operation?

(c) What is the probability that more than four of the original
bulbs will need replacing within 50,000 hours?

3-115. An article in Information Security Technical Report,
“Malicious Software—Past, Present and Future” (Vol. 9, 2004,
pp. 6–18), provided the following data on the top 10 malicious
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software instances for 2002. The clear leader in the number of
registered incidences for the year 2002 was the Internet worm
“Klez,” and it is still one of the most widespread threats. This
virus was first detected on October 26, 2001, and it has held
the top spot among malicious software for the longest period
in the history of virology.

The 10 Most Widespread Malicious Programs for 2002.

Place Name % Instances

1 I-Worm.Klez 61.22

2 I-Worm.Lentin 20.52

3 I-Worm.Tanatos 2.09

4 I-Worm.BadtransII 1.31

5 Macro.Word97.Thus 1.19

6 I-Worm.Hybris 0.60

7 I-Worm.Bridex 0.32

8 I-Worm.Magistr 0.30

9 Win95.CIH 0.27

10 I-Worm.Sircam 0.24

(Source: Kaspersky Labs.)

Suppose that 20 malicious software instances are reported.
Assume that the malicious sources can be assumed to be inde-
pendent.

(a) What is the probability at least one instance is “Klez”?
(b) What is the probability that three or more instances are

“Klez”?
(c) What is the mean and standard deviation of the number of

“Klez” instances among the 20 reported?

3-116. Heart failure is due to either natural occurrences
(87%) or outside factors (13%). Outside factors are related to
induced substances or foreign objects. Natural occurrences are
caused by arterial blockage, disease, and infection. Suppose
that 20 patients will visit an emergency room with heart failure.
Assume that causes of heart failure between individuals are
independent.

(a) What is the probability that three individuals have condi-
tions caused by outside factors?

(b) What is the probability that three or more individuals have
conditions caused by outside factors?

(c) What are the mean and standard deviation of the number
of individuals with conditions caused by outside factors?

3-117. Consider the visits that result in leave without being
seen (LWBS) at an emergency department in Example 3-1.
Assume that four persons independently arrive for service at
Hospital 1.

(a) What is the probability that exactly one person will LWBS?
(b) What is the probability that two or more two people will

LWBS?
(c) What is the probability that at least one person will

LWBS?

3-118. The probability a visitor to the home page of a Web
site views another page on the site is 0.2. Assume that 20 visitors
arrive at the home page and that they behave independently.
Determine the following:

(a) Probability that exactly one visitor views another page
(b) Probability two or more visitors view another page
(c) Probability four or fewer visitors view another page
(d) Expected number of visitors to visit another page

3-9 POISSON PROCESS

Consider e-mail messages that arrive at a mail server on a computer network. This is an exam-
ple of events (such as message arrivals) that occur randomly in an interval (such as time). The
number of events over an interval (such as the number of messages that arrive in 1 hour) is a
discrete random variable that is often modeled by a Poisson distribution. The length of the
interval between events (such as the time between messages) is often modeled by an exponen-
tial distribution. These distributions are related; they provide probabilities for different
random variables in the same random experiment. Figure 3-33 provides a graphical summary.

3-9.1 Poisson Distribution

We introduce the Poisson distribution with an example.

Figure 3-33 In a
Poission process,
events occur at random
in an interval.

Events occur at random

Interval
x x x x

3-9 POISSON PROCESS 109

  c03RandomVariablesandProbabilityDistributions.qxd  11/10/10  5:19 PM  Page 109



110 CHAPTER 3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

EXAMPLE 3-30 Flaws occur at random along the length of a thin copper wire. Let X denote the random variable that
counts the number of flaws in a length of L millimeters of wire and suppose that the average number of
flaws in L millimeters is �.

The probability distribution of X can be found by reasoning in a manner similar to Example 3-29.
Partition the length of wire into n subintervals of small length—say, 1 micrometer each. If the subinter-
val chosen is small enough, the probability that more than one flaw occurs in the subinterval is negligi-
ble. Furthermore, we can interpret the assumption that flaws occur at random to imply that every subin-
terval has the same probability of containing a flaw—say, p. Finally, if we assume that the probability that
a subinterval contains a flaw is independent of other subintervals, we can model the distribution of X as
approximately a binomial random variable. Because

we obtain

That is, the probability that a subinterval contains a flaw is ��n. With small enough subintervals, n is
very large and p is very small. Therefore, the distribution of X is obtained as the number of subintervals
tends to infinity, as in the previous example. ■

p � ��n

E(X  ) � � � np

EXAMPLE 3-29 Consider the transmission of n bits over a digital communication channel. Let the random variable X
equal the number of bits in error. When the probability that a bit is in error is constant and the transmis-
sions are independent, X has a binomial distribution. Let p denote the probability that a bit is in error.
Then E(X ) � pn. Now suppose that the number of bits transmitted increases and the probability of an
error decreases exactly enough that pn remains equal to a constant—say, �. That is, n increases and p
decreases accordingly, such that E(X ) remains constant. Then

P(X � x) is written as the product of four terms and with some work it can be shown that the four terms
converge to 1/x!, �x, e��, and 1, respectively. Therefore,

Also, because the number of bits transmitted tends to infinity, the number of errors can equal any non-
negative integer. Therefore, the possible values for X are the integers from zero to infinity. ■

lim
nS�

P(X � x) �
e���x

x!
,   x � 0, 1, 2, p

 �
n(n � 1)(n � 2) p (n � x � 1)

nx x!
 (np)x(1 � p)n(1 � p)�x

 P(X � x) � an
x
b px(1 � p)n�x

The distribution obtained as the limit in the previous example is more useful than the deriva-
tion implies. The following example illustrates the broader applicability.

Limit of Bit
Errors

Flaws along a
Wire

The previous example can be generalized to include a broad array of random experiments.
The interval that was partitioned was a length of wire. However, the same reasoning can be applied
to any interval, including an interval of time, area, or volume. For example, counts of (1) particles
of contamination in semiconductor manufacturing, (2) flaws in rolls of textiles, (3) calls to a tele-
phone exchange, (4) power outages, and (5) atomic particles emitted from a specimen have all
been successfully modeled by the probability mass function in the following definition.

In general, consider an interval T of real numbers partitioned into subintervals of small
length and assume that as tends to zero,

(1) the probability of more than one event in a subinterval tends to zero,

(2) the probability of one event in a subinterval tends to 

(3) the event in each subinterval is independent of other subintervals.

A random experiment with these properties is called a Poisson process.

�¢t/T,

¢t¢t
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Historically, the term “process” has been used to suggest the observation of a system over
time. In our example with the copper wire, we showed that the Poisson distribution could also
apply to intervals such as lengths. Figure 3-34 shows graphs of selected Poisson distributions.

It is important to use consistent units in the calculation of probabilities, means, and vari-
ances involving Poisson random variables. The following example illustrates unit conversions.
For example, if the

Mean number of flaws per millimeter of wire is 3.4, then the

Mean number of flaws in 10 millimeters of wire is 34, and the

Mean number of flaws in 100 millimeters of wire is 340.

If a Poisson random variable represents the number of events in some interval, the mean of the
random variable must be the expected number of events in the same length of interval.

Figure 3-34 Poisson distribution for selected values of the parameter �.

These assumptions imply that the subintervals can be thought of as approximately
independent Bernoulli trials with success probability and the number of trials
equal to Here, and as tends to zero, n tends to infinity, so the similarity
to the limit in Example 3-30 appears. This leads to the following definition.

¢tpn � �,n � T/¢t.
p � �¢t/T

The random variable X that equals the number of events in a Poisson process is a
Poisson random variable with parameter and the probability mass function
of X is

(3-17)

The mean and variance of X are

(3-18)E(X  ) � �  and  V(X ) � �

f (x) �
e���x

x!
   x � 0, 1, 2, . . .

0 6 �,

Poisson
Distribution

λ
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λ
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0.8

6
x

(b)

f(
x)

EXAMPLE 3-31 For the case of the thin copper wire, suppose that the number of flaws follows a Poisson distribution with
a mean of 2.3 flaws per millimeter. Determine the probability of exactly 2 flaws in 1 millimeter of wire.

Solution. Let X denote the number of flaws in 1 millimeter of wire. Then X has a Poisson distribution
and E(X ) � 2.3 flaws and

P(X � 2) �
e�2.32.32

2!
� 0.265

Probability for
Flaws along a Wire
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EXAMPLE 3-32 Contamination is a problem in the manufacture of optical storage disks. The number of particles of con-
tamination that occur on an optical disk has a Poisson distribution, and the average number of particles
per centimeter squared of media surface is 0.1. The area of a disk under study is 100 squared centime-
ters. Determine the probability that 12 particles occur in the area of a disk under study.

Solution. Let X denote the number of particles in the area of a disk under study. Because the mean num-
ber of particles is 0.1 particles per cm2,

Therefore,

Also note that and 
Determine the probability that zero particles occur in the area of the disk under study.

Solution. Now, P(X � 0) � e	10 � 4.54 � 10	5.

Determine the probability that 12 or fewer particles occur in the area of a disk under study.

Solution. This probability is

Because this sum is tedious to compute, many computer programs calculate cumulative Poisson proba-
bilities. From Minitab, we obtain P(X � 12) � 0.7916. ■

 � a
12

i�0

 
e	1010i

i!

 P(X � 12) � P(X � 0) � P(X � 1) � p � P(X � 12)

� � 210.V(X ) � 10

P(X � 12) �
e	101012

12!
� 0.095

 � 10 particles

 E(X  ) � 100 cm2 � 0.1 particles/cm2

Determine the probability of 10 flaws in 5 millimeters of wire.

Solution. Let X denote the number of flaws in 5 millimeters of wire. Then X has a Poisson distribution
with

Therefore,

Determine the probability of at least one flaw in 2 millimeters of wire.

Solution. Let X denote the number of flaws in 2 millimeters of wire. Then X has a Poisson distribution with

Therefore,

■� 1 	 e	4.6 � 0.9899P(X � 1) � 1 	 P(X � 0)

E(X  ) � 2 mm � 2.3 flaws/mm � 4.6 flaws

P(X � 10) � e	11.511.510/10! � 0.113

E(X  ) � 5 mm � 2.3 flaws/mm � 11.5 flaws

The next example uses a computer program to sum Poisson probabilities.

Contamination on
Optical Disks
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The same results can also be obtained with the following Excel functions. Note that the “%”
symbol is added only to display the function. The parameter TRUE requests the cumulative
probability The setting FALSE requests 

The variance of a Poisson random variable was stated to equal its mean. For example, if
particle counts follow a Poisson distribution with a mean of 25 particles per square centime-
ter, the standard deviation of the counts is 5 per square centimeter. Consequently, information
on the variability is very easily obtained. Conversely, if the variance of count data is much
greater than the mean of the same data, the Poisson distribution is not a good model for the
distribution of the random variable.

3-9.2 Exponential Distribution

The discussion of the Poisson distribution defined a random variable to be the number of flaws
along a length of copper wire. The distance between flaws is another random variable that is
often of interest. Let the random variable X denote the length from any starting point on the
wire until a flaw is detected.

As you might expect, the distribution of X can be obtained from knowledge of the distri-
bution of the number of flaws. The key to the relationship is the following concept: the

% � POISSON(12, 10, TRUE)

0.791556476

P(X � x).P(X � x).

Cumulative Distribution Function
Poisson with mean = 10
x P(X < = x)
12 0.791556
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114 CHAPTER 3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

distance to the first flaw exceeds 3 millimeters if and only if there are no flaws within a length
of 3 millimeters—simple but sufficient for an analysis of the distribution of X.

In general, let the random variable N denote the number of flaws in x millimeters of wire.
Assume that the mean number of flaws is  per millimeter, so that N has a Poisson distribution
with mean x. Now,

and

for x � 0. If f (x) is the pdf of X, the cumulative distribution function is

From the fundamental theorem of calculus, the derivative of F(x) (with respect to x) is f(x).
Therefore, the pdf of X is

The distribution of X depends only on the assumption that the flaws in the wire follow a
Poisson process. Also, the starting point for measuring X doesn’t matter because the probabil-
ity of the number of flaws in an interval of a Poisson process depends only on the length of the
interval, not on the location. For any Poisson process, the following general result applies.

f (x) �
d

dx
 (1 	 e	x ) � e	x  for x � 0

F(x) � P(X � x) � �
x

	�

 f (u) du

P(X � x) � 1 	 e	x

P(X 7 x) � P(N � 0) �
e	x( x)0

0!
� e	x

The random variable X that equals the distance between successive events of a
Poisson process with mean  
 0 has an exponential distribution with parameter .
The pdf of X is

(3-19)

The mean and variance of X are

(3-20)E(X  ) �
1


  and V(X ) �

1

2

f (x) � e	x,  for 0 � x 6 �

Exponential
Distribution

The exponential distribution obtains its name from the exponential function in the pdf.
Plots of the exponential distribution for selected values of  are shown in Fig. 3-35. For any
value of , the exponential distribution is quite skewed. The formulas for the mean and vari-
ance can be obtained by integration (by parts). Note also that the exponential distribution is a
special case of two continuous distributions that we have studied previously. The Weibull dis-
tribution with � � 1 reduces to the exponential distribution, and the gamma distribution with
r � 1 is an exponential distribution.

It is important to use consistent units in the calculation of probabilities, means, and
variances involving exponential random variables. The following example illustrates unit
conversions.
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EXAMPLE 3-33 In a large corporate computer network, user log-ons to the system can be modeled as a Poisson process
with a mean of 25 log-ons per hour. What is the probability that there are no log-ons in an interval of
6 minutes?

Solution. Let X denote the time in hours from the start of the interval until the first log-on. Then X has
an exponential distribution with � 25 log-ons per hour. We are interested in the probability that X
exceeds 6 minutes. Because  is given in log-ons per hour, we express all time units in hours; that is,
6 minutes � 0.1 hour. The probability requested is shown as the shaded area under the probability den-
sity function in Fig. 3-36. Therefore,

An identical answer is obtained by expressing the mean number of log-ons as 0.417 log-on per
minute and computing the probability that the time until the next log-on exceeds 6 minutes. Try it!

What is the probability that the time until the next log-on is between 2 and 3 minutes?

Solution. On converting all units to hours,

Determine the interval of time such that the probability that no log-on occurs in the interval is 0.90.

Solution. The question asks for the length of time x such that P(X 
 x) � 0.90. At the start of this
section we determined that P(X 
 x) � e	x. Now,

Therefore, from logarithms of both sides,

x � 0.00421 hour � 0.25 minute

P(X 7 x) � e	25x � 0.90

P(0.033 6 X 6 0.05) � �
0.05

0.033

 25e	25x dx � 	e	25x ` 0.05

0.033
� 0.152

P(X 7 0.1) � �
�

0.1

 25e	25x dx � e	25(0.1) � 0.082

Figure 3-36 Probability for the exponen-
tial distribution in Example 3-33.Figure 3-35 Probability density

function of an exponential random
variable for selected values of .
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Network Log-ons

Define the random
variable and distribution.

Write the probability
statement.

Compute the probability.
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Lack of Memory Property
In the previous example, the probability that there are no log-ons in a 6-minute interval is
0.082 regardless of the starting time of the interval. A Poisson process assumes that events
occur independently, with constant probability, throughout the interval of observation; that is,
there is no clustering of events. If the log-ons are well modeled by a Poisson process, the prob-
ability that the first log-on after noon occurs after 12:06 P.M. is the same as the probability that
the first log-on after 3:00 P.M. occurs after 3:06 P.M. If someone logs on at 2:22 P.M., the prob-
ability that the next log-on occurs after 2:28 P.M. is still 0.082.

Our starting point for observing the system does not matter. However, if there are high-
use periods during the day, such as right after 8:00 A.M., followed by a period of low use, a
Poisson process is not an appropriate model for log-ons, and the distribution is not appropri-
ate for computing probabilities. It might be reasonable to model each of the high- and low-use
periods by a separate Poisson process, employing a larger value for  during the high-use
periods and a smaller value otherwise. Then an exponential distribution with the correspon-
ding value of  can be used to calculate log-on probabilities for the high- and low-use periods.

An even more interesting property of an exponential random variable is the lack of mem-
ory property. Suppose that there are no log-ons from 12:00 to 12:15; the probability that there
are no log-ons from 12:15 to 12:21 is still 0.082. Because we have already been waiting for
15 minutes, we feel that we are “due.” That is, the probability of a log-on in the next 6 minutes
should be greater than 0.082. However, for an exponential distribution, this is not true. The
lack of memory property is not that surprising when you consider the development of a
Poisson process. In that development, we assumed that an interval could be partitioned into
small intervals that were independent. The presence or absence of events in subintervals is
similar to independent Bernoulli trials that comprise a binomial process; knowledge of previ-
ous results does not affect the probabilities of events in future subintervals.

The exponential distribution is often used in reliability studies as the model for the time
until failure of a device. For example, the lifetime of a semiconductor device might be mod-
eled as an exponential random variable with a mean of 40,000 hours. The lack of memory
property of the exponential distribution implies that the device does not wear out. That is,
regardless of how long the device has been operating, the probability of a failure in the next
1000 hours is the same as the probability of a failure in the first 1000 hours of operation. The
lifetime of a device with failures caused by random shocks might be appropriately modeled as
an exponential random variable. However, the lifetime of a device that suffers slow mechani-
cal wear, such as bearing wear, is better modeled by a distribution that does not lack memory,
such as the Weibull distribution (with � � 1).

Furthermore, the mean time until the next log-on is

The standard deviation of the time until the next log-on is

■�X � 1�25 hours � 2.4 minutes

E(X  ) � 1�25 � 0.04 hour � 2.4 minutes

EXERCISES FOR SECTION 3-9

3-119. Suppose X has a Poisson distribution with a mean of
0.3. Determine the following probabilities.

(a) P(X � 0) (b) P(X � 3)
(c) P(X � 6) (d) P(X � 2)

3-120. Suppose X has a Poisson distribution with a mean of
5. Determine the following probabilities.

(a) P(X � 0) (b) P(X � 3)
(c) P(X � 6) (d) P(X � 9)
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3-121. Suppose that the number of customers who enter a
post office in a 30-minute period is a Poisson random variable
and that P(X � 0) � 0.02. Determine the mean and variance
of X.

3-122. Suppose that the number of customers who enter a bank
in an hour is a Poisson random variable and that P(X � 0) � 0.04.
Determine the mean and variance of X.

3-123. The number of telephone calls that arrive at a phone
exchange is often modeled as a Poisson random variable.
Assume that on the average there are 20 calls per hour.

(a) What is the probability that there are exactly 18 calls in
1 hour?

(b) What is the probability that there are 3 or fewer calls in
30 minutes?

(c) What is the probability that there are exactly 30 calls in
2 hours?

(d) What is the probability that there are exactly 10 calls in
30 minutes?

3-124. The number of earthquake tremors in a 12-month
period appears to be distributed as a Poisson random variable
with a mean of 6. Assume the number of tremors from one
12-month period is independent of the number in the next
12-month period.

(a) What is the probability that there are 10 tremors in 1 year?
(b) What is the probability that there are 18 tremors in 

2 years?
(c) What is the probability that there are no tremors in a 

1-month period?
(d) What is the probability that there are more than 5 tremors

in a 6-month period?
3-125. The number of cracks in a section of interstate
highway that are significant enough to require repair is
assumed to follow a Poisson distribution with a mean of two
cracks per mile.

(a) What is the probability that there are no cracks that
require repair in 5 miles of highway?

(b) What is the probability that at least one crack requires
repair in mile of highway?

(c) If the number of cracks is related to the vehicle load on the
highway and some sections of the highway have a heavy
load of vehicles and other sections carry a light load, how
do you feel about the assumption of a Poisson distribution
for the number of cracks that require repair for all sections?

3-126. The number of surface flaws in a plastic roll used in
the interior of automobiles has a Poisson distribution with a
mean of 0.05 flaw per square foot of plastic roll. Assume an
automobile interior contains 10 square feet of plastic roll.

(a) What is the probability that there are no surface flaws in
an auto’s interior?

(b) If 10 cars are sold to a rental company, what is the proba-
bility that none of the 10 cars has any surface flaws?

(c) If 10 cars are sold to a rental company, what is the proba-
bility that at most 1 car has any surface flaws?

1
2

3-127. The number of failures of a testing instrument from
contamination particles on the product is a Poisson random
variable with a mean of 0.04 failure per hour.

(a) What is the probability that the instrument does not fail in
an 8-hour shift?

(b) What is the probability of at least three failures in a 
24-hour day?

3-128. When network cards are communicating, bits can
occasionally be corrupted in transmission. Engineers have de-
termined that the number of bits in error follows a Poisson dis-
tribution with mean of 3.2 bits/kb (per kilobyte).

(a) What is the probability of 5 bits being in error during the
transmission of 1 kb?

(b) What is the probability of 8 bits being in error during the
transmission of 2 kb?

(c) What is the probability of no error bits in 3 kb?

3-129. A telecommunication station is designed to receive
a maximum of 10 calls per second. If the number of calls to
the station is modeled as a Poisson random variable with a
mean of 9 calls per second, what is the probability that the
number of calls will exceed the maximum design constraint
of the station?

3-130. Flaws occur in Mylar material according to a
Poisson distribution with a mean of 0.01 flaw per square yard.

(a) If 25 square yards are inspected, what is the probability
that there are no flaws?

(b) What is the probability that a randomly selected square
yard has no flaws?

(c) Suppose that the Mylar material is cut into 10 pieces, each
being 1 yard square. What is the probability that 8 or more
of the 10 pieces will have no flaws?

3-131. Messages arrive to a computer server according to a
Poisson distribution with a mean rate of 10 per hour.

(a) What is the probability that three messages will arrive in
1 hour?

(b) What is the probability that six messages arrive in 
30 minutes?

3-132. Data from www.centralhudsonlab.com determined
that the mean number of insect fragments in 225-gram choco-
late bars was 14.4, but three brands had insect contamination
more than twice the average. See the U.S. Food and Drug
Administration—Center for Food Safety and Applied
Nutrition for Defect Action Levels for food products. Assume
the number of fragments (contaminants) follows a Poisson
distribution.

(a) If you consume a 225-gram bar from a brand at the mean
contamination level, what is the probability of no insect
contaminants?

(b) Suppose you consume a bar that is one-fifth the size
tested (45 grams) from a brand at the mean contamina-
tion level. What is the probability of no insect contami-
nants?

1
2

1
2
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118 CHAPTER 3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

(c) If you consume seven 28.35-gram (one-ounce) bars this
week from a brand at the mean contamination level, what
is the probability that you consume one or more insect
fragments in more than one bar?

(d) Is the probability of a test result more than twice the mean
of 14.4 unusual, or can it be considered typical variation?
Explain.

3-133. In 1898 L. J. Bortkiewicz published a book entitled
The Law of Small Numbers. He used data collected over 20
years to show that the number of soldiers killed by horse kicks
each year in each corps in the Prussian cavalry followed a
Poisson distribution with a mean of 0.61.

(a) What is the probability of more than one death in a corps
in a year?

(b) What is the probability of no deaths in a corps over five
years?

3-134. Suppose X has an exponential distribution with 
�� 3. Determine the following.

(a) P(X � 0) (b) P(X � 3)
(c) P(X � 2) (d) P(2 � X � 3)
(e) Find the value of x such that P(X � x) � 0.05.

3-135. Suppose X has an exponential distribution with
mean equal to 5. Determine the following.

(a) P(X � 5) (b) P(X � 15) (c) P(X � 20)
(d) Find the value of x such that P(X � x) � 0.95.

3-136. Suppose the counts recorded by a Geiger counter
follow a Poisson process with an average of three counts per
minute.

(a) What is the probability that there are no counts in a 
30-second interval?

(b) What is the probability that the first count occurs in less
than 10 seconds?

(c) What is the probability that the first count occurs between
1 and 2 minutes after start-up?

(d) What is the mean time between counts?
(e) What is the standard deviation of the time between counts?
(f ) Determine x, such that the probability that at least one

count occurs before time x minutes is 0.95.

3-137. The time between calls to a health-care provider is
exponentially distributed with a mean time between calls of
12 minutes.

(a) What is the probability that there are no calls within a
30-minute interval?

(b) What is the probability that at least one call arrives within
a 10-minute interval?

(c) What is the probability that the first call arrives within
5 and 10 minutes after opening?

(d) Determine the length of an interval of time such that the
probability of at least one call in the interval is 0.90.

3-138. A remotely operated vehicle (ROV ) detects debris
from a sunken craft at a rate of 50 pieces per hour. The time to
detect debris can be modeled using an exponential distribution.

(a) What is the probability that the time to detect the next
piece of debris is less than 2 minutes?

(b) What is the probability that the time to detect the next
piece of debris is between 2.5 and 4.5 minutes?

(c) What is the expected number of detected pieces of debris
in a 20-minute interval?

(d) What is the probability that 2 pieces of debris are found in
a 20-minute interval?

3-139. The distance between major cracks in a highway
follows an exponential distribution with a mean of 5 miles.

(a) What is the probability that there are no major cracks in a
10-mile stretch of the highway?

(b) What is the probability that there are two major cracks in
a 10-mile stretch of the highway?

(c) What is the standard deviation of the distance between
major cracks?

(d) What is the probability that the first major crack occurs
between 12 and 15 miles of the start of inspection?

(e) What is the probability that there are no major cracks in
two separate 5-mile stretches of the highway?

(f ) Given that there are no cracks in the first 5 miles in-
spected, what is the probability that there are no major
cracks in the next 10 miles inspected?

3-140. The time to failure of a certain type of electrical
component is assumed to follow an exponential distribution
with a mean of 4 years. The manufacturer replaces free all
components that fail while under guarantee.

(a) What percentage of the components will fail in 1 year?
(b) What is the probability that a component will fail in 

2 years?
(c) What is the probability that a component will fail in 

4 years?
(d) If the manufacturer wants to replace a maximum of 3% of

the components, for how long should the manufacturer’s
stated guarantee on the component be?

(e) By redesigning the component, the manufacturer could
increase the life. What does the mean time to failure have
to be so that the manufacturer can offer a 1-year guaran-
tee, yet still replace at most 3% of the components?

3-141. The time between the arrival of e-mail messages
at your computer is exponentially distributed with a mean
of 2 hours.

(a) What is the probability that you do not receive a message
during a 2-hour period?

(b) If you have not had a message in the last 4 hours, what is
the probability that you do not receive a message in the
next 2 hours?

(c) What is the expected time between your fifth and sixth
messages?

3-142. The time between calls to a corporate office is expo-
nentially distributed with a mean of 10 minutes.

(a) What is the probability that there are more than three calls
in hour?1

2
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(b) What is the probability that there are no calls within 
hour?

(c) Determine x such that the probability that there are no
calls within x hours is 0.01.

(d) What is the probability that there are no calls within a 
2-hour interval?

(e) If four nonoverlapping -hour intervals are selected, what
is the probability that none of these intervals contains any
call?

3-143. The number of serious infections at a hospital is
modeled with a Poisson distribution with a mean of 3.5 per
month. Determine the following:

(a) Probability of exactly three infections in a month
(b) Probability of no infections in a month
(c) Probability of at least three infections in a month
(d) Expected number of infections per year

1
2

1
2

3-144. The time a visitor to a Web site views the home
page is modeled with an exponential distribution with a mean
of 20 seconds.

(a) Determine the probability that the home page is viewed
for more than 30 seconds.

(b) Determine the probability that the home page is viewed
for a time greater than the mean.

(c) If the home page has already been viewed for 1 minute,
determine the probability that the home page is viewed for
an additional 30 seconds.

(d) A visit with an unusually long view time is of interest to
the Web master. Determine the probability that the home
page is viewed for a time greater than the mean plus three
times the standard deviation.

3-10 NORMAL APPROXIMATION TO THE BINOMIAL 
AND POISSON DISTRIBUTIONS

Binomial Distribution Approximation
A binomial random variable is the total count of successes from repeated independent trials.
The central limit theorem (discussed later in this chapter) implies that such a random variable can
be approximated with a normal random variable when n is large. Consequently, it should not
be surprising to use the normal distribution to approximate binomial probabilities for cases in
which n is large. The binomial model is often appropriate with an extremely large value for n.
In these cases, it is difficult to calculate probabilities by using the binomial distribution.
Fortunately, the normal approximation is most effective in these cases. An illustration is provided
in Fig. 3-37. Each bar in the figure has unit width, so the area of the bar over a value x equals
the binomial probability of x. A normal distribution with �� np � 5 and 	2 � np(1 
 p) � 2.5
is superimposed. Note that the area of bars (binomial probability) can be approximated by the
area under the normal curve (probability obtained from the normal distribution).

0 1 2 3 4 5 6 7 8 9 10

0.00

0.05

0.10

0.20

0.25

0.30

x

f(
x)

n = 10

0.15

p = 0.5

Figure 3-37 Normal approximation to
the binomial distribution.
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120 CHAPTER 3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Recall that for a binomial variable X, E(X ) � np and V(X ) � np(1 � p). Consequently, the
normal approximation is nothing more than the formula for standardizing the random variable
X. Probabilities involving X can be approximated by using a standard normal random variable.
The normal approximation to the binomial distribution is good if n is large enough relative to p,
in particular, whenever

A correction factor (known as a continuity correction) can be used to further improve
the approximation. Notice in Fig. 3-37 that the area of bars that represent a binomial probabil-
ity such as � is well approximated by the
area under the normal curve between 4.5 and 7.5. Also notice that is well approxi-
mated by the area under the normal curve from 6.5 to 7.5. Consequently, is added to the 
binomial values to improve the approximation. The rule of thumb is to apply the correction
factor in a manner that increases the binomial probability that is to be approximated.

The digital communication problem is solved as follows:

Note that after the binomial probability is written with a less than or equal to symbol as
the correction factor subtracts to increase the probability.1

2P(X � 151)

 � P(Z 7 �0.75) � P(Z 6 0.75) � 0.773

 P(X 7 150) � P(X � 151) � P a X � 160

2160(1 � 10�5)
7

150.5 � 160

2160(1 � 10�5)
b

�1
2

�1
2

P(X � 6)
P(X � 5) � P(X � 6) � P (X � 7)P(4 6 X � 7)

np 7 5 and n(1 � p) 7 5

EXAMPLE 3-34 In a digital communication channel, assume that the number of bits received in error can be modeled by
a binomial random variable, and assume that the probability that a bit is received in error is 1 � 10�5. If
16 million bits are transmitted, what is the probability that more than 150 errors occur?

Solution. Let the random variable X denote the number of errors. Then X is a binomial random variable and

■ � 1 � a
150

x�0

 a16,000,000

x
b (10�5)x(1 � 10�5)16,000,000�x

 P(X 7 150) � 1 � P(X � 150)

Bit Transmission
Errors: Large
Sample Size

Clearly, the probability in the previous example is difficult to compute. Fortunately, the
normal distribution can be used to provide an excellent approximation in this example.

If X is a binomial random variable,

(3-21)

is approximately a standard normal random variable. Consequently, probabilities
computed from Z can be used to approximate probabilities for X.

Z �
X � np

1np(1 � p)

EXAMPLE 3-35 Again consider the transmission of bits in the previous example. To judge how well the normal approxi-
mation works, assume that only n � 50 bits are to be transmitted and that the probability of an error is
p � 0.1. The exact probability that 2 or fewer errors occur is

P(X � 2) � a50

0
b 0.950 � a50

1
b 0.1(0.949) � a50

2
b 0.12(0.948) � 0.11

Bit Transmission
Errors: Normal
Approximation
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For a sample as small as 50 bits, with np � 5, the normal approximation is reasonable.
However, if np or n(1 	 p) is small, the binomial distribution is quite skewed and the symmet-
ric normal distribution is not a good approximation. Two cases are illustrated in Fig. 3-38.

Poisson Distribution Approximation
Recall that the Poisson distribution was developed as the limit of a binomial distribution as the
number of trials increased to infinity. Consequently, the normal distribution can also be used
to approximate probabilities of a Poisson random variable. The approximation is good for

 
 5

and a continuity correction can also be applied.

Based on the normal approximation,

■P(X � 2) � P a X 	 5

250(0.1)(0.9)
6

2.5 	 5

250(0.1)(0.9)
b � P(Z 6 	1.18) � 0.12

Figure 3-38 Binomial distribution is
not symmetrical if p is near 0 or 1.

0 1 2 3 4 5 6 7 8 9 10

0.0

0.1

0.3

0.4

x

f(x) 0.2

n p
10 0.1
10 0.9

If X is a Poisson random variable with E(X ) � and V(X ) � ,

(3-22)

is approximately a standard normal random variable.

Z �
X 	 

1

EXAMPLE 3-36 Assume that the number of contamination particles in a liter water sample follows a Poisson distribution
with a mean of 1000. If a sample is analyzed, what is the probability that fewer than 950 particles are
found?

Solution. This probability can be expressed exactly as

P(X � 950) � a
950

x�0

e	10001000x

x!

Water
Contaminants
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122 CHAPTER 3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

3-145. Suppose that X has a binomial distribution with n �
300 and Approximate the following probabilities.

(a) (b) 
(c)

3-146. Suppose that X has a Poisson distribution with mean
of 50. Approximate the following probabilities.

(a) (b) 
(c) (d) 

3-147. A particular vendor produces parts with a defect rate
of 8%. Incoming inspection to a manufacturing plant samples
100 delivered parts from this vendor and rejects the delivery if
8 defective parts are discovered.

(a) Compute the exact probability that the inspector accepts
delivery.

(b) Approximate the probability of acceptance and compare
the result to part (a).

3-148. A large electronic office product contains 2000 elec-
tronic components. Assume that the probability that each
component operates without failure during the useful life of
the product is 0.995, and assume that the components fail in-
dependently. Approximate the probability that 5 or more of the
original 2000 components fail during the useful life of the
product.

3-149. The manufacturing of semiconductor chips pro-
duces 2% defective chips. Assume that the chips are independ-
ent and that a lot contains 1000 chips.

(a) Approximate the probability that more than 25 chips are
defective.

(b) Approximate the probability that between 20 and 30 chips
are defective.

3-150. There were 49.7 million people with some type of
long-lasting condition or disability living in the United States
in 2000. This represented 19.3% of the majority of civilians
age 5 and over (http://factfinder.census.gov). A sample of
1000 persons is selected; it can be assumed the disability sta-
tuses of these individuals are independent.

P(X 7 55)P(40 6 X � 60)
P(X � 45)P(X 6 45)

P(X 7 130)
P(80 � X 6 100)P(X � 100)

p � 0.4.

The computational difficulty is clear. The probability can be approximated as

Approximate the probability of more than 25 particles in 20 milliliters of water.

Solution. If the mean number of particles per liter is 1000, the mean per milliliter is 1, and the mean per
20 milliliters is 20. Let X denote the number of particles in 20 milliliters. Then X has a Poisson distribu-
tion with a mean of 20 and the requested probability is

■P(X 7 25) � P aZ 7

25.5 	 20

220
b � P(Z 7 1.22) � 0.109

P(X � x) � P aZ �
950.5 	 1000

11000
b � P(Z � 	1.57) � 0.059

EXERCISES FOR SECTION 3-10
(a) Approximate the probability that more than 200 persons

in the sample have a disability.
(b) Approximate the probability that between 180 and 300

people in the sample have a disability.

3-151. Phoenix water is provided to approximately 1.4 mil-
lion people, who are served through more than 362,000
accounts (http://phoenix.gov/WATER/wtrfacts.html). All
accounts are metered and billed monthly. The probability that
an account has an error in a month is 0.001; accounts can be
assumed to be independent.

(a) What is the mean and standard deviation of the number of
account errors each month?

(b) Approximate the probability of fewer than 350 errors in a
month.

(c) Approximate a value so that the probability that the num-
ber of errors exceeding this value is 0.05.

3-152. Suppose that the number of asbestos particles in a
sample of 1 square centimeter of dust is a Poisson random
variable with a mean of 1000. Approximate the probability
that 10 square centimeters of dust contain more than 10,000
particles.

3-153. The number of spam e-mails received each day fol-
lows a Poisson distribution with a mean of 50. Approximate
the following probabilities.

(a) More than 40 and less than 60 spam e-mails in a day
(b) At least 40 spam e-mails in a day
(c) Less than 40 spam e-mails in a day
(d) Approximate the probability that the total number of spam

e-mails exceeds 340 in a 7-day week.

3-154. The number of calls to a health-care provider fol-
lows a Poisson distribution with a mean of 36 per hour.
Approximate the following probabilities.

(a) More than 42 calls in an hour
(b) Less than 30 calls in an hour
(c) More than 300 calls in an 8-hour day
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3-11 MORE THAN ONE RANDOM VARIABLE 
AND INDEPENDENCE

3-11.1 Joint Distributions

In many experiments, more than one variable is measured. For example, suppose both the
diameter and thickness of an injection-molded disk are measured and denoted by X and Y,
respectively. These two random variables are often related. If pressure in the mold increases,
there might be an increase in the fill of the cavity that results in larger values for both X and Y.
Similarly, a pressure decrease might result in smaller values for both X and Y. Suppose that di-
ameter and thickness measurements from many parts are plotted in an X–Y plane (scatter dia-
gram). As shown in Fig. 3-39, the relationship between X and Y implies that some regions of
the X–Y plane are more likely to contain measurements than others. This concept was
discussed in Section 2-6 when the sample correlation coefficient was defined.

This tendency can be modeled by a probability density function [denoted as f (x, y)] over
the X–Y plane as shown in Fig. 3-40. The analogies that related a probability density function
to the loading on a long, thin beam can be applied to relate this two-dimensional probability
density function to the density of a loading over a large, flat surface. The probability that the
random experiment (part production) generates measurements in a region of the X–Y plane is
determined from the integral of f (x, y) over the region as shown in Fig. 3-41. This integral
equals the volume enclosed by f (x, y) over the region. Because f (x, y) determines probabili-
ties for two random variables, it is referred to as a joint probability density function. From
Fig. 3-41, the probability that a part is produced in the region shown is

Similar concepts can be applied to discrete random variables. For example, suppose the
quality of each bit received through a digital communications channel is categorized into one

P(a 6 X 6 b, c 6 Y 6 d ) � �
b

a

�
d

c

 f (x, y) dy dx

3-155. The probability a visitor to the home page of a Web
site views another page on the site is 0.2. Assume that 200 vis-
itors arrive at the home page and that they behave independ-
ently. Approximate the probabilities for the following events:

(a) More than 40 visitors view another page
(b) At least 30 visitors view another page
(c) Fewer than 20 visitors view another page

3-156. The number of visits to the home page of a Web site
in a day is modeled with a Poisson distribution with a mean of
200. Approximate the probabilities for the following events:

(a) More than 225 visitors arrive in a day
(b) Fewer than 175 visitors arrive in a day
(c) The number of visitors is greater than 190 but less than 210.

Figure 3-41 Probability of a region
is the volume enclosed by f (x, y) over
the region.

Figure 3-39 Scatter diagram of
diameter and thickness measurements.

Figure 3-40 Joint probability density
function of x and y.

Diameter x

Thickness y

Diameter x

Thick
ness

 y

 f(x,y)

Diameter x
ba

c
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124 CHAPTER 3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

of four classes, “excellent,” “good,” “fair,” and “poor,” denoted by E, G, F, and P, respectively.
Let the random variables X, Y, W, and Z denote the numbers of bits that are E, G, F, and P, re-
spectively, in a transmission of 20 bits. In this example, we are interested in the joint probabil-
ity distribution of four random variables. To simplify, we only consider X and Y. The joint
probability distribution of X and Y can be specified by a joint probability mass function
f (x, y) � P(X � x, Y � y). Because each of the 20 bits is categorized into one of the four
classes, X � Y � W � Z � 20, only integers such that X � Y � 20 have positive probability
in the joint probability mass function of X and Y. The joint probability mass function is zero
elsewhere. For a general discussion of joint distributions, we refer the interested reader to
Montgomery and Runger (2011). Instead, we focus here on the important special case of
independent random variables.

3-11.2 Independence

If we make some assumptions regarding our probability models, a probability involving more
than one random variable can often be simplified. In Example 3-13, the probability that a di-
ameter meets specifications was determined to be 0.919. What can we say about 10 such di-
ameters? What is the probability that they all meet specifications? This is the type of question
of interest to a customer.

Such questions lead to an important concept and definition. To accommodate more than
just the two random variables X and Y, we adopt the notation X1, X2, . . . , Xn to represent n
random variables.

The random variables X1, X2, . . . , Xn are independent if

for any sets E1, E2, . . . , En.

P(X1 � E1, X2 � E2, p , Xn � En) � P(X1 � E1)P(X2 � E2) 
. . . P(Xn � En)

Independence

The importance of independence is illustrated in the following example.

EXAMPLE 3-37 In Example 3-13, the probability that a diameter meets specifications was determined to be 0.919. What
is the probability that 10 diameters all meet specifications, assuming that the diameters are independent?

Solution. Denote the diameter of the first shaft as X1, the diameter of the second shaft as X2, and so
forth, so that the diameter of the tenth shaft is denoted as X10. The probability that all shafts meet speci-
fications can be written as

In this example, the only set of interest is

With respect to the notation used in the definition of independence,

Recall the relative frequency interpretation of probability. The proportion of times that shaft 1 is
expected to meet the specifications is 0.919, the proportion of times that shaft 2 is expected to meet the

E1 � E2 � # # # � E10

E1 � (0.2485, 0.2515)

P(0.2485 6 X1 6 0.2515, 0.2485 6 X2 6 0.2515, . . . , 0.2485 6 X10 6 0.2515)

Optical Drive
Diameters
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Independent random variables are fundamental to the analyses in the remainder of the
book. We often assume that random variables that record the replicates of a random experi-
ment are independent. Really what we assume is that the �i disturbances (for i � 1, 2, . . . , n
replicates) in the model

are independent because it is the disturbances that generate the randomness and the probabil-
ities associated with the measurements.

Note that independence implies that the probabilities can be multiplied for any sets E1,
E2, . . . , En. Therefore, it should not be surprising to learn that an equivalent definition of
independence is that the joint probability density function of the random variables equals the
product of the probability density function of each random variable. This definition also holds
for the joint probability mass function if the random variables are discrete.

Xi � �i � �i

specifications is 0.919, and so forth. If the random variables are independent, the proportion of times in
which we measure 10 shafts that we expect all to meet the specifications is

■6 0.2515) � 0.91910 � 0.430

� P(0.2485 6 X1 6 0.2515) � P(0.2485 6 X2 6 0.2515) � . . . � P(0.2485 6 X10

 P(0.2485 6 X1 6 0.2515, 0.2485 6 X2 6 0.2515, . . . , 0.2485 6 X10 6 0.2515)

EXAMPLE 3-38 Suppose X1, X2, and X3 represent the thickness in micrometers of a substrate, an active layer, and a coat-
ing layer of a chemical product, respectively. Assume that X1, X2, and X3 are independent and normally
distributed with �1 � 10,000, �2 � 1000, �3 � 80, �1 � 250, �2 � 20, and �3 � 4. The specifications
for the thickness of the substrate, active layer, and coating layer are 9200 � x1 � 10,800, 950 � x2 �
1050, and 75 � x3 � 85, respectively. What proportion of chemical products meets all thickness specifi-
cations? Which one of the three thicknesses has the least probability of meeting specifications?

Solution. The requested probability is P(9200 � X1 � 10,800, 950 � X2 � 1050, 75 � X3 � 85). 
Using the notation in the definition of independence, E1 � (9200, 10,800), E2 � (950, 1050), and E3 �
(75, 85) in this example. Because the random variables are independent,

After standardizing, the above equals

where Z is a standard normal random variable. From the table of the standard normal distribution, the
above equals

The thickness of the coating layer has the least probability of meeting specifications. Consequently,
a priority should be to reduce variability in this part of the process. ■

(0.99862)(0.98758)(0.78870) � 0.7778

P(	3.2 6 Z 6 3.2)P(	2.5 6 Z 6 2.5)P(	1.25 6 Z 6 1.25)

 � P(9200 6 X1 6 10,800)P(950 6 X2 6 1050)P(75 6 X3 6 85)

 P(9200 6 X1 6 10,800, 950 6 X2 6 1050, 75 6 X3 6 85)

Coating
Thickness

The concept of independence can also be applied to experiments that classify results. We
used this concept to derive the binomial distribution. Recall that a test taker who just guesses
from four multiple choices has probability 1/4 that any question is answered correctly. If it is
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assumed that the correct or incorrect outcome from one question is independent of others, the
probability that, say, five questions are answered correctly can be determined by multiplication
to equal

Some additional applications of independence frequently occur in the area of system
analysis. Consider a system that consists of devices that are either functional or failed. It is as-
sumed that the devices are independent.

(1�4)5 � 0.00098

EXAMPLE 3-39 The system shown here operates only if there is a path of functional components from left to right. The
probability that each component functions is shown in the diagram. Assume that the components func-
tion or fail independently. What is the probability that the system operates?

Solution. Let C1 and C2 denote the events that components 1 and 2 are functional, respectively. For the
system to operate, both components must be functional. The probaility that the system operates is

Note that the probability that the system operates is smaller than the probability that any compo-
nent operates. This system fails whenever any component fails. A system of this type is called a series
system. ■

P(C1, C2) � P(C1)P(C2) � (0.9)(0.95) � 0.855

C1
0.9

C2
0.95

EXAMPLE 3-40 The system shown here operates only if there is a path of functional components from left to right. The
probability that each component functions is shown. Assume that the components function or fail inde-
pendently. What is the probability that the system operates?

Solution. Let C1 and C2 denote the events that components 1 and 2 are functional, respectively. Also, 
C1� and C2� denote the events that components 1 and 2 fail, respectively, with associated probabilities
P(C1�) � 1 	 0.9 � 0.1 and P(C2�) � 1 	 0.95 � 0.05. The system will operate if either component is
functional. The probability that the system operates is 1 minus the probability that the system fails, and
this occurs whenever both independent components fail. Therefore, the requested probability is

Note that the probability that the system operates is greater than the probability that any component
operates. This is a useful design strategy to decrease system failures. This system fails only if all
components fail. A system of this type is called a parallel system. ■

P(C1 or C2) � 1 	 P(C1¿, C2¿) � 1 	 P(C1¿)P(C2¿) � 1 	 (0.1)(0.05) � 0.995

C1
0.9

C2
0.95

Series System

Parallel System
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More general results can be obtained. The probability that a component does not fail over
the time of its mission is called its reliability. Suppose that ri denotes the reliability of component
i in a system that consists of k components and that r denotes the probability that the system does
not fail over the time of the mission. That is, r can be called the system reliability. The previous
examples can be extended to obtain the following result for a series system:

and for a parallel system

The analysis of a complex system can be accomplished by a partition into subsystems, which
are sometimes called blocks.

r � 1 	 (1 	 r1)(1 	 r2) p (1 	 rk)

r � r1r2 
p rk

EXAMPLE 3-41 The system shown here operates only if there is a path of functional components from left to right. The
probability that each component functions is shown. Assume that the components function or fail inde-
pendently. What is the probability that the system operates?

Solution. The system can be partitioned into blocks such that exclusively parallel subsystems exist in
each block. The result for a parallel system can be applied to each block, and the block results can be
combined by the analysis for a series system. For block 1, the reliability is obtained from the result for a
parallel system to be

Similarly, for block 2, the reliability is

The system reliability is determined from the result for a series system to be

■(0.998)(0.995)(0.99) � 0.983

1 	 (0.1)(0.05) � 0.995

1 	 (0.1)(0.2)(0.1) � 0.998

0.9

Block 1

0.8

0.9

Block 2

0.99

0.95

0.9

Complex System

3-157. Let X be a normal random variable with � � 10 and
� � 1.5 and Y be a normal random variable with �� 2 and 
� � 0.25. Assume X and Y are independent. Find the following
probabilities.

(a) P(X � 9, Y � 2.5)
(b) P(X 
 8, Y � 2.25)
(c) P(8.5 � X � 11.5, Y 
 1.75)
(d) P(X � 13, 1.5 � Y � 1.8)
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3-158. Let X be a normal random variable with � � 15.0
and � � 3 and Y be a normal random variable with � � 20 and
� � 1. Assume X and Y are independent. Find the following
probabilities.

(a) P(X � 12, Y � 19)
(b) P(X 
 16, Y � 18)
(c) P(14 � X � 16, Y 
 22)
(d) P(11 � X � 20, 17.5 � Y � 21)

3-159. Let X be a Poisson random variable with � 2 and 
Y be a Poisson random variable with  � 4. Assume X and Y
are independent. Find the following probabilities.

(a) P(X � 4, Y � 4)
(b) P(X 
 2, Y � 4)
(c) P(2 � X � 4, Y � 3)

(d) P(X � 5, 1 � Y � 4)

3-160. Let X be an exponential random variable with mean
equal to 5 and Y be an exponential random variable with mean
equal to 8. Assume X and Y are independent. Find the follow-
ing probabilities.

(a) P(X � 5, Y � 8)
(b) P(X 
 5, Y � 6)
(c) P(3 � X � 7, Y 
 7)

(d) P(X 
 7, 5 � Y � 7)

3-161. Two independent vendors supply cement to a high-
way contractor. Through previous experience it is known that
the compressive strength of samples of cement can be mod-
eled by a normal distribution, with �1 � 6000 kilograms per
square centimeter and �1 � 100 kilograms per square cen-
timeter for vendor 1, and �2 � 5825 and �2 � 90 for vendor 2.
What is the probability that both vendors supply a sample with
compressive strength

(a) Less than 6100 kg/cm2?
(b) Between 5800 and 6050?
(c) In excess of 6200?

3-162. The time between surface finish problems in a galva-
nizing process is exponentially distributed with a mean of 
40 hours. A single plant operates three galvanizing lines that
are assumed to operate independently.

(a) What is the probability that none of the lines experi-
ences a surface finish problem in 40 hours of operation?

(b) What is the probability that all three lines experience 
a surface finish problem between 20 and 40 hours of 
operation?

3-163. The inside thread diameter of plastic caps made 
using an injection molding process is an important quality
characteristic. The mold has four cavities. A cap made using
cavity i is considered independent from any other cap and can
have one of three quality levels: first, second, or third (worst).
The notation P(Fi), P(Si), and P(Ti) represents the probability
that a cap made using cavity i has first, second, or third quality,
respectively. Given P(F1) � 0.4, P(S1) � 0.25, P(F2) � 0.25,

P(S2) � 0.30, P(F3) � 0.35, P(S3) � 0.40, P(F4) � 0.5, and
P(S4) � 0.40,

(a) List the probability of third-level quality for each of the
cavities.

(b) What is the probability that one production lot (i.e., a cap
from each cavity) has four caps of first quality?

(c) What is the probability that one production lot has four
caps with quality at the first or second level?

3-164. The yield in pounds from a day’s production is nor-
mally distributed with a mean of 1500 pounds and a variance of
10,000 pounds squared. Assume that the yields on different
days are independent random variables.

(a) What is the probability that the production yield exceeds
1400 pounds on each of 5 days?

(b) What is the probability that the production yield exceeds
1400 pounds on none of the next 5 days?

3-165. Consider the series system described in Example 3-39.
Suppose that the probability that component C1 functions is 0.95
and that the probability that component C2 functions is 0.92.
What is the probability that the system operates?

3-166. Suppose a series system has three components C1, 
C2, and C3 with the probability that each component functions
equal to 0.90, 0.99, and 0.95, respectively. What is the probabil-
ity that the system operates?

3-167. Consider the parallel system described in Exam-
ple 3-40. Suppose the probability that component C1 functions
is 0.85 and the probability that component C2 functions is 0.92.
What is the probability that the system operates?

3-168. Suppose a parallel system has three components C1,
C2, and C3, in parallel, with the probability that each compo-
nent functions equal to 0.90, 0.99, and 0.95, respectively. What
is the probability that the system operates?

3-169. The following circuit operates if and only if there is a
path of functional devices from left to right. The probability
that each device functions is as shown. Assume that the proba-
bility that a device is functional does not depend on whether or
not other devices are functional. What is the probability that the
circuit operates?

3-170. The following circuit operates if and only if there is a
path of functional devices from left to right. The probability
that each device functions is as shown. Assume that the proba-
bility that a device functions does not depend on whether or not

0.9

0.95

0.8

0.95
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other devices are functional. What is the probability that the
circuit operates?

3-171. A grocery store tracks the joint distribution of the
number of apples and oranges in each customer transaction
(with some rounding). Let X and Y denote the number of ap-
ples and oranges, respectively, and assume the following joint
distribution

0.9

0.95

0.9

0.95

0 6 12
0 0.5 0.05 0.1
6 0.05 0.1 0.05

12 0.1 0.05 0

Determine the following:
(a) (b)
(c) (d)
(e)
(f ) Whether or not X and Y are independent

3-172. Suppose that the joint distribution of X and Y has
probability density function f (x, y) � 0.25xy for 0 � x � 2 and
0 � y � 2). Determine the following:

(a) (b)
(c) (d)
(e) Whether or not X and Y are independent

P(X 6 1)P(X 7 1, Y 7 1)
P(X 6 1, Y 7 1)P(X 6 1, Y 6 1)

P(X � 6)
P(X � 6)P(X � 6, Y � 6)
P(X � 6, Y � 6)P(X � 6, Y � 6)

3-12 FUNCTIONS OF RANDOM VARIABLES

In many practical problems, a random variable is defined as a function of one or more other
random variables. There are methods to determine the probability distribution of a function of
one or more random variables and to find important properties such as the mean and variance.
A more complete treatment of this general topic is in Montgomery and Runger (2011). In this
section, we present a few of the most useful results.

We begin with a few simple properties. Let X be a random variable (either continuous or dis-
crete) with mean � and variance 	2, and let c be a constant. Define a new random variable Y as

From the definition of expectation and variance (see equation 3-3), it follows that

Y � X � c

(3-23)

(3-24) V(Y ) � V(X ) � 0 � 	2

 E(Y ) � E(X ) � c � � � c

That is, adding a constant to a random variable increases the mean by the value of the constant,
but the variance of the random variable is unchanged.

Now suppose that the random variable X is multiplied by a constant, resulting in

In this case we have

Y � cX

(3-25)

(3-26) V(Y ) � V(cX ) � c2V(X ) � c2	2

 E(Y) � E(cX ) � cE(X ) � c�

So the mean of a random variable multiplied by a constant is equal to the constant times the
mean of the original random variable, but the variance of a random variable multiplied by a

x

y
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constant is the square of the constant times the variance of the original random variable. We
now consider some additional cases involving several random variables. The results in equa-
tions 3-23 through 3-26 will be useful.

3-12.1 Linear Functions of Independent Random Variables

Many situations involve a linear function of random variables. For example, suppose that the
random variables X1 and X2 represent the length and width, respectively, of a manufactured
part. For X1, suppose that we know that �1 � 2 centimeters and �1 � 0.1 centimeter and for
X2, we know that �5 � 5 centimeters and �2 � 0.2 centimeter. Also, assume that X1 and X2 are
independent. We wish to determine the mean and standard deviation of the perimeter of the
part. We assume that the width of both sides is the same and that the length of the top and bot-
tom is the same so that the part is always rectangular.

Now the perimeter of the part is

and we need to find the mean and standard deviation of Y. This problem is a special case of
finding the mean and variance (or, equivalently, the standard deviation) of a linear function of
independent random variables.

Let c0, c1, c2, . . . , cn be constants, and let X1, X2, . . . , Xn be independent random variables
with means E(Xi) � �i, i � 1, 2, . . . , n and variances V(Xi) � �i

2, i � 1, 2, . . . , n.

Y � 2X1 � 2X2

The mean and variance of the linear function of independent random variables are

(3-27)

and

(3-28)V(Y ) � c2
1�2

1 � c2
2�2

2 � p � c2
n�2

n

E(Y ) � c0 � c1�1 � c2�2 � p � cn�n

Y � c0 � c1X1 � c2X2 � p � cn Xn

Mean and
Variance of a

Linear Function:
Independent

Random
Variables

EXAMPLE 3-42 Reconsider the manufactured part described above where the random variables X1 and X2 represent the
length and width, respectively. For the length we know that �1 � 2 centimeters and �1 � 0.1 centimeter
and for the width X2 we know that �5 � 5 centimeters and �2 � 0.2 centimeter. The perimeter of the part
Y � 2X1 � 2X2 is just a linear combination of the length and width. Using equations 3-27 and 3-28, the
mean of the perimeter is

and the variance of the perimeter is

Therefore, the standard deviation of the perimeter of the part is

■�Y � 1V(Y ) � 10.2 � 0.447 centimeter

V(Y ) � 22(0.12) � 22(0.22) � 0.2 square centimeter

E(Y ) � 2E(X1) � 2E(X2) � 2(2) � 2(5) � 14 centimeters

Perimeter of a
Molded Part

  c03RandomVariablesandProbabilityDistributions.qxd  9/21/10  9:28 AM  Page 130



3-12 FUNCTIONS OF RANDOM VARIABLES 131

EXAMPLE 3-43 Once again, consider the manufactured part described previously. Now suppose that the length X1 and the
width X2 are normally and independently distributed with �1 � 2 centimeters, �1 � 0.1 centimeter, �5 �
5 centimeters, and �2 � 0.2 centimeter. In the previous example we determined that the mean and vari-
ance of the perimeter of the part Y � 2X1 � 2X2 were E(Y ) � 14 centimeters and V(Y ) � 0.2 square cen-
timeter, respectively. Determine the probability that the perimeter of the part exceeds 14.5 centimeters.

Solution. From the above result, Y is also a normally distributed random variable, so we may calculate
the desired probability as follows:

Therefore, the probability is 0.13 that the perimeter of the part exceeds 14.5 centimeters. ■

P(Y 7 14.5) � P aY 	 �Y

�Y

7

14.5 	 14

0.447
b � P(Z 7 1.12) � 0.13

Let X1, X2, . . . , Xn be independent, normally distributed random variables with
means E(Xi) � �i, i � 1, 2, . . . , n and variances V(Xi) � �i

2, i � 1, 2, . . . , n. Then
the linear function

is normally distributed with mean

and variance

V(Y ) � c2
1�

2
1 � c2

2�
2
2 � p � c2

n�
2
n

E(Y ) � c0 � c1�1 � c2�2 � p � cn�n

Y � c0 � c1X1 � c2X2 � p � cn Xn

Linear Function
of Independent

Normal Random
Variables

A very important case occurs when all of the random variables X1, X2, . . . , Xn in the lin-
ear function are independent and normally distributed.

Perimeter of a
Molded Part:
Normal
Distribution

3-12.2 Linear Functions of Random Variables That Are Not Independent

After reading the previous section, a very logical question arises: What if the random variables
in the linear function are not independent? The independence assumption is quite important.
Let’s consider a very simple case

where the two random variables X1 and X2 have means �1 and �2 and variances �2
1 and �2

2 but
where X1 and X2 are not independent. The mean of Y is still

That is, the mean of Y is just the sum of the means of the two random variables X1 and X2. The
variance of Y, using equation 3-3, is

 � E [(X1 � X2)
2 ] 	 [E(X1 � X2) ] 2

 V(Y ) � E(Y 2) 	 E(Y )2

E(Y ) � E(X1 � X2) � E(X1) � E(X2) � �1 � �2

Y � X1 � X2
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Now E(X1 � X2) � �1 ��2, so this last equation becomes

The quantity E(X1X2) 	 �1�2 is called the covariance of the random variables X1 and X2.
When the two random variables X1 and X2 are independent, the covariance E(X1X2) 	 �1�2 � 0,
and we get the familiar result for the special case in equation 3-28, namely, V(Y ) � �2

1 � �2
2.

The covariance is a measure of the linear relationship between the two random variables X1

and X2. When the covariance is not zero, the random variables X1 and X2 are not independent.
The covariance is closely related to the correlation between the random variables X1 and X2;
in fact, the correlation between X1 and X2 is defined as follows.

 � �2
1 � �2

2 � 2[E(X1X2) 	 �1�2 ]

 � [E(X 2
1) 	 �2

1 ] � [E(X 2
2) 	 �2

2 ] � 2E(X1X2) 	 2�1�2

 � E(X 2
1) � E(X 2

2) � 2E(X1X2) 	 �2
1 	 �2

2 	 2�1�2

 V(Y ) � E(X 2
1 � X 2

2 � 2X1X2) 	 �2
1 	 �2

2 	 2�1�2

The correlation between two random variables X1 and X2 is

(3-29)

with is usually called the correlation coefficient.	1 � �X1X2
� �1, and �X1X2

�X1X2
�

E(X1X2) 	 �1�2

2�2
1�

2
2

�
Cov(X1, X2)

2�2
1�

2
2

Correlation

Because the variances are always positive, if the covariance between X1 and X2 is negative, zero,
or positive, the correlation between X1 and X2 is also negative, zero, or positive, respectively.
However, because the correlation coefficient lies in the interval from 	1 to �1, it is easier to
interpret than the covariance. Furthermore, the sample correlation coefficient introduced in
Section 2-6 is usually employed to estimate the correlation coefficient from sample data. You
may find it helpful to reread the discussion on the sample correlation coefficient in Section 2-6.

A general result for a linear function of random variables uses the covariances between
pairs of variables.

Let X1, X2, . . . , Xn be random variables with means E(Xi ) ��i and variances V(Xi ) � �i
2,

i � 1, 2, . . . , n, and covariances Cov(X1, X2 ), i, j � 1, 2, . . . , n with i � j. Then the
mean of the linear combination

is

(3-30)

and the variance is

(3-31)V(Y ) � c2
1�

2
1 � c2

2�
2
2 � p � c2

n�
2
n � 2a

i 6 j
a cicj Cov(Xi, Xj)

E(Y ) � c0 � c1�1 � c2�2 � p � cn�n

Y � c0 � c1X1 � c2 X2 � p � cnXn

Mean and
Variance of a

Linear Function:
General Case
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3-12.3 Nonlinear Functions of Independent Random Variables 

Many problems in engineering involve nonlinear functions of random variables. For example,
the power P dissipated by the resistance R in an electrical circuit is given by the relationship

where I is the current. If the resistance is a known constant and the current is a random vari-
able, the power is a random variable that is a nonlinear function of the current. As another ex-
ample, the period T of a pendulum is given by

where L is the length of the pendulum and g is the acceleration due to gravity. If g is a constant
and the length L is a random variable, the period of the pendulum is a nonlinear function of a
random variable. Finally, we can experimentally measure the acceleration due to gravity by
dropping a baseball and measuring the time T it takes for the ball to travel a known distance d.
The relationship is

Because the time T in this experiment is measured with error, it is a random variable.
Therefore, the acceleration due to gravity is a nonlinear function of the random variable T.

In general, suppose that the random variable Y is a function of the random variable X, say,

then a general solution for the mean and variance of Y can be difficult. It depends on the com-
plexity of the function h(X ). However, if a linear approximation to h(X ) can be used, an 
approximate solution is available.

Y � h(X )

G � 2d�T 
2

T � 2�1L�g

P � I 2R

If X has mean �X and variance �2
X, the approximate mean and variance of Y can be

computed using the following result:

(3-32)

(3-33)

where the derivative dh�dX is evaluated at �X.

 V(Y ) � �2
Y � a dh

dX
b2

�2
X

 E(Y ) � �Y � h(�X)

Propagation of
Error Formula:
Single Variable

Engineers usually call equation 3-33 the transmission of error or propagation of error
formula.

EXAMPLE 3-44 The power P dissipated by the resistance R in an electrical circuit is given by P � I 2R where I, the current,
is a random variable with mean �I � 20 amperes and standard deviation �I � 0.1 amperes. The resist-
ance R � 80 ohms is a constant. We want to find the approximate mean and standard deviation of the
power. In this problem the function h � I 2R, so taking the derivative dh�dI � 2IR � 2I(80) and applying
the equations 3-32 and 3-33, we find that the approximate mean power is

E(P) � �P � h(�I) � �2
I R � 202(80) � 32,000 watts

Power in a
Circuit
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and the approximate variance of power is

So the standard deviation of the power is Remember that the derivative dh�dI is evaluated
at �I � 20 amperes. ■

�p � 320 watts.

V(P) � �2
P � adh

dI
b2

�2
I � [2(20)(80)]20.12 � 102,400 square watts

Equations 3-32 and 3-33 are developed by approximating the nonlinear function h with a
linear function. The linear approximation is found by using a first-order Taylor series.
Assuming that h(X ) is differentiable, the first-order Taylor series approximation for Y � h(X )
around the point �X is

(3-34)

Now dh�dX is a constant when it is evaluated at �X, h(�X) is a constant, and E(X ) � �X, so when
we take the expected value of Y, the second term in equation 3-34 is zero and consequently

The approximate variance of Y is

which is the transmission of error formula in equation 3-33. The Taylor series method that we
used to find the approximate mean and variance of Y is usually called the delta method.

Sometimes the variable Y is a nonlinear function of several random variables, say,

(3-35)

where X1, X2, . . . , Xn are assumed to be independent random variables with means E(Xi) � �i

and variances V(Xi) � �i
2, i � 1, 2, . . . , n. The delta method can be used to find approximate expres-

sions for the mean and variance of Y. The first-order Taylor series expansion of equation 3-35 is

(3-36)

Taking the expectation and variance of Y in equation 3-36 (with use of the linear combination
formulas in equations 3-27 and 3-28) produces the following results.

 � h(�1, �2, . . . , �n) � a
n

i�1

0h

0Xi

(Xi 	 �i)

 Y � h(�1, �2, . . . , �n) �
0h

0X1

(X1 	 �1) �
0h

0X2

(X2 	 �2) � p �
0h

0Xn

(Xn 	 �n)

Y � h (X1, X2, p , Xn)

V(Y) � V [h(�x)] � V c dh

dX
(X 	 �X) d � a dh

dX
b2 

�2
X

E(Y ) � h(�X)

Y � h(�X) �
dh

dX
(X 	 �X)

Let

for independent random variables each with mean and variance
, the approximate mean and variance of Y are

(3-37)

(3-38)

where the partial derivatives are evaluated at �1, �2,  . . . , �n.0h�0Xi

 V(Y ) � �2
Y � a

n

i�1

a 0h

0Xi

b2

 �2
i

 E(Y ) � �Y � h(�1, �2, . . . , �n)

�i
2

�iXi, i � 1,2, . . . , n,

Y � h(X1, X2, . . . , Xn)

Propagation 
of Error

Formula:
Multiple

Variables
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EXAMPLE 3-45 Two resistors are connected in parallel. The resistances R1 and R2 are random variables with E(R1) � �
20 ohms, and 
Determine the mean and standard deviation of the combined resistance, which is given by

The approximate mean of R is

The partial derivatives, evaluated at and are

From equation 3-38, the approximate variance of R is

The standard deviation of R is 	R 0.3698 ohm. ■�

 � 0.1367�2

 � (0.5102)2(0.5) � (0.0816)2(1)

 V(R) � 	2
R � a 0R

0R1

b2

 	2
R1

� a 0R

0R2

b2

 	2
R2

 
0R

0R2

� a R1

R1 � R2

b2

� a 20

20 � 50
b2

� 0.0816

 
0R

0R1

� a R2

R1 � R2

b2

� a 50

20 � 50
b2

� 0.5102

�R2
�R1

E(R) � �R �
20(50)

20 � 50
� 14.29 ohms

R �
R1R2

R1 � R2

V(R2) � 	2
R2

� 1 square ohm.V(R2) � �R2
� 50 ohms,V(R1) � 	2

R1
� 0.5 square ohm,

�R1

Resistances in
Parallel

EXERCISES FOR SECTION 3-12

3-173. If X1 and X2 are independent random variables with
E(X1) � 2, E(X2) � 5, V(X1) � 2, V(X2) � 10, and Y � 3X1 �
5X2, determine the following.

(a) E(Y ) (b) V(Y )

3-174. If X1, X2, and X3 are independent random variables
with E(X1) � 4, E(X2) � 3, E(X3) � 2, V(X1) � 1, V(X2) � 5,
V(X3) � 2, and Y � 2X1 � X2 
 3X3, determine the following.

(a) E(Y ) (b) V(Y )

3-175. If X1 and X2 are independent random variables with
�1 � 6, �2 � 1, 	1 � 2, 	2 � 4, and Y � 4X1 
 2X2, determine
the following.

(a) E(Y ) (b) V(Y ) (c) E(2Y ) (d) V(2Y )

3-176. If X1, X2, and X3 are independent random variables
with �1 � 1.2, �2 � 0.8, �3 � 0.5, 	1 � 1, 	2 � 0.25, 	3 � 2.2,
and Y � 2.5X1 
 0.5X2 � 1.5X3, determine the following.

(a) E(Y ) (b) V(Y ) (c) E(
3Y ) (d) V(
3Y )

3-177. Consider the variables defined in Exercise 3-173.
Assume that X1 and X2 are normal random variables. Compute
the following probabilities.

(a) P(Y � 50)
(b) P(25 � Y � 37)
(c) P(14.63 � Y � 47.37)

3-178. Consider the variables defined in Exercise 3-174.
Assume that X1, X2, and X3 are normal random variables.
Compute the following probabilities.

(a) P(Y � 2.0) (b) P(1.3 � Y � 8.3)

3-179. A plastic casing for a magnetic disk is composed of
two halves. The thickness of each half is normally distributed
with a mean of 1.5 millimeters and a standard deviation of 0.1
millimeter, and the halves are independent.

(a) Determine the mean and standard deviation of the total
thickness of the two halves.

(b) What is the probability that the total thickness exceeds 3.3
millimeters?

3-180. The width of a casing for a door is normally distrib-
uted with a mean of 24 inches and a standard deviation of 
inch. The width of a door is normally distributed with a mean
of 23 inches and a standard deviation of inch. Assume 
independence.

(a) Determine the mean and standard deviation of the difference
between the width of the casing and the width of the door.

(b) What is the probability that the width of the casing minus
the width of the door exceeds inch?

(c) What is the probability that the door does not fit in the
casing?

1
4

1
16

7
8

1
8
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3-181. A U-shaped assembly is to be formed from the three
parts A, B, and C. The picture is shown in Fig. 3-42. The length
of A is normally distributed with a mean of 10 millimeters and
a standard deviation of 0.1 millimeter. The thickness of part B
is normally distributed with a mean of 2 millimeters and a
standard deviation of 0.05 millimeter. The thickness of C is
normally distributed with mean of 2 millimeters and a stan-
dard deviation of 0.10 millimeter. Assume that all dimensions
are independent.

(a) Determine the mean and standard deviation of the length
of the gap D.

(b) What is the probability that the gap D is less than 5.9 mil-
limeters?

3-184. Consider the random variables defined in Exercise 
3-175. Assume that the random variables are not independent
and have Cov(X1, X2) � 5. Compute the mean and variance of Y.

3-185. Let X have mean 20 and variance 9. Define Y � 2X 2.
Compute the mean and variance of Y.

3-186. Let X have mean 100 and variance 25. Define Y � X 2 �
2X � 1. Compute the mean and variance of Y.

3-187. Consider Example 3-44. Let the current have mean
of 40 amperes and a standard deviation of 0.5 ampere. If the
electrical circuit has a resistance of 100 ohms, compute the
mean and variance of P.

3-188. Consider the equation for the period T of a pendulum
given in Section 3-12.3. Suppose that the length L is a random
variable with mean 30 feet and standard deviation 0.02 feet.
Compute the mean and variance of T.

3-189. Consider the equation for the acceleration due to
gravity, G, given in Section 3-12.3. Suppose that E(T ) � 5.2
seconds and V(T ) � 0.0004 square second. Compute the mean
and variance of G.

3-190. Consider X1 and X2 given in Exercise 3-173. Define
Y � X1X2. Compute the mean and variance of Y.

3-191. Consider X1, X2, and X3 given in Exercise 3-174.
Define Y � X1X2X3. Compute the mean and variance of Y.

3-192. The volume V of a cube is defined as the product of
the length, L, the width, W, and the height, H. Assume that
each of these dimensions is a random variable with mean 2
inches and standard deviation 0.1 inch. Assume independence
and compute the mean and variance of V.

3-193. Consider the random variables in Exercise 3-171.
Determine the following:

(a) E (2X � Y ) (b) Cov(X,Y )
(c) V(X � 3Y ) (d) XY

3-194. Consider the random variables in Exercise 3-172.
Determine the following:
(a) E (2X � Y ) (b) Cov(X,Y )
(c) V(X � 3Y ) (d) XY

B C

A

D

Figure 3-42 Figure for
Exercise 3-181.

3-182. Consider the random variables in Exercise 3-173, but
assume that the variables are dependent with covariance 3 and
that they are normally distributed. Determine the following.

(a) V(Y ) (b)

3-183. Consider the random variables in Exercise 3-172, but
assume that the variables are dependent with 

and that they are normally
distributed. Determine the following.

(a) V(Y ) (b) P(Y 7 12)

Cov (X1, X3) � 1, Cov (X2, X3) � 2
Cov (X1, X2) � 1,

P(Y 7 10)

3-13 RANDOM SAMPLES, STATISTICS, 
AND THE CENTRAL LIMIT THEOREM

Previously in this chapter it was mentioned that data are the observed values of random vari-
ables obtained from replicates of a random experiment. Let the random variables that repre-
sent the observations from the n replicates be denoted by X1, X2, . . . , Xn. Because the replicates
are identical, each random variable has the same distribution. Furthermore, the random vari-
ables are often assumed to be independent. That is, the results from some replicates do not 
affect the results from others. Throughout the remainder of the book, a common model is that
data are observations from independent random variables with the same distribution. That is,
data are observations from independent replicates of a random experiment. This model is used
so frequently that we provide a definition.
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The term “random sample” stems from the historical use of statistical methods. Suppose that
from a large population of objects, a sample of n objects is selected randomly. Here “randomly”
means that each subset of size n is equally likely to be selected. If the number of objects in the
population is much larger than n, the random variables X1, X2, . . . , Xn that represent the observa-
tions from the sample can be shown to be approximately independent random variables with the
same distribution. Consequently, independent random variables with the same distribution are 
referred to as a random sample.

Independent random variables X1, X2, . . . , Xn with the same distribution are called a
random sample.

Random 
Sample

EXAMPLE 3-46 In Example 2-1 in Chapter 2, the average tensile strength of eight rubber O-rings was 1055 psi. Two 
obvious questions are the following: What can we conclude about the average tensile strength of future
O-rings? How wrong might we be if we concluded that the average tensile strength of this future popu-
lation of O-rings is 1055?

There are two important issues to be considered in the answer to these questions.

1. First, because a conclusion is needed for a future population, this is an example of an analytic
study. Certainly, we need to assume that the current specimens are representative of the 
O-rings that will be produced. This is related to the issue of stability in analytic studies that we
discussed in Chapter 1. The usual approach is to assume that these O-rings are a random sample
from the future population. Suppose that the mean of this future population is denoted as �.
The objective is to estimate �.

2. Second, even if we assume that these O-rings are a random sample from future production, the
average of these eight items might not equal the average of future production. However, this 
error can be quantified.

The key concept is the following: The average is a function of the individual tensile strengths of the eight
O-rings. That is, the average is a function of a random sample. Consequently, the average is a random
variable with its own distribution. Recall that the distribution of an individual random variable can be
used to determine the probability that a measurement is more than one, two, or three standard deviations
from the mean of the distribution. In the same manner, the distribution of an average provides the prob-
ability that the average is more than a specified distance from �. Consequently, the error is determined
by the distribution of the average. We discuss this distribution in the remainder of the section. ■

Example 3-46 illustrates that a typical summary of data, such as an average, can be
thought of as a function of a random sample. Many other summaries are often used, and this
leads to an important definition.

Strength of 
O-Rings

A statistic is a function of the random variables in a random sample.
Statistic

Given data, we calculate statistics all the time. All of the numerical summaries in Chapter 2
such as the sample mean the sample variance S2, and the sample standard deviation S are 
statistics. Although the definition of a statistic might seem overly complex, this is because we do
not usually consider the distribution of a statistic. However, once we ask how wrong we might
be, we are forced to think of a statistic as a function of random variables. Consequently, each

X,
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statistic has a distribution. It is the distribution of a statistic that determines how well it estimates
a quantity such as �. Often the probability distribution of a statistic can be determined from
the probability distribution of a member of the random sample and the sample size. Another
definition is in order.

Fill Volumes

The probability distribution of a statistic is called its sampling distribution.
Sampling

Distribution

Consider the sampling distribution of the sample mean . Suppose that a random sample
of size n is taken from a normal population with mean � and variance �2. Now each random
variable in this sample—say, X1, X2, . . . , Xn—is a normally and independently distributed 
random variable with mean � and variance �2. Then from the results in Section 3-12.1 on linear
functions of normally and independently distributed random variables, we conclude that the
sample mean

has a normal distribution with mean

and variance

The mean and variance of are denoted as and , respectively.�2
 X

�XX

V(X ) �
�2 � �2 � p � �2

n2 �
�2

n

E(X ) �
� � � � p � �

n
� �

X �
X1 � X2 � p � Xn

n

X

EXAMPLE 3-47 Soft-drink cans are filled by an automated filling machine. The mean fill volume is 12.1 fluid ounces, and
the standard deviation is 0.05 fluid ounce. Assume that the fill volumes of the cans are independent, normal
random variables. What is the probability that the average volume of 10 cans selected from this process
is less than 12 fluid ounces?

Let X1, X2, . . . , X10 denote the fill volumes of the 10 cans. The average fill volume (denoted as ) is
a normal random variable with

Consequently, and

■

If we are sampling from a population that has an unknown probability distribution, the
sampling distribution of the sample mean is still approximately normal with mean � and vari-
ance �2�n, if the sample size n is large. This is one of the most useful theorems in statistics. It
is called the central limit theorem. The statement is as follows.

 � P(Z 6 	6.32) L  0

 P(X 6 12) � P aX 	 �X

�
X

6

12 	 12.1

0.0158
b

�X � 10.00025 � 0.0158

E(X ) � 12.1  and  V(X ) �
0.052

10
� 0.00025

X
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The normal approximation for depends on the sample size n. Figure 3-43a shows the
distribution obtained for throws of a single, six-sided true die. The probabilities are equal
(1�6) for all the values obtained, 1, 2, 3, 4, 5, or 6. Figure 3-43b shows the distribution of the
average score obtained when tossing 2 dice, and Figs. 3-43c, 3-43d, and 3-43e show the dis-
tributions of average scores obtained when tossing 3, 5, and 10 dice, respectively. Notice that,
while the distribution of a single die is relatively far from normal, the distribution of averages
is approximated reasonably well by the normal distribution for sample sizes as small as 5.
(The dice throw distributions are discrete, however, whereas the normal is continuous.)
Although the central limit theorem will work well for small samples (n � 4, 5) in most
cases—particularly where the population is continuous, unimodal, and symmetric—larger

X

If X1, X2, . . . , Xn is a random sample of size n taken from a population with mean �
and variance �2, and if is the sample mean, the limiting form of the distribution of

(3-39)

as n → �, is the standard normal distribution.

Z �
X 	 �

��1n

X

Central Limit
Theorem

Figure 3-43 Distributions of average
scores from throwing dice. [Adapted
with permission from Box, Hunter, and
Hunter (1978).]

x1 2 3 4 5 6

(a) One die

x1 2 3 4 5 6

(b) Two dice

x1 2 3 4 5 6

(c) Three dice

x1 2 3 4 5 6

(d) Five dice

x1 2 3 4 5 6

(e) Ten dice
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samples will be required in other situations, depending on the shape of the population. In
many cases of practical interest, if n � 30, the normal approximation will be satisfactory 
regardless of the shape of the population. If 4 � n, the central limit theorem will work if the
distribution of the population is not severely nonnormal.

EXAMPLE 3-48 An electronics company manufactures resistors that have a mean resistance of and a standard 
deviation of . Find the probability that a random sample of n � 25 resistors will have an average
resistance less than .

Note that the sampling distribution of is approximately normal, with mean and a
standard deviation of

Therefore, the desired probability corresponds to the shaded area in Fig. 3-44. Standardizing the point
in Fig. 3-44, we find that

and, therefore,

■P(X 6 95) � P(Z 6 	2.5) � 0.0062

z �
95 	 100

2
� 	2.5

X � 95

�X �
�

1n
�

10

125
� 2

�X � 100 �X
95 �

10 �
100 �

EXERCISES FOR SECTION 3-13

Average
Resistance

x10095

X
 = 2σ

Figure 3-44 Probability density func-
tion of average resistance.

3-195. Given that X is normally distributed with mean 100
and standard deviation 9, compute the following for n � 16.

(a) Mean and variance of 
(b)
(c)
(d)

3-196. Given that X is normally distributed with mean 50
and standard deviation 4, compute the following for n � 25.

(a) Mean and variance of 
(b)
(c)
(d) P(49 � X � 51.5)

P(X 7 52)
P(X � 49)

X

P(96 � X � 102)
P(X 7 103)
P(X � 98)

X

3-197. Assume a sample of 40 observations is drawn from a
population with mean 20 and variance 2. Compute the following.

(a) Mean and variance of 
(c)
(d)
(e)

3-198. Intravenous fluid bags are filled by an automated
filling machine. Assume that the fill volumes of the bags are
independent, normal random variables with a standard devia-
tion of 0.08 fluid ounce.

(a) What is the standard deviation of the average fill volume
of 20 bags?

P(19 � X � 21.5)
P(X 7 22)
P(X � 19)

X

Animation 7: Understanding Sampling Distributions and the Central Limit Theorem
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(b) If the mean fill volume of the machine is 6.16 ounces,
what is the probability that the average fill volume of 20
bags is below 5.95 ounces?

(c) What should the mean fill volume equal in order that the
probability that the average of 20 bags is below 6 ounces
is 0.001?

3-199. The photoresist thickness in semiconductor manufac-
turing has a mean of 10 micrometers and a standard deviation of
1 micrometer. Assume that the thickness is normally distributed
and that the thicknesses of different wafers are independent.

(a) Determine the probability that the average thickness of 10
wafers is either greater than 11 or less than 9 micrometers.

(b) Determine the number of wafers that need to be measured
such that the probability that the average thickness ex-
ceeds 11 micrometers is 0.01.

3-200. The time to complete a manual task in a manufacturing
operation is considered a normally distributed random variable
with mean of 0.50 minute and a standard deviation of 0.05
minute. Find the probability that the average time to complete the
manual task, after 49 repetitions, is less than 0.465 minute.

3-201. A synthetic fiber used in manufacturing carpet has
tensile strength that is normally distributed with mean 75.5 psi
and standard deviation 3.5 psi. Find the probability that a ran-
dom sample of n � 6 fiber specimens will have sample mean
tensile strength that exceeds 75.75 psi.

3-202. The compressive strength of concrete has a mean of
2500 psi and a standard deviation of 50 psi. Find the probability
that a random sample of n � 5 specimens will have a sample
mean strength that falls in the interval from 2490 psi to 2510 psi.

3-203. The amount of time that a customer spends waiting at
an airport check-in counter is a random variable with mean 8.2
minutes and standard deviation 1.5 minutes. Suppose that a ran-
dom sample of n � 49 customers is observed. Find the proba-
bility that the average time waiting in line for these customers is

(a) Less than 8 minutes
(b) Between 8 and 9 minutes
(c) Less than 7.5 minutes

3-204. Suppose that X has the following discrete distribution

f (x) � e 1
3,   x � 1, 2, 3

0, otherwise

A random sample of n � 36 is selected from this population.
Approximate the probability that the sample mean is greater
than 2.1 but less than 2.5.

3-205. The viscosity of a fluid can be measured in an 
experiment by dropping a small ball into a calibrated tube
containing the fluid and observing the random variable X, the
time it takes for the ball to drop the measured distance.
Assume that X is normally distributed with a mean of 20 seconds
and a standard deviation of 0.5 second for a particular type of
liquid.

(a) What is the standard deviation of the average time of 40
experiments?

(b) What is the probability that the average time of 40 exper-
iments will exceed 20.1 seconds?

(c) Suppose the experiment is repeated only 20 times. What is
the probability that the average value of X will exceed
20.1 seconds?

(d) Is the probability computed in part (b) greater than or less
than the probability computed in part (c)? Explain why
this inequality occurs.

3-206. A random sample of n � 9 structural elements is
tested for compressive strength. We know that the true mean
compressive strength � � 5500 psi and the standard deviation
is 	 � 100 psi. Find the probability that the sample mean com-
pressive strength exceeds 4985 psi.

3-207. Suppose that the time to prepare a bed at a hospital is
modeled with a random variable with a mean of 20 minutes
and a variance of 16 minutes. Approximate the probabilities of
the following events:

(a) Mean time to prepare 100 beds is less than 21 minutes.
(b) Total time to prepare 100 beds is less than 2200 minutes.

3-208. The mean and standard deviation of the lifetime of a
battery in a portable computer are 3.5 and 1.0 hours, respectively.

(a) Approximate the probability that the mean lifetime of 25
batteries exceeds 3.25 hours.

(b) Approximate the probability that the mean lifetime of 100
batteries exceeds 3.25 hours.

(c) Comment on the why the answers to parts (a) and (b) differ.

SUPPLEMENTAL EXERCISES

3-209. Suppose that f (x) � e
x for 0 � x and f (x) � 0 for 
x � 0. Determine the following probabilities.

(a) P(X � 1.5) (b) P(X � 1.5)
(c) P(1.5 � X � 3) (d) P(X � 3)
(e) P(X � 3)

3-210. Suppose that f (x) � e
x�2 for 0 � x and f (x) � 0 for
x � 0.

(a) Determine x such that P(x � X) � 0.20.
(b) Determine x such that P(X � x) � 0.75.

3-211. The random variable X has the following probability
distribution.

x 2 3 5 8
Probability 0.2 0.4 0.3 0.1
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Determine the following.

(a) P(X � 3) (b) P(X � 2.5)
(c) P(2.7 � X � 5.1) (d) E(X )
(e) V(X )

3-212. A driveshaft will suffer fatigue failure with a mean
time-to-failure of 40,000 hours of use. If it is known that the
probability of failure before 36,000 hours is 0.04 and that the dis-
tribution governing time-to-failure is a normal distribution, what
is the standard deviation of the time-to-failure distribution?

3-213. A standard fluorescent tube has a life length that is
normally distributed with a mean of 7000 hours and a standard
deviation of 1000 hours. A competitor has developed a compact
fluorescent lighting system that will fit into incandescent sockets.
It claims that a new compact tube has a normally distributed life
length with a mean of 7500 hours and a standard deviation of
1200 hours. Which fluorescent tube is more likely to have a life
length greater than 9000 hours? Justify your answer.

3-214. The average life of a certain type of compressor is 
10 years with a standard deviation of 1 year. The manufacturer
replaces free all compressors that fail while under guarantee.
The manufacturer is willing to replace 3% of all compressors
sold. For how many years should the guarantee be in effect?
Assume a normal distribution.

3-215. The probability that a call to an emergency help line
is answered in less than 15 seconds is 0.85. Assume that all
calls are independent.

(a) What is the probability that exactly 7 of 10 calls are 
answered within 15 seconds?

(b) What is the probability that at least 16 of 20 calls are 
answered in less than 15 seconds?

(c) For 50 calls, what is the mean number of calls that are 
answered in less than 15 seconds?

(d) Repeat parts (a)–(c) using the normal approximation.

3-216. The number of messages sent to a computer Web site
is a Poisson random variable with a mean of 5 messages per
hour.

(a) What is the probability that 5 messages are received in 
1 hour?

(b) What is the probability that 10 messages are received in
1.5 hours?

(c) What is the probability that fewer than 2 messages are re-
ceived in  hour?

3-217. Continuation of Exercise 3-216. Let Y be the random
variable defined as the time between messages arriving to the
computer bulletin board.

(a) What is the distribution of Y? What is the mean of Y?
(b) What is the probability that the time between messages

exceeds 15 minutes?
(c) What is the probability that the time between messages is

less than 5 minutes?
(d) Given that 10 minutes have passed without a message 

arriving, what is the probability that there will not be a
message in the next 10 minutes?

3-218. The number of errors in a textbook follows a Poisson
distribution with mean of 0.01 error per page.

(a) What is the probability that there are three or fewer errors
in 100 pages?

(b) What is the probability that there are four or more errors
in 100 pages?

(c) What is the probability that there are three or fewer errors
in 200 pages?

3-219. Continuation of Exercise 3-218. Let Y be the random
variable defined as the number of pages between errors.

(a) What is the distribution of Y? What is the mean of Y?
(b) What is the probability that there are fewer than 100 pages

between errors?
(c) What is the probability that there are no errors in 200 con-

secutive pages?
(d) Given that there are 100 consecutive pages without errors,

what is the probability that there will not be an error in the
next 50 pages?

3-220. Polyelectrolytes are typically used to separate oil and
water in industrial applications. The separation process is 
dependent on controlling the pH. Fifteen pH readings of
wastewater following these processes were recorded. Is it reason-
able to model these data using a normal distribution?

6.2 6.5 7.6 7.7 7.1 7.1 7.9 8.4
7.0 7.3 6.8 7.6 8.0 7.1 7.0

3-221. The lifetimes of six major components in a copier
are independent exponential random variables with means 
of 8000, 10,000, 10,000, 20,000, 20,000, and 25,000 hours, 
respectively.

(a) What is the probability that the lifetimes of all the compo-
nents exceed 5000 hours?

(b) What is the probability that none of the components has a
lifetime that exceeds 5000 hours?

(c) What is the probability that the lifetimes of all the compo-
nents are less than 3000 hours?

3-222. A random sample of 36 observations has been
drawn. Find the probability that the sample mean is in the 
interval 47 � X � 53 for each of the following population dis-
tributions and population parameter values.

(a) Normal with mean 50 and standard deviation 12
(b) Exponential with mean 50
(c) Poisson with mean 50
(d) Compare the probabilities obtained in parts (a)–(c) and

explain why the probabilities differ.

3-223. From contractual commitments and extensive past
laboratory testing, we know that compressive strength mea-
surements are normally distributed with the true mean com-
pressive strength � � 5500 psi and standard deviation 	 �
100 psi. A random sample of structural elements is tested for
compressive strength at the customer’s receiving location.

(a) What is the standard deviation of the sampling distribu-
tion of the sample mean for this problem if n � 9?
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(b) What is the standard deviation of the sampling distribu-
tion of the sample mean for this problem if n � 20?

(c) Compare your results of parts (a) and (b), and comment
on why they are the same or different.

3-224. The weight of adobe bricks for construction is nor-
mally distributed with a mean of 3 pounds and a standard 
de-viation of 0.25 pound. Assume that the weights of the
bricks are independent and that a random sample of 25 bricks is
chosen. What is the probability that the mean weight of the
sample is less than 2.95 pounds?

3-225. A disk drive assembly consists of one hard disk and
spacers on each side, as shown in Fig. 3-45. The height of the
top spacer, W, is normally distributed with mean 120 millime-
ters and standard deviation 0.5 millimeter; the height of the
disk, X, is normally distributed with mean 20 millimeters and
standard deviation 0.1 millimeter; and the height of the bottom
spacer, Y, is normally distributed with mean 100 millimeters
and standard deviation 0.4 millimeter.

(a) What are the distribution, the mean, and the variance of
the height of the stack?

(b) Assume that the stack must fit into a space with a height of
242 millimeters. What is the probability that the stack
height will exceed the space height?

(a) What is the probability that the weight of an assembly 
exceeds 29.5 ounces?

(b) What is the probability that the mean weight of eight inde-
pendent assemblies exceeds 29 ounces?

3-228. A bearing assembly contains 10 bearings. The bearing
diameters are assumed to be independent and normally distrib-
uted with a mean of 1.5 millimeters and a standard deviation of
0.025 millimeter. What is the probability that the maximum 
diameter bearing in the assembly exceeds 1.6 millimeters?

3-229. A process is said to be of six-sigma quality if the
process mean is at least six standard deviations from the nearest
specification. Assume a normally distributed measurement.

(a) If a process mean is centered between the upper and lower
specifications at a distance of six standard deviations from
each, what is the probability that a product does not meet
specifications? Using the result that 0.000001 equals one
part per million, express the answer in parts per million.

(b) Because it is difficult to maintain a process mean centered
between the specifications, the probability of a product not
meeting specifications is often calculated after assuming the
process shifts. If the process mean positioned as in part 
(a) shifts upward by 1.5 standard deviations, what is the
probability that a product does not meet specifications?
Express the answer in parts per million.

3-230. Continuation of Exercise 3-81. Recall that it was 
determined that a normal distribution adequately fit the internal
pressure strength data. Use this distribution and suppose that
the sample mean of 206.04 and standard deviation of 11.57 are
used to estimate the population parameters. Estimate the fol-
lowing probabilities.

(a) What is the probability that the internal pressure strength
measurement will be between 210 and 220 psi?

(b) What is the probability that the internal pressure strength
measurement will exceed 228 psi?

(c) Find x such that P(X � x) � 0.02, where X is the internal
pressure strength random variable.

3-231. Continuation of Exercise 3-82. Recall that it was 
determined that a normal distribution adequately fit the dimen-
sional measurements for parts from two different machines.
Using this distribution, suppose that s1 � 2.28,

and s2 � 7.58 are used to estimate the population
parameters. Estimate the following probabilities. Assume that
the engineering specifications indicate that acceptable parts
measure between 96 and 104.

(a) What is the probability that machine 1 produces accept-
able parts?

(b) What is the probability that machine 2 produces accept-
able parts?

(c) Use your answers from parts (a) and (b) to determine
which machine is preferable.

(d) Recall that the data reported in Exercise 3-83 were a result
of a process engineer making adjustments to machine 2.
Use the new sample mean 105.39 and sample standard 

x2 � 100.11,
x1 � 100.27,

Figure 3-45 Figure for Exercise 3-225.

W

Y

X

3-226. The time for an automated system in a warehouse to
locate a part is normally distributed with mean 45 seconds and
standard deviation 30 seconds. Suppose that independent re-
quests are made for 10 parts.

(a) What is the probability that the average time to locate 10
parts exceeds 60 seconds?

(b) What is the probability that the total time to locate 10
parts exceeds 600 seconds?

3-227. A mechanical assembly used in an automobile engine
contains four major components. The weights of the components
are independent and normally distributed with the following
means and standard deviations (in ounces).

Standard
Component Mean Deviation

Left case 4 0.4

Right case 5.5 0.5

Bearing assembly 10 0.2

Bolt assembly 8 0.5

  c03RandomVariablesandProbabilityDistributions.qxd  9/21/10  9:29 AM  Page 143



144 CHAPTER 3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

deviation 2.08 to estimate the population parameters.
What is the probability that the newly adjusted machine 
2 will produce acceptable parts? Did adjusting machine 
2 improve its overall performance?

3-232. Continuation of Exercise 2-1.

(a) Plot the data on normal probability paper. Does concen-
tration appear to have a normal distribution?

(b) Suppose it has been determined that the largest observa-
tion, 68.7, was suspected to be an outlier. Consequently, it
can be removed from the data set. Does this improve the fit
of the normal distribution to the data?

3-233. Continuation of Exercise 2-2.

(a) Plot the data on normal probability paper. Do these data
appear to have a normal distribution?

(b) Remove the largest observation from the data set. Does
this improve the fit of the normal distribution to the data?

3-234. The weight of a certain type of brick has an expecta-
tion of 1.12 kilograms with a variance of 0.0009 kilogram. How
many bricks would need to be selected so that their average
weight has a standard deviation of no more than 0.005 kilogram?

3-235. The thickness of glass sheets produced by a certain
process are normally distributed with a mean of � � 3.00 milli-
meters and a standard deviation of � � 0.12 millimeters. What
is the value of c for which there is a 99% probability that a glass
sheet has a thickness within the interval [3.00 	 c, 3.00 � c]?

3-236. The weights of bags filled by a machine are normally
distributed with standard deviation 0.05 kilogram and mean
that can be set by the operator. At what level should the mean
be set if it is required that only 1% of the bags weigh less than
10 kilograms?

3-237. The research and development team of a medical de-
vice manufacturer is designing a new diagnostic test strip to
detect the breath alcohol level. The materials used to make the
device are listed here together with their mean and standard
deviation of their thickness.

The materials are stacked as shown in the following figure.
Assuming that the thickness of each material is independent
and normally distributed, answer the following questions.

(a) Using the random variables W, X, Y, and Z, give the equa-
tion representing the thickness of the layered strip.

Protective layer 1

Protective layer 2

Absorbant pad

Reaction layer

(b) What is the mean thickness of the strip?
(c) What is the variance of the thickness of the strip?
(d) What is the probability that the thickness of the strip will

be greater than 75 millimeters?

3-238. Overheating is a major problem in microprocessor
operation. After much testing, it has been determined that the
operating temperature is normally distributed with a mean of
150 degrees and a standard deviation of 7 degrees. The processor
will malfunction at 165 degrees.

(a) What is the probability of a malfunction?
(b) A newer fan useful for cooling the processor is being con-

sidered. With the new fan, the operating temperature has a
mean of 144 degrees and a standard deviation of 9 degrees.
What is the probability of a malfunction with the new fan?

(c) Suppose that all processors are sold for $1200. The cost of
the original system is $1000, whereas the cost with the new
fan is $1050. Assume that 1000 units are planned to be pro-
duced and sold. Also assume that there is a money-back
guarantee for all systems that malfunction. Under these as-
sumptions, which system will generate the most revenue?

3-239. Manufacturers need to determine that each medical
linear accelerator works within proper parameters before ship-
ping to hospitals. An individual machine is known to have a
probability of failure during initial testing of 0.10. Eight accel-
erators are tested.

(a) What is the probability that at most two fail?
(b) What is the probability that none fails?

3-240. A keyboard for a personal computer is known to
have a mean life of 5 years. The life of the keyboard can be
modeled using an exponential distribution.

(a) What is the probability that a keyboard will have a life be-
tween 2 and 4 years?

(b) What is the probability that the keyboard will still func-
tion after 1 year?

(c) If a warranty is set at 6 months, what is the probability that
a keyboard will need to replaced under warranty?

3-241. A cartridge company develops ink cartridges for a
printer company and supplies both the ink and the cartridge.
The following is the probability mass function of the number
of cartridges over the life of the printer.

x 5 6 7 8 9
f (x) 0.04 0.19 0.61 0.13 0.03

(a) What is the expected number of cartridges used?
(b) What is the probability that more than six cartridges are used?

Mean Thickness Standard Deviation
Material Random Variable m, mm of Thickness s, mm

Protective layer 1 W 10 2

Absorbant pad X 50 10

Reaction layer Y 5 1

Protective layer 2 Z 8 1 
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(c) What is the probability that 9 out of 10 randomly selected
printers use more than 6 cartridges?

3-242. Consider the following system made up of func-
tional components in parallel and series. The probability that
each component functions is shown in Fig. 3-46.

(a) What is the probability that the system operates?
(b) What is the probability that the system fails due to the com-

ponents in series? Assume parallel components do not fail.
(c) What is the probability that the system fails due to the com-

ponents in parallel? Assume series components do not fail.
(d) Compute the probability that the system fails using the

following formula:

(e) Describe in words the meaning of each of the terms in the
formula in part (d).

(f ) Use part (a) to compute the probability that the system
fails.

(g) Improve the probability that component C1 functions to a
value of 0.95 and recompute parts (a), (b), (c), and (f ).

(h) Alternatively, do not change the original probability 
associated with C1; rather, increase the probability that
component C2 functions to a value of 0.95 and recompute
parts (a), (b), (c), and (f ).

(i) Based on your answers in parts (a) and (b) of this exercise,
comment on whether you would recommend increasing
the reliability of a series component or a parallel compo-
nent to increase overall system reliability.

P(C¿2) � P(C¿3)� [1 	 P(C1)P(C4) ] �

� P(C1) � P(C4) � P(C¿2) � P(C¿3)

[1 	 P(C1) � P(C4) ] � [1 	 P(C¿2)P(C¿4) ]

from part (b) to estimate the proportion of acceptable yarn.
(Hint: Be sure to transform the lower specification limit,
200, prior to computing the proportion. Suppose that the
sample mean and sample standard deviation are used to 
estimate the population parameters in your calculations.)

3-245. Consider the following data, which represent the
number of hours of operation of a surveillance camera until
failure:

246,785 183,424 1060 23,310 921 35,659
127,015 10,649 13,859 53,731 10,763 1456
189,880 2414 21,414 411,884 29,644 1473

(a) Perform a normal probability plot and comment on the 
adequacy of the fit.

(b) Transform the data using logarithms, that is, let y* (new
value) � log y (old value). Perform a normal probability
plot and comment on the adequacy of the fit.

(c) The manufacturer of the cameras is interested in defining
a warranty limit such that not more than 2% of the cam-
eras will need to be replaced. Use your fitted model from
part (b) to propose a warranty limit on the time to failure
of the number of hours of a random surveillance camera.
(Hint: Be sure to give the warranty limit in the original
units of hours. Suppose that the sample mean and sample
standard deviation are used to estimate the population 
parameters in your calculations.)

3-246. Consider the following data, which represent the life
of roller bearings (in hours).

7203 3917 7476 5410 7891 10,033
4484 12,539 2933 16,710 10,702 16,122

13,295 12,653 5610 6466 5263 2,504
9098 7759

(a) Perform a Weibull probability plot and determine the ade-
quacy of the fit.

(b) Using the estimated shape parameter � 2.2 and the esti-
mated scale parameter 9525, estimate the probability that
a bearing lasts at least 7500 hours.

(c) If five bearings are in use and failures occur independ-
ently, what is the probability that all five bearings last at
least 7500 hours?

3-247. Consider the following data that represent the life of
packaged magnetic disks exposed to corrosive gases (in
hours):

4, 86, 335, 746, 80, 1510, 195, 562, 137, 1574, 7600, 4394, 4,
98, 1196, 15, 934, 11

(a) Perform a Weibull probability plot and determine the ade-
quacy of the fit.

(b) Using the estimated shape parameter � 0.53 and the esti-
mated scale parameter 604, estimate the probability that a
disk fails before 150 hours.

(c) If a warranty is planned to cover no more than 10% of the
manufactured disks, at what value should the warranty
level be set?

C1
0.90

C2
0.90

C3
0.95

C4
0.95

Figure 3-46 Figure for Exercise 3-240.

3-243. Show that the gamma density function integrates to 1.

3-244. To illustrate the effect of a log transformation, con-
sider the following data, which represent cycles to failure for a
yarn product:

675, 3650, 175, 1150, 290, 2000, 100, 375

(a) Using a normal probability plot, comment on the ade-
quacy of the fit.

(b) Transform the data using logarithms, that is, let y* (new
value) � log y (old value). Perform a normal probability
plot on the transformed data and comment on the ade-
quacy of the fit.

(c) Engineering has specified that acceptable yarn strength
should exceed 200 cycles prior to failure. Use your results
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3-248. Nonuniqueness of Probability Models. It is possible
to fit more than one model to a set of data. Consider the life data
given in Exercise 3-247.

(a) Transform the data using logarithms; that is, let y* (new
value) � log y (old value). Perform a normal probability
plot on the transformed data and comment on the adequacy
of the fit.

(b) Use the fitted normal distribution from part (a) to estimate
the probability that the disk fails before 150 hours. Compare
your results with your answer in part (b) of Exercise 3-247.

3-249. Cholesterol is a fatty substance that is an important
part of the outer lining (membrane) of cells in the body of 
animals. Suppose that the mean and standard deviation for a
population of individuals are 180 mg/dl and 20 mg/dl, respec-
tively. Samples are obtained from 25 individuals, and these are
considered to be independent.

(a) What is the probability that the average of the 25 mea-
surements exceeds 185 mg/dl?

(b) Determine symmetric limits around 180 such that the proba-
bility that the sample average is within the limits equals 0.95.

3-250. Arthroscopic meniscal repair was successful 70% of
the time for tears greater than 25 millimeters (in 50 surgeries)
and 76% of the time for shorter tears (in 100 surgeries).

(a) Describe the random variable used in these probability
statements.

(b) Is the random variable continuous or discrete?
(c) Explain why these probabilities do not add to 1.

3-251. The lifetime of a mechanical assembly in a vibration
test is exponentially distributed with a mean of 400 hours.

(a) What is the probability that an assembly on test fails in
less than 100 hours?

(b) What is the probability that an assembly operates for more
than 500 hours before failure?

(c) If an assembly has been on test for 400 hours without a fail-
ure, what is the probability of a failure in the next 100 hours?

3-252. An article in Knee Surgery, Sports Traumatology,
Arthroscopy, “Effect of Provider Volume on Resource Utilization
for Surgical Procedures” (Vol. 13, 2005, pp. 273–279), showed a
mean time of 129 minutes and a standard deviation of 14 minutes
for ACL reconstruction surgery at high-volume hospitals (with
more than 300 such surgeries per year).

(a) What is the probability that your ACL surgery at a high-
volume hospital is completed in less than 100 minutes?

(b) What is the probability that your surgery time is greater
than two standard deviations above the mean?

(c) The probability of a completed ACL surgery at a high-
volume hospital is equal to 95% at what time?

3-253. Given the pdf for determine

the following:
(a)
(b)
(c) x such that 
(d) E(X)
(e) V(X)

3-254. Given the pdf for determine
the following:

(a)
(b)
(c)
(d) x such that 

3-255. Let X denote the number of major cracks in a mile of
roadway with the following probabilities: 

Determine
the following probabilities:

(a)
(b) At least one crack
(c) Two or more cracks
(d) More than zero but less than three cracks

3-256. Suppose that time to prepare a bed at a hospital is
modeled with an exponential distribution with � � 3 beds�hour.
Determine the following:

(a) Probability that a bed is prepared in less than 10 minutes
(b) Probability that the time to prepare a bed is more than 30

minutes
(c) Probability that each of 10 patients have the bed prepared

in less than 30 minutes. Assume independence of the
times to prepare the beds.

(d) Probability that at leat 8 of 10 patients have the bed pre-
pared in less than 30 minutes. Assume independence of
the times to prepare the beds.

P(X � 1)

P(X � 2) � 0.1P(X 7 2) � 0.4.P(X � 1) � 0.1,
P(X � 0) � 0.4,

P(X 6 x) � 0.95
P(1 � X 6 2)
P(X 7 2)
P(X 6 1)

0 � x,f (x) � exp (
x)

P(X 6 x) � 0.95
P(X � 2)
P(X � 1)

0 � x � 3,f (x) �
1

9
x2
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TEAM EXERCISES

3-257. Using the data set that you found or collected
in the first team exercise of Chapter 2, or another data set
of interest, answer the following questions:

(a) Is a continuous or discrete distribution model more
appropriate to model your data? Explain.

(b) You have studied the normal, exponential, Poisson,
and binomial distributions in this chapter. Based on
your recommendation in part (a), attempt to fit at least
one model to your data set. Report on your results.

3-258. Computer software can be used to simulate
data from a normal distribution. Use a package such as
Minitab to simulate dimensions for parts A, B, and C in
Fig. 3-42 of Exercise 3-181.

(a) Simulate 500 assemblies from simulated data for
parts A, B, and C and calculate the length of gap D
for each.

(b) Summarize the data for gap D with a histogram and
relevant summary statistics.

(c) Compare your simulated results with those obtained
in Exercise 3-181.

(d) Describe a problem for which simulation is a good
method of analysis.

3-259. Consider the data on weekly waste (percent) as
reported for five suppliers of the Levi-Strauss clothing
plant in Albuquerque and reported on the Web site
http://lib.stat.cmu.edu/DASL/Stories/wasterunup.html.

Test each of the data sets for conformance to a nor-
mal probability model using a normal probability plot.
For those that do not pass the test for normality, delete
any outliers (these can be identified using a box plot) and
replot the data. Summarize your findings.

Beta distribution
Binomial distribution
Central limit theorem
Continuity correction
Continuous random

variable
Cumulative distribution

function
Delta method
Discrete random 

variable
Event

Exponential distribution
Gamma distribution
Independence
Joint probability 

distribution
Lognormal distribution
Mean of a random 

variable
Normal approximations

to binomial and
Poisson distributions

Normal distribution

Normal probability plot
Poisson distribution
Poisson process
Probability
Probability density

function
Probability distribution
Probability mass 

function
Probability plots
Propagation of error
Random experiment

Random sample
Random variable
Sampling distribution
Standard deviation of a

random variable
Standard normal 

distribution
Statistic
Variance of a random

variable
Weibull distribution

IMPORTANT TERMS AND CONCEPTS
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4
SPACE SHUTTLE CHALLENGER DISASTER

On January 28, 1986, failure to act on recommendations based on an engineer’s hypothesis led
to the Challenger disaster and the tragic death of seven astronauts. Roger M. Boisjoly, the
principal engineer on joints in the solid rocket boosters, urgently requested that the launch be
delayed. His conclusion, based on extensive data, was that launching at the existing freezing
temperatures could lead to the failure of critical seals in the solid rocket boosters. NASA man-
agement set aside his warnings and, in doing so, tested his hypothesis—for real! Challenger
blasted off and 73 seconds later disintegrated and fell into the sea; there were no survivors.

A commission created to investigate the cause included Richard Feynman, one of the
foremost physicists of his time and a man with a relentless curiosity. That curiosity led to
extensive interviews with engineers and a hypothesis. He hypothesized that the O-rings,
designed to act as seals to prevent leaks in joints of the solid rocket boosters, failed. He pro-
posed that the O-ring material would not have the necessary resiliency at the prevailing freez-
ing temperatures surrounding the shuttle launch vehicle that day. If a seal failed, hot gases
could escape from the solid fuel boosters. Close examination of films of the launch did reveal
a flame impinging on the liquid fuel tank from one booster just before the breakup.

At a famous news conference Dr. Feynman conducted a simple experiment with O-ring
material that confirmed his hypothesis in front of the media. He put a sample of the O-ring
material in a C-clamp to simulate the pressure on the material in the boosters. Then he placed
it into a cup of ice water for a few seconds. When he took it out, he demonstrated that it had
lost its resiliency, a property critical for its purpose. In a classic understatement, he said, 
“I believe that has some significance for our problem.”

Testing hypotheses is a centerpiece of engineering and scientific problem solving.

Decision Making
for a Single Sample

CHAPTER OUTLINE

4-1 STATISTICAL INFERENCE

4-2 POINT ESTIMATION

4-3 HYPOTHESIS TESTING

4-3.1 Statistical Hypotheses

4-3.2 Testing Statistical Hypotheses

4-3.3 P-Values in Hypothesis Testing

4-3.4 One-Sided and Two-Sided Hypotheses

4-3.5 General Procedure for 
Hypothesis Testing

4-4 INFERENCE ON THE MEAN OF A 
POPULATION, VARIANCE KNOWN

4-4.1 Hypothesis Testing on the Mean

4-4.2 Type II Error and Choice of Sample Size

4-4.3 Large-Sample Test

4-4.4 Some Practical Comments on Hypothesis Testing

4-4.5 Confidence Interval on the Mean

4-4.6 General Method for Deriving a 
Confidence Interval
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4-5 INFERENCE ON THE MEAN OF 
A POPULATION, VARIANCE UNKNOWN

4-5.1 Hypothesis Testing on the Mean

4-5.2 Type II Error and Choice of 
Sample Size

4-5.3 Confidence Interval on the Mean

4-6 INFERENCE ON THE VARIANCE OF 
A NORMAL POPULATION

4-6.1 Hypothesis Testing on the 
Variance of a Normal Population

4-6.2 Confidence Interval on the 
Variance of a Normal Population

4-7 INFERENCE ON A POPULATION PROPORTION

4-7.1 Hypothesis Testing on a Binomial Proportion

4-7.2 Type II Error and Choice of Sample Size

4-7.3 Confidence Interval on a Binomial Proportion

4-8 OTHER INTERVAL ESTIMATES 
FOR A SINGLE SAMPLE

4-8.1 Prediction Interval

4-8.2 Tolerance Intervals for a Normal Distribution

4-9 SUMMARY TABLES OF INFERENCE 
PROCEDURES FOR A SINGLE SAMPLE

4-10 TESTING FOR GOODNESS OF FIT

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:

1. Perform hypothesis tests and construct confidence intervals on the mean of a normal distribution.

2. Perform hypothesis tests and construct confidence intervals on the variance of a normal distribution.

3. Perform hypothesis tests and construct confidence intervals on a population proportion.

4. Compute power and type II error, and make sample-size selection decisions for hypothesis tests and confidence
intervals.

5. Explain and use the relationship between confidence intervals and hypothesis tests.

6. Construct a prediction interval for a future observation.

7. Construct a tolerance interval for a normal population.

8. Explain the differences among confidence intervals, prediction intervals, and tolerance intervals.

9. Use the chi-square goodness-of-fit test to check distributional assumptions.

4-1 STATISTICAL INFERENCE

The field of statistical inference consists of those methods used to make decisions or to draw
conclusions about a population. These methods utilize the information contained in a
random sample from the population in drawing conclusions. Figure 4-1 illustrates the
relationship between the population and the sample. This chapter begins our study of the
statistical methods used for inference and decision making.

μ

Population

 , population averageμ
 , population standard

deviation
σ

Sample

(x1, x2,…, xn)

Histogram

x xX

x, sample average
s, sample standard

deviation

Figure 4-1 Relationship between a population and a sample.
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Statistical inference may be divided into two major areas: parameter estimation and
hypothesis testing. As an example of a parameter estimation problem, suppose that a struc-
tural engineer is analyzing the tensile strength of a component used in an automobile chassis.
Because variability in tensile strength is naturally present between the individual components
because of differences in raw material batches, manufacturing processes, and measurement
procedures (for example), the engineer is interested in estimating the mean tensile strength of
the components. Knowledge of the statistical sampling properties of the estimator used would
enable the engineer to establish the precision of the estimate.

Now consider a situation in which two different reaction temperatures can be used in a
chemical process—say, t1 and t2. The engineer conjectures that t1 results in higher yields than
does t2. Statistical hypothesis testing is a framework for solving problems of this type. In this
case, the hypothesis would be that the mean yield using temperature t1 is greater than the mean
yield using temperature t2. Note that there is no emphasis on estimating yields; instead, the
focus is on drawing conclusions about a stated hypothesis.

This chapter begins by discussing methods for estimating parameters. Then we introduce the
basic principles of hypothesis testing. Once these statistical fundamentals have been presented, we
will apply them to several situations that arise frequently in engineering practice. These include
inference on the mean of a population, the variance of a population, and a population proportion.

4-2 POINT ESTIMATION

One very important application of statisitics is in obtaining point estimates of parameters
such as the population mean and the population variance. When discussing inference
problems, it is convenient to have a general symbol to represent the parameter of interest. We
will use the Greek symbol � (theta) to represent the parameter. The objective of point estima-
tion is to select a single number, based on the data in a random sample, that is the most
plausible value for �. A numerical value of a sample statistic will be used as the point estimate.

For example, suppose that the random variable X is normally distributed with unknown
mean �. The sample mean is a point estimator of the unknown population mean �; that is,

. After the sample has been selected, the numerical value is the point estimate of �.
Thus, if x1 � 25, x2 � 30, x3 � 29, and x4 � 31, the point estimate of � is

Similarly, if the population variance �2 is also unknown, a point estimator for �2 is the sample
variance S 2, and the numerical value s2 � 6.9 calculated from the sample data is called the
point estimate of �2.

In general, if X is a random variable with probability distribution f (x), characterized by
the unknown parameter �, and if X1, X2, . . . , Xn is a random sample of size n from f (x), the
statistic is called a point estimator of �. Here h is just a function of 
observations in the random sample. Note that is a random variable because it is a func-
tion of random variables (the sample observations). After the sample has been selected, 
takes on a particular numerical value called the point estimate of �.�̂

®̂

®̂

®̂ � h(X1, X2, . . . , Xn)

x �
25 � 30 � 29 � 31

4
� 28.75

x�̂ � X
�

Sample Mean

Point Estimator

A point estimate of some population parameter � is a single numerical value of a
statistic .®̂

�̂

Point
Estimate
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Estimation problems occur frequently in engineering. We often need to estimate

● The mean � of a single population

● The variance �2 (or standard deviation �) of a single population

● The proportion p of items in a population that belong to a class of interest

● The difference in means of two populations, �1 � �2

● The difference in two population proportions, p1 � p2

Reasonable point estimates of these parameters are as follows:

● For �, the estimate is the sample mean.

● For �2, the estimate is the sample variance.

● For p, the estimate is the sample proportion, where x is the number of items
in a random sample of size n that belong to the class of interest.

● For �1 � �2, the estimate is the difference between the sample
means of two independent random samples.

● For p1 � p2, the estimate is the difference between two sample proportions
computed from two independent random samples.

The following display summarizes the relationship between the unknown parameters and
their typical associated statistics and point estimates.

p̂1 � p̂2,

�̂1 � �̂2 � x1 � x2,

p̂ � x/n,

�̂2 � s2,

�̂ � x,

Unknown Point
Parameter Statistic Estimate

p

p̂1 � p̂2
P̂1 � P̂2 �

X1

n1
�

X2

n2p1 � p2

x1 � x2X1 � X2 �
� X1i

n1
�

� X2i

n2
�1 � �2

p̂P̂ �
X

n

s2S 2 �
�(Xi � X )2

n � 1
�2

xX �
� Xi

n
�

�̂®̂�

We may have several different choices for the point estimator of a parameter. For exam-
ple, if we wish to estimate the mean of a population, we might consider the sample mean,
the sample median, or perhaps the average of the smallest and largest observations in the
sample as point estimators. To decide which point estimator of a particular parameter is the
best one to use, we need to examine their statistical properties and develop some criteria for
comparing estimators.

An estimator should be “close” in some sense to the true value of the unknown parameter.
Formally, we say that is an unbiased estimator of � if the expected value of is equal to �.®̂®̂
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EXAMPLE 4-1 Suppose that X is a random variable with mean � and variance �2. Let X1, X2, . . . , Xn be a random sam-
ple of size n from the population represented by X. Show that the sample mean and sample variance
S2 are unbiased estimators of � and �2, respectively.

Solution. First consider the sample mean. In Chapter 3, we indicated that Therefore, the
sample mean is an unbiased estimator of the population mean �.

Now consider the sample variance. We have

The last equality follows from equation 3-28. However, because and
we have

� �2

Therefore, the sample variance S 2 is an unbiased estimator of the population variance �2. However, we
can show that the sample standard deviation S is a biased estimator of the population standard deviation.
For large samples this bias is negligible. ■

 �
1

n � 1
 (n�2 � n�2 � n�2 � �2)

 E (S2) �
1

n � 1
 c a

n

i�1

 (�2 � �2) � n a�2 �
�2

n
b d

E (X 2) � �2 � �2�n,
E (X 2

i ) � �2 � �2

 �
1

n � 1
 c a

n

i�1

 E(X 2
i ) � nE(X 2) d

 �
1

n � 1
 E a

n

i�1

 (X2
i � X 2 � 2XXi) �

1

n � 1
 E aa

n

i�1

 X 2
i � nX 2b

 E (S 2) � E £ a
n

i�1

(Xi � X )2

n � 1
§ �

1

n � 1
 Ea

n

i�1

 (Xi � X )2

X
E(X ) � �.

X
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This is equivalent to saying that the mean of the probability distribution of (or the mean of
the sampling distribution of ) is equal to �.®̂

®̂

The point estimator is an unbiased estimator for the parameter � if

(4-1)

If the estimator is not unbiased, then the difference

(4-2)

is called the bias of the estimator .®̂

E(®̂ ) � �

E(®̂ ) � �

®̂

Unbiased
Estimator

When an estimator is unbiased, then ; that is, the bias is zero.E(®̂) � � � 0

Unbiased
Estimators
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Sometimes there are several unbiased estimators of the sample population parameter.
For example, suppose we take a random sample of size n � 10 from a normal population
and obtain the data x1 � 12.8, x2 � 9.4, x3 � 8.7, x4 � 11.6, x5 � 13.1, x6 � 9.8, x7 � 14.1,
x8 � 8.5, x9 � 12.1, x10 � 10.3. Now the sample mean is

The sample median is

and a single observation from this normal population is, say, x1 � 12.8.
We can show that all of these values result from unbiased estimators of �. Because there is

not a unique unbiased estimator, we cannot rely on the property of unbiasedness alone to select
our estimator. We need a method to select among unbiased estimators.

Suppose that and are unbiased estimators of �. This indicates that the distribution
of each estimator is centered at the true value of �. However, the variances of these distribu-
tions may be different. Figure 4-2 illustrates the situation. Because has a smaller variance
than the estimator is more likely to produce an estimate close to the true value �. A
logical principle of estimation, when selecting among several estimators, is to choose the
estimator that has minimum variance.

®̂1®̂2,
®̂1

®̂2®̂1

x
&

�
10.3 � 11.6

2
� 10.95

x �
12.8 � 9.4 � 8.7 � 11.6 � 13.1 � 9.8 � 14.1 � 8.5 � 12.1 � 10.3

10
� 11.04

θ

Distribution of    1Θ̂

Distribution of    2Θ̂

Figure 4-2 The sampling distributions of two
unbiased estimators, and .®̂2®̂1

Sample Mean versus
Sample Median

If we consider all unbiased estimators of �, the one with the smallest variance is
called the minimum variance unbiased estimator (MVUE).

Minimum
Variance
Unbiased

Estimator

The concepts of an unbiased estimator and an estimator with minimum variance are
extremely important. There are methods for formally deriving estimates of the parameters
of a probability distribution. One of these methods, the method of maximum likelihood,
produces point estimators that are approximately unbiased and very close to the minimum
variance estimator. For further information on the method of maximum likelihood, see
Montgomery and Runger (2011).

In practice, one must occasionally use a biased estimator (such as S for �). In such cases,
the mean square error of the estimator can be important. The mean square error of an
estimator is the expected squared difference between and �.®̂®̂
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The mean square error can be rewritten as follows:

That is, the mean square error of is equal to the variance of the estimator plus the squared bias.
If is an unbiased estimator of �, the mean square error of is equal to the variance of .

The mean square error is an important criterion for comparing two estimators. Let and
be two estimators of the parameter �, and let MSE( ) and MSE( ) be the mean square

errors of and . Then the relative efficiency of to is defined as

(4-4)

If this relative efficiency is less than 1, we would conclude that is a more efficient estimator
of � than , in the sense that it has smaller mean square error.

Previously, we suggested several estimators of �: the sample average, the sample median,
and a single observation. Because the variance of the sample median is somewhat awkward to
work with, we consider only the sample mean and Note that both and Xi

are unbiased estimators of �; consequently, the mean square error of both estimators is simply
the variance. For the sample mean, we have from equation 3-28.
Therefore, the relative efficiency of Xi to is

Because for sample sizes , we would conclude that the sample mean is a
better estimator of � than a single observation Xi. This is an important point because it illus-
trates why, in general, large samples are preferable to small ones for many kinds of statistics
problems.

The variance of an estimator, can be thought of as the variance of the sampling
distribution of . The square root of this quantity, is usually called the standard
error of the estimator.

2V(®̂),®̂

V(®̂),

n 	 2(1�n) 6 1

MSE(®̂1)

MSE(®̂2)
�

�2�n
�2 �

1

n

X
MSE(X ) � V(X ) � �2�n

X®̂2 � Xi.®̂1 � X

®̂2

®̂1

MSE(®̂1)

MSE(®̂2)

®̂1®̂2®̂2®̂1

®̂2®̂1®̂2

®̂1

®̂®̂®̂

®̂

� V(®̂) � (bias)2

MSE(®̂) � E [ ®̂ � E(®̂)] 2 � [� � E(®̂)] 2
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The mean square error of an estimator of the parameter � is defined as

(4-3)MSE(®̂) � E(®̂ � �)2

®̂

Mean Square
Error of an

Estimator

The standard error of a statistic is the standard deviation of its sampling distribu-
tion. If the standard error involves unknown parameters whose values can be esti-
mated, substitution of these estimates into the standard error results in an estimated
standard error.

Standard
Error

The standard error gives some idea about the precision of estimation. For example, if the
sample mean is used as a point estimator of the population mean �, the standard error of 
measures how precisely estimates �.X

XX
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4-2 POINT ESTIMATION 155

Suppose we are sampling from a normal distribution with mean � and variance �2. Now the
distribution of is normal with mean � and variance and so the standard error of is

If we did not know � but substituted the sample standard deviation S into the above equation,
the estimated standard error of would be

� 

To illustrate this definition, an article in the Journal of Heat Transfer (Trans. ASME, Ses.
C, 96, 1974, p. 59) described a new method of measuring the thermal conductivity of Armco
iron. Using a temperature of 100�F and a power input of 550 watts, the following 10 measure-
ments of thermal conductivity (in Btu/hr-ft-�F) were obtained: 41.60, 41.48, 42.34, 41.95,
41.86, 42.18, 41.72, 42.26, 41.81, 42.04. A point estimate of the mean thermal conductivity at
100�F and 550 watts is the sample mean or

The standard error of the sample mean is and because � is unknown, we may replace
it by the sample standard deviation s � 0.284 to obtain the estimated standard error of as

Note that the standard error is about 0.2% of the sample mean, implying that we have obtained
a relatively precise point estimate of thermal conductivity.

�̂X �
s

1n
�

0.284

110
� 0.0898

X
�X � ��1n,

x � 41.924 Btu/hr-ft-°F

S

1n
�̂X

X

�X �
�

2n

X�2�n,X

Calculating the 
Standard Error

EXERCISES FOR SECTION 4-2

4-1. The Minitab output for a random sample of data is
shown below. Some of the quantities are missing. Compute the
values of the missing quantities.

Variable N Mean SE Mean StDev Variance Min. Max.

X 9 19.96 ? 3.12 ? 15.94 27.16

4-2. The Minitab output for a random sample of data is
shown below. Some of the quantities are missing. Compute the
values of the missing quantities.

Variable N Mean SE Mean StDev Sum

X 16 ? 0.159 ? 399.851

4-3. The Minitab output for a random sample of data is
shown below. Some of the quantities are missing. Compute the
values of the missing quantities.

Sum of 
Variable N Mean Variance Sum Squares Minimum Maximum

X 10 ? ? 109.891 1258.899 6.451 13.878

4-4. The Minitab output for a random sample of data is
shown below. Some of the quantities are missing. Compute the
values of the missing quantities.

Sum of 

Variable N Mean SE Mean Variance Sum Squares Minimum Maximum

X 15 ? ? ? 2977.70 592589.64 181.90 212.62

4-5. Suppose we have a random sample of size 2n from a
population denoted by X, and E(X ) � � and V(X ) � �2.
Let

and

be two estimators of �. Which is the better estimator of �?
Explain your choice.

X2 �
1

na
n

i�1

XiX1 �
1

2na
2n

i�1

Xi
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156 CHAPTER 4 DECISION MAKING FOR A SINGLE SAMPLE

4-6. Let X1, X2, . . . , X9 denote a random sample from a pop-
ulation having mean � and variance �2. Consider the following
estimators of �:

(a) Is either estimator unbiased?
(b) Which estimator is “better”? In what sense is it better?

4-7. Suppose that and are unbiased estimators of the
parameter �. We know that and Which
estimator is better, and in what sense is it better?

4-8. Calculate the relative efficiency of the two estimators in
Exercise 4-6.

4-9. Calculate the relative efficiency of the two estimators in
Exercise 4-7.

4-10. Suppose that and are estimators of the param-
eter �. We know that E(®̂1) � �, E(®̂2) � ��2, V(®̂1) � 10,

®̂2®̂1

V(®̂2) � 4.V(®̂1) � 2
®̂2®̂1

®2
ˆ �

3X1 � X6 	 2X4

2

®̂1 �
X1 	 X2 	 p 	 X9

9

Which estimator is “better”? In what sense is it
better?

4-11. Suppose that , and are estimators of �. We
know that  

and Compare these three esti-
mators. Which do you prefer? Why?

4-12. Let three random samples of sizes n1 � 20, n2 � 10,
and n3 � 8 be taken from a population with mean � and vari-
ance �2. Let S 2

1, S
2
2, and S 2

3 be the sample variances. Show that
is an unbiased estimator of �2.

4-13. (a) Show that is a biased estimator
of �2.

(b) Find the amount of bias in the estimator.
(c) What happens to the bias as the sample size n

increases?

4-14. Let X1, X2, . . . , Xn be a random sample of size n.

(a) Show that is a biased estimator for �2.
(b) Find the amount of bias in this estimator.
(c) What happens to the bias as the sample size n increases?

X 2

a
n

i�1
(Xi � X)2/n

S2 � (20S 2
1 	 10S 2

2 	 8S 2
3)�38

E(®̂3 � �)2 � 6.V(®̂2) � 11,
E( ®̂1) � E (®̂2) � �, E (®̂3) 
 �, V(®̂1) � 16,

®̂3®̂1, ®̂2

V(®̂2) � 4.

4-3 HYPOTHESIS TESTING

4-3.1 Statistical Hypotheses

In the previous section we illustrated how a parameter can be estimated from sample data.
However, many problems in engineering require that we decide whether to accept or reject a
statement about some parameter. The statement is called a hypothesis, and the decision-making
procedure about the hypothesis is called hypothesis testing. This is one of the most useful 
aspects of statistical inference because many types of decision-making problems, tests, or ex-
periments in the engineering world can be formulated as hypothesis testing problems. We like
to think of statistical hypothesis testing as the data analysis stage of a comparative experi-
ment in which the engineer is interested, for example, in comparing the mean of a population
to a specified value. These simple comparative experiments are frequently encountered in
practice and provide a good foundation for the more complex experimental design problems
that we will discuss in Chapter 7. In this chapter we discuss comparative experiments involv-
ing one population, and one area that we focus on is testing hypotheses concerning the param-
eters of the population.

A statistical hypothesis can arise from physical laws, theoretical knowledge, past experience,
or external considerations, such as engineering requirements. We now give a formal definition of
a statistical hypothesis.

A statistical hypothesis is a statement about the parameters of one or more
populations.

Statistical
Hypothesis

Because we use probability distributions to represent populations, a statistical hypothesis
may also be thought of as a statement about the probability distribution of a random variable.
The hypothesis will usually involve one or more parameters of this distribution.
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4-3 HYPOTHESIS TESTING 157

For example, suppose that we are interested in the burning rate of a solid propellant used
to power aircrew escape systems; burning rate is a random variable that can be described by a
probability distribution. Suppose that our interest focuses on the mean burning rate (a param-
eter of this distribution). Specifically, we are interested in deciding whether or not the mean
burning rate is 50 cm/s. We may express this formally as

(4-5)

The statement H0: � � 50 cm/s in equation 4-5 is called the null hypothesis, and the
statement is called the alternative hypothesis. Because the alternative hypothesis
specifies values of � that could be either greater or less than 50 cm/s, it is called a two-sided
alternative hypothesis. In some situations, we may wish to formulate a one-sided alternative
hypothesis,* as in

or (4-6)

It is important to remember that hypotheses are always statements about the population or
distribution under study, not statements about the sample. The value of the population param-
eter specified in the null hypothesis (50 cm/s in the above example) is usually determined in
one of three ways. First, it may result from past experience or knowledge of the process or
even from previous tests or experiments. The objective of hypothesis testing then is usually to
determine whether the parameter value has changed. Second, this value may be determined
from some theory or model regarding the process under study. Here the objective of hypothe-
sis testing is to verify the theory or model. A third situation arises when the value of the
population parameter results from external considerations, such as design or engineering
specifications, or from contractual obligations. In this situation, the usual objective of hypoth-
esis testing is conformance testing.

A procedure leading to a decision about a particular hypothesis is called a test of a
hypothesis. Hypothesis testing procedures rely on using the information in a random sample
from the population of interest. If this information is consistent with the hypothesis, we will con-
clude that the hypothesis is true; however, if this information is inconsistent with the hypothesis,
we will conclude that the hypothesis is false. We emphasize that the truth or falsity of a particu-
lar hypothesis can never be known with certainty unless we can examine the entire population.
This is usually impossible in most practical situations. Therefore, a hypothesis testing procedure
should be developed with the probability of reaching a wrong conclusion in mind.

The structure of hypothesis testing problems is identical in all the applications that we
will consider. The null hypothesis is the hypothesis we wish to test. Rejection of the null
hypothesis always leads to accepting the alternative hypothesis. In our treatment of hypothesis
testing, the null hypothesis will always be stated so that it specifies an exact value of the
parameter (as in the statement H0: � � 50 cm/s in equation 4-5). The alternative hypothesis
will allow the parameter to take on several values (as in the statement inH1: � � 50 cm/s

H1: � 7 50 cm/sH0: � � 50 cm/sH1: � 6 50 cm/sH0: � � 50 cm/s

H1: � � 50

 H1: � � 50 cm/s

 H0: � � 50 cm/s

*There are two models that can be used for the one-sided alternative hypothesis. If H1: � � 50 cm/s (for example),
then we can write the null hypothesis as H0: � � 50 or as H0: � � 50. In the first case, we are restricting � to be equal
to 50 (the null value), and in the second we are allowing the null value to be less than 50. Either way, expression of H0

leads to the same testing and decision-making procedures (i.e., both expressions lead to a procedure based on the
equality � � 50). As the reader becomes more familiar with hypothesis testing procedures, it will become evident that
a decision leading to rejection of the null hypothesis when H0: � � 50 will necessarily also lead to rejection of the
null hypothesis when H0: � � 50. Consequently, we usually write the null hypothesis solely with the equality sign, but
assume that it also represents “�” or “�” as appropriate.
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equation 4-5). Testing the hypothesis involves taking a random sample, computing a test
statistic from the sample data, and then using the test statistic to make a decision about the
null hypothesis.

4-3.2 Testing Statistical Hypotheses

To illustrate the general concepts, consider the propellant burning rate problem introduced
earlier. The null hypothesis is that the mean burning rate is 50 cm/s, and the alternative is that
it is not equal to 50 cm/s. That is, we wish to test

Suppose that a sample of n � 10 specimens is tested and that the sample mean burning
rate is observed. The sample mean is an estimate of the true population mean �. A value of
the sample mean that falls close to the hypothesized value of � � 50 cm/s is evidence that
the true mean � is really 50 cm/s; that is, such evidence supports the null hypothesis H0. On
the other hand, a sample mean that is considerably different from 50 cm/s is evidence in sup-
port of the alternative hypothesis H1. Thus, the sample mean is the test statistic in this case.

The sample mean can take on many different values. Suppose we establish (somewhat
arbitrarily) the decision rule that if we will not reject the null hypothesis H0:
� � 50, and if either or we will reject the null hypothesis in favor of the
alternative hypothesis This situation is illustrated in Fig. 4-3. The values of that
are less than 48.5 and greater than 51.5 constitute the critical region for the test, whereas all
values that are in the interval form a region for which we will fail to reject
the null hypothesis. The boundaries that define the critical regions are called the critical
values. In our example the critical values are 48.5 and 51.5. It is customary to state conclu-
sions relative to the null hypothesis H0. Therefore, we reject H0 in favor of H1 if the test statis-
tic falls in the critical region and fail to reject H0 otherwise.

This decision procedure can lead to either of two wrong conclusions. For example, the true
mean burning rate of the propellant could be equal to 50 cm/s. However, for the randomly 
selected propellant specimens that are tested, we could observe a value of the test statistic that
falls into the critical region. We would then reject the null hypothesis H0 in favor of the alterna-
tive H1 when, in fact, H0 is really true. This type of wrong conclusion is called a type I error.

x

48.5  x  51.5

xH1: � � 50.
x 7 51.5,x 6 48.5
48.5  x  51.5,

x
x

H1: � � 50 cm/s
H0: � � 50 cm/s
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Figure 4-3 Decision criteria for testing 
versus H1: � � 50 cm/s.

H0: � � 50 cm/s

Reject H0 Fail to Reject H0 Reject H0

μ ≠ 50 cm/s μ = 50 cm/s μ ≠ 50 cm/s

48.5 50 51.5 x

Rejecting the null hypothesis H0 when it is true is defined as a type I error.
Type I Error

Now suppose that the true mean burning rate is different from 50 cm/s, yet the sample mean 
does not fall in the critical region. In this case we would fail to reject H0 when it is false. This
type of wrong conclusion is called a type II error.

x
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4-3 HYPOTHESIS TESTING 159

Thus, in testing any statistical hypothesis, four different situations determine whether the final
decision is correct or in error. These situations are presented in Table 4-1.

Because our decision is based on random variables, probabilities can be associated with
the type I and type II errors in Table 4-1. The probability of making a type I error is denoted
by the Greek letter � (alpha). That is,

(4-7)

Sometimes the type I error probability is called the significance level or size of the test. In the
propellant burning rate example, a type I error will occur when either or 
when the true mean burning rate is � � 50 cm/s. Suppose that the standard deviation of burn-
ing rate is � � 2.5 cm/s and that the burning rate has a distribution for which the conditions
of the central limit theorem apply, so if the null hypothesis H0: � � 50 is true, the distribution
of the sample mean is approximately normal with mean � � 50 and standard deviation

The probability of making a type I error (or the significance level
of our test) is equal to the sum of the areas that have been shaded in the tails of the normal dis-
tribution in Fig. 4-4. We may find this probability as

The z-values that correspond to the critical values 48.5 and 51.5 are

z1 �
48.5 � 50

0.79
� �1.90 and z2 �

51.5 � 50

0.79
� 1.90

� � P(X 6 48.5 when � � 50) � P(X 7 51.5 when � � 50)

��1n � 2.5/110 � 0.79.

x 6 48.5x 7 51.5

� � P(type I error) � P(reject H0 when H0 is true)

Failing to reject the null hypothesis when it is false is defined as a type II error.
Type II Error

Table 4-1 Decisions in Hypothesis Testing

Decision H0 Is True H0 Is False

Fail to reject H0 No error Type II error
Reject H0 Type I error No error

Computing the
Significance Level �

α /2 = 0.0287 α /2 = 0.0287

48.5 51.5= 50μ x–

Figure 4-4 The critical region for versus 
and n � 10.� � 50

H1:H0: � � 50
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Therefore,

This implies that 5.74% of all random samples would lead to rejection of the hypothesis H0: � �
50 cm/s when the true mean burning rate is really 50 cm/s, so we would expect to make a type I 
error 5.74% of the time.

From inspection of Fig. 4-4, note that we can reduce � by pushing the critical regions
further into the tails of the distribution. For example, if we make the critical values 48 and 52,
the value of � is

We could also reduce � by increasing the sample size, assuming that the critical values of
48.5 and 51.5 do not change. If n � 16, and using the original
critical region in Fig. 4-3, we find

Therefore,

In evaluating a hypothesis testing procedure, it is also important to examine the probabil-
ity of a type II error, which we will denote by � (beta). That is,

(4-8)

To calculate �, we must have a specific alternative hypothesis; that is, we must have a par-
ticular value of �. For example, suppose that it is important to reject the null hypothesis H0:
� � 50 whenever the mean burning rate � is greater than 52 cm/s or less than 48 cm/s. We
could calculate the probability of a type II error � for the values � � 52 and � � 48 and use
this result to tell us something about how the test procedure would perform. Specifically,
how will the test procedure work if we wish to detect—that is, reject H0—for a mean value
of � � 52 or � � 48? Because of symmetry, it is only necessary to evaluate one of the two
cases—say, find the probability of not rejecting the null hypothesis H0: � � 50 cm/s when
the true mean is � � 52 cm/s.

Figure 4-5 will help us calculate the probability of type II error �. The normal distribution on
the left in Fig. 4-5 is the distribution of the test statistic when the null hypothesis H0: � � 50 is
true (this is what is meant by the expression “under H0: � � 50”), and the normal distribution on
the right is the distribution of when the alternative hypothesis is true and the value of the mean
is 52 (or “under H1: � � 52”). Now a type II error will be committed if the sample mean falls
between 48.5 and 51.5 (the critical region boundaries) when � � 52. As seen in Fig. 4-5, this 
is just the probability that when the true mean is � � 52, or the shaded area 
under the normal distribution on the right. Therefore, referring to Fig. 4-5, we find that

� � P(48.5  X  51.5 when � � 52)

48.5  X  51.5

x
X

X

� � P(type II error) � P(fail to reject H0 when H0 is false)

� � P(Z 6 �2.40) � P(Z 7 2.40) � 0.0082 � 0.0082 � 0.0164

z1 �
48.5 � 50

0.625
� �2.40  and  z2 �

51.5 � 50

0.625
� 2.40

�/1n � 2.5/116 � 0.625,

 � 0.0057 � 0.0057 � 0.0114

 � � PaZ 6

48 � 50

0.79
b � PaZ 7

52 � 50

0.79
b � P(Z 6 �2.53) � P(Z 7 2.53)

 � 0.0287 � 0.0287 � 0.0574

 � � P(Z 6 �1.90) � P(Z 7 1.90)
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Measuring the Effect of
Sample Size

Compute the Probability
of a Type II Error �
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4-3 HYPOTHESIS TESTING 161

The z-values corresponding to 48.5 and 51.5 when � � 52 are

Therefore,

Thus, if we are testing H0: � � 50 against with n � 10 and critical values
48.5 and 51.5, and the true value of the mean is � � 52, the probability that we will fail to 
reject the false null hypothesis is 0.2643. By symmetry, if the true value of the mean is � � 48,
the value of � will also be 0.2643.

The probability of making a type II error � increases rapidly as the true value of �
approaches the hypothesized value. For example, see Fig. 4-6, where the true value of the
mean is � � 50.5 and the hypothesized value is H0: � � 50. The true value of � is very close
to 50, and the value for � is

The z-values corresponding to 48.5 and 51.5 when � � 50.5 are

Therefore,

Thus, the type II error probability is much higher for the case in which the true mean is
50.5 cm/s than for the case in which the mean is 52 cm/s. Of course, in many practical situa-
tions we would not be as concerned with making a type II error if the mean were “close” to the

 � 0.8980 � 0.0057 � 0.8923

 � � P(�2.53  Z  1.27) � P(Z  1.27) � P(Z  �2.53)

z1 �
48.5 � 50.5

0.79
� �2.53  and  z2 �

51.5 � 50.5

0.79
� 1.27

� � P(48.5  X  51.5 when � � 50.5)

H1: � � 50

 � 0.2643 � 0.000 � 0.2643

 � � P(�4.43  Z  �0.63) � P(Z  �0.63) � P(Z  �4.43)

z1 �
48.5 � 52

0.79
� �4.43  and  z2 �

51.5 � 52

0.79
� �0.63
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Figure 4-5 The probability of type II
error when � � 52 and n � 10.
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Figure 4-6 The probability of type II
error when � � 50.5 and n � 10.
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hypothesized value. We would be much more interested in detecting large differences between
the true mean and the value specified in the null hypothesis.

The type II error probability also depends on the sample size n. Suppose that the null
hypothesis is H0: � � 50 cm/s and that the true value of the mean is � � 52. If the sample size
is increased from n � 10 to n � 16, the situation of Fig. 4-7 results. The normal distribution on
the left is the distribution of when the mean � � 50, and the normal distribution on the right
is the distribution of when � � 52. As shown in Fig. 4-7, the type II error probability is

When n � 16, the standard deviation of is , and the z-values
corresponding to 48.5 and 51.5 when � � 52 are

Therefore,

Recall that when n � 10 and � � 52, we found that � � 0.2643; therefore, increasing the sam-
ple size results in a decrease in the probability of type II error.

The results from this section and a few other similar calculations are summarized next:

 � 0.2119 � 0.000 � 0.2119

 � � P(�5.60  Z  �0.80) � P(Z  �0.80) � P(Z  �5.60)

z1 �
48.5 � 52

0.625
� �5.60  and  z2 �

51.5 � 52

0.625
� �0.80

��1n � 2.5�116 � 0.625X

� � P(48.5  X  51.5 when � � 52)

X
X
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Figure 4-7 The probability of type II
error when � � 52 and n � 16.

Fail to Reject Sample
H0 When Size � � at � � 52 � at � � 50.5

10 0.0574 0.2643 0.8923
10 0.0114 0.5000 0.9705
16 0.0164 0.2119 0.9445
16 0.0014 0.5000 0.9918 48 6 x 6 52

48.5 6 x 6 51.5
48 6 x 6 52
48.5 6 x 6 51.5

The results in boxes were not calculated in the text but can be easily verified by the reader.
This display and the preceding discussion reveal four important points:

1. The size of the critical region and, consequently, the probability of a type I error �, can
always be reduced by appropriate selection of the critical values.

Understanding the
Relationship between 
� and �
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4-3 HYPOTHESIS TESTING 163

2. Type I and type II errors are related. A decrease in the probability of one type of 
error always results in an increase in the probability of the other, provided that the
sample size n does not change.

3. An increase in sample size will generally reduce both � and �, provided that the crit-
ical values are held constant.

4. When the null hypothesis is false, � increases as the true value of the parameter 
approaches the value hypothesized in the null hypothesis. The value of � decreases as
the difference between the true mean and the hypothesized value increases.

Generally, the analyst controls the type I error probability � when he or she selects the
critical values. Thus, it is usually easy for the analyst to set the type I error probability at (or
near) any desired value. Because the analyst can directly control the probability of wrongly 
rejecting H0, we always think of rejection of the null hypothesis H0 as a strong conclusion.

Because we can control the probability of making a type I error (or significance level) 
a logical question is what value should be used. The type I error probability is a measure of
risk, specifically, the risk of concluding that the null hypothesis is false when it really is not.
So, the value of should be chosen to reflect the consequences (economic, social, etc.) of in-
correctly rejecting Smaller values of would reflect more serious consequences and larger
values of would be consistent with less severe consequences. This is often hard to do, and
what has evolved in much of scientific and engineering practice is to use the value 
in most situations, unless there is information available that indicates that this is an inappro-
priate choice. In the rocket propellant problem with this would correspond to critical
values of 48.45 and 51.55.

n � 10,

� � 0.05
�

�H0.
�

�,

In contrast, the probability of type II error � is not a constant but depends on both the true
value of the parameter and the sample size that we have selected. Because the type II error
probability � is a function of both the sample size and the extent to which the null hypothesis
H0 is false, it is customary to think of the decision not to reject H0 as a weak conclusion, unless
we know that � is acceptably small. Therefore, rather than saying we “accept H0,” we prefer
the terminology “fail to reject H0.” Failing to reject H0 implies that we have not found suffi-
cient evidence to reject H0—that is, to make a strong statement. Failing to reject H0 does not
necessarily mean there is a high probability that H0 is true. It may simply mean that more data
are required to reach a strong conclusion. This can have important implications for the formu-
lation of hypotheses.

An important concept that we will make use of is the power of a statistical test.

A widely used procedure in hypothesis testing is to use a type I error or significance
level of This value has evolved through experience and may not be appro-
priate for all situations.

� � 0.05.

The power of a statistical test is the probability of rejecting the null hypothesis H0

when the alternative hypothesis is true.

Definition

The power is computed as 1 � �, and power can be interpreted as the probability of cor-
rectly rejecting a false null hypothesis. We often compare statistical tests by comparing their
power properties. For example, consider the propellant burning rate problem when we are

Understanding the
Relationship between 
� and Sample Size and
between � and the True
Difference between 
� and �0
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testing H0: � � 50 cm/s against Suppose that the true value of the mean is
� � 52. When n � 10, we found that � � 0.2643, so the power of this test is 1 � � � 1 �
0.2643 � 0.7357 when � � 52.

Power is a very descriptive and concise measure of the sensitivity of a statistical test,
where by sensitivity we mean the ability of the test to detect differences. In this case, the sen-
sitivity of the test for detecting the difference between a mean burning rate of 50 and 52 cm/s
is 0.7357. That is, if the true mean is really 52 cm/s, this test will correctly reject H0: � � 50
and “detect” this difference 73.57% of the time. If this value of power is judged to be too low,
the analyst can increase either � or the sample size n.

4-3.3 P-Values in Hypothesis Testing

The approach to hypothesis testing that we have outlined in the previous sections has empha-
sized using a fixed significance level and this value will often be The fixed sig-
nificance level or fixed type I error rate approach to hypothesis testing is very nice because it
leads directly to the definitions of type II error and power, which are very useful concepts and
of considerable value in determining appropriate sample sizes for hypothesis testing.

Fixed significance level testing does have some disadvantages. For example, suppose that
you learn that the null hypothesis regarding the mean burning rate of the rocket propellant has
been rejected at the level of significance. This statement may be inadequate, because
it gives you no idea about whether the sample average burning rate was just barely in the crit-
ical region or whether it was very far into this region. This relates to the strength of the evi-
dence against Furthermore, stating the results this way imposes the predefined fixed level
of significance on other users of the information. This may be unsatisfactory because some 
decision makers might be uncomfortable with the risks imposed by choosing 

To avoid these potential difficulties, the P-value approach to hypothesis testing has been
widely adopted in practice. The P-value is the probability that the sample average will take on
a value that is at least as extreme as the observed value when the null hypothesis is true. In
other words, the P-value conveys information about the weight of evidence against The
smaller the P-value, the greater the evidence against When the P-value is small enough,
we reject the null hypothesis in favor of the alternative. The P-value approach allows a deci-
sion maker to draw conclusions at any level of significance that is appropriate. We now give a
formal definition of a P-value.

H0.
H0.

H0

� � 0.05.

H0.

� � 0.05

� � 0.05.�,

H1: � � 50 cm/s.

164 CHAPTER 4 DECISION MAKING FOR A SINGLE SAMPLE

The P-value is the smallest level of significance that would lead to rejection of the
null Hypothesis .H0

Definition

To illustrate the P-value concept, let’s consider the propellant burning rate situation, for
which the hypotheses are

where we know that Suppose that a random sample of propellant speci-
mens results in a sample average of Figure 4-8 illustrates how the P-value is
computed. The normal curve in this figure is the distribution of the sample average under the
null hypothesis; normal with mean and standard deviation ��1n � 2.5�110 � 0.79.� � 50

x � 51.8 cm/s.
n � 10� � 2.5 cm/s.

H1: � � 50 cm/s

H0: � � 50 cm/s
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The value 51.8 is the observed value of the sample average. The probability of observing a
value of the sample average that is at least as large as 51.8 is found by computing the z-value

and the probability that the standard normal random variable equals or exceeds 2.28 is 0.0113.
Because the null hypothesis is two-sided, this is half of the P-value. We must also consider the
case where the z-value could have been negative; that is, (this would correspond to
the point 48.2 shown in Fig. 4-8). Because the normal curve is symmetric, the probability that
the standard normal random variable is less than or equal to is 0.0113. Therefore, the
P-value for this hypothesis testing problem is

The P-value tells us that if the null hypothesis is true, the probability of obtaining a ran-
dom sample whose mean is at least as far from 50 as 51.8 (or 48.2) is 0.0226. Therefore, an 
observed sample mean of 51.8 is a rare event if the null hypothesis is really true. Compared to
the “standard” level of significance 0.05, our observed P-value is smaller, so if we were using a
fixed significance level of 0.05, the null hypothesis would be rejected. In fact, would be 
rejected at any level of significance greater than or equal to 0.0226. This illustrates the boxed def-
inition above; the P-value is the smallest level of significance that would lead to rejection of 

Operationally, once a P-value is computed, we typically compare it to a predefined signif-
icance level to make a decision. Often this predefined significance level is 0.05. However, in
presenting results and conclusions, it is standard practice to report the observed P-value along
with the decision that is made regarding the null hypothesis.

Clearly, the P-value provides a measure of the credibility of the null hypothesis. It measures
the weight of evidence against Specifically, it is the risk that you have made an incorrect 
decision if you reject H0.

H0.

H0.

H0

H0

P � 0.0113 � 0.0113 � 0.0226

�2.28

z � �2.28

z �
51.8 � 50

0.79
� 2.28

Interpreting the P-Value

The P-value is not the probability that the null hypothesis is false, nor is the
probability that the null hypothesis is true. The null hypothesis is either true or false
(there is no probability associated with this), and so the proper interpretation of the
P-value is in terms of the risk of wrongly rejecting H0.

1 � P

0.0113

50 51.848.2

Distribution of x under H0; 
N (50, 22/10)  

P-value = 0.0113 + 0.0113 = 0.0226

0.0113

Figure 4-8 Calculating the P-value for the propellant burning rate problem.

We will use the P-value approach extensively. Modern statistics software packages report
the results of hypothesis testing problems almost exclusively in terms of P-values.
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4-3.4 One-Sided and Two-Sided Hypotheses

A test of any hypothesis such as

is called a two-sided test because it is important to detect differences from the hypothesized
value of the mean �0 that lie on either side of �0. In such a test, the critical region is split into
two parts, with (usually) equal probability placed in each tail of the distribution of the test
statistic.

Many hypothesis testing problems naturally involve a one-sided alternative hypothesis,
such as

or

If the alternative hypothesis is the P-value should be calculated from the upper
tail of the distribution of the test statistic, whereas if the alternative hypothesis is ,
the P-value should be calculated from the lower tail of the distribution. Consequently, these
tests are sometimes called one-tailed tests. Determining the P-value for one-sided tests is usu-
ally easy. Simply visualize the behavior of the test statistic if the null hypothesis is true and
calculate the P-value from the appropriate end or tail of the distribution. Generally, the 
inequality in the alternative hypothesis “points” to the tail of the curve where the P-value is
computed. If a fixed significance level test is used, the inequality in the alternative hypothesis
points in the direction of the critical region.

In constructing hypotheses, we will always state the null hypothesis as an equality, so that
the probability of type I error � can be controlled at a specific value (refer to the footnote 
regarding one-sided alternative hypothesis on page 157). The alternative hypothesis might 
be either one- or two-sided, depending on the conclusion to be drawn if H0 is rejected. If the 
objective is to make a claim involving statements such as “greater than,” “less than,” “superior
to,” “exceeds,” “at least,” and so forth, a one-sided alternative is appropriate. If no direction is
implied by the claim or if the claim “not equal to” is to be made, a two-sided alternative should
be used.

H1: � 6 �0

H1: � 7 �0,

H1: � 6 �0H1: � 7 �0

H0: � � �0H0: � � �0

H1: � � �0

H0: � � �0
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Formulating the Null
Hypothesis

EXAMPLE 4-2 Consider the propellant burning rate problem. Suppose that if the burning rate is less than 50 cm/s, we
wish to show this with a strong conclusion. The hypotheses should be stated as

Here the P-value would be calculated by finding the probability that the normal random variable is less
than the observed value of That is, the P-value is calculated from the lower tail of the null distribution
of Because the rejection of H0 is always a strong conclusion, this statement of the hypotheses will pro-
duce the desired outcome if H0 is rejected. Note that although the null hypothesis is stated with an equal
sign, it is understood to include any value of � not specified by the alternative hypothesis. Therefore, fail-
ing to reject H0 does not mean that � � 50 cm/s exactly, but only that we do not have strong evidence in
support of H1. ■

X.
X.

H1: � 6 50 cm/s

H0: � � 50 cm/s

The Rocket
Propellant
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4-3 HYPOTHESIS TESTING 167

In some real-world problems where one-sided test procedures are indicated, it is occasion-
ally difficult to choose an appropriate formulation of the alternative hypothesis. For example,
suppose that a soft-drink beverage bottler purchases 2-liter bottles from a glass company. The
bottler wants to be sure that the bottles meet the specification on mean internal pressure or
bursting strength, which for 2-liter bottles is a minimum strength of 200 psi. The bottler has
decided to formulate the decision procedure for a specific lot of bottles as a hypothesis prob-
lem. There are two possible formulations for this problem, either

(4-9)

or

(4-10)

Consider the upper-tailed formulation in equation 4-9. If the null hypothesis is rejected, the bot-
tles will be judged satisfactory, whereas if H0 is not rejected, the implication is that the bottles do
not conform to specifications and should not be used. Because rejecting H0 is a strong conclu-
sion, this formulation forces the bottle manufacturer to “demonstrate” that the mean bursting
strength of the bottles exceeds the specifications. Now consider the lower-tailed formulation in
equation 4-10. In this situation, the bottles will be judged satisfactory unless H0 is rejected. That
is, we conclude that the bottles are satisfactory unless there is strong evidence to the contrary.

Which formulation is correct, the upper-tailed test in equation 4-9 or the lower-tailed test in
equation 4-10? The answer is, “it depends.” For the upper-tailed test, there is some probability
that H0 will not be rejected (i.e., we would decide that the bottles are not satisfactory) even
though the true mean is slightly greater than 200 psi. This formulation implies that we want the
bottle manufacturer to demonstrate that the product meets or exceeds our specifications. Such a
formulation could be appropriate if the manufacturer has experienced difficulty in meeting spec-
ifications in the past or if product safety considerations force us to hold tightly to the 200 psi
specification. On the other hand, for the lower-tailed test of equation 4-10 there is some proba-
bility that H0 will be accepted and the bottles judged satisfactory even though the true mean is
slightly less than 200 psi. We would conclude that the bottles are unsatisfactory only when there
is strong evidence that the mean does not exceed 200 psi—that is, when H0: � � 200 psi is
rejected. This formulation assumes that we are relatively happy with the bottle manufacturer’s past
performance and that small deviations from the specification of psi are not harmful.� 	 200

H1: � 6 200 psi

H0: � � 200 psi

H1: � 7 200 psi

H0: � � 200 psi

In formulating one-sided alternative hypotheses, we should remember that rejecting
H0 is always a strong conclusion. Consequently, we should put the statement about
which it is important to make a strong conclusion in the alternative hypothesis.
In real-world problems, this will often depend on our point of view and experience
with the situation.

4-3.5 General Procedure for Hypothesis Testing

This chapter develops hypothesis testing procedures for many practical problems. Use of the
following sequence of steps in applying hypothesis testing methodology is recommended:

1. Parameter of interest: From the problem context, identify the parameter of interest.

2. Null hypothesis, H0: State the null hypothesis, H0.
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4-15. A textile fiber manufacturer is investigating a new
drapery yarn, which has a standard deviation of 0.3 kg. The
company wishes to test the hypothesis H0: � � 14 against

using a random sample of five specimens.

(a) What is the P-value if the sample average is 
(b) Find � for the case where the true mean elongation force

is 13.5 kg and we assume that � � 0.05.
(c) What is the power of the test from part (b)?

4-16. Repeat Exercise 4-15 using a sample size of n � 16
and the same critical region.

4-17. In Exercise 4-15 with n � 5:

(a) Find the boundary of the critical region if the type I error
probability is specified to be � � 0.01.

(b) Find � for the case when the true mean elongation force is
13.5 kg.

(c) What is the power of the test?

4-18. In Exercise 4-16 with n � 16:

(a) Find the boundary of the critical region if the type I error
probability is specified to be 0.05.

(b) Find � for the case when the true mean elongation force is
13.0 kg.

(c) What is the power of the test from part (b)?

4-19. The heat evolved in calories per gram of a cement
mixture is approximately normally distributed. The mean is
thought to be 100 and the standard deviation is 2. We wish to
test H0: � � 100 versus with a sample of n � 9
specimens.

(a) If the rejection region is defined as or  
find the type I error probability �.

(b) Find � for the case where the true mean heat evolved is
103.

(c) Find � for the case where the true mean heat evolved is
105. This value of � is smaller than the one found in part
(b). Why?

x 7 101.5,x 6 98.5

H1: � 
 100

x � 13.7 kg?

H1: � 6 14,

168 CHAPTER 4 DECISION MAKING FOR A SINGLE SAMPLE

3. Alternative hypothesis, H1: Specify an appropriate alternative hypothesis, H1.

4. Test statistic: State an appropriate test statistic.

5. Reject H0 if: Define the criteria that will lead to rejection of H0.

6. Computations: Compute any necessary sample quantities, substitute these into the
equation for the test statistic, and compute that value.

7. Conclusions: Decide whether or not H0 should be rejected and report that in the
problem context. This could involve computing a P-value or comparing the test sta-
tistic to a set of critical values.

Steps 1–4 should be completed prior to examination of the sample data. This sequence of steps
will be illustrated in subsequent sections.

EXERCISES FOR SECTION 4-3

4-20. Repeat Exercise 4-19 using a sample size of n � 5 and
the same critical region.

4-21. A consumer products company is formulating a new
shampoo and is interested in foam height (in mm). Foam
height is approximately normally distributed and has a stan-
dard deviation of 20 mm. The company wishes to test

mm versus mm, using the results
of n � 10 samples.

(a) Find the P-value if the sample average is 
(b) What is the probability of type II error if the true mean

foam height is 200 mm and we assume that � � 0.05?
(c) What is the power of the test from part (b)?

4-22. In Exercise 4-21, suppose that the sample data result
in 

(a) What conclusion would you reach in a fixed-level test with
� � 0.05?

(b) How “unusual” is the sample value mm if the
true mean is 175 mm? That is, what is the probability
that you would observe a sample average as large as
190 mm (or larger), if the true mean foam height was
175 mm?

4-23. Repeat Exercise 4-21 assuming that the sample size is
n � 16.

4-24. Consider Exercise 4-21, and suppose that the sample
size is increased to n � 16.

(a) Where would the boundary of the critical region be placed
if the type I error probability is 0.05?

(b) Using n � 16 and the critical region found in part (a), find
the type II error probability � if the true mean foam height
is 195 mm.

(c) Compare the value of � obtained in part (b) with the value
from Exercise 4-21 (b). What conclusions can you draw?
Which has higher power?

x � 190

x � 190 mm.

x � 185.

H1: � 7 175H0: � � 175
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4-4 INFERENCE ON THE MEAN OF A POPULATION, 
VARIANCE KNOWN

In this section, we consider making inferences about the mean � of a single population where
the variance of the population �2 is known.

4-25. A manufacturer is interested in the output voltage of a
power supply used in a PC. Output voltage is assumed to be
normally distributed, with standard deviation 0.25 V, and the
manufacturer wishes to test H0: � � 9 V against 
using n � 10 units.

(a) The critical region is Find the
value of �.

(b) Find the power of the test for detecting a true mean output
voltage of 9.1 V.

x 6 8.85 or x 7 9.15.

H1: � 
 9 V,

4-26. Rework Exercise 4-25 when n � 16 batches and the
boundaries of the critical region do not change.

4-27. Consider Exercise 4-25, and suppose that the process
engineer wants the type I error probability for the test to be 
� � 0.05. Where should the critical region be located?

Based on our previous discussion in Section 4-2, the sample mean is an unbiased point es-
timator of �. With these assumptions, the distribution of is approximately normal with
mean � and variance �2/n.

X
X

4-4.1 Hypothesis Testing on the Mean

Suppose that we wish to test the hypotheses

(4-12)

where �0 is a specified constant. We have a random sample X1, X2, . . . , Xn from the population.
Because has an approximate normal distribution (i.e., the sampling distribution of is 
approximately normal) with mean and standard deviation if the null hypothesis is true,
we could either calculate a P-value, or if we wanted to use fixed significance level testing, we
could construct a critical region for the computed value of the sample mean as we discussed
in Sections 4-3.2 and 4-3.3.

x,

��1n,�0

XX

H1: � 
 �0

H0: � � �0

1. X1, X2, . . . , Xn is a random sample of size n from a population.

2. The population is normally distributed, or if it is not, the conditions of the
central limit theorem apply.

Assumptions

Under the previous assumptions, the quantity

(4-11)

has a standard normal distribution, N(0, 1).

Z �
X � �

��1n
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If the null hypothesis is true, and the distribution of the test statistic
is the standard normal distribution [denoted N(0, 1)]. The denominator in equation 4-13

is the standard error of the sample mean So the general form of the test statistic is
(difference between sample mean and the hypothesized mean) standard error. This general
form arises in almost all statistical tests on means.

Suppose that we take a random sample of size n and the observed value of the sample
mean is To test the null hypothesis using the P-value approach, we would find the probabil-
ity of observing a value of the sample mean that is at least as extreme as given that the null
hypothesis is true. The standard normal z-value that corresponds to is found from the test sta-
tistic in equation 4-13:

In terms of the standard normal cumulative distribution function (cdf ), the probability we are
seeking is The reason that the argument of the standard normal cdf is is that
the value of could be either positive or negative, depending on the observed sample mean.
Because this is a two-tailed test, this is only one-half of the P-value. Therefore, for the two-
sided alternative hypothesis, the P-value is

(4-14)

This is illustrated in Fig. 4-9a.
Now let’s consider the one-sided alternatives. Suppose that we are testing

(4-15)

Once again, suppose that we have a random sample of size n and that the sample mean is We
compute the test statistic from equation 4-13 and obtain Because the test is an upper-tailed
test, only values of that are greater than are consistent with the alternative hypothesis.�0x

z0.
x.

H1: � 7 �0

H0: � � �0

P � 2�1� �1� z0 �2�

z0

� z0 �1� £(� z0 �).

z0 �
x � �0

��1n

x
x,

x.

X.��1n
Z0

E(X ) � �0,H0: � � �0

(4-13)Z0 �
X � �0

��1n

Test Statistic
for the z-Test

It is usually more convenient to standardize the sample mean and use a test statistic based
on the standard normal distribution. The procedure is often called the z-test. That is, the test
procedure for H0: � � �0 uses the test statistic

Figure 4-9 The P-value for a z-test. (a) The two-sided alternative (b) The one-sided alternative 
(c) The one-sided alternative H1: � 6 �0.

H1: � 7 �0.H1: � � �0.

P-value = 2 [1 �  �(�z0�)] P-value = �(z0) P-value = 1 � �(z0) 

N(0,1)

0

(a) (b) (c)

–z0 z0z0

N(0,1)

0 z0

N(0,1)

0 z0

Two-tailed test Upper-tailed test Lower-tailed test
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Therefore, the P-value would be the probability that the standard normal random variable is
greater than the value of the test statistic This P-value is computed as

(4-16)

This P-value is shown in Fig. 4-9b.
The lower-tailed test involves the hypotheses

(4-17)

Suppose that we have a random sample of size n and that the sample mean is We compute
the test statistic from equation 4-13 and obtain Because the test is a lower-tailed test, only
values of that are less than are consistent with the alternative hypothesis. Therefore, the
P-value would be the probability that the standard normal random variable is less than the
value of the test statistic This P-value is computed as

(4-18)

and shown in Fig. 4-9c.
It is not always easy to compute the exact P-value for a statistical test. However, most

modern computer programs for statistical analysis report P-values, and they can be obtained
on some handheld calculators. We will also show how to approximate P-values.

We can also use fixed significance level testing with the z-test. All we have to do is deter-
mine where to place the critical regions for the two-sided and one-sided alternative hypotheses.
First consider the two-sided alternative in equation 4-12. Now if H0: � � �0 is true, the prob-
ability is 1 � � that the test statistic Z0 falls between �z��2 and z��2, where z��2 is the 100��2
percentage point of the standard normal distribution. The regions associated with z��2 and
�z��2 are illustrated in Fig. 4-10a. Note that the probability is � that the test statistic will
fall in the region or when H0: � � �0 is true. Clearly, a sample produc-
ing a value of the test statistic that falls in the tails of the distribution of Z0 would be
unusual if H0: � � �0 is true; therefore, it is an indication that H0 is false. Thus, we should reject
H0 if either

(4-19)

or

(4-20)z0 6 �z��2

z0 7 z��2

Z0 6 �z�/2Z0 7 z�/2

Z0

P � £(z0)

z0.

�0x
z0.

x.

H1: � 6 �0

H0: � � �0

P � 1 � £(z0)

z0.

Figure 4-10 The distribution of Z0 when H0: � � �0 is true, with critical region for (a) the two-sided alternative H1: 
(b) The one-sided alternative H1: . (c) The one-sided alternative H1: � 6 �0.� 7 �0

� � �0.

N(0,1)

   z   /2α  0

(a) (b) (c)

–z   /2α  –z   α  z0

   /2α     /2α  

Critical regionCritical region

N(0,1)

   z   α  0 z0

α  α  

Critical region

N(0,1)

0 z0

Two-tailed test Upper-tailed test Lower-tailed test
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Testing Hypotheses on the Mean, Variance Known (z-Test)

Null hypothesis:

Test statistic:

Rejection Criterion
Alternative Hypotheses P-Value for Fixed-Level Tests

Probability above |z0| and
probability below �|z0|,

Probability above z0,

Probability below z0,

The P-values and critical regions for these situations are shown in Figs. 4-9 and 4-10.

P�£ (z0)

z0 6 �z�H1: � 6 �0

P �1�£ (z0)

z0 7 z�H1: � 7 �0

P �2�1�£ (� z0 �)�

z0 7 z��2 or z0 6 �z��2H1: � � �0

Z0 �
X � �0

��1n

H0: � � �0

and we should fail to reject H0 if

(4-21)

Equations 4-19 and 4-20 define the critical region or rejection region for the test. The type I
error probability for this test procedure is �.

We may also develop fixed significance level testing procedures for the one-sided alterna-
tives. Consider the upper-tailed case in equation 4-15.

In defining the critical region for this test, we observe that a negative value of the test sta-
tistic Z0 would never lead us to conclude that H0: � � �0 is false. Therefore, we would place
the critical region in the upper tail of the standard normal distribution and reject H0 if the com-
puted value z0 is too large. Refer to Fig. 4-10b. That is, we would reject H0 if

(4-22)

Similarly, to test the lower-tailed case in equation 4-17, we would calculate the test statis-
tic Z0 and reject H0 if the value of Z0 is too small. That is, the critical region is in the lower tail
of the standard normal distribution as in Fig. 4-10c, and we reject H0 if

(4-23)z0 6 �z�

z0 7 z�

�z��2  z0  z��2
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Summary

EXAMPLE 4-3 Aircrew escape systems are powered by a solid propellant. The burning rate of this propellant is an im-
portant product characteristic. Specifications require that the mean burning rate must be 50 cm/s. We
know that the standard deviation of burning rate is � � 2 cm/s. The experimenter decides to specify a
type I error probability or significance level of � � 0.05. He selects a random sample of n � 25 and
obtains a sample average burning rate of cm/s. What conclusions should he draw?

Solution. We may solve this problem by following the seven-step procedure outlined in Section 4-3.5.
This results in the following:

1. Parameter of interest: The parameter of interest is �, the mean burning rate.

2. Null hypothesis, H0: � � 50 cm/s

x � 51.3

Propellant
Burning Rate
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Minitab also reports a confidence interval (CI) estimate of the mean burning rate. In Section 4-4.5
we will describe how this interval is computed and how it is interpreted.

4-4.2 Type II Error and Choice of Sample Size

In testing hypotheses, the analyst directly selects the type I error probability. However, the
probability of type II error � depends on the choice of sample size. In this section, we will
show how to calculate the probability of type II error �. We will also show how to select the
sample size to obtain a specified value of �.

Finding the Probability of Type II Error �
Consider the two-sided hypothesis

Suppose that the null hypothesis is false and that the true value of the mean is � � �0 � �, say,
where � � 0. The expected value of the test statistic Z0 is

E(Z0) � E aX � �0

��1n
b �

�0 � � � �0

��1n
�

�1n

�

H1: � � �0

H0: � � �0

3. Alternative hypothesis, H1:

4. Test statistic: The test statistic is

5. Reject H0 if: Reject H0 if the P-value is smaller than 0.05. (Note that the corresponding critical
region boundaries for fixed significance level testing would be �z0.025 � �1.96 and z0.025 � 1.96.)

6. Computations: Since and � � 2,

7. Conclusions: The P-value is P � 2[1� (3.25)] � 0.0012. Since P � 0.0012 � 0.05, we
reject H0: � � 50. The practical engineering interpretation of this result is that one can con-
clude that the mean burning rate differs from 50 cm/s, based on a sample of 25 measurements.
In fact, there is strong evidence that the mean burning rate exceeds 50 cm/s. ■

£

z0 �
51.3 � 50

2�125
�

1.3

0.4
� 3.25

x � 51.3

z0 �
x � �0

��1n

� � 50 cm/s

One-Sample Z

Test of vs 
The assumed 

N Mean SE Mean 95% CI Z P
25 51.3000 0.4000 (50.5160, 52.0840) 3.25 0.001

standard deviation � 2
not � 50mu � 50

Minitab will perform the z-test. The output below results from using Minitab for the propel-
lant burning rate problem in Example 4-3. Notice that Minitab reports the standard error of
the mean This is the denominator of the z-test statistic. The P-value for the test
statistic is also provided.

(��1n � 0.4).
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where denotes the probability to the left of z in the standard normal distribution. Note
that equation 4-24 was obtained by evaluating the probability that Z0 falls in the interval

when H1 is true. Furthermore, note that equation 4-24 also holds if � � 0, due to
the symmetry of the normal distribution. It is also possible to derive an equation similar to
equation 4-24 for a one-sided alternative hypothesis.

Sample Size Formulas
One may easily obtain formulas that determine the appropriate sample size to obtain a partic-
ular value of � for a given � and �. For the two-sided alternative hypothesis, we know from
equation 4-24 that

or if � � 0,

(4-25)� � £ az��2 �
�1n

	
b

� 
 £ az��2 �
�1n

	
b � £ a�z��2 �

�1n

	
b

[�z��2, z��2 ]

£(z)
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and the variance of is unity. Therefore, the distribution of Z0 when H1 is true is

Here the notation “ ” means “is distributed as.” The distribution of the test statistic Z0 under
both the null hypothesis H0 and the alternative hypothesis H1 is shown in Fig. 4-11. From
examining this figure, we note that if H1 is true, a type II error will be made only if

where That is, the probability of the type II error � is the
probability that falls between and given that H1 is true. This probability is shown
as the shaded portion of Fig. 4-11 and is expressed mathematically in the following equation.

z��2�z��2Z0

Z0 ~ N(�1n�	, 1).�z��2 � Z0 � z��2

~

Z0 � N  a�1n

	 
, 1b

Z0

Probability of a Type II Error for the Two-Sided Alternative 
Hypothesis on the Mean, Variance Known

(4-24)� 
 £   az��2 �
�1n

	
b � £   a�z��2 �

�1n

	
b

Under H0:    =   0μ μ Under H1:    ≠    0μ μ

N(0,1)

–z   /2α 0 z   /2α  

δ
σ , 1N ( (

β

z0

n

δ
σ

n

Figure 4-11 The distribution of Z0 under H0 and H1.
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This approximation is good when is small compared to �. For either of
the one-sided alternative hypotheses, the sample size required to produce a specified type II
error with probability � given � and � is as follows.

£(�z��2 � �1n��)

because when � is positive. Let be the 100� upper percentile of
the standard normal distribution. Then From equation 4-25

which leads to the following equation.

�z� � z�/2 �
�1n

�

� � £(�z�).
z�£(�z��2 � �1n��) � 0

Sample Size for Two-Sided Alternative Hypothesis on the Mean,
Variance Known

For the two-sided alternative hypothesis on the mean with variance known and sig-
nificance level �, the sample size required to detect a difference between the true and
hypothesized mean of � with power at least 1 � � is

(4-26)

where

If n is not an integer, the convention is to always round the sample size up to the next
integer.

� � � � �0

n �
(z��2 � z�)2�2

�2

Sample Size for One-Sided Alternative Hypothesis on the Mean,
Variance Known

For the one-sided alternative hypothesis on the mean with variance known and sig-
nificance level �, the sample size required to detect a difference between the true and
hypothesized mean of � with power at least 1 � � is

(4-27)

where

If n is not an integer, the convention is to round the sample size up to the next integer.

� � � � �0

n �
(z� � z�)2�2

�2
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Many statistics software packages will calculate sample sizes and type II error probabilities.
To illustrate, Table 4-2 shows some computations from Minitab for the propellant burning rate
problem.

In the first part of Table 4-2, we used Minitab to work Example 4-4, that is, to find the sam-
ple size n that would allow detection of a difference from �0 � 50 cm/s of 1 cm/s with power
of 0.9 and � � 0.05. The answer, n � 43, agrees closely with the calculated value from equa-
tion 4-26 in Example 4-4, which was n � 42. The difference is due to Minitab using a value
of z� that has more than two decimal places. The second part of the computer output relaxes
the power requirement to 0.75. Note that the effect is to reduce the required sample size to 
n � 28. The third part of the output is the situation of Example 4-4, but now we wish to
determine the type II error probability (�) or the power � 1 � � for the sample size n � 25.

176 CHAPTER 4 DECISION MAKING FOR A SINGLE SAMPLE

EXAMPLE 4-4 Consider the propellant burning rate problem of Example 4-3. Suppose that the analyst wishes to design
the test so that if the true mean burning rate differs from 50 cm/s by as much as 1 cm/s, the test will 
detect this (i.e., reject H0: � � 50) with a high probability—say, 0.90.

Solution. Note that � � 2, � � 51 � 50 � 1, � � 0.05, and � � 0.10. Because and
the sample size required to detect this departure from H0: � � 50 is found by equa-

tion 4-26 as

The approximation is good here because 
which is small relative to �. ■£(�5.20) � 0,

£(�z��2 � �1n��) � £(�1.96 � (1)142�2) �

n �
(z��2 � z�)2�2

�2 �
(1.96 � 1.28)222

(1)2 � 42

z� � z0.10 � 1.28,
z�/2 � z0.025 � 1.96

Sample Size for
the Propellant
Burning Rate
Problem

Minitab Sample Size and
Power Calculations

Table 4-2 Minitab Computations

1-Sample Z Test
Testing mean � null (versus not � null)
Calculating power for mean � null � difference
Alpha � 0.05 Sigma � 2

Sample Target Actual
Difference Size Power Power

1 43 0.9000 0.9064

1-Sample Z Test
Testing mean � null (versus not � null)
Calculating power for mean � null � difference
Alpha � 0.05 Sigma � 2

Sample Target Actual
Difference Size Power Power

1 28 0.7500 0.7536

1-Sample Z Test
Testing mean � null (versus not � null)
Calculating power for mean � null � difference
Alpha � 0.05 Sigma � 2

Sample
Difference Size Power

1 25 0.7054
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4-4.3 Large-Sample Test

Although we have developed the test procedure for the null hypothesis H0: � � �0 assuming
that �2 is known, in many if not most practical situations �2 will be unknown. In general, if

the sample variance s2 will be close to �2 for most samples, and so s can be substi-
tuted for � in the test procedures with little harmful effect. Thus, although we have given a test
for known �2, it can be easily converted into a large-sample test procedure for unknown �2.
Exact treatment of the case where �2 is unknown and n is small involves use of the t distribu-
tion and will be deferred until Section 4-5.

4-4.4 Some Practical Comments on Hypothesis Testing

The Seven-Step Procedure
In Section 4-3.5 we described a seven-step procedure for statistical hypothesis testing. This
procedure was illustrated in Example 4-3 and will be encountered many times in this chapter.
In practice, such a formal and (seemingly) rigid procedure is not always necessary. Generally,
once the experimenter (or decision maker) has decided on the question of interest and has
determined the design of the experiment (that is, how the data are to be collected, how the
measurements are to be made, and how many observations are required), only three steps are
really required:

1. Specify the hypothesis (two-, upper-, or lower-tailed).

2. Specify the test statistic to be used (such as z0).

3. Specify the criteria for rejection (typically, the value of �, or the P-value at which
rejection should occur).

These steps are often completed almost simultaneously in solving real-world problems,
although we emphasize that it is important to think carefully about each step. That is why we
present and use the seven-step process: it seems to reinforce the essentials of the correct
approach. Although you may not use it every time in solving real problems, it is a helpful
framework when you are first learning about hypothesis testing.

Statistical versus Practical Significance
We noted previously that reporting the results of a hypothesis test in terms of a P-value is very
useful because it conveys more information than just the simple statement “reject H0” or “fail
to reject H0.” That is, rejection of H0 at the 0.05 level of significance is much more meaning-
ful if the value of the test statistic is well into the critical region, greatly exceeding the 5%
critical value, than if it barely exceeds that value.

Even a very small P-value can be difficult to interpret from a practical viewpoint when we
are making decisions; although a small P-value indicates statistical significance in the sense
that H0 should be rejected in favor of H1, the actual departure from H0 that has been detected
may have little (if any) practical significance (engineers like to say “engineering signifi-
cance”). This is particularly true when the sample size n is large.

For example, consider the propellant burning rate problem of Example 4-3 where we are
testing H0: � � 50 cm/s versus cm/s with � � 2. If we suppose that the mean rate
is really 50.5 cm/s, this is not a serious departure from H0: � � 50 cm/s in the sense that if the
mean really is 50.5 cm/s, there is no practical observable effect on the performance of the
aircrew escape system. In other words, concluding that � � 50 cm/s when it is really 50.5 cm/s
is an inexpensive error and has no practical significance. For a reasonably large sample size, a
true value of � � 50.5 will lead to a sample that is close to 50.5 cm/s, and we would not wantx

H1: � � 50

n 	 40,

Relationship between
Power and Sample Size
for the z-Test
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4-4.5 Confidence Interval on the Mean

In many situations, a point estimate does not provide enough information about a parameter.
For example, in the rocket propellant problem we have rejected the null hypothesis H0: � � 50,
and our point estimate of the mean burning rate is cm/s. However, the engineer
would prefer to have an interval in which we would expect to find the true mean burning rate
because it is unlikely that � � 51.3. One way to accomplish this is with an interval estimate
called a confidence interval (CI).

An interval estimate of the unknown parameter � is an interval of the form 
where the endpoints l and u depend on the numerical value of the sample mean for a partic-
ular sample. Because different samples will produce different values of and, consequently,
different values of the endpoints l and u, these endpoints are values of random variables—say,
L and U, respectively. From the sampling distribution of the sample mean we will be able to
determine values of L and U such that the following probability statement is true:

(4-28)

where 0 � � � 1. Thus, we have a probability of 1 � � of selecting a sample that will produce
an interval containing the true value of �.

The resulting interval

(4-29)l  �  u

P(L  �  U ) � 1 � �

X

x
X

l  �  u,

x � 51.3

this value of from the sample to result in rejection of H0. The accompanying display shows
the P-value for testing H0: � � 50 when we observe cm/s and the power of the test
at � � 0.05 when the true mean is 50.5 for various sample sizes n.

x � 50.5
x

Sample Size P-Value Power (at � � 0.05)
n When � 50.5 When � � 50.5

10 0.4295 0.1241
25 0.2113 0.2396
50 0.0767 0.4239

100 0.0124 0.7054
400 0.9988

1000 1.0000 2.57 � 10�15

5.73 � 10�7

x

P-Values Decrease as
Sample Size Increases
for a Fixed Value of x–

Be careful when interpreting the results from hypothesis testing when the sample
size is large because any small departure from the hypothesized value �0 will
probably be detected, even when the difference is of little or no practical significance.

The P-value column in this display indicates that for large sample sizes, the observed
sample value of would strongly suggest that H0: � � 50 should be rejected, even
though the observed sample results imply that from a practical viewpoint the true mean does
not differ much at all from the hypothesized value �0 � 50. The power column indicates that
if we test a hypothesis at a fixed significance level � and even if there is little practical differ-
ence between the true mean and the hypothesized value, a large sample size will almost always
lead to rejection of H0. The moral of this demonstration is clear:

x � 50.5
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is called a 100(1 � �)% CI for the parameter �. The quantities l and u are called the lower-
and upper-confidence limits, respectively, and 1 � � is called the confidence coefficient.
The interpretation of a CI is that, if an infinite number of random samples are collected and a
100(1 � �)% CI for � is computed from each sample, 100(1 � �)% of these intervals will
contain the true value of �.

The situation is illustrated in Fig. 4-12, which shows several 100(1 � �)% CIs for the
mean � of a distribution. The dots at the center of each interval indicate the point estimate of
� (that is, ). Note that 1 of the 20 intervals fails to contain the true value of �. If this were a
95% CI, in the long run only 5% of the intervals would fail to contain �.

Now in practice, we obtain only one random sample and calculate one confidence inter-
val. Because this interval either will or will not contain the true value of �, it is not reasonable
to attach a probability level to this specific event. The appropriate statement is that the
observed interval [l, u] brackets the true value of � with confidence 100(1 � �). This state-
ment has a frequency interpretation; that is, we don’t know whether the statement is true for
this specific sample, but the method used to obtain the interval [l, u] yields correct statements
100(1 � �)% of the time. Confidence reflects the reliability of the procedure.

The CI in equation 4-29 is more properly called a two-sided confidence interval, because
it specifies both a lower and an upper limit on �. Occasionally, a one-sided confidence bound
might be more appropriate. A one-sided 100(1 � �)% lower-confidence bound on � is given by

(4-30)

where the lower-confidence bound l is chosen so that

(4-31)

Similarly, a one-sided 100(1 � �)% upper-confidence bound on � is given by

(4-32)

where the upper-confidence bound u is chosen so that

(4-33)P(�  U ) � 1 � �

�  u

P(L  �) � 1 � �

l  �

x

Figure 4-12 Repeated construction of a confidence interval for �.

μ
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The length u � l of the observed two-sided CI is an important measure of the quality of
the information obtained from the sample. The half-interval length � � l or u � � is called
the precision of the estimator. The longer the CI, the more confident we are that the interval
actually contains the true value of �. On the other hand, the longer the interval is, the less
information we have about the true value of �. In an ideal situation, we obtain a relatively
short interval with high confidence.

It is very easy to find the quantities L and U that define the two-sided CI for �. We know
that the sampling distribution of is normal with mean � and variance �2�n. Therefore, the
distribution of the statistic

is a standard normal distribution.
The distribution of is shown in Fig. 4-13. From an examination of

this figure we see that

so that

This can be rearranged as

(4-34)

From consideration of equation 4-28, the lower and upper limits of the inequalities in equation
4-34 are the lower- and upper-confidence limits L and U, respectively. This leads to the
following definition.

P eX �
z��2�

1n
 �  X �

z��2�

1n
f � 1 � �

P e�z��2 
X � �

��1n
 z��2 f � 1 � �

P5�z��2  Z  z��26 � 1 � �

Z � (X � �)�(��1n)

Z �
X � �

��1n

X
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z0

α α /2/2

–zα /2 zα /2

Figure 4-13 The distribution of Z.

Confidence Interval on the Mean, Variance Known

If is the sample mean of a random sample of size n from a population with known
variance �2, a 100(1 � �)% confidence interval on � is given by

(4-35)

where is the upper percentage point and is the lower 
percentage point of the standard normal distribution in Appendix A Table I.

100��2�z��2100��2z��2

x �
z��2�

1n
 �  x �

z��2�

1n

x
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Relationship between Tests of Hypotheses and Confidence Intervals
There is a close relationship between the test of a hypothesis about any parameter—say, �—
and the confidence interval for �. If [l, u] is a 100(1 � �)% CI for the parameter �, the test of
significance level � of the hypothesis

will lead to rejection of H0 if and only if �0 is not in the 100(1 � �)% CI [l, u]. As an illustra-
tion, consider the escape system propellant problem discussed above. The null hypothesis H0:
� � 50 was rejected, using � � 0.05. The 95% two-sided confidence interval on � is

That is, the interval [l, u] is [50.52, 52.08], and because �0 � 50 is not
included in this interval, the null hypothesis H0: � � 50 is rejected.

Confidence Level and Precision of Estimation
Note in the previous example that our choice of the 95% level of confidence was essentially
arbitrary. What would have happened if we had chosen a higher level of confidence—say,

50.52  �  52.08.

H1: � � �0

H0: � � �0

For samples from a normal population or for samples of size regardless of the
shape of the population, the CI in equation 4-35 will provide good results. However, for small
samples from nonnormal populations we cannot expect the confidence level 1 � � to be 
exact.

n 	 40

EXAMPLE 4-5 Consider the rocket propellant problem in Example 4-3. Find a 95% CI on the mean burning rate.

Solution. We can use equation 4-35 to construct the CI. A 95% interval implies that 1 � � � 0.95,
so � � 0.05 and from Table I in the Appendix The lower confidence
limit is

and the upper confidence limit is

Thus, the 95% two-sided CI is

Remember how to interpret the CI; this specific interval either contains � or it doesn’t (and we don’t
know which), but because of the procedure that we use to construct the CI, in repeated sampling 95% of
the intervals that we would compute will contain the true value of �. This CI was also reported by
Minitab in the output of the z-test in Section 4-4.1. ■

50.52  �  52.08

 � 52.08

 � 51.3 � 0.78

 � 51.3 � 1.96(2)�125

 u � x � z��2��1n

 � 50.52

 � 51.3 � 0.78

 � 51.3 � 1.96(2)�125

 l � x � z��2�/1n

z��2 � z0.05�2 � z0.025 � 1.96.

Propellant
Burning Rate
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99%? In fact, doesn’t it seem reasonable that we would want the higher level of confidence?
At � � 0.01, we find whereas for � � 0.05, z0.025 � 1.96. Thus,
the length of the 95% CI is

whereas the length of the 99% CI is

The 99% CI is longer than the 95% CI, which is why we have a higher level of confidence in
the 99% CI. Generally, for a fixed sample size n and standard deviation �, the higher the
confidence level is, the longer is the resulting CI.

Because the half-length of the confidence interval measures the precision of estimation,
we see that precision is inversely related to the confidence level. As noted earlier, it is desir-
able to obtain a CI that is short enough for decision-making purposes and also has adequate
confidence. One way to achieve this is by choosing the sample size n to be large enough to give
a CI of specified length with prescribed confidence.

In many practical situations the confidence level chosen is 95%. This is often a reasonable
compromise between precision of estimation and confidence (which is the reliability of the
procedure). It is rare to see confidence levels smaller than 90% or greater than 99.5%.

Choice of Sample Size
The precision of the confidence interval in equation 4-35 is This means that in 
using to estimate �, the error is less than or equal to with confidence
100(1 � �). This is shown graphically in Fig. 4-14. In situations where the sample size can be
controlled, we can choose n so that we are 100(1 � �)% confident that the error in estimating
� is less than a specified error E. The appropriate sample size is found by choosing n such that

Solving this equation gives the following formula for n.z��2��1n � E.

z��2��1nE � 0x � � 0x
z��2��1n.

2(2.58 ��1n) � 5.16 ��1n

2(1.96 ��1n) � 3.92 ��1n

z�/2 � z0.01/2 � z0.005 � 2.58,
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Confidence Intervals
Widen as the Confidence
Level Increases and
Narrow as the Confidence
Level Decreases

x μ

E = error = ⎮x –  ⎮μ

u = x + z  /2 / nα √σl = x – z  /2 / nα √σ

Figure 4-14 Error in estimating � with x.

Sample Size for a Specified E on the Mean, Variance Known

If is used as an estimate of �, we can be 100(1 � �)% confident that the error
will not exceed a specified amount E when the sample size is

(4-36)n � az��2�

E
b2

0 x � � 0
x

If the right-hand side of equation 4-36 is not an integer, it must be rounded up, which will
ensure that the level of confidence does not fall below 100(1 � �)%. Note that 2E is the length
of the resulting CI.
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Note the general relationship between sample size, desired length of the confidence 
interval 2E, confidence level 100(1 � �)%, and standard deviation �:

● As the desired length of the interval 2E decreases, the required sample size n increases
for a fixed value of � and specified confidence.

● As � increases, the required sample size n increases for a fixed desired length 2E and
specified confidence.

● As the level of confidence increases, the required sample size n increases for fixed desired
length 2E and standard deviation �.

One-Sided Confidence Bounds
It is also possible to obtain one-sided confidence bounds for � by setting either l � �� or 
u � � and replacing by z�.

As discussed above for the two-sided case, we can also use the one-sided confidence
bound to perform hypothesis testing with a one-sided alternative hypothesis. Specifically, if u
is the upper bound of a 100(1 � �)% one-sided confidence bound for the parameter �, the test
of significance level � of the hypothesis

will lead to rejection if and only if �0 	 u. Similarly, if l is the lower bound of a 100(1 � �)%
one-sided confidence bound, the test of significance level � of the hypothesis

will lead to rejection if and only if Because is always smaller than the
lower one-sided confidence bound will always be greater than the lower

confidence limit of the two-sided CI, and the upper one-sided
confidence bound will always be less than the upper confidence limit of the 100(1 � �)%

100(1 � �)%100(1 � �)%
100(1 � �)%

z�
2z��0 6 l.

H1: � 7 �0

H0: � � �0

H1: � 6 �0

H0: � � �0

z�
2

EXAMPLE 4-6 To illustrate the use of this procedure, suppose that we wanted the error in estimating the mean burning
rate of the rocket propellant to be less than 1.5 cm/s, with 95% confidence. Find the required sample size.

Solution. Because � � 2 and z0.025 � 1.96, we may find the required sample size from equation 4-36 as

■n � az�
2�

E
b2

� c (1.96)2

1.5
d 2 � 6.83 � 7

Propellant
Burning Rate

One-Sided Confidence Bounds on the Mean, Variance Known 

The 100(1 � �)% upper-confidence bound for � is

(4-37)

and the 100(1 � �)% lower-confidence bound for � is

(4-38)x � z��
1n � l � �

� � u � x � z��
1n
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two-sided CI. As a result, if you reject H0: � � �0 with a two-sided alternative you will always
reject H0: � � �0 with a one-sided alternative.

4-4.6 General Method for Deriving a Confidence Interval

It is easy to give a general method for finding a CI for an unknown parameter �. Let X1, X2, . . . , Xn

be a random sample of n observations. Suppose we can find a statistic g(X1, X2, . . . , Xn; �) with the
following properties:

1. g (X1, X2, . . . , Xn; �) depends on both the sample and �, and

2. the probability distribution of g(X1, X2, . . . , Xn; �) does not depend on � or any other
unknown parameter.

In the case considered in this section, the parameter � � �. The random variable
and satisfies both these conditions; it depends on the

sample and on �, and it has a standard normal distribution because � is known. Now you must
find constants CL and CU so that

Because of property 2, CL and CU do not depend on �. In our example, and
Finally, you must manipulate the inequalities in the probability statement so that

This gives L(X1, X2, . . . , Xn) and U(X1, X2, . . . , Xn) as the lower and upper confidence limits
defining the 100(1 � �)% CI for �. In our example, we found 

and U(X1, X2, . . . , Xn) � X 	 z��2�/1n.X � z��2�/1n
L(X1, X2, . . . , Xn) �

P [L(X1, X2, . . . , Xn)  �  U (X1, X2, . . . , Xn)] � 1 � �

CU � z�/z.
CL � �z�/2

P [CL  g (X1, X2, . . . , Xn; �)  CU] � 1 � �

g (X1, X2, . . . , Xn; �) � (X � �)/(�/1n)
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Animation 8: Confidence Intervals

EXERCISES FOR SECTION 4-4

4-28. Suppose that we are testing versus
Calculate the P-value for the following observed

values of the test statistic:

(a) (b) (c)
(d) (e)

4-29. Suppose that we are testing versus
Calculate the P-value for the following observed

values of the test statistic:

(a) (b) (c)
(d) (e)

4-30. Suppose that we are testing versus
Calculate the P-value for the following observed

values of the test statistic:

(a) (b) (c)
(d) (e) z0 � 0.35z0 � �1.60

z0 � �2.50z0 � �1.80z0 � �2.15

H1: � 6 �0.
H0: � � �0

z0 � �0.25z0 � 1.95
z0 � 2.15z0 � �1.53z0 � 2.45

H1: � 
 �0.
H0: � � �0

z0 � �0.15z0 � 1.85
z0 � 2.00z0 � 1.53z0 � 2.35

H1: � 7 �0.
H0: � � �0 4-31. Consider the Minitab output shown below.

One-Sample Z

Test of vs 
The assumed 

N Mean SE Mean 95% CI Z P
16 31.2000 0.3000 (30.6120, 31.7880) ? ?

standard deviation � 1.2
not � 30mu � 30

(a) Fill in the missing values in the output. What conclusion
would you draw?

(b) Is this a one-sided or a two-sided test?
(c) Use the output and the normal table to find a 99% CI on

the mean.
(d) What is the P-value if the alternative hypothesis is

H1: � 7 30?
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4-32. Consider the Minitab output shown below. (a) Fill in the missing values in the output. Can the null
hypothesis be rejected at the 0.05 level of significance?
Explain your answer.

(b) Suppose that the alternative hypothesis had been
What is the P-value in this situation? Can

the null hypothesis be rejected at the 0.05 level of
significance?

(c) Suppose that you were asked to find a 95% two-sided CI
on the mean. Would the lower confidence bound in the
two-sided CI be greater than the one-sided lower confi-
dence bound that you computed in part (a)?

4-35. For a normal population with known variance �2,
answer the following questions: 

(a) What is the confidence level for the CI

(b) What is the confidence level for the CI

(c) What is the confidence level for the CI

4-36. A random sample has been taken from a normal popula-
tion and two confidence intervals constructed using exactly the
same data. The two CIs are (38.02, 61.98) and (39.95, 60.05).

(a) What is the value of the sample mean?
(b) One of these intervals is a 90% CI and the other is a

95% CI. Which one is the 95% CI and why?

4-37. Medical researchers have developed a new artificial
heart constructed primarily of titanium and plastic. The heart
will last and operate almost indefinitely once it is implanted in
the patient’s body, but the battery pack needs to be recharged
about every 4 hours. A random sample of 50 battery packs is
selected and subjected to a life test. The average life of these
batteries is 4.05 hours. Assume that battery life is normally
distributed with standard deviation 

(a) Is there evidence to support the claim that mean battery
life exceeds 4 hours? Use 

(b) What is the P-value for the test in part (a)?
(c) Compute the power of the test if the true mean battery life

is 4.5 hours.
(d) What sample size would be require to detect a true mean

battery life of 4.5 hours if we wanted the power of the test
to be at least 0.9?

(e) Explain how the question in part (a) could be answered by
constructing a one-sided confidence bound on the mean life.

4-38.* The mean breaking strength of yarn used in manufac-
turing drapery material is required to be at least 100 psi. Past
experience has indicated that the standard deviation of breaking
strength is 2 psi. A random sample of nine specimens is tested,
and the average breaking strength is found to be 100.6 psi.

� � 0.05.

� � 0.2 hour.

x � 1.85�2n  �  x 	 1.85�2n ?

x � 2.49�2n  �  x 	 2.49�2n ?

x � 2.14�2n  �  x 	 2.14�2n ?

H0: � 
 100.

One-Sample Z

Test of 
The assumed 

95%
Lower

N Mean SE Mean Bound Z P
25 101.560 ? 100.770 3.25 ?

standard deviation � 2.4
vs 7 100mu � 100

One-Sample Z

Test of 
The assumed 

95%
Lower

N Mean SE Mean Bound Z P
8 105.20 1.77 ? ? ?

standard deviation � 5
vs 7 100mu � 100

(a) Fill in the missing values in the output. Can the null
hypothesis be rejected at the 0.05 level? Why?

(b) Is this a one-sided or a two-sided test?
(c) If the hypotheses had been versus 

would you reject the null hypothesis at the 0.05
level? Can you answer this question without doing any
additional calculations? Why?

(d) Use the output and the normal table to find a 95% two-
sided CI on the mean.

(e) What is the P-value if the alternative hypothesis is

4-33. Consider the Minitab output below.

H1: � 
 100?

� 7 99,
H1:H0: � � 99

(a) Fill in the missing values in the output. Can the null
hypothesis be rejected at the 0.05 level of significance?
Explain your answer.

(b) Suppose that the alternative hypothesis had been
What is the P-value in this situation? Can the

null hypothesis be rejected at the 0.05 level of significance?
(c) Use the normal table and the computer output to find a

99% CI on the mean.

4-34. Consider the Minitab output below.

H0: � 7 20.

One-Sample Z

Test of vs 
The assumed 

N Mean SE Mean 95% CI Z P
25 21.400 ? (19.832, 22.968) ? ?

standard deviation � 4
not � 20mu � 20

*Please remember that the Web symbol indicates that the individual observations for the sample are available on the book Web site.
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(a) Should the fiber be judged acceptable? Use the P-value
approach.

(b) What is the probability of not rejecting the null hypothesis
at � � 0.05 if the fiber has a true mean breaking strength
of 102 psi?

(c) Find a 95% one-sided lower CI on the true mean breaking
strength.

(d) Use the CI found in part (d) to test the hypothesis.
(e) What sample size is required to detect a true mean break-

ing strength of 101 with probability 0.95?

4-39. The yield of a chemical process is being studied.
From previous experience with this process the standard devi-
ation of yield is known to be 3. The past 5 days of plant oper-
ation have resulted in the following yields: 91.6, 88.75, 90.8,
89.95, and 91.3%. Use � � 0.05.

(a) Is there evidence that the mean yield is not 90%? Use the
P-value approach.

(b) What sample size would be required to detect a true mean
yield of 85% with probability 0.95?

(c) What is the type II error probability if the true mean yield
is 92%?

(d) Find a 95% two-sided CI on the true mean yield.
(e) Use the CI found in part (d) to test the hypothesis.

4-40. Benzene is a toxic chemical used in the manufactur-
ing of medicinal chemicals, dyes, artificial leather, and
linoleum. A manufacturer claims that its exit water meets the
federal regulation with a mean of less than 7980 ppm of ben-
zene. To assess the benzene content of the exit water, 10 
independent water samples were collected and found to have
an average of 7906 ppm of benzene. Assume a known stan-
dard deviation of 80 ppm and use a significance level of 0.01.

(a) Test the manufacturer’s claim. Use the P-value approach.
(b) What is the �-value if the true mean is 7920?
(c) What sample size would be necessary to detect a true

mean of 7920 with a probability of at least 0.90?
(d) Find a 99% one-sided upper confidence bound on the true

mean.
(e) Use the CI found in part (d) to test the hypothesis.

4-41. In the production of airbag inflators for automotive
safety systems, a company is interested in ensuring that the
mean distance of the foil to the edge of the inflator is at
least 2.00 cm. Measurements on 20 inflators yielded an
average value of 2.02 cm. Assume a standard deviation of
0.05 on the distance measurements and a significance level
of 0.01.

(a) Test for conformance to the company’s requirement. Use
the P-value approach.

(b) What is the �-value if the true mean is 2.03?
(c) What sample size would be necessary to detect a true

mean of 2.03 with a probability of at least 0.90?
(d) Find a 99% one-sided lower confidence bound on the true

mean.
(e) Use the CI found in part (d) to test the hypothesis.

4-42. The life in hours of a thermocouple used in a furnace
is known to be approximately normally distributed, with stan-
dard deviation � � 20 hours. A random sample of 15 thermo-
couples resulted in the following data: 553, 552, 567, 579,
550, 541, 537, 553, 552, 546, 538, 553, 581, 539, 529.

(a) Is there evidence to support the claim that mean life
exceeds 540 hours? Use a fixed-level test with � � 0.05.

(b) What is the P-value for this test?
(c) What is the �-value for this test if the true mean life is 560

hours?
(d) What sample size would be required to ensure that � does

not exceed 0.10 if the true mean life is 560 hours?
(e) Construct a 95% one-sided lower CI on the mean life.
(f ) Use the CI found in part (e) to test the hypothesis.

4-43. A civil engineer is analyzing the compressive strength
of concrete. Compressive strength is approximately normally
distributed with variance �2 � 1000 psi2. A random sample of 12
specimens has a mean compressive strength of psi.

(a) Test the hypothesis that mean compressive strength is
3500 psi. Use a fixed-level test with � � 0.01.

(b) What is the smallest level of significance at which you
would be willing to reject the null hypothesis?

(c) Construct a 95% two-sided CI on mean compressive
strength.

(d) Construct a 99% two-sided CI on mean compressive
strength. Compare the width of this confidence interval
with the width of the one found in part (c). Comment.

4-44. Suppose that in Exercise 4-42 we wanted to be 95%
confident that the error in estimating the mean life is less than
5 hours. What sample size should we use?

4-45. Suppose that in Exercise 4-41 we wanted to be 95%
confident that the error in estimating the mean distance is less
than 0.01 cm. What sample size should we use?

4-46. Suppose that in Exercise 4-43 it is desired to estimate
the compressive strength with an error that is less than 15 psi
at 99% confidence. What sample size is required?

x � 3255.42

4-5 INFERENCE ON THE MEAN OF A POPULATION, 
VARIANCE UNKNOWN

When we are testing hypotheses or constructing CIs on the mean � of a population when �2 is
unknown, we can use the test procedures in Section 4-4, provided that the sample size is large
( say). These procedures are approximately valid (because of the central limit theorem)n � 40,
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regardless of whether or not the underlying population is normal. However, when the sample is
small and �2 is unknown, we must make an assumption about the form of the underlying distri-
bution to obtain a test procedure. A reasonable assumption in many cases is that the underlying
distribution is normal.

Many populations encountered in practice are well approximated by the normal distribu-
tion, so this assumption will lead to inference procedures (statistical tests and CIs) of wide 
applicability. In fact, moderate departure from normality will have little effect on validity.
When the assumption is unreasonable, an alternative is to use nonparametric procedures that
are valid for any underlying distribution or data transformations. See Montgomery and
Runger (2011) for an introduction to these techniques.

4-5.1 Hypothesis Testing on the Mean

Suppose that the population of interest has a normal distribution with unknown mean � and
variance �2. We wish to test the hypothesis that � equals a constant �0. Note that this situation
is similar to that in Section 4-4, except that now both � and �2 are unknown. Assume that a
random sample of size n—say, X1, X2, . . . , Xn—is available, and let and S 2 be the sample
mean and variance, respectively.

We wish to test the two-sided alternative hypothesis

If the variance �2 is known, the test statistic is equation 4-13:

When �2 is unknown, a reasonable procedure is to replace � in the above expression with the
sample standard deviation S. The test statistic is now

Z0 �
X � �0

��1n

H1: � � �0

H0: � � �0

X

(4-39)T0 �
X � �0

S/1n

A logical question is: What effect does replacing � by S have on the distribution of the statis-
tic T0? If n is large, the answer to this question is very little, and we can proceed to use the test
procedure based on the normal distribution from Section 4-4. However, n is usually small in
most engineering problems, and in this situation a different distribution must be employed.

Let X1, X2, . . . , Xn be a random sample for a normal distribution with unknown mean
� and unknown variance �2. The quantity

has a t distribution with n � 1 degrees of freedom.

T �
X � �

S�1n
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The t probability density function is

(4-40)

where k is the number of degrees of freedom. The mean and variance of the t distribution are
zero and k�(k � 2) (for k � 2), respectively. The function 	(m) � �0


 e�xxm�1 dx is the
gamma function. Recall that it was introduced previously in Section 3-5.3. Although it is 
defined for in the special case that m is an integer, . Also, 	(1) �
	(0) � 1.

Several t distributions are shown in Fig. 4-15. The general appearance of the t distri-
bution is similar to the standard normal distribution, in that both distributions are symmet-
ric and unimodal, and the maximum ordinate value is reached when the mean � � 0.
However, the t distribution has heavier tails than the normal; that is, it has more probabil-
ity in the tails than the normal distribution. As the number of degrees of freedom 
the limiting form of the t distribution is the standard normal distribution. In visualizing the
t distribution, it is sometimes useful to know that the ordinate of the density at the mean 
� � 0 is approximately 4 to 5 times larger than the ordinate of the standard normal
distribution at the 5th and 95th percentiles. For example, with 10 degrees of freedom for t
this ratio is 4.8, with 20 degrees of freedom it is 4.3, and with 30 degrees of freedom, 4.1.
By comparison, this factor is 3.9 for the normal distribution.

Appendix A Table II provides percentage points of the t distribution. We will let t�,k be
the value of the random variable T with k degrees of freedom above which we find an area (or
probability) �. Thus, t�,k is an upper-tail 100� percentage point of the t distribution with k
degrees of freedom. This percentage point is shown in Fig. 4-16. In Appendix A Table II the �
values are the column headings, and the degrees of freedom are listed in the left column. To 
illustrate the use of the table, note that the t-value with 10 degrees of freedom having an area
of 0.05 to the right is t0.05,10 � 1.812. That is,

P(T10 7 t0.05,10) � P(T10 7 1.812) � 0.05

k S 
,

≠(m) � (m � 1)!m � 0,

f (x) �
	 [(k  1)�2]

1�k	(k�2)
�

1

[(x2�k)  1] (k1)�2
  �
 6 x 6 


Properties of the
t Distribution

0

k = ∞ [N (0, 1)]

x

k = 10

k = 1

f (x)

t0kα,t kα,t1 – kα, – t=

αα

Figure 4-15 Probability density functions of several 
t distributions.

Figure 4-16 Percentage points of the t distribution.
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Because the t distribution is symmetric about zero, we have that is, the 
t-value having an area of 1 � � to the right (and therefore an area of � to the left) is equal to
the negative of the t-value that has area � in the right tail of the distribution. See Fig. 4-16.
Therefore, t0.95,10 � �t0.05,10 � �1.812.

It is straightforward to see that the distribution of the test statistic in equation 4-39 is t
with n � 1 degrees of freedom if the null hypothesis H0: � � �0 is true. The test procedure is
called the t-test. To test H0: � � �0 against the two-sided alternative , the value of
the test statistic t0 in equation 4-39 is calculated, and the P-value is found from the t distribu-
tion with n � 1 degrees of freedom. Because the test is two-tailed, the P-value is the sum of
the probabilities in the two tails of the t distribution. Refer to Fig. 4-17a. If the test statistic is
positive, then the P-value is the probability above the test statistic value plus the probability
below the negative value of the test statistic value Alternatively, if the test statistic is neg-
ative, then the P-value is the probability below the value of the test statistic plus the prob-
ability above the absolute value of the test statistic Because the t distribution is
symmetric around zero, a simple way to write this is

(4-41)

A small P-value is evidence against so if P is sufficiently small we
should reject the null hypothesis.

For the one-sided alternative hypothesis

(4-42)

we calculate the test statistic t0 from equation 4-39 and calculate the P-value as

(4-43)

For the other one-sided alternative

(4-44)

we calculate the P-value as

(4-45)

Figure 4-17b and c shows how these P-values are calculated.

P � P(Tn�1 6 t0)

H1: � 6 �0

H0: � � �0

P � P(Tn�1 7 t0)

H1: � 7 �0

H0: � � �0

(typically 6 0.05),H0,

P � 2P(Tn�1 7 �t0�)

��t0� � t0.
�t0

�t0.
t0

H1: � � �0

t1�� � �t�;

Figure 4-17 Calculating the P-value for a t-test: (a) ; (b) ; (c) .H1: � 6 �0H1: � 7 �0H1: � � �0

Two-tailed test

P-value =
probability in

both tails 

One-tailed test One-tailed test

�t0 t0t0 t0

P-value

0

(a)

tn – 1

(b)

tn – 1

0

(c)

tn – 1

0
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Statistics software packages calculate and display P-values. However, in working prob-
lems by hand, it is useful to be able to find the P-value for a t-test. Because the t-table in
Appendix A Table II contains only 10 critical values for each t distribution, determining the
exact P-value from this table is usually impossible. Fortunately, it’s easy to find lower and upper
bounds on the P-value by using this table.

To illustrate, suppose that we are conducting an upper-tailed t-test (so 
with 14 degrees of freedom. The relevant critical values from Appendix A Table II are as
follows:

Critical Value: 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140

Tail Area: 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

After calculating the test statistic, we find that Now, is between two tabu-
lated values, 2.624 and 2.977. Therefore, the P-value must be between 0.01 and 0.005. Refer
to Fig. 4-18. These are effectively the upper and lower bounds on the P-value.

This illustrates the procedure for an upper-tailed test. If the test is lower tailed, just
change the sign on the lower and upper bounds for and proceed as above. Remember that
for a two-tailed test, the level of significance associated with a particular critical value is
twice the corresponding tail area in the column heading. This consideration must be taken
into account when we compute the bound on the P-value. For example, suppose that

for a two-tailed alternative based on 14 degrees of freedom. The value of the test
statistic (corresponding to and (correspon-
ding to so the lower and upper bounds on the P-value would be

for this case.
Some statistics software packages can help you calculate P-values. For example, Minitab

has the capability to find cumulative probabilities from many standard probability distribu-
tions, including the t distribution. On the Calc menu select the t distribution and enter the
value of the test statistic along with the appropriate number of degrees of freedom. Minitab
will display the probability where v is the degrees of freedom for the test statistic 
From the cumulative probability the P-value can be determined.

The single-sample t-test we have just described can also be conducted using the fixed sig-
nificance level approach. Consider the two-sided alternative hypothesis. The null hypothesis
would be rejected if the value of the test statistic falls in the critical region defined by the lower
and upper percentage points of the t distribution with degrees of freedom. That is, 
reject if

or t0 6 � t��2, n�1t0 7 t��2, n�1

H0

n � 1�/2
t0

t0.P(Tv � t0)
t0

0.01 6 P 6 0.02
� � 2 � 0.005 � 0.01),

t0 6 2.977� � 2 � 0.01 � 0.02)t0 7 2.624
t0 � 2.8

t0

t0 � 2.8t0 � 2.8.

H1:� 7 �0)

Figure 4-18 P-value
for t0 � 2.8 and an 
upper-tailed test is
shown to be between
0.005 and 0.01.

0

P(T14 > 2.624) = 0.01

P(T14 > 2.977) = 0.005

2.624

2.977
t0 = 2.8

t distribution 
with 14 degrees
of freedom

Approximating the 
P-Value for a t-Test

Using Minitab to
Calculate the P-Value

    c04DecisionMakingforaSingleSample.qxd  10/13/10  12:25 PM  Page 190



4-5 INFERENCE ON THE MEAN OF A POPULATION, VARIANCE UNKNOWN 191

For the one-tailed tests, the location of the critical region is determined by the direction that
the inequality in the alternative hypothesis “points.” So if the alternative is 
reject if

and if the alternative is reject if

Figure 4-19 shows the locations of these critical regions.

t0 6 � t�, n�1

H0H1: � 6 �0,

t0 7 t�, n�1

H0

H1: � 7 �0,

Figure 4-19 The distribution of T0 when H0: is true, with critical region for (a) H1: (b) H1: and 
(c) H1: � 6 �0.

� 7 �0,� � �0,� � �0

0

(a)

–t   /2, n – 1

tn – 1

α  t   /2, n – 1α  

   /2α     /2α  

(b)

tn – 1

t   , n – 1α  0

α  

(c)

tn – 1

–t   , n – 1α  

α  

0

As we noted earlier, the t-test is relatively robust to the assumption of normality. That is, small
to moderate departures from normality have little effect on the procedure. You can always use
a normal probability plot to check the normality assumption.

EXAMPLE 4-7 The increased availability of light materials with high strength has revolutionized the design and manu-
facture of golf clubs, particularly drivers. Clubs with hollow heads and very thin faces can result in much
longer tee shots, especially for players of modest skills. This is due partly to the “spring-like effect” that

Golf Clubs

Testing Hypotheses on the Mean of a Normal Distribution, Variance Unknown

Null hypothesis:

Test statistic:

Rejection Criterion
Alternative Hypotheses P-Value for Fixed-Level Tests

Sum of the probability 
above and the prob-

ability below , or 
Probability above 
Probability below 

The locations of the critical regions for these situations are shown in Fig. 4-19a, b,
and c, respectively.

t0 6 �t�,n�1t0H1: � 6 �0

t0 7 t�,n�1t0H1: � 7 �0

P � 2P(Tn�1 7 �t0�)�|t0|
|t0|

t0 7 t��2,n�1 or t0 6 �t��2,n�1H1: � � �0

T0 �
X � �0

S�1n

H0: � � �0

Summary
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the thin face imparts to the ball. Firing a golf ball at the head of the club and measuring the ratio of the
outgoing velocity of the ball to the incoming velocity can quantify this spring-like effect. The ratio of 
velocities is called the coefficient of restitution of the club. An experiment was performed in which 15
drivers produced by a particular club maker were selected at random and their coefficients of restitution
measured. In the experiment the golf balls were fired from an air cannon so that the incoming velocity
and spin rate of the ball could be precisely controlled. It is of interest to determine if there is evidence
(with � � 0.05) to support a claim that the mean coefficient of restitution exceeds 0.82. The observations
follow:

0.8411 0.8191 0.8182 0.8125 0.8750
0.8580 0.8532 0.8483 0.8276 0.7983
0.8042 0.8730 0.8282 0.8359 0.8660

The sample mean and sample standard deviation are and s � 0.02456. The normal proba-
bility plot of the data in Fig. 4-20 supports the assumption that the coefficient of restitution is normally
distributed. Because the objective of the experimenter is to demonstrate that the mean coefficient of resti-
tution exceeds 0.82, a one-sided alternative hypothesis is appropriate.

Solution. The solution using the seven-step procedure for hypothesis testing is as follows:

1. Parameter of interest: The parameter of interest is the mean coefficient of restitution, �.

2. Null hypothesis, H0: � � 0.82

3. Alternative hypothesis, H1: � � 0.82. We want to reject H0 if the mean coefficient of restitu-
tion exceeds 0.82.

4. Test statistic: The test statistic is

5. Reject H0 if: Reject H0 if the P-value is smaller than 0.05.

6. Computations: Because and n � 15, we have

t0 �
0.83725 � 0.82

0.02456�115
� 2.72

x � 0.83725, s � 0.02456, �0 � 0.82,

t0 �
x � �0

s�1n

x � 0.83725

0.78 0.83 0.88

Coefficent of restitution
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Figure 4-20 Normal
probability plot of the 
coefficient of restitution
data from Example 4-7.
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7. Conclusions: From Appendix A Table II we find, for a t distribution with 14 degrees of freedom,
that t0 � 2.72 falls between two values: 2.624 for which � � 0.01 and 2.977 for which � � 0.005.
Because this is a one-tailed test we know that the P-value is between those two values. That is,
0.005 � P � 0.01. Therefore, since P � 0.05, we reject H0 and conclude that the mean coeffi-
cient of restitution exceeds 0.82. To use Minitab to compute the P-value, use the Calc menu and
select the probability distribution option. Then for the t distribution, enter 14 degrees of freedom
and the value of the test statistic t0 � 2.72 as the input constant. Minitab returns the probability
P(T14 � 2.72) � 0.991703. The P-value is P(T14 � 2.72) or P � 1 � P(T14 � 2.72) � 1 �
0.991703 � 0.008297.

Practical engineering conclusion: There is strong evidence that this type of golf club has a coefficient
of restitution greater than 0.82. If this is a specification or limiting value, the club manufacturer may have
to modify the design. ■

Minitab will conduct the one-sample t-test. The output from this software package is in the
following display:

Notice that Minitab computes both the test statistic T0 and a 95% lower confidence bound for
the coefficient of restitution. We will give the confidence bound formulas in Section 4-5.3.
However, recalling the discussion in Section 4-4.5 about the relationship between hypothesis
tests and CIs, we observe that because the 95% lower confidence bound exceeds 0.82, we
would reject the hypothesis that and conclude that the alternative hypothesis H1:
� � 0.82 is more appropriate. Minitab also calculates a P-value for the test statistic T0. The 
reported value is P � 0.008, which lies between the lower and upper bounds that we obtained
from the t-table and closely agrees with the value we found directly from the cumulative t dis-
tribution function in Minitab.

Animation 9: Hypothesis Testing for Averages

4-5.2 Type II Error and Choice of Sample Size

The type II error probability for tests on the mean of a normal distribution with unknown vari-
ance depends on the distribution of the test statistic in equation 4-39 when the null hypothesis
H0: � � �0 is false. When the true value of the mean is � � �0  �, the distribution for T0 is
called the noncentral t distribution with n � 1 degrees of freedom and noncentrality param-
eter Note that if � � 0, the noncentral t distribution reduces to the usual central t dis-
tribution. Therefore, the type II error of the two-sided alternative (for example) would be

 � P5�t��2,n�1 � T ¿0 � t��2, n�16
 � � P 5�t��2,n�1 � T0 � t��2,n�1 when � � 06

�1n��.

H0: � � 0.82

One-Sample T: COR

Test of mu � 0.82 vs mu � 0.82

Variable N Mean StDev SE Mean
COR 15 0.83725 0.02456 0.00634

Variable 95.0% Lower Bound T P
COR 0.82608 2.72 0.008
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where T �0 denotes the noncentral t random variable. Finding the type II error probability � for
the t-test involves finding the probability contained between two points on the noncentral t dis-
tribution. Because the noncentral t-random variable has a messy density function, this integra-
tion must be done numerically.

Fortunately, this unpleasant task has already been done, and the results are summarized in
a series of graphs in Appendix A Charts Va, Vb, Vc, and Vd that plot � for the t-test against a
parameter d for various sample sizes n. These graphics are called operating characteristic (or
OC) curves. Curves are provided for two-sided alternatives in Charts Va and Vb. The abscissa
scale factor d on these charts is defined as

(4-46)

For the one-sided alternative as in equation 4-42, we use Charts Vc and Vd with

(4-47)

whereas if as in equation 4-44,

(4-48)

We note that d depends on the unknown parameter �2. We can avoid this difficulty in sev-
eral ways. In some cases, we may use the results of a previous experiment or prior information
to make a rough initial estimate of �2. If we are interested in evaluating test performance after
the data have been collected, we could use the sample variance s2 to estimate �2. If there is no
previous experience on which to draw in estimating �2, we then define the difference in the
mean d that we wish to detect relative to �. For example, if we wish to detect a small differ-
ence in the mean, we might use a value of (for example), whereas if we are
interested in detecting only moderately large differences in the mean, we might select

(for example). That is, it is the value of the ratio that is important in 
determining sample size, and if it is possible to specify the relative size of the difference in
means that we are interested in detecting, then a proper value of d usually can be selected.

0� 0 ��d � 0� 0 �� � 2

d � 0� 0 �� � 1

d �
�0 � �

�
�

�

�

� 6 �0,

d �
� � �0

�
�

�

�

� 7 �0

d �
0� � �0 0

�
�
0� 0
�

Using Operating
Characteristic Curves

Golf Clubs
EXAMPLE 4-8 Consider the golf club testing problem from Example 4-7. If the mean coefficient of restitution differs

from 0.82 by as much as 0.02, is the sample size n � 15 adequate to ensure that H0: � � 0.82 will be 
rejected with probability at least 0.8?

Solution. To solve this problem, we will use the sample standard deviation s � 0.02456 to estimate �.
Then By referring to the operating characteristic curves in
Appendix A Chart Vc (for � � 0.05) with d � 0.81 and n � 15, we find that � � 0.10, approximately.
Thus, the probability of rejecting H0: � � 0.82 if the true mean exceeds this by 0.02 is approximately 
1 � � � 1 � 0.10 � 0.90, and we conclude that a sample size of n � 15 is adequate to provide the 
desired sensitivity. ■

Minitab will also perform power and sample size computations for the one-sample t-test. The
following display shows several calculations based on the golf club testing problem.

d � 0� 0 �� � 0.02�0.02456 � 0.81.
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In the first portion of the display, Minitab reproduces the solution to Example 4-8, verifying
that a sample size of n � 15 is adequate to give power of at least 0.8 if the mean coefficient of
restitution exceeds 0.82 by at least 0.02. In the middle section of the output, we asked Minitab
to compute the power if the difference in means we wanted to detect was 0.01. Notice that with
n � 15, the power drops considerably to 0.4425. The third section of the output is the sample
size required to give a power of at least 0.8 if the difference in means of interest is actually 0.01.
A much larger sample size (n = 39) is required to detect this smaller difference.

4-5.3 Confidence Interval on the Mean

It is easy to find a 100(1 � �)% CI on the mean of a normal distribution with unknown vari-
ance by proceeding as we did in Section 4-4.5. In general, the distribution of

is t with n � 1 degrees of freedom. Letting be the upper 
percentage point of the t distribution with n � 1 degrees of freedom, we may write:

P (�t��2,n�1 � T � t��2,n�1) � 1 � �

100�/2t��2,n�1T � (X � �)�(S�1n)

1-Sample t Test

Testing mean � null (versus � null)

Calculating power for mean � null  difference

Alpha � 0.05 Sigma � 0.02456

Sample

Difference Size Power

0.02 15 0.9117

1-Sample t Test

Testing mean � null (versus � null)

Calculating power for mean � null  difference

Alpha � 0.05 Sigma � 0.02456

Sample

Difference Size Power

0.01 15 0.4425

1-Sample t Test

Testing mean � null (versus � null)

Calculating power for mean � null  difference

Alpha � 0.05 Sigma � 0.02456

Sample Target Actual

Difference Size Power Power

0.01 39 0.8000 0.8029

Interpreting Minitab
Output
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or

Rearranging this last equation yields

(4-49)

This leads to the following definition of the 100(1 � �)% two-sided CI on �.

P(X � t��2, n�1S�1n � � � X  t��2,n�1S�1n) � 1 � �

Pa�t��2,n�1 �
X � �

S�1n
� t��2,n�1b � 1 � �

One-Sided Confidence Bound
To find a 100(1 � �)% lower confidence bound on �, with unknown �2, simply replace

with in the lower bound of equation 4-50 and set the upper bound to 
.
Similarly, to find a 100(1 � �)% upper confidence bound on �, with unknown �2, replace

with in the upper bound and set the lower bound to �
. These formulas are given
in the table on the inside front cover.

t�,n�1t��2,n�1

�t�,n�1�t��2,n�1

EXAMPLE 4-9 Reconsider the golf club coefficient of restitution problem in Example 4-7. We know that
and s � 0.02456. Find a 95% CI on �.

Solution. From equation 4-50 we find ( :

In Example 4-7, we tested a one-sided alternative hypothesis on �. Some engineers might be interested
in a one-sided confidence bound. Recall that the Minitab output actually computed a lower confidence
bound. The 95% lower confidence bound on mean coefficient of restitution is

Thus, we can state with 95% confidence that the mean coefficient of restitution exceeds 0.82608. This is
also the result reported by Minitab. ■

 0.82608 � �
 0.83725 � 1.761(0.02456)�115 � �

 x � t0.05,n�1s�1n � �

 0.82365 � � � 0.85085

 0.83725 � 0.01360 � � � 0.83725  0.01360

 0.83725 � 2.145(0.02456)�115 � � � 0.83725  2.145(0.02456)�115

 x � t�/2,n�1s�1n � � � x  t��2,n�1s/1n

t��2,n�1 � t0.025,14 � 2.145)

n � 15, x � 0.83725,Golf Clubs

Confidence Interval on the Mean of 
a Normal Distribution, Variance Unknown

If and s are the mean and standard deviation of a random sample from a normal dis-
tribution with unknown variance �2, a 100(1 � �)% CI on � is given by

(4-50)

where is the upper percentage point of the t distribution with n � 1
degrees of freedom.

100��2t��2,n�1

x � t��2,n�1s�1n � � � x  t��2,n�1s�1n

x
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Animation 8: Confidence Intervals

EXERCISES FOR SECTION 4-5

4-47. Suppose that we are testing versus
with a sample size of Calculate bounds on

the P-value for the following observed values of the test statistic:

(a) (b)
(c) (d)

4-48. Suppose that we are testing versus
with a sample size of Calculate bounds on

the P-value for the following observed values of the test statistic:

(a) (b)
(c) (d)
(e)

4-49. Suppose that we are testing versus
with a sample size of Calculate bounds

on the P-value for the following observed values of the test
statistic:

(a) (b)
(c) (d)

4-50. Consider the Minitab output shown below.

t0 � �1.30t0 � �3.05
t0 � �1.76t0 � �2.59

n � 25.H1: � 6 �0

H0: � � �0

t0 � �1.25
t0 � 1.88t0 � 2.69
t0 � �3.95t0 � 2.48

n � 10.H1: � � �0

H0: � � �0

t0 � 1.55t0 � 2.00
t0 � 3.55t0 � 2.35

n � 15.H1:� 7 �0

H0:� � �0 4-52. Consider the Minitab output below.

One-Sample T: X
Test of 

SE
Variable N Mean StDev Mean 95% CI T P
X 25 92.5805 ? 0.4673 (91.6160, ?) 3.38 0.002

vs not � 91mu � 91

One-Sample T: X
Test of 

95%
SE Lower

Variable N Mean StDev Mean Bound T P
X 12 25.6818 ? 0.3360 ? ? 0.034

mu � 25 vs 7 25

(a) Fill in the missing values in the output. Can the null 
hypothesis be rejected at the 0.05 level? Why?

(b) Is this a one-sided or a two-sided test?
(c) If the hypotheses had been versus 

would you reject the null hypothesis at the 0.05 level?
(d) Use the output and the t-table to find a 99% two-sided CI

on the mean.
(e) What is the if the alternative hypothesis is

H1: � 7 91?
P-value

� � 90,H1:H0: � � 90

4-51. Consider the Minitab output shown below.

(a) How many degrees of freedom are there on the t-test
statistic?

(b) Fill in the missing information.

(a) How many degrees of freedom are there on the t-test sta-
tistic?

(b) Fill in the missing information. You may calculate bounds
on the P-value.

4-53. An article in Computers in Electrical Engineering
(“Parallel Simulation of Cellular Neural Networks,” 1996,
Vol. 22, pp. 61–84) considered the speed-up of cellular neural
networks (CNN) for a parallel general-purpose computing
architecture. The data follow.

3.775302 3.350679 4.217981 4.030324 4.639692
4.139665 4.395575 4.824257 4.268119 4.584193
4.930027 4.315973 4.600101

(a) Is there sufficient evidence to reject the claim that the
mean speed-up exceeds 4.0? Assume that � � 0.05.

(b) Do the data have an approximately normal distribution?
Provide a graphical display to support your answer.

(c) Find a 95% two-sided CI on the mean speed-up time.
(d) What sample size would be required to detect a true mean

speed-up time of 4.75 if we want the power of the test to
be at least 0.8? Use the sample standard deviation s com-
puted in working part (a) as an estimate of �.

4-54. An article in the ASCE Journal of Energy Engineering
(Vol. 125, 1999, pp. 59–75) describes a study of the thermal 
inertia properties of autoclaved aerated concrete used as a
building material. Five samples of the material were tested in a
structure, and the average interior temperature reported
was as follows: 23.01, 22.22, 22.04, 22.62, and 22.59.

(a) Test the hypotheses versus 
using Use the P-value approach.

(b) Check the assumption that interior temperature is nor-
mally distributed.

(c) Find a 95% CI on the mean interior temperature.
(d) What sample size would be required to detect a true mean

interior temperature as high as 22.75 if we wanted the
power of the test to be a least 0.9? Use the sample standard
deviation s as an estimate of 

4-55. A research engineer for a tire manufacturer is investigat-
ing tire life for a new rubber compound. She has built 10 tires and
tested them to end-of-life in a road test. The sample mean and
standard deviation are 61,492 and 3035 kilometers, respectively.

(a) The engineer would like to demonstrate that the mean life
of this new tire is in excess of 60,000 km. Formulate and

�.

� � 0.05.
H1: � � 22.5,H0: � � 22.5

(°C)

Test of mu � 50 vs not � 50

Variable N Mean StDev SE Mean 95% CI T P
C1 10 49.30 3.62 ? (46.71, 51.89) ? ?
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test appropriate hypotheses, being sure to state (test, if
possible) assumptions, and draw conclusions using the 
P-value approach.

(b) Suppose that if the mean life is as long as 61,000 km, the
engineer would like to detect this difference with proba-
bility at least 0.90. Was the sample size n � 10 used in
part (a) adequate? Use the sample standard deviation s as
an estimate of � in reaching your decision.

(c) Find a 95% one-sided lower confidence bound on mean
tire life.

(d) Use the bound found in part (c) to test the hypothesis.

4-56. An Izod impact test was performed on 20 specimens of
PVC pipe. The ASTM standard for this material requires that
Izod impact strength must be greater than 1.0 ft-lb/in. The sam-
ple average and standard deviation obtained were 
and s � 0.328, respectively. Test H0: � � 1.0 versus H1: � �
1.0 using � � 0.01 and draw conclusions. State any necessary
assumptions about the underlying distribution of the data.

4-57. The life in hours of a biomedical device under devel-
opment in the laboratory is known to be approximately nor-
mally distributed. A random sample of 15 devices is selected
and found to have an average life of 5625.1 hours and a sam-
ple standard deviation of 226.1 hours.

(a) Test the hypothesis that the true mean life of a biomedical
device is greater than 5500 using the P-value approach.

(b) Construct a 95% lower confidence bound on the mean.
(c) Use the confidence bound found in part (b) to test the 

hypothesis.

4-58. A particular brand of diet margarine was analyzed to
determine the level of polyunsaturated fatty acid (in percent).
A sample of six packages resulted in the following data: 16.8,
17.2, 17.4, 16.9, 16.5, and 17.1.

(a) It is important to determine if the mean is not 17.0. Test an
appropriate hypothesis, using the P-value approach. What
are your conclusions? Use a normal probability plot to test
the normality assumption.

(b) Suppose that if the mean polyunsaturated fatty acid con-
tent is � � 17.5, it is important to detect this with proba-
bility at least 0.90. Is the sample size n � 6 adequate? Use
the sample standard deviation to estimate the population
standard deviation �. Use � � 0.01.

(c) Find a 99% two-sided CI on the mean �. Provide a practi-
cal interpretation of this interval.

4-59. In building electronic circuitry, the breakdown volt-
age of diodes is an important quality characteristic. The break-
down voltage of 12 diodes was recorded as follows: 9.099,
9.174, 9.327, 9.377, 8.471, 9.575, 9.514, 8.928, 8.800, 8.920,
9.913, and 8.306.

(a) Check the normality assumption for the data.
(b) Test the claim that the mean breakdown voltage is less

than 9 volts with a significance level of 0.05.
(c) Construct a 95% one-sided upper confidence bound on

the mean breakdown voltage.

x � 1.121

(d) Use the bound found in part (c) to test the hypothesis.
(e) Suppose that the true breakdown voltage is 8.8 volts; it is

important to detect this with a probability of at least 0.95.
Using the sample standard deviation to estimate the popu-
lation standard deviation and a significance level of 0.05,
determine the necessary sample size.

4-60. A machine produces metal rods used in an automobile
suspension system. A random sample of 12 rods is selected,
and the diameter is measured. The resulting data in millime-
ters are shown here.

8.23 8.31 8.42
8.29 8.19 8.24
8.19 8.29 8.30
8.14 8.32 8.40

(a) Check the assumption of normality for rod diameter.
(b) Is there strong evidence to indicate that mean rod diame-

ter is not 8.20 mm using a fixed-level test with � � 0.05?
(c) Find the P-value for this test.
(d) Find a 95% two-sided CI on mean rod diameter and pro-

vide a practical interpretation of this interval.

4-61. The wall thickness of 25 glass 2-liter bottles was
measured by a quality-control engineer. The sample mean was

mm, and the sample standard deviation was s �
0.081 mm.

(a) Suppose that it is important to demonstrate that the wall
thickness exceeds 4.0 mm. Formulate and test appropriate
hypotheses using these data. Draw conclusions at � �
0.05. Calculate the P-value for this test.

(b) Find a 95% lower confidence bound for mean wall thick-
ness. Interpret the interval you obtain.

4-62. Measurements on the percentage of enrichment of 12
fuel rods used in a nuclear reactor were reported as follows:

3.11 2.88 3.08 3.01
2.84 2.86 3.04 3.09
3.08 2.89 3.12 2.98

(a) Use a normal probability plot to check the normality as-
sumption.

(b) Test the hypothesis H0: � � 2.95 versus 
and draw appropriate conclusions. Use the P-value ap-
proach.

(c) Find a 99% two-sided CI on the mean percentage of en-
richment. Are you comfortable with the statement that the
mean percentage of enrichment is 2.95%? Why?

4-63. A post-mix beverage machine is adjusted to release a
certain amount of syrup into a chamber where it is mixed with
carbonated water. A random sample of 25 beverages was
found to have a mean syrup content of fluid ounces
and a standard deviation of s � 0.016 fluid ounces.

(a) Do the data presented in this exercise support the claim
that the mean amount of syrup dispensed is not 1.0 fluid
ounce? Test this claim using � � 0.05.

x � 1.098

H1: � � 2.95,

x � 4.058
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4-6 INFERENCE ON THE VARIANCE OF A NORMAL POPULATION 199

(b) Do the data support the claim that the mean amount of
syrup dispensed exceeds 1.0 fluid ounce? Test this claim
using � � 0.05.

(c) Consider the hypothesis test in part (a). If the mean
amount of syrup dispensed differs from � � 1.0 by as
much as 0.05, it is important to detect this with a high
probability (at least 0.90, say). Using s as an estimate of �,
what can you say about the adequacy of the sample size 
n � 25 used by the experimenters?

(d) Find a 95% two-sided CI on the mean amount of syrup
dispensed.

4-64. An article in the Journal of Composite Materials (Vol.
23, 1989, p. 1200) describes the effect of delamination on the
natural frequency of beams made from composite laminates.
Five such delaminated beams were subjected to loads, and the
resulting frequencies were as follows (in Hz):

230.66, 233.05, 232.58, 229.48, 232.58

Find a 90% two-sided CI on mean natural frequency. Do the
results of your calculations support the claim that mean natu-
ral frequency is 235 Hz? Discuss your findings and state any
necessary assumptions.

4-6 INFERENCE ON THE VARIANCE OF A NORMAL POPULATION

Sometimes hypothesis tests and CIs on the population variance or standard deviation are
needed. If we have a random sample X1, X2, . . . , Xn, the sample variance S2 is an unbiased
point estimator of �2. When the population is modeled by a normal distribution, the tests and
intervals described in this section are applicable.

4-6.1 Hypothesis Testing on the Variance of a Normal Population

Suppose that we wish to test the hypothesis that the variance of a normal population �2 equals
a specified value—say, Let X1, X2, . . . , Xn be a random sample of n observations from this
population. To test

(4-51)

we will use the following test statistic:

H1: �
2 � �2

0

H0: �
2 � �2

0

�2
0.

4-65. Cloud seeding has been studied for many decades as a
weather modification procedure (for an interesting study of
this subject, see the article in Technometrics, “A Bayesian
Analysis of a Multiplicative Treatment Effect in Weather
Modification,” Vol. 17, 1975, pp. 161–166). The rainfall in
acre-feet from 20 clouds that were selected at random and
seeded with silver nitrate follows: 18.0, 30.7, 19.8, 27.1, 22.3,
18.8, 31.8, 23.4, 21.2, 27.9, 31.9, 27.1, 25.0, 24.7, 26.9, 21.8,
29.2, 34.8, 26.7, and 31.6.

(a) Can you support a claim that mean rainfall from seeded
clouds exceeds 25 acre-feet? Use Find the 
P-value.

(b) Check that rainfall is normally distributed.
(c) Compute the power of the test if the true mean rainfall is

27 acre-feet.
(d) What sample size would be required to detect a true mean

rainfall of 27.5 acre-feet if we wanted the power of the test
to be at least 0.9?

(e) Explain how the question in part (a) could be answered by
constructing a one-sided confidence bound on the mean
diameter.

� � 0.01.

(4-52)X 
2
0 �

(n � 1)S 
2

�2
0

To define the test procedure, we will need to know the distribution of the test statistic in
equation 4-52 when the null hypothesis is true.

X 2
0
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200 CHAPTER 4 DECISION MAKING FOR A SINGLE SAMPLE

The mean and variance of the �2 distribution are

(4-55)

respectively. Several chi-square distributions are shown in Fig. 4-21. Note that the chi-square
random variable is nonnegative and that the probability distribution is skewed to the right.
However, as k increases, the distribution becomes more symmetric. As the limiting
form of the chi-square distribution is the normal distribution.

The percentage points of the �2 distribution are given in Table III of Appendix A. Define
�2

�,k as the percentage point or value of the chi-square random variable with k degrees of free-
dom such that the probability that X 2 exceeds this value is �. That is,

This probability is shown as the shaded area in Fig. 4-22. To illustrate the use of Table III, note
that the areas � are the column headings and the degrees of freedom k are given in the left col-
umn, labeled �. Therefore, the value with 10 degrees of freedom having an area (probability)

P(X 
2

7 �2
�,k 

) � �



�2
�,k

 f (u) du � �

k S 
,

� � k   and  �2 � 2k

Let X1, X2, . . . , Xn be a random sample from a normal distribution with unknown
mean � and unknown variance �2. The quantity

(4-53)

has a chi-square distribution with n � 1 degrees of freedom, abbreviated as 
In general, the probability density function of a chi-square random variable is

(4-54)

where k is the number of degrees of freedom and was defined in Section 4-5.1.	(k/2)

f (x) �
1

2k�2	(k�2)
 x(k�2)�1 e�x�2  x 7 0

�2
n�1.

X 
2 �

(n � 1)S 
2

�2

Using Table III of
Appendix A for the 
�2 Distribution

0 5 10 15 20 25 x

k = 10

k = 5

k = 2

f(x)

20
kα,χ

α

x

f(x)

Figure 4-21 Probability density functions of 
several �2 distributions.

Figure 4-22 Percentage point �2
�,k of the �2

distribution.
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4-6 INFERENCE ON THE VARIANCE OF A NORMAL POPULATION 201

of 0.05 to the right is �2
0.05,10 � 18.31. This value is often called an upper 5% point of chi

square with 10 degrees of freedom. We may write this as a probability statement as follows:

It is relatively easy to construct a test for the hypothesis in equation 4-51. We can use 
defined in equation 4-52 as the test statistic. If the null hypothesis is true, the test
statistic follows the chi-square distribution with n � 1 degrees of freedom. To conduct a
fixed-significance-level test, calculate the value of the test statistic and reject the hypothesis

if

(4-56)

where and are the upper and lower percentage points of the chi-
square distribution with n � 1 degrees of freedom, respectively. The critical region is shown
in Fig. 4-23a.

The same test statistic is used for one-sided alternative hypotheses. For the one-sided
hypothesis

(4-57)

we would reject H0 if

(4-58)

For the other one-sided hypothesis

(4-59)

we would reject H0 if

(4-60)

The one-sided critical regions are shown in Fig. 4-23b and c.

�2
0 6 �2

1��,n�1

H1: �
2

6 �2
0

H0: �
2 � �2

0

�2
0 7 �2

�,n�1

H1: �
2

7 �2
0

H0: �
2 � �2

0

100�/2�2
1���2,n�1�2

��2,n�1

�2
0 7 �2

��2,n�1   or  �2
0 6 �2

1���2,n�1

H0: �
2 � �2

0

�2
0,

X 
2
0

H0: � 
2 � �2

0

X 2
0

P(X 
2

7 �2
0.05,10) � P(X 

2
7 18.31) � 0.05

x

(a)

0

f(x)

/2α /2α

χn – 1
2

χ
1 – α /2, n – 1 
2 χα /2, n – 1 

2 x

(b)

0

f(x)

α

χn – 1
2

χα α, n – 1 
2 x

(c)

0

f(x)

α

χn – 1
2

χ
1      , n – 1 –
2

Figure 4-23 Distribution of the test statistic for H0: with critical region values for (a) H1: (b) H0: 
and (c) H0: �

2
6 �2

0.
�2

7 �2
0,�2 � �2

0,�2 � �2
0
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202 CHAPTER 4 DECISION MAKING FOR A SINGLE SAMPLE

EXAMPLE 4-10 An automatic filling machine is used to fill bottles with liquid detergent. A random sample of 20 bottles
results in a sample variance of fill volume of s2 � 0.0153 (fluid ounces)2. If the variance of fill volume
exceeds 0.01 (fluid ounces)2 an unacceptable proportion of bottles will be underfilled and overfilled. Is
there evidence in the sample data to suggest that the manufacturer has a problem with under- and over-
filled bottles? Use � � 0.05, and assume that fill volume has a normal distribution.

Solution. Using the seven-step procedure results in the following:

1. Parameter of interest: The parameter of interest is the population variance �2.

2. Null hypothesis,

3. Alternative hypothesis,

4. Test statistic: The test statistic is

5. Reject H0: To use a fixed-significance-level test, reject H0 if 

6. Computations:

7. Conclusions: Because we conclude that there is no strong
evidence that the variance of fill volume exceeds 0.01 (fluid ounces)2.

Practical engineering conclusion: That is no strong reason to reject the claim the However,
as we will see below the P-value is about 0.065 so the usual “weak conclusion” associated with not reject-
ing H0 is even weaker. Perhaps another experiment with a larger sample size should be considered. ■

� � 0.01.

�2
0 � 29.07 6 �2

0.05,19 � 30.14,

�2
0 �

19(0.0153)

0.01
� 29.07

�2
0 7 �2

0.05,19 � 30.14.

�2
0 �

(n � 1)s2

�2
0

H1: �
2

7 0.01

H0: �
2 � 0.01

Testing Hypotheses on the Variance of a Normal Distribution

Null hypothesis:

Test statistic:

Alternative Hypotheses Rejection Criterion

The locations of the critical region are shown in Fig. 4-23.

�2
0 6 �2

1��, n�1H1: �
2

6 �2
0

�2
0 7 �2

�, n�1H1: �
2

7 �2
0

�2
0 7 �2

��2,n�1 or �2
0 6 �2

1���2,n�1H1: �
2 � �2

0

�2
0 �

(n � 1)S 
2

�2
0

H0: �
2 � �2

0

Summary

Bottle Filling

P-values can also be used with chi-square tests. For example, consider Example 4-10,
which involved an upper-tail one-tail test. The P-value is the probability to the right of the
computed value of the test statistic in the distribution. Because Appendix A Table III con-
tains only 11 tail areas (columns), we usually will have to find lower and upper bounds on P.
This is easy to do. The computed value of the test statistic in Example 4-10 is .�2

0 � 29.07

�2
n�1

Computing P-Value 
for a �2 Test
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4-6 INFERENCE ON THE VARIANCE OF A NORMAL POPULATION 203

From inspection of the table, we find that and Because 27.20 �
29.07 � 30.14, we conclude that the P-value for the test in Example 4-10 is in the interval
0.05 � P � 0.10. The actual P-value can be computed from Minitab. For 19 degrees of free-
dom, Minitab calculates the cumulative chi-square probability that is less than or equal to the
value of the test statistic as 0.935108 (use the cumulative distribution function in
the Calc menu), so the P-value is the probability (area) beyond 29.07, or

The P-value for the lower-tail test would be found as the area (probability) in the lower
tail of the distribution to the left of the computed value of the test statistic . For the two-
sided alternative, find the tail area associated with the computed value of the test statistic and
double it to obtain the P-value.

4-6.2 Confidence Interval on the Variance of a Normal Population

It was noted in the previous section that if the population is normal, the sampling distribution of

is chi square with n � 1 degrees of freedom. To develop the confidence interval, we first write

so that

This last equation can be rearranged as

(4-61)

This leads to the following definition of the CI for �2.

P c (n � 1)S 
2

�2
��2,n�1

� �2 �
(n � 1)S 

2

�2
1���2,n�1

d � 1 � �

P c�2
1��/2, n�1 �

(n � 1)S 
2

�2 � �2
�/2, n�1 d � 1 � �

P(�2
1���2,n�1 � X 

2 � �2
��2, n�1) � 1 � �

X 
2 �

(n � 1)S 
2

�2

�2
0�2

n�1

P � 1 � 0.935108 � 0.064892.

�2
0 � 29.07

�2
0.05,19 � 30.14.�2

0.10,19 � 27.20

Confidence Interval on the Variance of a Normal Distribution

If s2 is the sample variance from a random sample of n observations from a normal
distribution with unknown variance �2, a 100(1 � �)% CI on �2 is

(4-62)

where and are the upper and lower percentage points of
the chi-square distribution with n � 1 degrees of freedom, respectively. To find
a CI on the standard deviation �, simply take the square root throughout in
equation 4-62.

100��2�2
1���2,n�1�2

��2,n�1

(n � 1)s2

�2
��2,n�1

� �2 �
(n � 1)s2

�2
1���2,n�1
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204 CHAPTER 4 DECISION MAKING FOR A SINGLE SAMPLE

EXAMPLE 4-11 Reconsider the bottle filling machine from Example 4-10. We will continue to assume that fill volume is
approximately normally distributed. A random sample of 20 bottles results in a sample variance of s2 �
0.0153 (fluid ounces)2. We want to find the 95% upper confidence bound on �2.

Solution. The CI is found from equation 4-62 as follows:

or

This last statement may be converted into a confidence bound on the standard deviation � by taking the
square root of both sides, resulting in

Therefore, at the 95% level of confidence, the data indicate that the process standard deviation could be
as large as 0.17 fluid ounces.

Practical engineering conclusions: The CI indicates that there is a reasonable chance that the standard
deviation could be as large as 0.017 fluid ounces. The engineer now needs to determine if this could lead
to an unacceptable risk of underfilling or overfilling bottles. ■

� � 0.17 fluid ounces

�2 �
(19)0.0153

10.12
� 0.0287 (fluid ounces)2

�2 �
(n � 1)s2

�2
0.95,19

One-Sided Confidence Bounds
To find a 100(1 � �)% lower confidence bound on �2, set the upper confidence bound in
equation 4-62 equal to 
 and replace with The 100(1 � �)% upper confidence
bound is found by setting the lower confidence limit in equation 4-62 equal to zero and
replacing with For your convenience, these equations for constructing
the one-sided upper and lower confidence intervals are given in the table on the inside front
cover of this text.

�2
1��,n�1.�2

1��/2,n�1

�2
�,n�1.�2

�/2,n�1

Bottle Filling

EXERCISES FOR SECTION 4-6

4-66. Suppose that we are testing versus
with a sample size of Calculate bounds

on the P-value for the following observed values of the test
statistic:

(a) (b) 
(c) (d) 

4-67. A rivet is to be inserted into a hole. If the standard
deviation of hole diameter exceeds 0.02 mm, there is an unac-
ceptably high probability that the rivet will not fit. A random
sample of n � 15 parts is selected, and the hole diameter is
measured. The sample standard deviation of the hole diameter
measurements is s � 0.016 mm.

(a) Is there strong evidence to indicate that the standard
deviation of hole diameter exceeds 0.02 mm? Calculate

�2
0 � 28.55�2

0 � 25.00
�2

0 � 23.50�2
0 � 22.35

n � 15.H1: �
2

7 �2
0

H0: �
2 � �2

0 a P-value to draw conclusions. State any necessary
assumptions about the underlying distribution of the data.

(b) Construct a 95% lower confidence bound for �.
(c) Use the confidence bound in part (b) to test the hypothesis.

4-68. The sugar content of the syrup in canned peaches is nor-
mally distributed, and the variance is thought to be �2 � 18 (mg)2.

(a) Test the hypothesis that the variance is not 18 (mg)2 if a
random sample of n � 10 cans yields a sample standard
deviation of s � 4 mg, using a fixed-level test with � �
0.05. State any necessary assumptions about the underly-
ing distribution of the data.

(b) What is the P-value for this test?
(c) Find a 95% two-sided CI for �.
(d) Use the CI in part (c) to test the hypothesis.
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4-7 INFERENCE ON A POPULATION PROPORTION

It is often necessary to test hypotheses and construct CIs on a population proportion. For
example, suppose that a random sample of size n has been taken from a large (possibly infi-
nite) population and that observations in this sample belong to a class of interest. Then

is a point estimator of the proportion of the population p that belongs to this class.
Note that n and p are the parameters of a binomial distribution. Furthermore, from Chapter 3
we know that the sampling distribution of is approximately normal with mean p and vari-
ance if p is not too close to either 0 or 1 and if n is relatively large. Typically, to
apply this approximation we require that np and n(1 � p) be greater than or equal to 5. We will
make use of the normal approximation in this section.

4-7.1 Hypothesis Testing on a Binomial Proportion

In many engineering problems, we are concerned with a random variable that follows the
binomial distribution. For example, consider a production process that manufactures items
classified as either acceptable or defective. It is usually reasonable to model the occurrence of
defectives with the binomial distribution, where the binomial parameter p represents the pro-
portion of defective items produced. Consequently, many engineering decision problems
include hypothesis testing about p.

We will consider testing

(4-63)

An approximate test based on the normal approximation to the binomial will be given. As
noted above, this approximate procedure will be valid as long as p is not extremely close to 0
or 1, and if the sample size is relatively large. The following result will be used to perform
hypothesis testing and to construct confidence intervals on p.

H1: p � p0

H0: p � p0

p(1 � p)/n,
P̂

P̂ � X/n
X (� n)

4-69. Consider the tire life data in Exercise 4-55.

(a) Can you conclude, using � � 0.05, that the standard devi-
ation of tire life exceeds 3000 km? State any necessary
assumptions about the underlying distribution of the data.

(b) Find the P-value for this test.
(c) Find a 95% lower confidence bound for �.
(d) Use the confidence bound in part (c) to test the hypothesis.

4-70. Consider the Izod impact test data in Exercise 4-56.

(a) Test the hypothesis that against an alternative
specifying that using � � 0.01, and draw a
conclusion. State any necessary assumptions about the
underlying distribution of the data.

�2 � 0.10,
�2 � 0.10

(b) What is the P-value for this test?
(c) Find a 99% two-sided CI for 
(d) Use the CI in part (c) to test the hypothesis.

4-71. The percentage of titanium in an alloy used in aero-
space castings is measured in 51 randomly selected parts. The
sample standard deviation is s � 0.37.

(a) Test the hypothesis versus 
using � � 0.05. State any necessary assumptions about
the underlying distribution of the data.

(b) Find the P-value for this test.
(c) Construct a 95% two-sided CI for �.
(d) Use the CI in part (c) to test the hypothesis.

H1: � � 0.35H0: � � 0.35

�2.

Let X be the number of observations in a random sample of size n that belongs to the
class associated with p. Then the quantity

(4-64)

has approximately a standard normal distribution, N(0, 1).

Z �
X � np

1np(1 � p)
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206 CHAPTER 4 DECISION MAKING FOR A SINGLE SAMPLE

Then, if the null hypothesis H0: p � p0 is true, we have 
approximately. To test H0: p � p0, calculate the test statistic

and determine the P-value. Because the test statistic follows a standard normal distribution if
is true, the P-value is calculated exactly like the P-value for the z-tests in Section 4-4. So

for the two-sided alternative hypothesis, the P-value is the sum of the probability in the stan-
dard normal distribution above the positive computed value of the test statistic and the
probability below the negative value or

For the one-sided alternative hypothesis the P-value is the probability above or

and for the one-sided alternative hypothesis the P-value is the probability below
or

We can also perform a fixed-significance-level test. For the two-sided alternative hypothesis,
we would reject if

Critical regions for the one-sided alternative hypotheses would be constructed in the usual
manner.

z0 7 z��2 or z0 6 �z��2

H0: p � p0

P � £(z0)

z0,
H0: p 6 p0,

P � 1 � £(z0)

z0,H0: p 7 p0,

P � 2�1 � £(�z0�)�

�|z0|
|z0|

H0

Z0 �
X � np0

1np0(1 � p0)

X ~ N [np0, np0(1 � p0) ] ,

Testing Hypotheses on a Binomial Proportion

Null hypotheses:

Test statistic:

Rejection Criterion
Alternative Hypotheses P-Value for Fixed-Level Tests

Probability above and
probability below 

Probability above , 

Probability below 
P � £ (z0)

z0 6 �z�z0,H1: p 6 p0

P � 1 � £ (z0)
z0 7 z�z0H1: p 7 p0

P � 2�1 � £ (�z0�)�
��z0�,

z0 7 z��2 or z0 6 �z��2�z0�H1: p � p0

Z0 �
X � np0

1np0(1 � p0)

H0: p � p0

Summary
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EXAMPLE 4-12 A semiconductor manufacturer produces controllers used in automobile engine applications. The cus-
tomer requires that the process fallout or fraction defective at a critical manufacturing step not exceed
0.05 and that the manufacturer demonstrate process capability at this level of quality using � � 0.05. The
semiconductor manufacturer takes a random sample of 200 devices and finds that 4 of them are defec-
tive. Can the manufacturer demonstrate process capability for the customer?

Solution. We may solve this problem using the seven-step hypothesis testing procedure as follows:

1. Parameter of interest: The parameter of interest is the process fraction defective p.

2. Null hypothesis, H0: p � 0.05

3. Alternative hypothesis, H1: p � 0.05
This formulation of the problem will allow the manufacturer to make a strong claim about
process capability if the null hypothesis H0: p � 0.05 is rejected.

4. Test statistic: The test statistic is (from equation 4-64)

where x � 4, n � 200, and p0 � 0.05.

5. Reject H0 if: Reject H0: p � 0.05 if the P-value is less than 0.05.

6. Computations: The test statistic is

7. Conclusions: Because , the P-value is �(�1.95) � 0.0256; since this is less than
0.05, we reject H0 and conclude that the process fraction defective p is less than 0.05. The
practical engineering conclusion is that the process is capable. ■

z0 � �1.95

z0 �
4 � 200(0.05)

1200(0.05)(0.95)
� �1.95

z0 �
x � np0

1np0(1 � p0)

Engine Controllers

We occasionally encounter another form of the test statistic Z0 in equation 4-64. Note that
if X is the number of observations in a random sample of size n that belongs to a class of
interest, is the sample proportion that belongs to that class. Now divide both numer-
ator and denominator of Z0 in equation 4-64 by n, giving

or

(4-65)

This presents the test statistic in terms of the sample proportion instead of the number of items
X in the sample that belongs to the class of interest.

Z0 �
P̂ � p0

1p0(1 � p0)�n

Z0 �
X�n � p0

1p0(1 � p0)�n

P̂ � X/n
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Minitab can be used to perform the test on a binomial proportion. The following Minitab out-
put shows the results for Example 4-12.

Test and CI for One Proportion

Test of 

95%
Sample X N Sample p Upper Bound Z-Value P-Value
1 4 200 0.020000 0.036283 0.026

*Note* The normal approximation may be inaccurate for small samples.

�1.95

p � 0.05 vs p 6 0.05

This output also shows a 95% one-sided upper confidence bound on P. In Section 4-7.3 we
will show how CIs on a binomial proportion are computed. This Minitab display shows the 
result of using the normal approximation for tests and CIs. When the sample size is small, this
may be inappropriate.

Small Sample Tests on a Binomial Proportion
Tests on a proportion when the sample size n is small are based on the binomial distribution,
not the normal approximation to the binomial. To illustrate, suppose we wish to test

Let X be the number of successes in the sample. The P-value for this test would
be found from the lower tail of a binomial distribution with parameters n and Specifically,
the P-value would be the probability that a binomial random variable with parameters n and 
is less than or equal to X. P-values for the upper-tail one-sided test and the two-sided alterna-
tive are computed similarly.

Minitab will calculate the exact P-value for a binomial test. The output below contains the exact
P-value results for Example 4-12.

p0

p0.
H0: p 6 p0.

Test of 

95%
Sample X N Sample p Upper Bound Exact P-Value
1 4 200 0.020000 0.045180 0.026

p � 0.05 vs p 6 0.05

The P-value is the same as that reported for the normal approximation, because the sample
size is large. Notice that the CI is different from the one found using the normal
approximation.

4-7.2 Type II Error and Choice of Sample Size

It is possible to obtain closed-form equations for the approximate �-error for the tests in
Section 4-7.1. Suppose that p is the true value of the population proportion.
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These equations can be solved to find the approximate sample size n that gives a test of
level � that has a specified � risk. The sample size equation follows.

The approximate �-error for the two-sided alternative is

(4-66)

If the alternative is H1: p � p0,

(4-67)

whereas if the alternative is H1: p � p0,

(4-68)� � £ c p0 � p  z�1p0(1 � p0)�n
1p(1 � p)�n

d

� � 1 � £ c p0 � p � z�1p0(1 � p0)�n
1p(1 � p)�n

d

 �£ c p0 � p � z��21p0(1 � p0)�n

1p(1 � p)�n
d

 � � £ c p0 � p  z��21p0(1 � p0)�n

1p(1 � p)�n
d

H1: p � p0

Sample Size for a Two-Sided Hypothesis Test on a Binomial Proportion

(4-69)

If n is not an integer, round the sample size up to the next larger integer.

n � c z��21p0(1 � p0)  z�1p(1 � p)

p � p0
d 2

For a one-sided alternative, replace in equation 4-69 by z�.z��2

EXAMPLE 4-13 Consider the semiconductor manufacturer from Example 4-12. Suppose that the process fallout is really
p � 0.03. What is the �-error for this test of process capability, which uses n � 200 and � � 0.05?

Solution. The �-error can be computed using equation 4-67 as follows:

Thus, the probability is about 0.7 that the semiconductor manufacturer will fail to conclude that the
process is capable if the true process fraction defective is p � 0.03 (3%). This appears to be a large �-error,
but the difference between p � 0.05 and p � 0.03 is fairly small, and the sample size n � 200 is not par-
ticularly large.

� � 1 � £ c 0.05 � 0.03 � (1.645)10.05(0.95)�200

10.03(1 � 0.03)�200
d � 1 � £(�0.44) � 0.67

Engine Controllers
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Suppose that the semiconductor manufacturer was willing to accept a �-error as large as 0.10 if the
true value of the process fraction defective was p � 0.03. If the manufacturer continues to use � � 0.05,
what sample size would be required?

The required sample size can be computed from equation 4-69 as follows:

where we have used p � 0.03 in equation 4-69 and is replaced by z� for the one-sided alternative.
Note that n � 832 is a very large sample size. However, we are trying to detect a fairly small deviation
from the null value p0 � 0.05. ■

z��2

 n � c 1.64510.05(0.95)  1.2810.03(0.97)

0.03 � 0.05
d 2 � 832

4-7.3 Confidence Interval on a Binomial Proportion

It is straightforward to find an approximate 100(1 � �)% CI on a binomial proportion using
the normal approximation. Recall that the sampling distribution of is approximately normal
with mean p and variance if p is not too close to either 0 or 1 and if n is relatively
large. Then the distribution of

(4-70)

is approximately standard normal.
To construct the CI on p, note that

so that

(4-71)

This may be rearranged as

The quantity in this equation is called the standard error of the point estima-
tor . Unfortunately, the upper and lower limits of the CI obtained from this equation contain
the unknown parameter p. However, a satisfactory solution is to replace p with in the standard
error, which results in

(4-72)P c P̂ � z��2B

P̂(1 � P̂)

n
� p � P̂  z��2B

P̂(1 � P̂)

n
d � 1 � �

P̂
P̂

1p(1 � p)�n

P c P̂ � z��2B

p(1 � p)

n
� p � P̂  z��2B

p(1 � p)

n
d � 1 � �

P £�z��2 �
P̂ � p

B

p(1 � p)

n

� z��2 § � 1 � �

P(�z��2 � Z � z��2) � 1 � �

Z �
X � np

1np(1 � p)
�

P̂ � p

B

p(1 � p)

n

p(1 � p)�n,
P̂
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Equation 4-72 leads to the approximate 100(1 � �)% CI on p.

Confidence Interval on a Binomial Proportion

If is the proportion of observations in a random sample of size n that belong to a
class of interest, an approximate 100(1 � �)% CI on the proportion p of the popula-
tion that belongs to this class is

(4-73)

where is the upper percentage point of the standard normal distribution.100 ��2z��2

p̂ � z��2 B

p̂(1 � p̂)

n
� p � p̂  z��2 B

p̂(1 � p̂)

n

p̂

This procedure depends on the adequacy of the normal approximation to the binomial. To
be reasonably conservative, this requires that np and n(1 � p) be greater than or equal to 5
(some recommend 10). In situations where this approximation is inappropriate, particularly in
cases where n is small, other methods must be used. One approach is to use tables of the bino-
mial distribution to obtain a confidence interval for p. However, we prefer to use numerical
methods based on the binomial probability mass function that are implemented in computer
programs. This method is used in Minitab and is illustrated for the situation of Example 4-12
in the boxed display on page 208.

EXAMPLE 4-14 In a random sample of 85 automobile engine crankshaft bearings, 10 have a surface finish that is rougher
than the specifications allow. Find a 95% confidence interval on the proportion of defective bearings.

Solution. A point estimate of the proportion of bearings in the population that exceeds the roughness spec-
ification is A 95% two-sided CI for p is computed from equation 4-73 as

or

which simplifies to

■

Choice of Sample Size
Because is the point estimator of p, we can define the error in estimating p by as

Note that we are approximately 100(1 � �)% confident that this error is less
than For instance, in Example 4-14, we are 95% confident that the sample
proportion differs from the true proportion p by an amount not exceeding 0.07.p̂ � 0.12

z��21p(1 � p)�n.
E � 0 P̂ � p 0 .

P̂P̂

0.0491 � p � 0.1861

0.1176 � 1.96 
B

0.1176(0.8824)

85
� p � 0.1176  1.96 

B

0.1176(0.8824)

85

p̂ � z0.025 B

p̂(1 � p̂)

n
� p � p̂  z0.025 B

p̂(1 � p̂)

n

p̂ � x/n � 10�85 � 0.1176.

Crankshaft
Bearings
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In situations where the sample size can be selected, we may choose n so that we are 100
(1 � �)% confident that the error is less than some specified value E. If we set

and solve for n, we obtain the following formula.E � z��21p(1 � p)�n

Sample Size for a Specified Error E on a Binomial Proportion

If is used as an estimate of p, we can be 100(1 � �)% confident that the error 
will not exceed a specified amount E when the sample size is

(4-74)n � az��2

E
b2

 p(1 � p)

0 P̂ � p 0P̂

For a specified error E, an upper bound on the sample size for estimating p is

(4-75)n � az��2

E
b21

4

An estimate of p is required to use equation 4-74. If an estimate from a previous sam-
ple is available, it can be substituted for p in equation 4-74, or perhaps a subjective estimate
can be made. If these alternatives are unsatisfactory, a preliminary sample can be taken, 

computed, and then equation 4-74 used to determine how many additional observations are
required to estimate p with the desired accuracy. Another approach to choosing n uses the fact
that the sample size from equation 4-74 will always be a maximum for p � 0.5 [that is,

with equality for p � 0.5], and this can be used to obtain an upper bound on n.
In other words, we are at least 100(1 � �)% confident that the error in estimating p by is less
than E if the sample size is selected as follows.

p̂
p(1 � p) � 0.25

p̂

p̂

EXAMPLE 4-15 Consider the situation in Example 4-14. How large a sample is required if we want to be 95% confident
that the error in using to estimate p is less than 0.05?

Solution. Using as an initial estimate of p, we find from equation 4-74 that the required
sample size is

If we wanted to be at least 95% confident that our estimate of the true proportion p was within 0.05 
regardless of the value of p, we would use equation 4-75 to find the sample size

Note that if we have information concerning the value of p, either from a preliminary sample or from
past experience, we could use a smaller sample while maintaining both the desired precision of estima-
tion and the level of confidence. ■

n � az0.025

E
b2

(0.25) � a1.96

0.05
b2

(0.25) 	 385

p̂

n � az0.025

E
b2

 p̂(1 � p̂) � a1.96

0.05
b2

 0.1176(0.8824) 	 160

p̂ � 0.1176

p̂Crankshaft
Bearings
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One-Sided Confidence Bounds
To find an approximate 100(1 � �)% lower confidence bound on p, simply replace with

in the lower bound of equation 4-73 and set the upper bound to 1. Similarly, to find an 
approximate 100(1 � �)% upper confidence bound on p, replace with z� in the upper
bound of equation 4-73 and set the lower bound to 0. These formulas are given in the table on
the inside front cover. Similarly, when determining sample size in the case of the one-sided
confidence bounds, simply replace with in equations 4-74 and 4-75.

A Different Confidence Interval on a Binomial Proportion
There is a different way to construct a CI on a binomial proportion than the traditional approach
in equation 4-73. Starting with equation 4-71 and replacing the inequalities with an equality
and solving the resulting quadratic equation for p results in

This implies that a two-sided CI on a proportion p is as follows:

(4-76)

The article by Agresti and Coull in The American Statistician (“Approximate Better Than
‘Exact’ for Interval Estimation of a Binomial Proportion,” 1998, pp. 119–126) reports that the
actual confidence level for the CI in equation 4-76 is closer to the “advertised” or nominal
level for almost all values of � and p than for the traditional CI in equation 4-73. They also re-
port that this new interval can be used with nearly all sample sizes, so the requirements that

or are not too important. If the sample size is large, the
quantity will be small relative to , will be small relative to ,
and will be small, so as a result the Agresti-Coull CI in equation 4-76 will reduce to the
traditional CI given in equation 4-73.

z2
�/2/n

�P̂(1 � P̂)�n�z2
��2�(4n2)P̂z2

��2�(2n)
n(1 � P̂) � 5 or 10nP̂ � 5 or 10

LCL �

P̂ 
z2

��2

2n
� z�/2B

P̂(1 � P̂)

n


z2
��2

4n2

1  z2
��2�n

UCL �

P̂ 
z2

��2

2n
 z�� 2B

P̂(1 � P̂)

n


z2
��2

4n2

1  z2
��2�n

p �

P̂ 
z2

��2

2n
� z��2B

P̂(1 � P̂)

n


z2
��2

4n2

1  z2
��2�n

z�z��2

z��2

�z�

�z��2

EXAMPLE 4-16 Reconsider the crankshaft bearing data introduced in Example 4-14. In that example we reported that
and n � 85. The traditional 95% CI was

To construct the new Agresti-Coull CI we use equation 4-76:

UCL �

P̂ 
z2

��2

2n
 z��2B

P̂(1 � P̂)

n


z2
��2

4n2

1  z2
��2�n

�

0.12 
1.962

2(85)
 1.96

B

0.12(0.88)

85


1.962

4(852)

1  (1.962�85)
� 0.2024

0.0491 � p � 0.1861

p̂ � 0.12The Agresti-Coull
CI on a
Proportion
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4-72. Consider the Minitab output shown below.

The two CIs would agree more closely if the sample size were larger. ■

LCL �

P̂ 	
z2

�
2

2n
� z�
2B

P̂(1 � P̂)

n
	

z2
�
2

4n2

1 	 z2
�
2
n

�

0.12 	
1.962

2(85)
� 1.96

B

0.12(0.88)

85
	

1.962

4(852)

1 	 (1.962
85)
� 0.0654

Animation 8: Confidence Intervals

EXERCISES FOR SECTION 4-7

4-75. Large passenger vans are thought to have a high
propensity of rollover accidents when fully loaded. Thirty 
accidents of these vans were examined, and 11 vans had rolled
over.

(a) Test the claim that the proportion of rollovers exceeds
0.25 with � � 0.10.

(b) Suppose that the true p � 0.35 and � � 0.10. What is the
�-error for this test?

(c) Suppose that the true p � 0.35 and � � 0.10. How large a
sample would be required if we want � � 0.10?

(d) Find a 90% traditional lower confidence bound on the
rollover rate of these vans.

(e) Use the confidence bound found in part (d) to test the hy-
pothesis.

(f ) How large a sample would be required to be at least 95%
confident that the error on p is less than 0.02? Use an ini-
tial estimate of p from this problem.

4-76. A random sample of 50 suspension helmets used by
motorcycle riders and automobile race-car drivers was sub-
jected to an impact test, and on 18 of these helmets some dam-
age was observed.

(a) Test the hypotheses H0: p � 0.3 versus with 
� � 0.05.

(b) Find the P-value for this test.
(c) Find a 95% two-sided traditional CI on the true proportion

of helmets of this type that would show damage from this
test. Explain how this confidence interval can be used to
test the hypothesis in part (a).

(d) Using the point estimate of p obtained from the prelimi-
nary sample of 50 helmets, how many helmets must be
tested to be 95% confident that the error in estimating the
true value of p is less than 0.02?

(e) How large must the sample be if we wish to be at least
95% confident that the error in estimating p is less than
0.02, regardless of the true value of p?

4-77. The Arizona Department of Transportation wishes to
survey state residents to determine what proportion of the
population would be in favor of building a citywide light-rail

H1: p � 0.3

(a) Is this a one-sided or a two-sided test?
(b) Was this test conducted using the normal approximation

to the binomial? Was that appropriate?
(c) Can the null hypothesis be rejected at the 0.05 level?
(d) Can the null hypothesis versus 

be rejected at the 0.05 level? How can you do this without
performing any additional calculations?

(e) Construct an approximate 90% traditional CI for p.

4-73. Consider the following Minitab output.

H0: p � 0.4H0: p � 0.4

Test and CI for One Proportion

Test of 

Sample X N Sample p 95% CI Z-Value P-Value
1 95 250 0.380000 (0.319832, 2.76 0.006

0.440168)

p � 0.3 vs p not � 0.3

Test and CI for One Proportion

Test of  

95% 
Lower 

Sample X N Sample p Bound Z-Value P-Value
1 553 800 ? ? 2.45 ?

p � 0.65 vs p � 0.65

(a) Is this a one-sided or a two-sided test?
(b) Was this test conducted using the normal approximation

to the binomial? Was that appropriate?
(c) Fill in the missing values.

4-74. Of 1000 randomly selected cases of lung cancer, 823
resulted in death.

(a) Test the hypotheses H0: p � 0.85 versus 
with � � 0.05.

(b) Construct a 95% two-sided traditional CI on the death rate
from lung cancer.

(c) How large a sample would be required to be at least 95%
confident that the error in estimating the death rate from
lung cancer is less than 0.03?

H1: p � 0.85
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system. How many residents do they need to survey if they
want to be at least 99% confident that the sample proportion is
within 0.05 of the true proportion?

4-78. A manufacturer of electronic calculators is interested
in estimating the fraction of defective units produced. A ran-
dom sample of 800 calculators contains 10 defectives.

(a) Formulate and test an appropriate hypothesis to determine
if the fraction defective exceeds 0.01 at the 0.05 level of
significance.

(b) Suppose that the true p � 0.02 and � � 0.05. What is the
�-error for this test?

(c) Suppose that the true p � 0.02 and � � 0.05. How large a
sample would be required if we want � � 0.10?

4-79. A study is to be conducted of the percentage of home-
owners who have a high-speed Internet connection. How large
a sample is required if we wish to be 95% confident that the 
error in estimating this quantity is less than 0.02?

4-80. The fraction of defective integrated circuits produced
in a photolithography process is being studied. A random sam-
ple of 300 circuits is tested, revealing 18 defectives.

(a) Use the data to test the hypothesis that the proportion is
not 0.04. Use � � 0.05.

(b) Find the P-value for the test.
(c) Find a 95% two-sided traditional CI on the proportion 

defective.
(d) Use the CI found in part (c) to test the hypothesis.

4-81. Consider the defective circuit data and hypotheses in
Exercise 4-80.

(a) Suppose that the fraction defective is actually p � 0.05.
What is the �-error for this test?

(b) Suppose that the manufacturer is willing to accept a 
�-error of 0.10 if the true value of p is 0.05. With � � 0.05,
what sample size would be required?

4-82. An article in Fortune (September 21, 1992) claimed
that one-half of all engineers continue academic studies 
beyond the B.S. degree, ultimately receiving either an M.S. or a
Ph.D. degree. Data from an article in Engineering Horizons
(Spring 1990) indicated that 117 of 484 new engineering grad-
uates were planning graduate study.

(a) Are the data from Engineering Horizons consistent with
the claim reported by Fortune? Use � � 0.05 in reaching
your conclusions.

(b) Find the P-value for this test.

4-83. A manufacturer of interocular lenses is qualifying a
new grinding machine. She will qualify the machine if the per-
centage of polished lenses that contain surface defects does
not exceed 4%. A random sample of 300 lenses contains 11
defective lenses.

(a) Formulate and test an appropriate set of hypotheses to de-
termine whether the machine can be qualified. Use a
fixed-level test with � � 0.05.

(b) Find the P-value for this test.
(c) Suppose that the percentage of defective lenses is actually

2%. What is the �-error for this test?
(d) Suppose that a �-error of 0.05 is acceptable if the true per-

centage is 2%. With � � 0.05, what is the required sample
size?

4-84. A researcher claims that at least 10% of all football
helmets have manufacturing flaws that could potentially cause
injury to the wearer. A sample of 200 helmets revealed that 24
helmets contained such defects.

(a) Does this finding support the researcher’s claim? Use a
fixed-level test with � � 0.01.

(b) Find the P-value for this test.

4-85. A random sample of 500 registered voters in Phoenix
is asked whether they favor the use of oxygenated fuels year
round to reduce air pollution. If more than 315 voters respond
positively, we will conclude that at least 60% of the voters 
favor the use of these fuels.

(a) Find the probability of type I error if exactly 60% of the
voters favor the use of these fuels.

(b) What is the type II error probability � if 75% of the voters
favor this action?

4-86. The warranty for batteries for mobile phones is set
at 400 operating hours, with proper charging procedures. A
study of 2000 batteries is carried out and three stop operat-
ing prior to 400 hours. Do these experimental results sup-
port the claim that less than 0.2% of the company’s batter-
ies will fail during the warranty period, with proper
charging procedures? Use a hypothesis testing procedure
with � � 0.01.

4-87. An article in Knee Surgury, Sports Traumatology,
Arthroscopy (“Arthroscopic Meniscal Repair with an
Absorbable Screw: Results and Surgical Technique,” 2005,
Vol. 13, pp. 273–279) showed that 25 out of 37 tears located
between 3 and 6 mm from the meniscus rim were healed.

(a) Calculate a two-sided traditional CI on the proportion of
such tears that will heal.

(b) Calculate a 95% one-sided traditional confidence bound
on the proportion of such tears that will heal.

4-88. Consider the lung cancer data given in Exercise 4-74.
Calculate the 95% Agresti-Coull two-sided CI from equation
4-76 and compare it to the traditional CI in the original
exercise.

4-89. Consider the helmet data given in Exercise 4-76.
Calculate the 95% Agresti-Coull two-sided CI from equa-
tion 4-76 and compare it to the traditional CI in the original
exercise.

4-90. Consider the knee surgery data given in Exercise 
4-87. Calculate the 95% Agresti-Coull two-sided CI from
equation 4-76 and compare it to the traditional CI in part (a) of
the original exercise.
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4-8 OTHER INTERVAL ESTIMATES FOR A SINGLE SAMPLE

4-8.1 Prediction Interval

In some situations, we are interested in predicting a future observation of a random variable.
We may also want to find a range of likely values for the variable associated with making the
prediction. This is a different problem than estimating the mean of that random variable, so a
CI on the mean is not really appropriate. To illustrate, let’s consider the golf clubs from
Example 4-7. Suppose that you plan to purchase a new driver of the type that was tested in that
example. What is a reasonable prediction of the coefficient of restitution for the driver that you
purchase (which is not one of the clubs that was tested in the study), and what is a range of
likely values for the coefficient of restitution? The sample average of the clubs that were
tested is a reasonable point prediction of the coefficient of restitution of the new golf club, and
we will show how to obtain a 100(1 � �)% prediction interval (PI) on the new observation.

Suppose that X1, X2, . . . , Xn is a random sample from a normal population with unknown
mean and variance. We wish to predict the value of a single future observation, say Xn�1. As
noted above, the average of the original sample, , is a reasonable point prediction of Xn�1.
The expected value of the prediction error is and the variance of
the prediction error is

because the future observation Xn�1 is independent of the current sample mean .The predic-
tion error is normally distributed because the original observations are normally distributed.
Therefore,

has a standard normal distribution. Replacing � with the sample standard deviation S results in

which has the t distribution with n � 1 degrees of freedom. Manipulating this T-ratio as we
have done previously in developing CIs leads to a prediction interval on the future observation
Xn�1.

T �
Xn�1 � X

S
B

1 �
1

n

Z �
Xn�1 � X

�
B

1 �
1

n

X

V (Xn�1 � X ) � �2 �
�2

n
� �2a1 �

1

n
b

E(Xn�1 � X ) � � � � � 0
X

X

A 100(1 � �)% PI on a single future observation from a normal distribution is
given by

(4-77)x � t�	2,n�1s
B

1 �
1

n

 Xn�1 
 x � t�	2, n�1s

B
1 �

1

n

Prediction
Interval
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EXAMPLE 4-17 Reconsider the golf clubs that were tested in Example 4-7. The coefficient of restitution was measured
for n � 15 randomly selected metal drivers, and we found that and s � 0.02456. We plan
to buy a new golf club of the type tested. What is a likely range of values for the coefficient of restitution
for the new club?

Solution. The normal probability plot in Fig. 4-17 does not indicate any problems with the normality 
assumption. A reasonable point prediction of its coefficient of restitution is the sample mean, 0.83725. A
95% PI on the coefficient of restitution for the new driver is computed from equation 4-77 as follows:

So we could logically expect that the new golf club will have a coefficient of restitution between 0.78284
and 0.89166. By way of comparison, the 95% two-sided CI on the mean coefficient of restitution is

Notice that the prediction interval is considerably longer than the CI on the
mean. ■
0.82365 
 � 
 0.85085.

 0.78284 
 X16 
 0.89166

 0.83725 � 2.145(0.02456)
B

1 �
1

15

 X16 
 0.83725 � 2.145(0.02456)

B
1 �

1

15

 x � t�	2, n�1s
B

1 �
1

n

 Xn�1 
 x � t�	2, n�1s

B
1 �

1

n

x � 0.83725

The PI for Xn�1 will always be longer than the CI for � because there is more variability
associated with the prediction error for Xn�1 than with the error of estimation for �. This is
easy to see intuitively because the prediction error is the difference between two random vari-
ables and the estimation error used in constructing a CI is the difference between
one random variable and a constant As n gets larger, the length of the CI 
reduces to zero, becoming the true value of the mean, �, but the length of the PI approaches

So as n increases, the uncertainty in estimating � goes to zero, but there will always be
uncertainty about the future observation Xn�1 even when there is no need to estimate any of the
distribution parameters.

Finally, recall that CIs and hypothesis tests on the mean are relatively insensitive to the
normality assumption. PIs, on the other hand, do not share this nice feature and are rather sen-
sitive to the normality assumption because they are associated with a single future value drawn
at random from the normal distribution.

2z�/2�.

(n S �)(X � �).
(Xn�1 � X),

Golf Clubs

4-8.2 Tolerance Intervals for a Normal Distribution

Although confidence and prediction intervals are very useful, there is a third type of interval
that finds many applications. Consider the population of golf clubs from which the sample of
size n � 15 used in Examples 4-7 and 4-16 was selected. Suppose that we knew with certainty
that the mean coefficient of restitution for the drivers in this population was � � 0.83 and that
the standard deviation was � � 0.025. Then the interval from 0.83 � 1.96(0.025) � 0.781 to
0.83 � 1.96(0.025) � 0.879 captures the coefficient of restitution of 95% of the drivers in this
population because the interval from �1.96 to �1.96 captures 95% of the area (probability)
under the standard normal curve. Generally, the interval from to is called
a 100(1 � �)% tolerance interval.

If the normal distribution parameters � and � are unknown, we can use the data from a ran-
dom sample of size n to compute and s and then form the interval 
However, because of sampling variability in and s, it is likely that this interval will containx

( x � 1.96s, x � 1.96s).x

� � z�	2�� � z�	2�
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218 CHAPTER 4 DECISION MAKING FOR A SINGLE SAMPLE

From Appendix A Table VI we note that as the sample size , the value of the normal dis-
tribution tolerance interval factor k goes to the z-value associated with the desired level of con-
tainment for the normal distribution. For example, if we want 95% of the population to fall in-
side the two-sided tolerance interval, k approaches as Note that as ,
a 100(1 � �)% prediction interval on a future observation approaches a tolerance interval that
contains 100(1 � �)% of the distribution.

n S �n S �.z0.05 � 1.96

n S �

less than 95% of the values in the population. The solution is to replace 1.96 with some value
that will make the proportion of the population contained in the interval 95% with some level
of confidence. Fortunately, it is easy to do this.

A tolerance interval to contain at least �% of the values in a normal population with
confidence level 100(1 � �)% is

where k is a tolerance interval factor for the normal distribution found in Appendix A
Table VI. Values of k are given for 1 � � � 0.90, 0.95, 0.99 confidence level and for
� � 90, 95, and 99%.

x � ks, x � ks

Tolerance
Interval

One-sided tolerance bounds can also be computed. The tolerance factors for these bounds are
also given in Appendix A Table VI.

EXAMPLE 4-18 Reconsider the golf clubs from Example 4-7. Recall that the sample mean and standard deviation of the
coefficient of restitution for the n � 15 clubs tested are and s � 0.02456. We want to find
a tolerance interval for the coefficient of restitution that includes 95% of the clubs in the population with
90% confidence.

Solution. From Appendix A Table VI the tolerance factor is k � 2.713. The desired tolerance interval is

which reduces to (0.77062, 0.90388). Therefore, we can be 90% confident that at least 95% of the golf
clubs in this population have a coefficient of restitution between 0.77062 and 0.90388. ■

(x � ks, x � ks) or [0.83725 � (2.713)0.02456, 0.83725 � (2.713)0.02456]

x � 0.83725Golf Clubs

EXERCISES FOR SECTION 4-8

4-91. Consider the tire life problem described in Exercise 4-55.

(a) Construct a 95% PI on the life of a single tire.
(b) Find a tolerance interval for the tire life that includes 90%

of the tires in the population with 95% confidence.

4-92. Consider the Izod impact strength problem described
in Exercise 4-56.

(a) Construct a 90% PI for the impact strength of a single
specimen of PVC pipe.

(b) Find a tolerance interval for the impact strength that in-
cludes 95% of the specimens in the population with 95%
confidence.

4-93. Consider the life of biomedical devices described in
Exercise 4-57.

(a) Construct a 99% PI for the life of a single device.
(b) Find a tolerance interval for the device life that includes

99% of the devices in the population with 90% confidence.

4-94. Consider the fatty acid content of margarine described
in Exercise 4-58.

(a) Construct a 95% PI for the fatty acid content of a single
package of margarine.

(b) Find a tolerance interval for the fatty acid content that includes
95% of the margarine packages with 99% confidence.
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4-9 SUMMARY TABLES OF INFERENCE PROCEDURES 
FOR A SINGLE SAMPLE

The tables on the inside front cover present a summary of all the single-sample hypothesis
testing and CI procedures from this chapter. The tables contain the null hypothesis statement,
the test statistic, the various alternative hypotheses and the criteria for rejecting H0, and the
formulas for constructing the 100(1 � �)% confidence intervals.

4-10 TESTING FOR GOODNESS OF FIT

The hypothesis testing procedures that we have discussed in previous sections are designed for
problems in which the population or probability distribution is known and the hypotheses in-
volve the parameters of the distribution. Another kind of hypothesis is often encountered: We
do not know the underlying distribution of the population, and we wish to test the hypothesis
that a particular distribution will be satisfactory as a population model. For example, we might
wish to test the hypothesis that the population is normal.

In Chapter 3, we discussed a very useful graphical technique for this problem called
probability plotting and illustrated how it was applied in the case of normal, lognormal, and
Weibull distributions. In this section, we describe a formal goodness-of-fit test procedure
based on the chi-square distribution.

The test procedure requires a random sample of size n from the population whose proba-
bility distribution is unknown. These n observations are arranged in a histogram, having k bins
or class intervals. Let Oi be the observed frequency in the ith class interval. From the hypoth-
esized probability distribution, we compute the expected frequency in the ith class interval,
denoted Ei. The test statistic is

4-95. Consider the breakdown voltage of diodes described
in Exercise 4-59.

(a) Construct a 99% PI for the breakdown voltage of a single
diode.

(b) Find a tolerance interval for the breakdown voltage that
includes 99% of the diodes with 99% confidence.

4-96. Consider the metal rods described in Exercise 4-60.

(a) Construct a 90% PI for the diameter of a single rod.
(b) Find a tolerance interval for the diameter that includes

90% of the rods with 90% confidence.

It can be shown that if the population follows the hypothesized distribution, has approxi-
mately a chi-square distribution with k � p � 1 degrees of freedom, where p represents the
number of parameters of the hypothesized distribution estimated by sample statistics. This 
approximation improves as n increases. We would reject the hypothesis that the distribution of
the population is the hypothesized distribution if the calculated value of the test statistic is
too large. Therefore, the P-value would be the area (probability) under the chi-square distribu-
tion with k � p � l degrees of freedom above the calculated value of the test statistic . ThatX 2

0

X 2
0

X 2
0

(4-78)X 2
0 � a

k

i�1

(Oi � Ei)
2

Ei

Test Statistic for
the Chi-Square

Goodness-of-Fit
Test
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220 CHAPTER 4 DECISION MAKING FOR A SINGLE SAMPLE

EXAMPLE 4-19 A Poisson Distribution
The number of defects in printed circuit boards is hypothesized to follow a Poisson distribution. A ran-
dom sample of n � 60 printed boards has been collected and the number of defects per printed circuit
board observed. The following data result:

Number of Observed 
Defects Frequency

0 32
1 15
2 9
3 4

Is it reasonable to conclude that the number of defects is Poisson distributed?

Solution. The mean of the assumed Poisson distribution in this example is unknown and must be estimated
from the sample data. The estimate of the mean number of defects per board is the sample average—that is,

From the Poisson distribution with parameter 0.75, we
may compute pi, the theoretical, hypothesized probability associated with the ith class interval. Because
each class interval corresponds to a particular number of defects, we may find the pi as follows:

The expected frequencies are computed by multiplying the sample size n � 60 by the probabilities pi;

that is, Ei � npi. The expected frequencies are shown next.

Number of Expected
Defects Probability Frequency

0 0.472 28.32
1 0.354 21.24
2 0.133 7.98
3 (or more) 0.041 2.46

 p4 � P(X  3) � 1 � ( p1 � p2 � p3) � 0.041

 p3 � P(X � 2) �
e�0.75(0.75)2

2!
� 0.133

 p2 � P(X � 1) �
e�0.75(0.75)1

1!
� 0.354

 p1 � P(X � 0) �
e�0.75(0.75)0

0!
� 0.472

(32 � 0 � 15 � 1 � 9 � 2 � 4 � 3)	60 � 0.75.

is, P � P For a fixed-level test, we would reject the null hypothesis at the �
level of significance if 

One point to be noted in the application of this test procedure concerns the magnitude of
the expected frequencies. If these expected frequencies are too small, the test statistic will
not reflect the departure of observed from expected, but only the small magnitude of the ex-
pected frequencies. There is no general agreement regarding the minimum value of expected
frequencies, but values of 3, 4, and 5 are widely used as minimal. Some writers suggest that
an expected frequency could be as small as 1 or 2, so long as most of them exceed 5. Should
an expected frequency be too small, it can be combined with the expected frequency in an ad-
jacent class interval. The corresponding observed frequencies would then also be combined,
and k would be reduced by 1. Class intervals are not required to be of equal width. 

We now give an example of the test procedure.

X2
0

�2
0 7 �2

�, k�p�1.
(�2

k�p�1 7 �2
0).

Printed Circuit
Boards
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Because the expected frequency in the last cell is less than 3, we combine the last two cells:

Number of Observed Expected
Defects Frequency Frequency

0 32 28.32
1 15 21.24
2 (or more) 13 10.44

The chi-square test statistic in equation 4-78 will have k � p � 1 � 3 � 1 � 1 � 1 degree of freedom
because the mean of the Poisson distribution was estimated from the data.

The seven-step hypothesis testing procedure may now be applied, using � � 0.05, as follows:

1. Parameter of interest: The parameter of interest is the form of the distribution of defects in
printed circuit boards.

2. Null hypothesis, H0: The form of the distribution of defects is Poisson.

3. Alternative hypothesis, H1: The form of the distribution of defects is not Poisson.

4. Test statistic: The test statistic is

5. Reject H0 if: Reject H0 if the P-value is less than 0.05.

6. Computations:

7. Conclusions: From Appendix A Table III we find that and 
Because lies between these two values, we conclude that the P-value is 0.05 � P �
0.10. Therefore, since the P-value is greater than 0.05, we are unable to reject the null hypoth-
esis that the distribution of defects in printed circuit boards is Poisson. The exact P-value for
the test is P � 0.0864. (This value was computed using Minitab.) ■

2
0 � 2.94

2
0.05, 1 � 3.84.2

0.10, 1 � 2.71

2
0 �

(32 � 28.32)2

28.32
	

(15 � 21.24)2

21.24
	

(13 � 10.44)2

10.44
� 2.94

2
0 � a

k

i�1

(Oi � Ei)
2

Ei

EXERCISES FOR SECTION 4-10

4-97. Consider the following frequency table of observa-
tions on the random variable X.

Values 0 1 2 3 4 5

Observed Frequency 8 25 23 21 16 7

(a) Based on these 100 observations, is a Poisson distribution
with a mean of 2.4 an appropriate model? Perform a good-
ness-of-fit procedure with � � 0.05.

(b) Calculate the P-value for this test.

4-98. Let X denote the number of flaws observed on a large
coil of galvanized steel. Seventy-five coils are inspected, and
the following data were observed for the values of X.

Values 1 2 3 4 5 6 7 8

Observed
Frequency 1 11 8 13 11 12 10 9

(a) Does the assumption of a Poisson distribution with a mean
of 6.0 seem appropriate as a probability model for these
data? Use � � 0.01.

(b) Calculate the P-value for this test.

4-99. The number of calls arriving to a switchboard from
noon to 1 P.M. during the business days Monday through
Friday is monitored for 4 weeks (i.e., 30 days). Let X be 
defined as the number of calls during that 1-hour period. The
observed frequency of calls was recorded and reported as 
follows:

Value 5 7 8 9 10

Observed Frequency 4 4 4 5 1

Value 11 12 13 14 15

Observed Frequency 3 3 1 4 1
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222 CHAPTER 4 DECISION MAKING FOR A SINGLE SAMPLE

(a) Does the assumption of a Poisson distribution seem
appropriate as a probability model for these data? Use 
� � 0.05.

(b) Calculate the P-value for this test.

4-100. The number of cars passing eastbound through the
intersection of Mill Avenue and University Avenue has been
tabulated by a group of civil engineering students. They have
obtained the following data:

Vehicles Vehicles
per Observed per Observed

Minute Frequency Minute Frequency

40 14 53 102

41 24 54 96

42 57 55 90

43 111 56 81

44 194 57 73

45 256 58 64

46 296 59 61

47 378 60 59

48 250 61 50

49 185 62 42

50 171 63 29

51 150 64 18

52 110 65 15

(a) Does the assumption of a Poisson distribution seem
appropriate as a probability model for this process? Use 
� � 0.05.

(b) Calculate the P-value for this test.

4-101. Consider the following frequency table of observa-
tions on the random variable X.

Values 0 1 2 3 4

Observed Frequency 4 21 10 13 2

(a) Based on these 50 observations, is a binomial distribution
with n � 6 and p � 0.25 an appropriate model? Perform a
goodness-of-fit procedure with � � 0.05.

(b) Calculate the P-value for this test.

4-102. Define X as the number of underfilled bottles in a
filling operation in a carton of 12 bottles. Eighty cartons are
inspected, and the following observations on X are recorded.

Values 0 1 2 3 4

Observed Frequency 21 30 22 6 1

(a) Based on these 80 observations, is a binomial distribution
an appropriate model? Perform a goodness-of-fit proce-
dure with � � 0.10.

(b) Calculate the P-value for this test.

SUPPLEMENTAL EXERCISES

4-103. If we plot the probability of accepting H0: � � �0 ver-
sus various values of � and connect the points with a smooth
curve, we obtain the operating characteristic curve (or the OC
curve) of the test procedure. These curves are used extensively in
industrial applications of hypothesis testing to display the sensi-
tivity and relative performance of the test. When the true mean is
really equal to �0, the probability of accepting H0 is 1 � �.
Construct an OC curve for Exercise 4-21, using values of the
true mean � of 178, 181, 184, 187, 190, 193, 196, and 199.

4-104. Convert the OC curve in the previous problem into a
plot of the power function of the test.

4-105. Consider the confidence interval for � with known
standard deviation �:

where �1 � �2 � �. Let � � 0.05 and find the interval for 
�1 � �2 � ��2 � 0.025. Now find the interval for the case 
�1 � 0.01 and �2 � 0.04. Which interval is shorter? Is there
any advantage to a “symmetric” CI?

4-106. Formulate the appropriate null and alternative 
hypotheses to test the following claims.

x � z�1
�	1n 
 � 
 x � z�2

�	1n

(a) A plastics production engineer claims that 99.95% of the
plastic tube manufactured by her company meets the engi-
neering specifications requiring the length to exceed 6.5
inches.

(b) A chemical and process engineering team claims that the
mean temperature of a resin bath is greater than 45ºC.

(c) The proportion of start-up software companies that suc-
cessfully market their product within 3 years of company
formation is less than 0.05.

(d) A chocolate bar manufacturer claims that, at the time of
purchase by a consumer, the mean life of its product is less
than 90 days.

(e) The designer of a computer laboratory at a major univer-
sity claims that the standard deviation of time of a student
on the network is less than 10 minutes.

(f ) A manufacturer of traffic signals advertises that its signals
will have a mean operating life in excess of 2160 hours.

4-107. A normal population has known mean � � 50 and
variance �2 � 5. What is the approximate probability that the
sample variance is greater than or equal to 7.44? Less than or
equal to 2.56?

(a) For a random sample of n � 16.
(b) For a random sample of n � 30.
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(c) For a random sample of n � 71.
(d) Compare your answers to parts (a)–(c) for the approxi-

mate probability that the sample variance is greater than
or equal to 7.44. Explain why this tail probability is in-
creasing or decreasing with increased sample size.

(e) Compare your answers to parts (a)–(c) for the approxi-
mate probability that the sample variance is less than or
equal to 2.56. Explain why this tail probability is increas-
ing or decreasing with increased sample size.

4-108. An article in the Journal of Sports Science (Vol. 5,
1987, pp. 261–271) presents the results of an investigation of
the hemoglobin level of Canadian Olympic ice hockey players.
The data reported are as follows (in g/dl):

15.3 16.0 14.4 16.2 16.2
14.9 15.7 15.3 14.6 15.7
16.0 15.0 15.7 16.2 14.7
14.8 14.6 15.6 14.5 15.2

(a) Given the probability plot of the data in Fig. 4-24, what is
a logical assumption about the underlying distribution of
the data?

(b) Explain why this check of the distribution underlying the
sample data is important if we want to construct a CI on
the mean.

(c) Based on these sample data, a 95% CI for the mean is
[15.04, 15.62]. Is it reasonable to infer that the true mean
could be 14.5? Explain your answer.

(d) Explain why this check of the distribution underlying the
sample data is important if we want to construct a CI on
the variance.

(e) Based on these sample data, a 95% CI for the variance is
[0.22, 0.82]. Is it reasonable to infer that the true variance
could be 0.35? Explain your answer.

(f ) Is it reasonable to use these CIs to draw an inference about
the mean and variance of hemoglobin levels
(i) Of Canadian doctors? Explain your answer.
(ii) Of Canadian children ages 6–12? Explain your answer.

(g) Construct a 95% PI on the hemoglobin level of a single
Canadian hockey player.

(h) Find a tolerance interval for the hemoglobin level that 
includes 90% of the players in the population with 95%
confidence.

4-109. The article “Mix Design for Optimal Strength
Development of Fly Ash Concrete” (Cement and Concrete
Research, Vol. 19, No. 4, 1989, pp. 634–640) investigates the
compressive strength of concrete when mixed with fly ash 
(a mixture of silica, alumina, iron, magnesium oxide, and other
ingredients). The compressive strength for nine samples in dry
conditions on the twenty-eighth day are as follows (in Mpa):

40.2 30.4 28.9 30.5 22.4
25.8 18.4 14.2 15.3

(a) Given the probability plot of the data in Fig. 4-25, what is
a logical assumption about the underlying distribution of
the data?

(b) Find a 99% one-sided lower confidence bound on mean
compressive strength. Provide a practical interpretation of
this bound.

(c) Find a 98% two-sided CI on mean compressive strength.
Provide a practical interpretation of this interval and ex-
plain why the lower endpoint of the interval is or is not the
same as in part (b).

(d) Find a 99% one-sided upper confidence bound on the vari-
ance of compressive strength. Provide a practical interpre-
tation of this bound.

(e) Find a 98% two-sided CI on the variance of compression
strength. Provide a practical interpretation of this interval
and explain why the upper endpoint of the interval is or is
not the same as in part (d).

(f ) Suppose it was discovered that the largest observation
40.2 was misrecorded and should actually be 20.4. Now
the sample mean and the sample variance s2 �
39.83. Use these new values and repeat parts (c) and (e).

x � 22.9
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Figure 4-24 Probability plot of the data
for Exercise 4-108.
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Figure 4-25 Probability plot of the data for
Exercise 4-109.
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Compare the original computed intervals and the newly
computed intervals with the corrected observation value.
How does this mistake affect the values of the sample mean,
the sample variance, and the width of the two-sided CIs?

(g) Suppose, instead, it was discovered that the largest obser-
vation 40.2 is correct, but that the observation 25.8 is 
incorrect and should actually be 24.8. Now the sample
mean and the sample variance s2 � 70.84. Use
these new values and repeat parts (c) and (e). Compare the
original computed intervals and the newly computed in-
tervals with the corrected observation value. How does
this mistake affect the values of the sample mean, the
sample variance, and the width of the two-sided CIs?

(h) Use the results from parts (f ) and (g) to explain the effect
of mistakenly recorded values on sample estimates.
Comment on the effect when the mistaken values are near
the sample mean and when they are not.

(i) Using the original data, construct a 99% PI on the com-
pressive strength of a single sample in dry conditions.

( j) Find a tolerance interval for the compressive strength that
includes 95% of the concrete in the population with 99%
confidence.

4-110. An operating system for a personal computer has
been studied extensively, and it is known that the standard 
deviation of the response time following a particular command
is � � 8 milliseconds. A new version of the operating system
is installed, and we wish to estimate the mean response time
for the new system to ensure that a 95% CI for � has length at
most 5 milliseconds.

(a) If we can assume that response time is normally distrib-
uted and that � � 8 for the new system, what sample size
would you recommend?

(b) Suppose we were told by the vendor that the standard devi-
ation of the response time of the new system is smaller—
say, � � 6; give the sample size that you recommend and
comment on the effect the smaller standard deviation has
on this calculation.

(c) Suppose you cannot assume that the response time of the
new system is normally distributed but think that it may
follow a Weibull distribution. What is the minimum sam-
ple size you would recommend to construct any CI on the
true mean response time?

4-111. A manufacturer of semiconductor devices takes a
random sample of size n of chips and tests them, classifying
each chip as defective or nondefective. Let Xi � 0 if the chip
is nondefective and Xi � 1 if the chip is defective. The sample
fraction defective is

What are the sampling distribution, the sample mean, and
sample variance estimates of when

(a) The sample size is n � 60?
(b) The sample size is n � 70?

p̂

p̂i �
X1 � X2 � p � Xn

n

x � 25.0

(c) The sample size is n � 100?
(d) Compare your answers to parts (a)–(c) and comment on

the effect of sample size on the variance of the sampling
distribution.

4-112. Consider the description of Exercise 4-111. After
collecting a sample, we are interested in computing the error
in estimating the true value p. For each of the sample sizes and
estimates of p, compute the error at the 95% confidence level.

(a) n � 60 and 

(b) n � 70 and 

(c) n � 100 and 
(d) Compare your results from parts (a)–(c) and comment on

the effect of sample size on the error in estimating the true
value of p and the 95% confidence level.

(e) Repeat parts (a)–(d), this time using a 99% confidence level.
(f ) Examine your results when the 95% confidence level and

then the 99% confidence level are used to compute the 
error and explain what happens to the magnitude of the 
error as the percentage confidence increases.

4-113. A quality control inspector of flow metering devices
used to administer fluid intravenously will perform a hypothe-
sis test to determine whether the mean flow rate is different
from the flow rate setting of 200 ml/h. Based on prior informa-
tion the standard deviation of the flow rate is assumed to be
known and equal to 12 ml/h. For each of the following sample
sizes and a fixed � � 0.05, find the probability of a type II 
error if the true mean is 205 ml/h.

(a) n � 25 (b) n � 60 (c) n � 100
(d) Does the probability of a type II error increase or decrease

as the sample size increases? Explain your answer.

4-114. Suppose that in Exercise 4-113 the experimenter had
believed that � � 14. For each of the following sample sizes
and a fixed � � 0.05, find the probability of a type II error if
the true mean is 205 ml/h.

(a) n � 20 (b) n � 50 (c) n � 100
(d) Comparing your answers to those in Exercise 4-113, does

the probability of a type II error increase or decrease with
the increase in standard deviation? Explain your answer.

4-115. The life in hours of a heating element used in a fur-
nace is known to be approximately normally distributed. A
random sample of 15 heating elements is selected and found to
have an average life of 598.14 hours and a sample standard 
deviation of 16.93 hours.

(a) At the � � 0.05 level of significance, test the hypotheses H0:
� � 550 versus H1: � � 550. On completing the hypothesis
test, do you believe that the true mean life of a heating element
is greater than 550 hours? Clearly state your answer.

(b) Find the P-value of the test statistic.
(c) Construct a 95% lower confidence bound on the mean and

describe how this interval can be used to test the alterna-
tive hypothesis of part (a).

(d) Construct a two-sided 95% CI for the underlying variance.

p̂ � 0.10

p̂ � 0.10

p̂ � 0.10
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4-116. Suppose we wish to test the hypothesis H0: � � 85
versus the alternative H1: � � 85 where � � 16. Suppose that
the true mean is � � 86 and that in the practical context of the
problem this is not a departure from �0 � 85 that has practical
significance.

(a) For a test with � � 0.01, compute � for the sample sizes 
n � 25, 100, 400, and 2500 assuming that � � 86.

(b) Suppose the sample average is Find the P-value
for the test statistic for the different sample sizes specified
in part (a). Would the data be statistically significant at 
� � 0.01?

(c) Comment on the use of a large sample size in this exercise.

4-117. The cooling system in a nuclear submarine consists
of an assembly of welded pipes through which a coolant is cir-
culated. Specifications require that weld strength must meet or
exceed 150 psi.

(a) Suppose that the design engineers decide to test the hypoth-
esis H0: � � 150 versus H1: � � 150. Explain why this
choice of alternative hypothesis is better than H1: � � 150.

(b) A random sample of 20 welds results in psi
and s � 12.39 psi. What conclusions can you draw about
the hypothesis in part (a)? State any necessary assump-
tions about the underlying distribution of the data. Use the
P-value approach.

4-118. Suppose we are testing H0: p � 0.5 versus 

(a) Using � � 0.05, find the power of the test for n � 100,
150, and 300, assuming the true value p � 0.6. Comment
on the effect of sample size on the power of the test.

(b) Using � � 0.01, find the power of the test for n � 100,
150, and 300, assuming the true value p � 0.6. Compare
your answers to those from part (a) and comment on 
the effect of � on the power of the test for different sample
sizes.

(c) Using � � 0.05, find the power of the test for n � 100, 
assuming p � 0.08. Compare your answer to part (a) and
comment on the effect of the true value of p on the power
of the test for the same sample size and � level.

(d) Using � � 0.01, what sample size is required if p � 0.6
and we want � � 0.05? What sample is required if p � 0.8
and we want � � 0.05? Compare the two sample sizes and
comment on the effect of the true value of p on sample
size required when � is held approximately constant.

4-119. Consider the biomedical device experiment described
in Exercise 4-57.

(a) For this sample size n � 15, do the data support the claim
that the standard deviation of life is less than 280 hours?

(b) Suppose that instead of n � 15, the sample size was 51.
Repeat the analysis performed in part (a) using n � 51.

(c) Compare your answers and comment on how sample size
affects your conclusions drawn in parts (a) and (b).

4-120. An article in Food Testing and Analysis (“Improving
Reproducibility of Refractometry Measurements of Fruit
Juices,” Vol. 4, No. 4, 1999, pp. 13–17) reported the results of

H1: p � 0.5.

x � 157.65

x � 86.

a study that measured the sugar concentration (Brix) in clear
apple juice. All readings were taken at 

11.48 11.45 11.48 11.47 11.48
11.50 11.42 11.49 11.45 11.44
11.45 11.47 11.46 11.47 11.43
11.50 11.49 11.45 11.46 11.47

(a) Test the hypothesis versus 
using Find the P-value.

(b) Compute the power of the test if the true mean is 11.4.
(c) What sample size would be required to detect a true mean

sugar concentration of 11.45 if we wanted the power of
the test to be at least 0.9?

(d) Explain how the question in part (a) could be answered
by constructing a two-sided confidence interval on the
mean sugar concentration.

(e) Is there evidence to support the assumption that the sugar
concentration is normally distributed?

4-121. An article in Growth: A Journal Devoted to
Problems of Normal and Abnormal Growth (“Comparison of
Measured and Estimated Fat-Free Weight, Fat, Potassium and
Nitrogen of Growing Guinea Pigs,” Vol. 46, No. 4, 1982, pp.
306–321) reported the results of a study that measured the
body weight (grams) for guinea pigs at birth.

421.0 452.6 456.1 494.6 373.8
90.5 110.7 96.4 81.7 102.4

241.0 296.0 317.0 290.9 256.5
447.8 687.6 705.7 879.0 88.8
296.0 273.0 268.0 227.5 279.3
258.5 296.0

(a) Test the hypothesis that mean body weight is 300 grams.
Use 

(b) What is the smallest level of significance at which you
would be willing to reject the null hypothesis?

(c) Explain how you could answer the question in part (a)
with a two-sided confidence interval on mean body
weight.

4-122. An article in Biological Trace Element Research
[“Interaction of Dietary Calcium, Manganese, and Manganese
Source (Mn Oxide or Mn Methionine Complex) on Chick
Performance and Manganese Utilization,” Vol. 29, No. 3,
1991, pp. 217–228] showed the following results of tissue as-
say for liver manganese (ppm) in chicks fed high-Ca diets.

6.02 6.08 7.11 5.73 5.32 7.10
5.29 5.84 6.03 5.99 4.53 6.81

(a) Test the hypothesis versus 
using 

(b) What is the P-value for this test?
(c) Discuss how part (a) could be answered by constructing a

99% two-sided confidence interval for 

4-123. An article in Medicine and Science in Sports and
Exercise (“Maximal Leg-Strength Training Improves Cycling
Economy in Previously Untrained Men,” Vol. 37, 2005, pp.
131–136) reported the results of a study of cycling performance

�.

� � 0.01.
H1: �

2 � 0.6H0: �
2 � 0.6

� � 0.05.

� � 0.05.
H1: � � 11.5H0: � � 11.5

20°C:
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before and after eight weeks of leg-strength training. The sample
size was seven and the sample mean and sample standard devia-
tion were 315 watts and 16 watts, respectively.

(a) Is there evidence that leg strength exceeds 300 watts at
significance level 0.05? Find the P-value.

(b) Compute the power of the test if the true strength is 305 watts.
(c) What sample size would be required to detect a true mean

of 305 watts if the power of the test should be at least 0.90?
(d) Explain how the question in part (a) could be answered

with a confidence interval.

4-124. An article in the British Medical Journal (“Comparison
of Treatment of Renal Calculi by Operative Surgery,
Percutaneous Nephrolithotomy, and Extra-corporeal Shock
Wave Lithotripsy,” Vol. 292, 1986, pp. 879–882) found that per-
cutaneous nephrolithotomy (PN) had a success rate in removing
kidney stones of 289 out of 350 patients. The traditional method
was 78% effective.

(a) Is there evidence that the success rate for PN is greater
than the historical success rate? Find the P-value.

(b) Explain how the question in part (a) could be answered
with a confidence interval.

4-125. The data below are the number of earthquakes per year
of magnitude 7.0 and greater since 1900. (Source: U.S. Geological
Survey, National Earthquake Information Center, Golden, CO).

1900 13 1928 22 1956 15 1984 8
1901 14 1929 19 1957 34 1985 15
1902 8 1930 13 1958 10 1986 6
1903 10 1931 26 1959 15 1987 11
1904 16 1932 13 1960 22 1988 8
1905 26 1933 14 1961 18 1989 7
1906 32 1934 22 1962 15 1990 18
1907 27 1935 24 1963 20 1991 16
1908 18 1936 21 1964 15 1992 13
1909 32 1937 22 1965 22 1993 12
1910 36 1938 26 1966 19 1994 13
1911 24 1939 21 1967 16 1995 20
1912 22 1940 23 1968 30 1996 15
1913 23 1941 24 1969 27 1997 16
1914 22 1942 27 1970 29 1998 12
1915 18 1943 41 1971 23 1999 18
1916 25 1944 31 1972 20 2000 15
1917 21 1945 27 1973 16 2001 16
1918 21 1946 35 1974 21 2002 13
1919 14 1947 26 1975 21 2003 15
1920 8 1948 28 1976 25 2004 15
1921 11 1949 36 1977 16 2005 11
1922 14 1950 39 1978 18 2006 11
1923 23 1951 21 1979 15 2007 18
1924 18 1952 17 1980 18 2008 12
1925 17 1953 22 1981 14 2009 15
1926 19 1954 17 1982 10
1927 20 1955 19 1983 15

(a) Use computer software to summarize these data into a fre-
quency distribution. Test the hypothesis that the number of
earthquakes of magnitude 7.0 or greater each year follows
a Poisson distribution at 

(b) Calculate the P-value for the test.

4-126. Consider the fatty acid measurements for the diet
margarine described in Exercise 4-58.

(a) For this sample size n � 6, using a two-sided alternative
hypothesis and � � 0.01, test H0: �

2 � 1.0.
(b) Suppose that instead of n � 6, the sample size were n �

51. Using the estimate s2 from the original sample, repeat
the analysis performed in part (a) using n � 51.

(c) Compare your answers and comment on how sample size
affects your conclusions drawn in parts (a) and (b).

4-127. A manufacturer of precision measuring instruments
claims that the standard deviation in the use of the instruments
is at most 0.00002 mm. An analyst, who is unaware of the
claim, uses the instrument eight times and obtains a sample
standard deviation of 0.00001 mm.

(a) Confirm using a test procedure and an � level of 0.01 that
there is insufficient evidence to support the claim that the
standard deviation of the instruments is at most 0.00002.
State any necessary assumptions about the underlying dis-
tribution of the data.

(b) Explain why the sample standard deviation, s � 0.00001,
is less than 0.00002, yet the statistical test procedure 
results do not support the claim.

4-128. A biotechnology company produces a therapeutic
drug whose concentration has a standard deviation of 4 g/l. A
new method of producing this drug has been proposed, 
although some additional cost is involved. Management will
authorize a change in production technique only if the stan-
dard deviation of the concentration in the new process is less
than 4 g/l. The researchers chose n � 10 and obtained the fol-
lowing data. Perform the necessary analysis to determine
whether a change in production technique should be imple-
mented.

16.628 g/l 16.630 g/l
16.622 16.631
16.627 16.624
16.623 16.622
16.618 16.626

4-129. A manufacturer of electronic calculators claims that
less than 1% of its production output is defective. A random
sample of 1200 calculators contains 8 defective units.

(a) Confirm using a test procedure and an � level of 0.01 that
there is insufficient evidence to support the claim that the
percentage defective is less than 1%.

(b) Explain why the sample percentage is less than 1%, yet
the statistical test procedure results do not support the
claim.

� � 0.05.
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4-130. An article in The Engineer (“Redesign for Suspect
Wiring,’’ June 1990) reported the results of an investigation
into wiring errors on commercial transport aircraft that may
produce faulty information to the flight crew. Such a wiring er-
ror may have been responsible for the crash of a British
Midland Airways aircraft in January 1989 by causing the pilot
to shut down the wrong engine. Of 1600 randomly selected
aircraft, 8 were found to have wiring errors that could display
incorrect information to the flight crew.

(a) Find a 99% two-sided traditional CI on the proportion of
aircraft that have such wiring errors.

(b) Suppose we use the information in this example to provide
a preliminary estimate of p. How large a sample would be
required to produce an estimate of p that we are 99% con-
fident differs from the true value by at most 0.008?

(c) Suppose we did not have a preliminary estimate of p. How
large a sample would be required if we wanted to be at
least 99% confident that the sample proportion differs
from the true proportion by at most 0.008 regardless of the
true value of p?

(d) Comment on the usefulness of preliminary information in
computing the needed sample size.

4-131. A standardized test for graduating high school sen-
iors is designed to be completed by 75% of the students within
40 minutes. A random sample of 100 graduates showed that 64
completed the test within 40 minutes.

(a) Find a 90% two-sided traditional CI on the proportion of
such graduates completing the test within 40 minutes.

(b) Find a 95% two-sided traditional CI on the proportion of
such graduates completing the test within 40 minutes.

(c) Compare your answers to parts (a) and (b) and explain
why they are the same or different.

(d) Could you use either of these CIs to determine whether
the proportion is significantly different from 0.75?
Explain your answer.
[Hint: Use the normal approximation to the binomial.]

4-132. The proportion of adults who live in Tempe, Arizona,
who are college graduates is estimated to be p � 0.4. To test
this hypothesis, a random sample of 15 Tempe adults is 
selected. If the number of college graduates is between 4 and 8,
the hypothesis will be accepted; otherwise, we will conclude
that 

(a) Find the type I error probability for this procedure, assum-
ing that p � 0.4.

(b) Find the probability of committing a type II error if the
true proportion is really p � 0.2.

4-133. The proportion of residents in Phoenix favoring the
building of toll roads to complete the freeway system is 
believed to be p � 0.3. If a random sample of 20 residents
shows that 2 or fewer favor this proposal, we will conclude
that p � 0.3.

(a) Find the probability of type I error if the true proportion is
.p � 0.3

p � 0.4.

(b) Find the probability of committing a type II error with this
procedure if the true proportion is p � 0.2.

(c) What is the power of this procedure if the true proportion
is p � 0.2?

4-134. Consider the 40 observations collected on the number
of nonconforming coil springs in production batches of size 50
given in Exercise 2-63 of Chapter 2.

(a) Based on the description of the random variable and
these 40 observations, is a binomial distribution an 
appropriate model? Perform a goodness-of-fit procedure
with � � 0.05.

(b) Calculate the P-value for this test.

4-135. Consider the 20 observations collected on the number
of errors in a string of 1000 bits of a communication channel
given in Exercise 2-64 of Chapter 2.

(a) Based on the description of the random variable and
these 20 observations, is a binomial distribution an 
appropriate model? Perform a goodness-of-fit procedure
with � � 0.05.

(b) Calculate the P-value for this test.

4-136. State the null and the alternative hypotheses, and 
indicate the type of critical region (either two-, lower-, or 
upper-tailed) to test the following claims.

(a) A manufacturer of lightbulbs has a new type of lightbulb
that is advertised to have a mean burning lifetime in ex-
cess of 5000 hours.

(b) A chemical engineering firm claims that its new material
can be used to make automobile tires with a mean life of
more than 60,000 miles.

(c) The standard deviation of breaking strength of fiber used
in making drapery material does not exceed 2 psi.

(d) A safety engineer claims that more than 60% of all drivers
wear safety belts for automobile trips of less than 2 miles.

(e) A biomedical device is claimed to have a mean time to
failure greater than 42,000 hours.

(f ) Producers of 1-inch diameter plastic pipe claim that the
standard deviation of the inside diameter is less than
0.02 inch.

(g) Lightweight, handheld, laser range finders used by civil
engineers are advertised to have a variance smaller than
0.05 square meters.

4-137. Consider the following Minitab output.

One-Sample T: X

Test of 

95%
SE Lower

Variable N Mean StDev Mean Bound T P
X 16 45.8971 1.8273 ? 45.0962 ? 0.004

mu � 44.5 vs 7 44.5

(a) Fill in the missing quantities.
(b) At what level of significance can the null hypothesis be 

rejected?
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(c) If the hypotheses had been versus 
would the P-value be larger or smaller?

(d) If the hypotheses had been versus
would you reject the null hypothesis at the

0.05 level?

4-138. Consider the following Minitab output.

H1: � � 44.5,
H0: � � 44.5

H1: � 7 44,H0: � � 44

Test and CI for One Proportion

Test of 

95%
Upper

Sample X N Sample p Bound Z-Value P-Value
1 146 850 0.171765 0.193044 0.020�2.06

p � 0.2 vs p 6 0.2

(a) Is this a one-sided or a two-sided test?
(b) Was this test conducted using the normal approximation

to the binomial? Was that appropriate?
(c) Can the null hypothesis be rejected at the 0.05 level? At

the 0.01 level?
(d) Can the null hypothesis versus 

be rejected at the 0.05 level?
(e) Construct an approximate 90% one-sided confidence

bound for p.

4-139. Reconsider the data in Exercise 4-130. Find a 99%
two-sided Agresti-Coull CI and compare it to the traditional
CI in Exercise 4-130.

4-140. Reconsider the data of Exercise 4-131. Find a 90%
two-sided Agresti-Coull CI and compare it to the traditional
CI in Exercise 4-131 part (a).

H0: p � 0.2H0: p � 0.2

TEAM EXERCISES

4-141. The thickness measurements, in millimeters, of
a wall of plastic tubing used for intravenous bags were
recorded as follows:

1.9976 2.0008 2.0021 1.9995
2.0004 1.9972 1.9974 1.9989
2.0017 2.0030 1.9979 2.0035
1.9997 2.0014 2.0017 2.0018

(a) Assess the assumption that the data are normally
distributed.

(b) Test the hypothesis that the mean is different from
2.001 millimeters using � � 0.05.

(c) Assume that a thickness measurement less than
1.9975 is outside the engineering specifications and
considered nonconforming. Using these data, test
the hypothesis that the proportion nonconforming
exceeds 0.10. Use � � 0.05.

4-142. The following are recorded times, in hours, un-
til failure of medical linear accelerators:

953 1037 1068 1032
988 1014 1063 1000
983 942 945 921
915 921 1090 974
997 993 997 984

(a) Assess the assumption that the data are normally
distributed.

(b) Assess the claim that the mean time until failure is
less than 1000 hours, at the 0.05 level of significance.

(c) If a medical linear accelerator fails in less than 925
hours, then it can be returned for warranty replace-
ment. At the 0.05 level of significance, test the claim
that the proportion returned is less than 0.20.

4-145. A detection device is used to monitor the level
of CO in the air. The following data, in ppm, were col-
lected from a single location:

7.28 6.98
8.50 6.33
5.56 7.34
3.18 5.56
4.03 4.69

(a) Assess the assumption that the data are normally
distributed.

(b) There is concern that the device has significant variabil-
ity in its recording. At a significance level of � � 0.05,
test the concern that the standard deviation exceeds 2.0.

4-144. Identify an example in which a standard is spec-
ified or claim is made about a population. For example,
“This type of car gets an average of 30 miles per gallon in
urban driving.” The standard or claim may be expressed
as a mean (average), variance, standard deviation, or pro-
portion. Collect an appropriate random sample of data
and perform a hypothesis test to assess the standard or
claim. Report on your results. Be sure to include in your
report the claim expressed as a hypothesis test, a descrip-
tion of the data collected, the analysis performed, and the
conclusion reached.

    c04DecisionMakingforaSingleSample.qxd  11/10/10  5:42 PM  Page 228



4-10 TESTING FOR GOODNESS OF FIT 229

4-145. Consider the experimental data collected to
verify that the “true” speed of light is 710.5 (299,710.5
kilometers per second) in 1879 and in 1882 by the physi-
cist A. A. Michelson. The data are shown in Exercise 2-68.
Read the story associated with the data and reported on
the Web site http://lib.stat.cmu.edu/DASL/Stories/Speedof
Light.html. Use the data file to duplicate the analysis, and
write a brief report summarizing your findings.

4-146. This is a simulation exercise designed to illustrate
the robustness of the t-test to the assumption of normality.

(a) Generate 100,000 samples of size n � 5 from a stan-
dard normal distribution ( ). For each
sample find the 95% two-sided t CI on the mean. For
each sample determine if the CI includes the true
population mean of � � 0. Let X be the number of
intervals for which the true mean is captured in the
interval. Compute the ratio (X�100,000) and multiply

� � 0, �2 � 1

this ratio by100. This is the coverage of the t CI
based on your simulation. The coverage should be
close to 95%.

(b) Repeat part (a) but generate the 100,000 samples
from a chi-square distribution with one degree of
freedom. This distribution is very skewed with a
long tail to the right and does not look much like a
normal distribution. (Hint: To generate random
variables remember that the square of a standard
normal random variable is a random variable.) In
computing the coverage remember that the mean of
a chi-square random variable with one degree of
freedom is unity. What is the coverage of these CIs?
Is it close to 95%?

4-147. Repeat Exercise 4-146 for sample sizes n � 10,
15, and 25. How does the coverage of both CIs change
with sample size?

�2
1

�2
1

Alternative hypothesis
Bias in estimation
Chi-square distribution
Comparative 

experiment
Confidence bound
Confidence coefficient
Confidence interval
Confidence level
Confidence limits
Coverage
Critical region
Estimated standard 

error
Fixed significance level

hypothesis testing

Goodness of fit
Hypothesis testing
Minimum variance 

unbiased estimator
Null hypothesis
One-sided alternative

hypothesis
One-sided confidence

bounds
Operating characteristic

curves
P-values
Parameter estimation
Point estimation
Power of a test

Practical significance
versus statistical 
significance

Precision of estimation
Prediction interval
Probability of a type I

error
Probability of a type II

error
Procedure for hypothesis

testing
Relative efficiency of an

estimator
Sample size 

determination

Significance level
Standard error
Statistical hypothesis
Statistical inference
t distribution
Test statistic
Tolerance interval
Two-sided alternative

hypothesis
Type I error
Type II error 

IMPORTANT TERMS AND CONCEPTS
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5

CONCRETE OR LIQUID GRANITE?

A new construction material called liquid granite seems to offer significant advantages over
concrete, and this presents a new choice that will require two-sample decisions by engineers
involved in construction where concrete has been the only material of choice for structural
components like walls, posts, and lintels.

Even though concrete is not combustible, it is susceptible to the effects of intense heat and
has limitations in terms of maintaining its strength and integrity at high temperatures. The
cement in cured concrete is bound into a rock-like substance by water molecules. Intense heat
causes cured cement to dehydrate and revert back to dehydrated powdery cement. Heat, by
dehydrating the cement, reduces the strength and the modulus of elasticity of concrete. And
the water, released as steam, sometimes violently, causes chipping and other physical struc-
tural damage. Concrete cannot burn, but it can fail structurally due to the effects of heat. It is
noteworthy that interest in the effects of heat on concrete intensified greatly after 9/11.

Liquid granite is much less susceptible to structural failure due to intense heat. Because
of its ability to stand up much longer to heat, it can provide more precious time to evacuate
burning buildings in which it has been used structurally.

Liquid granite is also more eco-friendly than concrete. For one thing, it incorporates only
about 30% as much cement as concrete. The manufacture of cement produces about 5% of
global man-made carbon dioxide emissions. Therefore, its carbon footprint is smaller than
concrete. And its footprint is reduced even more because liquid granite uses 30–70% recycled
industrial-based products, further lessening the amount of energy needed to produce it.

Engineers may now have to make decisions based on comparing two materials, concrete
and liquid granite.

Decision Making
for Two Samples

230
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CHAPTER OUTLINE

5-1 INTRODUCTION

5-2 INFERENCE ON THE MEANS
OF TWO POPULATIONS, 
VARIANCES KNOWN

5-2.1 Hypothesis Testing on the Difference 
in Means, Variances Known

5-2.2 Type II Error and Choice of Sample Size

5-2.3 Confidence Interval on the Difference 
in Means, Variances Known

5-3 INFERENCE ON THE MEANS 
OF TWO POPULATIONS, 
VARIANCES UNKNOWN

5-3.1 Hypothesis Testing on the 
Difference in Means

5-3.2 Type II Error and Choice of Sample Size

5-3.3 Confidence Interval on the 
Difference in Means

5-4 THE PAIRED t-TEST

5-5 INFERENCE ON THE RATIO OF VARIANCES
OF TWO NORMAL POPULATIONS

5-5.1 Hypothesis Testing on the Ratio of Two Variances

5-5.2 Confidence Interval on the Ratio of Two Variances

5-6 INFERENCE ON TWO POPULATION
PROPORTIONS

5-6.1 Hypothesis Testing on the Equality of 
Two Binomial Proportions

5-6.2 Type II Error and Choice of Sample Size

5-6.3 Confidence Interval on the Difference in
Binomial Proportions

5-7 SUMMARY TABLES FOR INFERENCE
PROCEDURES FOR TWO SAMPLES

5-8 WHAT IF WE HAVE MORE THAN 
TWO SAMPLES?

5-8.1 Completely Randomized Experiment 
and Analysis of Variance

5-8.2 Randomized Complete Block Experiment

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:

1. Structure comparative experiments involving two samples as hypothesis tests.

2. Perform hypothesis tests and construct confidence intervals on the difference in means of two normal distribtions.

3. Perform hypothesis tests and construct confidence intervals on the ratio of the variances of two normal distributions.

4. Perform hypothesis tests and construct confidence intervals on the difference in two population proportions.

5. Compute power and type II error, and make sample size selection decisions for hypothesis tests and confidence
intervals.

6. Understand how the analysis of variance can be used in an experiment to compare several means.

7. Assess the adequacy of an ANOVA model with residual plots.

8. Understand the blocking principle and how it is used to isolate the effect of nuisance factors in an experiment.

9. Design and conduct experiments using a randomized complete block design.

5-1 INTRODUCTION

The previous chapter presented hypothesis tests and confidence intervals for a single popula-
tion parameter (the mean �, the variance �2, or a proportion p). This chapter extends those
results to the case of two independent populations.

The general situation is shown in Fig. 5-1. Population 1 has mean �1 and variance �2
1, and

population 2 has mean �2 and variance �2
2. Inferences will be based on two random samples of
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1. is a random sample of size n1 from population 1.

2. is a random sample of size n2 from population 2.

3. The two populations represented by X1 and X2 are independent.

4. Both populations are normal, or if they are not normal, the conditions of the
central limit theorem apply.

X21, X22, . . . , X2n2

X11, X12, . . . , X1n1

Assumptions

sizes n1 and n2, respectively. That is, is a random sample of n1 observations from
population 1, and is a random sample of n2 observations from population 2.

5-2 INFERENCE ON THE MEANS OF TWO POPULATIONS,
VARIANCES KNOWN

In this section we consider statistical inferences on the difference in means �1 � �2 of the pop-
ulations shown in Fig. 5-1, where the variances �2

1 and �2
2 are known. The assumptions for this

section are summarized next.

X21, X22, . . . , X2n2

X11, X12, . . . , X1n1

Under the previous assumptions, the quantity

(5-1)

has a standard normal distribution, N(0, 1).

Z �
X1 � X2 � (�1 � �2)

B

�2
1

n1
�

�2
2

n2

1� 2�

Population 1 Population 2

Sample 1:
x11, x12,…, x1n1

 
Sample 2:

x21, x22,…, x2n2
 

  1�
2

  2�
2

Figure 5-1 Two inde-
pendent populations.

A logical point estimator of �1 � �2 is the difference in sample means . Based on
the properties of expected values in Chapter 3, we have

and the variance of is

Based on the assumptions and the preceding results, we may state the following.

V(X1 � X2) � V(X1) � V(X2) �
�2

1

n1
�

�2
2

n2

X1 � X2

E(X1 � X2) � E(X1) � E(X2) � �1 � �2

X1 � X2
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This result will be used to form tests of hypotheses and CIs on �1 � �2. Essentially, we
may think of �1 � �2 as a parameter �, and its estimator is with variance 
�2

�̂ so ��̂is the standard error of the difference in sample means, .
If �0 is the null hypothesis value specified for �, the test statistic will be ��̂. Note
how similar this is to the z-test statistic for a single mean used in Chapter 4.

5-2.1 Hypothesis Testing on the Difference in Means, Variances Known

We now consider hypothesis testing on the difference in the means �1 � �2 of the two popula-
tions in Fig. 5-1. Suppose that we are interested in testing that the difference in means �1 � �2 is
equal to a specified value 	0. Thus, the null hypothesis will be stated as H0: �1 � �2 � 	0.
Obviously, in many cases, we will specify 	0 � 0 so that we are testing the equality of two 
means (i.e., H0: �1 � �2). The appropriate test statistic would be found by replacing �1 � �2 in
equation 5-1 by 	0, and this test statistic would have a standard normal distribution under H0.
Suppose that the alternative hypothesis is H1: �1 � �2 
 	0. Now a sample value of that
is considerably different from 	0 is evidence that H1 is true. Because Z0 has the N(0, 1) distribu-
tion when H0 is true, we would calculate the p-value as the sum of the probabilities beyond the
test statistic value and in the standard normal distribution. That is,

This is exactly what we did in the one-sample z-test of Section 4-4.1. If we
wanted to perform a fixed-significance-level test, we would take �z��2 and z��2 as the boundaries
of the critical region just as we did in the single-sample z-test. This would give a test with level of
significance �. P-values or critical regions for the one-sided alternatives would be determined
similarly. Formally, we summarize these results for the two-sample z-test in the following display.

P � 2[1 � £( 0z0 0 )] .
��z0��z0�

x1 � x2

(®̂ � �0)�
X1 � X2� �2

1�n1 � �2
2�n2

®̂ � X1 � X2

Testing Hypotheses on the Difference in Means, Variances Known

Null hypothesis:

Test statistic:

Rejection Criterion for 
Alternative Hypotheses P-Value Fixed-Level Tests

H1: �1 � �2 � 	0 Probability above and z0  z��2 or z0 � �z��2

probability below ,

H1: �1 � �2  	0 Probability above z0, z0  z�

H1: �1 � �2 � 	0 Probability below z0, z0 � �z�

P � £ (z0)

P � 1 � £ (z0)

P �2 �1 � £ (� z0 �)�
��z0�

�z0�

Z0 �
X1 � X2 � ¢0

B

�2
1

n1
�

�2
2

n2

H0: �1 � �2 � ¢0

EXAMPLE 5-1 A product developer is interested in reducing the drying time of a primer paint. Two formulations of the paint
are tested; formulation 1 is the standard chemistry, and formulation 2 has a new drying ingredient that should
reduce the drying time. From experience, it is known that the standard deviation of drying time is 8 minutes,
and this inherent variability should be unaffected by the addition of the new ingredient. Ten specimens are
painted with formulation 1, and another 10 specimens are painted with formulation 2; the 20 specimens are
painted in random order. The two sample average drying times are minutes and minutes,
respectively. What conclusions can the product developer draw about the effectiveness of the new ingredient?

x2 � 112x1 � 121

Paint Drying
Time
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234 CHAPTER 5 DECISION MAKING FOR TWO SAMPLES

Solution. We apply the seven-step procedure to this problem as follows:

1. Parameter of interest: The parameter of interest is the difference in mean drying times �1 � �2

and 	0 � 0.

2. Null hypothesis, H0: �1 � �2 � 0, or H0: �1 � �2.

3. Alternative hypothesis, H1: �1  �2. We want to reject H0 if the new ingredient reduces mean
drying time.

4. Test statistic: The test statistic is

where �1
2 � �2

2 � (8)2 � 64 and n1 � n2 � 10.

5. Reject H0 if: Reject H0: �1 � �2 if the P-value is less than 0.05.

6. Computations: Because minutes and minutes, the test statistic is

7. Conclusions: Because the P-value is we reject the null hypothe-
sis. Note that because the P-value for this test is 0.0059, the null hypothesis would be rejected
at any significance level � � 0.0059. The practical engineering conclusion is that adding the
new ingredient to the paint significantly reduces the drying time. ■

P � 1 � £(2.52) � 0.0059,

z0 �
121 � 112

B

(8)2

10
�

(8)2

10

� 2.52

x2 � 112x1 � 121

z0 �
x1 � x2 � 0

B

�2
1

n1
�

�2
2

n2

Sample Size for Two-Sided Alternative Hypothesis on the Difference in
Means, Variances Known, when n1 � n2

For a two-sided alternative hypothesis significance level �, the sample size n1 � n2 � n
required to detect a true difference in means of 	 with power at least 
1 � � is

(5-2)

If n is not an integer, round the sample size up to the next integer.

n �
(z��2 � z�)2(�2

1 � �2
2)

(¢ � ¢�)2

5-2.2 Type II Error and Choice of Sample Size

Suppose that the null hypothesis H0: �1 � �2 � 	0 is false and that the true difference in
means is �1 � �2 � 	, where 	  	0. We may find formulas for the sample size required to
obtain a specific value of the type II error probability � for a given difference in means 	 and
level of significance �.
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5-2.3 Confidence Interval on the Difference in Means, Variances Known

The 100(1 � �)% confidence interval on the difference in two means �1 � �2 when the vari-
ances are known can be found directly from results given previously in this section. Recall that
X11, X12, . . . , is a random sample of n1 observations from the first population and

is a random sample of n2 observations from the second population. The dif-
ference in sample means is a point estimator of �1 � �2, and

Z �
X1 �  X2 � (�1 � �2)

B

�2
1

n1
�

�2
2

n2

X1 � X2

X21, X22, . . . , X2n2

X1n1

Sample Size for One-Sided Alternative Hypothesis on the Difference in
Means, Variances Known, when n1 � n2

For a one-sided alternative hypothesis significance level �, the sample size 
n1 � n2 � n required to detect a true difference in means of �(	 �0) with power at least
1 � 
 is

(5-3) n �
(z� � z
)2(�2

1 � �2
2)

(¢ � ¢0)2

The derivation of equations 5-2 and 5-3 closely follows the single-sample case in Section 4-4.2.
For example, to obtain equation 5-2, we first write the expression for the 
-error for the two-
sided alternative, which is

where � is the true difference in means of interest and �0 is specified in the null hypothesis.
Then by following a procedure similar to that used to obtain equation 4-24, the expression for

 can be obtained for the case where n1 � n2 � n.


 � £

 ° z��2 �
¢ � ¢0

B

�2
1

n1
�

�2
2

n2

¢ � £

 °�z��2 �
¢ � ¢0

B

�2
1

n1
�

�2
2

n2

 ¢

EXAMPLE 5-2 To illustrate the use of these sample size equations, consider the situation described in Example 5-1, and
suppose that if the true difference in drying times is as much as 10 minutes, we want to detect this with
probability at least 0.90. What sample size is appropriate?

Solution. Under the null hypothesis, �0 � 0. We have a one-sided alternative hypothesis with � � 10, 
� � 0.05 (so z� � z0.05 � 1.645), and because the power is 0.9, 
 � 0.10 (so z
 � z0.10 � 1.28). Therefore,
we may find the required sample size from equation 5-3 as follows:

■ � 11

 n �
(z� � z
)2(�2

1 � �2
2)

(¢ � ¢0)
2 �

(1.645 � 1.28)2[(8)2 � (8)2]

(10 � 0)2

Paint Drying
Time

This approximation is valid when is small compared to 
.£ (�z��2�(¢�¢0)1n�2�2
1 � �2

2)
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236 CHAPTER 5 DECISION MAKING FOR TWO SAMPLES

The confidence level 1 � � is exact when the populations are normal. For nonnormal popula-
tions, the confidence level is approximately valid for large sample sizes.

has a standard normal distribution if the two populations are normal or is approximately standard
normal if the conditions of the central limit theorem apply, respectively. This implies that

or

This can be rearranged as

Therefore, the 100(1 � �)% CI for �1 � �2 is defined as follows.

P aX1 � X2 � z��2B

�2
1

n1
�

�2
2

n2
� �1 � �2 � X1 � X2 � z��2B

�2
1

n1
�

�2
2

n2
b 	 1 � �

P £�z��2 �
X1 � X2 � (�1 � �2)

B

�2
1

n1
�

�2
2

n2

� z��2 § 	 1 � �

P(�z��2 � Z � z��2) 	 1 � �

Confidence Interval on the Difference in Means, Variances Known

If  and  are the means of independent random samples of sizes n1 and n2 from
populations with known variances �2

1 and �2
2, respectively, a 100(1 � �)% CI for 

�1 � �2 is

(5-4)

where z��2 is the upper 100 ��2 percentage point and �z��2 is the lower 100 ��2
percentage point of the standard normal distribution in Appendix A Table I.

x1 � x2 � z��2 B

�2
1

n1
�

�2
2

n2
� �1 � �2 � x1 � x2 � z��2B

�2
1

n1
�

�2
2

n2

x2x1

EXAMPLE 5-3 Tensile strength tests were performed on two different grades of aluminum spars used in manufacturing
the wing of a commercial transport aircraft. From past experience with the spar manufacturing process
and the testing procedure, the standard deviations of tensile strengths are assumed to be known. The data
obtained are shown in Table 5-1. Find a 90% CI on the difference in means.

Solution. If �1 and �2 denote the true mean tensile strengths for the two grades of spars, then we may
find a 90% CI on the difference in mean strength �1 � �2 as follows:

Therefore, the 90% CI on the difference in mean tensile strength is

12.22 kg/mm2 � �1 � �2 � 13.98 kg/mm2

 	 13.1 � 0.88 	 13.98 kg/mm2

 UCL 	 x1 � x2 � z��2B

�2
1

n1
�

�2
2

n2
	 87.6 � 74.5 � 1.645

B

(1.0)2

10
�

(1.5)2

12

 	 13.1 � 0.88 	 12.22 kg/mm2

 LCL 	 x1 � x2 � z��2B

�2
1

n1
�

�2
2

n2
	 87.6 � 74.5 � 1.645

B

(1.0)2

10
�

(1.5)2

12

Aircraft Spars
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Remember to round up if n is not an integer. This will ensure that the level of confidence does
not drop below 100(1 � �)%.

Table 5-1 Tensile Strength Test Result for Aluminum Spars

Sample Mean Standard
Spar Sample Tensile Strength Deviation

Grade Size (kg/mm2) (kg/mm2)

1 n1 � 10 � 87.6 �1 � 1.0
2 n2 � 12 � 74.5 �2 � 1.5 x2

x1

Practical engineering conclusion: The CI does not include zero, which implies that the mean strength
of aluminum grade 1(�1) exceeds the mean strength of aluminum grade 2 (�2). In fact, we can state that
we are 90% confident that the mean tensile strength of aluminum grade 1 exceeds that of aluminum
grade 2 by between 12.22 and 13.98 kg/mm2. ■

One-Sided Confidence Bounds
To find a 100(1 � �)% lower confidence bound on �1 � �2, with known �2, simply replace
�z��2 with �z� in the lower bound of equation 5-4 and set the upper bound to �. Similarly, to
find a 100(1 � �)% upper confidence bound on �, with known �2, replace z��2 with z� in the
upper bound and set the lower bound to ��.

Choice of Sample Size
If the standard deviations �1 and �2 are known (at least approximately) and the two sample
sizes n1 and n2 are equal (n1 � n2 � n, say), we can determine the sample size required so that
the error in estimating �1 � �2 by will be less than E at 100(1 � �)% confidence. The
required sample size from each population is as follows.

x1 � x2

Sample Size for a Specified Error E on the Difference in Means,
and Variances Known, when n1 � n2

If  and  are used as estimates of �1 and �2, respectively, we can be 100(1 � �)%
confident that the error will not exceed a specified amount E
when the sample size n1 � n2 � n is

(5-5)n � az��2

E
b 2

(�2
1 	 �2

2)

|(x1 � x2) � (�1 � �2)|
x2x1

EXERCISES FOR SECTION 5-2

5-1. A computer program has produced the following out-
put for a hypothesis testing problem:

Difference in sample means: 2.35

Standard error of the difference in sample means: ?

Test statistic: z0 � 2.01

P-value: 0.0222

(a) What is the missing value for the standard error?
(b) Is this a two-sided or a one-sided test?

(c) If � � 0.05, what are your conclusions?
(d) Find a 90% two-sided CI on the difference in means.

5-2. A computer program has produced the following out-
put for a hypothesis testing problem:

Difference in sample means: 11.5
Standard error of the difference in sample means: ?
Test statistic: z0 � �1.88
P-value: 0.0601
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known to be �1 � 0.10 and �2 � 0.15 fluid ounces for the two
machines, respectively. Two random samples of n1 � 12 bot-
tles from machine 1 and n2 � 10 bottles from machine 2 are
selected, and the sample mean fill volumes are and

fluid ounces. Assume normality.

(a) Construct a 90% two-sided CI on the mean difference in
fill volume. Interpret this interval.

(b) Construct a 95% two-sided CI on the mean difference in
fill volume. Compare and comment on the width of this
interval to the width of the interval in part (a).

(c) Construct a 95% upper-confidence bound on the mean
difference in fill volume. Interpret this interval.

5-7. Reconsider the situation described in Exercise 5-6.

(a) Test the hypothesis that both machines fill to the same
mean volume. Use the P-value approach.

(b) If � � 0.05 and the �-error of the test when the true dif-
ference in fill volume is 0.2 fluid ounces should not 
exceed 0.1, what sample sizes must be used? Use � � 0.05.

5-8. Two different formulations of an oxygenated motor
fuel are being tested to study their road octane numbers. The
variance of road octane number for formulation 1 is �2

1 � 1.5,
and for formulation 2 it is �2

2 � 1.2. Two random samples of
size n1 � 15 and n2 � 20 are tested, and the mean road octane
numbers observed are and Assume
normality.

(a) Construct a 95% two-sided CI on the difference in mean
road octane number.

(b) If formulation 2 produces a higher road octane number
than formulation 1, the manufacturer would like to detect
it. Formulate and test an appropriate hypothesis using the
P-value approach.

5-9. Consider the situation described in Exercise 5-5. What
sample size would be required in each population if we wanted
the error in estimating the difference in mean burning rates to
be less than 4 cm/s with 99% confidence?

5-10. Consider the road octane test situation described in
Exercise 5-8. What sample size would be required in each
population if we wanted to be 95% confident that the error in
estimating the difference in mean road octane number is less
than 1?

5-11. A polymer is manufactured in a batch chemical
process. Viscosity measurements are normally made on each
batch, and long experience with the process has indicated that
the variability in the process is fairly stable with � � 20.
Fifteen batch viscosity measurements are given as follows:
724, 718, 776, 760, 745, 759, 795, 756, 742, 740, 761, 749,
739, 747, 742. A process change is made that involves switch-
ing the type of catalyst used in the process. Following the
process change, eight batch viscosity measurements are taken:
735, 775, 729, 755, 783, 760, 738, 780. Assume that process
variability is unaffected by the catalyst change. Find a 90% CI
on the difference in mean batch viscosity resulting from the
process change. What is the practical meaning of this interval?

x2 � 92.54.x1 � 88.85

x2 � 30.34
x1 � 30.61

(a) What is the missing value for the standard error?
(b) Is this a two-sided or a one-sided test?
(c) If � � 0.05, what are your conclusions?
(d) Find a 95% two-sided CI on the difference in means.

5-3. Two machines are used for filling plastic bottles with a
net volume of 16.0 ounces. The fill volume can be assumed
normal, with standard deviation �1 � 0.020 and �2 � 0.025
ounces. A member of the quality engineering staff suspects
that both machines fill to the same mean net volume, whether
or not this volume is 16.0 ounces. A random sample of 10 bot-
tles is taken from the output of each machine.

Machine 1 Machine 2

16.03 16.01 16.02 16.03

16.04 15.96 15.97 16.04

16.05 15.98 15.96 16.02

16.05 16.02 16.01 16.01

16.02 15.99 15.99 16.00

(a) Do you think the engineer is correct? Use the P-value 
approach.

(b) If � � 0.05, what is the power of the test in part (a) for a
true difference in means of 0.04?

(c) Find a 95% CI on the difference in means. Provide a prac-
tical interpretation of this interval.

(d) Assuming equal sample sizes, what sample size should be
used to ensure that � � 0.01 if the true difference in
means is 0.04? Assume that � � 0.05.

5-4. Two types of plastic are suitable for use by an elec-
tronics component manufacturer. The breaking strength of this
plastic is important. It is known that �1 � �2 � 1.0 psi. From a
random sample of size n1 � 10 and n2 � 12, we obtain

and The company will not adopt plas-
tic 1 unless its mean breaking strength exceeds that of plastic 2
by at least 10 psi. Based on the sample information, should it
use plastic 1? Use the P-value approach in reaching a decision.

5-5. The burning rates of two different solid-fuel propel-
lants used in aircrew escape systems are being studied. It is
known that both propellants have approximately the same
standard deviation of burning rate; that is, �1 � �2 � 3 cm/s.
Two random samples of n1 � 20 and n2 � 20 specimens are
tested; the sample mean burning rates are 
and 

(a) Test the hypothesis that both propellants have the same
mean burning rate. Use a fixed-level test with � � 0.05.

(b) What is the P-value of the test in part (a)?
(c) What is the �-error of the test in part (a) if the true differ-

ence in mean burning rate is 2.5 cm/s?
(d) Construct a 95% CI on the difference in means �1 � �2.

What is the practical meaning of this interval?

5-6. Two machines are used to fill plastic bottles with dish-
washing detergent. The standard deviations of fill volume are

x2 � 24.37 cm/s.
x1 � 18.02 cm/s

x2 � 155.4.x1 � 162.7
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5-3 INFERENCE ON THE MEANS OF TWO 
POPULATIONS, VARIANCES UNKNOWN

We now extend the results of the previous section to the difference in means of the two distribu-
tions in Fig. 5-1 when the variances of both distributions �2

1 and �2
2 are unknown. If the sample

sizes n1 and n2 exceed 40, the normal distribution procedures in Section 5-2 could be used.
However, when small samples are taken, we will assume that the populations are normally dis-
tributed and base our hypothesis tests and CIs on the t distribution. This nicely parallels the case
of inference on the mean of a single sample with unknown variance.

5-3.1 Hypothesis Testing on the Difference in Means

We now consider tests of hypotheses on the difference in means �1 � �2 of two normal distri-
butions where the variances �2

1 and �2
2 are unknown. A t-statistic will be used to test these 

hypotheses. As noted above and in Section 4-6, the normality assumption is required to 
develop the test procedure, but moderate departures from normality do not adversely affect the
procedure. Two different situations must be treated. In the first case, we assume that the vari-
ances of the two normal distributions are unknown but equal; that is, �2

1 � �2
2 � �2. In the second,

we assume that �2
1 and �2

2 are unknown and not necessarily equal.

Case 1: �2
1 � �2

2 � �2

Suppose we have two independent normal populations with unknown means �1 and �2, and
unknown but equal variances, �2

1 � �2
2 � �2. We wish to test

(5-6)

Let be a random sample of n1 observations from the first population and
be a random sample of n2 observations from the second population. Let

be the sample means and sample variances, respectively. Now the expected valueX1, X2, S
2
1, S 2

2

X21, X22, . . . , X2n2

X11, X12, . . . , X1n1

H1: �1 � �2 
 ¢0

H0: �1 � �2 � ¢0

5-12. The concentration of active ingredient in a liquid
laundry detergent is thought to be affected by the type of cata-
lyst used in the process. The standard deviation of active con-
centration is known to be 3 grams per liter, regardless of the
catalyst type. Ten observations on concentration are taken with
each catalyst, and the data are shown here:

Catalyst 1: 66.1, 64.0, 64.4, 60.0, 65.3
66.9, 61.5, 63.5, 61.6, 62.3

Catalyst 2: 66.3, 64.7, 67.6, 68.5, 68.3
67.4, 66.1, 69.9, 70.6, 68.7

(a) Find a 95% CI on the difference in mean active concentra-
tions for the two catalysts.

(b) Is there any evidence to indicate that the mean active con-
centrations depend on the choice of catalyst? Base your
answer on the results of part (a).

5-13. Consider the polymer batch viscosity data in
Exercise 5-11. If the difference in mean batch viscosity is 10
or less, the manufacturer would like to detect it with a high
probability.

(a) Formulate and test an appropriate hypothesis using the 
P-value approach. What are your conclusions?

(b) Compare the results of part (a) to the 90% CI obtained in
Exercise 5-11 and discuss your findings.

5-14. For the laundry detergent problem in Exercise 5-12,
test the hypothesis that the mean active concentrations are the
same for both types of catalyst. What is the P-value for this
test? What are your conclusions? Compare your answer to that
found in part (b) of Exercise 5-12, and comment on why they
are the same or different.
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of the difference in sample means is an unbiased
estimator of the difference in means. The variance of is

It seems reasonable to combine the two sample variances S2
1 and S2

2 to form an estimator
of �2. The pooled estimator of �2 is defined as follows.

V(X1 � X2) �
�2

n1
�

�2

n2
� �2a 1

n1
�

1

n2
b

X1 � X2

X1 � X2 is E(X1 � X2) � �1 � �2, so X1 � X2

The pooled estimator of �2, denoted by S2
p, is defined by

(5-7)S 2
p �

(n1 � 1)S 2
1 � (n2 � 1)S 2

2

n1 � n2 � 2

Pooled
Estimator of

�2

It is easy to see that the pooled estimator S2
p can be written as

where 0 � w � 1. Thus S2
p is a weighted average of the two sample variances S2

1 and S2
2, where

the weights w and 1 � w depend on the two sample sizes n1 and n2. Obviously, if n1 � n2 � n,
w � 0.5 and S2

p is just the arithmetic average of S2
1 and S2

2. If n1 � 10 and n2 � 20 (say), 
w � 0.32 and 1 � w � 0.68. The first sample contributes n1 � 1 degrees of freedom to S2

p and
the second sample contributes n2 � 1 degrees of freedom. Therefore, S2

p has n1 � n2 � 2 degrees
of freedom.

Now we know that

has an N(0, 1) distribution. Replacing � by Sp gives the following.

Z �
X1 � X2 � (�1 � �2)

�
B

1

n1
�

1

n2

 � wS 2
1 � (1 � w)S 2

2

 S 2
p �

n1 � 1

n1 � n2 � 2
S 2

1 �
n2 � 1

n1 � n2 � 2
S 2

2

Given the assumptions of this section, the quantity

(5-8)

has a t distribution with n1 � n2 � 2 degrees of freedom.

T �
X1 � X2 � (�1 � �2)

SpB

1

n1
�

1

n2
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The use of this information to test the hypotheses in equation 5-6 is now straightforward:
Simply replace �1 � �2 in equation 5-8 by 	0, and the resulting test statistic has a t distribution
with n1 � n2 � 2 degrees of freedom under H0: �1 � �2 � 	0. The determination of P-values in
the location of the critical region for fixed-level testing for both two- and one-sided alternatives
parallels those in the one-sample case. This procedure is often called the pooled t-test.

1Although we have given the development of this procedure for the case in which the sample sizes could be different,
there is an advantage to using equal sample sizes n1 � n2 � n. When the sample sizes are the same from both popu-
lations, the t-test is very robust or insensitive to the assumption of equal variances.

Case 1: Testing Hypotheses on the Difference in Means of Two Normal
Distributions, Variances Unknown and Equal1 (Pooled t-test)

Null hypothesis:

Test statistic: (5-9)

Rejection Criterion
Alternative Hypothesis P-Value for Fixed-Level Tests

H1: �1 � �2 
 	0 Sum of the probability above 

and the probability below 

H1: �1 � �2  	0 Probability above t0

H1: �1 � �2 � 	0 Probability below t0 t0 6 �t�,n1�n2�2

t0 7 t�,n1�n2�2

t0 6 �t��2,n1�n2�2��t0�
t0 7 t��2,n1�n2�2 or�t0�

T0 �
X1 � X2 � ¢0

SpB

1

n1
�

1

n2

H0: �1 � �2 � ¢0

EXAMPLE 5-4 Two catalysts are being analyzed to determine how they affect the mean yield of a chemical process.
Specifically, catalyst 1 is currently in use, but catalyst 2 is acceptable. Because catalyst 2 is cheaper, it
should be adopted, providing it does not change the process yield. A test is run in the pilot plant and
results in the data shown in Table 5-2. Is there any difference between the mean yields? Assume equal
variances.

Solution. Since these are all separate runs of the pilot plant, it is reasonable to assume that we have two
independent populations and random samples from each population. The solution using the seven-step
hypothesis testing procedure is as follows:

1. Parameter of interest: The parameters of interest are �1 and �2, the mean process yield using
catalysts 1 and 2, respectively, and we want to know whether �1 � �2 � 0.

2. Null hypothesis, H0: �1 � �2 � 0, or H0: �1 � �2

3. Alternative hypothesis, H1: �1 
 �2

4. Test statistic: The test statistic is

t0 �
x1 � x2 � 0

spB

1

n1
�

1

n2

Chemical 
Process Yield
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5. Reject H0 if: Reject H0 if the P-value is less than 0.05.

6. Computations: From Table 5-2 we have s1 � 2.39, n1 � 8, s2 � 2.98,
and n2 � 8. Therefore,

and

7. Conclusions: From the t-table with 14 degrees of freedom, we find that t0.40,14 � 0.258 and
t0.25,14 � 0.692. Now |t0| � 0.35, and 0.258 � 0.35 � 0.692, so lower and upper bounds on the
P-value are 0.5 � P � 0.8. Therefore, since P � 0.05, the null hypothesis cannot be rejected.
The practical conclusion is that at the 0.05 level of significance, we do not have strong
evidence to conclude that catalyst 2 results in a mean yield that differs from the mean yield
when catalyst 1 is used. The exact P-value is P � 0.73. This was obtained from Minitab
computer software. ■

t0 �
x1 � x2

2.70
B

1

n1
�

1

n2

�
92.255 � 92.733

2.70
B

1

8
�

1

8

� �0.35

sp � 17.30 � 2.70

 s2
p �

(n1 � 1)s2
1 � (n2 � 1)s2

2

n1 � n2 � 2
�

(7)(2.39)2 � 7(2.98)2

8 � 8 � 2
� 7.30

x2 � 92.733,x1 � 92.255,

Table 5-2 Catalyst Yield Data (Percent) Example 5-4

Observation 
Number Catalyst 1 Catalyst 2

1 91.50 89.19

2 94.18 90.95

3 92.18 90.46

4 95.39 93.21

5 91.79 97.19

6 89.07 97.04

7 94.72 91.07

8 89.21 92.75 

s1 � 2.39 s2 � 2.98

n1 � 8 n2 � 8

x2 � 92.733x1 � 92.255

Two-sample T for Cat 1 vs Cat 2

N Mean StDev SE Mean
Cat 1 8 92.26 2.39 0.84
Cat 2 8 92.73 2.99 1.1

Difference � mu Cat 1 � mu Cat 2
Estimate for difference: �0.48
95% CI for difference: (�3.37, 2.42)
T-Test of difference � 0 (vs not =): T-Value � �0.35, P-Value � 0.730, DF � 14
Both use Pooled StDev � 2.70

The Minitab two-sample t-test and confidence interval output for Example 5-4 follows:
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5-3 INFERENCE ON THE MEANS OF TWO POPULATIONS, VARIANCES UNKNOWN 243

Notice that the numerical results are essentially the same as the manual computations in
Example 5-4. The P-value is reported as P � 0.73. The two-sided 95% CI on �1 � �2 is also
reported. We will give the computing formula for the CI in Section 5-3.3.

Figure 5-2 shows the normal probability plot of the two samples of yield data and compar-
ative box plots. The normal probability plots indicate that there is no problem with the normality
assumption. Furthermore, both straight lines have similar slopes, providing some verification of
the assumption of equal variances. The comparative box plots indicate that there is no obvious
difference in the two catalysts, although catalyst 2 has slightly greater sample variability.

Case 2: �2
1 
 �2

2

In some situations, we cannot reasonably assume that the unknown variances �2
1 and �2

2 are
equal. There is not an exact t-statistic available for testing H0: �1 � �2 � 	0 in this case.
However, the following test statistic is used.

Checking the Normality
Assumption

Figure 5-2 Normal probability plot and comparative box plot for the catalyst yield data in Example 5-4.
(a) Normal probability plot. (b) Box plots.
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Case 2: Test Statistic for the Difference in Means of Two Normal
Distributions, Variances Unknown and Not Necessarily Equal

(5-10)

is distributed approximately as t with degrees of freedom given by

(5-11)

if the null hypothesis H0: �1 � �2 � 	0 is true. If v is not an integer, round down to
the nearest integer.

v �

aS 2
1

n1
�

S 2
2

n2
b2

(S 2
1�n1)2

n1 � 1
�

(S 2
2�n2)2

n2 � 1

T*0 �
X1 � X2 � ¢0

B

S 2
1

n1
�

S 2
2

n2
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Therefore, if �2
1 
 �2

2, the hypotheses on differences in the means of two normal distributions
are tested as in the equal variances case, except that T *0 is used as the test statistic and n1 � n2 � 2
is replaced by v in determining the degrees of freedom for the test.

EXAMPLE 5-5 Arsenic concentration in public drinking water supplies is a potential health risk. An article in the 
Arizona Republic (May 27, 2001) reported drinking water arsenic concentrations in parts per billion
(ppb) for 10 metropolitan Phoenix communities and 10 communities in rural Arizona. The data follow:

Metro Phoenix Rural Arizona 

Phoenix, 3 Rimrock, 48
Chandler, 7 Goodyear, 44
Gilbert, 25 New River, 40
Glendale, 10 Apache Junction, 38
Mesa, 15 Buckeye, 33
Paradise Valley, 6 Nogales, 21
Peoria, 12 Black Canyon City, 20
Scottsdale, 25 Sedona, 12
Tempe, 15 Payson, 1
Sun City, 7 Casa Grande, 18

We wish to determine if there is any difference in mean arsenic concentrations between metropolitan
Phoenix communities and communities in rural Arizona.

Solution. For our illustrative purposes, we are going to assume that these two data sets are representative
random samples of the two types of communities. Figure 5-3 shows a normal probability plot for the two
samples of arsenic concentration. The assumption of normality appears quite reasonable, but because the
slopes of the two straight lines are very different, it is unlikely that the population variances are the same.

Applying the seven-step procedure gives the following:

1. Parameter of interest: The parameter of interest is the mean arsenic concentration for the two
geographic regions, say, �1 and �2, and we are interested in determining whether �1 � �2 � 0.

(x2 � 27.5, s2 � 15.3)(x1 � 12.5, s1 � 7.63)
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Figure 5-3 Normal probability of the arsenic concentration
data from Example 5-5.
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2. Null hypothesis, H0: �1 � �2 � 0, or H0: �1 � �2

3. Alternative hypothesis, H1: �1 
 �2

4. Test statistic: The test statistic is

5. Reject H0 if: We will reject H0: �1 � �2 if the P-value is less than 0.05.

6. Computations: The degrees of freedom on t*0 are found from equation 5-11 as

The value of the test statistic is

7. Conclusions: Because t0.01,13 � 2.650, t0.005,13 � 3.012, and t0 � 2.77, we find bounds on the
P-value as 0.01 � P � 0.02. Therefore, the P-value is less than 0.05, so we reject the null
hypothesis.

Practical engineering conclusion: There is evidence to conclude that mean arsenic concentration in
the drinking water in rural Arizona is different from the mean arsenic concentration in metropolitan
Phoenix drinking water. Furthermore, the mean arsenic concentration is higher in rural Arizona
communities. ■

||

t*0 �
x1 � x2

B

s2
1

n1
�

s2
2

n2

�
12.5 � 27.5

B

(7.63)2

10
�

(15.3)2

10

� �2.77

� �

a s2
1

n1
�

s2
2

n2
b2

(s2
1�n1)2

n1 � 1
�

(s2
2�n2)2

n2 � 1

�

c (7.63)2

10
�

(15.3)2

10
d 2

[ (7.63)2�10]2

9
�

[ (15.3)2�10]2

9

� 13.2 � 13

t*0 �
x1 � x2 � 0

B

s2
1

n1
�

s2
2

n2

The Minitab output for this example follows.

Two-sample T for PHX vs RuralAZ

N Mean StDev SE Mean
PHX 10 12.50 7.63 2.4
RuralAZ 10 27.5 15.3 4.9

Difference � mu PHX � mu RuralAZ
Estimate for difference: �15.00
95% CI for difference: (�26.71, �3.29)
T-Test of difference � 0 (vs not �): T-Value � �2.77, P-Value � 0.016, DF � 13

Minitab Two-
Sample t-Test 

and Confidence 
Interval Output

The numerical results from Minitab exactly match the calculations from Example 5-5.
Note that a two-sided 95% CI on �1 � �2 is also reported. We will discuss its computation in
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Section 5-3.3; however, note that the interval does not include zero. Indeed, the upper 95% of
the confidence limit is �3.29 parts per billion, well below zero, and the mean observed differ-
ence is parts per billion.

Animation 10: Two Separate Sample Hypothesis Testing for Means

5-3.2 Type II Error and Choice of Sample Size

The operating characteristic curves in Appendix A Charts Va, Vb, Vc, and Vd are used to eval-
uate the type II error for the case in which �2

1 � �2
2 � �2. Unfortunately, when �2

1 
 �2
2, the

distribution of T*0 is unknown if the null hypothesis is false, and no operating characteristic
curves are available for this case.

For the two-sided alternative H1: �1 � �2 
 	0, when �2
1 � �2

2 � �2 and n1 � n2 � n,
Charts Va and Vb are used with

(5-12)

where 	 is the true difference in means that is of interest. To use these curves, they must be en-
tered with the sample size n* � 2n � 1. For the one-sided alternative hypothesis, we use
Charts Vc and Vd and define d and 	 as in equation 5-12. It is noted that the parameter d is a
function of �, which is unknown. As in the single-sample t-test, we may have to rely on a prior
estimate of � or use a subjective estimate. Alternatively, we could define the differences in the
mean that we wish to detect relative to �.

d �
0¢ � ¢0 0

2�

x1 � x2 � 12.5 � 17.5 � �15

EXAMPLE 5-6 Consider the catalyst experiment in Example 5-4. Suppose that if catalyst 2 produces a mean yield that
differs from the mean yield of catalyst 1 by 4.0%, we would like to reject the null hypothesis with prob-
ability at least 0.85. What sample size is required?

Solution. Using sp � 2.70 as a rough estimate of the common standard deviation �, we have d � |	|�2� �
|4.0|�[(2)(2.70)] � 0.74. From Appendix A Chart Va with d � 0.74 and � � 0.15, we find n* � 20, approx-
imately. Therefore, because n* � 2n � 1,

and we would use sample sizes of n1 � n2 � n � 11. ■

n �
n* � 1

2
�

20 � 1

2
� 10.5 � 11 (say)

Chemical 
Process Yield

The results agree fairly closely with the results obtained from the OC curve.

2-Sample t Test
Testing mean 1 � mean 2 (versus not � )
Calculating power for mean 1 � mean 2 � difference
Alpha � 0.05 Sigma � 2.7

Difference Sample Size Target Power Actual Power
4 10 0.8500 0.8793

Minitab Will
Perform Power and

Sample Size
Calculations for the
Two-Sample t-Test
(Equal Variances)
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EXAMPLE 5-7 An article in the journal Hazardous Waste and Hazardous Materials (Vol. 6, 1989) reported the results
of an analysis of the weight of calcium in standard cement and cement doped with lead. Reduced levels
of calcium would indicate that the hydration mechanism in the cement is blocked and would allow water
to attack various locations in the cement structure. Ten samples of standard cement had an average
weight percent calcium of with a sample standard deviation of s1 � 5.0, and 15 samples of 
the lead-doped cement had an average weight percent calcium of with a sample standard 
deviation of s2 � 4.0.

x2 � 87.0,
x1 � 90.0,

5-3.3 Confidence Interval on the Difference in Means

Case 1: �2
1 � �2

2 � �2

To develop the CI for the difference in means �1 � �2 when both variances are equal, note that
the distribution of the statistic

is the t distribution with n1 � n2 � 2 degrees of freedom. Therefore,

or

Manipulation of the quantities inside the probability statement leads to the following
100(1 � �)% CI on �1 � �2.

P ≥�t��2,n1�n2�2 �
X1 � X2 � (�1 � �2)

Sp
B

1

n1
�

1

n2

� t��2,n1�n2�2 ¥ � 1 � �

P(�t��2,n1�n2�2 � T � t��2,n1�n2�2) � 1 � �

T �
X1 � X2 � (�1 � �2)

Sp
B

1

n1
�

1

n2

Case 1: Confidence Interval on the Difference in Means of Two Normal
Distributions, Variances Unknown and Equal

If are the means and variances of two random samples of sizes n1

and n2, respectively, from two independent normal populations with unknown but
equal variances, a 100(1 � �)% CI on the difference in means �1 � �2 is

(5-13)

where is the pooled estimate of 

the common population standard deviation, and is the upper 100 ��2
percentage point of the t distribution with n1 � n2 � 2 degrees of freedom.

t��2,n1�n2�2

sp � 2 [ (n1 � 1)s2
1 � (n2 � 1)s2

2 ] �(n1 � n2 � 2)

� �1 � �2 � x1 � x2 � t��2,n1�n2�2 sp 
A

1

n1
�

1

n2

x1 � x2 � t��2,n1�n2�2 sp A

1

n1
�

1

n2

x1,  x2,  s
2
1,  and s2

2

Calcium in 
Doped Cement
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Assume that weight percent calcium is normally distributed and find a 95% CI on the difference in
means, �1 � �2, for the two types of cement. Furthermore, assume that both normal populations have
the same standard deviation.

Solution. The pooled estimate of the common standard deviation is found using equation 5-7 as follows:

Therefore, the pooled standard deviation estimate is The 95% CI is found using
equation 5-13:

or, upon substituting the sample values and using t0.025,23 � 2.069,

which reduces to

Note that the 95% CI includes zero; therefore, at this level of confidence we cannot conclude that there
is a difference in the means. Put another way, there is no evidence that doping the cement with lead
affected the mean weight percent of calcium; therefore, we cannot claim that the presence of lead affects
this aspect of the hydration mechanism at the 95% level of confidence. ■

�0.72 � �1 � �2 � 6.72

� 90.0 � 87.0 � 2.069(4.4)
B

1

10
�

1

15
90.0 � 87.0 � 2.069(4.4)

B

1

10
�

1

15
� �1 � �2

x1 � x2 � t0.025,23sp B

1

n1
�

1

n2
� �1 � �2 � x1 � x2 � t0.025,23sp B

1

n1
�

1

n2

sp � 119.52 � 4.4.

 � 19.52

 �
9(5.0)2 � 14(4.0)2

10 � 15 � 2

 s2
p �

(n1 � 1)s2
1 � (n2 � 1)s2

2

n1 � n2 � 2

Case 2: �2
1 
 �2

2

In many situations it is not reasonable to assume that �2
1 � �2

2. When this assumption is
unwarranted, we may still find a 100(1 � �)% CI on �1 � �2 using the fact that

is distributed approximately as t with degrees of freedom v given by equation 5-11. Therefore,

and, if we substitute for T* in this expression and isolate �1 � �2 between the inequalities, we
can obtain the following CI for �1 � �2.

P(�t��2,v � T* � t��2,v) 	 1 � �

T* �
X1 � X2 � (�1 � �2)

2S 2
1�n1 � S 2

2�n2
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EXERCISES FOR SECTION 5-3

Case 2: Confidence Interval on the Difference in Means of Two Normal
Distributions, Variances Unknown and Unequal

If are the means and variances of two random samples of sizes n1

and n2, respectively, from two independent normal populations with unknown and
unequal variances, then an approximate 100(1 � �)% CI on the difference in means 
�1 � �2 is

(5-14)

where v is given by equation 5-11 and t��2,v is the upper 100 ��2 percentage point of
the t distribution with v degrees of freedom.

x1 � x2 � t��2,vB

s2
1

n1
�

s2
2

n2
� �1 � �2 � x1 � x2 � t��2,vB

s2
1

n1
�

s2
2

n2

x1,  x2, s
2
1, and s2

2

One-Sided Confidence Bounds
To find a 100(1 � �)% lower confidence bound on �1 � �2, with unknown �2 values, simply
replace with in the lower bound of equation 5-13 for case 1 and �t��2,v
with �t�,v in the lower bound of equation 5-14 for case 2; the upper bound is set to �. Similarly,
to find a 100(1 � �)% upper confidence bound on �1 � �2 with unknown �2 values, simply
replace with in the upper bound of equation 5-13 for case 1 and with

in the upper bound of equation 5-14 for case 2; the lower bound is set to ��.t�,v

t��2,vt�,n1�n2�2t��2,n1�n2�2

�t�,n1�n2�2�t��2,n1�n2�2

5-15. Consider the Minitab output shown below.

Two-Sample T-Test and CI: X1, X2

Two-sample T for X1 vs X2

N Mean StDev SE Mean
X1 20 50.19 1.71 0.38
X2 20 52.52 2.48 0.55

Difference � mu (X1) � mu (X2)
Estimate for difference: �2.33341
95% CI for difference: (�3.69547, �0.97135)
T-Test of difference � 0 (vs not �): 

T-Value = �3.47, P-Value � 0.001, DF � 38
Both use Pooled StDev � 2.1277

(a) Can the null hypothesis be rejected at the 0.05 level?
Why?

(b) Is this a one-sided or a two-sided test?
(c) If the hypotheses had been versus

would you reject the null hypothesis at
the 0.05 level?

(d) If the hypotheses had been versus
would you reject the null hypothesis at

the 0.05 level? Can you answer this question without
doing any additional calculations? Why?

H1:�1 � �2 6 2,
H0:�1 � �2 � 2

H1:�1 � �2 
 2,
H0:�1 � �2 � 2

(e) Use the output and the t table to find a 95% upper confi-
dence bound on the difference in means.

(f) What is the P-value if the alternative hypothesis is
versus 

5-16. Consider the Minitab output shown below.

Two-Sample T-Test and CI: X1, X2

Two-sample T for X1 vs X2

N Mean StDev SE Mean
X1 15 75.47 1.63 ?
X2 25 76.06 1.99 0.40

Difference � mu (X1) � mu (X2)
Estimate for difference: �0.590171
95% upper bound for difference: ?
T-Test of difference � 0 (vs <): T-Value � �0.97,

P-Value � 0.170, DF � ?
Both use Pooled StDev � ?

(a) Fill in the missing values in the output. Can the null
hypothesis be rejected at the 0.05 level? Why?

(b) Is this a one-sided or a two-sided test?
(c) Use the output and the t table to find a 99% one-sided

upper confidence bound on the difference in means.
(d) What is the P-value if the alternative hypothesis is

versus H1: �1 � �2 6 1?H0: �1 � �2 � 1

H1:�1 � �2 
 2?H0:�1 � �2 � 2
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5-17. An article in Electronic Components and Technology
Conference (Vol. 52, 2001, pp. 1167–1171) describes a study
comparing single versus dual spindle saw processes for copper
metallized wafers. A total of 15 devices of each type were meas-
ured for the width of the backside chipouts, 

and 

(a) Do the sample data support the claim that both processes
have the same chip outputs? Assume that both populations
are normally distributed and have the same variance.
Answer this question by finding and interpreting the 
P-value for the test.

(b) Construct a 95% two-sided confidence interval on the mean
difference in spindle saw process. Compare this interval to
the results in part (a).

(c) If the of the test when the true difference in chip
outputs is 15 should not exceed 0.1 when what
sample sizes must be used?

5-18. An article in IEEE International Symposium on
Electromagnetic Compatibility (Vol. 2, 2002, pp. 667–670)
describes the quantification of the absorption of electromag-
netic energy and the resulting thermal effect from cellular
phones. The experimental results were obtained from in vivo
experiments conducted on rats. The arterial blood pressure
values (mmHg) for the control group (8 rats) during the experi-
ment are and for the test group (9 rats) are

(a) Is there evidence to support the claim that the test group
has higher mean blood pressure? Assume that both popu-
lations are normally distributed but the variances are not
equal. Answer this question by finding the P-value for
this test.

(b) Calculate a confidence interval to answer the question in
part (a).

5-19. The diameter of steel rods manufactured on two
different extrusion machines is being investigated. Two ran-
dom samples of sizes n1 � 15 and n2 � 17 are selected, and the
sample means and sample variances are s1

2 � 0.35,
and s2

2 � 0.40, respectively. Assume that �2
1 � �2

2

and that the data are drawn from a normal distribution.

(a) Is there evidence to support the claim that the two
machines produce rods with different mean diameters?
Use a P-value in arriving at this conclusion.

(b) Construct a 95% CI for the difference in mean rod diame-
ter. Interpret this interval.

5-20. An article in Fire Technology describes the investiga-
tion of two different foam expanding agents that can be used
in the nozzles of firefighting spray equipment. A random sam-
ple of five observations with an aqueous film-forming foam
(AFFF) had a sample mean of 4.340 and a standard deviation
of 0.508. A random sample of five observations with alcohol-
type concentrates (ATC) had a sample mean of 7.091 and a
standard deviation of 0.430. Assume that both populations are

x2 � 8.68,
x � 8.73,

x2 � 115, s2 � 10.
x1 � 90, s1 � 5

� � 0.05,
�-error

sdouble � 8.612.xdouble � 45.278,ssingle � 7.895
xsingle � 66.385,

well represented by normal distributions with the same standard
deviations.

(a) Is there evidence to support the claim that there is no dif-
ference in mean foam expansion of these two agents? Use
a fixed-level test with � � 0.10.

(b) Calculate the P-value for this test.
(c) Construct a 90% CI for the difference in mean foam

expansion. Explain how this interval confirms your find-
ing in part (a).

5-21. A consumer organization collected data on two types
of automobile batteries, A and B. The summary statistics for
12 observations of each type are 

Assume that the data are normally
distributed with �A � �B.

(a) Is there evidence to support the claim that type A battery
mean life exceeds that of type B? Use the P-value in
answering this question.

(b) Construct a one-sided 99% confidence bound for the dif-
ference in mean battery life. Explain how this interval
confirms your finding in part (a).

(c) Suppose that if the mean life of type A batteries exceeds
that of type B by as much as 2 months, it is important to
detect this difference with probability at least 0.95 when 
� � 0.01. Is the choice of n1 � n2 � 12 of this problem
adequate?

5-22. The deflection temperature under load for two differ-
ent types of plastic pipe is being investigated. Two random
samples of 15 pipe specimens are tested, and the deflection
temperatures observed are reported here (in �F):

Type 1 Type 2

206 193 192 177 176 198

188 207 210 197 185 188

205 185 194 206 200 189

187 189 178 201 197 203

194 213 205 180 192 192

(a) Construct box plots and normal probability plots for the
two samples. Do these plots provide support of the
assumptions of normality and equal variances? Write a
practical interpretation for these plots.

(b) Do the data support the claim that the deflection tempera-
ture under load for type 1 pipe exceeds that of type 2? In
reaching your conclusions, use a P-value in answering this
question.

(c) Suppose that if the mean deflection temperature for type 2
pipe exceeds that of type 1 by as much as 5�F, it is impor-
tant to detect this difference with probability at least 0.90
when � � 0.05. Is the choice of n1 � n2 � 15 in part (b)
of this problem adequate?

5-23. In semiconductor manufacturing, wet chemical etch-
ing is often used to remove silicon from the backs of wafers

sA � 1.43, and sB � 0.93.
xB � 34.21,xA � 36.51,

c05DecisionMakingforTwoSamples.qxd  9/29/10  9:14 AM  Page 250



5-3 INFERENCE ON THE MEANS OF TWO POPULATIONS, VARIANCES UNKNOWN 251

prior to metalization. The etch rate is an important character-
istic in this process and known to follow a normal distribution.
Two different etching solutions have been compared, using
two random samples of 10 wafers for etch solution. The
observed etch rates are as follows (in mils/min):

Solution 1 Solution 2

9.9 10.6 10.2 10.0

9.4 10.3 10.6 10.2

9.3 10.0 10.7 10.7

9.6 10.3 10.4 10.4

10.2 10.1 10.5 10.3

(a) Do the data support the claim that the mean etch rate is the
same for both solutions? In reaching your conclusions,
use a fixed-level test with � � 0.05 and assume that both
population variances are equal.

(b) Calculate a P-value for the test in part (a).
(c) Find a 95% CI on the difference in mean etch rates.
(d) Construct normal probability plots for the two samples.

Do these plots provide support for the assumptions of
normality and equal variances? Write a practical interpre-
tation for these plots.

5-24. Two suppliers manufacture a plastic gear used in a
laser printer. The impact strength of these gears measured in
foot-pounds is an important characteristic. A random sample
of 10 gears from supplier 1 results in and

and another random sample of 16 gears from the
second supplier results in and 

(a) Is there evidence to support the claim that supplier 2 pro-
vides gears with higher mean impact strength? Use the
P-value approach, and assume that both populations are
normally distributed but the variances are not equal.

(b) Do the data support the claim that the mean impact
strength of gears from supplier 2 is at least 25 foot-pounds
higher than that of supplier 1? Make the same assump-
tions as in part (a).

(c) Construct an appropriate 95% CI on the difference in
mean impact strength. Use this interval to answer the
question posed in part (b).

5-25. A photoconductor film is manufactured at a nominal
thickness of 25 mils. The product engineer wishes to decrease
the energy absorption of the film, and he believes this can be
achieved by reducing the thickness of the film to 20 mils.
Eight samples of each film thickness are manufactured in a
pilot production process, and the film absorption (in �J/in2) is
measured. For the 25-mil film, the sample data result is

and for the 20-mil film, the data
yield 

(a) Do the data support the claim that reducing the film thick-
ness decreases the energy absorption of the film? Use a

x2 � 1.036 and s2 � 0.093.
x1 � 1.179 and s1 � 0.088,

s2 � 21.x2 � 321.50
s1 � 22.5,

x1 � 289.30

fixed-level test with � � 0.10 and assume that the two
population variances are equal and the underlying popula-
tion is normally distributed.

(b) What is the P-value for this test?
(c) Find a 95% CI on the difference in the two means.

5-26. The melting points of two alloys used in formulating
solder were investigated by melting 21 samples of each mate-
rial. The sample mean and standard deviation for alloy 1 was

and and for alloy 2 they were
and 

(a) Do the sample data support the claim that both alloys have
the same melting point? Use a fixed-level test with � � 0.05
and assume that both populations are normally distributed
and have the same standard deviation.

(b) Find the P-value for this test.

5-27. Referring to the melting point experiment in Exercise
5-26, suppose that the true mean difference in melting points
is 3�F. How large a sample would be required to detect this dif-
ference using an � � 0.05 level test with probability at least
0.9? Use �1 � �2 � 4 as an initial estimate of the common
standard deviation. 

5-28. Two companies manufacture a rubber material intended
for use in an automotive application. The part will be subjected
to abrasive wear in the field application, so we decide to compare
the material produced by each company in a test. Twenty-five
samples of material from each company are tested in an abrasion
test, and the amount of wear after 1000 cycles is observed. For
company 1, the sample mean and standard deviation of wear are

cycles and s1 � 1.9 mg/1000 cycles, and
for company 2, we obtain cycles and s2 �
7.9 mg/1000 cycles.

(a) Do the data support the claim that the two companies pro-
duce material with different mean wear? Use the P-value
approach and assume each population is normally distrib-
uted but that their variances are not equal.

(b) Do the data support a claim that the material from com-
pany 1 has higher mean wear than the material from com-
pany 2? Use the same assumptions as in part (a).

5-29. The thickness of a plastic film (in mils) on a substrate
material is thought to be influenced by the temperature at
which the coating is applied. A completely randomized exper-
iment is carried out. Eleven substrates are coated at 125�F,
resulting in a sample mean coating thickness of 
and a sample standard deviation of s1 � 5.08. Another 13 sub-
strates are coated at 150�F, for which and s2 �
20.15 are observed. It was originally suspected that raising the
process temperature would reduce mean coating thickness. Do
the data support this claim? Use the P-value approach and 
assume that the two population standard deviations are not
equal.

5-30. Reconsider the abrasive wear test in Exercise 5-28.
Construct a CI that will address the questions in parts (a) and
(b) in that exercise.

x2 � 101.70

x1 � 101.28

x2 � 11.64 mg�1000
x1 � 20.12 mg�1000

s2 � 2.5°F.x2 � 425°F
s1 � 2.34°F,x1 � 420.48°F
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252 CHAPTER 5 DECISION MAKING FOR TWO SAMPLES

5-4 THE PAIRED t-TEST

A special case of the two-sample t-tests of Section 5-3 occurs when the observations on the
two populations of interest are collected in pairs. Each pair of observations—say, 
(X1j, X2j)—are taken under homogeneous conditions, but these conditions may change
from one pair to another. For example, suppose that we are interested in comparing two dif-
ferent types of tips for a hardness-testing machine. This machine presses the tip into a
metal specimen with a known force. By measuring the depth of the depression caused by
the tip, the hardness of the specimen can be determined. If several specimens were selected
at random, half tested with tip 1, half tested with tip 2, and the pooled or independent t-test
in Section 5-3 was applied, the results of the test could be erroneous. The metal specimens
could have been cut from bar stock that was produced in different heats, or they might not
be homogeneous in some other way that might affect hardness. Then the observed difference
between mean hardness readings for the two tip types also includes hardness differences
between specimens.

A more powerful experimental procedure is to collect the data in pairs—that is, to make
two hardness readings on each specimen, one with each tip. The test procedure would then
consist of analyzing the differences between hardness readings on each specimen. If there is
no difference between tips, the mean of the differences should be zero. This test procedure is
called the paired t-test.

Let (X11, X21), (X12, X22), . . . , (X1n, X2n) be a set of n paired observations where we assume
that the mean and variance of the population represented by X1 are �1 and �2

1, and the mean
and variance of the population represented by X2 are �2 and �2

2. Define the differences between
each pair of observations as Dj � X1j � X2j, j � 1,2, . . . , n. The Dj’s are assumed to be nor-
mally distributed with mean

�D � E(X1 � X2) � E(X1) � E(X2) � �1 � �2

5-31. Reconsider the coating thickness experiment in
Exercise 5-29. Answer the question posed regarding the effect
of temperature on coating thickness by using a CI. Explain
your answer.

5-32. A regional opera company has tried two different
approaches for soliciting donations from 16 potential spon-
sors. The 16 potential sponsors were selected at random from
a population of potential sponsors and randomly divided into
two groups of eight each. Then one of the approaches was
used for each group. The dollar amounts of the resulting con-
tributions are as follows:

Approach 1 $1000 $1500 $1200 $1800 $1600 $1100 $1000 $1250

Approach 2 $1500 $1000 $1200 $1500 $1200 $1250 $1100 $1000

(a) Is there evidence to indicate that the two approaches differ
with respect to the mean amount donated?

(b) Construct a 95% two-sided CI on the difference in the two
means.

(c) Do you have any concerns about the normality assump-
tion in this problem?

5-33. A pharmaceutical company is investigating the
bioactivity of a new drug. Two dosage levels are used and the
bioactivity measured in random samples as shown:

Dosage � 20 mg 24 28 37 30

Dosage � 30 mg 37 44 31 35

(a) Is there evidence to support the claim that higher dosage
levels lead to greater bioactivity?

(b) Construct a 95% one-sided lower confidence bound on the
difference in the two means.

(c) Do you have any concerns about the normality assumption
in this problem?
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EXAMPLE 5-8 An article in the Journal of Strain Analysis (Vol. 18, No. 2, 1983) reports a comparison of several meth-
ods for predicting the shear strength for steel plate girders. Data for two of these methods, the Karlsruhe
and Lehigh procedures, when applied to nine specific girders, are shown in Table 5-3. We wish to deter-
mine whether there is any difference (on the average) between the two methods.

and variance �2
D, so testing hypotheses about the difference between �1 and �2 can be accom-

plished by performing a one-sample t-test on �D. Specifically, testing H0: �1 � �2 � 	0

against H1: �1 � �2 
 	0 is equivalent to testing

(5-15)

The test statistic is given next.

H1: �D 
 ¢0

H0: �D � ¢0

The Paired t-Test

Null hypothesis:

Test statistic: (5-16)

Alternative Rejection Region
Hypothesis P-Value for Fixed-Level Tests

H1: �D 
 	0 Sum of the probability above |t0| and t0  t��2,n�1 or t0 � �t��2,n�1

the probability below �|t0|,
H1: �D  	0 Probability above t0 t0  t�,n�1

H1: �D � 	0 Probability below t0 t0 � �t�,n�1

T0 �
D � ¢0

SD�1n

H0: �D � ¢0

In equation 5-16, is the sample average of the n differences D1, D2, . . . , Dn and SD is the
sample standard deviation or standard error of these differences.

D

Shear Strength 
of Steel Girders

Table 5-3 Strength Predictions for Nine Steel Plate Girders (Predicted
Load/Observed Load)

Girder Karlsruhe Method Lehigh Method Difference dj

S1/1 1.186 1.061 0.125
S2/1 1.151 0.992 0.159
S3/1 1.322 1.063 0.259
S4/1 1.339 1.062 0.277
S5/1 1.200 1.065 0.135
S2/1 1.402 1.178 0.224
S2/2 1.365 1.037 0.328
S2/3 1.537 1.086 0.451
S2/4 1.559 1.052 0.507
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254 CHAPTER 5 DECISION MAKING FOR TWO SAMPLES

The results essentially agree with the manual calculations. In addition to the hypothesis test 
results, Minitab reports a two-sided CI on the difference in means. This CI was found by con-
structing a single-sample CI on We will give the details below.

Paired versus Unpaired Comparisons
In performing a comparative experiment, the investigator can sometimes choose between the
paired experiment and the two-sample (or unpaired) experiment. If n measurements are to be
made on each population, the two-sample t-statistic is

which would be compared to t2n�2, and of course, the paired t-statistic is

T0 �
D � ¢0

SD�1n

T0 �
X1 � X2 � ¢0

SpA

1

n
�

1

n

�D.

Solution. The seven-step procedure is applied as follows:

1. Parameter of interest: The parameter of interest is the difference in mean shear strength
between the two methods—say, �D � �1 � �2 � 0.

2. Null hypothesis, H0: �D � 0

3. Alternative hypothesis, H1: �D 
 0

4. Test statistic: The test statistic is

5. Reject H0 if: Reject H0 if the P-value is �0.05.

6. Computations: The sample average and standard deviation of the differences dj are
and so the test statistic is

7. Conclusions: Because t0.0005,8 � 5.041 and the value of the test statistic t0 � 6.15 exceeds this
value, the P-value is less than 2(0.0005) � 0.001. Therefore, we conclude that the strength pre-
diction methods yield different results. Specifically, the data indicate that the Karlsruhe method
produces, on the average, higher strength predictions than does the Lehigh method. ■

t0 �
d

sd�1n
�

0.2769

0.1350�19
� 6.15

d � 0.2769 and sd � 0.1350,

t0 �
d

sd �1n

Paired t-Test and CI: Karlsruhe, Lehigh 

Paired T for Karlsruhe–Lehigh

N Mean StDev SE Mean
Karlsruhe 9 1.34011 0.14603 0.04868
Lehigh 9 1.06322 0.05041 0.01680
Difference 9 0.276889 0.135027 0.045009

95% CI for mean difference: (0.173098, 0.380680)
T-Test of mean , P-Value � 0.000T-Value � 6.15(vs not � 0):difference � 0

Minitab Paired t-Test
and Confidence

Interval Output for
Example 5-8
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5-4 THE PAIRED t-TEST 255

which is compared to tn�1. Note that because

the numerators of both statistics are identical. However, the denominator of the two-sample
t-test is based on the assumption that X1 and X2 are independent. In many paired experiments,
a strong positive correlation � exists between X1 and X2. Then it can be shown that

assuming that both populations X1 and X2 have identical variances �2. Furthermore, S2
D�n

estimates the variance of . Whenever there is positive correlation within the pairs, the
denominator for the paired t-test will be smaller than the denominator of the two-sample t-test.
This can cause the two-sample t-test to considerably understate the significance of the data if
it is incorrectly applied to paired samples.

Although pairing will often lead to a smaller value of the variance of it does
have a disadvantage—namely, the paired t-test leads to a loss of n � 1 degrees of freedom in
comparison to the two-sample t-test. Generally, we know that increasing the degrees of free-
dom of a test increases the power against any fixed alternative values of the parameter.

So how do we decide to conduct the experiment? Should we pair the observations or not?
Although there is no general answer to this question, we can give some guidelines based on the
previous discussion:

1. If the experimental units are relatively homogeneous (small �) and the correlation
within pairs is small, the gain in precision attributable to pairing will be offset by the
loss of degrees of freedom, so an independent-sample experiment should be used.

2. If the experimental units are relatively heterogeneous (large �) and there is large
positive correlation within pairs, the paired experiment should be used. Typically, this
case occurs when the experimental units are the same for both treatments; as in
Example 5-8, the same girders were used to test the two methods.

Implementing the rules still requires judgment because � and � are never known precisely.
Furthermore, if the number of degrees of freedom is large (say, 40 or 50), the loss of n � 1 of
them for pairing may not be serious. However, if the number of degrees of freedom is small
(say, 10 or 20), losing half of them is potentially serious if not compensated for by increased
precision from pairing.

Confidence Interval for �D

To construct the confidence interval for �D, note that

follows a t distribution with n � 1 degrees of freedom. Then, because

we can substitute for T in the above expression and perform the necessary steps to isolate
�D � �1 � �2 between the inequalities. This leads to the following 100(1 � �)% CI on 
�D � �1 � �2.

P(�t��2,n�1 � T � t��2,n�1) � 1 � �

T �
D � �D

SD�1n

X1 � X2,

D

V(D) � V(X1 � X2 � ¢0) � V(X1) � V(X2) � 2 cov (X1, X2) �
2�2(1 � �)

n

D � a
n

j�1

Dj

n
� a

n

j�1

(X1j � X2j)

n
� a

n

j�1

 
X1j

n
� a

n

j�1

 
X2j

n
� X1 � X2
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256 CHAPTER 5 DECISION MAKING FOR TWO SAMPLES

This CI is also valid for the case where because sD
2 estimates �D

2 � V(X1 � X2). Also,
for large samples (say, n � 40 pairs), the explicit assumption of normality is unnecessary 
because of the central limit theorem. Equation 5-17 was used to calculate the CI in the shear
strength experiment in Example 5-8.

�2
1 
 �2

2

Confidence Interval on �D for Paired Observations

If and sd are the sample mean and standard deviation, respectively, of the normally
distributed difference of n random pairs of measurements, a 100(1 � �)% CI on the
difference in means �D � �1 � �2 is

(5-17)

where t��2,n�1 is the upper 100 ��2 percentage point of the t-distribution with n � 1
degrees of freedom.

d � t��2,n�1sd �1n � �D � d � t��2,n�1sd �1n

d

Table 5-4 Time in Seconds to Parallel Park Two Automobiles

Automobile Difference

Subject 1 (x1j) 2 (x2j) (dj)

1 37.0 17.8 19.2

2 25.8 20.2 5.6

3 16.2 16.8 �0.6

4 24.2 41.4 �17.2

5 22.0 21.4 0.6

6 33.4 38.4 �5.0

7 23.8 16.8 7.0

8 58.2 32.2 26.0

9 33.6 27.8 5.8

10 24.4 23.2 1.2

11 23.4 29.6 �6.2

12 21.2 20.6 0.6

13 36.2 32.2 4.0

14 29.8 53.8 �24.0

EXAMPLE 5-9 The journal Human Factors (1962, pp. 375–380) reports a study in which n � 14 subjects were asked to
parallel park two cars having very different wheel bases and turning radii. The time in seconds for each
subject was recorded and is given in Table 5-4. Find a 90% CI on the mean difference in times.

Solution. From the column of observed differences we calculate The 90% CI
for �D � �1 � �2 is found from equation 5-17 as follows:

Note that the CI on �D includes zero. This implies that, at the 90% level of confidence, the data do 
not support the claim that the two cars have different mean parking times �1 and �2. That is, the value
�D � �1 � �2 � 0 is not inconsistent with the observed data. ■

 �4.79 � �D � 7.21

 1.21 � 1.771(12.68)�114 � �D � 1.21 � 1.771(12.68)�114

 d � t0.05,13sd�1n � �D � d � t0.05,13sd �1n

d � 1.21 and sd � 12.68.

Parallel Parking
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EXERCISES FOR SECTION 5-4

5-34. Consider the Minitab output shown on the right.

(a) Fill in the missing values in the output, including a bound
on the P-value. Can the null hypothesis be rejected at the
0.05 level? Why?

(b) Is this a one-sided or a two-sided test?
(c) Use the output and the t table to find a 99% two-sided CI

on the difference in means.
(d) How can you tell that there is insufficient evidence to 

reject the null hypothesis just by looking at the computer
output and not making any additional computations?

shear strength for the two methods. Is the result you obtained
consistent with the findings in Example 5-8? Explain why.

5-37. Reconsider the shear strength experiment described in
Example 5-8. Does each of the individual shear strengths have to
be normally distributed for the paired t-test to be appropriate, or is
it only the difference in shear strengths that must be normal? Use
a normal probability plot to investigate the normality assumption.

5-38. Consider the parking data in Example 5-9. Use the
paired t-test to investigate the claim that the two types of cars have
different levels of difficulty to parallel park. Use � � 0.10.
Compare your results with the confidence interval constructed in
Example 5-9 and comment on why they are the same or different.

5-39. Reconsider the parking data in Example 5-9. Investigate
the assumption that the differences in parking times are normally
distributed.

5-40. The manager of a fleet of automobiles is testing two
brands of radial tires. She assigns one tire of each brand at ran-
dom to the two rear wheels of eight cars and runs the cars until
the tires wear out. The data are shown here (in kilometers). Find
a 99% CI on the difference in mean life. Which brand would
you prefer, based on this calculation?

Car Brand 1 Brand 2 Car Brand 1 Brand 2

1 36,925 34,318 5 37,210 38,015

2 45,300 42,280 6 48,360 47,800

3 36,240 35,500 7 38,200 37,810

4 32,100 31,950 8 33,500 33,215

5-41. A computer scientist is investigating the usefulness of
two different design languages in improving programming
tasks. Twelve expert programmers, familiar with both lan-
guages, are asked to code a standard function in both languages,
and the time in minutes is recorded. The data are shown here:

Time

Design Design
Language Language

Programmer 1 2

1 17 18
2 16 14
3 21 19
4 14 11
5 18 23
6 24 21
7 16 10
8 14 13
9 21 19

10 23 24
11 13 15
12 18 20

Paired T-Test and CI: X1, X2

Paired T for X1 � X2

N Mean StDev SE Mean
X1 12 74.2430 1.8603 0.5370
X2 12 73.4797 1.9040 0.5496
Difference 12 ? 2.905560 0.838763

95% CI for mean difference: (�1.082805, 2.609404)
T-Test of mean difference � 0 (vs not=0): 
T-Value � ?, P-Value � ?

Paired T-Test and CI: X1, X2

Paired T for X1 � X2

N Mean StDev SE Mean
X1 10 100.642 ? 0.488
X2 10 105.574 2.867 0.907
Difference 10 �4.93262 3.66736 ?

95% CI for mean difference: (�7.55610, �2.30915)
T-Test of mean difference � 0 (vs not � 0):
T-Value � ? P-Value � 0.002

5-35. Consider the Minitab output shown below.

(a) Fill in the missing values in the output. Can the null 
hypothesis be rejected at the 0.05 level? Why?

(b) Is this a one-sided or a two-sided test?
(c) Use the output and the t table to find a 99% two-sided CI

on the difference in means.
(d) What is the P-value for the test statistic if the objective of

this experiment was to demonstrate that the mean of popu-
lation 1 is smaller than the mean of population 2?

(e) What is the P-value for the test statistic if the objective of
this experiment was to demonstrate that the difference in
means is equal to 4?

5-36. Consider the shear strength experiment described in
Example 5-8. Construct a 95% CI on the difference in mean
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(a) Find a 95% CI on the difference in mean coding times. Is
there any indication that one design language is preferable?

(b) Is it reasonable to assume that the difference in coding
time is normally distributed? Show evidence to support
your answer.

5-42. Fifteen adult males between the ages of 35 and 50 par-
ticipated in a study to evaluate the effect of diet and exercise on
blood cholesterol levels. The total cholesterol was measured in
each subject initially, and then 3 months after participating in
an aerobic exercise program and switching to a low-fat diet, as
shown in the following table.

(a) Do the data support the claim that low-fat diet and aerobic
exercise are of value in producing a mean reduction in
blood cholesterol levels? Use the P-value approach.

(b) Find a 95% CI on the mean reduction in blood cholesterol
level.

Blood Cholesterol Level

Subject Before After Subject Before After

1 265 229 9 260 247

2 240 231 10 279 239

3 258 227 11 283 246

4 295 240 12 240 218

5 251 238 13 238 219

6 245 241 14 225 226

7 287 234 15 247 233

8 314 256

5-43. An article in the Journal of Aircraft (Vol. 23, 1986, 
pp. 859–864) describes a new equivalent plate analysis method
formulation that is capable of modeling aircraft structures such
as cranked wing boxes and that produces results similar to the
more computationally intensive finite element analysis method.
Natural vibration frequencies for the cranked wing box struc-
ture are calculated using both methods, and results for the first
seven natural frequencies are shown here.

Finite Equivalent Finite Equivalent
Element, Plate, Element, Plate,

Car Cycle/s Cycle/s Car Cycle/s Cycle/s

1 14.58 14.76 5 174.73 181.22

2 48.52 49.10 6 212.72 220.14

3 97.22 99.99 7 277.38 294.80

4 113.99 117.53

(a) Do the data suggest that the two methods provide the same
mean value for natural vibration frequency? Use the 
P-value approach.

(b) Find a 95% CI on the mean difference between the two
methods and use it to answer the question in part (a).

5-44. The Federal Aviation Administration requires material
used to make evacuation systems retain their strength over 
the life of the aircraft. In an accelerated life test, the principal
material, polymer-coated nylon weave, is aged by exposing it
to 158
F for 168 hours. The tensile strength of the specimens
of this material is measured before and after the aging process.
The following data (in psi) are recorded:

Specimen Original Aged Specimen Original Aged

1 215 203 6 231 218

2 226 216 7 234 224

3 226 217 8 219 210

4 219 211 9 209 201

5 222 215 10 216 207

(a) Is there evidence to support the claim that the nylon weave
tensile strength is the same before and after the aging
process? Use the P-value approach.

(b) Find a 99% CI on the mean difference in tensile strength
and use it to answer the question from part (a).

5-45. Two different analytical tests can be used to determine
the impurity level in steel alloys. Eight specimens are tested
using both procedures, and the results are shown in the follow-
ing tabulation. Is there sufficient evidence to conclude that
both tests give the same mean impurity level, using � � 0.01?

Specimen Test 1 Test 2 Specimen Test 1 Test 2

1 1.2 1.4 5 1.7 2.0

2 1.3 1.7 6 1.8 2.1

3 1.5 1.5 7 1.4 1.7

4 1.4 1.3 8 1.3 1.6

5-46. Consider the tensile strength data in Exercise 5-44.
Is there evidence to support the claim that the accelerated
life test will result in a mean loss of at least 5 psi? Use 
� � 0.05.

5-47. Consider the impurity level data in Exercise 5-45.
Construct a 99% CI on the mean difference between the two
testing procedures. Use it to answer the question posed in
Exercise 5-45.

5-48. An article in the journal Biometrics (1990, Vol. 46, 
pp. 673–687) analyzed the circumference of orange trees. The
measurements were made at two different points in time. Data
for five trees follow.
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(a) Test the hypothesis that the mean increase in circumfer-
ence between the two time periods exceeds 25.

(b) Construct a 95% one-sided lower CI on the mean increase
in circumference.

5-49. A consumer products company uses direct-mail mar-
keting to promote its products. To evaluate the effectiveness

of two versions of a marketing brochure the company decides
to test the two designs by mailing 5000 samples of each to
randomly selected potential customers in four different 
regions of the United States. The company knows from expe-
rience that there is likely to be a regional difference for the 
customer base. The data, number of respondents, from this
study follow.

Region

Design NE NW SE SW

1 25 33 22 27

2 40 52 39 58

(a) Test the hypothesis that the mean response for the two 
designs is equal.

(b) Construct a 95% two-sided CI on the difference in means.

5-5 INFERENCE ON THE RATIO OF VARIANCES OF 
TWO NORMAL POPULATIONS

We now introduce tests and CIs for the two population variances shown in Fig. 5-1. We will
assume that both populations are normal. Both the hypothesis testing and confidence interval
procedures are relatively sensitive to the normality assumption.

5-5.1 Hypothesis Testing on the Ratio of Two Variances

Suppose that two independent normal populations are of interest, where the population means
and variances—say, �1, �1

2, �2, and �2
2—are unknown. We wish to test hypotheses about the

equality of the two variances—say, H0: �1
2 � �2

2. Assume that two random samples of size n1

from population 1 and of size n2 from population 2 are available, and let S1
2 and S2

2 be the sample
variances. We wish to test the hypotheses

The development of a test procedure for these hypotheses requires a new probability distribution.

The F Distribution
One of the most useful distributions in statistics is the F distribution. The random variable F
is defined to be the ratio of two independent chi-square random variables, each divided by its
number of degrees of freedom. That is,

where W and Y are independent chi-square random variables with u and v degrees of freedom,
respectively. We now formally state the sampling distribution of F.

F �
W�u
Y�v

H1: �
2
1 � �2

2

H0: �
2
1 � �2

2

Time Period

Tree 1 2

A 30 58

B 35 69

C 30 51

D 32 62

E 33 69
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The mean and variance of the F distribution are � � v�(v � 2) for v � 2, and

Two F distributions are shown in Fig. 5-4. The F random variable is nonnegative, and the dis-
tribution is skewed to the right. The F distribution looks very similar to the chi-square distribu-
tion in Fig. 4-21; however, the two parameters u and v provide extra flexibility regarding shape.

The percentage points of the F distribution are given in Table IV of Appendix A. Let f�,u,v be
the percentage point of the F distribution, with numerator degrees of freedom u and denominator
degrees of freedom v such that the probability that the random variable F exceeds this value is

This is illustrated in Fig. 5-5. For example, if u � 5 and v � 10, we find from Table IV of
Appendix A that

That is, the upper 5 percentage point of F5,10 is f0.05,5,10 � 3.33.

P(F 7 f0.05,5,10) � P(F5,10 7 3.33) � 0.05

P(F 7 f�,u,v) � �
�

f�,u,v

  f (x) dx � �

�2 �
2v2(u 	 v � 2)

u(v � 2)2(v � 4)
,   v 7 4

Upper-Tail Percentage
Points of the 
F-Distribution

0 2 4 6 8 10 x

u = 5, v = 15

f (x)
u = 5, v = 5

x

f(x)

α α

f1 – α, , f α, ,u v u v

Figure 5-4 Probability density functions of
two F distributions.

Figure 5-5 Upper and lower percentage
points of the F distribution.

The F Distribution

Let W and Y be independent chi-square random variables with u and v degrees of
freedom, respectively. Then the ratio

(5-18)

has the probability density function

(5-19)

and is said to follow the F distribution with u degrees of freedom in the numerator
and v degrees of freedom in the denominator. It is usually abbreviated as Fu,v.

f (x) �


au 	 v

2
bau

v
bu�2

x(u�2)�1


au

2
b
av

2
b c au

v
bx 	 1 d (u	v)�2

, 0 6 x 6 �

F �
W�u
Y�v
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Table IV contains only upper-tail percentage points (for selected values of f�,u,v for �� 0.25)
of the F distribution. The lower-tail percentage points f1��,u,v can be found as follows:

(5-20)f1��,u,v �
1

f�,v,u

Let be a random sample from a normal population with mean �1

and variance �1
2, and let be a random sample from a second normal

population with mean �2 and variance �2
2. Assume that both normal populations

are independent. Let S1
2 and S2

2 be the sample variances. Then the ratio

has an F distribution with n1 � 1 numerator degrees of freedom and n2 � 1 denominator
degrees of freedom.

F �
S 2

1��2
1

S 2
2��2

2

X21, X22, . . . , X2n2

X11, X12, . . . , X1n1

Testing Hypotheses on the Equality of Variances of Two Normal Distributions

Null hypothesis: 

Test statistic: (5-21)

Alternative Hypotheses Rejection Criterion

The critical regions are shown in Fig. 5-6.

f0 6 f1��,n1�1,n2�1H1: �
2
1 6 �2

2

f0 7 f�,n1�1,n2�1H1: �
2
1 7 �2

2

f0 7 f��2,n1�1,n2�1 or f0 6 f1���2,n1�1,n2�1H1: �
2
1  �2

2

F0 �
S 2

1

S 2
2

H0: �
2
1 � �2

2

For example, to find the lower-tail percentage point f0.95,5,10, note that

The Test Procedure
A hypothesis testing procedure for the equality of two variances is based on the following result.

f0.95,5,10 �
1

f0.05,10,5

�
1

4.74
� 0.211

Finding a Lower-Tail
Percentage Point of 
the F Distribution

This result is based on the fact that (n1 � 1)S1
2��1

2 is a chi-square random variable with n1 � 1
degrees of freedom, that (n2 � 1)S 2

2��2
2 is a chi-square random variable with n2 � 1 degrees

of freedom, and that the two normal populations are independent. Clearly under the null 
hypothesis H0:�1

2 � �2
2 the ratio F0 � S 1

2�S 2
2 has an distribution. This is the basis of

the following test procedure.
Fn1�1,n2�1

Summary
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EXAMPLE 5-10 Oxide layers on semiconductor wafers are etched in a mixture of gases to achieve the proper thickness.
The variability in the thickness of these oxide layers is a critical characteristic of the wafer, and low vari-
ability is desirable for subsequent processing steps. Two different mixtures of gases are being studied to
determine whether one is superior in reducing the variability of the oxide thickness. Sixteen wafers are
etched in each gas. The sample standard deviations of oxide thickness are s1 � 1.96 angstroms and s2 � 2.13
angstroms, respectively. Is there any evidence to indicate that either gas is preferable? Use a fixed-level
test with � � 0.05.

Solution. The seven-step hypothesis testing procedure may be applied to this problem as follows:

1. Parameter of interest: The parameter of interest are the variances of oxide thickness �1
2 and

�2
2. We will assume that oxide thickness is a normal random variable for both gas mixtures.

2. Null hypothesis, H0: �1
2 � �2

2

3. Alternative hypothesis, H1: �1
2  �2

2

4. Test statistic: The test statistic is given by equation 5-21:

5. Reject H0 if: Because n1 � n2 � 16 and � � 0.05, we will reject H0: �1
2 � �2

2 if f0 � f0.025,15,15 �
2.86 or if f0 � f0.975,15,15 � 1�f0.025,15,15 � 1�2.86 � 0.35. Refer to Fig. 5-6a.

6. Computations: Because s1
2 � (1.96)2 � 3.84 and s2

2 � (2.13)2 � 4.54, the test statistic is

7. Conclusions: Because f0.975,15,15 � 0.35 � 0.85 � f0.025,15,15 � 2.86, we cannot reject the
null hypothesis H0: �1

2 � �2
2 at the 0.05 level of significance.

Practical engineering conclusion: There is no strong evidence to indicate that either gas results in
a smaller variance of oxide thickness. Consequently, we can select the gas that is less expensive or
perhaps easier to use. ■

f0 �
s2

1

s2
2

�
3.84

4.54
� 0.85

f0 �
s2

1

s2
2

(a) (b) (c)

α /2 α α α/2

f1 –    /2, n1 – 1, n2 – 1 α f1 –    , n1 – 1, n2 – 1 αf  /2, n1 – 1, n2 – 1 α f  , n1 – 1, n2 – 1 α

Figure 5-6 The F distribution for the test of H0: �
2
1 � �2

2 with critical region values for (a) H1: �
2
1  �2

2, (b) H1: �
2
1 � �2

2, and
(c) H1: �

2
1 � �2

2.

Etching Wafers

P-Values for the F-Test
The P-value approach can also be used with F-tests. To show how to do this, consider the upper-
tailed one-tailed test. The P-value is the area (probability) under the F distribution with 
and degrees of freedom that lies beyond the computed value of the test statistic 
Appendix A Table IV can be used to obtain upper and lower bounds on the P-value. For example,
consider an F-test with 9 numerator and 14 denominator degrees of freedom for which

f0.n2 � 1
n1 � 1
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From Appendix A Table IV we find that and so 
because lies between these two values, the P-value is between 0.05 and 0.025; that
is, The P-value for a lower-tailed test would be found similarly, although
since Appendix A Table IV contains only upper-tail points of the F distribution, equation 5-20
would have to be used to find the necessary lower-tail points. For a two-tailed test, the bounds
obtained from a one-tail test would be doubled to obtain the P-value.

To illustrate calculating bounds on the P-value for a two-tailed F-test, reconsider
Example 5-10. The computed value of the test statistic in this example is This value
falls in the lower tail of the distribution. The lower-tail point that has 0.25 probability to
the left of it is and since the probability
that lies to the left of 0.85 exceeds 0.25. Therefore, we would conclude that the P-value for

is greater than so there is insufficient evidence to reject the null 
hypothesis. This is consistent with the original conclusions from Example 5-10. The actual 
P-value is 0.7570. This value was obtained from a calculator from which we found that

and Minitab can also be used to calculate the
required probabilities.

5-5.2 Confidence Interval on the Ratio of Two Variances

To find the CI, recall that the sampling distribution of

is an F with n2 � 1 and n1 � 1 degrees of freedom. Note: We start with S2
2 in the numerator

and S1
2 in the denominator to simplify the algebra used to obtain an interval for �1

2��2
2.

Therefore,

Substitution for F and manipulation of the inequalities will lead to the following 100(1 � �)%
CI for �1

2/�2
2.

P(f1���2,n2�1,n1�1 � F � f��2,n2�1,n1�1) � 1 � �

F �
S 2

2��2
2

S 2
1��2

1

2(0.3785) � 0.7570.P(F15,15 � 0.85) � 0.3785

2(0.25) � 0.5,f0 � 0.85

0.70 6 0.85,f0.75,15,15 � 1�f0.25,15,15 � 1�1.43 � 0.70,
F15,15

f0 � 0.85.

0.025 6 P 6 0.05.
f0 � 3.05

f0.025,9,14 � 3.21,f0.05,9,14 � 2.65f0 � 3.05.

Finding the P-Value for
Example 5-10

Confidence Interval on the Ratio of Variances of Two Normal Distributions

If s1
2 and s2

2 are the sample variances of random samples of sizes n1 and n2, respec-
tively, from two independent normal populations with unknown variances �1

2 and �2
2,

a 100(1 � �)% CI on the ratio �1
2��2

2 is

(5-22)

where are the upper and lower 100 ��2 percentage
points of the F distribution with n2 � 1 numerator and n1 � 1 denominator degrees
of freedom, respectively.

f��2,n2�1,n1�1 and f1���2,n2�1,n1�1

s2
1

s2
2

 f1���2,n2�1,n1�1 �
�2

1

�2
2

�
s2

1

s2
2

 f��2,n2�1,n1�1

Definition

      c05DecisionMakingforTwoSamples.qxd  9/29/10  9:18 AM  Page 263



264 CHAPTER 5 DECISION MAKING FOR TWO SAMPLES

EXAMPLE 5-11 A company manufactures impellers for use in jet-turbine engines. One of the operations involves grind-
ing a particular surface finish on a titanium alloy component. Two different grinding processes can be
used, and both processes can produce parts at identical mean surface roughness. The manufacturing engi-
neer would like to select the process having the least variability in surface roughness. A random sample of
n1 � 11 parts from the first process results in a sample standard deviation s1 � 5.1 microinches, and a ran-
dom sample of n2 � 16 parts from the second process results in a sample standard deviation of s2 � 4.7
microinches. We need to find a 90% CI on the ratio of the two variances �1

2��2
2.

Solution. Assuming that the two processes are independent and that surface roughness is normally dis-
tributed, we can use equation 5-22 as follows:

or

Note that we have used equation 5-20 to find f0.95,15,10 � 1�f0.05,10,15 � 1�2.54 � 0.39. Because this CI 
includes unity, we cannot claim that the standard deviations of surface roughness for the two processes
are different at the 90% level of confidence. ■

0.46 �
�2

1

�2
2

� 3.36

 
(5.1)2

(4.7)2 0.39 �
�2

1

�2
2

�
(5.1)2

(4.7)2 2.85

s2
1

s2
2

f0.95,15,10 �
�2

1

�2
2

�
s2

1

s2
2

f0.05,15,10

Surface Finish

One-Sided Confidence Bounds
To find a 100(1 � �)% lower confidence bound on �1

2��2
2, simply replace with

in the lower bound of equation 5-22; the upper bound is set to �. Similarly, to find
a 100(1 � �)% upper confidence bound on �1

2��2
2, simply replace with 

in the upper bound of equation 5-22; the lower bound is set to 0. To find the CI or confidence
bounds of �1��2, simply take the square root of the ends of the interval or bounds.

f�,n2�1,n1�1f��2,n2�1,n1�1

f1��,n2�1,n1�1

f1���2,n2�1,n1�1

EXERCISES FOR SECTION 5-5

5-50. For an F distribution, find the following:

(a) f0.25,5,10 (b) f0.10,24.9

(c) f0.05,8,15 (d) f0.75,5,10

(e) f0.90,24,9 (f) f0.95,8,15

5-51. For an F distribution, find the following:

(a) f0.25,7,15 (b) f0.10,10,12

(c) f0.01,20,10 (d) f0.75,7,15

(e) f0.90,10,12 (f) f0.99,20,10

5-52. An experiment was conducted to compare the vari-
ances of two independent normal populations. The sample
sizes from both populations was 10 and the computed value of
the F-statistic was Find a bound on the P-value for
this test statistic.

5-53. An experiment was conducted to compare the vari-
ances of two independent normal populations. The null 

f0 � 4.45.

hypothesis was versus The sample
sizes from both populations were 16, and the computed value
of the F-statistic was Find a bound on the P-value
for this test statistic.

5-54. Eleven resilient modulus observations of a ceramic
mixture of type A are measured and found to have a sample
average of 18.42 psi and sample standard deviation of 2.77 psi.
Ten resilient modulus observations of a ceramic mixture of
type B are measured and found to have a sample average of
19.28 psi and sample standard deviation of 2.41 psi. Is there
sufficient evidence to support the investigator’s claim that type
A ceramic has larger variability than type B? Use � � 0.05.

5-55. Consider the etch rate data in Exercise 5-23. Test the
hypothesis H0: �1

2 � �2
2 against H1: �1

2 	 �2
2 using � � 0.05,

and draw conclusions.

f0 � 2.75.

H1: �
2
1 7 �2

2.H0: �
2
1 � �2

2
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5-56. Consider the diameter data in Exercise 5-19. Construct
the following:

(a) A 90% two-sided CI on �1��2.
(b) A 95% two-sided CI on �1��2. Comment on the comparison

of the width of this interval with the width of the interval in
part (a).

(c) A 90% lower-confidence bound on �1��2.

5-57. Consider the foam data in Exercise 5-20. Construct
the following:

(a) A 90% two-sided CI on �1
2��2

2.
(b) A 95% two-sided CI on �1

2��2
2. Comment on the comparison

of the width of this interval with the width of the interval in
part (a).

(c) A 90% lower-confidence bound on �1��2.

5-58. Consider the film data in Exercise 5-25. Test H0: �1
2 � �2

2

versus H1: �1
2  �2

2 using � � 0.02.

5-59. Consider the gear impact strength data in Exercise 5-24.
Is there sufficient evidence to conclude that the variance of 
impact strength is different for the two suppliers? Use � � 0.05.

5-60. Consider the melting point data in Exercise 5-26. Do the
sample data support a claim that both alloys have the same vari-
ance of melting point? Use � � 0.05 in reaching your conclusion.

5-61. Exercise 5-29 presented measurements of plastic
coating thickness at two different application temperatures.
Test the appropriate hypothesis to demonstrate that the vari-
ance of the thickness is less for the 125�F process than the
150�F process, using � � 0.10.

5-62. A study was performed to determine whether men and
women differ in their repeatability in assembling components
on printed circuit boards. Two samples of 25 men and 21
women were selected, and each subject assembled the units.
The two sample standard deviations of assembly time were
smen � 0.914 min and swomen � 1.093 min. Is there evidence to
support the claim that men have less repeatability than women
for this assembly task? Use � � 0.01 and state any necessary
assumptions about the underlying distribution of the data.

5-63. Reconsider the assembly repeatability experiment 
described in Exercise 5-62. Find a 99% lower bound on the ratio
of the two variances. Provide an interpretation of the interval.

5-6 INFERENCE ON TWO POPULATION PROPORTIONS

We now consider the case in which there are two binomial parameters of interest—say, p1 and
p2—and we wish to draw inferences about these proportions. We will present large-sample 
hypothesis testing and CI procedures based on the normal approximation to the binomial.

5-6.1 Hypothesis Testing on the Equality of Two Binomial Proportions

Suppose that the two independent random samples of sizes n1 and n2 are taken from two pop-
ulations, and let X1 and X2 represent the number of observations that belong to the class of 
interest in samples 1 and 2, respectively. Furthermore, suppose that the normal approximation
to the binomial is applied to each population so that the estimators of the population propor-
tions have approximately normal distributions. We are interested
in testing the hypotheses

 H1: p1  p2

 H0: p1 � p2

P̂1 � X1�n1 and P̂2 � X2 �n2

The quantity

(5-23)

has approximately a standard normal distribution, N(0, 1).

Z �
P̂1 � P̂2 � (p1 � p2)

B

p1(1 � p1)

n1
	

p2(1 � p2)

n2
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This result is the basis of a test for H0: p1 � p2. Specifically, if the null hypothesis H0: p1 � p2

is true, using the fact that p1 � p2 � p, the random variable

is distributed approximately N(0, 1). An estimator of the common parameter p is

The test statistic for H0: p1 � p2 is then

This leads to the following test procedures.

Z0 �
P̂1 � P̂2

B
P̂(1 � P̂) a 1

n1
	

1

n2
b

P̂ �
X1 	 X2

n1 	 n2

Z �
P̂1 � P̂2

B
p(1 � p)a 1

n1
	

1

n2
b

Testing Hypotheses on the Equality of Two Binomial Proportions

Null hypothesis:           H0: p1 � p2

Test statistic: (5-24)

Rejection Criterion
Alternative Hypotheses P-Value for Fixed-Level Tests

Probability above and z0 � z��2 or z0 � �z��2

probability below 

Probability above z0, z0 � z�

Probability below z0, z0 � �z�

P � £(z0)
H1: p1 6 p2

P � 1 � £(z0)
H1: p1 7 p2

P � 2[1 � £(�z0�)]
��z0�

�z0�H1: p1  p2

Z0 �
P̂1 � P̂2

B
P̂(1 � P̂)(

1

n1
	

1

n2
)

EXAMPLE 5-12 Two different types of polishing solution are being evaluated for possible use in a tumble-polish operation for
manufacturing interocular lenses used in the human eye following cataract surgery. Three hundred lenses
were tumble-polished using the first polishing solution, and of this number 253 had no polishing-induced 
defects. Another 300 lenses were tumble-polished using the second polishing solution, and 196 lenses were
satisfactory on completion. Is there any reason to believe that the two polishing solutions differ?

Interocular
Lenses
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Solution. The seven-step hypothesis procedure leads to the following results:

1. Parameter of interest: The parameters of interest are p1 and p2, the proportion of lenses that
are satisfactory following tumble-polishing with polishing fluid 1 or 2.

2. Null hypothesis, H0: p1 � p2

3. Alternative hypothesis, H1: p1  p2

4. Test statistic: The test statistic is

where and

5. Reject H0 if: Reject H0: p1 � p2 if the P-value is less than 0.05.

6. Computations: The value of the test statistic is

7. Conclusions: Because z0 � 5.36, the P-value is , we reject the null
hypothesis. This is the closest we can get to the exact P-value using Appendix A Table I. Using
a calculator, we can find a better approximate P-value as    

Practical engineering conclusion: There is strong evidence to support the claim that the two polishing
fluids are different. Fluid 1 produces a higher fraction of nondefective lenses. ■

P � 8.32 � 10�8.

P � 2[1 � £(5.36)] � 0

z0 �
0.8433 � 0.6533

B
0.7483(0.2517) a 1

300
	

1

300
b

� 5.36

p̂ �
x1 	 x2

n1 	 n2

�
253 	 196

300 	 300
� 0.7483

p̂1 � 253�300 � 0.8433, p̂2 � 196�300 � 0.6533, n1 � n2 � 300,

z0 �
p̂1 � p̂2

B
p̂(1 � p̂)a 1

n1
	

1

n2
b

Test and CI for Two Proportions

Sample X N Sample p
1 253 300 0.843333
2 196 300 0.653333

Estimate for difference: 0.19
95% CI for difference: (0.122236, 0.257764)
Test for P-Value � 0.000Z � 5.36,(vs not � 0):difference � 0

Difference � p(1) � p(2)

Minitab Test of
Two Proportions
and Confidence

Interval Output for
Example 5-12

The results agree with the manual calculations. In addition to the hypothesis test results,
Minitab reports a two-sided CI on the difference in the two proportions. We will give the equa-
tion for constructing the CI in Section 5-6.3.
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5-6.2 Type II Error and Choice of Sample Size

The computation of the �-error for the foregoing test is somewhat more involved than in the
single-sample case. The problem is that the denominator of Z0 is an estimate of the standard
deviation of under the assumption that p1 � p2 � p. When H0: p1 � p2 is false, the
standard deviation or standard error of is

(5-25)�P̂1� P̂2
�

B

p1(1 � p1)

n1
	

p2(1 � p2)

n2

P̂1 � P̂2

P̂1 � P̂2

If the alternative hypothesis is two-sided, the �-error is

(5-26)�£ c z��22pq(1�n1 	 1�n2) � (p1 � p2)
�P̂1 � P̂2

d

� � £ c z��22pq(1�n1 	 1�n2) � (p1 � p2)
�P̂1 � P̂2

d

�-Error:
Two-Sided

Difference in
Proportions

Test

If the alternative hypothesis is H1: p1 � p2, then

(5-27)

and if the alternative hypothesis is H1: p1 � p2,

(5-28)� � 1 � £ c�z�2pq(1�n1 	 1�n2) � (p1 � p2)
�P̂1 � P̂2

d

� � £ c z�2pq(1�n1 	 1�n2) � (p1 � p2)
�P̂1 � P̂2

d

�-Error:
One-Sided

Difference in
Proportions

Test

where

and is given by equation 5-25.�P̂1� P̂2

 q �
n1(1 � p1) 	 n2(1 � p2)

n1 	 n2

� 1 � p

p �
n1p1 	 n2p2

n1 	 n2

For a specified pair of values p1 and p2, we can find the sample sizes n1 � n2 � n required to
give the test of size � that has specified type II error �. The formula is as follows.
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For a one-sided alternative, replace z��2 in equation 5-29 by z�.

5-6.3 Confidence Interval on the Difference in Binomial Proportions

The CI for p1 � p2 can be found directly because we know that

is a standard normal random variable. Thus,

so we can substitute for Z in this last expression and use an approach similar to the one em-
ployed previously to find the following approximate traditional 100(1 � �)% CI for p1 � p2.

P(�z��2 � Z � z��2) � 1 � �

z �
P̂1 � P̂2 � (p1 � p2)

B

p1(1 � p1)

n1
	

p2(1 � p2)

n2

Sample Size for a Two-Sided Hypothesis Test on the 
Difference in Two Binomial Proportions

For the two-sided alternative, the common sample size is

(5-29)

where q1 � 1 � p1 and q2 � 1 � p2.

n �
(z��22(p1 	 p2)(q1 	 q2)�2 	 z�2p1q1 	 p2q2)

2

(p1 � p2)
2

Traditional Confidence Interval on the Difference in Binomial Proportions

If and are the sample proportions of observation in two independent random
samples of sizes n1 and n2 that belong to a class of interest, an approximate
100 (1 � �)% CI on the difference in the true proportions p1 � p2 is

(5-30)

where z��2 is the upper ��2 percentage point of the standard normal distribution.

� p1 � p2 � p̂1 � p̂2 	 z��2B

p̂1(1 � p̂1)

n1
	

p̂2(1 � p̂2)

n2

p̂1 � p̂2 � z��2B

p̂1(1 � p̂1)

n1
	

p̂2(1 � p̂2)

n2

p̂2p̂1

EXAMPLE 5-13 Consider the process manufacturing crankshaft bearings described in Example 4-14. Suppose that a
modification is made in the surface finishing process and that, subsequently, a second random sample of
85 axle shafts is obtained. The number of defective shafts in this second sample is 8. Is there evidence to
support a claim that the process change has led to an improvement in the surface finish of the bearings?

Crankshaft
Bearings
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Solution. We will answer this question by finding a CI on the difference in the proportion of defective
bearings before and after the process change. Because and

, we can obtain an approximate 95% CI on the difference in the proportion of
defective bearings produced under the two processes from equation 5-30 as follows:

or

This simplifies to

This CI includes zero, so, based on the sample data, it seems unlikely that the changes made in the surface
finish process have actually reduced the proportion of defective crankshaft bearings being produced. ■

�0.0685 � p1 � p2 � 0.1155

� p1 � p2 � 0.1176 � 0.0941 	 1.96
B

0.1176(0.8824)

85
	

0.0941(0.9059)

85

0.1176 � 0.0941 � 1.96
B

0.1176(0.8824)

85
	

0.0941(0.9059)

85

� p1 � p2 � p̂1 � p̂2 	 z0.025B

p̂1(1 � p̂1)

n1
	

p̂2(1 � p̂2)

n2

p̂1 � p̂2 � z0.025B

p̂1(1 � p̂1)

n1
	

p̂2(1 � p̂2)

n2

p̂2 � 8�85 � 0.0941
n1 � 85, p̂1 � 0.1176, n2 � 85,

The CI in equation 5-30 is the traditional one usually given for a difference in two binomial
proportions. However, the actual confidence level for this interval can deviate substantially
from the nominal or advertised value. So when you want a 95% CI (for example) and use z0.025 �
1.96 in equation 5-30, the actual confidence level that you experience may be rather different
from 95%. This situation can be improved by a very simple adjustment to the procedure: Add
one success and one failure to the data from each sample and then calculate

Then replace in equation 5-30.
To illustrate how this works, reconsider the crankshaft bearing data from Example 5-13.

Using the above procedure, we find that

If we then replace in equation 5-30 by the values for com-
puted above, we find that the new improved CI is which is
similar to the traditional CI found in Example 5-13. The length of the traditional interval is
0.1840, while the length of the new and improved interval is 0.1920. The slightly longer inter-
val is likely a reflection of the fact that the coverage of the improved interval is closer to the
advertised level of 95%. However, since this CI also includes zero, the conclusions would be
the same regardless of which CI is used.

�0.0730 � p1 � p2 � 0.1190,
p~1, p~2, n~1, and n~2p̂1, p̂2, n1, and n2

p~2 �
X2 	 1

n2 	 2
�

8 	 1

85 	 2
� 0.1034 and n~2 � n2 	 2 � 85 	 2 � 87

p~1 �
X1 	 1

n1 	 2
�

10 	 1

85 	 2
� 0.1264 and  n~1 � n1 	 2 � 85 	 2 � 87

p̂1, p̂2, n1, and n2 by p~1, p~2, n~1, and n~2

p~2 �
X2 	 1

n2 	 2
  and  n~2 � n2 	 2

p~1 �
X1 	 1

n1 	 2
  and n~1 � n1 	 2
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5-64. Fill in the blanks in the Minitab output shown below.

Test and CI for Two Proportions

Sample X N Sample p
1 285 500 0.570000
2 521 ? 0.651250

Estimate for difference: ?
95% CI for difference: 
Test for 

(a) Is this a one-sided or a two-sided test?
(b) Can the null hypothesis be rejected at the 0.05 level?
(c) Can the null hypothesis versus be

rejected at the 0.05 level? How can you do this without
performing any additional calculations?

(d) Can the null hypothesis versus
be rejected at the 0.05 level? Can

you do this without performing any additional calcula-
tions?

(e) Construct an approximate 90% CI for p.

5-65. Fill in the blanks in the Minitab output shown below.

Test and CI for Two Proportions

Sample X N Sample p
1 190 250 0.760000
2 240 350 0.685714

Estimate for difference: ?
95% lower bound for difference: 0.0139543
Test for 

(a) Is this a one-sided or a two-sided test?
(b) Can the null hypothesis be rejected at the 0.05 level?
(c) Can the null hypothesis versus be

rejected at the 0.05 level? How can you do this without
performing any additional calculations?

(d) Construct an approximate 95% two-sided traditional CI
for p.

H0: p1 7 p2H0: p1 � p2

P-Value � ?Z � ?(vs 7 0):difference � 0

Difference � p (1) � p (2)

H0: p1 � p2 � �0.02
H0: p1 � p2 � �0.02

H0: p1 6 p2H0: p1 � p2

P-Value � 0.003
Z � ?(vs not � 0):difference � 0

(�0.135782, �0.0267185)

Difference � p (1) � p (2)

EXERCISES FOR SECTION 5-6

5-66. Two different types of injection-molding machines
are used to form plastic parts. A part is considered defective if
it has excessive shrinkage or is discolored. Two random sam-
ples, each of size 300, are selected, and 15 defective parts are
found in the sample from machine 1 whereas 8 defective parts
are found in the sample from machine 2. Is it reasonable to
conclude that both machines produce the same fraction of de-
fective parts, using � � 0.05? Find the P-value for this test.

5-67. Consider the situation described in Exercise 5-66.
Suppose that p1 � 0.05 and p2 � 0.01.

(a) With the sample sizes given here, what is the power of the
test for this two-sided alternative?

(b) Determine the sample size needed to detect this difference
with a probability of at least 0.9. Use � � 0.05.

5-68. Consider the situation described in Exercise 5-66.
Suppose that p1 � 0.05 and p2 � 0.02.

(a) With the sample sizes given here, what is the power of the
test for this two-sided alternative?

(b) Determine the sample size needed to detect this difference
with a probability of at least 0.9. Use � � 0.05.

5-69. The rollover rate of sport utility vehicles is a transporta-
tion safety issue. Safety advocates claim that manufacturer A’s
vehicle has a higher rollover rate than that of manufacturer B.
One hundred crashes for each of these vehicles were examined.
The rollover rates were pA � 0.35 and pB � 0.25.

(a) Does manufacturer A’s vehicle have a higher rollover rate
than manufacturer B’s? Use the P-value approach.

(b) What is the power of this test, assuming � � 0.05?
(c) Assume that the rollover rate of manufacturer A’s vehicle

is 0.15 higher than B’s. Is the sample size sufficient for
detecting this difference with probability level at least
0.90, if � � 0.053?

5-70. Construct a 95% traditional CI on the difference in the
two fractions defective for Exercise 5-66.

5-71. Construct a 95% lower bound on the difference in the
two rollover rates for Exercise 5-69. Provide a practical inter-
pretation of this interval.

5-72. Constract a 95% CI on the difference in the two frac-
tions defective for Exercise 5-66 using the new approach.
Compare this interval to the traditional one.

5-73. Rework Exercise 5-71 using the new CI. Compare this
interval to the traditional one.

5-7 SUMMARY TABLES FOR INFERENCE PROCEDURES 
FOR TWO SAMPLES

The tables on the inside back cover of the book summarize all of the two-sample inference
procedures given in this chapter. The tables contain the null hypothesis statements, the test
statistics, the criteria for rejection of the various alternative hypotheses, and the formulas for
constructing the 100(1 � �)% CIs.
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272 CHAPTER 5 DECISION MAKING FOR TWO SAMPLES

5-8 WHAT IF WE HAVE MORE THAN TWO SAMPLES?

As this chapter and Chapter 4 have illustrated, testing and experimentation are a natural
part of the engineering analysis and decision-making process. Suppose, for example, that
a civil engineer is investigating the effect of different curing methods on the mean
compressive strength of concrete. The experiment would consist of making up several test
specimens of concrete using each of the proposed curing methods and then testing the
compressive strength of each specimen. The data from this experiment could be used to
determine which curing method should be used to provide maximum mean compressive
strength.

If there are only two curing methods of interest, this experiment could be designed and
analyzed using the two-sample t-test presented in this chapter. That is, the experimenter has a
single factor of interest—curing methods—and there are only two levels of the factor.

Many single-factor experiments require that more than two levels of the factor be consid-
ered. For example, the civil engineer may want to investigate five different curing methods. In
this chapter we show how the analysis of variance (ANOVA) can be used for comparing
means when there are more than two levels of a single factor. We will also discuss random-
ization of the experimental runs and the important role this concept plays in the overall exper-
imentation strategy. In Chapter 7, we will show how to design and analyze experiments with
several factors.

5-8.1 Completely Randomized Experiment and Analysis of Variance

A manufacturer of paper used for making grocery bags is interested in improving the tensile
strength of the product. Product engineering thinks that tensile strength is a function of the
hardwood concentration in the pulp and that the range of hardwood concentrations of practi-
cal interest is between 5 and 20%. A team of engineers responsible for the study decides to
investigate four levels of hardwood concentration: 5, 10, 15, and 20%. They decide to make up
six test specimens at each concentration level, using a pilot plant. All 24 specimens are tested
on a laboratory tensile tester, in random order. The data from this experiment are shown in
Table 5-5.

This is an example of a completely randomized single-factor experiment with four levels
of the factor. The levels of the factor are sometimes called treatments, and each treatment has
six observations or replicates. The role of randomization in this experiment is extremely
important. By randomizing the order of the 24 runs, the effect of any nuisance variable that
may influence the observed tensile strength is approximately balanced out. For example, sup-
pose that there is a warm-up effect on the tensile testing machine; that is, the longer the
machine is on, the greater the observed tensile strength. If all 24 runs are made in order of
increasing hardwood concentration (that is, all six 5% concentration specimens are tested first,

Table 5-5 Tensile Strength of Paper (psi)

Hardwood Observations

Concentration (%) 1 2 3 4 5 6 Totals Averages

5 7 8 15 11 9 10 60 10.00
10 12 17 13 18 19 15 94 15.67
15 14 18 19 17 16 18 102 17.00
20 19 25 22 23 18 20 127 21.17

383 15.96 
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followed by all six 10% concentration specimens, etc.), any observed differences in tensile
strength could also be due to the warm-up effect.

It is important to graphically analyze the data from a designed experiment. Figure 5-7a pres-
ents box plots of tensile strength at the four hardwood concentration levels. This figure indicates
that changing the hardwood concentration has an effect on tensile strength; specifically, higher
hardwood concentrations produce higher observed tensile strength. Furthermore, the distribu-
tion of tensile strength at a particular hardwood level is reasonably symmetric, and the variabil-
ity in tensile strength does not change dramatically as the hardwood concentration changes.

Graphical interpretation of the data is always a good idea. Box plots show the variability of
the observations within a treatment (factor level) and the variability between treatments. We now
discuss how the data from a single-factor randomized experiment can be analyzed statistically.

Analysis of Variance
Suppose we have a different levels of a single factor that we wish to compare. Sometimes
each factor level is called a treatment, a very general term that can be traced to the early
applications of experimental design methodology in the agricultural sciences. The response
for each of the a treatments is a random variable. The observed data would appear as shown
in Table 5-6. An entry in Table 5-6—say, yij—represents the jth observation taken under
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Figure 5-7 (a) Box plots of hardwood concentration data. (b) Display of the model in equation 5-31 for the completely
randomized single-factor experiment.

Table 5-6 Typical Data for a Single-Factor Experiment

Treatment Observations Totals Averages

1 y11 y12 . . . y1n y1.
2 y21 y22 . . . y2n y2.
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
a ya1 ya2 . . . yan ya.

y.. y..

ya.

y2.
y1.
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treatment i. We initially consider the case in which there are an equal number of observa-
tions, n, on each treatment.

We may describe the observations in Table 5-6 by the linear statistical model

(5-31)

where Yij is a random variable denoting the (ij)th observation, � is a parameter common to all
treatments called the overall mean, �i is a parameter associated with the ith treatment called
the ith treatment effect, and �ij is a random error component. Notice that the model could
have been written as

where �i � � 	 �i is the mean of the ith treatment. In this form of the model, we see that
each treatment defines a population that has mean �i, consisting of the overall mean �
plus an effect �i that is due to that particular treatment. We will assume that the errors �ij

are normally and independently distributed with mean zero and variance �2. Therefore,
each treatment can be thought of as a normal population with mean �i and variance �2.
See Fig. 5-7b.

Equation 5-31 is the underlying model for a single-factor experiment. Furthermore,
because we require that the observations are taken in random order and that the environment
(often called the experimental units) in which the treatments are used is as uniform as possi-
ble, this design is called a completely randomized experiment.

We now present the analysis of variance for testing the equality of a population means.
However, the ANOVA is a far more useful and general technique; it will be used extensively
in the next two chapters. In this section we show how it can be used to test for equality of treat-
ment effects. In our application the treatment effects �i are usually defined as deviations from
the overall mean �, so

(5-32)

Let yi. represent the total of the observations under the ith treatment and represent the av-
erage of the observations under the ith treatment. Similarly, let y.. represent the grand total
of all observations and represent the grand mean of all observations. Expressed mathe-
matically,

(5-33)

where N � an is the total number of observations. Thus, the “dot” subscript notation implies
summation over the subscript that it replaces.

y.. � a
a

i�1
a yij

n

j�1

  y.. � y..�N

yi. � a
n

j�1

yij  yi. � yi.�n  i � 1, 2, p , a

y..

yi.

a
a

i�1

�i � 0

Yij � �i 	 �ij e i � 1, 2, p , a

j � 1, 2, p , n

Yij � � 	 �i 	 �ij e i � 1, 2, p , a

j � 1, 2, p , n

Statistical Model
for a Single-Factor
Experiment
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The proof of this identity is straightforward and is provided in Montgomery and Runger
(2011).

The identity in equation 5-35 shows that the total variability in the data, measured by the
total sum of squares, can be partitioned into a sum of squares of differences between treatment
means and the grand mean and a sum of squares of differences of observations within a treat-
ment from the treatment mean. Differences between observed treatment means and the grand
mean measure the differences between treatments, whereas differences of observations within
a treatment from the treatment mean can be due only to random error. Therefore, we write
equation 5-35 symbolically as

We are interested in testing the equality of the a treatment means �1, �2, . . . , �a. Using
equation 5-32, we find that this is equivalent to testing the hypotheses

(5-34)

Thus, if the null hypothesis is true, each observation consists of the overall mean � plus a
realization of the random error component �ij. This is equivalent to saying that all N observa-
tions are taken from a normal distribution with mean � and variance �2. Therefore, if the null
hypothesis is true, changing the levels of the factor has no effect on the mean response.

The analysis of variance partitions the total variability in the sample data into two compo-
nent parts. Then the test of the hypothesis in equation 5-34 is based on a comparison of two
independent estimates of the population variance. The total variability in the data is described
by the total sum of squares

The partition of the total sum of squares is given in the following definition.

SST � a
a

i�1
a

n

j�1

(yij � y..)2

H1: �i  0 for at least one i

H0: �1 � �2 � p � �a � 0

The ANOVA sum of squares identity is

(5-35)a
a

i�1
a

n

j�1

(yij � y..)2 � na
a

i�1

(yi. � y..)2 	 a
a

i�1
a

n

j�1

(yij � yi.)
2

(5-36)

where

total sum of squares

treatment sum of squares

and

error sum of squaresSSE � a
a

i�1
a

n

j�1

(yij � yi.)
2 �

 SSTreatments � na
a

i�1

(yi. � y..)2 �

 SST � a
a

i�1
a

n

j�1

(yij � y..)2 �

SST � SSTreatments 	 SSE
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We can gain considerable insight into how the analysis of variance works by examining
the expected values of SSTreatments and SSE. This will lead us to an appropriate statistic for test-
ing the hypothesis of no differences among treatment means (or �i � 0).

It can be shown that

(5-37)

The ratio

is called the mean square for treatments. Thus, if H0 is true, MSTreatments is an unbiased
estimator of �2 because under H0 each �i � 0. If H1 is true, MSTreatments estimates �2 plus a posi-
tive term that incorporates variation due to the systematic difference in treatment means.

We can also show that the expected value of the error sum of squares is E(SSE) � a(n � 1)�2.
Therefore, the error mean square

is an unbiased estimator of �2 regardless of whether or not H0 is true.
There is also a partition of the number of degrees of freedom that corresponds to the sum

of squares identity in equation 5-35. That is, there are an � N observations; thus, SST has
an � 1 degrees of freedom. There are a levels of the factor, so SSTreatments has a � 1 degrees of
freedom. Finally, within any treatment there are n replicates providing n � 1 degrees of free-
dom with which to estimate the experimental error. Because there are a treatments, we have
a(n � 1) degrees of freedom for error. Therefore, the degrees of freedom partition is

Now assume that each of the a populations can be modeled as a normal distribution.
Using this assumption we can show that if the null hypothesis H0 is true, the ratio

(5-38)

has an F distribution with a � 1 and a(n � 1) degrees of freedom. Furthermore, from the
expected mean squares, we know that MSE is an unbiased estimator of �2. Also, under the null
hypothesis, MSTreatments is an unbiased estimator of �2. However, if the null hypothesis is false,
the expected value of MSTreatments is greater than �2. Therefore, under the alternative hypothe-
sis, the expected value of the numerator of the test statistic (equation 5-38) is greater than the
expected value of the denominator. Consequently, we should reject H0 if the statistic is large.
This implies an upper-tail, one-tail test procedure. Therefore, the P-value would be the proba-
bility to the right of the value of the test statistic in the Fa�1, a(n�1) distribution. For a fixed-level
test, we would reject H0 if f0 � f�, a�1, a(n�1) where f0 is computed from equation 5-38. These
results are summarized as follows.

F0 �
SSTreatments�(a � 1)

SSE� [a(n � 1)]
�

MSTreatments

MSE

an � 1 � a � 1 	 a(n � 1)

MSE � SSE� [a(n � 1) ]

MSTreatments � SSTreatments�(a � 1)

E aSSTreatments

a � 1
b � �2 	

na
a

i�1

�2
i

a � 1

Treatments and
Error Mean
Squares
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The computations for this test procedure are usually summarized in tabular form as shown in
Table 5-7. This is called an analysis of variance (or ANOVA) table.

Completely Randomized Experiment with Equal Sample Sizes

The computing formulas for the sums of squares in the analysis of variance for a
completely randomized experiment with equal sample sizes in each treatment are

and

The error sum of squares is usually obtained by subtraction as

SSE � SST � SSTreatments

SSTreatments � a
a

i�1

y2
i.

n
�

y2..

N

SST � a
a

i�1
a

n

j�1

y2
ij �

y2..

N

Testing Hypotheses on More Than Two Means (ANOVA)

Null hypothesis:

Alternative hypothesis: for at least one i

Test statistic:

P-value: Probability beyond f0 in the Fa�1, a(n�1) distribution

Rejection criterion 
for a fixed-level test: f0 7 f�,a�1,a(n�1)

F0 �
MS Treatments

MSE

H1: �i � 0

H0: �1 � �2 � p � �a � 0

E(MSE) � �2MSE �
SSE

a(n � 1)

E(MS Treatments) � �2 �

na
a

i�1

�2
i

a � 1
MS Treatments �

SS Treatments

a � 1

Efficient computational formulas for the sums of squares may be obtained by expanding
and simplifying the definitions of SSTreatments and SST. This yields the following results.

Summary

Table 5-7 The Analysis of Variance for a Single-Factor Experiment

Source of Degrees of 
Variation Sum of Squares Freedom Mean Square F0

Treatments SSTreatments a � 1 MSTreatments

Error SSE a(n � 1) MSE

Total SST an � 1 

MSTreatments

MSE
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EXAMPLE 5-14 Consider the paper tensile strength experiment described in Section 5-8.1. Use the analysis of variance to test
the hypothesis that different hardwood concentrations do not affect the mean tensile strength of the paper.

Solution. The seven-step hypothesis testing procedure leads to the following results:

1. Parameter of interest: The parameters of interest are �1, �2, �3, and �4, the mean tensile
strength of the paper of the four different hardwood concentrations.

2. Null hypothesis, H0: �1 � �2 � �3 � �4 � 0

3. Alternative hypothesis, H1: �i  0 for at least one i

4. Test statistic: The test statistic is

5. Reject H0 if: Reject H0 if the P-value is less than 0.05.

6. Computations: The sums of squares for the ANOVA are computed from equation 5-36 as
follows:

We usually do not perform these calculations by hand. The ANOVA computed by Minitab is
presented in Table 5-8.

 � 512.96 � 382.79 � 130.17

 SSE � SST � SSTreatments

 �
(60)2 	 (94)2 	 (102)2 	 (127)2

6
�

(383)2

24
� 382.79

 SSTreatments � a
4

i�1

y2
i.

n
�

y2..

N

 � (7)2 	 (8)2 	 p 	 (20)2 �
(383)2

24
� 512.96

 SST � a
4

i�1
a

6

j�1

y2
ij �

y2..

N

f0 �
MSTreatments

MSE

Tensile Strength

Table 5-8 Minitab Analysis of Variance Output for the Paper Tensile Strength Experiment

One-Way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Factor 3 382.79 127.60 19.61 0.000
Error 20 130.17 6.51
Total 23 512.96

Individual 95% Cls For Mean
Based on Pooled StDev

Level N Mean StDev ----- + ---------- + ---------- + ---------- +-
5 6 10.000 2.828 (---*---)
10 6 15.667 2.805 (---*---)
15 6 17.000 1.789 (---*---)
20 6 21.167 2.639 (---*---)

----- + ---------- + ---------- + ---------- +-
Pooled StDev = 2.551 10.0 15.0 20.0 25.0
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Which Means Differ?
Finally, note that the analysis of variance tells us whether there is a difference among means.
It does not tell us which means differ. If the analysis of variance indicates that there is a statis-
tically significant difference among means, there is a simple graphical procedure that can be
used to isolate the specific differences. Suppose that are the observed averages
for these factor levels. Each treatment average has standard deviation , where � is the
standard deviation of an individual observation. If all treatment means are equal, the observed
means . would behave as if they were a set of observations drawn at random from a normal
distribution with mean � and standard deviation .

Visualize this normal distribution capable of being slid along an axis below which the treat-
ment means are plotted. If all treatment means are equal, there should be some
position for this distribution that makes it obvious that the . values were drawn from the same
distribution. If this is not the case, the . values that do not appear to have been drawn from this
distribution are associated with treatments that produce different mean responses.

yi

yi

y1., y2., p , ya.

��1n
yi

��1n
y1., y2., p , ya.

7. Conclusions: From Table 5-8, we note that the computed value of the test statistic is f0 � 19.61
and the P-value is reported as P � 0.000 (the P-value can’t really be 0.000; Minitab defaults to
this output when the P-value is less than 0.001). Because the P-value is considerably smaller
than � � 0.05, we have strong evidence to conclude that H0 is not true. That is, the hardwood
concentration in the pulp affects the tensile strength of the paper. Since this is an upper-tailed
F-test, we could bound the P-value by using the F-table in Appendix A Table IV. From this
table, we find that f0.01,3.20 � 4.94, and because f0 � 19.61 exceeds this value, we know that the
P-value is less than 0.01. The actual P-value (found from a calculator) is 3.59 � 10�6. Note
that Minitab also provides some summary information about each level of hardwood concen-
tration, including the confidence interval on each mean. ■

In some single-factor experiments, the number of observations taken under each treat-
ment may be different. We then say that the design is unbalanced. The analysis of variance
described earlier is still valid, but slight modifications must be made in the sums of squares
formulas. Let ni observations be taken under treatment i(i � 1, 2, . . . , a), and let the total
number of observations . The computational formulas for SST and SSTreatments are as
shown in the following definition.

N � �a
i�1ni

Completely Randomized Experiment with Unequal Sample Sizes

The computing formulas for the sums of squares in the analysis of variance for a
completely randomized experiment with unequal sample sizes ni in each treatment
are

and

SSE � SST � SSTreatments

SSTreatments � a
a

i�1

y2
i.

ni

�
y2..

N

SST � a
a

i�1
a
ni

j�1

y2
ij �

y2..

N
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The only flaw in this logic is that � is unknown. However, we can use from the
analysis of variance to estimate �. This implies that a t distribution should be used instead of
the normal in making the plot, but because the t looks so much like the normal, sketching a
normal curve that is approximately units wide will usually work very well.

Figure 5-8 shows this arrangement for the hardwood concentration experiment. The
standard deviation of this normal distribution is

If we visualize sliding this distribution along the horizontal axis, we note that there is no location
for the distribution that would suggest that all four observations (the plotted means) are typical,
randomly selected values from that distribution. This, of course, should be expected because the
analysis of variance has indicated that the means differ, and the display in Fig. 5-8 is only a graph-
ical representation of the analysis of variance results. The figure does indicate that treatment 4
(20% hardwood) produces paper with higher mean tensile strength than do the other treatments
and that treatment 1 (5% hardwood) results in lower mean tensile strength than do the other treat-
ments. The means of treatments 2 and 3 (10 and 15% hardwood, respectively) do not differ.

This simple procedure is a rough but very useful and effective technique for comparing
means following an analysis of variance. There are more quantitative techniques, called mul-
tiple comparison procedures, for testing for differences between specific means following an
analysis of variance. Because these procedures typically involve a series of tests, the type I
error compounds to produce an experiment-wise or family error rate. For more details on
these procedures, see Montgomery (2009).

Residual Analysis and Model Checking
The one-way model analysis of variance assumes that the observations are normally and inde-
pendently distributed with the same variance for each treatment or factor level. These assump-
tions should be checked by examining the residuals. A residual is the difference between an
observation yij and its estimated (or fitted) value from the statistical model being studied, de-
noted as For the completely randomized design and each residual is 
—that is, the difference between an observation and the corresponding observed treatment
mean. The residuals for the hardwood percentage experiment are shown in Table 5-9. Using .
to calculate each residual essentially removes the effect of hardwood concentration from those
data; consequently, the residuals contain information about unexplained variability.

The normality assumption can be checked by constructing a normal probability plot of
the residuals. To check the assumption of equal variances at each factor level, plot the residuals
against the factor levels and compare the spread in the residuals. It is also useful to plot the
residuals against (sometimes called the fitted value); the variability in the residuals shouldyi.

yi

eij � yij � yi.ŷij � yi.ŷij.

1MSE�n � 16.51�6 � 1.04

61MSE�n

1MSE

Examining Differences
among Means

σ n = 1.04/

0 5 10 15

1 2 3 4

20 25 30

Figure 5-8 Tensile strength averages from the hardwood concentration 
experiment in relation to a normal distribution with standard deviation

.1MSE�n � 16.51�6 � 1.04

Residual Plots
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not depend in any way on the value of Most statistics software packages will construct these
plots on request. When a pattern appears in these plots, it usually suggests the need for a
transformation—that is, analyzing the data in a different metric. For example, if the variabil-
ity in the residuals increases with a transformation such as log y or should be consid-
ered. In some problems, the dependency of residual scatter on the observed mean is very
important information. It may be desirable to select the factor level that results in maximum
response; however, this level may also cause more variation in response from run to run.

The independence assumption can be checked by plotting the residuals against the time
or run order in which the experiment was performed. A pattern in this plot, such as sequences
of positive and negative residuals, may indicate that the observations are not independent. This
suggests that time or run order is important or that variables that change over time are impor-
tant and have not been included in the experimental design.

A normal probability plot of the residuals from the paper tensile strength experiment is
shown in Fig. 5-9. Figures 5-10 and 5-11 present the residuals plotted against the factor levels
and the fitted value respectively. These plots do not reveal any model inadequacy or unusual
problem with the assumptions.

Animation 13: ANOVA

5-8.2 Randomized Complete Block Experiment

In many experimental design problems, it is necessary to design the experiment so that the vari-
ability arising from a nuisance factor can be controlled. For example, consider the situation of
Example 5-8, where two different methods were used to predict the shear strength of steel plate

yi.

yi.
1yyi.,

yi.

Table 5-9 Residuals for the Tensile Strength Experiment

Hardwood
Concentration (%) Residuals

5 �3.00 �2.00 5.00 1.00 �1.00 0.00
10 �3.67 1.33 �2.67 2.33 3.33 �0.67
15 �3.00 1.00 2.00 0.00 �1.00 1.00
20 �2.17 3.83 0.83 1.83 �3.17 �1.17 
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Figure 5-9 Normal probability plot of
residuals from the hardwood concentration
experiment.

Figure 5-10 Plot of residuals versus
factor levels (hardwood concentration).

Figure 5-11 Plot of residuals versus .yi
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girders. Because each girder has different strength (potentially) and this variability in strength
was not of direct interest, we designed the experiment by using the two test methods on each
girder and then comparing the average difference in strength readings on each girder to zero us-
ing the paired t-test. The paired t-test is a procedure for comparing two treatment means when all
experimental runs cannot be made under homogeneous conditions. Alternatively, we can view
the paired t-test as a method for reducing the background noise in the experiment by blocking
out a nuisance factor effect. The block is the nuisance factor, and in this case, the nuisance fac-
tor is the actual experimental unit—the steel girder specimens used in the experiment.

The randomized block design is an extension of the paired t-test to situations where the
factor of interest has more than two levels; that is, more than two treatments must be com-
pared. For example, suppose that three methods could be used to evaluate the strength read-
ings on steel plate girders. We may think of these as three treatments—say, t1, t2, and t3. If we
use four girders as the experimental units, a randomized complete block design would
appear as shown in Fig. 5-12. The design is called a randomized complete block design because
each block is large enough to hold all the treatments and because the actual assignment of each
of the three treatments within each block is done randomly. Once the experiment has been con-
ducted, the data are recorded in a table, such as is shown in Table 5-10. The observations in this
table—say, yij—represent the response obtained when method i is used on girder j.

The general procedure for a randomized complete block design consists of selecting b
blocks and running a complete replicate of the experiment in each block. The data that result
from running a randomized complete block design for investigating a single factor with a levels
and b blocks are shown in Table 5-11. There will be a observations (one per factor level) in each
block, and the order in which these observations are run is randomly assigned within the block.

We will now describe the ANOVA for a randomized complete block design. Suppose that
a single factor with a levels is of interest and that the experiment is run in b blocks. The obser-
vations may be represented by the linear statistical model.

(5-39)

where � is an overall mean, �i is the effect of the ith treatment, �j is the effect of the jth block,
and �ij is the random error term, which is assumed to be normally and independently distributed

Yij � � � �i � �j � �ij e i � 1, 2, p , a

j � 1, 2, p , b

Figure 5-12 A randomized complete block
design.

t1

Block 1

t2

t3

t1

Block 2

t2

t3

t1

Block 3

t2

t3

t1

Block 4

t2

t3

Table 5-10 A Randomized Complete Block Design

Block (Girder)

1 2 3 4

1 y11 y12 y13 y14

2 y21 y22 y23 y24

3 y31 y32 y33 y34

Treatment
(Method)

Table 5-11 A Randomized Complete Block Design with a Treatments and b Blocks

Blocks

Treatments 1 2 b Totals Averages

1 y11 y12 y1b y1.
2 y21 y22 y2b y2.

a ya1 ya2 yab ya.
Totals y.1 y.2 y.b y..

Averages y. .y.bpy.2y.1

p
ya.p
oooooo

y2.p
y1.p

p
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with mean zero and variance �2. For our purpose, the treatments and blocks will be considered
as fixed factors. Furthermore, the treatment and block effects are defined as deviations from the
overall mean, so We also assume that treatments and blocks do not
interact; that is, the effect of treatment i is the same regardless of which block (or blocks) it is
tested in. We are interested in testing the equality of the treatment effects; that is,

(5-40)

As in the completely randomized experiment, testing the hypothesis that all the treatment effects
�i are equal to zero is equivalent to testing the hypothesis that the treatment means are equal.

The ANOVA procedure for a randomized complete block design uses a sum of squares
identity that partitions the total sum of squares into three components.

H1: �i  0 at least one i

H0: �1 � �2 � p � �a � 0

�a
i�1 �i � 0 and �b

j�1 �j � 0.

The sum of squares identity for the randomized complete block design is

(5-41)	 a
a

i�1
a

b

j�1

( yij � y.j � yi. 	 y..)2

a
a

i�1
a

b

j�1

( yij � y..)2 � b a
a

i�1

(yi. � y..)2 	 a a
b

j�1

( y.j � y..)2

SST � SSTreatments 	 SSBlocks 	 SSE

where

 SSE � a
a

i�1
a

b

j�1

(yij � y.j � yi. 	 y..)2 � error sum of squares

 SSBlocks � aa
b

j�1

(y.j � y..)2 � block sum of squares

 SSTreatments � ba
a

i�1

(yi. � y..)2 � treatment sum of squares

 SST � a
a

i�1
a

b

j�1

(yij � y..)2 � total sum of squares

The sum of squares identity may be represented symbolically as

Furthermore, the degree-of-freedom breakdown corresponding to these sums of squares is

For the randomized block design, the relevant mean squares are

(5-42)MSTreatments �
SSTreatments

    a � 1
   MSBlocks �

SSBlocks

b � 1
   MSE �

SSE

(a � 1)(b � 1)

ab � 1 � (a � 1) 	 (b � 1) 	 (a � 1)(b � 1)
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The expected values of these mean squares can be shown to be as follows:

 E(MSE) � �2

 E(MSBlocks) � �2 	

aa
b

j�1

�2
j

b � 1

 E(MSTreatments) � �2 	

ba
a

i�1

�2
i

a � 1

Therefore, if the null hypothesis H0 is true so that all treatment effects �i � 0, MSTreatments is an
unbiased estimator of �2, whereas if H0 is false, MSTreatments overestimates �2. The mean square
for error is always an unbiased estimate of �2. To test the null hypothesis that the treatment
effects are all zero, we compute the ratio

(5-43)

which has an F distribution with a � 1 and (a � 1)(b � 1) degrees of freedom if the null
hypothesis is true. The P-value would be computed as in any upper-tailed F-test. We would
reject the null hypothesis for small P-values. For fixed-level testing at the � level of signifi-
cance, we would reject H0 if the computed value of the test statistic in equation 5-43

In practice, we compute SST, SSTreatments, and SSBlocks and then obtain the error sum of
squares SSE by subtraction. The appropriate computing formulas are as follows.

f0 7 f�, a�1, (a�1)(b�1).

F0 �
MSTreatments

MSE

Randomized Complete Block Experiment

The computing formulas for the sums of squares in the analysis of variance for a
randomized complete block design are

and
SSE � SST � SSTreatments � SSBlocks

 SSBlocks �
1
aa

b

j�1

y2.j �
y2..

ab

 SSTreatments �
1

ba
a

i�1

y2
i . �

y2..

ab

 SST � a
a

i�1
a

b

j�1

y2
ij �

y2..

ab
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The computations are usually arranged in an analysis of variance table, such as is shown in
Table 5-12. Generally, a computer software package will be used to perform the ANOVA for
the randomized complete block design. Here, we give the computational details rather than
explicitly listing the seven-step procedure.

Table 5-12 Analysis of Variance for a Randomized Complete Block Design

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F0

Treatments SSTreatments a � 1

Blocks SSBlocks b � 1

Error SSE (by subtraction) (a � 1) (b � 1)

Total SST ab � 1

SSE

(a � 1) (b � 1)

SSBlocks

b � 1

MSTreatments

MSE

SSTreatments

a � 1

EXAMPLE 5-15 An experiment was performed to determine the effect of four different chemicals on the strength of a
fabric. These chemicals are used as part of the permanent press finishing process. Five fabric samples
were selected, and a randomized complete block design was run by testing each chemical type once in
random order on each fabric sample. The data are shown in Table 5-13. We will test for differences in
means using the analysis of variance with � � 0.01.

The sums of squares for the ANOVA are computed as follows:

 SSBlocks � a
5

j�1

y2.j

a
�

y2..

ab

 �
(5.7)2 	 (8.8)2 	 (6.9)2 	 (17.8)2

5
�

(39.2)2

20
� 18.04

 SSTreatments � a
4

i�1

y2
i .

b
�

y2..

ab

 � (1.3)2 	 (1.6)2 	 p 	 (3.4)2 �
(39.2)2

20
� 25.69

 SST � a
4

i�1
a

5

j�1

y2
ij �

y2..

ab

Fabric Strength

Table 5-13 Fabric Strength Data—Randomized Complete Block Design

Treatment Treatment
Fabric Sample Totals Averages

Chemical Type 1 2 3 4 5

1 1.3 1.6 0.5 1.2 1.1 5.7 1.14
2 2.2 2.4 0.4 2.0 1.8 8.8 1.76
3 1.8 1.7 0.6 1.5 1.3 6.9 1.38
4 3.9 4.4 2.0 4.1 3.4 17.8 3.56
Block totals y.j 9.2 10.1 3.5 8.8 7.6 39.2( y..)
Block averages 2.30 2.53 0.88 2.20 1.90 1.96( )y..y.j

yi.yi.
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The ANOVA is summarized in Table 5-14. Because f0 � 75.13 � f0.01,3,12 � 5.95, the P-value is less than
0.01, so we conclude that there is a significant difference in the chemical types so far as their effect on
mean fabric strength is concerned. The actual P-value (found from a calculator) is 4.79 � 10�8. ■

 � 25.69 � 6.69 � 18.04 � 0.96

 SSE � SST � SSBlocks � SSTreatments

 �
(9.2)2 	 (10.1)2 	 (3.5)2 	 (8.8)2 	 (7.6)2

4
�

(39.2)2

20
� 6.69

Table 5-14 Analysis of Variance for the Randomized Complete Block Experiment

Source of Degrees of
Variation Sum of Squares Freedom Mean Square f0 P-Value

Chemical types 
(treatments) 18.04 3 6.01 75.13 4.79 E-8

Fabric samples 
(blocks) 6.69 4 1.67

Error 0.96 12 0.08

Total 25.69 19

When Is Blocking Necessary?
Suppose an experiment was conducted as a randomized block design, and blocking was not
really necessary. There are ab observations and (a � 1)(b � 1) degrees of freedom for error.
If the experiment had been run as a completely randomized single-factor design with b repli-
cates, we would have had a(b � 1) degrees of freedom for error. Therefore, blocking has cost
a(b � 1) � (a � 1)(b � 1) � b � 1 degrees of freedom for error. Thus, because the loss in
error degrees of freedom is usually small, if there is a reasonable chance that block effects may
be important, the experimenter should use the randomized block design.

Computer Solution
Table 5-15 presents the computer output from Minitab for the randomized complete block design
example. We used the analysis of variance menu for balanced designs to solve this problem. The
results agree closely with the hand calculations from Table 5-14. Note that Minitab computes an
F-statistic for the blocks (the fabric samples). The validity of this ratio as a test statistic for the null
hypothesis of no block effects is doubtful, because the blocks represent a restriction on random-
ization; that is, we have only randomized within the blocks. If the blocks are not chosen at
random, or if they are not run in random order, the F-ratio for blocks may not provide reliable
information about block effects. For more discussion see Montgomery (2009, Chapter 4).

Which Means Differ?
When the ANOVA indicates that a difference exists between the treatment means, we may
need to perform some follow-up tests to isolate the specific differences. The graphical method
previously described can be used for this purpose. The four chemical type averages are

Each treatment average uses b � 5 observations (one from each block). Therefore, the stan-
dard deviation of a treatment average is The estimate of � is Thus, the standard
deviation used for the normal distribution is

1MSE�b � 10.0792�5 � 0.126

1MSE.��1b.

y1. � 1.14  y2. � 1.76  y3. � 1.38  y4. � 3.56
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A sketch of a normal distribution that is units wide is shown in Fig. 5-13. If
we visualize sliding this distribution along the horizontal axis, we note that there is no location for
the distribution that would suggest that all four means are typical, randomly selected values from
that distribution. This should be expected because the analysis of variance has indicated that the
means differ. The underlined pairs of means are not different. Chemical type 4 results in signifi-
cantly different strengths than the other three types. Chemical types 2 and 3 do not differ, and
types 1 and 3 do not differ. There may be a small difference in strength between types 1 and 2.

Residual Analysis and Model Checking
In any designed experiment, it is always important to examine the residuals and to check for
violation of basic assumptions that could invalidate the results. As usual, the residuals for the
randomized complete block design are only the difference between the observed and esti-
mated (or fitted) values from the statistical model—say,

and the fitted values are

(5-44)

The fitted value represents the estimate of the mean response when the ith treatment is run in
the jth block. The residuals from the chemical type experiment are shown in Table 5-16.

ŷij � yi. 	 y.j � y..

eij � yij � ŷij

61MSE�b � 0.755

Table 5-15 Minitab Analysis of Variance for the Randomized Complete Block Design in Example 5-15

Analysis of Variance (Balanced Designs)

Factor Type Levels Values

Chemical fixed 4 1 2 3 4

Fabric S fixed 5 1 2 3 4 5

Analysis of Variance for strength

Source DF SS MS F P

Chemical 3 18.0440 6.0147 75.89 0.000

Fabric S 4 6.6930 1.6733 21.11 0.000

Error 12 0.9510 0.0792

Total 19 25.6880

F-test with denominator: Error

Denominator MS � 0.079250 with 12 degrees of freedom

Numerator DF MS F P

Chemical 3 6.015 75.89 0.000

Fabric S 4 1.673 21.11 0.000

Examining Differences
among Means

Figure 5-13 Strength averages from the fabric experiment in relation to a normal 
distribution with standard deviation 1MSE�b � 10.0792�5 � 0.126.

0 1 2 3 4 6

2 41 3

5

Chemical type
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Figures 5-14, 5-15, 5-16, and 5-17 present the important residual plots for the experiment.
These residual plots are usually constructed by computer software packages. There is some in-
dication that fabric sample (block) 3 has greater variability in strength when treated with the
four chemicals than the other samples. Chemical type 4, which provides the greatest strength,
also has somewhat more variability in strength. Follow-up experiments may be necessary to
confirm these findings, if they are potentially important.

Table 5-16 Residuals from the Randomized Complete Block Design

Fabric Sample
Chemical 

Type 1 2 3 4 5

1 �0.18 �0.10 0.44 �0.18 0.02

2 0.10 0.08 �0.28 0.00 0.10

3 0.08 �0.24 0.30 �0.12 �0.02

4 0.00 0.28 �0.48 0.30 �0.10
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Figure 5-14 Normal probability plot of residuals from the
randomized complete block design.

Figure 5-15 Residuals versus ŷij.

Figure 5-16 Residuals by chemical type. Figure 5-17 Residuals by block.

Residual Plots for the
Fabric Strength
Experiment
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EXERCISES FOR SECTION 5-8

5-74. A Minitab ANOVA output is shown below. Fill in the
blanks. You may give bounds on the P-value.

(a) Does cotton percentage affect breaking strength? Draw
comparative box plots and perform an analysis of
variance. Use a P-value approach.

(b) Plot average tensile strength against cotton percentage
and interpret the results.

(c) Which specific means are different?
(d) Perform residual analysis and model checking.

5-78. An experiment was run to determine whether four
specific firing temperatures affect the density of a certain type
of brick. The experiment led to the following data.

(a) Does the firing temperature affect the density of the
bricks?

(b) Find the P-value for the F-statistic computed in part (a).

One-way ANOVA:

Source DF SS MS F P
Factor 3 36.15 ? ? ?
Error ? ? ?
Total 19 196.04

One-way ANOVA:

Source DF SS MS F P
Factor ? ? 246.93 ? ?
Error 25 186.53 ?
Total 29 1174.24

5-75. A Minitab ANOVA output is shown below. Fill in the
blanks. You may give bounds on the P-value.

5-76. In “Orthogonal Design for Process Optimization and
Its Application to Plasma Etching” (Solid State Technology,
May 1987), G. Z. Yin and D. W. Jillie describe an experiment to
determine the effect of C2F6 flow rate on the uniformity of the
etch on a silicon wafer used in integrated circuit manufactur-
ing. Three flow rates are used in the experiment, and the result-
ing uniformity (in percent) for six replicates is shown here.

Observations
C2F6 Flow 
(SCCM) 1 2 3 4 5 6

125 2.7 4.6 2.6 3.0 3.2 3.8

160 4.9 4.6 5.0 4.2 3.6 4.2

200 4.6 3.4 2.9 3.5 4.1 5.1

(a) Does C2F6 flow rate affect etch uniformity? Construct box
plots to compare the factor levels and perform the analysis
of variance. What is the approximate P-value? What are
your conclusions?

(b) Which gas flow rates produce different mean etch unifor-
mities?

5-77. In Design and Analysis of Experiments, 7th edition
(John Wiley & Sons, 2009), D. C. Montgomery describes an
experiment in which the tensile strength of a synthetic fiber is
of interest to the manufacturer. It is suspected that strength is
related to the percentage of cotton in the fiber. Five levels of
cotton percentage are used, and five replicates are run in
random order, resulting in the data that follow.

Observations
Cotton

Percentage 1 2 3 4 5

15 7 7 15 11 9

20 12 17 12 18 18

25 14 18 18 19 19

30 19 25 22 19 23

35 7 10 11 15 11

Temperature (�F)

100 125 150 175

Density

21.8 21.7 21.9 21.9

21.9 21.4 21.8 21.7

21.7 21.5 21.8 21.8

21.6 21.5 21.6 21.7

21.7 — 21.5 21.6

21.5 — — 21.8

21.8 — — —

5-79. A study was carried out to determine if curing temper-
ature significantly affects the tensile strength of silicone rubber.
An axially controlled automated hydraulic force applicator was
used to measure the tensile strength (in megapascals, MPa) of
each of the specimens. The results are given below.

Temperature, Celsius

25 40 55

2.09 2.22 2.03

2.14 2.09 2.22

2.18 2.10 2.10

2.05 2.02 2.07

2.18 2.05 2.03

2.11 2.01 2.15
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(a) Test the hypothesis that the curing temperatures affect the
tensile strength of the silicone rubber. Use a P-value ap-
proach.

(b) Construct box plots of the data. Do these support your
conclusions? Explain.

(c) Perform residual analysis and model checking.

5-80. An electronics engineer is interested in the effect on tube
conductivity of five different types of coating for cathode ray
tubes in a telecommunications system display device. The follow-
ing conductivity data are obtained. If � � 0.05, can you isolate
any differences in mean conductivity due to the coating type?

which a shape measurement was determined for several differ-
ent nozzle types at different levels of jet efflux velocity.
Interest in this experiment focuses primarily on nozzle type,
and velocity is a nuisance factor. The data are as follows.

(a) Does nozzle type affect shape measurement? Compare the
nozzles with box plots and the analysis of variance.

(b) Use the graphical method from Section 5-8.1 to determine
specific differences between the nozzles. Does a graph of
the average (or standard deviation) of the shape measure-
ments versus nozzle type assist with the conclusions?

(c) Analyze the residuals from this experiment.

5-84. In Design and Analysis of Experiments, 7th edition
(John Wiley & Sons, 2009), D. C. Montgomery describes an
experiment that determined the effect of four different types
of tips in a hardness tester on the observed hardness of a
metal alloy. Four specimens of the alloy were obtained, and
each tip was tested once on each specimen, producing the
following data:

Type of Specimen

Tip 1 2 3 4

1 9.3 9.4 9.6 10.0

2 9.4 9.3 9.8 9.9

3 9.2 9.4 9.5 9.7

4 9.7 9.6 10.0 10.2

(a) Is there any difference in hardness measurements between
the tips?

(b) Use the graphical method from Section 5-8.1 to investigate
specific differences between the tips.

(c) Analyze the residuals from this experiment.

5-85. An article in the American Industrial Hygiene
Association Journal (Vol. 37, 1976, pp. 418–422) describes a
field test for detecting the presence of arsenic in urine
samples. The test has been proposed for use among forestry
workers because of the increasing use of organic arsenics in
that industry. The experiment compared the test as per-
formed by both a trainee and an experienced trainer to an
analysis at a remote laboratory. Four subjects were selected
for testing and are considered as blocks. The response vari-
able is arsenic content (in ppm) in the subject’s urine. The
data are as follows.

Subject

Test 1 2 3 4

Trainee 0.05 0.05 0.04 0.15

Trainer 0.05 0.05 0.04 0.17

Lab 0.04 0.04 0.03 0.10

(a) Is there any difference in the arsenic test procedure?
(b) Analyze the residuals from this experiment.

Coating Type Conductivity

1 143 141 150 146

2 152 149 137 143

3 134 133 132 127

4 129 127 132 129

5 147 148 144 142

5-81. A Minitab ANOVA from a randomized complete
block experiment output is shown below.

Two-way ANOVA:Y versus Treatment, Block

Source DF SS MS F P
Treatment 4 1010.56 ? 29.84 ?
Block ? ? 64.765 ? ?
Error 20 169.33 ?
Total 29 1503.71

(a) Fill in the blanks. You may give bounds on the P-value.
(b) How many blocks were used in this experiment?
(c) What conclusions can you draw?

5-82. Consider the Minitab ANOVA output from the com-
pletely randomized single-factor experiment shown in Exercise
5-75. Suppose that this experiment had been conducted in a ran-
domized complete block design and that the sum of squares for
blocks was 80.00. Modify the ANOVA table to show the correct
analysis for the randomized complete block experiment.

5-83. In “The Effect of Nozzle Design on the Stability and
Performance of Turbulent Water Jets” (Fire Safety Journal,
Vol. 4, August 1981), C. Theobald describes an experiment in

Nozzle Jet Efflux Velocity (m/s)

Type 11.73 14.37 16.59 20.43 23.46 28.74

1 0.78 0.80 0.81 0.75 0.77 0.78

2 0.85 0.85 0.92 0.86 0.81 0.83

3 0.93 0.92 0.95 0.89 0.89 0.83

4 1.14 0.97 0.98 0.88 0.86 0.83

5 0.97 0.86 0.78 0.76 0.76 0.75
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5-86. An article in the Food Technology Journal (Vol. 10,
1956, pp. 39–42) describes a study on the protopectin content
of tomatoes during storage. Four storage times were selected,
and samples from nine lots of tomatoes were analyzed. The
protopectin content (expressed as hydrochloric acid-soluble
fraction mg/kg) is in the table on the next page.

(a) The researchers in this study hypothesized that mean pro-
topectin content would be different at different storage
times. Can you confirm this hypothesis with a statistical
test using � � 0.05?

(b) Find the P-value for the test in part (a).
(c) Which specific storage times are different? Would you

agree with the statement that protopectin content de-
creases as storage time increases?

(d) Analyze the residuals from this experiment.

5-87. An experiment was conducted to investigate leaking cur-
rent in a near-micrometer SOS MOSFETS device. The purpose of
the experiment was to investigate how leakage current varies as the
channel length changes. Four channel lengths were selected. For
each channel length, five different widths were also used, and
width is to be considered a nuisance factor. The data are as follows.

(a) Test the hypothesis that mean leakage voltage does not
depend on the channel length, using � � 0.05.

(b) Analyze the residuals from this experiment. Comment on
the residual plots.

5-88. Consider the leakage voltage experiment described in
Exercise 5-87. The observed leakage voltage for channel
length 4 and width 5 was erroneously recorded. The correct
observation is 4.0. Analyze the corrected data from this exper-
iment. Is there evidence to conclude that mean leakage voltage
increases with channel length?

Storage 
Time Lot

(days) 1 2 3 4 5 6 7 8 9

0 1694.0 989.0 917.3 346.1 1260.0 965.6 1123.0 1106.0 1116.0

7 1802.0 1074.0 278.8 1375.0 544.0 672.2 818.0 406.8 461.6

14 1568.0 646.2 1820.0 1150.0 983.7 395.3 422.3 420.0 409.5

21 415.5 845.4 377.6 279.4 447.8 272.1 394.1 356.4 351.2 

Channel Width

Length 1 2 3 4 5

1 0.7 0.8 0.8 0.9 1.0

2 0.8 0.8 0.9 0.9 1.0

3 0.9 1.0 1.7 2.0 4.0

4 1.0 1.5 2.0 3.0 20.0 

SUPPLEMENTAL EXERCISES

5-89. A procurement specialist has purchased 25 resistors
from vendor 1 and 35 resistors from vendor 2. Each resistor’s
resistance is measured with the following results.

Vendor 1

96.8 100.0 100.3 98.5 98.3 98.2 99.6
99.4 99.9 101.1 103.7 97.7 99.7 101.1
97.7 98.6 101.9 101.0 99.4 99.8 99.1
99.6 101.2 98.2 98.6

Vendor 2

106.8 106.8 104.7 104.7 108.0 102.2
103.2 103.7 106.8 105.1 104.0 106.2
102.6 100.3 104.0 107.0 104.3 105.8
104.0 106.3 102.2 102.8 104.2 103.4
104.6 103.5 106.3 109.2 107.2 105.4
106.4 106.8 104.1 107.1 107.7

(a) What distributional assumption is needed to test the claim
that the variance of resistance of product from vendor 1 is

not significantly different from the variance of resistance
of product from vendor 2? Perform a graphical procedure
to check this assumption.

(b) Perform an appropriate statistical hypothesis testing pro-
cedure to determine whether the procurement specialist
can claim that the variance of resistance of product from
vendor 1 is significantly different from the variance of
resistance of product from vendor 2.

5-90. An article in the Journal of Materials Engineering
(Vol 11, No. 4, 1989, pp. 275–282) reported the results of an ex-
periment to determine failure mechanisms for plasma-sprayed
thermal barrier coatings. The failure stress for one particular coat-
ing (NiCrAlZr) under two different test conditions is as follows:

Failure stress (� 106 Pa) after nine 1-hr cycles: 19.8,
18.5, 17.6, 16.7, 16.7, 14.8, 15.4, 14.1, 13.6

Failure stress (� 106 Pa) after six 1-hr cycles: 14.9, 12.7,
11.9, 11.4, 10.1, 7.9

(a) What assumptions are needed to construct confidence
intervals for the difference in mean failure stress under the
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two different test conditions? Use normal probability
plots of the data to check these assumptions.

(b) Perform a hypothesis test to determine if the mean failure
stress of the two different test conditions is the same at the
0.05 significance level.

(c) Confirm that the P-value of this test is 0.001.
(d) Construct a 99.9% CI of this difference. Use this CI to

again test the hypothesis that the mean failure stress of the
two different test conditions is the same. Explain why
your results are the same or different from those found in
part (b).

5-91. A manufacturing company uses a screen printing
process to deposit ink on thin plastic substrates. The thickness
of the deposit is a critical quality characteristic. A new auto-
mated ink depositing system has been added to reduce the
variability in the thickness of the deposit. Weight measure-
ments in grams, used to characterize the thickness, are taken
using the old manual and new automated processes. The
recorded sample standard deviations are sold � 0.094 grams
based on 21 observations and snew � 0.047 grams based on 16
observations.

(a) Determine if the new system results in a variance that is
significantly less than the old at � � 0.1. State any neces-
sary assumptions of your analysis.

(b) Find the P-value of this test.
(c) Construct a 90% CI on the ratio of the variances.
(d) Use the CI found in part (c) to determine if the new

system results in a variance that is significantly less than
the old. Explain why your answer is the same or different.

5-92. A liquid dietary product implies in its advertising that
use of the product for 1 month results in an average weight
loss of at least 3 pounds. Eight subjects use the product for 1
month, and the resulting weight loss data are reported here.
Use hypothesis testing procedures to answer the following
questions.

Initial Final Initial Final
Weight Weight Weight Weight

Subject (lb) (lb) Subject (lb) (lb)

1 165 161 5 155 150

2 201 195 6 143 141

3 195 192 7 150 146

4 198 193 8 187 183

(a) Do the data support the claim of the producer of the dietary
product with the probability of a type I error of 0.05?

(b) Do the data support the claim of the producer of the
dietary product with the probability of a type I error set to
0.01?

(c) In an effort to improve sales, the producer is considering
changing its claim from “at least 3 pounds” to “at least 5
pounds.” Repeat parts (a) and (b) to test this new claim.

5-93. The breaking strength of yarn supplied by two manu-
facturers is being investigated. We know from experience with
the manufacturers’ processes that �1 � 5 and �2 � 4 psi. A
random sample of 20 test specimens from each manufacturer
results in and psi, respectively.

(a) Using a 90% CI on the difference in mean breaking
strength, comment on whether or not there is evidence to
support the claim that manufacturer 2 produces yarn with
higher mean breaking strength.

(b) Using a 98% CI on the difference in mean breaking
strength, comment on whether or not there is evidence to
support the claim that manufacturer 2 produces yarn with
higher mean breaking strength.

(c) Comment on why the results from parts (a) and (b) are dif-
ferent or the same. Which would you choose to make your
decision and why?

5-94. Consider the previous exercise. Suppose that prior to
collecting the data, you decide that you want the error in esti-
mating �1 � �2 by to be less than 1.5 psi. Specify the
sample size for the following percentage confidence:

(a) 90%
(b) 98%
(c) Comment on the effect of increasing the percentage confi-

dence on the sample size needed.
(d) Repeat parts (a)–(c) with an error of less than 0.75 psi

instead of 1.5 psi.
(e) Comment on the effect of decreasing the error on the sam-

ple size needed.

5-95. The Salk polio vaccine experiment in 1954 focused
on the effectiveness of the vaccine in combating paralytic
polio. Because it was felt that without a control group of
children there would be no sound basis for evaluating the
efficacy of the Salk vaccine, the vaccine was administered
to one group, and a placebo (visually identical to the
vaccine but known to have no effect) was administered to a
second group. For ethical reasons, and because it was sus-
pected that knowledge of vaccine administration would
affect subsequent diagnosis, the experiment was conducted
in a double-blind fashion. That is, neither the subjects nor
the administrators knew who received the vaccine and who
received the placebo. The actual data for this experiment
are as follows:

Placebo group: n � 201,299: 110 cases of polio observed

Vaccine group: n � 200,745: 33 cases of polio observed

(a) Use a hypothesis testing procedure to determine whether
the proportion of children in the two groups who
contracted paralytic polio is statistically different. Use a
probability of a type I error equal to 0.05.

(b) Repeat part (a) using a probability of a type I error equal
to 0.01.

(c) Compare your conclusions from parts (a) and (b) and
explain why they are the same or different.

x1 � x2

x2 � 91x1 � 88
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5-96. A study was carried out to determine the accuracy of
Medicaid claims. In a sample of 1095 physician-filed claims,
942 claims exactly matched information in medical records. In
a sample of 1042 hospital-filed claims, the corresponding
number was 850.

(a) Is there a difference in the accuracy between these two
sources? What is the P-value of the test? What are your
conclusions using � � 0.05?

(b) Suppose a second study was conducted. Of the 550 
physician-filed claims examined, 473 were accurate,
whereas of the 550 hospital-filed claims examined, 451
were accurate. Is there a statistically significant difference
in the accuracy in the second study’s data? Again, calcu-
late the P-value and make your decision using � � 0.05.

(c) Note that the estimated accuracy percentages are nearly
identical for the first and second studies; however, the
results of the hypothesis tests in parts (a) and (b) are
different. Explain why this occurs.

(d) Construct a 95% CI on the difference of the two propor-
tions for part (a). Then construct a 95% CI on the differ-
ence of the two proportions for part (b). Explain why the
estimated accuracy percentages for the two studies are
nearly identical but the lengths of the confidence intervals
are different.

5-97. In a random sample of 200 Phoenix residents who drive
a domestic car, 165 reported wearing their seat belt regularly,
whereas another sample of 250 Phoenix residents who drive a
foreign car revealed 198 who regularly wore their seat belt.

(a) Perform a hypothesis testing procedure to determine
whether there is a statistically significant difference in seat
belt usage between domestic and foreign car drivers. Set
your probability of a type I error to 0.05.

(b) Perform a hypothesis testing procedure to determine
whether there is a statistically significant difference in seat
belt usage between domestic and foreign car drivers. Set
your probability of a type I error to 0.1.

(c) Compare your answers for parts (a) and (b) and explain
why they are the same or different.

(d) Suppose that all the numbers in the problem description
were doubled. That is, in a random sample of 400 Phoenix
residents who drive a domestic car, 330 reported wearing
their seat belt regularly, whereas another sample of 500
Phoenix residents who drive a foreign car revealed 396
who regularly wore their seat belt. Repeat parts (a) and (b)
and comment on the effect of increasing the sample size
without changing the proportions on your results.

5-98. Consider the previous exercise, which summarized
data collected from drivers about their seat belt usage.

(a) Do you think there is a reason not to believe these data?
Explain your answer.

(b) Is it reasonable to use the hypothesis testing results from
the previous problem to draw an inference about the
difference in proportion of seat belt usage

(i) of the spouses of these drivers of domestic and
foreign cars? Explain your answer.

(ii) of the children of these drivers of domestic and
foreign cars? Explain your answer.

(iii) of all drivers of domestic and foreign cars? Explain
your answer.

(iv) of all drivers of domestic and foreign trucks? Explain
your answer.

5-99. Consider Example 5-12 in the text.

(a) Redefine the parameters of interest to be the proportion of
lenses that are unsatisfactory following tumble polishing
with polishing fluids 1 or 2. Test the hypothesis that the
two polishing solutions give different results using 
� � 0.01.

(b) Compare your answer in part (a) with that in the example.
Explain why they are the same or different.

5-100. A manufacturer of a new pain relief tablet would like
to demonstrate that its product works twice as fast as the
competior’s product. Specifically, it would like to test

where �1 is the mean absorption time of the competitive prod-
uct and �2 is the mean absorption time of the new product.
Assuming that the variances and are known, develop a
procedure for testing this hypothesis.

5-101. Suppose that we are testing H0: �1 � �2 versus H1:
�1  �2, and we plan to use equal sample sizes from the two
populations. Both populations are assumed to be normal with
unknown but equal variances. If we use � � 0.05 and if the
true mean �1 � �2 	 �, what sample size must be used for the
power of this test to be at least 0.90?

5-102. A fuel-economy study was conducted for two
German automobiles, Mercedes and Volkswagen. One vehicle
of each brand was selected, and the mileage performance was
observed for 10 tanks of fuel in each car. The data are as
follows (in mpg):

Mercedes Volkswagen

24.7 24.9 41.7 42.8

24.8 24.6 42.3 42.4

24.9 23.9 41.6 39.9

24.7 24.9 39.5 40.8

24.5 24.8 41.9 29.6

(a) Construct a normal probability plot of each of the data
sets. Based on these plots, is it reasonable to assume that
they are each drawn from a normal population?

(b) Suppose it was determined that the lowest observation of
the Mercedes data was erroneously recorded and should

�2
2�2

1

H1: �1 7 2�2

H0: �1 � 2�2
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be 24.6. Furthermore, the lowest observation of the
Volkswagen data was also mistaken and should be 39.6.
Again construct normal probability plots of each of the
data sets with the corrected values. Based on these new
plots, is it reasonable to assume that they are each drawn
from a normal population?

(c) Compare your answers from parts (a) and (b) and com-
ment on the effect of these mistaken observations on the
normality assumption.

(d) Using the corrected data from part (b) and a 95% CI, is
there evidence to support the claim that the variability in
mileage performance is greater for a Volkswagen than for
a Mercedes?

5-103. An article in Neurology (Vol. 50, 1998, pp. 1246–1252)
describes a finding that monozygotic twins share numerous phys-
ical, psychological, and pathological traits. The investigators
measured an intelligence score of 10 pairs of twins, and the data
are as follows:

Pair Birth Order: 1 Birth Order: 2

1 6.08 5.73

2 6.22 5.80

3 7.99 8.42

4 7.44 6.84

5 6.48 6.43

6 7.99 8.76

7 6.32 6.32

8 7.60 7.62

9 6.03 6.59

10 7.52 7.67

(a) Is the assumption that the difference in score in normally
distributed reasonable? Show results to support your
answer.

(b) Find a 95% confidence interval on the difference in mean
score. Is there any evidence that mean score depends on
birth order?

(c) It is important to detect a mean difference in score of one
point, with a probability of at least 0.90. Was the use of 10
pairs an adequate sample size? If not, how many pairs
should have been used?

5-104. An article in the Journal of the Environmental
Engineering Division (“Distribution of Toxic Substances in
Rivers,” Vol. 108, 1982, pp. 639–649) describes a study of the
concentration of several hydrophobic organic substances in
the Wolf River in Tennessee. Measurements of hexachloroben-
zene (HCB) in nanograms per liter were taken at different
depths downstream of an abandoned dump site. Data for two
depths follow:

Surface: 3.74, 4.61, 4.00, 4.67, 4.87, 5.12, 4.52, 5.29, 5.74, 5.48
Bottom: 5.44, 6.88, 5.37, 5.44, 5.03, 6.48, 3.89, 5.85, 6.85, 7.16

(a) What assumptions are required to test the claim that the
mean HCB concentration is the same at both depths? Check
those assumptions for which you have the information.

(b) Apply an appropriate procedure to determine if the data
support the claim in part (a).

(c) Suppose that the true difference in mean concentration is
2.0 nanograms per liter. For what is the power
of a statistical test for versus 

(d) What sample size would be required to detect a difference
of 1.0 nanograms per liter at if the power must
be at least 0.9?

5-105. Consider the fire-fighting foam expanding agents in-
vestigated in Exercise 5-20, in which five observations of each
agent were recorded. Suppose that, if agent 1 produces a mean
expansion that differs from the mean expansion of agent 2 by
1.5, we would like to reject the null hypothesis with probability
at least 0.95.

(a) What sample size is required?
(b) Do you think that the original sample size in Exercise 5-18

was appropriate to detect this difference? Explain your
answer.

5-106. A manufacturer of heart pacemakers is investigating
changing the casing material to decrease the weight of the de-
vice. Three different alloys are being considered. Eight proto-
type parts are made from each alloy material and weighed, in
grams. The data are compiled into the following partially com-
plete analysis of variance table:

Source of Sums of Degrees Mean
Variation Squares of Freedom Square F P

Factor 4.1408

Error 21

Total 4.8596

(a) Complete the analysis of variance table.
(b) Use the analysis of variance table to test the hypothesis that

the weight differs among the alloy types. Use � � 0.10.

5-107. A materials engineer performs an experiment to in-
vestigate whether there is a difference among five types of
foam pads used under carpeting. A mechanical device is con-
structed to simulate “walkers” on the pad, and four samples of
each pad are randomly tested on the simulator. After a certain
amount of time, the foam pad is removed from the simulator,
examined, and scored for wear quality. The data are compiled
into the following partially complete analysis of variance table.

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0

Treatments 95.129

Error 86.752

Total 19

� � 0.05

H1: �1  �2?H0: �1 � �2

� � 0.05,
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(a) Complete the analysis of variance table.
(b) Use the analysis of variance table to test the hypothesis

that wear quality differs among the types of foam pads.
Use � � 0.05.

5-108. A Rockwell hardness-testing machine presses a
tip into a test coupon and uses the depth of the resulting
depression to indicate hardness. Two different tips are
being compared to determine whether they provide the
same Rockwell C-scale hardness readings. Nine coupons
are tested, with both tips being tested on each coupon. The
data are as follows.

Coupon Tip 1 Tip 2 Coupon Tip 1 Tip 2

1 47 46 6 41 41

2 42 40 7 45 46

3 43 45 8 45 46

4 40 41 9 49 48

5 42 43

(a) State any assumptions necessary to test the claim that both
tips produce the same Rockwell C-scale hardness read-
ings. Check those assumptions for which you have the
data.

(b) Apply an appropriate statistical method to determine
whether the data support the claim that the difference in
Rockwell C-scale hardness readings of the two tips is
significantly different from zero.

(c) Suppose that, if the two tips differ in mean hardness read-
ings by as much as 1.0, we want the power of the test to be
at least 0.9. For an � � 0.01, how many coupons should
have been used in the test?

5-109. Two different gauges can be used to measure the
depth of bath material in a Hall cell used in smelting
aluminum. Each gauge is used once in 15 cells by the same
operator. Depth measurements from both gauges for 15 cells
are shown below.

Cell Gauge 1 Gauge 2 Cell Gauge 1 Gauge 2

1 46 in. 47 in. 9 52 in. 51 in.

2 50 53 10 47 45

3 47 45 11 49 51

4 53 50 12 45 45

5 49 51 13 47 49

6 48 48 14 46 43

7 53 54 15 50 51

8 56 53

(a) State any assumptions necessary to test the claim that both
gauges produce the same mean bath depth readings.
Check those assumptions for which you have the data.

(b) Apply an appropriate statistical method to determine
whether the data support the claim that the two gauges
produce different bath depth readings.

(c) Suppose that if the two gauges differ in mean bath depth
readings by as much as 1.65 inch, we want the power of
the test to be at least 0.8. For � � 0.01, how many cells
should have been used?

5-110. An article in the Materials Research Bulletin (Vol.
26, No. 11, 1991) reported a study of four different methods of
preparing the superconducting compound PbMo6S8. The au-
thors contend that the presence of oxygen during the prepara-
tion process affects the material’s superconducting transition
temperature Tc. Preparation methods 1 and 2 use techniques
that are designed to eliminate the presence of oxygen, whereas
methods 3 and 4 allow oxygen to be present. Five observations
on Tc (in kelvins, K) were made for each method, and the
results are as follows.

Preparation Transition Temperature
Method Tc (K)

1 14.8 14.8 14.7 14.8 14.9

2 14.6 15.0 14.9 14.8 14.7

3 12.7 11.6 12.4 12.7 12.1

4 14.2 14.4 14.4 12.2 11.7

(a) Is there evidence to support the claim that the presence of
oxygen during preparation affects the mean transition
temperature? Use � � 0.05.

(b) What is the P-value for the F-test in part (a)?

5-111. A paper in the Journal of the Association of
Asphalt Paving Technologists (Vol. 59, 1990) describes an
experiment to determine the effect of air voids on percent-
age retained strength of asphalt. For purposes of the experi-
ment, air voids are controlled at three levels: low (2–4%),
medium (4–6%), and high (6–8%). The data are shown in
the following table.

Air
Voids Retained Strength (%)

Low 106 90 103 90 79 88 92 95

Medium 80 69 94 91 70 83 87 83

High 78 80 62 69 76 85 69 85

(a) Do the different levels of air voids significantly affect
mean retained strength? Use � � 0.01.

(b) Find the P-value for the F-statistic in part (a).
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5-112. An article in Environment International (Vol. 18,
No. 4, 1992) describes an experiment in which the amount of
radon released in showers was investigated. Radon-enriched
water was used in the experiment, and six different orifice
diameters were tested in shower heads. The data from the
experiment are shown in the following table.

Orifice
Diameter Radon Released (%)

0.37 80 83 83 85

0.51 75 75 79 79

0.71 74 73 76 77

1.02 67 72 74 74

1.40 62 62 67 69

1.99 60 61 64 66

(a) Does the size of the orifice affect the mean percentage of
radon released? Use � � 0.05.

(b) Find the P-value for the F-statistic in part (a).

5-113. A team of computer engineers is interested in
determining if the percentage of disk space that is used for
virtual memory will significantly improve the response
time of a server. The team measured the response time in
milliseconds when 2, 4, 6, and 8% of the server’s disk space
is used for virtual memory. The results of the experiment
are as follows:

2% 4% 6% 8%

2.2 2.0 1.8 1.9

2.1 2.0 2.0 2.0

1.9 1.9 1.7 2.0

1.9 1.8 1.8 1.9

2.2 2.0 2.0 1.8

1.8 2.0 1.9 2.0

(a) Does the percentage of the server allocated to memory
change the response time of the server at the 0.05 level of
significance?

(b) Find the P-value of the F-statistic in part (a).

5-114. Reconsider the data in Exercise 5-89. Suppose that
any resistor below 100 ohms is considered defective.

(a) Estimate the fraction of defective resistors produced by
each vendor.

(b) Construct a 95% two-sided traditional CI on the differ-
ence in the proportion of defective resistors produced by
the two vendors.

(c) Construct a 95% two-sided improved CI on the difference
in the proportion of defective resistors produced by the
two vendors.

(d) Compare the two CIs that you found in parts (b) and (c).

5-115. Consider the graph of the global mean surface air
temperature anomaly shown in Figure 2-1. Suppose that the
data were separated into two segments: 1880–1940 and
1941–2004. You are asked to use the two-sample t-test to
investigate the claim that the mean temperature anomaly is
higher in the second time segment than in the first. Is this a
legitimate use of the t-test? Are all the assumptions
satisfied?

5-116. The two-sample z-test in Section 5-2 can be
viewed as a large sample test for the difference in means.
Suppose that we need to compare the means of two inde-
pendent Poisson distributions. Let be a ran-
dom sample from a Poisson distribution with mean �1 and
let be a random sample from a Poisson dis-
tribution with mean �2. In applying the z-test we could take
advantage of the fact that in the Poisson distribution both
the mean and variance of the distribution are equal to �.
Develop a variant of the z-test appropriate for this situation.
Develop a large-sample CI for the difference in Poisson
means.

5-117. An article appeared in The Wall Street Journal on
Tuesday, April 27, 2010, with the title “Eating Chocolate Is
Linked to Depression.” The article reported on a study
funded by the National Heart, Lung and Blood Institute
(part of the National Institutes of Health) and the University
of California, San Diego, that examined 931 adults who
were not taking antidepressants and did not have known car-
diovascular disease or diabetes. The group was about 70%
men and the average age of the group was reported to be
about 58. The participants were asked about chocolate con-
sumption and then screened for depression using a question-
naire. People who score less than 16 on the questionnaire
are not considered depressed and those with scores above 16
and less than or equal to 22 are considered possibly
depressed and those with scores above 22 are considered
likely to be depressed. The survey found that people who
were not depressed ate an average of 5.4 servings of choco-
late per month, possibly depressed individuals ate an aver-
age of 8.4 servings of chocolate per month, while those
individuals who scored above 22 and were likely to be
depressed ate the most chocolate, an average of 11.8 serv-
ings per month. No differentiation was made between dark
and milk chocolate. Other foods were also examined, but no
pattern emerged between other foods and depression. Does
this type of study establish a cause-and-effect link between
chocolate consumption and depression? How would the
study have to be conducted to establish such a cause-and
effect link?

Y21, Y22, . . ., Y2n2

Y11, Y12, . . ., Y1n1
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TEAM EXERCISES

5-118. Construct a data set for which the paired t-test
statistic is very large, indicating that when this analysis
is used, the two population means are different; however,
t0 for the two-sample t-test is very small, so the incorrect
analysis would indicate that there is no significant differ-
ence between the means.

5-119. Identify an example in which a comparative
standard or claim is made about two independent popu-
lations. For example, Car Type A gets more average

miles per gallon in urban driving than Car Type B. The
standard or claim may be expressed as a mean (average),
variance, standard deviation, or proportion. Collect two
appropriate random samples of data and perform a hy-
pothesis test. Report on your results. Be sure to include
in your report the comparison expressed as a hypothesis
test, a description of the data collected, the analysis per-
formed, and the conclusion reached.

Alternative hypothesis
Analysis of variance

(ANOVA)
Blocking
Chi-square distribution
Completely randomized

design
Confidence intervals
Confidence level
Connection between

hypothesis tests and
confidence intervals

Critical region for a 
test statistic

F distribution
Null hypothesis
One- and two-sided 

alternative 
hypotheses

One-sided confidence
bounds

Operating characteristic
curves

Paired t-test

Pooled t-test
Power of a test
P-value
Randomized complete

block design
Sample size determina-

tion for confidence
intervals

Sample size determina-
tion for hypothesis
tests

Statistical hypotheses
Statistical versus practi-

cal significance
t distribution
Test statistic
Two-sample t-test
Type I error
Type II error

IMPORTANT TERMS AND CONCEPTS
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6
MODELING HYDROGEN PRODUCTION

Hydrogen fuel cells have been producing power on spacecraft since the 1960s, and they hold
great promise for many uses here on Earth. But our atmosphere contains only trace amounts
of free hydrogen, so it must be extracted from other sources, such as methane. Developing
empirical models for enhancing the extraction of hydrogen from methane is a major area of
engineering research. One critical aspect of the extraction process involves the catalytic plates
where the required reactions take place.

Researchers at the University of Salerno are using both two- and three-dimensional
computer-generated models to investigate the flows of reactants and heat in and around these
plates. They found that using three-dimensional models provided much more information
about these flows than two-dimensional models. However, the three-dimensional models
required enormously more computer time and power. They used both types of models to
examine how the thickness of the catalytic plates used in these systems affects their overall
performance. Their work may well contribute to improved production of hydrogen for use 
as fuel.

One of the advantages of hydrogen as a fuel is that its only emission product is water.
However, the process of extracting hydrogen from a fossil fuel does leave a carbon footprint in
the form of carbon monoxide that ends up in the atmosphere as carbon dioxide, a greenhouse
gas. The good news is that this route for extracting hydrogen produces twice the energy that
simply burning the same amount of methane would produce. Even better news arises from
models for using agricultural biomass as a source of hydrogen and channeling the carbon into
fertilizers that feed back into crops. Models show that amounts of atmospheric carbon dioxide
would actually be reduced by these systems. Empirical models are valuable tools for advancing
energy technology.

Building Empirical
Models

CHAPTER OUTLINE

6-1 INTRODUCTION TO EMPIRICAL MODELS

6-2 SIMPLE LINEAR REGRESSION

6-2.1 Least Squares Estimation

6-2.2 Testing Hypotheses in Simple Linear Regression

6-2.3 Confidence Intervals in Simple 
Linear Regression

6-2.4 Prediction of a Future Observation

6-2.5 Checking Model Adequacy

6-2.6 Correlation and Regression

6-3 MULTIPLE REGRESSION

6-3.1 Estimation of Parameters in 
Multiple Regression

6-3.2 Inferences in Multiple Regression

6-3.3 Checking Model Adequacy

6-4 OTHER ASPECTS OF REGRESSION

6-4.1 Polynomial Models

6-4.2 Categorical Regressors

6-4.3 Variable Selection Techniques
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6-1 INTRODUCTION TO EMPIRICAL MODELS

Engineers frequently use models in problem formulation and solution. Sometimes these
models are based on our physical, chemical, or engineering science knowledge of the
phenomenon, and in such cases we call these models mechanistic models. Examples of
mechanistic models include Ohm’s law, the gas laws, and Kirchhoff ’s laws. However,
there are many situations in which two or more variables of interest are related, and the
mechanistic model relating these variables is unknown. In these cases it is necessary to
build a model relating the variables based on observed data. This type of model is called
an empirical model. An empirical model can be manipulated and analyzed just as a
mechanistic model can.

As an illustration, consider the data in Table 6-1. In this table, y is the salt concentration
(milligrams/liter) found in surface streams in a particular watershed and x is the percentage of
the watershed area consisting of paved roads. The data are consistent with those found in an
article in the Journal of Environmental Engineering (Vol. 115, No. 3, 1989). A scatter diagram
of the data (with dot diagrams of the individual variables) is shown in Fig. 6-1. There is no
obvious physical mechanism that relates the salt concentration to the roadway area, but the
scatter diagram indicates that some relationship, possibly linear, does exist. A linear relation-
ship will not pass exactly through all of the points in Fig. 6-1, but there is an indication that
the points are scattered randomly about a straight line. Therefore, it is probably reasonable to
assume that the mean of the random variable Y (the salt concentration) is related to roadway
area x by the following straight-line relationship:

where the slope and intercept of the line are unknown parameters. The notation 
represents the expected value of the response variable Y at a particular value of the regressor
variable x. Although the mean of Y is a linear function of x, the actual observed value y does
not fall exactly on a straight line. The appropriate way to generalize this to a probabilistic
linear model is to assume that the expected value of Y is a linear function of x, but that for a
fixed value of x the actual value of Y is determined by the mean value function (the linear
model) plus a random error term �.

E (Y 0 x)

E (Y 0 x) � �Y 0 x � �0 � �1x

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:

1. Use simple linear or multiple linear regression for building empirical models of engineering and scientific data.

2. Analyze residuals to determine if the regression model is an adequate fit to the data or to see if any underlying
assumptions are violated.

3. Test statistical hypotheses and construct confidence intervals on regression model parameters.

4. Use the regression model either to estimate a mean or to make a prediction of a future observation.

5. Use confidence intervals or prediction intervals to describe the error in estimation from a regression model.

6. Comment on the strengths and weaknesses of your empirical model.
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To gain more insight into this model, suppose that we can fix the value of x and observe
the value of the random variable Y. Now if x is fixed, the random component � on the right-
hand side of the model in equation 6-1 determines the properties of Y. Suppose that the mean
and variance of � are 0 and �2, respectively. Then

Note that this is the same relationship we initially wrote down empirically from inspection of
the scatter diagram in Fig. 6-1. The variance of Y given x is

V (Y 0 x) � V (�0 � �1x � �) � V (�0 � �1x) � V (�) � 0 � �2 � �2

E(Y 0 x) � E (�0 � �1x � �) � �0 � �1x � E (�) � �0 � �1x

Table 6-1 Salt Concentration in Surface Streams and
Roadway Area

Observation Salt Concentration ( y) Roadway Area (x)

1 3.8 0.19
2 5.9 0.15
3 14.1 0.57
4 10.4 0.40
5 14.6 0.70
6 14.5 0.67
7 15.1 0.63
8 11.9 0.47
9 15.5 0.75

10 9.3 0.60
11 15.6 0.78
12 20.8 0.81
13 14.6 0.78
14 16.6 0.69
15 25.6 1.30
16 20.9 1.05
17 29.9 1.52
18 19.6 1.06
19 31.3 1.74
20 32.7 1.62 
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Figure 6-1 Scatter diagram of the salt concentration in
surface streams and roadway area data in Table 6-1.

Simple Linear Regression Model

In the simple linear regression model the dependent variable, or response, is related
to one independent, or regressor variable, as

(6-1)

where � is the random error term. The parameters �0 and �1 are called regression 
coefficients.

Y � �0 � �1x � �
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Thus, the true regression model � �0 � �1x is a line of mean values; that is, the height of the
regression line at any value of x is simply the expected value of Y for that x. The slope, �1, can be
interpreted as the change in the mean of Y for a unit change in x. Furthermore, the variability of Y
at a particular value of x is determined by the error variance �2. This implies that there is a distri-
bution of Y values at each x and that the variance of this distribution is the same at each x.

For example, suppose that the true regression model relating salt concentration to roadway
area is � 3 � 15x, and suppose that the variance is �2 � 2. Figure 6-2 illustrates this 
situation. Note that we have used a normal distribution to describe the random variation in �.
Because Y is the sum of a constant �0 � �1x (the mean) and a normally distributed random
variable, Y is a normally distributed random variable. The variance �2 determines the variability
in the observations Y on salt concentration. Thus, when �2 is small, the observed values of Y
will fall close to the line, and when �2 is large, the observed values of Y may deviate consider-
ably from the line. Because �2 is constant, the variability in Y at any value of x is the same.

The regression model describes the relationship between salt concentration Y and roadway
area x. Thus, for any value of roadway area, salt concentration has a normal distribution with
mean 3 � 15x and variance 2. For example, if x�1.25, then Y has mean value � 3 �
15(1.25) � 21.75 and variance 2.

There are many empirical model building situations in which there is more than one
regressor variable. Once again, a regression model can be used to describe the relationship. 
A regression model that contains more than one regressor variable is called a multiple
regression model.

As an example, suppose that the effective life of a cutting tool depends on the cutting
speed and the tool angle. A multiple regression model that might describe this relationship is

(6-2)

where Y represents the tool life, x1 represents the cutting speed, x2 represents the tool angle, and �
is a random error term. This is a multiple linear regression model with two regressors. The term
linear is used because equation 6-2 is a linear function of the unknown parameters �0, �1, and �2.

The regression model in equation 6-2 describes a plane in the three-dimensional space of
Y, x1, and x2. Figure 6-3a shows this plane for the regression model

where we have assumed that the expected value of the error term is zero; that is, E(�) � 0. The
parameter �0 is the intercept of the plane. We sometimes call �1 and �2 partial regression
coefficients because �1 measures the expected change in Y per unit change in x1 when x2 is
held constant, and �2 measures the expected change in Y per unit change in x2 when x1 is held

E (Y ) � 50 � 10x1 � 7x2

Y � �0 � �1x1 � �2x2 � �

�Y 0 x

�Y 0 x

�Y 0 x

 0 +   1 (1.25)

x = 1.25x = 1.00

ββ

  0 +   1 (1.00)ββ

 True regression line
   Y⎜x =   0 +   1x
        = 3 + 15x

β βμ

          y          

(Salt conc.)

  x (Roadway area)

Figure 6-2 The
distribution of Y for a
given value of x for the
salt concentration–
roadway area data.
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The parameters �j, j �0, 1, . . . , k, are called regression coefficients. This model describes a
hyperplane in the space of the regressor variables {xj} and Y. The parameter �j represents the
expected change in response Y per unit change in xj when all the remaining regressors xi (i j)
are held constant.

Multiple linear regression models are often used as empirical models. That is, the
mechanistic model that relates Y and x1, x2, . . . , xk is unknown, but over certain ranges of the
independent variables the linear regression model is an adequate approximation.

These empirical models are related to the important, well-known Taylor series approxi-
mation of a complex function, as discussed in Chapter 3. For example, the first-order Taylor
series approximation of the unknown function f (x) about the mean 

which, when the remainder term is ignored, is a simple linear model about the mean without
the error term. Furthermore, a higher-order Taylor series of f (x) or function 
with k independent variables can be captured in a multiple linear regression model. That is,
complex functional relationships can often be analyzed using equation 6-3 and multiple linear
regression techniques.

For example, consider the cubic polynomial model in one regressor variable.

(6-4)Y � �0 � �1x � �2 x2 � �3 x 
3 � �

f (x1, x2, . . . , xk)

 � �0 � �1 (x � �x)

 f (x) � f (�x) �
df (x)

dx
`
x��x

(x � �x) � R

�x
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Figure 6-3 (a) The regression plane for the model E(Y ) � 50 � 10x1 � 7x2. (b) The contour plot.

constant. Figure 6-3b shows a contour plot of the regression model—that is, lines of constant
E(Y ) as a function of x1 and x2. Note that the contour lines in this plot are straight lines.

Multiple Linear Regression Model 

In a multiple linear regression model, the dependent variable or response is related
to k independent or regressor variables. The model is

(6-3)Y � �0 � �1x1 � �2x2� p � �kxk � �
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If we let x1 �x, x2 �x2, x3 �x3, equation 6-4 can be written as

(6-5)

which is a multiple linear regression model with three regressor variables.
Models that include interaction effects may also be analyzed by multiple linear regres-

sion methods. An interaction between two variables can be represented by a cross-product
term in the model, such as

(6-6)

If we let x3 �x1x2 and �3 � �12, equation 6-6 can be written as

which is a linear regression model.
Figure 6-4a and b shows the three-dimensional plot of the regression model

and the corresponding two-dimensional contour plot. Note that, although this model is a linear
regression model, the shape of the surface that is generated by the model is not linear. In general,
any regression model that is linear in parameters (the �s) is a linear regression model,
regardless of the shape of the surface that it generates.

Figure 6-4 provides a nice graphical interpretation of an interaction. Generally, interaction
implies that the effect produced by changing one variable (x1, say) depends on the level of the
other variable (x2). For example, Fig. 6-4 shows that changing x1 from 2 to 8 produces a much
smaller change in E(Y ) when x2 � 2 than when x2 � 10. Interaction effects occur frequently in
the product and process design, process optimization, and other engineering activities, and re-
gression methods are one of the techniques that we can use to describe them.

As a final example, consider the second-order model with interaction

(6-7)

If we let x3 �x1
2, x4 �x2

2, x5 �x1x2, �3 � �11, �4 � �22, and �5 � �12, equation 6-7 can be written
as a multiple linear regression model as follows:

Figure 6-5a and b shows the three-dimensional plot and the corresponding contour plot for

These plots indicate that the expected change in Y when x1 is changed by one unit (say) is a
function of both x1 and x2. The quadratic and interaction terms in this model produce a mound-
shaped function. Depending on the values of the regression coefficients, the second-order model
with interaction is capable of assuming a wide variety of shapes; thus, it is a very flexible re-
gression model.

In most real-world problems, the values of the parameters (the regression coefficients �j)
and the error variance �2 will not be known, and they must be estimated from sample data.

E (Y ) � 800 � 10x1 � 7x2 � 8.5x2
1 � 5x2

2 � 4x1x2

Y � �0 � �1x1 � �2x2 � �3x3 � �4x4 � �5x5 � �

Y � �0 � �1x1 � �2x2 � �11x2
1 � �22x 

2
2 � �12x1x2 � �

Y � 50 � 10x1 � 7x2 � 5x1x2

Y � �0 � �1x1 � �2x2 � �3x3 � �

Y � �0 � �1x1 � �2x2 � �12x1x2 � �

Y � �0 � �1x1 � �2x2 � �3x3 � �
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304 CHAPTER 6 BUILDING EMPIRICAL MODELS

Regression analysis is a collection of statistical tools for finding estimates of the parameters
in the regression model. Then this fitted regression equation or model is typically used in
prediction of future observations of Y or for estimating the mean response at a particular level
of x. To illustrate with the simple linear regression model example, an environmental engineer
might be interested in estimating the mean salt concentration in surface streams when the
percentage of the watershed area that is paved roads is x � 1.25%. This chapter discusses these
procedures and applications for linear regression models.

Animation 15: Drawing Regression Lines

6-2 SIMPLE LINEAR REGRESSION

6-2.1 Least Squares Estimation

The case of simple linear regression considers a single regressor or predictor x and a dependent
or response variable Y. Suppose that the true relationship between Y and x is a straight line and
that the observation Y at each level of x is a random variable. As noted previously, the 
expected value of Y for each value of x is

where the intercept �0 and the slope �1 are unknown regression coefficients. We assume that
each observation, Y, can be described by the model

(6-8)Y � �0 � �1x � �

E (Y 0 x) � �0 � �1x
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Figure 6-4 (a) Three-dimensional plot of regression model
E(Y) � 50 � 10x1 � 7x2 � 5x1x2. (b) The contour plot.

Figure 6-5 (a) Three-dimensional plot of the regression
model E(Y) � 800 � 10x1 � 7x2 � 8.5x 2

1 � 5x 2
2 � 4x1x2.

(b) The contour plot.
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6-2 SIMPLE LINEAR REGRESSION 305

where � is a random error with mean zero and variance �2. The random errors corresponding
to different observations are also assumed to be uncorrelated random variables.

Suppose that we have n pairs of observations (x1, y1), (x2, y2), . . . (xn, yn). Figure 6-6 shows
a typical scatter plot of observed data and a candidate for the estimated regression line. The 
estimates of �0 and �1 should result in a line that is (in some sense) a “best fit” to the data. The
German scientist Karl Gauss (1777–1855) proposed estimating the parameters �0 and �1 in
equation 6-8 to minimize the sum of the squares of the vertical deviations in Fig. 6-6.

We call this approach to estimating the regression coefficients the method of least
squares. Using equation 6-8, we may express the n observations in the sample as

(6-9)

and the sum of the squares of the deviations of the observations from the true regression line is

(6-10)

The least squares estimators of �0 and �1, say, , must satisfy

(6-11)

Simplifying these two equations yields

(6-12)

Equations 6-12 are called the least squares normal equations. The solution to the normal
equations results in the least squares estimates and �̂1.�̂0

 �̂0 a
n

i�1

 xi � �̂1 a
n

i�1

 x2
i � a

n

i�1

 yixi

 n�̂0 � �̂1a
n

i�1

 xi � a
n

i�1

 yi

 
0L

0�1

`
�̂0,�̂1

� �2a
n

i�1

 (yi � �̂0 � �̂1xi)xi � 0

 
0L

0�0

`
�̂0,�̂1

� �2a
n

i�1

 ( yi � �̂0 � �̂1xi) � 0

�̂0 and �̂1

L � a
n

i�1

 �2
i � a

n

i�1

 (yi � �0 � �1xi)
2

yi � �0 � �1xi � �i,  i � 1, 2, . . . , n

x

y

Observed value
Data (y)

Estimated
regression line

Figure 6-6 Deviations
of the data from the 
estimated regression
model.
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306 CHAPTER 6 BUILDING EMPIRICAL MODELS

Computing Formulas for Simple Linear Regression

The least squares estimates of the intercept and slope in the simple linear regression
model are

(6-13)

(6-14)

where and .x � (1
n) a
n

i�1
 xiy � (1
n) a

n

i�1
yi

 �
a

n

i�1

 (xi � x )(yi � y)

a
n

i�1

 (xi � x )2

�
Sxy

Sxx

 �̂1 �
a

n

i�1

 yi xi �

aa
n

i�1

 yib aa
n

i�1

 xib
n

a
n

i�1

 x2
i �

aa
n

i�1

 xib
2

n

�0
ˆ � y � �̂1x

The fitted or estimated regression line is therefore

(6-15)

Note that each pair of observations satisfies the relationship

where is called the residual. The residual describes the error in the fit of the
model to the ith observation yi. Subsequently, we will use the residuals to provide information
about the adequacy of the fitted model.

ei � yi � ŷi

yi � �̂0 � �̂1xi � ei,  i � 1, 2, . . . , n

ŷ � �̂0 � �̂1x

EXAMPLE 6-1 Fit a simple linear regression model to the data on salt concentration and roadway area in Table 6-1.

Solution. To build the regression model, the following quantities are computed:

Sxx � a
20

i�1

 x2
i �

aa
20

i�1

xib
2

20
� 17.2502 �

(16.486)2

20
� 3.67068

a
20

i�1

 y2
i � 7060.00 a

20

i�1

 x2
i � 17.2502 a

20

i�1

 xi yi � 346.793

n � 20 a
20

i�1

 xi � 16.480 a
20

i�1

 yi � 342.70 x � 0.824 y � 17.135

Salt Concentration
and Roadway Data
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and

Therefore, the least squares estimates of the slope and intercept are

and

The fitted simple linear regression model is

This model is plotted in Fig. 6-7, along with the sample data.
Practical interpretation: Using the linear regression model, we would predict that the salt concen-

tration in surface streams, where the percentage of paved roads in the watershed is 1.25%, is
milligrams/liter. The predicted value can be interpreted either as

an estimate of the mean salt concentration when roadway area x �1.25% or as an estimate of a new
observation when x �1.25%. These estimates are, of course, subject to error; that is, it is unlikely that
either the true mean salt concentration or a future observation would be exactly 24.61 milligrams/liter
when the roadway area is 1.25%. Subsequently, we will see how to use confidence intervals and prediction
intervals to describe the error in estimation from a regression model. ■

17.5467(1.25) � 24.61ŷ � 2.6765 �

�̂1�̂0

cc

ŷ � 2.6765 � 17.5467x

�̂0 � y � �̂1x � 17.135 � (17.5467)0.824 � 2.6765

�̂1 �
Sxy

Sxx

�
64.4082

3.67068
� 17.5467

Sxy � a
20

i�1

 xi yi �

aa
20

i�1

 xibaa
20

i�1

 yib
20

� 346.793 �
(16.480)(342.70)

20
� 64.4082

6-2 SIMPLE LINEAR REGRESSION 307

Computer software is widely used to fit regression models. Some output from Minitab for
the regression model on salt concentration and roadway area is shown in Table 6-2.

We have highlighted several entries in the Minitab output including the estimates of �0

and �1 (in the column labeled “Coef ” in the upper portion of Table 6-2). Notice that Minitab
computes the model residuals; that is, it successively substitutes each value of xi (i �1, 2, . . . , n)
in the sample into the fitted regression model, calculates the fitted values , andŷi � �̂0 � �̂1xi

30

20

10

0
0.2 0.40.0 0.6 1.00.8 1.2

S
al

t 
co

nc
. 

(y
)

Roadway area (x)

1.4 1.6 1.8

Figure 6-7 Scatter
diagram of salt con-
centration y versus
roadway area x and the
fitted regression
model.
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308 CHAPTER 6 BUILDING EMPIRICAL MODELS

then finds the residuals as For example, the ninth observation
has x9 �0.75 and y9 �15.5, and the regression model predicts that so the cor-
responding residual is e9 �15.5 � 15.837 � �0.337. The residuals for all 20 observations are
listed toward the bottom of the output.

ŷ9 � 15.837,
ei � yi � ŷi, i � 1, 2, . . . , n.

Table 6-2 Minitab Regression Analysis Output for Salt Concentration and Roadway Data

Regression Analysis: Salt conc ( y) versus Roadway area (x)

The regression equation is

Salt conc ( y) �2.68 � 17.5 Roadway area (x)

Predictor Coef SE Coef T P

Constant 2.6765 0.8680 3.08 0.006

Roadway area 17.5467 0.9346 18.77 0.000

S �1.791 R-Sq �95.1% R-Sq(adj) �94.9%

Analysis of Variance

Source DF SS MS F P

Regression 1 1130.1 SSR 1130.1 352.46 0.000

Residual Error 18 57.7 SSE 3.2

Total 19 1187.9 SST

Obs Roadway area Salt conc Fit SE Fit Residual

1 0.19 3.800 6.010 0.715 �2.210
2 0.15 5.900 5.309 0.746 0.591
3 0.57 14.100 12.678 0.465 1.422
4 0.40 10.400 9.695 0.563 0.705
5 0.70 14.600 14.959 0.417 �0.359
6 0.67 14.500 14.433 0.425 0.067
7 0.63 15.100 13.731 0.440 1.369
8 0.47 11.900 10.923 0.519 0.977
9 0.75 15.500 15.837 0.406 �0.337

10 0.60 9.300 13.205 0.452 �3.905
11 0.78 15.600 16.363 0.403 �0.763
12 0.81 20.800 16.889 0.401 3.911
13 0.78 14.600 16.363 0.403 �1.763
14 0.69 16.600 14.784 0.420 1.816
15 1.30 25.600 25.487 0.599 0.113
16 1.05 20.900 21.101 0.453 �0.201
17 1.52 29.900 29.347 0.764 0.553
18 1.06 19.600 21.276 0.457 �1.676
19 1.74 31.300 33.208 0.945 �1.908
20 1.62 32.700 31.102 0.845 1.598

Predicted Values for New Observations

New Obs Fit SE Fit 95.0% CI 95.0% PI

1 24.610 0.565 (23.424, 25.796) (20.665, 28.555)

Values of Predictors for New Observations

New Obs Roadway area

1 1.25

�̂2

�̂

�̂1

�̂0
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6-2 SIMPLE LINEAR REGRESSION 309

The residuals from the fitted regression model are used to estimate the variance of the
model errors �2. Recall that �2 determines the amount of variability in the observations on the 
response y at a given value of the regressor variable x. The sum of the squared residuals is used
to obtain the estimate of �2.

Error Sum of Squares

The residual sum of squares (sometimes called the error sum of squares) is defined as

(6-16)

and for simple linear regression the estimate of �2 is

(6-17)�̂2 �
SSE

n � 2

SSE � a
n

i�1

( yi � ŷi)
2 � a

n

i�1

e2
i

Definition

Although there are n residuals, equation 6-11 shows that the residuals satisfy two equations.
Consequently, knowledge of n � 2 residuals can be used to calculate the remaining two residuals.
Therefore, n � 2 is used in the denominator in equation 6-17.

EXAMPLE 6-1 Both SSE �57.7 and the estimate of the variance for the salt concentration–roadway area 
regression model are highlighted in Table 6-2. The reported quantity is an estimate of the 
standard deviation of the model errors. (Note that s is not exactly equal to due to the way
that Minitab rounds the numerical output quantities.) ■

2�̂2� 13.2
s � 1.791

�̂2 � 3.2

(continued)

Regression Assumptions and Model Properties
In linear regression, we customarily assume that the model errors , i �1, 2, . . . , n are normally
and independently distributed with mean zero and variance �2. The values of the regressor vari-
ables xi are assumed to be fixed before the data are collected, so the response variable Yi has a
normal distribution with mean �0 � �1xi and variance �2. Furthermore, both and can be
written as linear combinations of the Yi’s. The properties of linear functions of normally and 
independently distributed random variables lead to the following results.

�̂1�̂0

�i

Coefficient Estimators, Simple Linear Regression

1. Both and are unbiased estimators of the intercept and slope, respectively.
That is, the distribution of (and ) is centered at the true value of �1 (and �0).

2. The variances of and are

3. The distributions of and are normal.�̂1�̂0

V (�̂0) � �2 a1

n
�

x 2

Sxx

b   and   V (�̂1) �
�2

Sxx

�̂1�̂0

�̂0�̂1

�̂1�̂0
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310 CHAPTER 6 BUILDING EMPIRICAL MODELS

If we replace �2 in the expressions for the variances of the slope and intercept by from equa-
tion 6-17 and take the square root, we obtain the standard errors of the slope and intercept.

�̂2

Standard Error of the Slope and Intercept, Simple Linear Regression

The standard errors of the slope and intercept in simple linear regression are

(6-18)

and

(6-19)

respectively.

se (�̂0) �
B

�̂
2 a1

n
�

x2

Sxx

b

se (�̂1) �
B

�̂2

Sxx

ANOVA for Regression Analysis

(6-21)SST � a
n

i�1

 ( yi � y)2 � a
n

i�1

 ( ŷi � y)2 � a
n

i�1

 ( yi � ŷi)
2 � SSR � SSE

EXAMPLE 6-1 Minitab calculates the standard errors of the slope and intercept and reports them in the computer
output (in Table 6-2) immediately adjacent to the coefficient estimates and in the column headed
“SE Coef.” We find from the Minitab display that and These standard 
errors will be used to find confidence intervals and test hypotheses about the slope and intercept.

se(�̂1) � 0.9346.se(�̂0) � 0.8680
�̂1�̂0(continued)

Regression and Analysis of Variance
The total sum of squares of the observed y values

(6-20)

is a measure of the total variability in the response. The total sum of squares (SST) can be written as

SST � Syy � a
n

i�1

 ( yi � y)2 � a
n

i�1

 y2
i �

aa
n

i�1

 yib
2

n

This is an analysis of variance (ANOVA), similar to the ANOVA we encountered in Section 5-8.
It partitions the total variability in the response into two components. One of these is the 
error or residual sum of squares SSE from equation 6-16, which is a measure of unexplained
variability in the y’s, and the other, SSR,

Regression Sum of Squares

SSR � a
n

i�1

( ŷi � y)2
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6-2 SIMPLE LINEAR REGRESSION 311

measures variability explained by the regression model. SSR is usually called the regression
sum of squares, or the model sum of squares. These sums of squares are listed in Table 6-2 in
the section of output headed “Analysis of Variance.” We usually think of the ratio SSE�SST as
the proportion of variability in the response variable that cannot be accounted for by the 
regression model. Consequently, 1 � SSE�SST is the proportion of variability in the response
that is accounted for by the model.

Coefficient of Determination (R2)

The coefficient of determination is defined as

(6-22)

It is interpreted as the proportion of variability in the observed response variable that
is explained by the linear regression model. Sometimes the quantity reported is
100R2, and it is referred to as the percentage of variability explained by the model.

R2 � 1 �
SSE

SST

Minitab calculates and reports the R2 statistic. For example, for the regression model for
the salt concentration–roadway area data in Table 6-2, Minitab reports the quantity 100R2 as
95.1%, implying that the regression model accounts for 95.1% of the observed variability in
the salt concentration data.

The ANOVA partition forces 0 � R2 � 1. A large value of R2 suggests that the model has
been successful in explaining the variability in the response. When R2 is small, it may be an
indication that we need to find an alternative model, such as a multiple regression model, that
can account for more of the variability in y.

Other Aspects of Regression
Regression models are used primarily for interpolation. That is, when predicting a new obser-
vation on the response (or estimating the mean response) at a particular value of the regressor
x, we should only use values of x that are within the range of the x’s used to fit the model. For
example, in the salt concentration–roadway area problem of Example 6-1, values of roadway
area between 0.15 and 1.74% are appropriate, but a value of x �2.5 would not be reasonable
because it is far outside of the original range of the regressors. Basically, as one moves outside
the range of the original data, the reliability of the linear approximation as an empirical model
of the true relationship will deteriorate.

We have assumed throughout this section that the regressor variable x is controllable and
is set to levels chosen by the analyst and that the response variable Y is a random variable.
There are many stituations where this would not be the case. In fact, in the salt concentration–
roadway area data, the roadway areas were not controlled. The analyst selected a group of 
20 watersheds, and both the salt concentration and the roadway area were random variables. The
regression methods that we described in this chapter can be employed both when the regressor
values are fixed in advance and when they are random, but the fixed-regressor case is some-
what easier to describe, so we concentrate on it. When Y and X are both random, we can also
use correlation as a measure of the association between the two variables. We will discuss this
briefly in Section 6-2.6.
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312 CHAPTER 6 BUILDING EMPIRICAL MODELS

The term “regression analysis” was first used in the late nineteenth century by Sir Francis
Galton, who studied the relationship between the heights of parents and children. Galton fit a
model to predict the height of a child from the height of the parents. He discovered that if the
parents were of above-average height, the child would tend to also be of above-average height,
but not by as much as the parents. Thus, height of the child regressed toward the mean.

Animation 15: Drawing Regression Lines

6-2.2 Testing Hypotheses in Simple Linear Regression

It is often useful to test hypotheses about the slope and intercept in a linear regression model.
The normality assumption on the model errors and, hence, on the response variable that we 
introduced in Section 6-2.1 continues to apply.

Use of t-Tests
Suppose we wish to test the hypothesis that the slope equals a constant, say, �1,0. The appro-
priate hypotheses are

(6-23)

Because the responses Yi are normally and independently distributed random variables, is
. As a result, the test statistic

(6-24)

follows the t distribution with n � 2 degrees of freedom under H0: �1 � �1,0. A P-value would
be calculated as in any t-test. For a fixed-level test, we would reject H0: �1 � �1,0 if the computed
value of the test statistic

(6-25)

where t0 is computed from equation 6-24. A similar procedure can be used to test hypotheses
about the intercept. To test

(6-26)

we would use the test statistic

(6-27)

The P-value would be computed as in any t-test. For a fixed-level test, we would reject the null
hypothesis if the computed value of the test statistic, t0, is such that � t�2,n�2.0 t0 0

T0 �
�̂0 � �0,0

B
�̂2 c 1

n
 �

x 2

Sxx

d  
�

�̂0 � �0,0

se(�̂0)

H1: �0 	 �0,0

H0: �0 � �0,0

0 t0 0 7 t
2, n�2

T0 �
�̂1 � �1,0

2�̂2
Sxx

�
�̂1 � �1,0

se(�̂1)

N (�1, �
2
Sxx)

�̂1

H1: �1 	 �1,0

H0: �1 � �1,0
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6-2 SIMPLE LINEAR REGRESSION 313

A very important special case of the hypotheses of equation 6-23 is

(6-28)

These hypotheses relate to the significance of regression. Failure to reject H0: �1 � 0 is
equivalent to concluding that there is no linear relationship between x and Y. This situation is
illustrated in Fig. 6-8. Note that this may imply either that x is of little value in explaining the
variation in Y and that the best estimator of Y for any x is (Fig. 6-8a) or that the true
relationship between x and Y is not linear (Fig. 6-8b). Alternatively, if H0: �1 �0 is rejected,
this implies that x is of value in explaining the variability in Y (see Fig. 6-9). Rejecting H0: �1 � 0
could mean either that the straight-line model is adequate (Fig. 6-9a) or that, although there
is a linear effect of x, better results could be obtained with the addition of higher-order poly-
nomial terms in x (Fig. 6-9b).

ŷ � Y

H1: �1 � 0

H0: �1 � 0

x

y

(a)
x

y

(b)

Figure 6-8 The 
hypothesis H0: �1 �0 
is not rejected.

x

y

(a)
x

y

(b)

Figure 6-9 The 
hypothesis H0: �1 � 0
is rejected.

EXAMPLE 6-2 Test for significance of regression using the model for the salt concentration–roadway area data from 
Example 6-1.

Solution. The hypotheses are

and we will use � �0.01. From Example 6-1 and the Minitab output in Table 6-2, we have

�̂1 � 17.5467 n � 20, Sxx � 3.67068, �̂2 � 3.2

H1: �1 � 0

H0: �1 � 0

Salt Concentration
and Roadway Data
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314 CHAPTER 6 BUILDING EMPIRICAL MODELS

so the t-statistic in equation 6-24 is

� �

Because the critical value of t is t0.005,18 � 2.88, the value of the test statistic 18.77 is very far into
the critical region, implying that H0: �1 � 0 should be rejected. The P-value for this test is near zero. This
was obtained manually with a calculator and strongly indicates significance of �1.

The Minitab output for this problem is shown in Table 6-2. Notice that the t-statistic value for the
slope is computed as 18.77 and that the reported P-value is P � 0.000. Minitab also reports the t-statistic
for testing the hypothesis H0: �0 � 0. This statistic is computed from equation 6-27, with �0,0 � 0, as 
t0 � 3.08. Because the P-value is 0.006, the hypothesis that the intercept is zero is rejected. 

Practical interpretation: The significance of the test of H0: �1, � 0 implies a relationship is
detected between the roadway area and salt concentration. ■

17.5467

13.2
3.67068
� 18.77

�̂1

se(�̂1)
t0 �

�̂1

2�̂2
Sxx

Analysis of Variance Approach
The analysis of variance can also be used to test for the significance of regression. If the null
hypothesis for significance of regression, H0: �1 � 0, is true, SSR��2 is a chi-square random
variable with 1 degree of freedom. Note that the number of degrees of freedom for this chi-
square random variable is equal to the number of regressor variables in the model. We can also
show that SSE��2 is a chi-square random variable with n � 2 degrees of freedom for simple
regression, and that SSE and SSR are independent.

Testing for Significance of Regression in Simple Linear Regression

(6-29)

Null hypothesis: H0: �1 � 0

Alternative hypothesis: H1: �1 0

Test statistic: (6-30)

Rejection criterion for a fixed-level test:

P-value: Probability beyond f0 in the F1, n�2 distribution

f0 7 f,1,n�2

F0 �
MSR

MSE

	

MSR �
SSR

1
  MSE �

SSE

n � p

The ANOVA test for significance of regression is usually summarized in a table, such as
shown in Table 6-3.

Table 6-3 Analysis of Variance for Testing Significance of Regression

Source of Degrees of 
Variation Sum of Squares Freedom Mean Square F0

Regression SSR 1 MSR MSR�MSE

Error or residual SSE n � 2 MSE

Total SST n � 1
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EXAMPLE 6-2 The Minitab output displayed in Table 6-2 contains the analysis of variance test for significance of 
regression. The computed value of the F statistic for significance of regression is f0 � MSR�MSE �
1130.1�3.2 � 352.46. Minitab reports the P-value for this test as 0.000 (the actual P-value is 2.87 �
10�13). Therefore, we reject the null hypothesis that the slope of the regression line is zero and conclude
that there is a linear relationship between salt concentration and roadway area. ■

(continued)

The t-test for significance of regression is closely related to the ANOVA F-test. In fact, the
two tests produce identical results. This should not be surprising because both procedures are
testing the same hypotheses. It can be shown that the square of the computed value of the test
statistic t0 is equal to the computed value of the ANOVA test statistic f0 (however, rounding
may affect the results). To see this, refer to the Minitab output in Table 6-2 and note that t2

0 �
18.772 �352.3, which apart from rounding in the numbers reported by Minitab, is equal to the
ANOVA F-statistic. In general, the square of a t random variable with r degrees of freedom is
equal to an F random variable with one numerator degree of freedom and r denominator degrees
of freedom.

6-2.3 Confidence Intervals in Simple Linear Regression

Confidence Intervals on the Slope and Intercept
In addition to point estimates of the slope and intercept, it is possible to obtain confidence inter-
val estimates of these parameters. The width of these CIs is a measure of the overall quality of
the regression line. If the error terms, �i, in the regression model are normally and independently
distributed,

are both distributed as t random variables with n � 2 degrees of freedom. This leads to the fol-
lowing definition of 100(1 � �)% CIs on the slope and intercept.

(�̂1 � �1)�se(�̂1) and (�̂0 � �0)�se(�̂0)

Confidence Intervals on the Model Parameters in Simple Linear Regression

Under the assumption that the observations are normally and independently distributed,
a 100(1 � �)% confidence interval on the slope �1 in a simple linear regression is

(6-31)

Similarly, a 100(1 � �)% CI on the intercept �0 is

(6-32)

where and are defined in equations 6-18 and 6-19, respectively.se(�̂0)se(�̂1)

	 �0 	 �̂0 
 t��2,n�2 se(�̂1)�̂0 � t��2,n�2 se(�̂0)

�̂1 � t��2,n�2 se(�̂1) 	 �1 	 �̂1 
 t��2,n�2 se(�̂1)

EXAMPLE 6-3 Find a 95% CI on the slope of the regression line using the data in Example 6-1.

Solution. Recall that and that (see Table 6-2). Then from equation 6-31
we find

�̂1 � t0.025,18 se(�̂1) 	 �1 	 �̂1 
 t0.025,18 se(�̂1)

se(�̂1) � 0.9346�̂1 � 17.5467
Salt Concentration
and Roadway Data
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316 CHAPTER 6 BUILDING EMPIRICAL MODELS

or

This simplifies to

Practical interpretation: The confidence interval indicates that a 1% change in roadway area corresponds
to a 15.5 to 19.5 milligrams/liter increase in salt concentration. ■

15.5831 � �1 � 19.5103

17.5467 � 2.101(0.9346) � �1 � 17.5467 � 2.101(0.9346)

Confidence Interval on the Mean Response
A CI may be constructed on the mean response at a specified value of x, say, x0. This is a 
CI about E(Y ƒ x0) � and is often called a CI about the regression line. Because E(Y ƒ x0) �

� �0��1x0, we may obtain a point estimate of the mean of Y at x � x0 (or ) from the
fitted model as

Now is an unbiased point estimator of because and are unbiased estimators of
�0 and �1. The variance of is

(6-33)

Also, is normally distributed because and are normally distributed, and if is used
as an estimate of �2, it is easy to show that

has a t distribution with n � 2 degrees of freedom. The quantity is sometimes called
the standard error of the fitted value. This leads to the following confidence interval definition.

se(�̂Y 0x0
)

�̂Y 0x0
� �Y 0x0

B
�̂2 c 1

n
�

(x0 � x)2

Sxx

d
�

�̂Y 0x0
� �Y 0x0

se(�̂Y 0x0
)

�̂2�̂0�̂1�̂Y 0x0

�2 c 1
n

�
(x0 � x )2

Sxx

dV(�̂Y 0x0
) �

�̂Y 0x0

�̂1�̂0�Y 0x0
�̂Y 0x0

�̂Y 0x0
� ŷ0 � �̂0 � �̂1x0

�Y 0x0
�Y 0x0

�Y 0x0

Confidence Interval on the Mean Response in Simple Linear Regression

A 100(1 � )% CI about the mean response at the value of x � x0, say , is
given by

(6-34)

where is computed from the fitted regression model.�̂Y 0x0
� �̂0 � �̂1x0

� t
2,n�2 se(�̂Y |x0
) � �Y |x0

� �̂Y |x0
� t
2,n�2 se(�̂Y |x0

)�̂Y 0 x0

�Y 0 x0

Note that the width of the CI for is a function of the value specified for x0. The interval
width is a minimum for and widens as increases.0x0 � x 0x0 � x

�Y 0 x0
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EXAMPLE 6-4 Construct a 95% CI about the mean response for the data in Example 6-1.

Solution. The fitted model is , and the 95% CI on is found from
equation 6-33 as

Suppose that we are interested in predicting mean salt concentration when roadway area x0 � 1.25%. Then

and the 95% CI is

or

Therefore, the 95% CI on is

23.425

Minitab will also perform these calculations. Refer to Table 6-2. The predicted value of y at x � 1.25 is
shown along with the 95% CI on the mean of y at this level of x. Minitab labels the stan-
dard error as “SE Fit.”

Further steps: By repeating these calculations for several different values for x0 we can obtain con-
fidence limits for each corresponding value of . Minitab calculated the standard error at
each of the x-values in the sample. In Table 6-2, these standard errors are in the column labeled “SE Fit.”
Figure 6-10 displays the scatter diagram from minitab with the fitted model and the corresponding 95%
confidence limits plotted as the upper and lower lines. The 95% confidence level applies only to the in-
terval obtained at one value of x and not to the entire set of x-levels. Notice that the width of the confi-
dence interval on increases as  increases. ■0x0 � x 0�Y 0x0

se(�̂Y 0x0
)�Y 0x0

se(�̂Y 01.25)
se(�̂Y 01.25) and

� �Y 01.25 � 24.795

�Y 01.25

24.61 � 2.101(0.564)

e 24.61 � 2.101
B

3.2 c 1

20
�

(1.25 � 0.824)2

3.67068
d f

�̂Y 01.25 � 2.6765 � 17.5467(1.25) � 24.61

B
3.2 c 1

20
�

(x0 � 0.824)2

3.67068
d�̂Y 0x0

� 2.101 se(�̂Y 0x0
)  se (�̂Y 0 x0

) �

�Y 0x0
�̂Y 0x0

� 2.6765 � 17.5467x0

Salt Concentration
and Roadway Data
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Figure 6-10 Scatter
diagram of salt con-
centration and roadway
area from Example 6-1
with fitted regression
line and 95% confi-
dence limits on .�Y 0x0
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318 CHAPTER 6 BUILDING EMPIRICAL MODELS

6-2.4 Prediction of a Future Observation

An important application of a regression model is predicting new or future observations Y cor-
responding to a specified level of the regressor variable x. If x0 is the value of the regressor
variable of interest,

(6-35)

is the point estimator of the new or future value of the response Y0.
Now consider obtaining an interval estimate for this future observation Y0. This new 

observation is independent of the observations used to develop the regression model.
Therefore, the confidence interval for in equation 6-34 is inappropriate because it is
based only on the data used to fit the regression model. The CI about refers to the true
mean response at x � x0 (that is, a population parameter), not to future observations.

Let Y0 be the future observation at x � x0, and let given by equation 6-35 be the estimator
of Y0. Note that the error in prediction is a normally distributed random variable with
mean zero and variance

because Y0 is independent of . If we use to estimate �2, we can show that

has a t distribution with n � 2 degrees of freedom. From this we can develop the following
prediction interval (PI) definition.

Y0 � Ŷ0

B
�̂2 c1 �

1

n
�

(x0 � x)2

Sxx

d

�̂2Ŷ0

V(Y0 � Ŷ0) � �2 c1 �
1

n
�

(x0 � x)2

Sxx

d

Y0 � Ŷ0

Ŷ0

�Y 0 x0

�Y 0 x0

Ŷ0 � �̂Y 0 x0
� �̂0 � �̂1x0

Notice that the PI is of minimum width at and widens as increases. By com-
paring equation 6-36 with equation 6-34, we observe that the PI at the point x0 is always wider
than the CI at x0. This results because the PI depends on both the error from the fitted model
and the error associated with future observations. The PI in equation 6-36 is similar to the PI

0x0 � x 0x0 � x

Prediction Interval on a Future Observation in Simple Linear Regression

A 100(1 � )% PI on a future observation Y0 at the value x0 is given by

(6-36)

where the value is computed from the regression model .ŷ0 � �̂0 � �̂1x0ŷ0

� Y0 � ŷ0 � t
2,n�2C
�̂2 c1 �

1

n
�

(x0 � x)2

Sxx

d

ŷ
0

� t

2,n�2B

�̂2 c1 �
1

n
�

(x0 � x)2

Sxx

d
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6-2.5 Checking Model Adequacy

Fitting a regression model requires several assumptions. Estimation of the model parameters
requires the assumption that the errors are uncorrelated random variables with mean zero and
constant variance. Tests of hypotheses and interval estimation require that the errors be nor-
mally distributed. In addition, we assume that the order of the model is correct; that is, if we
fit a simple linear regression model, we are assuming that the phenomenon actually behaves in
a linear or first-order manner.

The analyst should always consider the validity of these assumptions to be doubtful and
conduct analyses to examine the adequacy of the model that has been tentatively entertained.
The residuals from the regression model, defined as , are useful inei � yi � ŷi, i � 1, 2, . . . , n

on a future observation drawn from a normal distribution introduced in Section 4-8.1, except
that now a regressor variable is involved in determining the future value.

EXAMPLE 6-5 Using the data in Example 6-1, find a 95% PI on a future observation of salt concentration when roadway
area x0 � 1.25%. 

Solution. Using equation 6-36 and recalling from Example 6-4 that , we find that the PI is

which simplifies to

Minitab will also calculate PIs. Refer to the output in Table 6-2. The 95% PI on the future observation at
x0 � 1.25% is shown in the table.

Further steps: By repeating the foregoing calculations at different levels of x0, we may obtain the
95% PIs shown graphically as the lower and upper lines about the fitted regression model in Fig. 6-11.
Notice that this graph also shows the 95% confidence limits on calculated in Example 6-4. It
illustrates that the prediction limits are always wider than the confidence limits. ■

�Y 0 x0

20.66 � y0 � 28.55

� Y0 � 24.61 � 2.101
B

3.2 c1 �
1

20
�

(1.25 � 0.824)2

3.67068
d

24.61 � 2.101
B

3.2 c1 �
1

20
�

(1.25 � 0.824)2

3.67068
d

ŷ0 � 24.61
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Figure 6-11 Scatter
diagram of salt con-
centration–roadway
area data from
Example 6-1 with fit-
ted regression line,
95% prediction limits
(outer lines), and 95%
confidence limits on

.�Y 0x0
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320 CHAPTER 6 BUILDING EMPIRICAL MODELS

checking the assumptions of normality and constant variance, and in determining whether 
additional terms in the model would be useful.

As an approximate check of normality, the experimenter can construct a frequency his-
togram of the residuals or a normal probability plot of residuals. Many computer programs
will produce a normal probability plot of residuals, and because the sample sizes in regression
are often too small for a histogram to be meaningful, the normal probability plotting method
is preferred. It requires judgment to assess the abnormality of such plots. (Refer to the discus-
sion of the “fat pencil” method in Chapter 3.)

We may also standardize the residuals by computing If
the errors are normally distributed, approximately 95% of the standardized residuals should
fall in the interval (�2, �2). Residuals that are far outside this interval may indicate the pres-
ence of an outlier, that is, an observation that is not typical of the rest of the data. Various rules
have been proposed for discarding outliers. However, outliers sometimes provide important
information about unusual circumstances of interest to experimenters and should not be dis-
carded. For further discussion of outliers, see Montgomery, Peck, and Vining (2006).

It is frequently helpful to plot the residuals (1) in time sequence (if known), (2) against the
, and (3) against the independent variable x. These graphs will usually look like one of the

four general patterns shown in Fig. 6-12. Pattern (a) in Fig. 6-12 represents the ideal situation,
whereas patterns (b), (c), and (d ) represent anomalies. If the residuals appear as in (b), the
variance of the observations may be increasing with time or with the magnitude of yi or xi.
Data transformation on the response y is often used to eliminate this problem. Widely used
variance-stabilizing transformations include the use of , ln y, or 1�y as the response. See
Montgomery, Peck, and Vining (2006) for more details regarding methods for selecting an 
appropriate transformation. If a plot of the residuals against time has the appearance of (b), the
variance of the observations is increasing with time. Plots of residuals against and xi that
look like (c) also indicate inequality of variance. Residual plots that look like (d ) indicate
model inadequacy; that is, higher-order terms should be added to the model, a transformation
on the x-variable or the y-variable (or both) should be considered, or other regressors should
be considered. Outliers can have a dramatic impact on a regression model. As noted later, a
large residual is often evidence that an outlier is present.

ŷi

1y

ŷi

di � ei
2�̂2, i � 1, 2, . . . , n.

EXAMPLE 6-6 The residuals for the regression model for the salt concentration–roadway area data are shown in Table 6-2.
Analyze the residuals to determine if the regression model provides an adequate fit to the data or if any 
underlying assumptions are violated.

Solution. A normal probability plot of these residuals is shown in Fig. 6-13. No severe deviations from
normality are obviously apparent, although the two largest residuals do not fall extremely close to a
straight line drawn through the remaining residuals. The residuals are plotted against in Fig. 6-14.
There is no indication of a problem with the assumption of constant variance. ■

ŷ

Salt Concentration
and Roadway Data

0

(a)

ei

0

(b)

ei

0

(c)

ei

0

(d)

ei

Figure 6-12 Patterns for residual plots: (a) satisfactory, (b) funnel, (c) double bow, (d) nonlinear. Horizontal axis may be time,
or xi.ŷi,
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6-2 SIMPLE LINEAR REGRESSION 321

The two largest residuals are e10 � �3.905 and e12 � 3.911 (see Table 6-2). The standardized
residuals are and 
and these are not far enough outside the nominal �2, �2 range where we would expect most of the
standardized residuals to fall to cause any alarm.

Further comments: It is easy to demonstrate the impact of an outlier. Suppose that the salt con-
centration for observation 12 was y12 � 28.8 (instead of 20.8). Figure 6-15 shows a scatter plot of
this modified data set with the resulting least squares fit. Using Minitab, you can easily verify that
the fitted value corresponding to observation 12 is now , and the corresponding residual
is . The standardized value of this residual is 

(MSE or in the new regression model), which is far enough outside the
nominal �2, �2 range for us to classify observation 12 as an outlier. The actual impact of this outlier on
the regression line, however, seems fairly modest. Comparing Figs. 6-15 and 6-7 (the least squares fit to
the original data) reveals that the slope of the regression model has not been seriously 
affected by the outlier (17.516 versus 17.5467) but that the intercept has increased by a greater amount,
proportionally, from 2.6765 to 3.102. The outlier has basically raised the average height of the fitted line.

�̂2 � 10.111.51
210.1 � 3.62

d12 � e12 
2�̂2 �28.8 � 17.29 � 11.51y12 � ŷ12 �

ŷ12 � 17.29

d12 � e12
2�̂2 � 3.911
23.2 � 2.186,d10 � e10
2�̂2 � �3.905
13.2 � �2.183
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Figure 6-13 Normal probability plot of residuals from the
salt concentration–roadway area regression model.

Figure 6-14 Plot of residuals versus fitted values for the
salt concentration–roadway area regression model.

ŷ

Figure 6-15 Effect of an outlier.
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Figure 6-16 Effect of an influential observation.

1.4 1.61.21.00.80.60.40.20.0 1.8

Roadway area (x)

S
al

t 
co

nc
. 
(y

)

0

10

20

30

Now suppose that the response for observation 19 was 61.3 instead of 31.3. The scatter
plot and fitted line are shown in Fig. 6-16. This outlier has had a more dramatic impact on the
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least squares fit and has actually begun to pull the fitted line away from the rest of the data.
This is due both to the size of the outlier and to its location along the x-axis. Sample points
near the ends of the range in x-space have potentially more impact on the least squares fit than
points that are located near the middle of the x-space. Points that are remote in the x-space and
that have large residuals are often called influential observations. A scatter plot is useful in
identifying these influential observations in simple linear regression. However, in multiple 
regression, the dimensionality of the problem can make detecting them difficult. We will say
more about influential observations in Section 6-3.3.

6-2.6 Correlation and Regression

We commented in Section 6-2.1 that our development of regression assumed that the regres-
sor variable x was fixed or chosen in advance and that the response variable Y was a random
variable, but that our results for parameter estimation and model inference still apply even if Y
and X both are random variables. In this section we discuss this point further and show some
of the connections between regression and correlation.

Suppose that Y and X are jointly normally distributed random variables with correlation
coefficient � (joint distributions were introduced in Section 3-11). We refer to � as the popu-
lation correlation coefficient, which is a measure of the strength of the linear relationship 
between Y and X in the population or joint distribution. We also have a collection of sample
pairs (xi, yi), i �1, 2, . . . , n, and the sample correlation coefficient between Y and X is given by

(6-37)

We illustrated the computation of r in Section 2-6 and discussed its interpretation. The sample
correlation coefficient for the salt concentration–roadway area data is r �0.975, a strong pos-
itive correlation. Note that r is just the square root of the coefficient of determination, R2, with
the sign taken to be equal to the sign of the slope.

The sample correlation coefficient is also closely related to the slope in a linear regression
model; in fact,

(6-38)

so testing the hypothesis that the slope equals zero (significance of regression) is really equiv-
alent to testing that the population correlation coefficient � � 0. We can also conduct this test
directly; that is, to test

(6-39)H1: � 	 0

H0: � � 0

r � �̂1 a Sxx

SST

b1
2

r �
a

n

i�1

( yi � y)(xi � x)

B a
n

i�1

(yi � y)2

B a
n

i�1

(xi � x)2
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EXAMPLE 6-6 Using the salt concentration and roadway data and Minitab output, 

Therefore, the test statistic is

With a critical value the value of the test statistic 18.24 exceeds 2.88 and has a P-value
of 0. Note that this test statistic value is the same (except for rounding) as the test statistic for at 18.77.
Both tests yield the same conclusion: The correlation between Y and X is significant or, equivalently, the
regression model is significant. ■

�1

t�0.005, 18 � 2.88,

� 18.24

t0 �
0.9754220 � 3

21 � (0.9754)2

r � 17.5467 a3.67068

1187.9
b1
2

� 0.9754

the computed value of the test statistic is

(6-40)

and if  ƒ t0 ƒ � t�2,n�2, the null hypothesis in equation 6-38 is rejected.

t0 �
r2n � 3

21 � r 2

(continued)

There are also other hypothesis testing and CI procedures associated with the sample cor-
relation coefficient �. For details of these procedures and examples, refer to Montgomery and
Runger (2011).

EXERCISES FOR SECTION 6-2

For Exercises 6-1 through 6-5, perform the following.
(a) Estimate the intercept �0 and slope �1 regression coeffi-

cients. Write the estimated regression line.
(b) Compute the residuals.
(c) Compute SSE and estimate the variance.
(d) Find the standard error of the slope and intercept coefficients.
(e) Show that SST �SSR � SSE.
(f ) Compute the coefficient of determination, R2. Comment

on the value.
(g) Use a t-test to test for significance of the intercept and

slope coefficients at  �0.05. Give the P-values of each
and comment on your results.

(h) Construct the ANOVA table and test for significance of 
regression using the P-value. Comment on your results
and their relationship to your results in part (g).

(i) Construct 95% CIs on the intercept and slope. Comment
on the relationship of these CIs and your findings in parts
(g) and (h).

(j) Perform model adequacy checks. Do you believe the
model provides an adequate fit?

(k) Compute the sample correlation coefficient and test for its
significance at  �0.05. Give the P-value and comment
on your results and their relationship to your results in
parts (g) and (h).

6-1. Establishing the properties of materials is an important
problem in identifying a suitable substitute for biodegradable
materials in the fast-food packaging industry. Consider the
following data on product density (g/cm3) and thermal con-
ductivity K-factor (W/mK) published in Materials Research
and Innovation (1999, pp. 2–8).

Thermal Product
Conductivity Density 

y x

0.0480 0.1750

0.0525 0.2200

0.0540 0.2250

0.0535 0.2260

0.0570 0.2500

0.0610 0.2765

6-2 The number of pounds of steam used per month by a
chemical plant is thought to be related to the average ambient
temperature (in �F) for that month. The past year’s usage and
temperature are shown in the following table.
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Usage/ Usage/ 
Temp. 1000 Temp. 1000

Month x y Month x y

Jan. 21 185.79 July 68 621.55

Feb. 24 214.47 Aug. 74 675.06

Mar. 32 288.03 Sept. 62 562.03

Apr. 47 424.84 Oct. 50 452.93

May 50 454.58 Nov. 41 369.95

June 59 539.03 Dec. 30 273.98

6-3. Regression methods were used to analyze the data from
a study investigating the relationship between roadway surface
temperature (x) and pavement deflection ( y). The data follow.

Temperature Deflection Temperature Deflection
x y x y

70.0 0.621 72.7 0.637

77.0 0.657 67.8 0.627

72.1 0.640 76.6 0.652

72.8 0.623 73.4 0.630

78.3 0.661 70.5 0.627

74.5 0.641 72.1 0.631

74.0 0.637 71.2 0.641

72.4 0.630 73.0 0.631

75.2 0.644 72.7 0.634

76.0 0.639 71.4 0.638

6-4. Turbidity is a measure of the cloudiness of the water and
is used to indicate water quality levels. Higher turbidity levels
are usually associated with higher levels of disease- causing 
microbes like viruses, bacteria, and parasites. The turbidity
units of measure are reported as formazin suspension units, or
FAUs. Data were collected on the Rio Grande River during the
late spring and summer months in order to study the relation-
ship between temperature and turbidity. The data follow.

Temperature Turbidity Temperature Turbidity
x y x y

22.9 125 26.1 100

24.0 118 26.9 105

22.9 103 22.8 55

23.0 105 27.0 267

20.5 26 26.1 286

26.2 90 26.2 235

25.8 99 26.6 265

6-5. An article in Concrete Research (“Near Surface
Characteristics of Concrete: Intrinsic Permeability,” Vol. 41,

1989) presented data on compressive strength x and intrinsic
permeability y of various concrete mixes and cures. The fol-
lowing data are consistent with those reported.

Strength Permeability Strength Permeability
x y x y

3.1 33.0 2.4 35.7

4.5 31.0 3.5 31.9

3.4 34.9 1.3 37.3

2.5 35.6 3.0 33.8

2.2 36.1 3.3 32.8

1.2 39.0 3.2 31.6

5.3 30.1 1.8 37.7

4.8 31.2

6-6. An article in the Journal of Sound and Vibration (Vol. 151,
1991, pp. 383–394) described a study investigating the relation-
ship between noise exposure and hypertension. The following
data are representative of those reported in the article.

y 1 0 1 2 5 1 4 6 2 3
x 60 63 65 70 70 70 80 90 80 80

y 5 4 6 8 4 5 7 9 7 6
x 85 89 90 90 90 90 94 100 100 100

(a) Draw a scatter diagram of y (blood pressure rise in mil-
limeters of mercury) versus x (sound pressure level in
decibels). Does a simple linear regression model seem
reasonable in this situation?

(b) Fit the simple linear regression model using least squares.
Find an estimate of �2.

(c) Find the predicted mean rise in blood pressure level
associated with a sound pressure level of 85 decibels.

6-7. Consider the data and simple linear regression in
Exercise 6-1.

(a) Find the mean thermal conductivity given that the product
density is 0.2350.

(b) Compute a 95% CI on this mean response.
(c) Compute a 95% PI on a future observation when product

density is equal to 0.2350.
(d) What do you notice about the relative size of these two

intervals? Which is wider and why?

6-8. Consider the data and simple linear regression model in
Exercise 6-2.

(a) Find the mean pounds of steam given that the ambient
temperature is 52 degrees.

(b) Compute a 99% CI on this mean response.
(c) Compute a 99% PI on a future observation when the

ambient temperature is equal to 52 degrees.
(d) What do you notice about the relative size of these two

intervals? Which is wider and why?
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6-9. Consider the data and simple linear regression in
Exercise 6-3.

(a) Find the mean deflection given that the temperature is
74.0 degrees.

(b) Compute a 95% CI on this mean response.
(c) Compute a 95% PI on a future observation when temper-

ature is equal to 74.0 degrees.
(d) What do you notice about the relative size of these two 

intervals? Which is wider and why?

6-10. Consider the data and simple linear regression in
Exercise 6-4.

(a) Find the mean turbidity given that the temperature is 
25.0 degrees.

(b) Compute a 95% CI on this mean response.
(c) Compute a 95% PI on a future observation when temper-

ature is equal to 25.0 degrees.
(d) What do you notice about the relative size of these two 

intervals? Which is wider and why?

6-11. Consider the data and simple linear regression model
in Exercise 6-5.

(a) Find the mean permeability given that the strength is 2.1.
(b) Compute a 99% CI on this mean response.
(c) Compute a 99% PI on a future observation when the

strength is equal to 2.1.
(d) What do you notice about the relative size of these two 

intervals? Which is wider and why?

6-12. Consider the data and simple linear regression model
in Exercise 6-6.

(a) Find the mean rise in blood pressure given that the sound
pressure level is 85 decibels.

(b) Compute a 99% CI on this mean response.
(c) Compute a 99% PI on a future observation when the

sound pressure level is 85 decibels.
(d) What do you notice about the relative size of these two 

intervals? Which is wider and why?

6-13. An article in Wood Science and Technology (“Creep in
Chipboard, Part 3: Initial Assessment of the Influence of
Moisture Content and Level of Stressing on Rate of Creep and
Time to Failure,” Vol. 15, 1981, pp. 125–144) describes the 
results of a study of the deflection (mm) of particleboard from
stress levels of relative humidity. Assume that the two vari-
ables are related according to the simple linear regression
model. The data are shown here:

level (%): 54 54 61 61 68
(mm): 16.473 18.693 14.305 15.121 13.505

level (%): 68 75 75 75
(mm): 11.640 11.168 12.534 11.224

(a) Calculate the least square estimates of the slope and inter-
cept. What is the estimate of Graph the regression
model and the data.

�2?

y � Deflection
x � Stress
y � Deflection
x � Stress

(b) Find the estimate of the mean deflection if the stress level
can be limited to 65%.

(c) Estimate the change in the mean deflection associated
with a 5% increment in stress level.

(d) To decrease the mean deflection by one millimeter, how
much increase in stress level must be generated?

(e) Given that the stress level is 68%, find the fitted value of
deflection and the corresponding residual.

6-14. An article in the Journal of the Environmental
Engineering Division (“Least Squares Estimates of BOD
Parameters,” Vol. 106, 1980, pp. 1197–1202) describes the 
results of testing a sample from the Holston River below
Kingport, TN, during August 1977. The biochemical oxygen
demand (BOD) test is conducted over a period of time in days.
The resulting data is shown here:

Time (days): 1 2 4 6 8 10 12 14 16
18 20

BOD (mg/liter): 0.6 0.7 1.5 1.9 2.1 2.6 2.9 3.7 3.5
3.7 3.8

(a) Assuming that a simple linear regression model is appro-
priate, fit the regression model relating BOD ( y) to the
time (x). What is the estimate of 

(b) What is the estimate of expected BOD level when the time
is 15 days?

(c) What change in mean BOD is expected when the time 
increases by 3 days?

(d) Suppose the time used is 6 days. Calculate the fitted value
of y and the corresponding residual.

(e) Calculate the fitted for each value of used to fit the
model. Then construct a graph of versus the corres-
ponding observed values and comment on what this plot
would look like if the relationship between y and x was a
deterministic (no random error) straight line. Does the
plot actually obtained indicate that time is an effective 
regressor variable in predicting BOD?

6-15. Use the following partially complete Minitab output
to answer the following questions.

(a) Find all of the missing values.
(b) Find the estimate of 
(c) Test for significance of regression. Test for significance of

Comment on the two results. Use 
(d) Construct a 95% CI on Use this CI to test for signifi-

cance of regression.
(e) Comment on results found in parts (c) and (d).
(f) Write the regression model and use it to compute the

residual when and 
(g) Use the regression model to compute the mean and pre-

dicted future response when Given that 
and construct a 95% CI on the mean 
response and a 95% PI on the future response. Which inter-
val is wider? Why?

Sxx � 5.326191,
x � 1.76x � 1.5.

y � 2.8.x � 2.18

�1.
� � 0.05.�1.

�2.

yi

yi ˆ
xiyi ˆ

�2?
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6-16. Use the following partially complete Minitab output
to answer the following questions.

(a) Find all of the missing values.
(b) Find the estimate of 
(c) Test for significance of regression. Test for significance of

Comment on the two results. Use 
(d) Construct a 95% CI on Use this CI to test for signifi-

cance of regression.
�1.

� � 0.05.�1.

�2.

Predictor Coef SE Coef T P
Constant 0.6649 0.1594 4.17 0.001
X 0.83075 0.08552 ? ?

Analysis of Variance

Source DF SS MS F P
Regression 1 3.6631 3.6631 ? ?
Residual Error 12 0.4658 ?
Total 13 ?

R � Sq(adj) � ?R � Sq � 88.7%S � ?

Predictor Coef SE Coef T P
Constant 0.9798 0.3367 2.91 0.011
X 0.5725 ? ?

Analysis of Variance

Source DF SS MS F P
Regression 1 84.106 84.106 ? ?
Residual Error 14 5.590 ?
Total 15 ?

R � Sq(adj) � ?R � Sq � 93.8%S � ?

�8.3088

(e) Comment on results found in parts (c) and (d).
(f) Write the regression model and use it to compute the

residual when and 
(g) Use the regression model to compute the mean and pre-

dicted future response when Given that 
and construct a 95% CI on the mean 
response and a 95% PI on the future response. Which 
interval is wider? Why?

Sxx � 1.218294,
x � 0.52x � 0.6.

y � �3.30.x � 0.58

6-3 MULTIPLE REGRESSION

We now consider the multiple linear regression model introduced in Section 6-1. As we did for
simple linear regression, we will show how to estimate the model parameters using the method
of least squares, test hypotheses and construct CIs on the model parameters, predict future ob-
servations, and investigate model adequacy.

6-3.1 Estimation of Parameters in Multiple Regression

The method of least squares may be used to estimate the regression coefficents in the multiple
regression model, equation 6-3. Suppose that n � k observations are available, and let xij

denote the ith observation or level of variable xj. The observations are

It is customary to present the data for multiple regression in a table such as Table 6-4.
Each observation (xi1, xi2, . . . , xik, yi), satisfies the model in equation 6-3, or

(6-41) � �0 � a
k

j�1

�j xij � 	i i � 1, 2, . . . , n

yi � �0 � �1xi1 � �2xi2 � p � �k xik � 	i

(xi1, xi2, . . . , xik, yi) i � 1, 2, . . . , n 7 k

Table 6-4 Data for Multiple Linear Regression

y x1 x2 xk

y1 x11 x12 x1k

y2 x21 x22 x2k

yn xn1 xn2 xnk
p

oooo

p

p

p
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The least squares function is

(6-42)

We want to minimize L with respect to �0, �1, . . . , �k. The least squares estimates of �0, 
�1, . . . , �k must satisfy

(6-43a)

and

(6-43b)

Simplifying equations 6-43a and 6-43b, we obtain the least squares normal equations

(6-44)

Note that there are p �k � 1 normal equations, one for each of the unknown regression coeffi-
cients. The solution to the normal equations will be the least squares estimators of the regression
coefficients, . The normal equations can be solved by any method appropriate for
solving a system of linear equations.

�̂0, �̂1, . . . , �̂k

 �̂0a
n

i�1

xik � �̂1a
n

i�1

xik xi1 � �̂2a
n

i�1

xik xi2 � p � �̂ka
n

i�1

x2
ik � a

n

i�1

xik yi

ooooo

 �̂0a
n

i�1

xi1 � �̂1a
n

i�1

x2
i1 � �̂2a

n

i�1

xi1xi2 � p � �̂ka
n

i�1

xi1xik � a
n

i�1

xi1 yi

 n�̂0 � �̂1a
n

i�1

xi1 � �̂2a
n

i�1

xi2 � p � �k
ˆ a

n

i�1

xik � a
n

i�1

yi

0L

0�j

`
�̂0,�̂1, p , �̂k

� �2a
n

i�1

ayi � �̂0 � a
k

j�1

�̂j xijb xij � 0 j � 1, 2, . . . , k

0L

0�0

`
�̂0,�̂1, p , �̂k

� �2a
n

i�1

ayi � �̂0 � a
k

j�1

�̂j xijb � 0

L � a
n

i�1

�2
i � a

n

i�1

a yi � �0 � a
k

j�1

�j xijb
2

EXAMPLE 6-7 In Chapter 1, we used data on pull strength of a wire bond in a semiconductor manufacturing process, wire
length, and die height to illustrate building an empirical model. We will use the same data, repeated for con-
venience in Table 6-5, and show the details of estimating the model parameters. Scatter plots of the data are
presented in Figs. 1-11a and 1-11b. Figure 6-17 shows a matrix of two-dimensional scatter plots of the data.
These displays can be helpful in visualizing the relationships among variables in a multivariable data set.

Fit the multiple linear regression model

where Y �pull strength, x1 �wire length, and x2 �die height.

Solution. From the data in Table 6-5 we calculate

a
25

i�1

xi1xi2 � 77,177, a
25

i�1

xi1 yi � 8,008.47, a
25

i�1

xi2 yi � 274,816.71

a
25

i�1

x2
i1 � 2,396, a

25

i�1

x2
i2 � 3,531,848

a
25

i�1

xi1 � 206, a
25

i�1

xi2 � 8,294n � 25, a
25

i�1

yi � 725.82,

Y � �0 � �1x1 � �2x2 � �

Wire Bond Pull
Strength
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For the model Y � �0 � �1x1 � �2x2 � �, the normal equations 6-43 are

Inserting the computed summations into the normal equations, we obtain

 8,294�̂0 � 77,177�̂1 � 3,531,848�̂2 � 274,816.71

 206�̂0 � 2,396�̂1 � 77,177�̂2 � 8,008.47

 25�̂0 � 206�̂1 � 8,294�̂2 � 725.82

 �̂0a
n

i�1

xi2 � �̂1a
n

i�1

xi1xi2 � �̂2a
n

i�1

x2
i2 � a

n

i�1

xi2 
yi

 �̂0a
n

i�1

xi1 � �̂1a
n

i�1

x2
i1 � �̂2a

n

i�1

xi1xi2 � a
n

i�1

xi1 
yi

 n�̂0 � �̂1a
n

i�1

xi1 � �̂2a
n

i�1

xi2 � a
n

i�1

yi

Table 6-5 Wire Bond Pull Strength Data for Example 6-7

Observation Pull Strength Wire Length Die Height Observation Pull Strength Wire Length Die Height
Number y x1 x2 Number y x1 x2

1 9.95 2 50 14 11.66 2 360

2 24.45 8 110 15 21.65 4 205

3 31.75 11 120 16 17.89 4 400

4 35.00 10 550 17 69.00 20 600

5 25.02 8 295 18 10.30 1 585

6 16.86 4 200 19 34.93 10 540

7 14.38 2 375 20 46.59 15 250

8 9.60 2 52 21 44.88 15 290

9 24.35 9 100 22 54.12 16 510

10 27.50 8 300 23 56.63 17 590

11 17.08 4 412 24 22.13 6 100

12 37.00 11 400 25 21.15 5 400

13 41.95 12 500

54.15

24.45

15.25

5.75

462.5

187.5

24.45 54.15 5.75 15.25 187.5 462.5

Strength

Length

Height

Figure 6-17 Matrix
of scatter plots (from
Minitab) for the wire
bond pull strength data
in Table 6-5.
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The solution to this set of equations is

Using these estimated model parameters, the fitted regression equation is

Practical interpretation: This equation can be used to predict pull strength for pairs of values of the 
regressor variables wire length (x1) and die height (x2). This is essentially the same regression model
given in equation 1-6, Section 1-3. Figure 1-13 shows a three-dimentional plot of the plane of predicted
values generated from this equation. ■ŷ

ŷ � 2.26379 � 2.74427x1 � 0.01253x2

�̂0 � 2.26379, �̂1 � 2.74427, �̂2 � 0.01253

Computer software packages are almost always used to fit multiple regression models.
The minitab output for the wire bond strength data is shown in Table 6-6.

In the Minitab output of Table 6-6, x1 � wire length and x2 �die height. The estimates of
the regression coefficients , and are highlighted. The fitted values from the model
corresponding to each observation are shown in the column labled “Fit.” The residuals, computed
from , are also shown in the bottom section of the output.

Many of the computations and analysis procedures that we introduced for simple linear 
regression carry over to the multiple regression case. For example, the sum of the squared resid-
uals is used to estimate the error variance �2. The residual (or error) sum of squares is 

, and the estimate of �2 for a multiple linear regression model with p parameters isgn
i�1(yi � ŷi)

2
SSE �

i � 1, 2, . . . , 25ei � yi � ŷi,

ŷi�̂2�̂0, �̂1

Variance Estimate

(6-45)�̂2 �
a

n

i�1

(yi � ŷi)
2

n � p
�

SSE

n � p

EXAMPLE 6-7 The Minitab output in Table 6-6 shows that the residual sum of squares for the bond strength regression
model is SSE �115.2, there are n �25 observations, and the model has p � 3 parameters (�0, �1, and �2),
so the estimate of the error variance is computed from equation 6-45 as � �

, as reported by Minitab in Table 6-6. ■(25 � 3) � 5.2
(n � p) � 115.2�̂2 � SSE

(continued)
Compute Estimate of
Error Variance �̂2

The analysis of variance partitioning of the total sum of squares given in equation 6-21 is
also valid for multiple regression. The Minitab output in Table 6-6 contains the ANOVA
results. The total sum of squares has n � 1 degrees of freedom, the model or regression sum
of squares has k � p � 1 degrees of freedom (recall that k is the number of regressor
variables), and the error or residual sum of squares has n � p degrees of freedom.

The coefficient of determination or R2 in multiple regression is computed exactly as it is
in simple linear regression; that is, R2 � SSR�SST �1 � (SSE�SST). In a multiple linear regres-
sion model, it is customary to refer to R2 as the coefficient of multiple determination. For the
bond strength regression model, Minitab calculates R2 � 1 � (115.2�6105.9) � 0.981, and

Compute and Interpret R2

Equations 6-43a and 6-43b show that the residuals satisfy p equations. Consequently,
p residuals can be calculated from the remaining n � p residuals. Therefore, the denominator
in equation 6-45 uses n � p.
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the output reports R2 � 100% � 98.1%. This can be interpreted as indicating that the model con-
taining wire length and die height accounts for approximately 98.1% of the observed variability
in bond strength.

The numerical value of R2 cannot decrease as variables are added to a regression model.
For instance, if we were to use only the regressor variable x1 �wire length for the wire bond
strength data, the value of R2 � 0.964. Adding the second regressor x2 � die height increases

Table 6-6 Minitab Regression Analysis Output for Wire Bond Pull Strength Data

Regression Analysis: Strength versus Wire Length, Die Height

The regression equation is

Strength � 2.26 � 2.74 Wire Ln � 0.0125 Die Ht

Predictor Coef SE Coef T P

Constant 2.264 1.060 2.14 0.044

Wire Ln 2.74427 0.09352 29.34 0.000

Die Ht 0.012528 0.002798 4.48 0.000

S � 2.288 R-Sq �98.1% R-Sq (adj) �97.9%

Analysis of Variance

Source DF SS MS F P
Regression 2 5990.8 SSR 2995.4 572.17 0.000
Residual Error 22 115.2 5.2
Total 24 6105.9

Obs Strength Fit SE Fit Residual St Resid

1 9.950 8.379 0.907 1.571 0.75
2 24.450 25.596 0.765 �1.146 �0.53
3 31.750 33.954 0.862 �2.204 �1.04
4 35.000 36.597 0.730 �1.597 �0.74
5 25.020 27.914 0.468 �2.894 �1.29
6 16.860 15.746 0.626 1.114 0.51
7 14.380 12.450 0.786 1.930 0.90
8 9.600 8.404 0.904 1.196 0.57
9 24.350 28.215 0.819 �3.865 �1.81

10 27.500 27.976 0.465 �0.476 �0.21
11 17.080 18.402 0.696 �1.322 �0.61
12 37.000 37.462 0.525 �0.462 �0.21
13 41.950 41.459 0.655 0.491 0.22
14 11.660 12.262 0.769 �0.602 �0.28
15 21.650 15.809 0.621 5.841 2.65
16 17.890 18.252 0.679 �0.362 �0.17
17 69.000 64.666 1.165 4.334 2.20
18 10.300 12.337 1.238 �2.037 �1.06
19 34.930 36.472 0.710 �1.542 �0.71
20 46.590 46.560 0.878 0.030 0.01
21 44.880 47.061 0.824 �2.181 �1.02
22 54.120 52.561 0.843 1.559 0.73
23 56.630 56.308 0.977 0.322 0.16
24 22.130 19.982 0.756 2.148 0.99
25 21.150 20.996 0.618 0.154 0.07

SST

�̂2SSE

�̂

�̂2

�̂1

�̂0
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The adjusted R2 statistic essentially penalizes the usual R2 statistic by taking the number of re-
gressor variables in the model into account. In general, the adjusted R2 statistic will not always
increase when a variable is added to the model. The adjusted R2 will only increase if the addi-
tion of a new variable produces a large enough reduction in the residual sum of squares to
compensate for the loss of one residual degree of freedom.

the value to R2 �0.981. To more accurately reflect the value of adding another regressor to the
model, an adjusted R2 statistic can be used.

Adjusted Coefficient of Multiple Determination (R2
Adjusted)

The adjusted coefficient of multiple determination for a multiple regression model
with k regressors is

(6-46)
SSE	(n � p)

SST	(n � 1)
�

(n � 1)R2 � k

n � p
R2

Adjusted � 1 �

EXAMPLE 6-7 To illustrate this point, consider the regression model for the wire bond strength data with one regressor
variable x1 � wire length. The value of the residual sum of squares for this model is SSE �220.09. From
equation 6-46, the adjusted R2 statistic is

When both regressors are included in the model, the value of R2
Adjusted �0.979 (refer to Table 6-6).

Because the adjusted R2 statistic has increased with the addition of the second regressor variable, we
would conclude that adding this new variable to the model was probably a good idea because it resulted
in slightly more explained variability in the response.

Another way to view the contribution of adding a regressor to the model is to examine the change in
the residual mean square. For the wire bond strength data with only x1 � wire length as the regressor the
residual sum of squares is SSE � 220.09, and the residual mean square is SSE� (n �p) � 220.09� (25 �2) �
9.57. When both regressors are in the model, the residual mean square is 5.2. Because this residual mean
square estimates �2, the variance of the unexplained variability in the response, as much smaller, we con-
clude that the model with two regressors is superior. Note that using the residual mean square as an esti-
mate of �2 results in a model-dependent estimate. However, a regression model with a small value of the
residual mean square is almost always superior to a model with a large residual mean square.

R2
Adjusted � 1 �

SSE 	(n � p)

SST 	(n � 1)
� 1 �

220.09	(25 � 2)

6105.9	(25 � 1)
� 0.962

(continued)

Compute and Interpret
R2

Adjusted

Contribution of Second
Regressor

6-3.2 Inferences in Multiple Regression

Just as in simple linear regression, it is important to test hypotheses and construct CIs in mul-
tiple regression. In this section we will describe these procedures. In most cases, they are
straightforward modifications of the procedures we used in simple linear regression.

Test for Significance of Regression
The test for significance of regression in simple linear regression investigated whether there
was a useful linear relationship between the response y and the single regressor x. In multiple
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regression, this is a test of the hypothesis that there is no useful linear relationship between the
response y and any of the regressors x1, x2, . . . , xk. The hypotheses are

 H1: At least one �j 
 0

 H0: �1 � �2 � p � �k � 0

Thus, if the null hypothesis is rejected, at least one of the regressor variables in the model is
linearly related to the response. The ANOVA partition of the total variability in the response y
(equation 6-21) is used to test these hypotheses.

Testing for Significance of Regression in Multiple Regression

Null hypothesis:

Alternative hypothesis:

Test statistic: (6-47)

P-value: Probability above f0 in the distribution
Rejection criterion for a 
fixed-level test: f0 7 f�,k,n�p

Fk,n�p

F0 �
MSR

MSE

H1: At least one �j 
 0

H0: �1 � �2 � p �  �k � 0

MSR �
SSR

k
  MSE �

SSE

n � p

EXAMPLE 6-7 The test procedure is usually summarized in an ANOVA table, and it is also included in multiple re-
gression computer output. For the wire bond strength regression model, refer to Table 6-6. The hypothe-
ses for this model are

In the Minitab output under the section headed “Analysis of Variance,” we find the values of the mean
squares for regression and residual, and the computed value of the test statistic in equation 6-47 is
f0 � 572.17. Because the P-value is very small, we would conclude that at least one of the regressors is
related to the response y.

Further steps: This test is an initial step and, because H0 is rejected, interest centers on the individ-
ual regression coefficients.

 H1: At least one �j 
 0

 H0: �1 � �2 � 0

(continued)

Interpret ANOVA Table

Inference on Individual Regression Coefficients
Because the estimates of the regression coefficients in a multiple regres-
sion model are just linear combinations of the y’s, and the y’s are assumed to have a normal dis-
tribution, the ’s are normally distributed. Furthermore, the ’s are unbiased estimators of the
true model coefficients and their standard errors, , can be computed as
the product of and a function of the x’s. The standard error is a rather complicated expres-
sion, but it is computed and reported by all multiple regression computer programs. In the

�̂
se(�̂j), j � 0, 1, . . . , k

�̂j�̂j

�̂j, j � 0, 1, . . . , k
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A very important special case of the test on an individual regression coefficient is a
hypothesis of the form H0: �j � 0 versus H1: �j 0. Most regression packages calculate the
test statistic for this hypothesis for each variable that is in the model. This is a measure of the
contribution of each individual regressor variable to the overall model. The test statistic is

(6-50)

This test is often called a partial or marginal test because it is evaluating the contribution of
each regressor variable to the model given that all of the other regressors are also included.

T0 �
�̂j

se(�̂j)




Minitab output in Table 6-6 the standard errors of the model regression coefficients are listed
in the column labeled “SE Coef.” Inferences on an individual regression coefficient are based
on the quantity

which has the t distribution with n � p degrees of freedom. This leads to the following
hypothesis testing and CI results for an individual regression coefficient �j.

T �
�̂j � �j

se(�̂j)

EXAMPLE 6-7 The Minitab output in Table 6-6 shows the values of the test statistic computed from equation 6-50
for each of the regressor variables, wire length and die height. The t-value for wire length t0 � 29.34 has
a P-value of 0.0, which indicates that the regressor wire length contributes significantly to the model,
given that the other regressor die height is also in the model. Also, the t-value for die height t0 � 4.48 has
a P-value of 0.0, which indicates that die height contributes significantly to the model, given that the
other regressor wire length is also included.

Generally, if the t-statistic for any individual regression coefficient is insignificant, so the hypothe-
sis H0: �j � 0 is not rejected, this is an indication that the regressor xj should be removed from the model.
In some situations, these t-tests may indicate that more than one regressor is not important. The correct
approach in this situation is to remove the least significant regressor and refit the model. Then t-tests are
conducted for the regressors in this new model to determine which, if any, regressors are still not signif-
icant, and continue in this manner until all of the regressors in the model are significant.

Inferences on the Model Parameters in Multiple Regression

1. The test for H0: �j � �j,0 versus H1: �j 
 �j,0 employs the test statistic

(6-48)

and the null hypothesis is rejected if ƒ t0 ƒ � t��2,n�p. A P-value approach can
also be used. One-sided alternative hypotheses can also be tested.

2. A 100(1 � �)% CI for an individual regression coefficient is given by

(6-49)�̂j � t�	2,n�pse(�̂j)  �
j
 �̂j � t�	2,n�pse(�̂j)

T0 �
�̂j � �j,0

se(�̂j)

(continued)

Interpret t-Values
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EXAMPLE 6-7 Minitab will calculate the confidence interval in equation 6-52 for a point of interest. For example,
suppose that we are interested in finding an estimate of the mean pull strength at two points: (1) when
wire length x1 � 11 and die height x2 � 35 and (2) when wire length x1 � 5 and die height x2 � 20. The
point estimate is found by first substituting x1 � 11 and x2 � 35 and then x1 � 5 and x2 � 20 into the
fitted regression model and calculating the fitted values of the responses at the two points. Minitab re-
ports the point estimates and their associated 95% CIs in Table 6-7.

The estimated mean response �y |11,35 = 32.899 has a 95% CI of (30.687, 35.092), where as the esti-
mated mean response �y|5,20 = 16.236 has a 95% CI of (14.310, 18.161). Notice that the 95% CI for the
second point is narrower than the 95% CI for the first point. As in simple linear regression, the width of
the CI on the mean response increases as the point moves away from the center of the region of x-variable
space, and point 1 is farther away from the center of the of x-space than is point 2.

Confidence Intervals on the Mean Response and Prediction Intervals
A multiple regression model is often used to obtain a point estimate of the mean response at a
particular set of x’s, that is, when x1 � x10, x2 � x20, . . . , xk � xk0. The true mean response at this
point is � �0 � �1x10 � �2x20 �. . . � �kxk0, and the corresponding point estimate is

(6-51)

The standard error of this point estimate is a complicated function that depends on the x’s used
to fit the regression model and the coordinates at which the point estimate is computed, but it
is provided by many regression software packages and is denoted by . The
confidence interval on the mean response at the point (x1 �x10, x2 �x20, . . . , xk �xk0) is given
by the following expression.

se(�̂Y  0  x10,x20,p , xk0 
)

�̂Y  0   x10,x20,p , xk0
� �̂0 � �̂1x10 � �̂2x20 � p � �̂kxk0

�Y  0  x10,x20,p ,xk0

Confidence Interval on the Mean Response in Multiple Regression

A 100(1 � �)% CI on the mean response at the point (x1 � x10, x2 � x20, . . . , xk � xk0)
in a multiple regression model is given by

(6-52)

where is computed from equation 6-51.�̂Y 0 x10,x20,p ,xk0

� t��2,n�pse(�̂Y 0 x10,x20,p ,xk0
)	 �̂Y 0 x10,x20,p ,xk0

�̂Y 0 x10,x20,p ,xk0
� t��2,n�pse(�̂Y 0 x10,x20,p ,xk0

) 	 �Y 0 x10,x20,p ,xk0

(continued)

Interpret Mean
Response and 95% CI

Table 6-7 Minitab Output

Predicted Values for New Observations

New Obs Fit SE Fit 95.0% CI 95.0% PI
1 32.889 1.062 (30.687, 35.092) (27.658, 38.121)

New Obs Fit SE Fit 95.0% CI 95.0% PI
2 16.236 0.929 (14.310, 18.161) (11.115, 21.357)

Values of Predictors for New Observations

New Obs Wire Ln Die Ht
1 11.0 35.0

New Obs Wire Ln Die Ht
2 5.00 20.0
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EXAMPLE 6-7 The Minitab output in Table 6-7 shows the 95% PIs for the pull strength at two new points where wire
length x1 � 11 and die height x2 � 35 and where x1 � 5 and die height x2 � 20. The future observation

has a 95% PI of (27.658, 38.121), whereas the future observation
has a 95% PI of (11.115, 21.357).

Notice that these PIs are wider than the corresponding CIs and that they increase in width as the
point where the prediction is made moves farther away from the center of the x-space. ■

ŷ0 � �̂y 05,20 � 16.236
ŷ0 � �̂y 011,35 � 32.889

Prediction Interval on a Future Observation in Multiple Regression

A 100(1 � �)% PI on a future observation at the point (x1 � x10, x2 � x20, p , 
xk � xk 0) in a multiple regression model is given by

(6-54)

where is computed from equation 6-53.�̂Y 0 x10,x20,p ,xk0
ŷ0 �

 ŷ0 � t�	2,n�p2�̂2 � [se(�̂Y 0 x10,x20,p ,xk0
) ] 2

ŷ0 � t�	2,n�p2�̂2 � [se(�̂Y 0 x10,x20,p , xk0
) ] 2  Y0

A 100(1 � �)% PI on a future observation at the point x1 � x10, x2 � x20,. . . , xk � xk0 in
a multiple regression model can also be determined. The response at the point of interest is

and the corresponding predicted value is

(6-53)

The prediction error is , and the standard deviation of this prediction error is

Therefore, the PI on a future observation is as follows.

2�̂2 � [se(�̂Y 0x10, x20,p , xk0
) ] 2

Y0 � Ŷ0

Ŷ0 � �̂Y 0x10, x20,p , xk0
� �̂0 � �̂1x10 � �̂2x20 � p � �̂k xk 0

Y0 � �0 � �1x10 � �2x20 � p � �k xk 0 � �

(continued)
Interpret a future 
observation and 95% PI

Test for the Significance of a Group of Regressors
There are some situations in regression model building where interest centers on a subset of
the regressors in the full model. For example, suppose that we are considering fitting a second-
order model

but we are uncertain about the contribution of the second-order terms to the model. Therefore,
we are interested in testing the hypothesis

We can use an F-test for these hypotheses.

 H1: At least one of the �’s 
 0

 H0: �12 � �11 � �22 � 0

Y � �0 � �1x1 � �2x2 � �12x1x2 � �11x
2
1 � �22x

2
2 � �
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In general, suppose that the full model has k regressors, and we are interested in testing
whether the last k � r of them can be deleted from the model. This smaller model is called the
reduced model. That is, the full model is

and the reduced model has �r�1 � �r�2 � � �k � 0, so the reduced model is

The test is performed by fitting both the full and the reduced models and comparing the residual
sums of squares for the two models. Let SSE(FM) be the residual sum of squares for the full model
and let SSE(RM) be the residual sum of squares for the reduced model. Then to test the hypotheses

(6-55)

we would use the test statistic

 H1: At least one of the �’s 
 0

 H0: �r�1 � �r�2 � p � �k � 0

Y � �0 � �1x1 � �2x2 � p � �r xr � �

p

Y � �0 � �1x1 � �2x2 � p � �rxr � �r�1xr�1 � p � �kxk � �

Test for the Significance of a Group of Regressors

(6-56)

The null hypothesis in equation 6-55 is rejected if f0 � fa,k�r,n�p. A P-value approach
can also be used.

F0 �
[SSE (RM ) � SSE(FM ) ] 	(k � r)

SSE(FM )	(n � p)

6-3.3 Checking Model Adequacy

Residual Analysis
The residuals should be graphically analyzed to check the ade-
quacy of a multiple linear regression model. A normal probability plot of the residuals is used
to check the normality assumption, and plots of the residuals versus the fitted values and pos-
sibly versus each of the individual regressors can reveal other model inadequacies, such as in-
equality of variance and the possible need for additional regressors in the model.

ei � yi � ŷi, i � 1, 2, . . . , n

EXAMPLE 6-7 Figures 6-18, 6-19, 6-20, and 6-21 present the normal probability plot of the residuals and the plots
of the residuals versus the fitted values and both of the regressors x1 and x2 for the wire bond strength
regression model.

Practical interpretation: The normal probability plot is satisfactory, but the plots of the
residuals versus and x1 reveal slight curvature. Possibly another regressor variable is needed in the
model. In general, though, none of the plots suggests any dramatic problems with the model.

ŷ

ŷ

In multiple regression, we often examine scaled residuals. A common residual scaling is
the standardized residual, � We discussed the standardized
residual in simple linear regression and observed that it can be useful in looking for outliers.
Another scaled residual, the studentized residual, is very useful in multiple regression. The

2�̂2, i � 1, 2, . . . , n.di � ei

(continued)
Interpret Residual Plots
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studentized residual scales the usual least squares residual by dividing it by its exact standard
error. We now show how the studentized residuals are computed. The regression coefficients

are linear combinations of the observations y. Because the predicted values i are linear
combinations of the regression coefficients, they are also linear combinations of the observa-
tions yi. We can write the relationship between the i and the yi values as

(6-57)

The hij’s are functions of only the x’s that are used to fit the model, and they are actually fairly
easy to compute (for details, see Montgomery, Peck, and Vining [2006]). Furthermore, we can

ŷn � hn1y1 � hn2y2 � p � hnnyn

o
ŷ2 � h21y1 � h22y2 � p � h2nyn

ŷ1 � h11y1 � h12y2 � p � h1nyn

ŷ

ŷ�̂

–6

99

–4 –2 0 2 4 6 7

98

90

80

70
60
50
40
30

20

10

5

2
P

ro
ba

bi
lit

y

ei

10

–5

20 30 40 50 60 70

–4
–3
–2
–1
0
1
2
3
4
5
6

ei

yî

Figure 6-18 Normal probability plot of residuals for wire
bond empirical model.

Figure 6-19 Plot of residuals against for wire bond em-
pirical model.
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Figure 6-20 Plot of residuals against x1 (wire length) for
wire bond empirical model.

Figure 6-21 Plot of residuals against x2 (die height) for
wire bond empirical model.
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Influential Observations
When using multiple regression, we occasionally find that some subset of the observations is
unusually influential. Sometimes these influential observations are relatively far away from the
vicinity where the rest of the data were collected. A hypothetical situation for two variables is
depicted in Fig. 6-22, where one observation in x-space is remote from the rest of the data. The
disposition of points in the x-space is important in determining the properties of the model.
For example, point (xi1, xi2) in Fig. 6-22 may be very influential in determining R2, the esti-
mates of the regression coefficients, and the magnitude of the error mean square.

We would like to examine the influential points to determine whether they control many
model properties. If these influential points are “bad” points, or erroneous in any way, they
should be eliminated. On the other hand, there may be nothing wrong with these points, but
at least we would like to determine whether or not they produce results consistent with the
rest of the data. In any event, even if an influential point is a valid one, if it controls impor-
tant model properties, we would like to know this because it could have an impact on the use
of the model.

show that hij � hji and that the diagonal values in this system of equations take on the values
0 � hii  1. The studentized residuals are defined as follows.

Studentized Residuals

The studentized residuals are defined as

(6-58)ri �
ei

se(ei)
�

ei

2�̂2(1 � hii)
, i � 1, 2, . . . , n

Because the hii’s are always between zero and unity, a studentized residual is always larger
than the corresponding standardized residual. Consequently, studentized residuals are a more
sensitive diagnostic when looking for outliers.

EXAMPLE 6-7 The Minitab output in Table 6-6 lists the studentized residuals (in the column labeled “St Resid”)
for the wire bond pull strength regression model. None of these studentized residuals is large enough to
indicate that outliers may be present.

(continued)
Interpret Studentized
Residuals

 x i1 x1

xi2

x2

Region containing
all observations
except the ith

Figure 6-22 A point that is remote in x-space.
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Clearly, if the ith point is influential, its removal will result in some of the regression coeffi-
cients changing considerably from the value obtained using all n observations. Thus, a large
value of Di implies that the ith point is influential. We see that Di consists of the squared stu-
dentized residual, which reflects how well the model fits the ith observation yi. (Recall that

in equation 6-58, and a component that measures how far that point is
from the rest of the data [hii�(1 � hii)] is a measure of the distance of the ith point in x-space
from the centroid of the remaining n � 1 points.) A value of Di � 1 would indicate that the
point is influential. Either component of Di (or both) may contribute to a large value.

ri � ei	2�̂2(1 � hii)

One useful method is to inspect the hii’s, defined in equation 6-57. The value of hii can be
interpreted as a measure of the distance of the point (xi1, xi2, . . . xik) from the average of all of
the points in the data set. The value of hii is not the usual distance measure, but it has similar
properties. Consequently, a large value for hii implies that the ith data point in x-space is re-
mote from the center of the data (as in Fig. 6-22). A rule of thumb is that hii’s greater than 2p�n
should be investigated. A data point for which hii exceeds this value is considered a leverage
point. Because it is remote, it has substantial leverage, or potential to change the regression
analysis. The average value of hii in any data set is p�n. Therefore, the rule flags values greater
than twice the average.

Montgomery, Peck, and Vining (2006) and Myers (1990) describe several other methods
for detecting influential observations. An excellent diagnostic is Cook’s distance measure.
This is a measure of the squared distance between the usual least squares estimate (the ’s)
based on all n observations and the estimate obtained when the ith point is deleted.

�̂

Cook’s Distance Measure

(6-59)Di �
r 2

i

p
 

hii

(1 � hii)
  i � 1, 2, . . . , n

EXAMPLE 6-8 Table 6-8 lists the values of hii and Cook’s distance measure Di for the wire bond pull strength data. To
illustrate the calculations, consider the first observation

Twice the average of the hii values is 2p�n � 2(3)�25 � 0.2400. Two data points (17 and 18) have values
of hii that exceed this cutoff, so they could be classified as leverage points. However, because the D17 and
D18 values are less than unity, these points are not unusually influential. Note that none of the Di values
is large enough to cause concern. ■

 �
[1.571	25.2(1 � 0.1573) ]2

3
�

0.1573

(1 � 0.1573)
� 0.035

 D1 �
r 2

1

p
�

h11

(1 � h11)
� �

[e1	2�̂
2
(1 � h11) ] 2

p
�

h11

(1 � h11)

Multicollinearity
In multiple regression problems we expect to find dependencies between the regressor vari-
ables and the response. However, in many regression problems, we also find that there are de-
pendencies among the regressors. In situations where these dependencies are strong, we say
that multicollinearity exists. Multicollinearity can have serious effects on the estimates of the

Wire Bond Pull
Strength

Interpret Influence
Diagnostics
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It is easy to see why the VIF defined in equation 6-60 is a good measure of multicollinearity.
If regressor xj is strongly linearly dependent on some subset of the other regressor variables in
the model, Rj

2 will be large, say, close to unity, and the corresponding VIF will be large.
Alternatively, if regressor xj is not nearly linearly dependent on the other regressors, the value
of Rj

2 will be small and the corresponding VIF will be small. Generally, if the VIF associated
with any regressor exceeds 10, we would suspect that multicollinearity is present.

Table 6-8 Influence Diagnostics for the Wire Bond Pull Strength Data

Observations Cook’s Distance Measure Observations Cook’s Distance Measure
i hii Di i hii Di

1 0.1573 0.035 14 0.1129 0.003
2 0.1116 0.012 15 0.0737 0.187
3 0.1419 0.060 16 0.0879 0.001
4 0.1019 0.021 17 0.2593 0.565
5 0.0418 0.024 18 0.2929 0.155
6 0.0749 0.007 19 0.0962 0.018
7 0.1181 0.036 20 0.1473 0.000
8 0.1561 0.020 21 0.1296 0.052
9 0.1280 0.160 22 0.1358 0.028

10 0.0413 0.001 23 0.1824 0.002
11 0.0925 0.013 24 0.1091 0.040
12 0.0526 0.001 25 0.0729 0.000
13 0.0820 0.001 

parameters in a regression model, resulting in parameters that are poorly estimated (large vari-
ance or standard error) and that are unstable in the sense that a different sample from the same
process or system can produce very different estimates of the �’s. Models with strong multi-
collinearity are often not reliable prediction equations.

There are several diagnostics that can be used to determine whether multicollinearity is
present. The simplest of these is the variance inflation factor, or VIF.

Variance Inflation Factors

The VIFs for a multiple linear regression model are

(6-60)

where R2
j is the coefficient of multiple determination that results from regressing xj on

the other k � 1 regressors.

VIF (�j) �
1

1 � R2
j

,  j � 1, 2, . . . , k

(continued)
Interpret VIF

EXAMPLE 6-8 Many regression computer programs will calculate the VIFs. The following display shows the re-
sults from Minitab for the wire bond pull strength regression model.

Predictor Coef SE Coef T P VIF

Constant 2.264 1.060 2.14 0.044
Wire Ln 2.74427 0.09352 29.34 0.000 1.2
Die Ht 0.01258 0.002798 4.48 0.000 1.2 

     c06BuildingEmpiricalModels.qxd  10/6/10  1:16 PM  Page 340



6-3 MULTIPLE REGRESSION 341

For Exercises 6-17 through 6-22, use Minitab to assist you in
answering the following.

(a) Estimate the regression coefficients. Write the multiple
linear regression model. Comment on the relationship
found between the set of independent variables and the de-
pendent variable.

(b) Compute the residuals.
(c) Compute SSE and estimate the variance.
(d) Compute the coefficient of determination, R2, and

adjusted coefficient of multiple determination, R2
Adjusted.

Comment on their values.
(e) Construct the ANOVA table and test for significance of re-

gression. Comment on your results.
(f) Find the standard error of the individual coefficients.
(g) Use a t-test to test for significance of the individual coef-

ficients at � � 0.05. Comment on your results.
(h) Construct 95% CIs on the individual coefficients.

Compare your results with those found in part (g) and
comment.

(i) Perform a model adequacy check, including computing
studentized residuals and Cook’s distance measure for
each of the observations. Comment on your results.

( j) Compute the variance inflation factors and comment on the
presence of multicollinearity.

6-17. Consider the bearing wear data in Exercise 2-53.

6-18. Consider the MPG data in Exercise 2-54.

6-19 Data from a patient satisfaction survey in a hospital are
shown in the following table:

Obser- Satis-
vation Age Severity Surg-Med Anxiety faction

1 55 50 0 2.1 68

2 46 24 1 2.8 77

3 30 46 1 3.3 96

4 35 48 1 4.5 80

5 59 58 0 2.0 43

6 61 60 0 5.1 44

7 74 65 1 5.5 26

8 38 42 1 3.2 88

9 27 42 0 3.1 75

10 51 50 1 2.4 57

11 53 38 1 2.2 56

Practical interpretation: Because the VIFs here are quite small, there is no apparent problem with
multicollinearity in the wire bond pull strength data. If strong multicollinearity is present, many regres-
sion analysts will recommend investigating one of several possible remedial measures, including
deleting some of the regressor variables from the model or using a technique other than the method of 
least squares to estimate the model parameters. A comprehensive discussion of multicollinearity is in
Montgomery, Peck, and Vining (2006).

EXERCISES FOR SECTION 6-3

12 41 30 0 2.1 88

13 37 31 0 1.9 88

14 24 34 0 3.1 102

15 42 30 0 3.0 88

16 50 48 1 4.2 70

17 58 61 1 4.6 52

18 60 71 1 5.3 43

19 62 62 0 7.2 46

20 68 38 0 7.8 56

21 70 41 1 7.0 59

22 79 66 1 6.2 26

23 63 31 1 4.1 52

24 39 42 0 3.5 83

25 49 40 1 2.1 75

The regressor variables are the patient’s age, an illness sever-
ity index (larger values indicate greater severity), an indicator
variable denoting whether the patient is a medical patient (0)
or a surgical patient (1), and an anxiety index (larger values in-
dicate greater anxiety)

6-20 In an article in IEEE Transactions on Instrumentation
and Measurement (2001, Vol. 50, pp. 2033–2040) powdered
mixtures of coal and limestone were analyzed for permittivity.
The errors in the density measurement were the response.

Density Dielectric Constant Loss Factor

0.749 2.05 0.016

0.798 2.15 0.02

0.849 2.25 0.022

0.877 2.3 0.023

0.929 2.4 0.026

0.963 2.47 0.028

0.997 2.54 0.031

1.046 2.64 0.034

1.133 2.85 0.039

1.17 2.94 0.042

1.215 3.05 0.045

     c06BuildingEmpiricalModels.qxd  11/10/10  6:14 PM  Page 341



342 CHAPTER 6 BUILDING EMPIRICAL MODELS

6-21. The electric power consumed each month by a chem-
ical plant is thought to be related to the average ambient tem-
perature (x1), the number of days in the month (x2), the average
product purity (x3), and the tons of product produced (x4). The
past year’s historical data are available and are presented in the
following table:

y x1 x2 x3 x4

240 25 24 91 100

236 31 21 90 95

290 45 24 88 110

274 60 25 87 88

301 65 25 91 94

316 72 26 94 99

300 80 25 87 97

296 84 25 86 96

267 75 24 88 110

276 60 25 91 105

288 50 25 90 100

261 38 23 89 98

6-22. An engineer at a semiconductor company wants to
model the relationship between the device HFE (y) and three
parameters: Emitter-RS (x1), Base-RS (x2), and Emitter-to-
Base RS (x3). The data are shown in the following table.

x3

x1 x2 Emitter-to- y
Emitter-RS Base-RS Base RS HFE

14.620 226.00 7.000 128.40

15.630 220.00 3.375 52.62

14.620 217.40 6.375 113.90

15.000 220.00 6.000 98.01

14.500 226.50 7.625 139.90

15.250 224.10 6.000 102.60

16.120 220.50 3.375 48.14

15.130 223.50 6.125 109.60

15.500 217.60 5.000 82.68

15.130 228.50 6.625 112.60

15.500 230.20 5.750 97.52

16.120 226.50 3.750 59.06

15.130 226.60 6.125 111.80

15.630 225.60 5.375 89.09

15.380 229.70 5.875 101.00

14.380 234.00 8.875 171.90

15.500 230.00 4.000 66.80

14.250 224.30 8.000 157.10

14.500 240.50 10.870 208.40

14.620 223.70 7.375 133.40

6-23. Consider the bearing wear data and multiple linear re-
gression model in Exercise 6-17.

(a) Find the mean bearing wear given that the oil viscosity is
25.0 and the load is 1100.

(b) Compute a 99% CI on this mean response.
(c) Compute a 99% PI on a future observation when the oil

viscosity is 25.0 and the load is 1100.
(d) What do you notice about the relative size of these two in-

tervals? Which is wider and why?

6-24. Consider the MPG data and multiple linear regression
model in Exercise 6-18.

(a) Find the mean MPG given that the weight is 2650 and the
horsepower is 120.

(b) Compute a 95% CI on this mean response.
(c) Compute a 95% PI on a future observation when the

weight is 2650 and the horsepower is 120.
(d) What do you notice about the relative size of these two in-

tervals? Which is wider and why?

6-25. Consider the patient satisfaction survey data in
Exercise 6-19

(a) Estimate the mean satisfaction given that age � 24, sever-
ity � 38, Surg-Med � 0, and anxiety � 2.8.

(b) Compute a 95% CI on this mean response.
(c) Compute a 95% PI on a future observation at the same

values of the regressors.
(d) What do you notice about the relative size of these two in-

tervals? Which is wider and why?
6-26. Consider the density data in Exercise 6-20.

(a) Estimate the mean density given that dielectric constant �
2.4 and loss factor � 0.025.

(b) Compute a 95% CI on this mean response.
(c) Compute a 95% PI on a future observation at the same

values of the regressors.
(d) What do you notice about the relative size of these two in-

tervals? Which is wider and why?
6-27. Consider the power consumption data and multiple
linear regression model in Exercise 6-21.

(a) Find the mean power consumption given that x1 � 75�F, 
x2 � 24 days, x3 � 90%, and x4 � 98 tons.

(b) Compute a 95% CI on this mean response.
(c) Compute a 95% PI on a future observation when 

x1 � 75�F, x2 � 24 days, x3 � 90%, and x4 � 98 tons.
(d) What do you notice about the relative size of these two in-

tervals? Which is wider and why?
6-28. Consider the HFE data and multiple linear regression
model in Exercise 6-22.

(a) Find the mean HFE given that x1 � 14.5, x2 � 220, and 
x3 � 5.0.

(b) Compute a 90% CI on this mean response.
(c) Compute a 90% PI on a future observation when 

x1 � 14.5, x2 � 220, and x3 � 5.0.
(d) What do you notice about the relative size of these two in-

tervals? Which is wider and why?
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6-29. An article in Optical Engineering (“Operating Curve
Extraction of a Correlator’s Filter,” Vol. 43, 2004, pp.
2775–2779) reported the use of an optical correlator to per-
form an experiment by varying brightness and contrast. The
resulting modulation is characterized by the useful range of
gray levels. The data are shown here:

Brightness (%): 54 61 65 100 100 100 50 57 54
Contrast (%): 56 80 70 50 65 80 25 35 26
Useful range (ng): 96 50 50 112 96 80 155 144 255

(a) Fit a multiple linear regression model to these data.
(b) Estimate and the standard errors of the regression coef-

ficients.
(c) Test for significance of and 
(d) Predict the useful range when and

. Construct a 95% PI.
(e) Compute the mean response of the useful range when

and Compute a 95% CI.
(f) Interpret parts (d) and (e) and comment on the compari-

son between the 95% PI and 95% CI.

6-30. An article in Biotechnology Progress (Vol. 17, 2001,
pp. 366–368) reported an experiment to investigate and opti-
mize nisin extraction in aqueous two-phase systems (ATPS).
The nisin recovery was the dependent variable (y). The two re-
gressor variables were concentration (%) of PEG 4000 (de-
noted as and concentration (%) of (denoted as 

y

13 11 62.8739

15 11 76.1328

13 13 87.4667

15 13 102.3236

14 12 76.1872

14 12 77.5287

14 12 76.7824

14 12 77.4381

14 12 78.7417

(a) Fit a multiple linear regression model to these data.
(b) Estimate and the standard errors of the regression

coefficients.
(c) Test for significance of and 
(d) Use the model to predict the nisin recovery when

and Construct a 95% PI.
(e) Compute the mean response of the nisin recovery when

and Construct a 95% CI.
(f) Interpret parts (d) and (e) and comment on the compari-

son between the 95% PI and 95% CI.

6-31. Use the following partially complete Minitab output
to answer the following questions.

(a) Find all of the missing values.
(b) Find the estimate of 
(c) Test for significance of regression. Use .� � 0.05

�2.

x2 � 12.5.x1 � 14.5

x2 � 12.5.x1 � 14.5

�2.�1

�2

x2x1

x2).Na2SO4x1)

contrast � 75.brightness � 80

contrast � 75
brightness � 80

�2.�1

�2

(d) Test for significance of and using a t-test with
Comment on the two results.

(e) Construct a 95% CI on Use this CI to test for signifi-
cance of 

(f) Construct a 95% CI on Use this CI to test for signifi-
cance of 

(g) Comment on results found in parts (c)–(f). Is this regres-
sion model appropriate? What is your recommended next
step in the analysis?

Predictor Coef SE Coef T P

Constant 3.318 1.007 3.29 0.003

x1 0.7417 0.5768 ? ?

x2 9.1142 0.6571 ? ?

Analysis of Variance

Source DF SS MS F P

Regression 2 133.366 66.683 ? ?

Residual Error ? 17.332 ?

Total 27 150.698

6-32. Use the following partially complete Minitab output
to answer the following questions.

(a) Find all of the missing values.
(b) Find the estimate of 
(c) Test for significance of regression. Use 
(d) Test for significance of and using a t-test with

Comment on these results.
(e) Construct a 95% CI on Use this CI to test for signifi-

cance.
(f) Construct a 95% CI on Use this CI to test for signifi-

cance.
(g) Construct a 95% CI on Use this CI to test for signifi-

cance.
(h) Comment on results found in parts (c)–(g). Is this regres-

sion model appropriate? What is your recommended next
step in the analysis?

Predictor Coef SE Coef T P

Constant 6.188 2.704 2.29 0.027

x1 9.6864 0.4989 ? ?

x2 0.2339 ? ?

x3 2.9447 0.2354 ? ?

Analysis of Variance

Source DF SS MS F P

Regression 3 363.01 121.00 ? ?

Residual Error 44 36.62 ?

Total 47 399.63

R � Sq 1adj2 � 90.2%R � Sq � ?S � ?

�0.3796

�3.

�2.

�1.
� � 0.05.

�3�2,�1,
� � 0.05.

�2.

R � Sq 1adj2 � 87.6%R � Sq � ?S � ?

�2.
�2.

�1.
�1.

� � 0.05.
�2�1
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EXAMPLE 6-9 To illustrate fitting a polynomial regression model, consider the data on yield of acetylene and two
process variables, reactor temperature and ratio of H2 to n-heptane [for more discussion and analysis of
these data and references to the original sources, see Montgomery, Peck, and Vining (2006)] shown in
Table 6-9. Engineers often consider fitting a second-order model to this type of chemical process data.

Solution. The second-order model in two regressors is

When fitting a polynomial model, it is usually a good idea to center the regressors (by subtracting the av-
erage ) from each observation and to use these centered regressors to obtain the cross-product and
squared terms in the model. This reduces the multicollinearity in the data and often results in a regres-
sion model that is more reliable in the sense that the model coefficients are estimated with better precision.
For the acetylene data, this would involve subtracting 1212.5 from each observation on x1 � temperature
and 12.444 from each observation on x2 � ratio. Therefore, the regression model that we will fit is

A portion of the Minitab output for this model is shown here.

� �12(T � 1212.5)(R � 12.444) � �11(T � 1212.5)2 � �22(R � 12.444)2 � �

Y � �0 � �1(T � 1212.5) � �2(R � 12.444)

xj

Y � �0 � �1x1 � �2x2 � �12x1x2 � �11x
2
1 � �22x

2
2 � �

6-4 OTHER ASPECTS OF REGRESSION

In this section we briefly present three other aspects of using multiple regression: building
models with polynomial terms, categorical or qualitative variables as regressors, and selection
of variables for a regression model. For more discussion of these (and other) topics, consult
Montgomery and Runger (2011) or Montgomery, Peck, and Vining (2006).

6-4.1 Polynomial Models

In Section 6-1 we observed that models with polynomial terms in the regressors, such as the
second-order model

are really linear regression models and can be fit and analyzed using the methods discussed in
Section 6-3. Polynomial models arise frequently in engineering and the sciences, and this con-
tributes greatly to the widespread use of linear regression in these fields.

Y � �0 � �1x1 � �11x
2
1 � �

The regression equation is

Yield � 36.4 � 0.130 Temp � 0.480 Ratio � 0.00733 T � R � 0.000178 T^2 
� 0.0237 R^2

Predictor Coef SE Coef T P VIF
Constant 36.4339 0.5529 65.90 0.000
Temp 0.130476 0.003642 35.83 0.000 1.1
Ratio 0.48005 0.05860 8.19 0.000 1.5
T � R �0.0073346 0.0007993 �9.18 0.000 1.4
T^2 0.00017820 0.00005854 3.04 0.012 1.2
R^2 �0.02367 0.01019 �2.32 0.043 1.7

S � 1.066 R-Sq � 99.5% R-Sq (adj) � 99.2%

Analysis of Variance

Source DF SS MS F P
Regression 5 2112.34 422.47 371.49 0.000
Residual Error 10 11.37 1.14
Total 15 2123.71

Acetylene Yield

Computation Using
Centered Data
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Table 6-9 The Acetylene Data

Observation Yield, Y Temp., T Ratio, R Observation Yield, Y Temp., T Ratio, R

1 49.0 1300 7.5 9 34.5 1200 11.0

2 50.2 1300 9.0 10 35.0 1200 13.5

3 50.5 1300 11.0 11 38.0 1200 17.0

4 48.5 1300 13.5 12 38.5 1200 23.0

5 47.5 1300 17.0 13 15.0 1100 5.3

6 44.5 1300 23.0 14 17.0 1100 7.5

7 28.0 1200 5.3 15 20.5 1100 11.0

8 31.5 1200 7.5 16 29.5 1100 17.0

Remember that the regression coefficients in this display refer to the centered regressors in the model
shown previously. Note that the ANOVA test for significance of regression suggests that at least some of
the variables in the model are important and that the t-tests on the individual variables indicates that all
of the terms are necessary in the model. 

Practical interpretation: The VIFs are all small, so there is no apparent problem with
multicollinearity. ■

Suppose that we wanted to test the contribution of the second-order terms to this model.
In other words, what is the value of expanding the model to include the additional terms? The
hypotheses that need to be tested are

 H1: At least one of the �
,
s 
 0

 H0: �r�1 � �r�2 � p � �k � 0

EXAMPLE 6-9 We showed how to test these hypotheses in Section 6-3.2. Recall that the procedure involves considering
the quadratic model as the full model and then fitting a reduced model that in this case would be the
first-order model

The Minitab regression output for this reduced model is as follows.

Y � �0 � �1(T � 1212.5) � �2(R � 12.444) � �

The regression equation is

Yield � 36.1 � 0.134 Temp � 0.351 Ratio

Predictor Coef SE Coef T P VIF
Constant 36.1063 0.9060 39.85 0.000
Temp 0.13396 0.01191 11.25 0.000 1.1
Ratio 0.3511 0.1696 2.07 0.059 1.1

S � 3.624 R-Sq � 92.0% R-Sq(adj) � 90.7%

Analysis of Variance

Source DF SS MS F P
Regression 2 1952.98 976.49 74.35 0.000
Residual Error 13 170.73 13.13
Total 15 2123.71

Computation of
Reduced Model

(continued)
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EXAMPLE 6-9 In the test statistic, SSE(RM ) �170.73 is the residual sum of squares for the reduced model, SSE (FM) �
11.37 is the residual sum of squares for the full model, n �16 is the number of observations, p � 6 is the
number of parameters in the full model, k � 5 is the number of regressors in the full model, and r � 2 is
the number of regressors in the reduced model. Therefore, the computed value of the test statistic is

This value would be compared to f�,3,10. Alternatively, the P-value is 3.49 � 10�6. Because the P-value
is very small, we would reject the null hypothesis H0: �12 � �11 � �22 � 0 and conclude that at least
one of the second-order terms contributes significantly to the model. Actually, we know from the t-tests
in the Minitab output that all three of the second-order terms are important. ■

f0 �
[SSE (RM ) � SSE (FM ) ] 	(k � r)

SSE (FM )	(n � p)
�

(170.73 � 11.37)	(5 � 2)

11.37	(16 � 6)
� 46.72

The test statistic for the preceding hypotheses was originally given in equation 6-56,
repeated here for convenience:

F0 �
[SSE (RM ) � SSE (FM ) ] 	(k � r)

SSE (FM )	(n � p)

(continued)
Interpret Reduced
Model Fit

6-4.2 Categorical Regressors

In the regression models studied previously, all of the regressor variables have been quantita-
tive variables; that is, they have either been numerical variables, or they have been measurable
on a well-defined scale. Sometimes we encounter qualitative or categorical variables that need
to be included in a regression model.

EXAMPLE 6-10 Suppose that we are studying gasoline mileage on a fleet of automobiles. The response variable is Y �
gas mileage, and two regressors of interest are x1 � engine displacement (in3) and x2 � horsepower. Most
of the cars in the fleet have an automatic transmission, but some of them have a manual transmission.

It is easy to incorporate categorical information like this into a regression model. Let x3 � type of
transmission and define

Sometimes a variable with this 0,1 coding is called an indicator variable. Build the regression model.

Solution. The regression model for the gas mileage analysis is then

This model actually describes two different regression models. When x3 � 0 and the car has an automatic
transmission, the model for gas mileage is

but when the car has a manual transmission (x3 � 1), the model is

 � (�0 � �3) � �1x1 � �2x2 � �

 Y � �0 � �1x1 � �2x2 � �3(1) � �

Y � �0 � �1x1 � �2x2 � �

Y � �0 � �1x1 � �2x2 � �3x3 � �

x3 � e0 if the car has an automatic transmission 

1 if the car has a manual transmission

Gas Mileage
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Notice that the two models have different intercepts, but the model parameters that convey the impacts
of engine displacement and horsepower are not affected by the type of transmission in the cars. This
might be unreasonable. In fact, we might expect an interaction between the regressor variables, engine
displacement and type of transmission, and between horsepower and type of transmission.

Including interaction terms such as this is easy. The appropriate model is

Now when the car has an automatic transmission (x3 � 0), the model for gas mileage is

but when the car has a manual transmission (x3 � 1) the model becomes

Practical interpretation: All three of the model coefficients are affected by whether the car has a manual
transmission. This could have a dramatic impact on the shape of the regression function. ■

EXAMPLE 6-11 As an illustration, reconsider the shampoo data in Table 2-11. One of the variables, Region (Eastern,
Western), is categorical, and it can be incorporated into the regression model just as we did with the gas
mileage problem. If the shampoo is manufactured in the East, we will let Region � 0, and if it is made
in the West, we will let Region � 1. Build the regression model.

The Minitab output for a linear regression model using Foam, Residue, and Region as the regres-
sors follows.

 � (�0 � �3) � (�1 � �13)x1 � (�2 � �23)x2 � �

 Y � �0 � �1x1 � �2x2 � �3(1) � �13x1(1) � �23x2(1) � �

Y � �0 � �1x1 � �2x2 � �

Y � �0 � �1x1 � �2 
x2 � �3 

x3 � �13 
x1x3 � �23 

x2 
x3 � �

Use Indicator 
Variables to Model
Interaction

Shampoo Data

The regression equation is

Quality � 89.8 � 1.82 Foam � 3.38 Residue � 3.41 Region

Predictor Coef SE Coef T P

Constant 89.806 2.990 30.03 0.000

Foam 1.8192 0.3260 5.58 0.000

Residue �3.3795 0.6858 �4.93 0.000

Region �3.4062 0.9194 �3.70 0.001

S � 2.21643 R-Sq � 77.6% R-Sq (adj) � 74.2%

Analysis of Variance

Source DF SS MS F P

Regression 3 339.75 113.25 23.05 0.000

Residual Error 20 98.25 4.91

Total 23 438.00

Notice that all three regressors are important. In this model, the effect of the Region regressor is to shift the
intercept by an amount equal to � 3.41 units when predicting quality for shampoo manufactured in the West.

Interpret Output and
Add Interaction
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Clearly, the interaction terms are not necessary in this model. ■

The regression equation is

Quality � 88.3 � 1.98 Foam � 3.22 Residue � 1.71 Region � 0.642 F � R � 0.43 R � Res

Predictor Coef SE Coef T P

Constant 88.257 4.840 18.24 0.000

Foam 1.9825 0.4292 4.62 0.000

Residue �3.2153 0.9525 �3.38 0.003

Region �1.707 6.572 �0.26 0.798

F � R �0.6419 0.9434 �0.68 0.505

R � Res 0.430 1.894 0.23 0.823

S � 2.30499 R-Sq � 78.2% R-Sq (adj) � 72.1%

Analysis of Variance

Source DF SS MS F P

Regression 5 342.366 68.473 12.89 0.000

Residual Error 18 95.634 5.313

Total 23 438.000

Indicator variables can be used when there are more than two levels of a categorical vari-
able. For example, suppose that the shampoo had been produced in three regions, the East, the
midwest, and the West. Two indicator variables (say, x1 and x2) would be defined as follows:

Region x1 x2

East 0 0
Midwest 1 0
West 0 1

In general, if there are r levels of a categorical variable, we will need r �1 indicator variables
to incorporate the categorical variable in the regression model.

6-4.3 Variable Selection Techniques

Many applications of regression involve a data set with a relatively large number of regressors,
and we wish to build a model with (perhaps) a smaller number of these regressor variables.
Employing a smaller number of regressors will make the model easier to use operationally and
could result in a model that is both easier to interpret and produces more reliable predictions
than a model containing all of the regressors.

If the number of regressors is not too large, one way to select the subset of regressors for
the model is to fit all possible subset models and evaluate these candidate models with respect
to appropriate criteria to make the final choice. This sounds awkward, but it is actually very
practical and easy to do in many problems. The practical limitation in Minitab is about 20 can-
didate regressors; the actual limitation will always depend on the specific software used and
how the particular package is implemented.

Two criteria that are often used in evaluating a subset regression model are R2 and the
residual mean square MSE. The objective is to find a model for which R2 is large and MSE is

Potential interaction effects in these data can be investigated by including the interaction terms
Foam � Region and Residue � Region in the model. The Minitab output for this model follows.
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small. Now, R2 cannot decrease as variables are added to the model, so the objective is to find
a subset model for which the value of R2 is nearly as large as the R2 when all of the variables
are in the model. A model with the minimum value of MSE is desirable because it implies that
the model has explained as much of the variability in the response as possible.

The third criterion is based on the standardized total squared estimation error

where is the predicted response from the subset model with p parameters, SSE( p) is the
residual sum of squares from this model, and E(Yi) is the expected response from the “true”
model, that is, the model with the correct subset of regressors. Now, the quantities E[SSE( p)]
and �2 are unknown, but they can be estimated by the observed value of SSE (p) and by the
estimate obtained from the full model, the model containing all of the candidate regressors
denoted (FM). The criterion then becomes

A model with a small value of Cp is considered desirable.

Cp �
SSE(  p)

�̂2(FM )
� n � 2p

�̂2
�̂2

Ŷi

≠p �

E e a
n

i�1

[ Ŷi � E(Yi)] 2 f
�2 �

E [SSE (p)]

�2 � n � 2p

EXAMPLE 6-12 To illustrate the “all possible regressions” approach, we will apply the technique to the shampoo data in
Table 2-11. Minitab will provide the best subset regression models of size m (1 � m � 10) for up to 
20 candidate regressors, where “best” is the model with maximum R2 or minimum MSE. The Minitab
output with m � 5 is shown in Table 6-10.

Practical interpretation: In the Minitab output, “S” is the square root of the residual mean square.
The model with the smallest value of the residual mean square is the four-variable model containing
Foam, Scent, Residue, and Region (with east � 0 and west � 1). This model also has the smallest value
of Cp, so assuming that the residual analysis is satisfactory, it would be a good candidate for the best 
regression equation that describes the relationships in this data set. ■

Another approach to selecting subset regression models is stepwise regression. This is
actually a collection of related methods that are designed to work effectively with large data
sets. A widely used stepwise procedure is backward elimination. This method starts with all
of the regressors in the model and successively eliminates them based on the value of the t-test
statistics If the smallest absolute value of this t-ratio is less than a cutoff value tout,
the regressor associated with this t-ratio is removed from the model. The model is then refit
and the backward elimination process continues until no more regressors can be eliminated.
Minitab uses a cutoff value for tout with a significance level of 0.1.

Another variation of stepwise regression is forward selection. This procedure begins
with no variables in the model and adds them one at a time. The variable that results in the
largest t-statistic value is inserted at each step, as long as the value of the test statistic exceeds
the threshold value tin. Minitab uses a significance level of 0.25 to determine the threshold
value tin. The procedure terminates when no remaining candidate variables meet the criterion
for variable entry.

The most common variation of stepwise regression uses a combination of forward and
backward stepping and is usually called stepwise regression. This procedure begins with a

�̂j �se(�̂j).

All Possible
Regressions
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forward step, but immediately after inserting a variable, a backward elimination step is con-
ducted to determine if any variables that were added at previous steps can now be removed.
Two cutoffs values tin and tout must be selected, and usually we set tin � tout. Minitab uses a
significance level of 0.15 for both tin and tout.

Table 6-10 Minitab Best Subsets Regression for Shampoo Data

Response is Quality

R

e R

S C s e

F c o i g

o e l d i

Mallows a n o u o

Vars R-Sq R-Sq(adj) C-p S m t r e n

1 26.2 22.9 46.4 3.8321 X

1 25.7 22.3 46.9 3.8455 X

1 23.9 20.5 48.5 3.8915 X

1 6.3 2.1 64.3 4.3184 X

1 3.8 0.0 66.7 4.3773 X

2 62.2 58.6 16.1 2.8088 X X

2 50.3 45.6 26.7 3.2185 X X

2 42.6 37.2 33.6 3.4589 X X

2 40.9 35.3 35.2 3.5098 X X

2 32.6 26.2 42.7 3.7486 X X

3 77.6 74.2 4.2 2.2164 X X X

3 63.1 57.6 17.2 2.8411 X X X

3 62.5 56.9 17.7 2.8641 X X X

3 52.9 45.9 26.4 3.2107 X X X

3 51.8 44.6 27.4 3.2491 X X X

4 79.9 75.7 4.1 2.1532 X X X X

4 78.6 74.1 5.3 2.2205 X X X X

4 64.8 57.4 17.7 2.8487 X X X X

4 53.0 43.1 28.3 3.2907 X X X X

4 51.4 41.2 29.7 3.3460 X X X X

5 80.0 74.5 6.0 2.2056 X X X X X

EXAMPLE 6-13 The Minitab backward elimination procedure applied to the shampoo data in Table 6-11 is shown in
Table 6-11. The final model contains Foam, Residue, and Region. Notice that this model is slightly dif-
ferent from the one that we found using all possible regressions.

The Minitab forward selection output for the shampoo data is given in Table 6-12. The final model
contains Foam, Scent, Residue, and Region, and this is the same model found by the all possible regres-
sion method.

The Minitab stepwise regression output for the shampoo data is in Table 6-13. The stepwise regres-
sion procedure selects, Scent, Residue, and Region as the regressors for the final model. This is the same
model found by the backward elimination procedure. ■

Stepwise
Regression
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Table 6-11 Stepwise Regression Backward Elimination for Shampoo
Data: Quality versus Foam, Scent, Color, Residue, Region

Backward elimination. Alpha-to-Remove: 0.1

Response is Quality on 5 predictors, with N � 24

Step 1 2 3
Constant 86.33 86.14 89.81

Foam 1.82 1.87 1.82
T-Value 5.07 5.86 5.58
P-Value 0.000 0.000 0.000

Scent 1.03 1.18
T-Value 1.12 1.48
P-Value 0.277 0.155

Color 0.23
T-Value 0.33
P-Value 0.746

Residue �4.00 �3.93 �3.38
T-Value �4.93 �5.15 �4.93
P-Value 0.000 0.000 0.000

Region �3.86 �3.71 �3.41
T-Value �3.70 �4.05 �3.70
P-Value 0.002 0.001 0.001

S 2.21 2.15 2.22
R-Sq 80.01 79.89 77.57
R-Sq (adj) 74.45 75.65 74.20
Mallows C-p 6.0 4.1 4.2

Table 6-12 Stepwise Regression Forward Selection for Shampoo Data:
Quality versus Foam, Scent, Color, Residue, Region

Forward selection. Alpha-to-Enter: 0.25

Response is Quality on 5 predictors, with N � 24

Step 1 2 3 4
Constant 76.00 89.45 89.81 86.14

Foam 1.54 1.90 1.82 1.87
T-Value 2.80 4.61 5.58 5.86
P-Value 0.010 0.000 0.000 0.000

Residue �3.82 �3.38 �3.93
T-Value �4.47 �4.93 �5.15
P-Value 0.000 0.000 0.000

Region �3.41 �3.71
T-Value �3.70 �4.05
P-Value 0.001 0.001

Scent 1.18
T-Value 1.48
P-Value 0.155

S 3.83 2.81 2.22 2.15
R-Sq 26.24 62.17 77.57 79.89
R-Sq (adj) 22.89 58.57 74.20 75.65
Mallows C-p 46.4 16.1 4.2 4.1
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Most regression analysts consider the all possible regressions approach the best of the
available methods because it is possible to implicitly evaluate all of the candidate equations.
Consequently, one can be assured of finding the model that minimizes the residual mean
square or minimizes Cp. Stepwise methods are myopic because they only change one variable
at a time in each successive equation. They are not assured to produce a final equation that op-
timizes any particular criterion. However, a lot of practical experience with stepwise methods
indicates that the equation that results is usually a very good one.

EXERCISES FOR SECTION 6-4

For Exercises 6-33 and 6-34, use Minitab to assist you in an-
swering the following.

(a) Fit second-order polynomial models.
(b) Check for multicolliearity in the data for each of the poly-

nomial models. Comment on your results.
(c) Test the contribution of the second-order terms in the

models when compared to the reduced first-order model.
Comment on your results.

6-33. Consider the bearing wear data and multiple linear re-
gression problem in Exercises 6-17 and 6-23.

6-34. Consider the MPG data and multiple linear regression
problem in Exercises 6-18 and 6-24.

For Exercises 6-35 to 6-38, using only first-order terms, build
regression models using the following techniques:

(a) All possible regression. Find the Cp and S values.
(b) Forward selection

(c) Backward elimination
(d) Comment on the models obtained. Which model would

you prefer?

6-35. Consider the patient satisfaction survey data in
Exercise 6-19.

6-36. Consider the density data in Exercise 6-20.

6-37. Consider the power consumption data in Exercise 6-21.

6-38. Consider the HFE data in Exercise 6-22.

6-39. A mechanical engineer is investigating the surface
finish of metal parts produced on a lathe and its relationship to
the speed (in revolutions per minute) and type of cutting tool
of the lathe. The data are shown in Table 6-14.

(a) Build a regression model using indicator variables and
comment on the significance of regression.

(b) Build a separate model for each tool type and comment on
the significance of regression of each model.

Table 6-13 Stepwise Regression Combined Forward and Backward
Elimination: Quality versus Foam, Scent, Color, Residue,
Region

Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15

Response is Quality on 5 predictors, with N � 24

Step 1 2 3
Constant 76.00 89.45 89.81

Foam 1.54 1.90 1.82
T-Value 2.80 4.61 5.58
P-Value 0.010 0.000 0.000

Residue �3.82 �3.38
T-Value �4.47 �4.93
P-Value 0.000 0.000

Region �3.41
T-Value �3.70
P-Value 0.001

S 3.83 2.81 2.22
R-Sq 26.24 62.17 77.57
R-Sq (adj) 22.89 58.57 74.20
Mallows C-p 46.4 16.1 4.2 
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SUPPLEMENTAL EXERCISES

Table 6-14 Surface Finish Data for Exercise 6-39

Observation Surface Finish Type of Cutting Observation Surface Finish Type of Cutting
Number, i yi RPM Tool Number, i yi RPM Tool

1 45.44 225 302 11 33.50 224 416

2 42.03 200 302 12 31.23 212 416

3 50.10 250 302 13 37.52 248 416

4 48.75 245 302 14 37.13 260 416

5 47.92 235 302 15 34.70 243 416

6 47.79 237 302 16 33.92 238 416

7 52.26 265 302 17 32.13 224 416

8 50.52 259 302 18 35.47 251 416

9 45.58 221 302 19 33.49 232 416

10 44.78 218 302 20 32.29 216 416

6-40. An industrial engineer at a furniture manufacturing
plant wishes to investigate how the plant’s electricity usage de-
pends on the amount of the plant’s production. He suspects
that there is a simple linear relationship between production
measured as the value in million dollar units of furniture pro-
duced in that month (x) and the electrical usage in units of
kWh (kilowatt-hours, y). The following data were collected:

the test on R2 as follows: To test H0: �1 � 0 versus H1: �1 0,
calculate

and reject H0: �1 �0 if the computed value f0 � f�,1,n�2.

6-42. Suppose that the simple linear regression model has
been fit to n � 25 observations and R2 � 0.90.

(a) Test for significance of regression at � � 0.05. Use the 
results of Exercise 6-41.

(b) What is the smallest value of R2 that would lead to the
conclusion of a significant regression if � � 0.05?

6-43. Studentized Residuals. Show that in a simple linear
regression model the variance of the ith residual is

Hint:

The ith studentized residual for this model is defined as

(a) Explain why ri has unit standard deviation (for � known).
(b) Do the standardized residuals have unit standard deviation?
(c) Discuss the behavior of the studentized residual when the

sample value xi is very close to the middle of the range of x.
(d) Discuss the behavior of the studentized residual when the

sample value xi is very near one end of the range of x.

ri �
ei

B
�̂2 c1 � a1

n
�

(xi � x )2

Sxx

b d

cov(Yi, Ŷi) � �2 c 1
n

�
(xi � x)2

Sxx

d

V(ei) � �2 c1 � a1

n
�

(xi � x )2

Sxx

b d

F0 �
R2(n � 2)

1 � R2




Dollars kWh Dollars kWh

4.70 2.59 4.01 2.65

4.00 2.61 4.31 2.64

4.59 2.66 4.51 2.38

4.70 2.58 4.46 2.41

4.65 2.32 4.55 2.35

4.19 2.31 4.14 2.55

4.69 2.52 4.25 2.34

3.95 2.32

(a) Draw a scatter diagram of these data. Does a straight-line
relationship seem plausible?

(b) Fit a simple linear regression model to these data.
(c) Test for significance of regression using � � 0.05. What is

the P-value for this test?
(d) Find a 95% CI estimate on the slope.
(e) Test the hypothesis H0: �1 � 0 versus H1: �1 0 using

� � 0.05. What conclusion can you draw about the slope
coefficient?

(f) Test the hypothesis H0: �0 � 0 versus H1: �0 0 using 
� � 0.05. What conclusions can you draw about the best
model?

6-41. Show that an equivalent way to define the test for sig-
nificance of regression in simple linear regression is to base
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6-44. The data that follow are DC output from a windmill (y)
and wind velocity (x).

(a) Draw a scatter diagram of these data. What type of rela-
tionship seems appropriate in relating y to x?

(b) Fit a simple linear regression model to these data.
(c) Test for significance of regression using � � 0.05. What

conclusions can you draw?
(d) Plot the residuals from the simple linear regression model

versus and versus wind velocity x. What do you con-
clude about model adequacy?

(e) Based on the analysis, propose another model relating y to x.
Justify why this model seems reasonable.

(f) Fit the regression model you have proposed in part (e).
Test for significance of regression (use � � 0.05), and
graphically analyze the residuals from this model. What
can you conclude about model adequacy?

Observation Wind Velocity DC Output
Number (MPH), xi yi

1 5.00 1.582

2 6.00 1.822

3 3.40 1.057

4 2.70 0.500

5 10.00 2.236

6 9.70 2.386

7 9.55 2.294

8 3.05 0.558

9 8.15 2.166

10 6.20 1.866

11 2.90 0.653

12 6.35 1.930

13 4.60 1.562

14 5.80 1.737

15 7.40 2.088

16 3.60 1.137

17 7.85 2.179

18 8.80 2.112

19 7.00 1.800

20 5.45 1.501

21 9.10 2.303

22 10.20 2.310

23 4.10 1.194

24 3.95 1.144

25 2.45 0.123

6-45. The hii are often used to denote leverage—that is, a
point that is unusual in its location in the x-space and that may
be influential. Generally, the ith point is called a leverage
point if hii exceeds 2p�n, which is twice the average size of all
the hat diagonals. Recall that p � k � 1.

ŷi

(a) Table 6-8 contains the hat matrix diagonal for the wire
bond pull strength data used in Example 6-7. Find the 
average size of these elements.

(b) Based on the criterion given, are there any observations
that are leverage points in the data set?

6-46. The data shown in Table 6-15 represent the thrust of a
jet-turbine engine (y) and six candidate regressors: x1 � pri-
mary speed of rotation, x2 � secondary speed of rotation, x3 �
fuel flow rate, x4 � pressure, x5 � exhaust temperature, and 
x6 � ambient temperature at time of test.

(a) Fit a multiple linear regression model using x3 � fuel flow
rate, x4 � pressure, and x5 � exhaust temperature as the
regressors.

(b) Test for significance of regression using � � 0.01. Find
the P-value for this test. What are your conclusions?

(c) Find the t-test statistic for each regressor. Using � � 0.01,
explain carefully the conclusion you can draw from these
statistics.

(d) Find R2 and the adjusted statistic for this model. Comment
on the meaning of each value and its usefulness in assess-
ing the model.

(e) Construct a normal probability plot of the residuals and
interpret this graph.

(f) Plot the residuals versus . Are there any indications of 
inequality of variance or nonlinearity?

(g) Plot the residuals versus x3. Is there any indication of non-
linearity?

(h) Predict the thrust for an engine for which x3 � 20000, 
x4 � 170, and x5 �1589.

6-47. Consider the engine thrust data in Exercise 6-46. Refit
the model using y* �ln y as the response variable and x*3 � ln x3

as the regressor (along with x4 and x5).

(a) Test for significance of regression using � � 0.01. Find
the P-value for this test and state your conclusions.

(b) Use the t-statistic to test H0: �j � 0 versus H1: �j 0 for
each variable in the model. If � � 0.01, what conclusions
can you draw?

(c) Plot the residuals versus and versus x*3. Comment on
these plots. How do they compare with their counterparts
obtained in Exercise 6-46 parts (f ) and (g)?

6-48. Following are data on y � green liquor (g/l) and 
x � paper machine speed (ft/min) from a Kraft paper machine.
(The data were read from a graph in an article in the Tappi
Journal, March 1986.)

y 16.0 15.8 15.6 15.5 14.8

x 1700 1720 1730 1740 1750

y 14.0 13.5 13.0 12.0 11.0

x 1760 1770 1780 1790 1795

(a) Fit the model Y � �0 � �1x � �2x
2 � � using least squares.

(b) Test for significance of regression using � � 0.05. What
are your conclusions?

ŷ*

�

ŷ
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Table 6-15 Jet-Turbine Engine Data for Exercise 6-46

Observation
Number y x1 x2 x3 x4 x5 x6

1 4540 2140 20640 30250 205 1732 99

2 4315 2016 20280 30010 195 1697 100

3 4095 1905 19860 29780 184 1662 97

4 3650 1675 18980 29330 164 1598 97

5 3200 1474 18100 28960 144 1541 97

6 4833 2239 20740 30083 216 1709 87

7 4617 2120 20305 29831 206 1669 87

8 4340 1990 19961 29604 196 1640 87

9 3820 1702 18916 29088 171 1572 85

10 3368 1487 18012 28675 149 1522 85

11 4445 2107 20520 30120 195 1740 101

12 4188 1973 20130 29920 190 1711 100

13 3981 1864 19780 29720 180 1682 100

14 3622 1674 19020 29370 161 1630 100

15 3125 1440 18030 28940 139 1572 101

16 4560 2165 20680 30160 208 1704 98

17 4340 2048 20340 29960 199 1679 96

18 4115 1916 19860 29710 187 1642 94

19 3630 1658 18950 29250 164 1576 94

20 3210 1489 18700 28890 145 1528 94

21 4330 2062 20500 30190 193 1748 101

22 4119 1929 20050 29960 183 1713 100

23 3891 1815 19680 29770 173 1684 100

24 3467 1595 18890 29360 153 1624 99

25 3045 1400 17870 28960 134 1569 100

26 4411 2047 20540 30160 193 1746 99

27 4203 1935 20160 29940 184 1714 99

28 3968 1807 19750 29760 173 1679 99

29 3531 1591 18890 29350 153 1621 99

30 3074 1388 17870 28910 133 1561 99

31 4350 2071 20460 30180 198 1729 102

32 4128 1944 20010 29940 186 1692 101

33 3940 1831 19640 29750 178 1667 101

34 3480 1612 18710 29360 156 1609 101

35 3064 1410 17780 28900 136 1552 101

36 4402 2066 20520 30170 197 1758 100

37 4180 1954 20150 29950 188 1729 99

38 3973 1835 19750 29740 178 1690 99

39 3530 1616 18850 29320 156 1616 99

40 3080 1407 17910 28910 137 1569 100
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(c) Test the contribution of the quadratic term to the model,
over the contribution of the linear term, using a t-test. If 
� � 0.05, what conclusion can you draw?

(d) Plot the residuals from the model in part (a) versus . Does
the plot reveal any inadequacies?

(e) Construct a normal probability plot of the residuals.
Comment on the normality assumption.

6-49. An article in the Journal of Environmental Engineering
(Vol. 115, No. 3, 1989, pp. 608–619) reported the results of a
study on the occurrence of sodium and chloride in surface
streams in central Rhode Island. The data shown are chloride
concentration y (in mg/1) and roadway area in the 
watershed x (in %).

y 4.4 6.6 9.7 10.6 10.8
x 0.19 0.15 0.57 0.70 0.67

y 10.9 11.8 12.1 14.3 14.7
x 0.63 0.47 0.70 0.60 0.78

y 15.0 17.3 19.2 23.1 27.4
x 0.81 0.78 0.69 1.30 1.05

y 27.7 31.8 39.5
x 1.06 1.74 1.62

(a) Draw a scatter diagram of the data. Does a simple linear
regression model seem appropriate here?

(b) Fit the simple linear regression model using the method of
least squares.

(c) Estimate the mean chloride concentration for a watershed
that has 1% roadway area.

(d) Find the fitted value corresponding to x � 0.47 and the 
associated residual.

(e) Suppose we wish to fit a regression model for which the
true regression line passes through the point (0, 0). The
appropriate model is Y � �x � �. Assume that we have n
pairs of data (x1, y1), (x2, y2), . . . , (xn, yn). Show that the
least squares estimate of � is 

(f) Use the results of part (e) to fit the model Y � �x � � to
the chloride concentration–roadway area data in this exer-
cise. Plot the fitted model on a scatter diagram of the data
and comment on the appropriateness of the model.

6-50. Consider the no-intercept model Y � �x � � with the �’s
NID(0, �2). The estimate of �2 is s2 �
and 
(a) Devise a test statistic for H0: � � 0 versus H1: � 0.
(b) Apply the test in part (a) to the model from Exercise 6-49

part (f ).

6-51. A rocket motor is manufactured by bonding together
two types of propellants, an igniter and a sustainer. The shear
strength of the bond y is thought to be a linear function of the
age of the propellant x when the motor is cast. Twenty obser-
vations are shown in the table that follows.

(a) Draw a scatter diagram of the data. Does the straight-line
regression model seem to be plausible?

�

V(�̂) � �2	 �n
i�1x

2
i .

�n
i�1(yi 
 �̂xi)

2	(n 
 1)

�yi xi 	 � x2
i .

ŷ

(b) Find the least squares estimates of the slope and intercept
in the simple linear regression model.

(c) Estimate the mean shear strength of a motor made from
propellant that is 20 weeks old.

(d) Obtain the fitted values that correspond to each observed
value yi. Plot versus yi, and comment on what this plot
would look like if the linear relationship between shear
strength and age were perfectly deterministic (no error).
Does this plot indicate that age is a reasonable choice of
regressor variable in this model?

Observation Strength y Age x
Number (psi) (weeks)

1 2158.70 15.50

2 1678.15 23.75

3 2316.00 8.00

4 2061.30 17.00

5 2207.50 5.00

6 1708.30 19.00

7 1784.70 24.00

8 2575.00 2.50

9 2357.90 7.50

10 2277.70 11.00

11 2165.20 13.00

12 2399.55 3.75

13 1779.80 25.00

14 2336.75 9.75

15 1765.30 22.00

16 2053.50 18.00

17 2414.40 6.00

18 2200.50 12.50

19 2654.20 2.00

20 1753.70 21.50

6-52. Consider the simple linear regression model Y � �0 �
�1x � �. Suppose that the analyst wants to use as
the regressor variable.

(a) Using the data in Exercise 6-51, construct one scatter plot
of the (xi, yi) points and then another of the 
points. Use the two plots to explain intuitively how the two
models, Y � �0 � �1x � � and Y � � z � �, are related.

(b) Find the least squares estimates of and in the model
Y � � z � �. How do they relate to the least squares
estimates and 

6-53. Suppose that each value of xi is multiplied by a positive
constant a, and each value of yi is multiplied by another posi-
tive constant b. Show that the t-statistic for testing H0: �1 � 0
versus H1: �1 0 is unchanged in value.

6-54. Test the hypothesis H0: �1 � 10 versus H1: �1 10
(using � � 0.01) for the steam usage data in Exercise 6-2 using a

�

�

�̂1?�̂0

�*1�*0

�*1�*0

�*1�*0

(zi � xi 
 x, yi)

z � x 
 x

ŷi

ŷi
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new test statistic. (Hint: In the usual hypothesis test, H0: �1 �
0.0 versus �1 0.0. In this exercise, the hypothesized value is
10.0.) Also, find the P-value for this test.

6-55. Consider the engine data as transformed in Exercise 6-47.
Using only first-order terms, build regression models using
the following techniques:

(a) All possible regressions. Find the Cp and S values.
(b) Forward selection.
(c) Backward elimination.
(d) Comment on the models obtained. Which model would

you prefer?

6-56. Consider the patient satisfaction survey data of
Exercise 6-19. Using only first-order terms, build regression
models using the following techniques:

(a) All possible regressions. Find the Cp and S values.
(b) Forward selection.
(c) Backward elimination.
(d) Comment on the models obtained. Which model would

you prefer?

6-57. An article in Electronic Packaging and Production
(Vol. 42, 2002) reported the effect of X-ray inspection of inte-
grated circuits. The rads (radiation dose) were studied as a func-
tion of current (in milliamps) and exposure time (in minutes).

Rads mAmps Exposure Time

7.4 10 0.25

14.8 10 0.5

29.6 10 1

59.2 10 2

88.8 10 3

296 10 10

444 10 15

592 10 20

11.1 15 0.25

22.2 15 0.5

44.4 15 1

88.8 15 2

133.2 15 3

444 15 10

666 15 15

888 15 20

14.8 20 0.25

29.6 20 0.5

59.2 20 1

118.4 20 2

177.6 20 3

592 20 10

888 20 15

1184 20 20

�

22.2 30 0.25

44.4 30 0.5

88.8 30 1

177.6 30 2

266.4 30 3

888 30 10

1332 30 15

1776 30 20

29.6 40 0.25

59.2 40 0.5

118.4 40 1

236.8 40 2

355.2 40 3

1184 40 10

1776 40 15

2368 40 20

(a) Fit a multiple linear regression model to these data with
rads as the response.

(b) Estimate and standard errors of the regression coeffi-
cients.

(c) Test for significance of and Use 
(d) Use the model to predict rads when the current is 15 mil-

liamps and the exposure time is 5 seconds. Construct a
90% PI.

(e) Use the model to compute the mean response rads when
the current is 15 milliamps and the exposure time is 5 sec-
onds. Construct a 95% PI.

(f) Interpret parts (d) and (e) and comment on the compari-
son between the 95% PI and 95% CI.

6-58. An article in Cancer Epidemiology, Biomarkers and
Prevention (Vol. 5, 1996, pp. 849–852) describes a pilot study to
assess the use of toenail arsenic concentrations as an indicator of
ingestion of arsenic-containing water. Twenty-one participants
were interviewed regarding use of their private (unregulated)
wells for drinking and cooking, and each provided a sample of
water and toenail clippings. The following table shows the data
of age (years), sex of person propor-
tion of times household well was used for drinking

proportion
of times household well was used for cooking 

arsenic in water (ppm), and
arsenic in toenails (ppm) respectively.

Drink Cook Arsenic Arsenic
Age Sex Use Use Water Nails

44 2 5 5 0.00087 0.119

45 2 4 5 0.00021 0.118

44 1 5 5 0 0.099

1�2, 4 � 3�4, 5 � 3�4),1�4, 3 �
(1 � 1�4, 2 �

1�2, 4 � 3�4, 5 � 3�4),1/4, 3 �(1 � 1�4, 2 �

(1 � male, 2 � female),

� � 0.05.�2.�1

	2
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Drink Cook Arsenic Arsenic
Age Sex Use Use Water Nails

66 2 3 5 0.00115 0.118

37 1 2 5 0 0.277

45 2 5 5 0 0.358

47 1 5 5 0.00013 0.08

38 2 4 5 0.00069 0.158

41 2 3 2 0.00039 0.31

49 2 4 5 0 0.105

72 2 5 5 0 0.073

45 2 1 5 0.046 0.832

53 1 5 5 0.0194 0.517

86 2 5 5 0.137 2.252

8 2 5 5 0.0214 0.851

32 2 5 5 0.0175 0.269

44 1 5 5 0.0764 0.433

63 2 5 5 0 0.141

42 1 5 5 0.0165 0.275

62 1 5 5 0.00012 0.135

36 1 5 5 0.0041 0.175

(a) Fit a multiple linear regression model using arsenic con-
centration in nails as the response and age, drink use,
cook use, and arsenic in the water as the regressors.

(b) Estimate and the standard errors of the regression 
coefficients.

(c) Use the model to predict the arsenic in nails when the
age is 30, the drink use is category 5, the cook use is cat-
egory 5, and arsenic in the water is 0.135 ppm.

�2

TEAM EXERCISE

6-59. Identify a situation in which two or more vari-
ables of interest may be related but the mechanistic
model relating the variables is unknown. Collect a ran-
dom sample of data for these variables and perform the
following analyses.

(a) Build a simple or multiple linear regression model.
Comment on your results.

(b) Test for significance of the regression model.
Comment on your results.

(c) Test for significance of the individual regression co-
efficients. Comment on your results.

(d) Construct CIs on the individual regression coeffi-
cients. Comment on your results.

(e) Select a value for the regressor variables and con-
struct a CI on the mean response. Comment on your
results.

(f) Select two values for the regressor variables and use
the model to make predictions. Construct prediction
intervals for these values. Comment on your results.

(g) Perform a residual analysis and compute the coeffi-
cient of multiple determination. Comment on your
results.

Adjusted R2

All possible regressions
Analysis of variance

(ANOVA)
Backward elimination
Coefficient of 

determination, R2

Confidence interval on
mean response

Confidence interval 
on regression 
coefficients

Contour plot

Cook’s distance 
measure, Di

Cp statistic
Empirical model
Forward selection
Indicator variables
Influential observations

Interaction
Intercept
Least squares normal

equations
Mechanistic model
Method of least squares
Model

IMPORTANT TERMS AND CONCEPTS
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Model adequacy
Multicollinearity
Multiple regression
Outliers
Polynomial regression
Population correlation

coefficient, �
Prediction interval
Regression analysis

Regression coefficients
Regression model
Regression sum of

squares
Regressor variable
Residual analysis
Residual sum of squares
Residuals
Response variable

Sample correlation 
coefficient, r

Significance of 
regression

Simple linear regression
Standard errors of

model coefficients
Standardized residuals
Stepwise regression

Studentized residuals
t-tests on regression 

coefficients
Unbiased estimators
Variance inflation factor
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7
CAROTENOID PRODUCTION

Carotenoids are fat-soluble pigments that occur naturally in fruits in vegetables and are recom-
mended for healthy diets. A well-known carotenoid is beta-carotene. Astaxanthin is another
carotenoid that is a strong antioxidant and commercially produced. An exercise later in this
chapter describes an experiment in Biotechnology Progress to promote astaxanthin produc-
tion. Seven variables were considered important to production: photon flux density, and con-
centrations of nitrogen, phosphorous magnesium, acetate, ferrous, and sodium chloride. It was
important not only to study the effects of these factors but also the effects of combinations on the
production. Even with only a high and low setting for each variable, an experiment that uses
all possible combinations requires 27 � 128 tests. There are a number of disadvantages to such
a large experiment and a question is whether a fraction of the full set of tests can be selected
to provide the most important information about the effects of these variables in many fewer
runs. The example used a surprisingly small set of 16 runs (16/128 � 1/8 fraction). The design
and analysis of experiments of this type are the focus of this chapter. Such experiments are
widely used throughout modern engineering development and scientific studies.

Design of
Engineering
Experiments

CHAPTER OUTLINE

7-1 THE STRATEGY OF EXPERIMENTATION

7-2 FACTORIAL EXPERIMENTS

7-3 2k FACTORIAL DESIGN

7-3.1 22 Design

7-3.2 Statistical Analysis

7-3.3 Residual Analysis and Model Checking

7-3.4 2k Design For k � 3 Factors

7-3.5 Single Replicate of a 2k Design

7-4 CENTER POINTS AND 
BLOCKING IN 2k DESIGNS

7-4.1 Addition of Center Points

7-4.2 Blocking and Confounding

7-5 FRACTIONAL REPLICATION OF 
A 2k DESIGN

7-5.1 One-Half Fraction of a 2k Design

7-5.2 Smaller Fractions: 
2k�p Fractional Factorial Designs

7-6 RESPONSE SURFACE METHODS 
AND DESIGNS

7-6.1 Method of Steepest Ascent

7-6.2 Analysis of a Second-Order
Response Surface

7-7 FACTORIAL EXPERIMENTS WITH 
MORE THAN TWO LEVELS

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:

1. Design and conduct engineering experiments involving several factors using the factorial design approach.

2. Know how to analyze and interpret main effects and interactions.
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7-1 THE STRATEGY OF EXPERIMENTATION

Recall from Chapter 1 that engineers conduct tests or experiments as a natural part of their
work. Statistically based experimental design techniques are particularly useful in the
engineering world for improving the performance of a manufacturing process. They also
have extensive application in the development of new processes. Most processes can be
described in terms of several controllable variables, such as temperature, pressure, and
feed rate. By using designed experiments, engineers can determine which subset of the
process variables has the most influence on process performance. The results of such an
experiment can lead to

1. Improved process yield

2. Reduced variability in the process and closer conformance to nominal or target
requirements

3. Reduced design and development time

4. Reduced cost of operation

Experimental design methods are also useful in engineering design activities in which
new products are developed and existing ones improved. Some typical applications of statisti-
cally designed experiments in engineering design include

1. Evaluation and comparison of basic design configurations

2. Evaluation of different materials

3. Selection of design parameters so that the product will work well under a wide vari-
ety of field conditions (or so that the design will be robust)

4. Determination of key product design parameters that affect product performance

The use of experimental design in the engineering design process can result in products that
are easier to manufacture, have better field performance and reliability than their competitors,
and can be designed, developed, and produced in less time.

Designed experiments are usually employed sequentially, hence the term sequential ex-
perimentation. That is, the first experiment with a complex system (perhaps a manufacturing
process) that has many controllable variables is often a screening experiment designed to de-
termine which variables are most important. Subsequent experiments are then used to refine
this information and determine which adjustments to these critical variables are required to
improve the process. Finally, the objective of the experimenter is optimization—that is, to de-
termine which levels of the critical variables result in the best process performance. This is the
KISS principle: “keep it small and sequential.” When small steps are completed, the knowl-
edge gained can improve the subsequent experiments.

Every experiment involves a sequence of activities:

1. Conjecture—the original hypothesis that motivates the experiment.

2. Experiment—the test performed to investigate the conjecture.

3. Understand how the ANOVA is used to analyze the data from these experiments.

4. Assess model adequacy with residual plots.

5. Know how to use the two-level series of factorial designs.

6. Understand the role of center points and how two-level factorial designs can be run in blocks.

7. Design and analyze two-level fractional factorial designs.
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362 CHAPTER 7 DESIGN OF ENGINEERING EXPERIMENTS

3. Analysis—the statistical analysis of the data from the experiment.

4. Conclusion—what has been learned about the original conjecture from the experi-
ment will lead to a revised conjecture, a new experiment, and so forth.

Statistical methods are essential to good experimentation. All experiments are designed
experiments; some of them are poorly designed, and as a result, valuable resources are used 
ineffectively. Statistically designed experiments permit efficiency and economy in the experi-
mental process, and the use of statistical methods in examining the data results in scientific
objectivity when drawing conclusions.

In this chapter we focus on experiments that include two or more factors that the experi-
menter thinks may be important. The factorial experimental design will be introduced as a
powerful technique for this type of problem. Generally, in a factorial experimental design, 
experimental trials (or runs) are performed at all combinations of factor levels. For example,
if a chemical engineer is interested in investigating the effects of reaction time and reaction
temperature on the yield of a process, and if two levels of time (1 and 1.5 hr) and two levels of
temperature (125 and 150�F) are considered important, a factorial experiment would consist
of making the experimental runs at each of the four possible combinations of these levels of
reaction time and reaction temperature.

Most of the statistical concepts introduced previously can be extended to the factorial 
experiments of this chapter. We will also introduce several graphical methods that are useful
in analyzing the data from designed experiments.

7-2 FACTORIAL EXPERIMENTS

When several factors are of interest in an experiment, a factorial experiment should be used.
As noted previously, in these experiments factors are varied together.

Thus, if there are two factors A and B with a levels of factor A and b levels of factor B, each
replicate contains all ab treatment combinations.

The effect of a factor is defined as the change in response produced by a change in the
level of the factor. It is called a main effect because it refers to the primary factors in the study.
For example, consider the data in Table 7-1. This is a factorial experiment with two factors, 
A and B, each at two levels (Alow, Ahigh, and Blow, Bhigh ). The main effect of factor A is the 
difference between the average response at the high level of A and the average response at the
low level of A, or

That is, changing factor A from the low level to the high level causes an average response
increase of 20 units. Similarly, the main effect of B is

In some experiments, the difference in response between the levels of one factor is not
the same at all levels of the other factors. When this occurs, there is an interaction between

B �
20 � 40

2
�

10 � 30

2
� 10

A �
30 � 40

2
�

10 � 20

2
� 20

By a factorial experiment we mean that in each complete replicate of the experi-
ment all possible combinations of the levels of the factors are investigated.
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the factors. For example, consider the data in Table 7-2. At the low level of factor B, the 
A effect is

and at the high level of factor B, the A effect is

Because the effect of A depends on the level chosen for factor B, there is interaction between
A and B.

When an interaction is large, the corresponding main effects have very little practical
meaning. For example, by using the data in Table 7-2, we find the main effect of A as

and we would be tempted to conclude that there is no factor A effect. However, when we ex-
amined the effects of A at different levels of factor B, we saw that this was not the case. The ef-
fect of factor A depends on the levels of factor B. Thus, knowledge of the AB interaction is
more useful than knowledge of the main effect. A significant interaction can mask the signifi-
cance of main effects. Consequently, when interaction is present, the main effects of the fac-
tors involved in the interaction may not have much meaning.

It is easy to estimate the interaction effect in factorial experiments such as those illus-
trated in Tables 7-1 and 7-2. In this type of experiment, when both factors have two levels, the
AB interaction effect is the difference in the diagonal averages. This represents one-half 
the difference between the A effects at the two levels of B. For example, in Table 7-1, we find
the AB interaction effect to be

Thus, there is no interaction between A and B. In Table 7-2, the AB interaction effect is

As we noted before, the interaction effect in these data is very large.
The concept of interaction can be illustrated graphically in several ways. Figure 7-1 is

a plot of the data in Table 7-1 against the levels of A for both levels of B. Note that the Blow

and Bhigh lines are approximately parallel, indicating that factors A and B do not interact
significantly. Figure 7-2 presents a similar plot for the data in Table 7-2. In this graph, the

AB �
20 � 30

2
�

10 � 0

2
� 20

AB �
20 � 30

2
�

10 � 40

2
� 0

A �
30 � 0

2
�

10 � 20

2
� 0

A � 0 � 20 � �20

A � 30 � 10 � 20

Table 7-1 A Factorial Experiment 
without Interaction

Factor B

Factor A Blow Bhigh

Alow 10 20
Ahigh 30 40

Table 7-2 A Factorial Experiment 
with Interaction

Factor B

Factor A Blow Bhigh

Alow 10 20
Ahigh 30 0
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364 CHAPTER 7 DESIGN OF ENGINEERING EXPERIMENTS

Blow and Bhigh lines are not parallel, indicating the interaction between factors A and B.
Such graphical displays are called two-factor interaction plots. They are often useful in
presenting the results of experiments, and many computer software programs used for an-
alyzing data from designed experiments will construct these graphs automatically.

Figures 7-3 and 7-4 present another graphical illustration of the data from Tables 7-1 and 7-2.
Figure 7-3 shows a three-dimensional surface plot of the data from Table 7-1, where 
the low and high levels are set at �1 and 1, respectively, for both A and B. The equations for
these surfaces are discussed later in the chapter. These data contain no interaction, and the
surface plot is a plane lying above the A–B space. The slope of the plane in the A and B directions
is proportional to the main effects of factors A and B, respectively. Figure 7-4 is a surface plot
for the data from Table 7-2. Note that the effect of the interaction in these data is to “twist”
the plane so that there is curvature in the response function. Factorial experiments are the
only way to discover interactions between variables.

An alternative to the factorial design that is (unfortunately) used in practice is to change
the factors one at a time rather than to vary them simultaneously. To illustrate this one-factor-
at-a-time procedure, suppose that we are interested in finding the values of temperature and
pressure that maximize the yield of a chemical process. Suppose that we fix temperature at
155�F (the current operating level) and perform five runs at different levels of time—say, 0.5,
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Bhigh

Blow

Alow

0

Ahigh
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Factor A
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Figure 7-1 An interaction plot of a factorial
experiment, no interaction.

Figure 7-2 An interaction plot of a factorial
experiment, with interaction.
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Figure 7-3 Three-dimensional surface plot for the data
from Table 7-1, showing main effects of the two factors A
and B.

Figure 7-4 Three-dimensional surface plot for the data
from Table 7-2, showing the effect of the A and B
interaction.
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1.0, 1.5, 2.0, and 2.5 hours. The results of this series of runs are shown in Fig. 7-5. This figure
indicates that maximum yield is achieved at about 1.7 hours of reaction time. To optimize tem-
perature, the engineer then fixes time at 1.7 hours (the apparent optimum) and performs five
runs at different temperatures—say, 140, 150, 160, 170, and 180�F. The results of this set of
runs are plotted in Fig. 7-6. Maximum yield occurs at about 155�F. Therefore, we would con-
clude that running the process at 155�F and 1.7 hours is the best set of operating conditions,
resulting in yields of around 75%.

Figure 7-7 displays the contour plot of yield as a function of temperature and time with
the one-factor-at-a-time experiments superimposed on the contours. Clearly, this one-factor-
at-a-time approach has failed dramatically here, because the true optimum is at least 20 yield
points higher and occurs at much lower reaction times and higher temperatures. The failure to
discover the importance of the shorter reaction times is particularly important because this
could have significant impact on production volume or capacity, production planning, manu-
facturing cost, and total productivity.

The one-factor-at-a-time approach has failed here because it cannot detect the interaction
between temperature and time. Factorial experiments are the only way to detect interactions.
Furthermore, the one-factor-at-a-time method is inefficient. It will require more experimenta-
tion than a factorial, and as we have just seen, there is no assurance that it will produce the cor-
rect results.

7-3 2k FACTORIAL DESIGN

Factorial designs are frequently used in experiments involving several factors where it is nec-
essary to study the joint effect of the factors on a response. However, several special cases of
the general factorial design are important because they are widely employed in research work
and because they form the basis of other designs of considerable practical value.

The most important of these special cases is that of k factors, each at only two levels.
These levels may be quantitative, such as two values of temperature, pressure, or time; or they
may be qualitative, such as two machines, two operators, the “high” and “low” levels of a
factor, or perhaps the presence and absence of a factor. A complete replicate of such a design
requires 2 � 2 � � 2 � 2k observations and is called a 2k factorial design.

The 2k design is particularly useful in the early stages of experimental work, when many
factors are likely to be investigated. It provides the smallest number of runs for which k factors
can be studied in a complete factorial design. Because there are only two levels for each factor,
we must assume that the response is approximately linear over the range of the factor levels
chosen. The 2k design is a basic building block that is used to begin the study of a system.
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Figure 7-6 Yield versus temperature
with reaction time constant at 1.7 hours.

Figure 7-7 Contour plot of a yield
function and an optimization experiment
using the one-factor-at-a-time method.

Figure 7-5 Yield versus reaction time
with temperature constant at 155°F.

140

50

150 160 170 180

60

70

80

Yi
el

d 
(%

)

Temperature (°F)

c07DesignofEngineeringExperiments.qxd  9/24/10  8:54 PM  Page 365
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7-3.1 22 Design

The simplest type of 2k design is the 22—that is, two factors A and B, each at two levels. We
usually think of these levels as the low and high levels of the factor. The 22 design is shown in
Fig. 7-8. Note that the design can be represented geometrically as a square with the 22 � 4
runs, or treatment combinations, forming the corners of the square (Fig. 7-8a). In the 22 design
it is customary to denote the low and high levels of the factors A and B by the signs � and �,
respectively. This is sometimes called the geometric notation for the design. Figure 7-8b
shows the test, or design, matrix for the 22 design. Each row of the matrix is a run in the design
and the �,� signs in each row identify the factor settings for that run.

A special notation is used to label the treatment combinations. In general, a treatment
combination is represented by a series of lowercase letters. If a letter is present, the correspon-
ding factor is run at the high level in that treatment combination; if it is absent, the factor is
run at its low level. For example, treatment combination a indicates that factor A is at the high
level and factor B is at the low level. The treatment combination with both factors at the low
level is represented by (1). This notation is used throughout the 2k design series. For example,
the treatment combination in a 24 with A and C at the high level and B and D at the low level
is denoted by ac. The letters (1), a, b, and ab are also used to represent the totals of all n ob-
servations taken at each of these design points. For example, a = 59.299 implies that the total
response over all replicates is 59.299 for the treatment when factor A is high and B is low.

The effects of interest in the 22 design are the main effects A and B and the two-factor 
interaction AB. It is easy to estimate the effects of these factors. To estimate the main effect of A,
we would average the observations on the right side of the square in Fig. 7-8a, where A is at
the high level, and subtract from this the average of the observations on the left side of the
square, where A is at the low level, or

Low
(–)

High
(+)

(1)

A

B

b

a

ab

Low
(–)

High
(+)

(a) Geometric view (b) Design or test matrix for the 22

factorial design

Run A B

Factor

Label

1 – – (1)

2 + – a

3 – + b

4 + + ab

Figure 7-8 The 22

factorial design.

Similarly, the main effect of B is found by averaging the observations on the top of the square,
where B is at the high level, and subtracting the average of the observations on the bottom of
the square, where B is at the low level:

Main Effect 
of A

(7-1)A � yA� � yA� �
a � ab

2n
�

b � (1)

2n
�

1

2n
  [a � ab � b � (1) ]
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EXAMPLE 7-1 An article in the AT&T Technical Journal (Vol. 65, March/April 1986, pp. 39–50) describes the applica-
tion of two-level factorial designs to integrated circuit manufacturing. A basic processing step in this in-
dustry is to grow an epitaxial layer on polished silicon wafers. The wafers are mounted on a susceptor
and positioned inside a bell jar. Chemical vapors are introduced through nozzles near the top of the jar.
The susceptor is rotated, and heat is applied. These conditions are maintained until the epitaxial layer is
thick enough.

Table 7-4 presents the results of a 22 factorial design with n � 4 replicates using the factors 
A � deposition time and B � arsenic flow rate. The two levels of deposition time are � � short and 
� � long, and the two levels of arsenic flow rate are � � 55% and � � 59%. The response variable is
epitaxial layer thickness (�m). Find the estimate of the effects and assess the importance of the effects.

Main Effect 
of B

(7-2)B � yB� � yB� �
b � ab

2n
�

a � (1)

2n
�

1

2n
  [b � ab � a � (1) ]

Finally, the AB interaction is estimated by taking the difference in the diagonal averages
in Fig. 7-8a, or

The quantities in brackets in equations 7-1, 7-2, and 7-3 are called contrasts. For exam-
ple, the A contrast is

(7-4)

In these equations, the contrast coefficients are always either �1 or �1. A table of plus and
minus signs, such as Table 7-3, can be used to determine the sign on each treatment combi-
nation for a particular contrast. The column headings for Table 7-3 are the main effects A and B,
the AB interaction, and I, which represents the total. The row headings are the treatment com-
binations. Note that the signs in the AB column are the product of signs from columns A and
B. To generate a contrast from this table, multiply the signs in the appropriate column by the
treatment combinations listed in the rows and add. For example, contrastAB � [(1)] � [�a] �
[�b] � [ab] � ab � (1) � a � b.

ContrastA � a � ab � b � (1)

AB

Interaction
Effect (7-3)AB �

ab � (1)

2n
�

a � b

2n
�

1

2n
  [ab � (1) � a � b ]

Table 7-3 Signs for Effects in the 22 Design

Treatment Factorial Effect

Combination I A B AB

(1) � � � �

a � � � �

b � � � �

ab � � � � 

Epitaxial Process
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368 CHAPTER 7 DESIGN OF ENGINEERING EXPERIMENTS

Solution. We find the estimates of the effects using equations 7-1, 7-2, and 7-3 as follows:

Practical interpretation: The numerical estimates of the effects indicate that the effect of deposition time
is large and has a positive direction (increasing deposition time increases thickness), because changing
deposition time from low to high changes the mean epitaxial layer thickness by 0.836 �m. The effects of
arsenic flow rate (B) and the AB interaction appear small. ■

7-3.2 Statistical Analysis

We present two related methods for determining which effects are significantly different from
zero in a 2k experiment. In the first method, the magnitude of an effect is compared to its esti-
mated standard error. In the second method, a regression model is used in which each effect is
associated with a regression coefficient. Then the regression results developed in Chapter 6
can be used to conduct the analysis. The two methods produce identical results for two-level
designs. One might choose the method that is easiest to interpret or the one that is used by the
available computer software. A third method that uses normal probability plots is discussed
later in this chapter.

Standard Errors of the Effects
The magnitude of the effects in Example 7-1 can be judged by comparing each effect to its es-
timated standard error. In a 2k design with n replicates, there is a total of N � n2k measure-
ments. An effect estimate is the difference between two means, and each mean is calculated
from half the measurements. Consequently, the variance of an effect estimate is

(7-5)V(Effect) �
	2

N
2
�

	2

N
2
�

2	2

N
2
�

	2

n2k�2

 �
1

2(4)
 [59.156 � 56.081 � 59.299 � 55.686] � 0.032

 AB �
1

2n
 [ab � (1) � a � b ]

 �
1

2(4)
 [55.686 � 59.156 � 59.299 � 56.081] � �0.067

 B �
1

2n
 [b � ab � a � (1)]

 �
1

2(4)
 [59.299 � 59.156 � 55.686 � 56.081] � 0.836

 A �
1

2n
 [a � ab � b � (1)]

Estimate the Effects

Table 7-4 The 22 Design for the Epitaxial Process Experiment

Treatment Factorial Effect Thickness (mm)

Combination A B AB Thickness (�m) Total Average Variance

(1) � � � 14.037 14.165 13.972 13.907 56.081 14.020 0.0121

a � � � 14.821 14.757 14.843 14.878 59.299 14.825 0.0026

b � � � 13.880 13.860 14.032 13.914 55.686 13.922 0.0059

ab � � � 14.888 14.921 14.415 14.932 59.156 14.789 0.0625
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To obtain the estimated standard error of an effect, replace 	2 by an estimate and take the
square root of equation 7-5.

If there are n replicates at each of the 2k runs in the design, and if yi1, yi2, . . . , yin are the 
observations at the ith run,

is an estimate of the variance at the ith run. The 2k variance estimates can be pooled (averaged)
to give an overall variance estimate

(7-6)

Each is associated with n � 1 degrees of freedom, and so is associated with 2k(n � 1)
degrees of freedom.

An effect estimate divided by its estimated standard error is a t-statistic with 2k(n � 1) 
degrees of freedom that is used to test the significance of the effect.

	̂2	̂i
2

	̂2 � a
2k

i�1

	̂2
i

2k

	̂2
i �

a
n

j�1

(yij � yi.)
2

(n � 1)
  i � 1, 2, p , 2k

	̂2

(continued)
Epitaxial Process

EXAMPLE 7-1 To illustrate this approach for the epitaxial process experiment, we find that

and the estimated standard error of each effect is

In Table 7-5, each effect is divided by this estimated standard error and the resulting t ratio is compared
to a t distribution with 22 � 3 � 12 degrees of freedom. The t ratio is used to judge whether the 
effect is significantly different from zero. The significant effects are the important ones in the experiment.
Two standard error limits on the effect estimates are also shown in Table 7-5. These intervals are approx-
imate 95% CIs.
Practical interpretation: The magnitude and direction of the effects were examined previously, and the
analysis in Table 7-5 confirms those earlier tentative conclusions. Deposition time is the only factor that
significantly affects epitaxial layer thickness, and from the direction of the effect estimates we know that
longer deposition times lead to thicker epitaxial layers. ■

se(Effect) � 2 [ 	̂2
(n2k�2) ] � 2 [0.0208
(4 � 22�2) ] � 0.072

	̂2 �
0.0121 � 0.0026 � 0.0059 � 0.0625

4
� 0.0208

Compute and Use
the Estimated Standard
Error of Each Effect

Table 7-5 t-Tests of the Effects for Example 7-1 Epitaxial Process Experiment

Estimated Effect � Two
Effect Standard Estimated Standard

Effect Estimate Error t Ratio P-Value Errors

A 0.836 0.072 11.61 0.00 0.836 � 0.144

B �0.067 0.072 �0.93 0.38 �0.067 � 0.144

AB 0.032 0.072 0.44 0.67 0.032 � 0.144

Degrees of freedom � 2k(n � 1) � 22(4 � 1) � 12.
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Regression Analysis
In any designed experiment, it is important to examine a model for predicting responses.
Furthermore, there is a close relationship between the analysis of a designed experiment and a 
regression model that can be used easily to obtain estimates and predictions from a 2k experiment.

For the epitaxial process experiment, an initial regression model is

The deposition time and arsenic flow are represented by coded variables x1 and x2, respec-
tively. The low and high levels of deposition time are assigned values x1 � �1 and x1 � � 1,
respectively, and the low and high levels of arsenic flow are assigned values x2 � �1 and 
x2 � � 1, respectively. The cross-product term x1x2 represents the effect of the interaction 
between these variables.

The least squares fitted model is

where the intercept is the grand average of all 16 observations. The estimated coefficient of
x1 is one-half the effect estimate for deposition time. The one-half factor occurs because 
regression coefficients measure the effect of a unit change in x1 on the mean of Y, and the effect
estimate is based on a two-unit change from �1 to �1. Similarly, the estimated coefficient of
x2 is one-half of the effect of arsenic flow, and the estimated coefficient of the cross-product
term is one-half of the interaction effect.

The regression analysis is shown in Table 7-6. Because the P-value associated with the 
F-test for the model in the analysis of variance (or ANOVA) portion of the display is small (less
than 0.05), we conclude that one or more of the effects are important. The t-test for the hypoth-
esis H0: �i � 0 versus H1: �i 0 (for each coefficient �1, �2, and �3 in the regression analysis)
is identical to the one computed from the standard error of the effects in Table 7-5.
Consequently, the results in Table 7-6 can be interpreted as t-tests of regression coefficients.
Because each estimated regression coefficient is one-half of the effect estimate, the standard
errors in Table 7-6 are one-half of those in Table 7-5. The t-test from a regression analysis is
identical to the t-test obtained from the standard error of an effect in a 2k design whenever the
estimate is the same in both analyses.�̂2

�

�̂0

ŷ � 14.389 � a0.836

2
b x1 � a�0.067

2
b x2 � a0.032

2
b x1x2

Y � �0 � �1x1 � �2x2 � �12x1x2 � �

Test for Significance of
Regression Coefficients

Build the Regression
Model

Independent Coefficient Standard Error t for H0

Variable Estimate of Coefficient Coefficient � 0 P-Value

Intercept 14.3889 0.0360 399.17 0.000
A or X1 0.41800 0.03605 11.60 0.000
B or X2 �0.03363 0.03605 �0.93 0.369

AB or X1X2 0.01575 0.03605 0.44 0.670 

Analysis of Variance

Sum of Degrees Mean
Source Squares of Freedom Square f0 P-Value

Model 2.81764 3 0.93921 45.18 0.000
Error 0.24948 12 0.02079
Total 3.06712 15

Table 7-6 Regression Analysis for Example 7-1. The regression equation is 
Thickness � 14.4 � 0.418x1 � 0.0336x2 � 0.0158x1x2
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Note that mean square error equals the estimate of 	2 calculated previously. Similar to
a regression analysis, a simpler model that uses only the important effects is the preferred
choice to predict the response. Because the t-tests for the main effect of B and the AB inter-
action effect are not significant, these terms are removed from the model. The model then
becomes

That is, the estimated regression coefficient for any effect is the same, regardless of the model
considered. Although this is not true in general for a regression analysis, an estimated regres-
sion coefficient does not depend on the model in a factorial experiment. Consequently, it is
easy to assess model changes when data are collected in one of these experiments. One may
also revise the estimate of 	2 by using the mean square error obtained from the ANOVA table
for the simpler model (discussed next).

These analysis methods for 2k designs are summarized as follows.

ŷ � 14.389 � a0.836

2
b  x1

Formulas for Two-Level Factorial Experiments with k Factors 
Each at Two Levels and N Total Trials

(7-7)

 2k(n � 1) � residual degrees of freedom

 	̂2 � mean square error

 t ratio �
effect

se(effect)
�

coefficient

se(coefficient)

 se(Coefficient) �
1

2
 
B

2	̂2

N
2
�

1

2
 
B

	̂2

n2k�2

 se(Effect) �
B

2	̂2

N
2
�

B

	̂2

n2k�2

 Coefficient �
effect

2

Furthermore, software might provide additional details in the ANOVA output. For example,
the output from Minitab for this example is shown in Table 7-7. The coefficient estimates and
t-tests are the same as those in Tables 7-5 and 7-6. In the ANOVA table Minitab provides 
additional sums of squares. The sum of squares associated with an effect in a 2k design is 
defined to be

Each effect has one degree of freedom associated with it (because an effect is associated with
one term in a regression model.) Therefore, the mean square for an effect equals its sum of
squares.

SS �
(Contrast)2

n2k
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In the Minitab output in Table 7-7 the sum of squares for “Main Effects” plus “2-Way
Interactions” (2.81367 � 0.00397 � 2.81764) equals the sum of squares for the model in
Table 7-6. In general, Minitab provides a partition of the model sum of squares along the 
following lines:

This provides a partition of the model sum of squares and summaries that can be used to test the
significance of groups of effects. The details are described next. In design with more factors
Minitab adds additional terms to the partition such as SS (3-Way Interactions) and so forth.

The only two-factor interaction in this example is AB with sum of squares calculated to be
0.0040 (shown as the sum of squares associated with the “2-Way Interactions” as 0.00397, to
more decimal places). The F-statistic � 0.19 is the ratio of the mean square for this interac-
tion divided by the mean square for residual error. The P-value associated with this F-statistic
tests the significance of the interaction term and the value of 0.67 agrees with our previous
analysis. This F-test is equivalent to the t-test for this effect in Tables 7-5 and 7-6.

However, Minitab does not provide the sum of squares for the individual main effects of
factors A and B. Other software might provide these details. Instead, Minitab presents a sum
of squares for “Main Effects” as 2.81367. This equals the pooled (totaled) sum of squares for
factors A and B. That is, aside from rounding

Because the pooled sum of squares contains two effects, there are two degrees of freedom asso-
ciated with it. Consequently, the mean square equals 2.81367�2 � 1.40684 and the F-statistic
equals 1.40684�0.02079 � 67.67. This statistic tests the hypothesis that (that
neither A nor B is needed in the model) and it is equivalent to the regression test for a group of
regressors described in equation 6-56. As the number of factors in an experiment increases, it is
convenient to test effects in groups and Minitab summarizes common tests.

H0: �1 � �2 � 0

SS (Main Effects) � 2.81367 � 2.7956 � 0.0181 � SSA � SSB

SS (Model) � SS (Main Effects) � SS(2-Way Interactions)

Table 7-7 Minitab Output for Example 7-1

Factorial Fit: y versus A, B

Estimated Effects and Coefficients for y (coded units)

Term Effect Coef SE Coef T P

Constant 14.3889 0.03605 399.17 0.000

A 0.8360 0.4180 0.03605 11.60 0.000

B �0.0672 �0.0336 0.03605 �0.93 0.369

A*B 0.0315 0.0157 0.03605 0.44 0.670

S � 0.144188 R � Sq � 91.87% R � Sq (adj) � 89.83%

Analysis of Variance for y (coded units)

Source DF Seq SS Adj SS Adj MS F P

Main Effects 2 2.81367 2.81367 1.40684 67.67 0.000

2-Way Interactions 1 0.00397 0.00397 0.00397 0.19 0.670

Residual Error 12 0.24948 0.24948 0.02079

Pure Error 12 0.24948 0.24948 0.02079

Total 15 3.06712
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The general approach is simple. The sum of squares for a group of effects is obtained
from the addition of the individual sum of squares

The same is true for the degrees of freedom. Because each effect is associated with one degree
of freedom, a group with M effects has M degrees of freedom associated with it. These results
are used to calculate the mean square and the F-test for the group.

In the Minitab output in Table 7-7 the mean square for residual error equals 0.02079 and
this agrees with our previous results for mean squared error (aside from rounding). The line
denoted as “Pure Error” has identical results because mean squared error is estimated entirely
from replicate measurements in this example. That is, we have an estimate of 	2 that is 
obtained purely from replicates with 12 degrees of freedom. In experiments with more factors
we might have few (or even no) replicates, and we might use sums of squares for effects that are
unlikely to represent true effects to obtain a better estimate 	2. In such cases, sums of squares
for negligible effects are pooled (added) with the sum of squares obtained from replicates
(pure error) to obtain a sum of squares for residual error. That is,

The same addition is applied for degrees of freedom. Such pooling is common for experiments
with many factors. In such cases many degrees of freedom are associated with interactions of
three or more factors and these higher-order interactions might be considered negligible. Then
the associated sum of squares can be used to improve the estimate of mean squared error.

For example, Table 7-8 shows the Minitab output for the same data except that the AB
interaction is pooled into residual error. Although the “Pure Error” line is the same, now the sum
of squares and degree of freedom associated with the AB interaction is shown as “Lack of Fit.”
Furthermore, the “Residual Error” is now the addition of the sum of squares for the AB inter-
action and pure error. The degrees of freedom are also added. The mean square for residual 
error � 0.01950 is now used as the estimate of 	2. Therefore, the t-and F-statistics change
slightly because of this revised estimate.

SS(Residual Error) � SS(Pure Error) � SS(Negligible Effects)

SS (Group of M Effects) � SS(Effect1) � SS(Effect2) � p � SS (EffectM)

Table 7-8 Minitab Output for Example 7-1 with the Interaction Effect Pooled into Error

Factorial Fit: y versus A, B

Estimated Effects and Coefficients for y (coded units)

Term Effect Coef SE Coef T P

Constant 14.3889 0.03491 412.20 0.000

A 0.8360 0.4180 0.03491 11.97 0.000

B �0.0672 �0.0336 0.03491 �0.96 0.353

S � 0.139628 R � Sq � 91.74% R � Sq (adj) � 90.47%

Analysis of Variance for y (coded units)

Source DF Seq SS Adj SS Adj MS F P

Main Effects 2 2.81367 2.81367 1.40684 72.16 0.000

Residual Error 13 0.25345 0.25345 0.01950

Lack of Fit 1 0.00397 0.00397 0.00397 0.19 0.670

Pure Error 12 0.24948 0.24948 0.02079

Total 15 3.06712
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In general “Lack of Fit” denotes the sum of squares of all the effects that are pooled into
error (only the AB interaction in this example). Effects pooled into error are expected to be
negligible relative to the noise in the experiment and Minitab computes the ratio of the mean
square for lack of fit and pure error (� 0.00397�0.02079 � 0.19). In this example that is the
same as the test for the AB interaction, but the lack-of-fit term may contain additional effects
in experiments with more factors. One expects the F-test for the lack-of-fit term to be insignif-
icant (large P-value) because the effects that are pooled into residual error should be negligible.
If the test is significant, one questions the pooling that has been used.

7-3.3 Residual Analysis and Model Checking

The analysis of a 2k design assumes that the observations are normally and independently dis-
tributed with the same variance in each treatment or factor level. These assumptions should be
checked by examining the residuals. Residuals are calculated the same as in regression analy-
sis. A residual is the difference between an observation y and its estimated (or fitted) value
from the statistical model being studied, denoted as . Each residual is

The normality assumption can be checked by constructing a normal probability plot of
the residuals. To check the assumption of equal variances at each factor level, plot the residu-
als against the factor levels and compare the spread in the residuals. It is also useful to plot the
residuals against ; the variability in the residuals should not depend in any way on the value
of . When a pattern appears in these plots, it usually suggests the need for transformation—
that is, analyzing the data in a different metric. For example, if the variability in the residuals
increases with , a transformation such as log y or should be considered. In some prob-
lems, the dependence of residual scatter on the fitted value is very important information. It
may be desirable to select the factor level that results in maximum response; however, this
level may also cause more variation in response from run to run.

The independence assumption can be checked by plotting the residuals against the time
or run order in which the experiment was performed. A pattern in this plot, such as sequences
of positive and negative residuals, may indicate that the observations are not independent. This
suggests that time or run order is important or that variables that change over time are impor-
tant and have not been included in the experimental design. This phenomenon should be stud-
ied in a new experiment. It is easy to obtain residuals from a 2k design by fitting a regression
model to the data.

ŷ
1yŷ

ŷ
ŷ

e � y � ŷ

ŷ

(continued)
Epitaxial Process

EXAMPLE 7-1 For the epitaxial process experiment in Example 7-1, the regression model is

because the only active variable is deposition time.
This model can be used to obtain the predicted values at the four points that form the corners of 

the square in the design. For example, consider the point with low deposition time (x1 � � 1) and low
arsenic flow rate. The predicted value is

ŷ � 14.389 � a0.836

2
b (�1) � 13.971 �m

ŷ � 14.389 � a0.836

2
b x1
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and the residuals are

It is easy to verify that the remaining predicted values and residuals are, for low deposition time (x1 � � 1)
and high arsenic flow rate, 

for high deposition time (x1 � �1) and low arsenic flow rate, 

and for high deposition time (x1 � �1) and high arsenic flow rate, 

Practicaly interpretation: A normal probability plot of these residuals is shown in Fig. 7-9. This plot
indicates that one residual e15 � �0.392 is an outlier. Examining the four runs with high deposition time
and high arsenic flow rate reveals that observation y15 � 14.415 is considerably smaller than the other
three observations at that treatment combination. This adds some additional evidence to the tentative
conclusion that observation 15 is an outlier. Another possibility is that some process variables affect the
variability in epitaxial layer thickness. If we could discover which variables produce this effect, we could
perhaps adjust these variables to levels that would minimize the variability in epitaxial layer thickness.
This could have important implications in subsequent manufacturing stages. Figures 7-10 and 7-11 are
plots of residuals versus deposition time and arsenic flow rate, respectively. Apart from that unusually
large residual associated with y15, there is no strong evidence that either deposition time or arsenic flow
rate influences the variability in epitaxial layer thickness.

 e14 � 14.921 � 14.807 � 0.114    e16 � 14.932 � 14.807 � 0.125

 e13 � 14.888 � 14.807 � 0.081    e15 � 14.415 � 14.807 � �0.392

14.807 �m
(0.836
2)(�1) �ŷ � 14.389 �

 e10 � 14.757 � 14.807 � �0.050   e12 � 14.878 � 14.807 � 0.071

 e9 � 14.821 � 14.807 � 0.014    e11 � 14.843 � 14.807 � 0.036

14.807 �m(0.836
2)(�1)�ŷ � 14.389 �

 e6 � 13.860 � 13.971 � �0.111   e8 � 13.914 � 13.971 � �0.057

 e5 � 13.880 � 13.971 � �0.091   e7 � 14.032 � 13.971 � 0.061

ŷ � 14.389 � (0.836
2)(�1) � 13.971 �m

 e2 � 14.165 � 13.971 � 0.194    e4 � 13.907 � 13.971 � �0.064

 e1 � 14.037 � 13.971 � 0.066    e3 � 13.972 � 13.971 � 0.001

Analyze the Residuals of
the Regression Model

Interpret the 
Residual Plots
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Figure 7-9 Normal probability plot of residuals for the 
epitaxial process experiment.
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Figure 7-12 shows the standard deviation of epitaxial layer thickness at all four runs in the 22

design. These standard deviations were calculated using the data in Table 7-4. Note that the standard 
deviation of the four observations with A and B at the high level is considerably larger than the standard 
deviations at any of the other three design points. Most of this difference is attributable to the unusually
low thickness measurement associated with y15. The standard deviation of the four observations with A
and B at the low level is also somewhat larger than the standard deviations at the remaining two runs.
This could indicate that other process variables not included in this experiment may affect the variability
in epitaxial layer thickness. Another experiment to study this possibility, involving other process variables,
could be designed and conducted. (The original paper in the AT&T Technical Journal shows that two 
additional factors, not considered in this example, affect process variability.) ■

0.5
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e
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e

Low Arsenic flow rate, BHigh
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B

0.055
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b ab

+–

–

+

Figure 7-10 Plot of residuals versus
deposition time.

Figure 7-11 Plot of residuals versus 
arsenic flow rate.

Figure 7-12 The standard deviation
of epitaxial layer thickness at the four
runs in the 22 design.

7-3.4 2k Design for k � 3 Factors

The examples presented previously for factorial designs with k � 2 factors each at two levels
can be easily extended to more than two factors. For example, consider k � 3 factors, each at
two levels. This design is a 23 factorial design, and it has eight runs or treatment combinations.
Geometrically, the design is a cube as shown in Fig. 7-13a, with the eight runs forming the
corners of the cube. The test matrix or design matrix is shown in Fig. 7-13b. This design 

C

a
B

c

bc
abc

ab

A +

+

–

–

(1)

ac

–

+
b

(b) The test matrix(a) Geometric view

Run A C Label

1 – – (1)
2 + – a
3 – – b
4 +

B

–
–
+
+ – ab

5 – – + c
6 + – + ac
7 – + + bc
8 + + + abc

Figure 7-13 The 23

design.
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allows three main effects to be estimated (A, B, and C ) along with three two-factor interactions
(AB, AC, and BC ) and a three-factor interaction (ABC ).

The main effects can easily be estimated. Remember that the lowercase letters (1), a, b,
ab, c, ac, bc, and abc represent the total of all n replicates at each of the eight runs in the 
design. As seen in Fig. 7-14a, note that the main effect of A can be estimated by averaging the
four treatment combinations on the right-hand side of the cube, where A is at the high level,
and by subtracting from this quantity the average of the four treatment combinations on the
left-hand side of the cube, where A is at the low level. This gives

In a similar manner, the effect of B is the difference in averages between the four treat-
ment combinations in the back face of the cube (Fig. 7-14a) and the four in the front. The 
effect of C is the difference in average response between the four treatment combinations in
the top face of the cube (Fig. 7-14a) and the four in the bottom.

 �
a � ab � ac � abc

4n
�

(1) � b � c � bc

4n

 A � yA� � yA�

A B C

AB AC BC

(a)

(b)

ABC

(c)

A

C

B

+–
+

–

+

–

+

–

–

+

–
+

+
–

–

= + runs
= – runs

Main effects

Two-factor interactions

Three-factor interaction

+

Figure 7-14
Geometric presentation
of contrasts correspon-
ding to the main effects
and interaction in the 23

design. (a) Main effects.
(b) Two-factor interac-
tions. (c) Three-factor
interaction.
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These equations can be written as

(7-8)

(7-9)

(7-10)C � yC� � yC� �
1

4n
 [c � ac � bc � abc � (1) � a � b � ab ]

B � yB� � yB� �
1

4n
 [b � ab � bc � abc � (1) � a � c � ac ]

A � yA� � yA� �
1

4n
 [a � ab � ac � abc � (1) � b � c � bc ]

The two-factor interaction effect may be computed easily. A measure of the AB interaction is
the difference between the average A effects at the two levels of B. By convention, one-half of
this difference is called the AB interaction. Symbolically,

B Average A Effect

High (�)

Low (�)

Difference
[abc � bc � ab � b � ac � c � a � (1)]

2n

5(ac � c) � [a � (1)] 6
2n

[(abc � bc) � (ab � b)]

2n

The AB interaction is one-half of this difference and we could write it as follows:

In this form, the AB interaction is easily seen to be the difference in averages between runs on
two diagonal planes in the cube in Fig. 7-14b. Using similar logic and referring to Fig. 7-14b,
we find that the AB, AC, and BC interactions are

AB �
abc � ab � c � (1)

4n
�

bc � b � ac � a

4n

The ABC interaction is defined as the average difference between the AB interactions for
the two different levels of C. Thus,

ABC �
1

4n
 5 [abc � bc ] � [ac � c ] � [ab � b ] � [a � (1)] 6

(7-11)

(7-12)

(7-13) BC �
1

4n
 [ (1) � a � b � ab � c � ac � bc � abc ]

 AC �
1

4n
 [ (1) � a � b � ab � c � ac � bc � abc ]

AB �
1

4n
 [abc � bc � ab � b � ac � c � a � (1)]
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As before, we can think of the ABC interaction as the difference in two averages. If the runs in
the two averages are isolated, they define the vertices of the two tetrahedra that comprise the
cube in Fig. 7-14c.

In equations 7-8 through 7-14, the quantities in brackets are contrasts in the treatment com-
binations. A table of plus and minus signs that can be developed from the contrasts is shown in
Table 7-9. Signs for the main effects are determined by associating a plus with the high level and
a minus with the low level. Once the signs for the main effects have been established, the signs
for the remaining columns can be obtained by multiplying the appropriate preceding columns,
row by row. For example, the signs in the AB column are the products of the A and B column
signs in each row. The contrast for any effect can easily be obtained from this table.

Table 7-9 has several interesting properties:

1. Except for the identity column I, each column has an equal number of plus and
minus signs.

2. The sum of products of signs in any two columns is zero; that is, the columns in the
table are orthogonal.

3. Multiplying any column by column I leaves the column unchanged; that is, I is an
identity element.

4. The product of any two columns yields a column in the table, for example, A � B �
AB, and AB � ABC � A2B2C � C, because any column multiplied by itself is the
identity column.

The estimate of any main effect or interaction in a 2k design is determined by multiplying
the treatment combinations in the first column of the table by the signs in the corresponding
main effect or interaction column, adding the result to produce a contrast, and then dividing the
contrast by one-half the total number of runs in the experiment.

Table 7-9 Algebraic Signs for Calculating Effects in the 23 Design

Treatment Factorial Effect

Combination I A B AB C AC BC ABC

(1) � � � � � � � �

a � � � � � � � �

b � � � � � � � �

ab � � � � � � � �

c � � � � � � � �

ac � � � � � � � �

bc � � � � � � � �

abc � � � � � � � �

EXAMPLE 7-2 A mechanical engineer is studying the surface roughness of a part produced in a metal cutting operation.
A 23 factorial design in the factors feed rate (A), depth of cut (B), and tool angle (C ), with n � 2 repli-
cates, is run. The levels for the three factors are low A � 20 in./min, high A � 30 in./min; low B � 0.025
in., high B � 0.040 in.; low C � 15�, high C � 25�. Table 7-10 presents the observed surface roughness
data. Estimate the effects and construct an approximate 95% confidence interval on each.

Surface
Roughness

(7-14)ABC �
1

4n
 [abc � bc � ac � c � ab � b � a � (1)]

or
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380 CHAPTER 7 DESIGN OF ENGINEERING EXPERIMENTS

Solution. The main effects may be estimated using equations 7-8 through 7-14. The effect of A, for 
example, is

It is easy to verify that the other effects are

B � 1.625 C � 0.875
AB � 1.375 AC � 0.125
BC � � 0.625 ABC � 1.125

Examining the magnitude of the effects clearly shows that feed rate (factor A) is dominant, followed by
depth of cut (B) and the AB interaction, although the interaction effect is relatively small.

For the surface roughness experiment, we find from pooling the variances at each of the eight treat-
ments as in equation 7-6 that and the estimated standard error of each effect is

Therefore, two standard error limits on the effect estimates are

A: 3.375 � 1.56 B: 1.625 � 1.56
C: 0.875 � 1.56 AB: 1.375 � 1.56
AC: 0.125 � 1.56 BC: �0.625 � 1.56
ABC: 1.125 � 1.56

These intervals are approximate 95% confidence intervals. They indicate that the two main effects A and
B are important, but that the other effects are not, because the intervals for all effects except A and B
include zero. ■

This CI approach is equivalent to the t-tests and a simple method of analysis. With rela-
tively simple modifications, it can be used in situations where only a few of the design points

se(effect) �
B

	̂2

n2k�2 �
B

2.4375

2 � 23�2 � 0.78

	̂2 � 2.4375

 �
1

8
 [27] � 3.375

 �
1

4(2)
 [22 � 27 � 23 � 30 � 16 � 20 � 21 � 18]

 A �
1

4n
 [a � ab � ac � abc � (1) � b � c � bc ]

Compute Effects

Compute and Interpret
Approximate
Confidence Intervals on
Effects

Table 7-10 Surface Roughness Data for Example 7-2

Treatment Design Factors Surface
Combinations A B C Roughness Total Average Variance

(1) �1 �1 �1 9, 7 16 8 2.0
a 1 �1 �1 10, 12 22 11 2.0
b �1 1 �1 9, 11 20 10 2.0
ab 1 1 �1 12, 15 27 13.5 4.5
c �1 �1 1 11, 10 21 10.5 0.5
ac 1 �1 1 10, 13 23 11.5 4.5
bc �1 1 1 10, 8 18 9 2.0
abc 1 1 1 16, 14 30 15 2.0

Average 11.0625 2.4375 
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7-3 2k FACTORIAL DESIGN 381

have been replicated. Normal probability plots can also be used to judge the significance of 
effects. We will illustrate that method in the next section.

Regression Model and Residual Analysis
We may obtain the residuals from a 2k design by using the method demonstrated earlier for the
22 design. As an example, consider the surface roughness experiment. The initial model to be
considered for this experiment includes all terms as follows

However, the three largest effects are A, B, and the AB interaction. Consequently, the regression
model used to obtain the predicted values is

where x1 represents factor A, x2 represents factor B, and x1x2 represents the AB interaction.

y � �0 � �1x1 � �2x2 � �12x1x2

� �123x1x2x3

� �12x1x2 � �13x1x3 � �23x2x3

y � �0 � �1x1 � �2x2 � �3x3

EXAMPLE 7-2 The regression coefficients �1, �2, and �12 are estimated by one-half the corresponding effect estimates,
and �0 is the grand average. Thus,

and the predicted values would be obtained by substituting the low and high levels of A and B into this
equation. To illustrate this, at the treatment combination where A, B, and C are all at the low level, the
predicted value is

Because the observed values at this run are 9 and 7, the residuals are 9 � 9.25 � �0.25 and 7 � 9.25 �
�2.25. Residuals for the other 14 runs are obtained similarly.
Practical comments: A normal probability plot of the residuals is shown in Fig. 7-15. Because the resid-
uals lie approximately along a straight line, we do not suspect any problem with normality in the data.
There are no indications of severe outliers. It would also be helpful to plot the residuals versus the predicted
values and against each of the factors A, B, and C. ■

Projection of a 2k Design
Any 2k design will collapse or project into another 2k design in fewer variables if one or more
of the original factors are dropped. Sometimes this can provide additional insight into the 
remaining factors. For example, consider the surface roughness experiment. Because factor C
and all its interactions are negligible, we could eliminate factor C from the design. The result
is to collapse the cube in Fig. 7-13 into a square in the A–B plane; therefore, each of the four
runs in the new design has four replicates. In general, if we delete h factors so that r � k � h
factors remain, the original 2k design with n replicates will project into a 2r design with n2h

replicates.

 � 9.25

 ŷ � 11.0625 � a3.375

2
b (�1) � a1.625

2
b (�1) � a1.375

2
b (�1)(�1)

ŷ � 11.0625 � a3.375

2
b x1 � a1.625

2
b x2 � a1.375

2
b x1x2

(continued)
Surface
Roughness

Compute Predicted
Values and Residuals

c07DesignofEngineeringExperiments.qxd  10/15/10  1:41 PM  Page 381



382 CHAPTER 7 DESIGN OF ENGINEERING EXPERIMENTS

7-3.5 Single Replicate of a 2k Design

As the number of factors in a factorial experiment grows, the number of effects that can be es-
timated also grows. For example, a 24 experiment has 4 main effects, 6 two-factor interactions,
4 three-factor interactions, and 1 four-factor interaction, and a 26 experiment has 6 main ef-
fects, 15 two-factor interactions, 20 three-factor interactions, 15 four-factor interactions, 6
five-factor interactions, and 1 six-factor interaction. In most situations the sparsity of effects
principle applies; that is, the system is usually dominated by the main effects and low-order
interactions. The three-factor and higher-order interactions are usually negligible. Therefore,
when the number of factors is moderately large—say, k � 4 or 5—a common practice is to run
only a single replicate of the 2k design and then pool or combine the higher-order interactions
as an estimate of error. Sometimes a single replicate of a 2k design is called an unreplicated
2k factorial design.

When analyzing data from unreplicated factorial designs, occasionally real high-order in-
teractions occur. The use of an error mean square obtained by pooling high-order interactions
is inappropriate in these cases. A simple method of analysis called a normal probability plot
of effects can be used to overcome this problem. Construct a plot of the estimates of the 
effects on a normal probability scale. The effects that are negligible are normally distributed,
with mean zero, and will tend to fall along a straight line on this plot, whereas significant 
effects will have nonzero means and will not lie along the straight line. We will illustrate this
method in the next example.
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Figure 7-15 Normal probability plot of residuals from
the surface roughness experiment.

EXAMPLE 7-3 An article in Solid State Technology (“Orthogonal Design for Process Optimization and Its Application
in Plasma Etching,” Vol. 30, May 1987, pp. 127–132) describes the application of factorial designs in de-
veloping a nitride etch process on a single-wafer plasma etcher. The process uses C2F6 as the reactant
gas. It is possible to vary the gas flow, the power applied to the cathode, the pressure in the reactor cham-
ber, and the spacing between the anode and the cathode (gap). Several response variables would usually
be of interest in this process, but in this example we will concentrate on etch rate for silicon nitride.

Plasma Etch
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7-3 2k FACTORIAL DESIGN 383

We will use a single replicate of a 24 design to investigate this process. Because it is unlikely that
the three- and four-factor interactions are significant, we will tentatively plan to combine them as an 
estimate of error. The factor levels used in the design are shown here:

Design Factor

Level Gap Pressure C2F6 Flow Power
(cm) (mTorr) (SCCM) (w)

Low (�) 0.80 450 125 275

High (�) 1.20 550 200 325

Table 7-11 presents the test matrix and the data from the 16 runs of the 24 design. Table 7-12 is the table
of plus and minus signs for the 24 design. Analyze this experiment.

Solution. The signs in the columns of this table can be used to estimate the factor effects. For example,
the estimate of factor A is

Thus, the effect of increasing the gap between the anode and the cathode from 0.80 to 1.20 cm is to de-
crease the mean etch rate by 101.625 Å/min.

 � �101.625

 � 550 � 604 � 633 � 601 � 1037 � 1052 � 1075 � 1063)

 �
1

8
  (669 � 650 � 642 � 635 � 749 � 868 � 860 � 729

 � c � bc � d � bd � cd � bcd ]

 A �
1

8
 [a � ab � ac � abc � ad � abd � acd � abcd � (1) � b

Table 7-11 The 24 Design for the Plasma Etch Experiment

A B C D Etch Rate
(gap) (pressure) (C2F6 flow) (power) (Å/min)

�1 �1 �1 �1 550
1 �1 �1 �1 669

�1 1 �1 �1 604
1 1 �1 �1 650

�1 �1 1 �1 633
1 �1 1 �1 642

�1 1 1 �1 601
1 1 1 �1 635

�1 �1 �1 1 1037
1 �1 �1 1 749

�1 1 �1 1 1052
1 1 �1 1 868

�1 �1 1 1 1075
1 �1 1 1 860

�1 1 1 1 1063
1 1 1 1 729 
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384 CHAPTER 7 DESIGN OF ENGINEERING EXPERIMENTS

It is easy to verify that the complete set of effect estimates is

Table 7-12 Contrast Constants for the 24 Design

Factorial Effect

A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD

(1) � � � � � � � � � � � � � � �

a � � � � � � � � � � � � � � �

b � � � � � � � � � � � � � � �

ab � � � � � � � � � � � � � � �

c � � � � � � � � � � � � � � �

ac � � � � � � � � � � � � � � �

bc � � � � � � � � � � � � � � �

abc � � � � � � � � � � � � � � �

d � � � � � � � � � � � � � � �

ad � � � � � � � � � � � � � � �

bd � � � � � � � � � � � � � � �

abd � � � � � � � � � � � � � � �

cd � � � � � � � � � � � � � � �

acd � � � � � � � � � � � � � � �

bcd � � � � � � � � � � � � � � �

abcd � � � � � � � � � � � � � � �

A � �101.625 B � �1.625
AB � �7.875 C � 7.375
AC � �24.875 BC � �43.875
ABC � �15.625 D � 306.125
AD � �153.625 BD � �0.625
ABD � 4.125 CD � �2.125
ACD � 5.625 BCD � �25.375
ABCD � �40.125

The normal probability plot of these effects from the plasma etch experiment is shown in Fig. 7-16.
Clearly, the main effects of A and D and the AD interaction are significant because they fall far from the
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Figure 7-16 Normal
probability plot of 
effects from the plasma
etch experiment.
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7-3 2k FACTORIAL DESIGN 385

line passing through the other points. The analysis of variance summarized in Table 7-13 confirms these
findings. Note that in the analysis of variance we have pooled the three- and four-factor interactions to
form the error mean square. If the normal probability plot had indicated that any of these interactions
were important, we would not have included them in the error term. Consequently,

Because A � �101.625, the effect of increasing the gap between the cathode and anode is to 
decrease the etch rate. However, D � 306.125; thus, applying higher power levels will increase the etch
rate. Figure 7-17 is a plot of the AD interaction. This plot indicates that the effect of changing the gap
width at low power settings is small but that increasing the gap at high power settings dramatically 
reduces the etch rate. High etch rates are obtained at high power settings and narrow gap widths.

The residuals from the experiment can be obtained from the regression model

For example, when both A and D are at the low level, the predicted value is

and the four residuals at this treatment combination are

e1 � 550 � 597 � �47
e2 � 604 � 597 � 7
e3 � 633 � 597 � 36
e4 � 601 � 597 � 4

 � 597

 ŷ � 776.0625 � a101.625

2
b (�1) � a306.125

2
b (�1) � a153.625

2
b (�1)(�1)

ŷ � 776.0625 � a101.625

2
b x1 � a306.125

2
b x4 � a153.625

2
b x1x4

	̂2 � 2037.4 and se(coefficient) �
1

2
 
B

2(2037.4)

16
2
� 11.28

Interpret Normal
Probability Plot of
Effects

Compute Predicted
Values and Residuals

Table 7-13 Analysis for Example 7-3 Plasma Etch Experiment

Analysis of Variance

Source Sum of Squares Degrees of Freedom Mean Square f0 P-Value

Model 521234 10 52123.40 25.58 0.000
Error 10187 5 2037.40
Total 531421 15

Independent Effect Coefficient Standard Error t for H0

Variable Estimate Estimate of Coefficient Coefficient � 0 P-Value

Intercept 776.06 11.28 68.77 0.000
A �101.63 �50.81 11.28 �4.50 0.006
B �1.63 �0.81 11.28 �0.07 0.945
C 7.38 3.69 11.28 0.33 0.757
D 306.12 153.06 11.28 13.56 0.000
AB �7.88 �3.94 11.28 �0.35 0.741
AC �24.87 �12.44 11.28 �1.10 0.321
AD �153.62 �76.81 11.28 �6.81 0.001
BC �43.87 �21.94 11.28 �1.94 0.109
BD �0.62 �0.31 11.28 �0.03 0.979
CD �2.12 �1.06 11.28 �0.09 0.929
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386 CHAPTER 7 DESIGN OF ENGINEERING EXPERIMENTS

The residuals at the other three treatment combinations (A high, D low), (A low, D high), and (A high, D
high) are obtained similarly. A normal probability plot of the residuals is shown in Fig. 7-18. The plot is
satisfactory. It would also be helpful to plot the residuals versus the predicted values and against each of
the factors. ■

Low (0.80 cm)

200

400

600

800

1400

E
tc

h 
ra

te
 Å

/m
in

 A (Gap)

1000

1200

0
High (1.20 cm)

D(Power)low = 275 w

D(Power)high = 325 w

–72.50

1

8

10

30
20

60

70
80

90
96

–49.33 –26.17 –3.00 20.17 43.33 66.50

99

N
or

m
al

 p
ro

ba
bi

lit
y

Residual

Figure 7-18 Normal probability plot of residuals from the
plasma etch experiment.

Figure 7-17 AD (gap–power) interaction from the plasma
etch experiment.

EXERCISES FOR SECTION 7-3

For each of the following designs in Exercises 7-1 through 
7-8, answer the following questions.

(a) Compute the estimates of the effects and their standard 
errors for this design.

(b) Construct two-factor interaction plots and comment on
the interaction of the factors.

(c) Use the t ratio to determine the significance of each effect
with � � 0.05. Comment on your findings.

(d) Compute an approximate 95% CI for each effect.
Compare your results with those in part (c) and comment.

(e) Perform an analysis of variance of the appropriate re-
gression model for this design. Include in your analysis
hypothesis tests for each coefficient, as well as residual
analysis. State your final conclusions about the ade-
quacy of the model. Compare your results to part (c) and
comment.

7-1. An experiment involves a storage battery used in the
launching mechanism of a shoulder-fired ground-to-air missile.
Two material types can be used to make the battery plates. The
objective is to design a battery that is relatively unaffected by
the ambient temperature. The output response from the battery
is effective life in hours. Two temperature levels are selected,
and a factorial experiment with four replicates is run. The data
are as follows.

7-2. An engineer suspects that the surface finish of metal
parts is influenced by the type of paint used and the drying
time. She selects two drying times—20 and 30 minutes—and
uses two types of paint. Three parts are tested with each com-
bination of paint type and drying time. The data are as follows:

Temperature (°F)

Material Low High

1 130 155 20 70
74 180 82 58

2 138 110 96 104
168 160 82 60

Drying Time (min)

Paint 20 30

1 74 78
64 85
50 92

2 92 66
86 45
68 85 
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7-3 2k FACTORIAL DESIGN 387

7-3. An experiment was designed to identify a better ultra-
filtration membrane for separating proteins and peptide drugs
from fermentation broth. Two levels of an additive PVP (% wt)
and time duration (hours) were investigated to determine the
better membrane. The separation values (measured in %) 
resulting from these experimental runs are as follows:

7-7. A article in the IEEE Transactions on Electron Devices
(Vol. ED-33, 1986, p. 1754) describes a study on the effects of
two variables—polysilicon doping and anneal conditions
(time and temperature)—on the base current of a bipolar tran-
sistor. Some of the data from this experiment are as follows:

Time (hours)

PVP (% wt) 1 3

2 69.6 80.0

71.5 81.6

70.0 83.0

69.0 84.3

5 91.0 92.3

93.2 93.4

93.0 88.5

87.2 95.6

7-4. An experiment was conducted to determine whether 
either firing temperature or furnace position affects the baked
density of a carbon anode. The data are as follows:

Temperature (°C)

Position 800 825

1 570 1063

565 1080

583 1043

2 528 988

547 1026

521 1004

7-5. Johnson and Leone (Statistics and Experimental
Design in Engineering and the Physical Sciences, John Wiley,
1977) describe an experiment conducted to investigate warp-
ing of copper plates. The two factors studied were temperature
and the copper content of the plates. The response variable is
the amount of warping. Some of the data are as follows:

Copper Content (%)

Temperature (°C) 40 80

50 17, 20 24, 22

100 16, 12 25, 23

7-6. An article in the Journal of Testing and Evaluation
(Vol. 16, No. 6, 1988, pp. 508–515) investigated the effects of
cyclic loading frequency and environmental conditions on 
fatigue crack growth at a constant 22 MPa stress for a particular
material. Some of the data from the experiment are shown
here. The response variable is fatigue crack growth rate.

Environment

H2O Salt H2O

2.06 1.90

10
2.05 1.93

2.23 1.75

Frequency
2.03 2.06

3.20 3.10

1
3.18 3.24

3.96 3.98

3.64 3.24

Anneal
(temperature/time)

900/180 1000/15

1 � 1020 8.30 10.29

Polysilicon 8.90 10.30
Doping 7.81 10.19

2 � 1020

7.75 10.10

7-8. An article in the IEEE Transactions on Semiconductor
Manufacturing (Vol. 5, No. 3, 1992, pp. 214–222) describes an
experiment to investigate the surface charge on a silicon wafer.
The factors thought to influence induced surface charge are
cleaning method (spin rinse dry, or SRD, and spin dry, or SD)
and the position on the wafer where the charge was measured.
The surface charge (�1011 q/cm3) response data are as shown.

Test Position

L R

1.66 1.84

SD 1.90 1.84

Cleaning 1.92 1.62
Method �4.21 �7.58

SRD �1.35 �2.20

�2.08 �5.36

7-9. Consider the analysis of a designed experiment with
3 replicates. Use the following partially complete Minitab output
to answer the following questions.

(a) Find all of the missing values in the analysis of variance
table.

22
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388 CHAPTER 7 DESIGN OF ENGINEERING EXPERIMENTS

(b) Use this table to test for significance of the effects. Use

(c) Compute the estimated standard error of each effect.
(d) Find all of the missing values in the t-tests of the follow-

ing effects table. Indicate which effects are significant.
Use 

(e) Write the least squares fitted model using only the signifi-
cant terms.

(f ) Use the model to predict the response when 
and .x2 � 1

x1 � �1

� � 0.05.

� � 0.05.
7-11. Consider the ANOVA table in Exercise 7-9. (a)
Calculate the sum of squares, mean squares, and F-test for
main effects (the pooled A and B effects). (b) Assume that the
current residual error is estimated from pure error. Conduct a
lack-of-fit test for the interaction effect. Would you pool this
effect into residual error? Why or why not?

7-12. Consider the ANOVA in Exercise 7-10. (a) Calculate
the sum of squares, mean squares, and F-statistic for the A, B,
and AB effects. (b) How does the sum of squares of regression
relate to the sum of squares for the A, B, and AB effects? 
(c) Assume that the current residual error is estimated from
pure error. Conduct a lack-of-fit test for the pooled B effect
and AB interaction effect. Would you pool these effects into
residual error? Why or why not?

7-13. An engineer is interested in the effect of cutting speed
(A), metal hardness (B), and cutting angle (C ) on the life of a
cutting tool. Two levels of each factor are chosen, and two
replicates of a 23 factorial design are run. The tool life data (in
hours) are shown in the following table.

Source DF SS MS F P
A 1 7.84083 7.84083 348.48 ?
B 1 0.80083 ? 35.59 ?
Interaction 1 1.14083 1.14083 ? 0.000
Residual Error 8 0.18000 0.02250
Total 11 9.96250

Term Effect Coef SE Coef T P
Constant 7.9750 0.04330 184.17 0.000
A 1.6167 0.8083 ? 18.67 ?
B 0.5167 ? 0.04330 ? 0.000
A*B �0.6167 �0.3083 ? �7.12 ?

Analysis of Variance

Source DF SS MS F P
Regression ? 3.3095 1.1032 183.86 ?
Residual Error 16 0.0960 ?
Total 19 3.4055

Predictor Coef SE Coef T P
Constant 10.3650 0.0173 598.42 0.000
A 0.40500 ? 23.38 0.000
B 0.01500 0.01732 0.87 ?
A*B 0.03500 0.01732 ? 0.060

7-10. Consider the analysis of a designed experiment with
5 replicates. Use the following partially complete Minitab out-
put to answer the following questions.

(a) Find all of the missing values in the analysis of variance
table.

(b) Use this table to test for significance of the effects. Use

(c) Compute the estimated standard error of each effect.
(d) Find all of the missing values in the t-tests of the following

effects table. Indicate which effects are significant. Use
.

(e) Write the least squares fitted model using only the signifi-
cant terms.

(f) Use the model to predict the response when and
x2 � 1.

x1 � 1

� � 0.05

� � 0.05.

22

Treatment Replicate

Combination I II

(1) 221 311

a 325 435

b 354 348

ab 552 472

c 440 453

ac 406 377

bc 605 500

abc 392 419

(a) Analyze the data from this experiment using t-ratios with
� � 0.05.

(b) Find an appropriate regression model that explains tool
life in terms of the variables used in the experiment.

(c) Analyze the residuals from this experiment.

7-14. Four factors are thought to influence the taste of a
soft-drink beverage: type of sweetener (A), ratio of syrup to
water (B), carbonation level (C ), and temperature (D). Each
factor can be run at two levels, producing a 24 design.

Treatment Replicate

Combination I II

(1) 159 163

a 168 175

b 158 163

ab 166 168

c 175 178
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7-3 2k FACTORIAL DESIGN 389

At each run in the design, samples of the beverage are given to
a test panel consisting of 20 people. Each tester assigns the
beverage a point score from 1 to 10. Total score is the response
variable, and the objective is to find a formulation that maxi-
mizes total score. Two replicates of this design are run, and the
results are as shown. Analyze the data using t-ratios and draw
conclusions. Use � � 0.05 in the statistical tests.

7-15. Consider the experiment in Exercise 7-14. Determine
an appropriate model and plot the residuals against the levels
of factors A, B, C, and D. Also construct a normal probability
plot of the residuals. Comment on these plots and the most im-
portant factors influencing taste.

7-16. The data shown here represent a single replicate of a
25 design that is used in an experiment to study the compres-
sive strength of concrete. The factors are mix (A), time (B),
laboratory (C), temperature (D), and drying time (E).

(c) Determine an appropriate model and analyze the residuals
from this experiment. Comment on the adequacy of the
model.

(d) If it is desirable to maximize the strength, in which direc-
tion would you adjust the process variables?

7-17. Consider a famous experiment reported by O. L. Davies
(ed.), The Design and Analysis of Industrial Experiments
(London: Oliver and Boyd, 1956). The following data were col-
lected from an unreplicated experiment in which the investigator
was interested in determining the effect of four factors on the
yield of an isatin derivative used in a fabric-dying process. The
four factors are each run at two levels as indicated: (A) acid
strength at 87 and 93%, (B) reaction time at 15 and 30 min, (C)
amount of acid 35 and 45 ml, and (D) temperature of reaction 60
and 70�C. The response is the yield of isatin in grams per 100
grams of base material. The data are as follows:

Treatment Replicate

Combination I II

ac 179 183
bc 173 168
abc 179 182
d 164 159
ad 187 189
bd 163 159
abd 185 191
cd 168 174
acd 197 199
bcd 170 174
abcd 194 198

(1) � 700 e � 800
a � 900 ae � 1200
b � 3400 be � 3500
ab � 5500 abc � 6200
c � 600 ce � 600
ac � 1000 ace � 1200
bc � 3000 bce � 3000
abc � 5300 abce � 5500
d � 1000 de � 1900
ad � 1100 ade � 1500
bd � 3000 bde � 4000
abd � 6100 abde � 6500
cd � 800 cde � 1500
acd � 1100 acde � 2000
bcd � 3300 bcde � 3400
abcd � 6000 abcde � 6800

(1) � 6.08 d � 6.79

a � 6.04 ad � 6.68
b � 6.53 bd � 6.73
ab � 6.43 abd � 6.08
c � 6.31 cd � 6.77
ac � 6.09 acd � 6.38
bc � 6.12 bcd � 6.49
abc � 6.36 abcd � 6.23

(a) Estimate the effects and prepare a normal plot of the 
effects. Which interaction terms are negligible? Use t-ratios
to confirm your findings.

(b) Based on your results in part (a), construct a model and
analyze the residuals.

7-18. An experiment was run in a semiconductor fabrication
plant in an effort to increase yield. Five factors, each at two 
levels, were studied. The factors (and levels) were A � aperture
setting (small, large), B � exposure time (20% below nominal,
20% above nominal), C � development time (30 sec, 45 sec), 
D � mask dimension (small, large), and E � etch time (14.5 min,
15.5 min). The unreplicated 25 design shown here was run.

(1) � 7 e � 8
a � 9 ae � 12
b � 34 be � 35
ab � 55 abe � 52
c � 16 ce � 15
ac � 20 ace � 22
bc � 40 bce � 45
abc � 60 abce � 65
d � 8 deV � 6
ad � 10 ade � 10
bd � 32 bde � 30
abd � 50 abde � 53
cd � 18 cde � 15
acd � 21 acde � 20
bcd � 44 bcde � 41
abcd � 61 abcde � 63

(a) Estimate the factor effects.
(b) Which effects appear important? Use a normal probability

plot.
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(a) Construct a normal probability plot of the effect estimates.
Which effects appear to be large?

(b) Estimate �2 and use t-ratios to confirm your findings for
part (a).

(c) Plot the residuals from an appropriate model on normal
probability paper. Is the plot satisfactory?

(d) Plot the residuals versus the predicted yields and versus
each of the five factors. Comment on the plots.

(e) Interpret any significant interactions.
(f) What are your recommendations regarding process oper-

ating conditions?
(g) Project the 25 design in this problem into a 2r for r � 5 

design in the important factors. Sketch the design and
show the average and range of yields at each run. Does this
sketch aid in data interpretation?

7-19. An article in Talanta (2005, Vol. 65, pp. 895–899)
presented a 23 factorial design to find lead level by using flame
atomic absorption spectrometry (FAAS). The data are shown
in the following table.

Factors Lead Recovery (%)

Run ST pH RC R1 R2

1 � � � 39.8 42.1

2 � � � 51.3 48

3 � � � 57.9 58.1

4 � � � 78.9 85.9

5 � � � 78.9 84.2

6 � � � 84.2 84.2

7 � � � 94.4 90.9

8 � � � 94.7 105.3

(a) Construct a normal probability plot of the effect estimates.
Which effects appear to be large?

(b) Conduct an analysis of variance to confirm your findings
or part (a).

(c) Analyze the residuals from this experiment. Are there any
problems with model adequacy?

7-20. Consider the following Minitab output for a 23 factorial
experiment.

(a) How many replicates were used in the experiment?
(b) Calculate the standard error of a coefficient.
(c) Calculate the entries marked with “?” in the output.

Factor Low (�) High (�)

Reagent concentration (RC) 5 � 10�6 5 � 10�5
(mol�1)
pH 6.0 8.0
Shaking time (ST) (min) 10 30

The factors and levels are shown in the following table.

Factorial Fit: y versus A, B, C

Estimated Effects and Coefficients for y (coded units)

Team Effect Coef SE Coef T P

Constant 579.33 38.46 15.06 0.000

A 2.95 1.47 38.46 0.04 0.970

B 15.92 ? 38.46 0.21 0.841

C �37.87 �18.94 38.46 �0.49 0.636

A*B 20.43 10.21 38.46 ? 0.797

A*C �17.11 �8.55 38.46 �0.22 0.830

B*C 4.41 2.21 38.46 0.06 0.956

A*B*C 13.35 6.68 ? 0.17 0.866

S � 153.832 R � Sq � 5.22% R � Sq (adj) � 0.00%

Analysis of Variance for y (coded units)

Source DF Seq SS Adj SS Adj MS F P

Main Effects 3 6785 6785 2261.8 ? 0.960

2-Way 3 ? 2918 972.5 0.04 0.988
Interactions

3-Way 1 ? 713 713.3 0.03 0.866
Interactions

Residual 8 189314 189314 23664.2
Error

Pure Error 8 189314 189314 23664.2

Total 15 199730

7-4 CENTER POINTS AND BLOCKING IN 2k DESIGNS

7-4.1 Addition of Center Points

A potential concern in the use of two-level factorial designs is the assumption of linearity in the
factor effects. Of course, perfect linearity is unnecessary, and the 2k system will work quite well
even when the linearity assumption holds only approximately. However, there is a method of
replicating certain points in the 2k factorial that will provide protection against curvature as well
as allow an independent estimate of error to be obtained. The method consists of adding center
points to the 2k design. These consist of nC replicates run at the point xi � 0, i � 1, 2, . . . , k. One
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important reason for adding the replicate runs at the design center is that center points do not 
affect the usual effects estimates in a 2k design. We assume that the k factors are quantitative. If
some of the factors are categorical (such as Tool A and Tool B), the method can be modified.

To illustrate the approach, consider a 22 design with one observation at each of the facto-
rial points (�, �), (�, �), (�, �), and (�, �) and nC observations at the center point (0, 0).
Figure 7-19 illustrates the situation. Let be the average of the four runs at the four factorial
points, and let be the average of the nC run at the center point. If the difference is
small, the center points lie on or near the plane passing through the factorial points, and there
is no curvature. On the other hand, if is large, curvature is present.yF � yC

yF � yCyC

yF

A t-test statistic for curvature is given by

(7-15)

where nF is the number of factorial design points and nC is the number of center
points.

tCurvature �
yF � yC

B
	̂2 a 1

nF

�
1

nC

b

More specifically, when points are added to the center of the 2k design, the model we may
entertain is

(7-16)

where the jj are pure quadratic effects. The test for curvature actually tests the hypotheses

(7-17)H0: a
k

j�1

 jj � 0  H1: a
k

j�1

 jj � 0

Y � 0 � a
k

j�1

j xj � a
i 6 j
a ij xi xj � a

k

j�1

jj x
2
j � �

y

B

A

–1

0

+1

–1

0

+1

Figure 7-19 A 22

design with center
points.
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EXAMPLE 7-4 A chemical engineer is studying the percent conversion or yield of a process. There are two variables of 
interest, reaction time and reaction temperature. Because she is uncertain about the assumption of linearity
over the region of exploration, the engineer decides to conduct a 22 design (with a single replicate of each
factorial run) augmented with five center points. The design and the yield data are shown in Fig. 7-20.

Solution. Table 7-14 summarizes the analysis for this experiment. The estimate of pure error is calcu-
lated from the center points as follows:

The average of the points in the factorial portion of the design is and the average of the
points at the center is The difference appears to be
small. The curvature t-ratio is computed from equation 7-15 as follows:

The analysis indicates that there is no evidence of curvature in the response over the region of exploration;
that is, the null hypothesis cannot be rejected.

Table 7-14 displays output from Minitab for this example. The effect of A is (41.5 � 40.9 � 40.0 �
39.3)�2 � 1.55, and the other effects are obtained similarly. The pure-error estimate (0.043) agrees with
our previous result. Recall from regression modeling that the square of a t-ratio is an F-ratio.
Consequently, Minitab uses 0.2522 � 0.06 as an F-ratio to obtain an identical test for curvature. The sum
of squares for curvature is an intermediate step in the calculation of the F-ratio that equals the square of
the t-ratio when the estimate of 	2 is omitted. That is,

(7-18)SSCurvature �
( yF � yC)2

1

nF

�
1

nC

H0: ©
2
J�1 jj � 0

tCurvature �
yF � yC

B
	̂2 a 1

nF

�
1

nC

b
�

�0.035

B
0.0430 a1

4
�

1

5
b

� �0.252

�0.035yF � yC � 40.425 � 40.46 �yC � 40.46.
yF � 40.425,

	̂2 �

a
center points

 (yi � yC)2

nC � 1
�
a

5

i�1

 ( yi � 40.46)2

4
�

0.1720

4
� 0.0430

Process Yield

Figure 7-20 The 22

design with five center
points for Example 7-4.

Furthermore, if the factorial points in the design are unreplicated, we may use the nC center
points to construct an estimate of error with nC � 1 degrees of freedom. This is referred to as
a pure error estimate.
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Furthermore, Minitab adds the sum of squares for curvature and for pure error to obtain the residual sum of
squares (0.17472) with 5 degrees of freedom. The residual mean square (0.03494) is a pooled estimate of 	2,
and it is used in the calculation of the t-ratio for the A, B and AB effects. The pooled estimate is close to the
pure-error estimate in this example because curvature is negligible. If curvature were significant, the pooling
would not be appropriate. The estimate of the intercept 0 (40.444) is the mean of all nine measurements. ■

Table 7-14 Analysis for Example 7-4 Process Yield from Minitab

Factorial Design

Full Factorial Design

Factors: 2 Base Design: 2, 4
Runs: 9 Replicates: 1
Blocks: none Center pts (total): 5

All terms are free from aliasing

Fractional Factorial Fit

Estimated Effects and Coefficients for y

Term Effect Coef StDev Coef T P
Constant 40.4444 0.06231 649.07 0.000
A 1.5500 0.7750 0.09347 8.29 0.000
B 0.6500 0.3250 0.09347 3.48 0.018
A*B �0.0500 �0.0250 0.09347 �0.27 0.800

Analysis of Variance for y

Source DF Seq SS Adj SS Adj MS F P
Main Effects 2 2.82500 2.82500 1.41250 40.42 0.001
2-Way Interactions 1 0.00250 0.00250 0.00250 0.07 0.800
Residual Error 5 0.17472 0.17472 0.03494

Curvature 1 0.00272 0.00272 0.00272 0.06 0.814
Pure Error 4 0.17200 0.17200 0.04300

Total 8 3.00222

7-4.2 Blocking and Confounding

It is often impossible to run all the observations in a 2k factorial design under homogeneous
conditions. Drawing on the notions originally introduced in Section 5-8.2, blocking is the de-
sign technique that is appropriate for this general situation. However, in many situations the
block size is smaller than the number of runs in the complete replicate. In these cases, con-
founding is a useful procedure for running the 2k design in 2p blocks where the number of runs
in a block is less than the number of treatment combinations in one complete replicate. The
technique causes certain interaction effects to be indistinguishable from blocks, or confounded
with blocks. We will illustrate confounding in the 2k factorial design in 2p blocks, where p � k.

Consider a 22 design. Suppose that each of the 22 � 4 treatment combinations requires 4
hours of laboratory analysis. Thus, 2 days are required to perform the experiment. If days are
considered as blocks, we must assign two of the four treatment combinations to each day.

This design is shown in Fig. 7-21. Note that block 1 contains the treatment combinations
(1) and ab and that block 2 contains a and b. The contrasts for estimating the main effects of
factors A and B are

 ContrastB � ab � b � a � (1)

 ContrastA � ab � a � b � (1)
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Note that these contrasts are unaffected by blocking because in each contrast there is one plus
and one minus treatment combination from each block. That is, any difference between block
1 and block 2 that increases the readings in one block by an additive constant cancels out. The
contrast for the AB interaction is

Because the two treatment combinations with the plus signs, ab and (1), are in block 1 and the
two with the minus signs, a and b, are in block 2, the block effect and the AB interaction are
identical. That is, the AB interaction is confounded with blocks.

The reason for this is apparent from the table of plus and minus signs for the 22 design
shown in Table 7-3. From the table we see that all treatment combinations that have a plus on
AB are assigned to block 1, whereas all treatment combinations that have a minus sign on AB
are assigned to block 2.

This scheme can be used to confound any 2k design in two blocks. As a second example,
consider a 23 design run in two blocks. From the table of plus and minus signs, shown in Table
7-9, we assign the treatment combinations that are minus in the ABC column to block 1 and
those that are plus in the ABC column to block 2. The resulting design is shown in Fig. 7-22.

ContrastAB � ab � (1) � a � b

b ab

ab

a
A

– +

(1)

Geometric view

= Run in block 1
Block 1

Assignment of the four
runs to two blocks

(1)= Run in block 2

–

+

b

Block 2

a

(a) (b)

Figure 7-21 A 22 design in two blocks. (a) Geometric view. (b) Assignment of the
four runs to two blocks.

bc

Geometric view

(1)

= Run in block 1 Block 1

Assignment of the eight
runs to two blocks
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abc

Block 2

c

ab b

(1) a

(a) (b)

A

C

B

abc

ac

bc
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Figure 7-22 The 23 design in two blocks with ABC confounded. (a) Geometric view. 
(b) Assignment of the eight runs to two blocks.
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EXAMPLE 7-5 An experiment is performed to investigate the effect of four factors on the terminal miss distance of a
shoulder-fired ground-to-air-missile. The four factors are target type (A), seeker type (B), target altitude
(C ), and target range (D). Each factor may be conveniently run at two levels, and the optical tracking sys-
tem will allow terminal miss distance to be measured to the nearest foot. Two different operators or gun-
ners are used in the flight test and, because there may be differences between operators, the test engineers
decided to conduct the 24 design in two blocks with ABCD confounded.

The experimental design and the resulting data are shown in Fig. 7-23. The effect estimates 
obtained from Minitab are shown in Table 7-15. A normal probability plot of the effects in Fig. 7-24 
reveals that A (target type), D (target range), AD, and AC have large effects. A confirming analysis of variance,
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a d
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a
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d
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= 7
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Geometric view
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Figure 7-23 The 24 design in two blocks for Example 7-5. (a) Geometric view. 
(b) Assignment of the 16 runs to two blocks.
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Figure 7-24 Normal probability plot of the
effects from Minitab, Example 7-5.

Table 7-15 Minitab Effect Estimates for Example 7-5

Estimated Effects and Coefficients for Distance

Term Effect Coef
Constant 6.938
Block 0.063
A 2.625 1.312
B 0.625 0.313
C 0.875 0.438
D 1.875 0.938
A*B �0.125 �0.063
A*C �2.375 �1.187
A*D 1.625 0.813
B*C �0.375 �0.188
B*D �0.375 �0.187
C*D �0.125 �0.062
A*B*C �0.125 �0.063
A*B*D 0.875 0.438
A*C*D �0.375 �0.187
B*C*D �0.375 �0.187 
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Table 7-16 Analysis of Variance for Example 7-5

Source of Sum of Degrees of Mean
Variation Squares Freedom Square f0 P-Value

Blocks (ABCD) 0.0625 1 0.0625 0.06 —
A 27.5625 1 27.5625 25.94 0.0070
B 1.5625 1 1.5625 1.47 0.2920
C 3.0625 1 3.0625 2.88 0.1648
D 14.0625 1 14.0625 13.24 0.0220
AB 0.0625 1 0.0625 0.06 —
AC 22.5625 1 22.5625 21.24 0.0100
AD 10.5625 1 10.5625 9.94 0.0344
BC 0.5625 1 0.5625 0.53 —
BD 0.5625 1 0.5625 0.53 —
CD 0.0625 1 0.0625 0.06 —

Error (ABC � ABD � ACD � BCD) 4.2500 4 1.0625
Total 84.9375 15 
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It is possible to confound the 2k design in four blocks of 2k�2 observations each. To construct
the design, two effects are chosen to confound with blocks. A third effect, the generalized inter-
action of the two effects initially chosen, is also confounded with blocks. The generalized inter-
action of two effects is found by multiplying their respective letters and reducing the exponents
modulus 2.

For example, consider the 24 design in four blocks. If AC and BD are confounded with blocks,
their generalized interaction is (AC)(BD) � ABCD. The design is constructed by a partition of the
treatments according to the signs of AC and BD. It is easy to verify that the four blocks are

Block 1 Block 2 Block 3 Block 4 
AC�, BD� AC�, BD� AC�, BD� AC�, BD�

(1) a b ab

ac c abc bc

bd abd d ad

abcd bcd acd cd

This general procedure can be extended to confounding the 2k design in 2p blocks, where
p � k. Start by selecting p effects to be confounded, such that no effect chosen is a generalized
interaction of the others. Then the blocks can be constructed from the p defining contrasts 
L1, L2, . . . , Lp that are associated with these effects. In addition to the p effects chosen to be
confounded, exactly 2p � p � 1 additional effects are confounded with blocks; these are the
generalized interactions of the original p effects chosen. Care should be taken so as not to con-
found effects of potential interest.

For more information on confounding in the 2k factorial design, refer to Montgomery
(2009a). This book contains guidelines for selecting factors to confound with blocks so that
main effects and low-order interactions are not confounded. In particular, the book contains a
table of suggested confounding schemes for designs with up to seven factors and a range of
block sizes, some of which are as small as two runs.

pooling the three-factor interactions as error, is shown in Table 7-16. Because the AC and AD interactions
are significant, it is logical to conclude that A (target type), C (target altitude), and D (target range) all
have important effects on the miss distance and that there are interactions between target type and alti-
tude and target type and range. Note that the ABCD effect is treated as blocks in this analysis. ■
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EXERCISES FOR SECTION 7-4

7-21. Consider the semiconductor experiment in Exercise
7-18. Suppose that a center point (replicated five times) could
be added to this design and that the responses at the center are
45, 40, 41, 47, and 43.

(a) Estimate the error using the center points. How does this 
estimate compare to the estimate obtained in Exercise 7-18?

(b) Calculate the t-ratio for curvature and test at � � 0.05.

7-22. Consider the data from Exercise 7-13, replicate I only.
Suppose that a center point (with four replicates) is added to
these eight runs. The tool life response at the center point is
425, 400, 437, and 418.

(a) Estimate the factor effects.
(b) Estimate pure error using the center points.
(c) Calculate the t-ratio for curvature and test at � � 0.05.
(d) Test for main effects and interaction effects, using � � 0.05.
(e) Give the regression model and analyze the residuals from

this experiment.
7-23. Consider the data from the first replicate of Exercise
7-13. Suppose that these observations could not all be run
under the same conditions. Set up a design to run these 
observations in two blocks of four observations each, with
ABC confounded. Analyze the data.

7-24. Consider the data from the first replicate of Exercise
7-14. Construct a design with two blocks of eight observations
each, with ABCD confounded. Analyze the data.

7-25. Repeat Exercise 7-24 assuming that four blocks are
required. Confound ABD and ABC (and consequently CD)
with blocks.

7-26. Construct a 25 design in two blocks. Select the
ABCDE interaction to be confounded with blocks.

7-27. Construct a 25 design in four blocks. Select the appro-
priate effects to confound so that the highest possible interac-
tions are confounded with blocks.

7-28. Consider the data from Exercise 7-17. Construct the
design that would have been used to run this experiment in
two blocks of eight runs each. Analyze the data and draw
conclusions.

7-29. Consider the Minitab analysis results of a -designed
experiment with two replicates at the corner points and four
replicates at a center point.

(a) Find all of the missing values for the t-tests and the F-tests
in the two tables below. Indicate which effects are signifi-
cant. Use 

(b) Is there significant curvature? Indicate the lines in the
Minitab output that provide the necessary information.

(c) Write the least squares fitted model using only the signifi-
cant terms.

(d) Use the model to predict the response when 
x2 � �1, x3 � �1.

x1 � �1,

� � 0.1.

23

7-30. Describe how center points can be added to an exper-
iment conducted in blocks. Use software to generate such a
design for a 23 experiment in two blocks with six center points.

7-31. Consider the following Minitab output from a single
replicate of a 24 experiment in two blocks with ABCD con-
founded.

(a) Comment on the value of blocking in this experiment.
(b) What effects were used to generate the residual error in

the ANOVA?
(c) Calculate the entries marked with “?” in the output.

Term Coef SE Coef T P
Constant 14.97 0.6252 23.95 0.000

A 9.93 0.6252 15.89 ?

B �5.28 0.6252 �8.45 ?

C 0.17 0.6252 ? 0.791

A*B �14.98 0.6252 ? ?

A*C 0.27 0.6252 0.43 ?

B*C 0.07 0.6252 ? ?

A*B*C 0.34 0.6252 ? 0.597

Ct Pt �0.93 1.3980 �0.66 ?

Analysis of Variance for Response

Source DF Seq SS Adj MS F P

Main Effects 3 2025.69 675.23 107.69 ?

2-Way Interactions 3 3592.66 1197.55 ? 0.000

3-Way Interactions 1 1.85 1.85 0.30 ?

Curvature 1 2.74 2.74 0.44 ?

Residual Error 11 68.80 6.25

Pure Error 11 68.80 6.25

Total 19 5691.74

Factorial Fit: y versus Block, A, B, C, D

Estimated Effects and Coefficients for y (coded units)

Term Effect Coef SE Coef T P

Constant 579.33 9.928 58.35 0.000

Block 105.68 9.928 10.64 0.000

A �15.41 � 7.70 9.928 �0.78 0.481

B 2.95 1.47 9.928 0.15 0.889

C 15.92 7.96 9.928 0.80 0.468

D �37.87 �18.94 9.928 �1.91 0.129

A*B �8.16 �4.08 9.928 �0.41 0.702

A*C 5.91 2.95 9.928 0.30 0.781

A*D 30.28 ? 9.928 ? 0.202

B*C 20.43 10.21 9.928 1.03 0.362

B*D �17.11 �8.55 9.928 �0.86 0.437

C*D 4.41 2.21 9.928 0.22 0.835

S � 39.7131 R-Sq 96.84% R-Sq (adj) � 88.16%
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7-32. An article in Advanced Semiconductor Manufacturing
Conference (ASMC) (May 2004, pp. 325–29) stated that dis-
patching rules and rework strategies are two major operational
elements that impact productivity in a semiconductor fabrica-
tion plant (fab). A four-factor experiment was conducted to 
determine the effect of dispatching rule time (5 or 10 min), 
rework delay (0 or 15 min), fab temperature (60 or 80�F), and
rework levels (level 0 or level 1) on key fab performance meas-
ures. The performance measure that was analyzed was the 
average cycle time. The experiment was blocked for the fab

temperature. Data modified from the original study are shown
in the following table.

7-5 FRACTIONAL REPLICATION OF A 2k DESIGN

As the number of factors in a 2k factorial design increases, the number of runs required 
increases rapidly. For example, a 25 requires 32 runs. In this design, only 5 degrees of freedom
correspond to main effects, and 10 degrees of freedom correspond to two-factor interactions.
Sixteen of the 31 degrees of freedom are used to estimate high-order interactions—that is,
three-factor and higher-order interactions. Often there is little interest in these high-order 
interactions, particularly when we first begin to study a process or system. If we can assume that
certain high-order interactions are negligible, a fractional factorial design involving fewer
than the complete set of 2k runs can be used to obtain information on the main effects and low-
order interactions. In this section, we will introduce fractional replications of the 2k design.

A major use of fractional factorials is in screening experiments. These are experiments in
which many factors are considered with the purpose of identifying those factors (if any) that
have large effects. Screening experiments are usually performed in the early stages of a proj-
ect when it is likely that many of the factors initially considered have little or no effect on the
response. The factors that are identified as important are then investigated more thoroughly in
subsequent experiments.

7-5.1 One-Half Fraction of a 2k Design

A fraction of the 2k design contains 2k�1 runs and is often called a 2k�1 fractional factorial 
design. As an example, consider the 23�1 design—that is, a fraction of the 23. This design has
only four runs, in contrast to the full factorial that would require eight runs. The table of plus
and minus signs for the 23 design is shown in Table 7-17. Suppose we select the four treatment
combinations a, b, c, and abc as our fraction. These treatment combinations are shown in the
top half of Table 7-17 and in Fig. 7-25a. We will continue to use both the lowercase letter nota-
tion (a, b, c, . . .) and the geometric or plus and minus notation for the treatment combinations.

1
2

1
2

1
2

Analysis of Variance for y (coded units)

Source DF Seq SS Adj SS Adj MS F P

Blocks ? 178694 178694 178694 113.30 0.000

Main Effects 4 7735 7735 1934 1.23 0.424

2-Way 6 6992 6992 ? 0.74 0.648
Interactions

Residual 4 6309 6309 1577
Error

Total 15 199730

Dispatching Rework Fab Average
Rule Time Delay Rework Temperature Cycle Time

Run (min) (min) Level (�F) (min)

1 5 0 0 60 218

2 10 0 0 80 256.5

3 5 0 1 80 231

4 10 0 1 60 302.5

5 5 15 0 80 298.5

6 10 15 0 60 314

7 5 15 1 60 249

8 10 15 1 80 241

(a) What effects are confounded with block? Do you find any
concern with confounding in this design? If so, comment
on it.

(b) Analyze the data and draw conclusions.
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Note that the 23�1 design is formed by selecting only those treatment combinations that
yield a plus on the ABC effect. Thus, ABC is called the generator of this particular fraction.
Furthermore, the identity element I is also plus for the four runs, so we call

the defining relation for the design.
The treatment combinations in the 23�1 designs yield three degrees of freedom associated

with the main effects. From the upper half of Table 7-17, we obtain the estimates of the main
effects as linear combinations of the observations:

C �
1

2
 [�a � b � c � abc ]

B �
1

2
 [�a � b � c � abc ]

A �
1

2
 [a � b � c � abc ]

I � ABC

Table 7-17 Plus and Minus Signs for the 23 Factorial Design

Treatment Factorial Effect

Combination I A B C AB AC BC ABC

a � � � � � � � �

b � � � � � � � �

c � � � � � � � �

abc � � � � � � � �

ab � � � � � � � �

ac � � � � � � � �

bc � � � � � � � �

(1) � � � � � � � �

A

C

B

abc

c

b

a

bc

ac

ab

(1)

The principal fraction, I = +ABC

(a) (b)

The alternate fraction, I = –ABC

Figure 7-25 The fractions of the 23 design. (a) The principal fraction, I � � ABC. 
(b) The alternate fraction, I � �ABC.

1
2
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400 CHAPTER 7 DESIGN OF ENGINEERING EXPERIMENTS

It is also easy to verify that the estimates of the two-factor interactions should be the follow-
ing linear combinations of the observations:

Thus, the linear combination of observations in column A estimates both the main effect of A and
the BC interaction. That is, the linear combination estimates the sum of these two effects A � BC.
Similarly, B estimates B � AC, and C estimates C � AB. Two or more effects that have this prop-
erty are called aliases. In our 23�1 design, A and BC are aliases, B and AC are aliases, and C and
AB are aliases. Aliasing is the direct result of fractional replication. In many practical situations,
it will be possible to select the fraction so that the main effects and low-order interactions of 
interest will be aliased only with high-order interactions (which are probably negligible).

The alias structure for this design is found by using the defining relation I � ABC.
Multiplying any effect by the defining relation yields the aliases for that effect. In our example,
the alias of A is

because A � I � A and A2 � I. The aliases of B and C are

and

Now suppose that we had chosen the other fraction—that is, the treatment combinations
in Table 7-17 associated with minus on ABC. These four runs are shown in the lower half of
Table 7-17 and in Fig. 7-25b. The defining relation for this design is I � �ABC. The aliases
are A � � BC, B � �AC, and C � �AB. Thus, estimates of A, B, and C that result from this
fraction really estimate A � BC, B � AC, and C � AB. In practice, it usually does not matter
which fraction we select. The fraction with the plus sign in the defining relation is usually
called the principal fraction, and the other fraction is usually called the alternate fraction.

Note that if we had chosen AB as the generator for the fractional factorial,

and the two main effects of A and B would be aliased. This typically loses important information.
Sometimes we use sequences of fractional factorial designs to estimate effects. For exam-

ple, suppose we had run the principal fraction of the 23�1 design with generator ABC.
However, if after running the principal fraction important effects are aliased, it is possible to
estimate them by running the alternate fraction. Then the full factorial design is completed
and the effects can be estimated by the usual calculation. Because the experiment has been
split over two time periods, it has been confounded with blocks. One might be concerned that
changes in the experimental conditions could bias the estimates of the effects. However, it can
be shown that if the result of a change in the experimental conditions is to add a constant to all

A � A � AB � B

1
2

1
2

C � C � ABC � ABC2 � AB

B � B � ABC � AB2C � AC

A � A � ABC � A2BC � BC

AB �
1

2
 [�a � b � c � abc ]

AC �
1

2
 [�a � b � c � abc ]

BC �
1

2
 [a � b � c � abc ]
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the responses, only the ABC interaction effect is biased as a result of confounding; the remaining
effects are not affected. Thus, by combining a sequence of two fractional factorial designs, we
can isolate both the main effects and the two-factor interactions. This property makes the frac-
tional factorial design highly useful in experimental problems because we can run sequences
of small, efficient experiments, combine information across several experiments, and take 
advantage of learning about the process we are experimenting with as we go along. This is an
illustration of the concept of sequential experimentation.

A 2k�1 design may be constructed by writing down the treatment combinations for a full
factorial with k � 1 factors, called the basic design, and then adding the kth factor by identi-
fying its plus and minus levels with the plus and minus signs of the highest-order interaction.
Therefore, a 23�1 fractional factorial is constructed by writing down the basic design as a full
22 factorial and then equating factor C with the 	 AB interaction. Thus, to construct the prin-
cipal fraction, we would use C � �AB as follows:

Basic Design Fractional Design

Full 22 23�1, I � �ABC

A B A B C � AB

� � � � �
� � � � �
� � � � �
� � � � �

To obtain the alternate fraction we would equate the last column to C � �AB.

EXAMPLE 7-6 To illustrate the use of a fraction, consider the plasma etch experiment described in Example 7-3. Suppose
that we decide to use a 24�1 design with I � ABCD to investigate the four factors gap (A), pressure (B), C2F6

flow rate (C ), and power setting (D). This design would be constructed by writing down as the basic design
a 23 in the factors A, B, and C and then setting the levels of the fourth factor D � ABC. The design and the
etch rate for each trial are shown in Table 7-18. The design is shown graphically in Fig. 7-26. We are inter-
ested in how this reduced design affects our results.

Solution. In this design, the main effects are aliased with the three-factor interactions; note that the alias
of A is

 A � A2BCD � BCD

 A � I � A � ABCD

1
2

Plasma Etch

Table 7-18 The 24–1 Design with Defining Relation I � ABCD

Treatment Etch 
A B C D � ABC Combination Rate

� � � � (1) 550
� � � � ad 749
� � � � bd 1052
� � � � ab 650
� � � � cd 1075
� � � � ac 642
� � � � bc 601
� � � � abcd 729 
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and similarly

The two-factor interactions are aliased with each other. For example, the alias of AB is CD:

The other aliases are

The estimates of the main effects and their aliases are found using the four columns of signs in Table 7-18.
For example, from column A we obtain the estimated effect as the difference between the averages of the
four � runs and the four � runs.

The other columns produce

and

Clearly, A � BCD and D � ABC are large, and if we believe that the three-factor interactions are negli-
gible, the main effects A (gap) and D (power setting) significantly affect etch rate.

The interactions are estimated by forming the AB, AC, and AD columns and adding them to the table. For
example, the signs in the AB column are �, �, �, �, �, �, �, �, and this column produces the estimate

From the AC and AD columns we find

 AD � BC � �197.50

 AC � BD � �25.50

 � �10.00 AB � CD �
1

4
  (550 � 749 � 1052 � 650 � 1075 � 642 � 601 � 729)

D � ABC � 290.50

C � ABD � 11.50
B � ACD � 4.00

 � �127.00 A � BCD �
1

4
  (�550 � 749 � 1052 � 650 � 1075 � 642 � 601 � 729)

AC � BD  and  AD � BC

 AB � A2B2CD � CD

 AB � I � AB � ABCD

B � ACD   C � ABD   D � ABC

abcd = 729

cd = 1075

bd = 1052

ad = 749

bc = 601

ac = 642

ab = 650

(1) = 550

A

C

B

D– +

Figure 7-26 The 24�1 design for the experiment of Example 7-6.

Examine the Aliases

Interpret the
Interaction Effects
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The AD � BC estimate is large; the most straightforward interpretation of the results is that because the
main effects A and D are large, this is the AD interaction. Thus, the results obtained from the 24�1 design
agree with the full factorial results in Example 7-3. ■

Normality Probability Plots and Residuals
The normal probability plot is useful in assessing the significance of effects from a fractional
factorial design, particularly when many effects are to be estimated. We strongly recommend
this approach. Residuals can be obtained from a fractional factorial by the regression model
method shown previously. These residuals should be graphically analyzed as we have dis-
cussed before, both to assess the validity of the underlying model assumptions and to gain 
additional insight into the experimental situation.

Projection of a 2k�1 Design
If one or more factors from a one-half fraction of a 2k can be dropped, the design will project into
a full factorial design. For example, Fig. 7-27 presents a 23�1 design. Note that this design will 
project into a full factorial in any two of the three original factors. Thus, if we think that at most two
of the three factors are important, the 23�1 design is an excellent design for identifying the signifi-
cant factors. This projection property is highly useful in factor screening, because it allows negli-
gible factors to be eliminated, resulting in a stronger experiment in the active factors that remain.

In the 24�1 design used in the plasma etch experiment in Example 7-6, we found that two of the four
factors (B and C ) could be dropped. If we eliminate these two factors, the remaining columns in Table 7-
17 form a 22 design in the factors A and D, with two replicates. This design is shown in Fig. 7-28. The
main effects of A and D and the strong two-factor AD interaction are clearly evident from this graph.

Design Resolution
The concept of design resolution is a useful way to catalog fractional factorial designs ac-
cording to the alias patterns they produce. Designs of resolution III, IV, and V are particularly
important. The definitions of these terms and an example of each follow.

1. Resolution III designs. These are designs in which no main effects are aliased with
any other main effect, but main effects are aliased with two-factor interactions and
some two-factor interactions may be aliased with each other. The 23�1 design with 

+1

–1
–1 +1

(1052, 1075) (749, 729)

(650, 642)
(550, 601)

A (Gap)

D (Power)A

B

C

a

abc

b

c

Figure 7-27 Projection of a 23�1 design into three
22 designs.

Figure 7-28 The 22 design obtained by drop-
ping factors B and C from the plasma etch 
experiment in Example 7-6.
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I � ABC is a resolution III design. We usually employ a Roman numeral subscript to
indicate design resolution; thus, this fraction is a 2III

3�1 design.

2. Resolution IV designs. These are designs in which no main effect is aliased with
any other main effect or two-factor interactions, but two-factor interactions are aliased
with each other. The 24�1 design with I � ABCD used in Example 7-9 is a resolution
IV design (2IV

4�1).

3. Resolution V designs. These are designs in which no main effect or two-factor 
interaction is aliased with any other main effect or two-factor interaction, but two-
factor interactions are aliased with three-factor interactions. A 25�1 design with 
I � ABCDE is a resolution V design (2V

5�1).

Resolutions III and IV designs are particularly useful in factor screening experiments. A resolu-
tion IV design provides good information about main effects and will provide some information
about all two-factor interactions.

7-5.2 Smaller Fractions: 2k�p Fractional Factorial Designs

Although the 2k�1 design is valuable in reducing the number of runs required for an experi-
ment, we frequently find that smaller fractions will provide almost as much useful information
at even greater economy. In general, a 2k design may be run in a 1�2p fraction called a 2k�p

fractional factorial design. Thus, a 1�4 fraction is called a 2k�2 design, a 1�8 fraction is called
a 2k�3 design, a 1�16 fraction a 2k�4 design, and so on.

To illustrate the 1�4 fraction, consider an experiment with six factors and suppose that the 
engineer is primarily interested in main effects but would also like to get some information about
the two-factor interactions. A 26�1 design would require 32 runs and would have 31 degrees of freedom
for estimating effects. Because there are only 6 main effects and 15 two-factor interactions, the 

fraction is inefficient—it requires too many runs. Suppose we consider a 1�4 fraction, or a 26�2

design. This design contains 16 runs and, with 15 degrees of freedom, will allow all 6 main effects
to be estimated, with some capability for examining the two-factor interactions.

To generate this design, we would write down a 24 design in the factors A, B, C, and D as
the basic design, and then add two columns for E and F. To find the new columns we could
select the two design generators I � ABCE and I � BCDF. Thus, column E would be found
from E � ABC, and column F would be F � BCD. That is, columns ABCE and BCDF are
equal to the identity column. However, we know that the product of any two columns in the
table of plus and minus signs for a 2k design is simply another column in the table; therefore,
the product of ABCE and BCDF that equals ABCE (BCDF ) � AB2C2DEF � ADEF is also an
identity column. Consequently, the complete defining relation for the 26�2 design is

We refer to each term in a defining relation (such as ABCE above) as a word. To find the alias
of any effect, simply multiply the effect by each word in the foregoing defining relation. For
example, the alias of A is

The complete alias relationships for this design are shown in Table 7-19. In general, the resolution
of a 2k�p design is equal to the number of letters in the shortest word in the complete defining 
relation. Therefore, this is a resolution IV design; main effects are aliased with three-factor and
higher interactions, and two-factor interactions are aliased with each other. This design provides

A � BCE � ABCDF � DEF

I � ABCE � BCDF � ADEF

1
2

1
2
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good information on the main effects and gives some idea about the strength of the two-factor 
interactions. The construction and analysis of the design are illustrated in Example 7-7.

Table 7-19 Alias Structure for the 2IV
6�2 Design with I � ABCE �

BCDF � ADEF

A � BCE � DEF � ABCDF AB � CE � ACDF � BDEF
B � ACE � CDF � ABDEF AC � BE � ABDF � CDEF
C � ABE � BDF � ACDEF AD � EF � BCDE � ABCF
D � BCF � AEF � ABCDE AE � BC � DF � ABCDEF
E � ABC � ADF � BCDEF AF � DE � BCEF � ABCD
F � BCD� ADE � ABCEF BD � CF � ACDE � ABEF
ABD � CDE � ACF � BEF BF � CD � ACEF � ABDE
ACD � BDE � ABF � CEF

Injection-Molding
Experiment

EXAMPLE 7-7 Parts manufactured in an injection-molding process are showing excessive shrinkage, which is causing
problems in assembly operations upstream from the injection-molding area. In an effort to reduce the
shrinkage, a quality-improvement team has decided to use a designed experiment to study the injection-
molding process. The team investigates six factors—mold temperature (A), screw speed (B), holding time (C),
cycle time (D), gate size (E), and holding pressure (F)—each at two levels, with the objective of learning
how each factor affects shrinkage and obtaining preliminary information about how the factors interact.

The team decides to use a 16-run two-level fractional factorial design for these six factors. The design
is constructed by writing down a 24 as the basic design in the factors A, B, C, and D and then setting 
E � ABC and F � BCD as discussed previously. Table 7-20 shows the design, along with the observed
shrinkage (
10) for the test part produced at each of the 16 runs in the design. Analyze this fractional facto-
rial design and identify the factor levels that reduce average part shrinkage with low part-to-part variability.

Solution. Minitab is useful for analyzing fractional factorial designs. Table 7-21 shows the Minitab out-
put for the 26�2 fractional factorial design in this example. The design generators and aliases are dis-
played when the design is initially created. The effect estimates and ANOVA table are displayed when the

Table 7-20 A 2IV
6�2 Design for the Injection-Molding Experiment in

Example 7-7

Observed
Shrinkage 

Run A B C D E � ABC F � BCD (
10)

1 � � � � � � 6
2 � � � � � � 10
3 � � � � � � 32
4 � � � � � � 60
5 � � � � � � 4
6 � � � � � � 15
7 � � � � � � 26
8 � � � � � � 60
9 � � � � � � 8

10 � � � � � � 12
11 � � � � � � 34
12 � � � � � � 60
13 � � � � � � 16
14 � � � � � � 5
15 � � � � � � 37
16 � � � � � � 52 
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Table 7-21 Analysis of the 26�2 Fractional Factorial Design for Example 7-7 from Minitab

Factorial Design

Fractional Factorial Design

Factors: 6 Base Design: 6, 16 Resolution: IV
Runs: 16 Replicates: 1 Fraction 1/4
Blocks: none Center pts (total): 0
Design Generators: E � ABC F � BCD

Alias Structure

1 � ABCE � ADEF � BCDF
A � BCE � DEF � ABCDF
B � ACE � CDF � ABDEF
C � ABE � BDF � ACDEF
D � AEF � BCF � ABCDE
E � ABC � ADF � BCDEF
F � ADE � BCD � ABCEF
AB � CE � ACDF � BDEF
AC � BE � ABDF � CDEF
AD � EF � ABCF � BCDE
AE � BC � DF � ABCDEF
AF � DE � ABCD � BCEF
BD � CF � ABEF � ACDE
BF � CD � ABDE � ACEF
ABD � ACF � BEF � CDE
ABF � ACD � BDE � CEF

Fractional Factorial Fit

Estimated Effects and Coefficients for y

Term Effect Coef
Constant 27.313
A 13.875 6.938
B 35.625 17.812
C �0.875 �0.438
D 1.375 0.687
E 0.375 0.187
F 0.375 0.188
A*B 11.875 5.938
A*C �1.625 �0.813
A*D �5.375 �2.688
A*E �1.875 �0.937
A*F 0.625 0.313
B*D �0.125 �0.062
B*F �0.125 �0.062
A*B*D 0.125 0.062
A*B*F �4.875 �2.437

Analysis of Variance for y

Source DF Seq SS Adj SS Adj MS F P
Main Effects 6 5858.37 5858.37 976.40 **
2-Way Interactions 7 705.94 705.94 100.85 **
3-Way Interactions 2 95.12 95.12 47.56 **
Residual Error 0 0.00 0.00 0.00

Total 15 6659.44
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design is analyzed. The t-tests and F-tests are not shown in the ANOVA output because nonsignificant 
effects have not yet been pooled into an estimate of error.

A normal probability plot of the effect estimates from this experiment is shown in Fig. 7-29. The only
large effects are A (mold temperature), B (screw speed), and the AB interaction. In light of the alias relation-
ship in Table 7-19, it seems reasonable to tentatively adopt these conclusions. The plot of the AB interaction
in Fig. 7-30 shows that the process is insensitive to temperature if the screw speed is at the low level but
sensitive to temperature if the screw speed is at the high level. With the screw speed at a low level, the
process should produce an average shrinkage of around 10% regardless of the temperature level chosen.

Based on this initial analysis, the team decides to set both the mold temperature and the screw speed
at the low level. This set of conditions should reduce the mean shrinkage of parts to around 10%.
However, the variability in shrinkage from part to part is still a potential problem. In effect, the mean
shrinkage can be adequately reduced by the preceding modifications; however, the part-to-part variability
in shrinkage over a production run could still cause problems in assembly. One way to address this issue
is to see if any of the process factors affect the variability in parts shrinkage.

Figure 7-31 presents the normal probability plot of the residuals. This plot appears satisfactory. The
plots of residuals versus each factor were then constructed. One of these plots, that for residuals versus
factor C (holding time), is shown in Fig. 7-32. The plot reveals much less scatter in the residuals at the

Interpret the Results

–5

1

0 5 10 15 20 25 30 35 40

5
10
20
30
50
60
80
90
95

99

AB

A

B

N
or

m
al

 p
ro

ba
bi

lit
y 

Effect estimates

Low

60

4
High

S
hr

in
ka

ge
 (

× 
1

0
)

Mold temperature, A

B–

B+

B+

B–

Figure 7-29 Normal probability plot of
effects for Example 7-7.

Figure 7-30 Plot of AB (mold temperature–
screw speed) interaction for Example 7-7.

Figure 7-32 Residuals versus holding time (C ) for
Example 7-7.
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408 CHAPTER 7 DESIGN OF ENGINEERING EXPERIMENTS

low holding time than at the high holding time. These residuals were obtained in the usual way from a
model for predicted shrinkage

where x1, x2, and x1x2 are coded variables that correspond to the factors A and B and the AB interaction.
The residuals are then

The regression model used to produce the residuals essentially removes the location effects of A, B, and
AB from the data; the residuals therefore contain information about unexplained variability. Figure 7-32
indicates that there is a pattern in the variability and that the variability in the shrinkage of parts may be
smaller when the holding time is at the low level.

Figure 7-33 shows the data from this experiment projected onto a cube in the factors A, B, and C.
The average observed shrinkage and the range of observed shrinkage are shown at each corner of the
cube. From inspection of this figure, we see that running the process with the screw speed (B) at the low
level is the key to reducing average parts shrinkage. If B is low, virtually any combination of temperature (A)
and holding time (C ) will result in low values of average parts shrinkage. However, from examining the
ranges of the shrinkage values at each corner of the cube, it is immediately clear that setting the holding
time (C ) at the low level is the most appropriate choice if we wish to keep the part-to-part variability in
shrinkage low during a production run. ■

e � y � ŷ

 � 27.3125 � 6.9375x1 � 17.8125x2 � 5.9375x1x2

 ŷ � �̂0 � �̂1x1 � �̂2x2 � �̂12x1x2

r = 11

–

+

y = 31.5
r = 8
y = 56.0

r = 10
y = 10.0

r = 2
y = 11.0

r = 2
y = 33.0

r = 2
y = 7.0

B, screw speed

r = 0
y = 60.0

r = 12
y = 10.0

– +
A, mold temperature

C, holding time

+

–

Select the Preferred
Process Settings

The concepts used in constructing the 26�2 fractional factorial design in Example 7-7 can
be extended to the construction of any 2k�p fractional factorial design. In general, a 2k

fractional factorial design containing 2k�p runs is called a 1�2p fraction of the 2k design or,
more simply, a 2k�p fractional factorial design. These designs require the selection of p inde-
pendent generators. The defining relation for the design consists of the p generators initially
chosen and their 2p � p � 1 generalized interactions.

The alias structure may be found by multiplying each effect column by the defining rela-
tion. Care should be exercised in choosing the generators so that effects of potential interest
are not aliased with each other. Each effect has 2p � 1 aliases. For moderately large values of
k, we usually assume higher-order interactions (say, third- or fourth-order or higher) to be
negligible, and this greatly simplifies the alias structure.

It is important to select the p generators for the 2k�p fractional factorial design in such a
way that we obtain the best possible alias relationships. A reasonable criterion is to select the
generators so that the resulting 2k�p design has the highest possible design resolution.
Montgomery (2009a) presents a table of recommended generators for 2k�p fractional factorial
designs for k � 11 factors and up to n � 128 runs. A portion of this table is reproduced here
as Table 7-22. In this table, the generators are shown with either � or � choices; selection of

Figure 7-33
Average shrinkage and
range of shrinkage in
factors A, B, and C for
Example 7-7.
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Table 7-22 Selected 2k�p Fractional Factorial Designs

Number of
Factors, Number of Design

k Fraction Runs Generators

3 2III
3�1 4 C � 	AB

4 2IV
4�1 8 D � 	ABC

5 2V
5�1 16 E � 	ABCD

2III
5�2 8 D � 	AB

E � 	AC

6 2VI
6�1 32 F � 	ABCDE

2IV
6�2 16 E � 	ABC F � 	BCD

2III
6�3 8 D � 	AB E � 	AC

F � 	BC

7 2VII
7�1 64 G � 	ABCDEF

2IV
7�2 32 E � 	ABC G � 	ABDE

2IV
7�3 16 E � 	ABC F � 	BCD

G � 	ACD

2III
7�4 8 D � 	AB E � 	AC

F � 	BC G � 	ABC

8 2V
8�2 64 G � 	ABCD H � 	ABEF

2IV
8�3 32 F � 	ABC G � 	ABD

H � 	BCDE

2IV
8�4 16 E � 	BCD F � 	ACD

G � 	ABC H � 	ABD

9 2VI
9�2 128 H � 	ACDFG J � 	BCEFG

2IV
9�3 64 G � 	ABCD H � 	ACEF

J � 	CDEF

2IV
9�4 32 F � 	BCDE G � 	ACDE

H � 	ABDE J � 	ABCE

2III
9�5 16 E � 	ABC F � 	BCD

G � 	ACD H � 	ABD
J � 	ABCD

Number of
Factors, Number of Design

k Fraction Runs Generators

10 2V
10�3 128 H � 	ABCG J � 	ACDE

K � 	ACDF

2IV
10�4 64 G � 	BCDF H � 	ACDF

J � 	ABDE K � 	ABCE

2IV
10�5 32 F � 	ABCD G � 	ABCE

H � 	ABDE J � 	ACDE
K � 	BCDE

2III
10�6 16 E � 	ABC F � 	BCD

G � 	ACD H � 	ABD
J � 	ABCD K � 	AB

11 2IV
11�5 64 G � 	CDE H � 	ABCD

J � 	ABF K � 	BDEF
L � 	ADEF

2IV
11�6 32 F � 	ABC G � 	BCD

H � 	CDE J � 	ACD
K � 	ADE L � 	BDE

2III
11�7 16 E � 	ABC F � 	BCD

G � 	ACD H � 	ABD
J � 	ABCD K � 	AB
L � 	AC

Source: Montgomery (2009a).
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410 CHAPTER 7 DESIGN OF ENGINEERING EXPERIMENTS

EXAMPLE 7-8 To illustrate the use of Table 7-22, suppose that we have seven factors and that we are interested in esti-
mating the seven main effects and obtaining some insight regarding the two-factor interactions. We are
willing to assume that three-factor and higher interactions are negligible. This information suggests that
a resolution IV design would be appropriate.

Solution. Table 7-22 shows that two resolution IV fractions are available: the 2IV
7�2 with 32 runs and the

2IV
7�3 with 16 runs. The aliases involving main effects and two- and three-factor interactions for the 

16-run design are presented in Table 7-23. Note that all seven main effects are aliased with three-factor
interactions. All the two-factor interactions are aliased in groups of three. Therefore, this design will sat-
isfy our objectives; that is, it will allow the estimation of the main effects, and it will give some insight
regarding two-factor interactions. It is not necessary to run the 2IV

7�2 design, which would require 32 runs.
The construction of the 2IV

7�3 design is shown in Table 7-24. Note that it was constructed by starting with
the 16-run 24 design in A, B, C, and D as the basic design and then adding the three columns E � ABC,
F � BCD, and G � ACD as suggested in Table 7-22. Thus, the generators for this design are I � ABCE,
I � BCDF, and I � ACDG. The complete defining relation is I � ABCE � BCDF � ADEF � ACDG �
BDEG � CEFG � ABFG. This defining relation was used to produce the aliases in Table 7-23. For 
example, the alias relationship of A is

which, if we ignore interactions higher than three factors, agrees with those in Table 7-23. ■

A � BCE � ABCDF � DEF � CDG � ABDEG � ACEFG � BFG

all generators as � will give a principal fraction, whereas if any generators are � choices, the
design will be one of the alternate fractions for the same family. The suggested generators in
this table will result in a design of the highest possible resolution. Montgomery (2009a) also
gives a table of alias relationships for these designs.

Aliases with
Seven Factors

Table 7-23 Generators, Defining Relation, and Aliases for the 2IV
7�3 Fractional Factorial Design

Discussed in Example 7-8

Generators and Defining Relation

E � ABC F � BCD G � ACD

I � ABCE � BCDF � ADEF � ACDG � BDEG � ABFG � CEFG

Aliases

A � BCE � DEF � CDG � BFG AB � CE � FG
B � ACE � CDF � DEG � AFG AC � BE � DG
C � ABE � BDF � ADG � EFG AD � EF � CG
D � BCF � AEF � ACG � BEG AE � BC � DF
E � ABC � ADF � BDG � CFG AF � DE � BG
F � BCD � ADE � ABG � CEG AG � CD � BF
G � ACD � BDE � ABF � CEF BD � CF � EG

ABD � CDE � ACF � BEF � BCG � AEG � DFG

EXAMPLE 7-9 For seven factors, reduce the number of runs even further.

Solution. The 27�4 design is an eight-run experiment accommodating seven variables. This is a 1�16th
fraction and is obtained by first writing down a 23 design as the basic design in the factors A, B, and C,
and then forming the four new columns from I � ABD, I � ACE, I � BCF, and I � ABCG, as suggested
in Table 7-21. The design is shown in Table 7-25.

Saturated
Fractional
Factorial Design
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7-5 FRACTIONAL REPLICATION OF A 2k DESIGN 411

The complete defining relation is found by multiplying the generators together two, three, and finally
four at a time, producing

The alias of any main effect is found by multiplying that effect through each term in the defining relation.
For example, the alias of A is

This design is of resolution III, because the main effect is aliased with two-factor interactions. If we assume
that all three-factor and higher interactions are negligible, the aliases of the seven main effects are

A � BD � CE � FG

B � AD � CF � EG

C � AE � BF � DG

 � BCDEFG

 � BEF � ABEG � FG � ADEF � DEG � ACEFG � ABDFG

 A � BD � CE � ABCF � BCG � ABCDE � CDF � ACDG

 � BEG � AFG � DEF � ADEG � CEFG � BDFG � ABCDEFG

 I � ABD � ACE � BCF � ABCG � BCDE � ACDF � CDG � ABEF

Table 7-24 A 2IV
7�3 Fractional Factorial Design Discussed in Example 7-8

Basic Design

Run A B C D E � ABC F � BCD G � ACD

1 � � � � � � �

2 � � � � � � �

3 � � � � � � �

4 � � � � � � �

5 � � � � � � �

6 � � � � � � �

7 � � � � � � �

8 � � � � � � �

9 � � � � � � �

10 � � � � � � �

11 � � � � � � �

12 � � � � � � �

13 � � � � � � �

14 � � � � � � �

15 � � � � � � �

16 � � � � � � �

Table 7-25 A 2III
7�4 Fractional Factorial Design Discussed in Example 7-9

A B C D � AB E � AC F � BC G � ABC

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �
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412 CHAPTER 7 DESIGN OF ENGINEERING EXPERIMENTS

D � AB � CG � EF

E � AC � BG � DF

F � BC � AG � DE

G � CD � BE � AF

This 2III
7�4 design is called a saturated fractional factorial because all the available degrees of freedom

are used to estimate main effects. It is possible to combine sequences of these resolution III fractional
factorials to separate the main effects from the two-factor interactions. The procedure is illustrated in
Montgomery (2009a). ■

EXERCISES FOR SECTION 7-5

7-33. R. D. Snee (“Experimenting with a Large Number of
Variables,” in Experiments in Industry: Design, Analysis and
Interpretation of Results, by R. D. Snee, L. D. Hare, and J. B.
Trout, eds., ASQC, 1985) describes an experiment in which a
25�1 design with I � ABCDE was used to investigate the ef-
fects of five factors on the color of a chemical product. The
factors are A � solvent/reactant, B � catalyst/reactant, 
C � temperature, D � reactant purity, and E � reactant pH.
The results obtained are as follows:

e � �0.63 d � 6.79
a � 2.51 ade � 6.47
b � �2.68 bde � 3.45
abe � 1.66 abd � 5.68
c � 2.06 cde � 5.22
ace � 1.22 acd � 4.38
bce � �2.09 bcd � 4.30
abc � 1.93 abcde � 4.05

(a) Write down the complete defining relation and the aliases
from the design.

(b) Estimate the effects and prepare a normal probability plot
of the effects. Which effects are active?

(c) Interpret the effects and develop an appropriate model for
the response.

(d) Plot the residuals from your model against the fitted
values. Also construct a normal probability plot of the
residuals. Comment on the results.

7-34. Montgomery (2009a) describes a 24�1 fractional
factorial design used to study four factors in a chemical process.
The factors are A � temperature, B � pressure, C � concentra-
tion, and D � stirring rate, and the response is filtration rate.
The design and the data are shown in Table 7-26 below.

(a) Write down the complete defining relation and the aliases
from the design.

(b) Estimate the effects and prepare a normal probability plot
of the effects. Which effects are active?

(c) Interpret the effects and develop an appropriate model for
the response.

(d) Plot the residuals from your model against the fitted
values. Also construct a normal probability plot of the
residuals. Comment on the results.

7-35. An article in Industrial and Engineering Chemistry
(“More on Planning Experiments to Increase Research
Efficiency,” Vol. 62, 1970, pp. 60–65) uses a 25�2 design to
investigate the effect on process yield of A � condensation
temperature, B � amount of material 1, C � solvent volume,
D � condensation time, and E � amount of material 2. The
results obtained are as follows:

e � 23.2 cd � 23.8
ab � 15.5 ace � 23.4
ad � 16.9 bde � 16.8
bc � 16.2 abcde � 18.1

Table 7-26 Data for Exercise 7-34

Treatment Filtration
Run A B C D � ABC Combination Rate

1 � � � � (1) 45
2 � � � � ad 100
3 � � � � bd 45
4 � � � � ab 65
5 � � � � cd 75
6 � � � � ac 60
7 � � � � bc 80
8 � � � � abcd 96
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7-5 FRACTIONAL REPLICATION OF A 2k DESIGN 413

(a) Write down the complete defining relation and the aliases
from the design. Verify that the design generators used
were I � ACE and I � BDE.

(b) Estimate the effects and prepare a normal probability plot
of the effects. Which effects are active? Verify that the AB
and AD interactions are available to use as error.

(c) Interpret the effects and develop an appropriate model for
the response.

(d) Plot the residuals from your model against the fitted
values. Also construct a normal probability plot of the
residuals. Comment on the results.

7-36. Suppose that in Exercise 7-14 it was possible to run
only a fraction of replicate I for the 24 design. Construct the
design and use only the data from the eight runs you have
generated to perform the analysis.

7-37. Construct the table of the treatment combinations
tested for the 2IV

6�2 recommended in Table 7-22.

7-38. Suppose that in Exercise 7-16 only a fraction of 
the 25 design could be run. Construct the design and analyze
the data that are obtained by selecting only the response for the
eight runs in your design.

7-39. Construct a 2III
6�3 fractional factorial design. Write

down the aliases, assuming that only main effects and two-
factor interactions are of interest.

7-40. Consider the design generated by Minitab and
shown here. Confirm that the design generators are E � ABC,
F = BCD, G = ACD.

A B C D E F G

1 �1 �1 1 1 1 �1

1 �1 1 1 �1 �1 1

�1 �1 1 �1 1 1 1

�1 1 �1 �1 1 1 �1

1 1 1 1 1 1 1

�1 �1 1 1 1 �1 �1

1 �1 1 �1 �1 1 �1

1 1 �1 1 �1 �1 �1

�1 1 �1 1 1 �1 1

�1 1 1 1 �1 1 �1

1 1 �1 �1 �1 1 1

�1 �1 �1 �1 �1 �1 �1

�1 1 1 �1 �1 �1 1

1 �1 �1 �1 1 �1 1

�1 �1 �1 1 �1 1 1

1 1 1 �1 1 �1 �1

7-41. Consider the design generated by Minitab and
shown here. Confirm that the design generators are E � BCD,
F = ACD, G = ABC, H = ABD.

28�4
IV

27�3
IV

1
4

1
2

A B C D E F G H

�1 1 1 �1 �1 1 �1 1
�1 �1 �1 �1 �1 �1 �1 �1
�1 1 �1 �1 1 �1 1 1
�1 �1 1 1 �1 �1 1 1

1 �1 �1 �1 �1 1 1 1
1 �1 1 �1 1 �1 �1 1
1 1 �1 �1 1 1 �1 �1
1 1 1 �1 �1 �1 1 �1

�1 1 1 1 1 �1 �1 �1
�1 1 �1 1 �1 1 1 �1

1 �1 1 1 �1 1 �1 �1
1 �1 �1 1 1 �1 1 �1

�1 �1 �1 1 1 1 �1 1
�1 �1 1 �1 1 1 1 �1

1 1 1 1 1 1 1 1
1 1 �1 1 �1 �1 �1 1

7-42. An article in the Journal of Marketing Research
(1973, Vol. 10, No. 3, pp. 270–276) presented a 27�4 fractional
factorial design to conduct marketing research:

Sales for a 6-Week 
Runs A B C D E F G Period (in $1000)

1 �1 �1 �1 1 1 1 �1 8.7

2 1 �1 �1 �1 �1 1 1 15.1

3 �1 1 �1 �1 1 �1 1 9.7

4 1 1 �1 1 �1 �1 �1 11.3

5 �1 �1 1 1 �1 �1 1 14.7

6 1 �1 1 �1 1 �1 �1 22.3

7 �1 1 1 �1 �1 1 �1 16.1

8 1 1 1 1 1 1 1 22.1

The factor and levels are shown in the following table.

Factor �1 �1

A Television No advertising Advertising
advertising

B Billboard No advertising Advertising
advertising

C Newspaper No advertising Advertising
advertising

D Candy wrapper Conservative Flashy design
design design

E Display design Normal shelf Special aisle 
display display

F Free sample No free samples Free samples
program

G Size of 1 oz. bar 21⁄2 oz. bar
candy bar
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414 CHAPTER 7 DESIGN OF ENGINEERING EXPERIMENTS

(a) Write down the alias relationships.
(b) Estimate the main effects.
(c) Prepare a normal probability plot for the effects and

interpret the results.

7-43 An article in the Journal of Radioanalytical and
Nuclear Chemistry (2008, Vol. 276, No. 2, pp. 323–328)

presented a 28�4 fractional factorial design to identify
sources of Pu contamination in the radioactivity material
analysis of dried shellfish at the National Institute of
Standards and Technology (NIST). The data are shown in
the following table. No contamination occurred at runs 1, 4,
and 9.

28�4 Glassware Reagent Sample Prep Tracer Dissolution Hood Chemistry Ashing Response, mBq

Run x1 x2 x3 x4 x5 x6 x7 x8 y

1 �1 �1 �1 �1 �1 �1 �1 �1 0

2 �1 �1 �1 �1 �1 �1 �1 �1 3.31

3 �1 �1 �1 �1 �1 �1 �1 �1 0.0373

4 �1 �1 �1 �1 �1 �1 �1 �1 0

5 �1 �1 �1 �1 �1 �1 �1 �1 0.0649

6 �1 �1 �1 �1 �1 �1 �1 �1 0.133

7 �1 �1 �1 �1 �1 �1 �1 �1 0.0461

8 �1 �1 �1 �1 �1 �1 �1 �1 0.0297

9 �1 �1 �1 �1 �1 �1 �1 �1 0

10 �1 �1 �1 �1 �1 �1 �1 �1 0.287

11 �1 �1 �1 �1 �1 �1 �1 �1 0.133

12 �1 �1 �1 �1 �1 �1 �1 �1 0.0476

13 �1 �1 �1 �1 �1 �1 �1 �1 0.133

14 �1 �1 �1 �1 �1 �1 �1 �1 5.75

15 �1 �1 �1 �1 �1 �1 �1 �1 0.0153

16 �1 �1 �1 �1 �1 �1 �1 �1 2.47

The factors and levels are shown in the following table.

Factor �1 �1

Glassware Distilled water Soap, acid, stored

Reagent New Old

Sample prep Co-precipitation Electrodeposition

Tracer Stock Fresh

Dissolution Without With

Factor �1 �1

Hood B A

Chemistry Without With

Ashing Without With

(a) Write down the alias relationships.
(b) Estimate the main effects.
(c) Prepare a normal probability plot for the effects and inter-

pret the results.

7-6 RESPONSE SURFACE METHODS AND DESIGNS

Response surface methodology, or RSM, is a collection of mathematical and statistical tech-
niques that is useful for modeling and analysis in applications where a response of interest is
influenced by several variables and the objective is to optimize this response. For example,
suppose that a chemical engineer wishes to find the levels of temperature (x1) and feed con-
centration (x2 ) that maximize the yield (y) of a process. The process yield is a function of the
levels of temperature and feed concentration—say,

(7-19)Y � f (x1, x2) � �
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7-6 RESPONSE SURFACE METHODS AND DESIGNS 415

where  represents the noise or error observed in the response Y. If we denote the expected
response by E(Y ) � f (x1, x2), the surface represented by f (x1, x2) is called a response surface.

We may represent the response surface graphically as shown in Fig. 7-34, where f (x1, x2)
is plotted versus the levels of x1 and x2. Note that the response is represented as a surface plot
in a three-dimensional space. To help visualize the shape of a response surface, we often plot
the contours of the response surface as shown in Fig. 7-35. In the contour plot, lines of
constant response are drawn in the x1, x2 plane. Each contour corresponds to a particular height
of the response surface. The contour plot is helpful in studying the levels of x1 and x2 that re-
sult in changes in the shape or height of the response surface.

In most RSM problems, the form of the relationship between the response and the inde-
pendent variables is unknown. Thus, the first step in RSM is to find a suitable approximation
for the true relationship between Y and the independent variables. Usually, a low-order
polynomial in some region of the independent variables is employed. If the response is well
modeled by a linear function of the independent variables, the approximating function is the
first-order model

If there is curvature in the system, a polynomial of higher degree must be used, such as the second-
order model

(7-20)

Many RSM problems use one or both of these approximating polynomials. Of course, it is 
unlikely that a polynomial model will be a reasonable approximation of the true functional 
relationship over the entire space of the independent variables, but for a relatively small region
they usually work quite well.

The method of least squares, discussed in Chapter 6, is used to estimate the parameters in
the approximating polynomials. The response surface analysis is then done in terms of the
fitted surface. If the fitted surface is an adequate approximation of the true response function,
analysis of the fitted surface will be approximately equivalent to analysis of the actual system.

RSM is a sequential procedure. Often, when we are at a point on the response surface that
is remote from the optimum, such as the current operating conditions in Fig. 7-35, there is
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Figure 7-34 A three-dimensional response surface showing the
expected yield as a function of temperature and feed concentration.
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Figure 7-35 A contour plot of the yield response surface
in Figure 7-34.
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416 CHAPTER 7 DESIGN OF ENGINEERING EXPERIMENTS

little curvature in the system and the first-order model will be appropriate. Our objective here
is to lead the experimenter rapidly and efficiently to the general vicinity of the optimum. Once
the region of the optimum has been found, a more elaborate model such as the second-order
model may be employed, and an analysis may be performed to locate the optimum. From 
Fig. 7-35, we see that the analysis of a response surface can be thought of as “climbing a hill,”
where the top of the hill represents the point of maximum response. If the true optimum is a
point of minimum response, we may think of “descending into a valley.”

The eventual objective of RSM is to determine the optimum operating conditions for the
system or to determine a region of the factor space in which operating specifications are
satisfied. Also, note that the word “optimum” in RSM is used in a special sense. The hill-
climbing procedures of RSM guarantee convergence to a local optimum only. Nevertheless,
experiments carried out using this approach are called optimization experiments.

7-6.1 Method of Steepest Ascent

Frequently, the initial estimate of the optimum operating conditions for the system will be far
from the actual optimum. In such circumstances, the objective of the experimenter is to move
rapidly to the general vicinity of the optimum. We wish to use a simple and economically 
efficient experimental procedure. When we are remote from the optimum, we usually assume
that a first-order model is an adequate approximation to the true surface in a small region of
the x’s.

The method of steepest ascent is a procedure for moving sequentially along the path of
steepest ascent—that is, in the direction of the maximum increase in the response. Of course,
if minimization is desired, we are talking about the method of steepest descent. The fitted
first-order model is

(7-21)

and the first-order response surface—that is, the contours of —is a series of parallel lines
such as that shown in Fig. 7-36. The direction of steepest ascent is the direction in which in-
creases most rapidly. This direction is normal to the fitted response surface contours. We usu-
ally take as the path of steepest ascent the line through the center of the region of interest and

ŷ
ŷ

ŷ � �̂0 � a
k

i�1

 �̂i xi

x1

Region of fitted
first-order response

surface

Path of
steepest
ascent

y = 10∧ y = 20∧ y = 30∧

y = 40∧

y = 50∧

x2

Figure 7-36 First-order response surface and path
of steepest ascent.
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7-6 RESPONSE SURFACE METHODS AND DESIGNS 417

normal to the fitted surface contours. As shown in Example 7-10, the steps along the path are
proportional to the regression coefficients . The experimenter determines the actual step
size based on process knowledge or other practical considerations.

Experiments are conducted along the path of steepest ascent until no further increase in
response is observed. Then a new first-order model may be fit, a new direction of steepest
ascent determined, and further experiments conducted in that direction until the experimenter
feels that the process is near the optimum.

5�̂i6

EXAMPLE 7-10 In Example 7-4 we described an experiment on a chemical process in which two factors, reaction time (x1)
and reaction temperature (x2), affect the percent conversion or yield (Y ). Figure 7-20 shows the 22 design
plus five center points used in this study. The engineer found that both factors were important, there was
no interaction, and there was no curvature in the response surface. Therefore, the first-order model

should be appropriate. Now, the effect estimate of time is 1.55 and the effect estimate of temperature is
0.65, and because the regression coefficients and are one-half of the corresponding effect
estimates, the fitted first-order model is

Figure 7-37 shows the contour plot and three-dimensional surface plot of this model. Figure 7-37 also
shows the relationship between the coded variables x1 and x2 (which defined the high and low levels of
the factors) and the original variables time (in minutes) and temperature (in �F). Use this fitted first-order
model to identify the direction of maximum increase in process yield.

Solution. From examining these plots (or the fitted model), we see that to move away from the design
center—the point (x1 � 0, x2 � 0)—along the path of steepest ascent, we would move 0.775 unit in the
x1 direction for every 0.325 unit in the x2 direction. Thus, the path of steepest ascent passes through the
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Figure 7-37 Response surface plots for the first-order model of reaction time and temperature. (a) Contour plot. 
(b) Three-dimensional surface plot.
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point (x1 � 0, x2 � 0) and has a slope 0.325�0.775. The engineer decides to use 5 minutes of reaction
time as the basic step size. Now, 5 minutes of reaction time is equivalent to a step in the coded variable
x1 of �x1 � 1. Therefore, the steps along the path of steepest ascent are

(7-22)

A change of �x2 � 0.42 in the coded variable x2 is equivalent to about 2�F in the original variable tem-
perature. Therefore, the engineer will move along the path of steepest ascent by increasing reaction time
by 5 minutes and temperature by 2�F. An actual observation on yield will be determined at each point.

Figure 7-38 shows several points along this path of steepest ascent and the yields actually observed
from the process at those points. At points A–D the observed yield increases steadily, but beyond point D
the yield decreases. Therefore, steepest ascent would terminate in the vicinity of 55 minutes of reaction
time and 163�F with an observed percent conversion of 67%. ■

¢x2 � (�̂2 ��̂1)¢x1 � (0.325 �0.775)¢x1 � 0.42
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Point B: 45 minutes, 159°F, y = 51.3
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Point D: 55 minutes, 163°F, y = 67.1
Point E: 60 minutes, 165°F, y = 63.6
Point F: 65 minutes, 167°F, y = 60.7

Figure 7-38 Steepest ascent experiment for the first-order model of reaction time and temperature.

7-6.2 Analysis of a Second-Order Response Surface

When the experimenter is relatively close to the optimum, a second-order model is usually 
required to approximate the response because of curvature in the true response surface. The
fitted second-order model is

(7-23)

where denotes the least squares estimate of �. In this section we show how to use this fitted
model to find the optimum set of operating conditions for the x’s and to characterize the nature
of the response surface.

�̂

ŷ � �̂0 � a
k

i�1

�̂i xi � a
k

i�1

�̂ii x
2
i � b

i 6 j

�̂ij xi xj

EXAMPLE 7-10 The method of steepest ascent terminated at a reaction time of 55 minutes and a temperature of 163�F.
The experimenter decides to fit a second-order model in this region. Table 7-27 and Fig. 7-39 show the
experimental design, which consists of a 22 design centered at 55 minutes and 165�F, five center points,

(continued)
Process Yield
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7-6 RESPONSE SURFACE METHODS AND DESIGNS 419

and four runs along the coordinate axes called axial runs. This type of design is called a central composite
design (CCD), and it is a very popular design for fitting second-order response surfaces.

Solution. Two response variables were measured during this phase of the experiment: percent conversion
(yield) and viscosity. The least squares quadratic model for the yield response is

The analysis of variance for this model is shown in Table 7-28. Because the coefficient of the x1x2 term
is not significant, one might choose to remove this term from the model.

Figure 7-40 shows the response surface contour plot and the three-dimensional surface plot for this
model. From examination of these plots, the maximum yield is about 70%, obtained at approximately 60
minutes of reaction time and 167�F.

ŷ1 � 69.1 � 1.633x1 � 1.083x2 � 0.969x2
1 � 1.219x2

2 � 0.225x1x2

Central Composite
Design

(0, 0)

+2

+2–2

–2

(0, –1.414)

(–1.414, 0) (1.414, 0)

(0, 1.414)

(–1, –1)

(–1, 1)

x2

x1

(1, –1)

(1, 1)

Figure 7-39 Central composite design for
Example 7-10.

Table 7-27 Central Composite Design for Example 7-10

Conversion Viscosity
Observation Time Temperature Coded Variables (percent) (mPa-sec)

Number (minutes) (°F) x1 x2 Response 1 Response 2

1 50 160 �1 �1 65.3 35

2 60 160 1 �1 68.2 39

3 50 170 �1 1 66 36

4 60 170 1 1 69.8 43

5 48 165 �1.414 0 64.5 30

6 62 165 1.414 0 69 44

7 55 158 0 �1.414 64 31

8 55 172 0 1.414 68.5 45

9 55 165 0 0 68.9 37

10 55 165 0 0 69.7 34

11 55 165 0 0 68.5 35

12 55 165 0 0 69.4 36

13 55 165 0 0 69 37 

Table 7-28 Analysis of Variance for the Quadratic Model, Yield Response for Example 7-10

Source of Sum of Degrees of Mean
Variation Squares Freedom Square f0 P-Value

Model 45.89 5 9.178 14.93 0.0013
Residual 4.30 7 0.615
Total 50.19 12

Independent Coefficient Standard t for H0

Variable Estimate Error Coefficient � 0 P-Value

Intercept 69.100 0.351 197.1 0.0000
x1 1.633 0.277 5.891 0.0006
x2 1.083 0.277 3.907 0.0058
x1

2 �0.969 0.297 �3.259 0.0139
x2

2 �1.219 0.297 �4.100 0.0046
x1x2 0.225 0.392 0.5740 0.5839 

      c07DesignofEngineeringExperiments.qxd  9/27/10  9:54 PM  Page 419



420 CHAPTER 7 DESIGN OF ENGINEERING EXPERIMENTS

The viscosity response is adequately described by the first-order model

Table 7-29 summarizes the analysis of variance for this model. The response surface is shown graphi-
cally in Fig. 7-41. Note that viscosity increases as both time and temperature increase.

As in most response surface problems, the experimenter in this example had conflicting objectives
regarding the two responses. The objective was to maximize yield, but the acceptable range for viscosity
was 38 � y2 � 42. When there are only a few independent variables, an easy way to solve this problem
is to overlay the response surfaces to find the optimum. Figure 7-42 shows the overlay plot of both 
responses, with the contours y1 � 69% conversion, y2 � 38, and y2 � 42 highlighted. The shaded areas
on this plot identify infeasible combinations of time and temperature. This graph shows that several com-
binations of time and temperature will be satisfactory. ■

ŷ2 � 37.08 � 3.85x1 � 3.10x2

Figure 7-40 Second-order response surface plots for the yield response, Example 7-10. (a) Contour plot. (b) Surface plot.

48.00
158.0

50.33 52.67 57.3355.00 59.67 62.00

160.3

162.7

165.0

167.3

169.7

172.01

–1

x 2
 (

te
m

pe
ra

tu
re

)

x1 (time)
0–1 +1

0

62.00
59.20

56.40
53.60

50.80
48.00158.0

160.8
163.6

166.4
169.2

172.0

61.45

64.34

67.23

70.12

x1 (time)x2 (temperature)

C
on

ve
rs

io
n

+1

0
0

+1

–1 –1

70.00

69.00

68.00

67.00
66.00

65.00
64.00

63.00

65.00
64.00

Contour plot

(a) (b)

Surface plot

Reconciling Two
Responses

Table 7-29 Analysis of Variance for the First-Order Model, Viscosity Response for Example 7-10

Sum of Degrees of Mean
Source Squares Freedom Square f0 P-Value

Model 195.4 2 97.72 15.89 0.0008
Residual 61.5 10 6.15
Total 256.9 12

Independent Coefficient Degrees of Standard Error t for H0

Variable Estimate Freedom of Coefficient Coefficient � 0 P-Value

Intercept 37.08 1 0.69 53.91
x1 3.85 1 0.88 4.391 0.0014
x2 3.10 1 0.88 3.536 0.0054 
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Figure 7-41 Response surface plots for the viscosity response for Example 7-10. (a) Contour plot. (b) Surface plot.

Figure 7-42 Overlay of yield and viscosity response surfaces,
Example 7-10.

Example 7-10 illustrates the use of a central composite design for fitting a second-order
response surface model. These designs are widely used in practice because they are relatively
efficient with respect to the number of runs required. In general, a CCD in k factors requires
2k factorial runs, 2k axial runs, and at least one center point (three to five center points are typ-
ically used). Designs for k � 2 and k � 3 factors are shown in Fig. 7-43.

The central composite design may be made rotatable by proper choice of the axial spac-
ing � in Fig. 7-43. If the design can be rotated, the standard deviation of predicted response 
is constant at all points that are the same distance from the center of the design. For rotatability,

ŷ
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choose � � (F)1�4, where F is the number of points in the factorial part of the design (usually
F � 2k). For the case of k � 2 factors, � � (22)1�4 � 1.414, as was used in the design in
Example 7-11.

(0, 0) (  , 0)

(0,   )

(–1, –1)

(–1, +1)

x2

x1

(+1, –1)

(+1, +1)

x2

x1(–   , 0)

(0, –   )

x2

α

α

α

α

Figure 7-43 Central composite designs for k � 2 and k � 3.

Figure 7-44 presents a contour plot and a surface plot of the standard deviation of prediction
for the quadratic model used for the yield response. Note that the contours are concentric circles,
implying that yield is predicted with equal precision for all points that are the same distance from
the center of the design. Also, as one would expect, the precision decreases with increasing dis-
tance from the design center.
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Figure 7-44 Plots of standard deviation of process yield prediction for a rotatable central composite design for 
Example 7-10. (a) Contour plot. (b) Surface plot.
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EXERCISES FOR SECTION 7-6

7-44. An article in Rubber Age (Vol. 89, 1961, pp. 453–458)
describes an experiment on the manufacture of a product in
which two factors were varied: reaction time (hr) and temper-
ature (�C). These factors are coded as x1 � (time � 12)�8 and 
x2 � (temperature � 250)�30. The following data were observed
where y is the yield (in percent).

(a) The response y1 is the viscosity of the product. Fit an 
appropriate response surface model.

(b) The response y2 is the conversion, in grams. Fit an appropriate
response surface model.

(c) Where would you recommend that we set x1, x2, and x3 if
the objective is to maximize conversion while keeping
viscosity in the range 450 � y1 � 500?

7-46. A manufacturer of cutting tools has developed two
empirical equations for tool life (y1) and tool cost (y2). Both
models are functions of tool hardness (x1) and manufacturing
time (x2). The equations are

and both equations are valid over the range �1.5 � xi � 1.5.
Suppose that tool life must exceed 12 hours and cost must be
below $27.50.
(a) Is there a feasible set of operating conditions?
(b) Where would you run this process?

7-47. An article in Tappi (Vol. 43, 1960, pp. 38–44) 
describes an experiment that investigated the ash value of 
paper pulp (a measure of inorganic impurities). Two variables,
temperature T in degrees Celsius and time t in hours, were
studied, and some of the results are shown in the following
table. The coded predictor variables shown are

and the response y is (dry ash value in %) 
 103.

x1 �
(T � 775)

115
 x2 �

(t � 3)

1.5

ŷ2 � 23 � 3x1 � 4x2

ŷ1 � 10 � 5x1 � 2x2

Run
Number x1 x2 y

1 �1 0 83.8

2 1 0 81.7

3 0 0 82.4

4 0 0 82.9

5 0 �1 84.7

6 0 1 75.9

7 0 0 81.2

8 �1.414 �1.414 81.3

9 �1.414 1.414 83.1

10 1.414 �1.414 85.3

11 1.414 1.414 72.7

12 0 0 82.0

(a) Plot the points at which the experimental runs were made.
(b) Fit a second-order model to the data. Is the second-order

model adequate?
(c) Plot the yield response surface. What recommendations

would you make about the operating conditions for this
process?

7-45. Consider the experimental design in the table that 
follows. This experiment was run in a chemical process.

x1 x2 x3 y1 y2

�1 �1 �1 480 68

0 �1 �1 530 95

1 �1 �1 590 86

�1 0 �1 490 184

0 0 �1 580 220

1 0 �1 660 230

�1 1 �1 490 220

0 1 �1 600 280

1 1 �1 720 310

�1 �1 0 410 134

0 �1 0 450 189

1 �1 0 530 210

�1 0 0 400 230

x1 x2 x3 y1 y2

0 0 0 510 300

1 0 0 590 330

�1 1 0 420 270

0 1 0 540 340

1 1 0 640 380

�1 �1 1 340 164

0 �1 1 390 250

1 �1 1 450 300

�1 0 1 340 250

0 0 1 420 340

1 0 1 520 400

�1 1 1 360 250

0 1 1 470 370

1 1 1 560 440
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(a) What type of design has been used in this study? Can the
design be rotated?

(b) Fit a quadratic model to the data. Is this model satisfactory?
(c) If it is important to minimize the ash value, where would

you run the process?

7-48. In their book, Empirical Model Building and
Response Surfaces (Hoboken, NJ: John Wiley & Sons, 1987),
G. E. P. Box and N. R. Draper describe an experiment with
three factors. The data shown in the following table are a vari-
ation of the original experiment on page 247 of their book.
Suppose that these data were collected in a semiconductor
manufacturing process.

(a) The response y1 is the average of three readings on resis-
tivity for a single wafer. Fit a quadratic model to this 
response.

(b) The response y2 is the standard deviation of the three 
resistivity measurements. Fit a linear model to this response.

(c) Where would you recommend that we set x1, x2, and x3 if
the objective is to hold mean resistivity at 500 and mini-
mize the standard deviation?

x1 x2 y

�1 �1 211

1 �1 92

�1 1 216

1 1 99

�1.5 0 222

1.5 0 48

0 �1.5 168

0 1.5 179

0 0 122

0 0 175

0 0 157

0 0 146

x1 x2 x3 y1 y2

�1 �1 �1 24.00 12.49

0 �1 �1 120.33 8.39

1 �1 �1 213.67 42.83

�1 0 �1 86.00 3.46

0 0 �1 136.63 80.41

x1 x2 x3 y1 y2

1 0 �1 340.67 16.17

�1 1 �1 112.33 27.57

0 1 �1 256.33 4.62

1 1 �1 271.67 23.63

�1 �1 0 81.00 0.00

0 �1 0 101.67 17.67

1 �1 0 357.00 32.91

�1 0 0 171.33 15.01

0 0 0 372.00 0.00

1 0 0 501.67 92.50

�1 1 0 264.00 63.50

0 1 0 427.00 88.61

1 1 0 730.67 21.08

�1 �1 1 220.67 133.82

0 �1 1 239.67 23.46

1 �1 1 422.00 18.52

�1 0 1 199.00 29.44

0 0 1 485.33 44.67

1 0 1 673.67 158.21

�1 1 1 176.67 55.51

0 1 1 501.00 138.94

1 1 1 1010.00 142.45

7-7 FACTORIAL EXPERIMENTS WITH MORE THAN TWO LEVELS

The 2k full and fractional factorial designs are usually used in the initial stages of experimen-
tation. After the most important effects have been identified, one might run a factorial experi-
ment with more than two levels to obtain details of the relationship between the response and
the factors. The basic analysis of variance (ANOVA) can be modified to analyze the results
from this type of experiment.

The ANOVA decomposes the total variability in the data into component parts and then
compares the various elements in this decomposition. For an experiment with two factors
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(with a levels for factor A and b levels for factor B), the total variability is measured by the 
total sum of squares of the observations

(7-24)

and the sum of squares decomposition follows. The notation is defined in Table 7-30.
The sum of squares identity may be written symbolically as

corresponding to each of the terms in equation 7-25. There are abn � 1 total degrees of freedom.
The main effects A and B have a � 1 and b � 1 degrees of freedom, whereas the interaction 
effect AB has (a � 1)(b � 1) degrees of freedom. Within each of the ab cells in Table 7-30, there
are n � 1 degrees of freedom for the n replicates, and observations in the same cell can differ
only because of random error. Therefore, there are ab(n � 1) degrees of freedom for error.
Therefore, the degrees of freedom are partitioned according to

abn � 1 � (a � 1) � (b � 1) � (a � 1)(b � 1) � ab(n � 1)

SST � SSA � SSB � SSAB � SSE

SST � a
a

i�1
a

b

j�1
a

n

k�1

(yijk � y
p

)2

The sum of squares identity for a two-factor analysis of variance is

(7-25)� a
a

i�1
a

b

j�1
a

n

k�1

( yijk � yij.)
2

� na
a

i�1
a

b

j�1

( yij. � yi.. � y
# j# � y...)

2

� ana
b

j�1

( y. j. � y... )2

a
a

i�1
a

b

j�1
a

n

k�1

( yijk � y...)2 � bna
a

i�1

( yi.. � y...)
2

Table 7-30 Data Arrangement for a Two-Factor Factorial Design

Factor B

1 2 b Totals Averages

1
y111, y112, y121, y122, y1b1, y1b2,
p , y11n p , y12n p , y1bn y1..

Factor A
2

y211, y212, y221, y222, y2b1, y2b2,
p , y21n p , y22n p , y2bn y2..

�

a
ya11, ya12, ya21, ya22, yab1, yab2,
p , ya1n p , ya2n p , yabn ya..

Totals y.1. y.2. y.b. yp

Averages y...y.b.y.2.y.1.

ya..

y2..

y1..

p

      c07DesignofEngineeringExperiments.qxd  10/15/10  1:43 PM  Page 425



426 CHAPTER 7 DESIGN OF ENGINEERING EXPERIMENTS

If we divide each of the sum of squares by the corresponding number of degrees of free-
dom, we obtain the mean squares for A, B, the interaction, and error:

(7-26)

To test that the row, column, and interaction effects are zero, we would use the ratios

(7-27)

respectively. Each test statistic is compared to an F distribution with a � 1, b � 1, and 
(a � 1) 
 (b � 1) degrees of freedom in the numerator and ab(n � 1) degrees of freedom
in the denominator. This analysis is summarized in Table 7-31.

It is usually best to conduct the test for interaction first and then to evaluate the main 
effects. If interaction is not significant, interpretation of the tests on the main effects is
straightforward. However, when interaction is significant, the main effects of the factors 
involved in the interaction may not have much practical interpretative value. Knowledge of the
interaction is usually more important than knowledge about the main effects.

F0 �
MSA

MSE

 F0 �
MSB

MSE

 and F0 �
MSAB

MSE

MSAB �
SSAB

(a � 1)(b � 1)
  MSE �

SSE

ab(n � 1)

MSA �
SSA

a � 1
      MSB �

SSB

b � 1

Table 7-31 Analysis of Variance Table for a Two-Factor Factorial

Source of Sum of Degrees of
Variation Squares Freedom Mean Square F0

A treatments SSA a � 1

B treatments SSB b � 1

Interaction SSAB (a � 1)(b � 1)

Error SSE ab(n � 1)

Total SST abn � 1 

MSE �
SSE

ab(n � 1)

MSAB

MSE

MSAB �
SSAB

(a � 1)(b � 1)

MSB

MSE

MSB �
SSB

b � 1

MSA

MSE

MSA �
SSA

a � 1

EXAMPLE 7-11 Aircraft primer paints are applied to aluminum surfaces by two methods, dipping and spraying. The pur-
pose of the primer is to improve paint adhesion, and some parts can be primed using either application
method. The process engineering group responsible for this operation is interested in learning whether
three different primers differ in their adhesion properties. A factorial experiment was performed to inves-
tigate the effect of paint primer type and application method on paint adhesion. Three specimens were
painted with each primer using each application method, a finish paint was applied, and the adhesion
force was measured. The data from the experiment are shown in Table 7-32. Perform an analysis to de-
termine the best choices for the application methods.

Solution. The sums of squares required to perform the ANOVA are computed from Minitab and sum-
marized in Table 7-33. The experimenter has decided to use � � 0.05. Because f0.05,2,12 � 3.89 and

Aircraft
Primer Paint
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f0.05,1,12 � 4.75, we conclude that the main effects of primer type and application method affect adhe-
sion force. Furthermore, because 1.5 � f0.05,2,12, there is no indication of interaction between these fac-
tors. The last column of Table 7-33 shows the P-value for each F-ratio. Note that the P-values for the two
test statistics for the main effects are considerably less than 0.05, whereas the P-value for the test statis-
tic for the interaction is greater than 0.05.

A graph of the cell adhesion force averages versus levels of primer type for each application
method is shown in Fig. 7-45. The averages are available in the Minitab computer output in Table 7-35.
The no-interaction conclusion is obvious in this graph because the two curves are nearly parallel.
Furthermore, because a large response indicates greater adhesion force, we conclude that spraying is the
best application method and that primer type 2 is most effective. ■

5yij.6

Table 7-32 Adhesion Force Data for Example 7-11 for Primer Type (i � 1, 2, 3) and Application
Method ( j � 1, 2) with n � 3 Replicates

Primer Type Dipping Spraying Totals yi..

1 4.0, 4.5, 4.3 5.4, 4.9, 5.6 28.7
2 5.6, 4.9, 5.4 5.8, 6.1, 6.3 34.1
3 3.8, 3.7, 4.0 5.5, 5.0, 5.0 27.0

Totals y.j. 40.2 49.6 yp � 89.8 

Table 7-33 Analysis of Variance for Aircraft Primer Paint, Example 7-11

Source of Sum of Degrees of Mean
Variation Squares Freedom Square f0 P-Value

Primer types 4.58 2 2.29 28.63 2.7 
 E-5
Application methods 4.91 1 4.91 61.38 5.0 
 E-7
Interaction 0.24 2 0.12 1.50 0.2621
Error 0.99 12 0.08
Total 10.72 17 

1

3.0

4.0

5.0

6.0

7.0

2 3

Spraying

Dipping

Primer type

yij•

Figure 7-45 Graph
of average adhesion
force versus primer
types for both applica-
tion methods in
Example 7-11.
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Model Adequacy Checking
Just as in the other experiments discussed in this chapter, the residuals from a factorial exper-
iment play an important role in assessing model adequacy. In general, the residuals from a
two-factor factorial are

.

That is, the residuals are just the difference between the observations and the corresponding
cell averages. If interaction is negligible, then the cell averages could be replaced by a better
predictor, but we only consider the simpler case.

eijk � yijk � yij

–0.5 0.0 0.5

Residual

N
or

m
al

 p
ro
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bi

lit
y
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40
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70
80
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99

Figure 7-46 Normal probability plot of the residuals from
Example 7-11.

Table 7-34 Residuals for the Aircraft Primer Experiment in
Example 7-11

Application Method

Primer Type Dipping Spraying

1 �0.27, 0.23, 0.03 0.10, �0.40, 0.30
2 0.30, �0.40, 0.10 �0.27, 0.03, 0.23
3 �0.03, �0.13, 0.17 0.33, �0.17, �0.17 

+0.5

0

–0.5

3

eijk

1 2
Primer
type

+0.5

0

–0.5

eijk

D

Application
methodS

+0.5

0

–0.5

eijk

654
yijk
^

Table 7-34 presents the residuals for the aircraft primer paint data in Example 7-11. The normal
probability plot of these residuals is shown in Fig. 7-46. This plot has tails that do not fall exactly along
a straight line passing through the center of the plot, indicating some potential problems with the normality
assumption, but the deviation from normality does not appear severe. Figures 7-47 and 7-48 plot the
residuals versus the levels of primer types and application methods, respectively. There is some indica-
tion that primer type 3 results in slightly lower variability in adhesion force than the other two primers.
The graph of residuals versus fitted values in Fig. 7-49 does not reveal any unusual or diagnostic pattern.

Figure 7-47 Plot of residuals versus
primer type.

Figure 7-48 Plot of residuals versus
application method.

Figure 7-49 Plot of residuals versus
predicted values ŷijk.

Analyze Residuals
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Table 7-35 shows some of the output from the analysis of variance procedure in Minitab for the air-
craft primer paint experiment in Example 7-11. The means table presents the sample means by primer
type, by application method, and by cell (AB). The standard error for each mean is computed as 
where m is the number of observations in each sample mean. For example, each cell has m � 3 observations,
so the standard error of a cell mean is A 95% CI can be determined
from the mean plus or minus the standard error times the multiplier t0.025,12 � 2.179. Minitab (and many
other programs) will also produce the residual plots and interaction plot shown previously.

1MSE�3 � 10.0822�3 � 0.1655.

1MSE �m,

Interpret Minitab
Output

Table 7-35 Analysis of Variance from Minitab for Example 7-11 Aircraft Primer Paint

Analysis of Variance (Balanced Designs)

Factor Type Levels Values
primer fixed 3 1 2 3
method fixed 2 1 2

Analysis of Variance for y

Source DF SS MS F P
primer 2 4.5811 2.2906 27.86 0.000
method 1 4.9089 4.9089 59.70 0.000
primer*method 2 0.2411 0.1206 1.47 0.269
Error 12 0.9867 0.0822
Total 17 10.7178

Means

primer N y
1 6 4.7833
2 6 5.6833
3 6 4.5000

method N y
1 9 4.4667
2 9 5.5111

primer method N y
1 1 3 4.2667
1 2 3 5.3000
2 1 3 5.3000
2 2 3 6.0667
3 1 3 3.8333
3 2 3 5.1667 

EXERCISES FOR SECTION 7-7

7-49. Consider the experiment in Exercise 7-2. Suppose that
the experiment was actually carried out on three types of dry-
ing times and two types of paint. The data are the following:

(a) Perform the analysis of variance with � � 0.05. What is your
conclusion about the significance of the interaction effect?

(b) Assess the adequacy of the model by analyzing the residuals.
What is your conclusion?

Drying Time (min)

Paint 20 25 30

1 74 73 78

64 61 85

50 44 92

Drying Time (min)

Paint 20 25 30

2 92 98 66
86 73 45
68 88 85
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(c) If the smaller values are desirable, what levels of the factors
do you recommend to obtain the necessary surface finish?

7-50. Consider the experiment in Exercise 7-4. Suppose that
the experiment was actually carried out on three levels of tem-
perature and two positions. The data are the following:

(b) Assess the adequacy of the model by analyzing the resid-
uals. What is your conclusion?

(c) If higher density values are desirable, what levels of the
factors do you recommend?

7-51. The percentage of hardwood concentration in raw pulp,
the freeness, and the cooking time of the pulp are being investi-
gated for their effects on the strength of paper. The data from a
three-factor factorial experiment are shown in Table 7-36.

(a) Use a statistical software package to perform the analysis
of variance. Use � � 0.05.

(b) Find P-values for the F-ratios in part (a) and interpret your
results.

(c) The residuals are found by . Graphically
analyze the residuals from this experiment.

7-52. The quality control department of a fabric finishing
plant is studying the effect of several factors on dyeing for a
blended cotton/synthetic cloth used to manufacture shirts.
Three operators, three cycle times, and two temperatures were
selected, and three small specimens of cloth were dyed under

eijkl � yijkl � yijk.

Temperature (˚C)

Position 800 825 850

1 570 1063 565

565 1080 510

583 1043 590

2 528 988 526

547 1026 538

521 1004 532

(a) Perform the analysis of variance with � � 0.05. What is your
conclusion about the significance of the interaction effect?

Table 7-36 Data for Exercise 7-51

Cooking Time 1.5 Hours Cooking Time 2.0 Hours

Percentage of Freeness Freeness
Hardwood 
Concentration 350 500 650 350 500 650

10 96.6 97.7 99.4 98.4 99.6 100.6
96.0 96.0 99.8 98.6 100.4 100.9

15 98.5 96.0 98.4 97.5 98.7 99.6
97.2 96.9 97.6 98.1 96.0 99.0

20 97.5 95.6 97.4 97.6 97.0 98.5
96.6 96.2 98.1 98.4 97.8 99.8 

Table 7-37 Data for Exercise 7-52

Temperature

300˚ 350˚

Operator Operator

Cycle Time 1 2 3 1 2 3

40 23 27 31 24 38 34
24 28 32 23 36 36
25 26 28 28 35 39

36 34 33 37 34 34
50 35 38 34 39 38 36

36 39 35 35 36 31

28 35 26 26 36 28
60 24 35 27 29 37 26

27 34 25 25 34 34 
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each set of conditions. The finished cloth was compared to a
standard, and a numerical score was assigned. The results are
shown in Table 7-37.

(a) Perform the analysis of variance with � � 0.05. Interpret
your results.

(b) The residuals may be obtained from 
Graphically analyze the residuals from this experiment.

7-53. Consider the Minitab analysis results of a two-factor
experiment, A and B. Factor A was run with two levels and 
factor B with three, with two replicates. Find all of the missing 
values in the following ANOVA table and summarize your
findings.

eijkl � yijkl � yijk..

the missing values in the ANOVA table and summarize your
findings.

Source DF SS MS F P

A 1 61.675 61.6748 ? 0.005

B 2 82.644 ? 12.84 ?

A*B 2 7.959 3.9795 ? ?

Error 6 19.305 3.2174

Total 11 ?

7-54. Consider the Minitab analysis results of a three-
factor experiment, A, B, and C as described next. Find all of

Factor Type Levels Values
A fixed 2 �1, 1
B fixed 2 �1, 1
C fixed 3 �1, 0, 1

Analysis of Variance for y

Source DF Seq SS Adj MS F P

A 1 362.551 362.551 90.84 0.000

B 1 15.415 15.415 3.86 ?

C 2 240.613 120.306 ? 0.000

A*B 1 0.522 0.522 0.13 ?

A*C 2 62.322 31.161 ? ?

B*C 2 3.553 1.777 0.45 ?

A*B*C 2 15.724 7.862 ? ?

Error 12 47.891 3.991

Total 23 748.591

SUPPLEMENTAL EXERCISES

7-55. An article in Process Engineering (No. 71, 1992, 
pp. 46–47) presents a two-factor factorial experiment used to
investigate the effect of pH and catalyst concentration on
product viscosity (cSt). The data are as follows.

(a) Is there any evidence that flatness distortion is different
for the different gear types? Is there any indication that
heat-treating time affects the flatness distortion? Do these
factors interact? Use � � 0.05.

(b) Construct graphs of the factor effects that aid in drawing
conclusions from this experiment.

(c) Analyze the residuals from this experiment. Comment on
the validity of the underlying assumptions.

7-57. An article in the Textile Research Institute Journal
(Vol. 54, 1984, pp. 171–179) reported the results of an exper-
iment that studied the effects of treating fabric with selected
inorganic salts on the flammability of the material. Two 

Catalyst Concentration

2.5 2.7

pH 5.6 192, 199, 189, 198 178, 186, 179, 188

5.9 185, 193, 185, 192 197, 196, 204, 204

(a) Test for main effects and interactions using � � 0.05.
What are your conclusions?

(b) Graph the interaction and discuss the information pro-
vided by this plot.

(c) Analyze the residuals from this experiment.

7-56. Heat treating of metal parts is a widely used manufac-
turing process. An article in the Journal of Metals (Vol. 41,
1989) describes an experiment to investigate flatness distor-
tion from heat treating for three types of gears and two heat-
treating times. Some of the data are as follows.

Time (minutes)

Gear Type 90 120

20-tooth 0.0265 0.0560

0.0340 0.0650

24-tooth 0.0430 0.0720

0.0510 0.0880
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application levels of each salt were used, and a vertical burn
test was used on each sample. (This finds the temperature at
which each sample ignites.) The burn test data are shown in
Table 7-38.

(a) Test for differences between salts, application levels, and
interactions. Use � � 0.01.

(b) Draw a graph of the interaction between salt and applica-
tion level. What conclusions can you draw from this
graph?

(c) Analyze the residuals from this experiment.

7-58. An article in the IEEE Transactions on Components,
Hybrids, and Manufacturing Technology (Vol. 15, 1992, 
pp. 225–230) describes an experiment for investigating a
method for aligning optical chips onto circuit boards. The method
involves placing solder bumps onto the bottom of the chip. The
experiment used two solder bump sizes and two alignment 
methods. The response variable is alignment accuracy (�m). The
data are as follows.

(B), and exposure energy (C), and the response variable is
delta-line width, the difference between the line on the mask
and the printed line on the device. The data are as follows: 
(1) � �2.30, a � �9.87, b � �18.20, ab � �30.20, 
c � �23.80, ac � �4.30, bc � �3.80, and abc � �14.70.

(a) Estimate the factor effects.
(b) Suppose that a center point is added to this design and

four replicates are obtained: �10.50, �5.30, �11.60, and
�7.30. Calculate an estimate of experimental error.

(c) Test the significance of main effects, interactions, and cur-
vature. At � � 0.05, what conclusions can you draw?

(d) What model would you recommend for predicting the
delta-line width response, based on the results of this 
experiment?

(e) Analyze the residuals from this experiment, and comment
on model adequacy.

7-60. An article in the Journal of Coatings Technology (Vol.
60, 1988, pp. 27–32) describes a 24 factorial design used for
studying a silver automobile basecoat. The response variable
is distinctness of image (DOI). The variables used in the ex-
periment are

A � Percent of polyester by weight of polyester/melamine
(low value � 50%, high value � 70%)

B � Percent cellulose acetate butyrate carboxylate (low
value � 15%, high value � 30%)

C � Percent aluminum stearate (low value � 1%, high
value � 3%)

D � Percent acid catalyst 
(low value � 0.25%, high value � 0.50%)

The responses are (1) � 63.8, a � 77.6, b � 68.8, ab � 76.5,
c � 72.5, ac � 77.2, bc � 77.7, abc � 84.5, d � 60.6, 
ad � 64.9, bd � 72.7, abd � 73.3, cd � 68.0, acd � 76.3,
bcd � 76.0, and abcd � 75.9.

(a) Estimate the factor effects.
(b) From a normal probability plot of the effects, identify a

tentative model for the data from this experiment.
(c) Using the apparently negligible factors as an estimate of

error, test for significance of the factors identified in part (b).
Use � � 0.05.

Table 7-38 Data for Exercise 7-57

Salt

Level Untreated MgCl2 NaCl CaCO3 CaCl2 Na2CO3

1 812 752 739 733 725 751
827 728 731 728 727 761
876 764 726 720 719 755

2 945 794 741 786 756 910
881 760 744 771 781 854
919 757 727 779 814 848 

Solder Bump Size Alignment Method

(diameter in �m) 1 2

4.60 1.05
75 4.53 1.00

2.33 0.82
130 2.44 0.95

(a) Is there any indication that either solder bump size or
alignment method affects the alignment accuracy? Is there
any evidence of interaction between these factors? Use 
� � 0.05.

(b) What recommendations would you make about this
process?

(c) Analyze the residuals from this experiment. Comment on
model adequacy.

7-59. An article in Solid State Technology (Vol. 29, 1984,
pp. 281–284) describes the use of factorial experiments in
photolithography, an important step in the process of manu-
facturing integrated circuits. The variables in this experiment
(all at two levels) are prebake temperature (A), prebake time
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(d) What model would you use to describe the process, based
on this experiment? Interpret the model.

(e) Analyze the residuals from the model in part (d) and com-
ment on your findings.

7-61. An article in the Journal of Manufacturing Systems
(Vol. 10, 1991, pp. 32–40) describes an experiment to investi-
gate the effect of four factors P � waterjet pressure, F � abra-
sive flow rate, G � abrasive grain size, and V � jet traverse
speed on the surface roughness of a waterjet cutter. A 24 design
with seven center points is shown in Table 7-39.

(a) Estimate the factor effects.
(b) Form a tentative model by examining a normal probability

plot of the effects.
(c) Is the model in part (b) a reasonable description of the

process? Use � � 0.05.
(d) Interpret the results of this experiment.
(e) Analyze the residuals from this experiment.

7-62. Construct a 2IV
4�1 design for the problem in Exercise 7-60.

Select the data for the eight runs that would have been required

for this design. Analyze these runs and compare your conclu-
sions to those obtained in Exercise 7-60 for the full factorial.

7-63. Construct a 2IV
4�1 design for the problem in Exercise 7-61.

Select the data for the eight runs that would have been required
for this design, plus the center points. Analyze these data and
compare your conclusions to those obtained in Exercise 7-61 for
the full factorial.

7-64. Construct a 2IV
8�4 design in 16 runs. What are the alias

relationships in this design?

7-65. Construct a 2III
5�2 design in eight runs. What are the

alias relationships in this design?

7-66. In a process development study on yield, four factors
were studied, each at two levels: time (A), concentration (B),
pressure (C ), and temperature (D). A single replicate of 
a 24 design was run, and the resulting data are shown in 
Table 7-40.

(a) Plot the effect estimates on a normal probability scale.
Which factors appear to have large effects?

Table 7-39 Data for Exercise 7-61

Factors

Surface 
V F P G Roughness 

Run (in/min) (lb/min) (kpsi) (mesh no.) (�m)

1 6 2.0 38 80 104
2 2 2.0 38 80 98
3 6 2.0 30 80 103
4 2 2.0 30 80 96
5 6 1.0 38 80 137
6 2 1.0 38 80 112
7 6 1.0 30 80 143
8 2 1.0 30 80 129
9 6 2.0 38 170 88

10 2 2.0 38 170 70
11 6 2.0 30 170 110
12 2 2.0 30 170 110
13 6 1.0 38 170 102
14 2 1.0 38 170 76
15 6 1.0 30 170 98
16 2 1.0 30 170 68
17 4 1.5 34 115 95
18 4 1.5 34 115 98
19 4 1.5 34 115 100
20 4 1.5 34 115 97
21 4 1.5 34 115 94
22 4 1.5 34 115 93
23 4 1.5 34 115 91 
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(b) Conduct an analysis of variance using the normal proba-
bility plot in part (a) for guidance in forming an error
term. What are your conclusions?

(c) Analyze the residuals from this experiment. Does your
analysis indicate any potential problems?

(d) Can this design be collapsed into a 23 design with two
replicates? If so, sketch the design with the average and
range of yield shown at each point in the cube. Interpret
the results.

7-67. An article in the Journal of Quality Technology (Vol.
17, 1985, pp. 198–206) describes the use of a replicated frac-
tional factorial to investigate the effect of five factors on the
free height of leaf springs used in an automotive application.
The factors are A � furnace temperature, B � heating time, 
C � transfer time, D � hold down time, and E � quench oil
temperature. The data are shown in the following table.

(a) What is the generator for this fraction? Write out the alias
structure.

(b) Analyze the data. What factors influence mean free height?
(c) Calculate the range of free height for each run. Is there

any indication that any of these factors affects variability
in free height?

(d) Analyze the residuals from this experiment and comment
on your findings.

7-68. Consider the experiment described in Exercise 7-66.
Find 95% CIs on the factor effects that appear important. Use
the normal probability plot to provide guidance concerning the
effects that can be combined to provide an estimate of error.

7-69. An article in Rubber Chemistry and Technology (Vol.
47, 1974, pp. 825–836) describes an experiment that studies the
Mooney viscosity of rubber to several variables, including silica
filler (parts per hundred) and oil filler (parts per hundred). Some
of the data from this experiment are shown here, where

x1 �
silica � 60

15
  x2 �

oil � 21

15

Table 7-40 Data for Exercise 7-66

Actual Factor Levels
Run Run Yield

Number Order A B C D (lbs) Low (�) High (�)

1 5 � � � � 12 A (h) 2.5 3
2 9 � � � � 18 B (%) 14 18
3 8 � � � � 13 C (psi) 60 80
4 13 � � � � 16 D (˚C) 225 250
5 3 � � � � 17
6 7 � � � � 15
7 14 � � � � 20
8 1 � � � � 15
9 6 � � � � 10

10 11 � � � � 25
11 2 � � � � 13
12 15 � � � � 24
13 4 � � � � 19
14 16 � � � � 21
15 10 � � � � 17
16 12 � � � � 23 

A B C D E Free Height

� � � � � 7.78 7.78 7.81

� � � � � 8.15 8.18 7.88

� � � � � 7.50 7.56 7.50

� � � � � 7.59 7.56 7.75

� � � � � 7.54 8.00 7.88

� � � � � 7.69 8.09 8.06

� � � � � 7.56 7.52 7.44

� � � � � 7.56 7.81 7.69

� � � � � 7.50 7.56 7.50

� � � � � 7.88 7.88 7.44

A B C D E Free Height

� � � � � 7.50 7.56 7.50

� � � � � 7.63 7.75 7.56

� � � � � 7.32 7.44 7.44

� � � � � 7.56 7.69 7.62

� � � � � 7.18 7.18 7.25

� � � � � 7.81 7.50 7.59
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Fit a quadratic model to these data. What values of x1 and x2

will maximize the Mooney viscosity?

7-70. An article in Oikos: A Journal of Ecology, “Regulation
of Root Vole Population Dynamics by Food Supply and
Predation: A Two-Factor Experiment,” (Vol. 109, 2005, 
pp. 387–395), investigated how food supply interacts with preda-
tion in the regulation of root vole (Microtus oeconomus Pallas)
population dynamics. A replicated two-factor field experiment
manipulating both food supply and predation condition for root
voles was conducted. Four treatments were applied: �P, �F 
(no-predator, food-supplemented); �P, �F (predator-access,
food-supplemented); �P, �F (no-predator, non-supplemented);
�P, �F (predator-access, food-supplemented). The population
density of root voles (voles ha�1) for each treatment combina-
tion in each follows.

(b) Write the least squares fitted model using only the signifi-
cant terms.

(c). Use the model to predict the response when 
x2 � 1, x3 � 1.

x1 � �1,

Coded Levels

x1 x2 y

�1 �1 13.71
1 �1 14.15

�1 1 12.87
1 1 13.53

�1.4 0 12.99
1.4 0 13.89
0 �1.4 14.16
0 1.4 12.90
0 0 13.75
0 0 13.66
0 0 13.86
0 0 13.63
0 0 13.74

Food Supply Predation 
(F) (P) Replicates

88.589 114.059 200.979
56.949 97.079 78.759
65.439 89.089 172.339
40.799 47.959 74.439�1�1

�1�1
�1�1
�1�1

(a) What is an appropriate statistical model for this experi-
ment?

(b) Analyze the data and draw conclusions.
(c) Analyze the residuals from this experiment. Are there any

problems with model adequacy?

7-71. Consider the Minitab analysis results of a 23-designed
experiment with two replicates. 

(a) Find all of the missing values in the t-tests of the accompa-
nying effects table. Indicate which effects are significant
using � � 0.1.

Term Coef SE Coef T P

Constant 6.0625 0.3903 15.53 0.000

A 1.6875 0.3903 4.32 ?

B 0.8125 0.3903 2.08 ?

C 0.4375 0.3903 ? 0.295

AB 0.6875 ? ? ?

AC 0.0625 0.3903 0.16 ?

BC �0.3125 0.3903 ? 0.446

ABC 0.5625 0.3903 1.44 ? 

7-72. An article in Biotechnology Progress (2001, Vol. 17,
pp. 366–368) reported on an experiment to investigate and 
optimize the operating conditions of the nisin extraction in
aqueous two-phase systems (ATPS). A 22 full factorial design
with center points was used to verify the most significant factors 
affecting the nisin recovery. The factor x1 was the concentration
(% w/w) of PEG 4000 and x2 was the concentration (% w/w) of
Na2SO4. The range and levels of variables investigated in this
study are presented here. Nisin extraction is a ratio represent-
ing the concentration of nisim and this was the response y.

Trial x1 x2 y

1 13 11 62.874

2 15 11 76.133

3 13 13 87.467

4 15 13 102.324

5 14 12 76.187

6 14 12 77.523

7 14 12 76.782

8 14 12 77.438

9 14 12 78.742

(a) Compute an ANOVA table for the effects and test for 
curvature with . Is curvature important in this 
region of the factors?

(b) Calculate residuals from the linear model and test for 
adequacy of your model.

(c) In a new region of factor space a central composite design
(CCD) was used to perform second-order optimization.
The results are shown in the following table. Fit a second-
order model to these data and make conclusions.

� � 0.05
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Coded Uncoded

Trail x1 x2 x1 x2 y

1 �1 �1 15 14 102.015

2 1 �1 16 14 106.868

3 �1 1 15 16 108.13

4 1 1 16 16 110.176

5 �1.414 0 14.793 15 105.236

6 1.414 0 16.207 15 110.289

7 0 �1.414 15.5 13.586 103.999

8 0 1.414 15.5 16.414 110.171

9 0 0 15.5 15 108.044

10 0 0 15.5 15 109.098

11 0 0 15.5 15 107.824

12 0 0 15.5 15 108.978

13 0 0 15.5 15 109.169

7-73. An article in the Journal of Applied Electrochemistry
(May 2008, Vol. 38, No. 5, pp. 583–590) presented a 27�3 fractional
factorial design to perform optimization of polybenzimidazole-
based membrane electrode assemblies for H2/O2 fuel cells.
The design and data are shown in the following table.

Current Density
Runs A B C D E F G (CD mA cm2)

1 �1 �1 �1 �1 �1 �1 �1 160

2 �1 �1 �1 �1 �1 �1 �1 20

3 �1 �1 �1 �1 �1 �1 �1 80

4 �1 �1 �1 �1 �1 �1 �1 317

5 �1 �1 �1 �1 �1 �1 �1 19

6 �1 �1 �1 �1 �1 �1 �1 4

7 �1 �1 �1 �1 �1 �1 �1 20

8 �1 �1 �1 �1 �1 �1 �1 87.7

9 �1 �1 �1 �1 �1 �1 �1 1100

10 �1 �1 �1 �1 �1 �1 �1 12

11 �1 �1 �1 �1 �1 �1 �1 552

12 �1 �1 �1 �1 �1 �1 �1 880

13 �1 �1 �1 �1 �1 �1 �1 16

14 �1 �1 �1 �1 �1 �1 �1 20

15 �1 �1 �1 �1 �1 �1 �1 8

16 �1 �1 �1 �1 �1 �1 �1 15

Factor �1 �1

A Amount of binder in the 0.2 mg cm2 1 mg cm2

catalyst layer

B Electrocatalyst loading 0.1 mg cm2 1 mg cm2

C Amount of carbon in the 2 mg cm2 4.5 mg cm2

gas diffusion layer

D Hot compaction time 1 min 10 min

E Compaction temperature 100�C 150�C

F Hot compaction load 0.04 ton cm2 0.2 ton cm2

G Amount of PTFE in the 0.1 mg cm2 1 mg cm2

gas diffusion layer

(a) Write down the alias relationships.
(b) Estimate the main effects.
(c) Prepare a normal probability plot for the effects and inter-

pret the results.
(d) Calculate the sum of squares for the alias set that contains

the ABG interaction from the corresponding effect estimate.

The factors are levels are shown in the following table.
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2k factorial design
2k�p fractional factorial

design
Aliases
Blocking and 

confounding
Center points in a 2k

factorial design

Central composite 
design

Contour plot
Factorial design
First-order model
Interaction
Interaction plot
Main effect of a factor

Method of steepest 
ascent

Normal probability plot
of effects

Optimization 
experiments

Regression model
Residual analysis

Residuals
Response surface
Screening experiment
Second-order model
Sequential 

experimentation

IMPORTANT TERMS AND CONCEPTS

TEAM EXERCISE

7-74. The project consists of planning, designing, con-
ducting, and analyzing an experiment, using appropriate
experimental design principles. The context of the project
experiment is limited only by your imagination. Students
have conducted experiments directly connected to their
own research interests, a project that they are involved
with at work (something for the industrial participants or
the part-timers in industry to think about), or if all else
fails, you could conduct a “household” experiment (such
as how varying factors such as type of cooking oil,

amount of oil, cooking temperature, pan type, brand of
popcorn, etc., affect the yield and taste of popcorn).

The major requirement is that the experiment must
involve at least three factors. Each of the interim steps 
requires information about the problem, the factors, the
responses that will be observed, and the specific details of
the design that will be used. Your final report should 
include a clear statement of objectives, the procedures and
techniques used, appropriate analyses, and specific con-
clusions that state what you learned from the experiment.
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CONTROL CHARTS IN HEALTH CARE

An article in International Journal for Quality in Health Care (“Using Control Charts to
Monitor Quality of Hospital Care with Administrative Data,” Vol. 20(10), pp. 31–39) 
described the use of control charts to monitor the quality of care in hospitals in Queensland,
Australia. The analysis focused on the in-hospital mortality rate following admission for acute
myocardial infarction. Patients were screened by several criteria (such as age and a length of
stay of in the hospital of at least three days). Furthermore, the results were adjusted so that
higher-risk patients did not unfairly penalize the performance of a hospital. Risk-adjusted 
performance of each hospital was analyzed with control charts applied to more than 4000 
admissions over a two-year period. Control charts for several hospitals generated signals that
indicated periods of unusual performance. The authors commented that control charts provide
an interpretable overview of performance that can identify unusual periods and lead to inves-
tigations and process improvements. As this example illustrates, the use of control charts dis-
cussed in this chapter is applicable in many industries in addition to their traditional role in
manufacturing. The principles and methods presented here to analyze variation and improve
processes are widely applied in modern organizations of all types.

Statistical Process
Control

CHAPTER OUTLINE

8-1 QUALITY IMPROVEMENT AND STATISTICAL
PROCESS CONTROL

8-2 INTRODUCTION TO CONTROL CHARTS

8-2.1 Basic Principles

8-2.2 Design of a Control Chart

8-2.3 Rational Subgroups

8-2.4 Analysis of Patterns on Control Charts

8-3 AND R CONTROL CHARTS

8-4 CONTROL CHARTS FOR 
INDIVIDUAL MEASUREMENTS

X

8-5 PROCESS CAPABILITY

8-6 ATTRIBUTE CONTROL CHARTS

8-6.1 P Chart (Control Chart for 
Proportions) and nP Chart

8-6.2 U Chart (Control Chart for 
Average Number of Defects per Unit) 
and C Chart

8-7 CONTROL CHART PERFORMANCE

8-8 MEASUREMENT SYSTEMS CAPABILITY

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:

1. Understand the role of statistical tools in quality improvement.

2. Understand the different types of variability and rational subgroups, and how a control chart is used to detect
assignable causes.

438
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8-1 QUALITY IMPROVEMENT AND 
STATISTICAL PROCESS CONTROL

The quality of products and services has become a major decision factor in most businesses
today. Regardless of whether the consumer is an individual, a corporation, a military defense
program, or a retail store, when the consumer is making purchase decisions, he or she is likely
to consider quality to be equal in importance to cost and schedule. Consequently, quality 
improvement has become a major concern to many U.S. corporations. This chapter is about
statistical process control (SPC), a collection of tools that are essential in quality-improvement
activities.

Quality means fitness for use. For example, you or I may purchase automobiles that we
expect to be free of manufacturing defects and that should provide reliable and economical
transportation, a retailer buys finished goods with the expectation that they are properly
packaged and arranged for easy storage and display, and a manufacturer buys raw material
and expects to process it with no rework or scrap. In other words, all consumers expect that
the products and services they buy will meet their requirements. Those requirements define
fitness for use.

Quality or fitness for use is determined through the interaction of quality of design and
quality of conformance. By quality of design, we mean the different grades or levels of per-
formance, reliability, serviceability, and function that are the result of deliberate engineering
and management decisions. By quality of conformance, we mean the systematic reduction of
variability and elimination of defects until every unit produced is identical and defect-free.

Some confusion exists in our society about quality improvement; some people still think
that it means gold-plating a product or spending more money to develop a product or process.
This thinking is wrong. Quality improvement means the systematic elimination of waste.
Examples of waste include scrap and rework in manufacturing, inspection and test, errors on
documents (such as engineering drawings, checks, purchase orders, and plans), customer
complaint hot lines, warranty costs, and the time required to do things over again that could
have been done right the first time. A successful quality-improvement effort can eliminate
much of this waste and lead to lower costs, higher productivity, increased customer satisfac-
tion, increased business reputation, higher market share, and ultimately higher profits for the
company.

Statistical methods play a vital role in quality improvement. Some applications are out-
lined next:

1. In product design and development, statistical methods, including designed experi-
ments, can be used to compare different materials, components, or ingredients and to
help determine both system and component tolerances. This application can signifi-
cantly lower development costs and reduce development time.

3. Understand the general form of a Shewhart control chart and how to apply zone rules (such as the Western
Electric rules) and pattern analysis to detect assignable causes.

4. Construct and interpret control charts for variables such as , R, S, and individual charts.

5. Construct and interpret control charts for attributes such as P and U charts.

6. Calculate and interpret process capability ratios.

7. Calculate the ARL performance for a Shewhart control chart.

8. Use ANOVA to study the performance of a measurement system.

X
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2. Statistical methods can be used to determine the capability of a manufacturing
process. Statistical process control can be used to systematically improve a process
by reducing variability.

3. Experimental design methods can be used to investigate improvements in the process.
These improvements can lead to higher yields and lower manufacturing costs.

4. Life testing provides reliability and other performance data about the product. This
can lead to new and improved designs and products that have longer useful lives and
lower operating and maintenance costs.

Some of these applications have been illustrated in earlier chapters of this book. It is 
essential that engineers, scientists, and managers have an in-depth understanding of these sta-
tistical tools in any industry or business that wants to be a high-quality, low-cost producer. In
this chapter we provide an introduction to the basic methods of statistical quality control that,
along with experimental design, form the basis of a successful quality-improvement effort.

SPC has its origins in the 1920s. Dr. Walter A. Shewhart of the Bell Telephone
Laboratories was one of the early pioneers of the field. In 1924 he wrote a memorandum illus-
trating a control chart, one of the basic SPC tools. World War II saw the widespread dissemi-
nation of these methods to U.S. industry. Dr. W. Edwards Deming and Dr. Joseph M. Juran
were instrumental in spreading the methodology after World War II.

SPC is a set of problem-solving tools that may be applied to any process. The major tools
of SPC1 are

1. Histogram

2. Pareto chart

3. Cause-and-effect diagram

4. Defect-concentration diagram

5. Control chart

6. Scatter diagram

7. Check sheet

Although these tools are an important part of SPC, they comprise only the technical aspect of
the subject. An equally important element of SPC is attitude—a desire of all individuals in the
organization for continuous improvement in quality and productivity through the systematic
reduction of variability. The control chart is the most powerful of the SPC tools. For complete
discussion of these methods, see Montgomery (2009b).

8-2 INTRODUCTION TO CONTROL CHARTS

8-2.1 Basic Principles

In any production process, regardless of how well designed or carefully maintained it is, a
certain amount of inherent or natural variability will always exist. This natural variability, or
“background noise,” is the cumulative effect of many small, essentially unavoidable causes.
When the background noise in a process is relatively small, we usually consider it an acceptable

1Some prefer to include the experimental design methods discussed in Chapter 7 as part of the SPC toolkit. We did
not do so because we think of SPC as an online approach to quality improvement using techniques founded on pas-
sive observation of the process, whereas design of experiments is an active approach in which deliberate changes are
made to the process variables. As such, designed experiments are often referred to as offline quality control.
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level of process performance. In the framework of statistical process control, this natural vari-
ability is often called a “stable system of chance causes.” A process that is operating with only
chance causes of variation present is said to be in statistical control. In other words, the chance
causes are an inherent part of the process.

Other kinds of variability may occasionally be present in the output of a process. This
variability in key quality characteristics usually arises from three sources: improperly adjusted
machines, operator errors, or defective raw materials. Such variability is generally large when
compared to the background noise, and it usually represents an unacceptable level of process
performance. We refer to these sources of variability that are not part of the chance cause pat-
tern as assignable causes. A process that is operating in the presence of assignable causes is
said to be out of control. The terminology chance and assignable causes was developed by 
Dr. Walter A. Shewhart. Today, some writers use common cause instead of chance cause and
special cause instead of assignable cause.

Production processes will often operate in the in-control state, producing acceptable
product for relatively long periods of time. Occasionally, however, assignable causes will 
occur, seemingly at random, resulting in a “shift” to an out-of-control state where a large pro-
portion of the process output does not conform to requirements. A major objective of statistical
process control is to quickly detect the occurrence of assignable causes or process shifts so
that investigation of the process and corrective action may be undertaken before many non-
conforming units are manufactured. The control chart is an online process-monitoring tech-
nique widely used for this purpose.

Recall the following from Chapter 1: Fig. 1-17 illustrates that adjustments to common
causes of variation increase the variation of a process, whereas Fig. 1-18 illustrates that actions
should be taken in response to assignable causes of variation. Control charts may also be used to
estimate the parameters of a production process and, through this information, to determine the
capability of a process to meet specifications. The control chart can also provide information that
is useful in improving the process. Finally, remember that the eventual goal of SPC is the elimi-
nation of variability in the process. Although it may not be possible to eliminate variability com-
pletely, the control chart helps reduce it as much as possible.

A typical control chart is shown in Fig. 8-1, which is a graphical display of a quality
characteristic that has been measured or computed from a sample versus the sample number
or time. Often the samples are selected at periodic intervals, such as every hour. The chart
contains a center line (CL) that represents the average value of the quality characteristic
corresponding to the in-control state. (That is, only chance causes are present.) Two other
horizontal lines, called the upper control limit (UCL) and the lower control limit (LCL), are

Sample number or time

Lower control limit

Center line

Upper control limit
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Figure 8-1 A typical control chart.
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also shown on the chart. These control limits are chosen so that if the process is in control,
nearly all of the sample points will fall between them. In general, as long as the points plot
within the control limits, the process is assumed to be in control, and no action is necessary.
However, a point that plots outside of the control limits is interpreted as evidence that the
process is out of control, and investigation and corrective action are required to find and elim-
inate the assignable cause or causes responsible for this behavior. The sample points on the
control chart are usually connected with straight-line segments, so that it is easier to visualize
how the sequence of points has evolved over time.

Even if all the points plot inside the control limits, if they behave in a systematic or non-
random manner, this is an indication that the process is out of control. For example, if 18 of
the last 20 points plotted above the center line but below the upper control limit and only two
of these points plotted below the center line but above the lower control limit, we would be
very suspicious that something was wrong. If the process is in control, all the plotted points
should have an essentially random pattern. Methods designed to find sequences or nonrandom
patterns can be applied to control charts as an aid in detecting out-of-control conditions. A
particular nonrandom pattern usually appears on a control chart for a reason, and if that reason
can be found and eliminated, process performance can be improved.

There is a close connection between control charts and hypothesis testing. Essentially, the
control chart is a test of the hypothesis that the process is in a state of statistical control. A
point plotting within the control limits is equivalent to failing to reject the hypothesis of statis-
tical control, and a point plotting outside the control limits is equivalent to rejecting the 
hypothesis of statistical control.

Consider a general model for a control chart.

2Note that sigma refers to the standard deviation of the statistic plotted on the chart (i.e., �W), not the standard devia-
tion of the quality characteristic.

A common choice is k � 3. This general theory of control charts was first proposed by 
Dr. Walter A. Shewhart, and control charts developed according to these principles are often
called Shewhart control charts.

The control chart is a device for describing exactly what is meant by statistical control; as
such, it may be used in a variety of ways. In many applications, it is used for online process
monitoring. That is, sample data are collected and used to construct the control chart, and if
the sample values of (say) fall within the control limits and do not exhibit any systematic 
pattern, we say the process is in control at the level indicated by the chart. Note that we may be

x

General Model for a Control Chart

Let W be a sample statistic that measures some quality characteristic of interest, and sup-
pose that the mean of W is �W and the standard deviation of W is �W.2 Then the center
line (CL), the upper control limit (UCL), and the lower control limit (LCL) become

(8-1)

where k is the “distance” of the control limits from the center line, expressed in standard
deviation units.

 LCL � �W � k�W

 CL � �W

 UCL � �W � k�W
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interested here in determining both whether the past data came from a process that was in 
control and whether future samples from this process indicate statistical control.

The most important use of a control chart is to improve the process. We have found that,
generally,

1. Most processes do not operate in a state of statistical control.

2. Consequently, the routine and attentive use of control charts will identify assignable
causes. If these causes can be eliminated from the process, variability will be reduced
and the process will be improved.

This process-improvement activity using the control chart is illustrated in Fig. 8-2. Note that:

3. The control chart will only detect assignable causes. Management, operator, and 
engineering action will usually be necessary to eliminate the assignable cause. An 
action plan for responding to control chart signals is vital.

In identifying and eliminating assignable causes, it is important to find the underlying root
cause of the problem and to attack it. A cosmetic solution will not result in any real, long-term
process improvement. Developing an effective system for corrective action is an essential
component of an effective SPC implementation.

We may also use the control chart as an estimating device. That is, from a control chart
that exhibits statistical control, we may estimate certain process parameters, such as the mean,
standard deviation, and fraction nonconforming or fallout. These estimates may then be used
to determine the capability of the process to produce acceptable products. Such process capa-
bility studies have considerable impact on many management decision problems that occur
over the product cycle, including make-or-buy decisions, plant and process improvements that
reduce process variability, and contractual agreements with customers or suppliers regarding
product quality.

Control charts may be classified into two general types. Many quality characteristics can
be measured and expressed as numbers on some continuous scale of measurement. In such
cases, it is convenient to describe the quality characteristic with a measure of central tendency
and a measure of variability. Control charts for central tendency and variability are collectively
called variables control charts. The chart is the most widely used chart for monitoring
central tendency, whereas charts based on either the sample range or the sample standard

X

Figure 8-2 Process improvement using the control
chart.
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deviation are used to control process variability. Many quality characteristics are not measured
on a continuous scale or even a quantitative scale. In these cases, we may judge each unit of
product as either conforming or nonconforming on the basis of whether or not it possesses cer-
tain attributes, or we may count the number of nonconformities (defects) appearing on a unit
of product. Control charts for such quality characteristics are called attributes control charts.

Control charts have had a long history of use in industry. There are at least five reasons for
their popularity; control charts

1. Are a proven technique for improving productivity. A successful control chart pro-
gram will reduce scrap and rework, which are the primary productivity killers in any
operation. If you reduce scrap and rework, productivity increases, cost decreases, and
production capacity (measured in the number of good parts per hour) increases.

2. Are effective in defect prevention. The control chart helps keep the process in con-
trol, which is consistent with the “do it right the first time” philosophy. It is never
cheaper to sort out the “good” units from the “bad” later on than it is to build it right
initially. If you do not have effective process control, you are paying someone to
make a nonconforming product.

3. Prevent unnecessary process adjustments. A control chart can distinguish between
background noise and abnormal variation; no other device, including a human oper-
ator, is as effective in making this distinction. If process operators adjust the process
based on periodic tests unrelated to a control chart program, they will often overreact
to the background noise and make unneeded adjustments. These unnecessary adjust-
ments can usually result in a deterioration of process performance. In other words,
the control chart is consistent with the “if it isn’t broken, don’t fix it” philosophy.

4. Provide diagnostic information. Frequently, the pattern of points on the control
chart will contain information that is of diagnostic value to an experienced operator
or engineer. This information allows the operator to implement a change in the
process that will improve its performance.

5. Provide information about process capability. The control chart provides information
about the value of important process parameters and their stability over time, which
allows an estimate of process capability to be made. This information is of tremendous
use to product and process designers.

Control charts are among the most effective management control tools, and they are as
important as cost controls and material controls. Modern computer technology has made it
easy to implement control charts in any type of process because data collection and analysis
can be performed on a microcomputer or a local area network terminal in real time, online at
the work center.

8-2.2 Design of a Control Chart

To illustrate these ideas, we give a simplified example of a control chart. In manufacturing 
automobile engine piston rings, the inside diameter of the rings is a critical quality characteristic.
The process mean inside ring diameter is 74 mm, and it is known that the standard deviation of
ring diameter is 0.01 mm. A control chart for average ring diameter is shown in Fig. 8-3. Every
hour a random sample of five rings is taken, the average ring diameter of the sample (say, ) is
computed, and is plotted on the chart. Because this control chart utilizes the sample mean 
to monitor the process mean, it is usually called an control chart. Note that all the points fall
within the control limits, so the chart indicates that the process is in statistical control.

X
Xx

x
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8-2 INTRODUCTION TO CONTROL CHARTS 445

Consider how the control limits were determined. The process average is 74 mm, and the
process standard deviation is � � 0.01 mm. Now, if samples of size n � 5 are taken, the standard
deviation of the sample average is

Therefore, if the process is in control with a mean diameter of 74 mm, by using the central limit
theorem to assume that is approximately normally distributed, we would expect approxi-
mately 100(1 � �) % of the sample mean diameters to fall between 74 � z��2 (0.0045) and
74 � z��2 (0.0045). As discussed earlier, we customarily choose the constant z��2 to be 3, so
the upper and lower control limits become

and

as shown on the control chart. These are the three-sigma control limits referred to previously.
Note that the use of three-sigma limits implies that � � 0.0027; that is, the probability that the
point plots outside the control limits when the process is in control is 0.0027. The width of the
control limits is inversely related to the sample size n for a given multiple of sigma. Choosing
the control limits is equivalent to setting up the critical region for testing the hypothesis

where � � 0.01 is known. Essentially, the control chart tests this hypothesis repeatedly at 
different points in time.

In designing a control chart, we must specify both the sample size to use and the fre-
quency of sampling. In general, larger samples will make it easier to detect small shifts in
the process. When choosing the sample size, we must keep in mind the size of the shift that
we are trying to detect. If we are interested in detecting a relatively large process shift, we
use smaller sample sizes than those that would be employed if the shift of interest were
relatively small.

H1: � � 74

H0: � � 74

LCL � 74 � 3(0.0045) � 73.9865

UCL � 74 � 3(0.0045) � 74.0135

X
X

�
 X

�
�

1n
�

0.01

15
� 0.0045

X

Figure 8-3 control chart for piston ring diameter.X
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446 CHAPTER 8 STATISTICAL PROCESS CONTROL

We must also determine the frequency of sampling. The most desirable situation from the
point of view of detecting shifts would be to take large samples very frequently; however, this
is usually not economically feasible. The general problem is one of allocating sampling effort.
That is, either we take small samples at short intervals or larger samples at longer intervals.
Current industry practice tends to favor smaller, more frequent samples, particularly in high-
volume manufacturing processes, or where a great many types of assignable causes can occur.
Furthermore, as automatic sensing and measurement technology develops, it is becoming pos-
sible to greatly increase frequencies. Ultimately, every unit can be tested as it is manufactured.
This capability will not eliminate the need for control charts because the test system does not
prevent defects. The increased data will increase the effectiveness of process control and 
improve quality.

8-2.3 Rational Subgroups

A fundamental idea in the use of control charts is to collect sample data according to what
Shewhart called the rational subgroup concept. Generally, this means that subgroups or sam-
ples should be selected so that, to the extent possible, the variability of the observations within
a subgroup includes all the chance or natural variability and excludes the assignable variability.
Then the control limits will represent bounds for all the chance variability and not the assign-
able variability. Consequently, assignable causes will tend to generate points that are outside
of the control limits, whereas chance variability will tend to generate points that are within the
control limits.

When control charts are applied to production processes, the time order of production
is a logical basis for rational subgrouping. Even though time order is preserved, it is still
possible to form subgroups erroneously. If some of the observations in the subgroup are
taken at the end of one 8-hour shift and the remaining observations are taken at the start of
the next 8-hour shift, any differences between shifts might not be detected. Time order is
frequently a good basis for forming subgroups because it allows us to detect assignable
causes that occur over time.

Two general approaches to constructing rational subgroups are used. In the first approach,
each subgroup consists of units that were produced at the same time (or as close together as pos-
sible). This approach is used when the primary purpose of the control chart is to detect process
shifts. It minimizes variability due to assignable causes within a sample, and it maximizes vari-
ability between samples if assignable causes are present. It also provides better estimates of the
standard deviation of the process in the case of variables control charts. This approach to rational
subgrouping essentially gives a “snapshot” of the process at each point in time where a sample
is collected.

In the second approach, each sample consists of units of product that are representative of
all units that have been produced since the last sample was taken. Essentially, each subgroup
is a random sample of all process output over the sampling interval. This method of rational
subgrouping is often used when the control chart is employed to make decisions about the 
acceptance of all units of product that have been produced since the last sample. In fact, if the
process shifts to an out-of-control state and then back in control again between samples, it is
sometimes argued that the first method of rational subgrouping mentioned will be ineffective
against these types of shifts, and so the second method must be used.

When the rational subgroup is a random sample of all units produced over the sampling
interval, considerable care must be taken in interpreting the control charts. If the process mean
drifts between several levels during the interval between samples, the range of observations
within the sample may consequently be relatively large. It is the within-sample variability that
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8-2 INTRODUCTION TO CONTROL CHARTS 447

determines the width of the control limits on an chart, so this practice will result in wider
limits on the chart. This makes it harder to detect shifts in the mean. In fact, we can often
make any process appear to be in statistical control just by stretching out the interval between
observations in the sample. It is also possible for shifts in the process average to cause points
on a control chart for the range or standard deviation to plot out of control, even though no
shift in process variability has taken place.

There are other bases for forming rational subgroups. For example, suppose a process
consists of several machines that pool their output into a common stream. If we sample from
this common stream of output, it will be very difficult to detect whether or not some of the 
machines are out of control. A logical approach to rational subgrouping here is to apply control
chart techniques to the output for each individual machine. Sometimes this concept needs to
be applied to different heads on the same machine, different workstations, different operators,
and so forth.

The rational subgroup concept is very important. The proper selection of samples requires
careful consideration of the process, with the objective of obtaining as much useful information
as possible from the control chart analysis.

8-2.4 Analysis of Patterns on Control Charts

A control chart may indicate an out-of-control condition either when one or more points fall
beyond the control limits or when the plotted points exhibit some nonrandom pattern of 
behavior. For example, consider the chart shown in Fig. 8-4. Although all 25 points fall within
the control limits, the points do not indicate statistical control because their pattern is very
nonrandom in appearance. Specifically, we note that 19 of the 25 points plot below the center
line, whereas only 6 of them plot above. If the points are truly random, we should expect a
more even distribution of them above and below the center line. We also observe that follow-
ing the fourth point, five points in a row increase in magnitude. This arrangement of points is
called a run. Because the observations are increasing, we could call it a run up; similarly, a 
sequence of decreasing points is called a run down. This control chart has an unusually long
run up (beginning with the fourth point) and an unusually long run down (beginning with the
eighteenth point).

In general, we define a run as a sequence of observations of the same type. In addition to
runs up and runs down, we could define the types of observations as those above and below
the center line, respectively, so that two points in a row above the center line would be a run of
length 2.

X

X
X

Figure 8-4 An control chart.X
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448 CHAPTER 8 STATISTICAL PROCESS CONTROL

A run of length 8 or more points has a very low probability of occurrence in a random
sample of points. Consequently, any type of run of length 8 or more is often taken as a signal
of an out-of-control condition. For example, 8 consecutive points on one side of the center line
will indicate that the process is out of control.

Although runs are an important measure of nonrandom behavior on a control chart, other
types of patterns may also indicate an out-of-control condition. For example, consider the 
chart in Fig. 8-5. Note that the plotted sample averages exhibit a cyclic behavior, yet they all
fall within the control limits. Such a pattern may indicate a problem with the process, such as
operator fatigue, raw material deliveries, and heat or stress buildup. The yield may be improved
by eliminating or reducing the sources of variability causing this cyclic behavior (see Fig. 8-6).
In Fig. 8-6, LSL and USL denote the lower and upper specification limits of the process. These
limits represent bounds within which acceptable product must fall, and they are often based on
customer requirements.

The problem is one of pattern recognition—that is, recognizing systematic or non-
random patterns on the control chart and identifying the reason for this behavior. The ability
to interpret a particular pattern in terms of assignable causes requires experience and knowl-
edge of the process. That is, we must not only know the statistical principles of control charts,
but we must also have a good understanding of the process.

The classical Western Electric Handbook (1956) suggests a set of decision rules for
detecting nonrandom patterns on control charts. These rules are as follows:

X

Figure 8-5 An chart with a cyclic pattern.X

1

LCL

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Center
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UCL

x

Sample number

USLμLSL
(a)

USLμLSL

(b)

Figure 8-6 (a) Variability with the
cyclic pattern. (b) Variability with the
cyclic pattern eliminated.

The Western Electric rules would signal that the process is out of control if either

1. One point plots outside three-sigma control limits.

2. Two out of three consecutive points plot beyond a two-sigma limit.

3. Four out of five consecutive points plot at a distance of one sigma or beyond
from the center line.

4. Eight consecutive points plot on one side of the center line.

We have found these rules very effective in practice for enhancing the sensitivity of control
charts. Rules 2 and 3 apply to one side of the center line at a time. That is, a point above the
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8-3 AND R CONTROL CHARTS 449X

upper two-sigma limit followed immediately by a point below the lower two-sigma limit
would not signal an out-of-control alarm.

Figure 8-7 shows an control chart for the piston ring process with the one-, two-, and
three-sigma limits used in the Western Electric procedure. Note that these inner limits,
sometimes called warning limits, partition the control chart into three zones A, B, and C
on each side of the center line. Consequently, the Western Electric rules are sometimes
called the zone rules for control charts. Note that the last four points fall in zone B or 
beyond. Thus, since four of five consecutive points exceed the one-sigma limit, the Western
Electric procedure will conclude that the pattern is nonrandom and the process is out of
control.

8-3 AND R CONTROL CHARTS

When dealing with a quality characteristic that can be expressed as a measurement, it is cus-
tomary to monitor both the mean value of the quality characteristic and its variability. Control
over the average quality is exercised by the control chart for averages, usually called the 

chart. Process variability can be controlled by either a range chart (R chart) or a standard 
deviation chart (S chart), depending on how the population standard deviation is estimated. We
will discuss only the R chart.

Suppose that the process mean and standard deviation � and � are known and that we can
assume that the quality characteristic has a normal distribution. Consider the chart. As
discussed previously, we can use � as the center line for the control chart, and we can place
the upper and lower three-sigma limits at and 
respectively.

When the parameters � and � are unknown, we usually estimate them on the basis of pre-
liminary samples, taken when the process is thought to be in control. We recommend the use
of at least 20 to 25 preliminary samples. Suppose m preliminary samples are available, each of
size n. Typically, n will be 4, 5, or 6; these relatively small sample sizes are widely used and
often arise from the construction of rational subgroups.

LCL � � � 3�	1n,UCL � � � 3�	1n

X

X

X

X

Figure 8-7 The Western Electric zone rules.
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450 CHAPTER 8 STATISTICAL PROCESS CONTROL

Thus, we may take as the center line on the control chart.
We may estimate � from either the standard deviation or the range of the observations

within each sample. Because it is more frequently used in practice, we confine our discussion
to the range method. The sample size is relatively small, so there is little loss in efficiency in
estimating � from the sample ranges.

The relationship between the range R of a sample from a normal population with known
parameters and the standard deviation of that population is needed. Because R is a random
variable, the quantity W � R�� (called the relative range) is also a random variable. The 
parameters of the distribution of W have been determined numerically for any sample size n.

The mean of the distribution of W is called d2, and a table of d2 for various n is given in
Table VII of Appendix A. The standard deviation of W is called d3. Because R � �W,

(8-3)

These results suggest an estimate for � based on the ranges within subgroups.

�R � d3�

�R � d2�

Xx

Grand Mean

Let the sample mean for the ith sample be Then we estimate the mean of the pop-
ulation, �, by the grand mean

(8-2)x �
1
ma

m

i�1

xi

xi.

Average Range and Estimate of �

Let ri be the range of the ith sample, and let

be the average range. Then estimates �R and an estimate of � is

(8-4)�̂ �
r

d2

r

r �
1
ma

m

i�1

ri

Therefore, we may use as our upper and lower control limits for the chart

(8-5)LCL � x �
3

d21n
 r

UCL � x �
3

d21n
 r

X
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8-3 AND R CONTROL CHARTS 451X

The parameters of the R chart may also be easily determined. The center line is obviously .
To determine the control limits, we need an estimate of �R, the standard deviation of R. Once
again, assuming that the process is in control, the distribution of the relative range, W, is useful.
Because � is unknown, equations 8-3 and 8-4 and used to estimate �R as

and we use as the upper and lower control limits on the R chart

Setting D3 � 1 � 3d3�d2 and D4 � 1 � 3d3�d2 leads to the following definition.

LCL � r �
3d3

d2

 r � a1 �
3d3

d2

b r

UCL � r �
3d3

d2

 r � a1 �
3d3

d2

b r

�̂R � d3 
r

d2

r

Define the constant

(8-6)

Now, once we have computed the sample values and , the parameters of the control chart
may be defined as follows.

Xrx

A2 �
3

d21n

Control Chart

The center line and upper and lower control limits for an control chart are

(8-7)

where the constant A2 is tabulated for various sample sizes in Appendix A Table VII.

 LCL � x � A2 r

 CL � x

 UCL � x � A2 r

X

X

R Control Chart

The center line and upper and lower control limits for an R chart are

(8-8)

where is the sample average range, and the constants D3 and D4 are tabulated for
various sample sizes in Appendix A Table VII.

r

 LCL � D3 r
 CL � r

 UCL � D4 r
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When preliminary samples are used to construct limits for control charts, these limits are
customarily treated as trial values. Therefore, the m sample means and ranges should be plotted
on the appropriate charts, and any points that exceed the control limits should be investigated. If
assignable causes for these points are discovered, they should be eliminated and new limits for
the control charts determined. In this way, the process may be eventually brought into statistical
control and its inherent capabilities assessed. Other changes in process centering and dispersion
may then be contemplated. Also we often study the R chart first because if the process variability
is not constant over time, the control limits calculated for the chart can be misleading.X

EXAMPLE 8-1 A component part for a jet aircraft engine is manufactured by an investment casting process. The vane
opening on this casting is an important functional parameter of the part. We will illustrate the use of 
and R control charts to assess the statistical stability of this process. Table 8-1 presents 20 samples of five
parts each. The values given in the table have been coded by using the last three digits of the dimension;
that is, 31.6 should be 0.50316 inch. Construct a control chart.

Solution. The quantities and are shown at the foot of Table 8-1. The value of A2 for
samples of size 5 is A2 � 0.577 from Appendix A Table VII. Then the trial control limits for the chart are

or

LCL � 29.97

UCL � 36.67

x �  A2r � 33.32 � (0.577)(5.8) � 33.32 � 3.35

X
r � 5.8x � 33.32

X

Preliminary Samples

Vane Opening

Table 8-1 Vane Opening Measurements for Example 8-1

Sample 
Number x1 x2 x3 x4 x5 r

1 33 29 31 32 33 31.6 4
2 33 31 35 37 31 33.4 6
3 35 37 33 34 36 35.0 4
4 30 31 33 34 33 32.2 4
5 33 34 35 33 34 33.8 2
6 38 37 39 40 38 38.4 3
7 30 31 32 34 31 31.6 4
8 29 39 38 39 39 36.8 10
9 28 33 35 36 43 35.0 15

10 38 33 32 35 32 34.0 6
11 28 30 28 32 31 29.8 4
12 31 35 35 35 34 34.0 4
13 27 32 34 35 37 33.0 10
14 33 33 35 37 36 34.8 4
15 35 37 32 35 39 35.6 7
16 33 33 27 31 30 30.8 6
17 35 34 34 30 32 33.0 5
18 32 33 30 30 33 31.6 3
19 25 27 34 27 28 28.2 9
20 35 35 36 33 30 33.8 6

r � 5.8x � 33.32

x

1

1

1

1
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Figure 8-8 The and R control charts for vane opening 
for Example 8-1.

X
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For the R chart, the trial control limits are

The and R control charts with these trial control limits are shown in Fig. 8-8. Note that samples 6, 8,
11, and 19 are out of control on the chart and that sample 9 is out of control on the R chart. (These points
are labeled with a 1 because they violate the first Western Electric rule.) Suppose that all of these assignable
causes can be traced to a defective tool in the wax-molding area. We should discard these five samples and
recompute the limits for the and R charts. These new revised limits are, for the chart,

and for the R chart,

The revised control charts are shown in Fig. 8-9. Note that we have treated the first 20 preliminary samples
as estimation data with which to establish control limits.

LCL � D3 r � (0)(5.0) � 0

UCL � D4 r � (2.115)(5.0) � 10.57

LCL � x � A2 r � 33.21 � (0.577)(5.0) � 30.33

UCL � x � A2 r � 33.21 � (0.577)(5.0) � 36.10

XX

X
X

LCL � D3 r � (0)(5.8) � 0

UCL � D4 r � (2.115)(5.8) � 12.27

1
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Figure 8-9 and R control charts for vane opening, revised limits for Example 8-1.X
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Practical interpretation: These limits can now be used to judge the statistical control of future produc-
tion. As each new sample becomes available, the values of and r should be computed and plotted on the
control charts. It may be desirable to revise the limits periodically, even if the process remains stable. The
limits should always be revised when process improvements are made. ■

Computer Construction of and R Control Charts
Many computer programs construct and R control charts. Figures 8-8 and 8-9 show charts
similar to those produced by Minitab for the vane-opening data in Example 8-1. This program
allows the user to select any multiple of sigma as the width of the control limits and utilize the
Western Electric rules to detect out-of-control points. The program also prepares a summary
report as in Table 8-2 and excludes subgroups from the calculation of the control limits.

X
X

x

Table 8-2 Summary Report from Minitab for the Vane Opening 
Data in Example 8-1

Test Results for Xbar Chart
TEST 1. One point more than 3.00 sigmas from center line.
Test Failed at points: 6 8 11 19

Test Results for R Chart
TEST 1. One point more than 3.00 sigmas from center line.
Test Failed at points: 9 

EXERCISES FOR SECTION 8-3

8-1. An extrusion die is used to produce aluminum rods.
The diameter of the rods is a critical quality characteristic. The
following table shows values for 20 samples of three rods
each. Specifications on the rods are 0.4030 
 0.0010 inch. The
values given are the last three digits of the measurement; that
is, 36 is read as 0.4036.

assuming that any samples that plot outside the control
limits can be eliminated.

8-2. Twenty samples of size 4 are drawn from a process at 
1-hour intervals, and the following data are obtained:

(a) Find trial control limits for and R charts.
(b) Assuming that the process is in control, estimate the

process mean and standard deviation.

8-3. The overall length of a skew used in a knee replacement
device is monitored using and R charts. The following table
gives the length for 20 samples of size 4. (Measurements are
coded from 2.00 mm; that is, 15 is 2.15 mm.)

X

X

a
20

i�1

xi � 378.50  a
20

i�1

ri � 7.80

Observation Observation

Sample 1 2 3 Sample 1 2 3

1 36 33 34 11 20 30 33

2 30 34 31 12 30 32 38

3 33 32 29 13 34 35 30

4 35 30 34 14 36 39 37

5 33 31 33 15 38 33 34

6 32 34 33 16 33 43 35

7 27 36 35 17 36 39 37

8 32 36 41 18 35 34 31

9 32 33 39 19 36 33 37

10 36 40 37 20 34 33 31

(a) Using all the data, find trial control limits for and R
charts, construct the chart, and plot the data.

(b) Use the trial control limits from part (a) to identify out-
of-control points. If necessary, revise your control limits,

X

Observation Observation

Sample 1 2 3 4 Sample 1 2 3 4

1 16 18 15 13 8 17 13 17 16

2 16 15 17 16 9 15 11 13 16

3 15 16 20 16 10 15 18 14 13

4 14 16 14 12 11 14 14 15 13

5 14 15 13 16 12 15 13 15 16

6 16 14 16 15 13 13 17 16 15

7 16 16 14 15 14 11 14 14 21
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(a) Using all the data, find trial control limits for and R
charts, construct the chart, and plot the data.

(b) Use the trial control limits from part (a) to identify out-
of-control points. If necessary, revise your control limits,
assuming that any samples that plot outside the control
limits can be eliminated.

8-4. Samples of size n � 6 are collected from a process
every hour. After 20 samples have been collected, we calculate

. Find trial control limits for and 
R charts.

8-5. Control charts for and R are to be set up for an impor-
tant quality characteristic. The sample size is n � 4, and and
r are computed for each of 25 preliminary samples. The sum-
mary data are

(a) Find trial control limits for and R charts.
(b) Assuming that the process is in control, estimate the

process mean and standard deviation.

8-6. The thickness of a metal part is an important quality 
parameter. Data on thickness (in inches) are given here, for 
25 samples of five parts each.

X

a
25

i�1

xi � 7657  a
25

i�1

ri � 1180

x
X

Xx � 20.0 and r	d2 � 1.4

X

Observation Observation

Sample 1 2 3 4 Sample 1 2 3 4

15 14 15 14 13 18 16 14 13 19
16 18 15 16 14 19 17 19 17 13
17 14 16 19 16 20 12 15 12 17

Sample
Number x1 x2 x3 x4 x5

1 0.0629 0.0636 0.0640 0.0635 0.0640

2 0.0630 0.0631 0.0622 0.0625 0.0627

3 0.0628 0.0631 0.0633 0.0633 0.0630

4 0.0634 0.0630 0.0631 0.0632 0.0633

5 0.0619 0.0628 0.0630 0.0619 0.0625

6 0.0613 0.0629 0.0634 0.0625 0.0628

7 0.0630 0.0639 0.0625 0.0629 0.0627

8 0.0628 0.0627 0.0622 0.0625 0.0627

9 0.0623 0.0626 0.0633 0.0630 0.0624

10 0.0631 0.0631 0.0633 0.0631 0.0630

11 0.0635 0.0630 0.0638 0.0635 0.0633

12 0.0623 0.0630 0.0630 0.0627 0.0629

13 0.0635 0.0631 0.0630 0.0630 0.0630

14 0.0645 0.0640 0.0631 0.0640 0.0642

15 0.0619 0.0644 0.0632 0.0622 0.0635

Sample
Number x1 x2 x3 x4 x5

16 0.0631 0.0627 0.0630 0.0628 0.0629

17 0.0616 0.0623 0.0631 0.0620 0.0625

18 0.0630 0.0630 0.0626 0.0629 0.0628

19 0.0636 0.0631 0.0629 0.0635 0.0634

20 0.0640 0.0635 0.0629 0.0635 0.0634

21 0.0628 0.0625 0.0616 0.0620 0.0623

22 0.0615 0.0625 0.0619 0.0619 0.0622

23 0.0630 0.0632 0.0630 0.0631 0.0630

24 0.0635 0.0629 0.0635 0.0631 0.0633

25 0.0623 0.0629 0.0630 0.0626 0.0628

(a) Using all the data, find trial control limits for and 
R charts, construct the chart, and plot the data. Is the
process in statistical control?

(b) Use the trial control limits from part (a) to identify out-of-
control points. List the sample numbers of the out-of-control
points. Continue eliminating points and revising control lim-
its until the charts are based only on in-control observations.

8-7. The copper content of a plating bath is measured three
times per day, and the results are reported in ppm. The values
for 25 days are shown in the table that follows.

X

Observation Observation

Sample 1 2 3 Sample 1 2 3

1 5.10 6.10 5.50 14 7.59 7.93 6.90

2 5.70 5.59 5.29 15 6.72 6.79 5.23

3 6.31 5.00 6.07 16 6.30 5.37 7.08

4 6.83 8.10 7.96 17 6.33 6.33 5.80

5 5.42 5.29 6.71 18 6.91 6.05 6.03

6 7.03 7.29 7.54 19 8.05 6.52 8.51

7 6.57 5.89 7.08 20 6.39 5.07 6.86

8 5.96 7.52 7.29 21 5.63 6.42 5.39

9 8.15 6.69 6.06 22 6.51 6.90 7.40

10 6.11 5.14 6.68 23 6.91 6.87 6.83

11 6.49 5.68 5.51 24 6.28 6.09 6.71

12 5.12 4.26 4.49 25 5.07 7.17 6.11

13 5.59 5.21 4.94

(a) Using all the data, find trial control limits for and R
charts, construct the chart, and plot the data. Is the process
in statistical control?

(b) If necessary, revise the control limits computed in part (a),
assuming any samples that plot outside the control limits
can be eliminated. Continue to eliminate points outside
the control limits and revise, until all points plot between
control limits.

X
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8-8. Apply the Western Electric rules to the following control
chart. The warning limits are shown as dotted lines. Describe any
rule violations.

X

(a) Use all the data to determine trial control limits for and
R charts, construct the chart, and plot the data.

(b) Use the trail control limits from part (a) to identify out-of-
control points. If necessary, revise your control limits, 
assuming that any samples that plot outside the control
limits can be eliminated.

8-11. Consider the data in Exercise 8-3. Calculate the sample
standard deviation of all 80 measurements and compare this 
result to the estimate of � obtained from your revised and 
R charts. Explain any differences.

X

X

8-4 CONTROL CHARTS FOR INDIVIDUAL MEASUREMENTS

In many situations, the sample size used for process control is n � 1; that is, the sample con-
sists of an individual unit. Some examples of these situations are as follows.

● Automated inspection and measurement technology is used, and every unit manufac-
tured is analyzed.

● The production rate is very slow, and it is inconvenient to allow sample sizes of n � 1
to accumulate before being analyzed.

● Repeat measurements on the process differ only because of laboratory or analysis 
error, as in many chemical processes.

Sample x1 x2 x3 x4

1 163.95 164.54 163.87 165.10

2 163.30 162.85 163.18 165.10

3 163.13 165.14 162.80 163.81

Sample x1 x2 x3 x4

4 164.08 163.43 164.03 163.77

5 165.44 163.63 163.95 164.78

6 163.83 164.14 165.22 164.91

7 162.94 163.64 162.30 163.78

8 164.97 163.68 164.73 162.32

9 165.04 164.06 164.40 163.69

10 164.74 163.74 165.10 164.32

11 164.72 165.75 163.07 163.84

12 164.25 162.72 163.25 164.14

13 164.71 162.63 165.07 162.59

14 166.61 167.07 167.41 166.10

15 165.23 163.40 164.94 163.74

16 164.27 163.42 164.73 164.88

17 163.59 164.84 164.45 164.12

18 164.90 164.20 164.32 162.98

19 163.98 163.53 163.34 163.82

20 164.08 164.33 162.38 164.08

21 165.71 162.63 164.42 165.27

22 164.03 163.36 164.55 165.77

23 160.52 161.68 161.18 161.33

24 164.22 164.27 161.35 165.12

25 163.93 163.96 165.05 164.52

Observation

2 4 6 8 10 12 14 16 18 20

UCL = 16

LCL = 4

14

12

8

6

x = 10

8-9. An control chart with three-sigma control limits 
and subgroup size n � 4 has control limits UCL = 48.75 and
LCL = 40.55.

(a) Estimate the process standard deviation.
(b) Does the answer to part (a) depend on whether or was

used to construct the control chart?

8-10. Web traffic can be measured to help highlight security
problems or indicate a potential lack of bandwidth. Data on
Web traffic (in thousand hits) from http://en.wikipedia.org/
wiki/Web_traffic are given in the following table for 25 samples
each of size four.

X
sr

X
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● In process plants, such as papermaking, measurements on some parameters such as
coating thickness across the roll will differ very little and produce a standard deviation
that is much too small if the objective is to control coating thickness along the roll.

In such situations, the control chart for individuals is useful. The control chart for indi-
viduals uses a moving range of two successive observations to estimate the process variability.
A moving range is defined as . It is also possible to establish a control chart
on the moving ranges. The parameters for these charts are defined as follows.

mri � 0xi � xi�1|

Control Chart for Individuals

The center line and upper and lower control limits for a control chart for individuals are

(8-9)

and for a control chart for moving ranges

The factors d2, D3 and D4 are given in Appendix A Table VII.

LCL � D3 mr
CL � mr

UCL � D4 mr

LCL � x � 3 
mr

d2

CL � x

UCL � x � 3 
mr

d2

In equation 8-9 /d2 provides an estimate of � and three times this estimate is added and
subtracted from the center line (because the subgroups size is ). Each moving range is
handled as a range so that the control limits for a moving range chart use the same formulas
used for a range chart. If the moving ranges are calculated between two consecutive observa-
tions (the usual case), then the d2, D3 and D4 factors are obtained from Appendix A Table VII
corresponding to a subgroup of size two (because each range is based on two observations).

n � 1x
mr

EXAMPLE 8-2 Table 8-3 shows 20 observations on concentration for the output of a chemical process. The observations
are taken at 1-hour intervals. If several observations are taken at the same time, the observed concentra-
tion reading will differ only because of measurement error. Because the measurement error is small, only
one observation is taken each hour. Construct a control chart.

Solution. To set up the control chart for individuals, note that the sample average of the 20 concentration
readings is and that the moving ranges of two observations are shown in the last column of
Table 8-3. The average of the 19 moving ranges is . To set up the moving-range chart, we 
note that D3 � 0 and D4 � 3.267 for n � 2. Therefore, the moving-range chart has center line

and � 8.46. The control chart is shown as the
lower control chart in Fig. 8-10. This control chart was constructed by Minitab. Because no points exceed
the upper control limit, we may now set up the control chart for individual concentration measurements.

UCL � D4mr � (3.267)(2.59)mr � 2.59, LCL � 0,

mr � 2.59
x � 99.1

Chemical Process
Concentration
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If a moving range of n � 2 observations is used, d2 � 1.128. For the data in Table 8-3 we have

The control chart for individual concentration measurements is shown as the upper control chart in
Fig. 8-10.
Practical interpretation: There is no indication of an out-of-control condition. One would use these
control limits to monitor future production. ■

LCL � x � 3 
mr

d2

� 99.1 � 3 
2.59

1.128
� 92.21

CL � x � 99.1

UCL � x � 3 
mr

d2

� 99.1 � 3 
2.59

1.128
� 105.99

0
92

95

98

101

104

107
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99.10

R =
2.59
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0.000

Figure 8-10 Control charts for individuals and the moving
range (from Minitab) for the chemical process concentration
data in Example 8-2.

Table 8-3 Chemical Process Concentration Measurements
in Example 8-2

Concentration Moving Range
Observation x mr

1 102.0
2 94.8 7.2
3 98.3 3.5
4 98.4 0.1
5 102.0 3.6
6 98.5 3.5
7 99.0 0.5
8 97.7 1.3
9 100.0 2.3

10 98.1 1.9
11 101.3 3.2
12 98.7 2.6
13 101.1 2.4
14 98.4 2.7
15 97.0 1.4
16 96.7 0.3
17 100.3 3.6
18 101.4 1.1
19 97.2 4.2
20 101.0 3.8

mr � 2.59x � 99.1

The chart for individuals can be interpreted much like an ordinary control chart. A shift
in the process average will result in either a point (or points) outside the control limits or a pattern
consisting of a run on one side of the center line.

Some care should be exercised in interpreting patterns on the moving-range chart. The
moving ranges are correlated, and this correlation may often induce a pattern of runs or cycles
on the chart. The individual measurements are assumed to be uncorrelated, however, and any
apparent pattern on the individuals’ control chart should be carefully investigated.

The control chart for individuals is very insensitive to small shifts in the process mean.
For example, if the size of the shift in the mean is one standard deviation, the average number

X
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of points to detect this shift is 43.9. This result is shown later in the chapter. Although the per-
formance of the control chart for individuals is much better for large shifts, in many situations
the shift of interest is not large and more rapid shift detection is desirable. In these cases, we
recommend a time-weighted chart such as a cumulative sum control chart or an exponentially
weighted moving-average chart (Montgomery and Runger, 2011). These charts are referred to
as time weighted because the history of the data over time is used to assess control (rather than
only the current point).

Some individuals have suggested that limits narrower than three sigma be used on the
chart for individuals to enhance its ability to detect small process shifts. This is a dangerous
suggestion because narrower limits dramatically increase false alarms such that the charts may
be ignored and become useless. If you are interested in detecting small shifts, use one of the
time-weighted charts referred to previously.

EXERCISES FOR SECTION 8-4

8-12. Twenty successive hardness measurements are made
on a metal alloy, and the data are shown in the following table.

Wafer x Wafer x

6 17.4 21 15.2

7 15.9 22 16.7

8 14.4 23 15.2

9 15.0 24 14.7

10 15.7 25 17.9

11 17.1 26 14.8

12 15.9 27 17.0

13 16.4 28 16.2

14 15.8 29 15.6

15 15.4 30 16.3

(a) Using all the data, compute trial control limits for individ-
ual observations and moving-range charts. Construct the
chart and plot the data. Determine whether the process is
in statistical control. If not, assume assignable causes can
be found to eliminate these samples and revise the control
limits.

(b) Estimate the process mean and standard deviation for the
in-control process.

8-14. The diameter of individual holes is measured in consec-
utive order by an automatic sensor. The results of measuring 
25 holes are as follows.

Sample Diameter Sample Diameter

1 14.06 14 20.68

2 23.70 15 16.33

3 15.10 16 16.29

4 22.46 17 9.59

5 35.26 18 15.83

6 22.74 19 15.65

7 20.14 20 19.80

8 11.62 21 21.64

Observation Hardness Observation Hardness

1 54 11 49

2 52 12 53

3 54 13 55

4 52 14 54

5 51 15 56

6 55 16 52

7 54 17 55

8 62 18 51

9 49 19 55

10 54 20 52

(a) Using all the data, compute trial control limits for individ-
ual observations and moving-range n � 2 charts. Construct
the chart and plot the data. Determine whether the process
is in statistical control. If not, assume that assignable
causes can be found to eliminate these samples and revise
the control limits.

(b) Estimate the process mean and standard deviation for the
in-control process.

8-13. In a semiconductor manufacturing process CVD
metal thickness was measured on 30 wafers obtained over 
approximately 2 weeks. Data are shown in the following table.

Wafer x Wafer x

1 16.8 16 15.4

2 14.9 17 14.3

3 18.3 18 16.1

4 16.5 19 15.8

5 17.1 20 15.9
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460 CHAPTER 8 STATISTICAL PROCESS CONTROL

(a) Using all the data, compute trial control limits for individ-
ual observations and moving-range charts. Construct the
chart and plot the data. Determine whether the process is
in statistical control. If not, assume assignable causes can
be found to eliminate these samples and revise the control
limits.

(b) Estimate the process mean and standard deviation for the
in-control process.

8-17. Pulsed laser deposition technique is a thin film deposi-
tion technique with a high-powered laser beam. Twenty-five
films were deposited through this technique. The thicknesses
of the films obtained are shown in the following table.

Sample Viscosity Sample Viscosity

1 378 11 462

2 438 12 502

3 487 13 449

4 515 14 470

5 485 15 501

6 474 16 470

7 486 17 512

8 548 18 530

9 502 19 462

10 440 20 491

(a) Using all the data, compute trial control limits for individual
observations and moving-range n � 2 charts. Determine
whether the process is in statistical control. If not, assume
that assignable causes can be found to eliminate these sam-
ples and revise the control limits.

(b) Estimate the process mean and standard deviation for the
in-control process.

8-16. The following table of data was analyzed in Quality
Engineering [1991–1992, Vol. 4(1)]. The average particle size
of raw material was obtained from 25 successive samples.

Observation Size Observation Size

1 96.1 5 95.0

2 94.4 6 120.3

3 116.2 7 104.8

4 98.8 8 88.4

Observation Size Observation Size

9 106.8 18 72.4

10 96.8 19 87.4

11 100.9 20 96.1

12 117.7 21 97.1

13 115.6 22 95.7

14 100.5 23 94.2

15 103.1 24 102.4

16 93.1 25 131.9

17 93.7

Film Thickness (in nm) Film Thickness (in nm)

1 28 14 40

2 45 15 46

3 34 16 59

4 29 17 20

5 37 18 33

6 52 19 56

7 29 20 49

8 51 21 21

9 23 22 62

10 35 23 34

11 47 24 31

12 50 25 98

13 32

(a) Using all the data, compute trial control limits for individ-
ual observations and moving-range charts. Determine
whether the process is in statistical control. If not, assume
assignable causes can be found to eliminate these samples
and revise the control limits.

(b) Estimate the process mean and standard deviation for the
in-control process.

Sample Diameter Sample Diameter

9 10.21 22 28.38

10 8.29 23 21.58

11 16.49 24 8.38

12 15.34 25 17.00

13 14.08

(a) Using all the data, compute trial control limits for individ-
ual observations and moving-range n � 2 charts. Construct
the control chart and plot the data. Determine whether the
process is in statistical control. If not, assume that assign-
able causes can be found to eliminate these samples and
revise the control limits.

(b) Estimate the process mean and standard deviation for the
in-control process.

8-15. The viscosity of a chemical intermediate is measured
every hour. Twenty samples consisting of a single observation
are as follows.
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8-5 PROCESS CAPABILITY

It is usually necessary to obtain some information about the capability of the process—that is,
the performance of the process when it is operating in control. Two graphical tools, the 
tolerance chart (or tier chart) and the histogram, are helpful in assessing process capability.

The tolerance chart for all 20 samples from the vane-manufacturing process is shown in
Fig. 8-11. The specifications on vane opening are 0.5030 
 0.0010 in. In terms of the coded
data, the upper specification limit is USL � 40 and the lower specification limit is LSL � 20,
and these limits are shown on the chart in Fig. 8-11. Each measurement is plotted on the 
tolerance chart. Measurements from the same subgroup are connected with lines. The toler-
ance chart is useful in revealing patterns over time in the individual measurements, or it may
show that a particular value of or r was produced by one or two unusual observations in the
sample. For example, note the two unusual observations in sample 9 and the single unusual
observation in sample 8. Note also that it is appropriate to plot the specification limits on the
tolerance chart because it is a chart of individual measurements. It is never appropriate to
plot specification limits on a control chart or to use the specifications in determining the
control limits. Specification limits and control limits are unrelated. Finally, note from Fig. 8-11
that the process is running off-center from the nominal dimension of 30 (or 0.5030 inch).

The histogram for the vane-opening measurements is shown in Fig. 8-12. The observa-
tions from samples 6, 8, 9, 11, and 19 (corresponding to out-of-control points on either the 
or R chart) have been deleted from this histogram. The general impression from examining
this histogram is that the process is capable of meeting the specification but that it is running
off-center.

Another way to express process capability is in terms of an index that is defined as follows.

X

x
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Figure 8-11 Tolerance diagram of vane openings.

The process capability ratio is

(8-10)Cp �
USL � LSL

6�

Cp

The numerator of Cp is the width of the specifications. The three-sigma limits on either side of
the process mean are sometimes called natural tolerance limits because these represent lim-
its that an in-control process should meet with most of the units produced. Consequently, six
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sigma is often referred to as the width of the process. For the vane opening, where our sample
size is 5, we could estimate � as

Therefore, Cp is estimated to be

The process capability ratio (Cp) has a natural interpretation: (1�Cp) 100 is simply the per-
centage of the specifications’ width used by the process. Thus, the vane-opening process uses
approximately (1�1.55)100 � 64.5% of the specifications’ width.

Figure 8-13a shows a process for which Cp exceeds unity. Because the process natural tol-
erance limits lie inside the specifications, very few defective or nonconforming units will be
produced. If Cp � 1, as shown in Fig. 8-13b, more nonconforming units result. In fact, for a
normally distributed process, if 1, the fraction nonconforming is 0.27%, or 2700 parts
per million. Finally, when the Cp is less than unity, as in Fig. 8-13c, the process is very yield
sensitive and a large number of nonconforming units will be produced.

The definition of the Cp given in equation 8-10 implicitly assumes that the process is cen-
tered at the nominal dimension. If the process is running off-center, the number of noncon-
forming units will typically be greater than indicated by the Cp. It is convenient to think of Cp

as a measure of potential capability—that is, capability with a centered process. If the
process is not centered, then a measure of actual capability is often used. This ratio, called
Cpk, is defined next.

Cp �

Ĉp �
USL � LSL

6�̂
�

40 � 20

6(2.15)
� 1.55

�̂ �
r

d2

�
5.0

2.326
� 2.15

5
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Figure 8-12 Histogram for vane opening.
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Figure 8-13 Process fallout and the process capability ratio ( ).Cp
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In effect, Cpk is a one-sided process capability ratio that is calculated relative to the specifica-
tion limit nearest to the process mean. For the vane-opening process, the estimate of the
process capability ratio Cpk is

Note that if Cp = Cpk the process is centered at the nominal dimension. Because
for the vane-opening process and = 1.55, the process is obviously running off-

center, as was first noted in Figs. 8-11 and 8-12. This off-center operation was ultimately
traced to an oversized wax tool. Changing the tooling resulted in a substantial improvement in
the process.

The fractions of nonconforming output (or fallout) below the lower specification limit and
above the upper specification limit are often of interest. Suppose that the measurement from a nor-
mally distributed process in statistical control is denoted as X. The fractions are determined from

 P(X 7 USL) � P(Z 7 (USL � �)	�)

 P(X 6 LSL) � P(Z 6 (LSL � �)	�)

ĈpĈpk � 1.05

 � min c 40 � 3321

3(2.15)
� 1.05,   

3321 � 20

3(2.15)
� 2.05 d � 1.05

 Ĉ pk � min c  USL � x

3�̂
, 

x � LSL

3�̂
d

The process capability ratio is

(8-11)Cpk � min cUSL � �

3�
, 

� � LSL

3�
d

Cpk

Electrical
Current

EXAMPLE 8-3 For an electronic manufacturing process, a current has specifications of 100 
 10 milliamperes. The
process mean � and standard deviation � are 107.0 and 1.5, respectively. Estimate Cp, Cpk, and the prob-
ability of not meeting specification.

Solution.

The small Cpk indicates that the process is likely to produce currents outside of the specification limits.
From the normal distribution in Appendix A Table I,

Practical interpretation: For this example, the relatively large probability of exceeding the USL is a
warning of potential problems with this criterion even if none of the measured observations in a prelim-
inary sample exceeds this limit. ■

P(X 7 USL) � P(Z 7 (110 � 107)	1.5) � P(Z 7 2) � 0.023

P(X 6 LSL) � P(Z 6 (90 � 107)	1.5) � P(Z 6 �11.33) � 0

Ĉp � (110 � 90)	(6 � 1.5) � 2.22  and  Ĉpk � (110 � 107)	(3 � 1.5) � 0.67

We emphasize that the fraction-nonconforming calculation assumes that the observations
are normally distributed and the process is in control. Departures from normality can seriously
affect the results. The calculation should be interpreted as an approximate guideline for process
performance. To make matters worse, � and � need to be estimated from the data available, and
a small sample size can result in poor estimates that further degrade the calculation.
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Montgomery (2009b) provides guidelines on appropriate values of the Cp and a table 
relating fallout for a normally distributed process in statistical control to the value of Cp. Many
U.S. companies use Cp = 1.33 as an acceptable minimum target and Cp = 1.66 as a minimum
target for strength, safety, or critical characteristics.

Some companies require that internal processes and those at suppliers achieve a Cpk = 2.0.
Figure 8-14 illustrates a process with Cp = Cpk = 2.0. Assuming a normal distribution, the cal-
culated fallout for this process is 0.0018 parts per million. A process with Cpk = 2.0 is referred
to as a six-sigma process because the distance from the process mean to the nearest specifica-
tion is six standard deviations. The reason that such a large process capability is often required
is that it is difficult to maintain a process mean at the center of the specifications for long 
periods of time. A common model that is used to justify the importance of a six-sigma process
is illustrated in Fig. 8-14. If the process mean shifts off-center by 1.5 standard deviations, the
Cpk decreases to 4.5��3� � 1.5. Assuming a normally distributed process, the fallout of the
shifted process is 3.4 parts per million. Consequently, the mean of a six-sigma process can
shift 1.5 standard deviations from the center of the specifications and still maintain a fallout of
3.4 parts per million.

We repeat that process capability calculations are meaningful only for stable processes; that
is, processes that are in control. A process capability ratio indicates whether or not the natural or
chance variability in a process is acceptable relative to the specifications.

USLLSL μ

3σ3σ

1.5σ

Cpk = 1.5Cpk = 2

Figure 8-14 Mean of a six-sigma process shifts by 1.5 standard deviations.

EXERCISES FOR SECTION 8-5

8-18. Six standard deviations of a normally distributed
process use 66.7% of the specification band. It is centered at
the nominal dimension, located halfway between the upper
and lower specification limits.

(a) Estimate Cp and Cpk. Interpret these ratios.
(b) What fallout level (fraction defective) is produced?

8-19. Reconsider Exercise 8-1. Use the revised control lim-
its and process estimates.

(a) Estimate Cp and Cpk. Interpret these ratios.
(b) What percentage of defectives is being produced by this

process?

8-20. Reconsider Exercise 8-2, where the specification 
limits are 18.50 
 0.50.

(a) What conclusions can you draw about the ability of 
the process to operate within these limits? Estimate the
percentage of defective items that will be produced.

(b) Estimate Cp and Cpk. Interpret these ratios.

8-21. Reconsider Exercise 8-3. Using the process estimates,
what is the fallout level if the coded specifications are 
15 
 3 mm? Estimate Cp and interpret this ratio.

8-22. Six standard deviations of a normally distributed
process use 85% of the specification band. It is centered at the
nominal dimension, located halfway between the upper and
lower specification limits.

(a) Estimate Cp and Cpk . Interpret these ratios.
(b) What fallout level (fraction defective) is produced?
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8-6 ATTRIBUTE CONTROL CHARTS

8-6.1 P Chart (Control Chart for Proportions) and nP Chart

Often it is desirable to classify a product as either defective or nondefective on the basis of
comparison with a standard. This classification is usually done to achieve economy and sim-
plicity in the inspection operation. For example, the diameter of a ball bearing may be checked
by determining whether it passes through a gauge consisting of circular holes cut in a template.
This kind of measurement is much simpler than directly measuring the diameter with a device
such as a micrometer. Control charts for attributes are used in these situations. Attributes con-
trol charts often require a considerably larger sample size than do their measurements coun-
terparts. In this section, we will discuss the fraction-defective control chart, or P chart.
Sometimes the P chart is called the control chart for fraction nonconforming.

Suppose D is the number of defective units in a random sample of size n. We assume that
D is a binomial random variable with unknown parameter p. The fraction defective

of each sample is plotted on the chart. Furthermore, the variance of the statistic is

Therefore, a P chart for fraction defective could be constructed using p as the center line and
control limits at

(8-12)

However, the true process fraction defective is almost always unknown and must be estimated
using the data from preliminary samples.

Suppose that m preliminary samples each of size n are available, and let di be the number
of defectives in the ith sample.Then is the sample fraction defective in the ith sam-
ple. The average fraction defective is

(8-13)p �
1

ma
m

i�1

 p̂i �
1

mn
 a

m

i�1

 di

p̂i � di�n

LCL � p � 3
B

p(1 � p)

n

UCL � p � 3
B

p(1 � p)

n

�P
2
ˆ �

p(1 � p)

n

P̂

P̂ �
D

n

8-23. Reconsider Exercise 8-5. Suppose that the quality char-
acteristic is normally distributed with specification at 300 � 40.
What is the fallout level? Estimate Cp and Cpk and interpret
these ratios.

8-24. Reconsider Exercise 8-4. Assuming that both charts
exhibit statistical control and that the process specifications
are at 20 � 5, estimate Cp and Cpk and interpret these ratios.

8-25. Reconsider Exercise 8-7. Given that the specifications
are at 6.0 � 0.5, estimate Cp and Cpk for the in-control process
and interpret these ratios.

8-26. Reconsider Exercise 8-6. What are the natural toler-
ance limits of this process?

8-27. Reconsider Exercise 8-15. What are the natural toler-
ance limits of this process?
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466 CHAPTER 8 STATISTICAL PROCESS CONTROL

and may be used as an estimate of p in the center line and control limit calculations.p

P Chart

The center line and upper and lower control limits for the P chart are

(8-14)

where is the observed value of the average fraction defective.p

 LCL � p � 3
B

p(1 � p)

n

 CL � p

 UCL � p � 3
B

p(1 � p)

n

These control limits are based on the normal approximation to the binomial distribution.
When p is small, the normal approximation may not always be adequate. In such cases, we
may use control limits obtained directly from a table of binomial probabilities. If is small,
the lower control limit may be a negative number. If this should occur, it is customary to con-
sider zero as the lower control limit.

p

EXAMPLE 8-4 We have 20 preliminary samples, each of size 100; the number of defectives in each sample is shown in
Table 8-4. Construct a fraction-defective control chart for this ceramic substrate production line.

Solution. Assume that the samples are numbered in the sequence of production. Note that
therefore, the trial parameters for the control chart are

LCL � 0.40 � 3
B

(0.40)(0.60)

100
� 0.25

CL � 0.40

UCL � 0.40 � 3
B

(0.40)(0.60)

100
� 0.55

p � (800	2000) � 0.40;

Ceramic
Substrate
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Figure 8-15 P chart for a ceramic substrate in
Example 8-4.

Table 8-4 Number of Defectives in Samples of 100 Ceramic Substrates
in Example 8-4

Sample No. of Defectives Sample No. of Defectives

1 44 11 36
2 48 12 52
3 32 13 35
4 50 14 41
5 29 15 42
6 31 16 30
7 46 17 46
8 52 18 38
9 44 19 26

10 48 20 30
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The control chart displaying the fraction defective for each sample is shown in Fig. 8-15. All samples
are in control. If they were not, we would search for assignable causes of variation and revise the limits 
accordingly. This chart can be used for controlling future production.
Practical interpretation: Although this process exhibits statistical control, its defective rate 
is very poor. We should take appropriate steps to investigate the process to determine why such a large num-
ber of defective units are being produced. Defective units should be analyzed to determine the specific types
of defects present. Once the defect types are known, process changes should be investigated to determine
their impact on defect levels. Designed experiments may be useful in this regard. ■

( p � 0.40)
Interpret the Results

Computer software also produces an nP chart. This is simply a control chart of 
the number of defectives in a sample. The points, center line, and control limits for this chart
are multiples (times n) of the corresponding elements of a P chart. The use of an nP chart
avoids the fractions in a P chart.

nP̂ � D,

nP Chart

The center line and upper and lower control limits for the nP chart are

where is the observed value of the average fraction defective.p

LCL � np � 32np(1 � p)

CL � np

UCL � np � 32np(1 � p)

For the data in Example 8-4, the center line is and the upper and lower
control limits for the nP chart are and

The number of defectives in Table 8-4 would
be plotted on such a chart and the conclusions would be identical to those from the 
P chart.

8-6.2 U Chart (Control Chart for Average Number of 
Defects per Unit) and C Chart

It is sometimes necessary to monitor the number of defects in a unit of product rather than the
fraction defective. Suppose that in the production of cloth it is necessary to control the num-
ber of defects per yard or that in assembling an aircraft wing the number of missing rivets must
be controlled. In these situations, we may use the control chart for defects per unit, or the 
U chart. Many defects-per-unit situations can be modeled by the Poisson distribution.

If each sample consists of n units and there are C total defects in the sample,

is the average number of defects per unit. A U chart may be constructed for such data. Assume
that the number of defects per unit follows a Poisson distribution with mean � defects per unit.
Because C is the total number of defects in n units E (C) = n� and V(C ) = n�. Therefore, E(U) =

� and .V(U ) �
�

n

U �
C

n

100(0.4) � 31100(0.4)(0.6) � 25.30. LCL �
UCL � 100(0.4) � 31100(0.4)(0.6) � 54.70

np � 100(0.4) � 40
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If there are m samples, and the number of defects in these samples is c1, c2, . . . , cm, the
estimate of � is

(8-15)

Usually � is unknown and is the estimate of � that is used to set the control limits.u

u �
1

ma
m

i�1

 ui �
1

mn
 a

m

i�1

 ci

U Chart

The center line and upper and lower control limits on the U chart are

(8-16)

where is the average number of defects per unit.u

LCL � u � 3
B

u

n

CL � u

UCL � u � 3
B

u

n

These control limits are based on the normal approximation to the Poisson distribution.
When � is small, the normal approximation may not always be adequate. In such cases, we
may use control limits obtained directly from a table of Poisson probabilities. If is small, the
lower control limit may be a negative number. If this should occur, it is customary to consider
zero as the lower control limit.

u

EXAMPLE 8-5 Printed circuit boards are assembled by a combination of manual assembly and automation. A flow solder
machine is used to make the mechanical and electrical connections of the leaded components to the
board. The boards are run through the flow solder process almost continuously, and every hour five
boards are selected and inspected for process-control purposes. The number of defects in each sample of
five boards is noted. Results for 20 samples are shown in Table 8-5. Construct a U chart.

Printed Circuit
Boards

Table 8-5 Number of Defects in Samples of Five Printed Circuit Boards for Example 8-5

Number of Defects per Number of Defects per 
Sample Defects ci Unit ui Sample Defects ci Unit ui

1 6 1.2 11 9 1.8
2 4 0.8 12 15 3.0
3 8 1.6 13 8 1.6
4 10 2.0 14 10 2.0
5 9 1.8 15 8 1.6
6 12 2.4 16 2 0.4
7 16 3.2 17 7 1.4
8 2 0.4 18 1 0.2
9 3 0.6 19 7 1.4

10 10 2.0 20 13 2.6
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Solution. The center line for the U chart is

and the upper and lower control limits are

The control chart is plotted in Fig. 8-16. Because LCL is negative, it is set to zero.
Practical interpretation: From the control chart in Fig. 8-16, we see that the process is in control.
However, eight defects per group of five circuit boards is too many (about 8�5 � 1.6 defects/board), and
the process needs improvement. An investigation should be made of the specific types of defects found
on the printed circuit boards to suggest potential avenues for process improvement. ■

LCL � u � 3
B

u

n
� 1.6 � 3

B

1.6

5
� 0

UCL � u � 3
B

u

n
� 1.6 � 3

B

1.6

5
� 3.3

 u �
1

20a
20

i�1

 ui �
32

20
� 1.6

Interpret the Results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

UCL = 3.3

Sample number
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 u
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t,
 u
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4

0

u = 1.6

U chart

Figure 8-16 U chart of defects per unit on printed circuit boards.

Computer software also produces a C chart. This is simply a control chart of C, the total
number of defects in a sample. The use of a C chart avoids the fractions that can occur in a U chart.

C Chart

The center line and upper and lower control limits for the C chart are

(8-17)

where is the average number of defects in a sample.c

LCL � c � 32c

CL � c

UCL � c � 32c
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For the data in Example 8-5

and the upper and lower control limits for the C chart are and
which is set to zero. The number of defects in Table 8-5 would be plotted on

such a chart.
LCL � 8 � 3 18 � �0.5,

UCL � 8 � 318 � 16.5

c �
1

20
 a

20

i�1

 ci � a 1

20
b 160 � 8

EXERCISES FOR SECTION 8-6

8-28. Suppose the following number of defects has been
found in successive samples of size 100: 6, 7, 3, 9, 6, 9, 4, 14,
3, 5, 6, 9, 6, 10, 9, 2, 8, 4, 8, 10, 10, 8, 7, 7, 7, 6, 14, 18, 13, 6.

(a) Using all the data, compute trial control limits for a
fraction-defective control chart, construct the chart, and
plot the data.

(b) Determine whether the process is in statistical control. 
If not, assume that assignable causes can be found and out-
of-control points eliminated. Revise the control limits.

8-29. Using an injection molding process, a plastics com-
pany produces interchangeable cell phone covers. After mold-
ing, the covers are sent through an intricate painting process.
Quality control engineers inspect the covers and record the
paint blemishes. The number of blemishes found in 20 sam-
ples of 5 covers are as follows: 2, 1, 5, 5, 3, 3, 1, 3, 4, 5, 4, 4,
1, 5, 2, 2, 3, 1, 4, 4.

(a) Using all the data, compute trial control limits for a U con-
trol chart, construct the chart, and plot the data.

(b) Can we conclude that the process is in control using a U
chart? If not, assume that assignable causes can be found,
list points, and revise the control limits.

8-30. The following represent the number of defects per
1000 feet in rubber-covered wire: 1, 1, 3, 7, 8, 10, 5, 13, 0, 19,
24, 6, 9, 11, 15, 8, 3, 6, 7, 4, 9, 20, 11, 7, 18, 10, 6, 4, 0, 9, 7,
3, 1, 8, 12. Do the data come from a controlled process?

8-31. Consider the data in Exercise 8-29. Set up a C chart
for this process. Compare it to the U chart in Exercise 8-29.
Comment on your findings.

8-32. The following are the numbers of defective solder
joints found during successive samples of 500 solder joints.

8-7 CONTROL CHART PERFORMANCE

Specifying the control limits is one of the critical decisions that must be made in designing a
control chart. By moving the control limits farther from the center line, we decrease the risk
of a type I error—that is, the risk of a point falling beyond the control limits, indicating an out-
of-control condition when no assignable cause is present. However, widening the control lim-
its will also increase the risk of a type II error—that is, the risk of a point falling between the
control limits when the process is really out of control. If we move the control limits closer to
the center line, the opposite effect is obtained: The risk of type I error is increased, whereas the
risk of type II error is decreased.

The control limits on a Shewhart control chart are customarily located a distance of plus
or minus three standard deviations of the variable plotted on the chart from the center line; that
is, the constant k in equation 8-1 should be set equal to 3. These limits are called three-sigma
control limits.

A way to evaluate decisions regarding sample size and sampling frequency is through the
average run length (ARL) of the control chart. Essentially, the ARL is the average number of

No. of No. of No. of 
Day Defectives Day Defectives Day Defectives

1 106 8 36 15 101
2 116 9 69 16 64
3 164 10 74 17 51
4 89 11 42 18 74
5 99 12 37 19 71
6 40 13 25 20 43
7 112 14 88 21 80

(a) Using all the data, compute trial control limits for both a 
P chart and an nP chart, construct the charts, and plot the
data.

(b) Determine whether the process is in statistical control. If
not, assume that assignable causes can be found and out-
of-control points eliminated. Revise the control limits.
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8-7 CONTROL CHART PERFORMANCE 471

points that must be plotted before a point indicates an out-of-control condition. For any
Shewhart control chart, the ARL can be calculated from the mean of a geometric random vari-
able (Montgomery and Runger, 2011) as

(8-18)

where p is the probability that any point exceeds the control limits. Thus, for an chart with
three-sigma limits, p � 0.0027 is the probability that a single point falls outside the limits
when the process is in control, so

is the average run length of the chart when the process is in control. That is, even if the process
remains in control, an out-of-control signal will be generated every 370 points, on the average.

Consider the piston ring process discussed earlier, and suppose we are sampling every hour.
Thus, we will have a false alarm about every 370 hours on the average. Suppose that we are 
using a sample size of n � 5 and that when the process goes out of control the mean shifts to
74.0135 mm. Then the probability that falls between the control limits of Fig. 8-3 is equal to

Therefore, p in equation 8-18 is 0.50, and the out-of-control ARL is

That is, the control chart will require two samples to detect the process shift, on the average,
so 2 hours will elapse between the shift and its detection (again on the average). Suppose this
approach is unacceptable because production of piston rings with a mean diameter of 74.0135
mm results in excessive scrap costs and delays final engine assembly. How can we reduce the
time needed to detect the out-of-control condition? One method is to sample more frequently.
For example, if we sample every half hour, only 1 hour will elapse (on the average) between
the shift and its detection. The second possibility is to increase the sample size. For example,
if we use n � 10, the control limits in Fig. 8-3 narrow to 73.9905 and 74.0095. The probability
of falling between the control limits when the process mean is 74.0135 mm is approximately
0.1, so p � 0.9, and the out-of-control ARL is

Thus, the larger sample size would allow the shift to be detected about twice as quickly as the
old one. If it became important to detect the shift in the first hour after it occurred, two control
chart designs would work:

ARL �
1

p
�

1

0.9
� 1.11

X

ARL �
1

p
�

1

0.5
� 2

 � P [�6  Z  0] � 0.5

 � P c 73.9865 � 74.0135

0.0045
 Z 

74.0135 � 74.0135

0.0045
d

P [73.9865  X  74.0135 when � � 74.0135]

X

X

ARL �
1

p
�

1

0.0027
 � 370

X

ARL �
1

p

Design 1 Design 2

Sample size: n � 5 Sample size: n � 10
Sampling frequency: every half hour Sampling frequency: every hour

c08StatisticalProcessControl.qxd  10/20/10  3:23 PM  Page 471



472 CHAPTER 8 STATISTICAL PROCESS CONTROL

Table 8-6 provides average run lengths for an chart with three-sigma control limits. The
average run lengths are calculated for shifts in the process mean from 0 to 3.0� and for sample
sizes of n � 1 and n � 4 by using 1�p, where p is the probability that a point plots outside of
the control limits. Figure 8-17 illustrates a shift in the process mean of 2�.

X

μ μ σ+ 2

Figure 8-17 Process mean shift of two sigmas.

Table 8-6 Average Run Length (ARL) for an Chart with 
Three-Sigma Control Limits

Magnitude of ARL ARL
Process Shift n � 1 n � 4

0 370.4 370.4
0.5� 155.2 43.9
1.0� 43.9 6.3
1.5� 15.0 2.0
2.0� 6.3 1.2
3.0� 2.0 1.0

X

EXERCISES FOR SECTION 8-7

8-33. Consider the control chart in Fig. 8-3. Suppose that
the mean shifts to 74.010 mm.

(a) What is the probability that this shift will be detected on
the next sample?

(b) What is the ARL after the shift?

8-34. An chart uses samples of size 6. The center line is at
100, and the upper and lower three-sigma control limits are at
106 and 94, respectively.

(a) What is the process �?
(b) Suppose the process mean shifts to 105. Find the proba-

bility that this shift will be detected on the next sample.
(c) Find the ARL to detect the shift in part (b).

8-35. Consider an control chart with UCL �
39.34, LCL � 29.22, and n � 3. Suppose that the mean shifts
to 39.0.

(a) What is the probability that this shift will be detected on
the next sample?

(b) What is the ARL after the shift?

8-36. Consider an control chart with UCL �
19.209, LCL � 18.641, and n � 4. Suppose that the mean
shifts to 19.1.

(a) What is the probability that this shift will be detected on
the next sample?

(b) What is the ARL after the shift?

8-37. Consider an control chart with UCL �
17.98, LCL � 12.31, and n � 4. Suppose that the mean shifts
to 12.8.

r � 3.895, X

r � 0.39, X

�̂ � 2.922,X

X

X (a) What is the probability that this shift will be detected on
the next sample?

(b) What is the ARL after the shift?

8-38. Consider an control chart with UCL �
21.71, LCL � 18.29, and n � 6. Suppose that the mean shifts
to 18.5.

(a) What is the probability that this shift will be detected on
the next sample?

(b) What is the ARL after the shift?

8-39. Consider an control chart with UCL �
340.69, LCL � 271.87, and n � 4. Suppose that the mean
shifts to 310.

(a) What is the probability that this shift will be detected on
the next sample?

(b) What is the ARL after the shift?

8-40. Consider an control chart with UCL �
0.06331, LCL � 0.06266, and n � 5. Suppose that the mean
shifts to 0.0630.

(a) What is the probability that this shift will be detected on
the next sample?

(b) What is the ARL after the shift?

8-41. Consider an control chart with UCL �
7.385, LCL � 5.061, and n � 3. Suppose that the mean shifts
to 6.80.

(a) What is the probability that this shift will be detected on
the next sample?

(b) What is the ARL after the shift?

�̂ � 0.671,X

�̂ � 0.00024,X

r � 47.2,X

�̂ � 1.40, X
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8-8 MEASUREMENT SYSTEMS CAPABILITY

An important component of many engineering studies is the performance of the gauge or test
instrument used to produce measurements on the system of interest. In any problem involving
measurements, some of the observed variability will arise from the experimental units that are
being measured and some will be due to measurement error. Two types of error associated
with a gauge or measurement device are precision and accuracy. These two components of
measurement error are illustrated in Fig. 8-18. In this figure, the bull’s-eye of the target is con-
sidered to be the true value of the measured characteristic. Accuracy refers to the ability to
measure the true value of the characteristic correctly on average, and precision reflects the 
inherent variability in the measurements. In this section we describe some methods for evaluat-
ing the precision of a measurement device or system. Determining accuracy often requires the
use of a standard, for which the true value of the measured characteristic is known. Often the
accuracy feature of a measurement system or device can be modified by making adjustments
to the device or by using a properly constructed calibration curve. The regression methods of
Chapter 6 can be used to construct calibration curves.

Data from a measurement system study in the semiconductor industry are shown in 
Table 8-7. An electronic tool was used to measure the resistivity of 20 randomly selected silicon
wafers following a process step during which a layer was deposited on the wafer surface. The
technician who was responsible for the setup and operation of the measurement tool measured
each wafer twice. Each measurement on all 20 wafers was made in random order.

A very simple model can be used to describe the measurements in Table 8-7:

(8-19)

where �2
Total is the variance of the observed measurements, �2

Wafer is the component of the total
variance that is due to the wafers, and �2

Gauge is the component of the total variance due to the

�2
Total � �2

Wafer � �2
Gauge

Accuracy

High

High LowPrecision

Low

(a) (b)

(c) (d)

Figure 8-18 The concepts of accuracy and precision.
(a) The gauge is accurate and precise. (b) The gauge is 
accurate but not precise. (c) The gauge is not accurate but 
it is precise. (d ) The gauge is neither accurate nor precise.
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gauge or measurement tool. Figure 8-19 shows and R charts (from Minitab) for the data in
Table 8-7. The chart indicates that there are many out-of-control points because the control
chart is showing the discriminating capability of the measuring instrument—literally the ability
of the device to distinguish between different units of product. Notice that this is a somewhat
different interpretation for an control chart. The R chart directly reflects the magnitude of
measurement error because the range values are the difference between measurements made
on the same wafer using the same measurement tool. The R chart is in control, indicating that
the operator is not experiencing any difficulty making consistent measurements. Nor is there
any indication that measurement variability is increasing with time. Out-of-control points or
patterns on the R chart can indicate that the operator/measuring tool combination is experienc-
ing some difficulty in making consistent measurements.

We may also consider the measurement system study in Table 8-7 as a single-factor com-
pletely randomized experiment with parts as treatments. Recall from Section 5-8 that the

X

X
X

Table 8-7 Resistivity Measurements on 20 Silicon Wafers (ohms/cm2)

Wafer Meas. 1 Meas. 2 Wafer Meas. 1 Meas. 2

1 3712 3710 11 3711 3709
2 3680 3683 12 3712 3715
3 3697 3700 13 3728 3721
4 3671 3668 14 3694 3698
5 3692 3689 15 3704 3702
6 3688 3690 16 3686 3685
7 3691 3694 17 3705 3706
8 3696 3701 18 3678 3680
9 3705 3709 19 3723 3724

10 3678 3681 20 3672 3669
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Figure 8-19 and R charts for the resistivity measurements in Table 8-7.X
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analysis of variance (ANOVA) can be used to analyze data from this type of experiment. The
ANOVA model for the single-factor experiment is

(8-20)

where we have a � 20 wafers and n � 2 replicates. In the model of equation 8-20, �i is the treat-
ment effect; in this case, the effect of the ith part, and the random error component �ij represents
the variability of the measurement tool. Therefore, the variance of �ij is �2

Gauge. Because the
wafers used in the study were selected at random, the treatment effects �i are random variables
and the variance of these treatment effects is �2

Wafer. The Minitab ANOVA for the data in Table 8-7
is summarized in Table 8-8. Notice that the F-statistic for wafers is significant, implying that
there are differences in the parts used in the study.

Because the treatment effects in this experiment are random, we can use the ANOVA 
results to estimate �2

Gauge and �2
Wafer. It turns out that [see Montgomery (2009a) for details]

(8-21)

We can substitute the calculated values of the mean squares for their expected values in equa-
tion 8-21 and solve the resulting equations for the estimates of the two variance components,
�2

Gauge and �2
Wafer. This yields

with resulting solution

Notice that the variability of the measurement system, �2
Gauge, is considerably smaller than the

variability in the wafers. This is a desirable situation.
The ANOVA approach is a very useful way to evaluate measurement systems. It can be

extended to more complex types of experiments. Table 8-9 presents an expanded study of the
tool for measuring resistivity of silicon wafers. In the original study, the 20 wafers were meas-
ured on the first shift, and an operator from that shift was responsible for setup and operation of
the measurement tool. In the expanded study, the 20 wafers were measured on two additional
shifts, and operators from those shifts did the setup and ran the measurement tool.

 �̂2
Wafer �

514.80 � �̂2
Gauge

2
�

514.80 � 5.02

2
� 254.89

 �̂2
Gauge � 5.02

 5.02 � �̂2
Gauge

 514.80 � �̂2
Gauge � 2�̂2

Wafer

E(MSError) � �2
Gauge

E(MSWafer) � �2
Gauge � n�2

Wafer

Yij � � � �i � �ij e i � 1, 2, . . . , a

j � 1, 2, . . . , n

Table 8-8 One-Way ANOVA: Resistivity versus Wafers

Analysis of Variance
Source DF SS MS F P
Wafers 19 9781.28 514.80 102.45 0.000
Error 20 100.50 5.02
Total 39 9881.77 
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This new study is a two-factor factorial experiment, with parts and shifts as the two design 
factors. Both parts and shifts are considered as random factors. The ANOVA model for this 
experiment is

(8-22)

where �i is the wafer effect with variance component �2
Wafer, �j is the shift effect with variance

component �2
Shift, (��)ij is the interaction between wafers and shifts with variance component

�2
S�W, and �ijk is a term that reflects the observed variability when the measuring tool is applied

to the same part on the same shift. The variance component associated with �ijk is denoted
�2

Repeatability, and repeatability is a component of the total variability associated with the meas-
urement tool. The other component of measurement variability is called reproducibility, and
it reflects the variability associated with the shifts (which arise from the setup procedure for
the tool, drift in the tool over time, and different operators). The reproducibility variance com-
ponent is

Notice that the interaction variance component from the ANOVA model (equation 8-22) is 
included in the reproducibility variance, and it also contains some of the shift-to-shift variability.

�2
Reproducibility � �2

Shift � �2
S�W

Yijk � � � �i � �j � (��)ij � �ijk • j � 1, 2, 3
i �  1, 2, . . . , 20

k �  1, 2

Table 8-9 Resistivity Measurements on 20 Silicon Wafers (ohms/cm2),
Expanded Study

Shift 1 Shift 2 Shift 3

Wafer Meas. 1 Meas. 2 Meas. 1 Meas. 2 Meas. 1 Meas. 2

1 3712 3710 3710 3708 3713 3710
2 3680 3683 3775 3679 3681 3682
3 3697 3700 3692 3695 3697 3700
4 3671 3668 3666 3664 3671 3669
5 3692 3689 3691 3683 3694 3687
6 3688 3690 3683 3687 3687 3689
7 3691 3694 3685 3690 3692 3694
8 3696 3701 3688 3695 3695 3701
9 3705 3709 3697 3704 3704 3709

10 3678 3681 3677 3676 3679 3680
11 3711 3709 3700 3704 3710 3709
12 3712 3715 3702 3709 3712 3714
13 3728 3721 3722 3716 3729 3722
14 3694 3698 3689 3695 3694 3698
15 3704 3702 3696 3697 3704 3703
16 3686 3685 3681 3683 3687 3684
17 3705 3706 3699 3701 3704 3707
18 3678 3680 3676 3676 3677 3679
19 3723 3724 3721 3720 3723 3724
20 3672 3669 3666 3665 3672 3668
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8-8 MEASUREMENT SYSTEMS CAPABILITY 477

In this way, ANOVA is used to estimate the repeatability (R) and reproducibility (R) of a meas-
urement system, which is sometimes called a gauge R & R study.

The two-factor ANOVA procedure from Section 7-7 can be applied to the data in Table 8-9.
The Minitab output (from Balanced ANOVA) is shown in Table 8-10.

In the Minitab analysis, we have specified that both factors, wafers and shifts, are random
factors. Minitab has provided estimates of the variance components associated with the
ANOVA model in equation 8-22, �2

Shift (denoted 1 in Table 8-10), �2
Wafer (denoted 2 in the table),

�2
S�W (denoted 3 in the table), and �2

Repeatability (denoted 4 in the table). The estimates of the vari-
ance components were obtained by solving the equations derived from the expected mean
squares essentially as we did with the single-factor experiment. The Minitab output also con-
tains the expected mean squares using the 1, 2, 3, 4, notation for the variance components.

We can now estimate the two components of the gauge variability,

The results are �2
Repeatability � 83.650, and the two components of �2

Reproducibility are �2
Shift �

Notice that the estimate of one of the variance components is
negative. The ANOVA method of variance component estimation sometimes produces nega-
tive estimates of one or more variance components. This is usually taken as evidence that the
variance component is really zero. Furthermore, the F-tests on these two factors indicate that
they are not significant, so this is evidence that both of the variance components associated
with �2

Reproducibility are really zero. Therefore, the only significant component of overall gauge
variability is the component due to repeatability, and the operators are very consistent about
how the tool is set up and run over the different shifts.

�0.377 and �2
S�W � 1.394.

�2
Gauge � �2

Repeatability � �2
Reproducibility

Table 8-10 ANOVA: Resistivity versus Shift, Wafer

Factor Type Levels Values
Shift random 3 1 2 3
Wafer random 20 1 2 3 4 5 6 7

8 9 10 11 12 13 14
15 16 17 18 19 20

Analysis of Variance for Resistivity

Source DF SS MS F P
Shift 2 142.72 71.36 0.83 0.446
Wafer 19 27510.03 1447.90 16.75 0.000
Shift*Wafer 38 3284.62 86.44 1.03 0.447
Error 60 5019.00 83.65
Total 119 35956.37

Source Variance Error Expected Mean Square for Each Term
component term (using unrestricted model)

1 Shift �0.377 1 (4) � 2(3) � 40(1)
2 Wafer 226.910 2 (4) � 2(3) � 6(2)
3 Shift*Wafer 1.394 3 (4) � 2(3)
4 Error 83.650 4 (4)
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8-42. Consider the wafers measured in example data given
in Table 8-7 for two measurements on 20 different wafers.
Assume that a third measurement is recorded on these 20
wafers, respectively. The measurements are as follows: 3703,
3694, 3691, 3689, 3696, 3692, 3693, 3698, 3694, 3697,
3693, 3698, 3694, 3694, 3700, 3693, 3690, 3699, 3695,
3686.

(a) Perform an analysis of variance to determine if there is a
significant difference in the parts used in this study, based
on these three measurements.

(b) Find 
(c) What percentage of the total variability is due to the

gauge? Do we have a desirable situation with respect to
the variability of the gauge?

8-43. The process engineer is concerned with the device used
to measure purity level of a steel alloy. To assess the device vari-
ability he measures 10 specimens with the same instrument
twice. The resultant measurements follow:

Measurement 1 Measurement 2

2.0 2.3

2.1 2.4

2.0 2.2

2.2 2.2

1.6 2.4

2.0 2.2

1.9 2.0

2.1 1.6

1.9 2.6

2.0 2.0

(a) Perform an analysis of variance to determine if there is a
significant difference in the specimens used in this study,
based on these two measurements.

(b) Find 
(c) What percentage of the total variability is due to the

gauge? Do we have a desirable situation with respect to
the variability of the gauge?

8-44. An implantable defibrillator is a small unit that senses
erratic heart signals from a patient. If the signal does not nor-
malize within a few seconds, the unit charges itself to 650 V
and delivers a powerful shock to the patient’s heart, restoring
the normal beat. The quality control department of the manu-
facturer of these defibrillators is responsible for checking the
output voltage of these assembled devices. To check the vari-
ability of the voltmeters, the department performed a designed
experiment, measuring each of eight units twice. The data 
collected are as follows:

�̂2
Total, �̂

2
Gauge, and �̂2

Specimen.

�̂2
Total, �̂

2
Gauge, and �̂2

Wafer.

EXERCISES FOR SECTION 8-8

Measurement 1 Measurement 2

640.9 650.6

644.2 647.1

659.9 654.4

656.2 648.3

646.6 652.1

656.3 647.0

659.6 655.8

657.8 651.8

(a) Perform an analysis of variance to determine if there is a
significant difference in the units used in this study.

(b) Find 
(c) What percentage of the total variability is due to the volt-

meter? Comment on your results.

8-45. Consider the following Minitab ANOVA table used to
analyze multiple measurements on each of 10 parts.

Source DF SS MS F P
Part 9 143186 15910 27.72 0.000
Error 10 5740 574
Total 19 148925

(a) How many replicate measurements were made of these 10
parts?

(b) Estimate 
(c) What percentage of the total variability is due to the

gauge? Do we have a desirable situation with respect to
the variability of the gauge?

8-46. Consider the following Minitab ANOVA table used to
analyze the multiple measurements on each of 10 parts.

Source DF SS MS F P
Part 9 708642 78738 15.71 0.000
Error 20 100263 5013
Total 29 808905

(a) How many replicate measurements were made of these 10
parts?

(b) Estimate 
(c) What percentage of the total variability is due to the

gauge? Do we have a desirable situation with respect to
the variability of the gauge?

8-47. Asphalt compressive strength is measured in units of
psi. To test the repeatability and reproducibility of strength

�2
Total, �

2
Gauge, and �2

Part.

�2
Total, �

2
Gauge, and �2

Part.

�̂2
Total, �̂

2
Gauge, and �̂2

Unit.
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measurements, two engineers in charge of the quality system
make two measurements on six specimens. The data are as 
follows:

Operator 1 Operator 2

Meas. 1 Meas. 2 Meas. 1 Meas. 2

1501.22 1510.00 1505.66 1504.74

1498.06 1512.40 1504.64 1501.82

1506.44 1513.54 1499.84 1492.95

1496.35 1541.54 1502.19 1507.04

1502.03 1499.46 1503.08 1498.43

1499.90 1521.83 1515.57 1512.84

(a) Perform an ANOVA on these data.
(b) Find 
(c) Comment on the significance of the overall gauge capability.

8-48. A handheld caliper is used to measure the diameter of
fuse pins in an aircraft engine. A repeatability and repro-
ducibility study is carried out to determine the variability of
the gauge and the operators. Two operators measure five pis-
tons three times. The data are as follows (1-1 equals operator 1,
measurement 1; 1-2 equals operator 1, measurement 2, and so
forth):

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3

65.03 64.42 59.89 63.59 63.41 59.10 63.45 59.99 65.13

64.09 60.60 64.98 64.70 63.11 64.33 63.73 61.69 64.43

64.53 59.65 67.57 63.87 63.99 69.94 64.27 63.98 66.00

65.57 61.68 67.03 65.89 62.41 58.51 63.71 62.74 64.11

63.98 63.84 64.08 63.90 67.38 65.21 63.41 60.59 63.35

(a) Perform an ANOVA on these data.
(b) Find 
(c) Comment on the significance of the overall gauge capability.

8-49. Consider a gauge study in which two operators meas-
ure 15 parts six times. The result of their analysis is given in
the following Minitab output.

Factor Type Levels
Part random 15
Operator random 2

Factor Values
Part 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Operator 1, 2

�2
Reproducibility.�2

Repeatability and

�2
Reproducibility.�2

Repeatability and

Analysis of Variance for Response

Source DF SS MS F P
Part 14 2025337 144667 1.61 0.193
Operator 1 661715 661715 7.35 0.017
Part* Operator 14 1260346 90025 25.98 0.000
Error 150 519690 3465
Total 179 4467088

Expected Mean Square 
Variance Error for Each Term (using

Source component term unrestricted model)
1 Part 4554 3
2 Operator 6352 3
3 Part* Operator 14427 4
4 Error 3465 (4)

(a) Find and 
(b) Comment on the significance of the overall gauge capa-

bility.
8-50. Consider a gauge study in which two operators meas-
ure 15 parts five times. The result of their analysis is given in
the following Minitab output.

Factor Type Levels
Part random 15
Operator random 2

Factor Values
Part 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Operator 1, 2

Analysis of Variance for Response

Source DF SS MS F P
Part 14 2773567 198112 2.45 0.053
Operator 1 518930 518930 6.41 0.024
Part* Operator 14 1133722 80980 7.80 0.000
Error 120 1245396 10378
Total 149 5671615

Expected Mean Square 
Variance Error for Each Term (using

Source component term unrestricted model)
1 Part 11713 3
2 Operator 5839 3
3 Part* Operator 14120 4
4 Error 10378 (4)

(a) Find and 
(b) Comment on the significance of the overall gauge capability.

�2
Reproducibility.�2

Repeatablity

(4) � 5 (3)
(4) � 5 (3) � 75 (2)
(4) � 5 (3) � 10 (1)

�2
Reproducibility.�2

Repeatablity

(4) � 6 (3)
(4) � 6 (3) � 90 (2)
(4) � 6 (3) � 12 (1)

R-Sq(adj) � 86.12%R-Sq � 88.37%S � 58.8609
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8-51. The diameter of fuse pins used in an aircraft engine
application is an important quality characteristic. Twenty-five
samples of three pins each are as follows (in mm).

Sample
Number Diameter

1 64.030 64.002 64.019

2 63.995 63.992 64.001

3 63.988 64.024 64.021

4 64.002 63.996 63.993

5 63.992 64.007 64.015

6 64.009 63.994 63.997

7 63.995 64.006 63.994

8 63.985 64.003 63.993

9 64.008 63.995 64.009

10 63.998 74.000 63.990

11 63.994 63.998 63.994

12 64.004 64.000 64.007

13 63.983 64.002 63.998

14 64.006 63.967 63.994

15 64.012 64.014 63.998

16 64.000 63.984 64.005

17 63.994 64.012 63.986

18 64.006 64.010 64.018

19 63.984 64.002 64.003

20 64.000 64.010 64.013

21 63.988 64.001 64.009

22 64.004 63.999 63.990

23 64.010 63.989 63.990

24 64.015 64.008 63.993

25 63.982 63.984 63.995

(a) Set up and R charts for this process. If necessary, revise
limits so that no observations are out of control.

(b) Estimate the process mean and standard deviation.
(c) Suppose the process specifications are at 64 � 0.02.

Calculate an estimate of Cp. Does the process meet a 
minimum capability level of ?

(d) Calculate an estimate of . Use this ratio to draw conclu-
sions about process capability.

(e) To make this process a six-sigma process, the variance �2

would have to be decreased such that . What
should this new variance value be?

(f ) Suppose the mean shifts to 64.005. What is the probability
that this shift will be detected on the next sample? What is
the ARL after the shift?

Cpk � 2.0

Cpk

Cp � 1.33

X

SUPPLEMENTAL EXERCISES

8-52. Plastic bottles for liquid laundry detergent are formed
by blow molding. Twenty samples of n � 100 bottles are
inspected in time order of production, and the number defec-
tive in each sample is reported. The data are as follows: 9, 11,
10, 8, 3, 8, 8, 10, 3, 5, 9, 8, 8, 8, 6, 10, 17, 11, 9, 10.

(a) Set up a P chart for this process. Is the process in statisti-
cal control?

(b) Suppose that instead of n � 100, n � 200. Use the data
given to set up a P chart for this process. Is the process in
statistical control?

(c) Compare your control limits for the P charts in parts (a)
and (b). Explain why they differ. Also explain why your
assessment about statistical control differs for the two
sizes of n.

8-53. Cover cases for a personal computer are manufac-
tured by injection molding. Samples of five cases are taken
from the process periodically, and the number of defects is
noted. The results for 25 samples follow: 3, 2, 0, 1, 4, 3, 2, 4,
1, 0, 2, 3, 2, 8, 0, 2, 4, 3, 5, 0, 2, 1, 9, 3, 2.

(a) Using all the data, find trial control limits for the U chart
for this process.

(b) Use the trial control limits from part (a) to identify out-of-
control points. If necessary, revise your control limits.

(c) Suppose that instead of samples of 5 cases, the sample
size was 10. Repeat parts (a) and (b). Explain how this
change alters your answers to parts (a) and (b).

8-54. Consider the data in Exercise 8-53.

(a) Using all the data, find trial control limits for a C chart for
this process.

(b) Use the trial control limits of part (a) to identify out-of-
control points. If necessary, revise your control limits.

(c) Suppose that instead of samples of 5 cases, the sample
was 10 cases. Repeat parts (a) and (b). Explain how this
alters your answers to parts (a) and (b).

8-55. Suppose that a process is in control and an chart is
used with a sample size of 4 to monitor the process. Suddenly
there is a mean shift of 1.75.

(a) If three-sigma control limits are in use on the chart,
what is the probability that this shift will remain unde-
tected for three consecutive samples?

(b) If two-sigma control limits are in use on the chart, what
is the probability that this shift will remain undetected for
three consecutive samples?

(c) Compare your answers to parts (a) and (b) and explain
why they differ. Also, which limits would you recommend
using and why?

8-56. Consider the control chart for individuals with three-
sigma limits.

(a) Suppose that a shift in the process mean of magnitude 
� occurs. Verify that the ARL for detecting the shift is
ARL � 43.9.

X

X

X
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8-8 MEASUREMENT SYSTEMS CAPABILITY 481

(b) Find the ARL for detecting a shift of magnitude two sigma
in the process mean.

(c) Find the ARL for detecting a shift of magnitude three
sigma in the process mean.

(d) Compare your answers to parts (a), (b), and (c) and 
explain why the ARL for detection is decreasing as the
magnitude of the shift increases.

8-57. Consider a control chart for individuals, applied to a
continuous 24-hour chemical process with observations taken
every hour.

(a) If the chart has three-sigma limits, verify that the in-
control ARL is ARL � 370. How many false alarms would
occur each 30-day month, on the average, with this chart?

(b) Suppose that the chart has two-sigma limits. Does this 
reduce the ARL for detecting a shift in the mean of magni-
tude �? (Recall that the ARL for detecting this shift with
three-sigma limits is 43.9.)

(c) Find the in-control ARL if two-sigma limits are used on
the chart. How many false alarms would occur each
month with this chart? Is this in-control ARL performance
satisfactory? Explain your answer.

8-58. The depth of a keyway is an important part quality
characteristic. Samples of size n � 5 are taken every 4 hours
from the process and 20 samples are given as follows.

Observation

Sample 1 2 3 4 5

1 139.9 138.8 139.85 141.1 139.8

2 140.7 139.3 140.55 141.6 140.1

3 140.8 139.8 140.15 141.9 139.9

4 140.6 141.1 141.05 141.2 139.6

5 139.8 138.9 140.55 141.7 139.6

6 139.8 139.2 140.55 141.2 139.4

7 140.1 138.8 139.75 141.2 138.8

8 140.3 140.6 140.65 142.5 139.9

9 140.1 139.1 139.05 140.5 139.1

10 140.3 141.1 141.25 142.6 140.9

11 138.4 138.1 139.25 140.2 138.6

12 139.4 139.1 139.15 140.3 137.8

13 138.0 137.5 138.25 141.0 140.0

14 138.0 138.1 138.65 139.5 137.8

15 141.2 140.5 141.45 142.5 141.0

16 141.2 141.0 141.95 141.9 140.1

17 140.2 140.3 141.45 142.3 139.6

18 139.6 140.3 139.55 141.7 139.4

19 136.2 137.2 137.75 138.3 137.7

20 138.8 137.7 140.05 140.8 138.9

(a) Using all the data, find trial control limits for and R
charts. Is the process in control?

(b) Use the trial control limits from part (a) to identify out-of-
control points. If necessary, revise your control limits.
Then estimate the process standard deviation.

(c) Suppose that the specifications are at 140 � 2. Using the
results from part (b), what statements can you make about
process capability? Compute estimates of the appropriate
process capability ratios.

(d) To make this process a six-sigma process, the variance �2

would have to be decreased such that Cpk � 2.0. What
should this new variance value be?

(e) Suppose the mean shifts to 139.7. What is the probability
that this shift will be detected on the next sample? What is
the ARL after the shift?

8-59. A process is controlled by a P chart using samples of
size 100. The center line on the chart is 0.05.

(a) What is the probability that the control chart detects a
shift to 0.06 on the first sample following the shift?

(b) What is the probability that the control chart does not 
detect a shift to 0.06 on the first sample following the shift
but does detect it on the second sample?

(c) Suppose that instead of a shift in the mean to 0.06, the
mean shifts to 0.08. Repeat parts (a) and (b).

(d) Compare your answers for a shift to 0.06 and for a shift to
0.08. Explain why they differ. Also explain why a shift to
0.08 is easier to detect.

8-60. Suppose the average number of defects in a unit is
known to be 8. If the mean number of defects in a unit shifts to
16, what is the probability that it will be detected by the U
chart on the first sample following the shift

(a) if the sample size is n � 5?
(b) if the sample size is n � 8?

Use a normal approximation for U.

8-61. Suppose the average number of defects in a unit is
known to be 10. If the mean number of defects in a unit shifts
to 14, what is the probability that it will be detected by the U
chart on the first sample following the shift

(a) if the sample size is n � 3?
(b) if the sample size is n � 6?

Use a normal approximation for U.

8-62. Suppose that an control chart with two-sigma limits
is used to control a process. Find the probability that a false
out-of-control signal will be produced on the next sample.
Compare this with the corresponding probability for the chart
with three-sigma limits and discuss. Comment on when you
would prefer to use two-sigma limits instead of three-sigma
limits.

8-63. Consider an control chart with k-sigma control 
limits. Develop a general expression for the probability that a
point will plot outside the control limits when the process
mean has shifted by � units from the center line.

X

X

X
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8-64. Consider the control chart with two-sigma limits in
Exercise 8-62.

(a) Find the probability of no signal on the first sample but a
signal on the second.

(b) What is the probability that there will not be a signal in
three samples?

8-65. Suppose a process has a , but the mean is 
exactly three standard deviations above the upper specification
limit. What is the probability of making a product outside the
specification limits?

8-66 Consider the data on the number of sunspots by year in
Chapter 2.

(a) Construct a U chart for these data with a sample size of 
n = 1.

(b) Do the data appear to be generated by an in-control
process? Explain.

8-67 The following data are number of spelling errors 
detected for every 1000 words on a news Web site over 
20 weeks.

Cp � 2

X No. of No. of
Week Spelling Errors Week Spelling Errors

1 3 11 1
2 6 12 6
3 0 13 9
4 5 14 8
5 9 15 6
6 5 16 4
7 2 17 13
8 2 18 3
9 3 19 0

10 2 20 7

(a) What control chart is most approapriate for these data?
(b) Using all the data, compute trial control limits for the

chart in part (a), construct the chart, and plot the data.
(c) Determine whether the process is in statistical control. If

not, assume assignable causes can be found and out-of-
control points eliminated. Revise the control limits.

Assignable cause
Attributes control

charts
Average run length
C chart
Chance cause
Control chart for indi-

viduals
Control limits
Fraction defective

Gauge R & R study
Measurement systems

capability
Moving-range control

chart
nP chart
P chart
Patterns on control

charts
Process capability

Process capability 
ratio Cp

Process capability 
ratio Cpk

R control chart
Rational subgroups
Repeatability
Reproducibility
Shewhart control 

charts

SPC
Three-sigma control

limits
U chart
Variables control 

charts
Western Electric 

rules
control chartX

IMPORTANT TERMS AND CONCEPTS

TEAM EXERCISE

8-68. Obtain time-ordered data from a process of 
interest. Use the data to construct appropriate control
charts and comment on the control of the process. Can

you make any recommendations to improve the process?
If appropriate, calculate appropriate measures of process
capability.
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486 APPENDIX A STATISTICAL TABLES AND CHARTS

Table I Cumulative Standard Normal Distribution

z �0.09 �0.08 �0.07 �0.06 �0.05 �0.04 �0.03 �0.02 �0.01 �0.00 z

�3.9 0.000033 0.000034 0.000036 0.000037 0.000039 0.000041 0.000042 0.000044 0.000046 0.000048 �3.9
�3.8 0.000050 0.000052 0.000054 0.000057 0.000059 0.000062 0.000064 0.000067 0.000069 0.000072 �3.8
�3.7 0.000075 0.000078 0.000082 0.000085 0.000088 0.000092 0.000096 0.000100 0.000104 0.000108 �3.7
�3.6 0.000112 0.000117 0.000121 0.000126 0.000131 0.000136 0.000142 0.000147 0.000153 0.000159 �3.6
�3.5 0.000165 0.000172 0.000179 0.000185 0.000193 0.000200 0.000208 0.000216 0.000224 0.000233 �3.5
�3.4 0.000242 0.000251 0.000260 0.000270 0.000280 0.000291 0.000302 0.000313 0.000325 0.000337 �3.4
�3.3 0.000350 0.000362 0.000376 0.000390 0.000404 0.000419 0.000434 0.000450 0.000467 0.000483 �3.3
�3.2 0.000501 0.000519 0.000538 0.000557 0.000577 0.000598 0.000619 0.000641 0.000664 0.000687 �3.2
�3.1 0.000711 0.000736 0.000762 0.000789 0.000816 0.000845 0.000874 0.000904 0.000935 0.000968 �3.1
�3.0 0.001001 0.001035 0.001070 0.001107 0.001144 0.001183 0.001223 0.001264 0.001306 0.001350 �3.0
�2.9 0.001395 0.001441 0.001489 0.001538 0.001589 0.001641 0.001695 0.001750 0.001807 0.001866 �2.9
�2.8 0.001926 0.001988 0.002052 0.002118 0.002186 0.002256 0.002327 0.002401 0.002477 0.002555 �2.8
�2.7 0.002635 0.002718 0.002803 0.002890 0.002980 0.003072 0.003167 0.003264 0.003364 0.003467 �2.7
�2.6 0.003573 0.003681 0.003793 0.003907 0.004025 0.004145 0.004269 0.004396 0.004527 0.004661 �2.6
�2.5 0.004799 0.004940 0.005085 0.005234 0.005386 0.005543 0.005703 0.005868 0.006037 0.006210 �2.5
�2.4 0.006387 0.006569 0.006756 0.006947 0.007143 0.007344 0.007549 0.007760 0.007976 0.008198 �2.4
�2.3 0.008424 0.008656 0.008894 0.009137 0.009387 0.009642 0.009903 0.010170 0.010444 0.010724 �2.3
�2.2 0.011011 0.011304 0.011604 0.011911 0.012224 0.012545 0.012874 0.013209 0.013553 0.013903 �2.2
�2.1 0.014262 0.014629 0.015003 0.015386 0.015778 0.016177 0.016586 0.017003 0.017429 0.017864 �2.1
�2.0 0.018309 0.018763 0.019226 0.019699 0.020182 0.020675 0.021178 0.021692 0.022216 0.022750 �2.0
�1.9 0.023295 0.023852 0.024419 0.024998 0.025588 0.026190 0.026803 0.027429 0.028067 0.028717 �1.9
�1.8 0.029379 0.030054 0.030742 0.031443 0.032157 0.032884 0.033625 0.034379 0.035148 0.035930 �1.8
�1.7 0.036727 0.037538 0.038364 0.039204 0.040059 0.040929 0.041815 0.042716 0.043633 0.044565 �1.7
�1.6 0.045514 0.046479 0.047460 0.048457 0.049471 0.050503 0.051551 0.052616 0.053699 0.054799 �1.6
�1.5 0.055917 0.057053 0.058208 0.059380 0.060571 0.061780 0.063008 0.064256 0.065522 0.066807 �1.5
�1.4 0.068112 0.069437 0.070781 0.072145 0.073529 0.074934 0.076359 0.077804 0.079270 0.080757 �1.4
�1.3 0.082264 0.083793 0.085343 0.086915 0.088508 0.090123 0.091759 0.093418 0.095098 0.096801 �1.3
�1.2 0.098525 0.100273 0.102042 0.103835 0.105650 0.107488 0.109349 0.111233 0.113140 0.115070 �1.2
�1.1 0.117023 0.119000 0.121001 0.123024 0.125072 0.127143 0.129238 0.131357 0.133500 0.135666 �1.1
�1.0 0.137857 0.140071 0.142310 0.144572 0.146859 0.149170 0.151505 0.153864 0.156248 0.158655 �1.0
�0.9 0.161087 0.163543 0.166023 0.168528 0.171056 0.173609 0.176185 0.178786 0.181411 0.184060 �0.9
�0.8 0.186733 0.189430 0.192150 0.194894 0.197662 0.200454 0.203269 0.206108 0.208970 0.211855 �0.8
�0.7 0.214764 0.217695 0.220650 0.223627 0.226627 0.229650 0.232695 0.235762 0.238852 0.241964 �0.7
�0.6 0.245097 0.248252 0.251429 0.254627 0.257846 0.261086 0.264347 0.267629 0.270931 0.274253 �0.6
�0.5 0.277595 0.280957 0.284339 0.287740 0.291160 0.294599 0.298056 0.301532 0.305026 0.308538 �0.5
�0.4 0.312067 0.315614 0.319178 0.322758 0.326355 0.329969 0.333598 0.337243 0.340903 0.344578 �0.4
�0.3 0.348268 0.351973 0.355691 0.359424 0.363169 0.366928 0.370700 0.374484 0.378281 0.382089 �0.3
�0.2 0.385908 0.389739 0.393580 0.397432 0.401294 0.405165 0.409046 0.412936 0.416834 0.420740 �0.2
�0.1 0.424655 0.428576 0.432505 0.436441 0.440382 0.444330 0.448283 0.452242 0.456205 0.460172 �0.1

0.0 0.464144 0.468119 0.472097 0.476078 0.480061 0.484047 0.488033 0.492022 0.496011 0.500000 0.0

£ (z) � P(Z � z) � �
z

��

1

12�
 e

�u2

2  
du

z0

Φ (z)
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APPENDIX A 487

Table I Cumulative Standard Normal Distribution (continued)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 z

0.0 0.500000 0.503989 0.507978 0.511967 0.515953 0.519939 0.523922 0.527903 0.531881 0.535856 0.0
0.1 0.539828 0.543795 0.547758 0.551717 0.555760 0.559618 0.563559 0.567495 0.571424 0.575345 0.1
0.2 0.579260 0.583166 0.587064 0.590954 0.594835 0.598706 0.602568 0.606420 0.610261 0.614092 0.2
0.3 0.617911 0.621719 0.625516 0.629300 0.633072 0.636831 0.640576 0.644309 0.648027 0.651732 0.3
0.4 0.655422 0.659097 0.662757 0.666402 0.670031 0.673645 0.677242 0.680822 0.684386 0.687933 0.4
0.5 0.691462 0.694974 0.698468 0.701944 0.705401 0.708840 0.712260 0.715661 0.719043 0.722405 0.5
0.6 0.725747 0.729069 0.732371 0.735653 0.738914 0.742154 0.745373 0.748571 0.751748 0.754903 0.6
0.7 0.758036 0.761148 0.764238 0.767305 0.770350 0.773373 0.776373 0.779350 0.782305 0.785236 0.7
0.8 0.788145 0.791030 0.793892 0.796731 0.799546 0.802338 0.805106 0.807850 0.810570 0.813267 0.8
0.9 0.815940 0.818589 0.821214 0.823815 0.826391 0.828944 0.831472 0.833977 0.836457 0.838913 0.9
1.0 0.841345 0.843752 0.846136 0.848495 0.850830 0.853141 0.855428 0.857690 0.859929 0.862143 1.0
1.1 0.864334 0.866500 0.868643 0.870762 0.872857 0.874928 0.876976 0.878999 0.881000 0.882977 1.1
1.2 0.884930 0.886860 0.888767 0.890651 0.892512 0.894350 0.896165 0.897958 0.899727 0.901475 1.2
1.3 0.903199 0.904902 0.906582 0.908241 0.909877 0.911492 0.913085 0.914657 0.916207 0.917736 1.3
1.4 0.919243 0.920730 0.922196 0.923641 0.925066 0.926471 0.927855 0.929219 0.930563 0.931888 1.4
1.5 0.933193 0.934478 0.935744 0.936992 0.938220 0.939429 0.940620 0.941792 0.942947 0.944083 1.5
1.6 0.945201 0.946301 0.947384 0.948449 0.949497 0.950529 0.951543 0.952540 0.953521 0.954486 1.6
1.7 0.955435 0.956367 0.957284 0.958185 0.959071 0.959941 0.960796 0.961636 0.962462 0.963273 1.7
1.8 0.964070 0.964852 0.965621 0.966375 0.967116 0.967843 0.968557 0.969258 0.969946 0.970621 1.8
1.9 0.971283 0.971933 0.972571 0.973197 0.973810 0.974412 0.975002 0.975581 0.976148 0.976705 1.9
2.0 0.977250 0.977784 0.978308 0.978822 0.979325 0.979818 0.980301 0.980774 0.981237 0.981691 2.0
2.1 0.982136 0.982571 0.982997 0.983414 0.983823 0.984222 0.984614 0.984997 0.985371 0.985738 2.1
2.2 0.986097 0.986447 0.986791 0.987126 0.987455 0.987776 0.988089 0.988396 0.988696 0.988989 2.2
2.3 0.989276 0.989556 0.989830 0.990097 0.990358 0.990613 0.990863 0.991106 0.991344 0.991576 2.3
2.4 0.991802 0.992024 0.992240 0.992451 0.992656 0.992857 0.993053 0.993244 0.993431 0.993613 2.4
2.5 0.993790 0.993963 0.994132 0.994297 0.994457 0.994614 0.994766 0.994915 0.995060 0.995201 2.5
2.6 0.995339 0.995473 0.995604 0.995731 0.995855 0.995975 0.996093 0.996207 0.996319 0.996427 2.6
2.7 0.996533 0.996636 0.996736 0.996833 0.996928 0.997020 0.997110 0.997197 0.997282 0.997365 2.7
2.8 0.997445 0.997523 0.997599 0.997673 0.997744 0.997814 0.997882 0.997948 0.998012 0.998074 2.8
2.9 0.998134 0.998193 0.998250 0.998305 0.998359 0.998411 0.998462 0.998511 0.998559 0.998605 2.9
3.0 0.998650 0.998694 0.998736 0.998777 0.998817 0.998856 0.998893 0.998930 0.998965 0.998999 3.0
3.1 0.999032 0.999065 0.999096 0.999126 0.999155 0.999184 0.999211 0.999238 0.999264 0.999289 3.1
3.2 0.999313 0.999336 0.999359 0.999381 0.999402 0.999423 0.999443 0.999462 0.999481 0.999499 3.2
3.3 0.999517 0.999533 0.999550 0.999566 0.999581 0.999596 0.999610 0.999624 0.999638 0.999650 3.3
3.4 0.999663 0.999675 0.999687 0.999698 0.999709 0.999720 0.999730 0.999740 0.999749 0.999758 3.4
3.5 0.999767 0.999776 0.999784 0.999792 0.999800 0.999807 0.999815 0.999821 0.999828 0.999835 3.5
3.6 0.999841 0.999847 0.999853 0.999858 0.999864 0.999869 0.999874 0.999879 0.999883 0.999888 3.6
3.7 0.999892 0.999896 0.999900 0.999904 0.999908 0.999912 0.999915 0.999918 0.999922 0.999925 3.7
3.8 0.999928 0.999931 0.999933 0.999936 0.999938 0.999941 0.999943 0.999946 0.999948 0.999950 3.8
3.9 0.999952 0.999954 0.999956 0.999958 0.999959 0.999961 0.999963 0.999964 0.999966 0.999967 3.9

£ (z) � P(Z � z) � �
z

��

1

12�
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488 APPENDIX A STATISTICAL TABLES AND CHARTS

�
v 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

1 0.325 1.000 3.078 6.314 12.706 31.821 63.657 127.32 318.31 636.62
2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 14.089 23.326 31.598
3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 7.453 10.213 12.924
4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610
5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869
6 0.265 0.718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 0.263 0.711 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408
8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587
11 0.260 0.697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140
15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073
16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883
20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850
21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 0.256 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725
26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 0.256 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659
30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
40 0.255 0.681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460

120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373
� 0.253 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

v � degrees of freedom.

Table II Percentage Points t�,v of the t Distribution

0

α

α,νt
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Table III Percentage Points �2
�,v of the Chi-Square Distribution

�
v 0.995 0.990 0.975 0.950 0.900 0.500 0.100 0.050 0.025 0.010 0.005

1 0.00	 0.00	 0.00	 0.00	 0.02 0.45 2.71 3.84 5.02 6.63 7.88
2 0.01 0.02 0.05 0.10 0.21 1.39 4.61 5.99 7.38 9.21 10.60
3 0.07 0.11 0.22 0.35 0.58 2.37 6.25 7.81 9.35 11.34 12.84
4 0.21 0.30 0.48 0.71 1.06 3.36 7.78 9.49 11.14 13.28 14.86
5 0.41 0.55 0.83 1.15 1.61 4.35 9.24 11.07 12.83 15.09 16.75
6 0.68 0.87 1.24 1.64 2.20 5.35 10.65 12.59 14.45 16.81 18.55
7 0.99 1.24 1.69 2.17 2.83 6.35 12.02 14.07 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 3.49 7.34 13.36 15.51 17.53 20.09 21.96
9 1.73 2.09 2.70 3.33 4.17 8.34 14.68 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 4.87 9.34 15.99 18.31 20.48 23.21 25.19
11 2.60 3.05 3.82 4.57 5.58 10.34 17.28 19.68 21.92 24.72 26.76
12 3.07 3.57 4.40 5.23 6.30 11.34 18.55 21.03 23.34 26.22 28.30
13 3.57 4.11 5.01 5.89 7.04 12.34 19.81 22.36 24.74 27.69 29.82
14 4.07 4.66 5.63 6.57 7.79 13.34 21.06 23.68 26.12 29.14 31.32
15 4.60 5.23 6.27 7.26 8.55 14.34 22.31 25.00 27.49 30.58 32.80
16 5.14 5.81 6.91 7.96 9.31 15.34 23.54 26.30 28.85 32.00 34.27
17 5.70 6.41 7.56 8.67 10.09 16.34 24.77 27.59 30.19 33.41 35.72
18 6.26 7.01 8.23 9.39 10.87 17.34 25.99 28.87 31.53 34.81 37.16
19 6.84 7.63 8.91 10.12 11.65 18.34 27.20 30.14 32.85 36.19 38.58
20 7.43 8.26 9.59 10.85 12.44 19.34 28.41 31.41 34.17 37.57 40.00
21 8.03 8.90 10.28 11.59 13.24 20.34 29.62 32.67 35.48 38.93 41.40
22 8.64 9.54 10.98 12.34 14.04 21.34 30.81 33.92 36.78 40.29 42.80
23 9.26 10.20 11.69 13.09 14.85 22.34 32.01 35.17 38.08 41.64 44.18
24 9.89 10.86 12.40 13.85 15.66 23.34 33.20 36.42 39.36 42.98 45.56
25 10.52 11.52 13.12 14.61 16.47 24.34 34.28 37.65 40.65 44.31 46.93
26 11.16 12.20 13.84 15.38 17.29 25.34 35.56 38.89 41.92 45.64 48.29
27 11.81 12.88 14.57 16.15 18.11 26.34 36.74 40.11 43.19 46.96 49.65
28 12.46 13.57 15.31 16.93 18.94 27.34 37.92 41.34 44.46 48.28 50.99
29 13.12 14.26 16.05 17.71 19.77 28.34 39.09 42.56 45.72 49.59 52.34
30 13.79 14.95 16.79 18.49 20.60 29.34 40.26 43.77 46.98 50.89 53.67
40 20.71 22.16 24.43 26.51 29.05 39.34 51.81 55.76 59.34 63.69 66.77
50 27.99 29.71 32.36 34.76 37.69 49.33 63.17 67.50 71.42 76.15 79.49
60 35.53 37.48 40.48 43.19 46.46 59.33 74.40 79.08 83.30 88.38 91.95
70 43.28 45.44 48.76 51.74 55.33 69.33 85.53 90.53 95.02 100.42 104.22
80 51.17 53.54 57.15 60.39 64.28 79.33 96.58 101.88 106.63 112.33 116.32
90 59.20 61.75 65.65 69.13 73.29 89.33 107.57 113.14 118.14 124.12 128.30

100 67.33 70.06 74.22 77.93 82.36 99.33 118.50 124.34 129.56 135.81 140.17

v � degrees of freedom.

    α,

α

� ν
2
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u Degrees of freedom for the numerator (u)
v 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 �

1 5.83 7.50 8.20 8.58 8.82 8.98 9.10 9.19 9.26 9.32 9.41 9.49 9.58 9.63 9.67 9.71 9.76 9.80 9.85
2 2.57 3.00 3.15 3.23 3.28 3.31 3.34 3.35 3.37 3.38 3.39 3.41 3.43 3.43 3.44 3.45 3.46 3.47 3.48
3 2.02 2.28 2.36 2.39 2.41 2.42 2.43 2.44 2.44 2.44 2.45 2.46 2.46 2.46 2.47 2.47 2.47 2.47 2.47
4 1.81 2.00 2.05 2.06 2.07 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08

5 1.69 1.85 1.88 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.88 1.88 1.88 1.88 1.87 1.87 1.87
6 1.62 1.76 1.78 1.79 1.79 1.78 1.78 1.78 1.77 1.77 1.77 1.76 1.76 1.75 1.75 1.75 1.74 1.74 1.74
7 1.57 1.70 1.72 1.72 1.71 1.71 1.70 1.70 1.70 1.69 1.68 1.68 1.67 1.67 1.66 1.66 1.65 1.65 1.65
8 1.54 1.66 1.67 1.66 1.66 1.65 1.64 1.64 1.63 1.63 1.62 1.62 1.61 1.60 1.60 1.59 1.59 1.58 1.58
9 1.51 1.62 1.63 1.63 1.62 1.61 1.60 1.60 1.59 1.59 1.58 1.57 1.56 1.56 1.55 1.54 1.54 1.53 1.53

10 1.49 1.60 1.60 1.59 1.59 1.58 1.57 1.56 1.56 1.55 1.54 1.53 1.52 1.52 1.51 1.51 1.50 1.49 1.48
11 1.47 1.58 1.58 1.57 1.56 1.55 1.54 1.53 1.53 1.52 1.51 1.50 1.49 1.49 1.48 1.47 1.47 1.46 1.45
12 1.46 1.56 1.56 1.55 1.54 1.53 1.52 1.51 1.51 1.50 1.49 1.48 1.47 1.46 1.45 1.45 1.44 1.43 1.42
13 1.45 1.55 1.55 1.53 1.52 1.51 1.50 1.49 1.49 1.48 1.47 1.46 1.45 1.44 1.43 1.42 1.42 1.41 1.40
14 1.44 1.53 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.46 1.45 1.44 1.43 1.42 1.41 1.41 1.40 1.39 1.38

15 1.43 1.52 1.52 1.51 1.49 1.48 1.47 1.46 1.46 1.45 1.44 1.43 1.41 1.41 1.40 1.39 1.38 1.37 1.36
16 1.42 1.51 1.51 1.50 1.48 1.47 1.46 1.45 1.44 1.44 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.35 1.34
17 1.42 1.51 1.50 1.49 1.47 1.46 1.45 1.44 1.43 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.35 1.34 1.33
18 1.41 1.50 1.49 1.48 1.46 1.45 1.44 1.43 1.42 1.42 1.40 1.39 1.38 1.37 1.36 1.35 1.34 1.33 1.32
19 1.41 1.49 1.49 1.47 1.46 1.44 1.43 1.42 1.41 1.41 1.40 1.38 1.37 1.36 1.35 1.34 1.33 1.32 1.30

20 1.40 1.49 1.48 1.47 1.45 1.44 1.43 1.42 1.41 1.40 1.39 1.37 1.36 1.35 1.34 1.33 1.32 1.31 1.29
21 1.40 1.48 1.48 1.46 1.44 1.43 1.42 1.41 1.40 1.39 1.38 1.37 1.35 1.34 1.33 1.32 1.31 1.30 1.28
22 1.40 1.48 1.47 1.45 1.44 1.42 1.41 1.40 1.39 1.39 1.37 1.36 1.34 1.33 1.32 1.31 1.30 1.29 1.28
23 1.39 1.47 1.47 1.45 1.43 1.42 1.41 1.40 1.39 1.38 1.37 1.35 1.34 1.33 1.32 1.31 1.30 1.28 1.27
24 1.39 1.47 1.46 1.44 1.43 1.41 1.40 1.39 1.38 1.38 1.36 1.35 1.33 1.32 1.31 1.30 1.29 1.28 1.26

25 1.39 1.47 1.46 1.44 1.42 1.41 1.40 1.39 1.38 1.37 1.36 1.34 1.33 1.32 1.31 1.29 1.28 1.27 1.25
26 1.38 1.46 1.45 1.44 1.42 1.41 1.39 1.38 1.37 1.37 1.35 1.34 1.32 1.31 1.30 1.29 1.28 1.26 1.25
27 1.38 1.46 1.45 1.43 1.42 1.40 1.39 1.38 1.37 1.36 1.35 1.33 1.32 1.31 1.30 1.28 1.27 1.26 1.24
28 1.38 1.46 1.45 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.34 1.33 1.31 1.30 1.29 1.28 1.27 1.25 1.24
29 1.38 1.45 1.45 1.43 1.41 1.40 1.38 1.37 1.36 1.35 1.34 1.32 1.31 1.30 1.29 1.27 1.26 1.25 1.23

30 1.38 1.45 1.44 1.42 1.41 1.39 1.38 1.37 1.36 1.35 1.34 1.32 1.30 1.29 1.28 1.27 1.26 1.24 1.23
40 1.36 1.44 1.42 1.40 1.39 1.37 1.36 1.35 1.34 1.33 1.31 1.30 1.28 1.26 1.25 1.24 1.22 1.21 1.19
60 1.35 1.42 1.41 1.38 1.37 1.35 1.33 1.32 1.31 1.30 1.29 1.27 1.25 1.24 1.22 1.21 1.19 1.17 1.15

120 1.34 1.40 1.39 1.37 1.35 1.33 1.31 1.30 1.29 1.28 1.26 1.24 1.22 1.21 1.19 1.18 1.16 1.13 1.10
� 1.32 1.39 1.37 1.35 1.33 1.31 1.29 1.28 1.27 1.25 1.24 1.22 1.19 1.18 1.16 1.14 1.12 1.08 1.00
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u Degrees of freedom for the numerator (u)
v 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 �

1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19 60.71 61.22 61.74 62.00 62.26 62.53 62.79 63.06 63.33
2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49
3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.14 5.13
4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76

5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.10
6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.72
7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49 2.47
8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.29
9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.16

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08 2.06
11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.97
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.90
13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.85
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83 1.80

15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.02 1.97 1.92 1.90 1.87 1.85 1.82 1.79 1.76
16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 1.99 1.94 1.89 1.87 1.84 1.81 1.78 1.75 1.72
17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72 1.69
18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69 1.66
19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67 1.63

20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64 1.61
21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62 1.59
22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57
23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89 1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59 1.55
24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.57 1.53

25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56 1.52
26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.81 1.76 1.71 1.68 1.65 1.61 1.58 1.54 1.50
27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85 1.80 1.75 1.70 1.67 1.64 1.60 1.57 1.53 1.49
28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 1.79 1.74 1.69 1.66 1.63 1.59 1.56 1.52 1.48
29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83 1.78 1.73 1.68 1.65 1.62 1.58 1.55 1.51 1.47

30 2.88 2.49 2.28 2.14 2.03 1.98 1.93 1.88 1.85 1.82 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50 1.46
40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.38
60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.66 1.60 1.54 1.51 1.48 1.44 1.40 1.35 1.29

120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.26 1.19
� 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.55 1.49 1.42 1.38 1.34 1.30 1.24 1.17 1.00
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Table IV Percentage Points f�,u,v of the F Distribution (continued)
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u Degrees of freedom for the numerator (u)
v 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 �

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.55 1.43 1.35 1.25
� 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00
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Table IV Percentage Points f�,u,v of the F Distribution (continued)
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u Degrees of freedom for the numerator (u)
v 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 �

1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 976.7 984.9 993.1 997.2 1001 1006 1010 1014 1018
2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.41 39.43 39.45 39.46 39.46 39.47 39.48 39.49 39.50
3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.34 14.25 14.17 14.12 14.08 14.04 13.99 13.95 13.90
4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.75 8.66 8.56 8.51 8.46 8.41 8.36 8.31 8.26

5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.52 6.43 6.33 6.28 6.23 6.18 6.12 6.07 6.02
6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.37 5.27 5.17 5.12 5.07 5.01 4.96 4.90 4.85
7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.67 4.57 4.47 4.42 4.36 4.31 4.25 4.20 4.14
8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.20 4.10 4.00 3.95 3.89 3.84 3.78 3.73 3.67
9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.87 3.77 3.67 3.61 3.56 3.51 3.45 3.39 3.33

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.62 3.52 3.42 3.37 3.31 3.26 3.20 3.14 3.08
11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.43 3.33 3.23 3.17 3.12 3.06 3.00 2.94 2.88
12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.28 3.18 3.07 3.02 2.96 2.91 2.85 2.79 2.72
13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.15 3.05 2.95 2.89 2.84 2.78 2.72 2.66 2.60
14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 3.05 2.95 2.84 2.79 2.73 2.67 2.61 2.55 2.49

15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.96 2.86 2.76 2.70 2.64 2.59 2.52 2.46 2.40
16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.89 2.79 2.68 2.63 2.57 2.51 2.45 2.38 2.32
17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.82 2.72 2.62 2.56 2.50 2.44 2.38 2.32 2.25
18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.77 2.67 2.56 2.50 2.44 2.38 2.32 2.26 2.19
19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 2.72 2.62 2.51 2.45 2.39 2.33 2.27 2.20 2.13

20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.68 2.57 2.46 2.41 2.35 2.29 2.22 2.16 2.09
21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 2.64 2.53 2.42 2.37 2.31 2.25 2.18 2.11 2.04
22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.60 2.50 2.39 2.33 2.27 2.21 2.14 2.08 2.00
23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67 2.57 2.47 2.36 2.30 2.24 2.18 2.11 2.04 1.97
24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.54 2.44 2.33 2.27 2.21 2.15 2.08 2.01 1.94

25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.51 2.41 2.30 2.24 2.18 2.12 2.05 1.98 1.91
26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59 2.49 2.39 2.28 2.22 2.16 2.09 2.03 1.95 1.88
27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 2.57 2.47 2.36 2.25 2.19 2.13 2.07 2.00 1.93 1.85
28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55 2.45 2.34 2.23 2.17 2.11 2.05 1.98 1.91 1.83
29 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59 2.53 2.43 2.32 2.21 2.15 2.09 2.03 1.96 1.89 1.81

30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.41 2.31 2.20 2.14 2.07 2.01 1.94 1.87 1.79
40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.29 2.18 2.07 2.01 1.94 1.88 1.80 1.72 1.64
60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.17 2.06 1.94 1.88 1.82 1.74 1.67 1.58 1.48

120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16 2.05 1.94 1.82 1.76 1.69 1.61 1.53 1.43 1.31
� 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.94 1.83 1.71 1.64 1.57 1.48 1.39 1.27 1.00
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Table IV Percentage Points f�,u,v of the F Distribution (continued)

f0.025, u,v
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u Degrees of freedom for the numerator (u)
v 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 �

1 4052 4999.5 5403 5625 5764 5859 5928 5982 6022 6056 6106 6157 6209 6235 6261 6287 6313 6339 6366
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.00 26.50 26.41 26.32 26.22 26.13
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.46
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00

15 8.68 6.36 5.42 4.89 4.36 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.59

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38
� 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00
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Table IV Percentage Points f�,u,v of the F Distribution (continued)

f0.01, u,v
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Chart V Operating Characteristic Curves for the t-Test

Source: These charts are reproduced with permission from “Operating Characteristics for the Common
Statistical Tests of Significance,” by C. L. Ferris, F. E. Grubbs, and C. L. Weaver, Annals of Mathematical
Statistics, June 1946, and from Engineering Statistics, 2nd Edition, by A. H. Bowker and G. J. Lieberman,
Prentice-Hall, 1972.
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(a)  OC curves for different values of n for the two-sided t-test for a level of significance α = 0.05.

(b)  OC curves for different values of n for the two-sided t-test for a level of significance α = 0.01.
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Chart V Operating Characteristic Curves for the t-Test (continued)
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(c)  OC curves for different values of n for the one-sided t-test for a level of significance α = 0.05.

(d)  OC curves for different values of n for the one-sided t-test for a level of significance α = 0.01.
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Table VI Factors for Normal Distribution Tolerance Intervals

Values of k for Two-Sided Intervals

Confidence
Level 0.90 0.95 0.99

Percent
Contained 
 90 95 99 90 95 99 90 95 99

Sample
Size

2 15.978 18.800 24.167 32.019 37.674 48.430 160.193 188.491 242.300
3 5.847 6.919 8.974 8.380 9.916 12.861 18.930 22.401 29.055
4 4.166 4.943 6.440 5.369 6.370 8.299 9.398 11.150 14.527
5 3.949 4.152 5.423 4.275 5.079 6.634 6.612 7.855 10.260
6 3.131 3.723 4.870 3.712 4.414 5.775 5.337 6.345 8.301
7 2.902 3.452 4.521 3.369 4.007 5.248 4.613 5.488 7.187
8 2.743 3.264 4.278 3.136 3.732 4.891 4.147 4.936 6.468
9 2.626 3.125 4.098 2.967 3.532 4.631 3.822 4.550 5.966

10 2.535 3.018 3.959 2.839 3.379 4.433 3.582 4.265 5.594
11 2.463 2.933 3.849 2.737 3.259 4.277 3.397 4.045 5.308
12 2.404 2.863 3.758 2.655 3.162 4.150 3.250 3.870 5.079
13 2.355 2.805 3.682 2.587 3.081 4.044 3.130 3.727 4.893
14 2.314 2.756 3.618 2.529 3.012 3.955 3.029 3.608 4.737
15 2.278 2.713 3.562 2.480 2.954 3.878 2.945 3.507 4.605
16 2.246 2.676 3.514 2.437 2.903 3.812 2.872 3.421 4.492
17 2.219 2.643 3.471 2.400 2.858 3.754 2.808 3.345 4.393
18 2.194 2.614 3.433 2.366 2.819 3.702 2.753 3.279 4.307
19 2.172 2.588 3.399 2.337 2.784 3.656 2.703 3.221 4.230
20 2.152 2.564 3.368 2.310 2.752 3.615 2.659 3.168 4.161
21 2.135 2.543 3.340 2.286 2.723 3.577 2.620 3.121 4.100
22 2.118 2.524 3.315 2.264 2.697 3.543 2.584 3.078 4.044
23 2.103 2.506 3.292 2.244 2.673 3.512 2.551 3.040 3.993
24 2.089 2.489 3.270 2.225 2.651 3.483 2.522 3.004 3.947
25 2.077 2.474 3.251 2.208 2.631 3.457 2.494 2.972 3.904
30 2.025 2.413 3.170 2.140 2.529 3.350 2.385 2.841 3.733
40 1.959 2.334 3.066 2.052 2.445 3.213 2.247 2.677 3.518
50 1.916 2.284 3.001 1.996 2.379 3.126 2.162 2.576 3.385
60 1.887 2.248 2.955 1.958 2.333 3.066 2.103 2.506 3.293
70 1.865 2.222 2.920 1.929 2.299 3.021 2.060 2.454 3.225
80 1.848 2.202 2.894 1.907 2.272 2.986 2.026 2.414 3.173
90 1.834 2.185 2.872 1.889 2.251 2.958 1.999 2.382 3.130

100 1.822 2.172 2.854 1.874 2.233 2.934 1.977 2.355 3.096
� 1.645 1.960 2.576 1.645 1.960 2.576 1.645 1.960 2.576
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Table VI Factors for Normal Distribution Tolerance Intervals (continued)

Values of k for One-Sided Intervals

Confidence 
Level 0.90 0.95 0.99

Percent
Coverage 90 95 99 90 95 99 90 95 99

Sample
Size

2 10.253 13.090 18.500 20.581 26.260 37.094 103.029 131.426 185.617
3 4.258 5.311 7.340 6.155 7.656 10.553 13.995 17.370 23.896
4 3.188 3.957 5.438 4.162 5.144 7.042 7.380 9.083 12.387
5 2.742 3.400 4.666 3.407 4.203 5.741 5.362 6.578 8.939
6 2.494 3.092 4.243 3.006 3.708 5.062 4.411 5.406 7.335
7 2.333 2.894 3.972 2.755 3.399 4.642 3.859 4.728 6.412
8 2.219 2.754 3.783 2.582 3.187 4.354 3.497 4.285 5.812
9 2.133 2.650 3.641 2.454 3.031 4.143 3.240 3.972 5.389

10 2.066 2.568 3.532 2.355 2.911 3.981 3.048 3.738 5.074
11 2.011 2.503 3.443 2.275 2.815 3.852 2.898 3.556 4.829
12 1.966 2.448 3.371 2.210 2.736 3.747 2.777 3.410 4.633
13 1.928 2.402 3.309 2.155 2.671 3.659 2.677 3.290 4.472
14 1.895 2.363 3.257 2.109 2.614 3.585 2.593 3.189 4.337
15 1.867 2.329 3.212 2.068 2.566 3.520 2.521 3.102 4.222
16 1.842 2.299 3.172 2.033 2.524 3.464 2.459 3.028 4.123
17 1.819 2.272 3.137 2.002 2.486 3.414 2.405 2.963 4.037
18 1.800 2.249 3.105 1.974 2.453 3.370 2.357 2.905 3.960
19 1.782 2.227 3.077 1.949 2.423 3.331 2.314 2.854 3.892
20 1.765 2.028 3.052 1.926 2.396 3.295 2.276 2.808 3.832
21 1.750 2.190 3.028 1.905 2.371 3.263 2.241 2.766 3.777
22 1.737 2.174 3.007 1.886 2.349 3.233 2.209 2.729 3.727
23 1.724 2.159 2.987 1.869 2.328 3.206 2.180 2.694 3.681
24 1.712 2.145 2.969 1.853 2.309 3.181 2.154 2.662 3.640
25 1.702 2.132 2.952 1.838 2.292 3.158 2.129 2.633 3.601
30 1.657 2.080 2.884 1.777 2.220 3.064 2.030 2.515 3.447
40 1.598 2.010 2.793 1.697 2.125 2.941 1.902 2.364 3.249
50 1.559 1.965 2.735 1.646 2.065 2.862 1.821 2.269 3.125
60 1.532 1.933 2.694 1.609 2.022 2.807 1.764 2.202 3.038
70 1.511 1.909 2.662 1.581 1.990 2.765 1.722 2.153 2.974
80 1.495 1.890 2.638 1.559 1.964 2.733 1.688 2.114 2.924
90 1.481 1.874 2.618 1.542 1.944 2.706 1.661 2.082 2.883

100 1.470 1.861 2.601 1.527 1.927 2.684 1.639 2.056 2.850
� 1.28 1.645 1.960 1.28 1.645 1.960 1.28 1.645 1.960
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Table VII Factors for Constructing Variables Control Charts

Chart R Chart

Factors for Factors for
Control Control
Limits Limits

na A1 A2 d2 D3 D4 n

2 3.760 1.880 1.128 0 3.267 2
3 2.394 1.023 1.693 0 2.575 3
4 1.880 0.729 2.059 0 2.282 4
5 1.596 0.577 2.326 0 2.115 5
6 1.410 0.483 2.534 0 2.004 6
7 1.277 0.419 2.704 0.076 1.924 7
8 1.175 0.373 2.847 0.136 1.864 8
9 1.094 0.337 2.970 0.184 1.816 9

10 1.028 0.308 3.078 0.223 1.777 10
11 0.973 0.285 3.173 0.256 1.744 11
12 0.925 0.266 3.258 0.284 1.716 12
13 0.884 0.249 3.336 0.308 1.692 13
14 0.848 0.235 3.407 0.329 1.671 14
15 0.816 0.223 3.472 0.348 1.652 15
16 0.788 0.212 3.532 0.364 1.636 16
17 0.762 0.203 3.588 0.379 1.621 17
18 0.738 0.194 3.640 0.392 1.608 18
19 0.717 0.187 3.689 0.404 1.596 19
20 0.697 0.180 3.735 0.414 1.586 20
21 0.679 0.173 3.778 0.425 1.575 21
22 0.662 0.167 3.819 0.434 1.566 22
23 0.647 0.162 3.858 0.443 1.557 23
24 0.632 0.157 3.895 0.452 1.548 24
25 0.619 0.153 3.931 0.459 1.541 25

a where n � number of observations in sample.n 7 25: A1 � 3�1n

X
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Appendix C
Answers 
to Selected
Exercises

2-39. (a)
(b)
(c)
(e)

2-41. (a)
(b)
(c)
(e)

2-43. (a) High dose: 
Control: 

(b) High dose: 
Control: 

(c) High dose: 
Control: 

(e) High dose: 

Control: 

Section 2-6
2-51. (a) X1 has negative correlation with Y, X 2 and X 3

have positive correlation with Y
(b) agree

with part (a)
2-53. (a) Negative (b)
2-55. (a) Positive (b) 0.773

Supplemental Exercises
2-57. (a)

(b) s2 � 19.9, s � 4.46
s2 � 19.9, s � 4.46

�0.852, �0.898

rx1
� �0.883, rx2

� 0.585, rx3
� 0.995,

95th � 1460.23
5th � 17.045 

95th � 133.67
5th � 13.125

Median � 215.4
Median � 45

Q1 � 101.9, Q3 � 501.1
Q1 � 21.70, Q3 � 74.38

x � 382.7, s2 � 175224.35
x � 52.65, s2 � 1490.32

95th � 0.8215th � 0.5025,
Median � 0.742
Q1 � 0.7050, Q3 � 0.7838
x � 0.7481, s2 � 0.00226

95th � 0.0575th � 0.03974,
Median � 0.04975
Q1 � 0.04738, Q3 � 0.0513
x � 0.04939, s2 � 0.00001568CHAPTER 2

Section 2-1
2-1.
2-3.
2-5.
2-7.
2-11. No. If the observations are 1, 2, 3, 8, and 10, .
2-13. Both and s increase by 5%.

Section 2-2
2-21. N Median Q1 Q3 5th 95th

Variable 70 1436.5 1097.8 1735.0 772.85 2113.5
Cycles

2-23. N Median Q1 Q3 5th 95th

Variable 90 89.25 86.10 93.125 83.055 96.58
Yield

2-25. The sample mean and standard deviation change, but
the median is unchanged.

Section 2-4
2-33. (a)

(b)
(c)
(d)

2-35. (a)
2-37. (a)

(b)
(d) x � 81, s � 3.46, Q1 � 79.25, Q3 � 83.75

Q1 � 79.5, Q3 � 84.50
x � 83.11, s2 � 50.55,̌  s � 7.11
x � 2.415, s � 0.534
x � 66.86, s � 10.74, Q1 � 60, Q3 � 75
Median � 67.5
Q1 � 58.5, Q3 � 75
x � 65.86, s � 12.16

x
x � 4.8

x � 810.514, s � 128.32
x � 43.98, s � 12.29
x � 1288.43, s � 15.80
x � 56.09, s � 11.33

502
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(c)
(d)

2-59. (c)
2-61. (a) same

(b)
2-63. (b)

CHAPTER 3

Section 3-2
3-1. Continuous
3-3. Continuous
3-5. Discrete
3-7. Discrete
3-9. Continuous

Section 3-3
3-11. (a) Yes (b) 0.6 (c) 0.4 (d) 1
3-13. (a) 0.7 (b) 0.9 (c) 0.2 (d) 0.5
3-15. (a) 0.55 (b) 0.95 (c) 0.50
3-17. (a) 0.50 (b) 0.25 (c) 0.25 (d) 0.9
3-19. (a) 0 (b) 0.3 (c) 0.1 (d) 0.1

Section 3-4
3-21. (a)

(b)
(c)
(d)

3-23. (a) 1 (b) 0.8647 (c) 0.8647 (d) 0.1353 (e) 9
3-25. (a) 0.7165 (b) 0.2031 (c) 0.6321 (d) 316.2

(e)
3-27. (a) 0.5 (b) 0.5 (c) 0.2 (d) 0.4
3-29. (b) (c) 2.0 (d) 0.96 (e) 0.0204
3-31. (a) 0.8 (b) 0.5
3-33. (a) 0.9 (b) 0.8 (c) 0.1 (d) 0.1

(f )
3-35. (a) 0.913 (b)

(c) 12.9303
3-37. (a) 0.778 (b) 0.056 (c) 0.014 (d) 4.658 (e) 3

Section 3-5
3-39. (a) 0 (b) �3.09 (c) (d) (e) 1.75
3-41. (a) 0.97725 (b) 0.84134 (c) 0.68268

(d) 0.9973 (e) 0.47725 (f ) 0.49865
3-43. (a) 0.99865 (b) 0.00023 (c) 0.47725

(d) 0.83513 (e) 0.69123
3-45. (a) 0.9938 (b) 0.1359 (c) 5835.51
3-47. (a) 0.0082 (b) 0.7211 (c) 0.5641
3-49. (a) 12.309 (b) 12.155
3-51. (a) 0.1587 (b) 90.0 (c) 0.9973
3-53. (a) 0.09012 (b) 0.501165 (c) 13.97
3-55. (a) 0.0668 (b) 0.8664 (c) 0.000214

�1.11�1.18

E(X ) � 4.3101, V(X ) � 51.4230
E(X ) � 205, V(X ) � 8.3333

1 � x�2

E(X ) � 3000, V(X ) � 9000000

k � 1, E(X ) � 100.5, V(X ) � 0.08333
k � 1, E(X ) � 1, V(X ) � 1
k � 1/6, E(X ) � 11/9, V(X ) � 0.284
k � 3/64, E(X ) � 3, V(X ) � 0.6

x � 9.8, s � 3.611
s1 � 1.604, s2 � 1.852, s2 7 s1

Range1 � 4, Range2 � 4,
x � 42.14, s � 4.41
s2 � 1990, s � 44.6
s2 � 19.9, s � 4.46 3-57. (a) 0.9332 (b) 20952.2 (c)

3-59. (a) 0.03593 (b) 1.65 (c) 12.6965
3-61.
3-63. (a) 0.5273 (b) 8862.3 (c) 0.00166
3-65.
3-67. (a) 120 (b) 1.32934 (c) 11.6317
3-69.
3-71.
3-73. (a) 0.0313 (b) 0.4559

(c) � � 0.7143, �2 � 0.0454 
3-75. (a) mode � 0.8333, � � 0.6818, �2 � 0.0402 

(b) mode � 0.6316, � � 0.6154, �2 � 0.0137
3-77. 0.0136
3-79. (a) 0.0248 (b) 0.1501 (c) 92.02

Section 3-7
3-91. (a) 0.433 (b) 0.409 (c) 0.316

(d)
3-93. (a) 4/7 (b) 3/7 (c)
3-95. (a) 0.170 (b) 0.10 (c) 0.91

(d)
3-97. (b) (c) 0.5 (d) 0.75
3-99. (a) 0.9 (b) 0.5 (d) 1.15

Section 3-8
3-103. (a) 0.0148 (b) 0.8684 (c) 0 (d) 0.1109
3-105. (a) 0.0015 (b) 0.9298 (c) 0 (d) 0.0686
3-107. 0.0043
3-109. (a) (b) 0.1117 (c) 0
3-111. (a) 0.9961 (b) 0.989

(c)
3-113. (a) 0.13422 (b) 0.000001 (b) 0.301990
3-115. (a) 1 (b) 0.999997

(c)
3-117. (a) 0.151 (b) 0.01 (c) 0.161

Section 3-9
3-119. (a) 0.7408 (b) 0.9997 (c) 0 (d) 0.0333
3-121.
3-123. (a) 0.0844 (b) 0.0103 (c) 0.0185 (d) 0.1251
3-125. (a) (b) 0.6321
3-127. (a) 0.7261 (b) 0.0731
3-129. 0.2941
3-131. (a) 0.0076 (b) 0.1462
3-133. (a) 0.4566 (b) 0.047
3-135. (a) 0.3679 (b) 0.0498 (c) 0.0183 (d) 14.9787
3-137. (a) 0.0821 (b) 0.5654 (c) 0.2246 (d) 27.63
3-139. (a) 0.1353 (b) 0.2707 (c) 5 (d) 0.0409

(e) 0.1353 (f ) 0.1353
3-141. (a) 0.3679 (b) 0.3679 (c) 2
3-143. (a) 0.216 (b) 0.03 (c) 0.68 (d) 42

4.54 � 10�5

E(X ) � V(X ) � 3.912

E(X ) � 12.244, � � 2.179

E(X ) � 112.5, �X � 3.354

n � 50, p � 0.1

E(X ) � 2.5, V(X ) � 2.05
E(X ) � 9.98, V(X ) � 2.02

E(X ) � 11/7, V(X ) � 26/49
E(X ) � 3.319, V(X ) � 3.7212

r � 3.24, � � 0.72
E(X ) � 1.28, V(X ) � 0.512

E(X ) � 2.5, V(X ) � 1.7077

E(X ) � 12000, V(X ) � 3.61 � 1010

145 � 1022
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Section 3-10
3-145. (a) 0.010724 (b) 0.007760 (c) 0.107488
3-147. (a) 0.4471 (b) 0.428576
3-149. (a) 0.107488 (b) 0.440427
3-151. (a) (b) 0.2555

(c) 392.7799
3-153. (a) 0.819754 (b) 0.930563

(c) 0.069437 (d) 0.694974
3-155. (a) 0.465 (b) 0.968 (c) 0.0001

Section 3-11
3-157. (a) 0.2457 (b) 0.7641 (c) 0.5743 (d) 0.1848
3-159. (a) 0.372 (b) 0.1402 (c) 0.3437 (d) 0.5783
3-161. (a) 0.8404 (b) 0.4033 (c) 0
3-163. (a)

(b) 0.0175 (c) 0.0295
3-165. 0.8740
3-167. 0.988
3-169. 0.973675
3-171. (a) 0.1 (b) 0.7 (c) 0.2 (d) 0.2 (e) 0.85

(f) not

Section 3-12
3-173. (a) 31 (b) 268
3-175. (a) 22 (b) 128 (c) 44 (d) 512
3-177. (a) 0.8770 (b) 0.2864 (c) 0.6826
3-179. (a) (b) 0.0169
3-181. (a) (b) 0.2072
3-183. (a) 7 (b) 0.0041
3-185.
3-187.
3-189.
3-191.
3-193. (a) 9 (b) 1.8 (c) 19.8 (d) 0.091

Section 3-13
3-195. (a)

(b) 0.1870 (c) 0.0912 (d) 0.7753
3-197. (a)

(b) 0 (c) 0 (d) 1
3-199. (a) 0.0016 (b) 6
3-201. 0.4306
3-203. (a) 0.1762 (b) 0.8237 (c) 0.0005
3-205. (a) 0.0791 (b) 0.1038 (c) 0.1867
3-207. (a) 0.9938 (b) 1

Supplemental Exercises
3-209. (a) 0.7769 (b) 0.7769 (c) 0.1733

(d) 0 (e) 0.0498
3-211. (a) 0.6 (b) 0.8 (c) 0.7 (d) 3.9 (e) 3.09
3-213. Competitor has longer life
3-215. (a) 0.1298 (b) 0.8972 (c) 42.5

(d) 1.51, 0.7356, 2.55
3-217. (a) (b) 0.2865

(c) 0.341 (d) 0.436
Exponential, mean � 12

Mean � 20, Variance � 1/20

Mean � 100, Variance � 81/16

E(Y) � 24, V(Y) � 644
E(G) � 0.07396, V(G) � 3.23 � 10�7
E(P) � 160,000, V(P) � 16,000,000
E(Y) � 800, V(Y) � 57600

�D � 0.1225E(D) � 6,
�T � 0.141E(T) � 3,

P(T4) � 0.10
P(T1) � 0.35, P(T2) � 0.45, P(T3) � 0.25,

E(X ) � 362, � � 19.0168

3-219. (a) (b) 0.632
(c) 0.1353 (d) 0.6065

3-221. (a) 0.0978 (b) 0.0006 (c) 0.00005
3-223. (a) 33.3 (b) 22.36
3-225. (a) (b) 0.0010
3-227. (a) 0.0084 (b) 0
3-229. (a) 0.0018 (b)
3-231. (a) 0.919 (b) 0.402 (c) Machine 1 (d) 0.252
3-233. (a) No (b) No
3-235. 0.309
3-237. (a) (b) 73

(c) 106 (d) 0.57534
3-239. (a) 0.9619 (b) 0.4305
3-241. (a) 6.92 (b) 0.77 (c) 0.2188
3-245. (c) 312.825
3-247. (b) 0.38 (c) 8.65
3-249. (a) 0.105650 (b) (172.16, 187.84)
3-251. (a) 0.2212 (b) 0.2865 (c) 0.2212
3-253. (a) 0.037 (b) 0.704 (c) 2.949

(d) 2.25 (e) 0.3375
3-255. (a) 0.5 (b) 0.6 (c) 0.5 (d) 0.2

CHAPTER 4

Section 4-2
4-1.
4-3.
4-7. better
4-9. 0.5

Section 4-3
4-15. (a) 0.0129 (b) 0.0681 (c) 0.9319
4-17. (a) 13.687 (b) 0.0923 (c) 0.9077
4-19. (a) 0.0244 (b) 0.0122 (c) 0
4-21. (a) 0.057 (b) 0.0104 (c) 0.9895
4-23. (a) 0.0228 (b) 0.0004 (c) 0.9996
4-25. (a) 0.0574 (b) 0.265
4-27. 8.85, 9.16

Section 4-4
4-29. (a) 0.014286 (b) 0.126016 (c) 0.031556

(d) 0.051176 (e) 0.802588
4-31. (a) (b) 2-sided

(c) (30.426, 31.974) (d) 0
4-33. (a)

(b) (c) (19.339, 23.461)
4-35. (a) 0.0324 (b) 0.0128 (c) 0.0644
4-37. (a) reject (b) 0.04

(c) 0 (d) 2 (e)
4-39. (a) fail to reject 

(b) 5 (c) 0.680542 (d) (87.85, 93.11)
(e) Do not reject H0

H0P-value � 0.7188,
(4.003, �)

H0z0 � 1.77 7 1.65,

Z � 0.0901, reject H0

fail to reject H0.
SE mean � 0.80, z � 1.75, P � 0.0802,

Z � 4, P-value � 0

™̂1

Mean � 10.989, Variance � 51.296
SE � 1.04, Variance � 9.7344

T � W 	 X 	 Y 	 Z

3.4 � 10�6

Mean � 240, Variance � 0.42

Exponential, mean � 100
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4-41. (a) fail to reject 

(b) 0.3632 (c) 37 (d) (1.994, �)
(e) Fail to reject 

4-43. (a) reject 
(b) reject 
(c) (3237.53, 3273.31)
(d) (3231.96, 3278.88)

4-45. 97

Section 4-5
4-47. (a)

(b)
(c)
(d)

4-49. (a)
(b)
(c)
(d)

4-51. (a) 11
(b)

4-53. (a) (c) (4.07, 4.56) (d) 4
4-55. (a) fail to reject 

(b) No, 
(c) (d) Fail to reject 

4-57. (a) reject 
(b) (c) Reject 

4-59. (a) Normal (b)
fail to reject (c)

(d) Fail to reject (e) 60
4-61. (a) reject (b)
4-63. (a) reject 

(b) reject 
(c) Yes, (d) (1.091, 1.105)

4-65. (a) fail to reject 
(b) Normal (c)
(d) (e)

Section 4-6
4-67. (a) fail to reject 

(b) (c) Fail to reject 
4-69. (a) fail to reject 

(b)
(c) (4,899,877.36, �) (d) Fail to reject 

4-71. (a) fail to reject 
(b) (c) (0.096, 0.2115)
(d) Fail to reject 

Section 4-7
4-73. (a) 1-sided (b) Yes

(c) Sample 

4-75. (a) reject (b) 0.5055
(c) 136 (d) (e) Reject (f) 1572

4-77. 666
H0(0.254, �)

H0z0 � 1.48 7 1.28,
P-value � 0.014286

p � 0.69125, 95%L � (0.66445, �),

H0

0.20 6 P-value 6 1
H032.36 6 X 2

0 � 55.88 6 71.42,
H0

0.10 6 P-value 6 0.50
H0X 2

0 � 9.2112 6 16.919,
H0(0.00015, �)
H0X 2

0 � 8.96 6 23.685,

(23.326, �)d � 0.52, power � 0.9, n � 50
d � 0.42, power � 0.3

H0t0 � 0.97 6 2.539,
d � 3.125, power � 1

H0t0 � 30.625 7 1.711,
H0t0 � 30.625 7 2.201,

(4.030, �)H0t0 � 3.58 7 1.711,
H0

(��, 9.358)H0

t0 � 0.8735 7 �1.796,
H0(5522.3, �)

H0t0 � 2.14 7 1.761,
H0(59732.78, �)

d � 0.3295, power � 0.22
H0t0 � 1.55 6 1.833,

t � 2.61, reject H0

T � 2.029
StDev � 1.1639, 95% L � (26.2853, �),

0.10 6 P-value 6 0.25
0.0025 6 P-value 6 0.005
0.025 6 P-value 6 0.05
0.005 6 P-value 6 0.01
0.05 6 P-value 6 0.10
0.025 6 P-value 6 0.05
0.001 6 P-value 6 0.0025
0.01 6 P-value 6 0.025

H0P-value � 0,
H0z0 � �26.79 6 �2.58,

H0

H0P-value � 0.0367, 4-79. 2401
4-81. (a) 0.8288 (b) 4397
4-83. (a) fail to reject 

(b) 0.3859 (c) 0.4345 (d) 769
4-85. (a) 0.08535 (b) 0
4-87. (a) (0.5249, 0.8265) (b) 0.5491 p
4-89. (a) (b)

Section 4-8
4-91. (a) (54291.75, 68692.25) (b) (52875.64, 70108.37)
4-93. (a) (4929.93, 6320.27) (b) (4819.73, 6430.47)
4-95. (a) (7.617, 10.617) (b) (6.760, 11.474)

Section 4-10
4-97. (a) fail to reject (b) 0.7185
4-99. (a) fail to reject (b) 0.2154
4-101. (a) reject (b) 0.0155

Supplemental Exercises
4-107. (a)

(b)
(c)

4-109. (a) Normal (b) (c) (16.99, 33.25)
(d) (e) (28.23, 343.74)
(f ) (15.81, 192.44) (g) mean: (16.88, 33.14),

variance: (28.23, 343.74) (i)
( j)

4-113. (a) 0.452 (b) 0.102 (c) 0.014
4-115. (a) reject 

(b) (c)
(d) (153.63, 712.74)

4-117. (b) fail to reject 
4-119. (a) fail to reject 

(b) reject 
4-121. (a) fail to reject 

(b) (c) (246.84, 404.16)
4-123. (a) reject 

(b) (c) 100
(d) Reject 

4-125.
4-127. (a) fail to reject 
4-129. (a) fail to reject 

4-131. (a) (0.554, 0.720) (b) (0.538, 0.734)
4-133. (a) 0.0256 (b) 0.1314 (c) 0.8686
4-135. (a) fail to reject (b) 0.641
4-137. (a) (b) Fail to reject 

(c) smaller (d) reject 

CHAPTER 5

Section 5-2
5-1. (a) (b) one-sided

(c) Reject (d) (0.4270, 4.2730)
5-3. (a) fail to reject 

(b) 0.977 (c) (d) 12(�0.0098, 0.0298)
H0P-value � 0.3222 7 0.05,

H0

SE � 1.1692

H00.005 6 P-value 6 0.01,
H0SE � 0.456825, T � 3.058

H0X 2
0 � 0.8897 6 9.49,

P-value � 0.1251
H0,Z0 � �1.15 7 �2.33,

H0X 2
0 � 1.75 7 1.24,

Mean � 19.514, df � 14
(303.2, �)H0,

d � 0.3125, power � 0.1
H0t0 � 2.48 7 1.943,

0.5 6 P-value 6 0.8
H0t0 � 0.667 6 2.056,

H00.025 6 P-value 6 0.05,
H00.1 6 P-value 6 0.5,

H00.05 6 P-value 6 0.10,

(590.95, �)P-value 6 0.0005
H0t0 � 11.01 7 1.761,

(�13.191, 63.431)
(�4.657, 54.897)

(��, 343.76)
(16.99, �)

P-value 6 0.005
0.01 6 P-value 6 0.025
0.05 6 P-value 6 0.10

H0X 2
0 � 10.39 7 7.81,

H0X 2
0 � 5.79 6 9.49,

H0X 2
0 � 2.094 6 9.49,

UCL � 0.4986LCL � 0.2414



H0z0 � �0.2917 7 �1.645,
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5-5. (a) reject (b) 0
(c) 0.2483 (d)

5-7. (a) reject (b) 9
5-8. 8
5-11.
5-13. (a)

Section 5-3
5-15. (a) reject 

(b) 2-sided (c) Reject (d) Reject 
(e) (f )

5-17. (a) reject 
(b) (14.93, 27.28) (c)

5-19. (a) fail to reject 
(b)

5-21. (a) reject 
(b) (c) Yes

5-23. (a) reject 
(b)
(c)

5-25. (a) reject 
(b)
(c) (0.045, 0.240)

5-27. 38
5-29. fail to reject 
5-31.
5-33. (a) (b)

Section 5-4
5-35. (a)

reject 
(b) 2-sided (c)
(d)
(e)

5-41. (a)
5-43. (a) reject 

(b)
5-45. fail to reject 

Section 5-5
5-51. (a) 1.47 (b) 2.19

(c) 4.41 (d) 0.595
(e) 0.439 (f ) 0.297

5-53.
5-55. fail to reject 
5-57. (a) (0.2177, 8.92) (b) (0.145, 13.40)

(c)
5-59. fail to reject 
5-61. reject 
5-63. (0.245, �)

H0f0 � 0.064 6 0.4386,
H00.265 6 f0 � 1.15 6 3.12,

(0.582, �)

H00.248 6 f0 � 3.34 6 4.03,
0.025 6 P-value 6 0.05

H0t0 � �3.48 7 �3.499,
(�10.97, �0.011)

H00.01 6 P-value 6 0.025,
(�1.216, 2.55)
P-value 6 0.001
0.001 6 P-value 6 0.0025

(�8.7017, �1.1635)
H0t � �4.2534, P-value � 0.002 6 0.05,

StDevx1 � 1.5432, SE MeanDiff � 1.160,

�0.474 6 �30 � �20t � 1.82
(�15, �)

H0P-value 7 0.40,

0.0025 6 P-value 6 0.005
H0t0 � 3.14 7 1.345,

(�0.749, �0.111)
0.010 6 P-value 6 0.020

H0t0 � �2.82 6 �2.101,
(1.065, �)

H0P-value 6 0.0005,
(�0.394, 0.494)

H0P-value 7 0.80,
n 7 8

H0P-value 6 0.001,
P-value 6 0.001�1.196

H0H0

H0P-value � 0.001 6 0.05,

P-value � 0.352
H0: �n � �o � 10 H1: �n � �o 6 10,

(�21.08, 7.72)

H0P-value � 0.0036 6 0.05,
(�8.21, �4.49)

H0z0 � �6.70 6 �1.96, Section 5-6
5-65. (a) 1-sided

(b) reject 
(c) reject (d) (0.0024, 0.14618)

5-67. (a) 0.819 (b) 383
5-69. (a) fail to reject 

(b) 0.4592 (c) 0.90
5-71.
5-73.

Section 5-8
5-75.

5-77. (a) reject 
5-79. (a) fail to reject 
5-81. (a)

(b) 6 (c) significance
5-83. (b)

Supplemental Exercises
5-89. (b) fail to reject 
5-91. (a) reject (b)

(c)
5-93. (a) (b)
5-95. (a) reject 

(b) reject 
5-97. (a) fail to reject 

(b) fail to reject 
(d) fail to reject 

fail to reject 
5-99. (a) reject 
5-101. 23
5-103. (b) (c) Yes
5-105. (a) (b) Yes
5-107. (a)

(b) reject 
5-109. (b) fail to reject (c)
5-111. (b) 0.002
5-113. (b) fail to reject 

CHAPTER 6

Section 6-2
6-1. (a)

(c)

(d)
(f ) 98.6% (i) (0.02, 0.03), (0.107, 0.15)
(k) r � 0.993, P-value � 0

�1:�0:
se(�̂1) � 0.007738, se(�̂0) � 0.001786

SSE � 0.000001370, �̂2 � 0.000000342

ŷ � 0.0249 	 0.129x

H0P-value � 0.228 7 0.05,

n � 22H0P-value 7 0.8,
H0f0 � 4.112 7 3.06,

f � 4.112
MSTreatment � 23.782, MSError � 5.783
DFTreatment � 4, DFError � 15,
SSError � 86.752, SSTotal � 181.881,
n � 4
(�0.366, 0.264)

H0z0 � �5.36 6 � 2.58,
H0�1.65 6 z0 � 1.125 6 1.65,

H0�1.96 6 z0 � 1.25 6 1.96,
H0�1.65 6 z0 � 0.88 6 1.65,
H0�1.96 6 z0 � 0.88 6 1.96,

H0z0 � 6.55 7 2.57,
H0z0 � 6.55 7 1.96,

0.065 6 �2 � �11.167 6 �2 � �1

(2.17, �)
P-value 6 0.01H0f0 � 4 7 1.92,
H0f0 � 0.609 7 0.459,

s � 0.022

P-valueBlock 6 0.01
F � 7.65, P-valueTreatment 6 0.01,
 SSBlock � 323.825, MSError � 8.4665
 MSTreatement � 252.64, DFBlock � 5,

H0P-value � 0.559,
H0P-value � 0,

F � 33.1, P-value 6 0.01
DFFactor � 4, SSFactor � 987.71, MSError � 7.46,

�0.0070 6 FA � FB

(�0.00565, �)

H0P-value � 0.06142,

H0

H0P-value � 0.023 6 0.05,
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6-3. (a)
(c)

(d)
(f) 64.5% (i) (0.304, 0.483), 

(0.00211, 0.00455) (k)
6-5. (a) (c)

(d)
(f) 86.6% (i) (38.93, 41.18),

(k)
6-7. (a) 0.055137 (b) (0.054460, 0.055813)

(c) (0.053376, 0.056897)
6-9. (a) 0.6398 (b) (0.6366, 0.6430)

(c) (0.6256, 0.6537)
6-11. (a) 36.095 (b) (35.059, 37.131)

(c) (32.802, 39.388)
6-13. (a) (b) 14.045

(c) (d) 3.61 (e) 1.574
6-15. (a)

(b) 0.0388 (c) significance (d) (0.6444, 1.0171)
(f ) 0.324
(g) 95% CI: (1.787, 2.035), 95% PI: (1.464, 2.358)

Section 6-3
6-17. (a)

(c)
(d)

(f )

(h) (113.17, 588.81), 
( j)

6-19. (a) � 146 � 1.12 Age � 0.591 Sev 	 0.12 Surg 	
0.54 Anx (c)

(d) R-Sq � 88.0%, R-Sq(adj) � 83.6%

(f)

(h) �0: (125.696, 166.61), �1: (�1.5898, �0.65), 
�2: (�0.5906, 0.0244), �3: (�10.016, 10.26), 
�4: (�4.9761, 6.0641)

6-21. (a)
(c)

(d)

(f )

(h)

(k) VIFs 6 10(�1.722, 1.75)�4:
�3: (�4.22, 7.094),(�3.613, 21.461),�2:

(�0.267, 1.478),�1:(�594.38, 388.98),�0:
se(�̂4) � 0.7338

se(�̂2) � 5.301, se(�̂3) � 2.392,

se(�̂0) � 207.9, se(�̂1) � 0.3689,

R2 � 74.5%, R2
Adjusted � 59.9%

SSE � 1699.0, �̂2 � 242.7	 0.014x4

ŷ � �103 	 0.605x1 	 8.92x2 	 1.44x3

se(�̂3) � 4.606, and se(�̂4) � 2.508

se(�̂0) � 9.294, se(�̂1) � 0.2134, se(�̂2) � 0.2794,

SSE � 822, �̂2 � 74.7
ŷ

VIF � 2.6(�0.439, 0.131)�2:
(�4.99, 2.45),�1:�0:

se(�̂1) � 1.169, se(�̂2) � 0.08953

se(�̂0) � 74.75,

R2
Adjusted � 77.0%R2 � 86.2%,

SSE � 1950.4, �̂2 � 650.1

ŷ � 351 � 1.27x1 � 0.154x2

ŷ � 0.6649 	 0.83075x,

P-valueregression 6 0.02
MSError � 0.0388, S � 0.197, F � 94.41,
R2

Adjusted � 87.78%, SSTotal � 4.1289
P-valuex 6 0.001,tx � 9.7141,

�1.385
ŷ � 32.049 � 2.77x, �̂2 � 1.118

r � �0.931, P-value � 0
�1: (�2.62, �1.62)

�0:
se(�̂1) � 0.2313, se(�̂0) � 0.7509

SSE � 13.999, �̂2 � 1.077ŷ � 40.6 � 2.12x
r � 0.803, P-value � 0

�1:�0:
se(�̂1) � 0.0005815, se(�̂0) � 0.04258

SSE � 0.0007542, �̂2 � 0.0000419

ŷ � 0.393 	 0.00333x 6-23. (a) 149.9 (b) (85.1, 214.7) (c)
6-25. (a) 98.35 (b) (87.89, 108.71)

(c) (76.69, 120.02)
6-27. (a) 287.56 (b) (263.77, 311.35)

(c) (243.69, 331.44)
6-29. (a)

(b)

(d)
(e) (18.9417, 104.0973)

6-31. (a)

(b) (c)
reject 

(d) not significant,
significant

(e) (f) (7.7602, 10.4682)

Section 6-4
6-33. (a)

6-35. (b) (c)
6-37. (b) (c)

Supplemental Exercises
6-45. (a) 0.12 (b) Points 17 and 18 are leverage points
6-47. (a) reject 
6-49. (b) (c) 21.038

(d) , 

(f)
6-51. (b) (c) 1886.154
6-55. (a)

(b)
6-57. (a)

(b)

(d) (e) (91.9, 282.6)

CHAPTER 7

Section 7-3
7-1. (a) Term Coeff Se (coeff)

Material 9.313 7.730
Temperature �33.938 7.730

4.687 7.730
(c) Only Temperature is significant
(d) Material: 

Temperature: 
Material � Temperature: (�21.546, 40.294)

(�98.796, �36.956)
(�12.294, 49.546)

Mat � Temp

(�299.8, 674.3)
se(�̂2) � 5.241se(�̂1) � 3.460,

�̂2 � 55563, se(�̂0) � 94.20,

ŷ � �440 	 19.1x1 	 68.1x2

� � 0.1, x3, x4, x5, x6

� � 0.25, x2, x3, x4, x5, x6

ŷ � 2625 � 37x
ŷ � 21.031461x

e � 1.6629ŷ � 101371

ŷ � 0.47 	 20.6x

H0F0 � 1323.62 7 4.38,

� � 0.1, x2� � 0.25, x1, x2

� � 0.1, age, sev� � 0.25, age, sev
�0.0272x2

1 	 0.000471x2
2

ŷ � 643 	 11.4x1 � 0.933x2 � 0.0106x1x2

(�0.4463, 1.9297)
t0 � 13.87 7 2.060,�2:
t0 � 1.29 6 2.060,�1:

H0

F0 � 96.18 7 3.39,�̂2 � 0.693
f � 96.182, P-valueregression 6 0.02
MSError � 0.6933, s � 0.832646,
R2 � 88.50%, SSTotal � 4.1289, DFError � 25,
0.20 6 P-valuex1 6 0.50, P-valuex2 6 0.001,

tx2 � 13.8682,tx1 � 1.2859,

(�37.0845, 160.1235)
se(�̂1) � 0.6763, se(�̂2) � 0.6887

�̂2 � 1321, se(�̂0) � 45.23,

ŷ � 238.56 	 0.3339x1 � 2.7167x2

(�12.5, 312.3)
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7-3. (a) Term Coeff Se (coeff)
PVP 7.8250 0.5744
Time 3.3875 0.5744

�2.7125 0.5744
(c) All are significant
(d) PVP: (13.352, 17.948)

Time: (4.477, 9.073)

7-5. (a) Term Coeff Se (coeff)
Temp � 0.875 0.7181
%Copper 3.625 0.7181

1.375 0.7181
(c) %Copper is significant
(d) Temperature: 

%Copper: (4.378, 10.122)

7-7. (a) Term Coeff Se (coeff)
Doping �0.2425 0.07622
Anneal 1.0150 0.07622

0.1675 0.07622
(c) Polysilicon doping and Anneal are significant
(d) Doping: 

Anneal: (1.725, 2.34)
(0.0302, 0.6398)

7-9. (a)

(b) All are significant
(c)
(d)

(e)

(f) 7.7333
7-11. (a)

(b)

Sections 7-4
7-13. (a) Term Effect Coeff

A 18.25 9.12
B 84.25 42.12
C 71.75 35.88
AB �11.25 �5.63
AC �119.25 �59.63
BC �24.25 �12.13
ABC �34.75 �17.38

(b)

7-15.
7-17. (a) No terms are significant

(b) There is no appropriate model
7-19. (b) all effects except the three-factor 

interaction are significant
7-21. (a) (b) curvature is significantt � �9.20,�̂2 � 8.2

�̂2 � 13.62,

Score � 175 	 8.50A 	 5.44C 	 4.19D 	 4.56AD
� 59.6AC

Tool life � 413 	 9.1A 	 42.1B 	 35.9C

F(LOF) � 1.17
SS � 8.642, MS � 4.32, F � 192.04

�0.3083xAB

ŷ � 7.9750 	 0.8083xA 	 0.2583xB

P-valueAB 6 0.001
� 0.04330, TB � 5.965, P-valueA 6 0.001, 

CoeffA � 0.25835, SE(CoeffA) � SE(CoeffB)
SE(effect) � 0.0866

P-valueA 6 0.01, P-valueB 6 0.01
MSB � 0.80083, Finteraction � 50.7036,
Doping � Anneal:

(�0.7898, �0.1802)

Doping � Anneal

Temperature � %Copper: (�0.122, 5.622)

(�4.622, 1.122)

Temp � Copper

PVP � Time: (�7.723, �3.127)

PVP � Time

7-23. Block 1: (1) ab ac bc; Block 2: a b c abc; none of the
factors or interactions appears to be significant using
only first replicate

7-25. Block 1: (1) acd bcd ab; Block 2: a b cd abcd; Block
3: d ac bc abd; Block 4: c ad bd abc; the factors A, C,
and D and the interaction AD and ACD are significant

7-27. ABC, CDE
7-29. (a)

(b) No, P-value = 0.521
(c)
(d)

7-31. (a) Blocking useful, large SS(Blocks)
(b) ABC, ABD, ACD, and BCD
(c) Coef of AD � 15.14, tAD � 1.525, df(Blocks) � 1,

Adj MS � 1165.33

Section 7-5
7-33. (a)

(b)

(c)

7-35. (a)
(b)

(c) Factor B is significant (using AB and AD for error)
7-37.
7-43. (a)

(b) etc.

Section 7-6
7-45. (a)

(b)

7-47. (a) Central composite design, not rotatable
(b) Quadratic model not reasonable
(c) Increase 

Section 7-7
7-49. (a) Interaction is significant

(c)
7-51. (a) Source F

Hardwood 7.55
Cook time 31.31
Freeness 19.71

2.89
2.94
0.95
0.94Hardwood � cook time � freeness

Cook time � freeness
Hardwood � freeness
Hardwood � cook time

Paint type � 1, Drying time � 25 minutes

x1

	 26.83x1x3 � 17.92x2x3

�17.33x2
1 � 34x2

2 � 17.17x2
3 	 13.33x1x2

ŷ � 299 	 50.89x1 	 75.78x2 	 59.5x3

	 25.83x1x2

ŷ � 499.26 	 85x1 	 35x2 � 71.67x3

A � 1.45, B � �0.86, H � �0.01,
G � ABC, H � ABD
Generators: E � BCD, F � ACD,

	 325EStrength � 3025 	 725A 	 1825B 	 875D

AD � �1.275
D � �0.675, E � 2.275, AB � 1.825,
A � �1.525, B � �5.175, C � 2.275,
I � ACE � BDE � ABCD

	 0.575AB � 0.615AD
color � 2.77 	 0.718A � 0.732B 	 2.27D
BC � 0.2925, BD � 0.12, BE � 0.1625
AC � �0.9125, AD � �1.23, AE � 0.4275, 

D � 4.5450, E � �0.7025, AB � 1.15,
A � 1.4350, B � �1.4650, C � �0.2725, 
I � ABCDE

�4.66
ŷ � 14.97 	 9.93xA � 5.28xB � 14.98xAB

TABC � 0.5438, F � 191.608
TC � 0.2719, TAB � �23.9603, TBC � 0.112,
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(b) Hardwood, cook time, freeness, and hardwood �
are significant

7-53.

Supplemental Exercises
7-55. (a) Source pH Catalyst

2.54 5.02
pH and are significant

7-57. (a) Source Level Salt
63.24 39.75 5.29

Level, Salt, and are significant
(b) Application level 1 increases flammability average

7-59. (a)

(b)
(c) Two-way interactions are significant (specifically

BC interaction)
(d) 	1.75C

7-61. (a) Term Effect Term Effect
V 15.75 FP
F FG 19.25
P PG
G VFP 1.25
VF VFG
VP 3.00 VPG 0.50
VG 2.75

(b) V, F, P, G, VF, and FGP are possibly significant
(c) V, G, and FPG are significant

7-63. Factors F, P, G, VF, and VP are significant. Use
as a design generator.

7-65. Generators: 
7-67. (a)
7-69. Model: 

Maximum viscosity is 14.425 using and

7-71. (a)

(b) (c) 4.375

CHAPTER 8

Section 8-3
8-1. (a) chart: UCL = 39.42, LCL = 28.48

R chart: 
(b) chart: 

R chart: UCL � 12.74,  LCL � 0
UCL � 39.34,  LCL � 29.22x
UCL � 13.77, LCL � 0

x

ŷ � 6.0625 	 1.6875x1

6 0.2, P-valueAC 7 0.8, 0.1 6 P-valueABC 6 0.2
6 0.005, 0.05 6 P-valueB 6 0.01, 0.1 6 P-valueAB

tAB � 1.7615, tBC � �0.0801, 0.002 6 P-valueA

SE(CoeffAB) � 0.3903, tC � 1.1209, 
B � �2.56

A � 1.19
�0.1240A2 � 0.079B2

y � 13.728 	 0.2966A � 0.4052B
D � ABC

D � AB, E � AC
G � VFP

�4.38P � 12.5G � 6.25FPG
Surface Rough � 101 	 7.88V � 5.37F

�1.50�8.00
�25.00

�3.75�8.75
�10.75

�6.00

	 5.73BC� 4.35AB 	 3.52AC
Delta line � �11.8 � 1.37A � 3.33B

�̂2
c � 8.40

ABC � �6.49
AB � �8.71, AC � 7.04, BC � 11.46,
A � �2.74, B � �6.66, C � 3.49,

Level � Salt
f0

Level � Salt
pH � Catalyst

�0.05t0

pH � Catalyst

FAB � 1.24, P � valueB 6 0.01, P � valueAB 7 0.25
SSTotal � 171.582, MSB � 41.322, FA � 19.17,

freeness
8-3. (a) chart: 

R chart: 
(b) chart: 

R chart: 
8-5. (a) chart: 

R chart: 

(b)

8-7. (a) chart: 
R chart: 

(b) chart: 
R chart: 

8-9. (a) 2.73 (b) No

Section 8-4
8-13. (a) chart: 

MR chart: 
(b)

8-15. (a) x chart: 
MR chart: 
Revised: x chart: 

MR chart:
(b)

8.17. (a) x chart: UCL � 91.5, LCL � 8.2
MR chart: UCL � 36.51, LCL � 0
Revised:
x chart: UCL � 83.58, LCL � 5.00
MR chart: UCL � 54.41, LCL � 0

(b)

Section 8-5
8-19. (a) (b) 0.0376
8-21.
8-23. Fallout is 0.0925, 
8-25.
8-27. (388.72, 582.28)

Section 8-6
8-29. (a) (b) Yes
8-31.

Section 8-7
8-33. (a) 0.2177 (b) 4.6
8-35. (a) 0.4203 (b) 2.38
8-37. (a) 0.3022 (b) 3.31
8-39. (a) 0.00413 (b) 242.13
8-41. (a) 0.06552 (b) 15.26

Section 8-8
8-43. (a) No significant difference, 

(b)
(c) 100%

�2
Total � 0.0825; �2

gauge � 0.0825;  �2
specimen � 0

P-value �  0.889

UCL � 8.382, LCL � 0
UCL � 1.676, LCL � 0

CP � 0.248, Cpk � 0.138
CP � 0.582, Cpk � 0.490

Cp � 0.5285
CP � 1.141, Cpk � 0.5932

�̂ � 39.29, �̂ � 14.76

�̂ � 485.5, �̂ � 32.26
 UCL � 118.9, LCL � 0

LCL � 388.7
UCL � 582.3,

UCL � 123, LCL � 0
UCL � 580.2, LCL � 380

�̂ � 15.99, �̂ � 1.055
UCL � 3.887, LCL � 0

UCL � 19.15, LCL � 12.83x

UCL � 2.883, LCL � 0
UCL � 7.369, LCL � 5.077x
UCL � 2.922, LCL � 0
UCL � 7.485, LCL � 5.613x

�̂ � x � 306.28, �̂ �
r

d2

�
47.2

2.059
� 22.92

UCL � 107.71, LCL � 0
UCL � 340.69, LCL � 271.87x
UCL � 8.885, LCL � 0
UCL � 17.98,  LCL � 12.31x
UCL � 9.581,  LCL � 0
UCL � 18.20,  LCL � 12.08x
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8-45. (a) 2
(b)
(c) 26.39%

8-47. (a) Operator P-value � 0.307,

(b)
8-49. (a)

Supplemental Exercises
8-51. (a) chart: 

R chart: 
Revised: chart: 
R chart: LCL � 0UCL � 0.04623,

UCL � 64.02, LCL � 63.98x
LCL � 0UCL � 1.075,
LCL � 63.71UCL � 64.56,x

�2
Repeat � 3465; �2

Reprod � 20779
�2

Repeat � 104.12; �2
Reprod � 1.44

Part � Operator P-value � 0.799

�2
Total � 8242; �2

gauge � 574; �2
part � 7668

(b)
(c) (d) (e) 0.025
(f )

8-53. (a)
(b) Revised: 

8-55. (a) 0.0294 (b) 0.0003
8-57. (a) 1.9 (c) 6.25
8-59. (a) 0.01017 (b) 0.0101 (c) 0.098525, 0.0888
8-61. (a) 0.2476 (b) 0.5339
8-65. 0.00135
8-67. (a) C or U (b) U chart 

(c) Revised: UCL � 0.0105, LCL � 0
UCL � 0.0112, LCL � 0

LCL � 0UCL � 1.302,
LCL � 0UCL � 1.503,

ARL � 161
Cpk � 0.641CP � 0.641

�̂ � x � 64, �̂ � 0.0104
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22 factorial, 366
23 factorial design, 376
2k factorial, 365
2k-1 fractional factorial design, 398
2k-p fractional factorial designs, 404

Accuracy of a gauge, 473
Actual process capability, 462,463
Adjusted R2, 331
Aliases, 400
All possible regressions, 348
Alternate fraction, 400
Alternative hypothesis, 157
Analysis of variance in regression, 310, 314, 329
Analysis of variance, see ANOVA
Analytic study, 14, 137
ANOVA, 272, 273, 275, 277, 310, 329, 424, 475, 476
ANOVA sum of squares identity for the randomized complete block

design, 283
ANOVA sum of squares identity, 275
ANOVA table, 277
Approximating the P-value, 190
Assignable causes of variability, 441
Attributes control chart, 444, 465
Average run length, 470, 471
Average, see sample mean

Backward elimination, 349
Basic design, 401
Bernoulli trial, 102
Beta distribution, 88
Beta random variable, 88
Bias, 152
Binomial distribution, 102, 104, 119, 120
Binomial experiment, 104
Bins in a histogram, 34
Block sum of squares, 283
Blocking in a 2k design, 393
Blocks as a restriction on randomization, 286
Box plot, 39, 43

C chart, 469
Categorical regressors, 346
Categorical variable, 51
Center line on a control chart, 20, 441

Center points in a 2k design, 390
Centering regressors in polynomial regression models, 344
Central composite design, 419, 421
Central limit theorem, 74, 138, 139, 232
Chance causes of variability, 441
Chi-squared distribution, 86
Clusters of observations, 4
Coefficient of determination, 311
Comparative experiments, 156
Complement, 62
Completely randomized designed experiment, 5, 274
Completely randomized experiment with unequal sample sizes, 279
Computing sums of squares for the randomized complete block 

design, 284
Computing sums of squares in a completely randomized 

experiment, 277
Conceptual population, 12
Confidence interval, 9, 178, 180, 195, 203, 210, 235, 247, 255, 263,

269, 270, 315, 316, 334
Confidence interval on a binomial proportion, 210, 211, 213
Confidence interval on the difference in means for paired 

samples, 255
Confidence interval on the difference in means of two normal 

distributions, variances unknown, 247, 248
Confidence interval on the difference in two means, variances

known, 235, 237
Confidence interval on the difference in two proportions, 269, 270
Confidence interval on the mean of a distribution, variance 

known, 180
Confidence interval on the mean of a normal distribution, variance

unknown, 195, 196
Confidence interval on the mean response in multiple linear 

regression, 334
Confidence interval on the mean response in simple linear 

regression, 316
Confidence interval on the ratio of variances of two normal 

populations, 263
Confidence interval on the variance of a normal 

distribution, 203
Confidence intervals on the slope and intercept in simple linear 

regression, 315
Confidence level and precision of estimation, 181
Confounding in a 2k design, 393, 395, 396
Construction of fractions, 401
Continuity correction, 120
Continuous random variable, 61, 66

Index

BMindex.qxd  10/25/10  4:38 PM  Page 511



512 INDEX

Contour plot, 302, 365
Control chart, 17, 20, 440, 442, 456, 470, 471
Control chart for average number of defects per unit, 467
Control chart for defects, 469
Control chart for fraction nonconforming, 465
Control chart performance, 470
Control charts for individual measurements, 456, 457, 458
Control charts, table of factors for constructing, 499
Control limits, 20, 441, 444, 451, 452, 457, 466, 467, 

468, 469, 470
Controllable variables, 361
Cook’s distance measure, 339
Coplot, 51
Correlation and causality, 48
Correlation, 132, 311, 322
Correlation coefficient, 132
Covariance, 132
Cp statistic in regression, 349
Cp, 451
Cpk. 463
Critical region, 158
Critical values, 158
Cumulative distribution function, 68, 69, 76
Cumulative distribution function of a continuous random variable, 68
Cumulative distribution function of a discrete random variable, 98
Cumulative frequency plot, 34
Cumulative standard normal distribution table, 486
Cyclic pattern in data, 42

Defining relation for a fractional factorial design, 399, 404
Degree-of-belief interpretation of probability, 62
Degrees of freedom, 28, 188
Degrees of freedom for the randomized complete block design, 283
Degrees of freedom in ANOVA, 276
Degrees of freedom in the F-distribution, 260
Design generator, 399, 404, 408
Design of a control chart, 444
Design resolution, 403
Designed experiment, 6, 9, 360
Determining difference in means following ANOVA, 279, 286
Digidot plot, 42
Discrete random variable, 61, 97
Dot diagram, 4, 16, 18, 43

Effect of outliers in simple linear regression, 321
Empirical model, 7, 15, 298, 299, 302
Engineering method, 2
Enumerative study, 14
Erlang distribution, 86
Error mean square, 276
Error sum of squares, 275, 283, 309, 310
Estimated standard error, 154
Expected mean squares for the randomized complete block 

design, 284
Expected value, 70, 99
Expected values of ANOVA mean squares, 276
Experiment, 58
Experimental unit, 282
Experiment-wise error rates, 280
Exponential distribution, 113, 114

Exponentially weighted moving average control chart, 459
Extreme outliers, 39

Factor levels, 272
Factorial experiment, 9, 362, 265, 366, 376, 404, 424
False alarm on a control chart, 471
Family error rates, 280
F-distribution, 259, 260, 261
First quartile, 32
First-order model, 415
Fitness for use, 439
Fitted regression model, 306
Fixed significance level testing, 164
Forward selection, 349
Fractional factorial experiment, 11, 398, 403, 404
Fractional replication of a 2k design, 398
Fraction-defective control chart, 465
F-test on the ratio of variances of two normal populations, 259, 261
Full model, 336, 345
Functions of random variables, 129

Gamma distribution, 86
Gamma function, 86
Gauge R & R study, 477
Gaussian distribution, see normal distribution
General factorial experiment, 424
General method for deriving a confidence interval, 184
General model for a control chart, 442
Generalized interaction, 408
Goodness-of-fit testing, 219
Grand mean, 450

Histogram, 34, 43, 451
Hyperplane, 302
Hypothesis, 156
Hypothesis testing, 9, 150, 156, 163, 164, 167, 170, 177, 187, 189,

199, 205, 207, 219, 239, 243, 259, 265, 277

Identity element, 379
In-control average run length, 471
In-control process, 441
Independent populations, 231
Independent random variables, 124, 130
Independent trials in a random experiment, 102
Independent variables in regression, see regressor variables
Indicator variables in regression, 348
Influential observations in regression, 338
Interaction, 11, 51, 303, 347, 364
Interaction effects in a factorial, 363, 364, 367, 377, 378
Interaction plots, 364
Intercept, 301
Interquartile range, 32
Inverse cumulative distribution function, 83

Joint distributions, 123
Joint probability density function, 123

Lack of fit, 373
Lack-of-memory property of the exponential distribution, 116
Large-sample test on the mean, 177
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Least squares, 304
Leverage points in regression, 339
Linear functions of independent normal random variables, 131
Linear functions of independent random variables, 130
Linear functions of random variables that are not independent, 131
Linear regression model, 303
Linear statistical model for a randomized complete block design, 282
Linear statistical model, 274
Location, 4
Lognormal distribution, 84
Lognormal probability plots, 94, 95
Lognormal random variable, 84
Lower confidence limit, 179
Lower control limit, 20, also see control limits

Main effect of a factor, 362, 366, 377
Marginal plot, 43
Matrix of scatter plots, 51
Mean and variance of a linear function of independent random 

variables, 130
Mean and variance of a linear function of random variables, 132
Mean and variance of the beta distribution, 88
Mean and variance of the binomial distribution, 107
Mean and variance of the exponential distribution, 114
Mean and variance of the gamma distribution, 86
Mean and variance of the lognormal distribution, 84
Mean and variance of the normal distribution, 75
Mean and variance of the Poisson distribution, 111
Mean and variance of the Weibull distribution, 87
Mean of a continuous random variable, 70
Mean of a discrete random variable, 99
Mean square error of an estimator, 153, 154
Mean square for treatments, 276
Measurement systems capability, 473, 475, 476, 477
Mechanistic model, 15, 299
Median, 31
Method of least squares, 304, 305, 326, 327
Method of maximum likelihood, 153
Minimum variance unbiased estimator, 153
Model adequacy, 306, 319, 336
Model adequacy checking, 374, 428, also see residual analysis
Model sum of squares, 311
Moving range control chart, 457, 458
Moving range, 457, 458
Multicollinearity, 339
Multinomial distribution, 104
Multiple comparisons, 280
Multiple linear regression model, 301, 302, 326
Multiple regression model, 301
Multivariate data, 46
Mutually exclusive sets, 62

Non-central t-distribution, 193
Nonlinear functions of independent random variables, 133
Normal approximation to the binomial and Poisson distributions,

119, 120
Normal distribution, 74, 75
Normal distribution tolerance intervals, table of factors, 497
Normal equations, 305, 327
Normal populations, 232

Normal probability plots, 92, 93, 192, 243
Normal probability plot of residuals, 320
Normal probability plots of effects in a 2k design, 382
Normal random variable, 75, 76, 131
Normality and the t-test, 191
nP control chart, 467
Nuisance factor in an experiment, 281, 282
Null hypothesis, 157
Null set, 63

Observational study, 5, 6, 8
OC curves, 194, 495
One-half fraction of a 2k design, 11, 398
One-sided confidence bound, 179, 183
One-sided process capability ratio, 463
Operating characteristic curves, see OC curves
Operating characteristic curves for the t test, 495
Optimization experiments, 361, 414, 416, 418
Ordered stem-and-leaf diagram, 31
Orthogonal design, 379
Outcomes and events, 63
Outliers, 4, 39, 320, 321
Out-of-control average run length, 471
Out-of-control process, 441, 447
Overall mean in an ANOVA model, 274
Overcontrol of a process, 18

Paired t-test, 252
Paired versus unpaired comparisons, 254
Parallel systems, 126
Parameter estimation, 150
Pareto chart, 36
Partial or marginal tests, 333
Partial regression coefficients, 301
Path of steepest ascent, 416
Pattern recognition, 448
Patterns on control charts, 447, 448
P-chart, 465, 466
Percentage points of the chi-square distribution, 200
Percentage points of the chi-square distribution, table, 489
Percentage points of the F-distribution, 261
Percentage points of the F distribution, table, 490
Percentage points of the t-distribution, 188
Percentage points of the t distribution, table, 488
Percentile, 32
Performance of a Shewhart control chart, 471
Physical population, 12
Point estimate, 150
Point estimator, 150, 153
Poisson distribution, 57, 109, 111, 119, 121
Poisson process, 109, 110
Poisson random variable, 111
Polynomial models, 302, 344
Pooled estimator of variance, 241
Pooled t-test, 241
Population correlation coefficient, 322
Population, 6, 12, 25, 149
Population mean, 25
Population variance, 28
Potential process capability, 462
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Power, 163
Precision of a gauge, 473
Prediction interval on a future observation in multiple 

regression, 335
Prediction interval on a future observation in simple linear 

regression, 318
Prediction interval on a new observation, 216
Prediction of future observations using a regression model, 318, 335
Preliminary samples for constructing control charts, 452
Principal fraction, 400
Probabilistic linear model, 299
Probability, 62
Probability density function, 66
Probability distribution, 66, 97
Probability mass function, 97, 98
Probability paper, 92
Probability plots, 92
Probability plots and goodness-of-fit, 94
Procedure for hypothesis testing, 167
Process capability, 461
Process capability ratio, 461, 462, 463
Process capability study, 443
Process stability over time, 14
Projection of a 2k design, 381
Projection of a fractional 2k-p design, 403
Propagation of error, 133, 134
Pure error, 373
P-value, 164, 170
P-value as weight of evidence against the null hypothesis, 165
P-value for a t-test, 189, 190
P-value for a z test, 170, 171
P-value for the test, 202
P-values for the F-test, 262

Quality improvement, 439
Quality of conformance, 439
Quality of design, 439
Quartiles, 32

R chart, 449, 451, 454
R2, 311, 329
Random experiment, 59
Random sample, 13, 137, 149
Random test order, 9
Random variable, 4, 60
Randomization, 272
Randomized complete block experiment, 281, 282
Range, 32
Range method for estimating �, 450
Rational subgroups, 446
Reduced model, 336, 345
Reduction of variability, 439, 441
Regression analysis, 304
Regression assumptions, 309
Regression coefficient, 300, 301
Regression coefficient properties, 309
Regression model, 17
Regression model for a two-level factorial, 370, 381
Regression sum of squares, 311
Regressor variable, 299, 300, 302, 346

�2

Relationship between confidence intervals and hypothesis 
testing, 181

Relative efficiency of an estimator, 154
Relative frequencies, 34
Relative frequency interpretation of probability, 62
Reliability, 116, 126
Repeatability of a gauge, 476
Replicates, 272
Replication, 9
Reproducibility of a gauge, 476
Residual analysis, 281, 288, 320, 336, 374
Residual analysis in ANOVA, 280, 281, 287
Residual plots, 281, 288, 374
Residual sum of squares, 309, 310
Residuals, 280, 287, 306, 307
Residuals in a two-level factorial, 374, 381
Resolution III design, 403
Resolution IV design, 404
Resolution V design, 404
Response surface, 415
Response surface methods, 414
Response variable, 9, 299, 300
Retrospective study, 6, 7
Root cause of quality problems, 443
Root causes, 38
Rotatable design, 421
Runs on a control chart, 447

Sample, 6, 12
Sample correlation coefficient, 46, 47, 132, 322
Sample mean, 25
Sample sizes in confidence interval construction, 182, 212, 237
Sample sizes in hypothesis tests, 173, 174, 175, 193, 195, 208, 234,

246, 268
Sample standard deviation, 26
Sample variance, 26
Sampling distribution, 138, 169
Scatter, 4
Scatter diagram, 16, 17, 46
Science of data, 3
Scientific method, 1, 2
Screening experiments, 361
Second-order model, 415, 418
Sequential experimentation, 361, 400, 415, 416
Series systems, 126
Set, 62
Shewhart control charts, 442
Shortcut method for calculating the sample variance, 27
Significance level of a statistical test, 159
Significance of regression, 313, 314, 331
Significance of regression in multiple regression, 331
Simple linear regression model, 300, 304
Simple random sample, 13
Single replicate of a 2k design, 382, 383, 392
Single sample t-test, 190
Single-factor completely randomized experiment, 474
Single-sample z-test, 170
Six-sigma process, 464
Size of a test, 159
Small sample tests on proportions, 208
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Sources of variability, 3
Sparsity of effect principle, 382
Standard deviation of a continuous random variable, 71
Standard deviation of a discrete random variable, 99
Standard error of a statistic, 154
Standard error of paired differences, 253
Standard error of the difference in two means, 233
Standard errors of effects, two-level factorial, 368
Standard errors of the coefficients in simple linear regression, 310
Standard normal cumulative distribution function, 76
Standard normal distribution, 232
Standard normal random variable, 75, 78, 79
Standardized residuals, 320, 336
Standardizing a normal random variable, 78, 79
Statistic, 137
Statistical hypothesis, 156
Statistical inference, 5
Statistical process control (SPC), 21, 438, 440
Statistical significance versus practical significance, 177
Statistical thinking, 3, 4
Statistics, 3
Steepest ascent, 416
Stem-and-leaf diagram, 29, 30
Stepwise regression, 349
Strategy of experimentation, 361
Strong versus weak conclusions in hypothesis testing, 163
Studentized residuals, 336
Sum of squares identity, two-factor factorial, 425
Sums of squares in a two-level factorial, 371
Surface plots, 364

Tampering, 18
Taylor series, 302
t-distribution, 187, 193
Test for curvature in a 2k design, 391
Test of a hypothesis, see hypothesis testing
Test on a group of regression coefficients, 336, 345
Test statistic, 170, 187, 199, 201, 206, 234, 266, 312, 323, 333, 341
Tests on individual coefficients in linear regression, 332
Third quartile, 32
Three-dimensional scatter diagram, 17
Three-sigma control limits, see control limits
Time series, 18, 41
Time series plot, 18, 41
Time-to-failure, 116
Tolerance chart, 451
Tolerance intervals for a normal distribution, 217
Total sum of squares, 275, 283
Transmission of error, 133
Treatment effects, 274
Treatment sum of squares, 275, 283
Treatments, 272
Trend in data, 41

Trial control limits, 452
Trimmed mean, 54
t-test on the difference in means of two normal distributions, 

variances unknown and equal, 239
t-test on the difference in means of two normal distributions, 

variances unknown and unequal, 243
t-test on the mean of a normal distribution, variance 

unknown, 189, 191
t-tests in multiple regression, 332
t-tests in simple linear regression, 312
Two-sample t-tests, 239
Two-sample z-test, 233
Two-sided alternative hypothesis, 157, 166, 167
Two-sided confidence interval, 179
Type I error, 158
Type II error for the t-test, 193
Type II error, 158, 159, 160, 173

U chart, 467, 468
Unbalanced design, 279
Unbiased estimator, 151, 152, 169
Unbiased estimators in regression, 309
Univariate data, 46
Unreplicated 2k design, see single replicate of a 2k design
Upper confidence limit, 179
Upper control limit, 20, also see control limits

Variability, 3, 4, 439, 441
Variable selection in regression, 348, 349
Variables control chart, 443
Variance inflation factors, 339
Variance of a continuous random variable, 70, 71
Variance of a discrete random variable 99

Warning limits on a control chart, 449
Waste and quality, 439
Weibull cumulative distribution function, 87
Weibull distribution, 86, 87, 116
Weibull probability plots, 94, 95
Weibull random variable, 87
Western Electric rules for control charts, 448
Whiskers on a box plot, 39

control chart, 443, 449, 451, 454

Zone rules for a control chart, 449
Z-test on the difference in two means, 233
Z-test on the equality of two population proportions, 265
Z-test on the mean of a distribution, variance known, 170, 172
Z-tests on proportions, 206

(chi-square)-goodness-of-fit test, 219
(chi-square)-test on the variance of a normal distribution, 

199, 200, 202
�2
�2

X
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Applications in Examples and Exercises 

Chemical and Biological

Paper pulp
Paralytic polio vaccine
Petroleum imports
pH
Photoconductor film absorption
Photoresist thickness
Plasma etch
Plasma-sprayed
Propellant burning
Pu contamination in radioactivity
Purity level of a steel alloy
Satisfaction survey
Shampoo

Sodium and chloride in 
surface streams 

Solar energy
Solar intensity

Storage time of tomatoes
Stress-test of a hip joint 

replacement part 
Sugar concentration in clear 

apple juice
Sugar content of the syrup in 

canned peaches
Superconduction compound
Surgical procedures
Suspended solid concentration 

of water
Therapeutic drug
Time to take blood sample
Tissue assay for liver manganese
Tree
Ultrafiltration membrane
Viscosity of fluids/rubber

Visual accommodation
Walker simulator
Water contaminants
Weight

Weight and systolic blood pressure 
Weight of a human joint 

replacement part
Yield of chemical process

Exercise 3-79
Example 2-9

Exercises 5-20, 5-57, 5-105
Examples 5-5, 5-85, 6-58

Exercise 3-250
Exercise 3-152
Exercise 7-4, 7-50
Example 3-18, Exercises 3-15, 

4-37, 4-86, 5-21
Exercise 4-40
Exercise 5-33
Exercise 6-14
Exercises 4-57, 4-93, 4-119
Exercise 4-142

Exercise 5-42
Exercise 5-18
Exercise 4-121
Exercise 4-61
Exercise 2-2, 3-233

Example 8-4
Exercise 3-249
Exercise 3-53
Exercises 5-29, 5-31, 5-61, 

Example 3-38
Exercise 7-33
Exercise 2-47, Example 8-2
Exercises 8-7, 8-25, 8-41
Exercise 7-5
Exercise 4-143
Exercise 3-150
Example 7-1
Exercises 5-23, 5-55, 7-3, 7-6, 

Example 5-10
Exercises 7-17, 7-28
Exercises 4-58, 4-94, 4-126
Exercise 3-213
Exercises 2-8, 2-18, 2-30, 2-43
Exercise 3-154
Exercise 3-116
Exercise 5-106
Exercise 4-108
Exercise 5-104
Exercise 3-18, 3-21
Example 7-7, Exercises 3-43, 

3-44, 3-51, 5-66, 5-67, 
5-68, 5-70, 8-29, 8-31

Exercise 4-124
Exercises 8-3, 8-11, 8-21, 8-37
Exercise 4-87, 4-90
Exercise 7-19

Exercise 4-123
Exercise 5-92
Exercises 5-12, 5-14, 8-52
Exercise 4-74, 4-88
Exercises 2-34, 2-58
Exercises 3-130
Exercise 6-30, 7-72
Exercises 6-6, 6-12
Exercises 5-8, 5-10
Exercise 3-27
Exercise 4-85
Exercise 2-41
Exercise 5-100
Examples 5-1, 5-2, 7-11, 

Exercises 7-60, 7-62

Exercise 7-47
Exercise 5-95
Exercise 2-50
Exercises 2-56, 3-220
Exercises 5-25, 5-58
Exercise 3-199
Example 7-3, 7-6
Exercise 5-90
Examples 4-2, 4-3, 4-4, 4-5, 4-6
Exercise 7-43
Exercise 8-43
Exercise 6-19, 6-25, 6-35
Exercises 4-21, 4-22, 4-23, 4-24, 

4-103, Example 6-11
Exercise 6-49

Exercise 3-75
Exercises 2-7, 2-19, 2-31, 

2-42, 3-89
Exercise 5-86
Exercise 3-107

Exercise 4-120

Exercise 4-68

Exercise 5-110
Exercise 3-252
Exercises 2-1, 2-16, 2-22, 

2-28, 3-232
Exercise 4-128
Exercise 3-99
Exercise 4-122
Exercise 5-48
Exercise 7-3
Exercises 2-45, 2-62, 3-205, 5-11, 

5-13, 7-55, 7-69, 8-15, 8-27
Exercise 2-5
Exercise 5-107
Example 3-36
Exercises 3-35, 3-224, 

3-234, 3-236
Exercise 2-55
Exercise 3-56

Examples 2-5, 5-4, 5-6
Exercises 2-17, 2-23, 2-29, 4-39, 

7-34, 7-45, 8-57

Air quality
Air Temperature and CO2

concentration
Aqueous film-forming foam
Arsenic in drinking water 

toenails, urine
Arthroscopic meniscal repair
Asbestos particles
Baked density of a carbon anode
Batteries

Benzene content
Bioactivity
Biochemical oxygen demand
Biomedical device
Biomedical linear accelerator 

failure
Blood cholesterol levels
Blood pressure 
Body weight of guinea pigs
Bottle wall thickness 
Breakdown time of an 

insulating fluid 
Ceramic substrate 
Cholesterol of cells 
CO in the air
Coating thickness 

Color of a chemical product
Concentration of a chemical process
Copper content of a plating bath
Copper plates 
Detection device of CO
Disability status
Epitaxial process 
Etching

Fabric-dying process 
Fatty acid content of margarine
Fluorescent tube 
Gene expression
Health care provider
Heart failure 
Heart pacemakers 
Hemoglobin level
Hexachlorobenzene 
Infection in patients 
Injection molding

Kidney stone 
Knee replacement device 
Knee surgery
Lead level by using flame atomic 

absorption spectromety
Leg-strength training 
Liquid dietary product 
Liquid laundry detergent 
Lung cancer
Mole conversion of naphthalene
Mylar material 
Nisin extraction 
Noise exposure and hypertension
Octane number
Organic solids 
Oxygenerated fuels vote
Pacemaker activation rate 
Pain relief tablet 
Paint

Civil, Industrial, and Mechanical
Abrasive wear
Accuracy of Medicaid claims
Acetylene yield
Airbag inflators
Airplane system and aircraft 

part
Automobiles
Banking
Bearings

Bottle filling

Breaking strength of 
plastic/yarn

Burning rate of solid-fuel 
propellants

Exercises 5-28, 5-30
Exercise 5-96
Example 6-9
Exercises 4-41, 4-45
Examples 2-8, 5-3
Exercises 3-108, 3-111
Exercises 2-35, 3-95
Exercise 3-122
Example 3-15, Exercises 2-53, 

3-63, 3-228, 3-246, 6-17, 
6-23, 6-33

Examples 4-10, 4-11, 
Exercise 4-102

Exercises 4-38, 5-4, 5-93, 5-94

Exercises 5-5, 5-9
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Calcium in doped cement
Cement mixture
Chocolate bars
Coil spring
College graduates
Component quality
Compressive strength

Compressive strength and 
intrinsic permability

Compressor life
Cooling system
Copier
Cracks in a mile of roadway
Cranked wing box structure
Crankshaft bearings
Cutting tool
CVD metal thickness
Cycle time on fab performance
Cycles to failure for a yarn product
Cycles to failure of aluminum 

test coupons
Defects
Deposit ink
Depth of a keyway
Diameter of a drilled hole
Diameter of aluminum rods
Diameter of fuse pins
Diameter of holes 
Diameter of plastic caps
Diameter of shaft
Diameter of steel rods
Dimension of machine parts
Direct-mail marketing 
Disbursement rate
Distance between major 

cracks in a highway
Door casing
Drag coefficients of airfoil
Drapery yarn
Drowning rate for children
Duration of an inspection task 
Earthquakes
Emergency help line call
Engine controllers 
Engineering graduate study
Errors in a textbook
Fabric
Fast-food packaging
Fatigue crack growth
Fatigue crack propagation in 

aircraft
Fatigue failure of a driveshaft
Fill volume

Flatness distortion
Flight simulator
Flow metering devices
Flow rate
Food supply 
Football helmet
Free height of leaf springs 
Fuel efficiency 
Fuel rods
Galvanized steel
Gas mileage
Gauge measurement
Glass sheets
Golf ball distance 
Golf clubs
Handheld caliper
Hardness tester
Heating elements

Highways
Hole diameter
Hospital emergency visits
Infection at a hospital
Injection molding machine
Ink cartridge
Intelligence score
Interocular lenses
Izod impact test
Jet efflux velocity
Kraft paper machine
Light bulbs
Light-rail system
Lightweight snap
Magnetic disk

Marketing sales
Mechanical assembly
Melting points of alloys
Metal alloy
Metal disks
Metal part
Metal punching process
Metal rods in an automobile 

suspension system
Mileage
Missile distance
Natural frequency of beams 
Ocean wave height
Orifice diameters in shower 

heads
O-rings

Packaging
Parallel parking

Particle size
Plastic gears
Plastic tube
Post office
Post-mix beverage machine
Precision measuring 

instruments
Prepare bed at hospital
Pressure strength of glass 

bottles
Process yield
Product revenue
Pull-off force
Pulsed laser deposition
Rainfall
Randy Johnson
Raw pulp
Reaction time of a driver
Retained strength of asphalt
Roadway surface temperature 

and pavement deflection
Rocket motor
Rockwell hardness-testing
Rollover accidents
Salt concentration and 

roadway data
Seat belt usage
Sewage discharge temperature
Shear strength of spot welds
Shear strength of steel girders

Six-sigma process
Soft-drink beverage

Soldiers killed by horse kicks
Soliciting donations
Speed of light
Spindle saw

Examples 5-7
Exercises 4-19, 4-20, 5-54
Exercise 3-132
Exercises 2-63, 3-109, 4-134
Exercise 4-132
Exercise 3-112
Examples 2-4, Exercises 3-45, 

3-161, 3-202, 3-206, 3-223,
4-43, 4-46, 4-109, 7-16, 
7-38, 8-47

Exercises 6-5, 6-11

Exercise 3-214
Exercise 4-116
Exercise 3-221
Exercise 3-255
Exercise 5-43
Examples 4-14, 4-15, 4-16, 5-13
Exercises 7-13, 7-22, 7-23, 7-46
Exercise 8-13
Exercise 7-32
Exercise 3-244
Exercises 2-15, 2-21, 2-27

Exercises 8-28, 8-30, 8-60, 8-61
Exercise 5-91
Exercise 8-58
Exercise 3-30
Exercises 8-1, 8-35
Exercise 8-51
Exercise 8-14
Exercise 3-163
Exercise 3-13
Exercises 5-19, 5-56
Exercises 3-82, 3-83, 3-231
Exercise 5-49
Exercise 2-40
Exercise 3-139

Exercise 3-180
Exercise 2-37
Exercises 4-15, 4-16, 4-17, 4-18
Exercise 2-67
Exercises 3-87
Exercise 3-124, 4-125
Exercise 3-215
Examples 4-12, 4-13
Exercise 4-82
Exercises 3-218, 3-219
Exercises 7-52, 7-57, Example 5-15
Exercises 6-1, 6-7
Exercise 7-6
Exercise 2-6

Exercise 3-212
Examples 3-47, Exercises 3-48, 

3-49, 3-198, 5-3, 5-6, 5-7
Exercise 7-56
Exercise 3-113
Exercise 4-113, 4-114
Exercise 5-76
Exercise 7-70
Exercise 4-84
Exercise 7-67
Exercise 2-54, 6-18, 6-24, 6-34
Exercise 4-62
Exercise 4-98
Examples 6-10
Exercise 5-109
Exercise 3-235
Examples 2-6
Examples 4-7, 4-8, 4-9, 4-17, 4-18
Exercise 8-48
Exercise 5-84
Exercise 4-115

Exercise 3-125
Exercise 4-67
Example 3-1, Exercises 3-20, 3-117
Exercise 3-143
Exercise 5-66, 5-67, 5-72, 5-73
Exercises 3-14, 3-241
Exercise 5-103
Exercise 4-83, 5-99, Example 5-12
Exercise 4-56, 4-70, 4-92
Exercise 5-83
Exercise 6-48
Exercise 3-114
Exercise 4-77
Exercise 2-39
Examples 3-3, 3-4, 

Exercises 3-179, 3-247, 
3-248

Exercise 7-42
Exercises 3-227, 3-251
Exercises 5-26, 5-27, 5-60
Exercise 8-12
Exercise 3-85
Exercises 8-6, 8-26, 8-40
Exercise 3-110
Exercises 4-60, 4-96

Exercises 2-49, 4-144, 5-102
Example 7-5
Exercise 4-64
Exercise 3-65
Exercise 5-112

Examples 2-1, 2-2, 2-3, 3-46
Exercise 2-33
Exercises 2-52, 3-26
Examples 5-9, Exercises 5-38, 

5-39
Exercise 8-16
Exercises 5-24, 5-59
Exercises 3-28, 4-141
Exercise 3-121
Exercise 4-63
Exercise 4-127

Exercises 3-207, 3-256
Exercises 3-81, 3-230

Examples 7-4, 7-10, Exercise 7-35
Example 3-24
Exercise 2-46
Exercise 8-17
Exercise 4-65
Example 2-7
Exercise 7-51
Exercise 3-50
Exercise 5-111
Exercise 6-3, 6-9

Exercise 6-51
Exercise 5-108
Exercise 4-75, 5-69, 5-71
Examples 6-1, 6-2, 6-3, 6-4, 

6-5, 6-6
Exercises 5-97, 5-98
Exercises 2-38, 3-90
Exercises 2-14, 2-20, 2-26
Examples 5-8, Exercises 5-36, 

5-37
Exercises 3-229
Exercises 7-14, 7-15, 7-24, 

7-25, 7-36
Exercise 3-133
Exercise 5-32
Exercise 4-145
Exercise 5-17
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Standardized test
Steam usage and temperature
Steel alloys
Stress and deflection
Surface finish
Surface finish of metal parts
Surface flaws in a large coil
Surface flaws in plastic roll
Surface roughness
Surface roughness of a 

waterjet cutter
Surveillance camera
Suspension helmets
Synthetic fiber tensile strength
Temperature
Temperature and turbidity
Tensile strength
Tensile strength of aircraft
Tensile strength of paper
Tensile strength of silicone 

rubber
Tensile strength of synthetic 

fiber 
Test strip
Testing instrument
Thermal inertia properties
Thermocouple
Thrust of a jet turbine engine
Time arrival
Time for an automated system
Time to complete a manual task
Tire life and wear
Titanium in an alloy
Toll roads
Tool width
Transportation
Vane opening
Wafers oxide thickness
Waiting time
Waiting time at hospital emergency
Wire
Wire bond pull strength
Wiring errors
Yield
Yield strength of circular tubes

DC output
Debris detection
Defective integrated circuits
Deflection temperature
Density measurement
Design languages in 

programming
Device HFE in semiconductor
Diameter of a dot by printer
Disk drive assembly
Disk space
Electric power consumption/ 

usage
Electrical current
Electronic calculators
Electronic components
High-speed Internet 

connection
Integrated circuit
Keyboard life
Leaking current
Microprocessor temperature
Network log-ons
Operating system for a 

personal computer
Optical correlator
Optical drive
Output voltage
Polybenzimidazole-based membrane 

electrode
Polysilicon on a wafer
Power in a circuit
Printed circuit boards

Resistance

Semiconductor
Semiconductor devices
Semiconductor HFE
Semiconductor laser

Semiconductor laser life
Semiconductor manufacturing
Semiconductor wafer 

contamination
Server response time
Solder joints
Spam emails
Speedup of cellular neural networks
Spelling errors detected on a website
Sun spots 
Surface charge on a silicon 

wafer
Switchboard
Telecommunications
Telephone calls
Time between arrival of 

electronic messages
Time between calls
Time to complete a task
Time to failure of software
Time to failure of an 

electronic component 
Velocity of light
Visitor to the homepage
Voice network
Voltage of noise
Wafers measurement
Waiting time to complete database 

update
Web traffic
X-ray inspection of integrated 

circuits

Exercise 4-131, 4-140
Exercises 6-2, 6-8
Exercises 5-45, 5-47
Exercise 6-13
Examples 5-11
Exercises 6-39, 7-2, 7-49
Exercise 3-102
Exercise 3-126
Example 7-2
Exercises 7-61, 7-63

Exercise 3-245
Exercise 4-76, 4-89
Exercise 3-201
Exercise 2-36, 3-27, 5-78
Exercise 6-10
Examples 5-14
Exercises 5-44, 5-46
Exercise 3-46
Exercise 5-79

Exercise 5-77

Exercise 3-237
Exercise 3-127
Exercise 4-54
Exercises 4-42, 4-44
Exercises 6-46, 6-47, 6-55, 6-56
Exercise 3-34
Exercise 3-226
Exercise 3-200
Exercise 4-55, 4-69, 4-91, 5-40
Exercise 4-71
Exercise 4-133
Exercise 3-47
Exercise 4-100
Example 8-1
Exercise 2-3
Exercises 3-86, 3-203
Exercises 3-37, 3-76, 3-80
Examples 3-30, 3-31
Examples 6-7, 6-8
Exercise 4-130, 4-139
Exercises 3-164, 7-66, 7-68
Exercise 2-4

Exercise 6-44
Exercise 3-138
Exercise 4-80, 4-81
Exercise 5-22
Exercise 6-20, 6-26, 6-36, 6-59
Exercise 5-41

Exercise 2-51
Exercise 3-55
Exercise 3-225
Exercise 5-113
Exercise 6-21, 6-27, 6-37, 6-40

Example 8-3
Exercises 4-78, 4-129
Exercise 3-148
Exercise 4-79

Exercises 3-106, 7-59
Exercise 3-240
Exercise 5-87, 5-88
Exercise 3-238
Exercise 3-33
Exercise 4-110

Exercise 6-29
Example 3-37
Exercises 4-25, 4-26, 4-27, 8-44
Exercise 7-73

Exercise 3-84
Examples 3-44, Exercise 3-187
Example 4-19, 8-5, 

Exercise 5-62, 5-63
Example 3-45, 3-48, 

Exercise 2-57, 3-46, 
5-89, 5-114

Exercise 6-28
Exercises 4-111, 4-112
Exercise 6-22, 6-38
Example 3-14, Exercise 3-54, 

3-60
Example 3-15
Exercise 3-149, 7-18, 7-21, 7-48
Example 3-20

Exercise 2-44
Exercise 8-32
Exercise 3-153
Exercise 4-53
Exercise 8-67
Exercise 8-66
Exercise 7-8

Exercise 4-99
Exercise 3-129
Exercise 3-123
Exercise 3-141, 3-217

Exercise 3-137, 3-142
Exercise 3-77
Exercise 3-52
Exercises 3-25, 3-88, 3-140

Exercise 2-68
Exercises 3-118, 3-144, 3-155, 3-156
Example 3-19
Example 3-12
Exercise 8-42
Exercise 3-100

Exercise 8-10
Exercise 6-57

Electrical, Computers, and Communication
Networks

Base current of a bipolar transistor
Bit errors

Breakdown voltage of diodes
Cell phone service
Circuit boards
Circuit operation
Communication channel 
Computer bulletin board
Computer cables
Computer processor
Computer server
Conductive coating
Conductivity of cathode 

ray tubes
Contamination on optical disks
Contamination particle size
Cover cases for a personal 

computer
Current in a wire

Exercise 7-7
Examples 3-21, 3-22, 3-23, 3-25, 

3-28, 3-29, 3-34, 3-35,
Exercise 3-128

Exercises 4-59, 4-95
Exercises 3-17, 3-97
Exercise 7-58
Exercises 3-169, 3-170
Exercises 2-64, 4-135
Exercise 3-216
Exercise 3-31
Exercise 3-64
Exercise 3-131
Exercise 3-32
Exercise 5-80

Exercise 3-32
Exercise 3-29
Exercises 8-53, 8-54

Examples 3-2, 3-5, 3-6, 3-7,
3-10, 3-11
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Summary of Single-Sample Hypothesis Testing Procedures

Criteria for OC OC Curve
Alternative Rejection, Fixed- Curve Appendix A

Case Null Hypothesis Test Statistic Hypothesis P-Value Level Test Parameter Chart V

1. — —
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— —
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Summary of Single-Sample Interval Estimation Procedures

Point Type of 100(1 � �)%
Case Problem Type Estimate Interval Confidence Interval

Two-sided
One-sided lower
One-sided upper

Two-sided
One-sided lower
One-sided upper

Two-sided

One-sided lower

One-sided upper
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One-sided lower
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mean �, variance �2 known

2. Confidence interval on the mean 
� of a normal distribution,
variance �2 unknown

3. Confidence interval on the s2

variance �2 of a normal 
distribution

4. Confidence interval on a 
proportion or parameter of 
a binomial distribution p

5. Prediction interval on a future
observation from a normal
distribution, variance unknown
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at least �% of the values in a
normal population with 
confidence level 100 (1 � �)%.
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Summary of Two-Sample Hypothesis Testing Procedures

Criteria for OC OC Curve
Alternative Rejection, Fixed Curve Appendix A

Case Null Hypothesis Test Statistic Hypothesis P-Value Level Test Parameter Chart IV
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Summary of Two-Sample Confidence Interval Procedures

Point Two-Sided 100(1 � �)%
Case Problem Type Estimate Confidence Interval
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