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Preface

In the light of the current record-breaking floods in Hungary and in
Central Europe in the summer of 2002, which caused numerous deaths
and property damage in the tens of billions of euros, the value of reli-
able and accurate streamflow forecasting can be appreciated. By knowing
in advance when, where and at what level the river will crest, appropri-
ate flood protection works can be planned and organized, thus reducing
possible damage to life and property. Currently there is a wide range of
forecasting methods used at different agencies across the world responsi-
ble for producing streamflow forecasts. Our work describes in detail the
one used by the National Hydrological Forecasting Service in Hungary, a
country that, in Central Europe, has the largest proportion of its population
(25% of a population of 10 million) working and/or living in flood-plains,
that are protected by levees with a total length that is second to none in
Europe, including the Netherlands.

In the past there have been publications on streamflow modeling and
forecasting, but none of those works concentrated on a single technique
in great detail. With the current work, we would like to fill that gap by
meticulously going through a detailed derivation of a streamflow model-
ing technique that (a) is physically based; (b) is formulated with discrete
data in mind; (c) accounts for model uncertainties; (d) is adaptive; and
(e) is mathematically elegant. Beyond the mathematical and physical
background necessary for the derivation of the model, specific examples
are shown regarding how the model performs in practical applications.
The derivation requires a state-space approach often used in hydrological
modeling, but less frequently discussed in detail in the water resources
literature and perhaps never discussed in such a thorough, rigorous and
step-by-step fashion as here. Without claiming superiority to other stream-
flow forecasting techniques, a detailed and comprehensive description
of the present approach should help water-resources practitioners and
graduate students with a shared interest in hydrology to formulate their
state-space models for a wide range of applications where linear ordinary
or partial differential equations are involved.



CHAPTER 1

Introduction

Traditional handbooks of hydrology (e.g. Shaw, 1983) commonly sepa-
rate hydrological forecasts into two categories: (a) forecasting of extreme
events; and (b) real-time forecasting with a typical objective of describing
the physics of the processes to be modeled in partial or full detail. While
the former type of forecasts center mainly on issuing flood warnings, the
latter provides additional information, such as what is necessary for the
optimal operation of water-related infrastructure, on a continuous, oper-
ational basis. This way real-time forecasts can incorporate event-based
forecasts.

Another classification of real-time, operative forecasting can be drawn
based on the lead-time involved. This may present the following cate-
gories: (a) general warnings and alerts, based on synoptic meteorological
situations; (b) hydrometeorological (long-term) forecasts using measured
precipitation and/or snowmelt rates; and (c) hydrological (short-term)
forecasts of downstream flood peaks, based on measured, cresting flood
levels at upstream sections of the stream network. Undoubtedly, any kind
of categorization is subjective and a function of the dynamics of the pro-
cesses to be forecast. Also, it goes almost without saying that by increasing
the lead-time, dynamics play an ever-diminishing role in computations,
leading to increased uncertainties in the forecasts which in the extreme
become only general outlooks. Therefore, it is very important to quantify
the level of reliability with each lead-time of the forecasts. One thing is
certain: the forecasts of different lead-times must build upon each other;
consequently, any categorization based on lead-time alone is insufficient.

An ideal, real-time, operative forecasting model should satisfy the
following prerequisites. It must:

— account for the physical laws that govern streamflow;

— explicitly account for forecasting uncertainties;

— react, as quickly as possible, to changes that might occur in the water-
shed due to natural and human causes by modifying its parameters,
i.e. must be adaptive while having parameters that are sensitive to the
above changes;

— be rendered with the most reliable lead-time because models with a
short lead-time generally diverge after some critical time, leading to
unreliable forecasts;
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Figure 1.1. Modular structure
of forecasting models.

— specify and produce unbiased forecast errors;

— be able to accommodate any changes in the observation network and
the resulting additional information without changes in its structure;

— make data substitution possible through interpolation or finding
analogies where there are missing measurements;

— be numerically stable;

— express fast convergence for any numerical scheme in the model;

— have a structure making it possible to include the model in operational
systems of water management;

— have recursive algorithms so that the model will run on portable
computers with limited memory capacity.

It may be safe to say that, as of today, no universal, operative fore-
casting model exists, and most probably there will not be any, at least in
the near future. At the same time, the generalization of existing models
must be accomplished, and the creation of new, ever more general models
must be attempted. For the latter, the MIKE SHE (Refsgaard and Storm,
1995) model is a good example. With generalization, we mean that the
models should be made as little site-specific as possible. Optimally, a real-
time forecasting model accommodates the modular structuring of existing
numerical algorithms. Such a modular structure (Bartha and Sz6l116si-
Nagy, 1982) is illustrated in Fig. 1.1, where each module represents a
sub-function within the complete task of hydrological forecasting.

In what follows, we will concentrate on the flow-routing module
function, combined with the stochastic—-dynamic module, mentioning the

Precipitation forecast

Rainfall-runoff model
forecast

Y

Downstream flow
forecast using:

Statistical model

Flow-routing model

Stochastic—- dynamic
model

Upstream water
management system
operation model
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rainfall-runoff module functions only tangentially. The purely stochas-
tic module will not be mentioned either, because the above two modules
replace the former by formulating them to sufficiently account for the
physics of the open-channel flow process, while being able to handle
uncertainties stemming from stochastic effects. The problem with the
application of purely stochastic models lies in the difficulty of inter-
preting changes in the parameter values, especially when the stream
has a short record of measurements. At the same time, a very simple,
physically based, deterministic flow-routing model can explain the main
tendencies of open-channel flow such that the accuracy of the forecasts
deteriorates more slowly with increasing lead-times compared to purely
stochastic model forecasts, partly due to more stable parameters in the
former. At the same time, physically based, deterministic model forecast
errors typically express high autocorrelations, indicating that determin-
istic models generally cannot fully explain the variance present in the
data. Stochastic time-series models, however, are able to extricate this
information content of the residuals, paving the way for the combination
of the two types of models—deterministic and stochastic—while doing
away with the disadvantages of each when used separately. Such a com-
bined deterministic—stochastic model forms the backbone of the unified
forecasting system this study reports on.

In order to provide a unified framework for the discussion, compari-
son, and interpretation of hydrological forecasting approaches, we have
to define what is meant by forecasting. This is given by the following
definition.

Definition 1: Let y be the variable (scalar or vector-valued) to be
forecasted. Let Y, be the joint time-series of the present and past val-
ues of 'y, such as Y, = [y, ¥Yi—1,.--»Yi—n)- Let u be the variable
(scalar or vector-valued) that is in causal relationship with 'y, and let
U, be the joint time-series of the observed present and past, as well
as any anticipated future values (denoted by a hat) of w, such that
U, = [Ue,u, 01, ..., 0y, and let Z; = [Y;,U;]. The T > 0 lead-
time forecast of the y variable is p(Y;++|Z;), the conditional probability
distribution of 'y at time t + t, with Z; as condition.

Fig. 1.2 displays the forecasted value of a scalar y as a function of the
lead-time. The forecast is the conditional expectation of y; the associated
standard deviation is an indicator of forecast reliability.

Note that even the observed value (when the lead-time is zero) con-
tains a certain level of uncertainty (i.e. the variance is not zero) due to
measurement errors. The above definition is valid for either deterministic
or stochastic forecasting methods. In the latter case, a measure of forecast
reliability automatically results, but this is not to say that it also means that
stochastic forecasting methods are superior to deterministic ones. Clearly,
significance levels must be specified for deterministic forecasts as well,
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Figure 1.2. Conditional
probability, p, forecast of the
scalar variable, y, as a function
of lead-time. d is standard
deviation.
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which may be especially critical for decision-makers at times of weighing
associated risks and benefits of different actions during extreme events,
such as floods. This need requires the augmentation of our deterministic
forecasting model with a stochastic model component. When formulating
the forecasting model, the objective was to meet as many of the previously
laid-out prerequisites of an ideal forecasting model as possible.

During model construction, we were aware that any complex physical
system can only be partially described by a purely deterministic model.
Consequently, there is always the possibility, or rather the necessity, of
including a stochastic model component with the deterministic one, for
the purpose of explaining the observed variance in the data missed by
the deterministic component. In other words, as long as the time-series
of the deterministic model error is autocorrelated, the application of a
combined, deferministic—stochastic model is justified by not only resulting
in forecast confidence intervals but also in improved model forecasts.

To give even a partially comprehensive review of the hydrological fore-
casting techniques is beyond the planned framework of this study. Instead,
here we just list some of the earliest works of real-time, recursive hydro-
logical forecasting techniques. These models, almost exclusively, have
been formulated in a state—space framework, which first appeared in the
1960s within the field of system/control theory. The state—space frame-
work easily allows for applications in automated algorithms of state and
parameter updating, a task that previously often proved to be very difficult
and even impossible in many cases. A system-theoretical description of
the hydrological processes in a state—space framework made the applica-
tion of filtering techniques possible on digital computers, with the Kalman
filter being the most famous one. These digital filters typically provide
fast and effective state and/or parameter updates in a recursive fashion.
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Figure 1.3. Links between
definitions, lemmas, theorems,
corollaries, and theses in the
book.

Note 1.1:  The application of recursive parameter estimation algorithms
first appeared in the hydrologic literature in the early 1970s (Hino,
1974; Sz6116si-Nagy, 1974). Todini and Bouillot (1975) applied recur-
sive parameter estimation in their stochastic rainfall-runoff model using
Kalman filtering and Young’s technique (1974) of instrumental variables.
Szo6116si-Nagy et al. (1977) applied the Kalman filter for parameter esti-
mation in their stochastic hydrologic model. A recursive technique by
Bras and Colon (1978) was employed for areal-precipitation estimation,
while Kitanidis and Bras (1980) and Georgakakos and Bras (1982) applied
an extended version of the Kalman filter for coupled, state and parameter
estimation in their nonlinear soil-moisture accounting models. Whitehead
(1979) and Moore and Weiss (1980) from the Institute of Hydrology in
England researched recursive estimation techniques for simple, concep-
tual models of hydrology. Cooper and Wood (1982) employed canonical
correlations for determining model dimensions in their operative forecast-
ing system. Wood and Sz6116si-Nagy (1978) proposed the application of
Bayes-algorithms for adaptive modification of model structure. Recursive
state and parameter estimation techniques found their way into water-
quality applications (Beck, 1978; Chiu and Isu, 1978; Szoll6si-Nagy,
1979) as well. A good review can be found about the relevant research
of the 1960s and 1970s by O’Connell and Clarke (1981). Young’s work
(1984) on recursive estimation techniques is an excellent textbook on the
subject with hydrological examples and references. More recent develop-
ments in adaptive real-time flow forecasting are summarized by Young
(2002).

Definitions Lemmas Theorems Corollaries Theseg
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Finally, some words on the format of the book: Throughout the
text, scalar variables are always denoted by ifalicised letters, while bold
characters are reserved for vector- or matrix-valued variables. The most
important findings are contained in theorems, altogether 23 (their proofs
included too), which form the backbone of the study. The theorems include
7 definitions and the proofs use 3 lemmas in all, yielding 7 corollaries. The
conclusions are summarized in 5 theses. The discussion is supplemented
with numerous examples, figures, tables, and notes. Each chapter (with
the exception of Chapter 9 that discusses some practical aspects of oper-
ational forecasting) is closed with a brief summary. Fig. 1.3 depicts the
links between the definitions, lemmas, theorems, corollaries, and theses
of the study.



Figure 2.1. Physically based
flow-routing approaches (after
Jones, 1981).

CHAPTER 2

Overview of Continuous Flow-routing
Techniques

Physically based methods of continuous flow forecasting must necessarily
be derived from the Navier-Stokes equations. This chapter describes
the simplifications which lead to an operative model that meets the
prerequisites of the introduction without discussing methods of numer-
ical hydrodynamics that are the subject of Kozak (1977), Brebbia and
Ferrante (1983), and Koutitas (1983). Fig. 2.1 summarizes the approaches
and models generally used in physically based flow routing.

Navier-Stokes

equations
I

Gradually varying
open-channel flow

Saint-Venant

equations
Mo simplifications Momentum governed Momentum governed
Complete by bed, friction, and by bed and friction
dynamic models surface slopes slopes
[ 1 R o Kinematic models
Characteristic || | Implicit DIHBSIOHdea?angy —_—
schemes schemes mode’s Variable
wave speed
Explicit I
schemes Kinematic
wave models
I

Variable wave Constant wave Constant
speed and diffusion speed and diffusion wave speed
l_% [ Cre—
Variable Variable parameter Analytical Modified
parameter Muskingum- solution | Muskingum-
diffusion method|| Cunge method Cunge method
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2.1 BASIC EQUATIONS OF THE ONE-DIMENSIONAL,
GRADUALLY VARIED NON-PERMANENT
OPEN-CHANNEL FLOW

Flow in river channels is described by the Saint-Venant equations which
assume that the flow is mainly one-dimensional and can be character-
ized by parameters (discharge, cross-sectional area, cross-sectional mean
velocity) that are functions only of distance along the river channel (/) and
time (7). Derivation of the Saint-Venant equations with ample references
and a historical view can be found in Mahmood and Yevyevich (1975),
while Szigyartd (1984) provides a semi-empirical derivation of them from
the Navier-Stokes equations.
The Saint-Venant equations are comprised of the continuity or mass

conservation equation

94 90

a7 + o] = 0 (2.1)
where the right-hand-side of Eq. 2.1 is zero only if there is no lateral flow
to or from the given stream reach; and the momentum or dynamic equation

S 9z 1Q3<%) 13<%)
= So — -7~ —

29 g4 g ot
steady

2.2)

gradually varied steady

gradually varied unsteady open-channel flow

Here Q(l,t) and z(l,t) are the unknown discharge and stage; 4 is
the cross-sectional area; g is the gravitational acceleration; Sy is the
stream-bottom slope; Sy = n>Q*4~2R~*/3 is the Manning-Strickler fric-
tion slope; 7 is the channel roughness coefficient; and R is the hydraulic
radius. Eq. 2.2 in its full form describes a gradually varied, unsteady,
open-channel flow.

Eq. 2.2 is of the hyperbolic type and can only be solved numerically.
The solution, however, requires the simultaneous discharge and/or stage
values for the up- and downstream cross-sections of the reach in question
at all times (as boundary conditions), which means that the Saint-Venant
equations could only be used for forecasting purposes if there are already
continuous guesses at the downstream discharge to be forecast. This
makes the forecasting problem somewhat like a “spatial interpolation”
problem between the anticipated simultaneous future discharge values
of the two cross-sections for obtaining discharge values along the reach,
rather than an “extrapolation” one. Flow forecasting, however, in line with
Definition 1, is more like a “spatial extrapolation” problem that specifies
the future discharge value at a downstream section of the river as a func-
tion of the simultaneous anticipated future discharge value at an upstream
location only, in addition, of course, to observed discharge values.
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Note 2.1: The anticipated future discharge and/or stage values, as
estimated future boundary conditions, at an upstream location can be
obtained in the form of flow forecasts using stations even farther upstream
or as forecasts of a rainfall-runoff model if no further gauging stations
are available.

Any physically based approach, however, must build upon the basic
laws of physics that govern open-channel flow. This can be achieved by
different simplified forms of the Saint-Venant equations. Eq. 2.3 illus-
trates these as a function of the degree of simplifications if discharge
is expressed from the general friction slope equation as O = CR“\/S_ ,
Qo = CR%./Sp, and Eq. 2.2 is rearranged for Q

0 Q
13z Q 3(2) 1 3(2) 12
0= Qo|l ———— - — . (2.3)
So a1 SoAg al Sog Ot
—
kinematic
diffusion

full dynamic wave

The diffusion wave approach is obtained by neglecting the inertial
terms in the full dynamic wave equation; the kinematic wave equation is
obtained by further disregarding the water surface slope. The full dynamic
wave equation contains the channel roughness coefficient, n, and requires
detailed channel geometry information. The former is generally obtained
by trial and error; the latter, however, entails the storage and handling of
large amount of data, which may be problematic for real-time calculations.

Note 2.2: Eventhe full dynamic wave equation provides only an approxi-
mate description of gradually varied, unsteady open-channel flow, because
it is one-dimensional and the physical content of its parameters is not
better founded than those of its simplified versions, since the parame-
ters of the latter can be derived from the former and vice versa (Dooge
et al., 1982). Returning to the forecasting paradox when using the Saint-
Venant equations, it may be argued that the lower boundary condition
could be chosen as sea level or the regulated water levels above a dam
on the river. By choosing a large spatial discretization initially with the
known water level way downstream, the required lower boundary condi-
tion for the given reach could be obtained by successively decreasing the
size of the spatial discretization and rerunning the numerical integrations
with ever-increasing spatial resolution, finally arriving to the required
downstream cross-section of the stream, provided no numerical instabil-
ities are encountered during the process. It remains, however, a question
whether this path is worth choosing. A comparative study by Price (1975)
concluded that the accuracy of simplified flow-routing techniques gener-
ally meet the requirements of practical applications (i.e. even the stringent
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requirements of real-time forecasting), provided no significant backwater
effects are present, and always have superior numerical efficiency over
that of the complete dynamic wave equation solution; this latter property
being of considerable importance to real-time forecasting. And we have
not even mentioned yet that obtaining information on dam operations for
determination of the lower boundary conditions would not itself solve the
forecasting paradox since dam operations generally depend, among oth-
ers, on hydrological forecasts which in turn depend, among other things,
on dam operations and so on. . .

2.2 DIFFUSION WAVE EQUATION

When Eq. 2.2 is brought into a dimensionless form, the magnitudes of its
terms can be shown to be (Price, 1973)

St
7L~ 09 2.4
5 (2.4)
1 oz
—— ~ 20-1072
So 9l

1 9 [0? 3
—(=) ~ 17-10
gaS081<A>

1 90 1 8 (0?
gaSy 0t gaSo 3l \ 4

which demonstrates that the momentum is affected primarily by the
friction slope, Sy, and secondarily by the slope of the water surface.
Neglecting the remaining inertial terms, Eq. 2.2 becomes

Sr=50-3; (2.5)
as an approximation of the momentum equation.

Henderson (1969) showed that for streams with gently sloping chan-
nels, application of Eq. 2.5 is well justified. Egs. 2.1 and 2.5 can be
combined into a single equation by relating the discharge values at the
downstream section to that of the upstream location via the hydraulic
characteristics of the reach. Differentiating Eq. 2.5 with respect to time,
gives
d [0z B 2n2Q 90  4n*Q* R 2n?Q? 94
ot (8[) ot <A2R4/3 at  342R73 8t A3RY3 3t>' 26)

Assuming a rectangular cross-section of width, B, and inserting the
cross-sectional area, A(/,t) = Bz(l,t), into the continuity equation
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(Eq. 2.1), the following can be written

0z 190
== 2.7
at B al @7

When the mean water depth is much smaller than the stream width,
the hydraulic radius, R, can be expressed as, R(/, t) >~ z(/, t), which upon
insertion into Eq. 2.6, together with Eq. 2.7, yields

8(18Q> 2n*0 90  4n*0* 390  2n*0% 90 28)

aI\B ol ] ~ 427 91 ' 34227PB 9l | A3 ol

This equation, after rearrangement, transforms into a parabolic
nonlinear partial differential equation (Dooge, 1973)

00 90 Y
o = D(Q)W - C(Q)W 29)
with

A2 4/3
D(Q) = mjﬁ (2.10)
and

5
C(Q):g%. (2.11)

Eq. 2.9 is known as the diffision wave equation (with zero lateral
water flux) because of its similarity with the diffusion equation of turbu-
lent mixing. It is nonlinear because the coefficients, C and D, depend on
the unknown variable, O, posing some problems in the numerical solu-
tion similar to the Saint-Venant equations. Hayami (1951) derived the
impulse-response of Eq. 2.9 when the coefficients are constants, making
the equation linear, and when the lower boundary condition is unspecified,
i.e. free. Szoll6si-Nagy (1980) and Ambrus and Szollosi-Nagy (1984)
calculated impulse-responses when the lower boundary condition was
specified as well, making use of spatial discretization and a state—space
approach, while Dooge et al. (1983) applied Laplace-transforms to obtain
the impulse—response. Here we mention that Kontur (1977) solved the
diffusion problem in a discrete (in time and space) cascade model frame-
work using a random walk analogy, the first such solution in the field of
stochastic hydraulics.
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2.3 KINEMATIC WAVE EQUATION
Keeping only the first-order term in Eq. 2.2, gives
Sr =58 (2.12)

which expresses the balance of the gravitational and dissipation forces.
With the Chezy-formula Q = ¢(4, [)+/Sp, showing that the discharge is
a function (¢) of the cross-sectional area of the water, or simply of the
stage, for a rectangular cross-section,

90 9004
at 94 ot

can be written. Inserting this identity into Eq. 2.1 results in

30 9090

=0,
at 24 dl

and defining 0Q0/04 = C(Q), the kinematic wave equation can be

written as

00 00

—=4+C(O)—==0 2.13
20O 2.13)
which is the diffusion wave equation with D(Q) = 0 choice. The solution
of Eq. 2.13 is

oL, 1) =0 = C(Q)n) (2.14)

which shows that the kinematic wave keeps its peak-value as it travels,
and if C(Q) = C, then it results in a pure translation of the wave without
deformation even.

The kinematic wave equation, as the first-order approximation of the
Saint-Venant equations, contains very significant simplifications. At the
same time, as was shown by Stoker (1953), and Lighthill and Whitham
(1955), a significant portion of the flood-wave travels at the speed of
the kinematic wave, making methods that assume a single-valued func-
tional relationship between stage and discharge to be quite reliable in
general. Notwithstanding, the kinematic wave equation in its original
form is unable to explain flood wave attenuation.

2.4 FLOW-ROUTING METHODS

Flow-routing techniques are based on a simplification of the Saint-Venant
equations and a postulated relationship with channel storage. Fig. 2.2 lists
some of the most popular flow-routing techniques based on a constant
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Figure 2.2. Some popular
flow-routing techniques
applying a constant wave
celerity.

Flow routing with constant wave speed

Linear channel

‘ Muskingum-Cunge

method
‘ Lag and route Puls method |
| Koussis method Muskingum cascade

Kalinin-Milyukov-Nash Discrete linear cascade
cascade model (DLCM)

wave speed assumption. As Fig. 2.1 shows, they can all be derived from
the kinematic wave, Eq. 2.13. The difference between these models is
in their spatial discretization schemes and the choice of channel storage
function.

2.4.1 Derivation of the storage equation from the Saint-Venant equations

The Saint-Venant equations (Egs. 2.1 and 2.2) of gradually varied, non-
permanent open-channel flow define a system of distributed parameters
where the dependent variable is a continuous function of distance along
the channel, in addition to time. In practical applications, data is available
at specified locations only, requiring the transformation of the partial dif-
ferential equations into either ordinary differential or algebraic equations,
which describe the flow at specified cross-sections of the channel. This
entails a lumped parameter system in place of the original distributed
parameter one, where now the dependent variable is only a continuous
function of time.

For Eq. 2.1, this transformation can be achieved easily by integrating
it between the lower (1) and upper (2) boundaries (i.e. cross-sections)

2 2

04

=~ / 99 4
1 at 1 al

which can be written using the Leibniz-rule as

isz(l Hdl = —0(, 1) |?
dt 1 ’ o Q ’ !

where the integral on the left-hand-side is the water stored in the reach

2
/ A(l,H)dl = S()
1
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yielding

das
BD _ 01— 0:0) 2.15)

dt
where Q; is flow into, and O, is flow out of the reach. Eq. 2.15 is the
lumped form of the continuity equation and is called the storage equation,
an integral part to all flow-routing techniques.
Derivation of the lumped version of the momentum equation (Eq. 2.2)
is not so simple. Rather, approximate approaches replace Eq. 2.2 with the
following relationship

S@) =/1010), 02(1)] (2.16)

which is the other basic equation in flow routing, necessary to make it
well defined, since without it the storage equation could not be solved.

Note 2.3:  The continuous operator, /, in Eq. 2.16 can be either differen-
tial or algebraic. Examples for the first can be found in Kulandaiswamy
(1964), while for the second, linear cascade models discussed below are
examples.

2.4.2 The Kalinin—Milyukov—Nash cascade

The technique of Kalinin and Milyukov (1957) is based on the concept
of the characteristic reach. In a characteristic reach, there is a one-to-
one relationship between stage and stored water volume. This method
assumes that Eq. 2.16 is linear and storage is only a function of the outflow
of the reach

S(t) = KQx (1) (2.17)

where K is the mean residence or storage delay time. If there exists a
reach for which Eq. 2.17 is valid, then it is a characteristic reach, where
the stage-discharge relationship is single-valued, even under unsteady
flow conditions. The length (L) of the characteristic reach is given by
Kalinin and Milyukov as

Y

90,
25,57

L=

(2.18)

where O, and S, are discharge and drop in the stage values (between the

upper and lower end of the reach) under steady flow conditions; the %
A

term is the slope of the stage—discharge relationship at H,. Kalinin and

Milyukov showed that the simultaneous changes of the O, and % terms
A

are of about the same magnitude, thus L can be taken as a constant for
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practical purposes. For a given characteristic reach, Eqs. 2.15 and 2.17
can be combined into a single, linear, ordinary differential equation with
constant coefficients

”’QZ( ) L 0,0 = 0100, 2.19)

The solution of Eq. 2.19, 0, (¢), can be easily computed by the convo-
lution of O (¢) with the impulse-response function of Eq. 2.19, which is
the outflow response

1
h(t) = Ee*f/K, >0 (2.20)

to an input in the form of the Dirac-delta function, defined as
8@ = 0,t#0 (2.21)
§(t) — o00,t=0

0]

/ S(tydt = 1.

—00

Kalinin and Milyukov further assumed that most river reaches with
sufficient length and no lateral in- or outflow can be divided into a series
of characteristic reaches of integer number, each with the same storage
coefficient. The impulse-response function of a cascade of n serially
connected such characteristic reaches can be written as

e\t Lk
h(r)_E<E) e 2o (2.22)

The derivation of the impulse-response through successive convolu-
tion can be found in Sz6116si-Nagy (1979). The continuous cascade-model
has two parameters (7, the number of characteristic reaches; and K, the
mean residence time of the characteristic reach), and gives the flow at
the downstream location through convolution of the upstream discharges
with Eq. 2.22 as

t
Qz(t)=/ h(T)O1(t — T)dT. (2.23)

to

Nash (1957) obtained the same impulse—response above for his linear
cascade for modeling the relationship between effective precipitation and
runoff. For this reason we will call the continuous linear cascade approach
the Kalinin—-Milyukov—Nash (KMN) cascade.

Note 2.4:  Vagas (1970) pointed out that Eq. 2.22 can be interpreted as
a Poisson-distribution of order (n — 1 ) and parameter A = ¢/K of the
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storage delay times

1
Pn— f) = )\‘nfl -\
T T
such that
1
hp—1(t) = z n—1(1). (2.24)

For more information on this interpretation, see Bartha and Sz6116si-
Nagy (1982); and Diskin (1967) about parameter estimation.

2.4.3 The Muskingum channel routing technique

The Muskingum method (McCarthy, 1938) assumes that Eq. 2.16 is linear
and storage is a function of either the incoming and outgoing flow of the
river reach

S =K[e01() + (1 —e)0a2(0)] (2.25)

where ¢ is a weight, and K is mean residence time. The impulse—response
function of the Muskingum model is

1 ot &
h(t) = me =0 — :5(1) (2.26)

where §(¢) is the Dirac-delta function. The outflow is again given by the
convolution equation (Eq. 2.23)

1 t t T—1
0:00= g7 [Qmo)em + / ermdr}
&

01(1). 2.27)
1—¢

The last term of the equation is negative; therefore the Muskingum
model may give negative outflow discharges when the inflow increases
quickly. Cunge (1969) showed that this can be avoided by combining
Eq. 2.15 with Eq. 2.25 and applying a certain discretization scheme in
the resulting ordinary differential equation. This has become known as
the Muskingum—Cunge technique. A detailed discussion on the subject
can be found in Mahmood and Yevyevich (1975). Cunge (1969) and later
Jones (1981) also pointed out that the Muskingum method can be derived
as a numerical algorithm of the linear kinematic wave equation through
the application of a proper discretization scheme.

Similarly to the KMN-cascade, the Muskingum method can also be
generalized for a cascade of such reaches. Strupczewski and Kundzewicz
(1981) showed the results for identical reaches, while Ambrus and
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Sz6110si-Nagy (1984) used reaches with varying parameters. It still
remains a question whether these generalized models of the Muskingum
method result in better forecast accuracy over the KMN-cascade and/or
whether the potential increase in accuracy will offset the increased com-
plexity of the mathematical description when used in an operational
setting.

In the following we will not discuss the other flow-routing techniques
listed in Fig. 2.2, the only exception being the Discrete Linear Cascade
Model (DLCM). Indeed, the main focus of this book is to show how the
DLCM can be derived, what its properties are and how it can be applied
for operational, real-time flow forecasting. Here it suffices to repeat that
all of the flow-routing techniques of Fig. 2.2 can be derived from the
linear kinematic wave equation, which, after discretization, is capable of
describing the observed attenuation of floodwaves.

This chapter provided the initial conditions for the theoretical results of
the book. We gave a brief review of continuous flow-routing techniques
as simplifications of the Saint-Venant equations, and showed how they
can all be viewed as spatially discretized forms of the continuous linear
kinematic wave equation. This latter property will be separately proved
again for the KMN-cascade. It follows from the discussion above that
the distinction between hydrologic and hydraulic flow-routing methods is
rather arbitrary and perhaps unnecessary since both approaches share the
same physical core. The large data requirement, computational intensity,
and the ensuing forecasting paradox of the full dynamic wave approach
gives rise to the multitude of simplified flow-routing techniques and their
applications in real-time forecasting. One more thing has yet to be accom-
plished: a temporal discretization adequate for flow forecasting purposes,
which will be the subject of the following four chapters.

EXERCISES

2.1. Show that Eq. 2.2 can be brought into the form in Eq. 2.3.

2.2. Derive the nonlinear diffusion wave equation step-by-step for a wide, shallow
rectangular channel.

2.3. Prove that Eq. 2.14 satisfies Eq. 2.13.

2.4. Show that the impulse-response function of n serially connected characteristic
river reaches (Eq. 2.22) conserves mass.

2.5. Knowing the impulse-response function of the Muskingum model as well as
that the arguments ¢ — 7 and 7 are interchangeable in the convolution integral
(Eq. 2.23), derive Eq. 2.27.



CHAPTER 3

State—Space Description of the Spatially
Discretized Linear Kinematic Wave

In this chapter we will show how the kinematic wave (i.e. the solution of the
kinematic wave equation, the basis for most flow routing methods) results
as a special case of the general state—space approach of linear systems

x(1) = Fx(@) + Gu(®) 3.1
y(@®) = Hx() (3.2)

where u is the input, y is output, and x is the state variable; and similarly,
G is the input, F is the state or system, and H is the measurement, or out-
put matrix. The dot denotes differentiation with respect to time. Eq. 3.1,
called the state or system equation, and is an ordinary linear differential
equation, while Eq. 3.2, the measurement or output equation, is an alge-
braic one; together they define a linear, time-invariant dynamic system.
Time-invariance here means that the system matrices ¥ = (F, G, H) are
all constant matrices. Appendix I summarizes some of the basic properties
of'the state—space approach of linear dynamic systems. See Sz6116si-Nagy
(1974) for further definitions concerning hydrologic applications of the
state—space approach. Here let it suffice to say that the state variable, x,
is a mathematical object that links the input of a dynamic system to its
output, typically having some physical meaning (such as stored water vol-
umes), although this latter property is not a requirement for application of
the general principles of the approach. It should also be mentioned here
that the matrix-triplet, X, always unambiguously characterizes a dynamic
system (Kalman, 1961).

3.1 STATE-SPACE FORMULATION OF THE CONTINUOUS,
SPATTALLY DISCRETE LINEAR KINEMATIC WAVE

As was shown earlier, the linear kinematic wave is the first-order
approximation of the Saint-Venant equations

90(1, 1) 90(L,1)
ot +C al

0. (33)
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Figure 3.1. Spatial
discretization of the linear
kinematic wave equation.

Note 3.1: The kinematic wave formulation was first done by Lighthill
and Whitham (1955) for the transformation of flood-waves in long rivers
using the theory of small-amplitude waves, which entailed the lineariza-
tion of the full dynamic equation (Eq. 2.2). It was subsequently used for
describing surface runoff (Woolhiser and Liggett, 1967). Kinematic wave
theory has now found its way into many scientific disciplines. See Singh
(1997) for a comprehensive review of water resources applications of the
kinematic wave equation.

The boundary conditions for Eq. 3.3 are

00,5 = 0,1 (3.4)
o) # oo, as | —o00, t>0

which involve an infinitely long river reach in the limit. The same bound-
ary conditions can be applied for a river reach of finite length, without
losing generality. In practical hydrological applications, Q is always finite;
thus the lower boundary condition can be neglected, i.e. it is called free.
Let’s divide the river reach into » non-overlapping sections of equal, A/
length (Fig. 3.1).

By applying a backward difference-scheme in Eq. 3.3, the following
ordinary differential equation results for the /; cross-section

e Al

C C

Let’s construct the x(#) state variable to have discharges at cross-
sections /;, j = 1,2,...,n as its elements

oy, 1)
x(t) = Q(l:z,f)
Oy, 1)
Free lower
Upper boundary boun.dgry
condition condition
Al Al Al
-« p—» e S—
Q(1,t)
— 3 . . .
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Figure 3.2. System diagram of
the continuous, spatially
discrete linear kinematic wave.

and have u(¢¥) = u(t) = Q(y,t), the upper boundary condition (i.e.
discharge at the first upstream cross-section). This way Eq. 3.5 becomes

-1 0 <
1 -1 Al
X(f) = % 1 .—1 . x(1) + 8 uty  (3.6)
0 . 1' -1 0
which in matrix form can be written as
x(t) = Fx (1) + Gu(?), (3.7)

the state equation of a linear, time-invariant continuous dynamic system.
F here is a Toeplitz-band matrix whose definition can be found in e.g.
Rozsa (1974) or Nikolski (2002). Discharge from the last subreach is the
discharge of the whole reach; thus the output equation becomes

o, 1)

y(#) = [0,0, ..., 1] : (3.8)
Q(l}’lﬂ t)

or

y(f) = Hx(?). (3.9)

The continuous, spatially discrete linear kinematic wave is unambigu-
ously characterized by the matrix-triplet

T« = (F,G, H). (3.10)

The diagram of the system is illustrated in Fig. 3.2.
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3.2 IMPULSE RESPONSE OF THE CONTINUOUS, SPATIALLY
DISCRETE LINEAR KINEMATIC WAVE

Theorem 1: The impulse response of the continuous, spatially dis-
crete linear kinematic wave, characterized by the matrix-triplet Xx =
(F,G,H), is

c/c\' 1 _a
h(t):E(Et) me UN (311)

Proof': Being both the input and the output variables scalars, so is the
impulse—response function, which can be calculated by Eq. A1.11. The
exponential (i.e. the state-transition matrix) of the F matrix will be needed.
The F matrix can be written as

C

F ZA_Z(Nn - In)

where I, is n x n identity matrix, and

0
1 0
N,=10

1

o --- 0 1 0
is a nilpotent matrix of order », the subdiagonal of which (with the unit
values) “slips” toward the bottom left corner by each integer increment

of its exponent, and the nth power of which is N = 0. The exponent of
the #F matrix, by definition, can be obtained through Taylor’s expansion

"F" «c ‘
X =1, +F+ - + ' _|_...=eA£1Nne—KC/In
n.
tIC/Al . (tC/AD? @c/an™t 1 i«
_[I’“L TR TR R

which, in this case, consists of only » terms, since any additional term
is zero due to nilpotency. The terms in the expansion are the following
matrices:

0
1 0

tCN —tC 0 1

NN
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0
) ) 00
THEY L (S o
20 U Al T U Al
0"
01 00
0
00
n—1 n—1
: £ Nl £ 0
n—=D!'\Al T =D\ Al
10 --00

which, when added to the identity matrix, and multiplied by the

_1Cy _«©
e AN =< e A >

diagonal matrix, yields the

r 1 0 0 - 07
C
— 1 0 --- 0
Al
() = e 5 1 t£ ’ t£ 1 0
0)=e 21 Al Al
: : 0
1 ,C n-l 1 C n=2 €
L= 1) Al n—2)0 \'Al Al
(3.12)

state-transition matrix. Multiplying the ® lower triangular matrix by the G
column-vector from the right yields the first column of the state-transition
matrix times A%. Multiplying this from the left by vector H, produces the
@G product’s last term, which is Eq. 3.11. This concludes the proof.

It is noted here once again that input to the state—space model is the
upstream boundary condition (i.e. inflow discharge series to the reach) of
the kinematic wave. There is no need to specify any downstream bound-
ary condition for the calculation of the impulse response. The downstream
boundary condition (i.e. outflow discharge series from the reach) is calcu-
lated by convolution of the impulse response and the upstream boundary
condition. This way stream flow at the downstream cross-section can be
calculated without specifying the lower boundary condition, required for
the full dynamic wave.
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A simple watershed
model in state-space

Figure 3.3. A simplified
catchment model.

Note 3.2: Calculation of the state-transition matrix is generally not an
easy task. The mathematical literature offers numerous techniques (see
Moler and van Loan [1978] for a critical review), starting with the Cayley-
Hamilton theorem to the full spectral decomposition of the state matrix, F.
A general solution, however, does not exist: the procedure to follow
depends strongly on the structure of the F matrix. For the kinematic wave
case, however, the calculation of the state-transition matrix is very simple.

Example 3.1:  The illustration below depicts a simple hydrological sys-
tem (e.g. a simplified watershed with two subcatchments) where u; (f) and
uy (t) are the rainfall inputs measured at different locations; the states are
defined as the surface storages x| (¢), x2(¢), and x3(¢) and the groundwater
storage as x4 (¢), respectively. The constants in each case are: k’s for surface
water flow, and /; and /; for infiltration. The expression /3[x4(¢) — x3(¢)]
signifies the exchange between the groundwater and the stream. The out-
puts are y1(¢) and y»(¢), the streamflow output and the contribution of
groundwater to streamflow, respectively.

The continuity equations for this problem are

x1() = =k +1)x1 (@) +ur(?)

x() = —(k+hx(t) +ux(t)

x3() = kixi(t) + kpxo(6) + Blxa®) — x3(0)] — kzxs3(2)
x4(t) = hx1(t) + hxo(t) — Blxa(t) — x3(0)].

In vector-matrix form we have the following time-invariant continuous
state equation with the initial condition x(0) = C, a constant vector,

x(t) = Fx(¢) + Gu(?)

where
—(ky +11) 0 0 0
Fe 0 —(k2 + 1) 0 0
- ky ) (ks +5) &
L I I3 -1
kx, (O
u, (0
Rainfall ¥, (0= €[x,(0) - %, (V)] nB=ka0
inputs streamflow
u, (0 output
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The Kulandaiswamy
model

1 0
=1 o
0 0
The output equation becomes
y(®) = Hx(?)
where
n=[o 5 5 1]

In this example the states have been defined as storages, i.e. a con-
crete physical meaning can be attached to them. The following example
illustrates that it is not necessary, in general.

Example 3.2:  As discussed in detail by Duong et al. (1975), direct
runoff may be considered as the result of the transformation of rainfall
excess by the basin. The physical process of this transformation is very
complex, depending mainly upon the storage effects in the basin. (The
reader interested in the details and interconnections between the processes
involved is referred to Dooge’s (1973) comprehensive review.) To take
these effects into account, Kulandaiswamy (1964) derived the following
general expression

al d"q M d"u
SO =) _anq)—+ Y bnlg ),
n=0

m=0

where S is the storage, ¢ is time, and a, (g, u) and b,,(q, ) are parametric
functions of the direct runoff, ¢, and the excess rainfall, u. To apply the
above storage relations to the study of the rainfall-runoff processes in
a particular watershed, the values of N, M, and the form of a,(-) and
b (+), respectively, must be determined. Unfortunately, it is not always
feasible in practice. Therefore Prasad (1967) suggested the application of
a simplified storage equation in the form

Sm=mfm+m%%,

where K1, K, and N are unknown parameters to be estimated. In his study,
Prasad (1967) assumed that these parameters are constant for a particular
hydrograph. Employing the continuity equation, the following differential
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equation is obtained for the rainfall-runoff process
d*q v-149

Ky— + KiNg" — — =u.
20 + KiVg a tqg=u

This can be written as

d’q 1 dgq 1 1
— == KN T — [ — — u
dr? (Kz) N <K2>Q+<K2)u

By defining the following set of state variables

xi@®) = q@)
x@) = q@)
x() = K
ut) = K
xs(t) = N

and assuming that the model coefficients are time-invariant, the Prasad
model becomes

x1() x2(t)

(1) —x3(Oxa (x5 (Ox 7O (Ox2 (1) + xa (O [(t) — x1 ()]
i) | = 0

x4(1) 0

x5(t) 0

or in abbreviated notation

xX(@) = filx(0), u()]

which is a time-invariant nonlinear state equation. As for the output equa-
tion, it can immediately be seen that by choosing the output process, g(?),
as being a state variable itself; it is in the form of

x1(2)
x2(2)
y@y=[1 0 0 0 0| x3(2)
x4(2)
x5(2)

or
(1) = hex(@®)].

In fact, the output equation for the Prasad model is a linear one and
the output process is scalar. The conclusions of this example are: (a) it
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Wet and dry days
as a Markov chain

is not necessary for a nonlinear output equation to be attached to a non-
linear state equation; and (b) variables with no direct physical meaning
can also be chosen as state variables. Maidment (1975) linearized the
Kulandaiswamy model in a state—space fashion.

Example 3.3:  Gabriel and Neumann (1962) found that a two-state
Markov chain yields a good description of the consecutive occurrences of
wet and dry days. If p; denotes the probability that a dry day is followed by
a wet one then 1 — p; denotes the probability of the event that a dry day is
followed by another dry day. Similarly, if p, denotes the probability that a
wet day is followed by a dry one then 1 — p; yields the probability of
a wet-to-wet transition. This way the following transition—probability
matrix can be constructed

®— [ l—p1 ]
p1 1 —ps

which here will play the role of the state-transition matrix and is assumed
to be time-invariant. Of course, 0 < p; < 1 and 0 < p, < 1. Let the
vector x(+ 1) = [xo(t+ 1), x1(¢+1)]7 denote the probability of finding
the system in stage 0 (dry day) or in stage 1 (wet day) at time ¢ + 1. Let
the initial condition for this vector to be x(0) = [x¢(0), x1(0)]%. First,
consider the event of being in stage 0 at time ¢ 4 1. This event can occur
in two mutually exclusive ways: (a) from stage 0 at time ¢ no transition
out of it occurs at time ¢ 4 1, having a probability of xo(¢)(1 — p;); and
(b) from stage 1 at time # a transition to stage 0 takes place at time 7 + 1
with an associated probability of x| (#)p;. The probability of being in stage
1 at time # + 1 can be obtained similarly. The probabilities at time 7 + 1
are given by the recurrence relations

xo(t+1) xo()(1 = p1) +x1(Op2
x1¢+1D) = xo®Op1+x1(0OA —p2)

or in vector-matrix form

x(t+ 1) = &x(r)
which is an unforced or free state equation with a solution
x(t) = ®'x(0).
The related output equation has the form
y(®) = Hx(?)

where H = 1 is the identity matrix, i.e. the states themselves are the
output variables. The ¢th power of the state-transition matrix can be easily
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calculated with the help of the Cayley-Hamilton theorem as

o — | [pz P2 }Jr (1—p1—p) [ P —p }
pi+p2 [ P1 Pl pP1+p2 —P1 P2
provided p1 +p2 # 0. Since A1 = 1 and A, = | —p; — p; are eigenvalues

of @, and taking into consideration the fact that xo(0) = 1 — x1(0), the
final results for the probabilities are

xo(t) = —22 +(1—P1—P2)t[XO(0)— P2 }
p1+

)23 pP1L+Dp2

2 1 .

¥ = —L2— + (1 —p —p) [xl(O)— P } (i)
p1+p2 pP1+Dp2

One question that arises is whether after a sufficiently long period of
time the system settles down to a condition of statistical equilibrium in
which the state probabilities are independent of the initial condition. If
this is so then there is an equilibrium probability x* = [x{, x’f]T , Which,
on letting t — oo, will satisfy

x* = dx*
or
(I— ®)x* =0

which will have nonzero solutions if the determinant |I — ®| vanishes.
With this and with the condition x; + x] = 1 in mind, the equilibrium
probabilities are obtained as

* P2
XO =
p1+p2
xj = P
p1L+p2

which are indeed independent of the initial condition x(0). The equilib-
rium probabilities might in fact be obtained by taking the limit of t — oo
in Eq. (i) since |A2| < 1. Finally, for the sake of completeness, consider
the degenerate cases. When p; = py = 0 then

x(t+ 1) =x(@) = x(0)

i.e. the system remains forever in its initial state. On the other hand, if
p1 =p2 = 1 then

x(t+1) = x@=x(¢-D=--

xit+1) = x@=xit—-1)=---
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which means that the system oscillates deterministically between its two
stages, and once the initial state is specified, the behavior of the system is
non-random.

This chapter described the state—space derivation of the continuous,
linear kinematic wave. The state-transition matrix, i.e. the matrix expo-
nential of the state matrix, could be calculated analytically, which led to
specifying the impulse response of the model.

EXERCISES

3.1. Canyou guess what the elements of the state-transition matrix in Eq. 3.12 represent
in each row?

3.2. From Appendix I, it follows that the impulse response function of the continuous,
spatially discrete linear kinematic wave can be written as /(f) = H®(¢)G. Show
that it is true for arbitrary n.

3.3. Plot the impulse response functions for n = 1...5 with k = ¢/Al = 0.5.



CHAPTER 4

State—Space Description of the Continuous
Kalinin—Milyukov—Nash (KMN) Cascade

The basic assumptions behind the continuous KMN-cascade have been
discussed in 2.4.2. Using the state—space approach, the model will be
redefined here in the hope that it will illuminate not only the compactness
but also the elegance of the state—space framework.

Let’s start with a scalar case, and consider one single linear storage ele-
ment with u(¢) and y(¢) as in- and outflows, respectively. Change in stored
water volume, x(¢), is described by the continuity equation (Eq. 2.15)

xX(6) = —y(0) + u().
The dynamic equation now is
x(t) = Ky(1)

which, when inserted into the above continuity equation, yields the state
equation (see Eq. 3.1) of the linear storage element

x(f) = —Il{x(t) + u(t). @.1)

The corresponding output equation (see Eq. 3.2) is

1
() = [?x(t) (4.2)

since the outflow is directly proportional to the stored water volume.

4.1 STATE EQUATION OF THE CONTINUOUS KMN-CASCADE

The structure of the linear, time-invariant, continuous KMN-cascade is
illustrated in Fig. 4.1. The cascade is made up of serially connected storage
elements. The output of a storage element is input to the next element in
the series, while the output of the last storage element is the output of the
whole system.
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Figure 4.1. Structure of the
continuous KMN-cascade.

kx, kx )
u(t) (t) E(t) o .kxnl(t) Xn(t) kxn(t) =y(t)

For simplicity, let’s define & = 1/K. The continuity equation of n
storage elements then becomes

x1(8) —k 07 [xi() 1

x2(1) k  —k x2(1) 0

x3(0) | = ko —k B3O [+ 0 fu@) (43)
x( ) 0 ko —k || x0 0

or in matrix notation

x(t) = Fx(t) + Gu(t) (4.4)

where F is n x n Toeplitz-band state matrix, and G is n x | input
matrix/vector (with p-dimensional vector-valued input, it is an n X p
matrix). The corresponding output equation is

x1(2)
x2(1)
0

or, using matrix notation

y(t) = Hx(7) (4.6)

where H now is a 1 x »n matrix, i.e. an n-dimensional row vector.
Eqgs. 4.4 and 4.6 define a linear, time-invariant, continuous dynamic
system, which is unambiguously characterized by the

gy = (F,G,H) 4.7

matrix-triplet. Fig. 4.2 displays the system diagram, which shows striking
structural similarity with Fig. 3.2 of the continuous, spatially discrete
linear kinematic wave. Below it is shown why.
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Figure 4.2. System diagram of
the continuous KMN-cascade.
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4.2 IMPULSE-RESPONSE OF THE CONTINUOUS
KMN-CASCADE AND ITS EQUIVALENCE WITH THE
CONTINUOUS, SPATTIALLY DISCRETE, LINEAR
KINEMATIC WAVE

The classical derivation of the impulse—response of the continuous KMN-
cascade has already been discussed in 2.4.2. The following theorem
therefore does not convey new information. However, it illustrates how
elegantly and quickly the state—space formalism leads to results.

Theorem 2: The impulse-response of the continuous KMN-cascade,
characterized by Xy = (F, G, H), is

h(t) = k(th)"! T _1 l)!e*’k ) (4.8)

Proof": The F system matrix can again be decomposed into the difference
of a nilpotent and an identity matrix

F= k(Nn - In)

by which the state-transition matrix can be obtained, as before,
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T etk 0 0 e 0 ]
the— 1tk otk 0 e 0
th)?
o) o (2') otk e~k k0
= e = .
: : 0
—1 -2
(tk)" eitk (k)" —tk tkeilk eftk
| (n—1)! (n—2)! i
4.9

Multiplying the ®(#) matrix by column-vector, G, from the right
results in the first column of the state-transition matrix, which, when
multiplied by the row-vector, H, from the left, yields the last element of
it, times £, i.e.

k("=
n—1)n° t

which is Eq. 2.22 with £ = 1/K. This concludes the proof.

Note 4.1:  Elements in the first column of the state-transition matrix of
Eq. 4.9, times k, are the impulse—responses of continuous KMN-cascades
of increasing order.

Note 4.2:  There is a notable duality between the state—space models of
the linear kinematic wave and the KMN-cascade. The F system matrix is
of identical structure in both cases. The G and H vectors differ. However,
only the first and last elements, respectively, are different from zero in
either case.

Even more interesting than duality, is the fact that the linear kinematic
wave and the cascade model are the same from a system theoretical point
of view. This claim is formulated by the following:

Theorem 3: The continuous, spatially discrete linear kinematic wave,
given by X g, and the continuous KMN-cascade, characterized by X gy,
are equivalent.

Proof: Two dynamic systems are equivalent (Desoer, 1970) if their
impulse—responses are the same. Eqgs. 4.8 and 3.11 are indeed equal with
the k = % substitution. This concludes the proof.

Note4.3: Equivalence of the two models must show up in the dimensions
too. The flow velocity, C, has a unit of distance over time. A/ has a unit
of distance; thus the coefficient, K = }{, must have a unit of time, which
is true.
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4.3 CONTINUITY, STEADY STATE, AND TRANSITIVITY OF THE
KMN-CASCADE

Let’s now investigate the characteristic properties of the continuous KMN-
cascade.

Definition 2: A scalar input/scalar output (SISO) continuous, linear
system is conservative if

o
/ h(r)dr = 1 (4.10)
0
where /4(t) is the impulse—response function of the system.

Note 4.4:  The above definition states that the system is free of any net
sources or sinks (Diskin and Boneh, 1972). This is because A(¢) is the
output of an initially relaxed linear system (i.e. x(0) = 0) to the Dirac-delta
function, §(¢), as input. Since fooo S(t)dt = 1,and §(¢) = O fort > 0, the
system becomes relaxed again as # —> oo. Thus for large enough times
(t — 00), total outflow f0°° h(t)dt must equal total inflow, if mass is
conserved, which is unity by definition of the Dirac-delta function.

Theorem 4: Continuity applies for the Xgun continuous KMN-
cascade.

Proof: According to Definition 2, the continuous KMN-cascade is conser-
vative (i.e. continuity applies to it) if the area under its impulse—response
function is unity:

> — mm—rk __K % el itk .
/Oh(r)dr_/o k(n—l)!e dr_(n—l)!/o " e dr. (1)

With the tk = ¢ substitution, Eq. (i) transforms into

n %) n—1 00
k / (1) e_’ldl ! f e ldr = T _ 1
n—"D!J k k n—"0!J I'(n)

where the definition of the gamma function and the identity, (n — 1)! =
" (n), were used. This concludes the proof.

Definition 3: A continuous dynamic system is in a steady state, if
x(t) =0 (4.11)

(see Csaki, 1973).



36

Recursive Streamflow Forecasting

Later, the steady state of the KMN-cascade will be needed. The
following is related to the issue:

Lemma 1: In a steady state, each storage element of the Xguw
continuous KMN-cascade has the same amount of water

1
Ni= s =120 4.12)

independent of the total number of storage elements in the cascade. u is
constant inflow. The total water stored in the cascade is

S = Knu. (4.13)
Proof: According to Eq. 4.11, in a steady state

Fx+ Gu; =0

from which the steady state system variable becomes

Xy = —F_lGus. (1)
For obtaining the inverse of F, one can start from the identity
F=k(N-D.

With this, the inverse of F can be written as the following matrix-
polynomial

F!= —1(1 -N)~L

k
Similarly to the scalar polynomial identity
I—2)(A+z+z2+- +2"H=1-2"
the following can be written
T=N)A+N+N> . NTH=T-N' =1

due to nilpotency. Thus

Flmt—N) = LA+ N+ N4 N
Tk Tk
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or
1 0 0
oL
k| 0
11 1

The steady state system variable in Eq. (i) this way can be
expressed as

1 0 --- 0 1 1
1 KR 0 1] 1

x; = —F 'Gu, = z 1 1 . - uy = Tl Us.
1 1 --- 1 0 1

It can be seen that in each storage element, the stored water volume is
ug/k. The steady state outflow is

1
ys = Hxy = k%us = Ug

and the total volume of water stored in the n-order cascade is

1

S = nzus = nKuy
which concludes the proof.

Corollary 1: If for a SISO linear, time-invariant system the bounded
outputs (| y(¢)| < oo, Vt) equal the bounded inputs in a steady state, then
the system is conservative.

Proof: Once the linear, time-invariant system reaches a steady state at
to, the system variable is constant (see Definition 3), x(¢) = Xo, until the
input, u(t) = uy, = const. for t > ty. The steady state output is now
equal to the constant input, u;. Applying Eq. Al.5, the output can be
written as

t
ug = H®(t — t9)xo + uS/ H®(t — t)Gdz, t> 1. (4.14)

to

Let’s assume that the input remains constant indefinitely: u(¢) = u, =
const., as t —> 00. According to Eq. A1.9, the term behind the inte-
gral is the impulse—response function (%) of the system with t — ooc.
Then Eq. 4.14 can only remain bounded if the elements of ®(t — 1)



38

Recursive Streamflow Forecasting

approach zero with (f — t) — 00, since otherwise the integral does not
stay bounded, since H and G are constant. This way

—> 00 —>00
Uy = us/ H®(t — 1)Gdt = uS/ h(t — t)dt (4.15)

to 4

can only hold, if the integral in Eq. 4.15 is unity, which means that the
system is conservative. This concludes the proof.

A general property of flow-routing models is whether they are
transitive or not.

Definition 4: A flow routing model is transitive if the same results is
obtained in both cases: (a) the flow is transformed from cross-section L
to L, and then to L3; and (b) the flow is transformed in one step from
cross-section L to L3.

Theorem 5: The X k) continuous KMN-cascade is transitive.

Proof: Sz6110si-Nagy (1979) derived the impulse-response of X gy by
successive convolution, which is based on transitivity.

Note 4.5: If a system is not conservative, neither is it transitive, because
there is a net source or sink in the system.

In this chapter the following conclusions were drawn:

(1) If a backward difference-scheme is used for spatial differentiation in
the partial differential equation of linear kinematic wave, then the
so-derived system of ordinary differential equations has a coefficient
matrix which is of Toeplitz-band type and its structure is identical to
the system matrix of the continuous KMN-cascade.

(2) The impulse—response of the continuous, spatially discrete linear
kinematic wave is identical to that of the continuous KMN-cascade.
Consequently, the two models are equivalent.

(3) From (2) follows that the parameters of the two models can be mutually
and unambiguously related to each other.

(4) In a steady state condition of the continuous KMN-cascade, each
storage element contains the same amount of water.

(5) The continuous KMN-cascade is transitive.

EXERCISES

4.1. Demonstrate that the continuous KMN-cascade is indeed transitive for n = 2,
and then for any ».
4.2. The unit-step (uy = 1 for ¢ > 0 and zero otherwise) response function of the

—1 .
continuous KMN cascade is g(f) = 1 — Zn 0 (/;—t,yefkt. Since 8(¢) = u(2),
=0 !

from linearity it follows that 4(¢) = g(t) also. Show that this is true.



CHAPTER 5

State—Space Description of the Discrete
Linear Cascade Model (DLCM) and Its
Properties: The Pulse-Data System Approach

The practice of operational forecasting requires discrete models because
(a) data are generally available at discrete time increments; and (b) fore-
casting and database models run on digital computers. These two factors
fundamentally limit the application of continuous models.

This chapter contains the main results of the study on the deter-
ministic submodel. It specifies conditions necessary for adequate model
discretization, namely: discrete coincidence, continuity, and transitivity.
Derivation of a discrete state—space model, of which state- and input-
transition matrices are in a dual relationship to each other is also included.
It demonstrates how different discrete-state representations of the contin-
uous KMN-cascade are related through a linear transformation, and how
discrete models are identical to the continuous KMN-cascade in the limit,
which means that the discrete models are consistent. It discusses what is
meant by the fact that these discrete-state models are discretely coincident
with their continuous model counterpart, and, at the same time, illumi-
nates how dynamic changes in the state variable that take place between
two adjacent sampling instants are incorporated in the models. It further
defines the stability requirements of flow routing as a function of the
Courant number. The chapter then focuses on the deterministic prediction
of the DLCM state variables, and the determination of the unsteady ini-
tial state, required for recursive predictions. Finally, it touches upon the
characteristics of the asymptotic behavior of forecasts and upon solving
the inverse problem of forecasting, the so-called input detection.

First, however, some results of the not so rare incorrect “trivial” dis-
cretization must be mentioned. Models that are discrete by their very
nature will not be discussed here (see the works of O’Connor, 1976 and
Kontur, 1977 on that subject).
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5.1 TRIVIAL DISCRETIZATION OF THE CONTINUOUS
KMN-CASCADE AND ITS CONSEQUENCES

Here it is demonstrated why the application of the continuous cascade
model in discrete time without modifications to its structure leads to
incorrect forecasts.

Let’s assume that the continuous input, u(¢), and output, y(¢), of a con-
tinuous linear cascade are sampled at equidistant time-increments At > 0.
Let the so-obtained discrete input and output time sequences be u; and yy,

with discrete time increments ¢t = 0, At,2A¢, ..., and so on. (Time will

be denoted by a subscript from now on for discrete-time sequences.) The

objective is to transform the Xy = (F,G,H) continuous dynamic
model into a discrete-time state—space model

XAt = q>(Al‘)Xt + r(At)u, (51)

YVt = th (52)

that meets the criteria of an adequate discrete representation as fully as
possible. The following definitions are needed to the exact formulation
of the problem.

Definition 5: The Xp(At) = (®(A1), T'(Ar), H) discrete model is dis-
cretely coincident with the Xxyn = (F, G, H) continuous model, if the
two model-outputs are identical at discrete time instants of the discrete
model and provided the two model inputs are identical at all continuous
times.

Definition 6: A discrete model with equidistant sampling intervals, Af,
of a SISO continuous, linear system is conservative if

N
ZhiAt =1 (5.3)
i—1

is valid for N — oo, where 4, the unit-pulse response, is the discrete
counterpart of the continuous impulse response function.

Note 5.1:  This definition is analogous to Definition 2 of continuous
systems. The unit-pulse function is displayed in Fig. 5.7.

With the help of the above definitions, coupled with Definition 4
(which is model independent, i.e. equally valid for both, continuous and
discrete cases), the adequacy of a discrete flow routing model can be
defined as:

Definition 7: The Xp(Af) = (®(Ar),I'(Ar),H) discrete model
defined with equidistant time increments, is a conditionally adequate
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representation of the Xxyv = (F, G, H) continuous model, if it (a) is
discretely coincident; (b) keeps its continuity; and (c) is transitive in the
At —> 0 limit. If (c) is valid for all A¢, then the representation is fully
or unconditionally adequate.

Note 5.2: In the following, At = 1 will be assumed for sake of

simplicity. This way the discrete cascade model is written as

X¢+1 = (I>x, + I'ut (54)
Ve = HX[. (55)

An exception will be made when the sampling interval has specific
importance.

A trivial discretization of the continuous KMN-cascade, Eq. 4.4, is
obtained when the system matrices of the discrete model are identical
with those of the continuous model. That way the discrete state and output
equations become

Xz+1 = FX[ + Gu, (56)
» = Hx. 5.7
Examples for this kind of trivial discretization can be found in Chiu

and Isu (1978). This model, )J'D = (F, G, H), however, is not adequate.
To prove it, the following is needed

Lemma 2: Ifthe continuous KMN-cascade, X gyy = (F, G, H), is rep-
resented by the X;, = (F, G, H) discrete model, then the system in its
steady state has unequal volumes of water stored in their storage elements

ki—l
(1+ k)

U, i=12,...,n (5.8)

Xi

where u; is constant input. When u; = 1, the steady state output is

k}'l

T (A +hn 9

Vs

which approaches the steady state input (u; = 1) only if k —> oo. In that
case, however, the total volume of water stored in the cascade approaches
zZero.

Note 5.3:  For the trivially discretized cascade model to be correct
dimensionally, it must be assumed that flow has units of volume, and
k is dimensionless.
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Proof': A discrete system is in a steady state if
x; = Fx; + Gug

i.e. the elements of the state variable do not change between two samplings
(see Definition 3). Rearrangement of the above equation results in
x, = I-F"'Guy

= U! Guy.

The U = I — F matrix can be written as

1+k 0
—k 1+k k
U= =(1+kHI-kN=(1+kd—- —N
(1+k) (+B A= 2N
0 —k1+k
so for the inverse it yields
Ul =[1+hbd- . N = L I— L N)~!
- 1+k S l4+k 14k
The inverse of the (I — HLkN) matrix polynomial can be obtained
similarly to the one in Lemma 1:
(I k N =1+ K N+ K N2 .. 4 k! Nl
1+k 1+ k (1+k)2 (1 + k)1

It follows that U~! is a lower triangular matrix of Toeplitz-type. This
way the steady-state system variable is

1 0 0 0
k
1 0 0
1+k 1
kZ . 0
| asee e
X, = — u
Ty | 4HR _
k 1o
T+ 0
! e ko
L (14 k! (1+k? 14k -

1
k

—_
e
)
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The steady-state output becomes

1 knfl k"

k _
+kd+—1" " A+i”

Vs =

S

Choosing an input of g = 1 and n > 1, gives unity only, if k —> o0,
i.e. the mean storage delay time, K — 0, since K = % As can be seen,
the stored water in the storage elements indeed varies in steady state

ki*l
(1 + k)

ug, i=12,...,n

Xi

and the total water volume, S, in the cascade is

n ki—l 1 n ki
S = g = — 1 .
DB D Y et

i=1
which, with & —> oo, becomes

; .
kl

li = Ku, li E ——— = Kuy

kgnoos s, (1 + k) st

showing that S indeed approaches zero for a given n. To prove that the
above steady-state solution truly represents a steady state,

_ 1 -
i 0 l—ltk 1
ko —k _— 0
FXS + Gus = . . (1 + k) us + | .| s
| 0 k —k kn:fl 0
L (14 k)" ]
-k - 1 .
1+ ! I+k
k 0 k
= (1+k)? us+ | |u, =1 +k)? us =xg (1)
kn'—l 0 k”._l
L (14 k)" L (1+ k)"

can be written.
This concludes the proof.
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Theorem 6: If the continuous KMN-cascade, Xy = (F, G, H), is
represented by the X;, = (F, G, H) discrete model, then the latter is con-
servative only if the total water volume stored in the cascade approaches
ZEero.

Proof': Outflow from the discrete cascade at time, t, is
ye = Hxy =HEFx,_; +Gu;_1)
= HFx;_; + HGu,_;.

The second term of the right-hand-side of the equation is zero, because

In a steady state
yr = HFX;.
Applying Eq. (i), gives

- k-

1+k
k
Fx, = | (1 +K)? |y

kn.—l

L(1+ k)"
by which
n
HFx; = mus = ou.

As is specified in Corollary 1, the system is conservative if in a steady
state

Vs = Qs = Ug

which can only happen if @ = 1. According to Lemma 2, this entails that
k — o0, that is, the total volume of water stored in the cascade must
approach zero. This concludes the proof.

Corollary 2: The cascade described by the E'D = (F,G,H) discrete
model is never transitive. This follows from the discrete model being not



State—Space Description of the Discrete Linear Cascade Model 45

conservative, due to the presence of artificially introduced net sources or
sinks in the discretization scheme (see Note 4.5).

It can be shown through numerical examples that the E'D model
does not give identical results to the X kv continuous model at discrete
time increments. Consequently, the discrete model is neither discretely
coincident.

From the above follows the next:

Theorem 7: If the continuous KMN-cascade, Xxyn = (F,G,H),
is represented by the Z’D = (F,G,H) discrete model, then this
representation is not adequate.

Note 5.4:  Undoubtedly, the E'D = (F,G,H) discrete model corre-
sponds to a certain continuous model, but not to the KMN-cascade.
Unfortunately, there have been numerous examples of this type of inad-
equate discretization in the recursive literature in the past. Seeing the
unsatisfactory model results, the error has been sought in the estimation
algorithms, without realizing that the discrete representation itself was at
fault.

5.2 A CONDITIONALLY ADEQUATE DISCRETE MODEL
OF THE CONTINUOUS KMN-CASCADE

When instantaneous streamflow measurements (input and output) are only
available at discrete time increments, a corresponding discrete state equa-
tion must be formulated. Since information on the continuous signal is
only available at discrete time increments, some kind of assumption must
be made about the behavior of the continuous signal between samples.
The two simplest assumptions can be: (a) the signal is constant between
subsequent samplings; or (b) the signal changes linearly between dis-
crete sample values. The first approach is called the pulse-data system
approach, while the second one is called the linear interpolation (LI) data
system approach (Fig. 5.1). Traditionally, system engineering employed
the pulse-data system framework almost exclusively in the past. Conse-
quently, most of the theoretical results involve this approach, which moti-
vated its adoption in water resources applications as well. Derivation of
our discrete form of the continuous KMN-cascade below adopts this same
framework. However, the results will be reformulated in the next chapter
via the application of the LI-data system framework. This latter approach,
as will be shown, can be considered as a generalization of the former.

Let’s assume that x(¢) is known at time ¢, and that u(¢) is constant
(vector in general) in the (closed from left, open from right) time-interval:
[#,¢ + Af). Then, according to Eq. A1.3,



46 Recursive Streamflow Forecasting

Figure 5.1. Pulse- and LI-data
system representations of a
continuous signal.

[Flowrate
A

Sampling Time
interval
t+At
x(t + At) = ®(t + At,)x(t) + [/ Ot + At,T)G(T)dT]u(?)
t
(5.10)

can be written, which can be reformulated with the following definitions:

xy = x(0)
w 2 u®
®,(At) 2 @+ ALY (5.11)
t+At
r;,(Ar = / Ot + At,T)G(1)dT (5.12)
t
as
Xrrar = @(ADX; + T (Ab)u,. (5.13)

The discrete output equation, being purely algebraic, remains the same
as in the continuous case

5.2.1 Derivation of the discrete cascade, its continuity,
steady state, and transitivity

The discrete version of the continuous KMN-cascade’s state equation
(Eq. 4.4) is

Xt-‘rAt = q’(At)Xt + F(At)u, (515)
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where the state-transition matrix, corresponding to the sampling interval,
At, becomes

D(A) 2 ®(t + A1, 1) = TAITIF = (AR (5.16)

(see Eq. A1.6). The input-transition matrix degenerates into a column-
vector with a scalar input, u(z),

At
I'/(At) = / ®(t+ At — 1)G(T)dT (5.17)
t

and a column-vector G. The discrete model, once again, assumes that the
input is constant in the At interval: u(t) = const = u;, T € [t,t + At).

Note 5.5: Eq. 5.15 provides a discrete description of a continuous pro-
cess. With those models that are discrete by their very nature, the above
derivation of the state and input-transition matrices naturally does not
happen because of the lack of a dynamic state change.

The state-transition matrix (Eq. 5.16) that corresponds to At, can be
obtained from Eq. 4.9 via substituting ¢ with Az (Szo116si-Nagy, 1982):

r oAtk 0 0 .. 0 ]
Atke_mk e—Atk 0 - 0
2
(Atk) oAtk Atle— Ak e~ Atk 0
®(Ar) = 2!
: : 0
—1 -2
(Atk)" oAk (Atk)" oAtk Atke Atk g= Atk
L (n—1)! (n—2)!

(5.18)

which does not explicitly depend on ¢, since the model is time-invariant.
A useful property of the state-transition matrix is that it always has an
inverse (Csaki, 1973); thus ®(A¢) is not singular, provided At > 0.

Multiplying the state-transition matrix in Eq. 5.18 by G, from the right,
yields the first column of the discrete state-transition matrix at + At — 7,
which must be integrated over the interval [#, ¢ + Af). The ith element of
the resulting column-vector is

t+A? i—1
t+ At — 1)k
Vi,l(Al‘)=/ LG+ ] e UHAM=Dkgr i =1,2,...,n
t

i—1)!

which can be evaluated by the z = (# + At — 7)k substitution. The result
is a term
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(A7) L1 /M[ i—lgzgy = 11 T'(i, kAf)
i = - 27 eFdz = ————T°(i,
Vil KG—D!Jy kG—1)!

that contains the incomplete gamma-function, I, with parameters: i and
k At. It should not be confused with the input-transition matrix, I', which is
always denoted by a bold character. Note that for integer values (i — 1)! =
(i), giving

(A = LEERAD (5.19)
Vil =% TG , I1=12...,n .

In the above expression, the ratio of incomplete and complete gamma
functions can be written with the help of Poisson distributions (Rényi,
1968)

TG, kAf) i

= 1= PikAt 5.20
i ;0 (kAt) (5.20)

where

Pj(kAt) = ,l,(km)f ekt (5.21)

. I

is the j-order Poisson distribution with parameter £ A¢. This way the input-
transition matrix in Eq. 5.19 has a form (Sz6110si-Nagy, 1982)

i (1—e %) /k T
[1 —e 2% (1 4+ Ath)]/k
(Ath)?

[1—e 2% + Atk + 5 )/k

T(Af) = (5.22)

n;l ;
(1 — e dk Y —(Aik)] )/k
= 7

The state (Eq. 5.18) and input-transition matrix/vector (Eq. 5.22)
unambiguously specify the discrete state equation (Eq. 5.15). The discrete
output equation remains the same as for the continuous case

y, = Hx,. (5.23)

As was the case for the continuous model, the discrete model is also
unambiguously characterized by the Xprcps = (@, I', H) matrix-triplet.
Next it is shown that the X p; cps discrete model is a conditionally adequate
representation of the continuous KMN-cascade. For that the following is
needed:
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Lemma 3: Ifthe continuous KMN-cascade, X gyy = (F, G, H), is rep-
resented by the X p;cpr = (@, T, H) discrete model, then the steady state
of the latter is identical to the steady state of the former.

Proof": The steady-state solution for the continuous case was given by
Eq. 4.12

Us. (i)

Xy =

| —

1
In a steady state the discrete state equation holds for the steady-state
solution

Xy = Ox; + Tug. (i1)

If Eq. (i1) can be shown to hold when Eq. (i) is plugged in for x;, then
the steady-state solution of the continuous model is indeed identical to the
steady-state solution of the discrete model. This can be achieved as

1 0 0 - 0
Atk 1 0 .- off!
1
(Ath)?
1
®x, + Ty, = e A 2! Atk ! 0 Pl + Ty
: . . . 0 1
n—1 n—2
(Ath) (Atk) oag 1L
Ln—-1!  (n-2)! i
_ . _
Atk + 1
Atk)?
| ¢ 2') + Atk +1
— 7e_mk : U
1Atk
L =0 J |
[ (1— e 2%y /k i
[1—e 2% (1 + Ath)] /k 1
Atk)?
[1 — e A <1+Atk+ %)] /k . 1
+ Ug = — Us = Xg

n—1 i
_ (Atk)’ 1
1— Atk k
(1ogiom),

which concludes the proof.
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Theorem 8: If the continuous KMN-cascade, Xy = (F, G, H), is
represented by the Xprcpr = (@, ', H) discrete model, then the latter is
conservative.

Proof': The logic is the same as in the proof of Theorem 6. Outflow of
the discrete cascade at time, T, 1S

yr = Hxy = H(®x,_; + Tu;_1)
=H®x;_| + HTu; 1.

In the steady state when u; = u,, Vt, Lemma 3 gives

1
Xy = E[l, L., 11 u,.
Then,
H@Xf_lz
! 0 0o - 0]
Atk 1 0o --- off1
(Ath)? 1
i 5 Atk Lo ]t
[0,0, ... kle ! L s
: : oo 0]
Atk (Ath)"2
(Atk) (Atk) A 1 1
L (n—1)! (n—2)! |
Azk)/
Ath(
j=0
Similarly,
Hru1_1=
i (1—e 2y /k i
[1 —e 2% (1 + Ath)]/k
Atk)?
[1—eAfk<1+Atk+( 2) >]/k
[0,0,...,k] U

! Atk)1

A Z (Atk)/
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Figure 5.2. Transitivity of the
discrete cascade.

This way

Vs = = ug

n—1 n—1 i
Atk (Atk) Atk Z (Atk)!
—e —_—

J=0
which indeed indicates continuity. This concludes the proof.

Theorem 9: The continuous KMN-cascade, Xxyny = (F, G, H), when
represented by the Xpropr(At) = (®(Ar), '(Af), H) discrete model,
keeps its transitivity, provided the sampling interval, At — 0.

Proof: Let the first reach of a stream be bounded by cross-sections L1
(upstream), and L, (downstream), and let’s divide the reach into » number
of storage elements (Fig. 5.2). Let the second stream reach, consisting of m
number of storage elements, be bounded by cross-sections L, (upstream),
and L3 (downstream).

For transitivity to hold, it must be proved that the output of the second
reach as a response to output of the first reach, is identical to the output of
the combined two reaches, taken as one unit. For simplicity, let’s consider
the case when n = m = 1, and the system is relaxed initially, i.e. xg = 0.
When the two reaches are combined, the discrete output to input first
appears at t = At. In the second case, when the two storage elements
are considered separate, output of the second storage element is still zero
at t = At! The first nonzero output of the second storage element will
appearonly att = 2At to inputats = At, which is the first nonzero output
of the first storage element. This immediately proves that the output of
the discrete system is generally not the same, depending on whether the
system works as one block or as two separate blocks.

Not only the first discrete output value is affected, however. When the
system works as one block, the input is transformed between its storage
elements according to successive convolution. In our simple example of
separate storage elements, the output of the second storage element can be
obtained by convolving its unit-pulse response with the output of the first
storage element. This is so because the system was assumed to be relaxed.
This “theoretical output” of the first storage element will be assumed
to be constant during At¢, according to Eq. 5.10, instead of a continuous
smooth function of time, as input to the second storage element. (Note
that the only difference between the continuous and discrete cascades is

First reach Second reach
2
Uy - th N y‘( )L
”~ x1 XI\ - Xl’l"‘l Xn.'.m Yt -
L | B2 L L
1 2 2 3
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Figure 5.3. Unit-pulse response
of a relaxed discrete cascade;
(a) as a combined; and (b) as a
separate system. k = 0.2 [T~].

Figure 5.4. Unit-pulse response
of a relaxed discrete cascade;
(a) as a combined; and (b) as a
separate system. k = 0.2 [T~1].

in the assumed behavior of the input function. As long as the continuous
input function completely matches its assumed behavior during A¢, the
discrete model gives identical results to the continuous one at any chosen
time.) Consequently, the output of the second storage element must differ
from the output of the combined system, because the two inputs to the
second storage element are different. Figs. 5.3 and 5.4 demonstrate this
concept.

Fig. 5.3 shows the outputs of a system of two storage elements to a
constant input of unity with duration At (i.e. to a unit-pulse function, see
Fig. 5.7) are displayed. At ¢t = At, the output of the separate system is
still zero and approaches that of the combined system only as t —> o0.

0.08 T T T
x Discrete combined system (n=2, At=1)

0.071h o Discrete separate system (At=1)

’ — Continuous combined system

0.06 ]
0.05f ]
0.04 R
0.03f ]
0.02 R
0.01 R

0
0 10 20 30 40 50 60
Time (T)
0.16
x Discrete combined system (n=2, At=2)
0.14 - o Discrete separate system (At=1) g
— Continuous combined system
0.12 + g
0.1 - i
0.08 | g
0.06 g
0.04 - g
o
0.02 | g
O ! ! !
0 10 20 30 40 50 60
Time (T)



State—Space Description of the Discrete Linear Cascade Model 53

Figure 5.5. Continuous and
discrete cascades with lateral
inflow.

In Fig. 5.4, the unit-pulse input had a duration of 2A¢ and the combined
system had a sampling interval of 2A¢, while the separate system had a
sampling interval of Az. Now, at + = 2A¢, the output of the separate
system is not zero, but it is also different from the combined system’s
output for the reasons mentioned above.

As At —> 0, the difference between the continuous “theoretical out-
put” of a storage element within the cascade and its discrete counterpart
tends to zero, due to discrete coincidence. Discrete coincidence directly
follows from Eq. 5.15, which is the state trajectory of the continuous
KMN-cascade’s system equation, taken between two points in time sepa-
rated by At. This means that in the limit, At — 0, the discrete cascade
is transitive. This concludes the proof.

The following can now be stated.

Theorem 10: The Xp;cy(At) = (®(A1), T (Ar), H) discrete model
is a conditionally adequate representation of the continuous Xy =
(F, G, H) cascade for stream reaches with no net lateral inflow.

Note 5.6:  The discrete model can easily be generalized (Fig. 5.5) for
stream reaches having lateral inflow.

The F state matrix remains the same in the continuous case, and so
does the state-transition matrix in the discrete case. If the input of the first
storage element of the reach is u; (¢), and the lateral inflows are denoted
by u;(t), j = 2,... ,n, then the input variable becomes a vector

u(®) = [ (0),. .. ,uy(O]F. (5.24)

Matrix G becomes an z x n identity matrix, and columns of the input-
transition matrix, I', can be obtained by sliding the vector in Eq. 5.22 along
the main diagonal to obtain a lower triangular matrix of Toeplitz-type

T(1, Atk)
e 0 0
kT(D)
TQ,Atk)  T(1, Ath) 0 ,
Tan=| Q) kT (1) ' . (5.25)
: - 0
T(n, Atk) [, Atk)  T(1, Atk)
kT (n) kT Q) kT (D)
uy(t) u,(t)
t
mU 50 »%}» xa(t) _,_.4%)» 0 %
u® u®
u® () @ (2) é (n) ¥
!_’_ Xy X - s XI” ";
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If there is no lateral inflow at the ith position, then the corresponding
column in I' disappears to form an n x (n — 1) matrix of Toeplitz-type.
This keeps repeating with other missing lateral inflows to resultin anz x 1
column vector of Eq. 5.22 in the limit of no lateral inflow.

5.2.2 Relationship between conditionally adequate discrete
models with different sampling intervals

So far the sampling interval, A¢, has been assumed to be set. Let’s consider
now the case when the discrete model is used with a different sampling
interval. A trivial question is if there is any relationship between the two
discrete models with different, but constant sampling intervals.

When Af¢ changes, so do the state-transition matrix (Eq. 5.18) and
input-transition (Eq. 5.22) vector. Changing the sampling interval is sim-
ilar to changing the coordinate system. Provided the discrete model of
the continuous KMN-cascade is known for a certain At, then the discrete
model for any arbitrary Ar* sampling interval can be derived from it. If
the following linear relationship exists between the sampling intervals

At =uAt, u>0 (5.26)

which is always the case for equidistant samplings, then the system
matrices of the new

Xirar = P(A)X, + T (A )y, (5.27)

model can be related to the original model through the following

D(AL)
(A7)

To (1) ®(AD) (5.28)
Tr ()T (A7) (5.29)

linear transformations. Note that u does not have to be an integer.
The lower triangular Toeplitzian T¢ (@) transformation matrix can be
written as

To (M) _ efAtk(ufl)
_ 1 0 0 . 0]
Ak — 1) 1 0 - 0
[Atk( — 1)]? :
| R Atk(u — 1) 1 : (5.30)

: ' 0

_ n—1 — n—2
[AtkGe= DI [AkGe= DY gy

L =1 (n—2)!
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A quick check of the
transformation matrix

while the diagonal T () transformation matrix becomes
Tr(w) =<Tri,-..,Tris- -+ ITn > (5.31)

with the following diagonal elements

(i, Atk
Tp; = —0— 17 5.32
"7 T, Atk) (532)
From Eq. 5.28 it follows that
To(n) = ®(AH)® ' (A1). (5.33)

The transformation matrix, T (), always exists as it is the state-
transition matrix that is invertible for any arbitrary sampling interval,
At > 0.

Example 5.1: Let’s show with elementary calculations that the above
transformation matrices are correctly specified. First, let’s consider a case
where input to the cascade becomes zero at time ¢y and remains so after-
wards. Let’s denote the state of the cascade at time 7y by xo. What is its
state at t = £y + 2At?
According to Eq. 5.15
Xptar = PADXy, 1
Xp2ar = BADX A = PHANX,. (ii)
At the same time, if Ar* = 2A¢,
Xty+Arr = ‘I’(Af*)xto (iii)
can be written.
If the transformation matrix, T¢ (1), is specified correctly above, then
from Eqgs. (i) and (ii)
®% (A1) = B(ALY) (iv)

must hold. Let’s see, for example, if ®2,(Af) is the same as D; i (AL").

From Egs. 5.28 and 5.30

@i (Ar¥) = e 200k )
follows immediately for © = 2. Similarly, from Eq. 5.18,

CDI'ZJ(At) — o2tk

is obtained.
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This indicates that the T¢ (1) transformation matrix is given correctly.
What about the other transformation matrix, T (u)?

Let’s assume now, that an initially (# = 0) relaxed cascade is fed by a
constant inflow of unity with a duration of 2Az. What is the stored water
volume in storage element i at = 2Az?

Water storage in the cascade is again given by Eq. 5.15

xanr = I(Ap) (vi)
xoar = ®(ADxAr + T(A1) = P(ANT(AL) + T'(Ar). (vii)
Using the larger sampling interval with u = 2,

xap = L(AFY) (viii)

can be written.

If the transformation matrix, Tr(u), is given correctly, then Eqgs. (vii)
and (viii) must be equal. The ith element of T (Ar*) is given by Egs. 5.19,
5.29 and 5.31 as

L T(i,2A0k) TG, Atk) 1T, 2Atk)

LT, ) 1062 (ix)
k TG Atk) TG kTG
which can be written, using Eqs. 5.20 and 5.21, as
1 - —2Atk
i Z (2Atk)f . x)
=0

The ith element of Eq. (vii) is
1 oAk —i+2,Atk) T'(i, Atk) .
— Atk + . el
k Z ( )] (] i+2) (@) (x1)

/tl

It is not obvious to see yet that, indeed, Egs. (x) and (xi) are identical.
Let’s specify i = 1. Then, Eq. (x) becomes

while Eq. (xi) simplifies to
1 _AnDT(,Atk)  T(1, Atk)

T ()

(xiii)
which is indeed equal to Eq. (xii), with the help of Egs. 5.20 and 5.21,

1 1
%[efAl‘k(l _ e*Atk) + 1 _ e*Atk] = %(1 _ e72Atk).
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This concludes the example.
The above are summarized in the following:

Theorem 11: Any two conditionally adequate representations, belong-
ing to sampling intervals Ar and Atr*, respectively, of the continuous
Y xun cascade, are related through a linear transformation

To(n), Tr(u)
Eorem (An ST B e (A (5.34)

where © = Ar*/At, and the transformation matrices, Te (1) and Tr(u),
are defined by Eqgs. 5.30 and 5.31.

Note 5.7:  When u = 1, the transformation matrices become the iden-
tity matrix. When © — 0, the discrete model approaches the continuous
model, and in the limit they are identical (see Eqs. Al.l, Al.3, and
Al.4): Xpreap(0) = Xkpv. This is another proof of consistency of the
discretization.

Theorem 12: Any discrete model that is derived from a conditionally
adequate discrete model, X prcar (At), via the above transformations, is
an equally conditionally adequate model.

Note 5.8: A noteworthy duality can be observed between the state-
transition matrix and the input-transition vector. If the order of the cascade,
n, is considered a variable, then the first column of the state-transition
matrix in Eq. 5.18 contains the impulse responses of those cascades with
increasing order (disregarding the multiplier, k). Similarly, the input-
transition vector in Eq. 5.22 contains the step responses of those cascades.

The existence of the above linear transformations makes it possible
to keep a conditionally adequate discrete model even when the sampling
interval is changed, without any need of additional parameter optimiza-
tion. The forecaster can choose between (a) changing the sampling interval
value in the state and input-transition matrices; or (b) leaving the matrices
intact, but then they must be multiplied with the corresponding transfor-
mation matrices. The fact that the model parameters do not have to be
reoptimized may save the user significant computation time.

5.2.3 Temporal discretization and numerical diffusion

As was shown in Theorem 3, the linear kinematic wave and continu-
ous KMN-cascade are equivalent. Consequently, discretization results for
the latter directly apply for the temporally and spatially discrete linear
kinematic wave as well.
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Corollary 3: Different discrete representations (i.e. those that
correspond to different sampling intervals) of the continuous, spatially
discrete linear kinematic wave are related through a linear transformation.
The discrete models are not only discretely coincident with the continu-
ous model, but they account for dynamic changes in the modeled process
between two sampling instants.

Corollary 4: Temporally and spatially discrete linear kinematic waves
belonging to different sampling intervals are related by the same linear
transformation, specified in Eq. 5.34, as in the DLCM case.

In connection with spatial discretization, an interesting property must
be mentioned, namely: numerical diffusion. As the linear kinematic wave
is the solution of the pure convection equation, it does not flatten out
through time or even change its shape. Rather, the linear kinematic wave
simply translates itself from one spatial location to the next (see Eq. 2.14).
However, when the linear kinematic wave is discretized either in space (as
in the case of the continuous, spatially discrete linear kinematic wave) or
directly in space and time (as in the traditional Muskingum model [Ponce,
1980]), using an “off-centered” discretization scheme, it does flatten out
(Cunge, 1969). This way, the source of the apparent diffusion is in the
numerical scheme itself; that is why this kind of diffusion is referred to as
numerical diffusion.

During direct discretization (involving both time and space) of the
kinematic wave equation, using “off-centered” differences, the stability
of the numerical scheme is conditional. The Courant-number,

At
C=Cc— 5.35
N, (5.35)
is the parameter that stability depends on. For the numerical scheme to be
stable, C < 2 condition must be met (Ponce,1980). Note that this stability
criterion is absent for the continuous, spatially discrete linear kinematic
wave, Eq. 3.7, due to the absence of time differences.

Theorem 13: The discrete linear kinematic wave, Xprcy (At), is
unconditionally stable numerically.

Proof": As has been shown, the discrete model, X p;car(At), is dis-
cretely coincident with the continuous, spatially discrete version, X gy .
Solution of the continuous, spatially discrete model does not involve
temporal differences. Rather, it is solved via direct integration in time.
Discrete coincidence this way assures that stability of the discrete model
does not depend on the sampling interval. This concludes the proof.

Corollary 5: Unconditional stability is valid for any sampling interval,
At* = puAt, u > 0.
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Figure 5.6. Impulse response of
the continuous KMN-cascade
as a function of n and K.

The extent of diffusion in the continuous X gyn model is a function
of n, the number of storage elements in the stream reach, and K, the
mean storage delay time. For a given K, diffusion increases with n, and
similarly, for a given n, diffusion increases with K. Fig. 5.6 illustrates this
effect forn = 1,2, ..., 6, where the impulse responses of the continuous
KMN-cascade, Eq. 4.8, are plotted.

Note 5.9:  The location of the impulse—response function’s maxi-
mum, the time to peak, #,, can be calculated by differentiating the
impulse—response function with respect to time

) _Tk—1 .
h(t) = —k

Q) D¢ ; o)
and solving Eq. (i) for zero, which yields
P n—1

Pk

The peak value is obtained by substituting the ¢, value into Eq. 4.8.

Finally, the discrete model is in a form which allows for the application
of digital filtering techniques. The discrete model is discretely coincident
with its continuous version and is able to account for dynamic changes
in the system taking place between samplings. While in the pulse-data

K=0.1d K=0.2d
10 5
—n=12,..6
8 4
6 3
© ©
4 2
2 1
00 2 4 6 00 2 4 6
Days Days
K=0.4d K=0.8d
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system framework the input is assumed to be constant between sampling
instants, it is not so with the system matrices, for which dynamics over the
sampling interval is accounted in the model. The LI-data system approach,
discussed later, will also account for dynamic changes in the input variable
between discrete samplings.

5.3 DETERMINISTIC PREDICTION OF THE STATE VARIABLES
OF THE DISCRETE CASCADE USING A LINEAR
TRANSFORMATION

Let X;4¢|; denote the conditional deterministic prediction of the state vari-
able for time ¢ + 7, with a lead-time of T > 0, based on information
available up to time ¢. This kind of prediction involves linear projection
of the state trajectory.

At time ¢, the state variable, x,, and input, u,, are available. The one-
step forecast, At = 1, derives from the discrete state equation, Eq. 5.15, as

XZ‘+”I = Q(At)x, —+ r(At)l/It (536)

Note 5.10:  The pulse-data system implicitly assumes that the input, u,
at time # will remain constant up to, but not quite reaching, ¢ 4+ 1, when
it suddenly jumps to its new, future value. This is in accordance with
Definition 1 where future estimates, available at time ¢, are also included
among the inputs of the forecasting problem. Inclusion of future estimates
of input for forecasting becomes more explicit later, in the LI-data system
approach.

The multi-step forecast is formulated in:
Theorem 14: Deterministic prediction of lead-time iAz (i > 1) of the
discrete cascade, X prcar (At) = (@, T, H), based on information of state,
X;, and input, u,, variables, is given by the
Xrviate = @I — D ALIXey A (5.37)
linear transformation, where
Xrrarr = P(ADX; + T (ADu;
and u;qia; = 0, i > 0 is assumed.

Proof': By definition, the state-transition matrix is

D (At) = ®(t + At, 1)
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by which

Xrrare = P+ AL DX, + T(ADu,. (1)
The state at # + 2A¢, using the state at # + At, can be expressed as a

linear transformation, provided x4 A¢|; has been estimated and u,,,,, = 0:

Xrpoade = P+ 2A8 1+ A)Xiqpaqr- (ii)

For t 4+ At, Eq. (i) gives a deterministic forecast, which upon substi-
tution into Eq. (ii), results in a multi-step forecast from time ¢. Similarly,
the state at # + 3 At, can be predicted from ¢ 4+ 2A¢, as
Xrp3are = ®U+3ALE+ 2ADX oA

which after insertion of Eq. (ii) yields

X[+3Al‘|l‘ = ‘I’(l‘ + 3At,t + 2At)<I>(t + 2At,t+ AZ)X[+AIV
= q)(t + 3At,t + At)xt-i-Aﬂt

where the following chain property of the state-transition matrix was
exploited:

D(53,11) = V(53,) P (12, 11). (5.38)

In general, the following is obtained

Xeriate = P + 1AL+ ADXprare (iii)
where
i—1
O +iAt, 1 + A =l—[<l>(t+(j+ DALt +jAD). (iv)
=1

Being the cascade model time-invariant (see Eq. 5.16) and the
discretization equidistant,

(1 + (j+ DALt +jA) = ®(Ar) (v)
and
Ot +iAt,t + Af) = ®[( — 1)AD)] (vi)

which concludes the proof.
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Note 5.11:  Eq. (iv) shows that for a time-invariant model with
equidistant sampling-interval

[®(AH]! = ®[(i — DA (5.39)

This means that in recursive predictions the potentially time-
consuming matrix power function can be replaced by a simple change
of the multiplier of A¢ in the matrix elements. This property follows from
the identity

[¢(AI)]171 — [eAtF]ifl — e(i*l)A[F. (540)
Note 5.12:  The forecasting equation (Eq. 5.37) is valid only if it is
assumed thatu,,,,, = 0 fori > 0. The state prediction formula in Eq. 5.37

is really the homogeneous solution of the discrete state equation, Eq. 5.15,
fori > 1. The accuracy of the deterministic forecast can only be increased
if information is available on the future expected value of the input, which
can be a forecast for the stream reach upstream.

5.4 CALCULATION OF SYSTEM CHARACTERISTICS

System-characteristic matrices are those matrices that relate the input of
a system to its output, and consequently, system output can be specified
to any arbitrary input with their help. The matrices become single-valued
functions of time in the continuous case and sequences for discrete sys-
tems when the system is SISO, i.e. the input and output are both scalars.
These characteristic matrices, or functions, if we stay with the SISO sys-
tem framework, are in fact system outputs to well-defined special inputs,
and as such they implicitly contain all the properties characteristic of the
system. In time-domain analysis, the two characteristic functions are the
impulse response, which is the system output to input in the form of
a Dirac-delta function, and the unit-step-response functions, the system
response to an input in the form of a unit-step function. In section 4.2, it
was mentioned that the impulse response of the continuous KMN-cascade
can be calculated from the matrix-triplet (F, G, H) as Eq. 4.8. Due to
the integral/differential relationship between the Dirac-delta and unit-step
functions, the impulse-response function can be obtained by differenti-
ating the unit-step-response function. This, however, is not trivial in the
discrete case, when the continuous characteristic functions are interpreted
only in discrete time instants, and so they cannot be differentiated in the
traditional sense. However, the discrete characteristics can be calculated
straightforwardly from the solution of the discrete state equation.

In Theorem 14, it was shown how the discrete states of the homo-
geneous system can be simply calculated by recursive substitution. The
same is true for the inhomogeneous case. Assuming that the initial state,
X¢, and the input sequence, u;a;, are known fori = 0, 1,... ,n — 1, then



State—Space Description of the Discrete Linear Cascade Model 63

Figure 5.7. Interpretation of the
unit-pulse function, u,(¢), in the
pulse-data system framework.

the corresponding states can be obtained as
xar = ©(AHx) + T (AHuy
xone = PADXA + T (ADua;
= ®*(ADXg + ®(ANT(ADug + L(AD)un,

n—1
Xonr = @(ADxo + Z " " ANT (ADu;a;. (5.41)
i=0

From this it can be seen that the solution consists of two parts: the first
term describes the effect of the initial condition, while the second term
specifies the effect of the inputs to the development of the state. (Compare
it with the continuous case, Eq. A1.3.)

As has been mentioned earlier, the most important advantage of the
application of DLCM lies in its recursivity, which may distinguish it from
other hydrological forecasting models. However, the discrete system-
characteristic functions, at least in the pulse-data framework, become car-
dinal in the computation of the unsteady initial condition, which isnot at all
a trivial problem. Therefore, the discrete counterparts of the impulse and
unit-step-response functions of the KMN-cascade will be discussed below.

5.4.1 Unit-pulse response of the discrete cascade

In discrete time, the Dirac-delta function becomes the unit-pulse sequence,
defined as

dinte = 1,i=0 (5.42)
= 0,i=12,....
Fig. 5.7 illustrates the resultant unit-pulse function, u,(t), within the
pulse-data system framework.

The unit-pulse response of a discrete, linear, time-invariant system
can be obtained similar to the continuous case, but not in an identical way

Flowrate
A
1¢4—0O
0 - »
N Time
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(see Eq. A1.11). Let the system be relaxed initially, xg = 0. The output,
according to Egs. 5.23 and 5.41, is

i—1

viar = Hxia, = Y H® 7 N (AOT (ADuja (5.43)
j=0

which is indeed a discrete convolution, where the
HO' " '(ANT(AD), i>1 (5.44)

triple-product is the unit-pulse response at discrete time instants,
iAt, i > 1. That it is so can be seen by the convolution of the unit-pulse
input and the above expression

i—1
viar =Yy H® TN ANT (AN = HO™ (ADT (A1) = hinsy i = 1
j=0
(5.45)

which indeed gives back Eq. 5.44. According to Eq. 5.39 the unit-pulse
response can be written as

hine = hi(Af) = H®[(i — DALT(AL), i > 1. (5.46)

Note 5.13:  The discrete unit-pulse response, #;(Af) (= hias), is not
specified at + = 0, due to the discrete nature of the model. This means
that the effect of any disturbance of the system (e.g. at time t = 0) can
show up in the output only Af time later, i.e.

Yar = Hxar = H[®(AD)Xo + T'(AD)ug]

From this it follows that the discrete model is a delayed-response
system, in opposition to the continuous model.

Note 5.14:  The h;(At) unit-pulse response unambiguously specifies a
discrete system within the pulse-data system. From this it follows that the
[® (A1), T'(Af), H] matrix-triplet unambiguously characterizes a discrete
linear, time-invariant, dynamic system.

Theorem 15: The unit-pulse response of the Xp;cy (Af) = [P(AL),
I'(A?), H] n-order discrete cascade is given by

n L n—j Jj—1 k m
_ —(-DAtk [(G— D) Atk] Ak (Atk)
hinr =e Z —(}’l _])' 1 e Z —m‘

n>1k>0 At>0,i=12,.... (5.47)
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Proof: As H = [0,0,...,k], it picks out the ®(-)T" product’s last
element, which is the

e

CGenan | 1[G =DA% [ — DAtk .
GoD T oy

(1 —e 2y /k
[1 —e 2% (1 + Ath))/k

2
[1 — e A (1 + Atk + (A;k) >] /k

n—1 i
Atk
1 — o~ Atk E # Jk
=0 7

scalar product. Multiplying this by £ gives Eq. 5.47, which concludes the
proof.

Note 5.15:  The unit-pulse response satisfies the following equality

N
lim Y hiar=1, ¥Y@=1, k>0, At>0) (5.48)
i=1

N—00 4

for equidistant sampling. This follows from the X p;car (Af) discrete cas-
cade’s property of being conservative (see Theorem 8). As the unit-pulse
response is the outflow of an initially relaxed system to inflow in the shape
of a unit-pulse function, as time approaches infinity, the total inflow must
equal the total outflow if the system is conservative. This means that

o0 oo

N—00
/ u(tdt = / up(t)dt = At Z Sinr = At
t=0 t=0 =0
must equal
0 e N—o00
/y(t)dt= /hp(t)dt=At Y hia (M)
=0 =0 =l

which can only be true if the right-hand-side of Eq. (i) sums to unity.
Recall that in the pulse-data system any sampled function is assumed
to have a constant value, equal to the last sampling value, during the
sampling interval. Here %,(f) denotes the continuous function obtained
from discrete values, %;,, within the pulse-data framework, similar to the
unit-pulse function interpretation.
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Discrete coincidence
demonstration

Another property of the unit-pulse response is that
lim h;(AH) =0
i—>00
and
hi(At) =0, Vie(l,2,...). (5.49)

The above three properties correspond to

o

/ htydt = 1
rgnooh(lv) =0
h(z) = 0

in the continuous case (Diskin and Boneh, 1972).

Note 5.16:  From Eq. 5.47, the unit-pulse-response value at t = At is
(At

h(Af)=1—e 8y (5.50)

m!

m=0

which is the last element of the input-transition matrix times k. The same

must be obtained by Eq. 5.41 with xo = 0 and up = 1:

XA =Oxg+T1 =T

and

yar = Hxp, = HI = ky,

asuin, =0,i=1,2,....

Example 5.2: Let At = 1ld, n = 1, and K = 3d. From Eq. 5.47 the
unit-pulse response is

hi(1) = e~ =Dk — 7F),

Fig. 5.8 displays the corresponding unit-pulse-response sequence
together with the continuous convolution result using Eqs. 4.8 and A1.10.
Discrete coincidence is obvious.

The same unit-pulse response can, of course, be obtained from
Eq. 5.41 with

1
o =e"; Fzz(l—e_k); uiny =0in; H =k
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Figure 5.8. Unit-pulse

responses of the discrete
(circles) and continuous

cascade models.

Figure 5.9. Unit-pulse response
of the discrete linear cascade
with increasing number of the
storage elements. A7 = 1 day.

0.35 . ; ; ; ; ; ; ; ;
03} .
0.25
0.2
0.15
0.1
0.05
0
K=1d K=1d K=1d
0.7 0.35 0.2
06P o n=1 0.3 o n=3 o n=5
0.5 0.25 0.15
4 0.2
0 01 o
0.3 0.15 o
(o] o
0.2 01} 0.05 o
01}, 005f < °
0l % ol 0 e S
0 10 20 30 10 20 30 10 20 30
Days Days Days
K=1d K=1d K=1d
0.2 = 0.14 © 5 0.14 =
= orz | o0 B on2) o BS
015y 0.1 ° 0.1 o
o o o
01 o 0.08 ° 0.08 o
o o 0.06 o 006 o o
0.05 o 0.04 o 0.04 o
o o 0.02 o 002} ° %
0 10 20 30 10 20 30 10 20 30
Days Days Days

as

. 1 .
hi(l) = HOUVr = ke—“—”kE(l —eFy = e =Dk — 7y,

Fig. 5.9 illustrates the effect of the increasing number of storage
elements, n, on the unit-pulse response of the discrete model. These
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results (see Note 5.9) are similar to Fig. 5.6 in the sense that the unit-
pulse-response ordinates decrease, while the time to peak increases with
increasing value of the mean delay time of the reach, nk.

Note 5.17:  The time to peak can be easily calculated for the continuous
unit-pulse-response function. The unit-pulse function can be written as

uy(t) = 1(1) — 1(z — A1)

where 1(¢) is the continuous unit-step function

16) = 0, t<0
= 1, t>0.

Due to linearity, the unit-pulse-response function, /,(#), can also be
obtained as the difference in the unit-step-response functions, g(#),

hy(t) = g(t) — gt — Ar)

with g(¢) specified in Table 5.1. This way 4, () becomes

n—1 i i
NOETRDY [[(t — ,At)k]] Ak (ﬂ,c)]] . t> At

Jpars J! J!

which upon differentiation with respect to time and solving for zero yields
for the time to peak

k
Aten1
h = —, n>1
er1 —1
= At, n=1.

From this, the time to peak for the discrete unit-pulse responses in Fig.
5.9 can be obtained as

ty(Al) = h;l(max[hp(im {ty — 0.5AL}), hy(int {t, + 0.5At])])

which simply states that the discrete peak to time value results at the
discrete time instant where the continuous unit-pulse-response function
has a maximum among the two discrete time-instants that enclose #,.
Calculation of the discrete time to peak can be done this way because the
discrete unit-pulse response is discretely coincident with the continuous
unit-pulse function at discrete time-increments.
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5.4.2 Unit-step response of the discrete cascade

The unit-step sequence is defined as

liar = 0, i<O0 (5.51)
=1, i>0.

The unit-step response is the initially relaxed system’s output to a
unit-step input, i.e. (see Eq. 5.41):

x; = ®xo+I'1=T
X, = ®x;+T'1=éI'+T

. N—1
Xy = (Z <1>") r (5.52)
i=0

with a notation involving At = 1. The system output using a sampling
interval of At is

N—1

ynar=H [Z <I>"(At)} T (A1) (5.53)

i=0
which, with respect to Eq. 5.39, can be written as
N—1
avar = gv(AD =H [Z <I>(iAt):| I (A7) (5.54)

i=0

which is the unit-step response of the discrete linear cascade. Note that
®(0) = I, the identity matrix (see Eq. A1.4).

Theorem 16: The unit-step response of Xprcyr (At) = [@(AL), T (A1),
H] for a cascade of n > 1 order, k£ > 0, and At > 0, is given by

8int = Z [M (Z(l — 1)"—.1'6—(1—1)Azk)
I=1

Facd ICR)

i=1,2,.... (5.55)

j_l m
Ak (Atk)
x|1l—e E p
m=0

Proof: 1t is enough to consider the last row of the matrix sum,
Zg\]:?)l ®(iAt), similar to the proof of Theorem 15. Starting with i = 0,
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the last rows in the sum (see Eq. 5.18) are:

[0,0,...,1]
(Atk)"! oAtk (Ath)"? oDk oAk
(n—1)! T (n—=2)! e

[[(N - I)Atk]n_le—(N—l)Atk [V — I)Atk]n_ze—(N—l)Atk e—(N—l)Atk]
= 1) T =) S

the sum of which gives the last row of the matrix sum. This is given by

N-1 1
. (Atk)™™ n—1_—(Gi—1)Atk
[?:0 <I>(1At):| = [ - § :( 1y le-G=DAt

i N N

(Atk)"™ . o—G- —(i— .

(n _])' Z(Z _ l)n ]e (i I)Atk’ e, Ze (i—1)Atk . (1)
Toi=1 i=1

The right-hand-side of Eq. (i) is multiplied by I' (A¢), which, when
further multiplied by £, yields Eq. 5.55. This concludes the proof.

Note 5.18:  The discrete unit-step response is zero at ¢t = 0, its value at
t = At is given by Eq. 5.55 as

n—1 ;
Atk)!
gi(An =1-e2* % (5.56)
I
i=0

which is identical to the unit-pulse response value at t = Af¢ (see Eq. 5.50),
since up until Az the unit-step and unit-pulse functions are identical, with
the exception of the sampling-instant value at t+ = Af¢, when the latter
becomes zero instantly.

Note 5.19:  The unit-step response of the discrete cascade model with
given parameters can be calculated by Eq. 5.55. However, the unit-step
response can be easily calculated, provided the unit-pulse response is
known. This is because from Eq. 5.46

N—-1
Zh (A1) = ZH(D’ LAHT(Ar) = Z H® (AHT (A7)
i=1 i=0

N—1
—H [Z <I>i(Az)i| T'(Af)

i=0
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can be written which is Eq. 5.54. This way

gint = gi(A1) = Ztht (5.57)
j=1

that is the discrete unit-step response at time ¢ is the sum of the dis-
crete unit-pulse responses up until time #. This relationship is the discrete
version of the

t

g(t) = / h(t)dt (5.58)

—0Q

integral relationship of continuous systems (Fodor, 1967). This is not
surprising given that the Dirac-delta function is the derivative of the
continuous unit-step function.

Note 5.20:  From Egs. 5.48, 5.49 and 5.57 it follows that
lim gi(Ar) = 1, Vin=1,k>0,At>0) (5.59)
I—> 00

gi(Aty = 0, Vie(l,2,...). (5.60)

The system characteristics of the continuous KMN and discrete
DLCM cascades are summarized in Table 5.1.

Table 5.1. System characteristics of the continuous KMN-cascade and DLCM.

KMN
_ (tk)n71 —tk
h(t) = k(n — 1)!e
n—1 i
ety =1— Z (f]:)j ok
j=0 7
0 t
/ h(t)dt =1, rE}nooh(r) =0, i(r) >0, gt) = / h(t)dz, g(t) >0
DLCM -
n . n—j Jj—1 m
hin, = e~ G=DAIK |:Z [G —(nl)_Ajf)k!J J (1 _ oAk Z (Ar;k!) ):|
j=1 m=0
n (Al‘k)"_j i i ) B Jj=1 (Al‘k)m
gine = 2| G pr (DT 1=
Jj=1 I=1 m=0
N

i
N@w;hw = 1, lim hi(An) =0, hi(AD) = 0, gias = ;h_,m, &i(AD >0
= j=
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5.5 CALCULATION OF INITTAL CONDITIONS FOR THE
DISCRETE CASCADE

Recursive forecasting, Egs. 5.15 and 5.41, requires the initial condition,
X, to be specified. Here it is shown how easily the state—space approach
can be used to calculate initial conditions. This is in stark contrast to the
input—output convolution model practice, where this has always posed
a difficult problem (Kucsment, 1967) and was solved using approxima-
tions. To avoid oscillations in the impulse—response function (also called
instantaneous unit hydrograph), Kucsment (1967) suggested the applica-
tion of the hard-to-apply regularization technique of Tyhonov. Okunishi
(1973) showed that the regularization technique, as a payoff for its diffi-
culty, gives more accurate results than estimation of the impulse—response
values using least-squares. In order to circumvent the numerical problems
encountered during determination of the initial condition, Hovsepian and
Nazarian (1969) used an analog computer. Today, this may seem an archaic
approach.
During steady state, according to Lemma 3,

1
X) = E[l, ..., 117 u (5.61)

where u; is the steady state input. In this case all components of the initial
condition vector are equal.

In an unsteady flow condition, components of x¢ have different val-
ues, i.e. the storage elements contain different volumes of water. Below
it is shown that the n-dimensional vector, X, can be specified unambigu-
ously from n number of input—output value pairs. It, however, requires the
following:

Theorem 17: The discrete cascade, X prcas (Af), is observable, if n >
1,k > 0,and Az > 0.

Proof': A time-invariant, discrete, linear dynamic system is observable
(Kalman, 1961) if the observability matrix

©,=[H® H®’, ... HO""

has rank » (for a slightly different definition of the observability matrix,
see Eq. A1.18). This means that the rows/columns of ®,, are linearly
independent. The matrix series, H®' (i = 1,... ,n), yields the ®’ matrix-
exponential’s last row (times k) due to the structure of the row vector H.
According to Eq. 5.39, ®(At) = ®(iAt), consequently, the rows of the
n X n observability matrix
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[k (Atky"~! VI (A2 etk =
(n— 1)1 (n—2)L
p— n - : n a ’
0, = ' A"
: : e
, (n—p!
(A" g AR o ke Ak
L™ (n—1D)! (n—2)! -
(5.62)

are all linearly independent from each other, unless k& = 0. This latter
parameter, however, is never zero in a physical sense; thus the discrete
cascade is observable (Szollosi-Nagy, 1987). If Ar = 0, then the rows
become identical; thus the discrete cascade is then not observable. This
concludes the proof.

Using the solution of the inhomogeneous discrete state equation,
Eq. 5.41, the first » number of output can be obtained as (here At = 1
now, for simplicity of notation)

y1 = H®xo+ HIug (5.63)
y» = H®>xg+ H®Tuy+ Hlu,
yu = H®"'xg+H®"  'Tug+...+Hlu,_,.

Defining
Un = [u05u17"‘ 9”’171]T (564)
and
Y, =6y, ovall (5.65)

Eq. 5.63 can be written as (Szollosi-Nagy, 1987)

Ho hh 0 - 0
H®? S

Yo=| . |x+|™ M U, (5.66)
: Lo 0
Ho" hn hnfl ey

where h; = H® T is the jth ordinate (j = 1,2, ... ,n) of the discrete
unit-pulse response of DLCM (see Eq. 5.45), which can be explicitly cal-
culated by Eq. 5.47. The n x n quadratic matrix multiplying x( from the
left is the observability matrix, ®,,, of the discrete cascade. According to
Theorem 17, @, is observable; thus it is not singular [i.e. rank(®,) = n],
which means that it has an inverse. The initial condition, Xy, can be
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expressed from Eq. 5.66 by inverting it and denoting the matrix that
contains the unit-pulse response values by H,, as

xo = @, (Y, — H,U,). (5.67)

The H,U, vector’s elements are the discrete convolutions (see
Eq. 5.43) that yield the first » number of outputs provided the system
is relaxed initially. This way the

e, =Y, — H,U, (5.68)

vector reflects the effect of the initial condition. If e, = 0, then Y, =
H, U, which can only be if xo = 0, i.e. the system was relaxed initially.
By linearly transforming e, with the help of the observability matrix, the
unsteady initial condition is obtained. This is formulated in the following:

Theorem 18: The initial state, xg, of the prcp(A) = (®(AL),
I'(At),H) discrete cascade can be calculated unambiguously from the
[ug, u1,. .. ,us—117 and [y1,y2,...,y.]" input—output value pairs as
(Szoll6si-Nagy, 1987)

xo = 0, 'e,. (5.69)

Here ®, is the discrete cascade’s nonsingular observability matrix,
described by Eq. 5.62, and

Y1 — hiug
Y2 — (hauo + hyuy)

e, = : (5.70)

n—1
In= Y bt
j=0

where h; (j = 1,2,... ,n) is the jth ordinate (Eq. 5.47) of the discrete
unit-pulse response of DLCM.

Note 5.21: The initial condition, Xy, is determined from the outputs (and
the inputs that generate them) at time + = 1,2,... ,n, via “backward”
calculations. It is not by chance that the observability matrix plays a cru-
cial role in the process, since it is this matrix that determines, through its
definition, if such calculations are viable or not. If a system is not observ-
able, then its observability matrix is singular; consequently, the initial
state cannot be determined. Theorem 18 gives the algorithm as well.

Note 5.22:  The structure of the observability matrix does not show
any particular feature that would help with analytical determination of its
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inverse. The inverse of the observability matrix must be obtained numer-
ically. This should not pose a problem since the order of the cascade is
usually very low for practical applications (n < 5).

Note 5.23: When n = 1, the scalar initial condition, xq, is obtained
from the (ug, y1) input—output data pairs

0 = ke

from which the inverse is

The first value, 41, of the unit pulse response is (from Eq. 5.47)
h=1—e*

This way the initial condition, x¢, becomes

1
X0 = %ek[yl — (1= e Fyugl. (5.71)

Theorem 18 must be true for the steady flow case as well, since no
restrictions were made in the derivation of Eq. 5.69. The output equals
the input, u,, in a steady state. From Lemma 3, the steady state can
be expressed (see Eq. 5.61) as x;, = &k~ liu,, where i = [1,1,...,1]7.
Eq. 5.67 in a steady state becomes

X5 =k liug = O ! (iug — Hyiug)

which after rearrangement yields

R P . :

i= %(-),,1 + H,i. (1)
By writing out the last row of Eq. (i), the following is obtained:

Corollary 6: The system matrices, ®(At), ['(Af) (provided £ > 0,
At > 0), and H of the discrete cascade X p;car (At), satisfy the

n—1
1=i,®"(ANi+ Y H® (ANT(A) (5.72)
j=0

equation, where i, = [0,0,...,1].
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The practical importance of Eq. 5.72 is that it connects the system
matrices in a way that helps check the correctness of the discrete cascade
computer algorithm easily.

Note 5.24:  The second term of the right-hand-side of Eq. 5.72 is the
unit-step response value (see Eq. 5.54) at t = nAt¢. Considering this, the
following can be written

1 — g, (A =i, P"(At)i (5.73)
that, from Eq. 5.59, yields, if n — oo

lim [1 —g,(A)]=0
n—-0oQ
from which it follows that

lim ®"(A?) = 0. (5.74)
n—-oo

This means that the elements of the state-transition matrix tend to zero
with time, as was mentioned in the proof of Corollary 1. Eq. 5.74 follows
from the theorem (Forsythe and Moler, 1967) that says for any x vector
and n — 00

" (A)X —> 0 (5.75)

but only if all eigenvalues of ®(A¢) have magnitudes less than unity. This
property will be exploited below when studying the asymptotic behavior
of the forecasts.

Note 5.25:  Eq. 5.69 is valid for every deterministic, discrete, linear,
time-invariant dynamic system. However, Corollary 6 is valid for the
DLCM only because of the specified structure of the state-input relation-
ship. Hostetter (1982) recommends a recursive spectral analysis approach
for the initial condition determination, while Sehitoglu (1982a,b) cou-
ples an identification technique, based on output errors, to the Ljapunov
method, and proves that the initial condition estimations are satisfactory
even with noisy data. The previously discussed recursive forecasting algo-
rithm is purely deterministic, and so any corrupting noise in the data
and the model will be dealt with in a stochastic submodel (described in
Chapter 8), coupled with the deterministic model part. This way, applica-
tion of the above referenced, computationally complex algorithms will be
omitted.
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5.6 DETERMINISTIC PREDICTION OF THE DISCRETE
CASCADE OUTPUT AND ITS ASYMPTOTIC BEHAVIOR

Deterministic prediction of the state variable is given by Eq. 5.37, provided
the state and input variables at time # are known, and that the input is zero
at time ¢ + iAt. The conditional prediction of lead-time iAt, i > 1, of the
output is obtained, using Eqgs. 5.23 and 5.46, as

Vevinde = HXepingy
H®[( — D At]XAre
= H®[( — DA[®AD)X, + T (ADu,]
= H® (ADX, + hi(A)u,. (5.76)

The first term on the right-hand-side of Eq. 5.76 tends to zero (Eq. 5.74)
as i —> 00, and so does the second term (Eq. 5.49). This is trivial, since
when there is no inflow, the reach slowly empties at an exponential rate, as
indicated by the elements of the state-transition matrix. Falling discharges
will not immediately follow the cessation of inflow, as is observed in
Fig. 5.9, because the inflow at time ¢ will have an effect on the storage up
to the mean delay time of the reach: nK.

Assuming that u = u;, i > 1, the output becomes

t+iAt
Yerare = HEO(ADX, + HL (AHu,
Visaage = H®*(ADX, + HO(AOT (ADu, + HT (At)u,
Viviane = HO(ADX +[H) & (AHT(AD]y (5.77)

J=0

which, from Eq. 5.54, can be written as
Vivinge = HO (ADX, + gi(Ab)uy.

In the limit, when i — o0, the first term again tends to zero, while
the second term, according to Eq. 5.59, tends to the steady input, u;.
The above are summarized in the following:

Theorem 19: Asymptotic deterministic prediction of the output of the
Y. proyv (At) discrete cascade is

ignooylﬂm\/ = U (578)
provided
U, =u, Yie(,2,...). (5.79)
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Note 5.26:  Eq. 5.79 follows from its continuity.

If for time ¢ + iA¢, i > 0, the conditional forecasts of the input,
Uryias|r are available, which can be the outputs of DLCM from an upper
stream-reach, the conditional forecasts can be written as

i1
Vevinge = H®(EADX, + Z hi—j (ADurjane (5.80)
j=0

which follows from the inhomogeneous solution of the state equation,
(Eq. 5.41). Forj = 0, us; = uy.

The above equation is valid for all discrete, linear, time-invariant SISO
systems. From Eqs. 5.75 and 5.76 it follows that the effect of the initial
condition on the predicted output reduces with time. That, however, does
not diminish the importance of knowing the initial state, since it can be
derived for any arbitrary time analytically, and so the recursive prediction
can be started at any time. As a consequence, there is no need to start the
model from a steady or near-steady state, as may be the case with a full
dynamic wave model.

5.7 THE INVERSE OF PREDICTION: INPUT DETECTION

With DLCM one can quickly and accurately determine the inputs. Solu-
tion of this problem, known as input detection (Dooge, 1973), is not known
for continuous hydrologic models. The reason for this is the difficulty of
determining the initial condition of the system. As a result, input detec-
tion “has been widely ignored” in hydrology, which is an identification
problem, and so it is “substantially more difficult than the problem of
output prediction” (Dooge, 1973).

Note 5.27:  The problem of input detection can be found in the oper-
ation of flood-control reservoirs, where the outflow of the reservoir has
to be regulated in a way that assures certain criteria are met concerning
flow farther down the river (e.g. the maximum and minimum flow rates
stay within a predefined interval). The same problem occurs in estimating
effective precipitation distribution and time series from observed stream-
flow and in the estimation of missing upstream flow values using observed
downstream flow values.

Thus, the task of input detection is an inverse problem: the input of a
dynamic hydrologic system must be specified that results in an observed
or prescribed output.

For the solution, let’s assume that the parameters, n and k, of
Yprcm (1), as well as the initial state, xg, and the output for 7 =
1,2,...,t + 1 > n are known. Here it is shown that this information
is sufficient to determine the input, u,, of time .
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As before,
yirr = Hxi (5.81)
= H<I>xt =+ Hrut
= H‘I’x, + hlut

where /| by definition is

n—1 ki
J— — — 7k —
h=HF=1-—c¢ Z -

i=0

which is the first ordinate (always positive) of the discrete cascade’s unit-
pulse response (see Eqs. 5.46 and 5.47) with the A¢ = 1 choice. From
Eq. 5.81 above (Szoll6si-Nagy, 1987)

- 1
Uy = E(yt_i_l — H<I>x,) (582)

which for t = 0, 1,2, .. gives a recursive procedure for determining the
input, where the hat denotes that it is an estimate and not a measured value.
The recursion starts at ¢t = 0, for which xq is needed. For the estimation
of the latter (see Eq. 5.67), the first n values of input—output are required.
Input detection really starts at t = n, since up until 1 = n — 1, the inputs
must be known for the calculation of xo. Consequently, the states can also
be calculated recursively, once xg has been estimated, as (Sz6110si-Nagy,
1987)

X, = ®x,_ 1 +Tu,_| (5.83)
from which x,,, plus the observed output, y,41, yield @, via Eq. 5.82. As
can be seen, the recursion consists of two steps: (1) calculation of the state
at a given time (¢) from the preceding state (+ — 1); and (2) calculation of
input at the given time (¢) from the state at the same time (¢) plus observed
output at time ¢ + 1.

Note 5.28:  When u; = 0, then the output at r + 1 is

YVi+1 = H<I>Xt = H<I>((I>Xt_1 =+ rut_l) = H(I)2X,_1 =+ H(I>l"u,_1

that can be considered as a conditional deterministic prediction of the
output at # + 1 from information at # — 1. This way the error

Et+1 = Vi+1 — Vi+1)t—1

is used to detecting the input, u;.
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Input-detection
forn=1

Figure 5.10. Input detection for
the Danube at Budapest using
observed discharge values at
Baja, 200 km downstream.

Example 5.3: When n = 1, x¢ can be calculated using Eq. 5.71, and
hy = 1 — e*. Substituting these into Eq. 5.81, an identity for uq is
obtained. From estimated x( and observed ug, x| can be calculated via the
state equation (Eq. 5.83), and so the u; input becomes, with the help of
x1 and observed y, output

—~ 1 _ .
uy = —7,{()/2 — ke kxl). (1)
1—e
Using the output equation, y; = Hx;, and inverting it yields, upon
substitution into Eq. (i),

- 1 &
up = ———02 —e "y1).

1—e*
With the help of x; and i1, x; is calculable, and for # = 2 the following
is similarly obtained

- 1 —k
=103 —e"n)

and so on for every ¢. Fig. 5.10 illustrates the result of the above input
detection for a cross-section of the Danube at Budapest, Hungary. DLCM
was optimized for deterministic forecasting of the streamflow at Baja,
about 200 km downstream from Budapest (Fig. 5.11), with observed flow-
rate values at Budapest. The optimized parameters were: n = 1, k =
0.6d~!. Flow measurements were taken daily, so At = 1d.
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Figure 5.11. Gauging station
locations.

The Streeter-Phelps
model
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The following summarizes the steps of input detection with X prcar (1):

Algorithm 1: Step . Determination of the initial state, xg, through
Eq. 5.69, using specified model parameters (z and k) and observed input-
output values, (ug, u1, ... ,u,—1) and (¥1,¥2, ..., ). Let t = n. Step 2.
Calculation of state: x;, = ®x,_| + T'u,_1. Step 3. Reading in y; . Step 4.
Calculation of input with Eq. 5.82. Step 5. Back to Step 2 with t £ ¢ 4 1.

Note 5.29:  Aprerequisite of the algorithm is observability of the system.
The above algorithm is valid for any observable discrete linear dynamic
system.

As was mentioned before, flood waves flatten out as they travel along
the stream channel, which makes variance of streamflow at a downstream
section generally smaller than at an upstream section, provided there is no
tributary in between. The same is true with predictions and input detec-
tions: the latter always have higher variance than the former.

Example 5.4: Here the discrete state space formulation of the continu-
ous Streeter-Phelps model is discussed. The model describes changes in
the water quality of a river and, due to its simplicity, it has become widely
popular in the field, as it is still able to give meaningful and elegant
answers to practical problems. The model assumes that the water quality
of a river can be characterized by the dynamic interrelationship between
the biochemical oxygen demand (BOD) and the dissolved oxygen (DO).
Further, it assumes a first-order reaction kinetic for the BOD

dB(?)

= —K,B(¢
o Q)

where B(t) is the BOD concentration in mg/l and K, is the BOD removal
or decay coefficient in day~'. From continuity
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dD(t)
= ~KaD(®) ~ K:B(0) + KD

where D(¢) is the DO concentration in mg/l, K, is the re-aeration co-
efficient in day~!, and Dy is the saturation level of the dissolved oxygen.
Defining the state variables as x1(#) = B(¢) and x(¢t) = D(t) — D,
respectively, the latter being known as oxygen deficit and having direct
physical meaning, the state equation of the Streeter-Phelps model becomes

x(1) = Fx(?)

with
|-k 0
- &

considered to be constant. One of the objectives of setting up a water
quality model is to control the water quality to achieve a desirable
level of quality. The water quality of a river might, for example, be
controlled by, among other things, treatment plants and artificial aera-
tion facilities located along the stream. We define the control vector as
u(t) = [u1(t), uz(t)]”, where u (¢) is for the control of effluent dumping
from the sewage treatment plant and u; (¢) is for the artificial aeration car-
ried out. The first control might mean, say, the operation rule of a retention
reservoir receiving the effluent of the treatment plant; the second control
is the timing schedule of the aeration facilities. Thus the process model
becomes

x(t) = Fx(¢) + Gu(?)

with

1 0
o[t 4]
The minus sign refers to the fact that the more intensive the artificial
aeration the less the oxygen deficit, and vice versa. Now, we are ready to
derive a discrete model of the continuous process given above. According

to Eq. 5.16, the state transition between the two time instants # and ¢ + 1,
is defined by the

b+ 1,1) =eF
matrix exponential for a time-invariant system. Since the eigenvalues of

F are negative, A; = —K, and 1, = —K,, the system is stable. Applying
the well-known Sylvester expansion theorem, the one-step state-transition
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Figure 5.12. The dynamics of
the discrete-time water quality

control system.

matrix is obtained as

®(t+1,1) [ ¢ 0 ] (i)

1) =1 =K, -K, —K, —K, 1
K.—K, (e —e ) e

provided K, # K. As for the determination of the input-transition matrix

I'(¢), Eq. 5.17 is evaluated with G above and, due to the special structure

of the latter, it is equal to ®, except that the lower-right matrix element

has an additional negative sign. This way the state equation results as

x(t+ 1) = &x(¢) + T'u(?).

As far as the output of the system is concerned, the situation is that
the evaluation of the BOD concentration usually requires several days in
a laboratory, so for real-time control policies only DO measurements are
available. That is

(1) = Hx(1)

where H = [0, 1]. The system thus is specified by the ¥ = (&, I', H)
triplet. The dynamics of this water quality control system is shown in
Fig. 5.12.

u,(t) X,(t1)

UNIT x(t)
DELAY o

-

u,(t) X,(t1) UNIT X,(t) y

DELAY
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Unit-pulse response
of the Streeter-Phelps
model

Observability of the
Streeter-Phelps model

Example 5.5: Next we determine the unit-pulse response (%) of the
above water quality control system. Let us assume that the system at
t = 0 is initially relaxed, i.e. x(0) = 0 (or it is transformed into a relaxed
system from an equilibrium state [x'(0) = x*] as x(0) = x’(0) —x™*. From
Eq. 5.46 and with At = 1, the unit-pulse response function values for
i > 1 can be obtained as

h; = H®G— 1T
o~ (DK, 0
= [0, 1] —K; (e=G=DK: — g=(=DK))  o=G=DK,
K, — K,
e K 0
_K.
X ’K (e_KV—e_K") —e K
a — B
which yields
—K; (1-)K, (1=K, ,—K K —K.\ ,(1—)K r
h=| % K[(e D — =Ky o=k 4 (e7Kr — e7Ka) el1mDK]
L a — I

—iK,

Example 5.6: In order to estimate nonmeasured state-variables, it is
important to determine whether the system is observable. If the system
is not observable then the internal state variables cannot be determined
or estimated. Let us examine whether the Streeter-Phelps water quality
model is observable, i.e. can we determine the BOD values from DO
measurements and under what conditions. For notational simplicity let
Eq. (i) of Example 5.4 be

(O3] 0
o = .
[‘D21 D2
Since H = [0, 1], from Eq. A1.18, the observability matrix for n = 2
becomes

Nar: arar| |0 @2
o [wiorw] -0 %],

which has a rank of two, or is invertible only if ®,; # 0, i.e. if
—K; —K, —K,
ro__ a 0
K—a iy (e e ) #*
First, consider the case when K, # K,. Obviously

1

0<|—n
K, — K,

<] <0
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and
0< |e_K’ —e K| < ) <00,
Consequently,
1 —K, —K,
0<|——— |e r—e M < clep < 0
K, — K,

therefore if K, # K,, then ®;; # 0. Now consider the possibility that
K, = K,. Then

—Kpe K [1 — e~ ®mKD]

K, — K, 0

which is an indeterminate form. Thus let K, — K,, = K and consider

1— K
lim K,e K [ ¢ ]
K—0 K

for which the LC'Hospital rule yields

—_K
I}iinOKre_K* [T] = —K.e K £0.

Thus if K, and K, are nonzero and bounded, the observability matrix
is nonsingular, consequently the system is completely observable. To gain
more insight to the notion of observability, let us make a change in the
water quality system, namely, assume that only BOD data are available
for control. Then in this new system the output matrix is H, = [1, 0] and
the observability matrix becomes

ooy
= %

which is of rank one, i.e. this system is unobservable.

This chapter derived the deterministic model-component of the fore-
casting model and described its properties. It was shown that a trivial
discretization of the continuous system is not adequate, i.e. discrete coin-
cidence, continuity and transitivity are all violated. DLCM, on the other
hand, was shown to be unconditionally conservative, discretely coinci-
dent, and transitive, provided At — 0 for the last property. It was
demonstrated that DLCMs with different sampling intervals are related
to each other through a linear transformation. It was proven that the
discrete linear kinematic wave and DLCM are equivalent. DLCM was
also shown to be observable, and its initial condition always calculable.
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System characteristics of the DLCM, which play a role in predicting the
state and output variables and determine their asymptotic behaviors in the
pulse-data framework, were identified. The inverse task of prediction was
discussed, and an algorithm was given for input detection of the DLCM.

EXERCISES

5.1.

5.2.

5.3.

5.4.

5.5.

5.6.
5.7.

5.8.

5.9.
5.10.
5.11.
5.12.
5.13.

5.14.

Using the definition of the incomplete gamma-function, show that for n = 1
Eq. 5.20 is true.

Explain why ®(At) is amatrix and why I' (A¢) is only a vector for the zero lateral
inflow case. Note that later in the book each storage element may receive input not
only from the one upstream but laterally as well, representing a tributary and/or
groundwater contribution. Can you explain why we see the impulse responses
in a decreasing order in each row of the state-transition matrix? What is the
physical explanation of it? Hint: think about additivity of a linear system.

Why does the state-transition matrix contain the impulse responses but the input-
transition vector does not? What are the elements in the latter and why are they
ordered as they are?

Write up the homogeneous ordinary differential equation of the storage forn = 1
and solve it by separation of the variables keeping in mind that the solution is
the impulse response written for the storage. Show that Eq. 5.37 is indeed equal
to this homogeneous solution for any positive i.

Show that the unit pulse response, /;a;, of DLCM sums to unity as i — 00, and
that h;ja; — 0,asi — oo.

Write out the discrete unit-pulse response function, /s, forn = 1.

Show that h;jas, i = 1,2,... is discretely coincident with the continuous unit
pulse response function for n = 1.

Starting with Eq. 5.55 show that the unit-step response is 1 — e %4/ for n = 1,
i>0.

Show that Eq. 5.56 really follows from Eq. 5.55 for t = At.

Forn = 1andi = 1,2 demonstrate Eq. 5.57.

Check Eq. 5.72 for n = 1 and n = 2 by hand.

What is the estimate of xg withn = 1, At = 1,k = 0.6, up = 1084, y; = 1286?
What is the estimate of xg with n = 2, At = 1, k = 1.2 now, if in addition to
the measured in- and outflows in the previous example u; = 1153, y, = 1318?
What is the y3 prediction?

Choose a stream section of your liking with no tributaries. With trial and error
(or with an optimization technique of your preference) calibrate » and k for a
given period using discharge measurements taken at regular intervals (days for
example). With each (n, k) pair use Eq. 5.72 to make sure you wrote up ®(Af¢)
and T'(A?) correctly. Then you have a choice: either estimate the initial state
with each parameter pair, or just start with a relaxed system. In the latter case,
you will need to discard the first couple of values for performance statistics
calculations (e.g. least-square sum) on which your calibration is based, coming
from the so-called “spin-up” period that allows the model to reach the correct
state variable value. With the calibrated parameters, perform an input detection
as well for a few time-intervals. Once you can accomplish all this, you have
mastered application of the Discrete Linear Cascade Model, at least in a pulse-
data system framework, after which modifying it for an LI-data system should
be straightforward. You can find sample MATLAB scripts in Appendix II to
assist you with your own coding.



CHAPTER 6

The Linear Interpolation (LI) Data System
Approach

So far, within the pulse-data system framework, it has been assumed that
the value of the continuous variable, sampled at discrete time-instants,
remains constant between subsequent samplings. This assumption was
convenient in deriving the input-transition matrix of the discrete linear
dynamic system (Eq. 5.10), since the input, u(7), being a constant over
the time interval, [¢,¢ 4+ At), could be brought outside the integral in the
definition of the input-transition matrix, I' (Eq. 5.12). In case of flow-
routing, it is more realistic to assume that the input variable does not stay
constant over the sampling interval, At, but rather, that it changes linearly.
As the size of At decreases, a linear-change approach becomes ever more
accurate, since the nonlinear terms in the Taylor-expansion vanish ever
faster. Assuming a linear change in a continuous variable’s value over
the sampling interval results in the linear interpolation or LI-data system
approach.

6.1 FORMULATION OF THE DISCRETE CASCADE IN THE
LI-DATA SYSTEM FRAMEWORK

The discrete state equation (Eq. 5.10) has to be re-evaluated in the new
data framework, as

+At
X(t+At) = @@+ At,H)x@) + / O(t + AL, T)G()u(t)dt
t
At
= ®(A)x(@) + / o (t + At — 1)Gu(r)dt (6.1)

t

where above it made use of time-invariance and the fact that G is a constant
vector for the continuous KMN cascade. Note that the state-transition
matrix remains the same as in the pulse-data system case, but the second
term of Eq. 6.1 is different from the one in Eq. 5.10.
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Let’s evaluate the term

t+At
(A £ / &(t + At — T)Gu(t)dt

t

within the LI-data system. For clarity, the evaluation will be performed for
the ith component, yl:f] (At), of the n x 1 vector, I'*(At). Accounting for

the linear change in u(7) over At, and recalling that G = [1,0,...,0]7,

the ith component of IT'*(Af) can be written as

t+Ar

yi(AnD = / @ (t + At — Tu(t)dT
t
t+At
= / D1 (t + At — T)[u(?) + W(r - nldt
t
t+At

u(t + At) — u(t)
At f

/ [@i1(t+ At — Du) + P 1 (t + At — 1)

u(t + At) — u(t) dr

—&;1(t+ At —
t,l( + 7:) At

(6.2)

Performing a change of variables as &€ = k(¢ + At — 1), the first term
on the right-hand-side of Eq. 6.2 becomes

Atk
u(t) D u() , 1T, Atk)
k(i—l)!/ & E =i GAP =110
0

u(t)

where the I'(i, Atk) term is the so-called incomplete gamma function.
Here the identity, (i — 1)! = I'(i), was used again for integers. Similarly,
the third term (including the minus sign) of Eq. 6.2 can be expressed as

_u(t + A1) —u(t) I'(i, Atk)
Atk ING)

The second term requires a few more steps since both ®; 1 (# + At — 1)
and the t multiplier depend on the integral variable. Performing the same
change of variables, gives

Atk
u(t + At) — u(t) S(i_l) 1
Atk(i — 1)! & <I+At_ E$> s
0

_ult+ A —u() [(z+ AOTG At 1 7”}:1)5&4

At kT (@) k23 — 1)!
0
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_u(t+ A —u(?) [(t+ AT (i, Atk) B ll“(iJr I,Atk)}

At k(i) k? ra
_u(t+ A —u() [(H— ANT (@, Atk) 1 TG, Atk) — (Atk)l‘e-m’f]
B At kT (i) K> I'(i)

where the algebraic identity I'(a+ 1,x) = al'(a,x) —x%e™ (Abramowitz
and Stegun, 1965) was used. After combining all three terms, y;'; becomes
t+At
Yi1 (At = / D; 1 (t+ At — Du(r)dr
t

LEG A 4114 A (a0t + A0 — Agi(ADu(o))

k T@ ’ ’
(6.3)

where the A; 1 (At) term is defined as

(Atk)iflefAtk i
A(Ay=——2_° 6.4
i1 (AD) T(i, Atk) Atk 6.4)

When making the following additional definitions

Sl(At) 2 _l[‘(i,—Atk)A- (A (6.5)
Vil - Tk re o ‘
o a lF(z’, Atk) '
vii(A) = PTG [1+ Ai1(AD] (6.6)

Eq. 6.1 can finally be written in the LI-data system framework as
(Szilagyi, 2003)

Xirar = ®(ADX, + T (ADu, + T2 (A ar (6.7)

(compare it with Eq. 5.15) where the first input-transition vector,
r*l'(Ap), is

1T(1, Ath) | 1 e Atk ]
k T() |Atk T,Ath)

1T QA | 2 _(Azk)e—A'k
(6.8)

r''an=| k TQ Atk T2, Atk)

0

Atk T(n, Atk)

1F(n,Atk)|: n (Atk)”_le_mk:|
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and the second input-transition vector, I' S2(Af), is defined as

1 T'(1, Atk) - e Atk 1
kT (1, Atk) Atk

11"(2,Atk)|: (Atk)e= Dk 2}

r’2(An=| k TQ) T, Ath) Atk (6.9)

1 T'(n, Ath) (Atk)"—1e—Atk _on
kT T'(n, Atk) Atk | |

The two new input-transition vectors can be related to the input-
transition vector of the pulse-data system model. Eq. 6.5 can be equally
written as

i

Vil (A = i (A — @i (A) (6.10)

and similarly for Eq. 6.6

s2 _ _ L . .
vl (an = (1 Atk) Yl (AD) + i1 (AD) 6.11)

where y; 1 (Af) is the ith component of the input-transition vector, I' (Af),
of the pulse-data system (see Eq. 5.19). By defining the diagonal matrix,
D(A?), as D(Af) &< 1/Atk,...,i/Atk,...,n/Atk >, the two input-
transition matrices can be written as

r*'(Ar) = D(ANT(Af) — ®(AHG (6.12)
I2(Ar) = [1—D(ANIT(AD) + ®(ANG. (6.13)

Note that now there are two inputs required in the state equation
(Eq. 6.7). This is so because in the LI-data framework the input value
changes linearly between samplings, and a first-order polynomial requires
two parameters to be identified unambiguously.

Theorem 20: For pulsed data, the state equations are identical in the
two data frameworks.

Proof': In the LI-data framework, input is represented by straight lines
of different slopes between samplings. For a pulsed data this means that
the two input values at # and ¢ + Af must be the same in the LI-data
framework to be consistent with the zero slope value of the pulsed data:
u(t + At) = u(¢). Inserting this identity into Eq. 6.7 and using Egs. 6.12
and 6.13, results in Eq. 5.15, which concludes the proof.
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Corollary 7: The unit-pulse and unit-step responses are the same in
both data systems.

Note 6.1: The unit-pulse responses may indeed be identical in the two
data frameworks; however, in the LI-data system, the unit-pulse response
loses its property of providing, through discrete convolution, the output
of an originally relaxed discrete system. It is so because now the input is
defined by two values instead of one, and now there is an infinite number
of possibilities for the input’s shape over the sampling interval due to
the existence of infinite possible slope values. The possibility that the
input could always be decomposed into a unit pulse as u(t) = au,(7),
t < T < t+ At, where « is an arbitrary positive number, no longer exists.
As a consequence, the unit-pulse response has no particular significance
in the LI-data framework.

A signal starting at a in ¢ and linearly changing to reach b in 4 Af can,
however, be decomposed into the sum of two linear ramp functions: one
that starts at ¢ in 7 and reaches zero in ¢ + At, and another one that starts at
zero in ¢ and reaches b in ¢ + At. For these ramp functions, proportionality
will be valid, i.e. the first one can be obtained as a times the unit linear
ramp function with a negative slope, and the second one as b times the
unit linear ramp function with a positive slope. By definition, a unit linear
ramp function starts at unity and ends at zero (having a negative slope)
At time later and vice versa, starts at zero and ends at unity (positive
slope). Consequently, Eq. (6.8), when multiplied by £, is the response
function to the negative-sloped unit ramp input and Eq. (6.9) is that of the
positive-sloped one.

Theorem 21: The two discrete approaches, described by Egs. 5.15 and
6.7, are equivalent with pulsed inputs.

Proof: The state equations of the two discrete systems are identical, pro-
vided the input is pulsed. Consequently, the two systems have identical
output values at discrete time increments to identical pulsed inputs. This
concludes the proof.

Although the two approaches are equivalent with pulsed inputs, it does
not mean that the two give the same discrete output values to the same
discrete input sequence, as demonstrated in Fig. 6.1. The reason is that
the two approaches assume different behavior of the input signal between
samplings. Fig. 6.1 demonstrates again that the discrete model, now within
the LI-data system, is discretely coincident, which follows again from the
state equation (Eq. 6.1) defining the state trajectory between two points
in time separated by At.

Note that when making operational forecasts with Eq. 6.7, the input
at time ¢ 4+ At is not known yet; only a prediction of it may be available.
In Fig. 6.1 these input values were taken to be known. Such modeling is
called simulation and, trivially, it is always more accurate than forecasting.
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Figure 6.1. Outflow (y) of an
initially relaxed system to
hypothetical inflow (u), n = 1,
k=05[T"1], At = 1[T].
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Fig. 6.1 also demonstrates the advantage of an LI-data framework over
a pulsed one. In the latter, the input at t < 7 < ¢ + At is always taken
equal to the input at time #, due to the pulsed nature of the assumed input
behavior between discrete samplings when making a prediction at time ¢.
However, we can make any assumption about the input value at 7 + At
in the LI-data framework, which gives a significant additional flexibility
and advantage in forecasting. This advantage is the clearest when reliable
forecasts are available at the inflow cross-section of the given river reach.

Theorem 22: The discrete linear cascade, X prcyr (At), keeps its conti-
nuity (i.e. remains conservative) in the LI-data framework.

Proof': As it was shown earlier, if a system is conservative, then in a steady
state the output equals the input. In a steady state, the input is constant,
which means that the state equation of the LI-data framework reduces
to that of the pulse-data system, for which continuity has already been
proven. This concludes the proof.

Theorem 23: Convergence to transitivity improves in the LI-data
framework.

Proof': Aswas shown with Theorem 9, the discrete cascade is not transitive
in general because of the difference in the assumed discrete and continuous
system responses between two consecutive discrete sampling instants. If
it is true that the LI-data framework reduces this difference as At —> 0,
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then the system must approach transitivity faster than in the pulse-data
framework. But this is so, because from Eq. 6.1 the difference at ¢ + ,
T < At in the LI-data framework is
Y+ D) =5+ 1) =y 1) — (yz+”+AA’—t_ytr> (i)
where the hat denotes the assumed value of the discrete signal between
samplings in the actual data-framework. The same difference in the pulse-
data framework is

YiE+1) =P +T) =y +71) — . (it)

Because of discrete coincidence, y; = y(¢) and yrya; = y(t + At)
can be substituted in the above equations. The square of Eq. (i) is indeed
always smaller than that of Eq. (ii), because, when going through the
calculations, the inequality

dy(?)
dt

dy(0)

7 (iii)

is obtained where it was considered that At — 0 when replacing the
finite differences with the corresponding derivatives. This concludes the
proof.

As in the pulse-data system, the question arises of how models
with different equidistant sampling intervals relate to each other in the
LI-data system framework. The state transition matrices are the same in
both representations; thus the corresponding transformation matrix must
remain the same as it was in the pulse-data system. The transformation
matrices for the two new input-transition matrices can be obtained by
inserting the new input-transition matrices into Eq. 5.29. The following
transformation matrices of diagonal form are obtained:

1 iC (G, pAtk) — (uAtk) e Ak

Tpa (@) =< ..., A 6.14
P () =< e TR A — (Ao A g 6.14)
1 TG, pAth) (uAth — i) + (nAthk) e HAK
Tre(p) =< ..., — - - — y e >
w TG, Atk)(Athk — i) + (Atk)ie= Atk
(6.15)

where the terms shown are the ith components of the two diagonals.
The initial condition for predictions can be calculated similar to the
pulse-data framework (Eq. 5.63) with the obvious distinction that now
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there are two inputs at every discrete time instant

yi = H®xo+ HI g + HM 2y, (6.16)
y2 = H®>xg+H® [ uy + T'2up) + HM 'y + HE 20,
yp = H®"xg+H®" (T uy + %) + ... + HT oy + T%u)

where for simplicity of writing, At = 1 was again assumed. Denoting

Y=, oval’s U =(ug, - up11’; UP =[uy, - ,u,]”

together with
HI*! 0 co 0
H®Irs!  HIY! . :
H = . _ . (6.17)
: : - 0
H<I>"_11"S1 . Hq)rsl Hrsl
and
HI*? 0 0
H®Ir*>  HI+ . :
H® = _ . . (6.18)
: - - 0
He"'T*?2 ... Her? Hr+
Eq. 6.16 can be written as
Y, = 0,x0 + HVUD + HOU® (6.19)

where @, is the same observability matrix of the discrete system as was
defined in Eq. 5.66. Inverting the above equation yields

xo =0, 'Y, — HPUP + HPUP) = @, e, (6.20)

Note that even though the observability matrix is the same, the initial
condition is different in the two data frameworks with the same obser-
vations, simply because the assumed system behavior between discrete
observations is different in the two frameworks. The only exception is in a
steady state, when the two input-transition matrices collapse to the input-
transition matrix of the pulsed system, being the output (and input) of the
system constant. Consequently, the system diagnostic equation, Eq. 5.72,
remains in effect by writing out I'(Af) as (A7) 4+ T2(Af). As can be
seen, n+ 1 input and » output values are needed for determining the initial
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condition of an n-order cascade in the LI-data framework, which means
one extra piece of data in comparison with the pulse-data system.
Deterministic prediction derives from Eq. 6.16 as

i—1

Vivian = HO(ADX, + HY & (ADIT uryjnsy + Turs1yan]
j=0

(6.21)

where u;; = u,. Compare this equation with Egs. 5.80 and 5.46. In
both equations, forecasts for the upstream cross-section of the river are
included in the prediction of the downstream flow, provided i > 1. An
important difference exists for i = 1, i.e. for the one-step forecast. The
LI-data system can incorporate upstream forecasts in the one-step pre-
diction, while the pulse-data system cannot. Improvement in the one-step
forecast affects multi-step forecasts, as evidenced by the forecast equation
above. In nested conditions, when reliable one-step forecasts are available
for the upstream cross-section, the LI-data system is expected to be better
than the pulse-data system forecasts. This is demonstrated in the illustra-
tions (from Szilagyi, 2003) below (Figs. 6.2 and 6.3), where simulation
results are shown for Baja at the Danube, about 200 km downstream from
Budapest, the upstream station, for arbitrary (i >>1) days of lead-time. The
use of the words “simulation” and “multi-step lead-time” are compatible
as long as the calculation of y,1jar (i = 1,2, ... ) starts with x; in Eq. 6.21.
Note that this way simulations can be considered as best-case scenarios
of nested forecasts, i.e. the upstream forecasts are “perfectly on target™!
Observe the “forecast” improvement at the peak values of the two largest
floods of the period between the two data frameworks. Note that when
perfect upstream forecasts are available then the forecasts do not deteri-
orate with increasing lead-time. Thus the one-day forecast has the same
accuracy as the i-day (i > 1) forecast.

Naturally, when no forecasts are available (i.e. uy(1nang =
Urpjae = Uy, j > 0) for the upstream section, the two frameworks give
the same result, since then the two input-transition matrices of the LI-data
framework collapse to the input-transition matrix of the pulse-data system
(Eq. 5.77).

There remains the discussion of input detection within the LI-data
framework. With the help of Eq. 6.7 and At = 1 for simplicity of notations,
the output at time ¢ can be written as

Ver1 = HOX, + H(T uy + T%0,4) (6.22)

from which the detected input, u becomes

R 1
U1 = W(}/t+] — H<DX; — HI'Slu,). (623)
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Figure 6.2. Measured and
DLCM-simulated (dots) flow
values (arbitrary i-day [i >1]
lead-time) of the Danube,
Budapest — Baja. Pulse-data
framework.

Figure 6.3. Measured and
DLCM-simulated (dots) flow
values (arbitrary i-day [i >1]
lead-time) of the Danube,
Budapest — Baja. LI-data
framework.
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Note that the HI'*? term is a scalar. With the help of the state equation
written as

X, = ®x,_1 + Ty + T2y, (6.24)

the first n discrete states at times ¢ = 1, - - -, n can be calculated, since for
the estimation of the initial condition, X, inputsat¢ = 0, - - -, n and outputs
att = 1,-- -, n must be known. The first detected inputisatt = n+ 1 for
which all necessary variables are known in Eq. 6.23. With the detected
input, Eq. 6.24 can be applied for x,,+ |, by which the input can be detected
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at time ¢ = n + 2, and so on. The recursion, however, can become highly
unstable since Eq. 6.23 includes the previously estimated input beside
the measured output. This way input detection within the LI-data system
framework has limited practical applicability.

6.2 DISCRETE STATE-SPACE APPROXIMATION OF THE
CONTINUOUS KMN-CASCADE OF NONINTEGER STORAGE
ELEMENTS

There seems to be one major difference between the continuous KMN-
cascade and its state—space formulated version (either continuous or
discrete in time) of it. Namely, the impulse—response function (Eq. 2.22)
of the original cascade, when generalized, can take up noninteger values
of n by simply replacing the factorial with the complete gamma function.
In practical applications this feature can be advantageous.

Note 6.2: The complete gamma function, I"(n), is defined for all rational
numbers, while the factorial is only defined for integer # values. In such
cases I'(n) = (n — 1)!, as known.

In the state—space approach there can only be an integer number of
storage elements. However, the routing results obtained with Eq. 2.22 of
noninteger n can still be approximated using the following considerations.

The impulse—response (Eq. 2.22) of a single storage element, when
n < 1, is also given by Eq. 2.22 written as

(kn)"~! ot

ht) =k T

(6.25)

In the state—space formulation a trivial choice for a constant storage
coefficient when x = n < 1 can be k, = k/x (Szilagyi, 2006) since the
mean storage time K = k! is expected to be smaller for a fractional
storage element than for a full one (i.e. when n = 1). With this constant
coefficient approximation a fractional storage element will behave as a
full one with a magnified k& value. This observation also means that the
uniform fractional n-cascade (i.e. when 7 is noninteger) of Eq. (6.25) can
be represented in the state—space approach by replacing the last storage
element in the cascade with an element whose storage coefficient is k, =
k[n—int(n)]~!, where int designates the integer part of n. As a simplifying
convention, the fractional element must always be the last one in the
cascade, ensuring that only the last row of the system matrices are different
to the case of a uniform cascade. Note that the order of the unequal storage
elements is otherwise irrelevant since any ordering results in the same
output due to linearity (Dooge and O’Kane, 2003, pp. 90).
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Thenew n* x n* [where n* = int(n+1)] system matrix, F, will remain
unchanged in its int(n) x int(n) dimension, but its last row/column will
be changed

—k 0
ko —k
ko —k
F= o (6.26)
S
0 k-
X

where x = n — int(n). Determination of the new state-transition matrix,
@, can be achieved by e.g. successive convolution. Note that unlike in the
system matrix case, each element of the last row of @ will be different.
Performing the matrix exponential in Eq. 4.9 for small values of n* with
the help of, e.g. the Maple software, it can deduced that the last row will
contain the impulse—responses (divided by k) of nonuniform cascades of
decreasing (by unity) dimension, similarly to the last row of ® in Eq. 4.9
that contains the impulse-responses (divided by k) of integer uniform
n-cascades. Note that @« ,» = e~k Ttis sufficient to determine D1, a8

kt)" 2
D,y = —h(t) / k( s — ) e M e Mgy (6.27)

which, after some algebraic manipulation, yields

k(kt)" —2e=*!
(n* = 2)/(ky — k)

(e {1 — k0 P [0" = 2T 0" =2, (k = ko) — (" = 1]}),
nt=2 k#k (6.28)

Dy =

Note that when n* = 2 and k, # k, there is a cascade of two unequal
linear storage elements.

Similarly to the state-transition matrix, the first inz(n) elements of the
input-transition vector will be the same as in the uniform cascade case. The
last component of I'(Af) can be obtained, as before, through successive
convolution

1 1 t+At n—2 (k )/

_ _ 4 kT T —k(t—T)

Y1 (AL) = kxg(At) s / l1—e j_EO _j! ke dt
f =

(6.29)
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which, after certain degree of algebraic manipulation, becomes

_ okt
Yo (A =~ —
n*—2 : . . .
—k At (kAty { (ki—k) At |:]F(], (k — k) Ar) —j!i| }>
¢ ;<<kx —on | T kA
n* > 2; ke # k. (6.30)

Eqgs. 6.28 (with the t = At substitution) and 6.30 form the state—space
approximation of a uniform fractional n-cascade written in a pulse-data
system framework (Szilagyi, 2006). The state-transition matrix is the same
in both the pulse- and LI-data system frameworks, but not, however, the
input-transition vector.

The input-transition vector, as before, separates into two vectors in the
LI-data system approach, one, I'*! (A¢), that operates on u(f) and another,
I'*2(Af), that acts on u(¢f + At). Again, the first inf(n) elements of either
input-transition vectors remain unchanged

i

yil(an = VLA = int(n) (6.31)
and

I
yl-‘jlz(At) = ¥i1(Af) — EVH—L](AZ‘) i=1,---,int(n) (6.32)

respectively, where the definition of Eq. 5.19 was used.

Note 6.3: Egs. 6.31 and 6.32 are the same as Egs. 6.5 and 6.6, only written
in a more succinct form.

As before, the last component of the input-transition vectors can be
obtained through successive convolution. After some algebraic manipula-
tions, the successive convolution yields the following expressions for the
last component of the input-transition vectors

e~k n*—1
s2
v (A = — [a ~B- yn»«ﬂ,l(m)} (6.33)
and

Vel (A1) =y (A1) = 732, (AD) (6.34)
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where

ke At _
L e gxm 1) 635)
5o n*l< K1 (Ary {e(kxk)m N |:j1"(j, (k — ky) A1) —j!]}>
— \ (ke — k)G = D! [k — k) ArY

(6.36)

respectively.

Finally, in the output equation’s H vector, k, will replace k for the
nonuniform rn*-cascade. Eqs. 6.28 (with the r = Af¢ substitution) and
Egs. 6.31 through 6.36 with the corresponding u(z + Af) and u(¢) values
specify the state—space approximation of a uniform fractional n-cascade
written now in a LI-data system framework (Szilagyi, 2006).

Figs. 6.4 and 6.5 display the impulse, unit-step, and ramp response
functions of the uniform fractional n-cascade and the state—space for-
mulated, nonuniform, discrete, integer n*-cascade, written in an LI-data
system framework. The constant slope of the ramp function applied is 0.1.

It can be concluded that the closer the value of # to an integer, the better
the fit becomes between the uniform, fractional n-cascade and its approx-
imate, state—space formulated nonuniform, integer n*-cascade. Naturally,
when # is an integer the two models are discretely coincident. Similarly,
the larger the integer part of n, the smaller the difference becomes between
the two model outputs. As a consequence, the two models are expected to
yield almost identical forecasts when 7 is relatively large and/or when its
value is close to an integer.

The importance of considering a fractional uniform cascade (and thus
its nonuniform state—space approximation) is highlighted by the observa-
tion that in many practical applications, using flowrate values, the value
of n tends to remain small. This is so because for a given stream reach,
represented by uniform linear storage elements, the mean storage delay
time (also called residence or travel time), T, is nk—!. As the value of n
is increased (while keeping 7 constant), the response of the river reach
becomes less and less diffusive. Observations of natural river channels
with a gentle slope (i.e. less than 0.01%, characteristic of the Danube in
Hungary) show a typically high degree of dispersion (i.e. the flood waves
flatten out relatively fast), thus leading to small optimized # values. For
small values of n, however, it makes a relatively large difference whether
n may assume only integer values or is allowed to have noninteger values
as well during the optimization process.

Finally, specifying the system matrices for a discrete nonuniform cas-
cade approximating a continuous uniform cascade of noninteger number
of storage elements is necessitated by the fact that the Discrete Linear
Cascade Model is transitive only when At — 0. Transitivity for any A¢
would allow for taking the discrete output of a uniform (n—1)-cascade and
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subsequently routing it through an additional storage element and obtain
the same result as when performing the task in one single step, so there is
no need to work out the system matrices of the nonuniform cascade case.
This, however, is not so, simply, because the discrete model makes only
assumptions on how the discretely observed input signal behaves between
subsequent samples; consequently this assumed behavior of the input
signal is not identical to that of the original continuous signal (Szilagyi,
2006). This way, two different signals enter the last storage element in the
above example; thus the output must also be different between the two
cases (i.e. one-step or two-step approach). Consequently, the output of a
discrete nonuniform n-cascade cannot be replicated by simply employing
a discrete uniform (n—1)-cascade first and routing its output additionally
through another storage element (of different storage coefficient).

6.3 APPLICATION OF THE DISCRETE CASCADE FOR
FLOW-ROUTING WITH UNKNOWN RATING CURVES

Below it is demonstrated how the KMN-cascade can be formulated for
flow routing when there is no flow-rate information. For larger streams
and for rivers, the primary source of flow information is in the form of
stage measurements which are converted into instantaneous flow rates
through the application of an established rating curve for the channel
cross-section in question. A flow routing approach based solely on direct
stage observations may prove useful when no rating curves are available
or the rating curves are highly inaccurate.

The linear storage equation (Eq. 2.17) results if it is assumed that the
exponent («) is the same in the functional relationships between flow rate
and stage as well as between water stored in a channel reach, S(¢), and
stage

o) = calH®) +al” (6.37)
Sty = cH(t) +al” (6.38)

where H [L] is the measured value of the stage above or below datum,
and 1 [L37*T~1], ¢ [L>7*], and a [L] are constants. Dividing Eq. 6.37
by Eq. 6.38 yields

01 = =51 = kS(0). (6.39)
2

Inserting Egs. 6.37, 6.38, and 6.39 into the lumped continuity equation
of the channel reach

S0 =0V @) - 0P (1) = 0V (1) — kS(r) (6.40)
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results in

dH (¢
2ol HO (1) +al*™ === O _ 1D ) + g
(&)

+ es[HV (1) + b]P (6.41)

where the superscripts 1 and 2 refer to the up- and downstream ends
of the channel reach, and ¢3 [L3~#T~1], b [L], and B are constants of
the stage—discharge relationship of the upstream location. By rearranging
Eq. 6.41,

dHP () o o cs [HV@) + b1k
— = —cz—a[H () +a) + o HO0) F T (6.42)

is obtained which shows that in general the future outflow rate of the reach
is determined by a certain combination of in- and outflow rates through
the last term of the right-hand-side of the equation. However, by assuming
that both exponents are unity, Eq. 6.42 simplifies into

dH? (¢t
T() — O+ SHOW 4+ es = —kHO @)+ cHO (1) + ca
2 2

(6.43)

where ¢ = ¢3/c; [T™'], and ¢4 [LT "] are other constants. In comparison
with Eq. 6.40 or 4.1, the constant multiplier of #") and an additional
constant value now are of no concern because linearity assures that the
output is proportional to any constant multiplier in the input values, and
the presence of a constant input means only an additional constant value
in the output values after an initial spin-up period. Because of the arbitrary
reference points in the stage measurements of differing locations, routed
upstream stage values have to be scaled up or down in any case to match
the measured downstream stage values, thus the presence of a constant
multiplier (and an additional constant) in the input stage values means no
extra scaling. Consequently ¢ and c4 can be chosen arbitrarily. In this way
Eq. 6.43 can be expressed as

@
—det O _ @)+ HO@) (6.44)
which now is of the same form as Eq. 4.1 of the KMN-cascade when
written for a single subreach. The reason why the required scaling is not
typically a linear function stems from the general nonlinear shape of the
actual rating curves, whereas in the derivation of Eq. 6.44 linear rating
curves were used. The required scaling of routed to observed stage values
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can be achieved by the application of a polynomial curve fitting in the
form of

—_— —_— —_— —1 —_—
HO%() =piHO" (1) + pyHO" () + -+ puH O (1) + s
(6.45)

where H@®s¢ is the scaled, H®@ is the original model estimate of the
downstream stage value, and the p;-s [L'~™] are the constant coefficients
of the polynomial of a predefined order m.

The discrete cascade over n serially connected subreaches can be
written now as

H/a = ®(ADH, + T2 (AnH D, + T (AnH (6.46)
where the vector H comprises the modeled stage values of the n sub-
reaches, the ®(Ar), I'1 (At) and I';(Af) are the same as in Eq. 6.7 before.
The output equation now becomes

H(l)(t)
H® (1) =1[0,0,---,11] (6.47)
H(”)(t)

the term on the left-hand-side being the input to Eq. 6.45. For channel
reaches with tributaries, stages are routed separately between up- and
downstream stations on the main channel and the upstream station of each
tributary and the downstream station of the main channel due to linearity

of the KMN-cascade, before inserting the H ) (£) (j = 1, - - -, T+1, where
T is the number of tributaries within the reach) values into Eq. 6.45. Then
thep; (i = 1, - - -, m) coefficients of the polynomial become vector-valued.

As a practical consideration, it can be mentioned that ¢4 in Eq. 6.43
may need to be chosen different from zero in order to avoid negative
values in the routing of stages when the upstream stage value can drop
below datum.

Table 6.1 compares the performance of the present model with that of
an operative forecasting model (discussed later) employed at the National
Hydrological Forecasting Service of Hungary.

Here o is the mean root-square error of forecasts, and a Nash-Sutcliffe-
type efficiency coefficient is defined as

(6.48)

2 2 AV
NSC = 100 (Z(H_fﬂ) "

> i(Hi—y — H;)?

where ﬁi is the predicted, and H; the observed stage value on day i. The
closer the NSC value is to 100% the better are the predictions. Note that
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Table 6.1. Model performance statistics of the one-day ahead stage forecasts. The values
in parentheses refer to the operative model (from Szilagyi et al., 2005).

Optimization period (Jan. 1, 2000 — Dec. 31, 2001)

Budapest o =5.95(5.67) [cm], NSC = 94.21 (94.75) %
Dunatjvaros o = 6.58 (8.42) [cm], NSC = 92.15 (87.14) %
Paks o =5.08 (7.46) [cm], NSC = 92.67 (91.96) %
Baja o = 6.92 (5.68) [cm], NSC = 91.75 (94.43) %
Mohacs o =5.28 (5.49) [cm], NSC = 94.34 (93.90) %
Tokaj o = 6.23 (8.53) [cm], NSC = 78.87 (60.34) %
Makod o = 12.02 (11.85) [cm], NSC = 66.79 (67.72) %
Verification period (Jan. 1, 2002 — Sep. 18, 2003) %
Budapest o = 8.11 (7.83) [cm], NSC = 91.66 (92.23) %
Dunatjvaros o = 8.59 (9.88) [cm], NSC = 89.13 (85.75) %
Paks o = 6.07 (9.46) [cm], NSC = 95.70 (89.55) %
Baja o =7.69 (7.87) [cm], NSC = 91.81 (91.45) %
Mohécs o = 6.16 (6.72) [cm], NSC = 93.79 (92.61) %
Tokaj o =9.72 (17.57) [em], NSC = 44.76 (0) %
Mako o = 9.36 (10.85) [cm], NSC = 64.01 (51.49) %

the NSC value may be negative when the forecasts are worse than the
naive prediction (see denominator), which takes the stage value of the
actual day as the one-day forecast.

Overall, performance of the above model is very similar to that of
the operative model. For certain stations (Budapest, Baja, and Mako)
the operative model produces more accurate predictions than the recent
model. This is what would normally be expected, since the operative
model uses extra information (i.e. known rating curves) for flow rout-
ing. One plausible explanation of why the present model may perform
better than the operative one for other stations (Dunaujvaros, Paks, and
Tokaj) can be that for those stations the rating curves may not be accu-
rate enough or they may be outdated, i.e. they do not reflect correctly
the channel and flow conditions of the modeled periods. Suboptimal
parameter values (which could stem from a higher number of parame-
ters to be optimized, i.e. 7 as opposed to 3) in the case of the operative
model might also explain its underperformance, but it is unlikely know-
ing that parameter values of the operative model are updated each day
using information from the previous 90 days (Szildgyi, 1992). Here it
should be emphasized that the current model is not meant for replacing
models that use measured rating-curve information. Whenever reliable
rating curves are available, a flow-rate formulation should always be pre-
ferred over a stage formulation. However, an additional (on top of flow
rates) flow routing using stages only, can detect inadequacies in the data
required by the former. Naturally, when no information of rating curves
is available, the proposed model (or its variant, such as a multilinear for-
mulation) may easily be a proper candidate of a physically based model

to apply.
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Figure 6.6. Location of the
study reach (Nebraska City —
Rulo) on the Missouri River.
The dashes indicate dam
locations on the river (from
Szilagyi et al., 2008).

6.4 DETECTING HISTORICAL CHANNEL FLOW CHANGES BY
THE DISCRETE LINEAR CASCADE

Specific-stage diagrams of the Missouri River downstream of Omaha,
Nebraska (Fig. 6.6), typically show increasing stage levels to fixed dis-
charge values (Fig. 6.7), raising the spectre of an increased flood risk to the
area and that despite the construction of a chain of major multi-purpose
reservoirs upstream of Sioux City, lowa.

DLCM was applied to model the flow over the 104-km long Nebraska
City — Rulo section of the river in two distinct time periods: in the 1950s,
before major river training works commenced to make the channel navi-
gable for large barges, and in the 1990s, when such works had mostly been
completed. Optimization resulted in n = 3 for both periods, but yielded
k =5.7d"" for the 1950s and k = 4.3 d~! for the 1990s.

While previously it took about 0.53 day (= n/k) for a floodwave to
travel the Nebraska City — Rulo distance, by the 1990s the same took
about 0.7 day. These translate into mean celerities of 8.23 km/d and
6.21 km/d, respectively, a 25% slowing over time. Since flood celerity for
a wide and relatively shallow rectangular channel can be approximated
as 5d%/3 ~/So/3m, where d is the mean channel depth, Sy is the channel
slope, and m is the Manning roughness coefficient of the channel, and
where it could be ruled out that neither the mean channel depth nor the
slope could decrease over time (mainly because of the continued dredging
of the channel plus the intended purpose of wing-dyke construction, i.e.
to concentrate and speed up the flow—to avoid sediment accretion—in
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Figure 6.7. Specific-stage
diagrams of the Missouri River
at Nebraska City and Rulo,
Nebraska, with linear trend
functions fitted (from Szilagyi
et al., 2008).
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at least a narrow part of the channel and thus, to ensure a certain water
depth for barge traffic), the celerity decrease could only be caused by a
corresponding increase in the roughness coefficient. The latter most likely
had been caused by a doubling of the number of wing-dykes within the
reach, from 340 to about 660 over the period (Szilagyi et al., 2008).

The ease of application and minimal data requirement thus makes the
DLCM a practical tool for streamflow analysis. It can also serve as a
preliminary investigative tool for more advanced and detailed hydraulic
approaches that typically require a data-rich environment and significantly
greater development time.

This chapter derived the state equation of the discrete cascade in the
Ll-data framework. It was shown that the input-transition matrix of the
pulse-data system decomposes into two matrices that transform the two
inputs separated by At in the LI-data framework. It was also shown that
discrete coincidence and continuity remains the same, while convergence
to transitivity with At —> 0 improves within the new framework. The two
approaches were demonstrated to be identical with pulsed inputs, and so
the unit-pulse and unit-step responses of the discrete cascade also become
identical in the two frameworks. These characteristics, however, lose their
significance in the LI-data system, because input can no longer be decom-
posed into unit-pulses in the new framework, since input is now defined
by two separate values over each sampling interval. Estimation of the
initial state and detection of inputs were demonstrated to be similar to the
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pulse-data framework, but neither their calculation nor their estimated
values are strictly identical in the two frameworks. It was also shown that
predictions in the new data framework are expected to improve over the
pulse-data approach in nested forecasts, when forecasts for the upstream
cross-section of the stream are available. The discrete cascade model was
next extended to allow for an approximation of a homogenous, fractional
n-cascade response. A version of the discrete cascade that uses stage val-
ues rather than flow-rate ones was formulated for applications where no or
Jjust inaccurate information is available on the rating curves that transfer
measured stage values into flow rates. Finally, it was demonstrated that
the model can also serve as a practical, preliminary investigative tool for
streamflow analysis before more sophisticated and expensive hydraulic
approaches are used with significantly increased model-development time
and data requirements.

EXERCISES

6.1. Prove that a function linearly changing from a to b over Af can always be decom-
posed as the sum of two linear ramp functions, one starting at @ and reaching zero
over At, and the other starting at zero and reaching b over the same time interval.

6.2. Derive Eq. (iii).

6.3. Show that the new transformation matrixes, Eqs. 6.14 and 6.15 are correct.

6.4. For n = 2, demonstrate that the output of the inhomogeneous cascade (i.e.
k1 # k) does not depend on the order of the storage elements.

6.5. What is the estimate of xo withn =1, At =1,k = 0.6, up = 1084, u; = 1153,
y1 = 1286?

6.6. What is the estimate of xo with n = 2, At = 1, k = 1.2 now, if in addition to
the measured in- and outflows in the previous example u, = 1580, y, = 1318?
What is the y3 prediction?

6.7. Repeat Exercise 5-14 within the LI-data system framework.



CHAPTER 7

DLCM and Stream—Aquifer Interactions

The two examples below show how the Discrete Linear Cascade Model
can be applied to account for the transfer of water between the channel and
the adjacent aquifer. The first example describes the modifications needed
in the state—space description of the DLCM to allow for considering bank
storage and base-flow processes in flow routing. The second example
shows how the actual rate of base-flow contribution to the channel can be
estimated via the method of input detection, discussed in Chapter 5.

7.1 ACCOUNTING FOR STREAM-AQUIFER INTERACTIONS
IN DLCM

It was shown previously that the discrete linear cascade model,
Y prcm (At), is a special discretized form of the continuous linear kine-
matic wave equation that describes the translation of flood waves along
the stream. Due to spatial discretization, the discrete cascade can account
for the dispersion of the wave that causes it to flatten out as it travels.
It has also been shown how tributary inflow can be incorporated into the
model. However, there remains one important physical process that has not
been considered yet, and that is flux exchange along the stream—aquifer
interface. This exchange of water manifests itself as bank storage during
flooding, which causes the peak of the flood wave to subside faster than
it would otherwise due to dispersion only along its travel. The release of
water from the banks after the flood in turn slows down the flow reces-
sion. Also, during prolonged periods without precipitation or snowmelt,
the aquifer may supply groundwater to the stream solely responsible for
maintaining its flow, which is referred to as base flow. These examples
clearly show the need to include this exchange of water between stream
and aquifer into our flow routing procedure.

Flow, g(¢) [L>T '], across the stream—aquifer interface (and over a unit
length of the stream) can be described by Darcy’s law under simplified
conditions as (Hantush et al., 2002)

H(t) — h(0,1)

q(t) = Pk 5

(7.1)
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Figure 7.1. Schematic of the
stream—aquifer system.

Ground surface b

Aquifer

Streambed y=0

Base of aquifer

where P [L] is one half of the wetted perimeter of the stream, x [LT '] is
the saturated hydraulic conductivity of the streambed, b is the thickness of
the streambed, H (¢) [L] is the water level in the stream above the reference,
which can be an initial equilibrium position (EP) of the ground-water
table, and A(y, t) [L] is the elevation of the groundwater surface above the
reference (Fig. 7.1). Of course, the total flow across the interface is twice
that of Eq. 7.1 (provided conditions are similar) because the stream has
two banks.

Before the above equation can be used with the discrete cascade, some
further simplifying assumptions have to be made. These are: (a) the aquifer
has a high enough diffusivity so that any water that crosses the streambed
either from or to the aquifer would cause a change in 4(0, ¢) that is negligi-
ble compared to the mean saturated thickness of the aquifer; (b) changes
in the groundwater surface elevations due to recharge and discharge are
negligible to its overall height (%9); and (c) the stored water volume, x(¢),
in a stream reach (L) can be taken as proportional to H (¢). With these
assumptions, Eq. 7.1 can be reformulated for a stream reach after taking
account of both banks as

P
o) =2 f L@~ 1O, 0) ~ glx(t) ~ o) (72)

L

where O(¢) now has a measurement unit of volume over time, and g [77!]
can be conceptualized as the inverse of the mean delay time of storage
(similar to k) in stream—aquifer interactions. Inserting Eq. 7.2 into the
continuity equation (Eq. 4.1) of the storage element yields

x(t) = u(t) — (k + 2)x(t) + Co (7.3)

where Cy = gx is a constant (Szilagyi, 2004a). For a cascade of storage
elements, Eq. 7.3 becomes
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—(k+g) 0 0 X1 ()
. _ . : x,(1)
(1) = k k+eg) ' §
0 k —(k+g) Xu (1)
u(t) + Cop

Co

+ :

Co

= Fx(0) + u(®) = Fx(1) + Gu(?) (7.4)

where there are four parameters: n, k, g, and Cy. The input-distribution

matrix, G, is just an n x n identity matrix: G = I,;, as was mentioned in

Chapter 5. The state and input-transition matrices must be derived next.
The matrix-exponential of F = k(N,, — I,,) — gl is

o F — kNi—L)—gL] _ kN, —t(k+)L, _ thN, _ —t(k+g) (7.5)
where the sharp brackets denote a diagonal matrix. The structure of the
first term of the right-hand-side of Eq. 7.4 is the same as it was in Chapter 4,
and so the discrete state-transition matrix becomes

e—Alk+g) 0 0
Athe—Attk+g) e~ A1lk+g)
o(A1) = 0
-1
(Atk)" o~ Arlktg) Atke—Dtk+g) o= At(k+g)
(n—1)!
(7.6)

which is similar to Eq. 5.18 except for the additional term of —Atg in the
exponents. The discrete state equation can be obtained as
1+ A1
X(t + At) = P(ADX(t) + / ®(t + At — 1)Gu(r)dr. (7.7)
1
For clarity of writing, the ith component of x(¢) will only be considered
below as in Eq. 6.2. Assuming that the system is relaxed at time #, gives
+At
xi1(t+ A = / @, 1(t+ At — Du(r)dr
tHAL
+ Cy / D @t + At —1)dT (7.8)
r J=1
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where the lower triangular property of the state-transition matrix was used.
Performing a change of variables as & = ¢ + At — t, the first term of the
first integral (see Eq. 6.2) becomes (Szilagyi, 2003)

k=1 T, Atk + g)]

t -
“Oirer T
where the identity (Abramowitz and Stegun, 1965)
? gD 1
/ o dg = ;F(z) (7.9)
0

was used. When the upper integral-limit is finite, X, Eq. 7.9 becomes
(Szilagyi, 2004a)

Xé(ifl) 1
/ = d¢ = —iF(i,cX). (7.10)
e c

0

The third term of the first integral similarly yields

K=V tlu(t) — u(t + A T, Atk + g)]
(k+g) At ING)

whereas the second term becomes

. At .
K=V u(t + At — u(r) g=D

(- 1) At e (T AT 8)dE
0
K7 u+ An—u) | (+A [
U ou(t+ Ar) — u(t t+ At . !
G- At [(k+g)"r[l’m(k+g)]_/e—<k+g>¥d$}
0

KT u@+ A —u@) 1
T G=1 At (k+g)!

X [(z + ANOT[i, Atk + g)] — ﬁr[i + 1, Atk +g)]]

KU ut 4+ A —u@) 1

T k+g) At T ()

iT[i, At(k + 2)]

[+ sorin s+ g1 - TERE

+ [At(k + g)]"e*w*g)}

where again the following algebraic identity was applied (Abramowitz
and Stegun, 1965)

TG+ 1,z)=il(i,z) —Z'e? (7.11)
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in addition to Eq. 7.10.
Combining all three terms, gives

t+At

i—1 .
/ D1t + At — Du(r)dt = k I'li, Atk + g)]

(k+g) NG

= {[1 + A1 (ADu(t + AD) — Ai i (ADu()} (7.12)
with A; | being

[At(k + g)]i—le—At(k+g) B i
T'[i, At(k + 2)] Atk +g)°

A1 (A = (7.13)

Compare these with Egs. 6.3 and 6.4.
The last term that remains to be evaluated is the second integral of
Eq. 7.8. Since integration and summation commute,

t+At t+At

i i
Co / D @+ At —T)dT =Co Y / ®; (1 + At — T)dT
r J=1 J=1 %

(7.14)

is obtained which, when j = 1, is the same as the first term of the first
integral without the term u(¢) which is just a constant since 7 is set. Keeping
track of j, Eq. 7.14 yields

i 7 . .
k= I'ii—j+ 1, Atk + g)]
Qi1(A) = C —
,1( ) Oj; (k+g)l—j+1 NG —j+l)

(7.15)

which is just a constant term.
Combining Egs. 7.7, 7.11, 7.12, and 7.14 results in (Szilagyi, 2004a)

Xipar = ®ADX, + T (ADu; + T (Aury a + (A (7.16)
where
i 1 T, Atk +g)] 1 B o—Ailk+g) .
k+2) INQY) Attk+g) Tl Atk + g)]
kT2, Atk +g)] 2 Auk tg)e M)
rj@an=| (+g? rQ) Atk +g) T2 Atk +9)]
k' Tln, Atk +2)] n (At + )" lem Mkt
Lk+g)" I"(n) Atk +g) L[n, Atk + 2)]

(7.17)
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while
i I NiLAk+9l | emhitkte) 1 ]
(k+g) rd) [, Attk+g)] Atk +g)
ko TR2,Atk+g)] N
TP(AN=| (k+g)? rQ) P2, Atk +g)] Atk +g)
=1 Tln, Atk + 2)] ) [At(k + g)]"~ e~ A1kt B n
| k+g)" I'(n) [ln, Atk + 2)] Atk +g) | |
(7.18)
and finally
1 T[L Atk +2)]
'k +g r()
QAL = : (7.19)

" k" Cln—j+1,At(k + 2)]
COZ k + o)+l S ; <
o kt+g) Fn—j+1D

Note that the same relationship exists (Egs. 6.12 and 6.13) between
the two input-transition matrices as earlier, with the term k + g replacing
k in the diagonal matrix D. Note also, that when g is zero, i.e. there is no
interaction between the stream and the aquifer, then the system matrices
become identical to Egs. 6.8 and 6.9, and the 2(A¢) vector vanishes, since
Co = gxp.

Deterministic predictions are obtained similar to Eq. 6.21 as

i—1
Viviag = HO(ADX, + HY &1 (Ap)
j=0

X [FZI“HJNV + T U g+ Sl(At)]. (7.20)

Initial state calculation and input detection can be done as before with
an extra term in Eqs. 6.19 and 6.20
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Figure 7.2. Measured and
DLCM-simulated (dots) flow
values (arbitrary i-day [i >1]
lead-time) of the Danube,
Budapest—Baja. LI-data
framework, no stream—aquifer
interactions included.

and similarly, 2 in Egs. 6.22 through 6.24. Note that the diagnostic
equation (Eq. 5.72) is no longer valid because of the additional term, €2.

The matrices [T (1), Tl"él (), TFZ’Z (n) and Tg(w)] that transform
states at At intervals to At* = pAt intervals now can be obtained by
substituting £ 4+ g in place of & in the exponential term of Eq. 5.30, in
place of all k£ terms in Egs. 6.14 and 6.15, while the ith element of the
Tgq () diagonal transformation matrix becomes

i

Y ATk + T [ patk+ ] [ [ m

TGl == o
Y AT k+ T, Atk + 1 [ [ m
Jj=1 m=j

Figs. 7.2 and 7.3 illustrate the importance of accounting for
stream—aquifer interactions in streamflow forecasting.

Note that model simulation results improve not only under low-flow
conditions, but during floods as well, as a result of accounting for
stream—aquifer interactions in the discrete cascade. Notice also that due
to groundwater discharge to the stream, flow rates may be higher down-
stream than the corresponding upstream flow values during low flow;
that is why the model, without a stream—aquifer component, keeps under-
shooting those values, even though its parameter is optimized for best
performance.
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Figure 7.3. Measured and
DLCM-simulated (dots) flow
values (arbitrary i-day [i > 1]
lead-time) of the Danube,
Budapest—Baja. LI-data
framework, stream—aquifer
interactions included.
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7.2 ASSESSING GROUNDWATER CONTRIBUTION TO THE
CHANNEL VIA INPUT DETECTION

When only estimating the groundwater-discharge time series to the chan-
nel, g(¢), is of interest, it can be obtained as a simple input detection
problem (Szilagyi et al., 2006) of lateral inflow (see Fig. 5.5) with-
out resorting to the previously described augmentation of the transition
matrixes. The state equation now, using a LI-data system approach, can
be written as

Xrrar = ®(ANX, + T (AU + T2 (AU ar + @(AD (7.22)

where the new, additional n x 1 input-transition vector’s ith component
becomes

i
o=y (7.23)
j=1

with y; given in Eq. 5.19.

Note 7.1:  w; is the sum of the terms in the ith row of I'(A¢) of Eq. 5.25.
It is so because now the lateral inputs to each storage element are assumed
to be equal and constant during each time increment.

Afterrearrangement of Eq. 7.22 combined with the measurement equa-
tion, the scalar-valued groundwater discharge to the channel, ¢;, can be
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Figure 7.4. Stream discharge
of the Danube at Dunaf6ldvar,
January 1, 1995-January 19,
1997. Estimated groundwater
discharge to the channel
between Budapest and
Dunaféldvar.

expressed (similar to Eq. 6.23) as

1
qr = Ho (yt+At — Hox, — HIM'y, — HrS2”t+Al) (7.24)

which is the desired groundwater contribution to the channel section
between the up- and downstream gauging stations.

Input—in this case groundwater discharge to the channel-—detection
can be started in a period when the groundwater contribution to the chan-
nel is negligible (typically around the mean flow rate) in order to have the
initial state estimated as accurately as possible using only the in- and out-
flow rates of the reach, since the groundwater contribution to the channel
cannot typically be measured, and thus cannot be included in the initial
state estimation procedure. Provided the parameters of the discrete cas-
cade (i.e. n and k) have already been obtained, the first n 4+ 1 inflow and
n outflow values are used to estimate the initial state, xg, as described in
Chapter 6. From Eq. 7.24, the first detected groundwater discharge to the
channelisatt = (n+1)At. Note that the first inflow value isat# = 0. With
the resulting g; estimate, Eq. 7.22 is then updated, which in turn yields
an updated state-variable vector to estimate the next groundwater-inflow
value with Eq. 7.24 again.

Fig. 7.4 illustrates the resulting time series of the estimated ground-
water contribution to the channel of the Danube between Budapest and
Dunafdldvar (Fig. 5.11). The original groundwater-discharge estimates
have been smoothed by a running average of five days (in both the forward
and backward directions, in order to preserve the phase).
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As expected, the groundwater discharge to the stream increases as
the stage of the river falls, and decreases, as the stage increases. When
the stage increase is abrupt, as seen near the end of the time period, the
groundwater flow direction may reverse (negative values of the estimated
lateral flux) and water flows from the channel to the adjacent aquifer lead
to temporary bank storage.

In this chapter the discrete cascade, Xprcy (At) was expanded to
include possible flux exchanges between the stream and the aquifer within
the LI-data framework. Accounting for these interactions improves model
accuracy not only during baseflow conditions but during flood events as
well, since the model can now accommodate bank storage during floods
and groundwater supply to the stream during low-flow periods. In an
input-detection mode, the original discrete cascade, when formulated
for lateral inflows, can also be used to estimate the time series of the
groundwater discharge to the stream.

EXERCISES

7.1. Check for the correctness of the transformation matrix given by Eq. 7.21.



CHAPTER 8

Handling of Model Error:
The Deterministic—Stochastic Model
and Its Prediction Updating

Predictions (;,) are rarely perfect, they contain varying degrees of error

&=y —Y, (8.1)

The error sequence may contain information that can improve future
forecasts through error updating. Error updating is based on the model of
errors and its predictions.

The most simple error model is called sequential correction
(Bartha, 1970). It assumes that the model error of the actual forecast of
lead-time At will be the same as it was the last time. The error correction
this way becomes

Ayiia =& (8.2)

by which the updated forecast of lead-time At is

A¥

Yevane = Ve+are + Ayt*+At (8.3)

where 3,1 A is the conditional deterministic prediction of output. This
error updating is recursive but considers the error sequence to be static.
An error updating that considers the dynamics in the error sequence is,
however, much preferable over a static approach (Andjeli¢ and Szol16si-
Nagy, 1980). The task now is to formulate a stochastic model for the
errors defined by Eq. 8.1, and to update the deterministic model forecasts
recursively.

8.1 A STOCHASTIC MODEL OF FORECAST ERRORS

Egs. 5.15, 523, 6.7, and 7.16 specify the recursive deterministic
predictions of the discrete cascade. Due to model and measurement
uncertainties, these predictions may contain errors that are autocorrelated
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(see Fig. 7.3 for an illustration). A forecasting model works optimally,
if the forecast-error time series/sequence form a Gaussian white noise
(GWN) (Gelb, 1974).

Note 8.1: A white noise sequence in discrete time contains values that
are independent of each other (i.e. the values are truly random) and so
they are unpredictable. The autocorrelation function of a white noise is a
spike, which is unity at the origin and zero otherwise. The more the auto-
correlation function of the forecast errors differs from this spike function,
the more information it contains that can be harnessed by a stochastic
model. Note here that the one-step forecast error is often called residual
or innovation.

Applying a stochastic model component with the deterministic model
can improve accuracy of the forecasts, provided the forecast errors of the
deterministic model are autocorrelated.

Note 8.2: The general principles of time series analysis will not be dis-
cussed here. The works of Box and Jenkins (1994) and Anderson (1976)
are a great source for details on linear time series models (AR, MA,
ARMAX), which are of importance to the present purpose. Neither will
the iterative process of choosing the right model class be discussed here.
Instead, forecast errors will be modeled by a simple AR process. Here
it should be mentioned that other approaches, such as Bayesian learning
algorithms, can also be applied for recursive predictions when using pure
stochastic hydrologic models (Wood and Sz6116si-Nagy, 1981).

Let’s assume that the prediction error sequence can be described by an
AR(1t) model

& = a18&—Ar T A28 2Ar + -+ AuEr—par + Wi— At (8.4)

where p is the order (or memory) of the autoregressive process; ai, . . ., ay,
are its parameters, and w is a GWN sequence. Eq. 8.4 can be formulated
in a state—space framework through the following definitions

Xntls = & (8.5)

A
Xn42,t = Et—At

A
Xndu,t = Et—pAt-
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The AR(x) model now can be written as

Xn+1,t ay ay - au | | Xnvlr—ar 1
Xn42,t 1 0 - 0 Xn42,t—At 0

) =|. . . . : + | .| wi—as (8.6)
Xntpu,t 0 -+ 1 0] | Xntpr—ar 0

or equivalently
X, = ®(ADX, A, + Aewi_ar. (8.7)

When measurement errors are assumed to be zero, an optimal estimate
of the autoregressive parameters can be obtained (Szilagyi, 2004b) from
the Yule-Walker equation

1 ree(l) ree( — 1) ay ree (1)
rss.(l) 1 . (1.2 _ 1’55'(2) 8.9)
: . ree (1) : :
ree( — 1) 7ee (1) 1 an Fee (1)
by inverting it
a=R'r, (8.9)

where R; is the correlation matrix of the prediction error sequence.

Note 8.3:  For an AR(1) sequence Eq. 8.9 yields

ar =rge(1)
while for an AR(2) it is
o Fee (D1 — 76 (2)]
1=
ree(2) = rz.(1)
a=——" "
1 —rz (1)

For larger model-orders it is practical to use a numerical scheme.

Szilagyi (2004b) pointed out that the autoregressive parameter esti-
mation above is correct only when no measurement error is present,
which is never the case in practice. The presence of measurement error
corrupts the autoregressive parameter estimation values obtained by the
Yule-Walker equation. As a consequence, optimal estimates of the autore-
gressive parameters and thus optimal forecasts can only be obtained by
the application of the Kalman filter during parameter estimation, which
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can be e.g. some systematic trial and error process. This way when mea-
surement error is considered, the Yule-Walker equation has only limited
practical value.

By augmenting the state vector of DLCM with the state vector
of the prediction error sequence, Eq. 8.6, the state vector of the
deterministic—stochastic model results as

T T
X;k = [xl,t;---,xn,t:xn+l,t;---axn+u,t] = [tht] . (810)

With this, the combined, deterministic—stochastic state equation
becomes

X;k = Q*(At)X;IlA[ + r*(At)utht + A*Wtht (811)
where
" _ | ®(AD 0

¥ (A1) = [ 0 q)g(m)} (8.12)
and

I*(Af) = [F(OA”} (8.13)
while

A*=10,1,0,...,0]". (8.14)

e ——’

12

The output equation of the combined model can be written as

»=Hx} (8.15)
where
H* =1[0,0,...,k,1,0,...,0]. (8.16)
— ———
n w

Egs. 8.10 through 8.16 comprise one possibility of the deterministic—
stochastic model of streamflow forecasting in the pulse-data framework.
Similar equations can be written in the LI-data framework with the inclu-
sion of stream—aquifer interactions by substituting the corresponding state
and input-transition matrices together with the £ matrix.

8.2 RECURSIVE PREDICTION AND UPDATING

According to the definition of conditional predictions given in the Intro-
duction section, the aim of forecasting is not only to give an estimate
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of a future streamflow value but also to specify the uncertainty of the
estimate as well, because these two pieces of information together can
help decision-makers with their risk analysis of alternative decisions. The
task of forecasting this way becomes the estimation of future values of
the state variables and specification of the expected forecast error vari-
ances in a way that they can be updated with the acquisition of the latest
measurements.

Note 8.4: Such problems first occurred in control engineering in the
early sixties in relation to spacecraft guidance. Rudolph Kalman worked
out his well-known Kalman filter in 1960 for exactly these types of prob-
lems. The Kalman filter is a temporal generalization of the Wiener filter
in a state—space framework description of stochastic systems. In essence,
it gives a recursion for parameter estimation of conditional probability
density functions. The first hydrological applications did not lag long
behind (Hino, 1974; Szoll6si-Nagy, 1974) and quickly the Kalman filter
found its way not only into hydrology but into hydraulics as well. How-
ever, many times it has been used as a fad, and often its potentials were
overestimated. The Kalman filter is nothing more than a recursive algo-
rithm, which facilitates optimal estimation and forecasting of measurable
or directly nonmeasurable state variables of linear dynamic systems cor-
rupted with additional noise. The emphasis is on optimality: it can be
proved (Aoki, 1967; Meditch, 1969) that no other estimation algorithm
can improve upon it when linear systems are concerned.

Eqgs. 8.11 and 8.15 are in a form to solve the problem of conditional
predictions and updating using the recursive Kalman filter algorithm.
Derivation of the algorithm with the assumptions employed are described
in Appendix I. The Kalman filter of Egs. 8.11 and 8.15 is comprised of
two alternately repeating steps:

(1) At lead-time forecasting of the state vector and the associated error

covariance

n* « N* %

Xji—nr = PADX,_pgi—ns + T (ADU— A (8.17)
foan = PADPE 5 0@ (AD + A*Q_ AT (8.18)

(2) state variable and error covariance updating with the help of new
measurement, z;

K =P; _ T HP),_ BT + R (8.19)
N¥ A¥ AF¥
Xt = Xgp—ar T K/lz — H*tht—At] (8.20)

fe = Mo — KSHAIPE (8.21)
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where Q; is the possibly time-dependent variance of w. P* is the a priori
or a posteriori covariance of the augmented state estimation error

. o o
_;[0 PSJ (8.22)

where Pg | isa u x p covariance matrix of Xi|.’ while R; is the possibly
time-dependent measurement error variance, a scalar. I,4, here is an
(n + ) x (n+ w) identity matrix, and K is the (n + p) x (n + n)
Kalman-gain matrix. The output equation is simply

A A*

Yit—ar = H*ththt (8.23)
while the variance of prediction error is

T
Pl _n = HP),_\ H". (8.24)

A magnitude estimate can be obtained for O; = Q (now a constant)
by rearranging Eq. 8.4 as

m
Q}I—At =& — Zaj(‘)t_jA[ t = lAl, 1= M, L + 1, e (825)
J=1

and calculating the sample variance of w. As was mentioned above, this
estimate is inaccurate but may help to provide an initial estimate of Q for
subsequent optimization of its value.

Note that in the augmented state variable case now, model uncer-
tainty does not affect the original state variable, x,. This is so because the
augmented state equation is made up of two separate submodels, a deter-
ministic discrete cascade model, and an AR model that deals with model
uncertainty, while additionally the Kalman filter takes care of the measure-
ment error. Still, the advantage of applying an augmented state equation
approach sofar is that model parameters, deterministic and stochastic
alike, seem this way more naturally optimized together with the Kalman
filter running during the optimization, which indeed this way results in
optimized parameter estimates. On the other hand, if the deterministic
model was to run separately, then it would be tempting to optimize the
parameters of the cascade model first and subsequently optimize the AR
model with or without (e.g. using the Yule-Walker equation) the Kalman
filter running. As was pointed out by Szildgyi (2004b), it is imperative
to optimize all model parameters with the Kalman filter running during
optimization in order to truly obtain optimal model parameter values.

Multi-step predictions can be achieved by inserting the a priori one-
step prediction of the augmented state variable into Eq. 5.77 or 5.80 if
input forecasts are available (similarly into Eq. 6.21 or 7.20)
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A * gy ki A¥
Vivinti—nr = H @ (ADX,,_ A,
i—1
+ | H Y @T(ANT* (AN [upr i=1,... (826
j=0

with the corresponding variance of prediction error as

T
Pf—ﬁ—iAt\t—At =H"P; ip g aH (8.27)

where (Meditch, 1969)

P aar = (AP, 5 (@) (AD)
i—1
+Y @V (ANA QAT (@Y i=1,.... (828)
Jj=0

The Kalman filter algorithm requires estimates for the following terms:

k
O, Ry, Qmo: and Pao- From these four terms, specifying O, and R, accu-
rately is the most important because these values are not updated by the
filter. If Q; is assumed to be constant in time, then the w estimates of

Eq. 8.25 can help with the O term’s initialization. )Aizlocan be constructed
by the initial value, x¢, obtained from Eq. 5.69 (or Eq. 6.20 with or without
the 2 term, respectively) plus by an initial guess of the AR parameters.
The Pgl o term can be initialized with a sample covariance matrix of model
errors.

As evidenced by Egs. 8.19 through 8.21, the predictions are updated
recursively with the arrival of new observations in each sampling instant.
The a posteriori estimate of state is achieved through a linear weighting
of the a priori state estimate and the new observation (see Eq. 8.20). It
is important to have a measurement variance different from zero for this
weighting to work. When R; is assumed to be constant and zero, the a pos-
teriori state estimation becomes equal to H* "'z, (Ahsan and O’Connor,
1994; Szilagyi, 2004b), and in such a case application of the Kalman filter
during parameter estimation reduces to a traditional time series parameter
estimation, yielding the same estimates as the Yule-Walker equation for
an autoregressive process (see Appendix I). However, since measurement
uncertainty is always present with a variance larger than zero, the applica-
tion of the Kalman filter during optimization is always expected to result
in better parameter estimates and so in more accurate predictions than
traditional parameter estimation techniques (Szilagyi, 2004b).

Note 8.5: Because the DLCM is a SISO (single input/single output)
system, the term to be inverted in Eq. 8.19 is just a scalar.
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Note 8.6: The Kalman filter is not used for real-time updating of any
of the, deterministic or stochastic, model parameters. Model parameters,
instead, are optimized off-line and even then not in a parameter updating
mode. When performing off-line optimization, a set of values is prescribed
systematically for the model parameters and kept constant over the opti-
mization period. With each set of parameter values, a mean-square error
is calculated for the optimization period before a new set of values is
prescribed for the parameters. The optimization stops when the parame-
ter values have spanned the prescribed parameter space with a predefined
resolution. The parameter values that belong to the smallest mean-square-
error are retained and considered to be optimal. As was pointed out above,
even this off-line optimization should be carried out with the Kalman filter
running during the optimization process in order to obtain fully optimal
model parameters.

In contrast, coupled, real-time parameter and state updating is a
nonlinear optimization process (Eykhoff, 1974) and its linearization (as
is the Extended Kalman Filter [EKF]) brings with it certain unwanted
properties such as noise sensitivity and possible divergence. Therefore
application of the EKF will not be discussed here.

It could be argued that there was no need to formulate the deterministic
model component in a state—space framework if in the end the Kalman
filter is applied over an additional and, in fact, separate stochastic model
component only (see Eq. 8.22). Indeed, the objective of writing the deter-
ministic model in a state—space form was motivated by the goal of applying
the Kalman filter over the deterministic model itself. If the autocorrelation
of prediction errors is insignificant, the Kalman filter can be straightfor-
wardly applied with the deterministic model as described in Appendix 1.
Fortunately, the same can be achieved even when forecast or model errors
are correlated, without needing to apply a separate stochastic AR model
component demonstrated above.

The solution again requires state augmentation. The state and mea-
surement equations (see Eq. A2.8) can now be written as

X, = P(ADX—ar + T(ADu—ar + Tywi—as (8.29)
v =v_a 4w (8.30)
z = Hx, + w® (8.31)

where v (n x 1) is assumed to be a normally distributed, vector-valued,
first-order autoregressive [AR(1)] sequence (also called a Gauss-Markov
sequence) of model errors (Meditch, 1969; Bras and Rodriguez-Iturbe,
1993). ¢ (n x n) is the diagonal matrix of the AR(1) parameters, z is the
measured output, and w) (n x 1) and w® are GWN sequences, the latter
is called the measurement error. The model error distribution matrix, I,
(n x n), is now an identity matrix.
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The augmented variables and system matrices can be written as

x;k:[’lfj; <1>*(Az>=[‘1’(0“) fp] A*=[‘I’]; (8.32)

r*(Az):[r(OAt)]; H =[H 0].

where I is another (n x n) identity matrix. The dimensions of the aug-
mented variables (from left to right by row) are: 2n x 1, 2n x 2n,
2n x n, 2n x 1, and 1 x 2n, respectively. Hence, the augmented state
and measurement equations become

X = @ (ANX"_,, + T (A pr + AW (8.33)

z = H +w®. (8.34)

Egs. 8.17 through 8.21 again can be used for conditional one-step
forecasting and updating. The Q, term of Eq. 8.18 now becomes a (time-
dependent) covariance matrix of the noise term, w(I). R, now is the (time-
dependent) variance of w®, while P} is the (2n x 2n) a priori or a
posteriori covariance matrix of the augmented state variable

* _ Py Py,
P = [PQ P (8.35)

where all covariances within the P} matrix are time-dependent.

The filter algorithm again requires the specification of the terms in
Q;, GVZV(Z, for R;, as well as the Py, Pyx,, and P, terms for P§j. An initial
value of Pyx may be estimated as

op, =K%0]  ij=1,....n (8.36)

XiX;

where K is the mean storage delay time, K = k~! of the storage element.
Each Q; term (plus the the diagonal terms of P,,,, for # = 0) was estimated
as (0.04 u,)?, while 62, as 10% of the former. The initial value of Py,
was set to zero, as well as the off-diagonal terms of P,,,,. Through trial and
error the value of ¢; = ¢, became 0.7 for data in Fig. 8.1.

Figs. 8.1 through 8.6 demonstrate the effect of the Kalman filter on
the one-step (24-hour) forecasts using the stations of Figs. 7.2 and 7.3.
The time-period is now a subset of that of Fig. 7.2. As it can be seen, the
deterministic model prediction errors are highly correlated. The Kalman
filter, using the augmented state approach of Eqs. 8.32 through 8.34,
greatly reduces this autocorrelation, making the filtered forecast errors
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Figure 8.1. A subset of Fig. 7.3
for 1-day forecasts.

Figure 8.2. Error sequence of
the 1-day forecasts.
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become a GWN sequence. The mean standard deviation of the determin-
istic model forecast error of 126 m3s~! was reduced to 53 m3s~! through
the application of the filter. Fig. 8.4 also displays the standard deviation
of prediction error for each individual forecast. Since both model and
measurement errors are assumed to be directly proportional to the input,
these intervals widen with increasing flow values. Note the initially large
forecast uncertainty as a result of inaccurate estimation of Py,
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Figure 8.3. Autocorrelation (r)
function of the 1-day forecast
errors. Also displayed is the
95% confidence interval for
r=0.

Figure 8.4. Kalman filtered
1-day forecasts of Fig. 8.1 with
the corresponding standard
deviation of errors.
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As before, multi-step predictions with the corresponding variances of
prediction error can be obtained from Eqgs. 8.26 through 8.28.

In the LI-data system framework with or without stream—aquifer inter-
actions, the above filter-steps (Egs. 8.17 through 8.21 and 8.26 through
8.28) remain valid after inclusion of the corresponding extra terms in the
state equation, as was done in the example.
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Figure 8.5. Error sequence of
the Kalman filtered 1-day
forecasts.

Figure 8.6. Autocorrelation (r)
function of the 1-day forecast
errors. Also displayed is the
95% confidence interval for
r=0.
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In this chapter the stochastic component of DLCM was discussed.
The error sequence is described by an AR process and is formulated in a
state—space framework which enables the construction of an augmented
deterministic—stochastic model. Recursive prediction and updating of the
augmented state is performed by the linear Kalman filter through a con-
tinuous feedback of the prediction error. Conditional prediction of the
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output is achieved by a linear projection of the a priori augmented state
variable.

EXERCISES

8.1. Try out the Kalman filter algorithm on a scalar AR(1) process you generate with
the computer. Let the model and measurement errors be Gaussian white noises.
Estimate the AR(1) parameter first with the Yule-Walker equation, then with
systematic trial and error while the Kalman filter is running. Which parameter
estimate yields better result? What happens when there is no measurement error?
Which method gives better forecasts?



CHAPTER 9

Some Practical Aspects of Model
Application for Real-Time Operational
Forecasting

Below some of the practical considerations about model parameters, their
optimization and sensitivity are discussed. The coupled deterministic—
stochastic model is compared to a pure stochastic approach in terms of
model accuracy and practicality. Finally, a concrete example is given on
how the model is set up for operational real-time forecasting of flow rates
and water stages of the Danube and its major tributaries in Hungary.

9.1 MODEL PARAMETERIZATION

Optimization of the model parameters (7, k, g, and Cy) can be achieved by
numerous techniques (see e.g. Press et al., 1986). Harkanyi (1982) worked
out a special algorithm for the optimization of the DLCM parameters
without stream—aquifer interactions. His direct technique does not require
derivatives and uses the ordinary least-squares expression as the target
function (J) to be minimized
2 .

J = Xt:@ —-n) — 1(2111{1)1 ©.1)

The resulting parameters will be valid for both, low- and high-flow
periods.

Note 9.1:  During floods, the value of the storage coefficient (K = k1)
may change significantly due to a marked difference in the friction coef-
ficient’s value between the main channel and the flood-plain. For such
problems Becker and Glos (1970) worked out their Critical Level Model
(CLM), where the flood discharge can be divided into different discharge
intervals and the resulting discharges separately routed through their cor-
responding linear submodels, all connected in parallel. Ambrus et al.
(1984) report of a study where the DLCM was incorporated into a CLM
for a tributary of the Danube.
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With modern personal computers, recalculation of the forecasts for a
given period, using different trial-values of the parameters, can be done
extremely fast within the recursive state—space approach. Generally, it
takes only seconds, to systematically try out all possible combinations of
the model parameters once an interval and a corresponding increment is
defined for each parameter. The optimization starts with a predefined min-
imum value of each parameter which is systematically incremented until
an arbitrary maximum value is reached for all parameters and, correspond-
ingly, all possible variations of the parameter values have been exhausted
with the chosen resolution. The combination of the parameter values that
minimizes Eq. 9.1 is considered as the optimal set of the parameters. The
result of such direct trial and error optimization, although probably the
most time consuming of all available optimization techniques, depends
only on the assigned resolution (i.e. increment) of each parameter but
gives a true optimum that is no longer a function of the chosen opti-
mization method. When the parameters have physical meaning, as with
DLCM, assigning a possible lower and upper limit for each parameter
value is self-evident. The prescribed resolution can be a sole function of
computer power.

Experiments conducted at the National Hydrological Forecasting Ser-
vice of Hungary (NHFSH) indicated that the » and & parameters of the
model are remarkably stable, their recursive updating is not necessary. The
model is more sensitive to the n value than to the value of k, which can par-
tially be explained by the fact that the former parameter can traditionally
take only integer values, although the model’s structure could allow for
non-integer n values. A noninteger #n version of DLCM (Szilagyi, 2006)
has been discussed in detail previously. Thus a change from n = 1 to
n = 2 immediately means a 100% increment in parameter value. Similar
experiments with the g and Cyp parameters have yet to be accomplished.

9.2 COMPARISON OF A PURE STOCHASTIC, A DETERMINISTIC
(DLCM), AND DETERMINISTIC-STOCHASTIC MODELS

The problem of flow forecasting can be tackled by using a “black box”
approach, where the physics behind the stream-flow process is not defined
explicitly. Similarly to Chapter 8.1, a pure, stochastic ARMA model may
assume the following linear relationship between in- («) and outflow ()
values of a stream reach

Vi=aryi1 v ayyi—2 4+ apiVien + by
+ bz,tut—z +---+ bm,tut—m + v 9.2)
where m and » are the number of past in- and outflow values that affect the

outflow attime #; v isa GWN sequence with zero mean and given variance;
while a; and b; are the unknown time-dependent ARMA coefficients.
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By defining the following vector variables

9[ = [al,t’a2,la . 7an,l‘5b1,ta b2,t> st bm,t]T (93)
and
H[ = [)’tfl,J/tfza cee s Vt—ns Ur—1,Ut—2,5 . -« 9”[*”’!] (94)

the above equation can be written as
ye = HiOr + vy 9.5

which describes the output equation of a time-variant, discrete dynamic
system with state variable ©. Since the value of the state variable changes
through time in an a priori unknown fashion, Sz6116si-Nagy et al. (1977)
assumed this change to be a Gauss-Markov sequence

®t = ®t71 + w; (96)

where w is again a GWN sequence. Note that Eq. 9.6 is Eq. A2.1 with
®, = I and I'; = 0. The estimation of the state variable, ®;, can be
achieved with the help of the Kalman filter. In order to avoid a nonlinear
estimation of both, the state variable and the noise statistics, Q; and R;,
the latter statistics can be estimated off-line with a trial and error approach
over a suitably long period and taken to be constant in time (Sz6116si-Nagy
and Mekis, 1982). The other possibility is to use a nonlinear estimation
approach described by Young (1984).

The one-step forecast of outflow is obtained by taking the expectation
of Eq. 9.6

Vet = Hi© 1 9.7)

regardless of the method by which the a priori estimate of the state
variable is obtained. These forecasts, obtained by the linear estimation
approach, were compared with forecasts of the DLCM and its coupled,
deterministic—stochastic model version at NHFSH.

The ARMA model with its optimized model-order of N = n+m = 8
performed the worst of the three models, while the coupled, deterministic—
stochastic model the best. Another disadvantage presented by the pure
ARMA model, beside its poorer performance, is that it requires signif-
icantly more parameters than the deterministic—stochastic model. Note
that even the extended DLCM with its four parameters to account for
stream—aquifer interactions, has half the number of parameters than the
above ARMA model. And this is only for the one-step forecast, because
for each lead-time, the ARMA model has to be re-parameterized (Young,
2002); thus, for a typical 1-4-day forecast scenario it immediately means
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Rainfall as an
MA-process in
state—space

32 parameters to be optimized, as opposed to the constant number of four
parameters for the deterministic—stochastic model.

For an illustration see Tables 9.1 and 9.2, where several statistics of
the measured stream flows and their one-day forecasts for Dunaféldvar
(Fig. 5.11) are displayed.

Here the DLCM was run in a pulse-data framework and no
stream—aquifer interactions were accounted for, i.e. g = Cp = 0. £(1) is
the average difference between observed and forecasted flow values (i.e.
forecast error) with a lead-time of one day, and the corresponding stan-
dard deviation is o, (1). 7 (1) is the autocorrelation value of the one-day
forecast error. Finally, the efficiency coefficient, n. (k), is defined as

2

o) = [1—
e () (%@)

where o (k) is the standard deviation of the change in the measured
flow values

Ai(k) =yt = yitk 9.9)
during the forecast period.

Example 9.1: To model rainfall sequences a moving average (MA)
model of order n

Y(O) = Ow(t — 1) + Oaw(t —2) + -+ + Ow(t — n)

is frequently used in hydrology (e.g. Matalas, 1963), where the ®s are
the moving-average parameters and w(-) is the GWN sequence. Defining

Table 9.1. One-day forecast [m>s™!] statistics for Dunafoldvér (1980) by different models.

Statistics: £(1) o (1) re(1) ne(1)

ARMA 0.78 200.0 —0.03 0.61
DLCM —111.3 110.6 0.74 0.71
DLCM + stochastic —5.69 78.8 0.08 0.85

Table 9.2. Mean (»), standard deviation (o;) and one-step autocorrelation coefficient [r(1)]
of the measured daily instantaneous flow values [m>s~!] at Dunaf6ldvar (1980) and their
one-day forecasts.

Statistics: y oy r(l)
Measured 2352 846 0.98
ARMA 2343 889 0.94
DLCM 2463 803 0.97

DLCM + stochastic 2358 861 0.97
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An ARMA-process
in state—space

the state variables as x(t) = w(t — n), x2(t) = wit —n+1), ...,
x,(t) = w(t — 1), the above equation can be written as

x(t+ 1) = ®&x(t) + Tw(?)

where
01 0 0 0
0 0 1 0 0
<I> == 5 r =
0 0 0 1
0 0 0 1
and
(&) = Hx(?)
with
H= [®n: ®n719"' ’ ®1]

Example9.2: Here an alternate state—space representation of an ARMA
model is given. Consider the ARMA (n, m) model

Vil + Py + Poyr + -+ Puyrna
= Ow; +Owi1 + - + OpWr_pg1

: T T
WithX; = [Xi—py 1, Xe—ny2,- - X" andwy = [We, w1, ..o, Wompt]',
so that the state—space model can be written as

Xi4+1 = q)Xt + rwt

ye = Hx;
with
0 1 0
b =
0 0 1
_—CI)n Q41 - =P
T0 0 0 17"
: 0
r=| ,H=|.
0 0 :
_®1 ®2 ®m 0

where T is an n X m matrix.
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9.3 APPLICATION OF THE DETERMINISTIC-STOCHASTIC
MODEL FOR THE DANUBE BASIN IN HUNGARY

The coupled, deterministic—stochastic model started its operative service
at NHFSH in 1983. Typically, it produces stage and flow forecasts on a
daily basis, but during flood events, forecasts can be issued/updated at 12-h
intervals. The model uses stage measurements taken at 6 a.m. each day.
The stage measurements are converted into instantaneous flow rates using
a rating curve for each gauging station. Forecasts, both in stage and flow-
rate forms, are generally ready and distributed to the relevant agencies by
10 a.m. and can be looked up/downloaded from the Service’s website.
Fig. 9.1 displays the logical structure of forecasts for the major gauging
stations of the Danube in Hungary (Fig. 9.2), omitting tributaries.
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Figure 9.1. Forecast structure
for the Danube in Hungary.
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Figure 9.2. Stream network of
Hungary.
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Figure 9.3. System of linear
cascades for the Tisza River in
Hungary.
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Finally, the model structure is depicted for the largest tributary of the
Danube, the Tisza River with its sub-tributaries, in Fig. 9.3. The names in
capitals denote towns where the gauging stations are located.

Each cascade is represented by two parameters, n and k, provided
g = Cyp = 0 for each cascade. Whether accounting for stream—aquifer
interactions improves forecast accuracy and reliability, will be the focus
of future investigations.

Harkanyi and Bartha (1984) applied the DLCM for rainfall-runoff
modeling. Nonlinearity of the process was accounted for by using an
antecedent precipitation index (API) in the transformation. They showed
that the runoff ratio and API is related through a gamma distribution.
The model, I"'(4PI), generates input to DLCMs connected in parallel to
model surface and the sub-surface runoff. This way runoff is predicted
from measured precipitation for the uppermost gauging stations of the
Danube’s tributaries.

The coupled, deterministic—stochastic model described in this study
has been in operational use (outside Hungary) for several years in Thailand,
Malaysia, and Germany.
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Summary

This study focused on real-time forecasting of stream flow by a coupled,
deterministic—stochastic model.

The first chapter defined the scope of the study and explained the
reasons that called for such an approach. A probabilistic definition of
forecasting has also been specified.

The second chapter gave a brief tally of the continuous flow routing
techniques. It was pointed out that these linear models with constant wave
speed are all obtainable through a discretization of the continuous linear
kinematic wave. Continuity, steady state, and transitivity were defined
in the following chapters. The properties of the continuous cascade are
summarized below.

Thesis 1: The time-invariant dynamic system of the continuous KMN-
cascade is defined by the
x(t) = Fx©@) + Gu@)
y(n = Hx(@®
state and output equations, where
—k, i=j

[Flij=14k i=j—-1 i=12,...,n
0, otherwise

G =[1,0,...,0]"
H =[0,0,... k]

with & = K~!, where K is the mean delay time of the characteristic reach.
The continuous cascade is unambiguously defined by the

Xxmn = (F,G, H)

matrix-triplet. The impulse response of the KMN-cascade thus becomes

_ n—1 1 —kt
h(t) = k(ke) TS
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The continuous KMN-cascade is equivalent to the continuous,
spatially discrete, linear kinematic wave. Continuity and transitivity
unconditionally apply to the continuous KMN-cascade where storage is
the same in each storage element in a steady state.

The discrete version of the continuous KMN-cascade was derived in
both pulse-data and LI-data system frameworks. It was shown that a trivial
discretization of the continuous KMN-cascade is not adequate. The con-
ditionally adequate discrete model (DLCM) was obtained by integrating
the state-trajectory over a predefined constant Af sampling time-interval.
It was shown that the discrete model is discretely coincident with its con-
tinuous counterpart, preserves unconditional continuity, and is transitive
in the At —> 0 limit. These results are summarized below.

Thesis 2: Within the pulse-data framework, the state and output equa-
tions of the Xprcar(At) = [®(AL), T'(Ar), H] discrete version of the
Y xun continuous cascade are

Xepnr = PADX: + T(ADu,
v = Hx,
where
i—j
KA okt s
[@(AD];;j =1 G—D!
0, i<j

i—1
1 _
Fanti=|1-e kAt Z

J=0

(kAty _ 1TGkAD
! Tk T®)

T

Any two conditionally adequate discrete models of time-intervals At
and Ar* = pAt are linked by the following linear transformation

To (). T
X prem (AL 0. Tr ) X prem (ArY)

where
[(u _‘1)k‘At]17] e—kAt(llﬁl)’ P>
[To(W)]i; = @—=n!
0, i<j
(i, ukAt)
T f=
<TrW >i= T2

Within the LI-data framework, the state and output equations of the
Yprcm (At) = [®(Ar), T1(At), IT'r(Ar), H] discrete version of the X g
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continuous cascade are
Xrar = PADX + T1(ADu + Ta(ADusay
v = Hx;

where [P (A?)];,; remains as above, and

- At]A_lF(i,kAt) i (kAf)i—le—kAt
HADL = =G kAt TG, kA7)

1TG kA Ap)i—lo—kAt .
[C2(AD]; = — (@, kAT <1+(k Hn'~le ; )

NG TG, kAt kAt

Any two conditionally adequate discrete models of time-intervals A¢
and Ar* = pAt are now linked by the following linear transformation

To (1), Tr; (1), Tr, (1)
Y prem (At) — " prem (AL)

where T¢ (1) remains as above, and
1 iC @, pk At) — (ukAf)ie HhA!
o iT3G, kAL) — (kAt)ie kbt

1 iC @, pk At) (uk At — i) 4+ (uk At) e HkAL
w o DG kAD (KA —0) 4+ (kKAt)ie—kDt

<Tr,(n) > =

<Tr,(n) > =

The pulse-data system is a special case of the LI-data framework
through the u,, o; = u; choice at time 7.

In the pulse-data system framework the system-characteristic func-
tions of DLCM are the unit-pulse and unit-step responses, while in the
LI-data framework the unit-pulse response is replaced by two (one with a
positive and one with a negative slope) unit-ramp response functions. This
is so because any linear change from a to b over a predefined At interval
can be described as the sum of two linear ramp functions: one that starts
from unity at ¢ and reaches zero A¢ later, multiplied by a, and one that
starts from zero at ¢ and reaches unity over the same time-interval, and
multiplied by b.

Thesis 3: The Xp;ca(Af) conditionally adequate discrete cascade is
observable, if the
(kA" _yn,
——e¢
(n=n!

non-singular observation matrix has a rank equal to the order of the discrete
cascade (n), provided n > 1, k and Af > 0.

[®n)i; =k

In practical applications, information of the initial state (x¢) under
non-permanent conditions is of importance.
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Thesis 4: The Xprca(At) conditionally adequate discrete cascade’s
initial state can be unambiguously obtained from # pairs of inflow values
and outflow values in the pulse-data system, and » + 1 inflow values and
n outflow values in the LI-data framework case as

X) = @;len

where
i—1

lenli =yi— ) hijuj
j=0

in the former and

[en]i =yi —H Z (@7 (ADT | (Atyuj—; + "7 (ANT 2 (Ab)u))
j=1

in the latter case. Here 4; is the ith ordinate of the unit-pulse response.

A recursive algorithm was given for the DCLM forecasts, with their
asymptotic behavior specified. Another algorithm was derived for solving
the inverse problem of forecasting: input detection.

Thesis 5: The prediction-error sequence of the DLCM was modeled
by a separate m-order autoregressive, AR(m), process, written in a state—
space form; and, as an alternative, by the help of state-augmentation where
the prediction-error sequence was considered as a Gauss-Markov process.
Conditional prediction of the augmented state and its updating was per-
formed by the linear Kalman filter algorithm. Conditional prediction of the
flow was obtained by a linear projection of the a priori augmented state
variable. By repeatedly feeding back the prediction error, the forecasts
improve through time and converge to the observed values.

Chapter 7 described an approach that accounts for stream—aquifer
interactions within the existing state—space structure of the model. The
last chapters briefly discussed how the parameters of the model can be
obtained. Parameter sensitivity was also mentioned. It turned out that the
DLCM parameters, n and k, are stable, so they do not need to be continu-
ously updated. Forecast accuracy of the coupled, deterministic—stochastic
model was compared to a pure stochastic and the deterministic submodel
part of the current model and it was shown that the coupled model per-
formed the best, while the pure stochastic ARMA model performed the
worst. Finally, illustrations of the Danube basin forecasting system were
also provided.
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A.I1 STATE-SPACE DESCRIPTION OF LINEAR DYNAMIC
SYSTEMS

The internal description of continuous, linear systems is given by the
first-order ordinary differential equation

x(t) = F(Ox(®) + G@®)u(t) (Al.1)

where x(¢) is the n-dimensional state variable, u(t) is the p-dimensional
input variable, F(t) is the n x n state or system matrix, and G(¢) is the
n x p input matrix. The dot denotes temporal differentiation. Eq. Al.1
describes the effect of inputs on the state of the system. The algebraic
equation that relates the m-dimensional output, y(¢), to the system state is

y(®) = H(®)x() (Al.2)

where H(¢) is the m X n output matrix.

The continuous, linear dynamic system, described by the state
(Eq. Al.1) and output equations (Eq. Al.2), is unambiguously charac-
terized by the matrix-triplet

Xc@®) =[F(),G@®),H()]

at each time-instant.
The solution (the equation of state-trajectory) of the state equation
(e.g. Csaki, 1973) is given by

t

x(1) = ®(t,19)x(ty) +/ o (1, 7)G(t)u(r)dr (A1.3)
to

where x(7y) is the initial state at time 7y and ® (-) is the n x n state-transition

matrix. ®(-) satisfies the following matrix differential equation

%‘P(t, to) = F()®(t, 1) (Al.4)
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with initial condition
®(1,00) =1,

where I, is the n x n identity matrix. With the help of the state-trajectory
(Eq. A1.3), the output (Eq. A1.2) becomes

t
y(1) = H(O)® (1, 10)x(to) + / H(1)® (1, 7)G(7)u(t)dr. (AL.5)
to

In time-invariant systems the system-matrices are constant, i.e.
Yc(t) = X, and the state-transition matrix depends only on the
time elapsed: ®(¢,4)) = ®(t — tp). From Eq. Al.4 it follows that the
state-transition matrix can be obtained as

®(t, 1)) = e'0F (A1.6)

which is the matrix-exponential of the system matrix. This way the output
can be expressed as

t
y(t) = He""¥x(1p) + f He'""9¥Gu(r)dr. (A1.7)
)

If the system is relaxed initially, i.e. when x(#9) = 0, the output in
Eq. A1.5 can be expressed as

t

y(t)=/ H(t, tu(r)dr (A1.8)
to

where

H@,7) = H@O®#, 1)G(7) (A1.9)

is the impulse-response matrix of the system. In time-invariant systems
H(#, 7) = H(t — t), by which Eq. A1.8 transforms into

t
y(t) = f H( — tu(r)dr (A1.10)
to

which is the multi-variate form of convolution. With a choice of {5 = 0
H(r) = H'YG (A1.11)
can be written in a time-invariant case.

Egs. A1.8 and A1.10 give an external description of linear dynamical
systems.
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So far, systems whose output did not depend explicitly on the input,
only on the state of the system, were considered. When, however, the
output is an explicit function of the input, the system is called forward-
coupled. In such systems, only the output equation is changed; the state
equation is the same, as before.

The output equation of a forward-coupled system is

y(@®) = H(®)x() + D()u(?) (A1.12)

where D(?) is an m x p matrix. Assuming an initially relaxed system the
output becomes

t
y(@) = / H®O®(, 1)G(t)u(r)dt + D(@)u(z)
to

which can be written with the help of the Dirac function as

t
y(@®) =/ H® @, 1)G(t) + 8t — 7)D(7)Ju(z)dt
)

which yields the impulse—response function of a forward-coupled system:

H(t,7) = H®®(t,71)G(r) + 6@ —1)D(r), t=> 7. (A1.13)
When the system is time-invariant this transforms into

H(r) = He'FG+5(1)D. (A1.14)

In a linear dynamic system, all structural properties can be determined
from analysis of the ¥ ¢ matrix-triplet. Two such important properties are
called observability and controllability.

Definition (Kalman): A linear, continuous, time-invariant dynamic sys-
tem is observable, if x(#p) can be determined from u(z) and y(¢), to < ¢t <
oo. If this is true for any ¢y, the system is completely observable.

Kalman also showed that a necessary and sufficient condition for a
linear, continuous, time-invariant system to be observable is that

[HTEFTHTE(FT)2HTE e f(FT)”_lHT} (A1.15)

n x np hypermatrix have rank », i.e. have n columns that are linearly
independent. 7" denotes transpose.

Observability is a necessary condition for state-reconstruction and
prediction. If a system is not observable, then its parameters cannot be
identified.
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For a discrete, linear, time-invariant system
Xi+1 = Ox;+Tu (Al.16)
y: = Hx, (A1.17)

the criterion for observability is similar (e.g. Csaki, 1973), namely, a
necessary and sufficient condition for observability is that

[HT5¢THTE(<1>T)2HT§ e E(QT)”IHT} (A1.18)

n x np hypermatrix have rank ».

Observability requirements for a time-variant system can be found in
Meditch (1969), where controllability properties, which we do not need
for our forecasting, can also be found.

A.12 ALGORITHM OF THE DISCRETE LINEAR KALMAN
FILTER

Let us assume that the discrete-time state equation (Eq. A1.16) contains
an additive noise term

X+l = <I’H_1JXt + rtu, + w; (AZI)
where Xx; is an n-dimensional state-variable, ®,y;; is an n X n state-
transition matrix, u; is a p-dimensional input, I'; is an #n X p input-transition
matrix, and w; is an #n-dimensional additive, stochastic sequence, and can

be considered as model uncertainty, where we assume that it is a Gaussian
white noise sequence with zero mean

E[lw:]=0 (A2.2)
and covariance matrix
cov[w] = E[w,w!] = Q;5, (A2.3)

where &, is the Kronecker-delta symbol. Let’s assume that the n x n Qy
matrix is positive semidefinite. Because of the above property of model
uncertainty, the state variable is also a Gaussian stochastic variable, but it
is not independent. Rather, due to Eq. A2.1, it is a Markov sequence with
an initial mean value

E[xo] =Xo (A2.4)
and initial » x n covariance matrix

covxo] = E[(xg — X0)(Xo — X0)' ] = Py (A2.5)
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which is assumed to be positive semidefinite. Here it is also assumed that
model uncertainty is independent of the initial state

E[(xo — X)W/ ]1=10, >0. (A2.6)
As a consequence, the state variable, x;, is a Gauss-Markov sequence.
The input, w,, is deterministic; therefore it can be left out in the state
and covariance estimation process. However, later it will be superimposed
over the filtered variables during the calculation of their values. Thus, in
deriving the filter-algorithm, the second term of the right-hand-side of

Eq. A2.1 is neglected.
The output equation contains the m-dimensional output variable, y,

y: = Hixq (A2.7)
where H; is an m x n output matrix. Considering that the output mea-
surements are laden with measurement uncertainty, v;, it is observed
that

Zt =Y+ Vi (A2.8)

where v; is assumed to be an additive, m-dimensional, Gaussian, white
noise sequence with zero mean

Elv]=0 (A2.9)
and covariance matrix
cov[v] = E[v;v!] = R/8y,. (A2.10)

Here R; is assumed to be an m x m positive semidefinite matrix. With
the help of Eq. A2.7, Eq. A2.8 can be written as

Z; = H[X[ =+ v; (A211)
which is now the measurement equation. When all the state variables are
measurable, the output matrix, H,, becomes the identity matrix.

Let’s further assume that model and measurement uncertainties are
independent of each other, i.e.
Elw.vI]1=0, V(z,0). (A2.12)
Eq. A2.11 generates a o -algebra

Z; = [z21,22,...., 2] (A2.13)
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of the measurement sequence with the
2, =1Z;-1,2/] (A2.14)

chain-property.

Our objective is to specify the state variable, x;, from available mea-
surements. Since we are dealing with probabilistic variables, this is an
estimation problem.

The estimation problem is defined as: Given the measurement
sequence in Eq. A2.13, an estimation of the state variable, x;, of the
discrete dynamic system (described by Eq. A2.1) is sought which (a) is
unbiased; (b) has minimum variance; and (c) is consistent.

The same problem can also be defined with a little more mathematical
rigor as: Given the measurement sequence in Eq. A2.13, an unbiased
estimation of'the state variable is sought which minimizes the loss function,

L[;], applied over the estimation error

X; = X; — X¢ (A2.15)

in conjunction with conditions specified in Egs. A2.1 through A2.6, and
A2.9 through A2.12. Since x; is a probabilistic variable, so is ;,, and,
thus, the loss function applied over it as well, having a minimum value
in a statistical sense only. In the following, the expected value of the loss
function will be referred to as the expected loss.

There are three types of the estimation problem, depending on the
position of t relative to ¢: (a) filtering, when T = t; (b) smoothing, when
T < t; and (c) forecasting, when T > t. Because filtering is part of
both the smoothing and forecasting problems, it will be discussed here
in more detail, noting that forecasting becomes a simple task of matrix-
manipulations once the filtered estimates have become available. The
solution requires the following:

Thesis (Sherman, 1958): Let the Z, measurement sequence and scalar-
valued, convex, symmetric loss function, L[X-], be given. The optimal
estimation that minimizes the expected loss

E[L(x)] (A2.16)
is the conditional expectation

Xep = Elxc|Z] (A2.17)
where the Z; condition is the measurement sequence, defined in Eq. A2.13.

The proofis simple, see e.g. Meditch (1969). As x; is a Gauss-Markov
sequence, it can be shown that its conditional value, with Z, as condition,
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has an n-dimensional normal distribution (for each f) which is unam-
biguously characterized by its (time-varying) conditional expectation and
covariance.

For solving the three estimation problems, these conditional statis-
tics must be specified. It can be achieved in two ways: via either a
direct or a recursive estimation approach. In real-time forecasting, it is
practical to employ a recursive approach, since then the estimation proce-
dure need not be performed repeatedly at each time-step when the latest
measurements are incorporated into the sample. Rather, the “old” statis-
tics, available prior to the latest measurements, can simply be modified
(updated) with the latest data. Recursive estimation this way is a weighting
of two uncertain pieces of information: the “old” estimation, which, by
its very definition is laden with uncertainty; and the new measurements,
which also contain uncertainties due to measurement errors (Eq. A2.11).

This way

[new estimation] = [old estimation] and [new measurements].

Kalman (1960) suggested a linear combination of these two uncertain
pieces of information

A A
Xir = KeXep—1 + Keze (A2.18)

where )A(t\t,l is the old, a priori, estimate of the conditional mean value
of the state variable at time ¢, based on measurements, Z,_;, available
up to time (¢ — 1), as condition; z, are measurements obtained at time
t; K; and K, are the two, yet unknown, weighting matrices; and )A(,“ is
the new, a posteriori, estimate of the conditional mean value of the state
variable at time ¢, using measurements, Z,, available up to time ¢, which
now include the latest observations, z;, as condition. The objective is to
obtain the weighting matrices.
Let’s define the following estimation errors:

X A

Xl‘|l‘ = X[|[ — Xt (A219)

which is called the a posteriori error, and

5a) A

Xtjt—1 = X¢p—1 — X¢ (A2.20)

which is the a priori error. Inserting Eq. A2.18 into Eq. A2.19 yields

- “ A
X = KeXppe—1 + Ke(Hexy +v) — x4
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where Eq. A2.11 was employed for z;. Let’s insert Eq. A2.20 into the
above equation

;tlt = Kt(§t\t—l +x) + KMHx, +v,) — x4

which, after rearrangement, yields

;t|t = Kt;th—l +Kiv, + (K; + K/H; — Dx,. (A2.21)
Let’s assume that the a priori estimation error is unbiased

E[Xy1]1=0.

Because the measurement error, v;, in Eq. A2.21 has already been assumed
to have zero mean, the a posteriori error becomes unbiased, i.e.

E[X;]1=0

only, if the last term on the right-hand-side of Eq. A2.21 is zero, namely,
when

K, =1—KH,. (A2.22)

This equation relates the two weighting matrices. (Note that Eq. A2.21
is structurally the same as Eq. A2.18, with the only difference being that
the estimation error now is updated by the measurement error.) With
Eq. A2.22, the a posteriori estimation in Eq. A2.18 becomes

X = I — KH)X 1 + Kz (A2.23)

which after rearrangement yields

X = X1 + Koz — HiXg, ). (A2.24)
This equation specifies the extent of the prediction update, since the

V=12, — Ht§z|z—1 (A2.25)

expression’s second term is the a priori estimate of the new measurement
by virtue of Eqs. A2.9 and A2.11, i.e.

A

A
Zy—1 = HyXgp-1. (A2.26)

. A . . .

This way the z; — z;;—1 term in Eq. A2.24 represents the information
the new measurement carries, and in doing so, the K;v, term specifies
the extent of the prediction update between the a priori and a posteriori
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estimation phases. When v, = 0, Qt‘t = §,|,_1, which shows that the a
posteriori estimation is identical to the a priori estimation, because the
new measurement, z,, did not contribute any useful information to the old
one, used for the a priori estimation. v, is called innovation sequence.
It can be proven (Kailath, 1968), that the innovation sequence is a white
noise for optimal estimations, which indicates that the information content
of v, is fully utilized in such cases. The initial value of the recursive state
estimation algorithm, Eq. A2.24, is given by Eq. A2.4

A AN
Xo|0 = Xo.
So far it has only been shown how the a posteriori conditional expec-

tation of x; can be obtained for unbiased estimates, i.e. when F£ [;” ] =0.
Next, the calculation of the a posteriori conditional covariance of the
estimation error is discussed.

By definition, the covariance of the estimation error is

“ AT
Py = E[Xt|txt‘t] (A2.27)

where P;; is an n x n covariance matrix. Inserting Eq. A2.21 into
Eq. A2.27, and taking into consideration that the third term of its

right-hand-side is zero, plus that K; is given by Eq. A2.22, yields

T
Py, = E[(0 — KH)X-1X,,_ T = KH) 1+ E[Kv,v[ K] (A2.28)
where the expectation of the cross-products between state and mea-

surement error has vanished due to assumed independence of the two
sequences

E[xvi]1=0.

Applying Eq. A2.10 and defining the a priori covariance, similar
to Eq. A2.27, the a posteriori conditional covariance can be expressed
by the
Py = (- KH)P 1 (I- KH) + KRK/ (A2.29)
recursive formula with the following initial value (Eq. A2.5)

P0|0 =Py.
The K; weighting matrix can be obtained in the following way. Let’s

define the expected loss in Eq. A2.16 as the expectation of a quadratic
form involving estimation error
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Y R
J = E[x,,AX] (A2.30)
where A is an arbitrary n x n semi-definite matrix. For simplicity let it
be the identity matrix: A = I. The objective is to minimize the expected
loss, which entails the unrestrained minimization of the estimation error’s

squared norm with respect to the K; weighting matrix

min(J). (A2.31)
K,

Using the property of the scalar product, Eq. A2.30 can be written as

2
J=E [Z xl.,,l,} (A2.32)
i=1

which is the same as the sum of the a posteriori covariance matrix’s ele-
ments in the main diagonal. This latter, by definition, is the trace (7r) of
the covariance matrix

J = Tr(Py). (A2.33)

The optimal weighting matrix, K;, now results by the well-known
differentiation rule

ol

although now with respect to a matrix.

Note 11.1: For a triple matrix product, the following identity is true
9 T

—Tr(ABA") = 2AB

0A

provided, B is symmetric. The following is also true (e.g. Gertler, 1973)
9 T

—Tr(AC) =C".

0A

Inserting Eq. A2.29 into Eq. A2.34 yields
—2(I — KH)P,_ H +2K/.R, =0
which, after rearrangement, gives

K; = Py H (HPy, H +R)™. (A2.35)
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The optimal weighting matrix, K;, is called the Kalman matrix,
Kalman gain, or even filter matrix. By additional differentiation of
Eq. A2.35, it can be shown that it indeed minimizes Eq. A2.33.

Let’s now derive the a priori statistics, with consideration of the deter-
ministic input. The estimation of the a priori conditional expectation
requires taking the expected value of Eq. A2.1 with respect to the avail-
able Z; measurement sequence, as a condition. Since the expected value
of the model uncertainty, w;, is zero, so is its conditional expectation,
from which it follows that

A A
Xrtl)r = Pri1,Xee + Loy (A2.36)
which is a one-step conditional prediction. There remains the a priori con-
ditional covariance of the estimation error to be specified. By definition
itis

T

Py = E[;t+l\t;[+1|[]- (A2.37)

With respect to Eqs. A2.36 and A2.1, the following can be written

“ A “A
Xetl)r = Xet1jr — Xpt1 = P10 Xy)r — Wy
and so
Pt+1\t = E[(q)t—i-l,t;t\t - Wt)(q>t+l,t;t|t - Wt)T]
which yields, by considering Eqs. A2.3 and A2.27,
Pt = 1P @1, + Qr. (A2.38)
Here the assumed independence of the estimation and measurement
errors, as well as the matrix product rule: (AB)Y = BTAT, were also
exploited.
With the help of the Kalman matrix, Eq. A2.35, the a posteri-
ori conditional covariance (Eq. A2.29) can be brought into a simpler

form. For simplicity’s sake, let’s now disregard the time notation in the
right-hand-side of Eq. A2.29, i.e.

P, = (I - KH)P(I - KH)” + KRK” (A2.39)
and in Eq. A2.35, which is now written as

K(HPH” + R) = PH'. (A2.40)
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Rearranging Eq. A2.39, gives
P, = (P—KHP)I-KH)" + KRK’
= P—KHP—PH'K” + KHPH'K” + KRK’
= (I—-KHP-PH K’ + KHPH + R)K”
which, due to Eq. A2.40 is

Py = (I - KHP - PH K" + PH'K”
and so
Py = I — KH) Py (A2.41)

which is indeed much shorter than Eq. A2.29. By looking at the above for-
mulae, a similarity to the recursive least squares (RLS) algorithm (Young,
1984) is obvious.

Finally, it can be concluded that the Kalman filter, as a recur-
sive conditional state estimation algorithm, is in fact a sequence of
a priori and a posteriori state estimations, which is an example of
the predictor—corrector principle, shown in the following illustration:

A priori estimation (PREDICTOR)
|

o | new measurement |

A

A posteriori estimation (CORRECTOR)

This also corresponds to the RLS principle. The two methods are
practically the same in terms of estimation theory. The difference lies
in the formulation of the problem and in the description of the system.
A physically based state—space description is expected to incorporate
more a priori information into the state-transition matrix than a purely
statistical approach. Also, the Kalman filter algorithm incorporates mea-
surement errors, while RLS does not. As a result, the Kalman filter gives
superior estimates with noisy measurements when compared to RLS esti-
mates, which explains the wide popularity of the Kalman filter algorithm
(Szilagyi, 2004b).

The algorithm of the discrete linear Kalman filter is summarized below.
See Gelb (1974), Meditch (1969), Sorenson (1966), and Young (1984) for
further information on the algorithm and its generalizations.

As a final word on the Kalman filter, it should be noted that the Kalman
gain, K;, can only contribute to the state estimation, if R; is positive
definite, in other words, if the measurements contain some uncertainty.
When the measurements are considered error-free, the Kalman gain in
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Eq. A2.35 degenerates into
K, =H' (A2.42)

and the a posteriori estimate in Eq. A2.24 transforms into

A

X =H, 'z (A2.43)

while the corresponding a posteriori covariance, P, becomes zero, and

the a priori covariance, P;;—1 = Q;—1, i.e. equals model error covariance

(Ahsan and O’Connor, 1994). Under such circumstances the Kalman -

filter algorithm becomes identical to the RLS algorithm (Young, 1984).
The algorithm of the discrete linear Kalman filter:

X1 = @1 + Touy + w; (State equation)
z; = Hyx; 4+ vy (Measurement equation)
w; ~N(0,Q/) (Noise statistics)
vi~N(O,R))

Elxo] = X (Initial conditions)

cov[xg] = Py
cov[xg,w;] =0, Vt
COV[VT:WZ] = 0) V(Tat)

A A . . . .

Xe—1 = ®pr1X—1)p—1 + Trm1uy—g (A priori state estimation)
Poo1 = @ 1Py @, + Qi (A priori state estimation)
K; = Py H (H,Py— H] + R)~! (Weighting matrix)

New measurement : z;

/\ /\ /\ . . . .
X¢r = X¢|r—1 + Koz — HXy0—1) (A posteriori state estimation)
Py =0 —KH)Py_; (A posteriori covariance estimation)
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A.Il.1 SAMPLE MATLAB SCRIPTS
1) fidemo.m
%State-transition matrix calculation

clear

n=3;k=.6;dt=1;

%Sample state-transition matrix (fi), Eq. 5-18

fi=zeros(n,n);

fori=1:n
for j=1:i

fi(i,j)y=exp(-k*dt)*((k*dt)"(i-j))/prod(1:i-j);

end

end

fi

Output:

fi=

0.5488 0 0
0.3293 0.5488 0
0.0988 0.3293 0.5488

2) gammademo.m
%Input-transition vector calculation

clear
n=3;k=.6;dt=1;
%Calculation of the input-transition vector of Eq. 5-22
gamv=zeros(n,1);
fori=1:n
gamv(i)=(1/k)*gammainc(k*dt,i);
end
gamv
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%Calculation of the input-transition vector of Eq. 6-8
gamv1=zeros(n,1);
fori=1:n
gamv1(i1)=(1/k)*gammainc(k*dt,i)*((-(k*dt)"(i-1) exp(-k*dt))/. ..
(gammainc(k*dt,i)*gamma(i))+i/(k*dt));
end
gamvl

%cCalculation of the input-transition vector of Eq. 6-9
gamv2=zeros(n,1);
fori=1:n

gamv2(i)=(1/k)*gammainc(k*dt,i)*(1+((k*dt)"(i-1) *exp(-k*dt))/. ..

(gammainc(k*dt,i) *gammal(i))-i/(k*dt));
end
gamv2

Output:

gamy =
0.7520
0.2032
0.0385
gamv] =
0.3386
0.1284
0.0280
gamv2 =
0.4134
0.0748
0.0105

3) PRdemo.m

%Pulse response calculation

clear

n=3;k=.6;dt=1;

H=zeros(1,n); %Output vector

H(n)=k; %The last element is k

%Sample state-transition matrix (fi), Eq. 5-18

fi=zeros(n,n);

for i=1:n
for j=1:i

fi(i,j)=exp(-k*dt)*((k*dt)"(i-j))/prod(1:i-));

end

end
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%Calculation of the input-transition vector of Eq. 5-22
gamv=zeros(n,1);
fori=1:n
gamv(i)=(1/k)*gammainc(k*dt,i);
end
%Calculation of the input-transition vector of Eq. 6-8
gamv1=zeros(n,1);
fori=1:n
gamv1(i1)=(1/k)*gammainc(k*dt,i)*((-(k*dt)"(i-1)*exp(-k*dt))/. . .
(gammainc(k*dt,i)*gamma(i))+i/(k*dt));
end
%Calculation of the input-transition vector of Eq. 6-9
gamv2=zeros(n,1);
fori=1:n
gamv2(1)=(1/k)*gammainc(k*dt,i)*(1+((k*dt)"(i-1) . ..
*exp(-k*dt))/(gammainc(k*dt,i) *gamma(i))-i/(k*dt));
end
for i=1:10 %The first 10 values
UPR(i)=H*fi"(i-1)*gamv; %Unit-pulse response, Eq. 5-44
DURR(1)=H*fi"(i-1)*gamv1; %Descending (from 1 to 0) unit-ramp
%response
AURR()=H*fi"(i-1)*gamv2; %Ascending (from 0 to 1) unit-ramp
Y%response
end
The3PRs=[UPR’ DURR’ AURR’]

Output:

The3PRs =

0.0231 0.0168 0.0063
0.0974 0.0547 0.0427
0.1489 0.0770 0.0719
0.1609 0.0801 0.0808
0.1465 0.0714 0.0751
0.1204 0.0579 0.0626
0.0925 0.0440 0.0485
0.0677 0.0320 0.0357
0.0478 0.0224 0.0253
0.0328 0.0153 0.0175

4) thetademo.m
%Observability matrix calculation
clear

n=3;k=.6;dt=1;
%~ Calculation of the state-transition matrix
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fi=zeros(n,n);
for i=1:n
for j=1:i
fi(i,j)y=exp(-k*dt)*((k*dt)"(i-j))/prod(1:i-j);
end
end
%Calculation of observability (theta) matrix, Eq. 5-62
theta=zeros(n,n);
for i=1:n
fin=fi"1;
for j=1:n
theta(i,j)=k*fin(n,j);
end
end
theta

Output:

theta =

0.0593 0.1976 0.3293
0.1301 0.2169 0.1807
0.1607 0.1785 0.0992

5) dicmdemo.m
%0One-step forecast by the DLCM

clear %Clears the memory
clf %Erases the figure window

dt=1; %Time-step in days

k=1.2; %Storage coefficient [1/time]
n=2; %Number of storage elements
H=zeros(1,n); %Output vector
H(n)=k; %The last element is k

draw=1; %To have a plot: draw=1; not to: draw=0
%Concurrent daily in- (at Budapest) and output (Baja) discharge pairs

qin=[1084,1153,1580,3117,3575,3478,3324,3173,3042,2858,2741, . ..
2553]’;

qout=[1273,1286,1318,1536,2323,2985,3272,3230,3133,3025,2892, .. ..

27647;
qinpred=qin; %Predictions for upstream station (LI-data framework),
%in simulation mode the predicted inflows become
%the observed ones
ul=qin(1:n); %Inflow at t
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u2=qin(2:n+1); %Inflow at t+dt

y=qout(2:n+1); %Outflow at t+dt

pulse=0; %When 0 it is the LI-, when 1, pulse-data framework

%u2=ul;pulse=1; %With this, one can switch back to pulse data
%system

9%%0%%%%%%%%%%%%%%%%%%%%%%% %% %% %% %

%Calculation of the input transition vector of Eq. 6-8
gamv1=zeros(n,1);
for i=1:n
gamv1(i)=(1/k)*gammainc(k*dt,i)*((-(k*dt)"(i-1)*exp(-k*dt))/. . .
(gammainc(k*dt,i)*gammal(i))+i/(k*dt));
end

%Calculation of the input transition vector of Eq. 6-9
gamv2=zeros(n,1);
for i=1:n
gamv2(i)=(1/k)*gammainc(k*dt,i)*(1+((k*dt)"(i-1). . .
*exp(-k*dt))/(gammainc(k*dt,i)*gamma(i))-i/(k*dt));
end

%%0%%%%%0%%%%%6%0%%%%%%0%%%%%:%0%%%% %% %%

%Calculation of the state-transition matrix (fi), Eq. 5-18
fi=zeros(n,n);
for i=1:n
for j=1:i
fi(i,j)=exp(-k*dt)*((k*dt)"(i-j))/prod(1:i-));
end
end

%%0%%%%%0%%%%%%0%%%%%%0%%%%%6%0%%%% %% %%

%Calculation of observability (theta) matrix, Eq. 5-62
theta=zeros(n,n);
for i=1:n

fin=fi"1;

for j=1:n

theta(i,j)=k*fin(n,j);

end

end

%%%%%%%%%%% %% %% %% %%%% %% %% % %% %% %% %
%Calculation of the pulse response functions (PRs)

%In the LI-data system there are two PRs
%One is the ascending unit ramp (from 0 to 1 over dt) response (AURR)
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%The other is the descending unit ramp (from 1 to 0 over dt)
Y%response (DURR)

%When combined they yield the unit-pulse response (UPR) of
%the pulse-data system

hl=zeros(n); %DURR

h2=zeros(n); %AURR

tdmax=n;

h1=prl(tdmax,n,k,dt); %Calls the function prl
h2=pr2(tdmax,n,k,dt); %Calls the function pr2

9%%0%%%%%%%0%%%%%0%0%%%%%:%%%%%%%%%% %% %

%Calculation of the e vector of Egs. 5-68 and 6-20
e=zeros(n,1);
fori=1:n
sumcum=0;
for j=1:i
sumcum=sumcum-+h1(i-j+1)*ul(j)+h2(i-j+1)*u2(j);
end
e(i,1)=y(i)-sumcum;
end

%%0%0%%%%%%0%%%%%0%0%%%%%%0%%%%%0%%%%% %%

%Calculation of the initial state
xnull=inv(theta)*e; %Eqs. 5-69 & 6-20
%xnull=zeros(n,1); %Needed only when starting from a relaxed
%system
startday=1; %Startday of forecast error stats calc. ("5 for a relaxed
%system)

%Here come the one-day forecasts%6%6%%%%%%%%%%%%%%%
x=xnull; %The state vector
for day=1:length(qout)-1
if pulse==
x=fi*x+gamv2*qinpred(day+1)+gamv1*qin(day); %Eq. 6-7
else
x=fi*x+gamv2*qin(day)+gamv1*qin(day); %Eq. 5-15
end
yest(day,1)=H*x; %Eq. 5-14
end

%%%%%%%0%%%%%6%0%%%%%%0%%%%%:%%%%% %% %%

err=sum((yest(startday:end)-qout(1+startday:length(qout))).”2) . ..
/length(yest(startday:end)); %Mean-squared error (MSE)
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%of forecasts

nsc=1-sum((yest(startday:end)-qout(1+startday:length(qout))) . ..
."2)/sum((qout(1+startday:length(qout))-mean(qout+ . . .
startday-1))."2); %Nash-Sutcliffe-type (NSC) forecast efficiency

if draw==
days=1:length(qin);
plot(days,qout)
hold on
plot(days(2:end),yest,’rx”)
plot(days,qin,’ g--") %The inflow
legend(’Measured stream-flow at Baja’,”1-day forecast’, . ..
’Measured stream-flow at Budapest’,2)
xlabel(’Days’)
ylabel("Q [m”{3}s{-1}]")

end
%%%%%6%%%%0%6%%%%6%6%%%6%6%%%%6%%% %6%6%% % %%

MRSE=sqrt(err), nsc
yvsyest=[qout(2:length(qout)), yest] %eobserved & estimated pairs,
%the first n predictions must equal
%measured values
function h1=prl(tdmax,n,k,dt) %Must be a separate file named prl.m
for tdt=1:tdmax
for i=1:n
row(1,1)=((k*dt*(tdt-1))"(n-1))/prod(1:n-i);
column(i, 1 )=gammainc(k*dt,i)*(i/(k*dt)-(k*dt)"(i-1) . ..
*exp(-k*dt)/gammainc(k*dt,i)/prod(1:i-1));
end
h1(tdt)=exp(-k*dt*(tdt-1))*row*column; %DURR
end

function h2=pr2(tdmax,n,k,dt) %Must be a separate file named pr2.m
for tdt=1:tdmax
for i=l:n
row(1,1)=((k*dt*(tdt-1))"(n-1))/prod(1:n-i);
column(i, 1 )=gammainc(k*dt,i)*(1-(i/(k*dt)-(k*dt)"(i-1). . .
*exp(-k*dt)/gammainc(k*dt,i)/prod(1:i-1)));
end
h2(tdt)=exp(-k*dt*(tdt-1))*row*column; %AURR
end
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4000 T T T T T
— Measured stream-—
flow at Baja
x 1-day forecast ;-
35001 Measured stream-— , > i
flow at Budapest = x
3000 |
13 2500
(6]
2000
1500
/
1 - Il Il Il Il Il
0000 2 4 6 8 10 12
Days
Output:
yvsyest =
1.0e+003 *

1.2860 1.2860
1.3180 1.3180
1.5360 1.6411
2.3230 2.3905
2.9850 3.0048
3.2720 3.2746
3.2300 3.3089
3.1330 3.2340
3.0250 3.1137
2.8920 2.9695
2.7640 2.8240

6) inputdetectiondemo.m

clear %Clears the memory

clf %Erases the figure window

dt=1; %Time-step in days

k=1.2; %Storage coefficient [1/time]

n=2; %Number of storage elements

H=zeros(1,n); %Output vector

H(n)=k; %The last element is k

%Concurrent daily in- (at Budapest) and output (Baja) discharge pairs
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qin=[1084,1153,1580,3117,3575,3478,3324,3173,3042,2858, ...
2741,2553]’;
qout=[1273,1286,1318,1536,2323,2985,3272,3230,3133,3025, ...
2892,27647’;

ginpred=qin; %Predictions for upstream station (LI-data framework),
%in simulation mode the predicted inflows become
%the observed ones

ul=qin(1:n); %Inflow at t

u2=qin(2:n+1); %Inflow at t+dt

y=qout(2:n+1); %Outflow at t+dt

%pulse=0; %When 0 it is the LI-, when 1, pulse-data framework

u2=ul;pulse=1; %With this, one can switch back to pulse data system

%%%0%%%0%%%%%%%%%%%%%%%%%%%%%%%%% %%

%Calculation of the input-transition vector of Eq. 6-8
gamv1=zeros(n,1);
fori=1:n
gamv1(1)=(1/k)*gammainc(k*dt,i)*((-(k*dt)"(i-1)*exp(-k*dt))/. . .
(gammainc(k*dt,i)*gamma(i))+i/(k*dt));
end

%Calculation of the input-transition vector of Eq. 6-9
gamv2=zeros(n,1);
for i=1:n
gamv2(1)=(1/k)*gammainc(k*dt,i)*(1+((k*dt)"(i-1) . ..
*exp(-k*dt))/(gammainc(k*dt,i) . ..
*gammal(i))-i/(k*dt));
end

%%%%%%%0%%%%%6%0%%%%%%0%%%%%6%0%%%% %% %%

%Calculation of the state-transition matrix (fi), Eq. 5-18
fi=zeros(n,n);
fori=1:n
for j=1:i
fi(i,j)y=exp(-k*dt)*((k*dt)"(i-j))/prod(1:i-j);
end
end

%%%0%%%0%%%%%%%%%%%%%%%%%%%%%%%%% %%

%Calculation of observability (theta) matrix, Eq. 5-62
theta=zeros(n,n);
for i=1:n

fin=fi"1;

for j=1:n
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theta(i,j)=k*fin(n,j);
end
end

%%%%%%%0%%%%%6%0%%%%%%%%%%%:%0%%%% %% %%

%Calculation of the pulse-response functions (PRs)

%lIn the LI-data system there are two PRs

%One is the ascending unit ramp (from 0 to 1 over dt) response (AURR)
%The other is the descending unit ramp (from 1 to 0 over dt)
Y%response (DURR)

%When combined they yield the unit-pulse response (UPR) of
%the pulse-data system

h1=zeros(n); %DURR

h2=zeros(n); Y%eAURR

tdmax=n;

h1=prl(tdmax,n,k,dt); %Calls the function prl
h2=pr2(tdmax,n,k,dt); %Calls the function pr2

%%%%%%6%0%%%%%6%0%%%%%%0%%% %% %% %% % %% %%

%Calculation of the e vector of Egs. 5-68 and 6-20
e=zeros(n,1);
fori=1:n
sumcum=0;
for j=1:i
sumcum=sumcum-+h1(i-j+1)*ul(j)+h2(i-j+1)*u2(j);
end
e(i,1)=y(i)-sumcum;
end

%%%%%%%0%%%%%6%0%%%%%%0%%%%%:%%%%% %% %%

%Calculation of the initial state
xnull=inv(theta)*e; %Eqs. 5-69 & 6-20

%Input detection starts here
uest=zeros(length(qin),1);

if pulse==0
uest(1)=qin(1);
else

uest(end)=NaN; %The last (12th) inflow value cannot be estimated
%since that would require the 13th outflow value

end
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x=xnull; %The state vector
for day=2:length(qout)
if pulse==
Eq. 6-23
uest(day)=(1/(H*gamv2))*(qout(day)-H*fi*x-H*gamv1*uest. . .
(day-1));
x=fi*x+gamv2*uest(day)+gamv1*uest(day-1); %Eq. 6-24
else
uest(day-1)=(1/(H*(gamv1+gamv2)))*(qout(day)-H*fi*x);
%Eq. 5-82
x=fi*x+(gamv2+gamv1)*uest(day-1); %Eq. 5-83
end
end

%%%%%%%0%%%%%6%0%%%%%%0%%%%%6%0%%%% %% %%

days=1:length(qin);

plot(days,qin)

hold on

plot(days,uest,’rx)

legend(’Observed stream-flow at Budapest’, . . .
’Detected stream-flow from observed values at Baja’)
xlabel(’Days’)

ylabel(CQ [m"{3}s™{-1}1")

%%%6%%%%%% %% % %% %%% %% % %% % %% %% %% %% %%
uest
Output:

uest =
1.0e+003 *
1.0840
1.1530
2.0294
3.5893
3.5070
3.4241
3.0023
3.0557
2.8736
2.7276
2.6219
NaN
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4000 T

— Observed stream-flow at Budapest
x Detected stream—flow from observed values at Baja

3500 |-

1500 -

1000

7) dlcmmultidemo.m

%Multi-step (1 through 3 days) forecast and
%parameter optimization with the

%DLCM. Optimization is achieved by

%a trial-and-error method of systematically
%changing (in two loops) the parameter (k & n)
%values of the cascade. The (k, n) set with the
%smallest simulation error is identified.

clear %Clears the memory
clf %Erases the figure window

%%%%%%%0%%%%%6%%%%%%%%%%%%%% %% % %% %%
%Concurrent daily in- (at Budapest) and output (Baja) discharge pairs

qin=[1084,1153,1580,3117,3575,3478,3324,3173,3042,2858,2741, . ..
2553]’;

qout=[1273,1286,1318,1536,2323,2985,3272,3230,3133,3025,2892, . ..

27647’;
ginpred=qin; %Predictions for upstream station (LI-data framework),
%in simulation mode the predicted inflows become
%the observed ones

%%%%0%%%%%%%% %% %% %6%%%%%%%% %% %% %% %%
draw=1; %To have a plot: draw=1; not to: draw=0

pulse=0; %When 0 it is the LI-, when 1, pulse-data framework
errmin=10"20; %lnitial forecast error for trial-and-error calibration



Appendix 11 171

%ofk,n
dt=1; %Time-step in days

%%0%%%%0%0%0%%%%6%0%0%%%%0%0%0%%%%:%0%%%%%:% %%

kstart=1.2;kstep=.1;kend=1.2; %These can be changed

nstart=2;nend=2; %These can be changed

for k=kstart:kstep:kend %Storage coefficient [1/time]
for n=nstart:nend; %Number of storage elements

%%0%%%%0%0%0%%%%6%0%%%%%0%0%0%%%%:%0%%%% %% %%

ul=qin(1:n); %Inflow at t

u2=qin(2:n+1); %Inflow at t+dt

y=qout(2:n+1); %Outflow at t+dt

% u2=ul;pulse=1; %With this, one can switch back to pulse
%data system

H=zeros(1,n); %Output vector

H(n)=k; %The last element is k

%%%0%%%0%%6%%%%%%%%%%%%%%%%%%%%%%% %%

%Calculation of the input-transition vector of Eq. 6-8
gamv1=zeros(n,1);
fori=1:n
gamv1(i)=(1/k)*gammainc(k*dt,i)*((-(k*dt)"(i-1) . ..
*exp(-k*dt))/(gammainc(k*dt,i)*gamma(i))+ . . .
i/(k*dt));
end

%%0%%%%%0%%%%%%0%%%%%%%%%%%:%0%%%% %% %%

%Calculation of the input-transition vector of Eq. 6-9
gamv2=zeros(n,1);
for i=1:n
gamv2(i)=(1/k)*gammainc(k*dt,i)*(1+((k*dt)"(i-1) . ..
*exp(-k*dt))/(gammainc(k*dt,i)*gamma(i))- . ..
i/(k*dt));
end

%%0%%%%0%0%0%%%%6%0%0%%%%0%0%%%%%:%0%%%%%:% %%

%Calculation of the state-transition matrix (fi), Eq. 5-18
fi=zeros(n,n);
for i=1:n
for j=1:i
fi(i,j)=exp(-k*dt)*((k*dt)"(i-j))/prod(1:i-));
end
end

%%%%%%0%%%%%%%%%%%%%%%%%%%%%%%%% %%
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%Calculation of observability (theta) matrix, Eq. 5-62
theta=zeros(n,n);
for i=1:n

fin=fi"1;

for j=1:n

theta(i,j)=k*fin(n,j);

end

end

%%%%%%%0%%%%%6%0%%%%%%0%%% %% %% %% % %% %%

%Calculation of the pulse-response functions (PRs)

%In the LI-data system there are two PRs

%One is the ascending unit ramp (from 0 to 1 over dt)
%response (AURR)

%The other is the descending unit ramp (from 1 to 0 over dt)
%response (DURR)

%When combined they yield the unit-pulse response (UPR) of
%the pulse-data system

h1=zeros(n); %DURR

h2=zeros(n); Y%eAURR

tdmax=n;

h1=prl(tdmax,n,k,dt); %Calls the function prl
h2=pr2(tdmax,n,k,dt); %Calls the function pr2

%%%%%%%0%%%%%6%0%%%%%%%%%%%:%0%%%% %% %%

%Calculation of the e vector of Egs. 5-68 and 6-20
e=zeros(n,1);
fori=1:n
sumcum=0;
for j=1:i
sumcum=sumcum-+h1(i-j+1)*ul(j)+h2(i-j+1)*u2(j);
end
e(i,1)=y(i)-sumcum;
end

%%0%%%6%%6%6%0%%%6%0%6%%6%%%6%6%6%%0%%%6%6%6% %% %%
%Calculation of the initial state
xnull=inv(theta)*e; %Eqs. 5-69 & 6-20

%sxnull=zeros(n,1); %Needed only when starting from a
%relaxed system

%%0%0%%%%%0%0%%%%6%0%0%%%%%:%0%%%%%%%%%% %%
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startday=1; %Startday of forecast error stats calc. ("5 for
%a relaxed system)
tau=3; %Maximum forecast lead time, if 3 then 1,2, and
%3 day forecasts are calc. If in a simulational
%mode (i.e. future inflow is known, not estimated),
%the multiple day forecasts become the
%one-day ones
err=zeros(tau, 1); %Mean-squared error (MSE) of forecasts

%%0%%%%%0%%%%%6%0%%% %% %% %% %% %% %% % %% %%

for i=1:tau
x=xnull; %The state vector

if i==
for day=1:length(qout)-tau %Equal # of forecasts
%independent of lead time
if pulse==0
%Eq. 6-7
x=fi*x+gamv2*qinpred(day+1)+gamv1*qin(day);
else
x=fi*x+gamv2*qin(day)+gamv1*qin(day); %Eq. 5-15
end
yest(day,i)=H*x; %Eq. 5-14
end

err(i)=sum((yest(startday:end,i)-qout(i+startday:length . . .
(qout)-tauti))."2)/length(yest(startday:end,i));
%Nash-Sutcliffe-type (NSC) forecast efficiency
nsc(i)=1-sum((yest(startday:end,i)-qout(i+startday: . . .
length (qout)-tauti)).”2)/sum((qout(itstartday: . ..
length(qout)-tau+i)-mean(qout+startday-1))."2);

if draw==
days=1:length(qin);
subplot(tau,1,i), plot(days,qout)
hold on
subplot(tau, 1,i), plot(days(2:end-tau-+i),yest(:,i),’rx")
subplot(tau,1,i), plot(days,qin,’g--") %The inflow
legend(’Stream-flow at Baja’,’ 1-day forecast’, . ..

’Stream-flow at Budapest’,4)
end
else

for day=1:length(qout)-tau %Equal # of forecasts
%independent of lead time



174

Recursive Streamflow Forecasting

sumcum=0;
qinest(1)=qin(day);
for jj=1:1 %Recursive multiple-day forecast
%calculations start
ginest(jj+1)=qinpred(day+jj);
fii=fi"(i-jj);
if pulse==
%LI-data system
sumcum=sumcum-+k*fii(n,:)*gamv2(:)*qinest . . .
i+ D+k*fii(n,:)*gamv1(:)*qinest(jj);
else
%Pulse-data system
sumcum=sumcum-+k*fii(n,:)*gamv2(:)*qinest . . .
(gp+k*fii(n,:)*gamv1(:)*qinest(jj);
end
end
fii=fi"1;
%Eqgs. 5-41 (times H) & 6-21
yest(day,i)=H*fii*x+sumcum;
if pulse==0
%Eq. 6-7
x=fi*x+gamv2*qin(day+1)+gamv1*qin(day);
else
%Eq. 5-15
x=fi*x+gamv2*qin(day)+gamv1*qin(day);
end
end
err(i)=sum((yest(startday:end,i)-qout(i+startday:length . . .
(qout)-tau+i))."2)/length(yest(startday:end,i));
nsc(i)=1-sum((yest(startday:end,i)-qout(i+startday:length. . .
(qout)-tau+i))."2)/sum((qout(i+startday:length . ..
(qout)-tau+i)-mean(qout+startday-1))."2);
if draw==1
subplot(tau,1,1), plot(days,qout)
hold on
subplot(tau,1,i), plot(days(1+i:end-tauti),yest(:,i),1x’)
if i==
legend(’Stream-flow at Baja’,’2-day forecast’,4)
YLabel(’Q [m™{3}s"{-1}]")
else
legend(’Stream-flow at Baja’,’3-day forecast’,4)
XLabel(’Days’)
end
end
end
end

%%%%%%%0%%%%%6%0%%%%%%0%%%%%:%%%%% %% %%
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if mean(err)
if min(xnull)
%0Optimized mean (of the different leadtimes) MSE
errmin=mean(err);
kopt=k; %Optimized k value
nopt=n; %Optimized n value
%Mean NSC of the different lead-time forecasts
nsc=mean(nsc);
end
end

%%0%%%%0%0%%%%%6%0%0%%%%0%0%%%%%:%%%%% %% %%

end
end

%Prints the calibrated k, n values and the MRSE

kopt,nopt

MRSE=sqrt(errmin)

%O0Observed & estimated pairs

yvsyest=[qout(2:length(qout)-tau+1), yest(:,1)]

%The first n predictions must equal measured values for a correct code

Output:

kopt =

1.2000

nopt =

2

MRSE =
71.0999
yvsyest =
1.0e+003 *
1.2860 1.2860
1.3180 1.3180
1.5360 1.6411
2.3230 2.3905
2.9850 3.0048
3.2720 3.2746
3.2300 3.3089
3.1330 3.2340
3.0250 3.1137
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8) kalmandemo.m

%Demonstration of the Kalman filter for a) optimal
Y%predictions with noisy data; b) parameter
%estimation. The state equation now is scalar with no
%inputs (u), and the output matrix (H) unity. Both,
%model and measurement error, are prescribed as
%normally distributed noises with 0 means.

%Model parameter is also estimated by the

% Yule-Walker equation.

clear
clf

%%0%0%%%%%%0%%%%6%0%0%%%%%:%0%%%%%0%%%%% %%

%These parameters can be modified by the user
n=1000; %Number of values to be generated
fi=.9; %Specified parameter of the AR(1) model
wstd=1; %Standard deviation of model error,
%CANNOT BE ZERO!
vstd=1; %Standard deviation of measurement error,
%CANNOT BE ZERO!
Qcoef=1; %Since in reality model-error variance is
%only estimated, Qcoef is an arbitrary
%multiplier of true model variance. CANNOT BE ZERO!
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Rcoef=1; %Same for measurement-error variance.
%CANNOT BE ZERO!

plotstart=1; %Starting value for plotting x and y

plotend=30; %Ending value for plotting x and y

%%%6%%%%%%%%%%%%%%%0%%%%% %% %% %% %% %%
toplot=plotstart:plotend,;

w=normrnd(0,wstd,n,1);  %N(0,wstd) normally distr. number
%generation
v=normrnd(0,vstd,n,1); %N(0,vstd) normally distr. number generation

x(1)=0; %Initial value of the state
for i=2:n
x(1)=fi*x(i-1)+w(i); %State eq., Eq. A2-1, with zero inputs [u(t)=0]
end
y=x+v’; %Measurement eq., Eq. A2-8, with H=1

rol=[y(1:n-1); y2m)]’;

rl=corrcoef(rol);

%Estimation of the AR(1) parameter from the Yule-Walker eq.,
%Eq. 8-9

fiyYW=rl(1,2)

yestY W=zeros(n,1);
yestYW(1)=mean(y); %The first predicted value is the mean of
%observations
for i=2:n
yestYW(i)=fiY W*y(i-1); %One-step ahead prediction

end

subplot(2,1,1), plot(toplot,x(plotstart:plotend),’- -g’)
xlabel(’Selected period”)

hold on

subplot(2,1,1), plot(toplot,y(plotstart:plotend))
subplot(2,1,1), plot(toplot,yestY W(plotstart:plotend), ko)
%Mean-squared error (mse) of predictions

mseyY W=(yestY W’-y)*(yestYW’-y)’/(n-1);
%Mean-squared error (mse) of predictions related to x,
%which is typically unknown due to e.g., measurement error
msexY W=(yestY W’-x)*(yestYW’-x)’/(n-1);

%Sofar we assumed zero measurement error, i.e., y = X
%Below we account for the measurement error
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%%0%0%%%%%0%0%%%%%0%0%%%%%%0%%%%%0%%%% %% %

Q=Qcoef*wstd*wstd; %Estimation of model error (co)variance,
%Eq. A2-3

R=Rcoef*vstd*vstd; %Estimation of measurement error (co)variance,
%Eq. A2-10

%%0%%%%0%0%0%%%%0%0%%%%6%0%0%%%%%:%0%%%% %% %%

xx=mean(y); %Estimation of the initial state, Eq. A2-4

xkalm(1)=xx; %Again, first prediction is just the mean of observations

mseyopt=1000000000; %An arbitrarily large value for the
%optimization

Ktosee=zeros(n-1,1); %For plotting K

stdtosee=zeros(n-1,1); %For plotting sqrt(P)

for fiestopt=.5:.0001:1 %Loop for trial-and-error optimization of fi
F=fiestopt; %Here starts the Kalman-filter algorithm,
%see Appendix |
P=var(y); %Estimation of the initial state-prediction error
%(co)variance which is equal to the initial state
%(co)variance since the initial prediction is just the
%mean
xx=mean(y);
Ktosee(1)=P/(P+R);
stdtosee(1)=P;
for i=2:n
xx=F*xx; %A-priori state estimation
xkalm(i)=xx;
P=F*F*P+Q); %Estimate a-priori state-prediction error
%(co)variance
K=P/(P+R); % Weighting factor (matrix) of Kalman
Ktosee(i)=K;
stdtosee(i)=sqrt(P);
xx=xx+K*(y(i)-xx); %With the latest measur. update state estim.
P=(1-K)*P; %Estimate a-posteriori state-prediction error (co)var.
end
mseytest=(xkalm-y)*(xkalm-y)’/(n-1);
msextest=(xkalm-x)*(xkalm-x)’/(n-1);
if mseytest
mseyopt=mseytest; %oChoosing the best AR(1) parameter estimate
msexopt=msextest;
fiopt=fiestopt;
xkalmopt=xkalm;
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Kopt=Ktosee;
stdopt=stdtosee;
end
end

fiopt %This is the optimized AR(1) parameter

subplot(2,1,1), plot(toplot,xkalmopt(plotstart:plotend), rx”)
subplot(2,1,1), plot(toplot,xkalmopt(plotstart:plotend)+ . . .
stdopt(plotstart:plotend)’,’b.”)
legend(’x’,’y’, xestY W’ xestKalman’,’Kalman-pred. error std”)
subplot(2,1,1), plot(toplot,xkalmopt(plotstart:plotend)- . . .
stdopt(plotstart:plotend)’,’d.”)
subplot(2,1,2), plot(Kopt(1:10))
hold on
subplot(2,1,2), plot(stdopt(1:10),r--")
xlabel(’The first 10 values’)
legend(C’K’,’P"{.5}")
mseratioy=mseyopt/mseyY W %Ratio of Kalman over
% Yule-Walker mse
%for y
mseratiox=msexopt/msexY W %Ratio of Kalman over
% Yule-Walker mse
Y%for x

Output:

fiYw =
0.7347
fiopt =
0.8905
mseratioy =
0.9346
mseratiox =
0.8720
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Guide to the Exercises

CHAPTER 2

2.4.

It must be shown that the integral is equal to unity.

CHAPTER 3

3.1.

They represent the storage responses of the decreasing order cas-
cades (starting with an order of ») to an input in the form of the
Dirac-delta function. This way the impulse-response function of
the n-cascade can be formulated in terms of storage and outflow, the
latter being equal to the former multiplied by k. Note that because
the state equation is written for storages, the impulse response of
the system must originally be formulated for storage values. The
impulse response of the cascade in terms of outflow results only
via the output equation.

CHAPTER 4

4.1.

4.2.

It must be shown that the outflow of a single storage element
(ke~"™) when convoluted by itself yields the impulse response of the
2-cascade, i.e. k2te™k. Similarly, it can be shown, for example, that
the output of the (n — 1)-cascade when convoluted by (ke™™) yields
the impulse response of the n-cascade.

It is easy to do the differentiation by hand for small values of n. For
arbitrary n values try e.g. Maple or Mathematica.

CHAPTER 5

5.1.

5.2.

When n = 1, i = 1 in the definition of the incomplete gamma
function. Therefore its integral form zero to kAt yields 1 — e=*4!
which is the same as Eq. (5.20).

The response of the last storage element in a cascade is made up of
the following individual responses: the response of the last storage
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5.3.

5.4.

5.6.
5.7.

5.10.
5.12.
5.13.

element in the cascade, plus the response of the 2-cascade made up
ofthe (n— 1)th and nth elements, plus the response of the 3-cascade
made up of the (n — 2)nd, (n — 1)th and nth elements, and so on.
These responses of a relaxed system at time # — 0 are obtained as
the newly attained storage at time # + 0 via an inflow in the shape
of a Dirac-delta function into the first (and only the first) storage
element within the cascade, multiplied by the impulse-response
function of the relevant cascade.

It contains the unit-pulse responses due to the definition of the input
signal, i.e. that it is constant over At.

The solution of dx/dt = —kx with x(0) = 1 (since the inflow is in
the form of a Dirac-delta function) becomes x(f) = e *¢~%) which
indeed satisfies Eq. (5.37).

Itis hip, = e U DKAL(] _ o—kAL)

For example, the convolution of the unit-pulse input with the
impulse response function can be done in two steps. Up until A¢,
the input is a constant, i.e. unity. At ¢ = At the output becomes
1 — e *! which is the unit-step response function. At r = At the
storage is (1 — e %A% /k, so for t > At the output is this storage
multiplied by the impulse-response function, ke (=40

From Exercises 5.6 and 5.8 it follows.

xo = 2420.1. See Note 5.23.

xo = [2050.7, 85.4]), 33 = 1384.4. Use Eq. 5.62 to obtain the
observability matrix and then calculate its inverse. Use Eq. 5.70
for obtaining e, in which the ordinates of the discrete unit-pulse
response function can be obtained from Eq. 5.46 the easiest, making
use of Egs. 5.18 and 5.22. With the help of Eq. 5.41 the storages
can be obtained for # = 1, 2, 3, step by step. The last element of the
storage vector when multiplied by & yields the predicted outflow
values at each time step. Note that the first two predictions are
perfect (i.e. they equal the observed values up to some rounding
errors) if you did the calculations correctly. This is not surprising
since these two outflow values were known for calculating the initial
state xo forn = 2.

CHAPTER 6

6.1.

Let’s consider the linear change from a to b over At as depicted
below.

We want to show that at time ¢ 4 ¢ segments ‘=" plus d indeed
equal the value the linear signal assumes at ¢ + c. For that we simply
need to show that the two segments marked by ‘=" are equal. This
can be seen by considering that tan(8) = (1 4+ x) tan(«). Using the
definition of the tangent yields d/c = (1 +x)e/c,i.e.d = (1 +x)e.
But then it follows immediately that the two segments marked by ‘=’
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b=a+xa
xe /A
: /Al |,
o
e d
D
P
4+—>
t c t+ At

are indeed equal. For a decreasing signal we obtain the same situa-
tion by defining c as the time needed to reach £+ At. This concludes
the proof.

6.4. For a Dirac-delta input the output of the continuous 2-cascade
(ky and k) is fot ke T ek =T dr_ while the same for the rear-
ranged cascade becomes fot ke Tk e k=D gr which we know
is the same as before since t and (¢ — 7) are interchangeable within
the convolution integral.

6.5. xop = 2368.1. See 6.6 for an explanation.

6.6. xo = [1524.7,690.5], 33 = 1641.1. Use Eq. 5.62 to obtain the
observability matrix and then calculate its inverse. Use Egs. 5.20,
5.21, plus 6.16 through 6.20 for obtaining e,, making use of Egs.
6.8 and 6.9. With the help of Eq. 6.7 the storages can be obtained
for t = 1,2, 3, step by step. The last element of the storage vector
when multiplied by £ yields the predicted outflow values at each
time step. Note that the first two predictions are perfect (i.e. they
equal the observed values up to some rounding errors) if you did
the calculations correctly.

CHAPTER 8

8.1. Naturally, the Kalman filter results in better forecasts and yields
very accurate estimate of the prescribed AR(1) parameter, while
the Yule-Walker equation gives an erroneous parameter estimate
whenever a measurement error is present. In the absence of the latter
the two methods give identical parameter estimates and forecasts.
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