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Preface

This textbook is a general introduction to the electron kinetics and plasma spec-
troscopy in the context of electrical gas discharges. It was designed to be read
by advanced undergraduate and graduate students that have followed before an
introductory course on plasma physics, of the type of Francis F. Chen’s book (Intro-
duction to Plasma Physics and Controlled Fusion), and that want to pursue their
studies by acquiring basic knowledge in electron kinetics and plasma spectroscopy.
Both topics are presented assuming that no significant previous knowledge exists.
The exposition is based on other textbooks and some journal references, but in this
latter case, the choice of the references reflects only a pedagogical option of the
authors. The journal references listed in the book do not intend to cover a given
topic in a very exhaustive and updated way because, in authors’ opinion, this is not
relevant to whom that intends to establish a first contact with the area. The aim of
this book is therefore to supply the students with a comprehensive tool in which the
basic concepts and formulae are totally derived and to which they can easily return
whenever they need. The book is divided in two parts.

The structure of the first part is as follows. Chapter 1 presents the fundamentals
of electrical gas discharges. It describes in general trends as a gas discharge works
from a microscopic point of view using in certain passages a qualitative description
only. Chapter 2 is devoted to the transport Boltzmann equation, in a first stage
remembering the conditions of application to a gas of neutral molecules and in
a second stage with its further application to a gas of electrons in the case of
electron-molecule collisions. Chapter 3 presents the analysis and the solutions of
the electron Boltzmann equation in velocity space for the case of an applied direct-
current electric field. Chapter 4 presents an extension of the previous chapter to the
case of a time-varying electric field, both for the case of high-frequency fields, where
no time modulation exists in the so-called electron energy distribution function,
and for the case of radio-frequency fields, where large time modulation may exist.
Chapter 5 treats the Boltzmann analysis in the space of positions by considering
the electron transport and the electron diffusion. Since the diffusion constitutes a
loss term for electrons, other source or sink terms need to be included as well for
consistency, such as electron ionization and electron attachment. Finally, Chap. 6
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treats different aspects associated with the presence of space-charge electric fields
in the medium. This firstly includes the concept of ambipolar diffusion, but other
aspects are analysed as well, such as the transition from ambipolar to free diffusion
as the space-charge density decreases, either in a discharge or at the beginning
of a post-discharge, the ambipolar diffusion with an external magnetic field, the
Boltzmann equation in a glow discharge, in which a radial space-charge electric
field exists, and some Boltzmann treatments such as the local-field approximation
that cannot be used anymore.

The second part of the textbook is composed of five chapters with the aim
of introducing the students to equilibria in plasmas, spectroscopy diagnostics
of electrical discharges and finally an overview of current applications of these
plasmas. Chapter 7 presents and discusses basic concepts of the most relevant
collisional-radiative models usually found in low-temperature plasmas. The corona
model is introduced followed by a description of the excitation-saturation balance
and the partial local Saha equilibrium. The possibilities of optical emission spec-
troscopy and its limitations and the interpretation of spectra are shown in Chap. 8.
Some notions of line radiation and reminders of atomic and molecular physics
are given without being exhaustive about the subject. In subsequent sections, the
authors present the notions of spontaneous emission, absorption and stimulated
emission and a brief discussion of molecular bands. Applications of optical emission
spectroscopy to infer some plasma parameters, such as electron density and gas
and vibrational temperatures, are shown. Some experimental techniques such as
actinometry and titration for determination of species concentrations are presented.
In Chap.9, the bases of the incoherent absorption are presented and discussed. A
case study of metastable kinetics in the argon positive column is proposed with
the aid of classical absorption spectroscopy. Chapter 10 is devoted to introducing
the principles of laser spectroscopy followed by an explanation of many gas lasers,
solid-state lasers and liquid lasers. Experiments with absorption of one photon are
presented together with absolute density measurements. Multiphoton laser-induced
fluorescence is studied, and the bases of multiphoton absorption are addressed.
The purpose of Chap. 11 is not to be exhaustive but to present some important
industrial and technological applications of discharge plasmas. The fields where
low-temperature plasmas are being employed today are vast and rapidly growing
and cannot be described in a single textbook chapter. Much will be left out; however,
a special emphasis is given in new breakthrough applications of plasmas in health
science, production of biofuels and agriculture.

The sequence of the chapters in the book was thought having in mind that
either advanced undergraduate or graduate students should be introduced to the
field of kinetics and spectroscopy of low-temperature plasmas in at pedagogical
and self-contained format. The authors suggest to the instructors of a two-semester
course, for advanced undergraduate students, the exclusion of the following sections
and subsections in Part I: Sects. 3.4, 3.5 and 3.6 in Chap. 3, Sects. 4.2 and 4.3 in
Chap. 4, Sect.5.3 in Chap.5 and Sects. 6.2.3 and 6.2.4 in Chap. 6. In Part II, the
sections from 8.4 to 8.7 may be removed from Chap. 8, as well as the Sects. 10.2
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to 10.4 in Chap. 10. In case of graduate students, all the contents are advised and
may be covered in a two-semester course.

This textbook relies on the experience of more than 20 years of Jorge Loureiro
in teaching the plasma kinetics of low-temperature plasmas at Instituto Superior
Técnico (IST), Universidade de Lisboa, Portugal, and of Jayr Amorim in teach-
ing the different techniques and diagnostics of plasma spectroscopy at Instituto
Tecnolégico de Aerondutica (ITA), Sdo José dos Campos, Brazil. The authors
would like hence to thank both institutions for all the support received along the
teaching of these matters, as well as for the encouragement received from many
colleagues and the contributions from students to improve this book. One of the
authors (J. Loureiro) would also like to thank the support received from Instituto de
Plasmas e Fusdo Nuclear, which is the centre where his research has been realized
at IST.

Lisboa, Portugal Jorge Loureiro
Sdo José dos Campos, Brazil Jayr Amorim
June 2016
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Part I
Electron Kinetics



Chapter 1
Fundamentals of Electrical Gas Discharges

This chapter is a brief, and in certain passages qualitative, description of how an
electrical gas discharge works. The main purpose of Part I of this textbook is not to
present a detailed description of the operation of the various types of discharges, but
instead to analyse the various aspects of the electron kinetics that are in the origin of
the electrical discharges operation from a microscopic point of view. However, the
present chapter is not in line with this perspective, since its purpose is to bring
the reader to the physical system under study, which will be studied from Chap. 2
throughout based on the electron Boltzmann transport equation.

1.1 Non-self-Sustained Discharges

1.1.1 Primary Discharge Characteristics

A gas becomes a conductor of electricity if by any mechanism primary free charges
are produced. Usually the electrons and the positive ions are produced at the same
rate, but due to the lighter mass of electrons, and consequently larger mobility, the
electrons carry the majority of the current. In a gas there always exists a very
small background conductivity produced by permanent external ionizing agents
such as cosmic rays and natural radioactivity. They do not exist hence perfect
electrical insulating gases. At the lower atmosphere layers of Earth, for instance,
the electrical conductivity produced by the solar wind and cosmic rays is of the
order of 0, ~ 107 Q7! m™!, whereas in a good metallic conductor as copper this
value is ~6 x 10’ Q7' m~! at 20 °C.

Let us consider first the conduction of an electrical current in a gas produced by
an external ionizing agent strong enough to produce a non-self-sustained discharge.
The discharge exists as long as the gas is under the effects of the external ionizing

© Springer International Publishing Switzerland 2016 3
J.M.A_H. Loureiro, J. de Amorim Filho, Kinetics and Spectroscopy

of Low Temperature Plasmas, Graduate Texts in Physics,

DOI 10.1007/978-3-319-09253-9_1



4 1 Fundamentals of Electrical Gas Discharges

Fig. 1.1 (a) Photo-electron emission from the cathode with the surface rate y,; (b) Volume
ionization originated by uniform radiation with the rate R;,, (Badareu and Popescu 1968)

agent and it vanishes when the ionizing source is removed. We assume that the
current takes place between two electrodes localized in the gas, between which
an electrical potential difference is applied, but with magnitude small enough in
order the electrons in their movement do not gain energy larger than the ionizing
threshold energy. Therefore, the ionization by multiplication does not occur. We also
further assume that the space-charge density is negligibly small as compared with
the charge in the electrode surfaces, so that the electric field established between
the electrodes is not appreciably modified. The electrodes are geometrical slab,
parallel, and large enough to assume a homogeneous electrical field in the gas. We
will consider two situations in what concerns the external ionizing agent:

(i) The electron emission is produced from the cathode by an external radiating
source characterized by the secondary emission coefficient y,, expressed in
electrons m2s~! (see Fig. 1.1a);

(ii) The electron emission is produced by an external homogeneous radiating source
acting upon the whole volume of the gas characterized by the photo-ionization
rate R;,,, expressed in electron-ion pairs m3s7! (see Fig. 1.1b).

In the case (i) assuming the electric field directed towards the negative x axis,
E = — E ey, the electron current density on the cathode surface is given by the
difference between the emission current density Jeo, = — €}, €x, with e denoting
the absolute value of the electron charge, and the backward diffusion current due to
the thermal agitation Jo, = en,<v.>/4 ey (see Appendix A.1.1), with n, denoting
the electron number density and <v,> the average electron velocity,

ene<ve>)
X

Je:(_eyo + 4

(1.1)

In a plan localized between the electrodes, the continuity of current (V. J.) = 0,
implies that

Je = enyp, E = const, (1.2)
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being i, the electron mobility (here assumed >0) and E = V/d, with E, V and
d denoting the field strength, the applied potential, and the interspacing electrode
distance. Eliminating n, between equations (1.1) and (1.2), we obtain

eoe
Jo = Yol

= 1.3
He E + <v.>/4 1.3

At low electric fields such that u, E < <v,>/4, the discharge current is linear with
the field, Jo = o E, being 0., = 4ey, L./ <v.> the electron conductivity. At high
enough fields we obtain the saturation current J¢ = Jeo = — €y, €, in which all
emitted electrons from the cathode travel along the interelectrode spacing and are
captured at the anode. Since E = V/d the current-potential characteristic J,(V) is
similar to the relation J, = J.(E) given by equation (1.3).

Let us consider now the case (ii) in which the discharge gap between the large
parallel plane electrodes is uniformly irradiated, for instance by a strong X-rays
source, producing a uniform ionization throughout the gas volume at a rate R;,, of
electron-ion pairs produced per volume and time units. For a relatively low electric
field the electrons are mainly lost by electron-ion recombination in the gas volume,
being negligible the number of electrons arrived at the anode. Then, the electron
density is determined by the balance equation assuming a second order process for
electron-ion recombination

dn,

=Ripn — a n.n;, 1.4
&t ne N (1.4)

being « the electron-ion recombination coefficient in m—3s~!. Under steady-state
conditions and assuming the quasineutrality of the medium, we simply obtain n, =
\/ Rion/ .

However, if the applied voltage is gradually increased, while the strength of the
irradiation is kept constant, the current rises, at the beginning relatively steeply and
later on more slowly, until it becomes constant at a relatively large voltage. This
indicates that at weak fields only a small portion of the electrons and ions produced
can reach the electrodes because most of them recombine in the gas before having
reached the electrodes. On the contrary, at high fields most of the charged species
are captured at the electrodes. In this latter case, the saturation electron particle
current density, i.e. the number of electrons removed from the interspacing distance
d per surface and time units, is I = dRj,y,, so that the electron current density is
Je = — edR;,, ex. In the range of medium field strengths, some electrons recombine
in the volume gap while others are neutralized at the electrodes. Assuming the loss
rates of two mechanisms in the same ratio throughout the whole volume, we may

write
dn, dn, dn,
= Rion - -
dt ( dr )rec ( dt )elec

Je
=Rion — « n2 - , (1.5)
¢ ed
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so that we obtain at stationary conditions

1 Je
ne = \/O[ (Rion - ed) (1.6)

The total discharge current density (J = — J e) is
J=J. +Ji=e (ne:ue + niﬂi) E >~ en.u. E, (1.7)

due to the large differences between the mobilities of electrons and ions, while for
the two charged species densities we have n, =~ n;. Substituting equation (1.6)
in (1.7) and resolving the quadratic form for J,, we obtain

Jo=e8 (—1 + 1+ (2d/) R,-on) : (1.8)

with § = u2E?/(2ad). The characteristic J, = J.(E) given by equation (1.8) can
be represented in Fig. 1.2. The two asymptotes are for equation (1.7) with n, =
\/ Rion/, in the case of low electric fields, and the saturation electron current density
Jos = edR;,y, in the case of high electric fields.

1.1.2 Space-Charge Effects

So far it has been assumed that the charges move through the gas independently
of each other and that the charge per volume unit is so small that the electric field
at any point within the gap is constant (i.e. (V. E) = p/ey =~ 0). The field is
simply obtained from the applied potential on the plane parallel electrodes £ =
V/d. However, when the current density increases the field will also depend on
the distribution of the charges in volume. The current density at which the field

Fig. 1.2 Dependence of the Jo & /
electron current density with s eq.(1.7)
the electric field in a plane /

parallel condenser when the Jes — -
gas is uniformly irradiated. /
J,s is the saturation electron /‘ \
current density (von Engel ) eq.
1965) /

(1.8)
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distortion by space-charge occurs can be estimated by comparing the surface charge
density on the electrodes, 0 = €pF, with that from charges in volume (whose field
lines are assumed to be collected at the electrodes), o* = en.d. Since J, = en,u, E,
we obtain for this latter 0* = J.d/(.E). The distortion of the field occurs when
o* > 0, i.e. at electron discharge currents larger than

J = Mg (1.9)
d

Let us start by considering a discharge in a gas between two large plane
electrodes in which the cathode emits electrons uniformly (see Fig. 1.1a), obtained
in practice by irradiating or heating the cathode. The nature of the gas and the
pressure will determine the mobility of the emitted electrons. The current density
is now assumed to be large enough to make it necessary to consider field distortion
by the space-charge. Under these circumstances the current-voltage discharge
characteristic can be derived from the steady-state continuity equation (V. J¢) = 0,

from which Je = en.u. E = const, and Poisson’s equation (V.E) = — en./¢.

Assuming J. = — J, ex and E = — E ey, we may combine the two equations as
dE. J. (1.10)
dx  €opE’ '

Assuming also p, = const, this equation can be integrated from (x = 0, Ey) to
(x, E(x)), yielding to write

2J,

E*(x) = E{ + X. (1.11)

€0 e
Since the electrons are produced at nearly unlimited number, we may assume that
the field at the cathode is very small (if n,o — oo then Ey — 0 because J, = const)
and we may write

2J,
E(x) = \/ x'/2, (1.12)
€oMe
whereas for the electrical potential, we obtain from £ = dV /dx with V; = 0,
24/2 Je
V(x) = % \/ /2, (1.13)
3 €olbe
while for the electron density, we get from n, = J./(ejt.E)
1 Je
He(x) = \/EO 12, (1.14)
e\ 2pe

A plot of E(x), V(x) and n,.(x) is shown in Fig. 1.3 for typical conditions.
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Fig. 1.3 Spatial distributions
of the electric field E, '
potential V, and electron
density 7, in a gas, when the
electrons are emitted from the \ \
cathode at x = 0 with zero ' ne

velocity, assuming a \ E
collisional regime with <
constant mobility i, (von N
Engel 1965) S~

These very simple expressions are valid in a collisional regime, in which we
may use the concept of electron mobility u, = e/(mv,,), in which v,, denotes
the electron collision frequency for momentum transfer and m the electron mass.
However, at sufficiently low values of pressure such that the electron mean free path,
A, is much larger than the interspacing distance between the electrodes, d, we should
replace Jo = en, . E with the equation Je = — en,veq = const, being veq =<ve>
the average electron vector velocity, i.e. the electron drift velocity, obtained from
energy conservation eV = ; mvefl, with voy = |Ved| and v.4(0) = O at the cathode.

From these two equations we obtain en, = J, \/ m/2eV, and this relation may be
inserted into Poisson’s equation for the electrical potential V2V = en, /€, obtaining

arv
=cv2 1.15
a2 (1.15)
with
J. m
C= \/ = const. (1.16)
€ V 2e
The equation (1.15) has the solution (see Appendix A.1.2)
9
V32 = A C X, (1.17)
from which we obtain, assuming Vo = O and Ey = 0 atx =0,
3 (3m\'? (1,3
Vix) = e 4/3 1.18
® 2(4e) (60) 3 19
dv 3m\'? (1,3
Em =" =2("" X173 (1.19)
dx 4e €

dE  2ey (3m\® (T,
ne(x) = € L x 23, (1.20)
e dx 3e \ 4e €0
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The dependence on x of the different quantities changes from the collision to the
collisionless case. The potential, for instance, changes from V oc x! to oc x!-33,
From equations (1.13) and (1.18) we obtain the following relations between the
electron current density and the potential V, at the anode (x = d), respectively, for
the collision and the collisionless case

_ 9 €0 fe

e=¢ g V2 (1.21)
4 ¢ 2e
Je= d‘; \/m V32, (1.22)

The equation (1.22) is known in the literature as the Child-Langmuir equation.
Comparison of equations (1.21) and (1.22) shows that at sufficiently low pressure J,
is less sensitive to variations of either V, or d. When the space-charge field effects
are not neglected both current-voltage characteristics exhibit a more rapid growth
than the linear dependence. In both derivations it is assumed that £y = 0 and
v.4(0) = 0 at x = 0, which leads to the electron density becomes infinite at the
cathode. However, this difficulty can be overcome by allowing for non-null initial
velocity of the emitted electrons.

Let us go back to the situation shown in Fig.1.1b, in which a sufficiently
powerful space-charge is now assumed to exist created by irradiation of the gas
between two plane parallel electrodes submitted to a constant applied potential
difference. Without the applied potential equal numbers of electrons and positive
ions are uniformly distributed throughout the volume. However, when the potential
is applied the electric field will move the electrons and the positive ions to opposite
electrodes. Since their mobilities are different, the number of electrons and ions
arriving per time unit at the electrodes and hence the electron and ion current
densities will not be equal. This leads that at high enough current densities the
electrons start to be repelled and the ions attracted by the opposite electrodes,
so that in the front of the cathode an excess of positive charge is observed and
correspondingly an excess of negative charge is observed in front of the anode.
However, because of their larger mobilities the electrons cause a smaller field and
are less accelerated to the anode than the positive ions to the cathode. This leads to
the rates of removal of electrons and ions at both electrodes become equal.

Figure 1.4 shows the space-charge distribution p(x) and the spatial distributions
of the electric field and potential between the two electrodes, assuming V(0) = 0 at
the cathode x = 0. For comparison it is also plotted with broken lines the electric
field and potential in the absence of space-charge. Since the potential in the anode
is kept constant, the areas enclosed by the E(x) plot are the same. The field in the
case of negligible space-charge is constant and the potential a straight line. With
increasing space-charge the field, oriented towards the cathode, E = — E e, is
obtained from Poisson’s equation dE/dx = — p/€o, with p > 0 near the cathode
and p < 0 near the anode, which gives place to the existence of straight lines with
negative and positive slopes, respectively. With respect to the potential it exists a
curve with three parts. Near the electrodes the potential changes relatively rapid,
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Fig. 1.4 Spatial distribution — +
of space-charge p(x), electric
field E(x), and potential V(x),
in a gas-filled condenser with p+
plane electrodes and uniform
ionization by an external + + + + + |
irradiating volume source. | - - - -
The electrodes at x = 0 and P p—

x = d are the cathode and

anode, respectively. AV, and 0 +

AV, are the cathode and =]

anode potential falls, whereas E E
(Ax), and (Ax), represent y
the widths of the two L 2D _

corresponding sheaths. V, is

the applied potential at the 0
anode. The broken lines are _ AV
for E(x) and V(x) when - } a
p = 0 (von Engel 1965) \ g

which are usually termed as cathode and anode potential falls. The intermediate
zone with a much smaller potential variation and a nearly constant field strength
goes over into the positive column of a glow discharge.

1.1.3 Ionization by Multiplication Due to Collisions

We have seen in Sect. 1.1.1 that when the electric field increases, after a first stage
where the electron current density increases, the current reaches the saturation with
all electrons produced being captured at the anode. However, if the field strength is
increased further the current will rise again. This is because at much larger fields
some of the electrons originally formed by irradiation of the cathode or the gas will
be accelerated in the field and can reach velocities which enable them to ionize the
gas. Thus the discharge current density is no longer constant but rather than depends
on the field strength (see Fig. 1.5).

Let us define by « the number of pairs of electrons and ions produced per unity
length by the impact of an electron accelerated by the field at any point between
the two electrodes, expressed from now on in m~!. A primary electron produces
« electrons and ions per unity length of its path in the field direction and these new
electrons and ions after to be separated by the field move in opposite directions.
The electrons originate then a multiplication process which ends at the anode.
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Fig. 1.5 Characteristic of the J4
current density against the |
field in a gap between two /
plane electrodes showing the

rise of J at large field

strengths due to ionization by
collisions superimposed on
the initial ionization by
irradiation of the cathode or
the gas (von Engel 1965)

v

Fig. 1.6 Multiplication grid X X X + dx’
for the electrons in their path ; ; ;
towards the anode

v

If the number of free paths in the gap is sufficiently large and distributed, we
can treat ionization as occurring continuously throughout the space. In the case
of the primary electrons leave the cathode and since the number of electron-ion
pairs produced along the distance dx is o dx, for N electrons at any position x
with their origin in a sole primary electron leaving the cathode, we have a further
multiplication in the length dx with more new dN = N« dx electron-ion pairs
produced. By integrating this relation between x = 0 and x = d, we obtain a final
multiplication factor equal to ¢*?.

Let us consider now the case where the initial electrons are created at any point
of the interspacing between the two electrodes by irradiating the gas, being R;,, the
ionization rate (number of primary electrons produced per volume and time units).
Thus, at any position x within the length dx, they are created I"(x) = Rj,, dx primary
electrons per area and time units. When these electrons arrive at position x' > x they
are accompanied by all electrons created by multiplication between x and x’ (see
Fig. 1.6).

Let it be T'(x’, x) the total number of electrons at x’, with origin in the electrons
created at dx, and dT'(x') = T'(¥, x) « dx’ the number of further electrons produced
between x’ and X' + dx’. We have therefore dT'(x')/T'(x',x) = « dx' and this
equation may be integrated between x and x” allowing to write

T(X,X) = Ripn ¢*¥ ™ dx. (1.23)

At the anode ¥ = d the number of electrons arrived per area and time units, with
origin in the electrons created at dx, is

[(d,x) = Ripn ¢*“™ dx. (1.24)
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We need now to integrate over all positions x where the initial electrons are primarily
created to obtain at the end

d d
I = / I'(d,x) = Ripn / @9 dx
0 0

_ Rion (e*—1). (1.25)
o
The electron current density is J, = eI’ and since, as we have seen in Sect. 1.1.1,
the electron current density of saturation is J,; = edR;,,, we obtain
(e = 1)
Jo = Jos . (1.26)
ad
We have seen before that as all initial electrons are created at the cathode the
multiplication factor is ¢*?, so that in this case the electron current density is
Jo = Jos €.

The equation (1.26) shows to exist an exponential growth for the electron current
density completely different from the initial linear growth at low electric fields.
This multiplication is often called multiplication & and the coefficient & (in m™1)
is known as first Townsend’s ionization coefficient, with its value depending on the
field strength E, the pressure p, and the nature of the gas. Although the coefficient
a can only be properly derived by considering the electron kinetics, the ionization
may be seen as a process activated by the energy gained from the field eEA, with
A denoting the mean free path, in which the activation energy is the ionization
threshold energy u;,,. This leads to a formula analogous to that of Arrhenius for
thermally activated processes (von Engel 1965)

T N

being k a constant. Since the mean free path is inversely proportional to pressure,
the coefficient « can also be written as

B
@ = Ap exp (— b{’) (1.28)

where A and B are two constants dependent on the nature of the gas. Being <v;,,>
the velocity-averaged ionization frequency, and veq the electron drift velocity, the
coefficient @ may also be expressed as @@ =<Wjy,>/V,4.

1.1.4 Multiplication Including Secondary Effects

Up to now the positive ions have been neglected since due to their lower mobility
the current of ions directed to the cathode is much smaller than the current of
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electrons to the anode. However, as we shall see below this is no longer true in
a stationary discharge where the currents collected at each electrode have the same
value. Nevertheless for sufficiently low space-charge fields this equilibration does
not yet occur but it remains the need of analysing the effects produced by the
impingement of ions on the cathode.

The effect associated with the impingement of ions on the cathode is the release
of secondary electrons through a mechanism that depends on the cathode nature
known in the literature as multiplication y. The release of secondary electrons
occurs also due to other processes, such as the arrival of photons at the cathode
(8 effect), and due to the arrival of metastable atoms and molecules as well, but here
we will consider only the impingement of ions. The number of secondary electrons
emitted is equal to the product of the number of positive ions returning to the cathode
by a coefficient y known as second Townsend’s ionization coefficient which depends
of the cathode type, expressing the number of secondary electrons released by each
positive ion arriving at the cathode. However, these secondary electrons ionize the
gas in the same way as the primary electrons and the new ions so produced return
to the cathode and release more electrons. This multiplication takes place an infinite
number of times.

The total current can be calculated in the following manner considering the
simplest case where the primary electrons leave the cathode. In this case as seen
above each primary electron originates a multiplication « and at the anode arrive
¢*? electrons. Each primary electron produces thus (¢%? — 1) electron-ion pairs
along its travel to the anode. Then the (¢%¢ — 1) ions produced go to the cathode
and originate y(e®’ — 1) secondary electrons. These are multiplied again giving
y(e®? — 1)e*? electrons at the anode and y(e® — 1) new ions produced in the
interspacing distance. These latter go to the cathode and produce new y2(e*? — 1)?
electrons. The multiplication factor is the sum of all electrons entering the anode for
one primary electron emitted at the cathode

m=1+E =) +yE=1)+y @ —1)>+y* -1 +....

= [Ty @ =D +y2 (@ =1+

ead

= Iy (el 1) (1.29)

For an initial current released at the cathode I',, the ionization by electron collisions
in the gas and secondary electron emission by the impingement of ions on the
cathode allows to obtain the final current ' = m I,y at the anode. A similar
calculation could also be carried out for the case where the primary electrons are
created at any point of the gas and not only at the cathode. The multiplication factor
is in this case (see Appendix A.1.3)

1+ y)(ed —1)/ad -y e~
m:

Ly (e 1) (1.30)
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Fig. 1.7 Characteristic current-voltage of a non-self-sustained discharge. The regions « and o + y
indicate the multiplication & and the multiplication o + y. The discharge becomes self-sustained
beyond the breakdown voltage V. J.; denotes the saturation current when all primary electrons are
collected at the anode

Inspection of equations (1.29) and (1.30) shows that both expressions have the
same denominator and when it approaches zero, provided this can take place without
invalidating the original assumptions, the multiplication factor and hence the current
density tends to infinity. Thus the condition for the breakdown of the gas contained
in the gap between two plane parallel electrodes is (von Engel 1965)

y (e —1)=1. (1.31)

It means that the current in the discharge becomes unstable and thus a large current
may develop without the presence of an external ionizing source. The discharge thus
goes over into a self-sustained discharge. As referred above the first Townsend’s
ionization coefficient is a function of the electric field so that the condition (1.31) is
attained when the applied voltage increases. Such potential is known as breakdown
voltage. Figure 1.7 shows the current-voltage characteristic J,(V,), with V, denoting
the potential at the anode when V. = 0 is assumed at the cathode, from the very
small current at the beginning up to the point where the breakdown occurs.

The condition (1.31) must be seen as a limit of stability only. In deriving
equations (1.29) and (1.30) a uniform electric field and hence a constant «
coefficient were assumed and it is difficult to see how this could be true if the current
was allowed to attain a very large value which produces field distortion by intense
space-charges. However, in many cases the field distortion becomes important only
when the point of instability is reached. As a matter of fact, the difference between
the value of the applied field at which space-charge distortion becomes important
and the breakdown field is so small that the condition (1.31) represents a very good
approximation for breakdown of gases even at high pressure (von Engel 1965).
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Since y essentially depends on the nature of the cathode, the equation (1.31) can
be written under the form of a constant product for od

1
ad = ln( + 1) = const. (1.32)
Y

Because the breakdown field and the voltage are linked each other in planar
geometry as E, = V,/d, we can still write equation (1.32) as

y, = Eolp 1n(1 +1). (1.33)
a/p Y

As we will see below using the kinetic theory, or simply from equation (1.28), the
parameter «/p is a function of E/p only, so that the breakdown voltage becomes a
function of E,/p, that is a function V,, = V,,(E,,/p) or V;, = V,(V,,/pd). Therefore,
we can also express the relation for breakdown under the form V;, = V,(pd), which
is known in the literature as Paschen’s law (Druyvesteyn and Penning 1940). We
note that equations (1.28) and (1.32) yield to write (Braithwaite 2000)

Bpd

~ In(Apd) — In[in(1/y + 1)]’ (1.34)

Vi

Equation (1.34) gives the voltage necessary to start a discharge between two
electrodes in a gas, as a function of the product of pressure and distance between
the electrodes. The voltage necessary for breakdown first decreases up to a minimum
as the pressure is reduced and then it gradually increases again. Figure 1.8 shows
the breakdown potential as a function of the reduced interelectrode distance pd in
Ne, Ar, H,, Hg and air (von Engel 1965).

The minimum in the curve of breakdown potential against pd appears due to the
following reasons. At low pressures the mean free path is large and the number of
collisions with the gas of molecules is low, being hence also small the number of
ionizing collisions. On the contrary, at larger pressures the mean free path is small
and the number of collisions in the gas is high. Thus the number of collisions of other
type rather than ionization collisions is very high and only few electrons acquire
enough energy over a mean free path to ionize. Consequently in order to produce
sufficient ionization between two electrodes the potential needs to increase either
as the pressure decreases or the pressure increases from a minimum breakdown
voltage that depends on the nature of the gas. A similar argument would apply for
the variation on d.

Finally, it is worth noting here that the electric breakdown does not simply
occur when the potential between the electrodes exceeds the ionization potential.
The electric field has not only to produce ionization in the gas, but also to
produce the multiplication of charges at such a rate that the current passing through
the gas no longer requires external ionization. When the potential applied over the
interelectrode distance is equal to the ionization potential each electron produces an
electron-ion pair but no further multiplication of charges occurs.
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Fig. 1.8 Breakdown potential in Volt as a function of the reduced interelectrode distance pd in
Torr cm (1 Torr = 133.3 Pa) for Ne, Ar, H,, Hg and air (von Engel 1965)

1.2 Self-Sustained Discharges

1.2.1 Glow Discharge

As long as the discharge current is sufficiently low in order the space-charge field
effects do not exist, typically for discharge current densities J < 1A cm™2, the
breakdown condition is expressed by equation (1.31) and this discharge is usually
termed Townsend (or dark) discharge. This discharge is not visible due to the very
low concentrations of atomic or molecular radiative species present in the gas being
hence only detectable by an amperemeter inserted in the external circuit. However,
when the current increases an accumulation of electrons and ions exist in front of
the electrodes (see Fig. 1.4) deforming the structure of the field and producing a
variation of the first Townsend’s ionization coefficient o with the position. Then,
the breakdown condition to be considered is

d
y |:exp (/0 a(x) dx) — 1:| =1. (1.35)

This equation leads to the existence of smaller values for V), than those in the
absence of space-charge field effects. The voltage-current characteristics with
the various types of discharges obtained when the discharge current increases is
represented in Fig. 1.9.

Let us analyse now qualitatively the evolution towards a glow discharge (von
Engel 1965; Raizer 1991; Lieberman and Lichtenberg 1994). When a long cylin-
drical glass tube with two plane electrodes at its ends is filled with a gas of
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order 1 Torr of pressure (i.e. 133.3Pa) and the electric potential V between the
electrodes is slowly increased, a small current of order 1 pA may be detected by an
amperemeter inserted in the external circuit. This initial current is due to ionization
at the electrodes and of the gas by background radiation of external agents. Then
as V increases the ionization by multiplication ¢, in a first stage, and by o + y
mechanisms, in a subsequent stage, starts to take place and the current increases
up to a point, corresponding to the breakdown voltage Vj, beyond which the
discharge becomes self-sustained (Townsend discharge). At the same time some of
the electrons will become attached to the inner glass wall and are partly neutralized
by incoming positive ions. The glass wall becomes negative charged while an equal
amount of positive charge will stay in the gas volume. However, the majority of
positive ions and electrons will flow to the opposite electrodes.

As a result of the charged wall a radial electric field develops which restricts
the flow of electrons to the wall. By increasing V still more, space-charge in
volume appears leading to a distortion of the axial component of the field. At
still larger voltages positive and negative charges are collected in front of the
cathode and anode, respectively, and the current becomes large enough to produce
a transition from the Townsend discharge to a more complex form known as glow
discharge. In the glow discharge the charged regions in front of the electrodes are
completely formed. At the same time the radial space-charge field (formed due to the
presence of the negative charged wall) produces a reduction of the rate of electron
loss by diffusion to the wall and therefore a reduction of the axial electric field
necessary for sustaining the discharge. That is the system becomes more operative.
In consequence the discharge voltage decreases and the current increases, being this
latter mainly determined by the external circuit.

The glow discharge owes its name to the typical luminous glow. The discharge
emits light because the electron energy and the number density are high enough to
produce excited gas atoms by collisions, which relax to a lower state with emission
of photons. The glow discharges have two different regimes: normal and abnormal.
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In a normal glow discharge (region B in Fig. 1.9) the voltage is almost constant
and independent of the discharge current over several orders of magnitude. This
results from the fact that at low currents only a small part of the cathode surface
participates in the discharge and the further increase of the current is due to a
progressive enlargement of the cathode surface covered by the discharge keeping
the discharge current density approximately a constant value. On the contrary, in an
abnormal glow discharge the whole surface of the cathode is already covered by the
discharge and the only manner of the total discharge current to increase further
is by an enhancement of the current density. This requires more energy for the
electrons and consequently an increase of the applied voltage (region B, in Fig. 1.9).
Except for being brighter, the abnormal glow discharge resembles the normal
discharge. When the voltage and the discharge current density increase the average
ion energy bombarding the cathode surface also increases. The bombardment with
ions ultimately heats the cathode causing thermionic emission. Once the cathode
is hot enough to emit electrons thermionically, the discharge will change to an arc
regime (region C in Fig. 1.9).
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Fig. 1.10 Scheme of the spatial distributions of luminous and dark zones in a glow discharge,
electric field E, voltage V, space-charge densities of electrons p, < 0 and ions p;, and absolute
values of current densities of electrons J, and ions J; (von Engel 1965)
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Due to both the large number of applications of glow discharges and the interest
of studying such system for a better understanding of the discharges in general, let
us consider Fig. 1.10. When a direct-current (DC) glow discharge is established, the
visible light emitted from the discharge is distributed along the length of the tube
as shown in Fig. 1.10. Starting from the cathode (at x = 0) it exists sometimes a
very narrow dark space (Aston’s space) closed to it (not represented in the figure)
followed by a thin scarcely luminous layer (not represented in the figure as well),
which in turn is followed by a much larger zone called the cathode dark space. Both
the Aston’s dark space and the cathode glow are not always clearly visible in a glow
discharge depending of the pressure and the nature of the gas. A sharp boundary
separates the cathode dark space from the next region — the negative glow — which
becomes progressively less intense towards the Faraday dark space. At the end of
this region appears the positive column. After the positive column in the direction of
the anode there is sometimes an anode dark space followed by an anode glow (this
latter not represented in the figure) close to the anode itself.

There are a large variety of glow discharges with their appearance depending
of the pressure, nature of the gas, dimensions of the vessel, and material of the
electrodes. When the distance between the cathode and the anode varies the axial
lengths of the other zones rather than the positive column remain unchanged while
the length of the positive column varies accordingly. In fact the positive column
can be extended to any length provided the voltage for maintaining the discharge
is large enough. On the other hand, when the gas pressure is increased above 0.1
Torr the cathode dark space, the negative glow, and the Faraday dark space contract
towards the cathode, whereas the anode dark space contracts to the anode. The
positive column fills then the remainder of the distance, but it contracts radially
as the pressure still increases. From this behaviour we can conclude that the motion
of the charged particles in the zones near the electrodes is of a beam-like nature,
whereas the motion in the positive column is of the random type.

The transport of current through a glow discharge occurs by the axial motion of
electrons and positive ions. The current through the cathode zones can be understood
by the inspection of the distributions of the axial electric field E. This field is larger
near the cathode and decreases of magnitude towards the negative glow and Faraday
dark space. After it remains constant throughout the positive column raising only
again near the anode.

Let us consider now an electron emitted from the cathode, for example due to
the impingement of a positive ion. This electron is first accelerated in the cathode
dark space by a strong field, but initially it executes few ionizing collisions only
because its energy is not sufficiently far above the ionization threshold energy. At
larger distances from the cathode, though the field has become smaller, the electron
has acquired enough energy to produce ionization by electron multiplication. In the
negative glow the field is very weak so that only the electrons which have not lost
appreciable energy by inelastic collisions will be able to continue the ionization.
Besides these fast electrons, a larger number of slow electrons also enter into the
negative glow.
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Due to the ionization by multiplication « a large number of positive ions are
produced in the cathode dark space and negative glow. These ions will move through
the cathode dark space gaining energy and impinging the cathode leading to the
emission of secondary electrons by multiplication y. The electrons released from
the cathode are then multiplied again by o mechanism and accelerated towards
the regions more distant from the cathode. Due to the larger number of elastic
and inelastic collisions suffered the random velocity of the electrons is now several
orders of magnitude larger than the drift velocity.

In a steady-state glow discharge the current densities at the cathode and the anode
need to be equal. Since the mobility of electrons is much larger than that of ions,
the ion density near the cathode needs to be much larger than the electron density
near the anode. Furthermore in order the two current densities become equal at
the electrodes, the ions need to be accelerated in the cathode dark space, along an
extension and with an electric field magnitude, that are both larger than the extension
and the field magnitude with which the electrons are accelerated in the anode dark
space. At the end the conjoint action of all these effects makes the glow discharge
to exhibit axial profiles for the electric field, potential, electron and ion charge
densities, and electron and ion current densities of the type of those schematically
represented in Fig. 1.10.

Near the cathode the electron number density and the electron current density are
both vanishingly small, the total current density is produced by the ions only, and
these are accelerated by the potential difference AV, along the cathode sheath of
width Ax.. Near the anode a reverse situation occurs but now the potential difference
AV, and the sheath width Ax, are smaller. Typical values for the two sheath
potentials are AV, = 500V and AV, = 1V. The space-charge is approximately
zero in the negative glow and in the positive column, p, + p; =~ 0, so that we are in
the presence of a plasma, but the individual charge densities of electrons and ions
are larger in the negative glow.

In the positive column the axial component of the electric field is found to
be almost constant and at sufficiently high pressure two local equilibrations are
established at any point: (i) the balance between the electron ionization rate by
the impact of electrons upon neutral atoms and molecules and the loss rate of
electrons by radial diffusion to the wall and electron-ion recombination; (ii) the
balance between the energy gained from the field and the energy lost in any sort
of collisions. As the pressure decreases below a certain value such that the mean
free path becomes comparable to the radial dimension of the vessel (i.e. the tube
radius), both equilibria become non-local and the electron transport from one point
to another needs to be considered in conjoint with the local terms.

Furthermore, due to the large difference between the mobilities of electrons and
ions the tube wall becomes negatively charged and a radial space-charge electric
field is formed. This field reduces the rate of electron losses to the wall so that the
ionization rate necessary to maintain the discharge is significantly reduced. This
leads to a reduction of the axial electric field necessary to sustain the discharge.
This explains why the magnitude of the axial electric field in the positive column
of a glow discharge is small when compared with the electric field in a Townsend
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discharge. In this latter case the radial space-charge electric field does not exist and
consequently the electrons are lost by free diffusion to the wall at a much larger
rate. Then, the ionization rate and consequently the electric field need to be larger
to maintain the discharge. The positive column is axially uniform but since the
charged species are lost in the wall the discharge is not radially uniform. Besides
the electrons and ions the positive column becomes an active medium with many
excited radiative and metastable species showing a characteristic glow that depends
of the pressure and nature of the gas.

The analysis presented here gives us a qualitative picture of how a glow discharge
works. However, the complete quantitative description can only be realized in the
framework of the microscopic kinetic theory, by using e.g. the electron Boltzmann
transport equation, in the case of the positive column, or by using the moments of the
Boltzmann equation, i.e. the equations of continuity, momentum conservation, and
energy conservation for both electrons and ions, in the case of the electrode regions.
The analysis based on the Boltzmann equation will be detailedly developed along
the various chapters of Part I of this book, whereas the situation addressed with the
cathode region will be only briefly referred in this chapter in Sect. 1.3, devoted to
physical boundaries to the plasma, since it does not constitute the main purpose of
this textbook.

1.2.2 Corona Discharge

A different type of discharges with interest to be referred here occurs in regions of
high electric fields near sharp points or along wires in air raised to high electrical
potentials with respect to their surroundings, in which the breakdown occurs (von
Engel 1965; Roth 1995). One can regard the corona discharge as a Townsend or a
glow discharge without positive or negative regions.

Thus, let us consider, as an example, a very long cylinder of radius r,, with a
thin wire of radius r, < r, at the centre. The inner wire is assumed grounded at
zero potential, while the space between r. and r, is filled of gas. Since V(r) > 0 for
r > r, the electric field is directed towards the thin wire (see Fig. 1.11) and the wire
acts as an electron-emitting cathode filament, whereas the cylinder of radius r, acts
as an anode.

Fig. 1.11 Corona discharge
in cylindrical geometry,
consisting of an axial fine
wire of radius r. and a
cylindrical outer electrode of
radius r,. The wire is
maintained at grounded
potential, while the external
cylinder is at potential V, > 0




22 1 Fundamentals of Electrical Gas Discharges

In the limiting case where the space-charge density in the interspace between the
electrodes is vanishingly small, Poisson’s equation writes as

1 d [ av
V3V = o (r dr) = 0, (1.36)

allowing to obtain atr, <r <r,

In(r/r.)

Vir) =V, , 1.37
O =Y ) (437
whereas for the electric field E = — E(r) e;, we obtain
av Va
E(r) = = 1.38
r) dr  rn(ry/r.) ( )
and therefore
re
E(r) = ° Ey, (1.39)
r

from which we may conclude that E(r.) = Ey — oo when r, — 0.

When ionization takes place in an extremely narrow region around the inner wire,
the positive ions are attracted by it and neutralized, while the electrons are repelled
and travel in the radial cylindrical symmetrical field to the outer cylinder. Assuming
that there is no further ionization due to collisions in the gas, the current per length
unit i/ remains constant in the interspace electrodes being given by

i/l =2mr J,(r) = 2mr en.(r) weE(r), (1.40)
with Jo = — J.(r) e, denoting the electron current density, n.(r) the electron

density, 1, > 0 the electron mobility, and e the absolute value of the electron charge.
Then, the electric field is obtained from Poisson’s equation

1 d 3 /1
rE)y= "= 4 , (1.41)
r dr €0 2megphe TE
which can be written as
d i/l
e Lom= T, (1.42)
dr 27w€g he

and integrated from r., where E(r.) = Ey, up to r position, yielding to obtain

E(r) = \/(rr E0)2 + 2;6/01#(3 (1 - (rr)z) (1.43)
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The electric field is modified relatively to the previous result (1.39) where the space-
charge density is vanishingly small.

At radii far way from the inner wire r > r. and large discharge currents, we have
approximately

i/l
E ~ = const (1.44)
2mweophe

and the field strength is constant and independent of position. It rises with increasing
current and decreasing mobility, i.e. with increasing pressure. This shows that a
uniform field can be produced over a distant region of a cylindrical gap in the
presence of a strong space-charge density which distorts the originally hyperbolic
field distribution (1.39). In turn, equation (1.40) shows that the electron density
varies as n.(r) o< 1/r.

Equation (1.43) can be integrated between r, and r to obtain the electric potential
with respect to the potential Vy = 0 at the wire

i/l r 2meofhe .o r2
V(r) = 1 Er—1 dr. 1.45
®) \/2n60ue / \/ +( ifr ° e (149

Introducing the dimensionless variable

o= , (1.46)
X Te
in which
2meophe o,
= E?—1, 1.47
X \/ i/l 0 ( )
we may write
i/ o 1
V(r) = i/ ¥ re / \/ 1+  do. (1.48)
2mwephe Qe o?

The solution of this primitive is known and it yields to write

i/1 e Vi4+a2—1
V(r) = / X re \/1+oz2—\/1+occ2 +m(” Vite
27€p e o Jl+a2-1

(1.49)

and since « and o, are < 1 (i.e. Ep > \/ (i/l)/2meop, ), we may use the expansion
V1 +a 1+ a/2and write
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vy ~ L (T e S TR (1.50)
r) ~ — re In . .
2 \2neopte ) Eo \r2? 0 7.

The second term on the right-hand side of equation (1.50) is the dominant
contribution to the potential (1.37), and the first term is the first-order modification
due to the presence of the space-charge. This equation makes it possible to obtain
the surface electric field on the wire Ey, from a knowledge of the coronal current
i/1, the applied potential V, on the outer cylinder, and the geometric parameters of
the coaxial configuration.

Let us consider now the case of sufficiently low pressure in which a collisionless
model needs to be used. In this case instead of equation (1.40) we have

i/l =2mr J,(r) = 2mr eny(r) veq(r), (1.51)

being v.4(r) the absolute value of the drift velocity of electrons emitted from the
wire. If they are emitted with negligible initial velocity, their velocity at radius r can
be obtained from energy conservation

; mvefl(r) =eV(r) (1.52)

and using equations (1.51) and (1.52), we obtain

i/l m
ene(r) 2y \/ZeV(r) ( )
Substituting this equation into Poisson’s equation
1 e i/l
d( dvy _en _ i m. (1.54)
r dr dr € 2reor \ 2eV(r)
we find
d dv C
(r ) = , (1.55)
dr dr \/V(r)
with
i/l m
= = const. (1.56)
2mwey \ 2e

Equation (1.55) is a second-order, nonlinear differential equation with no known
exact analytical solution.
Defining the dimensionless radial variable

p
x:ln( ) (1.57)
e
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and the parameter § such as

8mep \/Ze y3/2
?= , 1.58
p 9i/l Y'm r (1.58)
equation (1.55) can be rewritten under the form (see Appendix A.1.4)
3ﬁd2ﬂ+ dﬂ2+4ﬁdﬁ+ﬁ2—1 (1.59)
dx? dx dx - '

At the first sight equation (1.59) does not seem to be a large improvement relatively
to equation (1.55), but it has the important characteristic of containing no parameter
other than x and B, so that a solution for § against x is universal, whereas a solution
to equation (1.55) would require a family of curves, with i// as a parameter. For large
values of r/r., the following approximation is obtained neglecting the (dB/dx)>
term (Roth 1995)

B~ 1+0.9769(r")2/3 sin | 1.0854 log,g| . . (1.60)
r 11.93 r,

1.3 Physical Boundary to a Plasma

1.3.1 Debye Length

Before to analyse the effects produced by a boundary to a plasma let us introduce
firstly an important characteristic of a plasma that is the shielding of the electric
potential applied to it. In order to characterize this shielding it is used a parameter
of the plasma called Debye length which provides a measure of the distance over
which the influence of the electric field of an individual charged particle is felt by
the other charged particles present in the plasma. This concept is usually given at
the beginning of any textbook on Plasma Physics (see e.g. Chen 1984).

The Debye length can be estimated as a function of the characteristic quantities
of the plasma such as the electron density and temperature. Due to the larger mass
of ions we may assume for simplicity that they do not move significantly on the time
scale of electron movement. Assuming the electric potential near a reference ion as
V(r) > 0 and that it monotonously decreases to zero in direction to the background
plasma, the electron density around an ion test is given by (as it will be shown in
Sect.3.1.5)

¢ V(r)), (1.61)

ne(r) = Neco exp( T
Ble

where e denotes the absolute value of the electron charge, kp the Boltzmann
constant, and 7, the electron temperature. The electrons are attracted to regions
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of higher potential so that the electron density in the vicinity of an ion is higher than
in the neutral background plasma where 7,00 = nio. To determine the potential and
density variations we use Poisson’s equation

V2V(r) = — : (iso — 1(r)) , (1.62)
0

which may be written under the following form in symmetrical spherical geometry,
assuming eV (r)/(kgT,) < 1

1 & _eneo [ eV(r) 1 (eVr) 2
- dr? (r (r)) = ‘@ [kBTe +, ( kBTe) +..... (1.63)

No simplification is possible for the region near the ion, where eV (r) / (kgT,) is large.
However, this region does not significantly contribute to the thickness of the region
where the non-null charge density exists. We may therefore write equation (1.63)
keeping only the linear term as

d? 1
e (rV(r)) = A2 (r (r)) (1.64)
having defined the quantity Ap called Debye length as
kT,
A = \/E(;B . (1.65)
€ Neoco

The solution of equation (1.64) with physical significance is called Yukawa potential

Wr) = é exp (— ;D) (1.66)

being A = Ze/(4mep) in the case of an ion of charge Ze. The potential rapidly
vanishes when r > Ap, so that the Debye length defines the radius of a cloud
around each ion outside which the plasma will tend to remain neutral. We note
that Ap decreases as the electron density increases which means a greater efficiency
of the shielding. On the contrary, with increasing 7, the radius of the non-neutral
region increases since as high the electrons are energetic they may escape from the
influence of the potential.

1.3.2 Bohm Criterion

As referred in Sect. 1.2.1, when a surface, or a wall, is placed in front of a plasma
the surface becomes negatively charged due to the more rapid velocity of electrons,
and then a space-charge electric field is formed in the direction to the surface, which
accelerates the ions and decelerates the electrons. The movement of the electrons to
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the surface can be expressed by the equation for the electron particle current density,
which is, in fact, the equation for the electron momentum transfer (see Sect. 3.1.5)

IFe=-D,Vn, — n, p. Es, (1.67)

in which the dominant terms are the electron free diffusion current towards the
surface and the electron current in the direction of the homogeneous plasma due
to the space-charge electric field Es. D, and u, are the electron free diffusion
coefficient and the electron mobility, respectively. As we will see later on in Chap. 5,
the two parameters are linked each other by D./u. = kgT./e, in the case of a
Maxwellian electron velocity distribution at temperature 7,, with kg and e denoting
the Boltzmann constant and the absolute value of electron charge. In present
conditions both terms in equation (1.67) nearly exactly cancel each other being
vanishing small the net current density to the surface, I'e >~ 0, so that replacing
E; = — VV, we obtain using slab geometry

ldneN e dV

~ . (1.68)
ne dx kgT, dx

Integrating this equation from the homogeneous plasma at x = 0, in which V(0) = 0
and n) = n?, up to the surface at x position in which V(x) < 0, and assuming the
electron temperature homogeneous, we obtain the Maxwell-Boltzmann law for the

electron density such as it has been already used in (1.61)

ne(x) = n? exp (ke‘; ) : (1.69)
Ble

On the contrary, in the case of the ions the net current density at the surface is
not at all vanishing because the ions are accelerated by the conjoint action of the
diffusion term and the space-charge electric field. The movement of the ions is then
obtained from the equation for momentum transfer of ions in which the dominant
terms are now (see Sect. 3.1.5) the inertia and the space-charge electric field terms

ni M (vig .V)via >~ en; Eq, (1.70)

in which viq is the ion drift velocity and M the ion mass. Thus, we may write in slab
geometry

1 dv? av
m Vi~ (1.71)
2 dx dx

and this equation can be integrated from vgl, at x = 0, up to vy, at x position,
yielding

1
, M W2 —10H ~ —eV. (1.72)
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In writing equation (1.70) we have assumed that the sheath in front of the surface
is collisionless so that the continuity equation (V. J;) = 0 imposes the constancy of
the ion current density: J; = en;v;; = const. Making the assumption that the ions
coming from the plasma reach the plasma-sheath boundary with the drift velocity
vi’; and that the origin of the potential is defined at this boundary, we may write
equations (1.69) and (1.72) as

14
n(x) = n exp (kZT ) (1.73)
1
, M W2—v?H) ~ —eV. (1.74)

To these equations we must still add the constancy of the ion current density and
Poisson’s equation

n; Vg = nf’ vf-:i (1.75)
a*v e

= _ i — ). 1.76
o = ) (1.76)

Replacing equations (1.73) and (1.75) into equation (1.76). and assuming n® = nf,

we obtain
d? 1 b
T Vi _ g | (1.77)
dx2 Ag Vid
with
eV
= — 1.78
n ksT. (1.78)
and where
kgT,
Ap = \/GOZBb (1.79)
e’nb

denotes the Debye length at the plasma-sheath boundary.
Using now equation (1.74) into (1.77), we still obtain

dn 1 m\y?r
= ¥ [(1+ yz) — e, (1.80)

with

M
b
— v : 1.81
y Uzd \/kBTe ( )
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Near the boundary the absolute value of the potential is small and therefore 25 /y* <«
I and n < 1, so that the right-hand side member of equation (1.80) can be expanded
as a power series in 7 (Franklin 1976)

d’n 1 1
~ 1— ) 1.82
dx? Ap 77( y2) (1.82)

Equation (1.82) shows that in order n will be a non-oscillatory function of distance,
we need to have y > 1, and hence

kgT,

b B1e

v, > . 1.83
id — M ( )

The condition (1.83) is usually referred to as the Bohm criterion. With a solution
satisfying this condition 7 is a monotonically increasing function within a scale

length equal to the Debye length.

1.3.3 Floating Sheath

Because of the large difference between the mobilities of electrons and ions a
surface boundary to the plasma charges very rapidly with a negative floating
potential with respect to the plasma. The magnitude of this steady-state floating
potential Vi < 0 can be easily derived assuming the equality between the electron
and ion current densities at the wall. Let us consider Fig. 1.12 showing the sheath
between the plasma and the wall. The origin x = 0 in which V(0) = 0 and
nd = n? is localized in the interior of the plasma (contrary to the previous section
where it was in the plasma-sheath boundary). In the direction towards the wall the
electric potential V(x) and the ion density #;(x) monotonously decrease, whereas the
electron density n,(x) is assumed to decrease first with the same rate as n;(x) up to
the plasma-sheath boundary and beyond this point the plasma practically ceases to
exist and a positive space-charge region (the ion sheath) is built up. The ion sheath
can be observed as a dark space since most gas phase excitation processes involve
electron collisions and the optical emission of the discharge is caused by radiative
decay of short-living excited species.

The current density of electrons to the wall is due to their thermal movement (see
Appendix A.1.1)

W <v,>
gV = e <be” (1.84)
4
with < v, >= \/ 8kpT,/(rm) denoting the average velocity of electrons at the
temperature T, and n) is the small electron density at the wall (1.73)
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Fig. 1.12 Scheme of the ion 7 // ///

sheath built up between the =
plasma and the floating wall. %S plasma ?
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boundary

Vi
nY =n? exp (lecBTi) . (1.85)

It is worth noting that in (1.73) the origin of the potential was in the plasma-sheath
boundary whereas here it is localized in the plasma. In both cases V(x) < 0.

In the case of the ions and because the drift velocity at the boundary v?, is much
larger than the average ion velocity <v;>= \/ 8kpT;/(t M), the ions enter the sheath
with a velocity determined by the Bohm criterion (1.83). Since in the plasma v?d =0
the potential at the boundary is determined from energy conservation

1
2Mvij=—eV, (1.86)

and we obtain V¥ = — kgT,/(2¢) at v’ = \/ kgT,/M. The electron density (1.85)
at the boundary is hence

1
nb =nd exp (— 2) (1.87)
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and because nf? = nb, we obtain the ion current density at the boundary given by
1 kgT,
Jb: bvb = 0 eX — e. 188
i en; vy en, p ) M ( )

Using a derivation close to that indicated in van Roosmalen and de Vries (1985)
we assume that in a collisionless sheath the continuity of the ion current density
dJ;/dx = 0 imposes the constancy of the ion current density in the sheath, so that
the floating potential at the wall can be determined by equalling the electron and ion
current densities (1.84) and (1.88)

en’ \/ 8k T, e Vp 0 1\ [ksT.
exp = en, exp|— ,
4 m kT, 2 M

obtaining
kgT, M
Vi =— 1 +1n , (1.89)
2e 2nm
while for the electron density at the wall we get
1 2nm
w 0
=n, e — . 1.90
(- 1) 190
In the case of argon plasma with the electrons at temperature kg7, = 2eV and
density n0 = 10'*m™, we obtain Vp = —10.4V, v2, = 2.20 x 10*ms™!, and
Ji=214Am™2

Let us estimate now the ion sheath thickness. Since the sheath is collisionless the
ion current density to the wall is related with the floating potential by the Child-
Langmuir equation (1.22) valid for a collisionless space-charge limited current
which under present conditions is written as

4 € \/Ze 32
Ji = Vel*2, 1.91
9 2 M| Fl (1.91)

with d denoting the ion sheath thickness. Using equations (1.88) and (1.89), we

obtain
2 1 M\
d= \g exp (4) AD [1 +In (2nm)i| , (1.92)

where Ap = \/ €okgT,/(e?n?) is the Debye length. For the above standard conditions
weget Ap = 1.1 x 107*mandd = 3.7 x 10~*m.
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1.3.4 Cathode Region

In the previous section we analyzed the interaction with a perfect floating wall in
which there is not current extracted from the surface and a negative potential exists
with respect to the plasma. Here, we will describe the cathode sheath in an abnormal
glow discharge. The term abnormal indicates the situation where the negative glow
covers the cathode completely, whereas in a normal glow discharge only part of
the cathode participates in the discharge. Raising the current the electrode coverage
increases and the glow discharge changes from normal to abnormal.

A typical cathode potential is V., = —500V and with voltages of this order the
electrons cannot reach the cathode surface, whereas the positive ions are strongly
accelerated to the cathode and a net current is drawn. In the other side of the
discharge the reverse situation occurs being the potential only slightly less negative
than the floating potential V, in order to compensate the cathode current with a net
electron current to the anode. As in previous section, in the case of a collisionless
cathode sheath the current density of positive ions is given by the Child-Langmuir
law (1.22) and (1.91)

o 4 €0 2e 3/2
L=y \/M Vel (1.93)
since this derivation holds for all positive d values of a collisionless sheath. For the
previous conditions of a plasma with k3T, = 2eV and n’ = 10'®m™3, in which
J; = 2Am™2, and a cathode potential V. = —500V, we obtaind = 7.0 x 10> m
for the sheath thickness.

Using this simple model the potential, the electric field, and the density of ions
can be derived using a similar procedure as in Sect. 1.1.2 valid for whatever the
collisionless sheath. Assuming the reference x = 0 at the neutral plasma, we obtain
as x increases in direction to the cathode

X\4/3
V) = V., (d) (1.94)
4 IVC| 1/3
E(x) 3 g3 (1.95)
_ 4eo |Vc| —2/3

ni(x) = 9 g3 (1.96)
A plot of these quantities is shown in Fig.1.13. At the cathode we have E. =
9.6 x 10*Vm™" and nf = 2.5 x 10 m™3. Obviously these expressions must
be considered for distances larger than the plasma-sheath boundary, in which the
potential is V? = — kzT,/(2e) obtained from the Bohm criterion. At the conditions
referred here V2 = —1Vandn} = n? = 6.1 x 10 m™3.

For an ion sheath thickness d = 7.0 x 10~3 m the concept of collisionless sheath
may be doubted. The collision cross section of Ar* ions in Ar is of the order of
0ip = 5 x 107" m?2, which for p = 20Pa and T, = 300K implies an ion mean
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Fig. 1.13 Potential (—V) in
500V, electric field (E) in 1.0
10°Vm™!, and ion and :
electron densities (n; and n,) -V
in 10" m™3, in the (500 V)
collisionless cathode sheath E 0.8
of a glow discharge, with (10°Vv m~)
kgT, = 2eV and non
n? =n? =10"°m=3 (van AR
Roosmalen and de Vries (10°m~™) 0.6
1985)

0.4

0.2

0
2

cathode x (108 m)

free path of only A; = 1/(1,0i,) ~ 4 x 107*m. In this case instead of a gain

of energy equal to the cathode potential for all ions a wide range of energies for
the ion flux impinging the cathode should be considered. The expressions to be
considered in this case are those derived before for a mobility dominated electron
movement (1.12), (1.13) and (1.14) modified now for ions. According to this model
the negative electrical potential is given by

22 Ji

The equation (1.97) is qualitatively quite similar to the expression derived for
the collisionless case. The voltage varies now as x!- instead of x'** which does not
introduce significant differences. For the typical case we are considering here even
the sheath thickness has about the same value. Estimating the mobility of energetic
Artionsatp = 20 Paas u; = 0.5m?>V~!s~! (van Roosmalen and de Vries
1985), we obtain d = 8.5 x 103 m for V. = —500V and J; = 2 Am~2. We may
conclude then that this pressure value is in a transition zone for which both models
give reasonable results. One has to go to either much higher or much lower pressures
to discriminate between the two models.
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Fig. 1.14 Particles within pd
the angle solid
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Appendices

A.l1.1 Particle Current Density Upon a Surface

The expression of the particle current density upon a surface due to the random
movement used in equations (1.1) and (1.84) can be derived as follows. Let us
consider a certain type of particles (electrons, ions, atoms) in which the number
of particles, per volume unit, with the absolute value of velocity between v and
v4+dvis

dn = f(v) 4v? dv, (1.98)

being f(v) the particle velocity distribution normalized such that

n= /oof(v) 4v? dv, (1.99)
0

with n denoting the particle number density. The particles within the angle solid
dQ = sinf dO d¢ will hit the plane xOy in the time interval dr if they lie at a
distance dz = v cos 6 dt of the plane (see Fig. 1.14). Since the fractional number of
particles within the angle solid is d€2 /4, the number of particles, per surface unit,
with velocities between v and v + dv and within the angle solid d€2, that impinge
the plane xOy in the time interval dt is

dQ
f(v) 47v* dv 1 v cosf dt. (1.100)
T

Integrating first over all velocities

dQ *° )
cos 6 dt v f(v) 4mv” dv, (1.101)
4 0
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we obtain
a2
cos 6 dt n <v>, (1.102)
4
being
1 o0
<v>= / v f(v) 4mv? dv (1.103)
nJo

the average particle velocity. Integrating now over all directions in the semispace
z > 0, we obtain the number of collisions per surface unit in the time interval dt

/2 2
v dt/ cos 0 sin 6 d@/ dp=""""a. (1.104)
47T 0 0 4

Thus, the number of collisions per surface and time units, i.e. the particle current
density is

r= . (1.105)

A.1.2 Solution of Equation (1.15)

Let us start by multiplying both members of equation (1.15) by 2 dV/dx and write
it under the form

d | (dvY dv
=2cVv'2"". (1.106)
dx dx dx
This equation is easily integrated to get
dv\ 12
=4CV/“+ K, (1.107)
dx

in which K = 0 due to the condition at the cathode Ey = (dV/dx)y = 0. We have
therefore

dv
X

=2/cv'/* (1.108)

and now this equation may be integrated again

\%4 X
/ vy =2 \/C/ dx (1.109)
0

0
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allowing to obtain

V3/4
=2 +Cu, 1.110
3/4 VCx (1-119)

which at the end takes the form of equation (1.17)

9

V32 = A C X (1.111)

A.1.3 Multiplication Factor (1.30)

Each primary electron originates a multiplication o and in this case they arrive
(¢*? — 1)/ad electrons at the anode as given by equation (1.26). Thus they are
created [(¢*? — 1) /ad] — 1 electron-ion pairs and these ions extract from the cathode
v {[(e*? — 1)/ad] — 1} secondary electrons. After the secondary electrons create
more y {[(e%! —1)/ad]—1} (¢*? —1) ions during their travel to the anode and these
extract more y2 {[(¢*? —1)/ad] — 1} (¢*? — 1) electrons from the cathode. The sum
of all electrons entering the anode per each primary electron is

e — 1 e — 1
=1 —1 —1
" +( o )”( o )
ead_l ead_l
—1)(e* =1 2 —1)(e* =1
+y( > )(e )+ y ( > )(e )

od
+ -1 1)+ 1.112
y ( )(e ) ( )

This series may hence be written under the form

ead_l ead_l
= -1 ad (1 “_ 1)y 4o
m wd +( d )ye (14 y (e ) + )
e —1 n e —1 | od 1 (1.113)
= — e , .
ad ad v I—y (e —1)

alloing to obtain at the end the multiplication factor

(I+ ) =1)/ad —y e
m =

Ly (el — 1) (1.114)
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A.1.4 Demonstration of Equation (1.59)

Defining the variable x as
p
x:ln( ) (1.115)
Te

dv _ 1 (1.116)
dr r ’

we have

and the first member of equation (1.55) writes as

d ( dV 1 d*v
r - . (1.117)
dr dr r dx?

Using now the variable 2 defined by equation (1.58), equation (1.55) takes the form

PV 4V 1118)
> 9 B '
Differentiating In 82, we obtain
d 314dv
InB?%) = -1 1.11
a M) =5y 0 (1.119)
and therefore
v 2 2 dp
= V{1 . 1.120
dx 3 ( +,3 dx) ( )

Differentiating again with respect to x, and using equation (1.120) to eliminate
dV /dx, we obtain the following equation

PV 4 4dBp 1 (dBY 3 4B
dx2_9v(1+,3 0 +ﬂ2(dx)+ﬂ 2 (1.121)

and substituting it in equation (1.118), we obtain at the end equation (1.59)

d dp d?
1=+ 48 df +(df) + 38 dxf. (1.122)
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Fig. 1.15 Plane parallel (1) )
electrodes limiting a gap with

. . + o+ o+ I
positive ions of density p
uniformly distributed in - + + + ! +
one-half of the interspace + «—E : ¢ E
(von Engel 1965) + o+ o+ 4+
I
+ o+ 4+ o+
L o 1 e
0 d d X

Exercises

Exercise 1.1. An electrical potential difference V is applied to a plane parallel gap
of width 2d which contains a constant uniformly distributed space-charge of density
p between the plane x = 0 and a plane at distance d from it, while the remaining
space is entirely free of space-charge (see Fig. 1.15). Determine the expressions for
the potential and the electric field in the gap of width 2d (von Engel 1965).

Resolution: Assuming E = — E e, the Poisson’s equation writes dE/dx =
—p/ €0, so that we obtain at the regions 0 < x < d and d < x < 2d, respectively,

0
€0
Ex(x) = G,

Ei(x) =— x + G

while for the electric potential, we obtain from E = dV /dx
_ P
Vilx) = — P+ Crx
260
Va(x) = Cox + G,
having assumed V;(0) = 0.
Because the separation surface x = d is not electrically charged, we have

E| = E, at the boundary, which together with the continuity of the potential, allows
to write

_Pa+c=q
€0

Py ccd=cd+ G
260

Because at the plane x = 2d, we have V,(2d) = C, 2d + C3 = V, the electrical
potential is

R Vv 3 pd
Vi) = 260x+(2d+4 )"
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’

v od pd?
2d 460) rE

Va(x) = ( - 26,

while for the electrical field, we find

P V. 3 pd
Ei(x) = —
I(X) €0 xt (2d + 4 60)

Vv pd
E, = - = const.
2d 46()

We note that E; < 0 for p > 2¢,V/d>.

Exercise 1.2. Consider two infinite plane parallel in a gas at pressure such that the
mean free path of ions is much smaller than the electrode separation, A; < d. One
electrode at x = d emits an unlimited number of positive ions, while the other
at x = 0 emits electrons at the same rate. If the back scattering and the charge
multiplication in the interelectrode spacing are neglected, determine the spatial
distributions of the electric field, potential, and ion and electron densities.

Resolution: Since A; <« d we must use a collision model and find the same
situation as in equations (1.10) to (1.14). Assuming E = — Feyand J = — J e,
with J = J, 4 J;, in order E and J are positive, Poisson’s equation writes as

E 1 (I U
dx  €E \ e i)’

Because of u, > u; and J; = J, = J/2, we have approximately

dE J
dx — 2epi
This equation can be integrated now from x = d (where n; = oo and E = 0)

allowing to obtain the following expression for the electric field

E(x) = \/6(;,#' (d—x)l/z’

while for the potential, with V(0) = 0, we find

vy = / @,
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Then, the densities of charged species are

J 1 J
ni(x) = Y D
2eiE()  2e \| i
J i
ne(x) ey

- 2ep E(x) - He

Exercise 1.3. Consider a gas uniformly irradiated with X-rays contained in a long
concentric cylindre of radius ry and r;, with an applied potential (V; — V;) of such
a value that multiplication of charges does not occur. Find the relation between the
current per unity length i/l and the potential difference (V| — V), assuming the
density of electrons and ions uniformly distributed, with n, = n;, the pressure high
enough to use a collisional model, and neglecting space-charge field effects.

Resolution: Assuming that there is no multiplication of charges and because of the
large difference between the mobilities of electrons of ions, we have

i/l =2mr el'.(r) = const,

with I'.(r) = n.u. E(r) denoting the electron particle current density. Since in the
absence of space-charge field effects equation (1.38) yields to write

rE(r) = (V1= VO),
In(ry/ro)
we obtain
. Vi —WV)
i/l =2m englhe .
/ H In(ry /ro)
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Chapter 2
Kinetic Description of a Plasma

This chapter is devoted to the Boltzmann transport equation. The Boltzmann
equation has been initially established for a dilute gas of neutral molecules and
it provides the standard kinetic approach to describe the microscopic evolution of
a gas to equilibrium. The Boltzmann equation can be applied to the description
of a medium in which the dominant interactions are of short-range type so that
it is suitable to describe the evolution of a plasma determined by electron-molecule
and ion-molecule collisions. The Boltzmann equation fails however when applied to
long-range Coulomb interactions. The collisional terms for both elastic and inelastic
electron-molecule collisions are then consistently derived. The chapter ends with the
establishment of the equations for the moments of the Boltzmann equation, i.e. the
fluid equations, for electron-neutral interactions.

2.1 Boltzmann Transport Equation for Molecules

2.1.1 Collisionless Boltzmann Equation

The system under consideration here is a dilute gas of molecules, such as usually
considered in the classical kinetic theory of gases. The temperature is assumed
sufficiently high and the density sufficiently low for each molecule may be
considered a classical particle with a rather well defined position and momentum.
Furthermore, the molecules interact with each other through collisions whose nature
may be specified through the scattering cross section (Chapman and Cowling 1939;
Huang 1963).
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The analysis is based on the statistical role played by the particle distribution
function of a system with one kind of molecules, f(r, v, 7), defined so that

f(r,v.1) drdv 2.1)

represents the number of particles which, at the instant ¢, have positions lying within
a space-volume element dr at the extremity of vector r, and velocities lying within
a velocity-volume element dv at the extremity of vector v. The volume elements dr
and dv are large enough to contain a very large number of molecules but small
as compared to the macroscopic dimensions of the whole gas. The distribution
function changes with time, because the molecules continuously enter and leave
a given double volume element dr dv.

Having a system with N molecules in a volume V, the normalization of the
distribution function is as follows

//f(r,v, Hdrdv = N. (2.2)

If the molecules are uniformly distributed in space, so that f is independent of r, we
obtain

/vf(v, Hdv = ]‘Z (2.3)

On the contrary, if the distribution is not uniform in space, we may define the gas
number density n(r, f) by

/ fe,v.ydv = n(r, o). (2.4)

Let us start by considering first the gas in the absence of collisions. A given
molecule with the coordinates (r, v) at the instant ¢ will have the coordinates (r +
v dt, v + a dt) at the instant 7 4 dt, with a = F/m denoting the particle acceleration,
F is the external force acting on the molecule, and m denotes its mass. Thus all
the molecules that are in the double volume element dr dv, at the extremity of
(r,v) and at the instant 7, will be in a volume element dr’ dv/, at the extremity of
(r + v dt,v + F/m dt) at the instant ¢ + dt. Therefore, when the collisions do not
exist we may write the following equality

F
f (r +vd, v+  dt+ dt) dr' dv' = f(r,v,?) dr dv. (2.5)
m

Since dr dv = dr’ dv’ according to Liouville’s theorem (see Appendix A.2.1), we
still have

F
f(r+vdt,v+ dt,t—i—dt) = f(r,v,?). (2.6)
m
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Let us consider now the case in which the collisions exist in the gas. The
equation (2.6) must be modified in order to include the introduction and removal
of molecules from a given double volume element dr dv due to the collisions

f(r+vdt,v+ F dt,t—i—dt) = f(r,v,t) + (af) dt, 2.7
m at coll

in which (df/91).0u represents the time rate of change of the particle distribution
function f(r, v, #) due to collisions. Expanding the left-hand side member to the first
order in dt, when this time interval is vanishingly small, and subtracting it from the
first right-hand side term, we obtain the following equation of motion for the particle
distribution function

(o (F o (o
ot () ()= (ar)wn' @9

Alternatively equation (2.8) may be written under the following form using the
gradient operators with respect to r and v

of

+ (V.Vf) + (F .va) = (af) . 2.9)
ot m coll

ot

When F does not depend on v, the equation (2.9) may still be written under the form

of F\ (¥
5 TRV Ty (f m) = (3t)wu’ (2.10)

showing that the second and the third terms of the left-hand side member represent
the divergence of the components of the current of molecules, respectively, in the
space of positions and in the space of velocities.

The meaning of the equation (2.8) becomes clear if one notes that the left-
hand side member, df/dt, represents the total (or the convective) derivate of f in
the double, or phase space. The total derivative df/dr can be interpreted as the
rate of change as seen in a frame moving with the molecule in (r,v) space.
The equation of motion simply says that df /dt is zero in the absence of collisions.
The collisions have the effect of removing a particle from one element of phase
space and introducing it in another. Obviously, this equation is not meaningful until
the term (0f/9f)., may be explicitly specified. It is in specifying this term that the
assumption that the system is a dilute gas of molecules becomes relevant. Here, we
still note that the collision term may be expressed as follows

af
= Rin — Rous» 2.11
( ot )coll t ( )
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in which R;, dr dv dt represents the number of collisions occurring during the time
interval dr in which one molecule enters into the double volume element dr dv,
while R,,, dr dv dt represents the number of collisions occurring during the same
time interval in which one molecule leaves dr dv. Here, we are implicitly assuming
that if a molecule enters or leaves the double volume element dr dv as a result of a
collision, none of its partners enters or leaves this volume element in the same time
interval dt. This error is negligible because of the smallness of the double volume
element dr dv.

2.1.2 Binary Collisions

Let us consider here an elastic collision between two molecules of equal mass. The
molecules have well defined positions and velocities so that the initial and final
states of the collision may be described classically. If the velocities of the incoming
molecules are vy and v,, and the velocities of the outgoing molecules are V/1 and V’Z,
from the conservation of momentum and energy we can write

Vit+Va=V]+V, (2.12)
v 402 =02+ )2, (2.13)

where v, = |vk|, with k = (1, 2), denotes the absolute values of the velocities. As
it is well known from any textbook on mechanics, when the new variables for the
centre-of-mass velocity and relative velocity are introduced

1
V= ) (vi + v2) (2.14)
V=V,—Vg (2.15)

and similar variables V' and v’ are defined, the system of equations (2.12) and (2.13)
can be rewritten as

V=V (2.16)
v =1, (2.17)
where v = |v| is the absolute value of the relative velocity. The collision is

represented geometrically in Fig.2.1. The relative velocity v merely rotates to
v/, keeping constant its magnitude. The collision is completely determined by
specifying V, v, and the scattering angles y and ¢ of v/ with respect to v.

When V and v are slightly changed to V 4- dV and v + dv, respectively, with y
and ¢ kept constant, and V' and v’ changed to V' + dV’ and v/ + dv’ it is easy to
verify that the following equality holds

Vv = PV P (2.18)
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Fig. 2.1 Geometry of an

elastic collision in velocity

space. vy and v, are the

velocities of the two

molecules in the laboratory (f)
system, whereas V and v are
the centre-of-mass and the
relative velocities (Huang
1963)

(L

-v’/2

Fig. 2.2 (a) Scheme of a collision in the laboratory coordinate system between two molecules
with initial vy and v, and final V/1 and V; velocities. (b) Collision view from the centre-of-mass
system in which two molecules with the relative velocity v interact each other outcoming with the
relative velocity v/ (Huang 1963)

Here d*V = dV,dV,dV, and d*v = dv,dv,dv, denote equivalent representations for
dV and dv. Using the velocities of molecules in the laboratory coordinate system,
we may also write

vy dPvy = &) d*v),. (2.19)

The velocity of the centre-of-mass system V is not important here. In fact, if we
translate the coordinate system with a uniform velocity V, in the new coordinate
system only the relative velocities v and v’ need to be considered. Such a coordinate
system is called the centre-of-mass system. The collision processes as viewed in the
laboratory coordinate system and as viewed in the centre-of-mass system are shown
in Fig.2.2a, b.

In the centre-of-mass system it suffices to consider only one of the molecules,
because its partner always moves oppositely. Thus the problem reduces to the
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Fig. 2.3 Scattering of a =
molecule by a fixed centre of
forces specified by the impact
parameter p (Huang 1963)

NY

Fig. 2.4 Scattering of a

incident beam of molecules
by a centre of forces within
the solid-angle element dS2

A\ 4

scattering of a molecule by a fictitious fixed centre of forces, represented by the
point O in Fig. 2.3, in which p is the impact parameter.

The molecule approaches O with velocity v, whose perpendicular distance to O
is the impact parameter p. If the system of reference is chosen with O located at
the origin of the coordinate system, with the z axis parallel to the velocity v, and
because |v/| = |v|, the final state of the molecule is specified by two scattering
angles y and ¢, with y denoting the angle between v’ and the z axis, and ¢ the
azimuthal angle of v/ around the z axis. The two angles are collectively denoted
by @, with d2 = sin y dy d¢ representing the solid-angle element. This totally
completes the kinetic description of a binary collision.

The dynamical aspects of a binary collision are contained in the differential
cross section o (v, €2). The initial velocities v1 and v, of a collision do not uniquely
determine the collision because they do not determine the impact parameter. Thus
specifying vy and v, we specify a class of collisions with the same centre-of-mass
system. They can be represented in Fig.2.3 by trajectories corresponding to all
possible impact parameters, and thus to all possible scattering angles. We may
represent this class of collisions by imagining that a steady beam of particles of
initial velocity v, uniformly spread out in space, impinges on the centre of forces O.

Figure 2.4 represents the scattering of an incident beam with / representing the
number of molecules crossing a unit area normal to the beam, per time unit. / is
called the incident particle flux (expressed in molecules m~2 s™'). In the case of
molecules with the absolute value of the relative velocity v, the differential cross
section o (v, 2) is defined so that

Io(w,Q)dQ = 1o, x,¢) sinydy dp (2.20)

represents the number of molecules scattered, per time unit, in a direction lying
within the solid-angle element df2.
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The differential cross section has hence the dimensions of an area. Using the
concept of impact parameter Fig. 2.3 shows that the expression (2.20) can also be
written under the form

ToWw,R2)dQ2 = Ipdpdgp. (2.21)
If the scattering is independent of the azimuthal angle ¢, we simply obtain
ITo(v,y) sinydy = Ipdp. (2.22)

Then the total cross section is obtained by integrating o (v, 2) over all solid-angle
elements

o(v) = /QO’(U,Q) ds2. (2.23)

The differential cross section is a directly measured quantity or if the intermolec-
ular potential is known it can also be calculated quantum mechanically. The detailed
form of o (v, 2) depends of the intermolecular potential describing the interactions
in a given particular gas. For our purposes we consider the differential cross section
as an input parameter specified when a given gas is chosen.

2.1.3 Collision Term of the Boltzmann Equation

The collision term (df /1) ou is derived assuming the following approximations:

(i) The collisions are strictly binary, so that the present derivation is valid only for
a sufficiently dilute gas.

(ii) The interactions between molecules are described by central forces, isotropic
and of short-range, so that their effects are felt only in the interior of a small
volume in the space of positions, i.e. in the interior of a small sphere of radius
r. called collision sphere. The interactions may be considered hence as true
collisions.

(iii) The external forces applied on the molecules are sufficiently weak in order
they may be vanished in the interior of the collision sphere. The effect of the
external forces on the collision cross section is thus neglected.

(iv) For distances larger than the radius of the collision sphere there are no
correlations. The velocity of a molecule is also uncorrelated with its position.
This assumption is known as the hypothesis of molecular chaos.

The hypothesis (iv) is a crucial point in the derivation of the collision term of the
Boltzmann equation, as we will discuss below, and it simply states that, in a spatial
volume element dr at the extremity of vector r, the number of pairs of molecules
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with velocities lying in the velocity volume elements dv; at the extremity of vy and
dv; at the extremity of v is

f(r,vy, 1) dr dvy f(r, vz, 1) dr dv,. (2.24)

This assumption is introduced here for simplification but it is not clear if this is
a general condition for the description of the state of the gas under consideration.
The collision term is hence derived from a model based on the classical kinetic
theory of gases, in which the binary collisions occur in limited regions of space and
time and where, between two collisions, the trajectory of a molecule is due to the
action of external forces only.

Let us derive an explicit expression for the collision term (df/0t)..;. The rate
of decrease of the velocity distribution of molecules whose velocity lies in dv; at
the extremity of vy due to collisions, denoted by R,,, in equation (2.11), can be
obtained by considering that in the same spatial volume element dr at the extremity
of r, there are molecules of any velocity v, impinging as a beam on the molecules
of velocity vy. The flux of this incident beam (in molecules m~2 s7') is hence

Ly = f(r,va,1) dvz [v2 — v, (2.25)

so that number of collisions of the type {vi.v2} — {V], v5} occurring in dr during
the time interval dt, leading to the exit of a molecule with velocity vy from dvy, is

by o(lva—v1|, Q) dQ dt = f(r,v2,1) dvz [va—v1| o([va—v1[, ) dQ dt, (2.26)

where o (|v2 — vy|, ) is the differential cross section in the centre-of-mass system
and Q = (y,¢) represents the deviation angle between v, — v} and v — vq. The
rate R,,, is obtained by integrating (2.26) over all velocities v, and all angles €2 and
by multiplying the spatial density of molecules in dvy, so that we obtain

f(l', vi, l‘) dVl/ / f(l', Va2, l‘) |V2 — V1| G(|V2 — V1|, Q) dQ dv, dt. 2.27)
QJ,,

The expression (2.27) gives the number of collisions, per volume unit of the space
of positions, that result in the removal of a molecule from the velocity element dvy
in the time interval dt, that is it represents R,,, dvy dt, so that the time rate for the
change of f is

Rou = f(r,vy, t)/ / f(r,va, 1) |[va —vi| a(|va — vi|, Q) d2 dv,. (2.28)
al,

In a similar manner we can calculate now R;, defined in (2.11), in which a
collision of the type {v},v53} — {vi, vz} produces an entrance of a molecule into
the volume element dvy. In this case we start by considering the flux of incident
molecules v, impinging on a molecule v}
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Iy, = f(r,vy, 1) dvj [v5— vy]. (2.29)
The number of collisions occurring in volume element dr in the time interval dt is
F(r, vy, 1) dvy [vy — vi| o(|vy — vi], ) d2 dr. (2.30)

By integrating now over all velocities v} and all angles and by multiplying the spatial
density of molecules v}, we obtain

fr, vy, 0 dv’l/ / fx,v5, 1) [vy —vi| o(|vy — Vi, ) dQ2 v} dtr. (2.31)
QJ
V2

However, in accordance with equation (2.11) the expression (2.31) represents
R;, dvy dt.
Since these collisions are reverse from {vy, v2} — {v},v5}, we still have
vy =il = [v2—vi] (2.32)

dv, dvi = dv; dvy, (2.33)

so that the rate for the entrance of a molecule in dvy is
Rin = f(r,vy,1) / /f(r, vy 1) [Va—vi| o(|va — V1], Q) dQ dvy.  (2.34)
QJy,

Combining the results for R,,,; and R;, given by equations (2.28) and (2.34), we
obtain the following collision term

a
( £) = /Q/ 5 fi = 1) V2 = vi] o (|[v2 — vi], Q) dS2 dvs, (2.35)
coll va

where o (|vy — vq|, ) is the differential cross section for the collision {vy, v,} —
{v].v5} and the following abbreviations have been used: fi = f(r,vy,1), etc.
Substituting (2.35) in (2.8), we obtain then the Boltzmann transport equation able
to describe the evolution of the molecules with velocity vy

ofi ofi F ofi\ _
o T (Vl' ar) + (m 8v1) =
/Q/ (K fi = 1) V2 —vi] o (|[v2 — V1], Q) dQ2 dv,, (2.36)

which is a nonlinear integro-differential equation for the unknown function f;. This
equation is irreversible with respect to the time, which is a paradoxical result, since
it violates the reversibility of molecular dynamics and the Liouville equation from
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which, in principle, the Boltzmann equation seems to be derived (Huang 1963;
Liboff 1969; Sone 2007).

2.1.4 Validity of the Boltzmann Equation

At the end of nineteenth century a large controversy raised about the validity
of Boltzmann equation through a famous paradox presented by Loschmidt. He
objected that it should not be possible to deduce an irreversible equation from
a time-symmetric dynamics using a time-symmetric formalism. The explanation
is that the Boltzmann equation is based on the assumption of molecular chaos
and this assumption breaks the time reversal symmetry. The apparent paradox is
conveniently explained when we derive the collision integral of the Boltzmann
equation from a more structured analysis. This derivation should be conducted
with basis on the Liouville equation and it allows to obtain a system of N coupled
equations for a system of N particles known as BBGKY (Born-Bogolioubov-Green-
Kirkwood-Yvon) hierarchy (Delcroix 1963, 1966; Liboff 1969; Nicholson 1983;
Delcroix and Bers 1994).

Let us define as F a function that contains the maximum of information about a
given system. The probability of the states of a system in which the particle 1 has
its position lying within a space-volume element dr; at the extremity of vector ry
and its velocity lying within the velocity-volume dv; at the extremity of vector vy,
being the states of particles 2, ..., N whatever, may be obtained by integrating over
all space of positions rz, ....,ryx and over all space of velocities vz, .... ,VN

dry dv1/ / / / Fdr; dv, ... dry dvy. (2.37)
rn Jvy N Y VN

The numbering of particles introduced to define F is artificial and arbitrary, because
the particles are undistinguished.

The probable number <dN > of particles that are in the interior of the double
volume element dr; dv; is equal to the above probability, valid for any particle,
multiplied by the number of particles N, whose result may be written under the
form

<dN{> = fl dr; dvy, (2.38)

being fi = f(r1, v1, #) the distribution function of the positions and velocities of one
particle given by

fl = N/ / / / Fdl‘2 dV2....dl‘N dVN. (2.39)
r2 Jva N Y VN
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On the other hand, the density of one particle n; = n(ri, ?) is obtained by integrating
f1 over the space of velocities vy

n = / fl dV1 (240)
vi
and it allows to determine the probable number of particles placed in the volume
element dr; whatever their velocities through the expression
<dNi> = n dl‘]. (241)

Let us consider now two volume elements dr; and dr; in the space of positions
and two volume elements dvy and dv; in the space of velocities, and let us consider
further the probable number of pairs of particles, in which the first particle is placed
in the double volume element dry dv; and the second particle in the double volume
element dr, dv,. This probably number <dN;,> is equal to the probability of the
system to be in a state where two given particles, for instance the particles 1 and
2 satisfying imposed conditions, are placed in dr; dvy dr; dv,, multiplied by the
number of possible pairs, that is by N (N — 1). We may therefore write

<dN12> = le dl'l dV] dl'z de, (242)

being fi» = f(r1, V1, I2, V2, 1) the double distribution function defined by

f12 = N(N— 1)/ / / / Fdl‘3 dV3 dl‘N dVN, (2.43)
r3 Jv3 N Y VN

and where F is the function that contains all the information about the system. By
integrating now fi, over all velocities we obtain the double density n, = n(ry, r3, )

ni2 :/ /le dV] de. (244)
vi J v

From expressions (2.39) and (2.43) we obtain
/ fodrzdv, = (N—1) fi (2.45)
rn Jvy
and from (2.40) and (2.44)

/ nin dl'2 = (N— 1) np. (246)
r;
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Since
N = / fidrydvy = / f> dry dvy, (2.47)
r1 Jvq r2 Jv2
we still have from (2.45)
N/ fizdrpdv, = (N—1) fi / f> dry dvs. (2.48)
ry Jva ry Jva

If there are no correlations, we obtain

Nfio = (N=1fif (2.49)
and for high values of N, we have approximately
Sz = fife (2.50)
and
nyy ~ npnp. (2.51)

If the equalities (2.50) and (2.51) do not satisfy it is because there are binary
correlations in result of interacting forces.

The above definitions may be still generalized to triple velocity distributions
fi23 = f(r1, v1, T2, V2, T3, V3, 1) and triple densities nj53 = n(r, ra, r3, ), as follows

fizz = N(N—l)(N—2)//..../ / Fdrgdvy....drydvy  (2.52)

ni23 =/ / S123 dvy dvy dvs. (2.53)
vi Jvp Jv3
These triple functions are related with the double functions through the expressions
/ fizdrzdvy = (N—2) fiz (2.54)
r3 Jvs
/ niz3 dl'3 = (N—Z) nis. (255)
r3

Let us establish now the kinetic equations governing the distribution functions
f’s of different order. Starting from the Liouville equation (Delcroix 1963, 1966;
Liboff 1969; Delcroix and Bers 1994)

N N

ot +Z(Vi- 8ri)+;(m- avi) = — Z (m avi)’ (2.56)

i=1 ij=1(#))
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where Fj and Fj; denote the external and the interacting forces acting upon the
particle i belonging to a set of N particles. Multiplying this equation by N and
dr;,dv,, ....,dry, dvn, and integrating over these variables, we obtain

o M\ (B
ot +(V‘ 8r)+(m avl) =

Fy; OF
- N Z// //‘:N(m.BVl) dry dv, ....dry dvy, (2.57)

j=2°r

being f; the distribution function of one particle (2.39). The right-hand side member
of equation (2.57) can still be written as follows

—N(N—l)/ / / / (Fn‘: gjl) dr, dvy ... dry dvy  (2.58)

2 Yvz
and making use of the definition of the double distribution function fj, (2.43), we

still have
Fi, 9
//( 2 f”) dr, dv,. (2.59)
m 8v1

n v

The equation (2.57) for the evolution of the distribution function f; writes then
as follows

L (vl. afl)+ (F‘. af‘) / / (F“ af“) dry dvy.  (2.60)
ot Jrq m  ovy

The second term on the left-hand side member expresses the influence of diffusion
phenomena, with df;/dr; representing the gradient of f; in the space of positions,
while the third term expresses the action of external forces, with Fy/m representing
the particle acceleration, and df; /dv; the gradient of f; in the velocity space. In the
right-hand side member, Fy, represents the interaction forces of particle 1 with any
other particle.

By making the same calculation but with less one integration, we obtain the
equation for the evolution of the double distribution function fj, (Delcroix 1963,
1966)

ad ) ad Fi+Fp 0 F, +Fy 9

iz + (vy. iz + (va. )fi2 (e f12 L (2 E f12

ot 8r1 31'2 m 8v1 m aVz

= - // [(F”. af‘23)+(Fl3. afm)}dm dvs, (2.61)
3 s m  0vy m = vy

where the right-hand side term represents the effect of triple interactions.
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The equations (2.60) and (2.61) are the first two equations of a system of infinity
equations, as a matter of fact of (N — 1) equations, in which to determine f; we
need to known previously fi,, and to determine fj, we need to know fi,3. We might
write the equation for fj,3 but it still would include fi,34. Starting from the Liouville
equation we obtain then a coupled system of equations known as BBGKY hierarchy.
For practical purposes, we need to close the system making an hypothesis on
the distribution functions. The simplest solution of BBGKY system consists in
considering only double interactions, by making fi»3 = 0 in the equation for fi,,
which is surely valid only for a dilute gas.

By comparing the right-hand side member of equation (2.60) with the collision
integral of the Boltzmann equation (2.36), we may verify at which point the
time-symmetric formalism of mechanics, described by the Liouville equation, was
broken and transformed to the irreversible description used in thermodynamics. The
Boltzmann equation has been deducted assuming the hypothesis of molecular chaos,
i.e. that the correlations between two or more particles are neglected everywhere.
We can recall here that the assumption of molecular chaos states the following: If
f(r,v,1) is the probability of finding a particle with velocity v, at position r and time
t, the probability of simultaneously finding a molecule with velocity v and another
with velocity v/, at position r and time ¢, is f(r,v,7) f(r, v/, ). This assumption
concerns with the absence of correlations and has noting to say about the form of
the actual distribution function of the real gas. Thus a true state of the gas possessing
a given distribution function may or may not satisfy the assumption of molecular
chaos. Furthermore, the molecular collisions which are responsible for the change
of the velocity distribution can create the molecular chaos, when it does not exist,
and destroy the molecular chaos, when it exists (Huang 1963).

Thus, the Boltzmann transport equation is not a rigorous consequence of
molecular dynamics. The latter is invariant under thermal reversal, but the former
is not. The Boltzmann equation is only valid for a gas at the instants when the gas
is in a state of molecular chaos. But the collisions can destroy the molecular chaos
once established. The Boltzmann equation is not rigorously valid hence for all times.
The actual distribution function does not satisfy the Boltzmann equation at all the
instants. It satisfies the Boltzmann equation only at the instants when the assumption
of molecular chaos is valid. If the molecular chaos is a condition valid most of the
time, the Boltzmann equation may be regarded as valid in a statistical sense.

In the derivation of the Boltzmann equation we have defined a collision sphere,
of radius r,, in the interior of which the interactions may only take place and the
effects of external forces are not felt. On the contrary, in the exterior of this sphere
it is assumed that there are no correlations and that the particles are governed
by mechanical laws under the action of the external forces. Thus, the Boltzmann
equation provides an average description of the approach to equilibrium. It gives the
evolution within a time-scale Ar much larger than the time of collision #, = r /vy,
with vy = |v;| denoting the absolute value of velocity, but it does not give the
description in the interior of the collision sphere.

It can be shown that the equilibrium distribution function is the solution of
the Boltzmann equation and that this function is independent of time or, which is
the same, it is the limiting form of the distribution function as the time tends to
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infinity (see e.g. Huang 1963). Let us assume then that there are no external forces
in (2.36). In this case, it is consistent to assume further that the distribution function
is independent of r. The equilibrium distribution function, denoted by fy(v1) = fio,
is the solution of the equation when df (vy,7)/dt = 0. According to the Boltzmann
equation (2.36), fio satisfies the integral relation

//(fz’of{o — 20 fi0) V2= vi| a(Jv2 — v1], ) dQ2 dv, = 0. (2.62)
QJy,

As long as the differential cross section o (|va—Vvy|, §2) is non-vanishing, a sufficient
condition for (2.62) is

Frofio—Fofio = 0, (2.63)

for any possible collision {vy,v2} — {vi,v5}. We thus arrive at the interesting
conclusion that the equilibrium distribution fy(vy) is independent of the cross
section.

The equilibrium distribution function f;(vy) for a gas of one type of molecules
of mass M, labelled here f(v) for simplification, is a solution of (2.63) and
this distribution is the so-called Maxwell-Boltzmann distribution (Huang 1963;
Bittencourt 2004)

M \? M |v —vq|?
- - : 2.64
f) = n (anBT) exp ( 2T ) (2.64)

being n the particle number density

n = I‘X = / f(v) dv, (2.65)

vq =<v> the drift or average vector velocity

<v> = ! /vf(v) dv, (2.66)
n \4

and T the temperature of molecules
3 1
5 kgT = <E> = /Ef(v) dv, (2.67)
n A\

being E = (1/2)Mv? the particle kinetic energy, and kg the Boltzmann constant.
The velocity distribution (2.64) gives the probability of finding a molecule with
velocity v = |v| in the gas, under equilibrium conditions. We have noted the
interesting fact of the Maxwell-Boltzmann distribution to be independent of the
detailed form of the molecular interactions, as long as they exist.
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2.2 Boltzmann Transport Equation for Plasmas

2.2.1 Application to Charged Species

The Boltzmann transport equation has been initially established for a dilute gas
of neutral molecules, but it may also be used in weakly ionized classical kinetic
plasmas to describe the electron-molecule and ion-molecule collisions. A plasma
is called classical kinetics when the electron number density 7z, is low enough to
exist a high number of electrons around each ion in the interior of the Debye sphere,
ie. when d, < Ap, withd, ~ n, 1/3 denoting the average distance between two
electrons and Ap the Debye length given by

Ap = \/ cokpTe. (2.68)

en,

As seen in Sect. 1.3.1, the Debye length provides a measure of the distance over
which the influence of the field of a charged particle is felt by the other particles.
The Debye length defines the radius of a cloud around each charge particle outside
which the plasma will tend to remain neutral. The condition for a classical kinetic
plasma is hence

2

kpTe \®
ne << (EO B e) . (2.69)

In the case of kgT, = 1eV (i.e. T. = 11,604 K), we have n, < 1.68 x 102> m™3.

Under such conditions, the electrons produce a screen effect around each ion and
the coulomb interactions are vanished for distances larger than the Debye length
having the electric potential the form of the Yukawa potential

vy = 2 exp (— d ) . (2.70)
4 €or A D
The electron-ion interactions are of short distance due to this screening and they
take place only as the electron trajectory with respect to an ion has an impact
parameter with p < Ap. Such plasmas are termed classical kinetic in parallel
with the classical kinetic theory of gases, in which collective effects do not exist.
In this category are included the plasmas created by conventional discharges. For
instance, at kT, = 1eV and n, = 10'°m™3, we obtain Ap = 7.43 x 10~°m and
d, = 2.15 x 10~° m. The number of electrons in the interior of the Debye sphere is
N, = ;‘Jr/%ne = 1.72 x 10*. However, even in the case of classical kinetic plasmas,
the Boltzmann equation cannot be used to describe the interactions between charged
species, because these interactions do not occur through true collisions, but via a
continuous addition of small deviations in the interior of the Debye sphere. The
kinetic equation to be used for interactions of this type is the Fokker-Planck equation
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(see e.g. Allis 1956). The Boltzmann equation may be used hence to describe non-
Coulomb interactions, such as electron-molecule and ion-molecule collisions (Allis
1956; Nicholson 1983).

Furthermore, the ionization degree n./n,, with n, = n;, and being n,, n; and
ng the density of electrons, ions and molecules, must be low enough, in order the
effects produced by the electron-electron, electron-ion and ion-ion interactions upon
the trajectories of charged species are vanishingly small. The trajectories are then
determined by collisions with neutral species only.

In a plasma there are different species present and we need to establish different
Boltzmann equations. In the case of electrons, for instance, the kinetic equation
yielding to determine the electron distribution function takes the form

e fe Fe of fe
+ (| ve. + . = , 2.71
ot ( ¢ Br) (m Ve ot Jou @70
in which the collision term includes, in principle, the contributions of electron-

electron (e-¢), electron-ion (e-i), and electron-molecule (e-o0) interactions, but where
the third term is dominant

()= () ) (), = (50)

= + + ~ . (2.72)
at coll at e—e at e—i at e—o at e—o
Thus, in a weakly or medium ionized plasma, the collision terms for interactions
between charged species are discarded in the kinetic equation for electrons, as
compared with the term for electron-neutral collisions.

On the contrary, in the case of molecules the collisions between two molecules
are the dominant interactions, which associated with the absence of spatial inhomo-
geneities, i.e. null gradients in the space of positions, and null external forces acting

upon the molecules, allows to obtain an equation in which the interactions occurs
among one type of particles only

oF, oF,
= . 2.7
ot ( ot )0_0 273)

Assuming further the gas in equilibrium with the walls of the container, we obtain
the Maxwell-Boltzmann distribution at temperature 7, as solution for this equation

M 2 M|v,|?
Fo(vo) = ny - : 2.74
(Vo) = n (anBT,,) eXp( 2kBT0) 2.74)

in which n, is the gas number density and M the mass of molecules.
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2.2.2 Vlasov Equation

In plasmas moderately ionized the electron density may not be so low that the
long-distance interactions may be totally discarded, due to an incomplete screening
produced by the electrons. In this case the interactions do not act as true collisions,
since there are appreciable distances involved. Further, if the correlations at such
distances are neglected, we may simply assume that the double distribution function
is fi2 = f1 f>. This condition introduced in (2.59) allows to write for the interaction

term
(afl) _// (FIZ. 3flz) dr, dv,
Bl int ry Yvy m 3V1
1
— (afl . / / Flzfz dl‘2 dV2) . (2.75)
8v1 m 1 Y,

Introducing now the space-charge force defined by

F/l = / / F]Z fz dl‘z de, (2.76)
n vYvy
or, in the case of a velocity independent force, by

F/l = /F]Z np dl‘z, (2.77)

2

we may write then the interaction term (2.75) as

fy _ (0 F
( o )im = (3V1' " ) . (2.78)

This term has the same form as that due to the external forces in the left-hand side
member of equation (2.60), so that as long-range interactions only exist the kinetic
equation takes the form

Y (PERIY Do am

ot 31‘1 m ’ 8v1

The equation (2.79) known as Vlasov equation is a collisionless kinetic equation
in which both the external forces applied to the charged particles and the space-
charge forces resulting from Coulomb interactions are included. It allows to study, in
a self-consistent manner, the collective movement of charged particles in moderately
ionized plasmas, where the distributions are strongly non-Maxwellian, and therefore
a fluid description is not accurate.
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2.3 Collision Phenomena in Plasmas

2.3.1 Electron-Neutral Elastic Collisions

Let us consider a binary collision {ve,ve} — {V,,V,} between an electron and
a neutral molecule. In a collision, the positions of the particles do not change
appreciably but their velocities may change a lot. Here, we do not consider the
modification of velocities during the collision but only the velocities before and
after the particles are within the range of their interaction forces. Introducing the
position and the velocity of the centre-of-mass system, we get

M
= Mret Mo (2.80)
m+ M
y= IR " M 2.81)
= = vV, Vo- .
dt m+M € m+M °
where ve = dr./dt and v, = dr,/dt are the electron and molecule velocities.

Introducing now the relative velocity v = v, — v,, the equation (2.81) can take one
of the forms

M
-V = 2.82
Ve m+MV (2.82)
m
—-V=-— ) 2.83
Vo m+MV (2.83)

In the same manner, we may write for the velocities after the collision

M

A v ' 2.84
Ve m-+M v ( )
vov=- "y (2.85)
° m+M '

where vV = v, — v, and V' = V. During the collision the velocity of the centre-
of-mass, V, remains fixed and if the collision is elastic, the relative velocity has the
same magnitude before and after the collision, |v'| = |v|, but it changes in direction
by an angle y called scattering angle in centre-of-mass system (see Fig.2.5 and
Appendix A.2.2). The centre-of-mass system divides the relative velocity inversely
proportional to the masses, so that the velocities of electrons and molecules remain
over two spheres in velocity space, centred in the centre-of-mass velocity, with the
radii
M m

|[v|] and [v]. (2.86)
m+M m-+ M

The radius of molecules’ sphere is very small compared with that of electrons.
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Fig. 2.5 Geometry of an
elastic collision between an
electron and a molecule. If
the molecule is at rest before
the collision the origin of the
system is at v,. The circles
are spheres centred in

V =V’ (Allis 1956)

From equations (2.83) and (2.84), we still have

V.—v, = mlfM v/+m:'_’Mv (2.87)
and using the equality |v| = |V/|, we obtain
Ve = Vol* = (Ve — Vo). (Ve — Vo)
= ffjmz v+ :’_’2M)2 VP + (mszﬂz w.v)
— v - (mzj:ﬂzéy v (1 = cos y), (2.88)

with y denoting the scattering angle between the relative velocities v and v'.

If the molecule is at rest before the collision, the origin of velocity coordinates
should be taken at vy and we have v = v,. The electron velocities before and after
the collision are then given by v,v. and v,v, in Fig. 2.5. From equation (2.88) we
obtain in this case

2mM
D (m—TM)z v (1 —cosy) (2.89)

and being u = émve2 the initial kinetic energy of the electron, the small fractional

energy lost in striking a molecule at rest, Au = u — i/, is

Au 2mM

y - (m + M) (1 —cos x). (2.90)

This energy goes into the recoil energy of the molecule.
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Another useful relation from the triangle v,, V and v, gives the scattering angle
in the laboratory system, o, in terms of the scattering angle in the centre-of-mass
system, y, (see Appendix A.2.3)

sin? y

) _
S0 =g (m/M)? + (2m/M) cos y’

2.91)

For practical purposes yo >~ y because of m/M << 1.

The scattering cross section o (v, 2) = o (v, x, ¢) is deduced from the force law
as a function of v = |v| and y, and it is measured experimentally in terms of |v,| and
Xo- The dependence on the azimuthal angle ¢ is never known so that it is assumed
that o does not depend on ¢.

2.3.2 Electron-Neutral Inelastic Collisions

Let us consider now an inelastic binary collision expressed through the reaction
X+ Xy = X3 4+ Xy, (2.92)

in which a mono-energetic beam of particles (1) impinges on a sample of particles
(2) atrest in a given system (see Fig. 2.6). From energy conservation, we have

E,+E, > Es+ E4s+ AE, (2.93)

being AE the energy threshold of the reaction.
The number of reactions of this type produced by one particle (1) striking on a
sample of particles (2) of width dx is

ny o (v) dx, (2.94)

being n, the density of particles (2) and o (v) the collision cross section. Here, o (v)
is the total cross section, function of the absolute value of the relative velocity
[v] = |v1 — V2|, i.e. it does not specify the final scattering angles of the particles
and, therefore, it does not specify as the final energy is distributed between the two
product particles. If the particles (2) are not in rest but instead they have the velocity
v, the number of reactions produced by one particle (1) impinging the particles (2)

Fig. 2.6 Mono-energetic (1)
beam of particles (/)
impinging on a sample of
particles (2) of width dx and
area S

YYVvVY
—
N
-
w
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with velocities dv, defined in the extremity of the velocity v, is given by
f(v2) dvz 0(v) dx, (2.95)

being f(v2) the velocity distribution of particles (2).

Let us consider now a beam of particles with velocity distribution f(vy). The
number of particles of velocities dv; defined in the extremity of velocity vy crossing
a sample of particles (2) of area § in the time dt is

f(vy) dvy v S dt, (2.96)

where v is the absolute relative velocity, and hence the number of probable reactions
produced in the volume of the sample dr = § dx, in the time interval dt, by the
crossing of the two beams is

dN = f(v1) dvy v S dt f(vz) dvz o(v) dx. (2.97)
The number of reactions produced in the sample, per volume and time units, is

dN

ey = VO f(v2) AV dva. (298)

If we assume now that the particles (1) and (2) may have different velocities, we

obtain for the total rate of reaction (2.92), in m > s™!

R= / / v 0 (V) f(v1) £(¥2) dvy dva
= ny np C (299)

being C the collisional rate coefficient (in m* s™!) of the reaction defined as

C =<vo(v)>= ! / / v a(v) f(vy1) f(v2) dvy dv,. (2.100)
nyny Jyv; Jv,

In equation (2.98) the produced particles (3,4) may share the final energy E3 4 E4
through different forms. They depend of the scattering angles of the two particles.
Let us define as o (v, y, ¢) the differential cross section associated with the inelastic
reaction (2.92), in which two particles (1,2) with the relative velocity v = vy — v,
are transformed into two particles (3,4) with relative velocity v/ = v} — v}, being
|[v'| < |v|, and where y and ¢ are the scattering angles of velocity v/ with respect
to v. The probable number of reactions, per volume and time units, in which after
the collision the two product particles are in the scattered solid-angle element dQ2 =
siny dy d¢, is
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dN(Q) = v O'(U, Q)f(vl)f(VZ) dV] de ds. (2101)
dr dt

In the case of an inelastic collision with velocities {vq, v2} — {Vvj, v}}, we have
from equations (2.82) and (2.83)

my

vi—-V = v 2.102

1 S ( )

va—V = — ™My (2.103)
my + myp

being V the velocity of the centre-of-mass system. Before the collision the two
particles have the momenta m; (vy — V) and m; (v, — V), with equal absolute values
and reverse directions, which may be expressed as

m (vi—=V) = —m (vz—V) = v, (2.104)

being u = mymy/(m; 4+ my) the reduced mass. After the collision the situation is
likewise being now

my (V3—V') = —my (vj=V') = p' v, (2.105)

with &' = mamy/(m3 + my) (see Fig.2.7). The relative velocity after the collision
is determined by energy conservation

1 1
5 W V)P = Nz [v|*> — AE. (2.106)

Fig. 2.7 Inelastic collision -
X1, X2} = {X5, X4} V3 — v
shown in the centre-of-mass

system (Delcroix 1963, 1966)
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2.3.3 Collision Term for Inelastic Collisions

Using a similar procedure used to derive the collision term of the Boltzmann
equation for elastic collisions (2.35), we may derive now a similar term for the
inelastic collisions as defined through reaction (2.92). The number of collisions, per
volume unit in the space of positions and time unit, that result in the removal of a
molecule from the velocities dv; at the extremity of vy is given by

(?{;) dv; = —f(r,vy. 1) dv1/ /f(r,vz,t) v oy (v, Q) dQ dv,, (2.107)
coll QJy,

where 075 (v, Q) is the differential cross section of reaction (2.92) and v = |v| =

|[v1 — v2| is the absolute value of the relative velocity.
Let us consider now the reverse reaction

X3+ Xy = X; + Xo. (2.108)

The number of collisions, per volume and time units, that result in the entrance of a
molecule into the velocities dvy is

9
(f‘) dvi = f(r,v},7) dvg/ /f(r,v:,,t) v ol (v, Q) (—=dQ) dv,
coll QJ s
V4

at
(2.109)
being now 0i7(v/,—Q) the differential cross section of reaction (2.108) and
v = |V/| = |v; — vj| the absolute value of the relative velocity of particles (3)

and (4). However, from micro-reversibility, or detailed balance, between the direct
and reverse processes, we may write the following relation

v 032V, —Q) (—dRQ) dv; AV = v oiy (v, Q) dQ dv; dv,, (2.110)

so that including this relation in equation (2.109), we obtain the following collision
term gathering equations (2.107) and (2.109)

(af‘) = //(f;fg—ﬁfz)vofg(v,sz)dszdvz, (2.111)
ot coll QJy,

in which the following abbreviations have been used: f; = f(r, v1, 1), etc.
In the case of a collision where the partners (1) and (3) are the same

X+ Xy = X + Xy, (2.112)

the collision term (2.111) needs to be modified to take into account the indiscernibil-
ity of particles (1) and (3). In this case, besides the transitions {vi, v2} = {V}.V,},
we must also include the transitions {vi, v4} = {Vv], v} }. The collision term takes
hence the form
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(afl )coll / / (i fi=fif) vio (712 (12, Q) d2 dv,

+//(flﬂ —fifa) vig 07 (V14, Q) dQ dvyg,  (2.113)
al,

being the relative velocities to be considered in the two terms vy = v; — v, and
Vi4 = V1 — Vg4, respectively.

Finally, let us consider now the direct and reverse electron-molecule inelastic
collisions

e+ X = e+ X* (2.114)

with X and X* denoting the ground-state and an excited-state of a given molecule.
We may assume my = my >~ oo in reaction (2.113) and therefore v, = v4 = 0. The
molecule acts as a fixed centre of interactions and the centre-of-mass coincides with
this fixed centre. We may replace then the velocity distributions f> and f; with delta
functions n, 6(v2) and n4 §(v4) having, for instance, for particle (2)

/fdez = /nz 8(V2) dV2 = Ny, (2115)
v2 v2

being the relative velocities equal to vy in both terms of equation (2.113). The
collision term (2.113) takes hence the form

(afl) / / f] ny 8(V4) V1 0‘124(1)1’9) a dV2
coll

—nz/fl v1 0y (v1, Q) dQ
Q

+//f1” ny 8(vy) vy 02 (v1, Q) dQ dvy
QJy,

—n4/9f1 v1 012 (vy, Q) dS2. (2.116)
Introducing now the total cross sections in the second and fourth terms

/Qaf;‘(vl,sz) dQ = oly(v1) (2.117)

/Qa}f(vl,sz) dQ = oli(v1) (2.118)

and the following micro-reversibility relations in the first and third terms
v1 013 (v, Q) dQ dvy dvz = V| 0/2(v],—Q) (—dRQ) dvj dv,  (2.119)
v1 017 (v, Q) dQ dvy dvg = V] 07 V], —Q) (—=dQ) dv] dv;, (2.120)
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we may rewrite equation (2.116) as follows

V1

d dv/
(£) / /fl na 8(vy) vy 0101, 2) 42 d vy, — mfivi o5 (v)
coll

dv//
// ny §(vy) v ol (v, Q) dQ dvi dv, — nyfi v o (vy).
(2.121)

Taking into account that in the first and third terms of equation (2.121) we still
have

/ ny 8(vy) dvy = ns and / ny 8(vy) dvy, = np (2.122)
V[/‘ 1

and the following relationships between the velocity volume elements associated
through an inelastic collision

d I Ui "o Ui/
vy = ’ dvi and dvy = . dvy, (2.123)
1 1

the equation (2.121) may still be rewritten with the form
9 UIZ
(aﬁ) —ny ! /f{aff(vi,sz) dQ — nmy v fi of3 (v1)
t coll U1
//2
/ B, Q) dQ — nyvi fiofZ(vy).  (2.124)

The four terms in equation (2.124) refer by order to the following transitions

{vi.va} — {vi,v2}
{vi.va} — {V].v4}
{V;/,Vz} — {V1.Va}
{vi,va} — {v{,va}.

To attribute significance we may assume that the reaction (1,2) — (1,4) is
endothermic, with the species (1) being an electron

e(u) + Xo = e(u— Au) + Xy, (2.125)
in which a molecule in state X, goes to a higher energy state X4, suffering the

electron an inelastic collision, whereas the reaction (1,4) — (1,2) is exothermic,
suffering the electron a superelastic collision, also called an inelastic collision of
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30 40

1° 2°

v

Fig. 2.8 Decrease and increase of the electron velocity as a result of an inelastic (v, = v/; v/ —
v,) or of a superelastic (v, = v,; v, = v.)) collision, respectively (Delcroix 1963, 1966)

second kind. In the two collisions the electron of energy u loses or gains the energy
Au, respectively.
Let us consider now a given molecule with different quantum states
.l .. j, ... If among them we isolate the states i and j, being u;; = (E;—E;) > 0,
and v’ < v < v” denoting three different values of electron velocity obeying to

2
V' —v? =0t v = Ty, (2.126)
m

the collision term for inelastic collisions (2.124) may be written under the form, in
the case of the electron distribution function f, = f(ve),

af, 2 / /
(g;)w” - Z {”lj Uv /Qfe 0ji(v,, ) dQ2 — n; v, fe Gij(ve)}

- e
Ly

véxz
+ Z{n . /Qf;’ o (v, Q) dQ — nj v, f. aji(ve)}, (2.127)
ij

being f, = f(v,) and /' = f(vl) and where the sum indicates the possibility of
different reactions to be considered.

The physical meaning of the four terms in equation (2.127) can be well
understood through the diagram shown in Fig. 2.8.

The vertical rows from left to right represent by order the four terms of
equation (2.127). The down rows represent the inelastic collisions in which an
electron diminishes the absolute value of its velocity from v, — v, and from
v/ — v, whereas the up rows represent the reverse superelastic collisions, in
which an electron increases the absolute value of its velocity from v, — v, and
from v, — v;’. The second and the fourth terms are loss terms for the electrons of
velocity v,, while the first and the third terms are gain terms. In this latter case, due
to collisions with colder electrons and hotter electrons, respectively.

In the case of the terms taking into account the exit of an electron from velocity
v, either due to an inelastic collision (second term) or a superelastic collision
(fourth term), we do not need to specify the form as the electron enters into the

new velocity element, so that the total cross section is enough. On the contrary, in
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the case of the terms describing an entrance at velocity v,, due to a superelastic
collision (first term) or due to an inelastic collision (third term), we need to specify
the orientation of the velocity vector before the collision, so that the differential
cross section is needed. For instance, Uij(v;’ , ) is the differential cross section of
the inelastic collision for an electron with initial velocity v, and final velocity Ve,
with v, < v, in which a rotation from v/ to v, occurs.

2.3.4 Rate Coefficients for Direct and Reverse Processes

In the case of inelastic and superelastic electron-molecule collisions of the type
e+ Xi=e+Xj, (2.128)

with X; denoting a molecule in a state with the level-energy E; and X the same
molecule in a upper state with the level-energy E; > E;, and since we have
[Ve| > |Vo|, and therefore |v| =~ |v,|, we obtain from equation (2.100) the following
expression for the rate coefficient of this inelastic process by electron impact

1
Ci = <v, 0jj(ve)> = / / Ve 0(ve) f(Ve) F(vi) dv, dv;. (2.129)
Ne Ni Jy, Jv;
Since for the heavy species we have

/F(Vi) dvi = n;, (2.130)

we still obtain
1
Cj = <v, 0(ve)> = / Ve 03 (Ve) f(Ve) dve. (2.131)
Ne Ve

We will show in Chap.3 that because of the integrand function v, oy(v.) is an
isotropic function of the electron velocity, depending hence on the absolute value of
the velocity only, the electron rate coefficient Cj is given by

1 o0
Cj = / Ve 03(ve) £2(ve) 4mv,? dve, (2.132)
v,

e Juj;

with feo(ve) representing the isotropic component of the electron velocity distribu-
tion, i.e. the component that depends on the absolute value of the velocity only, and
v = \/Zuij/m = \/Z(Ej — E;)/m is the change of velocity in result of the inelastic
collision.

Under thermodynamic equilibrium conditions it should be verified by micro-
reversibility
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ne n; Cjj = ne n; Cj, (2.133)

being n; and n; the populations of the states X; and X;, respectively, and C;; and
Cj; the electron rate coefficients of the direct and reverse processes (2.128). Since
at equilibrium conditions the populations n; and n; follow a Maxwell-Boltzmann
distribution at the common temperature 7, = T,, we may write

n; 8j Uij
= - , 2.134
n; 8i =P ( kBTe) ( )

with g; and g; denoting the statistical weights, or degenerescency degrees (number
of distinguished quantum states), of the states of energy E; and Ej, respectively.
Matching equations (2.133) and (2.134) we obtain the following relation between
the superelastic and the inelastic electron rate coefficients

Gji i i
i_ 8 exp( i ) (2.135)
Cy g kgT,

The rate coefficients are hence larger for the superelastic processes.

At the first sight, we could think that equation (2.135) is valid at thermodynamic
equilibrium only. However, the sole condition at which this equation is obliged
to fulfill is the velocity distribution of electrons to be a Maxwellian at a given
temperature 7,, being hence possible to have T, # T,. As a matter of fact, looking
at the rate coefficient of the inelastic process given by equation (2.132), we observe
that it only acts the collision cross section, which is a quantity that has noting to do
with the macroscopic properties of the medium. Thus, when the velocity distribution
of electrons is Maxwellian, the equation (2.135) is verified although the electrons
may not be in equilibrium with the molecules.

However, it is still possible to derive from equation (2.135) a relationship
between the electron cross sections for the direct and reverse reactions, which obvi-
ously does not depend on the electron velocity distribution. Starting by expressing

the equation (2.132) in terms of the electron energy u = ; mv 2, we obtain

="' / ™ o) £ ) de 2.136)

n, m i

and therefore the expression for the ratio Cj;/ C;; between the reverse and direct rate
coefficients can be written as follows

Ci _ Jo u0jiu) £ (u) du
Cjj f:jo u 0y (u) f2(u) du

S5 w0jiu) £ (u) du

B .[Ooo(u + uij) O'ij(u + uij)feO(u + Mij) dI/t (2137)
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In the case of a Maxwellian distribution the following dependence exists

7)o exp (— kB”Te) , (2.138)
so that the ratio (2.137) takes the form

o0
Gi _ . Jo uoji(u) exp(— u/(kpTe)) du exp ( Uujj ) 2139
Gjj Jo Qe+ uy) oj(u + i) exp(— u/(kgT,)) du ksT.
Since the ratio Cj;/Cj; also fulfills equation (2.135) and the integrals of equa-
tion (2.139) are extended over the same domain, we obtain the following relation-
ship from the integrand functions of this latter equation

giuoj(u) = g (u+ uy) oy(u+ uy). (2.140)

Equation (2.140) expresses a relationship between the cross sections of direct and
reverse processes known as Klein-Rosseland relation. It is a microscopic universal
relation, independent hence of the macroscopic properties of the medium.

2.4 Moments of the Boltzmann Equation

2.4.1 Conservation Laws and Continuity Equation

As we have seen in the previous sections, the electron distribution function for
a plasma out of equilibrium can be obtained by solving the electron Boltzmann
transport equation. Then, once the electron distribution is known, we can obtain
the macroscopic quantities of physical interest for the plasma, such as the electron
number density n,, the electron drift velocity veg = <v¢>, or the electron mean
energy <u>= ; m <v?>. However, the solution of the Boltzmann equation
is generally a matter of great difficulty, so that when a given problem only needs
the macroscopic variables it is preferable to use an analysis based on the moments
of the Boltzmann equation, i.e. the fluid equations, without having to solve the
Boltzmann equation (Huang 1963; Delcroix 1963, 1966; Liboff 1969; Cherrington
1980; Bittencourt 2004). The resulting equations are significantly simpler to use,
since they describe the plasma from a macroscopic point of view.

The moments of the Boltzmann equations are conservation laws for any quantity
X(r, Ve, 1) associated with an electron located at position r, velocity Ve, and time
t. In order to derive a conservation law for this general quantity X, let us consider
equation (2.71), with the collision term with electron-neutral collisions only such as
indicated in (2.72). Multiplying both members of (2.71) by X, we can write
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m 8vei ot o

e e Foi ofe (.
X o+ Z,:X v o + Zi:X = X( )_0. (2.141)

Integrating this equation in velocity space and defining the velocity averaged value
of X by

<X>(r,t) = 1/X(r,ve,z‘)fe(r,ve,z‘) dve, (2.142)
n

e Jve

we obtain for each one the left-hand side terms of equation (2.141)

o . X
[ 2o o) [ 2

X
= E?t (n. <X>)— n, < %t >; (2.143)
af, ad 0X
X ei o e — X ei Je e | — ei Je e
/ve v 8x,~dv 3xi(/ve vfdv) /VEBXiv fe dv
ad X
= (ne <X vg>) — n, < Vei > (2.144)
ox; ox;
Fei e Fei Fei
/X & dve:/ 0 X feo dve —/ 9 X fe dve
ve M 0V ve OVei m ve Vi m
0 ( Fei)
=—n, < X > . (2.145)
0V, m

The first term of equation (2.145) vanishes if f,(r, v, ¢) is assumed to vanish when
Vei —> OQ.

The integration in velocity space of equation (2.141) can then be written as
follows assuming velocity independent external forces (F,;/dv,; = 0, although
F,; may depend on the components of the drift velocity as in the Lorentz force)

ad 0X ad X
o (ne <X>)— n, < o > + Zl: ox, (ne <X vyi>) — Zi:ne < o, Ve >
X  Fu ofe
— e < > = X\ dve. 2.146
<o = LX) @140
In the case of electrons the independent conserved properties are obtained by

making X = 1, X = mv,;, and X = é mvez. We obtain then the equation for
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electron number density conservation, i.e. the continuity equation, the equation for
momentum conservation, and the equation for energy conservation.
When X = 1, we simply obtain

an, d _ e
o T Z o, (e <vei>) = / ( iy )e_odve, (2.147)
which can be written as
Bne ane
V. (ne Ved) = , 2.14
9 + (Me Vea) (at )e_o (2.148)

being veq the electron drift velocity. If the collisions do not modify the number
of electrons, we have (dn./dt),_, = 0, otherwise as the production of secondary
electrons or the electron attachment are included, the right-hand side member of
equation (2.148) becomes non-null. In the case of ionizing collisions, the right-hand
side member of equation (2.146) takes the following form using equation (2.36)

ofe
/ X( g;) dv, = / / X' fIF, — Xf. Fy) v, Gion(ve, ) dve dQ2 dv,
Ve e—o Ve /Q Jv,

= n/ /(X’fe’ — X 1) Ve Oipn(Ve, Q) dve dQ.  (2.149)
Ve /Q

Furthermore, in an ionizing collision X = 1 and X’ = 2, so that we obtain

on, e _
( 5 )e_o = /ve ( 5 )e_o dve = n, /ve /Q Ve Oion(Ve, ) fo dve d2

= nU/ Ve oion(ve)ff(ve) 47rv‘¢_,2 dv,, (2.150)
Ve

being 0j,,(v,.) the total electron ionization cross section and, as it was already
referred in equation (2.132) and it will be shown later on in Chap. 3, f°(v,) is the
isotropic component of the electron velocity distribution. Considering the ionization
frequency v, (Ve) = nov.0ion(V,), Wwe obtain for equation (2.150)

= n, < > . (2. 15 1)
a e Vion
e—o

Finally, introducing the electron particle current density I'e = 7, Veq, the continuity
equation (2.148) takes the form

on,
;t + (V.Te) = ne <vign> . (2.152)
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2.4.2 Egquation for Momentum Conservation

The equation of the second moment is the equation for momentum conservation
and it can be derived using X = mv, in equation (2.146) and integrating in velocity
space

d 0
y (ne m <ve>) + Z,: ox, (ne M <V Ve>)

e Fei e
S nem< ove =/ mve(Y) ave. (2.153)
- e m Ve ot J,_,

Since v,; = (Vej — Vedi) + Vedi> being vy the i-th component of the electron
drift velocity veg = <Ve>, we may write the second left-hand side term of
equation (2.153) under the form

Z ai. {ne m <((Vei = vear) + Vea)) ((Vej = Vo) + Vea) >}

- i
)

ad
Z 9xi {ne m (< (Uei - vedi) (vej - vedj) > + Vedi vedj)}
ij

aP’:f a(ne Uedi) 8ved,~
%: ax; + tZ/:m ax; Vedj + %:nem Vedi ox; (2.154)

where P;; are the components of a dyadic called pressure tensor defined by
P = nem <(Vei — Vedi) (Vej — Veqj) >, (2.155)
or under vectorial form as
P = Ne M <(Ve — Ved) (Ve — Ved)> = N M (<Ve V> — Veq Ved) - (2.156)
Therefore, using vectorial notation, we may write (2.154) as follows
(V.P) + m (V. (n Vea)) Vea + e 1 (Vea.V)Vea. (2.157)

On the other hand, the third left-hand side term of equation (2.153) takes the form

o, F
_lz‘j:nem<ave‘i> " = — lz‘j:ne 8jiFei = —n, Fe. (2.158)
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Replacing equations (2.157) and (2.158) in equation (2.153), and making use of
the continuity equation (2.152) in the first left-hand side term of equation (2.153),
we obtain

v d ~
Re M <Vjgp> Veg + N M 3: 4+ (V.P) + n.m (Vea-V)Vea — n. Fe = 1,
(2.159)
where the right-hand side member I; represents a source term in the equation for
electron momentum transfer obtained from the collision integral

e
I = / mve( f) dv, (2.160)
Ve ot e—o
such as in the continuity equation we had
e
Iy = / ( 8ft) dve = n, <vip> . (2.161)

The term I; may have a contribution from space-charge forces, as in the Vlasov
equation (see Sect.2.2.2), and a term due to the contribution of true collisions:

I = n.Fs + Tion- (2.162)
In the case of weak anisotropies in the electron velocity, the off-diagonal

elements of the pressure tensor P can be neglected, so that we may write the
divergence term in equation (2.159) under the form

~ oP;
(V.P) = €, (2.163)
i 3xi
with the diagonal elements of the pressure tensor (2.155) assumed equal
2 1 2
P, = nem<(vei—vedi) > = 3 nem<|ve—ved| > . (2164)

If further the electron velocity distribution is Maxwellian at temperature 7, we still
have

1 ) 3
, M <|Ve — Vaa|*> = 5 ke Te. (2.165)

so that we obtain for the divergence of the pressure tensor

(V.P) = Vp., (2.166)
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being p, = n.kgT, the electron scalar pressure. With equations (2.162) and (2.166)
the equation (2.159) takes the form

ad
ne m (at + (Ved-V) + <Vi0n>) Ved + VPe — N (Fe =+ Fs) = Il(coll)- (2167)

2.4.3 Egquation for Energy Conservation

1 2

Using the electron kinetic energy u = , mv,” as variable X in equation (2.146), we

obtain the equation for energy conservation of electrons

] 1 ] 1
o (ne 5 <v62>) + 2,: i, (ne 5 <v}? Uei>)
1 81} 2 Fei 1 a e
_ Zn 5 < av; > = / 5 mvez(g;)e_odve. (2.168)

The first left-hand side term is simply d(n, <u>)/0dt, while for the second left-hand
side term we may define a total heat flux vector by

1
Qe = 5 ne m <v(_,2 Ve>, (2.169)

and writing this term under the form of a vector divergence, (V. ge). In concerning
now the third left-hand side term, we may write in case of velocity independent
external forces

-y ne ) < 81)] > Fo = — Y 1.8 <vg> Fo = —n, (Vea. Fe). (2.170)

ij ij
We may write then equation (2.168) under the form

0

BI(ne <u>) + (V.qe) — 1 (Vea- Fe) = D, (2.171)

with

I —/ e d (2.172)
2 = VeI/l 9 - Ve. .

For the analysis it is sometimes convenient to separate the heat flux into an
agitation and a convective component. Thus taking into consideration that

Uez = |Ve - Vedl2 + 2 ((Ve - Ved)- Ved) + Ue%i (2173)
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and < ((Ve — Ved). Vea) >= 0, we may write

2

1 1
U= m<v> = m <|Ve — Vea|* > + vaefi

1
2
3kBT + lmv2 (2.174)
2P T g e

Defining the agitation heat flux (flux of the random or thermal energy across a
surface element moving with the drift velocity veq) as

1
q: = 2 ne m <|Ve - Vedl2 (Ve - Ved)>
1
=, nem <(v = 2 (Ve. Ved) + V3) (Ve — Vea)>, (2.175)
we obtain
Q¢ =q — 5 Nte <> Vea — 1o m ((<Ve Ve> — Ved Ved) - Ved)
= Qe — Ne <> Vea — (P. Ved). (2.176)
The heat current may be expressed in terms of the temperature gradient as
q = — kr VT,, being kr the thermal conductivity assumed independent of the
temperature.

The equation (2.171) takes hence the following form using equation (2.176) and
neglecting the dependence of the thermal conductivity on the temperature

ad 3 1 3 1
Y (ne (2 kg T, + 5 m vefi)) + V. (ne (2 kg T, + 5 m vefi) Ved)
—kr V2T, + V. (P.Vea) = ne (Vea. Fo) + D. (2.177)
Finally, in case of weak velocity anisotropies we still have
V. (P.Vea) = V.(n kg T, Vea) (2.178)
and therefore
a (3 1 5 1
9t (2 Pe + 5 ne m Uefj) + V. ((2 Pe + 2 ne m Ue%i) Ved)
—kr V’T, = n. (Vea. Fe) + b. (2.179)

At steady-state conditions and sufficiently high neutral gas pressure values, the
left-hand side member of equation (2.179) vanishes and the energy conservation
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is determined by the local balance between the work per time and volume units
realized by the external forces (i.e. the electric field), n, (veq- Fe) = (Je. E), being
Je = — en, veq the electron current density, and the power lost per volume unit in
collisions, — I5.

Appendices

A.2.1 Liouville Relation dq dp = dq’ dp’

Let us consider a transformation to pass from the variables g(¢) and p(¢), describing
a system in a given instant 7, to the variables ¢'(¢t 4+ dt) and p’(t + dr), describing
the same system at the instant ¢ + dr. The evolutions in time of g and p are given by
Hamilton’s equations

o0H 0H
g = and p = — . , (2.180)
ap dgq
so that we may write
o0H
g =q+qgd =q+ dt (2.181)
ap
o0H
p/=p+[7dt:p—a dt. (2.182)
q

Differentiating ¢’ and p’ in terms of ¢ and p we obtain

, d (dH d (0H
dg = dq + dt)dg + dt ) dp (2.183)
dg \ dp ap \ dp
H H
dp = dp + o (7 dt)dg + o0 dt)dp, (2.184)
dq dq ap dq

so that we may write in accordance with Jacobi’s theorem
dq'dp’ = J dq dp, (2.185)
where J is the determinant of the transformation

’H 0’H
1+ dqip dt o dt
J = (2.186)

’H 0’H
— g dt 1— apdg dt
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and therefore

92H 9*H
J=1 — d Odr?
* (Bqap 3p3q) f+ our)

=1 + O@@r). (2.187)
Neglecting the terms of (’)(dtz) order, we have J = 1, so that
dq'dp’ = dq dp. (2.188)

This proof is equivalent to calculate the Poisson brackets of variables ¢’ and p’
with respect to g and p

aq'.p) _ 0o dp'  9q 9p
"0y = = — 2.1
P = ) T ag dp T ap g A%

and verifying thus that
[d.P ]y = 1. (2.190)

This shows that the transformation (g, p) — (¢, p’) is canonical and the condition
dq'dp’ = dq dp is satisfied (see e.g. Goldstein 1980).

A.2.2 Demonstration of V = V' and |v| = |V'| in Sect. 2.3.1

From equation (2.81) we may write before and after a given collision, respectively

m+M)V = mve + M, (2.191)
m+M)V = mv, + Mv,. (2.192)
The right-hand side members of these two expressions are equal due to momentum

conservation, so that the left-hand side members are also equal, and hence V = V.
On the other hand, from equations (2.82) and (2.83), we may write

M \? M
2 2 2
=V 2 V. 2.193
Ve +(m+M) vt m+M( v) ( )

2
2 _ 2 " 25 ™y 2.194
Yo + m+M v m+M( v) ( )
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and from equations (2.84) and (2.85), with V = V', we get similar expressions for
v/ 2 and v/ . Substituting these expressions into the equation for energy conservation

mvr+ Mo = mv)>+ Mup?, (2.195)

we rapidly obtain v = v’.

A.2.3 Demonstration of Equation (2.91)

Let us consider the triangle v,, V and v, shown in Fig.2.9 obtained from Fig. 2.5.
We easily obtain

. 2
IV, = VI> = [V = vo|? sin® yo + (V. = Vol — [V —v,| cos x0)

= |V/e—V0|2 + |V_V0|2 -2 |Vé—V0| |V —v,| cos xo.

(2.196)
Fig. 2.9 Triangle obtained -
from Fig. 2.5, in which y is Vv Lo
the scattering angle in the {’/. N |V’e -V |
laboratory system |V - Vo |
\ X0 N
g -, — V’e
Vo [Ve— Vol

€

Substituting equations (2.84) and (2.85), with V' = V and |v/| = |v|, we may
write

M \? m \? m
(o) =i (0 ) =2 vl () ) coso
(2.197)

Inserting now (2.88), we still have

M
cos yo = m+ M cosy , (2.198)
/m? + M2 4+ 2 mM cos x

from which we obtain equation (2.91).
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Exercises

Exercise 2.1. Determine the electron rate coefficients of the inelastic electron-
molecule processes for excitation of a given state j from state i, with u; denoting
the threshold-energy:

(a) o;j(u) =0, for u < uy, and 0;;(u) = a;; = const, for u > wu; ;
(b) 0ij(u) = 0, for u < uy, and 0 (u) = a;; (u — uy), for u > uy,

in the case of electrons with a Maxwellian velocity distribution at temperature 7.

Resolution: For electrons following a Maxwellian velocity distribution at temper-
ature T, the isotropic component of the velocity distribution is

0 m 3/2 muv 2
fee) = ne(anBTe) xp (_ ZkBTe)’

obeying to the normalization condition

o0
/ feo(ve) 47tve2 dv, = n,,
0

whereas the electron rate coefficient (2.132) is given by

1 o0
Cij = <v, 0jj(ve)> = / Ve crij(ve)feo(ve) 4711)62 dv,,
ne v

i

being v = /2u;/m.
Rewriting these expressions in terms of the electron energy u =

3/2
m u
fow) = ne (anBTe) exp (_ kBTe)

émvez, we have

and

[ o £ du

i

C; =

ne m

from which we obtain the following expressions for the two cases proposed:

(a)
SkBTe Uijj Uijj
Cj = il - ;
/ \/ Tm i ( + kBTe) exp ( kgT,
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(b)

SkBTe Ujj Uij
C()j = m ZkBTe ajj 14+ szT expl| — kBT .

Exercise 2.2. Using the Klein-Rosseland relation (2.140) on the cross sections of
Exercise 2.1 show that the electron rate coefficients of direct and reverse processes
obey the equation (2.135).

Resolution: Using the relation (2.140) we obtain the reverse cross sections of
Exercise 2.1: (a) 0ji(u) = a;; ((u + uy)/u), for u > 0;(b) 0j;(u) = a;; (u + uy), for
u > 0. Calculating then the electron rate coefficient of the superelastic process

1 8 o0
G ="' / u 0 () £ () dia,
0

ne m

we obtain
Gii i
i _ exp( Uij )
Cj kgT,

Exercise 2.3. The cross sections for electron impact excitation of a dipole-allowed
transition at high energies is of the form (Massey and Burhop 1969)

i) = “7 In (b,-f ”)
u ) uij
1

being u = 2mve2 the electron energy, u;; the threshold-energy, and a;; and b;; two
constants dependent of the gas. Determine the expression for the corresponding
electron rate coefficient in the case of a Maxwellian velocity distribution at
temperature T,.

in both situations.

Resolution: In the case of a Maxwellian velocity distribution, the expression for
the rate coefficient is as follows

c \/ 8 1 /°° @ i\,
i = u o;jlu) €x — u,
y am (kgT,)3/? ! P kpT,

ujj

so that assuming, as in Exercise 2.1-(ii), a linear dependence oy (1) = c;; (4 — u;;) at
low energies up to the energy u* > u;;, we may write

C \/ 8keTe o 1 1+ " e “i 1y v
iji= e Cij ) Xp\—, . -
i om CBleCu 24T, ) TP\ k1 2kesT,
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u* n \/ 8 ajj /°°1 b u u d
P kgT, Tm (kBTe)3/2 u* N Ui P kgT, “

Making the substitution n = bj; u/u;j, we still obtain for the high-energy term

C + \/8 Gt /001 “i d
[T nn exp| — ,
i wm (kT2 by Jow 1 PA\T by kT, T)

which presents the following primitive for the integrand function with a =u;;/
(bij kBTe)

1 1 1
[ esp—anyay = =y esp=an+ | [ exp—an ay

1 1 (an)®* _ (an)’
=— 1 — Inn — — ceeen ]
g mmexpl “”)+a(n" RO T TR T (
Exercise 2.4. In a plasma column of radius R and infinite length the gas tempera-
ture presents a parabolic radial profile

2
T,0) = (T,(0) — Tw) (1— ;2) T T,

being 7,(0) and Ty = T,(R) the gas temperatures at the axis and at the wall,
respectively. Neglecting the radial dependence of the thermal conductivity coeffi-
cient through the gas temperature, determine the power loss by thermal conduction,
per volume unity.

Resolution: Using an analogous expression for molecules as indicated in
Sect.2.4.3, the power loss by thermal conduction by volume unity is Py =
— kr V2T, being k7 the thermal conductivity coefficient. We obtain therefore

1 d darT, 4
Peona = —k = k T(,O —Tw).
. Trdr(r dr) oo b (T,0) ~ Ty

On the other hand, the radially averaged temperature is

1

R
1
T = R2/0 T,(r) 2rdr = 5 (T,(0) + Tw) ,

so that the gas temperature at the axis of the column is 7,(0) = 27 — Ty . Using this
latter relation in the expression above, we obtain at the end

8
kr (T —Tw).

Peona = R2
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Chapter 3
Boltzmann Equation in Velocity Space

This chapter is devoted to the analysis of the electron Boltzmann transport equation
in the velocity space for the case of an applied external direct-current (DC) electric
field. The analysis is restricted to low and intermediate field values in order the
two-term expansion approximation of the electron velocity distribution around the
direction of electron drift is sufficiently accurate. The terms for the electron energy
gain from the field and electron energy losses by elastic and inelastic collisions,
as well as the corresponding energy-averaged power balance terms, are derived in
detail. At the end of the chapter some solutions to the Boltzmann equation are shown
and discussed for H, and N,.

3.1 First-Order Expansion of Collision Integral

3.1.1 Velocity Anisotropic Components

Let us start by considering a weakly ionized plasma n, < ng, with n; >~ n,, and
where n., n; and n, denote the number densities of electrons, ions and molecules,
respectively. We further assume the molecules in the ground-state only and the mass
of electrons much smaller than that of molecules, m/M < 1.

Under the assumption of weakly ionized gases, the interactions between charged
species are vanished when compared with the electron-molecule and ion-molecule
interactions, so that we have in equation (2.72) for electrons

AL
( ot )coll B ( ot )e—o (31)

The original version of this chapter was revised. An erratum to this chapter can be found at DOI
10.1007/ 978-3-319-09253-9_12
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o\ . (o
(at)coll B (af),-_,, ’ (3.2)

with £, (r, Ve, 1) and fi(r, vi, t) denoting the particle distribution functions of the two
species.

Contrary to the charged species, the gas of molecules is homogeneous, i.e. it
does not suffer the effects of diffusion gradients and external forces. The Boltzmann
equation for molecules takes its simplest form (2.73) and the corresponding velocity
distribution function is hence Maxwellian

M \? Mv?
F(v,) = n, _ M) 33
(o) = n (anBT(,) eXp( ZkBT(,) (3-3)

and in the case of ions

with v, = |Vv,| denoting the velocity absolute value, and where <v,>= 0.

The interactions resulting from space-charge fields in the Boltzmann equation
for electrons and ions, when they exist, are included in the terms for the applied
external forces, by considering F + F’ instead of F in the Boltzmann equation (2.8)
as we have seen in equation (2.79) for the case of Vlasov equation.

We still further assume that the external forces acting on the electrons and ions
are due to the presence of an electromagnetic field (E,B), so that the electron
acceleration due to Lorentz force is

Fe

e -
= — E + [0 X Ve, (3.4)
m m

with @, = (e/m) B denoting the electron cyclotron frequency vector, and where e
denotes the absolute value of the electron charge, while for the ions we have

B B4 v (3.5)
M = M @ i Vil , .
with @,; = — (e/M) B, and where ¢ is a single ion charge.

With equations (3.1) and (3.4), the Boltzmann equation for electrons (2.8), the
only we will consider here, takes the following form

o o, e . A
o (ve. 3r) n ({— “E + [0 xve]} . ave) - (BI )H . (3.6)

with the collision term, assuming by now elastic collisions only, expressed as in
equation (2.35)

(38{‘6) = / /(fe’F; —f, F)vo(v, Q) dQ dv, 3.7
e—o Q Jy,
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and where v = |v| denotes the absolute value of the relative velocity v = ve — V,.
The interactions electron-molecule are assumed as given by an isotropic central
force depending only of the distance between the two particles, and in which the
scattering in the solid-angle d2 is o(v,2) dQ2 = o(v,y) 27 siny dy, being
o (v, 2) the differential cross section and y the scattering angle in the centre-of-
mass system.

By now we further assume, for simplification, the so-called Lorentz gas model
for electron-molecule interactions, in which due to the hard inequality m < M,
we assume approximately |[v)| =~ [vo| =~ Oand |v)] =~ |ve|] =~ |v|. This
approximation corresponds to consider m/M =~ 0. Under these approximations, the
collision term (3.7) writes as follows

af, ™ '
( g;) = ny ve/ (f, = 1) 0(ve. x0) 27 sin yo dyo (3.8)
e—o 0

where f, and f, denotes f,(v,) and f,(v,), respectively, and y is the scattering angle
in the laboratory system. Since f, may be expressed in terms of f, and yo, the
collisional term (3.8) is a linear operator represented as /(f,) from now on.

The electron transport due to the effects of external applied forces, resulting from
electric and magnetic fields, as well as due to the presence of density gradients, is
an anisotropic perturbation with respect to the situation of isotropic equilibrium,
in which f,(v.) depends only of the absolute value of the electron velocity, and
not of its orientation. The drift or average vector velocity gained by the electrons
from these perturbations is, in most cases, much smaller than the random or
thermal velocity, so that the changes in the velocity distribution function are small
perturbations relatively to the equilibrium distribution function. This allows the
normal method for solution of the electron Boltzmann equation to be the expansion
of the actual distribution function as a sum of the isotropic (equilibrium) component
with small anisotropic corrective terms.

In the case of molecules and if the departures from equilibrium are caused by
some agent o/, the velocity distribution around the equilibrium can be expanded
in powers of «. This procedure is known as the Enskog method for solving the
Boltzmann equation and it was highly developed by Chapman and Cowling (1939).
However, this method does not converge well for charged particles in a field. The
technique most applicable in this case is the expansion of the velocity distribution
function in terms of spherical harmonics. This approach has been presented by
Allis (1956) and has the great advantage that very often one corrective term in the
expansion is sufficient for obtaining an accurate approximation for the distribution
function.

The coordinate system is selected so that the preferred direction of orientation
(i.e. the polar axis of spherical coordinates) is the direction of the anisotropy
produced either by the applied electric or magnetic fields, or the density gradients.
Then we can expand the distribution function f, (r, ve, t) in spherical harmonics, that
is on spherical functions depending on the spatial orientation of the velocity vector
ve with respect to the direction of the anisotropy (z axis)
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fe®ve.t) = Y fl(r.ve.1) Pi(cos b)), (3.9)

=0

where P;(cos 0) are the Legendre polynomials and the functions f! depend only on
the absolute value of velocity. The first Legendre polynomials are

1
Po(cosB) = 1; Pi(cosf) = cosf; Pr(cosf) = 5 (3cos’f —1);
1
P;3(cosf) = 5 cosf (5cos’H —3) ; etc . (3.10)

If the anisotropies are small the series (3.9) converges sufficiently rapidly for the
first two terms to suffice, but we shall not assume that feo(r, Ve, 1) is Maxwellian, as
this is generally far from true even when a relatively weak electric field is present

fo(r, Ve, 1) feo(r, Ve, 1) + fel(r, Ve, 1) cosB . (3.11)

It is worth noting here that directing the polar axis of spherical coordinates along
the direction of anisotropy, the component fl (r, ve, ) may be regarded as a vector
oriented towards this direction (see Fig. 3.1)

fr Ve ) ~ o, v 1) + (f*e(r, ve,t).ze) . (3.12)

e

The equation (3.12) shows that at a given instant ¢, space position r, and same
absolute value of velocity but with different orientations, the electron velocity dis-
tribution function is equal to f° + £, £ and f° — f1, for electrons with instantaneous
velocities parallel, perpendicular and opposite to the anisotropy direction.

Because of the orthogonality of spherical harmonics

47
P, Py dQ = Sw 3.13
/Q ; Py SRR (3.13)

in which §;y = 1 for! = I' and §;y = 0 for [ # I, we have for any scalar function
h(v,) depending only on the absolute value of velocity

Fig. 3.1 Anisotropic v,
component directed along the
z axis. 0 is the angle between ﬁ 0
the instantaneous velocity v,
and the anisotropy direction f 1

e

!
NV
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/ h(v,) fo(r, Ve, 1) dQ = h(v,)fO(x,v,,1) 47 . (3.14)
Q

Thus, the two scalars of great interest here such as the electron number density
n,(r, ) and the mean energy <u>(r, ) depend on f2 only

o0
ne(r,t) = /fe(r,ve,t) dv, = / ff(r,ve,t) 47tve2 dv, (3.15)
Ve 0

1 1 ©
<u>(r,t) = ; / ufo(r,ve, t) dve = i / ufeo(r, Ve, 1) 47rv€2 dv, ,
e 0

e Ve

(3.16)

with u = é mv 2 denoting the electron energy.
On the other hand, for the velocity vector ve, whose components are
Vex = Ve SiN6 cos@, vy = v, sin@ sing, and v, = v, cos O (see Fig.3.2), in

which v,, is directed along the direction of the anisotropy f! (polar axis), we have

/Vefe(r,ve,t) aQ = ve/fe(r,ve,t) P dQe, = ”3 £ (r, ve.1) 4, (3.17)
Q Q

so that the electron drift, or average vector velocity, Veg =<V,> is given by

1 1 [
Ved(rv t) = / Vef;'(rv Vev t) dve = / / Ve f;.’(rs Ves t) ve2 dve dQ
Ne Jy, ne Jo Q
I (v 4 )
= f.(r,v..0) 4mv,” dv, . (3.18)
Ne Jo 3

Only the anisotropy of first order contributes for the average vector velocity.
In a gas of electrons under isotropic equilibrium we have obviously veqg = 0. It is
worth noting that when higher anisotropies exist, the electron drift velocity is always
oriented along the direction of the first anisotropy, f1.

Fig. 3.2 Decomposition of
instantaneous velocity v,
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Let us consider now the situation where the symmetry around the polar axis
does not exist, as it happens in the presence of a magnetic field. In this case the
dependence on the azimuthal coordinate ¢ needs to be considered as well and
we need to use the associated Legendre functions P}'(cos 6). The expansion (3.9)
should be then replaced with

l

oo
fe(r, Ve, [) = f;;o(r, Ve, t) + Z Z [le(r, Ve, t) Clm(e, ¢) + qlm(r, Ve, [) Slm(e, ¢)] 5
I=1 m=0
(3.19)
with the functions Cj,, and S, given by

Cin(0,¢) = P'(cosB) cos(mep), Sm(0,¢) = P'(cosf) sin(m¢p) (3.20)

and where P}"(cos 0) are the associated Legendre functions, in which P? = P;. The
expansion (3.19) limited to first order anisotropies writes as follows

Jo(r, Ve, 1) :feo + pi sinf cos¢ + g1 sinf sing + pjo cos6
v Vey v
~f + pu v” + qn Uey + po ©. (3.21)

e e Ue

Then, the drift velocity (3.18) is given by

1 o0
Ved(T, 1) = , / /Qve (P11 Clzl ex + g Slzl ey + pio Clz0 e;) v“_,2 dv, dQ2
e JO

1 [,
= / 3 (P11 ex + qii ey + pioe,) dmv? dv,. (3.22)
0

Me
In the absence of the dependence on ¢, we obtain again equations (3.11) and (3.18)
with Pl = fel .

3.1.2 Relaxation of the Anisotropies

Let us consider now the collision operator /(f,) for the interactions electron-
molecule under the Lorentz gas approximation (3.8), in the case of expansion (3.9)
as the electron velocity distribution f, = f.(r, ve, #) does not exhibit the azimuthal
dependence ¢. The velocity distribution function after the collision f, = f,(r, v., 1),

with |v,| = |ve| under this approximation, can be written as
o0
fer Ve 1) = ) fi(rve,1) Pilcos0) (3.23)
1=0

where 6’ is the angle of the instantaneous velocity v, with respect to the polar
axis. From Fig.3.3 and using the addition theorem for spherical harmonics, the
Legendre polynomials P;(cos 0) are given by
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Fig. 3.3 Decomposition of z
v, and v, vectors, with xo

denoting the scattering angle R
in the laboratory system \Y;

<

Pi(cos 8" = Py(cos B) Py(cos xo)

l

[—m)!
+2 z_:l El + Z))| P}(cos 0) P}"(cos o) cos(m(¢/ —¢)) . (3.24)

As o (v, xo) is assumed independent of the azimuthal angle, the term in
cos(m(¢’—¢)) goes out in integrating equation (3.8), so that the Boltzmann collision
integral writes as follows

1) = ny v, / 31 Pi(cos 0) [Pi(cos o) — 10 (v, o) 27 sin 1o do -
0

1=0
(3.25)
Then the collision term can be expressed as
o0
I(f.) = > _I'(f}) Pi(cos ) , (3.26)
=0
introducing the collision integral terms of different order
I'th = —vafl, (3.27)

in which v.(v,) represents a set of collision frequencies in the laboratory system
defined as follows

vcl(ve) = Ny Ue/ [1 - PI(COS Xo)]U(Ue, XO) 27 sin X0 dXO . (328)
0

The first frequency is v,9 = 0 and accordingly IO(feO) = 0. This is not
satisfactory, so that we will have to calculate later on this term using the next order of
approximation. In fact, this is a consequence of the assumption |v,| = |v,|, which
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neglects the modifications operated by the collisions into the isotropic part of the
electron distribution function. The next two frequencies are respectively

Ve1(ve) = n, ve/ (1 —cos xo) 0(ve, xo) 27 sin yo dxo (3.29)
0

T3
v (ve) = n, ve/ 5 sin? xo (e, o) 27 sin yo dxo. (3.30)
0

The frequency v, is the collision frequency for momentum transfer and is of such
importance in transport theory that the simpler symbol v,, will be used for it. It is
a weighted collision frequency in which the backward scattering counts double, the
right-angle scattering has the weight one, and the forward scattering is not counted.
From such frequency we may define the collision cross section for momentum
transfer

Vm

/ (1 —cos o) 0(ve, xo) 27 sin yo dxo. (3.31)
0

On the other hand, the frequency v, may be seen as a scattering frequency in
which neither forward nor backward scattering is accounted for and the right-angle
scattering has the weight 3/2.

Obviously, another important collision frequency we may also define is the total
collision frequency

ve(ve) = n, ve/ o (v, Yo) 27 sin yo dyo. (3.32)
0

The integral in (3.32) is generally improper as o (v,, yo) has a singularity in the
forward direction. However, the apertures of experimental apparatus prevent obser-
vations from covering this singularity so that this frequency is usually expressed
in terms of an incomplete integral. As the scattering is isotropic the differential
cross section is independent of the polar coordinate, o (v., yo) = o(v.), and due to
the orthogonality of spherical harmonics ( fQ Py Py dQ = fQ cos o d2 = 0),
the collision frequency for momentum transfer (3.29) transforms into the total
frequency (3.32).

The equation (3.27) shows that the frequencies (3.28) are the relaxation frequen-
cies for the components of the electron velocity distribution function expressed by
expansion (3.9). When the external forces or other effects responsible for creation
of anisotropies, such as density gradients, are suppressed, the electron distribution
function initially out of equilibrium is restored to a situation of local equilibrium
through the collisions. From equations (3.6), (3.9), (3.26) and (3.27), we find for
each component f/

a /)
g: = —vaf, (3.33)

from which we obtain

fl( = f0) exp7 . (3.34)
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Since v = 0, we find f2(r) = f°(0). This is a consequence of the assumption
m/M =~ 0 made at the beginning of this section, which means that with molecules
infinitely heavy the collisions do not change the isotropic component of the velocity
distribution function. If the isotropic part of the velocity distribution function is
not Maxwellian, the collisions are unable to produce any evolution towards the
equilibrium. On the contrary, the anisotropic components fel, with [ > 1, are
rapidly smoothed with the frequencies v;. If the deviation relatively to the isotropic
distribution is not strong the first correction fe1 is sufficient and this component
evolves at the frequency for momentum transfer, v,,. The collisions are hence much
more efficient to make the electron velocity distribution function becomes isotropic
than to make the isotropic component becomes Maxwellian. Due to the small m/M
ratio we need many collisions before the distribution component fe0 appreciably
changes. This will be realized later on by introducing higher order terms into
equation (3.7).

3.1.3 Coupling Between the Anisotropies

Let us consider in this section the situation where the anisotropic deviations,
relatively to the equilibrium isotropic electron distribution function, are produced
by an applied electric field directed along the negative z axis, E = — E e,. Further
only elastic collisions are considered by now. Due to the negative sign of the electron
charge the first anisotropy f! is directed along the positive z axis (see Fig. 3.4).

Fig. 3.4 Orientations of the Te
electric field, anisotropic
component f! of the velocity
distribution function, and
instantaneous velocity v,

Nv

A
m)
[~
m_'_\l"%

In this case the Boltzmann equation (3.6) reduces to the form

of. e e\ _ (e
a  m (E 3ve) - (at )e_o ’ (3.35)

in which (9f,/01).—, = I(f.) is the collision term given by (3.25), assuming elastic
collisions only, under the Lorentz gas model approximation in which m/M ~ 0.

Assuming the independence on the azimuthal angle, the equation (3.35) can be
written under the following form using the limited expansion (3.11)

af, e af, 1 of. _
% " m (E'(Bve e + v, 96 eo)) = I(f,) , (3.36)
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in which
e ay o)
= ¢ ¢ 0, 3.37
v, v, + v, €08 ( )
1 o VA
= "¢ 0. 3.38
v, 00 v 38
Since (e, . ;) = cosf and (e, . eg) = —sin6, and using the expansion for the

collision term (3.26), we may write

1 0 1 1
of; 4 e cos 6 + cE (U + o, cosf Jcosh + fe sin® @
ot ot m v, 0V, Ve

= I°¢)+1'(f)) cosb . (3.39)

Writing this equation in terms of the Legendre polynomials P (cos 6) = cos 6 and
P(cos ) = }(3cos® — 1), we obtain

o | o
9 + 9 Pi(cos6)
¢E [ of° 2 (off S 19, , .,
+ N |:8ve Pi(cosh) + 3 (8ve - ve)Pz(cos@) + 302 dv, (v, fe):|
= I°() + I'(f}) Pi(cos ) . (3.40)

Separating now in equations for Py(cos ) = 1 and P;(cos #) = cos 6, and using
equation (3.27) for the components of the collisional term, we finally obtain

' eE 1 3, ,

bt aa gy, WOL) = v (3.41)
af! eE 9f°
af§ o a{f = —val . (3.42)

If instead of the limited expansion (3.11) we had inserted into equation (3.35)
the full expansion (3.9), the equation (3.35) with an infinite number of terms
would be converted into an infinite set of coupled equations with a finite number
of terms. By using the orthogonality properties of the Legendre polynomials, as
well as appropriate recursion relations between them, it is possible to convert
equation (3.35) in an infinite set of coupled equations, in which the equation for
the anisotropic component fel is coupled to the equations for fel_1 and ng'1 (Delcroix
1963, 1966; Cherrington 1980; Delcroix and Bers 1994). In this system the equation
for feﬂ remains as equation (3.41), while the complete expressions for the equations
of the first two anisotropies are as follows (see Appendix A.3.1)
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af! eE [0f° 200 4] 1
3[ + m I:ave + 5U63 ave (ve f;z)} - _Vclf;_, (343)
2 E [ 2v, 1

. L e [ v, 0 (fe) N 39 (0

ot m 3 v, \ v, vt dv,

fj’):| = —vafr. 3.44)

The electric field has hence the property of coupling the nearest anisotropies. The
full set of equations can be solved using only approximated methods, in which the
simplest solution is obtained assuming the rapid convergence (3.11) and the system
limited to equations (3.41) and (3.42). The two-term approximation will suffice
when the change of velocity due to the action of the applied electric field during
the relaxation time of fel, i.e. vm_l, is much smaller than the velocity of electrons

E
-« . (3.45)
m

m

Considering the collision cross section for momentum transfer (3.31), we obtain
eE
A< vl (3.46)
m

being A = 1/(n,0,,) the collision mean free path of electrons. Thus an important
criterion for the validity of the two-term approximation is the magnitude of the field
to be sufficiently small in order the work realized by the field along the free path
does not change appreciably the energy of electrons

eEL < u, (3.47)

1

with u = , mv?2. At low E/n, values the higher anisotropies become small

corrections.

3.1.4 Electron Conductivity

For a constant electric field and steady-state conditions, which are attained after a
time ~ vm_l, we have 8f(_,1 /9t = 0 in equation (3.42), so that we obtain

eE df? e
mv,, dv,

fi = —

(3

- (3.48)

Introducing now this equation in (3.18), the drift or average vector velocity is

E [® 1 df° 4mv3
V= — © / o Ao e, . (3.49)
0 Vi dUe 3

nem
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Since veqg = — . E, we immediately obtain the electron mobility p, from (3.49),
whereas from the electron current density Jo = — en.vea = 0. E, we obtain the
electron conductivity

dv, . (3.50)

e’ /°° 1 df 4nv}?
Oce = —
0

m V dv, 3

Because f© — 0 when v, — 0o, we may integrate (3.50) by parts and alternatively
to write

e [®1 d (v,
ce = ¢ 4v? dv, , 3.51
K m/o v? dv, (3vm)fe le @V 1)
which can also be expressed as follows
en, 1 d v 3
e = < ¢ > 3.52
K m  v? dv, (3vm) (3.52)

Finally, as v,, is independent of the velocity of electrons, we simply obtain

e*n,

Oue = . (3.53)

mvy,

3.1.5 Egquation for Momentum Conservation

In equations (3.26) and (3.27) we have seen that the electron neutral collision
operator (df,/0t).—, = I(f,) may be expanded in spherical harmonics, with each
term given by a collision frequency of different order

(3fe) = — Z ver ! Pi(cosB) , (3.54)

ot ), pa

in which the frequency of Ist order v, is the collision frequency for momen-
tum transfer v,,. We are now in conditions to determine the collision operator
Li(cony (2.160) and (2.162) in equation for momentum conservation (2.167). In
fact, using the orthogonality of the Legendre polynomials, we obtain the following
expression for the collision source term Ij(cony using equation (3.17)

o0
Licony = — Z/ m Ve vclfel Pi(cos ) dv,
1=0 *'Ve
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*
= / m v, dnv? dv, (3.55)
0 3

where f! is the first anisotropic component. Assuming this anisotropy expressed as
fi = p11 e + q11 ey + pio €, and the drift velocity (3.18) given by

1 [,
Ve = / et an e tpoe) drolde. (356
0

e

the equation (3.55) may be expressed as
Licoy = — nem (Vy, . Ved) | (3.57)
being v, a diagonal tensor of elements Vi (xr), Vin(yy)» and Viy(zz), such as

fooo Ve Vi 11 02 dv,
Vm(xx) = 00 (358)
Jo ve p11 v2 dv,

and likewise expressions for the other two elements.

In the absence of a magnetic field and for a homogeneous plasma, in which the
anisotropy exists along a sole direction, created e.g. by an applied electric field, we
may write equation (3.57) as follows

Loy = — e M V), Ved . (3.59)

being v;, a scalar quantity. Substituting equation (3.59) in the equation for momen-
tum conservation (2.167), we obtain

d
e m (8[ + (Ved V)) Ved + Vpe — n, (Fe+Fs) = —n,m (V:y, + <Vion>) Ved » (3.60)

where Fe + Fy = — ¢ (E + E) in case of electric fields are only present, and where
e and E denote the absolute value of the electron charge and the space-charge field.
In most cases we have v/, > <vjp,>.

Some particular derivations may now be obtained from equation (3.60). First of
all, the inertia term n, m (Veg .V)Vea can usually be neglected for electrons, which
associated with the neglecting of <v;,,> as compared to v/, and of the space-charge
field, allows to write under stationary conditions

V(nkgT,) + noeE = —n, m v,’n Ved - 3.61)
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If further T, is spatially constant, we still have

k Te e
Lo = ne Vea = — s Vn, — e ©
mv), mv),
=—-D,Vn, — n, 4. E, (3.62)
where D, = kgT,/(mv]) and u, = e/(mv)) are the electron free diffusion

coefficient and the electron mobility, respectively. As shown in Exercise 3.6, the
frequency v/, obtained here is related with the microscopic effective collision
frequency v, (v.) through the expression (the term effective results from the
inclusion of inelastic collisions in parallel with elastic collisions; see Sect.3.3.1)

1 1 d 3
=< (”e )>. (3.63)

2 e
v, v dv, \3 V¢,

On the other hand, near a cathode the electrons are distributed in the potential
sheath E = — VV(r), with a vanishingly small electron particle current towards the
cathode, T, >~ 0, which allows to write from equation (3.62)

0~ —D,Vn, + n jte VV(r). (3.64)

Integrating we obtain the Maxwell-Boltzmann equilibrium relation
Vv
n(r) = n exp (e (r)) , (3.65)
Uy,

assuming V(0) = 0 and n,(0) = n? at the plasma boundary, V(r) < 0 in the cathode
region, and where u; = eD,/ 4. is a parameter termed characteristic energy. When
the velocity distribution is Maxwellian and D, and p, are given by the expressions
above, we obtain u; = kpT,, otherwise u; should be considered in equation (3.65)
instead of kzT, (Sect.5.1.1).

Finally, the inertia term cannot be usually neglected for ions, so that as only
the electric field exists together with the inertia term (which is valid for low
densities and consequently low ion collision frequencies, v; >~ 0), and vanished
ion temperatures 7; ~ 0, we obtain from an equivalent equation (3.60) for ions

ni M (vig .V)via + njeVV = 0, (3.60)
with v;; denoting the ion drift velocity. Then, in slab geometry we find

dvid av
M v; = — 3.67
vid dx ¢ dx ( )
and integrating this equation with v;; = 0 and V = 0 at x = 0, and V(x) < O for
x > 0, we obtain the equation for ion energy conservation

1
ZMU,.j = —eV. (3.68)
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3.2 Cooling of Electron Gas

3.2.1 Elastic Collision Term

Up to now we have assumed the molecules infinitely heavy (Lorentz gas model)
which has led to find v.o = 0 in equation (3.28). Due to this fact, the elastic
collisions, the only we are considering by now, do not act upon the isotropic
component of the electron velocity distribution function, £2(v,), and the thermody-
namic equilibrium, in which the isotropic component goes towards a Maxwellian
at temperature 7, = T,, is never achieved. In fact, due to the small ratio
m/M, it may take many thousand collisions to change the energy of an electron
appreciably, whereas one collision defined by the frequency v,, is enough to cancel
its momentum. However, if we assume m/M = 0 we are not considering the small
change of energy between the electrons and the molecules. In the absence of any
mechanism for electron cooling, the electric field would produce an infinity heating.
On the contrary, the first anisotropic component f! (v,) changes with the frequency
for momentum transfer v,,, so that the isotropic equilibrium veg = <ve> = 0 is
achieved for times of few v, 1.

Let us now consider the situation where the electrons transfer to the molecules a
non-null energy as a result of elastic collisions (v, — v, < v, and v, — v} > v,),
but we will firstly assume the molecules at rest before the collision (v, = 0). Under
these conditions we have

vz—vé2 = aquv?, (3.69)
in which as shown in equation (2.89)

2mM | 7
o = (m + M) (1—cosy) , (3.70)
being y the scattering angle in the centre-of-mass system.

In order to consider the possibility of f°(v.) tends toward an equilibrium
distribution after many thousand collisions occur, higher order terms need to be
included in the collision term (3.7). The corresponding collision term for the
isotropic component, as given by (3.7) and (3.26), is as follows

@) = // (R F,v o', Q) —f(v) F, vo(v,Q)) d2dv,, (3.71)
Q Vo

with v = |ve — Vo| and v = |v, —v,|. Since v, = 0 and v, is small, we have
v=v,and v =~ v;, whereas for the two velocity-volume elements (dve = d*v,)
we may write
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d*v! V)3

Do, ve3’ (3.72)
so that using Liouville’s theorem
v, vy = vl v, (3.73)
we find
v/3
vy = ve3 A (3.74)

Substituting (3.74) into equation (3.71), we obtain
14

ve
Io(ff)zfgfff(v;) F, ¢ o(v,,Q) dQ dv,

ve

— / / (e Fy v 0(ve, Q) dQ dv, . (3.75)
Q Jy,

Let us expand now f2(v) v.* o (v), Q) around f°(v,) v,* o (v, Q) (see Allis 1956)

0
L) vt o, Q) = flw) v ove, Q) + v2) () (we) v, o (ve, Q) Av?,
ve
(3.76)
in which Av? = v? — v,? = a v /2 as given by (3.69).
The first term of (3.76) cancels with the second term of (3.75) and since
/ F;, dV:) =n,,
we obtain for the collision term of the isotropic component
@) = n / 9 (o) v (0. Q) © dS (3.77)
)T g gy Vet e TS, R '

Substituting the expression (3.70) for «, we still have

2mM 1 ad

0,0y _—
1 (fe) = Ho (m+M)2 Ve a(l)ez)

(feo(ve) ve4 /On 0 (Ve, x) (1 —cos y) 2m sin y d)() .
(3.78)

We may use now the frequency for momentum transfer in the centre-of-mass
system similar to that defined in the laboratory system (3.29)

Ve(Ve) = no ve/ (1 —cosy) a(ve, x) 2 siny dy , (3.79)
0
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so that (3.78) takes the form

oM 1 X
(m+M)2 v, a(veZ) (ff v, l)g) .

¢ =

(3.80)

The relation between the frequencies v, and v,, depends how the cross section varies
with y. In first order this is given by the relation between the electron velocities in
the laboratory and centre-of-mass systems (2.84)

M

Vn(ve) = m+M Vg(ve) > (3.81)

so that we may write (3.80) as

2m 1 d

0,0y __ 3
PO = ut v, a0 0 ) G5

The equation (3.82) is obtained assuming the molecules at rest before the
collision. Nevertheless, the final expression for 7°(f°) should vanish as f°(v,) tends
toward the equilibrium with a Maxwellian at the same temperature as the molecules,
T,=T,,

2

3/2
0 m mve
e) = HNe — . 3.83
fe@e) = n (anBTo) xp ( 2kBT0) (3.83)

Since in equilibrium we have

2kpT,  df?

0 —
fowe) + dw2) " 0,

we should introduce this second term as a correction in (3.82) writing the collision
term as follows (Allis 1956)

oo 2m 1T, kT, Of°
’@“wwawﬁh%@wrnmwﬂ‘ G589

This assures to be 1°(f%) = 0 as the electron distribution function tends toward the
equilibrium with the molecules at the temperature T,. Replacing the derivative on
v,2 with v, and taking into account the strong inequality m < M, we may still write

Py =" vl 9 [v;” - (f£+ %7, 8f£):| . (3.85)

mv, 0V,

This expression was firstly obtained by Chapman and Cowling (1939). It is worth
noting here that as the electrons are generally hotter than the molecules in a
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discharge out of equilibrium, the corrective term in (3.85) represents the small
heating for the electrons due to collisions with non-frozen molecules. The equa-
tion (3.85) is nonvanishing as long as the isotropic component of the electron
velocity distribution function does not attain a Maxwellian with the same tempera-
ture of the molecules.

From equation (3.85) we obtain a characteristic relaxation frequency for energy
transfer v, to replace our first estimate v,o = 0, obtained in (3.28) for the case of
molecules of infinite mass. Since we should have I°(f°) = — v, f°, we may write
approximately

ve(ve) ~ Z U (ve) - (3.86)

This frequency represents the relaxation frequency for the isotropic component of
the electron velocity distribution function as only elastic collisions are taken into
account. This frequency is significantly smaller than the frequency v,, for relaxation
of the first anisotropy !, which means that the effect of elastic collisions upon the
isotropic component is M /m times longer than the effect upon the anisotropic part
of the distribution. The collisions are much more efficient to achieve the isotropic
equilibrium than to establish the energy equilibration between the electrons and
molecules (thermodynamic equilibrium).

For high and intermediate values of the ionization degree n,/n,, it may occur the
frequency of electron-electron collisions to be larger than the frequency of energy
transfer between the electrons and the molecules, v,_. > v,. In this case, the
isotropic distribution firstly tends to a Maxwellian at a higher temperature 7, > T,,
in a time scale ~ vejle, and later on the temperature 7, evolves toward 7, in a longer

time scale ~ v,~!. During this time interval the corrective term in equation (3.85) is

~ = (To/Te)feO-

3.2.2 Flux in Velocity Space

It was seen through equations (3.43) and (3.44) that the neglect of f? and higher
terms is valid for low and moderate values of the applied electric field E. Under
such conditions, these equations reduce then to (3.41) and (3.42), with the collision
operator in the first equation given by equation (3.85)

Bfeo eE 1 d 2y M 1 9 3 o . ksT, Bfeo
ot + m 3v2 0v, (ve fE) M v2? 0v, |:ve b (fe + mv, 0v,
(3.87)
1
Yo | B _ Sl (3.88)

ot m 0v,
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Since the collisions are much more efficient to produce a steady-state for fe1 than for

12, we may start by assuming df!! /3¢ = 0 in equation (3.88) and therefore
! eE of°
= - . (3.89)
mv,, 0v,

Inserting now fe1 in (3.87), we obtain

o) (eEN' 1 0 (v o _ m 1 9 . f0+kBT0 af?
ot m) v2 v, \3v, dv,) Muv2ao [ "\ myu dv /]|
(3.90)

Let us consider by now steady-state conditions also for the isotropic component
of the velocity distribution function, df°/d¢ = 0. By inspection of equation (3.90)
we can see that it presents the form of a divergence of a radial vector in velocity
space. In fact, the steady-state equation can be rewritten under the form

1 d
b2 gy, WEEF D) =0, (3.91)

with gOE and ggl denoting the components of a radial flow vector in velocity space,
positive and negative, respectively, taking into account the acceleration of electrons
by the electric field and the electron stopping due to recoil collisions

1 [eE\? df°
0 e
=_ 0 3.92
8E 3v, (m) dv, o ( )
0 m ksT, df’
- _ oo [ £° 0. 3.93
8er m e (e+mve dv, = (3.93)

Allis and Haus (1974) presented an analytic interpretation based upon the energy-
flow processes in the electron gas, by now limited to acceleration by the electric field
and deceleration by elastic collisions. In this approach the total radial flow through
a sphere of radius v, in velocity space is

G = /(V.g) dv, = /(g.ev) v dSQ (3.94)
Ve Q

with g = (gOE + ggl) ey, and where e, = v/v, denotes the radial unitary vector
in velocity space (see Fig.3.5). The gain G represents the rate of flow of electrons
across a sphere of velocity magnitude v, in the direction of increasing velocity.
Since g is radial, we simply obtain

G =Gg+Guy = (g%+8%)dmv?. (3.95)
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Fig. 3.5 Flux of electrons in \Y)

. ez
velocity space
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The interpretation due to Allis is clear. Since the electric field accelerates
the electrons, the gain G is positive and it represents the upflux of electrons across
the sphere of radius v,, whereas the gain G,; < 0 represents the downflux across the
same sphere due to elastic collisions. Multiplying the Boltzmann equation (3.91) by
47 v 2, we obtain

d
dv (GE+Goy) =0, (3.96)

which shows that the total gain is constant across any sphere of radius v, (that is the
divergence of g is null). Since G = 0 at v, = 0 and v, = oo, we must also have
G(v,) = 0 over any sphere of radius v,. The equation (3.96) transforms hence into

Ge+Ga = 0 (3.97)
and because of (3.95), we still have

grtey =0. (3.98)

The equation (3.98) allows us to find a general solution to the Boltzmann
equation. In fact, using (3.92) and (3.93) we obtain

1 (eEN*M  kgT,\ df°
¢ Gl e (3.99)
3vi\m) m m | dv,

whose solution is (Margenau 1946)

Ve ’
— 40 _ Ve /
2w = f20) exp /O (e av, | . (3.100)
vy \m m m
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If the electric field is zero, then the electron distribution function is a Maxwellian
at the gas temperature 7, as expected. If E is not zero, then the specific form of
the distribution function will depend on the velocity dependence of the collision
frequency v,,(v,). The function f2(v,) is obviously a decreasing function of v, being
obtained by the normalization condition (3.15)

o0
n, =/ (v,) 4mv}? dv, . (3.101)
0

The simplest case to consider is the constant collision frequency case v,, = const.
Defining an electron temperature by

M [eE\*
kgT, = + kgT, , (3.102)
v \m
we obtain from equation (3.100)
L) = £(0) e e (3.103)
v,) = xp | — . .
e e P\™ 27,

In this case the solution is a Maxwellian, at temperature 7, > Ty, and the difference
between the two temperatures increases as the magnitude of the electric field
increases. On the other hand, if v,, relies on v, we may establish a criterion to define
a critical electric field, E.., above which the distribution function ff(ve) significantly
deviates from a Maxwellian. Such criterion may be expressed as

M [eE\’
~ kgT, , (3.104)
v\ m
which allows to obtain
3kgT,
Ew) ~ " 7 v (3.105)
e M

E. is hence function of v, through v,,. Thus, for a given electric field, fe0 is less
perturbed at the velocities where the collision frequency is high, and significantly
deviated from a Maxwellian at the velocities where the frequency v, is low.

The second simplest case to consider is the collision mean free path, A,
independent of the electron velocity. Since A = v,/v,, with v,, = n,v,0,, we
have A = 1/(n,0,,) =const, which is known as hard sphere model. Assuming also
a high electric field such that E > E. in equation (3.100), we obtain the following
solution

Ve /3
o) = f2(0) exp (— / 4”: dv;) ) (3.106)
0
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with v,; denoting a constant characteristic electron velocity defined as
AM (eE \’
vt = (e A) . (3.107)
3m \m

Equation (3.106) is easily integrated given

4
L) = £2(0) exp (— 54) : (3.108)

el

This solution is known in the literature as Druyvesteyn distribution (Druyvesteyn
and Penning 1940) and it presents the particularity of varying with exp(—v2)
rather than exp(—v2) as in a Maxwellian. The Druyvesteyn distribution drops
off much more rapidly than the Maxwellian distribution at higher energies. In
electrical discharge modelling the accurate determination of the high-energy tail
of the electron velocity distribution function is mandatory, since this energy range
determines the ionization rate and hence the steady-sate operating conditions of the
discharge.

3.2.3 Power Balance

Let us consider the expression (3.16) for the mean electron energy <u>= é m<

v62>, by now assuming that the electron density remains constant, since we are not
considering the creation of new electrons by ionization and the loss of electrons by
diffusion or electron-ion recombination. In this case, the rate of change of the mean
electron energy is

d<u> 1 (1 9 )
= ¢ v} dv, . 3.109
dt e /0 2 " Ve ot e @ ( )

Substituting now the equation for the rate of change of the isotropic component of
the electron velocity distribution function (3.87)

0
Yo _eE 10 W2 + I(Y) . (3.110)

ot m 3v2 0v,

in which the collision term is given by (3.85), we may write the equation (3.109)
under the form

d<u> _ p _ p 3.111)
ne = — Lel, .
dl E )
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where
E [ 0
Pe= =0 [ 0 4l du, (.112)
6 0 3ve
and
m? [ 9 kgT, Off
Pe = — 3 m 0 ¢ ¢ 4 2 d e 3113
! 2M/0 v, I:ve ' (fe * mv, ave):| e @Y ( )

represent the power gain by the electrons from the field and the power lost in elastic
collisions, per volume unity, respectively.
Integrating by parts, we obtain

v
P = ¢E / ; £l dmv? dv, (3.114)
0
2 o0 k To 9 0
p, =" / v2 (f£+ i fe) 4rv 2 dv, | (3.115)
M J mv, 0V,
The equation (3.114) can still be expressed as
Pr = (Je.E) = 0 E°, (3.116)
being Jo = — en,veq the electron current density, with veq denoting the drift

velocity (3.18), and o, the electron conductivity (3.50). On the other hand, the
equation (3.115), neglecting the corrective term due to the small heating of electrons
in collisions with non-frozen molecules, may be written as follows

2m
Py = n, <uUVy> . (3.117)
M

In the case of electrons given by a Maxwellian distribution at temperature 7,, the
neglected corrective term is of the order ~ — (7,/T,), so that when such term is
included equation (3.117) may be written as follows

2m T,
P, = n. <U V> (1— ) . (3.118)
M T,

It is worth noting here that the equation for power balance under steady-state
conditions can be directly obtained from the conservation of the total flux in
velocity space (3.96). In fact, multiplying both members by the electron energy
u and integrating for all velocities, we obtain the energy conservation equation (see
Sect.2.4.3)

*® d
/ u | (Gg+Gu)dv, = 0 (3.119)
0 dve
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and because G + G,; = 0 (3.97), the equation (3.119) can be integrated by parts
giving

/ (Gg + Go) du = 0. (3.120)
0

Taking into account now the following expressions for the gains

0 2 ek 2
Ge = gg4my, = f; 4mvS > 0 (3.121)
3m
kgT, df°
Gy = g% dnv2 = — " vovn [0+ 2 e 4mv? < 0,(3.122)
M mv, dv,

with Gg obtained from (3.92) and (3.95), and G,; from (3.93) and (3.95), we
immediately obtain the steady-state energy conservation equation Pg — P,; = 0
from equation (3.120).

3.3 Inclusion of Inelastic Collisions

3.3.1 Inelastic Collision Term

In a weakly ionized plasma, created e.g. in a low-pressure discharge, they are
usually the inelastic collisions, primarily the excitation processes, that dominate
over elastic collisions. As we will show below this occurs except at low values of
the reduced electric field, E/n,, that is for low values of the ratio of the electric field
magnitude to the gas number density, case in which the elastic collisions dominate.
In an inelastic collision, the electron gives up part of its energy into excitation of
rotational, vibrational, or electronic degrees of freedom of the molecules, or in
ionizing them. In the case of excitation from a lower to a upper state, X; — Xj,
the electrons of energy u = émve2 lose an energy equal to the threshold energy u;;
ew) + Xi & e(u—uy) + X;. (3.123)

The reverse superelastic process can also occur when the electrons gain energy
in assisting an excited molecule in returning to the lower energy level. The
inelastic and the superelastic processes are expressed by the right and left arrows in
equation (3.123). The latter are also termed inelastic processes of second kind. The
ionization can also be considered as any other inelastic process, if the introduction
of secondary electrons produced with the energy «’ are not considered in the
distribution

e(u) + Xo = e(u—uipn—u') + XT + e() . (3.124)

That is, if only the energy loss of primary electrons is taken into account.
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As we have seen in Sect. 2.3.3, the inelastic collision term, with the inclusion of
both inelastic and superelastic processes, is given by equation (2.127), renamed here
as the operator J(f;)

12
000 = XA " [ 60 o0t ) a8 = v i) oyt

ij
v//2
+Z{ni ‘ / Fev) 030, Q) dQ = nj v, fu(ve) a,-i@e)}.
i Ve Q
(3.125)

As also seen in Sect.2.3.3, the velocities v, v, and v/ are such that v, < v, <
v”. Due to the nature of this operator, we may assume as for the elastic collisions
in (3.26), that J(f,) is given by the following expansion in spherical functions

J(f,) = Zﬂ(fj) Py(cosb) , (3.126)

=0

with each term J' representing an operator acting on the component f/ of the electron
velocity distribution function and P;(cos 0) the Legendre polynomials. Considering
as before that the cross sections are independent of the azimuthal angle, 0 (v., ) =
0i(ve, Xo0), With yo representing the scattering angle in the laboratory system, we
may assume, as in (3.23) and (3.24), that the electron velocity distribution at velocity
v, is expanded in terms of the spherical harmonics on the angle 6’ and that this angle
may be transformed to a product of spherical functions on 6 and y,

fv) = DA Pilcos8') = Y fl(v)) Pilcos 6) Picos yo) . (3.127)

=0 =0

Substituting equations (3.126) and (3.127) and the expansion for f,(ve) into
equation (3.125), we obtain for each individual term of the inelastic collision
operator

12
J(th = Z{n,- ”;e fQ FAL) Pi(cos xo) 0ji(vh, ) d2 — n; ve fL(ve) ai,»(va}

ij

2

ij

U//Z
n; ; /S;fé(v;/) Py(cos xo) o;j(v), Q) dQ — nj vefel(ve) Uji(”e)} .
e

(3.128)
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We may define now the inelastic frequencies of order / as
vi(ve) = nive / Py(cos xo) 0i(ve, Q) dQ (3.129)
‘ Q

b = my v [ Pitcos 1) 0u(v.. @) a2 (3.130)
’ Q

which allows to write (3.128) with the form

I = Z{”e L) fL ) — v (ve)f(ve)}

— (Ve
Ly

4

+Z{Z‘" OATHCARS v}?(ve)ﬁ(ve)}- G131
i

e

When [ = 0, the frequencies v and v]ll transform into the total collision
frequencies (3.32).

The expression (3.131) represents a generalization of the expression obtained
before for elastic collisions in Lorentz gas model. In fact, assuming v; = v;’ = VU,
we obtain from (3.131)

#G) = =LA+ 0f e, G

ij

where the frequencies (v ) and (v —V; 1) are equivalent to the frequencies v
defined in (3.28), that is they are Welghted by the factor (1 — P;(cos xp)).

Let us consider now firstly the expression for JO(f°) from equation (3.131),
rewritten here with a slightly different form

P60 = LA o 0 120+ o) = i 200

if
+Z%vev_vy Vi (ve = vy) J¢ (v = vy) = vﬁ<ve)f£(v6)} .
Jii ¢

(3.133)
Here, v; = v and v; = vo are the total collision frequencies. The first two
terms of (3. 133) are for the 1ne1astlc collisions i — j and they take into account,
respectively, the introduction of electrons at velocity v, that primarily had the
velocity (v, + vjj) and the removal of electrons from velocity v.. While the third
and fourth terms are for the superelastic collisions j — i and they take into account
the introduction of electrons at velocity v, that primarily had the velocity (v, — v;;)
and the removal of electrons from velocity v. The velocities (v, 4 v;;) and (ve — vj;)
are defined such that (u + uy) = ) m(ve + v;)? and (u — uy)= ) m(ve — vj)?, being
u;; the threshold energy of the inelastic process.



3.3 Inclusion of Inelastic Collisions 113

The term J° may be rewritten in terms of the electron energy u = ; mv 2. In
fact, making the substitutions v;(v.) = njv.0;(v.) and v;;(v.) = nv.05i(v.), and
using identical substitutions for v;;(v, + v;;) and vj;(v, — v;;), the operator J may be

expressed in terms of the energy u as follows

JO(feO) — \/nju Zni {(u + uy) oy(u + uij)ff(u + u) — u oij(u)ff(u)}
ij

+\/nfu an {(u — uy) 0ji(u— uij)feo(u —uy)— U (Iji(u)ff(u)} .
i
(3.134)

The equation (3.134) is a non-local equation in energy space, since the knowledge
of £(u) depends of the values for this same function at (u + u;;) and (u —u;j), which
constitutes a very complicated problem in general.

Let us derive now the expression for the collision term of the first anisotropy
JU(f!) from equation (3.131). Introducing the frequencies for momentum transfer
associated with inelastic and superelastic collisions, as we have done in (3.29) for
the elastic collisions,

v (ve) vg(ve) - vi}(ve) = n; v, / (1 = cos o) 0jj(ve, 2) d2 (3.135)
Q

vi(ve) = vﬁ(ve) - vjli(ve) = nj v, /Q(l —cos o) 0ji(ve, ) dS2
(3.136)

we may write equation (3.131) as follows

T(ED ==Y i we) + v f (ve)
iy

+Z{fj W) £l - vi}(ve)fel(ve)}
iy

+Z{Z Vi) £ (W) — vji(ve) fel(ve)} . (3.137)
Ji ¢

This equation is written in this manner to evidence the contribution of three terms.
The first one is identical to the corresponding term for elastic collisions (3.27), in
which the collision integral 7! (f!) is given by the negative product of the collision
frequency for momentum transfer, v.;(v.) = v, (v.), by the first anisotropic
component of the electron velocity distribution function, f!(v.). The second and
the third terms are for inelastic and superelastic processes, respectively, but in both
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only the first anisotropic frequencies vi}.(ve) and vjli(ve) given by (3.129) and (3.130)
appear and these are vanishingly small as the scattering is nearly isotropic. In fact,
when o (v, ) =~ 0;(v.) we obtain from equation (3.129)

2
vi}(ve) ~ o ve/ cos xo 0jj(ve) 27 sin yo dyo = 0. (3.138)
0

In many cases even as the inelastic scattering cannot be assumed isotropic, the
second and third terms of (3.137) are small corrections in comparison with the
first term, so that the collision integral takes the same form as that for elastic
collisions (3.27). Both may be then associated by defining an effective collision
frequency for momentum transfer

e (o) = va(ve) + Y {ulwe) + (o)} (3.139)

i

being the total collision term in equation (3.42) able to describe the evolution of the
first anisotropy £, (v.) given by

')+ TN = = v £ (ve) - (3.140)
The equation for the steady-state anisotropy (3.48) should hence be rewritten as

E d
po_ _ °E e, . (3.141)

mv¢, dv,

o

The total inelastic collision frequency for momentum transfer ZU(V{;’ + v]’.}’) is
larger than the elastic collision frequency v,, as the electron energy increases and
it is obviously null for energies below the first threshold energy. This depends
obviously on the set of electron cross section for each specific gas. Figure 3.6
shows schematically the typical behaviour of the electron cross sections for elastic,
excitation and ionization processes, as a function of the electron energy u, in the
case of an atomic gas as argon.

Let us estimate now the relaxation frequency for the isotropic component of

the electron velocity distribution function £2, i.e. the collision frequency for energy

Fig. 3.6 Electron cross

sections for elastic o, S
excitation oy, and ionization o)
0;on collisions, in the case of a

typical atomic gas as argon

v
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transfer. We have previously found v,y = 0 in equation (3.28) when we assumed
m/M = 0, and it was necessary to include the first order corrective term on
m/M to obtain the non-null value (3.86) from the collisional term /°(f°) given
by equation (3.85) (Chapman and Cowling 1939). Now when the inelastic and
superelastic collisions are also taken into account by considering the term JO(f?)
given by (3.133), the collision frequency for energy transfer is approximately

be(v) = V() Y () + v} (3.142)

ij

This frequency v, is much smaller than v;, given by (3.139) as the elastic collisions
dominate, which occurs, as we will show below, for low values of the reduced
electric field E/n,. On the contrary, v, and v;, tend to a common value as the
inelastic processes prevail.

3.3.2 Analysis in Velocity Space and Power Balance

With the inclusion of inelastic processes the steady-sate Boltzmann equation (3.91)
for determination of the isotropic component of the electron velocity distribution
function £ should be replaced with

I d
b2 gy, (00 (€T 8a) =7, (3.143)

where g% and g are the components of a radial flow vector in velocity space,
due to the acceleration of electrons by the electric field and to the recoil by
elastic collisions, respectively, and J° is the inelastic collision term for the isotropic

component of the velocity distribution (3.133). Multiplying both members by 47v 2,
we have

d
g, G+ Ga) = JO 4o}, (3.144)
Ve

where G and G, are the gains associated with the upflux and downflux in velocity
space. Integrating now from O to v,, we obtain

Ve
G(v,) = /O JO 4mv? dv, (3.145)

with G = Gg + G,;, or under differential form

dG = J* 4xv}? dv, . (3.146)
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In the absence of inelastic collisions the total gain is null, since G(0) = G(c0) =
0, i.e. the divergence of g is null. However, when the inelastic collisions are included
these collisions introduce and remove electrons from each spherical shell of radius
v, and v, + dv, in velocity space, in a way that the gain change dG in the shell
is equal to the difference between the number of electrons introduced and removed
from it, JO 47 v‘(_,2 dv.. When the inelastic collisions exist, we have G > 0, because
although they may also exist superelastic collisions, the energy supplied by these
collisions is smaller than the energy spent in inelastic collisions. We have therefore

/ J0 dzv 2 dv, > 0. (3.147)
0

If the upper limit goes to v, — oo, we have obviously a null equality in (3.147),
since we are including only processes in which the number of electrons is kept
constant. That is we are not considering by now the introduction of secondary elec-
trons created by ionization and the loss of electrons by electron-ion recombination,
electron attachment, or diffusion.

The power lost in inelastic collisions, per volume unit, can be obtained as
in (3.119) by multiplying the right-hand side member of equation (3.144) by the
electron energy and integrating over all velocity space

o0
Pipet = — / uJ® dmv? dv,. (3.148)
0
Then introducing equation (3.134), we obtain

8 o0
Puer = 5 o fo ufu 0(u) f2 00 — (u+ ) 03+ ) £ + )| d
ij

8 o 0 0
+m2 an/(; u {u 0ji(u) fo ) — (u—uj) 0ji(u — uy) f, (u— u,j)} du .
Ji
(3.149)
Since 0j; = 0 for u < u;;, and 0j; # 0 for any value of u, we still have

Pui = oy Yo [ ) a0y 20 d
ij uij

m2

+i; ;”ffooo W — (ot uy) u} 0(u) £ () du

ISR

=8m Z§

i

ni/uoou oij(u)ff(u) du — nj/ooou crji(u)ff(u) du} .

ij

(3.150)
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Using now the expression (2.136) for the electron rate coefficients of inelastic
Cij =<v, 0> and superelastic C;; =<uv, 0;;> processes, we finally obtain

Pinet = n¢ y_u; (i Gy — nj Gy). (3.151)

ij
It is worth remembering here that the electron rate coefficients are linked to the
average frequencies as <v;>= n; C; and <v;>= n; Cj;. The equation (3.151)
gives the difference between the power lost and the power gained by the electrons,
per volume unity, in inelastic and superelastic collisions, respectively. The cross
sections o;; and oj; are related one another by the Klein-Rosseland relation (2.140).

3.3.3 Continuous Approximation for Rotational Levels

Due to the small separation between the rotational levels of a molecule it is possible
to use a continuous approximation to take into account the effects of electron
inelastic and superelastic collisions with rotational levels in the Boltzmann equation
(Frost and Phelps 1962).

Gerjuoy and Stein (1955) had pointed out that the homonuclear molecules such
as H, and N, possesses an electric quadrupole moment and have calculated a cross
section for rotational excitation, which increases very rapidly close to threshold
and for which its magnitude can be calculated from measured electric quadrupole
moments. For such molecules the energy levels of the rotating molecule are given
to sufficient accuracy for present purposes by E; = J(J 4+ 1) By, where By is the
rotational constant determined from spectroscopic data: By = 7.54 x 103 eV for
H, (Huber and Herzberg 1979) and = 2.49 x 10~*eV for N, (Lofthus and Krupenie
1977). Using the selection rule for the rotational levels AJ = %2, the energy lost by
an electron in excitation is uy j4+o = Ej4, — E; = (4J 4+ 6) By, while that gained in
de-excitation is uy j—» = E; — Ej—p = (4J — 2) By. According to Gerjuoy and Stein
(1955) the cross sections for rotational excitation and de-excitation, as a function of
the electron energy u, are given by

J+2)(J+1) \/ (4J + 6) By
= 1— 3.152
) = o i ® u (3:152)
JJ—1) \/ (4J —2) By
_ = 1 , 3.153
2 =y haren VT, (5:153)
where 0y = 8mg?af/15, q is the electric quadrupole moment in units of eag

(g = 0.62 for H, and = 1.01 for N,, Frost and Phelps 1962), and ay is the Bohr
radius.

Frost and Phelps (1962) had pointed out that the cross sections (3.152) and
(3.153) may be assumed independent of u over the important energy range, so
that the right-hand side member of equation (3.144) for rotational levels may be
rewritten as follows using (3.134)
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Soif) 4o’

8mv,
=, M D 8 {t urs2) orst2 £+ urs42) — u 0yt £ (W)}
7

8mv,
+ n Mo 231 {—uy—2) 01— fu—upj—) — u 655— f2(w)}.
7
(3.154)

with §; = n;/n, denoting the fractional population in the J-th level. Assuming also
as in Frost and Phelps (1962) that the energy exchanges in rotational excitation and
de-excitation are small enough to expand feo(u ~+ uy j4+2) and feo(u — Uy j+2) in first-
order Taylor series

d

P+ urgsn) =~ P + dJ;f Uy g2 (3.155)
d 0

Pu—upg—) =~ fu) — ;:l Uy g, (3.156)

we obtain replacing (3.155) and (3.156) into equation (3.154) and neglecting terms
inu?,,,andu?
JJ+2 JJ=2

8, d
Tou ) dmv} = no Y 8 (upsa 0ss2 — ups2 015-2) |, (Wf?).
m y du
(3.157)

Substituting now (3.152) and (3.153) discarding the dependence on u in these
expressions, and using the energy differences u; j+o» = (4J + 6) By and uy j—p, =
(4J — 2) By, we finally obtain considering > ;8 =1,

870, d
I, () dmv} = 7;” no 4Booo () - (3.158)

As in recoil collisions, the effect of electron collisions with rotational levels,
assuming the continuous approximation, can be represented in the form of a negative
gain of the type considered in (3.122). In fact, assuming as in (3.144)

d Grot

= J0.(f") dmv? (3.159)
dv,
we obtain
4B
Gt = —1p 0 P dmv? < 0. (3.160)
m

On the other hand, using (3.120) the power lost by the electrons in total excitation
and de-excitation of rotational levels is given by
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o
P = —/ G,o: du = n, 4By 09 n, <v.> , (3.161)
0

or P,y = 4By n. < v, > introducing an average frequency for net rotational
excitation as <v,,;>= 1, 0y <U,>.

Finally, we must notice that for very low values of the reduced electric field,
typically for E/n, < 1Td (1 Td = 1 x 1072'V m?), the continuous approximation
for the rotational levels is no more valid and the discrete collisional operator (3.154)
needs to be used (Ridenti et al. 2015).

3.4 Resolution of the Boltzmann Equation

3.4.1 Independent Variables

Let us consider now the stationary electron Boltzmann transport equation (3.144)
for the isotropic component of the electron velocity distribution function feo(ve),
with the inclusion of the negative gain due to the rotational losses

d
J (G + G+ Gro) mv, = J* dv 2. (3.162)
u

Here, G is given by (3.121), but with v,, replaced by v;, as explained in (3.140), and
Ge1, Gy and JO are given by (3.122), (3.160) and (3.134), respectively. Substituting
these expressions into (3.162), making the replacements v;,(v.) = n,v.0,,(v.) and
Vi (Ve) = 10,0, (v,), and introducing the fractional number populations §; = n;/n,
and §; = n;/n,, we obtain after division of both members by — 8zn,v,./m

d E\?2 ar’ 2 dare
|:(e) u df, i mMZUm(ff+kBTof)+4Boaouff:|

du N, 307, du M u

8 { e+ uy) o+ uy) £+ uy) — w o) £ )}

J
+ )8 {u—uy) 0 — uy) £ — uy) — w o) W)} = 0.
Jii
(3.163)

The equation (3.163) is the so-called homogeneous electron Boltzmann transport

equation and the isotropic component of the electron velocity distribution function,
f2(v,), can be expressed in terms of the electron energy u = émvez, being then

termed electron energy distribution function (EEDF). Equation (3.163) shows that
the homogeneous Boltzmann equation is a continuity equation for f°(«) along the
energy axis only, expressing the fact that the change in the total electron flux (i.e., the



120 3 Boltzmann Equation in Velocity Space

net flux resulting from the upflux due to the applied electric field and the downfluxes
due to the elastic recoil and rotational excitation), in an energy interval du, is equal
to the difference between the rates for removal and re-introduction of electrons by
inelastic and superelastic collisions.

In an inelastic collision the electrons can give up some of their energy into
excitation of vibrational or electronic states, while in a superelastic collision the
electrons receive energy in assisting an excited state to return to the lower energy
state. The contribution of rotational levels is taken into account through a continuous
approximation. The second term in equation (3.163) accounts for the inelastic loss
processes by considering, respectively, electrons of energy u + u; undergoing a
collision in which they lose the energy u;; and appear as electrons of energy u, and
electrons of energy u undergoing a collision in which they also lose the energy
u; and appear as electrons of energy u — u;;. The third term accounts for the
reverse processes since it takes into account the gain of energy by electrons due
to superelastic collisions (see Fig. 3.7).

For a given particular gas, in which the cross sections for momentum transfer
o, and for excitation of vibrational and electronic states o; are known, the
equation (3.163) is solved as a function of the reduced electric field E/n,, the gas
temperature T,, and the fractional population concentrations §; and §; of all excited
states. The cross sections for de-excitation processes 0;; may be obtained from the
Klein-Rosseland relation (2.140). The ionization process is taken into account as
any other inelastic process by considering, by now, only the energy loss of primary
electrons. Finally, the effective collision cross section for momentum transfer is
according to (3.139) defined as follows

oh(w) = ow(u) + Y {8 o) + & o (w)} . (3.164)

i

In the case of nearly isotropic scattering, the cross sections for momentum transfer in
inelastic and superelastic collisions, o7 and CTJ»',”, are close to the total cross sections;
see equations (3.135) and (3.136).

In an atomic gas, the fractional populations of the excited electronic states are
usually very small as compared with that of the electronic ground-state, so that the

superelastic processes (j — i) may be neglected, while for the inelastic ones (i — j)

Fig. 3.7 Scheme with the P P energy losses
energy losses in excitation N N in excitation
and energy gains in second
de-excitation due to inelastic term v AY 4
and superelastic collisions
third U= Uj u U+ electron
ir | |
ener
term 9
T energy gains

v
A\ 4

in de-excitation
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only processes from the ground-state usually need to be taken into consideration, by
making in equation (3.163) §o = 1, §; = 0 for i > 0, and §; = 0. In this case, the
proper variables reduce to E/n, and T,. Furthermore, if the mean electron energy
<u> is much larger than kgT,, the correction due to the influence of non-frozen
molecules may also be neglected and the sole variable is E/n,

d |:(eE)2 wodf |, 2m uzomff}

du |\ n, ) 30¢ du M

+ 3 () o+ ) £+ wy) = woy() fAw)} = 0,

>0

(3.165)

with o; = o¢;. On the contrary, in a molecular gas, such as H,, N,, O,, CO,, etc, both
inelastic and superelastic electron collisions upon the excited vibrational levels need
to be considered in the determination of the EEDF, £(u), except at conditions for
which the excitation of vibrational levels cannot occur. Whereas for the electronic
states only inelastic collisions of electrons with electronic ground-state molecules
need, in general, to be considered due to vanishingly small populations of the
electronic excited states.

Under the present approximations of neglecting the space gradients and conser-
vation of the electron number density, the EEDF can be re-normalized for practical
purposes such that

/oof(u) Vudu = 1. (3.166)
0

Taking into account the normalization condition (3.15), f*(u) and f(u) are linked
one another as follows

flu) = nl L:f \/iff(u). (3.167)

With such normalization, the Maxwellian electron energy distribution at tempera-
ture T, writes

2
flw) = Jr (ksTe) > exp (— kB”T ) (3.168)
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In terms of the EEDF, f(u), the average energy is expressed as
o0
<u> = / ) u?? du (3.169)
0

with <u>= ; kpT, in the case of a Maxwellian, while the electron mobility p, =
o/ (en), being o, the electron conductivity given by equation (3.50), is

2 e [*® W2 df
e = — du . 3.170
° 3 m/o ve(u) du . ( )

Making the substitution v¢, = n, oy, v., we obtain the following expression for the
reduced mobility

I d
Mo fle = — ¢ \/ / w o dr (3.171)
3 VmJy ot(u) du

which depends only of the proper variables mentioned above for the EEDF. On the
other hand, the electron rate coefficient (2.136) associated with the transition i — j
takes the form

G = \/,121 /_%ouaz;(u)f(u) du (3.172)

and this depends on the same independent variables.
Let us consider now the stationary power balance, per volume unity,

PE = Pel + Pro[ + Pingl . (3173)

Using equations (3.116), (3.118), (3.151), and (3.161), we obtain in the case of
frozen molecules (7, = 0)

2m
e ne e E? = Ne Iy <u vyp> + 4By n, <v,>

+ne Y ui (n; Cj—n; Cii) - (3.174)
ij

Dividing both members by n.n,, we obtain the following equation for the power
balance per electron at unit gas density (i.e. expressed in eV s~' m?)

E\? 2m

e Nyhe ( ) = <u O, Vo> + 4By 0pg <v.>
Ny M

+ 3 uy (6 Ci— 8 G | (3.175)

ij
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in which the first and the second terms, on the right-hand side member, have the
following expressions in terms of the EEDF, f(u),

P, om |2 [
Lo \/ / u? 0 (u) f(u) du (3.176)
NNy M m Jo
Prot 2 o0
= 4By 0y u f(u) du. (3.177)
NNy m Jo

Once again equation (3.175) shows that, besides the fractional population concen-
trations &; and §;, the only variable from which the power balance depends is the
reduced electric field E/n,. Finally, the drift velocity (3.49) is also function of
the same variable, since Veg = no. (E/n,)€,, with n,u, given by (3.171). In
conclusion: <u>, nyite, Cij, Cji, Pp/(neny), Pei/ (Meho), Prot/ (Netlo), Pinet/ (Reny),
and veq are function of E/n, (or of E/n,, §;, §;, and T, in case of a molecular gas
with non-frozen molecules).

3.4.2 Numerical Procedure

The steady-state equation (3.163) can be converted to a set of n-coupled ordinary
algebraic equations by finite differencing the electron energy axis into n cells of
width Au. By setting, u,'(" =k Auand u, = u,j'_l to the upper and lower boundary
energy limits of a cell k, while for a given quantity X we have X;- = X,j'_ 15
(dX/du)y = (X — X))/ Au, and (dX/du);" = (Xit1 — Xi)/Au, being X and
(dX/du); the values at the middle of the cell k, with X,;" = (Xx + Xx+1)/2, we
obtain using a procedure close to Rockwood (1973) the following set of algebraic
coupled equations

A=t fiet — Ak + Bi) fe + Bet1 fiwr + Jk = 0, (3.178)
with the matrix elements given by

A=A + Ay + Az

k (eE/n,)?
- (A g 17 Oni K QhsT, = Aw) — 2k Byoy  (3.179)
3Auc’

m(k)
B = Bix + B + Bik

_ (k=1) (¢E/n,)* m (4

(o2
e(+) m(k—1)
3 Au O (k-1 M

(k —1)* (2kgT, + Au)

+ 2(k—1) By 0y . (3.180)
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Fig. 3.8 Scheme showing By By 1
the promotion and demotion

of electrons in the energy cell /\ V/_\

k and neighbouring cells | k-1 | k | k+1 |
I
Ay Ax

Je = ZSi{uk-l-m,:,- Oj(kemy) Sitmy — Wk Oy Jich

i

+ Z 5j{uk_mij Gji(k—m,-j) fk—mi/’ — U Uji(k)ﬁc} . (3181)

i

Ay may be interpreted as the rate at which electrons with energy u; are promoted to
energy ug4+; as a result of the action of the continuous terms in equation (3.163),
while By is the rate for demotion from u; to uy—; (see Fig.3.8). The vector f;
represents the EEDF in every cell k. As a matter of fact, it represents either
£2(u) or f(u), since the two functions are linked one another through the constant
factor (3.167).

In concerning now the terms in equation (3.181), m; = u;;/ Au represents the
number of cells jumped by an electron along the energy grid in result of an inelastic
or a superelastic collision. It occurs an entrance into energy u; of electrons originally
at energies Ukct-m; and Uk—m;; (first and third terms) and an exit from energy u; to
energies Uk—m;; and Ukc+m;; (second and fourth terms). Making use of the Klein-
Rosseland relation (2.140), the term for the superelastic collisions (second term) can
also be written using the cross sections o;; for the excitation processes as follows

ZS;’ (8i/ 8){uk Oijky fr—my — Uktmy Oijtktmy) Sit » (3.182)

ij

being g; and g; the statistical weights of the two states.

The set of n algebraic coupled equations (3.178) is linearly dependent, so that
it can be solved by matrix inversion using n — 1 equations together with the
normalization condition (3.166) written now as

Y hw!? Au=1. (3.183)
k

Once the vector of the EEDF is known, we may determine <u>, Cj;, Cji, Pg/(nen,),
P.;/(n.n,), and P,y /(n.n,), using the following expressions

<u> =Y w)” fi Au (3.184)
k
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2
Gj = \/m Zk: ik fr u Au (3.185)
2 g
Cii = \/ , Z Oijlk+my) Jk Ukmy Aut (3.186)
m gj X
P 2
i \/ > (A —Bu) fi A (3.187)
neng, m i
P, 2
' = \/ 3" B —Ax) fi AW (3.188)
neng, m i
Pro 2
= \/ > By — Ax) fi Au? (3.189)
neng m P

with uy = (k — 1/2) Au and where the coefficients A; and By are given by (3.179)
and (3.180), while for n,u, and P;,.;/(n.n,) we may use the relations

PE/(neno)
oMe = 3.190
Molt e (E/ny)? ( )
Pinel
= i'A 8i Ci'—g' Ci) . 3.191
Nty ij u (8 Cyj = 4; Gji) ( )

i

3.5 Electron Cross Sections

In the study of low temperature plasmas, with low and moderate degrees of
ionization, they are usually the inelastic and superelastic collisions that dominate
in determining the EEDF. Specifically, the inelastic and the superelastic collisions
upon the vibrational levels of the electronic ground-state and the inelastic collisions
for excitation of upper electronic states, in the case of a molecular gas, and the
inelastic collisions for excitation of electronic states from the ground-state, in the
case of an atomic gas, being the effects due to superelastic collisions negligibly
small in this latter case.

The knowledge of reliable sets of electron cross sections is then mandatory to
determine accurate EEDFs for each specific gas, as well as to determine accurate
electron transport parameters and excitation and ionization rate coefficients using
the EEDFs so determined. Accordingly, since the sixties of last century a systematic
work has been realized by many authors in determining reliable electron cross
sections’ sets for many gases, such as He, Ne, Ar, Kr, H,, Nj, O,, CO,, etc. Among
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them we must evidence Phelps and his co-authors for their tremendous work in
determining cross sections for the most common gases (Pack and Phelps 1961; Frost
and Phelps 1962; Engelhardt and Phelps 1963, 1964; Engelhardt et al. 1964; Frost
and Phelps 1964, etc).

The method used is basically an iterative procedure on initial estimates for
the cross sections until a good agreement is obtained between calculated and
experimental data for different quantities. The electron Boltzmann equation is
numerically solved to determine the EEDF taking into account both elastic and
inelastic collisions in the case of only a DC electric field is present. Furthermore,
the experiments used are in conditions of null vibrational excitation, in order the
superelastic collisions do not need to be taken into consideration. These experiments
are usually termed as electron swarm experiments or tube drift experiments (see
Gilardini 1972). In the simplest derivations conducted in the sixties, the quantities
under observation were the electron diffusion coefficient D,, the electron mobility
M., and the first Townsend ionization coefficient c.

The electron diffusion coefficient is determined, as it will be shown later on in
Chap. 5, taking an appropriate average over the EEDF, D, =<v2/(3 v¢)>. We
present now the expression for this parameter to evidence its dependence on the
isotropic component of the electron velocity distribution function f2(v,)

1 [*® v?
D, = / ¢ 24} dv,. (3.192)
ne Jo 3 V;h(ve)

In terms of the EEDF, f(u), normalized through equation (3.166), we obtain the
following expression for the reduced diffusion coefficient

1|2 (™
oD, = \/ / " rdu, (3.193)
3 VmJy ofu)

with n, denoting the gas number density, expressing the fact that the reduced
diffusion coefficient is a function of the independent variable E/n, only (in the case
of negligibly small concentrations of the excited states and low gas temperature).
In what concerns the reduced electron mobility, this quantity is also function of
E/n, only, having the corresponding expression already been indicated in equation
(3.171). The first Townsend ionization coefficient has been introduced in Chap. 1
and it gives the number of electrons produced by each primary electron, per length
unit of its path in the field direction, ¢ = < v;y, > /veq (von Engel 1965), being
<Vj,n> and v,, the average electron ionization frequency and the absolute value
of the drift velocity, respectively. Since <v;,,>= n, Ciy,, with Cj,, denoting the
ionization rate coefficient

9 [o©
Cion = \/ / MUion(u)fdu , (3.194)
mJ,.

ion
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Fig. 3.9 Schematic energy level diagram of Ar atom (Ferreira et al. 1985)
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the reduced Townsend ionization coefficient «/n,, in m?, is also function of E /n,

Cion
* _ . (3.195)

ny Ved

Figure 3.9 shows the schematic energy level diagram of the different states of
argon atom with the corresponding transition wavelengths, while Fig.3.10 shows
the electron excitation cross sections obtained for this gas in Ferreira and Loureiro
(1983a).

The different curves in Fig. 3.10 represent the electron cross sections for direct
excitation of the two metastable states *P, and 3P, altogether (curve A), of the
resonant states Py and 'P; (curves B and C), of the forbidden states 3p>4p with
the threshold energy of 12.9 eV (curve D), and of the higher-lying optically allowed
states with the threshold of 14.0eV (curve E). The momentum transfer cross
sections of Frost and Phelps (1964) (with its Ramsauer minimum close to the
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Fig. 3.10 Electron cross sections for excitation of electronic states of Ar in m?, as a function of

the electron energy in eV. The curves are for excitation of the following states or group of states:
(A) 3P, +3Py; (B) 3Py; (C) 'Py; (D) forbidden states (mostly 3p°4p multiple); (E) higher-lying
optically allowed states. For comparison the electron cross section for momentum transfer (o,,)
and the ionization cross section (0;,,) are also plotted (Ferreira and Loureiro 1983a)

origin) and the ionization cross section (with a threshold of 15.76 eV) of Rapp and
Englander-Golden (1965) have been adopted with no modifications, as they seemed
to be well established.

With the purpose of providing a useful estimate to be used in modelling of
electrical discharges, analytic fitting laws have been obtained in Ferreira and
Loureiro (1983b). It has been seen that the cross section for momentum transfer
is well fitted by the expression 0,,(¥) = o, (u/ux), for u < uy, and o0,,(u) =
ap Jux/u, for u > uy (that is, v, o u¥? for u < uy, and v,,=const for
u > uy), being o, a constant equal to 1.59 x 107'""m? and uxy = 11.55eV the
lowest threshold energy (that for excitation of *P, state). Accordingly the total cross
section for excitation plus ionization has been seen to be given approximately by
ox(u) = ay(u/uyx — 1)\/uX/u, with oy = 1.56 x 10 =Xm 2,

In molecular gases the determination of accurate electron cross sections sets is
performed using the same iterative procedure but the situation is more complicated
due to the larger number of states involved. The initial estimative is constructed
using experimental and theoretical electron cross sections for excitation of individ-
ual states but in most cases only the dependence of the cross sections on energy
is kept, i.e. the shapes of the cross sections, being their magnitudes modified
by successive adjustments until theoretical and experimental values of electron
transport and rate coefficients are brought into good agreement. The results are by
no means unique, but they certainly do represent a consistent and realistic set of
elastic and inelastic electron cross sections (Engelhardt and Phelps 1963).
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Fig. 3.11 Initial set of electron cross sections for H, used in Loureiro and Ferreira (1989b) in
m?, as a function of the electron energy in eV. The various curves represent the cross section for
momentum transfer ¢,,, excitation of v = 1, 2, and3 levels of H,(X,v), and excitation of electronic
states with the following notation: (1) b; (2) ¢; (3) a; (4) €; (5) B; (6) C; (7) E+F; (8) B’; (9) D; (10)
B”; (11)D’. It is also shown the ionization cross section, 0j,,, and the cross section for dissociation
into H(1s) + H(n = 2) (12) and H(1s) + H(n = 3) (13)

Figure 3.11 shows the initial set of electron cross sections for H, found in the
literature and from which a final self-consistent set has been constructed in Loureiro
and Ferreira (1989b). The different curves represent the cross section for momentum
transfer, the cross sections for excitation of the vibrational levels v = 1,2, and 3
belonging to the electronic ground-state X 12; state (with the threshold energies
of 0.5, 1.0 and 1.5V, respectively), the ionization cross section (15.4eV), and the
cross sections for excitation of the following electronic states with the corresponding
threshold energies in eV: b *TF (8.9eV); ¢ °TI, (11.9eV); a* X (11.9eV); e °TF
(13.4eV); B'TtF (11.4eV); C ', (12.4eV); E IE; +F IE; (12.4eV); B’ 1=+
(13.8eV); D 'T1, (14.1eV); B” 'S} (14.6eV); and D’ 'T1,, (14.7eV). Also plotted
are the cross sections for dissociation: e + Hy(X 'S}) — e + H(ls) + H(n = 2)
(147eV);and e + Hy(X 'SF) — e + H(1s) + H(n = 3) (16.6¢eV).

The electron cross section set shown in Fig. 3.11 is the original set for H, found
in the literature and from which a final set was established in Loureiro and Ferreira
(1989Db). This final set was obtained using the requirement that when inserted into
the electron Boltzmann equation, in conditions of null-vibrational excitation (in
order the superelastic collisions do not need to be taken into account), should result
in calculated transport, excitation and ionization rate coefficients in agreement with
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available measurements. The comparison has been realised for the characteristic
energy uy (i.e. the ratio between the electron diffusion coefficient and the electron
mobility, eD,/ ., see Chap.5), the drift velocity vy, the reduced first ionization
coefficient o/n, = Ciyn/Veq, and similar reduced coefficients for total dissociation
Qgiss /N0 = Zj Coj/ Ve, and total emission of radiation otea/no = Y ; Cor/Veds
with j and k denoting the various states contributing for dissociation and radiative
emission.

The momentum transfer and the ionization cross sections were taken from Engel-
hardt and Phelps (1963) and Rapp and Englander-Golden (1965). For excitation of
the levels v = 1 —3 from v = O the cross sections of Ehrhardt et al. (1968) obtained
from beam experiments have been multiplied by a factor of 1.3. Multiplication
by this factor was necessary in order to fit transport data and, simultaneously, the
ionization rate coefficient at the lower E/n, values. In so doing, the sum of the cross
sections for the excitation of v = 1 — 3 levels is practically coincident with the total
vibrational excitation cross section obtained in Engelhardt and Phelps (1963).

The total cross section for electronic excitation includes the following contribu-
tions: (i) excitation of the triplet states b *=F, ¢ 311, a 32;, and e 3T (note that
excitation to these states leads to dissociation into H(1s) + H(1s)); (ii) excitation of
the singlet states B 'X;f, C 'TI,, E'Sf, F 'S}, B 'SF, D ', B” 'Ef, and
D’ 'T1,; (iii) dissociation into H(1s) + H(n = 2) and H(1s) + H(n = 3).

The cross sections for the triplet states were taken from the close-coupling
calculations of Chung and Lin (1978) but these had to be corrected by scaling
factors in order to fit to the experimental ionization and dissociation rate coefficients.
The cross section for the b 3} state was raised by a factor of 1.1 whereas all
the other triplet cross sections were reduced by a factor of 0.33. The resulting
total cross section for the sum of the triplet states is close to that proposed by
Buckman and Phelps (1985). It approximately agrees also with the total cross
section for dissociation into H(1s) + H(1s) obtained by Chung et al. (1975) from
the experimental dissociation cross section of Corrigan (1965).

The cross sections for the singlet states were taken from Ajello et al. (1984)
multiplied by a factor of 0.6. According to Ajello et al. (1984) the excitation of
the sates D, B” and D’ leads either to radiative cascades or to dissociation into
H(1s)+H(n = 2), with branching ratios for radiation of 0.702, 0.033 and 0.421,
respectively, at u = 100eV. For this reason, the branching ratios of Ajello et al.
(1984) have been considered here being only the radiative part of these cross
sections included in group (ii). The other part leading to dissociation is included
in group (iii). However, the errors introduced by this procedure have little effect on
the results since these cross sections are small as compared with those for excitation
of B and C states. Finally, the cross sections of Lavrov (1977) have been considered
for dissociation into H(1s) + H(n = 2) and H(1s) + H(n = 3).

Figure 3.12 shows the initial total electron cross section for excitation of elec-
tronic states of H, found in the literature, that is the sum of curves (1) to (13) plotted
in Fig. 3.11, and from which the final set used in Loureiro and Ferreira (1989b) has
been constructed. The modified total excitation cross section of electronic states so
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Fig. 3.12 Initial total electron cross section for excitation of the manifold of triplet and singlet
states of Hj, including dissociation into H(1s) + H(1s), H(1s) + H(n = 2) and H(1s) + H(n=3), used
in Loureiro and Ferreira (1989b), together with the ionization cross section of Rapp and Englander-
Golden (1965)

obtained is close to that proposed in Engelhardt and Phelps (1963). The ionization
cross section of Rapp and Englander-Golden (1965) is also plotted in Fig. 3.12 for
comparison.

However, this procedure of successive adjustments does not lead to a unique
solution. The method permits to obtain only a reliable set of elastic and inelastic
cross sections which when inserted into the Boltzmann equation results in realistic
values for the electron transport parameters and the excitation, dissociation and
ionization rates. For instance, Buckman and Phelps (1985) have proposed a slightly
different solution: the momentum transfer cross section is larger for electron
energies above 4 eV; the total vibrational excitation cross section is smaller by a
factor of 1.3; the excitation cross sections for the B 'S F and C !TI, states agree
with the results of Ajello et al. (1984) and thus are larger than those obtained in
Loureiro and Ferreira (1989b) by a factor of 1/0.6. The other differences between
the two sets have little effect on the calculated results.

The cross sections for N, must also be briefly referred here since they constitute a
very particular case due to the large magnitudes of the cross sections for momentum
transfer and total vibrational excitation (Engelhardt et al. 1964). This latter has a
very peaked maximum at ~2 eV. Figure 3.13 shows the cross sections set reported
in Pitchford and Phelps (1982) and used in Loureiro and Ferreira (1986). These
cross sections are assumed to result in isotropic scattering, so that the effective
momentum transfer cross section oy, (see discussion in Sect. 3.3.1) equals the sum
of the total elastic and inelastic cross sections. The rotational excitation cross
sections are plotted for one example only, 046, along with the corresponding cross
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Fig. 3.13 Electron cross sections set for N, reported in Pitchford and Phelps (1982) as follows:
o,, effective cross section for momentum transfer; 046 and 04 example of rotational cross sections;
> 0y, total cross section for excitation of vibrational levels; Y o, total cross section for excitation
of triplet electronic states (full); Y o, idem for total excitation of singlet electronic states (broken);
O;on l0ONizZation cross section

section for the reverse superelastic process, 0g4. The cross sections for excitation
of the vibrational and electronic states are shown as sums of the individual cross
sections. It is represented a total cross section for excitation of the manifold of
vibrational levels Zv 0oy, a total cross sections for excitation of the triplet electronic
states (A 32;‘, B 3Hg, W 3A,, B 32;, C °1,, E 32;‘, F 311,, G *I1,, etc),
another for total excitation of the singlet electronic states (a’ 12;, a T P TA,,
a” 12;, ¢ 1s* b 1EF, etc), and the ionization cross section. However, in the
numerical calculations of the Boltzmann equation the cross sections have been used
individually for every state (Loureiro and Ferreira 1986).

The individual transitions between the v—th levels of the electronic ground-
state No(X '27F,v) and the v'—th levels of upper electronic states Np(Y,v"), with
Y = A3XF, B3I, etc, were considered in Loureiro and Ferreira (1989a) using
the Franck-Condon approximation through an expression of the type

oxy () = axi RZof (u/u})) . (3.196)

/
where q}?’j is the Franck-Condon factor, R? is the square of the matrix element
for the electronic transition, and cr}(/ is a universal function for the X—Y transition
which reflects the dependence of the cross section on the electron energy in units of

the threshold energy u;';/ (Bauer and Bartky 1965; Massey and Burhop 1969).
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Nowadays, the determination of complete and consistent sets of electron cross
sections is a topic of great interest in the modelling of electrical discharges leading
to the appearing of a large number of publications on the subject. For example, in
Hayashi (1987) the elastic and inelastic electron cross sections for the most common
molecules with interest for plasma processes, gas lasers, and gaseous electronics
are given. These cross sections are determined from electron beam and electron
swarm data utilizing the Boltzmann equation and Monte Carlo simulation. Due to
the importance of determining reliable electron cross sections sets to be used in
fluid models of gas discharges, user-friendly Boltzmann equation solvers have been
developed especially for this purpose, such as it is the case of the freely available
solver BOLSIG+ (Hagelaar and Pitchford 2005), which is more general and easier
to use than most other solvers available. Recently, an open-access website (http://
www.lxcat.net) has been created, in the framework of LXcat project, with the aim of
data interchanging, making possible the download of electron and ion cross sections.
Finally, the studies of multiple-term solutions to the Boltzmann equation and their
application to swarm systems are intrinsically coupled to the availability of the
integral and differential cross sections as shown e.g. in Pitchford and Phelps (1982)
and Phelps and Pitchford (1985). The generalization of the traditional two-term
Legendre expansion of the Boltzmann equation in the context of electron swarm
experimental analysis has been conducted in many works, e.g. in Pitchford et al.
(1981) and Pitchford and Phelps (1982). However, such discussion is beyond the
scope of this book.

3.6 Results from the Boltzmann Equation

The most important aspect to notice at this point is the fact that, in most cases, the
EEDFs are far from Maxwellian. Obviously, the shape of the EEDFs depends on
the electron cross sections set but globally the EEDFs break sharply just above the
lowest threshold energy of the inelastic processes. In the case of atomic gas, where
only excitation of electronic sates exists, the EEDFs are essentially Maxwellian
(given by straight lines on logarithmic scale) below the lowest excitation threshold
energy and they may also be considered almost Maxwellian above this energy,
but with lower temperatures. Therefore, the calculation of excitation and ionization
rates, even in the case of atomic gases, cannot be made with any degree of accuracy
if a simple Maxwellian distribution is used. Also the approximation of a two
temperature Maxwellian distribution can only be used in atomic gases where only
one inelastic process dominates the shape of the EEDFs (Cherrington 1980). When
the inelastic processes are more complicated, computer coding of the Boltzmann
equation needs to be used, e.g. in the way described in Sect. 3.4.2.

Because of the variety and complexity of the inelastic processes occurring in
molecular gases, analytic solutions to the Boltzmann equation are usually not
attempted, rather computer calculations are used. In most cases the very rapid
depletion of the high-energy tail of the EEDFs by inelastic collisions is very
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Fig. 3.14 (a) Electron energy distribution functions in H, for E/n, = 30Td and the following
values of the vibrational temperature of H,(X ! E;‘,v) distribution (Loureiro and Ferreira 1989b):
(A) 2000 K; (B) 3000 K; (C) 4000 K. The broken curve is for T,, = T, = 400 K. (b) As in figure
(a) but for E/n, = 100 Td with the same values of T,

evident. However, the EEDFs calculated in H, do not reflect the dramatic deviations
relatively to Maxwellian distributions as it occurs with other molecules, such as e.g.
in N, (see Loureiro and Ferreira 1986).

Figure 3.14a, b show the EEDFs calculated in H; for E/n, = 30 Td (figure a)
and 100 Td (b) (1 Td = 1 x 1072! V.m?), respectively, when the effects of electron
superelastic collisions on the excited vibrational levels H,(X 12;,1) > () are taken
into account assuming the levels populated by vibrational distributions characterized
by the temperatures 7, = 2000K, 3000K, and 4000K (see Loureiro and Ferreira
1989b). The gas temperature is assumed constant equal to 7, = 400 K. In Fig. 3.14a,
b the EEDFs calculated in the absence of appreciable vibrational excitation (i.e. for
T, = T, = 400K) are also plotted for comparison. These results illustrate the
effects of the electron superelastic collisions upon the excited vibrational levels on
the tail of the EEDFs. The effects are significant at E/n, = 30Td, allowing that
more electrons may reach the high-energy tail of the EEDFs, but they produce only
small modifications at E/n, = 100 Td.

The effects of electron-vibration (e—V) superelastic collisions are dramatically
reinforced in N, due to the large peak of the total electron cross section for
vibrational excitation at u ~ 2eV as shown in Fig.3.13. Figure 3.15 shows the
EEDFs calculated in N, for E/n, = 30Td, 80 Td, and 211 Td, either for the cases
of a vibrational temperature of N»(X 1 E; ,v) molecules equal to T, = 4000 K, or for
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T, =T, = 400K (Loureiro and Ferreira 1986). Figure 3.15 illustrates the important
effects of the e—V superelastic collisions in enhancing the high-energy tail of the
distributions as Nighan (1970) firstly pointed out. It can be seen that these effects
become relatively small in N; only at sufficiently high E/n, values, while they cause
a strong increase of the high-energy tails (thus, of the electron rate coefficients) at
lower E/n, values.

Figures 3.16 and 3.17 show, as a function of E/n, and for 7, = 400K, 3000 K
and 4000 K, with 7, = 400K (see Loureiro and Ferreira 1989b), the electron rate
coefficients for excitation of Hy(b 1) state, excitation of the group of triplet states
Hy(b 32 F, ¢ 31, a 32;’, e 321 which dissociate to yield two H(1s) atoms, and
dissociation into H(1s) + H(n = 2), in the case of Fig.3.16, and for excitation of
the radiative singlet states H,(B 12;") and H,(C 'T1,), in the case of Fig.3.17. An
increase in T, produces an increase of all the rates, especially at lower E/n, values,
as a result of the enhancement of the high-energy tail of the EEDFs.

The fractional power transferred by the electrons to H, molecules through the
various collisional mechanisms is presented in Fig. 3.18, as a function of E/n, and
for T, = 4000K and T, = T, = 400K. The various curves represent the power
lost by the electrons through elastic collisions, rotational excitation, vibrational
excitation (the net power loss corresponding to the difference between inelastic and
superelastic collisions), dissociation, excitation of radiative states, and ionization.
In the presence of vibrationally excited molecules the superelastic e—V collisions
cause a significant decrease in the net power spent in vibrational excitation and,
consequently, an increase in the power transferred to electronic excited states. As
seen from Fig.3.18, at T, = 4000K dissociation by electron impact constitutes
the major energy loss channel among all the electronic mechanisms in the range
E/n, = 50 — 300 Td.



136 3 Boltzmann Equation in Velocity Space

. T T T TTTTTTTTTTTTTTTI
= L _
m(D
g 1075 =
P = =
c — ]
2
O B ]
£ L _
3
o 1070 3
§ — —
c — _
o L _
©
2 — p—
i
1077 = =
10718 '
0 50 100 150 200
E/ng (Td)

Fig. 3.16 Electron rate coefficients, against E/n,, for excitation of Hz(b32j') state (full curves),
total dissociation into H(1s)+H(1s) (broken curves), and dissociation into H(ls) + Hn = 2)
(chain curves). In each case, the lower, intermediate and upper curves correspond to the values
T, = 400K, 3000 K, 4000 K, respectively (Loureiro and Ferreira 1989b)

Appendices

A.3.1 Expansion of the Boltzmann Equation
in Spherical Harmonics

In this appendix we present the derivation of the complete expansion of the
Boltzmann equation (3.35) in spherical harmonics (Cherrington 1980; Delcroix
1963, 1966). The electron velocity distribution function is expressed in terms of
a sum of spherical harmonics (3.9)

fe@ve.t) = Y fl(r.ve.1) Pi(cos ) . (3.197)

=0

where 6 is the angle between the instantaneous velocity vector v, and the direction
of the anisotropy created by the applied electric field E = — E e, P)(cos6) are
the Legendre polynomials, and f!(r, v,, f) depends only on the absolute value of the
velocity. The Boltzmann equation (3.35) writes as
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Fig. 3.18 Fractional power transferred by the electrons to H, molecules, against E/n, and for
T, = 4000K (full curves) and T, = T, = 400K (broken curves), associated with the
following mechanisms: (A) elastic collisions; (B) rotational excitation; (C) vibrational excitation;
(D) dissociation; (F) excitation of radiative states; (G) ionization (Loureiro and Ferreira 1989b)

p ot m Ve .

/)
Zaf‘f P+ ¢ |Ee,. 0 ijP, = le(fj)P,, (3.198)
/

using an expansion similar to (3.197) for the collision term.
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Since the electric field has only the component in z, we obtain

] )L of! P
avez (Zfe Pl) - Z (avez b +fe avez ’ G199

1

with
of! afl v,
¢ =’ 3.200
0V, v, v, ( )
and
P dp; 0 0
Lo 1 Ofcost) (3.201)
v, d(cos6)  dv,,
Using the relations
VS =g+ Vg + v, (3.202)
Ve, = U, COS 0 (3.203)
a e e
Ve Ve _ ot (3.204)
0V, Ve
d(cos 0) 0 (e Ve — Vg Vez/ Ve 1 )
= = = 1-— 0), 3.205
0V, 0V, (ve v 2 Ve ( cos ) ( )
we obtain for the right-hand side terms of equation (3.199)
o, of;
P = cosf P, (3.206)
v, 0V,
oP; aP; (1 —cos?0)
1 1
= . 3.207
fe v, ¢ d(cos ) Ve ( )
Making use now of the recursion relation for the Legendre polynomials
(l+1)P1+1 = (21+1) cos 6 P —1P_, (3208)
we obtain
[+1)P P
cosf P, = (1) Pry + 1Py (3.209)

21+1

and equation (3.206) writes as follows
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of; P — o (I+1) Py + 1Py

= 3.210
v, ! v, 21+ 1 ( )
On the other hand, using the recursion relation
dp,
2
0—1 =1 0P — 1P 3.211
(cos ) d(cos§) cos 6 P, -1 ( )
which may be written as follows using (3.209)
dP, I(1+1)
2
0—1 = Piy1—Pry) 3.212
(cos ) d(cos 0) 241 (Pry1— Pi—1) ( )
we obtain for equation (3.207)
oP LI+
p I D b (3.213)

e, ve 2041
Inserting now equations (3.199), (3.210) and (3.213) into equation (3.198), we

find
of! eE I+1 (off f!
‘P ¢ —17° )P
p ot P m21:|:2l+1(8ve v) ak

e

l afel fel — Lol
20+1 (3ve AR ve)P’—l} = XZ:IOZ)PI. (3.214)

The second term on the left-hand side member may be rewritten as follows
9 fl eE l afl— 1 1—1

ep ¢ — (-1
ot l+mzl:|:21—1(3ve ( )ve)

[+1 afel+1 felH B y
+21+3(3ve ++2) ve) Pl_zljl(fe)Pl-(?).ZlS)

Then, we obtain an infinite set of coupled equations, each one with a finite
number of terms, in which the equation of order / is

afl ¢E 1 afl—l fl—l I+1 afl+l fl+l
e e _ l_ 1 e e l 2 e
ot + m|:2l—1(8ve ( ) ve)+2l+3(8ve T+ ve)

— 1)) . (3.216)
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Using now the relations

a (f! ft-! -1
-1 e _ Je Je
Ye o, (Ul—l) = o (=1 o (3.217)
1 9 42 pl+1 afeH—l felH

V2 gy, (v L) = 90, +(+2) 5 (3.218)
we obtain the final expression
e R I+1 1 9 g 1¢fl

) y = I'(fY).

ot + m |:2[—1 Ve ave (Ué_l + 20+ 3 v(lz+2 Bve (Ue fe ) (fe)

(3.219)
From this we find the first order equations expressed through equations (3.41), (3.43)
and (3.44).

Exercises

Exercise 3.1. In a given gas the effective collision frequency for momentum
transfer v, (u) is independent of the energy of electrons. Write the expressions in
units for the reduced mobility and the power gain from the field per electron at unit
gas density.

Resolution: The electron conductivity is given by equation (3.53) as only elastic
collisions are taken into account with a collision frequency v,, (1) = const, so that as
both elastic and inelastic collisions are considered an effective collision frequency
for momentum transfer (3.139) must be considered and the electron mobility is
He = Oce/(en,) = e/(mve). Since we may write

e
no“e - m (])’L;l/no) ’

the reduced mobility is independent of the gas number density n,. Expressing this
formula with the corresponding SI units, we obtain

0.1759

nopte (10 V71 m™Hs7) = ve /n, [10712 m3 s~1]

On the other hand, the power gain from the field per electron at unit gas density is
from (3.116) given by

Pr E\?
- e(noue)( ) ,
NN, 1,
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so that we obtain

P E 2
E 107 evm® s = nype [10% VT 'm 157! ( [10 Td]) ,
n

neno (4

with 1 Td (Townsend)=1 x 102! V m?.

Exercise 3.2. Write the expressions in units for the power lost in elastic collisions
and the power lost in rotational excitation, per electron at unit gas density, in the
case of a gas of homonuclear diatomic molecules, with the collision frequency for
momentum transfer independent of the energy, and an electron energy distribution
function Maxwellian at temperature 7.

Resolution: The power lost in elastic collisions, per electron at unit gas density,
in the case of a collision frequency for momentum transfer v,,(«) = const and a
Maxwellian EEDF is from (3.117) given by

P 3m %
el _ kBTe m ’
NN, M n,

so that we obtain
P, 3 Mmoo —
L0 evmd s = O % 10Y ksT, [eV] " 10712 m® 571,
NNy M Ny
On the other hand, the power lost in rotational excitation is from (3.161) given by
P, 8kpT,
"= 4B, 0, \/ ? s
NNy Tm
so that we find
Prot

neng

[107'° eV m?® s™!] = 2.677 x 10% B, [eV] 0, [1072° m?] V/kzT, [eV],
with
0, [1072° m?] = 0.4692 ¢°

and where ¢ is the quadrupole moment of the homonuclear diatomic molecule in
units of eaoz, with a, denoting the Bohr radius.

Exercise 3.3. Obtain the expression in units for the electron rate coefficient of a
given inelastic process of cross section o;; and threshold energy u;;.

Resolution: The expression (3.172) writes as follows

o0
C; [10716 m’s7!] = 59,309/ u oy [1072° m?] f(u) du ,

i

with u in eV and f(u) in eV~>/2 according to the normalization (3.166).
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Exercise 3.4. An inelastic process for excitation of a given state j from state i with
the threshold energy u;; has a constant cross section o;; = a; (see Exercise 2.1
(a) at the end of Chap.?2). Determine the expressions in units for the electron rate
coefficient and the power lost, per electron at unit gas density, through this process.

Resolution: This electron rate coefficient has been obtained in Exercise 2.1 (a) and
it presents the following expression in units

Ci 107 m3 s71] = 66.923 vVkgTe [eV] a; 102 m?] (1+ "7 ) exp(— "7 ).
kpT, kpT,

so that the corresponding power lost is

Pine (1070 eV m’s™'] = uy [eV] C; (1076 m® s71] .
neny ‘

Exercise 3.5. Determine the expression of the power absorbed from the field, per
electron at unit gas density, for the case of an electric field of amplitude £ and a
Maxwellian EEDF at temperature T,. Specify for the two situations: (i) the effective
collision frequency for momentum transfer, v;,, is independent of the velocity of
electrons: (ii) the effective collision cross section for momentum transfer, o, is
independent of the velocity of electrons.

Resolution: Since in a Maxwellian distribution df?/dv, & (— mv,/(kgT,)) f°, we
obtain the following expression for the electron conductivity from equation (3.50)

en, v}
Oce = < >,
3/(3 Te l)sl

so that the power absorbed from the field, per electron and at unit gas density, is

Pg e’ v? E\?
= < > .
NNy 3kgT, Ve /n, n,

When vf, (v,) = const, we obtain

Pe e ( E )2
ey m (v /no) \n,)
while when o, (v,) = const, we have

nn,  30¢ JwmkgT,

P 282 W2 (E)2

o

Exercise 3.6. Determine the expression of the velocity-averaged effective collision
frequency for momentum transfer that allows to keep the electron mobility as
e = e/(m v ), when the microscopic effective collision frequency depends on
the electron velocity: v¢,(v,).
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Resolution: From equation (3.52), we obtain the following expression for the
required velocity-averaged collision frequency

L__1d vl
v, v2 dv, \3v¢(v,) '

Integrating by parts and using the normalization condition (3.166), this expression
writes as follows in accordance with (3.170)

1 2 /°° w2 df
= — du .
v/ 3 Jo vi(u) du

m

In a gas with v, (v,) # const, the present expression for v/, should be used in writing
e = ¢/ (m ).

Exercise 3.7. Write the Boltzmann equation under the form expressed by equation
(3.144), in which the Boltzmann equation is given by the variation of gains in

velocity space, using the EEDF normalized through equation (3.166).
Resolution: Using the energy of electrons u = ; mv ? as independent variable, the

equation (3.144) transforms to

d 4 [2u
(Ge+ Go) = \/ 7
du m

m

where Gg is the positive gain associated with the upflux produced by the electric
field in velocity space (3.92) and (3.95)

2 u¥? (eE)* df
Gg = —n,
3 ve m du

and G, is the negative gain associated with the downflux produced by the elastic
collisions (3.93) and (3.95)

2m d
Gy = —n, M u3/2vm (f—i—kBT,, di) .

On the other hand, the term on the right-hand side member taking into account the
introduction and removal of electrons in velocity space by inelastic and superelastic
collisions (3.134) writes as

4 \/2“ JO — nez {\/u + gy vi(u + uy) fu+ uy) — Vu vij(u)f(u)}

m m -
Ly

+ne Z { /=y v — uy) f (= wyg) — uvip(u) fuw)}

Ji
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Exercise 3.8. Write the expression equivalent to those of Exercise 3.7 for the
negative gain due to excitation and de-excitation of rotational levels (3.160) using
the continuous approximation (3.158).

Resolution: As in the previous exercise, we obtain

2
G = —n.n, 4By 0y \/ Ltf s
m

using the EEDF normalized through condition (3.166).

Exercise 3.9. Determine the condition at which the effective cross section for
momentum transfer should obey in order the electron mobility may be negative.

Resolution: By inspection of equation (3.171) for the reduced electron mobility

e \/2 /°° u df d
no ke = — u
’ 3 VmJy ot(u) du

in which f(«), with u = ; mvez, is the EEDF normalized through equation (3.166),
we find that it exists the possibility of the electron mobility to be negative if
df /du > 0 in a certain energy range. Moreover, integrating the above equation by

parts we obtain
e \/2 /oo d u rd
Ny e = u,
Fe = 3 Vm )y du\oe()

so that another conditions is
d u
< 0,
du (U;Z(M))

which means that o, (1) should be a super-linear function of energy in a certain
energy range. This latter condition can also be expressed as (Dyatko 2007)

d(n(o ) _ |
d(Inu)

The fulfillment of these two conditions is necessary but not sufficient for the electron

mobility to be negative. For each case, the integrals should result negative.

The condition df /du > 0, known in the literature as inverse EEDF, can form
in quite different situations such as during the EEDF relaxation in a plasma of
heavy rare gas (Ar, Kr, Xe); in steady or decaying plasmas of heavy rare gas with
admixture of electronegative gases (due to the elimination of low energy electrons
by attachment processes); or in optically excited plasmas of heavy rare gases with
admixture of metal atoms (due to superelastic collisions of electrons with excited
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metal atoms). On the other hand, the condition d(u/o;,(1))/du < 0 is satisfied in the
case of the electron cross sections for momentum transfer of Ar, Kr, and Xe in the
energy range above the Ramsauer minimum (~ 0.2, 0.5 and 0.6V, respectively).
Experimentally the negative mobility has only been observed in a transient Xe
plasma (Warman et al. 1985).
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Chapter 4
Boltzmann Equation with Time-Varying Fields

This chapter analyses the effects produced by a time-varying electric field in the
electron kinetics. The behaviour exhibited by the electron velocity distribution
function is controlled by two characteristic relaxation frequencies, one for energy
and another for momentum transfer, when compared with the field frequency.
The cases of high-frequency (HF) and radio-frequency (RF) fields are analysed
separately, since they correspond to situations in which no time-modulation and
large time-modulation exist, respectively, in the isotropic part of the electron
velocity distribution. This chapter also analyses the electron kinetics under the
simultaneous effects of a HF electric field and a stationary external magnetic field,
with leads to electron cyclotron resonance (ECR) when the electron cyclotron
frequency equals the field-frequency.

4.1 High-Frequency Electric Fields

4.1.1 Characteristic Frequencies

The situation to be analysed here is that of electron kinetics when a uniform time-
varying electric field E(f) = Ey cos(w?) is applied to a plasma. A qualitative
analysis of the time-dependence of the isotropic and the anisotropic components
of the electron velocity distribution function under the effects of time-varying
fields can be realised using the characteristic relaxation frequencies for energy
and momentum transfer, v, and vy, respectively, previously introduced in Chap. 3
through equations (3.142) and (3.139)
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J.M.A_H. Loureiro, J. de Amorim Filho, Kinetics and Spectroscopy

of Low Temperature Plasmas, Graduate Texts in Physics,

DOI 10.1007/978-3-319-09253-9_4



148 4 Boltzmann Equation with Time-Varying Fields

) = 2 ) + > v @.1)
J
v () = v(u) + Y v"(w), 4.2)
J

where v, and Z,’ v" are the elastic and the inelastic electron collision frequencies
for momentum transfer, the latter assumed here with transitions from the ground-
state only, and in which the frequencies v" equal the total frequencies v; in the case
of isotropic scattering (see discussion in Sect. 3.1.2). Further, m/M is the electron-
molecule mass ratio and u = ; mv? is the electron energy. The factor 2 in the
first term of equation (4.1) holds as the Chapman and Cowling expression (3.84) is
written in terms of the electron energy.

As we will show below, it is possible to distinguish the following situations in

this analysis (see e.g. Loureiro 1993):

(i) Atlow field frequencies such that w <v,, that is at radio-frequency (RF) fields,
the isotropic component of the electron velocity distribution, i.e. the electron
energy distribution function (EEDF), follows in a quasistationary way the RF
field, presenting consequently a very large time-modulation in those parts of
the relevant range of the electron energy where the above inequality is satisfied.
Therefore, in this low-frequency limit, the EEDF can be obtained by solving
the Boltzmann equation for a direct-current (DC) field for each time-varying
value of the instantaneous RF field strength;

(ii) When the field frequency increases up to v, =~ w<v;, in most parts
of the relevant electron-energy range, the time-modulation of the EEDF is
significantly reduced and a time-resolved solution of the Boltzmann equation is
required instead of a quasi-stationary one. However, in this range of @ values,
since the inequality w<v¢, holds in most of the significant electron-energy
range, the anisotropic component of the electron velocity distribution is not
significantly modified by the field frequency and, consequently, the magnitude
of the EEDF is only slightly dependent on the field frequency;

(iii) Finally, for higher values of w, such that v, <V, >~ w, the inequality v, <w
determines that no time-modulation of the EEDF can occur. However, the
proximity of frequencies @ =~ vy, produces a time-delay of the anisotropic
component of the velocity distribution relatively to the field, which reaches
¢ = —n/2 when w> vy, producing as we will show below a strong reduction
in the magnitude of the EEDF.

It follows from the present discussion that we can expect an important time-
modulation of the EEDF for angular field frequencies v < v,, in the whole
significant electron-energy range. In an atomic gas, at field frequencies not too low
(w > 10%s™') and at gas pressures typical of RF plasma processing (typically
p ~ 100Pa), the inequality @ < v, holds only in the high-energy tail of
the EEDF, so that there is no time-modulation on the body of the distribution.
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Fig. 4.1 Ratios of the
characteristic relaxation
frequencies to the gas number
density for electron-neutral
energy transfer, v,/n,, and
momentum transfer, v¢,/n,,

as a function of the electron
energy, in argon (S4 et al.
1994)

We note that the characteristic frequency for energy transfer v, is a monotonously
increasing function of the electron energy. Figure 4.1 shows the ratios v./n, and
v¢ /n, for argon as a function of the electron energy (Sd et al. 1994). The ratio v, /n,
largely exceeds v,./n, in the energy range 0-40eV, which is a consequence of the
important contribution of elastic collisions to the total (elastic + inelastic) electron
cross section for momentum transfer in Ar. On the other hand, v.(u) ~ v (1)
when u — oo, mainly due to the predominance of the ionization cross section in
equations (4.1) and (4.2).

However, this is no longer true if we deal with a molecular gas, where the
characteristic frequency for energy transfer v, presents important values even at
electron energies as low as a few eV (e.g. in N, at u >~ 2eV), as a result of the
dissipation of electron energy in vibrational excitation. Here, the time-modulation
of the body of the EEDF also occurs. Figure 4.2 shows the ratios of the characteristic
relaxation frequencies to the gas number density v./n, and v¢,/n,, as a function of
the electron energy, in N, and Hj, in the case of absence of appreciable vibrational
excitation, i.e. for T, = T,, in order the effects of superelastic electron-vibration
(e-V) collisions do not need to be taken into account (Loureiro 1993). The ratio
V./n, presents a sharp maximum in N; at about 2eV due to vibrational excitation
and a monotonic growth at higher energies in accordance with the cross sections
shown in Fig.3.13 for this gas. On the contrary, in H, only a smooth maximum
exists associated with vibrational excitation (see Fig.3.11).

In molecular gases the characteristic relaxation frequencies v, and vy, must
include the contributions due to excitation of rotational and vibrational levels. Thus,
even in the case of vanishingly small vibrational excitation, both frequencies (4.1)
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10712 I I I
0 Ny

Ve Ny, Vo /Ny (M3s71)

10—16

10718 | | | | |
0 5 10 15 20 25 30

u(eV)

Fig. 4.2 Ratios of the characteristic relaxation frequencies to the gas number density for electron-
neutral energy transfer, v, /n,, and momentum transfer, v;,/n,, as a function of the electron energy,
in N, (full curves) and in H, (broken curves) (Loureiro 1993)

and (4.2) must be corrected to include inelastic and superelastic rotational exchanges
(see Sect.3.3.3) and inelastic vibrational exchanges, by writing (see also Makabe
and Goto 1988 and Goto and Makabe 1990)

v = 2 )+ 88y N 4 RPN
Ve () = va() + 2wo() + Y v + Y v, (4.4)
v J

with vo(u) = n,09 \/2u/m, and where it is assumed v; ;42 + vy -2 ~ 2y and
(ty 42 — usj—2)/2 = 4By, with J denoting the rotational quantum number. On the
other hand, v, is the collision frequency for vibrational excitation of v-th levels from
v = 0, within the electronic ground state Na(X ') or Hy(X 12;’).
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4.1.2 Power Absorbed at High-Frequency Fields

Let us consider now in equation (3.35) a time-varying electric field of frequency
o and amplitude Ey, directed along the negative z axis: E(f) = — E(7) e,.
Assuming the only anisotropies present on the electron velocity distribution are
those caused by the field and that they are sufficiently weak for a two-term expansion
suffices (3.11), we may write from (3.41) and (3.42) the following equations for the
evolution of the isotropic and the anisotropic components of the electron velocity
distribution function

AW 1D

o T 32 gy, W) = LE) I (4.5)
af! E(t) 9
g +enf)affo =l (.6)

where the elastic and the inelastic collision terms in the equation for f° are given by
equations (3.85) and (3.134), respectively, and the effective collision frequency for
momentum transfer is given by (3.139).

In principle, f° and f! are now functions of v, and ¢, so that we may expand them
in Fourier series in wt?

flwet) = Y Relf! (v,) &, (4.7)

k=0

where Re{ } means “the real part of”. The situation to be considered here firstly is
that of a stationary plasma created by a high-frequency (HF) field. Thus, if the field
frequency is significantly larger than the characteristic frequency for energy transfer,
the isotropic component of the velocity distribution does not change appreciably
during a cycle of the field oscillation and hence 9f°/dt = 0 in equation (4.5), while
in equation (4.6) we have a dependence in w? through the field. We may write then

fl(v.,H) = Re{f! &} (4.8)
and to obtain from (4.6)

1 eE() df:)
ve +jo m dv,

fel (Ue) = - (49)

The drift or mean vector velocity veg = <ve> given by equation (3.18) also
oscillates with the frequency w and takes the form

1 [,
Ved(t) = / v fi(ve, 1) 47tve2 dv,
Ne Jo 3

=Re{V,, ¢} e, , (4.10)
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being the complex amplitude V,, after the substitution of (4.9) given by
eEy /°° 1 df 4mv}?
Ved = -
0

. dv,. 4.11)
vé +jo dv, 3

nem

Since veq = Re{p. Eop ei"”} e,, we obtain the complex electron mobility

e’} 1 d 0 4 3
e = — © / e A (4.12)
nem Jo vg +jo dv.e 3

On the other hand, the power absorbed by the electrons from the field, per volume
unit, is

Pe(1) = (Je.E) = Re{o., Ey €'} Re{E, ¢} , (4.13)

being 0., = en.u, the complex conductivity. Making the product of complex
quantities, we obtain

1 1 .
Pe(r) = 5 Re{o..} E{ + 5 Re{o., >V EZ (4.14)

and because the second term vanishes as the time-average is taken, the time-
averaged absorbed power is

Pe(f) = Re{o.,} E? (4.15)

rms >

with E,,,,, = Eo/ V2 denoting the root mean square field and

Re{Uce} = -

2 [ele] e dO 4 3
¢ / L (4.16)

m ve? + w? dv, 3
the real part of the complex electron conductivity. The mean power absorbed per
electron in eV s™!, Pg(t)/n,, is usually represented in literature by © (see e.g.
Ferreira and Loureiro 1984, 1989).

The time-averaged absorbed power rapidly decreases as w increases beyond v¢,,
as a result of a progressive shift delay between the electron current density and the
field which reaches —m/2 as w > vj,. In this limit of extremely high frequencies,
we obtain from equations (4.10) and (4.11)

E
Veall) = Zw‘j cos(wr — 1/2) e , @.17)

and consequently

2

Pe() = ;}:w EZsinQor) | (4.18)
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with Pg(f) = 0. As a matter of fact, they are the collisions that are responsible for
the energy transfer from the field to the electron motion so that as they exist the
phase shift progressively departs from 77 /2 and Pg(t) becomes non-null.

On the other hand, when the effective collision frequency for momentum
transfer is independent of the electron energy, vy, (v.) = const, we obtain from
equations (4.15) and (4.16) a similar expression to that of a DC field

2
Pet) = ¢ E2, (4.19)

e e
m

having defined the effective electric field E, given by

1
E, = Epms, (4‘20)
V1+ (@/v;)?

which represents the equivalent field magnitude capable to produce the same energy
absorption as a DC field. This effective field is E, = E,, for o < vy, and E, =
(v, /@) Epps, for o > vf, so that in this latter case we have E, — 0 as w — o0,
due to the above mentioned phase shift delay of /2 between the electron current
density and the HF field.

4.1.3 Stationary Electron Energy Distribution Functions

As the field frequency is sufficiently high so that the isotropic component of the
electron velocity distribution remains time constant, we may assume 9f°/d¢ = 0 in
equation (4.5) and write

_e 1 d (vf Re{(f! .E*)}) =100 + J°(Y) (4.21)

m 3v2 dv, \ 2

with E* denoting the complex conjugate of the electric field. Inserting now
equation (4.9) in (4.21) and making the product of complexes quantities, we easily
obtain

1 (eE\> 1 d (v2 1 dfy 0 0(f0
B ; ) =1 @) . (422
2( m ) v2 dv, (31)51 1+ (0/ve)? dve) &) + 1) . @22

From equations (4.19) and (4.20) we see that when v, (v.) depends on the electron
velocity, Pg(ve, t)/n. may be seen as representing the time-averaged energy trans-
ferred from the field to an electron of velocity v, while u.(v.) = Pg(ve, 1)/ (n.vy,)
is the energy transferred per collision. Comparing u, with the term under brackets
in (4.22), this equation may be written under the form
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bld (vf Ve U, dfeo) = I°¢%) + J°(Y) (4.23)

" 3m v? dv, dv,

or still under the following more explicit form using (3.85), (3.134), and (3.158)
and multiplying both members by /u

ary
du

d |2 dro 2m
du |:3 u/? vy, Ue ;:i + Iy % v, (fg—{-kBTo

) + 4By vy Vu ff}
=2 {\/u g v+ ) £+ up) — Vu Vij(u)feo(u)}

i

+ Z {\/u —ujj Vji(u — wj) f(?(u — ujj) — Ju vji(u) f(?(u)} . (4.24)
I

This equation can now be written in terms of the electron energy distribution
function (EEDF), f (), normalized through condition (3.166). Both equations are
identical since the two distributions are related one another through a constant factor.

Inspection of equation (4.24) reveals that the dependence of the EEDF on the
parameters Ey, w, and n, arises through the time-averaged energy gain per collision

202
e’k

2m (ve(u)? + w?) ’ (4.25)

us(u) =

with v¢ (u)/n, = \/ 2u/m oy, (u), so that we can express all results in terms of the
two independent reduced parameters Ey/n, and w/n, as follows

e (EO/no)2
. = ) 4.26
U= 0/ + @/ (420
When @ > vy, throughout the significant electron energy range, we have
62 E() 2
Ue ~ (4.27)
2m \ w

and the EEDF is function of Ey/w only.

Since both members of equation (4.24) can be divided by the gas number density
n,, the other independent variables are the fractional population concentrations §; =
ni/n, and §; = n;/n, in the inelastic and superelastic collision terms, respectively,
and the gas temperature 7, due the small heating of electrons in collisions with non-
frozen molecules (3.85) . Generally, the populations of excited states are important
only for the vibrational levels (the effects of rotational levels are already included
through a continuous approximation, see Sect.3.3.3) and the effects of v-th levels
can be taken into consideration through a given vibrational distribution function
(VDF) characterized by a vibrational temperature 7,. The determination of the
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Fig. 4.3 Electron energy distribution functions in argon. (a) Full curves: @ /n, =4x10713 m3s™1;
Broken curves: DC case. The different curves are for the following values of E,,s/n, (full) or E/n,
(broken) in Td: (A) 100; (B) 65; (C) 30; (D) 15. (b) E,;us/n, = 65 Td and the following values of
/n, in 10712 m?s™1: (A) DC case; (B) 0.4; (C) 3; (D) 5; (E) 7.5; (F) 10 (Ferreira and Loureiro
1983)

VDFs is beyond the scope of this book, but the reader is invited to search this
subject in Loureiro and Ferreira (1989, 1986) for H, and N, cases, respectively. In
those papers it was shown that the coupling between the EEDF and VDF needs to
be taken into consideration for a self-consistent determination of both distributions.

Figure 4.3a, b show the calculated EEDFs in argon obtained in Ferreira and
Loureiro (1983) for various combinations of the reduced parameters Ey/n, and
w/n,. The full curves in Fig.4.3a are for constant w/n, = 4 x 107 m3s™!
and various values of E,/n,, with E.,, = Eo/+/2, ranging from 15 to 100 Td
(1Td = 1 x 1072 Vm?). These distributions are remarkably different in shape
from those obtained in a DC field at the same E/n, values, which are also shown in
Fig.4.3a for comparison (broken curves). The distributions shown in Fig.4.3b are
for constant E,,,;/n, = 65Td and various values of w/n, ranging from zero (DC
case) to w/n, = 1 x 107" m3s™!. From Fig.4.3b it is seen that the EEDFs are
strongly depleted for w/n, > 5 x 1072 m? s™!, because beyond this value we have
o > vf, in the whole energy range (see Fig. 4.1) and, consequently, the absorption
of energy is significantly reduced due to the electron current density becomes ~ /2
out of phase to the field. It is also assumed here 7, = 300K for the gas temperature,
so that the small heating of the electrons due to collisions with non-frozen atoms is
negligible.
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Moreover, it is also seen in Fig. 4.3b that the EEDFs are Maxwellian at the higher
field frequencies w/n, > 5x 1072 m3s™! (Margenau 1946). This behaviour results
from the fact that in Ar the EEDFs are strongly depleted at these w/n, values
and, consequently, the electrons do not gain enough energy to produce an inelastic
collision. The collisions are of elastic type only and the effective collision frequency
for momentum transfer is equal to the elastic collision frequency, v¢, = v,. Then
equation (4.24) reduces to

d 32 e (Eo\> 2m drd 2m
m kgT, ¢ = 0, 4.28
du §M 5 |:<3m w + M P du + M ff ( )

whose solution is a Maxwellian distribution at temperature

M [ eEy\>
T, =T, + . 4.29)
6kg \ mw

For Ey/w = +/2x 107V m™! s and T, = 300K in argon, we obtain kzT, =
0.43eV.

As seen in Fig. 4.3a the EEDFs in argon at high field frequencies sharply increase
near the origin of low electron energies. They are also depleted relatively to DC case
at intermediate energies and have larger slopes at high energies. This behaviour can
be well understood through Fig. 4.4, in which the EEDFs having the same mean

Fig. 4.4 Electron energy 1 T T T
distribution functions in
argon with the same mean
energy of 3.5eV for the
following cases: (A) DC; (B)

w/n, = 1x107Bm3s~15(C) &
o/n, =1.6x10"3m?s™; S 10
. ()
(D) w — oo (Ferreira et al. g
1987) =3
1072
1078

107
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energy <u>= 3.5eV are plotted for various values of w/n,. We can see that the
relative number of high-energy electrons increases with w/n,, although <u> is kept
unchanged. This is a direct consequence of the increasing efficiency of the power
transfer from the field to the electrons of energy well above the average. Indeed,
the power transfer per electron u.(u) vy, (1) (with u.(u) given by equation (4.25))
is maximum when @ = v¢(«) and, in argon, the effective collision frequency
for momentum transfer is an increasing function of energy, up to u ~ 12eV (see
Fig.4.1). Therefore, as w increases the electron energy u* for which the transfer
of energy is maximum, v¢(u*) = o, also increases, which produces the strong
enhancement of the high-energy tail of the EEDFs shown in Fig. 4.4 (Winkler et al.
1984; Ferreira et al. 1987; Karoulina and Lebedev 1988).

The percentage electron energy losses by elastic, excitation, and ionization
collisions are shown in Fig.4.5 for argon, as a function of the time-averaged
input power per electron at unit gas density, Pg(f)/(n.n,), for the high-frequency
(HF) limit (w > v (u) in the whole significant electron energy range) and
for the stationary (DC) limit (Ferreira and Loureiro 1984). It may be concluded
that, for similar Pg(f)/(n.n,) values, the input energy transferred to ionization

T TTITITT T TTITTTT [T TTTTTTT T
50 — —

Fractional power transfer (%)

=[] [ |
1071 1 10 102

Pe(t)/ngn, (10716 eV m3 s77)

Fig. 4.5 Percentage electron energy losses in argon as a function of the average input power per
electron at unit gas density, Pg(t)/(n.n,), in HF (full curves) and DC (broken curves). The labels
of the curves correspond to the following energy loss channels (see Fig.3.9): (E) elastic; (M)
metastable states >P, +3 Py; (P) resonant state *P;; (R) resonant 'P; (F) forbidden states; (H)
higher-lying allowed states; (/) ionization (Ferreira and Loureiro 1984)
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increases with increasing w, i.e. when one goes from the DC case to HF. This
is explained by an enhancement of the high-energy tail of the EEDF. The power
transfer has a maximum at @ = v;,(«) and in argon v{,(u) increases with u in
the range 0.2 < u < 12eV and becomes approximately constant at energies
u > 12eV, which corresponds to the high-energy tail of the distribution. Thus,
as w increases, the power transfer to the electrons in the tail of the distribution also
increases. Besides elastic collisions and ionization, the excitation channels shown
in Fig.4.5 correspond to the cross sections represented in Fig.3.10 as follows:
conjoint excitation of the metastable states 3P,+3Py; resonant state 3P;; resonant
state 'Py; forbidden states 3p>4p with the threshold energy of 12.9 eV; and higher-
lying optically allowed states with the threshold energy of 14.0eV.

Figure 4.6a, b show the EEDFs calculated in nitrogen for E,,s/n, = 100Td,
various values of w/n,, including the DC case, and for the cases of appreciable
vibrational excitation of N,(X 12;, v) levels (figure a) and null vibrational exci-
tation (figure b). As w/n, increases up to 4 x 1073 m?s™! the relative number
of high-energy electrons decreases due to small energy absorption, as a result
of the increase of the phase shift between the electron current density and the
electric field. However, the new effect shown here that did not exist in argon is the
strong enhancement of the high-energy tail of the EEDF as the electron superelastic
collisions are also taken into account. More precisely, the electron superelastic
collisions with vibrationally excited molecules N, (X 12;, v > 0), i.e. the effect
of the so-called electron-vibration (e—V) superelastic processes. Due to the strong
peak at u ~ 2eV in the electron cross section for vibrational excitation (see
Fig.3.13), the EEDFs exhibit a sharp decrease at this value of energy when the

a 1 gy b 1 g
N 3 N E
10_1§ E 10_1E E
& C ] &« C .
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T 102 5 3 102k -
o - - -
10—3§ E 10_3§ 3
4 1074 L PN W W

10 0 0 4 8 12
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Fig. 4.6 Electron energy distribution functions in N, for E,,;;/n, = 100Td and the following
values of w/n, in 10713 m3s™!: (A) DC case; (B) 1; (C) 2; (D) 4. Figure (a): T, = 4000K and
T, = 400 K. Figure (b): T, = T, = 400 K (Ferreira and Loureiro 1989)
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Fig. 4.7 Fractional power transfer into vibrational excitation and electronic excitation plus
ionization in N, as a function of the mean power absorbed per electron at unit gas density, for (A)
DC and (B) w/n, = 4 x 10~ m?s™!, and for T, = 4000 K (full curves) and T, = T, = 400K
(broken curves) (Ferreira et al. 1987)

electron superelastic collisions are not taken into account, because even in DC case
the E/n, values are not high enough in order an appreciable amount of electrons
may cross over the energy barrier at 2eV (figure b). The situation dramatically
changes as the e-V superelastic collisions are included (figure a) being now the
high-energy portion of the EEDF populated with electrons that receive energy from
the de-excitation of v-th levels. Figure 4.6a is for 7, = 4000K and 7, = 400K,
while Fig. 4.6b is for T, = T, = 400K (see Loureiro and Ferreira 1986 for DC and
Ferreira and Loureiro 1989 for HF cases).

Figure 4.7 shows the percentage electron energy losses in nitrogen through
vibrational excitation and electronic excitation plus ionization, as a function of the
time-averaged absorbed power per electron at unity gas density, Pg(f)/(n.n,). An
increase in w/n, or in T), results in a decrease of the power transferred to the vibra-
tional mode and, consequently, in an increase of the power transferred to electronic
excitation plus ionization. Both effects are consequence of the enhancement of the
high-energy tail of the EEDF which occurs with increasing either w/n, or T,. The
effects of the changes in w/n, are qualitatively the same in nitrogen as those found
before in Fig. 4.5 for argon.

Finally, Fig. 4.8 shows the percentage electron energy losses into excitation of
the most important triplet states of N, (A *<;F, B 3I1,, C *I1,) and ionization, for
T, = 4000K, and for the cases DC and w/n, = 4 x 107¥*m3s~!. Due to the
enhancement of the high-energy tail of the EEDF in HF, the excitation of the triplet
states of N is obtained at lower Pg(f)/n.n, values than in DC case (although as we
have seen before the E/n, values are much larger).
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Fig. 4.8 Fractional power transfer into excitation of the triplet states in Ny: (A) A 32 F; (B) B
N ¢ (O C 311,; (D) ionization, as a function of the mean power absorbed per electron at unit gas
density, for T, = 4000 K, and for DC (full curves) and w/n, = 4 x 1073 m?® s~! (broken curves)
(Ferreira and Loureiro 1989)

4.2 Electron Cyclotron Resonance

4.2.1 Hydrodynamic Description

As seen in Sect. 4.1.2, when the electrons of a plasma are submitted to a HF electric
field they oscillate at the same frequency of the field. However, in the collisionless
limit w > v¢, they oscillate with a phase shift of 7/2 and the average energy
acquired over a field period by the electrons is zero. They are the collisions that
temporarily interrupt the movement of the electrons and make the phase shift
deviates from /2. The electrons may absorb then energy from the field.

Due to this particular aspect of HF discharges, the electrons in HF fields may
absorb significantly less energy than in DC fields. So, to avoid this inconvenience,
the superimposing of a static magnetic field on the HF system is of great interest
(Margot et al. 1992). Besides the fact that a discharge with this configuration
significantly reduces the electron losses to the wall, the electrons when submitted
to a static B field rotate circularly around its field lines with an angular electron
cyclotron frequency w., = eB/m. If a HF wave with frequency w also exists,
with the electric field perpendicular to the direction of B field, rotating in the
same direction, the electrons in their reference system see a DC field when both
frequencies are adjusted, w., = w. The electrons are then continuously accelerated
until their movement is interrupted by a collision.
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As the electron frequency for momentum transfer is independent of velocity,
vs, (ve) = const, the electron movement is described by the hydrodynamic equation
for local momentum conservation (see equation (3.60) in Sect. 3.1.5)

dVed
m

&t = —¢E — ¢[VeaXB] — mV;, Vea . (4.30)

Here, Veg =<V, > is the electron drift or average vector velocity, E = Ey &' is
the HF electric field with amplitude Ey and frequency w, and B = B e, is the static
magnetic field oriented along the z axis. Since Veq o ¢!, we may still write using
complex quantities

e
(U; + ]w) Ved = — m E + wc. [ez X Ved] . (4.31)

This equation can be then decomposed through the three axis as follows

vy, +jo) vy + 0, vy = — :1 Eox (4.32)

(v, +jO) vy — W Vx = — :1 Egy (4.33)
e

(v,‘;l + jow)v, = — " Ey, , (4.34)

where the velocity amplitudes are complex quantities to include origin phase shifts.
The vector equation is better written using tensor notation

Va = —ILE. (4.35)

Introducing the quantities as in Allis (1956)

1 1 1
r - b l == . ki - . ki
Ve + j (0 —we) Ve, + j(o+ we) P v, +jow
(4.36)
to correspond to right and left circular polarization of the E field normal to B, and

E parallel to B, the mobility tensor writes as

Hoxx /Jny 0
Re = _/‘ny /‘Lyy 0 ’ (437)
0 0w,

in which the different components are

e (r+1
Mo = My =, (4.38)
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_jer=h (4.39)
I"ny - J m 2 .
e
he =P (4.40)
The electron current density is then Je = —en,vVeq = G ¢ E, being 0 ce = encji, the

electron conductivity tensor.
As seen in equation (4.13), the power absorbed per volume unit is

Pp(t) = Je . E) = (0 E.E), (4.41)
being the time-averaged power given by
1 — *
Pe(t) = 5 Re{(6e E.E")}, (4.42)
with E* denoting the complex conjugate. Defining now the components of the field

as E, = Eo, &', E, = Eqy @9 and E, = Ey, ¢, in order 6 may represent the
phase shift between E, and E,, we obtain

1
Pp(t) = 5 [Re{o .} Eg, + Ref{oy,} Eg + Re{o} Eg ]

_ Im{gxy} Eo, E()y sin@ , (4.43)
in which
e’n, ve (V22 + 0 + o
Re{o.} = Refo,)} = Y It
el0nd = RelOw! = (062 4 (@ + @) (052 + (@ — 000)?)
(4.44)
ezne 208 W Wee
I o m 4.45
m{oy} m (Vg2 + (0 + 0c)?) (V52 + (0 — @ce)?) 4
en, v
Re{o.} = (4.46)

e2 2"
m vy T+ o

The angle 6 is the polarization angle of the electric field in the direction
perpendicular to the B field. For a right-hand circularly polarized wave, we have
Eox = Eoy = Ey, Eo; = 0, and 6 = —mr/2, so that equation (4.43) becomes

PE(R) = (Re{axx} + Im{axy}) Eo2

én, Ve

— m 2
= vt B (4.47)
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while for a left-hand circularly polarized wave, we have 6 = /2 and we obtain

Prgy = (Re{axx} —Im{crxy}) EO2
_ ene Vi E? (4.48)
T om v (@4 we)? '

Equation (4.47) shows that for w.. = w, the power absorbed by the electrons from a
right-hand circularly polarized wave has a maximum as a result of the exact match
between the rotating field and the cyclotron motion of electrons. The power becomes
equal to that absorbed from a DC field of amplitude Ey. On the other hand, in the
case of a left-hand wave the power absorbed is significantly reduced, being the ratio
of the power absorbed by the two waves at @, = o equal to v¢2/(v¢? + 4w?).

It is still worth noting that in the case of a linearly polarized wave in the plane
perpendicular to the B field of amplitude Ey ), which may be decomposed into two
circularly polarized waves of amplitudes Ey; /2, we obtain

2 e e 2
Pty = ° ( Fm + Y )(EO‘”) . (4.49)

m Vyehz + (a) - a)ce)z anz + (w + a)ce)z 2

Thus, when B = 0 this equation transforms into the power absorbed by a HF field
of amplitude Ey; given by equation (4.19)
2

2
€ N, Ufn E()(])

Pe(t) = m veZ4+w? 2

(4.50)

4.2.2 Boltzmann Equation

In the presence of the E and B fields, and in the absence of space gradients, the
electron Boltzmann equation takes the form given by equation (3.6)

af, e . af, af,
o+ ({— B+ [0 xve]} . aVe) = (at )e_,, : (4.51)

with @ee = eB/m e,. In this case due to the magnetic field we need to consider the

dependence on the azimuthal coordinate ¢, so that the expansion of £, (ve, f) limited
to the first order anisotropies takes the form (3.21)

FOet) = f(vert) + (f'e(ve,t) . Z)

v v v
=L +pu T+ qu T+ po . (4.52)
v v v

e e e
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Then, the term with the magnetic field in equation (4.51) is

- ofe Uex Vey
([wce X Ve . af ) = Wee q11 — W pr1 (4.53)
Ve Ve Ve

Since vey/v, = sinf cos¢ and v,,/v, = sin @ sin¢, equation (4.53) leads to the
appearing of two new terms in the equations for the anisotropic components p;; and
q11, being equation (3.42) replaced with the following system of equations

ap11 _ eE, 8j£

9t m 9 + Wee q11 = —V,ipll (454)
d eE, 9

gi‘ - afjo — WP = — VY qu (4.55)
d eE, of°

l;;o - mz B{f = —v, P, (4.56)

while for the isotropic component we have in place of (3.41)

ar? e 1 0

9 m 32 v, (v (11 Ex+ qu Ey + po E)) = I°(F)) +J°() . (4.57)
with the elastic and the inelastic collision terms given by equations (3.85) and
(3.134).

Considering now the field frequency much larger than the characteristic relax-
ation frequency for energy transfer v,, in order we may assume the time invariance
of ff, the equations (4.54), (4.55) and (4.56) take the following form using complex
quantities

. e . dff
(v, Fjo) iy + @ g1 = E; I (4.58)
m dv,
. e . dff
(p tio) gy — wepy = Ey J (4.59)
m dv,
. e df,
(v tjo)po = E: e (4.60)
m dv,
and as in (4.37) we may express under tensorial form
Pu Ec(r+0/2 JE,(r—D/2 0
e , daf’
g | = —JjE.(r—0/2 E,(r+0/2 0 . (4.61)
m dv,

P1o 0 0 Eip
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The drift or average vector velocity (4.10)

1 [® 4rv}
Vea = (P11 ex +q11 ey + o €) 3 dv, (4.62)
e JO

may be written in the form (4.35) being the components of the tensor mobility as
follows

© (r11\ df dmv?
poo=— °© / <’+ ) 1 Aol (4.63)
e JO

mn 2 dv, 3
e [®(r—1\ df° 4mv}
= e TV gy, 4.64
Hoy / Mmn, /0 ( 2 ) dv, 3 v (4.64)
e © dfo 4mv}?
= — € ¢ dv, 4.65
Mz i, /0 Py, 3 (4.65)

and p4,, = ,,. Obviously when vy, (v,) = const and because of

[ele] d 0 4 3
/ df‘-’ ”3”‘—’ dv, = —n,, (4.66)
0 Ve

we return back to equations (4.38), (4.39) and (4.40).

Let us consider now equation (4.57) for the isotropic component assuming
@ > v,, and hence 9f°/dt = 0. Substituting the equation (4.61) for the anisotropic
component in equation (4.57), written as in equation (4.21), we obtain

1 d| v?
- (:1)2 302 dve[ vz (Re

— 0
—Im{j (r2 1)} 2 Eox Eoy sine) Zfe } = I°¢) + J°(F). (4.67)

e

r+1
(EE+EQ) + Re{p} EZ

in which

r+1 v (Ve2+ 0 + o2

T (082 4 (@ + 0e)?) (V2 + (0 — 0e)?)

| fr—1 _ 25 © Wee (4.69)
A T2+ (@ + 00)?) (V2 (0 —we)?)

Re{p} = "o (4.70)

(4.68)
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For a right-hand circularly polarized wave Ey, = Eo, = Ey, Ep, = 0, and
0 = —m /2, we obtain
eN2 1 d 2 r+1 fr—1 5 dfo
— R I Es ¢
(m) 3v2 dv, |:ve ( © 2 +m {J ( 2 )} ) O dv,

= I"¢0) + J°¢)

and therefore
eN2 1 d ) pe 5 dr° . oo
— m E e -/ J ’
(m) 3v2 dv, |:ve Ve2 4 (0 — Wee)? 0 gy, (feo) + J°(f)
4.71)
while for a left-hand circularly polarized wave 0 = /2, we find

_ (e)z 1 d [vez Vin E2 dfeo} = 1°¢Y) + J°¢°) .

m/ 3v2 dv, ve2 4+ (0 + @e)? o v,
(4.72)

We may check that in case of a linearly polarized wave in the plane perpendicular
to the B field of amplitude Ey;), decomposed into two circularly polarized waves of
amplitudes Ey(/2, we have

B ( e )2 1 d 0?2 vy, i v Eozl dfeo
m/ 3v2 dv, | ¢ \ve? + (0 — 0c)? ve? + (0 + e )? 4 dv,
— IO(fEO) + ‘]0(}(:)) , 4.73)

so that as w., = 0, equation (4.73) transforms into the previous expression (4.22)
derived for a linearly polarized HF field.

Finally, let us consider the most general case of a right-hand circularly polarized
wave of amplitude Eqg) simultaneously with a left-hand circularly polarized wave
of amplitude Ey(z). Multiplying both members of equations (4.71) and (4.72) by
/i, we obtain the following expression for the Boltzmann equation in terms of the
EEDF f?(u) equivalent to equation (4.24) as B is discarded

_ d |2 P2 e e? E()Z(R) n E02(L) dfeo
du | 3 " m Vf;lz + ((l) - a)ce)z anz + (w + a)ce)z du
dT2m 5y (o df? 0
= " kgT, 4B
du|:Mu v | ) + kg w) T 0 vo Vuf,

+ ) AVt g v+ ug) £+ ug) — Vv £ w)}
i

+ Z {\/u —uy vji(u— u,;i)ff(u —uj) — Ju 1{,~,-(u)f(_,0(u)} . (4.74)
i
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Equation (4.74) determines the EEDF in terms of Eyr)/no and Eo(z/no (or Eogy/no),
w/np and w../®. When w.,/w = 1 the right-hand circularly polarized wave leads
to electron cyclotron resonance.

4.2.3 Power Absorbed from the Field

Following a procedure identical to (4.43) we obtain the following expression for the
mean power absorbed from the HF field, per volume unit, for the case of right-hand
and left-hand circularly polarized waves

PE(t) = én, (Re {/“Lxx} + Im {I"ny}) E02(R) + en, (Re {/“Lxx} —Im {I"ny}) EOZ(L) .

(4.75)
Individually, the power absorbed from the right-hand and the left-hand circularly
polarized waves are as follows using the EEDF with the normalization (3.166)

2 e*n, [ EOZR df
P = — ¢ 3/2 e * d 4.76
E® 3 m /0 e m ve2 4+ (0 — we)? du " ( )
2 etn, [ EOZL df
Peyy = — ¢ 3/2 e © Ydu. @77
ED 3 m /0 “ Vm Ve? + (0 + wee)? du ! 4.77)

Figure 4.9 presents the mean power per electron at unit gas density, Pg(t)/n.n,,
absorbed from the R and L waves in argon, as a function of w./w, for the
reduced rms field E, 1 /n, = 20Td of a linearly polarized wave decomposed
into two circularly polarized waves, and for w/n, = 1.17 x 1073 m3s™! and
4.78 x 1073 m3s™! (Loureiro 1995). The full curves represent results obtained
from equation (4.74) in the absence of electron-electron (e-¢) collisions, while the
broken curves show for comparison the mean power calculated as the EEDFs are
assumed Maxwellian (3.168), with their temperatures obtained from the energy
balance equation (3.174)

Pp(t) = Pog + Pipa . (4.78)

in which the average power loss terms are given by (3.151) and (3.176). In the case
of a gas pressure p = 133.3 Pa (1 Torr) and temperature of neutrals 7, = 300K,
the values of w/n, used here correspond to w/2w = 600 MHz and 2.45 GHz. The
equality w,, = w is achieved for B = 214 and 875G, respectively. Figure 4.9
shows that maximum heating is obtained for a Maxwellian EEDF. Further, the power
absorbed from the L wave decreases as w/n, increases from 1.17 x 10713 to 4.78 x
1073 m3s™!, which signifies higher efficiency in ECR when a linearly polarized
wave is launched. The small maximum in the power absorbed from the L wave
as we, = o results from the changes on the EEDFs for conditions close to ECR
originated by the R wave.
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Fig. 4.9 Mean power absorbed per electron at unit gas density against w./w in argon, for
Epnsay/no = 20Td and w/n, = 1.17 x 1073 m?s™! (Ry; L;) and 4.78 X 1073 m?s™! (Ry;
L,). R and L are for the R and L waves. Full curves: absence of e-e collisions; Broken curves:
Maxwellian EEDFs (Loureiro 1995)

Figure 4.10 shows values of Pg(t)/n.n, calculated for Eeq/n, = 120Td,
keeping all other conditions as in Fig.4.9. From inspection of Figs.4.9 and 4.10
we conclude that the differences between the values of Pg(t)/n.n, calculated in
the absence of e-e collisions (i.e. with non-Maxwellian EEDFs) and in the case of
Maxwellian EEDFs significantly reduce as E.)/n, increases, in consequence of
modifications on the shape of the EEDFs.

Figure 4.11 shows values of Pg(t)/n.n, in Ar, as a function of the reduced rms
amplitude of a linearly polarized wave, E,;)/n,, and for w,, = w. As in Fig. 4.9
we consider w/n, = 1.17 x 10713 and 4.78 x 1073 m?s™! in the absence of e-e
collisions (full curves) and assuming Maxwellian EEDFs (broken curves). We note
that the results shown in Fig.4.11 for the R wave are equivalent to those in a DC
electric field, if the L wave was omitted and a R wave with Eyg, = Epc was
directly launched instead of the linearly polarized wave. The values for R waves
are indistinguishable for the two values of w/n,.

Finally, Fig.4.12 shows 2/3 of the average electron energy, <u>, as a function
of the ratio of the rms amplitude of a linearly polarized wave to the gas number
density, Eus) /1o, in argon at ECR conditions (i.e. for w.. = w), and for w/n, =
1.17 x 1073 and 4.78 x 10~ m? s~!. As before the full curves are obtained in the
absence of e-e collisions, while the broken ones are for Maxwellian EEDFs. In the
case of these latter, 2/3 <u> corresponds to the electron kinetic temperature kg7,
of the distributions.
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Fig. 4.10 As in Fig. 4.9 but for E,,,s;)/n, = 120 Td (Loureiro 1995)

4.3 Radio-Frequency Electric Fields
4.3.1 Time-Dependent Boltzmann Equation

As the field frequency decreases up to values of the same order or smaller than the
characteristic relaxation frequency for energy transfer, < v,, with v, given by
equation (4.1), the collisional energy dissipation is faster than the radio-frequency
(RF) field variation, v,”! < T, with T denoting the field period, and a large time-
modulation occurs in the isotropic component of the electron velocity distribution
function, i.e. in the EEDF (Margenau and Hartman 1948; Delcroix 1963,1966;
Winkler et al. 1987; Capitelli et al. 1988; Loureiro 1993). The energy range where
the time-modulation takes place depends on the form as v, varies with the electron
energy. In argon, for example, v, sharply increases with the energy u (see Fig.4.1),
so that at field frequencies in RF range and for gas pressures typically p ~ 100 Pa,
the inequality @ < v, holds only in the high-energy tail of the EEDF (Sd et al. 1994).
On the contrary, in a molecular gas such as H, or N, the above inequality holds at
much lower electron energies, due to the contribution of vibrational excitation to
the characteristic relaxation frequency v,, and a large time-modulation occurs also
in the bulk of the distribution (Loureiro 1993). This is particularly evident in N, (see
Fig.4.2), where a sharp and pronounced maximum exists at # ~ 2eV in the total
cross section for vibrational excitation (see also Fig.3.13).
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The EEDF in the collision dominated bulk plasma created by a RF field can
be obtained by solving the time-dependent, spatially homogeneous, Boltzmann
equation under the action of a time-varying sinusoidal electric field

E(r) = Eqy cos(wi) , 4.79)

with Eg = — Ej e,, and where w is the angular field frequency. Then, the electron
velocity distribution function f, (ve, #) can be obtained by solving the time-dependent
Boltzmann equation

af, —(EE af,

ot m. 0V,

) = I(f) + J(f) . (4.80)

where e and m are the electron absolute charge and mass, respectively, v is the
electron velocity, and I and J denote the collision operator for elastic and for
inelastic collisions, respectively. Here, as before, we will neglect processes which
result in the production or loss of electrons, i.e., production of secondary electrons
by ionization, electron-ion recombination, and electron attachment, so that J(f,)
includes only the effects of energy-exchange processes, both for inelastic and
superelastic collisions. The electron velocity distribution is normalized through the
condition

n, = /fe(ve,t) dve , (4.81)

where n, denotes the electron number density assumed here time-independent.
Equation (4.80) is solved by expanding f, in Legendre polynomials in velocity
space and Fourier series in time

feve.t) = D> "Relfl(v) €'} Pi(cosb) . (4.82)

=0 k=0

with 6 denoting the angle between the instantaneous velocity v, and the direction
of the anisotropy along the z axis, Re{ } means “the real part of”, v, = |v.|, and
fkl (v.) is a complex function expressing the time delay of the electron transport with
respect to the applied electric field (4.79). Here, we will assume that the anisotropies
resulting from the field are sufficiently small, so that the first two terms in spherical
functions suffice for the expansion

fr(Ve. ) = f2vert) + f1(ve,t) cosB . (4.83)
Under this assumption, the lowest-order approximation for the expansion in Fourier

series, allowing a periodic time-variation in the isotropic component of the electron
velocity distribution (that is, in the EEDF), is

Led) = ) + £ve) cosQot + ¢3(ve)) . (4.84)
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while for the anisotropic component we have

fwet) = f(ve) cos(wr + ¢} (ve)) - (4.85)

As shown below, the fact that the isotropic and the anisotropic components of the
electron velocity distribution are functions of E(#)? and E(t), respectively, originates
that the isotropic velocity distribution, feﬂ(ve, 1), only has even harmonics in the
Fourier expansion, whereas fe1 (ve, 1) only has odd ones (Margenau and Hartman
1948; Delcroix 1963,1966). Then, the normalization condition (4.81) appropriate to
the present simplification should be written as follows

o
/ ) drv}dv, = n,, (4.86)
0

o
/ fr(e) dmv} dv, = 0, (4.87)
0

o0
/ () 4mvr dv, = 0, (4.88)
0

where f3, and f3, denote, respectively, the real and imaginary part of the com-
plex amplitude fJ = f3 exp(j¢p?) of the time-varying isotropic component at
frequency 2w.

Introducing (4.82) into equation (4.80), one obtains the following system of
nonlocal equations in velocity space for fy, /3, and f]', respectively

1 d eE()
3v2 dv, \ 2m

v, Re{ff}) = I°09) + J°() . (4.89)

eE()

1
. 0
Rofy + 3v2 dv, (Zm

v 2 fll) =I°¢) + 'R, (4.90)

. e‘E() dfo EE() dfﬂ
jo fl + — 2o=1'¢H + (. 4.91)
m dv, 2m dv,

The elastic and inelastic collision terms of the isotropic components, I° and J°, are
given by (3.85) and (3.133), whereas in equation (4.91) we have

r'eh+7'¢H = =il (4.92)

with vy given by (4.2). As seen in equation (3.139) the use of an effective collision
frequency in equation (4.92) is justifiable in gases for which the inelastic scattering
is not negligible but is nearly isotropic. The evaluation of such an approximation in
N; is treated in Phelps and Pitchford (1985).
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Substituting (4.92) into equation (4.91), one obtains for fll

E, d E, df?
fl=- 1 ko dfy (4.93)
m (v¢, + jw) dv, 2m (V¢ + jow) dv,

This expression when inserted in equations (4.89) and (4.90) allows us to write the
following system of equations for £, fa, and f3, (Loureiro 1993)

2
_ U (B0 d [ A Adf | B
6v2 \ m dv, | ¢ dv, 2 dv, 2 dv,
=10 + J°¢)) . (4.94)

1 Eo\* d e Adfy, B df
20 fY — (e 0) I:vez(A Ifo n lfor 4 le):|

6v2 \ m dv, dv, 2 dv, 2 dv,

= I'(5p) + J°(Fw) - (4.95)
1 Eo\> d af’ B d A d,

20 e+, (2 w2 (8% 4 e _ A Ay

6v, m dv, dv, 2 dv, 2 dv,
= I'(h) + () . (4.96)

with
v w

A = " ; B = . 4.97
ve? 4+ w? ve? 4+ w? ( )

Once the functions fJ (v,), f(ve), and f3;(v,) are obtained, the anisotropic com-

ponent f] (v,) is calculated from equation (4.93). Then, the drift velocity Vea(r) =
veq(f) €5, the energy-averaged electron energy <u> (t), or, for example, the electron
rate coefficient Cy(#) for excitation of a j state from i sate can be readily obtained.
Transforming now as in (3.166) the isotropic component of the electron velocity
distribution £2 (v, 1) to the electron energy distribution function F°(u, 7) as follows

e, 1) 4mv2 dv, = ne FOu,t) udu, (4.98)

and foo(ve),ng(ve) and fgl(ve) transformed to Fg(u), F(z)R(”) and Fgl(u), while the

anisotropic component £, (v,) is transformed to F} (u)

i) 4mv2 dv. = n, Fl(u) udu, (4.99)
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1

with u = mv 2 denoting the electron energy, we obtain successively for the
different quantities:

(i)

(ii)

(iii)

Drift velocity
vea(t) = Re{Vy &'}, (4.100)

with V4, given by
L j2 (>
Vio = uFi(u) du ; 4.101)
3 m Jo
Energy-averaged electron energy
o0
<u>(t) = / w3 2FO(u, 1) du (4.102)
0

which can also be written under the form
<u>(t) = <u>g + <u>r cosQwt)— <u>,; sinwt) , (4.103)
with <u> given by
o
<u>g = / u3/2F8(u) du , (4.104)
0
and where <u>,g and <u>;; are given by similar expressions but in which

F)(u) is replaced with F9(u) and F9,(u), respectively;
Electron rate coefficient for a i — j state transition

Cy(1) = <ve 0> = \/’i /000 u oy(u) FO(u, 1) du (4.105)
or in the form
Ci(t) = (Cy)o+ (Cyar cosQwt) — (Cy) sinQur) (4.106)
with (Cjj)o given by
2 [
(Cijo = \/m /0 u o(u) F(u) du, (4.107)

and where (Cjj)2g and (Cjj),; are given by similar expressions using F’ SR (u) and
F (2)1 (u).
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The energy-averaged power balance equation may also be decoupled into three
equations as follows

(PE)O = (Pel)O + (Prot)O + (Pinel)O (4108)
(Pe)or = (Pe)2r + (Pro)2r + (Pinet)2r + (Pw)or (4.109)
(Pe)ar = (Pep)ar + (Prot)2r + (Pinet)2r + (Po)ar s (4.110)

in which the terms in the left-hand side members are

Pe)o = " Re(Vio) @111
(Pe)2r = (PE)o (4.112)
Po)ar = P v} . 4.113)

The terms for P,;, P, and P, are identical to equations (3.176), (3.177), and
(3.151) replacing FJ), F9,(u) and F5,(u), whereas the terms (P,)or and (Py)y
associated with the interchange in equations for Fo,(u) and F9(u) due to the
first term in equation (4.90), taking into consideration the phase-shift ¢9 in
equation (4.84), are

(Pu)ar = — 2n,w <u>y; (4.114)
(Pw)ar = 2n,0 <u>rg . (4.115)

Finally, it follows from this formulation that the instantaneous energy-averaged
power absorbed from the field is given by

Pe(t) = (Je .E) = (Pg)o [l + cosQwt)] — (Pg)a sinQRwt) , (4.116)

with Je = — en,veq denoting the electron current density.

4.3.2 Time-Dependent Velocity Distributions

The time-dependent electron Boltzmann transport equation written in the
form (4.94), (4.95) and (4.96) can be solved to yield the EEDF, Fo(u,t), as a
function of the independent parameters: ratio of the electric field amplitude to the
gas number density, Ey/n,; ratio of the angular field frequency to the gas density,
w/n,; gas temperature, T,; and vibrational temperature, T,. The latter used to take
into account the effects produced by the inelastic e-V processes starting from a level
v > 0, and the superelastic e-V processes (Loureiro 1993).
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Figure 4.13 shows the EEDFs calculated in nitrogen for Eo/n, = 60+/2Td
(ITd = 1 x 1072V m?), w/n, = 5x107°m3s™!, and T, = T, = 400K,
i.e. in the absence of appreciable vibrational excitation, and for the different times
during the half period of the RF electric field shown in the inset.

For the considered RF field the EEDFs oscillate with twice the field frequency
presenting a modulation of many orders of magnitude and a small phase delay,
relative to the applied electric field, in those parts of the electron-energy range where
w is appreciably smaller than the relaxation frequency for energy transfer, v,, shown
in Fig.4.2. The sharp maximum of v,./n, at u >~ 2eV, of about 107 m3s7!, due
to vibrational excitation is clearly larger than the value chosen here for w/n,, so
that for electron energies around 2 eV the EEDFs follow the RF field in a quasi-
stationary way excepting when the field goes through zero. We note that in this
region of electron energies the EEDFs are maximum when the absolute value of
the RF field passes through its maximum, decrease strongly as the absolute value
of the field decreases, and reach a minimum when the field passes through zero. In
particular, for zero field, the EEDFs are extremely reduced and most of the electrons
have only very small energy.

The other parts of the EEDFs can be interpreted as well by looking at the
dependence of the relaxation frequency v, on the electron energy shown in Fig. 4.2.
There are two energy regions u < 1.5eV and 4 < u < 8eV practically devoid of
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vibrational or electronic inelastic processes, which correspond to relatively small
values of v./n,. In both regions the inequality @ < v, is no longer valid so the
EEDFs follow the RF field with a much smaller modulation and large phase delay.
On the other hand, in the high-energy range u > 8§ eV, dominated by the excitation of
electronic states, the relaxation frequency v, has approximately the same amplitude
as for u >~ 2 eV, so that the EEDFs show a very large modulation as well. It is also
interesting to note that, as a result of the nonequilibrium between the EEDFs and
the applied RF field, the EEDFs are different at the instants ¢ and 7/2 — ¢, with T
denoting the field period. The EEDFs are naturally larger when the RF is decreasing,
0 < t < T/4, because of memory effect. Obviously, the differences between the
EEDFs at both instants are decreasingly smaller as v,/n, increases, which is the
case as the electron energy increases from ~8 to ~14eV (see curves B and D in
Fig.4.13).

Figure 4.14 shows the EEDFs calculated in nitrogen for the same values of
Ey/n, = 604/2Tdand T, = T, = 400K as in Fig.4.13, but for the higher value of
w/n, = 1x 107" m3 s~ In this case we have @ > v, in large parts of the relevant
range of the electron energies so that the amplitudes of the time modulation of the
EEDFs are strongly diminished with respect to Fig. 4.13.

Figure 4.15 shows the EEDFs calculated in nitrogen, still for the same values
of Ey/n, and T, = T, as in Figs.4.13 and 4.14, but for the higher value of

Fig. 4.14 EEDFs in N, for 1
the same values of Ey/n, and
T, = T, as in Fig. 4.13, but
forw/n, = 1x107"“m3s. /1
The various curves are for the 101 /2]
following instants with T R
denoting the field period: (A) S
0; (B) T/6; (C) T/4 (Loureiro %
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Fig. 4.15 EEDFs in N, for 1 I
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w/n, = 1x 107" m3 s7!. In this case we have no time-modulation at all because

the inequality @ > v, holds in the entire electron-energy range. On the other hand,
as long as w is smaller than the relaxation frequency for momentum transfer v,
the time-averaged value of the EEDF, FO(u, ) = F(u), is only slightly dependent
on w. In the limit w K v;,, we have A ~ 1 and B ~ 0 in equations (4.97),
and equation (4.94) becomes identical to the Boltzmann equation for a DC field
of magnitude equal to the effective field strength E.y = Eo/ V2, excepting that
here we must also keep in equation (4.94) the term with Fo,. However, as the
field frequency increases beyond v¢, the time-averaged value FO(u,t) = F(u) is
strongly reduced. As we have seen in Sects. 4.1.2 and 4.1.3, when @ > v}, the time
delay of the electron current density approaches 7/4 and the electrons cannot gain
energy from the field on the average. In this limit the time average over one period
of equation (4.116) yields only a vanishingly small value Pg(t) = (Je . E) >~ 0.
For frequencies of this order, which correspond to microwave fields at gas pressures
typically p ~ 100Pa, the EEDFs exhibit a strong peak at zero energy. See, for
example, the EEDFs in argon for the highest values of w/n, shown in Fig. 4.3.
This latter aspect is well understood through the evolution of the drift velocity
with the w/n, values. Figure 4.16 shows the drift velocity Veqg = v.4(?) €, calculated
for Ey/n, = 60+/27Td, T, = T, = 400K, and various values of w/n, between
5x 107" and 1 x 107'2 m?® s™!. This figure shows that for w/n, < 1 x 1074 m3s™!
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Fig. 4.16 Electron drift T T T
velocity in N, as a function of 10
the reduced time ¢/7, with T A B
denoting the field period, for
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there is no phase delay with respect to the applied field E(f) = — Ey cos(w?) e,;
for w/n, ~ 1x107"3 m3s™!, the delay is ~ — /4 in agreement with the fact of
w ~ v, over most of the relevant electron-energy range; and for the highest values
of w/n, the delay approaches — 7/2. On the other hand, for the highest values of
w/n, the drift velocity strongly reduces in magnitude.

The large modulation of the EEDFs in the electron-energy range 1.5 < u < 4eV
is strongly reduced when we consider the effects produced by the e-V superelastic
collisions. Figure 4.17 shows the EEDFs for the same values of E/n,, w/n,,
and T, as in Fig. 4.13, but for the case of vibrational excitation corresponding to
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a characteristic vibrational temperature 7,, = 4000K. The comparison between
Figs.4.13 and 4.17 allows to evaluate the effects caused by the e-V superelastic
collisions in reducing the effectiveness of the characteristic relaxation frequency for
energy transfer v,, shown in Fig. 4.2, in the electron-energy range under discussion.
The e-V superelastic processes produce a decrease in the amplitude and an increase
in phase delay of the EEDFs, for energies 1.5 < u < 4eV, as well as an
enhancement of the high-energy tail of the EEDFs. This latter aspect has already
been discussed for the EEDFs obtained in a DC field in Sect.3.6. Finally, it is
worth noting that the enhancement of the high-energy tail of the EEDFs from
Figs.4.13 to 4.17 is not very significant because we have chosen here a relatively
high value of Ey/n,. In the case of lower Ey/n, values, e.g. as small as 304/2Td,
the effects produced by the e-V superelastic collisions would become much larger
(see Sect. 3.6).

The EEDFs in hydrogen are much lesser modulated than in nitrogen due to the
relaxation frequency for energy transfer is about one order of magnitude smaller.
Figure 4.18 shows the EEDFs in H; calculated for Ey/n, = 3042Td, w/n, =
2x 107 m3s™!, T, = T, = 400K, and for the different times shown in the inset.
As seen from this figure, as compared with those presented before for N, the time
modulation is clearly less pronounced here, which is a consequence of the relative
magnitudes of the relaxation frequency for energy transfer in both gases plotted in

Fig. 4.18 EEDFs in H, for 1 = | | | | | |
Ey/n, = 30+/27Td, n \ e AE()
w/n, =2x 107 md3s™!, \ oA B
T, = T, = 400K, and for the \ c vT
following instants: (A) 0; (B) 101 |+ \ 0 1/4 1/2 >
T/6; (C) T/4 (Loureiro 1993) \-\
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Fig. 4.19 Energy-averaged electron energy in N, as a function of the reduced time #/7, for
Ey/n, = 60+/2Td, T, = T, = 400K, and the following values of w/n, inm?s™!: (4) 5x 10716;
(B) 1 x 10713, (C) 1 x 10714; (D) 1x10713; () 1 x 10~!2 (Loureiro 1993)

Fig.4.2. Besides the fact of v, /n, is smaller by one order of magnitude in Hy, it does
not present any pronounced maximum due to the dissipation of electron energy in
vibrational excitation as it exists in N, at ~2 eV. The absence of such a maximum in
H, also signifies that the effects of e-V superelastic collisions produce only minor
modifications in the EEDFs in H, as compared to those observed in Nj.

Once the EEDF are obtained, the various energy-averaged quantities with interest
for plasma modelling can also be obtained as a function of time. Figure 4.19 shows
the energy-averaged electron energy, <u> (), calculated in nitrogen for Ey/n, =
60+/2Td, T, = T, = 400K, and various values of w/n, between 5 x 10719 and
1 x 107"2m3s™!. This figure shows that there is a marked reduction in the time
modulation (at the frequency 2w) as w/n, increases together with a reduction in
the amplitude of the time-averaged values. There is also an increasing phase delay
which approaches — =, i.e. a time delay — 7'/4, as @ — oo, but this latter aspect is
not particularly visible in this figure.

Finally, Fig. 4.20 shows the electron rate coefficient, Cg(t), for excitation of the
triplet state N>(B *T1,) at the same conditions as the previous figure for <u> (z).
Both the time modulation and the reduction of amplitude for the highest values of @
are particularly visible now because the rate coefficient depends of the high-energy
tail of the EEDF only, whereas <u>(r) in Fig. 4.19 results from an integration over
the entire energy range. Also the increasing phase delay approaching — 7'/4 is more
clearly visible in this figure. It is worth noting here that instead of equation (4.106)
the electron rate coefficient for excitation of a given i — j transition may also be
written under the form

Ci(t) = (Cyo+ (Cyj)a cosQut + ¢J) , 4.117)

with (Cy)2 =~ (Cjj)o and 9 ~ 0 when w < v,, and (Cj)2 <K (Cj)o and ¢p9 ~ — 7
when @ > v,. Then, the term (Cy)o is strongly reduced when w > vf.
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Fig. 4.20 Electron rate coefficient for excitation of N,(B 3I1 ¢) state as a function of the reduced
time t/T, for Ey/n, = 60+/2Td, T, = T, = 400K, and the following values of w/n, in m?s~!:
(A)5x 1071 (B) 1 x 10713, (C) 1 x 10™14; (D) 1 x 10~'3 (Loureiro 1993)

It follows from the present analysis that the instantaneous energy-averaged power
absorbed from the RF field and the instantaneous power lost in electron collisions
are not in phase with each other. The time-modulation at frequency 2w of the
instantaneous power lost by electron collisions is strongly diminished and its phase-
delay approaches —z (i.e. At = T/4) as w/n, increases, such as it occurred with
<u> (7) and CE(z). On the contrary, the instantaneous power absorbed from the
field shows no reduction of its modulation and has an increasing phase-delay going
to —m/2 (i.e. At = T/8, see equation (4.116) and Exercise 4.6). We note that
Pg(t) ~ — (Pg)y sin(2wt) in equation (4.116) as @ — oco. Obviously, the time-
averaged values of the energy-loss and energy-gain terms exactly compensate each
other and both go towards zero as w/n, increases beyond v, /n,.

Appendices

A.4.1 Effective Collision Frequency and Electron Density
in High-Frequency Discharges

When the effective collision frequency for momentum transfer vy, given by
equation (3.139), is independent of electron velocity, the equation for electron
momentum conservation (3.60) in high-frequency (HF) fields reduces to

ne m + n.eE = —n,mv’ veq, (4.118)
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with veq denoting the electron drift velocity. Here, we are assuming the field
frequency much larger than the characteristic relaxation frequency for energy
transfer w >> v,, in order the electron density does not change appreciably during
a cycle of the field oscillation. Then, for an applied field of frequency w, we have
dveq/dt = jw Veq, and the drift velocity is given by the well known formula

e

Ved = — E. 4.119
T T v+ o) @119
The electron current density Je = — en, Vveq, allows to obtain the complex
conductivity from J. = o, E, with the form
e*ne (4.120)
ac‘e = . k] .
m (V¢ + jo)
whereas the time-averaged power absorbed from the field (4.15) is
1 2 . e

Pp() = ©Telm g2 (4.121)

2m e+ w?) O

However, when the frequency vy, is velocity-dependent, we must consider the
expression (4.9) for the complex anisotropic component

1 EE() dfeﬂ ejwt

! = flv,) & e, = —
¢ fe(ve) z ve +jo m dv,

[ (4.122)
in the collision term of equation for momentum conservation (3.55)
®
L = _/ m vt dnv? dv, , (4.123)
0 3

assuming here the interactions of collision type only and the applied field with the
form E = — Ey ¢’ e,. The complex drift velocity (4.10) and (4.11) is then

. E, *° 1 df’ 4zv?
Vea = Vg €, = — - / .
0

¢ dv, &”e,, (4.124
nem ve + jo dv, 3 v ( )

so that substituting equation (4.123) in equation (4.118), we find

nemjo Vey — ne eEy =

(e} e 4 3
¢Ey / v Al 4, dv, . (4.125)
0

ve + jo dv, 3

In the case of a velocity-independent frequency v;,, we immediately obtain equa-
tion (4.119) from (4.125). In fact, integrating by parts
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[’} d 0 4 3 e’}
/ o Aol L~ —/ £ amv2dv, = —n,, (4.126)
0 dv, 3 0
we find
nem jo Vg — np eBy = —eEy '™ n, (4.127)
v+ jo
and therefore
E
Vg, = 0 (4.128)
m (vy, + jo)

A different situation occurs as v;, depends on the electron velocity. In this case in
order to express equation (4.125) with the form (4.118) and to obtain an equivalent
expression (4.120) for the complex conductivity, we should consider an effective
complex collision frequency vz in equation (4.125), such as

nem jo Veq — N eEg = — nem Vo Veg . (4.129)

Then, using equation (4.124) for V,,, we obtain

1

00 e dro 00 1 dare -
v = / I NS P / Y g @30
- 0o Vg, +jo dv, 0 VvV, +jo dv,

Obviously v.4 allows to obtain vy, again as this latter frequency is time-independent.
When such is not the case, equation (4.129) allows to obtain an equivalent
expression to equation (4.128) but with a complex frequency in place of v;,

V., = eEo (4.131)
ed — m(Veﬂ +]a)) l} .
whereas the complex conductivity is
2
0w = T (4.132)
m (veg + jw)

However, separating v in real and imaginary parts, v,y = Vg + j V7, we obtain
an exact equivalent expression (4.120) as follows

e n; (4.133)
UCe - . ’ .
m (v* + jw)

with n) and v* denoting an effective electron density and a new effective collision
frequency given by
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* e

= 4.134

n 14 vp/w ( )
* VR

= . 4.135

1+v/o ( )

Separating equation (4.130) in equations for the real and imaginary parts of complex
quantities, we obtain from equation for the imaginary part

o 1 5 df? vy ® e 5 df?
e d — 1 m e d e ,
UR/O ve? 4+ w? Y dv, ( +a))/0 ve? + w? e dv,

from which we may write

00 e d 0 oe] 1 d
v* = / Vim v, e dv, x / v} fﬂ Ve . (4.137)
0o vei+w? ¢ dv, 0o vi2+w? ¢ dv,

On the other hand, from the comparison between the imaginary part of the complex
conductivity (4.12)

dv, (4.138)

Oce = €N e = —

é? /oo 1 df dmv}
mJo v¢+jo dv, 3

and the imaginary part of equation (4.133), we obtain

o 1 ar’ 4mv}
* *2 2 e e
n, = -V - "+ow )/0 24w du, 3 dv, . (4.139)

When v¢, is velocity-independent, equations (4.137) and (4.139) reduce to v* = v,
and n} = n,. Finally, in terms of the EEDF normalized through equation (3.166),
v* and n) are written as follows

00 e d (o) 1 d -1
v* o= [ n a2 / A2 Y 0\ @40
0 e+ w? du 0 v+ aw? du

d
nt = — ne (V*2+w2)/ v€2+w2 w2 di du . (4.141)

As firstly pointed out in Whitmer and Herrmann (1966), the two effective
parameters v* and n) have the advantage to permit the writing of a relation of
the type (4.120) for the electron conductivity in HF fields, for gases in which the
collision frequency for momentum transfer depends on the electron energy.
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Exercises

Exercise 4.1. Determine the expression of the velocity-averaged collision fre-
quency for momentum transfer valid as w >> v;, that allows to keep the
time-averaged power absorbed from the field Pg(r) with the same form as the
effective collision frequency for momentum transfer is independent of energy.

Resolution: When w > v¢ and vy, (v.) = const, we obtain the following expres-
sion for the time-averaged power absorbed from the field from equations (4.15) and
(4.16)

ene v,

Pp(t) = m o E s

so that as v¢ (v,) # const, we must consider the energy-averaged frequency

1 [} d 0 4 3
vt o= / ye Yo dmve
ne Jo dv, 3

in order an equivalent expression for Pg(f) may be used

en, v* )

PE(t) = m w2 Erms .

Integrating by parts the frequency v* can also be written as

" 1 d (vev?
Vv =< > .
v? dv, 3

Using the normalization (3.166) the first expression for v* writes as follows

2 [ d
V¥ = — / ve ul? fdu.
3 0 du

This frequency corresponds to the effective collision frequency introduced in
Appendix A.4.1, in the limit w > v, and it differs from the effective collision
frequency v/, used with a DC field to write the electron mobility as u, = e/(m v}
(see Exercise 3.6). Obviously, both result in v;, when the frequency vy, is velocity-
independent.

Exercise 4.2. Obtain the time-averaged power absorbed from the field by the elec-
trons, for the case of a high-frequency field w > v;,, directly from equation (4.22)
for the isotropic component of the electron velocity distribution f?.
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Resolution: Multiplying the symmetric of the left-hand side member of equa-

tion (4.22) by the electron velocity u = émve2 and integrating in all velocity space,

we obtain

® 1(eE\' 1 d (v2 v df° >
Pr(t) = ¢ " i dv, .
50 /0 “ ( m ) v? dv, ( 3 ve? 4+ w? dve) e @

Integrating now by parts, we find
1 (eEy\* [® d (1 2 v d
Pp(t) = — . / mv}? b o Ve 4 dv,
2\ m o dve \2 3 v+ w? dv,
1 (eEp)? /oo vy, df’ 4mv}?
0

2 m ve? +w? dv, 3

dv,

and identifying Re{o.,} given by equation (4.16) in this expression, we can write
Pg(t) under the form

1
Pe(t) = , Relo} Ef .

in accordance with equation (4.15).

Exercise 4.3. Write the expression for the mean power absorbed from the field per
electron, Pg(t)/n., in terms of the mean energy absorbed per collision u.(u) by an
electron of energy u given by equation (4.25).

Resolution: Replacing equation (4.25) into equations (4.15) and (4.16), we find

Pe(r) 1 /“Ve df) 4mv}
o ‘

U dv, .
dv, 3

ne ne

Making the replacement of v, with u and using the EEDF normalized such as

/Ooof\/udu =1,

with both distributions linked each other through equation (3.167), we obtain

Pi(1) :_Z/wuyzveu a4
Tl 3 Jo mEC du '
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On the other hand, starting from the first expression in the answer to Exercise 4.2,

we also obtain
Pr(t 2 d d
50 = / u u? Uy Ue 4 du
Ne 3 /o du du

and integrating by parts we find the same expression.

Exercise 4.4. Write the expression for the complex mobility (4.12) and for the
time-averaged absorbed power from the field per volume unit (4.15) and (4.16) in
the case of an HF field, using the EEDF normalized through equation (3.166).

Resolution: The two expressions asked are:

2 e /oo w? o df
He = — . du
3mJy v+ jo du

2, ., [©, ve df
_ e /2 m ¢
Pr(t) = 3 m Ermx/ Wit e b du du .

Although the notation seems to be identical the first expression represents a complex
quantity and the second a time-averaged value of a real quantity.

Exercise 4.5. Write the expressions of the time-averaged gain produced by the field
in velocity space, Gg(t), and of the power absorbed by the electrons in terms of this
gain, for the case of a HF frequency electric field.

Resolution: The gain produced by a HF field in velocity space is obtained by
inserting (4.20) into equations (3.92) and (3.95)

1 (eE\>  ve  dfY
Ge(t) = — " ¢4 ,
50 6 ( m ) ve? + w? dv, e

so that using equation (4.25), we still have

1 ve u. dfe

4rv? > 0.
3 m dv,

Ge(r) = —
On the other hand using equation (3.119), the time-averaged power absorbed by the
electrons is given by

*  dGg

o0
Pe(t) = —/ u dv, = / Gg mv, dv,
0 dv, 0

/°° . dfY 4ol
- Ve U,
0

¢ dv, .
dv, 3 v
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In terms of the EEDF normalized through equation (3.166), we find

2 d
Geg(t) = —n, 3 u? vy, Uc di
and
© 2 [ d,
Pe(1) =/ Ggdu = —n, / w2 v u, fdu.
0 3 0 du

Exercise 4.6. By writing the drift velocity of electrons under a RF field as
Ved(f) = Vyo cos(wt + ®) show that the power absorbed from the field (4.116)
can be expressed as

en.Ey

Pe(t) = (Pp)o + Vo cosQot 4+ @) .

Obtain the limit values of Pg(z) at low and high field frequencies.

Resolution: The power absorbed is given by

Pe(t) = (Je . E) = en, Vg Ref{“ TP} Ey Re{e/®"}
en.Ey
2

Vo [cos(®) + cosCwt + D)],

so that using equation (4.111) we obtain

ne

en.E
Pe(t) = (Pp)o + 5 ® Vo cosQut + D) .

When o < v, v.4(t) and E(t) are in phase so that
PE(I) = en.EyVy COSz(a)l) s

with Vo = eEy/(mv¢,) and Pg(t) = en.EyV40/2. On the other hand, when w > v¢,
the phase shift of the drift velocity approaches — /2 and we obtain

e

E
Pe(t) = en2 0 Vao sin(Za)t) s

with Vg9 = eEy/(mw) in accordance with equation (4.18), and therefore Pg(¢) = 0.
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Chapter 5
Electron Transport, Ionization and Attachment

This chapter is devoted to the analysis of electron transport by using the Boltzmann
equation. Contrary to the previous chapters where only an electric field exists,
here the electron drift also results from a density gradient. The chapter initiates
by considering the situation where only the density gradient exists, which leads to
free diffusion of electrons. Since the diffusion to the walls leads to the disappearing
of electrons from the swarm, the reintroduction of secondary electrons produced
by ionization into the distribution needs to be properly taken into account to obtain
the breakdown self-sustaining field. Here, only the breakdown produced by a high-
frequency (HF) field is considered, since in the direct-current (DC) case the situation
is much more complicated because the breakdown also depends on the nature of the
cathode. The chapter ends by considering another mechanism for electron sink: the
electron attachment. In conclusion: this chapter deals with mechanisms in which
the electron density is not kept constant in the Boltzmann equation, such as free
diffusion, ionization and attachment.

5.1 Electron Diffusion

5.1.1 Free Electron Diffusion

In Sect.3.1.3 we have analysed the situation where the anisotropic deviations
relatively to the isotropic equilibrium were due to the action of an external electric
field E and the gas, as a whole, was in a homogeneous state. Here, on the contrary,
we will start by assuming that E = 0 but the electron distribution function varies
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from one point to another due to the presence of density gradients, Vn,. Then, the
Boltzmann equation (3.6) takes the form

fe fe fe

9 + (Ve. 3r) = (8t )e_o, (5.1
where the right-hand side member is the collision integral (3.7). Furthermore, we
will assume that the diffusion of electrons takes place in a gas of molecules, which
is itself homogeneous, and the molecules with the density n, are in thermodynamic
equilibrium at temperature 7,. The electrons diffuse then in the gas of molecules
due to their thermal motion only and they are out from the action of electric fields
of any sort. This phenomenon is called free diffusion.

As in the case of the anisotropies caused by an electric field, we may expand the
electron distribution function in spherical harmonics in velocity space (3.9)

L@ ve.) = Y fl(r.ve.1) Pi(cos ). (5.2)

=0

where, if necessary, the dependence on the azimuthal coordinate ¢ may also be
taken into account by considering the associated Legendre functions P}’(cos ¢) and
equation (3.19). Taking the polar axis along the direction of the density gradient and
assuming that it exists rotational symmetry about this axis, in order the associated
Legendre functions are not required, we obtain the following expansion limited to
the first two terms (see Appendix A.5.1 and Allis 1956)

AR o,
(Ve. 3r):;ve cos 0 9% P,

v af!

(0,20
=3 4 +vecoseaz(fe+sfe)+ .......... , (5.3)

or still under the form

el _ e 1 0, 2 0
(ve. ar) = 3 (V.fe)+(ve.V(fe +5fe))+ .......... : (5.4)

In equation (5.4) the scalar function £! has been replaced by the vector f! oriented
along the anisotropy direction. This notation removes the initial restriction on the
direction of the polar axis of spherical harmonics.

Since according to equations (3.26) and (3.126) the first term on the left-hand
side member and the right-hand side member of equation (5.1) are

o _ o) O

5 = o + o cosf +.......... (5.5

(88116) = I"+J + " +JY cosh +.......... , (5.6)
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with I’ and J' denoting the collision terms of order [ for elastic and inelastic
collisions (3.85), (3.133), and (3.140), the equation (5.1) may be decomposed into
a system of equations in which the first two are

3 .

;J;; + ”3 (V.£h) = 1+ )0 (5.7)
of! 2

5 + Ve v(ff + Sfj) = —vef. (5.8)

In the case of weak anisotropies, the spherical harmonic expansion converges
rapidly and the term in f2 is negligible. Further, for steady-state conditions of f1,
which are attained for times ~ (v¢)™!, the equation (5.8) takes the form

Ve

fl = —

(3

v (5.9)
Vi

Then, the equation (5.9) inserted into (5.7) allows to obtain the following equation
for the isotropic component of the electron distribution function

of0 v 2
-af; = VI =140 (5.10)

Asin Sect. 3.1.4 we are assuming that the anisotropic component reaches the steady-
state equilibrium in a time (v¢)~! much shorter than the time at which the isotropic
component also attains its equilibrium, (v,)™".

On the other hand, inserting equation (5.9) into the expression (3.18) for the
electron drift velocity, veg = <vV¢>, we obtain the following expression for the
electron particle current density

00 U2
2
TFe = n, <ve> = — /0 3:(3 ij 4mv,” dv,

=—V@D,), (5.11)
where
2 1 s} 2
D, =<' >= / Ve 0 47v? dv, (5.12)
3ve ne Jo o 3vg

is the electron free diffusion coefficient.

It is worth noting here that the ratio between the electron free diffusion coefficient
and the electron mobility, i, = 0.,/ (en,) being o, the electron conductivity given
by (3.52),
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e 1 d v3
He = < € ) > (5.13)

m  v? dv, \3v¢
is termed characteristic energy

D,
wo= °. (5.14)
Le

This parameter has therefore the following expression

ng
< ¢ >
Vm

U, = m R (5.15)
< 1 d (”” )>
v2 dve \ vf,

and when f? is a Maxwellian at temperature T,, [0 ~ exp(—mv2/(2kgT,)), we
obtain the well-known Einstein relation

up = kgT, . (5.16)

On the other hand, when the collision frequency for momentum transfer is inde-
pendent of velocity, v¢(v.) = const, we still obtain D, = kgT,/(mv;) and
e = e/(mvg,) for the electron free diffusion coefficient and the electron mobility,
respectively. However, the characteristic energy should replace the electron temper-
ature in many situations of plasma physics where the isotropic component of the
velocity distribution function is non-Maxwelllian.

5.1.2 Local Field Approximation

Let us assume now the more general situation where an electric field E exists in
simultaneous with a density gradient Vn,. Using equations (3.35) and (5.1) the
Boltzmann equations writes under the more complete form

ofe of. e afe ofe
. E. = | . . 5.17
m+@aJ m(a% o ) .17)
The electron distribution function f,(r, Ve, f) is not in equilibrium with the instan-
taneous and local electric field if the frequency for energy relaxation, and/or

momentum relaxation, is small compared to the rate for time change of the electric
field

1 JE|

E| o (5.18)

Ve (and/or v;) <



5.1 Electron Diffusion 195

and if the frequency for space relaxation, A~!, being A the mean free path, is small
compared to the rate for space change of the electric field

. (5.19)

= or

1 1 |9E
A |E|

The first condition has already been analysed in Sect. 4.3.2, for a sinusoidal electric
field of angular frequency w, and it corresponds to have v, (and/or v¢) < w.
This condition is usually found at high-frequency (typically > few MHz) and low-
pressure (< few 107 Pa) discharges. The second condition says that the electron
distribution function is not in equilibrium with the field if the distance over which the
distribution function equilibrates, A, is larger than the distance over which the field
significantly varies. A situation of non-equilibrium for this latter condition occurs
in the cathode fall of a glow discharge.

A suggestive figure showing the characteristic time and distance required for the
electron distribution function to come into equilibrium with an applied electric field
was presented in DiCarlo and Kushner (1989) for the case of electron swarms in
Ar and N, (see Fig.5.1). These results were obtained by applying a step function
in the electric field to a Maxwellian velocity distribution (with kg7, = 0.05eV)
and observing the time and the distance required for the electron distribution to
reach the steady-state. Both are normalized by the gas density, so that they represent
Tn, = v, 'n, and An, (n, = 3.22 x 10*>m3 at p = 133.3Paand 7, = 300K).
In low-pressure argon plasmas (i.e. p < few 10? Pa) and moderate reduced electric
fields (E/n, ~ 10— 100Td, with 1 Td = 1 x 1072' V m?) the equilibration time
and distance are 10 — 100ns and 0.1 — 1.0 cm. Below these values temporal and/or
spatial developments of the electron distribution function need to be considered.

Let us consider now the conjoint action of diffusion in the space of positions and
diffusion in the space of velocity, the latter due to the presence of a homogeneous
electric field E = — E e,. Considering weak anisotropies and steady-state
conditions for the anisotropic component f!, we may write from equations (3.89)
and (5.9)

E e
poo_ E W e, — ¢ Vf, (5.20)

€ - e e
mvé, 0v, Ve

while for the equation describing the evolution of the isotropic component, £, we
obtain using equations (3.41) and (5.7)

3f60 e 1 0

a  m3v2 v,

Ve

(v2 (E.f) + 3

(V.f) = I°+J° (5.21)
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108 10%

— Time
- — - Distance

E/n, (Td)

Fig. 5.1 Characteristic times (full curves) and distances (broken), as a function of E/n,, required
for the electron distribution function to come into equilibrium with a step function in electric field
for electron swarms in Ar and N,. The quantities are normalized by the gas density (DiCarlo and
Kushner 1989)

Substituting (5.20) into (5.21), we find

2
Bfeo_(eE) 19 (vf Bff)_ ¢E 1 9 (;:3 (ez.fo))

ot m ) 3v2 dv, \ve 0v, m 3v? dv, \ v,
E . 9 0 2
_eE e g (Y N Ve g0 gy g (5.22)
m 3v¢ dv, 3ve,

The third term on the left-hand side member of (5.22) may be discarded as long
as the diffusion occurs perpendicularly to the direction of the applied electric field.
However, the presence of a crossed space and velocity dependence in the fourth term
indicates that an exact separable solution does not exist for the electron distribution
function, unless the distance required for the distribution to come into equilibrium
with the field is smaller than the diffusion length. When such condition exists the
electron distribution function is factorizable into a function of the velocity and a
function of the space only. The ratio of the electron distribution function to the
electron density (3.15), f°/n,, is then independent of space. This assumption is
known as local field approximation (LFA).

The first consequence of LFA is the diffusion coefficient (5.12) becomes
independent of space and we may write the electron particle current density (5.11)
as follows

I'c = n, <ve> = — D, Vn,. (5.23)
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Also the Boltzmann equation for the isotropic component of the electron distribution
function can be written now as

I (eEN 1 3 [(v2 3P eE v, 3 [(fO\ on,
ot m 3v2 v, \ve v, m 3ve v, \n.) 0z

vz 0
—31; n Vi, = Iy + Jo (5.24)

and once again if the diffusion occurs perpendicularly to the electric field we have
dn,/dz = 0 in the third term of the left-hand side member of equation (5.24). The
form achieved for the Boltzmann equation after this last simplification corresponds
essentially to the equation valid for breakdown, where the electron density is very
low. On the contrary, in a glow-discharge produced either by a DC or an HF
electric field, the electron density is large and a space-charge field emerges in the
plasma along the direction of diffusion, with opposite direction relatively to the
electron density gradient. In this latter case an equivalent term to the third term
of equation (5.24) needs to be considered. We will treat this situation later on in
Chap. 6.

5.1.3 Continuity Equation and Diffusion Length

Let us multiply now both members of equation (5.22) by 47v?2, after having

neglected the third and fourth terms on the left-hand side member due to the reasons
pointed before, and integrating between 0 — co. We obtain the continuity equation
(see Sect.2.4.1)

on, *® 3G * 3G, o0
e 4 / E av, — D, V*n, = —/ b dv, + / J* 4xv 2 dv,,
ot 0 v, 0 v, 0
(5.25)
in which
1 [eE\* D
Gp = gp4mv) = — ¢ s 4mv? (5.26)
3ve, \m ) dv,

is the positive gain in velocity space due to the field (3.92) and (3.95), G, is the
negative gain due to the losses by elastic collisions (3.122) defined such as

[es) BGe [ee)
- / " dv, = / 1 47 2 dv, (5.27)
0 v, 0

and the second term on the right-hand side member of equation (5.25) represents
the equivalent term for the inelastic collisions.
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The terms with G and G,; vanish both as we integrate over the whole velocity
space, since both keep constant the number of electrons. They simply redistribute
a fixed number of electrons along the energy axis. The same situation occurs with
the term for inelastic collisions (3.134) because so far we are simply considering
in this term the promotion and the demotion of a fixed number of electrons in the
energy cells. Therefore, it exists an inconsistency in the form as equation (5.25) is
written. On the left-hand side we include a term for diffusion which leads to the
disappearing of electrons from the swarm, while on the right-hand side we are not
including the counterpart associated with the electron production by ionization. The
continuity equation resulting from the electron Boltzmann equation, with the terms
we have considered by now, is hence

on,

I D, V’n, = 0. (5.28)

This corresponds to the equation for a decaying plasma starting from a given initial
density at r = 0, such as it is the case of a post-discharge.

The form of the solution to equation (5.28) will depend upon the boundary
conditions applied. In the case of a infinite medium the solution of the three
dimensional equation

on 1 0 on,
‘- D, 20 = 2
ot r2 or (r or ) 0 (5.29)

for diffusion away from a point source is a Gaussian function

N, 2
ne(r,1) = ° exp(= " ), (5.30)
(47 D,1)3/2 4D,t

with Ny denoting the total constant population of electrons created at the point
source, which allows the normalization

o0
Ny = / ne(r,t) 4mr* dr. (5.31)
0

If instead of the population Ny, we have at time ¢ = 0 an initial space density r.o(r),
the density as a function of the position and time is

(. 1) ! /oo ) e ="\ 2 gy (5.32)
Nne\r, = Neo\ ! X — Tr r . .
@rpp2 Jy " FPAT a4y

When we deal with a gas discharge, we need to obtain the solution to the
diffusion equation in a bounded, rather than an infinite medium. The solution of
equation (5.28), with n, = 0 at the boundary of a plasma container by assuming
total electron recombination at the wall, may be written under the form of a sum of
orthogonal functions of the type
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ne(r.f) = Y a;(t) n(r) . (5.33)

J

The equation (5.28) may be then transformed into a set of equations

oa;
a‘;f nj — a;De Vi = 0. (5.34)

Defining the diffusion length of mode j as

H
Vi = — (5.35)
2 9
Aj
we obtain
adj De
,a =0, (5.36)
ot Aj
whose solution is
aj(t) = a;(0) e ", (5.37)

being v; = D,/A jz the relaxation frequency of mode j. In the case of the diffusion
mode lengths (5.35) for a rectangular (a,b,c) or a cylindrical (R,h) cavity, we obtain

Allf,m = (ZZ )2 + (mbn)z + (n: )2 (5.38)
Alz = (a;gm)z + ("Z )2 : (5.39)

Imn

being oy, the /—th root of the Bessel function of first kind and order m, in which
ajp = 2.405.

The density #n;(r) of the fundamental mode has a maximum at the centre of the
cavity and decreases towards the wall. The corresponding fundamental diffusion
length (A; for rectangular and A ¢, for cylindrical cavities) is of the order of the
dimensions of the container. When one of the dimensions is significantly smaller
than the others (e.g. R < h in the case of a long cylindrical tube), the diffusion
length is of the order of the smallest dimension (A, = R/wy,). The higher order
modes have diffusion lengths smaller and relaxation frequencies higher than the
fundamental one. The diffusion of higher modes may be then considered ended
(aj(t) =~ 0, for j > 1) when the relaxation of the slowly fundamental mode still
occurs.
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5.1.4 Free Diffusion in Presence of a Magnetic Field

The electron free diffusion is naturally modified as a static magnetic field is put
together. Assuming the magnetic field directed along the z axis, we may write using
equations (3.6) and (5.1)

e e . e\ _ (e
9 + (Ve . 31‘) + ([a)ce X V] . 3Ve) = (8t )e_o, (5.40)

where wee = eB/m ¢, is the electron cyclotron frequency vector, with e denoting
the absolute value of the electron charge. As seen in Sect. 4.2.2, we need to consider
now the associated Legendre functions in the expansion of f, (r, Ve, f)

f(r7Ve’t) Zfeﬂ(r’ v€7t) + (fle(r’ Ue,t) N :}’e)

e

:ff 4+ p11 sinf cos¢ + gq; sinf sing + pjp cosb. (5.41)

Using the expansions (4.53) and (5.4) and neglecting the term on f2, we obtain
the following set of equations for the isotropic and anisotropic components of the
electron velocity distribution function

afeo Ve 1\ _ ;0 0
5 s (V.£8) =1°¢)) +J°(F) (5.42)
0 ad
Piv Ve 7 + Wee 11 = — vy, P11 (5.43)
ot 0x
a ad
g;l + Ve (;;27) — Wee P11 = — V:;l q11 (544)
ap1o af0

e ¢ = —° . 5.45
5 + v 9% Vv, P10 (5.45)

The anisotropies decay with (v¢)~! more rapidly than £, so that we may assume
3f§/8t = 0 in equations (5.43), (5.44), and (5.45). Solving the system so obtained,
we can write under tensorial form

VS1 _ Wee O aff
P11 ve2twl ve24w2 ox
— Wee V§1 87‘;)

CIll - Ve \1,‘;12+(4)C% V,c;l2+w“% O ay ’ (546)
)
Plo 0 0 ! ot

Ym 0z
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or simply writing
fi = - (d.9f), (5.47)

with d denoting the tensor 3 x 3 of equation (5.46). Inserting now (5.47) into (5.42),
we obtain the following equation for the isotropic component of the electron
velocity distribution

oy v’ (v.(&.wf)) — 0@ + () (5.48)

ot 3

and making the calculations, we obtain

W (e (000 Y1 oR
ot 3 \ve2+ow2\ o2 9y? ve 972

) =1°¢") +J°(¢%) . (5.49)

As in (5.35) we may define the diffusion lengths

of; £
o2 = — I etc. (5.50)
so that at the end the equation describing the evolution of the isotropic component
writes as follows

o v’ f 0 0
g oy a2 =1E) 6. (5.51)

being A, an effective diffusion length taking into account the effect of the magnetic
field

A2 T ovg2d w2 \A2 A A2

e2
b (1 n 12)+ b (5.52)
Z

Equation (5.52) shows that due to the electron trapping caused by the magnetic field
the effective diffusion lengths in the directions perpendicularly to the field are larger
than the diffusion length in the axial direction.

On the other hand, the electron particle current density (5.11) using (5.47) takes
the form

v
e ol 2
TFe = n, <ve> =/0 3 f, 47v,” dv,

*© vez I 2
=_/O : (d.fo) 47rv 2 dv, . (5.53)



202 5 Electron Transport, Ionization and Attachment

When the dependence of feo(r, ve,f) on the space coordinate is the same as
n(r,t), i.e. in conditions of the local field approximation (LFH), the ratio feo /1
is independent of r, and we may write (5.53) under the form

1 A ~
Te = (< v2d> . Vne) - (De . Vne) (5.54)
having defined the electron diffusion tensor
De = _ <vld>, (5.55)

in which d is the tensor 3 x 3 of equation (5.46).
When vy, is independent of velocity, we find

= d (5.56)

and if further £ is Maxwellian, <v 2 >= 3kpT,/m, we obtain

~ ksT, «
D. = 2¢q. (5.57)
m

The electron diffusion coefficient is then replaced with the antisymmetric tensor

D, —D, 0
D.=|D, D 0|, (5.58)
0 0 D
in which
D, = ! D (5.59)
T b (@) '
a)ce/ve
D, = mop, 5.60
2T (@efve)? 60
and
ksT,
D, = 2¢ (5.61)
mv,‘;l

These expressions naturally result in D; = Dy and D, = 0 when B = 0. Equa-
tions (5.59), (5.60), and (5.61) show that the diffusion is smaller perpendicularly to
the field, being the coefficients D; and D, as w. /v, > 1 given by
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pe \2 Ve
Dlz( ’") Dy < Dy , Dzz( ’")D0<<Do. (5.62)

ce ce

On the other hand, when v;, depends on v, we obtain the following expressions for
the components of equation (5.55)

1 v 1
D, = < ¢ > 5.63
! 3 Usl 1 + (wce/\):;l)z ( )
1 v? Wee ) VE
D, = < ¢ " 5.64
2 3 Usl 1 + (wce/\):;l)z ( )
1 v?
Dy = < > . (5.65)
3 Ve,

Finally, it is still worth noting that when v{,(v.) = const, the electron mobility is
He = e/ (mvg), so that using w,, = eB/m, we find
wce

= Me B ’ (5'66)

Vi
which leads to the coefficients (5.59) and (5.60) may be still written with the form

1 neB

D, and D, = Dy . 5.67
L+ (ueBp 2 2= 1y ur 607

The free diffusion of ions under the effect of a magnetic field takes place through
the same expressions being necessary only to replace the electron mass with the
ion mass M, and the electron collision frequency vy, with the ion-neutral collision
frequency vj,, in the ion mobility w; = e/(Mv;,). So, due to the fact of the ion
mobility is smaller than the electron mobility, it may occur that for B fields high
enough the ions may freely diffuse perpendicularly faster than the electrons. In this
case, the diffusion coefficient D; for ions is

kBTi MVio

~ 5.68
1 B e (5.68)

5.2 Electron Breakdown

5.2.1 Electron Ionization

We have seen in Sect. 5.1.3 that the Boltzmann equation as written in (5.24), with the
term for inelastic collisions J° given by equation (3.134), leads to an inconsistency.
From one side we admit electron losses by diffusion and from another we do not
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include any term for production of secondary electrons by ionization. This equation
is surely valid to describe an afterglow plasma, i.e. a post-discharge, but it is invalid
for the case of a sustaining plasma. Holstein (1946) has shown that the term for
ionization may be included into the Boltzmann equation in a way that allows to
separate formally the contributions of the secondary electrons produced and the
primary electrons scattered. This description was later on used in Yoshida et al.
(1983) to study the effects of the electrons produced by ionization on the electron
energy distribution function (EEDF) and transport coefficients, at high values of the
ratio of the electric field to the gas number density, E/n,.

Considering here the formulation used by Holstein (1946) and Yoshida et al.
(1983), the collision term for inelastic collisions (3.134) should be modified to
included the following terms for ionization

2 oo
SO = + 1, {/2 u ol u) ) du’

muv u+up

2uuy
+/ u ol u)ff(u’) du' —u i, (1) feo(u)} , (5.69)

+u

where 03¢ (u’, u) is the differential ionization cross section for the process in which a
primary electron of energy u’ produces a secondary electron of energy u, o35 (', u)
is the differential cross section for production of a scattered electron of energy
u by a primary electron of energy u’, and 0;,,() is the total ionization cross
section. Further, u; is the ionization threshold energy, and n, is the gas density.
Here, we assume that the ionization occurs due to electron collisions upon the
electronic ground state only, i.e. we neglect stepwise ionization. The first term in
equation (5.69) accounts for the secondary electrons which enter the distribution
at energy u as the result of ionizing collisions by primary electrons with energies
between ' = 2u + u; and oco. Similarly, the second term accounts for scattered
primary electrons which reenter the distribution at the energy u as the result of
ionizing collisions by electrons with energies between v’ = u+uy and v’ = 2u+uy.
The relationships among these energies are illustrated in the energy map shown in
Fig.5.2 taken from Yoshida et al. (1983). Finally, the third term in equation (5.69)
accounts for electrons leaving the distribution at energy u in result of ionization
collisions.

Although the two electrons produced by ionization are indistinguishable, we use
the conventional terms of secondary and scattered primary for helping the visualiza-
tion. The abscissa and ordinate in Fig. 5.2 are the energy u’ of the primary electrons
before ionization and the energies u of the electrons produced by ionization. The
secondary electrons are defined as the low-energy product electrons with energies
below u = (i’ — u;)/2, whereas the scattered primary electrons are those with
energies between u = (u' —uy)/2 and u = (1’ — uy). The indistinguishability of the
electrons and the conservation of energy lead to the requirement that the distribution
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Fig. 5.2 Energy of product electrons resulting from electron impact ionization against the energy
of primary electrons. Secondary electrons are defined as those below the dashed line, while
scattered primary electrons are those between the dashed line and the solid line (Yoshida et al.
1983)

in energy u of electrons produced by ionization is symmetrical about the energy
u = (u' — uy)/2. The limits of integration of equation (5.69) can be recognized in
Fig.5.2 as the limits of the energies for secondary and scattered primary electrons
for a fixed value of the electron energy u.

An extreme case for the sharing of energy among the electrons produced by the
ionization event is when the secondary electrons appear with zero energy, i.e. along
the horizontal axis of Fig. 5.2. In this case the scattered electrons are produced with
energy (u' — uy), i.e. along the solid sloping line. These differential cross sections
may be expressed in the form given by Thomas (1969), using Dirac §(«) functions
atu=0andu = (u' —uy).

In general, for a secondary electron appeared with the energy uy, the scattered
electron has the energy u’ — (u; + uy), so that we may write

O (U u) = 0Oion (') 8(u— ux) (5.70)

O (U 1) = 0o (u) 8(u — (' — up — uy)) (5.71)
where uy is a function of (' — u;). When uy = 0 we minimize the energy of
the secondary electrons and maximize the energy of the scattered electrons. In this
case, the secondary electrons enter the distribution at # = 0, while the primary
electrons lose only an energy equal to the ionization threshold energy as any other
inelastic process. This secondary-electron distribution is equivalent to that obtained
by adjusting the flux of electrons entering the distribution at # = 0 to equal the
energy-averaged ionization frequency, <v;,,>. With such a flux the collision term
for inelastic collisions with the inclusion of ionization (5.69) may be written in the
following form, considering here equation (3.133) instead of (3.134)
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5(v, Ve + U
JO(feO) = ....... + 1, <Vipn> 4](“))2 + ; ! Vion (Ve + v,)ff(ve + ;)
— Vion(ve) £ (ve) - (5.72)

Here, vipn(v.) = n,V.0i0n(v.) is the ionization collision frequency, v, = \/ 2u/m
is the electron velocity, (v, + v;) = \/ 2(u + uy)/m, and < v, > is the energy-
averaged ionization frequency

1 o0
V> = / Vion(Ve) f2(v,) 402 dv,. (5.73)
ne

up

For an ionization process in which both electrons produced appear at the centre
of the available energy range, i.e. at the energy u = (1’ —uy)/2, the differential cross
sections of the secondary and scattered primary electrons are
ol u) = 030w u) = Oipn() S(u— (' —up)/2). (5.74)
This case gives the maximum available energy to the secondary electrons and the
highest possible energy loss to the scattered electrons.

Let us consider now the more general case in which the share of energy between
the secondary and scattered electrons is specified by a parameter A, with 0 < A <
1/2. For a primary electron of energy i/, the energy received by the two electrons
is A ( —uy) and (1 — A) (4’ — uy), respectively. Since the energy «’ that makes to
appear a secondary electron with the energy u is ' = (u/A) + uy, while the energy
u’ that makes to appear a scattered electron with the energy uis ' = (u/(1—A)) +
uy, the collision term (5.69) writes under the following form after integration of §
functions with du’ = du/A and du’ = du/(1 — A) in the first and second terms
(Itoh et al. 1988; Pinheiro and Loureiro 2002)

Jo(ff) = ....... + 2 no{<u +u1) (f,-(,,,(Z + ul)ff(Z—i—ul) i

muv, A
+ (1_”A+u1) amn(lfA+uz)ff(l_uA +ur) 1_1A
— 1 Oin(1) f2 ). (5.75)

5.2.2 Equations for Electron Breakdown

As in Sect. 5.1.3., if we multiply both members of equation (5.22) by 47v 2, after
having neglected as before the third and fourth terms on the left-hand side member in
that equation, but including now the terms for ionization as given by equation (5.72),
we obtain the continuity equation
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on,

I D, V1, = n, <vion> . (5.76)

All other terms vanish because they simply redistribute a constant number of
electrons along the energy axis. The only two non-conservative terms for the
electron density are the diffusion loss term and the flux gain term associated with the
production of secondary electrons. It is worth noting here that the equation (5.76)
is also obtained by integrating in velocity space the equation (5.7) for the isotropic
component of the velocity distribution function

one
a”t 4+ (V.Te) = n, <vien> (5.77)
and using after the equation (5.11), under LFA conditions.
The equation (5.22), without the third and fourth terms on the left-hand side
member due to the reasons appointed before, may be written now as follows

f° eE\* 1 9 (v? of N v2 S
ot m ) 3v2 dv, \ve, Jv, 3ve, A2
§(ve)

=1y + J§ + ne <viep> 5
drv,

(5.78)

in which we have introduced the diffusion length A defined in (5.35) characteristic
of the dimensions of the plasma container (i.e. of the discharge vessel), and where
Jy represents the inelastic term with the inclusion of the last two terms only of
equation (5.72), that is of the terms for reintroduction and removal of primary
electrons. These two terms are equivalent to any other terms of an inelastic process
of excitation. The only non-conservative terms are those for electron diffusion and
for the flux of secondary electrons appeared into the distribution. If we multiply then
both members of equation (5.78) firstly by the electron energy, u = é mvez, and
then by 47 vez, and integrate in all velocity space, we obtain the following updated

equation for energy conservation, which replaces equation (3.111)

d(n, <u>)

9t :PE_Pdif_Pel_Pinel_Pmt+Pion‘ (5.79)

The terms Pg, P, Pin; and P,, are the power gained from the field per volume
unit (3.116), and the power lost in elastic collisions (3.118), inelastic colli-
sions (3.151), and rotational excitation (3.177). The new terms Py and P;,, are the
power lost in diffusion and the power brought to the distribution by the secondary
electrons. This last term is obviously null since the secondary electrons appear at
u=20

o0
Pion = n, <v,-0,,>/ u §(v.) dv, = 0, (5.80)
0
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while for the power lost by diffusion we obtain

o 42 0 " 02
P, — e e gp2an, = " <y Ve o 5.81
“ /0 ! 3ve, A? e 4V A? u3vfn (>-81)

This term may be written approximately as follows

2
Py~ " <u>< ¢ =" <usD (5.82)
WAz 3ve T A2 “ ‘

m

5.2.3 Breakdown Produced by a High-Frequency Field

The breakdown of a gas occurs when the gain in electron density resulting
from ionization of the gas becomes equal to the loss of electrons by diffusion,
recombination, and attachment. When the loss is only by diffusion the problem
becomes relatively simple.

The breakdown of a low pressure gas under the action of a DC electric field
has two sources of electrons. Most of the electrons are generated in the volume
of the gas through ionization by electron collisions, but the original source of
electrons results from secondary emission from the cathode caused by positive ion
or photon bombardment (see Sect. 1.1.4). Thus the prediction of breakdown voltage
requires the knowledge of the efficiency of these latter processes, which leads to
some difficulties on the predictions. On the contrary, the breakdown caused by
a HF electric field is determined by the primary ionization process only, i.e. by
volume ionization collisions between electrons and molecules, having the electron
production at the walls a negligible effect. It is therefore possible to predict the
electric field for breakdown from the knowledge of the electron ionization frequency
(Brown 1956; MacDonald et al. 1963).

Let us assume then a gas discharge bounded by walls that absorb electrons. The
continuity equation for electrons (5.77), with the electron particle current density
given by equation (5.23), allows to write equation (5.76). Introducing the diffusion
length characteristic of the plasma container as defined in (5.35), we obtain the
following equation for the time dependent electron density

8ne ne
= N, <Wjop> — D, . 5.83
ot fle <V A2 ( )
The steady-state condition for breakdown occurs as the energy-averaged ionization
frequency increases up to a value that equilibrates the frequency of electron loss by
diffusion, in order an electron lost by diffusion may be always replaced by another

created by ionization

D,

<Vion> = A2 .

(5.84)
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Although an accurate description of the breakdown can be given theoretically
only by taking into account the electron energy distribution function (EEDF)
obtained by solving the electron Boltzmann equation, a physical picture of the
mechanisms involved can be given qualitatively for the case of helium containing
small admixtures of mercury vapour (Brown 1956). This mixture has the advantage
of acting as a gas of atoms without excitation levels. The first excited state of helium
is a metastable state with the energy of 19.8 eV, and transitions from this state to the
He ground-state by radiation are hence forbidden. Since the mestastable state has a
mean life of the order of ~1 ms, practically every helium metastable with the energy
of 19.8eV will collide with a mercury atom and loses its energy by ionizing the
mercury. Therefore, each inelastic collision of helium will produce the ionization
of mercury, so that the effective ionization potential is #; = 19.8 eV. Furthermore,
for the mixture He:Hg the collision frequency may be considered independent of
velocity: v, (v.) = const.

Let us consider first the limit of high pressures v;, > w, but where the field
frequency is not however so small that it still permits to consider the EEDF quasi-
stationary (i.e. we have w > v,, being v, the characteristic frequency for energy
relaxation, see discussion in Sect.4.1.1). In this case, the time-averaged absorbed
power from the field (4.19) is

2 e 2
e°n, v 2 . €N 2
Pe(f) = vzf:wz Epg = 0 By (5.85)
m m

being E,,,s = Ey/ /2 the root-mean square electric field. In this limit the power is
totally dissipated through elastic collisions (3.118)

2m
Zplms >~ Py = n, M V,i <u> (5.86)

and v, /vS, ~ m/M (see equations (4.1) and (4.2)), which confirms the validity of
the assumption v, < @ < v;,. Equalling equations (5.85) and (5.86), we obtain the
following expression for the rms electric field

m [2<u>

E. s > . 5.87
e M Vm ( )
Since v;, < n, and p = kgT, n,, we may still write
E m \/2 ur v, (5.88)
™= kT, V3M o, U '

where we have assumed following Brown (1956) that <u>= u;/3 in the He:Hg
mixture. If we further assume 7, = const, we obtain a linear dependence of E,,;
with p, independent of the diffusion length A.
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Let us consider now the limit of low pressures v¢, < w in the expression for the
time-averaged absorbed power from the field

én, vy P e2n, Ve

Pp(t) = (5.89)

rms rms*

m v+ w? m w?
In this low pressure limit, the electric field is high, and since we are analysing
the He:Hg mixture, practically all collisions are inelastic, and then practically all
ionizing ones; see equation (3.151)

ZPZ()SX >~ Pipy = ne up <vigp> . (590)

This is obviously the power lost by the primary electrons since the power brought
to the distribution by the secondary electrons (5.80) is vanishingly small. In the
low pressure regime, the electrons make many oscillations per collision and gain
appreciable energy between two collisions. Equating equations (5.89) and (5.90),
we obtain

w <Vion>>

E.. >~ \/m Uy . (5.91)
e Ve

The energy-averaged ionization frequency may be now determined by equating the

number of collisions to ionize to the number of collisions to diffuse out from the

tube, that is from the breakdown condition (5.84)

D

D> = A; , (5.92)

where the free diffusion coefficient (5.12), in this case where v, (v.) = const, is

<v?2> 2 <u>
D, = = ) (5.93)
3ve 3mvg,

Substituting equations (5.92) and (5.93) into equation (5.91), we obtain

w 2 up <u>
E,. >~ . 5.94
e A v \/ 3 699

The ionization threshold energy is 19.8 eV, so that if we assume a very low pressure,
in which all of the input energy is channelled to ionization, the average energy is of
the order of u;, and we obtain

2 kT, 1
Epp ™~ \/ @ U fp . (5.95)
3 e(vy/n,)p A
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Fig. 5.3 Experimental breakdown rms electric field in HF discharges in He:Hg mixture, against
the pressure (1 Torr = 133.3 Pa), compared with predicted values obtained from a simplified theory
(Brown 1956)

In this case E,,; is inversely proportional to the product of pressure by the diffusion
length, which agrees fairly well with the low pressure measurements shown in
Fig. 5.3 taken from Brown (1956).

Typical values of the behaviour of the breakdown field at high frequency with
changes in gas pressure are the curves shown in Fig. 5.3 taken from Brown (1956).
At first sight these curves look very similar to corresponding data taken from DC
fields, that is, as the pressure decreases the breakdown field first decreases and then
increases again at low pressures (Paschen’s curves). However, in the low pressure
region, the rising breakdown field with decreasing pressure in HF discharges results
from the increasing loss of efficiency in the transfer of energy from the field to the
electrons. As we have seen in Sect.4.1.2, in the low pressure limit the electrons
oscillate out of phase with the field and gain no energy from it. Thus, as the pressure
decreases, one must increases the field to make up for the loss of efficiency by just
the factor of the effective field given by equation (4.20).

On the contrary, in the high pressure limit, the reason for the rising breakdown
field with increasing pressure in HF discharges is the same as in the DC case. As
the pressure increases, the electron mean free path, A =<v.>/v;, decreases. Since
at these high pressures, most of energy losses result from recoil collisions, the field
increases directly proportionally to the pressure as expressed in equation (5.88).

The remarkable feature of the breakdown curves for HF fields at low pressures
is the fact that the greater the electrode spacing, the easier it becomes to cause
a breakdown. This is a result of the breakdown condition is established from
the balance between energy gained from the field and electron loss by diffusion.
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As the electrode spacing becomes smaller, the diffusion loss is greater and the field
needs to increase to make up for the increased loss. Finally, eliminating the field
between equations (5.88) and (5.95) obtained at the high and low pressure limits,
respectively, we may calculate the pressure at which breakdown will occur most
easily

2mce \/MMI (kBT())Z 1

m g/ pA (320

pr =

where A = 2mc/w denotes the wavelength of the applied field. Neglecting the small
variation of the gas temperature, this equation is of the type

const.
pA = oA (5.97)

which represents the optimum condition for breakdown.

Curves of gas discharge breakdown as a function of pressure are often plotted for
DC fields as Paschen curves in which, for a particular gas, the breakdown voltage
V is found to be a function of the product of pressure by the electrode spacing, pd.
The same type of variables may be introduced in the HF case, where instead of
the breakdown voltage we use the product of the rms field by the diffusion length,
E.ms/A, and for pd we use pA. In the case of HF phenomena we have one more
variable than in DC case, namely the frequency w, and this may be introduced
through the variable pA in equation (5.97). Accordingly, we have for the high
pressure limit using equation (5.88)

2 e
Epsh =~ \/ MV A (5.98)
ekgT, V3M n,

while for the low pressure limit we obtain from (5.95)

EoA ~ \/2 2mc uy kgT, 1 (5.99)
T N3 e (ve/n,) pAl '

However, if we express the electric field in terms of the effective electric field (4.20),
we can take care of the field wavelength variations. Since E, = E,,; and E, =
(ve/w) Epms at high and low pressure limits, respectively, we obtain for this latter
situation

2 us
EA =~ . (5.100)
3 e

The concept of effective electric field is strictly correct only when v, (v.) = const,
but a similar equation would be valid for different variations of vy, with the electron
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Fig. 5.4 Paschen curves E,A vs pA for high-frequency breakdown in He, Ne, Ar, H, and air
(1 Torr = 133.3 Pa) (Brown 1956)

velocity. The product E, A represents hence the breakdown voltage. Figure 5.4 taken
from Brown (1956) shows the Paschen curves for high-frequency breakdown in
various gases.

5.2.4 Ionization-Diffusion Plasma Front

Let us analyse now the expansion of a plasma front under the combined effect of
diffusion and ionization, for relatively low electron densities in order the space-
charge effects may be neglected, and the diffusion may be assumed as free diffusion.
In this case, the solution of the continuity equation (5.76) in spherical geometry, for
diffusion starting from a source point and constant given energy-averaged ionization
frequency, is a Gaussian function with the form

(r, 1) No i (5.101)
ne(r,t) = ex Vion> t — . .
(4rD,1)32 P 4D,1
The solution of equation (5.101) verifies the normalization
o0
N@) = / ne(r.1) 4wr* dr = Ny exp (< vion> 1) (5.102)
0

and equalling to zero the argument of the exponential function of (5.101), we
observe that this solution represents a front that propagates at a speed
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v = 24/<vip> D, . (5.103)

The characteristic length of the front, defined as |Vn,/n.|~! in a reference system
moving at the speed v is

1 on,

L =
n, or

—1
2D, D,
- = \/ . (5.104)

v <Vion>>

When an initial profile n.y(r) for the electron density exists rather than a source
point, we have

_ 1 & / (r_ r/)2 4 72 d /
ne(r,t) = @nD.02 neo(r’) exp | <vigpn>t — 4Dt r “dr .
(5.105)

If the initial density decays quicker than exponentially with position, this solution
presents a front propagation at the velocity v, in which the sharpness of the front
can be defined by the characteristic length L. The expansion of a collisional plasma
under the combined effect of ionization and diffusion with the presence of a space-
charge field has been treated in Boeuf et al. (2010) and Zhu et al. (2011).

5.3 Electron Attachment

5.3.1 Boltzmann Equation with Ionization and Attachment

As in the case of the electron rate coefficient for excitation of a given state j from a
state i (2.132), the rate coefficients for electron ionization and electron attachment
(in m3 s™1) are, respectively,

1 o0
Cion = <v, Uion(ve)> = / Ve Uion(ve) feo(ve) 47”)32 dv, (5.106)
ne

ur

1 00
Cor = <v, Gatt(ve)> = / Ve aa,,(ve)feo(ve) 4]TU62 dv, . (5.107)
ne Jo

Both may be expressed under the form of the first Townsend coefficient (expressed
inm™") as follows

<Vion> 0 Cion
o = Jom 7 (5.108)
Ved Ved
V> o Ca
p o= T o Mo (5.109)

Ved Ued
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with Vg = |Ved|, With Veqg = <Ve>, denoting the electron drift velocity (3.18)

1 [®v 4 s
Ved = 3 f, 47v,” dv,. (5.110)
0

Ne

The difference (o — 1) represents the net gain of electrons created by length unity.
Since (o — 1) is the rate of change of the number of electrons per length unity
along the direction of the electron drift caused by the field, the diffusion terms
in equations (5.7) and (5.8) for the isotropic f° and anisotropic f! components
of the electron velocity distribution function, respectively, under the two term
approximation, can be taken into account as in Yousfi et al. (1985) and Itoh et al.
(1988) by making the replacements

Ve afj Ve |

3 9 - 3 (a—n)f, (5.111)

Ve agf = v, (@ —n)f. (5.112)
Z

Thus, from equations (3.87) and (5.7), with (5.111) introduced into the latter
term, we obtain the following expression for the equation describing the evolution
of the isotropic component

aff eE 1 0

ot m 3v2 v,

Ve

3 (@—nf =1 +J° (5.113)

W2 fhH +

in which E = — E e, and where I° and J° are given by equations (3.85) and (5.75).
This latter equation with the inclusion of the term for secondary electron ionization.
In the same manner, from equations (3.88) and (5.8), with (5.112) introduced into
the latter term, we obtain the following equation for the anisotropic component

af! eE of?

_ 0 _— _ e rl
Py m v, + v (x—n)f, v, [, (5.114)

in which v;, denotes the effective collision frequency for momentum trans-
fer (3.140), here with the inclusion of ionization and attachment frequencies

veo= Uy + Z(U;}’ + v]’.}’)+ Vion + Van. (5.115)
iJ

For steady-state conditions of f!, attained in a time ~ (v¢)~!, we obtain from
equation (5.114)

eE of? Ve

e e
mvg, dv, Ve,

f=- (@—n)f (5.116)
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and introducing this expression into (5.113), we obtain the following close equation
for the isotropic component

aff_(eE)Z 19 (vg afg)_ e’f(a—n) 1 9 (Ugff)

ot m ) 3v2 dv, \vg 0v, 3v2 v, \ Vg,
E v, ) 2
) G (@—mn2f0 =1+ J°. (5.117)
m  3vg v, 3ve,

Considering now stationary conditions also for f0 and making the substitutions
V¢ = n, v, 0% and v, = +/2u/m, we obtain after division of both members by

— 2n,/(mv.)

¢E\* d udff+eEa—nd "‘fo
n, ) du\30¢ du n, n, dul\3c¢ "¢

E o — d, a—n)\>
+ ¢ mow A Ll e
n, n, 30f du n, 30¢,
d [2m , 0 dro 0
m kgTy ¢ 4B,
+du[MMU (fe+30du + 000 U f,

+ 38+ uy) oy + ) £+ uy) — o) £2(w))

ij
+ )8 —uy) 0y — uy) £ — uy) — w o) £ ()}
Jii

+ i (Z —}—u,) Uion(Z + ul) ff(Z —|—u1)
+1—1A (lfA_H”) Gi””(l—blA+“’)ff(1fA+”’)

—u (fio,,(u)ff(u) —u (fa,,(u)fe0 = 0. (5.118)

Besides the terms associated with the field and with the electron drift due to the net
balance production between ionization and attachment, this equation also includes
the contributions of elastic collisions, rotational excitation, inelastic and superelastic
collisions, ionization (with terms for the appearance of secondary and scattered
electrons and the removal of primary electrons), and the removal of electrons by
attachment. With this formulation the drift velocity (in which Veg = v.q €;) is
obtained by substituting (5.116) into (5.110)

1 [*®v, [ eE df° e
vy = — / v (e ey (a—n)f£)4nvezdve. (5.119)
0

e 3 \mvg dv, Ve,
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Identifying here the electron mobility (3.50) and the free diffusion coefficient (5.12),
we really obtain

Vea = Me £ — (@ —1) D, . (5.120)

This expression is in conformity with the electron particle current density I'e =
T, e, given by

dn,
o =n,pu.E — D, , (5.121)
dz
in which the electron number density presents the exponential growth
ne(z) = n.(0) exp((e —n)z) . (5.122)

We note that when (o« — 1) > 0 a density gradient in the z direction is formed, from
which a drift velocity with opposite direction arises given by the second term of
equation (5.120).

Integrating now equation (5.113) over all velocity space and using again the
expression (5.110) for the drift velocity, one obtains the continuity equation

on,

9 + ne (O[ - 77) Ved = N (<Vion> - <Vatt>) s (5.123)

whose equation under stationary conditions expresses the electron particle balance
equation under the form

a—n
Ved = Cion — Can » (5.124)

o

where (a — 17)/n, is usually termed effective reduced Townsend ionization coeffi-
cient.

On the other hand, the equation for energy conservation can be obtained
multiplying both sides of equation (5.113) by the electron energy u = é mv 2 and
integrating over the energy space

ad
at(ne<“>) = Pg — Poy — Pyt — Pinet — Pion — Pun _Pﬂow‘ (5.125)

The first term on the right-hand side member represents the power gain from the
field per volume unity, Pr = en,v.4E, while the other terms represent the power
lost in recoil collisions, rotational excitation, inelastic collisions of first and second
kinds, ionization, attachment, and the divergence of the energy flux due to the non-
null ionization-attachment balance along the discharge axis. This last term has the
expression
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® p
Pliow = / u ; (x—n) fel 47rv“_,2 dv,
0

=—(a—n)/ooouve(eE o + ve (oz—n)ﬁ_,o)47tvezdve.

e e
3 \mvg dv, Ve

(5.126)

We note that as long as the rates of ionization and attachment do not exactly balance
each other, it exists an energy current along the discharge axis associated with the
local non-conservation of the electron number density. When (¢—n) > 0 there exists
a local electron energy loss within a given axis slab [z, z + dz], since the outward
flux at z 4 dz is larger than the flux entered at z position. In the opposite situation,
(¢ —1n) < 0, we have Py, < 0, so that this term represents now a local gain of
energy for the electrons in the interior of the axis slab [z, z + dz].

The equation (5.118) is solved by finite differencing the electron energy axis and
matrix inversion. A guess for (o — 7) is first introduced in equation (5.118) and then
an iterative procedure is used until a final convergence for this parameter is achieved
through equation (5.124).

5.3.2 Boltzmann Calculations for SF¢ with a Buffer Gas

Because of its outstanding electrical and physical properties, sulfur hexafluoride
(SF¢) is the most studied electronegative (electron attaching) gas in the literature
with a huge number of papers published dealing with experimental determinations
of dielectric properties and Boltzmann’s calculations. SFe is widely used in the
electric power industry as an insulation medium for high-voltage gas circuit
breakers. It presents excellent arc-quenching properties and a breakdown strength
(minimum applied electric field that results in breakdown) three times higher than
air at atmospheric pressure. It is a very stable electronegative, non-toxic, and non-
flammable gas, and in its normal state, SF¢ is chemically inert. Moreover, due
to the high etching rate of silicon in SF¢ plasma, the fabrication of integrated
circuits is another use of SFs. However, apprehension has been arising about the
fact that SFg has been identified as a potent global warming greenhouse gas, so that
nowadays alternative solutions have been investigated. Considering the relatively
poor dielectric strength of environment-friendly pure gases and gas mixtures such
as air, an alternative solution is to mix SFg with another gas as possible substitute
gases for pure SF¢ (Cliteur et al. 1999a,b; Pinheiro and Loureiro 2002; Li et al.
2012; Wang et al. 2013).

As indicated above, a possible solution to avoid or to reduce the greenhouse
problem is the replacement of SFs with several mixtures of SF¢ with different
buffer gases, such as an inert gas, nitrogen, and carbon dioxide. The extension of
the stationary Boltzmann equation (5.118) to a gas mixture is straightforward
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¢E\* d u ar? +eE a—n d u /0
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At ”“”)

— S uom)f’ = 0. (5.127)

Equation (5.127) is written for a mixture of two gases s = (1,2), in which s = 1
is SFg (the only with attachment considered here) and s = 2 is for the other gas (a
rare gas, N, or CO,, see Pinheiro and Loureiro 2002). §, represents the fractional
mixture composition (i.e. §; + 6, = 1). The term for rotational excitation exists
only for N,, while the term for the superelastic collisions j — i exists with some
significance only for the case of vibrational levels of N, or CO;. On the other hand,
in the case of a gas mixture, the equation (5.124) writes as follows

" Ved = ZSY Cs(ion) 81 att - (5128)

o

The electron cross sections for SF¢ shown in Fig. 5.5 have been obtained from
Itoh et al. (1988, 1993). They include cross sections for momentum transfer, total
vibrational excitation, total electronic excitation, ionization, and five individual
cross sections for electron attachment with formation of the negative ions SF,
SF;,F~, SF; and F; . See also Hayashi and Nimura (1984) about the importance of
the attachment cross section for F~ formation in the effective Townsend ionization
coefficient.

Figure 5.6 shows the effective reduced Townsend ionization coefficient,
(¢ — n)/n,, obtained in Pinheiro and Loureiro (2002), as a function of the
reduced electric field E/n,, in pure SF¢, using an energy partition A = 0.5
between the secondary and scattered electrons. These results have been obtained
using the formulation presented above, in which a two-term expansion is used
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Fig. 5.5 Electron cross sections for SF¢ as a function of the electron energy as follows: o,
momentum transfer (dotted line); o,, total vibrational excitation; o, total electronic excitation; o;,
ionization; 0, to 045, electron attachment with formation of SF~ (full), SF5 (full), F~ (dotted),
SF, (broken), and F;~ (full) ions, respectively
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Fig. 5.6 Effective ionization Townsend coefficient, (@ — 1)/n,, in pure SFg obtained in Loureiro
and Pinheiro (2002), full line, and in Itoh et al. (1993), broken line, this latter using a six-term
Boltzmann equation method

for the electron energy distribution function, in the range E/n, = 150 — 450 Td
(1Td = 1 x 1072' Vm?). For comparison it is also plotted in Fig.5.6 the data
obtained in Itoh et al. (1993) using a six-term Boltzmann method. As pointed out
in Pinheiro and Loureiro (2002), the two-term approximation is valid at low and
intermediate E/n, values despite the fact that SFs is a strongly electronegative gas.
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Fig. 5.7 Fractional power gained by the electrons in pure SF from the field (A) and from the axial
drift current as (¢ — 1) < 0 (B) (Pinheiro and Loureiro 2002)

Figure 5.6 shows that (¢« — n)/n, < 0 for E/n, < 370Td, which means
that the divergence of the electron particle flow along the drift direction given by
equation (5.126) is negative. In this case, since Pg,, < 0 in equation (5.125), the
drift produces a local gain of energy for the electrons in the interior of a given
axis slab [z, z + dz]. Figure 5.7 shows the fractional power gained by the electrons
from the field and the power gained locally by the electrons from the axial drift
current, this latter due to the existence of a negative ionization-attachment balance.
The contribution Pg,, represents 41.3 % of the power gained from the field at
E/n, = 150Td (i.e. 29.2% of the total power) and it rapidly increases as E/n,
decreases below 150 Td (not shown in the figure). On the other hand, the fractional
power transferred by the electrons to SF¢ molecules is represented in Fig. 5.8. The
various curves are for the power lost in recoil (elastic) collisions, inelastic collisions
(vibrational plus electronic excitation), ionization, attachment, and the power lost
from the electron particle flow when (@ — 1) > 0, this last term for E/n, > 370 Td
only. Figure 5.8 shows that the power transferred into vibrational and electronic
excitation is always larger than ~ 60 % (~ 80 % and ~ 62 % at 400 Td and 600 Td,
respectively).

Figure 5.9 shows the effective reduced Townsend ionization coefficient
(¢ — n)/n,, calculated in Pinheiro and Loureiro (2002), for different mixture
compositions in SFg—He, as a function of the reduced electric field E/n,. As in
Figs.5.6, 5.7, and 5.8, the electron energy share between the primary scattered and
secondary electrons after an ionizing collision is assumed A = 0.5. Swarm data
from pulsed Townsend experiments determined in Urquijo et al. (2001) and Xiao
et al. (1999) are also plotted for comparison. The data show a fairly uniform trend
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Fig. 5.8 Fractional power lost by the electrons in pure SFg due to elastic collisions (A), vibrational
plus electronic excitation (B), ionization (C), attachment (D), and from the drift current as

(¢ —n) > 0 (E) (Pinheiro and Loureiro 2002)
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Fig. 5.9 Effective reduced Townsend ionization coefficient in SF¢—He: (A) pure SFs; (B) 20 %He;
(C) 50 %He; (D) 80 %He; (E) 90 %He. Data points: Urquijo et al. (2001) — (M, A,) pure SFg, (V,

B)) 20 %He, (e, C)) 50 %He, (+, D,) 80 %He, and (¢, E;) 90 %He; Xiao et al. (1999) — (1, A,)
pure SFg, (o, C,) 50 %He, and (¢, E,) 90 %He (Pinheiro and Loureiro 2002)

to increase with He addition for fixed E/n, values, which is consistent with the
decreasingly electronegative character of the mixture. In pure SFg, the calculated
data for (o« — n)/n, are in better agreement with the measured data of Urquijo et al.
(2001) than with those of Xiao et al. (1999). The agreement is always rather good
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Fig. 5.10 Critical reduced electric field strengths, (E/n,)o, as a function of SF¢ percentage in
a SFg—He mixture calculated in Wang et al. (2013) (full line with x). For comparison they are
also plotted the calculated data of Pinheiro and Loureiro (2002) (o) and the experimental data of
Urquijo et al. (2001) (M) and Xiao et al. (1999) () (Wang et al. 2013)

with Urquijo et al. (2001) as the He percentage increases, in particular at low E/n,
values (i.e. for (@ —n)/n, < 0), except in the case of a SF¢—90 %He mixture where
the calculated data have a less pronounced slope for the nearly linear variation of
(¢ — n)/n, with E/n,. In a SF¢—90 %He mixture the predicted data are generally
lower than the measured data of Urquijo et al. (2001) (by a factor of 2 at 100 Td).
On the other hand, significant deviations emerge at SFs—50 %He for the data
reported in Xiao et al. (1999) when compared with Pinheiro and Loureiro (2002).
The disagreement becomes progressively larger with increasing He percentage and
in this case the slope of the straight-line obtained by fitting (¢ — 7n)/n, data is
significantly less pronounced in Xiao et al. (1999) than that predicted in Pinheiro
and Loureiro (2002). A comparison between calculated and measured data in SFg
mixtures with Xe, CO and N is also presented in Pinheiro and Loureiro (2002).

Recent calculated critical reduced electric field strengths, (E/n,)q, for which
ionization exactly balances attachment, (¢« — ) = 0, taken from Wang et al. (2013),
are plotted in Fig.5.10 for the case of a SFs—He mixture, as a function of SFg
percentage. For comparison they are also plotted the calculated data of Pinheiro
and Loureiro (2002) as well as experimental results from Urquijo et al. (2001)
and Xiao et al. (1999). The calculated data of Wang et al. (2013) show excellent
agreement with Pinheiro and Loureiro’s calculations and fairly good agreement with
the measurements of Urquijo et al. (2001) and Xiao et al. (1999).

As pointed out in Yousfi et al. (1985) the attachment coefficient may be very
sensitive to the value assumed for the energy partition after an ionizing collision
A between the secondary and the scattered electrons, in particular as this share of
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Fig. 5.11 (@ — n)/(a — n)o as a function of the electron energy partition A in a SF¢—50 %He
mixture, for E/n, = 150 Td and 300 Td, with (o — 1), denoting the reference results at A = 0.5
(Pinheiro and Loureiro 2002)

energy is large: A — 0; (1—A) — 1 (Itoh et al. 1988). Figure 5.11 shows the effect
of A on the effective Townsend ionization coefficient (¢ — 71)/n,, calculated in a
SF¢—50 %He mixture with E/n, = 150 and 300 Td. The plotted results correspond
to the ratio (¢ — 1) /(e — n)o, with (@ — 1)o denoting the reference value at A =
0.5 used in Figs. 5.6 to 5.10. In a SFs—50 %He mixture the critical value at which
ionization exactly balances attachment occurs at E/n, ~ 200Td, so that we have
(¢ — 1) <0and (¢ —7n) > 0at 150 Td and 300 Td, respectively.

Appendices

A.5.1 Expansion of the Boltzmann Equation in Spherical
Harmonics

In this appendix we present the derivation of the term with the gradient in
the space of positions of the Boltzmann equation (5.1) using the expansion in
spherical harmonics (Cherrington 1980; Delcroix 1963, 1966). In this case using
the expansion (5.2) we write the Boltzmann equation as

3fl 3fl Lol
¢p ez 6P = 1 Py, 5.129
oy !+ Ez Ve o Pi Ez ;) P ( )
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having assumed the anisotropy directed along the z axis. Since v,; = v, cos and
making use of the recursion relation (3.209), we may write

of! off (141 i
ep . € P P | = I'(FH P (5.130
leat z+zl:v 8z(21+1 l+l+21+1 11) ZI: () P ( )

The second left-hand side term can be rewritten in terms of the polynomial P; as
follows

af! It 141 9ft! o
o T leve(zz—l bz T 2+3 o )P’ - ZZ:IOC‘?)P“

(5.131)
so that the equation of order / is
of! [ of! I+ 1 oft! Lol
¢ e ¢ ¢ = I'(f,), 5.132
o T (21—1 T 2+3 oz ) ) ©:132)

from which the equations (5.7) and (5.8) are immediately obtained.

A.5.2 Longitudinal Diffusion

In the time of flight experiments for determining the electron mobility u., the
presence of an axial electric field makes the diffusion to be different in directions
perpendicular and parallel to the field (Parker and Lowke 1969; Wedding et al. 1985;
Nakamura 1987). The continuity equation, in the assumption of null electron source
or sink, is

on,
a"t 4+ (V.To) = 0. (5.133)

in which the electron particle current density is
I'e = —Der Vrne — Dop Vone — ne pie E | (5.134)
assuming the applied electric field directed along the z axis, and being D,r and

D, the transverse and longitudinal electron diffusion coefficients. Inserting (5.134)
into (5.133) and considering E = — E e,, we obtain

on, 9*n, 9n, 9%n, on,
— D, —D,  E = 0, 5.135
ot ! ( 0x2 + y? ) Loz T 0z ( )

whose solution for motion and spread of a pulse, starting from the origin atr = 0, is
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No x+y? (z — peEt)?
V.2, 1) = exp | — exp | — . 5.136
Me( YT =t A Dt p( 4Dt ) P 4Dt (5.136)

This solution is normalized as follows

o0 o0 o0
/ / / ne(x,y,z,t) dx dy dz = Ny. (5.137)
—00 J —00 J —00

If a short pulse of Ny electrons starts from z = 0 at = 0, in a transverse infinite
medium, the density n,.(z, t) is

No (2= Vea f)z)
(o) = - , 5.138
ne@h =y P ( 4D, t (5-138)

being v.,=u.E the electron drift velocity. This density passes through a maxi-

mum at
z Dy D,
ty = 1+( EL) - (5.139)
Ved Ved 2 ved

In Pitchford and Phelps (1982) and Phelps and Pitchford (1985) we may find
the calculation of D,; from an expansion in powers of the spatial gradients of the
electron distribution function f, (r, v, ) in cylindrical geometry

gr(Ve) on, _ gz(ve) on,
n, Oor n, 0z~

Je(r,ve,t) = f(Ve) ne(r,1) — (5.140)

where f(Ve), g-(Ve), and g;(ve) are velocity distributions normalized such that

/f(ve) dve = 1; /gr(ve) dve = /gz(ve) dve = 0, (5.141)

and 7, is the gas number density. The continuity equation is then

on, 10 on, 9%n, on,
— D, —D, e = 0. 142
ot Trar(r 8r) ba +vd8z 0 ©-142)

Using the two-term expansion in Legendre polynomials for the velocity dependent

functions (5.141), we obtain the following expression for the electron drift velocity
in accordance with (3.171)

E 2 [ df°
Ve = /ve cosf f(ve) dve = — ¢ \/ / “ & du, (5.143)
Ve n, 3 VmJy o%(u) du
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whereas the transverse and longitudinal electron diffusion coefficients, in two-term
approximation, are given by (see Pitchford and Phelps 1982; Phelps and Pitchford
1985)

1 |2 [
1o Doy = / ve sinf g (ve) dve = \/ / “Pwde  (5.144)
Ve 3 VmJy ot

1 /2 > |
ny Dop = Ve cos O g,(ve) dve = u g, (u) du
Ve 3 mJo

Ee [2 (*® u dg° o
=n, Dy — S du — v, 0 du .
flo et n, 3 \/m /0 o¢(u) du " v d/o &) Vi du

(5.145)

The functions f°(u) and gg(u) are normalized such that

/oofo(u) Vudu = 1; /oogf(u) VJudu = 0. (5.146)
0 0

The transverse diffusion coefficient agrees with the free diffusion coefficient
previously reported through equation (3.193) and derived later on in (5.12), whereas
D, = D,r as gg (u) — 0 throughout (i.e. for null axial density gradients).

Exercises

Exercise 5.1. Determine the power lost in ionization from equation (5.75).

Resolution: The equation for electron energy conservation (5.125) is obtained
multiplying both sides of the equation for evolution of the isotropic component of

the velocity distribution function (5.113) by the electron energy u = é mve2 and
integrating over the whole velocity space
a o0
o (e <U>) 4 i, = / u(® + J° dnv} dv, .
0

Then, the term for P;,, in equation (5.125) is given by

won

o
P,y = —/ ul? 47tve2 dv, ,
0

with JO expressed by equation (5.75). Thus, we may write
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Pion=—/oooum2ve o <Z+“1) Uion(Z + u,) f"O(Z +M1) i

+(1_MA+MI) Umn(l_uA-i-Ml)ff(lfA-i-Ml) l—lA

—u (fio,,(u)ff(u)§ 47tve2 dv, .

Replacing v, with the electron energy u and using for simplification the electron
energy distribution function (EEDF) normalized such that

Me :/0 F(u) udu ,

in which

Fa = \/ > ).,

we find
Pi[,,,=—\/2 Ny /Oou/ u/-i-u[ Oion “ + u | F u/-i-u[ ldu/
m 0 A A A A
+/OO //( u// + ) ( u// + )F( u// + ) 1 d//
AL O N I S PN 1—a 7)1
o0

—/ u? Gign (1) F(u) du} .

Making the replacements u = u//A + u;, ' = A (u — u;), and du’ = A du in the
firstterm,and u = u”" /(1 — A) +uy, ” = (1—A) (u—u;), and du” = (1 — A) du
in the second term, we obtain

Pipy = — \/2 no§ /oo(u_ul)uaion(“) F(”)Adu
m u
+ / " = ) 1 G () Fl) (1= A) di

- /OO u? Gion (1) F(u) du

uy
2 o0
= \/ n,,/ uy u Oion (1) F(u) du
m ur

= ny ne Uy Cigy
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in which

1 2 [
Cion = u Ojon(u) F(u) du
ne m uy

is the electron ionization rate coefficient.
Exercise 5.2. Determine the power lost in electron attachment.

Resolution: The power lost in electron attachment is obtained from
o0
— 0 2
Py = — / uld,, dmv,” dv, ,
0
where Jgﬂ has the same form as the third term of equation (5.75) but for attachment

2
0 0
J., = — Ny U Ouyt |, .
att mu, Je

Substituting and replacing v, with the electron energy u, we obtain

8 .,
Pu = ono | 0un(w) f () du .
m 0

Using now the EEDF F'(u) as defined in Exercise 5.1, we may write

00
Py = / u?? Varr(u) F(u) du
0

with v, («) denoting the electron attachment frequency given by

Var() = np Ve 04y (Vo) = 1, \/?: Oan(u) .
Replacing v, () in P,,, we obtain at the end
Py = n, <uvg> .
Exercise 5.3. Write the expressions for the electron drift velocity (5.119) and for

the power brought to the electron drift by the ionization-attachment balance (5.126)
in terms of the EEDF F(u) used in the previous exercises.

Resolution: From equation (5.119) we obtain

1 2 [ u dF
Vod = — eE + (x—n) Fldu,
nen, YmJjy 30f du
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with oy, denoting the effective electron cross-section for momentum transfer, while
from (5.126) we find

2 a—n [® WP dF
Phow = — E — F ) du.
A \/m N, /0 30¢, ¢ du + (a—m "

In the case of pure SFs, Pp, is < 0 at E/n, < 370Td and Py, > 0 at E/n, >
370Td, so that in the first situation Py, represents a gain energy term.
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Chapter 6
Presence of Space Charge Fields

This chapter deals with different aspects of electron kinetics when, besides the
applied external field, a space-charge electric field also exists. Thus, this chapter
includes: (i) The diffusion of electrons under the presence of a space-charge field,
with one or several positive ions, and including the presence an external magnetic
field; (ii) The Boltzmann equation for a discharge when a space-charge field created
by a negatively charged wall with respect to the plasma is considered; (iii) The
determination of maintenance field of a microwave discharge; (iv) The afterglow
of a microwave discharge; (v) The analysis of non-local effects created by radial
space-charge fields in a discharge.

6.1 Electron Transport with Space Charge Fields

6.1.1 Ambipolar Diffusion

In Sect.5.1 we have assumed that the electrons were free to diffuse through a
uniform neutral background gas and that the ions have no substantial effect on this
process. However, this free diffusion can only occur in very low density plasmas
where the Coulomb interactions can be neglected. At moderate and high density
plasmas, such as it commonly exists in a discharge, this is definitely not the case
and we need to consider the diffusion under the effects of space-charge electric
fields.

In a plasma the Coulomb interactions will tend to maintain overall space-charge
neutrality |n, — n;| < n,. However, in the presence of gradients in the plasma
densities, both the electrons and ions will tend to diffuse into the regions of lower
densities. Due to the large differences between the masses of electrons and ions,
the diffusion coefficients are very different, and the electrons will tend to diffuse
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more rapidly than the ions, leaving an excess of positive charge behind and creating
an electric field due to the space-charge separation. This space-charge field will
tend to retard the electron diffusion and accelerate the ion diffusion, so that space-
charge neutrality is maintained in most of the regions. Under these conditions, the
electrons and ions will diffuse at the same rate as determined by a common diffusion
coefficient termed ambipolar diffusion coefficient.

As we have seen in Sect. 1.3.1, the field of a positive ion in a plasma is reduced
by a factor exp(—r/Ap) due to the electron shielding, being Ap the Debye length
given by

Ap = \/602”", 6.1)
e’n,

with u; = eD,/ . denoting the characteristic energy (5.14), and where u;, = kg7,
in the case of electrons with a Maxwellian velocity distribution at temperature 7. If
the plasma is contained in a vessel of dimensions greater than Ap, the ions are able
to hold their shielding electrons and the diffusion of electrons and ions will occur
coupled each other with an ambipolar diffusion coefficient. On the contrary, if the
dimensions are smaller than Ap, the electrons will diffuse independently of the ions,
with no modifications relatively to free diffusion. These limits correspond to high
and low electron densities, respectively.

Another distinction takes place with the two limits of high and low gas
concentrations depending if the vessel is large or small compared to the mean free
path. The first situation has been treated in Allis and Rose (1954) and Allis (1956)
and this is more closely related to the diffusion process. The second one has been
considered in Bernstein and Holstein (1954) and it corresponds to a collisionless
regime.

Let us consider now the case where the gas density is large enough to a collisional
regime can exist. According to equation (3.62) in Sect.3.1.5, the particle current
densities of electrons and ions are given by

e = =D, Vn, — n, e Eg (6.2)
I'i = —D; Vi; + n; w; Eg, (6.3)
in which we assume that D, and D; are space constants and Es denotes the space-

charge electric field created in the plasma. This field is determined by Poisson’s
equation

(V. E) = ¢m=nd, (6.4)
€0

To these equations we must still add the stationary continuity equation (2.152) for
electrons and ions
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(V.Te) = Iy (6.5)
(V.Ty) = I, (6.6)

being Iy = n, <v;,, > the ionization source term (2.161), equal for electrons and
ions, resulting from electron-ion pair production by electron ionization collisions.
From equations (6.5) and (6.6), we have

(V.Te) = (V.T)) 6.7)

and a simple solution may be obtained making two simple, though not rigorously
exact, assumptions. The first is the assumption of congruence

re =15, (6.8)

which is suggested, but not required by (6.7), and the second one is the assumption
of proportionality

Vne Vl’li
= . (6.9)

ne n;

This latter is rigorously valid in the limit of low densities, in which Eg is vanishingly
small and the electrons and ions satisfy independently the same diffusion equation,
although obviously with different diffusion coefficients; and in the opposite limit of
high densities, when the difference between the electron and ion densities is small
compared with either one of the densities, and the diffusion becomes ambipolar.

Let us consider first the limit of perfect ambipolar diffusion. Here, the electrons
and ions diffuse exactly at the same rate, so that veg = Vig = Vg4, and from
equation (6.8) we still have n, = n; = n. Eliminating Eg in equations (6.2) and
(6.3) we obtain

nvg = —D,Vn, (6.10)
being D, the ambipolar diffusion coefficient defined by

Di e De i
p, = JiHe T et 6.11)
He + Wi

On the other hand, the space-charge field is obtained by subtracting equations (6.2)
and (6.3) one from another

De — Dl‘ Vn
E, = — . (6.12)
He + i n
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Since eD,. /. = uy = kgT, and eD;/u; = kgT;, with u; < ., we still obtain from
equation (6.11)

1+ T,/T; T,
Da = Di ~ Dl‘ 1+ . (613)
1+ Mi/,ue T;

When T; < T,, we further have D, ~ D; (T,/T;), whereas when T; ~ T, we obtain
D, ~ 2 D; but this latter case does not correspond to low temperature plasmas.
Equation (6.11) can still be rewritten as

Da _ i 1+Tl/Te

= (6.14)
De He 1 + Mi/ﬂe

showing that in the limit 7; <« T,, we have D,/D, ~ u;/u. < 1. Finally,
from (6.12) we may also write the space-charge electric field as follows

kBTe Vn
Es ~ — , (6.15)
e n

showing that k3T, /e is a measure of the potential drop associated with the space-
charge field. This field sharply increases in the vicinity of a discharge wall due to the
rapid decrease of density gradient in consequence of the recombination of charged
species on the wall.

6.1.2 Transition from Free to Ambipolar Diffusion

Let us consider now the transition from low to high charged species densities,
that is the transition from free to ambipolar electron diffusion. This analysis has
been presented in Allis (1956). Here, the assumption of congruence (6.8), I'e =
I'; = T, is still assumed, but we no longer assume veg = Viq and n, = n;.
Considering also the assumption of proportionality (6.9), we obtain by eliminating
Es in equations (6.2) and (6.3)

T = —D, Vn,, (6.16)
with
Di e De i
D, = JitetDetti (6.17)
ne ,U«e"'ni Hi

denoting an effective diffusion coefficient for electrons, assuring the transition
from free to ambipolar electron diffusion. Using now the ambipolar diffusion
coefficient (6.11), we may still write Ds, as follows
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D, = D, (1 4 e (ni —ne) )
Ne e + n; Mi
0
=D, (1 + e ) , (6.18)
O¢

in which we have introduced the space-charge density and the plasma conductivity

p = e(n—ne) (6.19)
o = e (e fe + ni L) . (6.20)

Equation (6.18) shows that D, is the minimum of Dy,. The space-charge field is then
obtained substituting (6.16) in (6.2)

De - Dse Vne
E, = — . (6.21)
e ne

Using Poisson’s equation we obtain the following expression for the space-
charge density

i)
Il

De_Dve V e
GO(V.ES)z—GOV.( : ")

He ne
D.—Dy | (|Vn\* V?n,
€o - (6.22)
He ne ne

and defining the diffusion length A by

Me
Vi, = — A2 (6.23)
we find for the space-charge density at the centre where Vn, = 0
€0 De - Dxe
= . 6.24
Po= a2 (6.24)

Obviously pp — 0 when Dy, — D, and pg has its maximum value when Dy, — D,.
The relation between the space-charge density pg = e (n;0 — n.o) and the Debye
length Ap = \/ €0 D./(e ny |L.) at the centre is

njo — neo _ De_Dse (AD)2 (625)

neo B De A

When the Debye length equals the diffusion length and simultaneously Dy, < D,,
the central ion density is approximately twice the electron density. On the other
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hand, as n.y increases, the Debye length decreases, and n;p ~ n.. The effective
diffusion coefficient (6.18) can be expressed in terms of the central conductivity o,
substituting equation (6.24)

Dse:Da(1+He po)
0c0

De + AZUCO/GO
=D, , 6.26
Da + A20c0/60 ( )

which shows clearly the two limits D, and D,, for the effective diffusion coefficient,
as the plasma conductivity increases from 0 to co.

Since i, > w;, we have a9 >~ enyop, and Ap = \/GoDe/O'C(), so that (6.26) can
still be expressed under the form

1+ (A/Ap)?

D,, = D, s
Dy/D. + (A/Ap)?

(6.27)

showing that Dy, tends to D, or D,, when A/Ap — 0 or A/Ap — oo, respectively.

The equations (6.26) and (6.27) are not always valid. If the proportionality
assumption held rigorously the space-charge density would have a maximum at
the centre. However equation (6.22) shows that it exists a minimum at the centre
given by equation (6.24). At low conductivities the error results from the fact
of Eg has been obtained in equation (6.2) from a small difference of two large
quantities T'e and —D, Vn,, so that (6.22) is false. At high conductivities one
cannot conclude that p is proportional to n, in taking the small difference n; — n,.
Nevertheless, in neither limit is the assumption of proportionality (6.9) itself very
wrong. Only in the transition between the two limits it does not work. Figure 6.1
taken from Allis (1956) shows the comparison between the solutions obtained
for Dy, /D,, as a function of A2%0./(eoD,) = (A/Ap)?, by solving numerically
equations (6.2), (6.3), and (6.4) and considering the approximate solution (6.26)
and (6.27). Figure 6.1 shows that D;,/D, decreases from ~ 1 to ~ D,/D,, as the
normalized central conductivity A%o./(€oD,) increases in the range 0.02 — 100.

Finally, in a similar manner to the case of a magnetic field treated in equa-
tion (5.52), one can define an effective diffusion length to take into account the
space-charge effects. Assuming A2 ~ D' and A> ~ D, !, we obtain the
following relation from equation (6.26)

1 + A%0.0/(e0D.,

A2 = p2 1+ A 0w/ (Do) (6.28)

1+ A%0.0/(€0De)

Here, A;, = A, when o,y — 0,and A; = \/De/Da A > A, when g, — 00. The

effect of space-charge on the electron diffusion is to increase the effective size of
the volume occupied by the plasma.
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Fig. 6.1 Transition from free to ambipolar electron diffusion as the Debye length decreases. The
ratio Dy, /D, is plotted against (A /Ap)? for the case of the numerical solution of diffusion equations
(full curve) and for the approximate solution (6.26) and (6.27) (broken) (Allis 1956)

6.1.3 Ambipolar Diffusion with Several Positive lons

In many cases it may occur the formation of several positive and negative ions in a
plasma, such as N+, N2+, N3+ and N4+, orOt, 02+ and O™, in the case of a nitrogen,
or an oxygen discharge, respectively. As only positive ions exist the diffusion is
ambipolar in the limit of high charged species concentrations. Thus, let us consider
the case of a plasma containing electrons and two types of positive ions (Cherrington
1980). As in (6.2) and (6.3), we have now

r« = -D,Vn, — n, . Eg (6.29)
I'n = —D; Vn; + n u1 Eg (6.30)
', = —D, Vny + ny "2 Es . (6.31)

As before, we assume space-charge neutrality n, = n; + np and equal fluxes of
electrons and positive ions I'e = I'1 + I, , i.e. the assumption of congruence. If we
make the further assumption of proportionality for the densities

Vne _ an — Vnz (632)

ne n nz

we obtain the following diffusion coefficients under perfect ambipolar diffusion
conditions (Ve = Vi = V3)
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e D1+ 1 D.) + e D> + 2 D,
Dy = ny (e Dy + w1 D) + na (ke D2 + pa D) 6.33)
Ne e + N1 1 + 12 U

e e D De D - D

Dyt = ne (e D1 + o1 D) + ny (u2 Dy — py Dy) (6.34)
Ne e + N1 1 + 12 U2

e (e Dy + 2 D) + n1 (uy D2 — pa Dy)

Da,2 =
ne Me+nl 231 + ny H2

(6.35)

satisfying equations of the type (6.16), whereas for the space-charge field we obtain

.D.— (n; Dy + 1> Dy) Vn,
E, = — (ni Dy 4 n2 Dy) Ve (6.36)
Ne e + 11 Wy + 12 o ne

These expressions can be extended to more than two positive ions as follows:

Me Zini Di + De Zini Mi

D,, = 6.37
' Ne We + Zi n; Wi ( )
ne eDi"f' iDe + i£i 1 'Di_ iD'
D, = (e piDe) + sy (1 Wi D)) 6.38)
Ne e + Z,’ n; Wi
e De - i T Di \ e
E = — 2in e (6.39)

Re (e + Zi ng i ne

Returning to the case of two ions only, we note that some simplifications can
be made by assuming that the ions are in thermal equilibrium with the neutral gas
at temperature T,. This assumption implies that u,D; = @D, and if we further
assume D, > (Dy, D;) and . > (i1, 42), we obtain from equations (6.33), (6.34),
and (6.35)

ny Dyy +ny Dy

D = (6.40)
ne
T,
Da,l - Dl (1 + ) (641)
T,
T,
Du» = D> (1 + T) . (6.42)

These equations show that the ions do not influence directly each other but both
influence the electrons and vice-versa. Both D, and D,, are independent of the
concentrations but D, . is not.

The derivation of the diffusion coefficients involves a restrictive approximation,
the assumption of proportionality (6.32). Thus, if such assumption is not valid it
is not possible to derive diffusion coefficients independent of the charged species
concentrations and of their gradients. Under such circumstances the use of a
diffusion coefficient to represent the ratio between a given particle flux and a density
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gradient is of questionable validity. It is preferable to retain the space-charge field
explicitly in equations (6.29), (6.30), and (6.31). The consideration of negative ions
is still more complicated and the restricted concept of ambipolar diffusion cannot
be applied (Ferreira et al. 1988).

6.1.4 Ambipolar Diffusion with a Magnetic Field

The assumption of congruence (6.8) follows from (6.7) when the flow is irrotational
as it is true in the absence of a magnetic field. However, when a magnetic field
is present such assumption is invalid and the whole derivation, including the
expression for the ambipolar diffusion coefficient, cannot be conducted (Allis 1956).

When the magnetic field is large enough for flow anisotropies to be significant,
at least for electrons, and if the only gradients are perpendicular to the magnetic
field, one may expect to have an identical situation in the plane perpendicular to the
magnetic field direction as that obtained in all directions in the absence of magnetic
field (Monroe 1973; Zhilinskii and Tsendin 1980; Golant et al. 1980; Vidal et al.
1999), in which the free diffusion coefficients and mobilities should be replaced with
coefficients and mobilities under the action of a magnetic field. When a magnetic
field exists the equivalent equation to (6.11) is now

Di e De i
Doy = DMl el Mt (6.43)

Mel + MiL

where the transverse free diffusion coefficients are the perpendicular diagonal
elements D; in equation (5.67)

1
D, = D, 6.44
LT ey (049

1
D, = D; , 6.45
LT 0t by €4

and the transverse mobilities are
= Pt (6.46)
MHel = ksT, - 1+ (MeB)z Me .
eD,'J_ 1

HiL = = (6.47)

kgT; 1 + (uiB)? i

The derivation of a final expression for D, is now straightforward. Replacing
equations (6.44) to (6.47) in (6.43), we obtain
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Di He + De i
pe (14 (1iB)?) + i (1 + (weB)?)
Dy

= . 6.43
1+ MeHiBz ( )

with D, = D, denoting the parallel ambipolar diffusion coefficient (or the ambipo-
lar diffusion coefficient in the absence of a magnetic field) given by equation (6.11).
In case of high magnetic fields B > 1, and because of D, >~ (u;/e)De, We
obtain from (6.44)

D, D,
D, ~ , = 5 s (6.49)
(ieB) MeltiB
whereas from (6.48) we have
Du ~ P~ (6.50)
“ = HeltiB> ok .

In this case, the magnetic confinement is predominant as compared with the
confinement due to the space-charge electric field.

It follows from equation (6.48) that it is possible to define a perpendicular and a
parallel ambipolar diffusion coefficient and that, in principle, it would be possible
to write the following equation for electron diffusion under the conjoint action of a
space-charge electric field and a magnetic field, with the latter oriented along the z
axis

9*n,
972

on,

I D, Vin, — D,

= n, <Vipp> . (6.51)
However, if the ratio between the two diffusion coefficients significantly differs from
unity, the equation (6.7), (V. T'e) = (V. I';), imposed by the equally of the source
terms for electrons and ions, does not allow to assume the hypothesis of congruence:
I'e = T';. As a matter of fact, various experimental results indicate that the actual
effective perpendicular diffusion coefficient is greater than the coefficient given by
equation (6.48) by several orders of magnitude (Lieberman and Lichtenberg 1994;
Vidal et al. 1999).

Because of the ion mass is so much larger than the electron mass, the increasing
of the magnetic field dramatically decreases the electron transport perpendicular to
the magnetic field well before any significant decrease occurs in the ion transport,
while along the parallel direction electrons and ions diffuse at the same rate, under
ambipolar diffusion conditions. As first pointed out by Simon (1955), some specific
simplifications for some special cases can explain how one can have perpendicular
transport to the magnetic field much greater than that given by equation (6.48).

As presented by Lieberman and Lichtenberg (1994) to obtain the diffusion
coefficient obtained by Simon (1955), let us consider a finite plasma in which the
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length L along the B field in z direction is much larger than the length / across
the field. Even for L > [ the more rapid diffusion along the B field is usually
important and cannot be neglected. Using for simplicity rectangular coordinates,
with the y direction taken of infinite extent in order the charged species densities
may be assumed constant, we may write the continuity equations for electrons and
ions

e o P dEw) p Pne dmEe) _

o b g THAE gy Cop M g T MV
(6.52)

on; _D O ni + (L) - D; on, O(niEy) = ;

or U ge THEL gy Ta2 TH e Srin=
(6.53)

being E;, and E;; the components of the space-charge electric field. A limiting
case can be considered depending of the amplitude of Ej,. For E;, | < kgT,/e,
and < kgT;/e, the perpendicular mobility terms in (6.52) and (6.53) are smaller
compared to the perpendicular diffusion terms. Dropping these mobility terms,
multiplying (6.52) by u; and (6.53) by . and adding the two equations, we obtain
whenn, =n; =n

on . %n . 9?n
SL a azz

5 92 = n <>, (6.54)
X

where Dy is the Simon diffusion coefficient perpendicular to the B field given by

Di e De i
D5y = Dk Het Pl i (6.55)

He + [

different hence from (6.43), whereas D, is the usual parallel ambipolar diffusion
coefficient given by equation (6.11).

Since @, > w; and normally D;; > D, , equation (6.55) simplifies to Dg; =~
D, . With this approximation the diffusion equation (6.54) becomes

on *n 9?n
—Diy - D,

o 92 e = n <Vipp> . (6.56)

The perpendicular loss of ions is hence by free diffusion. Physically this corresponds
to a situation in which the electrons, flowing along the B field lines, almost com-
pletely remove the negative charge that produces the space-charge field component
E;,. Then, due to the presence of the B field, the electrons preferentially flow
out along the field and the ions flow out across the field, being I'e # T'; and
existing a net current flow in the wall. Here, Lieberman and Lichtenberg (1994)
call attention that if the electron flow along the B field lines is impeded by inertial
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or collisional effects, or if it exists a substantial perpendicular ion acceleration such
that E;, [ > kgT;/e, the perpendicular ion diffusion term in (6.53) is smaller than the
mobility term and the preceding derivation of D is invalid. However, a complete
analysis of this subject is beyond the purposes of this textbook.

6.2 Boltzmann Equation with Space Charge Fields

6.2.1 Boltzmann Equation for a Discharge

Let us assume now that the total electric field acting on the electrons is composed by
the axial DC electric field of the positive column of a glow discharge, E = — E e,
and by the radial space-charge field created by diffusion of charged species to the
cylindrical discharge tube wall, E; = E; e;. Considering, as in Sect. 5.1.2, the first
term approximation for the anisotropies of the electron distribution function and that
f! reaches steady-state conditions, equation (5.20) takes the form

fl = -

(3

0
BT, B YT v 2 6.57)

Z
e e e
mvé¢, 0v, mv¢, v, V¢

being the gradient of the isotropic component of the electron distribution function
VY = 9f°/dr e, with 9f°/dr < 0, radially oriented towards the discharge axis.
The electron current density of electrons obtained from equation (6.57) is hence

o0 vg
.= / ¢ 4v? dv,
o 3

on,
= n MeEez - (ne Me E; + D, ar:)er s (658)

having assumed here the local field approximation in which the ratio of the isotropic
component of the electron distribution function to the electron number density,
feo /n., is independent of position and therefore the electron free diffusion coefficient,
D, =<v2/(3v¢) >, is independent of the radial coordinate. In a quasi-neutral
discharge (Ap < A, being Ap the electron Debye length and A the diffusion length
of the discharge vessel), the space-charge field Es is relatively large and it nearly
cancels the radial diffusion term, being small the net radial electron current to the
discharge tube wall due to the very nature of the ambipolar diffusion regime.

Substituting equation (6.57) into equation (5.21), in which E is replaced with
E + E

o e 10, o s m w
o m3v2 dv, (07 (E+E9) ) + S (V.h) = I'+1°. (659
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we obtain
of° 1 20 0 0 ev, of?
¢ v.l| ¢ E
b 2 o, (v (g% +ep, +8)) + amve ¥ Lo, B
U2
- 3;} VY =104 ), (6.60)

m

in which the continuous electron flow components in velocity space are given by

1 [eEN 9f°
= - ¢ 61
8E 3ve (m) v, >0 (©.6)
1 [eE,\ of°
0 = — o 62
8E. 3ve, ( m) v, >0 (6.62)

0o _ Ve ek are

g = <0. (6.63)

3ve m Or

The first component has already been obtained in equation (3.92) and it takes into
account the acceleration of electrons due to the axial electric field, whereas the other
two represent, respectively, the radial acceleration due to the space-charge field and
the slowing down of electrons due to radial movement by diffusion against the
space-charge field. These latter two components also nearly cancel each other due to
the ambipolar diffusion, so that they may be always dropped from equation (6.60).
The third and fourth terms on the left-hand side member of equation (6.60) exhibit a
different behaviour, since the space-charge field only exists in the third term, being
the fourth one a term describing pure diffusion transport.

The stationary equation obtained from (6.60) to describe a steady-state plasma is
hence

1 0

v2? 0v,

Ve af° eE,
(v &%) + 50 V-(ave m e fo) =407 (664)

In a quasi-neutral discharge with Ap < A, the space-charge field is strong enough
in order the ambipolar diffusion exists and, consequently, the combined effect of
the terms on the space of positions in equation (6.64) can also be neglected. This
is the reason why both terms are often neglected in discharge modelling. This
Boltzmann equation is usually termed “homogeneous Boltzmann equation®’, as it
only accounts for the motion of electrons in velocity (or energy) space resulting
from the applied field and the collisions (elastic and inelastic) with the neutral gas.
Since the collisional terms I° 4+ J° depend on the pressure linearly, and the diffusion
term together with the space-charge field term depend on it inversely, the neglecting
of this latter term is so much justifiable as the pressure increases.

When the combined effect of diffusion with the space-charge field is neglected in
equation (6.64), one must also neglect, for consistency, the new electrons produced
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by ionization, since the term for diffusion under the effects of the space-charge
field exactly compensates, under steady-state conditions, for the rate of appearance
of new electrons. In this case, ionization must be treated like any other excitation
process. As discussed in Sect. 3.4.1 the electron energy distribution function (EEDF)
normalized through equation (3.166) can be then obtained as a function of the
reduced electric field E/n,, with n, denoting the gas number density, the gas
temperature T, to take into account the small heating of electrons in recoil collisions
with non-frozen molecules (usually a very weak dependence), and of the fractional
population concentrations §; = n;/n, and 6; = n;/n,, with n; and n; denoting
the concentrations of individual states. In the case of inelastic and superelastic
collisions for excitation and de-excitation of vibrational levels, it is useful to
introduce a new variable characterising the degree of vibrational excitation with
the form of a vibrational temperature 7, (see Loureiro and Ferreira 1986). The
rotational collisions may be taken into account through a continuous approximation,
which does not introduce any new variable but only the characteristic parameters
By and oy for a given molecular gas (see Sect.3.3.3). Finally, due to the relative
weak population concentrations of the excited electronic states, only the inelastic
collisions from the electronic ground-state are usually necessary to be taken into
account, whereas the superelastic collisions are neglected for the electronic states.

When the term for diffusion under the effects of the space-charge field is
neglected, the continuity equation is not embodied in equation (6.64), since we
obtain a null identity as both members of the Boltzmann equation are multiplied
by 4mv? and integrated over the whole velocity space. Thus, the determination
of the sustaining electric field for the discharge needs to be obtained externally
to equation (6.64). In this case we should introduce the space-charge field into
equation (6.2) to obtain the electron flow current density (6.16)

Te = — D, Vn, (6.65)

and then to introduce this expression into the continuity equation (5.77) to get, under
steady-state conditions, the electron rate balance equation

—D,, Vn, = n, <vip> . (6.66)

Here, D, is, as we have seen in Sect.6.1.2, an effective electron diffusion
coefficient, assuring the transition from free to ambipolar diffusion, and which tends
to the ambipolar diffusion coefficient (6.11) when Ap — 0.

Assuming that n, vanishes at the wall due to electron recombination, we may
replace V?n, = — n,/A?, being A the diffusion length, as we have seen in
Sect.5.1.3, with A = R/2.405 in the case of a cylindrical discharge tube of radius
R. We obtain hence the following relation from equation (6.66)

DSC‘

A2 = <Vion> , (6.67)
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which expresses the fact that, under steady-state conditions, the rate of diffusion
losses, represented here in the form D /A2, must be exactly balanced by the
averaged ionization rate. Noting that Dy, o 1/n, through D, =<v2?/(3v¢) >x
1/n,, n,Dy, is independent of the gas density, so that (6.67) can be still rewritten
under the form

noDse

(A Cion » (6.68)
where Cipy =<V, Ojon >=<Vjop > /1, is the electron ionization rate coefficient.
Since n,Dy, and Cj,, are obtained by integrating the EEDF, both become functions
of the independent variables E/n, and T, and in a smaller extent also of T, so that
equation (6.68) embodies a discharge characteristic for the maintenance field, e.g.
under the form of curves of E/n, against n,A for constant values of T),. In the case
of electrons given by a Maxwellian energy distribution, n,Dy, and Cj,, are functions
of T, only, so that equation (6.68) permits to obtain a relationship of 7, againstn,A.
In this latter case T, and E/n, can be linked each other through the electron energy
balance equation (see Exercises 3.1 and 3.2 at the end of Chap. 3).

Let us consider now the case where the electron density is not high enough in
order a space-charge electric field may be created capable to compensate nearly
the diffusion term in (6.64). If further, the gas pressure is not sufficiently large for
the collisions dominate, the term due to the space-charge field can be neglected
in (6.64) but the diffusion term cannot. We obtain in this case an equivalent equation
as that for breakdown (5.78), in which the appearance of new electrons needs to be
considered in the inelastic collision term J°

L9 20 Ue2 2 0 0
(v g2) — 3o VY = 04 )0, (6.69)

2
v2 v, ¢

From equation (6.69) one easily observes that the condition for the diffusion may
be neglected is the pressure and the diffusion length to be large enough to have

2

v
3‘):[\2/160 L v fl, (6.70)

with v, denoting here the characteristic frequency for energy relaxation (4.1). If
the collisions are predominantly inelastic, v, >~ v¢, the above inequality results in
A > v, /v, which shows that the condition is the electron diffusion length to be
much larger than the mean free path.

The continuity equation obtained by integrating both members of (6.69) in
velocity space, considering further V?n, = — n,/ A2, may be written now as

n,D,

= Cion , 6.71
(oA Y? (©71)
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where D, is the free electron diffusion coefficient, which expresses the relationship
for determining the discharge characteristics E/n,(n,A, Ty). Since D, > Dy, and in
particular D, > D,, the electron ionization rate coefficient capable to compensate
the electron loss rate by diffusion is now significantly larger than in the case when
the space-charge field exists and, consequently, the reduced sustaining electric field
E/n, needs to be significantly larger as well.

Furthermore, when the space-charge electric field does not significantly exist
the diffusion term cannot be neglected in equation (6.69), so that the Boltzmann
equation needs to be solved by considering a guess for the input parameters E/n,
and n, A (or E/n,, n,A and T, in case of a molecular gas). The validity of our choice
is checked after through equation (6.71) (or through equation (6.71) together with
a system of rate balance equations for the populations of the vibrational levels). In
the case of an atomic gas, where the inelastic collisions may be considered from the
ground-state only and the superelastic collisions may be neglected, and assuming the
gas temperature sufficiently low to be neglected in the recoil collision term (3.85),
the Boltzmann equation can be written in a form similar to equation (3.165), with
the inclusion of a new term taking into account the diffusion

ek 2 0 u afeo u feO B m 9 , .
_(no) ou (30;5, ou )+ 304 (nyA)? = M ou (“ Umfe)
+ ) {+ ) o5(u+ 1) £ + w) — woj(w) £ (w)}. (6.72)

Jj>0

The use of partial derivates in equations (6.69) and (6.72) is due to the fact that the
electron distribution function also includes the dependence on space coordinates:
£2(r, v,) or f2(r, u). However, the writing of (6.72) implies the assumption of the
local field approximation (LFA), in which f°/n, becomes independent of space (see
Sect.5.1.2).

Finally, it is worth noting here that the Paschen curves for breakdown are
embodied in equation (6.71). In fact, assuming the breakdown voltage as V, = E d,
being d the run away distance for electrons, we may write V, = (E/n,) (n,d) and
since E/n, is a function of n,d only, we obtain a characteristic of the type V;(n,d).

6.2.2 Boltzmann Equation for a Microwave Discharge

Let us consider now the situation of a discharge produced and sustained by an
high-frequency electric field of amplitude Ey and frequency w, much larger than
the characteristic frequency for energy relaxation v, given by equation (4.1), in
order the isotropic component of the electron velocity distribution function may
be assumed time-independent (Rose and Brown 1955; Ferreira and Loureiro 2000).
When a time constant space-charge electric field Eg is also present, in result of a
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negatively charged discharge tube wall, the electron Boltzmann equation takes the
following form using equations (4.22) and (6.64)

13 [(v2 1 [eEY 1 3f?
v2 v, \3ve 2\ m ) 1+ (w/ve)? dv,
Ve v (8]‘60 eEg

+
3ve, v, m

— v, VfB) =1+, (6.73)

As analysed before for a DC discharge, when the electron density is sufficiently high
the space-charge field is large and the term with Eg nearly cancels the diffusion term,
being their difference small at sufficiently high pressures as compared with the other
terms in equation (6.73). In this case equation (6.73) becomes independent of the
coordinate r, so that the isotropic component of the electron velocity distribution
function f2(r,v,) exhibits the same dependence on the space coordinate as the
electron density n,.(r), that is the LFA is verified. The equation so obtained is the
electron homogeneous Boltzmann equation.

Writing equation (6.73) in terms of the electron energy u = ; mv 2, we obtain
as in equation (4.24), after multiplication of both members by ./u, and in case of
an atomic gas with inelastic collisions from the ground-state only and neglecting
superelastic collisions

d[2 5, . ar, 2m 5, dfy

_du[3u vy, Uc du + W om 2+ ksT, du

= Y {Vutuviu+u) L+ w) — Juviw) W}, (6.74)
>0

where u, represents the time-averaged energy gain per collision defined in (4.25)

202
e’k

2m (ve (u)? + w?) (6.75)

Uc (”) =

As we have seen in equation (4.20), when the effective collision frequency for
momentum transfer is independent of electron energy, we may use the concept of
effective electric field given by

1 E
E, = o (6.76)
VI+ (@/v)? V2
and the time-averaged energy gain per collision is given by
Pg(t E}
= PO _ ek 6.77)

b
ne VS, mve?
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being Pr() the time-averaged power absorbed per volume unit. However, when vy,
is a function of the electron energy, the concept of effective electric field, which
embodies all the dependences on the applied field (amplitude and frequency), is
no longer applicable. In such a case, an explicit dependence on @ arises from
equation (6.74), through the energy u.(u), which can be rewritten now as follows

& (EY 1 6.78
ueW) = o (no) (v, () /10)* + (@/n,)* @7

being n, the gas number density. We can then conclude that u. (i) is a function of
two independent parameters Ey/n, and w/n,. Substituting the expressions for the
collision frequencies vy,, v, and v; in equation (6.74), and dividing both members

by n, \/2/m, we obtain

A2 5. d*  2m , (. af°
_ e » e " kTo e
du[3”(""” au oy o TRl

= > {@+w) o+ w) Lu+uw) —uo@ LW} . (679

Jj>0

The isotropic component of the electron velocity distribution function is hence
function of the above two independent parameters and also of 7,, when we include
the small electron heating of the order of T,/T, due to elastic collisions with non-
frozen atoms.

When we consider the homogeneous electron Boltzmann equation one must also
neglect the secondary electrons produced by ionization, since the term for diffusion
under the effects of the space-charge field exactly compensates the appearance
of new electrons. The ionization must be then treated like an ordinary excitation
process by considering only the primary scattered electrons. The neglect of the
diffusion and of the source of new electrons altogether is permissible as long
as the energy losses associated with the ionization are much smaller than the
losses resulting from excitation and elastic recoil collisions, which is satisfied in
most of the discharges at not too low pressures. However, for the purposes of
discharge modelling one must take into account the electron balance equation (6.68)
independently of (6.79), since the condition for plasma maintaining is no longer
contained in the Boltzmann equation.

When using equation (6.79), the modelling of a microwave discharge can proceed
through two successive steps. First, the homogeneous Boltzmann equation (6.79) is
solved as a function of the independent variables Ey/n, and w/n,, and the electron
transport and the collisional rate coefficients are calculated from f2 (in particular, the
electron ionization rate coefficient, Cj,,,, and the reduced electron free and ambipolar
diffusion coefficients, n,D, and n,D,). Second these data are inserted into the
equation for the discharge maintenance, in which (6.68) corresponds to its simplest
form, allowing to obtain a relationship between the independent variables Ey/n,,
w/n, and n,A, which constitutes the discharge characteristic for the maintenance



6.2 Boltzmann Equation with Space Charge Fields 251

field. Notice, however, that equation (6.68) involves the resolution of the continuity
equation coupled to the momentum transfer equations for electrons and ions, taking
into account appropriate boundary conditions for the plasma, so that this second
step involves the solution of a boundary-value problem from which the relationship
Eo/ny(w/ny,n,A) is obtained as an eigenvalue solution.

As discussed above, the concept of effective electric field (6.76) is not applicable
as the collision frequency v¢, depends on the electron energy. However, in practice,
it is useful to replace the pair of the reduced variables Ey/n, and w/n, with another
pair E,/n, and w/v., where E, represents an effective electric field defined as in
equation (6.76), but using instead of v/, («) a constant effective collision frequency
Vee for momentum transfer of electrons with a given energy. The choice of v, is
rather arbitrary, but it seems preferable to choose a frequency v,, = v, (u*) for an
energy u* of the order, or not far from, the mean electron energy <u>. In this way
the limiting situations of w < v, and @ > v, have a clear physical meaning, as
they correspond to many and to few collisions per oscillation, respectively, for the
bulk of electrons. In the limit @ < v, we have E,/n, — Eo/(~/2 n,) and the
electron distribution f? is exactly the same as that produced in a DC field with the
same amplitude as the rm.s. HF field, Ey/+/2. This occurs as long as the frequency
o is sufficiently high in order the electron distribution is not time-modulated, i.e. as
long as w > v,, being v, the characteristic frequency for energy relaxation. In the
opposite limit of w > v, we have E,/n, — (ve./w)Ey/ (\/ 2 n,) and the electron
distribution £ depends on the reduced variable Ey/w alone.

Although the electron rate coefficients and the transport parameters are function
of E,/n, and w /v, it is possible to choose individual effective collision frequencies
Ve for each gas, such as the ionization rate coefficient can be expressed (in the
range 10—100Td) as a function of E,/n, alone for all values of @/ v.. In argon, we
find v../n, = 2.0 x 1073 m3s~! (Ferreira and Loureiro 1984), which corresponds
to electrons with an energy u* = 8.5¢V, and for nitrogen this value is not very
distant v /n, = 2.4 x 10~ m? s~! (Ferreira and Loureiro 1989), which in this case
corresponds to electrons of 2.1eV or 2.9¢eV, or even 10.4 eV, due to the particular
shape of v¢, (1) in N, (a sharp maximum at ~2 eV and a monotonic growth at higher
energies; see Fig.4.2).

Figure 6.2 shows the electron ionization rate coefficient in argon as a function
of the parameter E,/n, for various values of w/v. from < 1 to 3> 1. With the
value assumed here for v, the ionization rate coefficient at low electron densities is
practically a function of the sole parameter E,/n,. However, at higher n,/n, values
this behaviour is no more true because in this case the total ionization rate must also
include stepwise ionization from the metastable state Ar(®P,) (Ferreira et al. 1985).

The behaviour exhibited in Fig. 6.2 just results from the shape of the EEDF and
it cannot be explained by any fundamental reason. Choosing E,/n, in this form,
all of the electron energy averaged quantities must depend also on an additional
parameter proportional to the ratio w/n,, such as @/v,., except in the limiting cases
w/vee < 1 and > 1. Only the dependence of the ionization rate coefficient on
/v, turns out to be quite small using the present definition, at least in the range
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Fig. 6.2 Ionization rate 10-16
coefficient in Ar, as a function
of the effective electric field
to the gas number density, for
the following values of
®/vee: (0) K 1, (V) 0.053;
(0) 0.425; (A) 0.8; (&) > 1.
The full curve represents the
best fit to these data (Ferreira
and Loureiro 1984)
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of E./n, mentioned here. Thus E, is not a true effective electric field as defined for
gases in which v¢ (u) is constant but constitutes a useful parameter for the analysis
of the discharge characteristics.

In the case of a molecular gas, such as nitrogen, the situation is more complicated
since we need to include as well the effect of electron superelastic collisions for de-
excitation of vibrational levels N (X ! Z; ,v>0), which is taken into account through
an additional independent parameter for the population distribution in the manifold
of vibrational levels. This parameter is the vibrational temperature of the so-called
vibrational distribution function (VDF), see e.g. Loureiro and Ferreira (1986), so
that the ionization rate coefficient function of the independent parameters Ey/n,,
w/n, and T, may be expressed in terms of E,/n, and T, only if we use the concept
of effective electric field. Figure 6.3 shows the ionization rate coefficient in N, as
a function of the ratio E,/n,, assuming v../n, = 2.4 x 10713 m? s™! (Ferreira and
Loureiro 1989), for T, = 4000K and T, = T, = 400 K.

The practical interest of these features arises primarily in the calculations of
theoretical characteristics for the steady-state maintenance field of HF discharges
from the balance between the electron production and loss rates (6.68). Since
this latter equation establishes a relationship between the variables Ey/n,, w/n,
and n,A, and because Cj,, is function of E,/n, only, the characteristic for the
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maintenance field of an HF discharge may be expressed as E./n,(n,A,®/v¢.),
or as E,/n,(n,A,w/ve,Ty) in case of a molecular gas. Figure 6.4 shows the
characteristics E,/n, against n,R, for HF argon discharges in cylindrical geometry,
for various values of /v, from <« 1 to > 1, assuming predominant direct
ionization from the electronic ground-state Ar('Sy). The data points on this figure
were derived from experiments with surface wave produced discharges (Ferreira
et al. 1987). Due to the neglecting of step-wise ionization from the metastable states,
the calculated data overestimate the reduced maintenance field.

It is worth noting at this point that equation (6.68) as it stands is independent of
the nature of the applied field (HF or DC) and of the particular set-up used to apply
it. It constitutes a quite general steady-state condition applicable to all discharges
provided only that direct ionization and loss by diffusion under space-charge field
effects are the dominant processes and the field can be assumed approximately
uniform throughout the plasma. However, the nature of the field and its frequency w
affect the electron and ion transport (the free diffusion coefficient and the mobility
of electrons still continue to be function of both E,/n, and w/v,,, contrary to Ci,,
which is function of E,/n, only as a result of our choice for v.), so that the effective
diffusion coefficient Dy, depends on w/v,,.

The analysis of the discharge ionization-loss balance shows that E, /n, is a func-
tion of the external parameters n,A and w/v,,, provided the pressure is sufficiently
low to direct ionization and loss by diffusion are the principal mechanisms. Thus the
mean power absorbed per electron at unit gas density, Pg(t)/(n.n,), is also function
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Fig. 6.4 Characteristics of the maintenance field for cylindrical argon discharges, assuming
predominant direct ionization, for the following values of ®/v.: (A) > 1, (B) 0.8; (C) 0.15;
(D) < 1. Data points from experiments on surface wave discharges (Ferreira et al. 1987)

of the same parameters. We remember here that according to equations (4.15)
1 2
Pe(t) = ) Re{o..} E; . (6.80)

being Re{o .} the real part of the electron conductivity (4.16) given by

2 &n, [ ve df
Re{oe} = — /O w? o2 (6.81)

in which we have used the EEDF normalized such as
o0
/ f) Judu = 1. (6.82)
0

The quantity Pg(t)/(n.n,) depends hence on the variables Ey/n, and w/n, only

Pe) _ 1 (EO)Z / R L R Py o)
0

ey 3 m\n, (ve,/no)? + (w/n,)* du
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and as before this set can be transformed to (E./n,, ®/v¢.), or to (n,A, w/vee)
because of E, /n,(n, A, w/v..).

Figure 6.5 shows the mean absorbed power per electron at unit gas density
calculated for argon from the solutions to the Boltzmann equation, as a function
of the ratio of the effective electric field to gas number density, at low electron
densities, from w/v. < 1to w/ve > 1.

Figure 6.6 shows the characteristics Pg(?)/(n.n,) against n,R calculated for
argon from the solutions to the homogeneous electron Boltzmann equation and
the ionization-loss balance assuming predominant direct ionization. The data points
shown on the figure were obtained from experiments with surface wave produced
discharges at frequencies ranging from 210 MHz up to 2.45 GHz, using different
discharge tube diameters from a few millimeters to a few centimeters (Dervisevic
et al. 1983). For a given n,R product, the values of Pg(t)/(n.n,) are much lower at
W > Vg, or at w = 0.8v,,, which corresponds to the conditions of the experiments,
than at v < v... There is reasonable agreement between theory and experiment, the
discrepancies being most likely caused by the neglect of stepwise ionization and by
the non-uniformity of the field in the surface wave discharges. The best agreement is
obtained assuming a Maxwellian distribution (curve M), with temperatures obtained
from the electron energy balance equation, which can be justified having in view the
high electron densities achieved in these experiments.

Finally, Fig.6.7 shows the time-averaged absorbed power per electron at unit
gas density against E,/n, in nitrogen, for different values of w/v. and T,.
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Fig. 6.6 Characteristics of Pg(t)/(n.n,) against n,R for cylindrical argon discharges, assuming
predominant direct ionization, for the following values of @ /v..: (A) <K 1; (B) 0.8; (C) > 1. Curve
M is for a Maxwellian distribution. Data points are from experiments on surface wave discharges
(Ferreira et al. 1987)
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One notes that Pg(t)/(n.n,) decreases as w/v., increases, as it occurs in argon,
whereas only minor modifications result from varying 7). This can be understood
since the changes produced by T, have a strong effect on the tail of the EEDF but
induce only minor changes in the bulk distribution.

6.2.3 Afterglow of a Microwave Discharge

When the electric field is cut-off in a discharge a complex kinetic relaxation process
immediately initiates for the electrons, ions and neutral excited species, which ends
when the final equilibrium is achieved. In the case of a flowing discharge in a tube,
the post-discharge can be observed, even when the field is still switched on, after
the end of the discharge in a well separated region, which depends of the gas flow
rate. The emission of particular lines or bands may occur in the post-discharge as a
result of complex interplay mechanisms between the different charged and neutral
species along the relaxation process, which obviously depend of the nature of the
gas and the post-discharge time or position. The occurrence of the emissions leads
to the appearance of an afterglow, in which the initial plasma generated species
de-excite and participate in secondary chemical reactions. In consequence some
species have shorter and others longer lifetimes. Depending on the gas composition,
superelastic collisions may continue to sustain the plasma in the afterglow for
a while by releasing the energy stored in rovibronic degrees of freedom of the
molecules. Especially in molecular gases, the plasma chemistry in the afterglow
significantly differs from the plasma glow.

For the electron distribution function two different mechanisms take place in
the decaying plasma, besides the very rapid depletion of the high-energy tail just
after the switch off of the field due to electron inelastic collisions. The first is the
reduction of the space-charge electric field created in the discharge producing thus
a transition from ambipolar to free electron diffusion along the post-discharge. The
second is the prevalence of dissociative electron-ion recombination until the late or
remote afterglow where the final extinction of the active medium takes place.

The electron distribution function in the earlier instants of the afterglow of a
stationary HF discharge can be determined by assuming a zero electric field at = 0
in the time-dependent electron Boltzmann equation (Guerra et al. 2001)

o 10 (21 (eEY 1 af?
ot v2 v, \3vg 2\ m 1+ (w/ve)?* v,

e af, eEs
+ " v.(feo s fo)z I+ 0. (6.84)

e
3ve, v, m

This equation is identical to (6.73) written for the case of a time-varying electric
field of frequency w sufficiently high to the electron distribution function remains
time-independent in the discharge, but here we also introduce the term for the time
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variation of the electron distribution in the post-discharge as the electric field is
cut-off. By multiplying both members of the Boltzmann equation by 47v? and
integrating over the whole velocity space, we obtain the continuity equation as
in (6.66)

dn,

— Dy Vi, = —n, <Vpe>, (6.85)
dt

but here instead of the term for secondary electron production by electron impact
ionization, which can be neglected in the afterglow, we include a term for electron-
ion recombination with the frequency v,.. This term plays an important role in
the final stages of the afterglow (Gritsinin et al. 1996) when the electron and ion
densities decay altogether with the same rate. This decay occurs according to the
electron-ion volume recombination law 1/n.(f) ~ ¢ (see Exercise 6.6).

The fall of the electric field to zero at + = 0 is obviously an approximation
(Borysow and Phelps 1994; Dhali and Low 1988), but the time interval at which
this occurs is very short as compared with the characteristic times of the phenomena
under analysis. Here, we are mainly concerned with the time variation of the electron
energy distribution function due to elastic and inelastic collisions, and with the
variation of the electron density due to diffusion under the effects of the space-
charge field Eg, and due to electron-ion recombination. In particular, the effects
produced by the field Eg are progressively decreased as the time evolves and the
electron density decreases.

The time-dependent Boltzmann equation in the form expressed by equa-
tion (6.84) is difficult to solve, even numerically, due to the presence of the
space-charge field term, and of the dependence of f0 on the configuration and
velocity spaces. In order to determine Eg self-consistently, Poisson’s equation
must be used, coupled to the continuity and momentum transport equations for
electrons and ions. This task involves a great deal of computational work, so that
we will consider here a much simpler approach which consists in considering in the
Boltzmann equation directly the effective diffusion coefficient (6.26) describing the
smooth transition from ambipolar to free diffusion as the electron density decreases
(Guerra et al. 2001)

D, + Azeneﬂe/éo

D,, = D, .
D, + Azeneﬂe/eo

(6.86)

Here, D, ~ (u;//te)D. is the ambipolar diffusion coefficient, u; and p,. are the
ion and electron mobilities, and A = R/2.405 is the characteristic diffusion length
for a cylindrical plasma container of radius R, obtained by replacing V?n, with
~ —n/ A2, which is consistent with the assumption that n, vanishes at the wall. In
the limit Ap < A, with Ap = \/ €ouy/ e*n, denoting the electron Debye length and
ur = eD,/ . the characteristic energy, we obtain Dy, — D,, whereas at the opposite
limit Ap > A, we have Dy, — D,. Equation (6.86) hence allows one to cover the
whole bridge between nearly ambipolar diffusion (in the earlier and intermediate
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instants of the afterglow) and free diffusion (in the late or remote afterglow) by
considering the decreasing of n, and the corresponding variations of D, and ..
With the concept of effective diffusion coefficient and keeping in mind that the
continuity equation (6.85) results from the integration of the Boltzmann equation
in velocity space, we will return to the Boltzmann equation (6.84) and assume that
the third term on the left-hand side member may be replaced with a composed term
accounting for diffusion under the presence of the space-charge field as follows

af? 13 [v2 1 [eEY 1 af?
ot v v, \3ve 2\ m ) 14 (w/ve)? v,

2
v, Dy,

+ 'V =1+ 6.87
Bea? D e (6.87)
When this equation is integrated in velocity space, we obtain in the third term of the
left-hand side member using D, =<v2/3v¢>

Dy, © ve2 ) N,
AZDe/o g Jo 4TV dve = Dy
m

obtaining thus equation (6.85). When D;, ~ D, at the earlier instants of the
afterglow, the term for diffusion is small and it may usually be neglected as in
the discharge. On the contrary, when D;, — D, in the later stages of the
afterglow, the diffusion term cannot be neglected and we obtain the same equa-
tion (6.69) as in the breakdown.

Writing equation (6.87) in terms of the electron energy u, we obtain the following
equation for the case of a molecular gas

0 1 2 2 Dy,
e J B2 o + u A
ot Ju ou |3 ou 3m veA* D,

e
v, Uc

1 9

. 2m 5 e
= \/u 9 [M u Vi (f:) + kgT, o + 4By \/uff

1
b SVt g vyt ) £ ) = iy ]
ij

1
" Vu Z [t = i vji(u = u) £ (=) — vy f)]
Jii

- Vrecffa (688)

where u, is the time-averaged energy gain per collision (6.75), v = n, \/ 2u/m oy
is the frequency for rotational exchanges induced by electron impact including
both inelastic and superelastic collisions (3.160), and v, = n; \/ 2u/m Oy is the
frequency for electron-ion recombination, with n; denoting the ion number density,
and o, the electron-ion recombination cross section. As we have stated before the
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production of secondary electrons by electron impact ionization may be neglected
in the afterglow.

The equation (6.88) may be transformed to a set of coupled ordinary differential
equations by a finite differencing of the electron energy axis into n cells of width Au,
using a scheme close to that indicated in Sect. 3.4.2, and employing the following
algorithm for time-evolution

Jul . Ft+ A = (AtA + Jul) . F@). (6.89)

Here, F(¢) is the column vector of the temporal electron energy distribution function
f2(u, 1) at the instant ¢, A is the time-independent matrix of coefficients obtained
from finite differencing all terms of equation (6.88), I is the identity matrix, with
Vul = Ju; 8, u; = (i—1/2) Au denotes the energy in the middle of the cell i—th
of the energy grid, and At is the time step.

The analysis of the time relaxation of feo(u, 1) in the post-discharge is analysed
by setting f°(u,0) = n, f(u) as the initial condition, with n, and f(u) denoting the
electron density and the EEDF in the discharge. The latter normalized as follows

/ fu) Judu = 1, (6.90)
0
verifying therefore
0
fluw) = i \/2 f"("’o). (6.91)
m m N,

The electron density is updated during the time-evolution process in Dy, /D, given
by equation (6.86), by updating D.(f) and p.(f) at each instant, and in v.(?),
where it is assumed n;(f) = n.(t). Equation (6.89) evolves with an initial time-
step At = 107! for the first interactions and then the predictor-corrector method
of Adams-Bashforth-Moulton is used for adjusting the stepsize (see e.g. Fox and
Mayers 1968).

Figure 6.8 shows the EEDF f°(u,1)/n.(), multiplied by the normalization
factor (6.91) in order to have fooo f2u,)/u du = n(t), calculated at different
instants in the time-interval t = 1 x 1077 — 1 x 10™* s, in the afterglow of a flowing
microwave discharge at w/(2mw) = 2.45GHz in nitrogen, for typical operating
conditions corresponding to a Pyrex tube of inner radius R = 0.8 cm, at the pressure
p = 266Pa (i.e. 2 Torr) and electron density 7,(0) = 5 x 10" m™>. The electron
density is usually modified in the discharge by varying the injected microwave
power. The typical values of the gas temperature at present conditions are of the
order of T, = 1000 K, so that this value has been assumed constant here. Figure 6.8
shows the depletion of the high-energy tail of the EEDF at the earlier instants of the
afterglow as a result of electron inelastic collisions.

Although the EEDF is largely modified at short times Fig. 6.9 shows that the
electron density remains practically unchanged up to t ~ 107> s due to the large
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Fig. 6.8 Electron energy 1
distribution function in the
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w/(2n) =2.45GHz 1071 7
microwave discharge in N, -
with p = 266 Pa and @
ne(0) = 5 x 10" m~3, for 3 1072 1
the following instants in the 5
afterglow: (A) 1 X 1077 s; (B) &
1x107%s;(C) 1 x 1075 s; = 4g3 g
(D) 1 x 10*s (Guerra et al. =)
2001) i
1074 AT
1075 '

u(ev)

characteristic times for electron losses by ambipolar diffusion. Figure 6.9 reports the
values of n, () calculated from equation (6.88), in which a transition from ambipolar
to free diffusion regimes is considered (curve A), as well as the values obtained
when free diffusion of electrons is assumed during the whole relaxation process
(i.e., assuming Dy, /D, = 1 in equation (6.88), curve B). The electron density falls
sharply at t ~ 1077 — 1079 as the electron diffusion occurs without the presence of
the space-charge electric field.

The behaviour exhibited by n,(f) essentially results from the fact of the effective
diffusion coefficient Dy, remains practically unchanged up to t ~ 3 x 10™*s, with
Dy, ~ D,, instant at which it sharply increases to D,, due to the diminution of #,.
Figure 6.10 shows the ratio D,./D,, given by equation (6.86), calculated at the same
conditions as before. The free diffusion is completely achieved at t ~ 4x10™*s. The
present results are qualitatively in line with the measurements realized in Markovié
et al. (1997) using the breakdown time delay technique, in which it was observed a
rapid transition from ambipolar to free diffusion at t ~ 20 ms.

The creation of secondary electrons by electron impact ionization in the post-
discharge may be neglected due to the rapid depletion of the EEDF. However,
additional ionization may be produced by Penning ionization reactions. In the case
of nitrogen, these reactions occur through collisions of the metastables states N, (A
3% ) and Ny(2' '2))) as follows (Brunet et al. 1983; Brunet and Rocca-Serra 1985;
Berdyshev et al. 1988)

Ny (AP +No(@ 'S)) > N + N, + e

—Nf + e (6.92)
No@@ '2)) +No(@ 'S) > NF + N, + e

— N/ + e. (6.93)
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Fig. 6.9 Temporal evolution 1018 r r r r r
of the electron number
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Fig. 6.10 Temporal
evolution of the ratio of the
effective electron diffusion
coefficient to the free
diffusion coefficient in a N,
post-discharge, for the same
conditions as in Figs. 6.8
and 6.9. The nearly flat region
for Dy, /D, corresponds to
time-interval where the
ambipolar diffusion prevails
(Guerra et al. 2001)
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These reactions lead to the introduction of an additional source term on the right-
hand side member of equation (6.88)

L = 1
won — \/u

with R} ~and Riz(m representing the rates (in m—3 s~!) of the Penning or associative
ionization reactions (6.92) and (6.93), respectively,

(Rl 8(u1) + R, 8(u2)) (6.94)

RL, = [Na2(A)] N2 ()] kb, (6.95)
R, = [Na(@)] N2 ()] K2, (6.96)
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and where the § function obeys to the usual normalization condition fooo S(u) du = 1.
Estimations for the rate coefficients of the two reactions are k,, = 1 x 1077 m?
shand k2, = 5 x 107" m? s7! (Guerra and Loureiro 1997). As a result of the
threshold energies of the two states, the electrons are created with the energies
u; ~ 0 and u, = 1.3eV. The creation of new electrons permits the description of
a very interesting phenomenon, the increase of n, in the afterglow after an initial
stage of decay (Guerra et al. 2004), as experimentally observed in Bogdan et al.

(1993), Sadeghi et al. (2001) and Amorim (2005).

6.2.4 Beyond the Local Field Approximation

The analysis carried out in Chap.5 and previous sections of Chap.6 assumes the
local-field approximation (LFA); see Sect.5.1.2. According to this approximation
the variation in space of positions of the isotropic component of the electron velocity
distribution function f(r, v,) takes place through the electron density n.(r), so
that the ratio fO(r,v.)/n.(r) is independent of r. However, in some situations
this approximation is not valid and an accurate description of the nonequilibrium
electron kinetics needs to be taken into account in both the velocity and position
spaces. The electron kinetics in inhomogeneous plasma regions is then governed by
relaxation processes in the space of positions and a distinctly non-local behaviour
in the electron distribution function arises.

The basic equation to study the electron kinetics in nonuniform regions of a
stationary unmagnetized plasma is the inhomogeneous, time-independent electron
Boltzmann equation (3.6)

fe) e e e
(e oe) = (B = ()L ©70
which determines the electron distribution function f, (r, v¢) and where the collision
term in the right-hand side member includes elastic, inelastic, and ionization
processes. The electric field is assumed nonuniform E(r) and e and m denote the
absolute value of the charge and the mass of the electrons.

If the electric field and the inhomogeneity in the plasma are parallel to a fixed
space direction, for instance the z axis, with E(z) = — E(z) e, the electron
distribution function becomes symmetrical around the field and can be given
through an expansion in Legendre polynomials L, (cos 8), with 6 representing the
direction of v, with respect to the z axis (3.9). In the lowest approximation order, the
so-called two-term approximation (3.11), the electron distribution function f,(z, ve)
becomes a function £, (z, v., cos 0) as follows

f(zve) =~ fAz,v.) + fl(z,v.) cosh . (6.98)
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The substitution of this expansion into the Boltzmann equation (6.97) leads to the
equation system (3.87), (5.7) and (3.88), (5.8) for the stationary isotropic and first
anisotropic components

1
Ve Of, eE 1 d (Uezfel) _ IO(feO) + _]O(ff) (6.99)

3 0z m 3v? dv,
3 E 9

o W B —ve gl (6.100)
0z m v,

The collision operators for elastic and inelastic collisions in (6.99) are given by
equations (3.85) and (3.134), while the effective collision frequency for momentum
transfer vy, is given by (3.139).

Substituting now the velocity by the electron energy u = é mve2 and dividing
both members of equation (6.99) by \/ 2 /mu and both members of equation (6.100)
by \/ 2u/m, we obtain the following set of equations

0 ju 0 (u _ 2m 0 )

az(3fe>+ € o (31) = g gy oo f?)

+ ) nod(+ w) oj(u + w) 2w+ w) — woyw) £z w} (6101
>0

e + ¢E o = —n,0" fl. (6.102)
0z ou

For brevity only inelastic electron collisions of the first kind with ground-state atoms
are considered and the small heating for electrons due to elastic collisions with
non-frozen atoms is neglected. o), = v,/(n,v.) represents the effective electron
collision cross-section for momentum transfer.

The isotropic component of the electron distribution function normalized such as

*° ) dr |2 [
ne(z) = 2z v.) dwv 2 dv, = Gou) Vudu  (6.103)
0 m m Jo
may be now renormalized as follows
o0
n.(z) = / Fo(z,u) Vu du . (6.104)
0

For consistency the anisotropic component f(z,u) should be renormalized to
F j (z,u) in the same way. With this normalization, the electron particle current
density T'e(z) = I'.(2) e, (3.18) is expressed as

I.(z) = ; \/i /Oooqu(z,u) du (6.105)
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with F!(z,u) obtained from (6.102), and being the stationary electron particle
balance equation (5.77) as follows

d
I.(z) = 0, (6.106)
dz

because the creation of secondary electrons is neglected in (6.101).

On the other hand, multiplying both members of equation (6.101) by the electron
energy u (before to have making the division by \/ 2 /mu) and integrating over all
velocity space, we obtain the stationary equation for energy conservation

d
dZJE(Z) = Pg(2) — Pa(2) — Pina(2) (6.107)

The left-hand side member represents the divergence of the energy current density
Je(2) = J£(2) e, defined as follows

1 2 (%,
Je(z) = u” F,(z,u) du, (6.108)
3 VmJ)y

while the terms on the right-hand side member of (6.107) account for the power gain
from the field Pg(z) (3.116)

PE(Z) = (JeE) = Je(z) E(Z) (6.109)

with Jo = — e I'. denoting the electron current density, the power lost in elastic
collisions P,(z) (3.115), and the power lost in inelastic collisions Pj,e(z) (3.151).
In a nearly homogeneous plasma a nearly complete compensation should occur, at
each space position z, between the input power from the electric field and the power
losses by elastic and inelastic collisions, being small the divergence of the energy
current density in the power balance equation (6.107). When such compensation
does not occur non-local effects need to be taken into account in the determination
of the EEDF and the LFA is no more valid.

As firstly noticed by Bernstein and Holstein (1954), a suitable form of equa-
tions (6.101) and (6.102) for determining the isotropic and the anisotropic com-
ponents, in position and energy spaces simultaneously, is obtained by replacing
the electron kinetic energy u by the total energy € = u — e V(z) (Tsendin 1974;
Winkler et al. 1997), with V(z) = [ E(') dZ' denoting the electric potential, in
which E = — E(z) e,. With such transformation € is independent of the coordinate
z and the kinetic energy becomes a function of z and €, u(z,€) = € + e V(2).
Then, the left-hand side members of equations (6.101) and (6.102) become, using
the normalization condition (6.104),

;z (L3t £+ Bau (Z F!) z: 6.110)
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BFS n 3F3 ou

. 111
0z du 0z ® )

Replacing now F%(z,u) and F!(z,u) with the new functions dependent on (z, €),
FO(z €) and F (z, €), the equations (6.101) and (6.102) can be written under the
form

(AR =2 w0 )

0z M Oe ¢
+ Zn,,{(u + u) 0j(u + ;) F(z, € +uj) — uoj(u) Fo(z,€)}  (6.112)
Jj>0
OF? .
¢ = —n,0° F. (6.113)
0z

The anisotropic component F 1(z, €) obtained from (6.113) may be now inserted
into equation (6.112) obtaining thus the parabolic equation

o w OFY _2ma(2 o F9)
dz \ 3n,0¢ 0z _Maeunome

+ Zno{(u + ) oj(u + u)) Fo(z, € + uj)) — uoj(u) Fo(z,€)}. (6.114)
>0

The equation (6.114) describes the evolution of the isotropic distribution function
FS(Z, €) and has to be solved as an initial-boundary-value problem on a region
whose boundaries are determined by the spatial course of the electric field (Winkler
et al. 1997). From the mathematical point of view the parabolic problem has to be
completed by appropriate boundary conditions. In the case of cylindrical geometry
the equivalent equation to (6.114) takes the form of an elliptic equation (Golubovskii
et al. 2015).

A large simplification of the kinetic study of inhomogeneous plasmas is reached
when the spatial evolution of the electron kinetic quantities consists of a sequence
of nearly homogeneous states. In this case the kinetic quantities can be determined
by solving the much simpler homogeneous kinetic Boltzmann equation for the
sequence of the electric field strengths of each nearly homogeneous state. Such a
treatment is the so-called LFA. However in this case a rapid spatial establishment of
the electron distribution function into homogeneous states would be required. This
means that the corresponding relaxation length of the electrons should be very short
in comparison with the spatial change of the electric field (see Sect. 5.1.2).

A situation where the LFA is quite often questionable is the radial electron
diffusion under the effect of a radial space-charge electric field, E; = E; e, in a
microwave discharge at low pressures. The non-local behaviour results from the
space-charge field and the spatial diffusion terms are simultaneously taken into
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account in the inhomogeneous Boltzmann equation. Considering the complete form
of the Boltzmann equation as referred in equation (6.60) for the case of a microwave
discharge, we may write

3

19 [vj (6)2(E3+EZ) > v g ‘ero)}

Cv2 v, | 3ve \m 57 9v, 3ve m
e 9 :
2 2 E)— V0 = ¢ + ¢, (6115
3ve, m v, 3ve,

where the local effective microwave electric field is

1 Ey(r)

O = s wpgar V2

(6.116)

The different terms in the left-hand side member of (6.115) account for heating by
the HF electric field and by the space-charge field, transport under the effects of the
space-charge field, and spatial diffusion, while in the right-hand side member we
have the terms for energy losses by elastic and inelastic collisions.

Rewritten (6.115) in terms of the electron energy and assuming the dependence
of Es on the radial coordinate, we obtain after multiplication of both members
by ./u, using Fg(r, u) normalized according to equation (6.104), and cylindrical
geometry

2 9 [u?? ZEZBFS . aF? . OF?
3m ou u,;e‘—’au C o T

2 w219 IF? IF? 2m 0
_ e Ev e — 3/2 m FO
3m v¢ r or |:r( or 0 u ):| M Ou (% v F2)

+ Z [\/u + uj vi(u + u)) Fg(r, u+ ;) — /uvi(u) Fg(r, u)] . (6.117)
j>0

If the pressure is sufficiently high or the tube radius R sufficiently large for the
characteristic energy relaxation length A, = v,./v, satisfies A, < R, the LFA is
valid. The effects of diffusion under the presence of space-charge field are small,
and the electron distribution function is determined by the same expressions as
in a homogeneous plasma. In this case the isotropic component Ff_,)(r, u) can be
factorized as n(r) x (F°(r, u) /n.(r)), with the ratio F%(r, u) /n.(r) depending on the
local reduced effective electric field strength, E,/n,. On the contrary, in the opposite
limit A, 3> R, the isotropic component F’ f_,) (r, u) is totally non-local.

Bernstein and Holstein (1954) have noticed that in a positive column of radius
R the kinetic equation for Ff_,)(r, u) can be reduced to a two-dimensional diffusion
equation along the radial coordinate r and along the total energy € = u — eV(r),
where V(r) = — for E (r') dr’ denotes the radial space-charge electric potential.
If the plasma scale R is small, the total energy € remains nearly constant during
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the electron radial displacement and the electron distribution function Ff_,)(r, u)
becomes totally non-local. The fundamental paper of Bernstein and Holstein (1954)
was forgotten for 20 years, until a similar solution was rediscovered by Tsendin
(1974). For electrons trapped by a potential well V(r), the solution depends only
on the total energy € and the kinetic Boltzmann equation can be averaged over the
coordinate r. So the radial plasma inhomogeneity and the radial electric field can
be excluded from the kinetic equation and it can be formally reduced to the same
form as in the familiar case of a homogeneous plasma. The only difference between
the local case and this totally non-local case lies in the fact that the totally non-
local isotropic component of the electron distribution function depends on the total
energy e, instead of the kinetic energy u, such as it has already been considered
in equations (6.112) and (6.113). The development of such idea was one the most
brilliant legacies of Lev Tsendin (Tsendin 1974, 1982a,b, 2011; Kolobov 2013).
Later on the same idea has also been treated and improved in Kortshagen (1993,
1994) and more recently in Golubovskii et al. (2015).

When the timescale of spatial diffusion is much shorter than the timescale of
diffusion in energy space, the electrons, confined by the radial space-charge electric
potential V(r) < 0 (with V(r = 0) = 0), are moving with an almost constant total
energy € = u — eV(r). Thus, the accessible region for the electrons in the phase
plane (r, €) is bounded by € > — eV(r). Figure 6.11 shows that electrons with a
total energy €; can access the discharge cross section up to their turning point radius
ri such as €, = — eV/(r1). The curve u; — eV(r) determines the lower limit of (r, €)
plane above which the electrons are able to perform an inelastic collision with the
threshold energy u;. In the case of electrons of total energy e, the region where these
exciting collisions take place is » < r, with r, determined by (&2 —u;) = — eV (r2).
At r = 0 the total energy coincides with the kinetic energy.

Fig. 6.11 Phase plane (r, €) Ac
for the trapped electrons. The
accessible region is bounded

by € > — eV(r). The turning
point r; for electrons of total

energy € is defined as

€1 = — eV(r1). The curve
uj — eV (r) determines the
region on (r, €) plane above u;—eVv(r)

which the electrons are able
to perform an inelastic
collision with threshold
energy u; (Kortshagen 1993)
—-eV(r)

€4

\ 4

g

" R

o
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The situation addressed by the totally non-local approach is that of a discharge
at sufficiently low pressure, so that the energy relaxation length of the electrons
exceeds the discharge dimensions. Since electron displacement occurs faster than
energy relaxation, the spatial fluxes at different € are practically independent. In
the fully collisionless case the total energy € is a constant of motion. Thus, it is
reasonable to express equation (6.117) in the total energy rather than in the kinetic
energy (Bernstein and Holstein 1954; Tsendin 1974). Being € = u — ¢V(r) the total
energy, one obtains u(r,e) = € + eV(r), and therefore du/dr = — eEj, so that
substituting FO(r, u) by the distribution function FO(r, €), one obtains

Y . IF 8F3+8F3 u _ OF 6.118)
o w T or ou or  or ’

whereas dF°/du = 0F°/de. Since the left-hand side member of equation (6.117)
can be written as follows

2 9 [(u¥? FY
(” 2E2 e)

© 3m ou \ ve, ¢ Ou

21 (9 9 u? (9F? OF?
C3mor (ar_EE‘V au) |:r e ( or ~ ks ou ):| ’ (6.119)

m

equation (6.117) takes the following final form using the distribution function
F%(r, €) (Kortshagen 1993, 1994)

2 19 (W2, , 0F 19 [ u? oF 2m 9 .
_ g2 % e _ 32, O
3m |:86<vf;l “ e e * roar\" ve  or M Qe (% o )
+ Z [Vu+ u vi(u + w) FO(r, € + w) — Vuvi(u) Fo(r,€)] . (6.120)
j>0

The kinetic energy is then a function of the radial coordinate, u(r), as well as the
effective electric field is E,(r, u(r)) in the case of Ey(r) in equation (6.116).

For sufficiently low pressures the second term on the left-hand side of equa-
tion (6.120) is the dominant term. For the idealized case of collisionless motion of
electrons in a confining space-charge potential without accelerating electric field,
the distribution function is independent of the spatial coordinate, i.e. Fg(r, €) =
Fg(e), because the total energy is a constant of motion. Thus, one may assume that
F O(r, €) is radially dependent only to a first order correction

Fl(r.e) = Foy(e) + F (r.e). (6.121)
The non-local approach is achieved by considering different times scales for spatial

diffusion and energy diffusion. In cases where the energy relaxation length is
sufficiently large and the electric field is not too high, the spatial diffusion is much
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faster than the energy diffusion. This fact justifies an averaging of equation (6.120)
over the radial cross section, accessible for the electrons with a certain total
energy €. Using this assumption it is possible to obtain a simple ordinary differential
equation for F 2’0 (¢) by integrating equation (6.120) over the discharge cross section.
However, for electrons with a small total energy not the whole discharge cross
section is accessible but only the part up to a maximum radius r*(¢), which is the
turning point of the electron motion defined by u(#*) = 0 or € = — eV (r*) (see
Fig.6.11).

The resulting equation by this integration procedure is an ordinary differential
equation for the electron distribution function F 20(e)

0
_ 9 (D(e) ool L G0 FS,O(e))

de de
= > [Hi(e +w) Flo(e +u)) — Hi(e) Fy(e)] (6.122)
j>0

with the radially averaged quantities

_ 2 r*(€) u(r)3/2 S
D(e) = 3m/0 ve (u(r) e ES(r,u(r)) rdr (6.123)
r*(e)
Gle) = " w2 vou(u(r)) r dr (6.124)
M Jo
rj(€)
Hi(e) = Vu@r) viu(r) rdr. (6.125)
0

Here, r*(¢) is the turning point radius and r;(¢) is the maximum radius for which
the j-th inelastic process is possible, i.e. u(rj(€)) = u;. The physical meaning
of this integration is obvious (Kortshagen 1993, 1994). Since the electrons are
moving everywhere across their accessible cross section before they considerably
change their energy, the values obtained at one position are distributed all over
the accessible cross section. This physical picture is hence in opposition to the
assumption of locality. The radial average equation (6.122) is formally equivalent to
the homogeneous Boltzmann equation and thus may be easily solved with the same
numerical techniques. The spatial dependence on r coordinate is not lost but only
hidden in the definition of the total energy € = u — eV(r).

If one is interested in radially resolved parameters like the electron density,
electron rate coefficients, etc., it is necessary to know the dependence on the electron
kinetic energy. The electron energy distribution function at a certain radial position
rop may be easily obtained from the distribution function of total energy as follows

F(ro,u) = F2\(e = u—eV(ry)) . (6.126)
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Fig. 6.12 Scheme for finding
the electron distribution
function of kinetic energy
FO(r, u) (bold part of the
curve in upper diagram) at a
position ry from the electron
distribution function of total
energy FS_O(E) (whole curve
in upper diagram) and the
space-charge potential (lower o
diagram) (Kortshagen 1994) R S W
total energy (e)

Fa(ro, u)

Mo

total energy (e)

At the radial position ry the potential energy — eV/(rp) constitutes a threshold for
the electrons. Electrons with a total energy less than this value are reflected by the
space potential before reaching ry. Electrons with a higher total energy can reach
this position with the kinetic energy u(ro) = € + eV (ry). Thus, FO(r, u) is obtained
from F 20 (¢) by cutting the low energy part with ¢ < — eV(ry) and using the value
— eV/(rp) as the new zero of the kinetic energy scale.

Although obtained from the spatially averaged kinetic equation (6.122), the
spatial information is fully included in the electron distribution function of total
energy i’go(e) in combination with the space-charge potential (see Fig. 6.12). The
distribution of the electron density in the space-charge potential is then easily
obtained

o
n(r) = / FO(r,u) /u du
0
o© ~
= / FOo(e) Ve + eV(r) de , (6.127)
—eV(r) '
while the ionization rate (in m ™3 s 1) is

Rion(r) = ne(r) <Vion>(r) = /oo Vion(u) Fg(rs u) \/Lt dbt

ur

= / - Vion(€ + eV(r) F2o(€) Ve +eV(r)de,  (6.128)

1—eV(r)

with u; denoting the ionization threshold energy.
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The validity of this fully non-local approach is based on the assumption that
the spatial diffusion term in the inhomogeneous Boltzmann equation (6.117) is the
dominant term. As pointed out by Bernstein and Holstein (1954) this condition is
fulfilled when the space-charge electric field is larger than the effective maintaining
electric field strength.

Exercises

Exercise 6.1. In a glow discharge of tube radius R the electron density varies
radially with the form

n.(r) = neo Jo({i) ,

where r is the radial coordinate of the cylindrical system, Jj is the Bessel function
of first kind and order zero, and A = R/2.405 is the cylindrical diffusion length,
with 2.405 representing the first root of Jy(x). Determine the space-charge electric
field under perfect ambipolar diffusion conditions.

Resolution: The space charge electric field is given by equation (6.15)

Es — _ kBTe Vi’le ’
e ne

so that using the selected identity of Bessel functions
, 1
B0 = ) Ut =S @)
with
Jou(x) = (D" Ju(x)
we obtain
, 1
Ho) = [Fh) —h@] = -5

We may write hence

e = 8 (D) = (5 () Lo
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and therefore

Vne  Ji(r/A) 2.405
ne Jo(r/A) R

T .

The space-charge electric field is then given by

kT, 2.405 J,(2.405 r/R)

Es(r) = R Jo(2.405 r/R) "

At r = R,Jy(2.405) = 0 corresponds to the first root of the zero order Bessel
function, while for the first order function we have J;(2.405) = 0.5191. Then, the
space-charge field sharply increases near the wall.

Exercise 6.2. Estimate the deviation from charge neutrality implied by the space
charge field obtained in Exercise 6.1

Resolution: The presence of a space charge field implies that the charge neutrality
is only approximately valid. Using the local Gauss law

(V.Ey) = P s

€0

where p = e (n; — n,) is the space-charge density, we may write using cylindrical
coordinates

1 d
n—n, = (r E) .
e r dr

Substituting the space-charge field obtained in Exercise 6.1 and making the
replacement x = 2.405 r/R, we obtain

eoksT, (2.405V 1 d [ Ji(x)
ni—n, = X .
e2 R x dx \\ Jo(x)

The derivative of the term inside brackets is done using the recurrence formulae for
Bessel functions

Ch@Y = x I
B = =50,

allowing to obtain at the end

_ eokgT. (2.405Y L)Y
nThT e ( R )(1+(Jo(x)))'
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Dividing now by n,(x) = n. Jo(x), we obtain the relative deviation from neutrality

mi=ne oo 4(10)2 L+ (i0/Jo)?*
R Jo(x)

ne

with

kgT,
Ap = \/ o
€710
denoting the Debye length at the centre.

Exercise 6.3. Find the electron density at the centre of a cylindrical discharge of
radius R, current intensity /, and electron drift velocity veq, assuming a Bessel radial
density profile.

Resolution: The current intensity is expressed as

R
I = / Jo(r) 2mr dr,
0

where J,(r) = e n.(r) |vge| is the electron current density, n,(r) = n.(0) Jo(r/A)
the electron density profile, n.(0) the density at the centre, A = R/2.405 the
diffusion length, and |veq| is assumed radially constant. We obtain hence the
following expression

R 2 p2.405
I =2 (0 Ji dx ,
wen val (5 pos) [ 0o xax

in which the integral is

2.405
/ Jo(x) x dx = 2.405J,(2.405) = 2.405 x 0.5191 ,
0

allowing to obtain at the end

Exercise 6.4. Determine the ionization rate coefficient necessary to maintain a
discharge over the cross section of a cylindrical discharge of radius R, for the case
of a gas with reduced mobility of ions n,u;, under ambipolar diffusion conditions,
and electrons at temperature 7, much larger than the temperature of ions.
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Resolution: The steady-state rate balance equation for the electron number den-
sity (6.60) is as follows

2
_Davne = ne ny Cigp ,

being C;,, the ionization rate coefficient (= <v;,,>/n,), D, the ambipolar diffusion
coefficient, and n, the gas number density. Owing to the cylindrical geometry of the
problem, we may write

1 d dn,
- D, r = N¢ Ny Cion s
r dr ( dr )

where r is the distance to the axis of the discharge cylinder. The solution of this
equation for the boundary condition r,(R) = 0 is

2.405r

ne(r) = neqo Jo R s

where n, is the electron number density at the axis, and Jy the Bessel function of
first kind and order zero. Since V?n, = — n,/A?, with A = R/2.405 denoting
the diffusion length, we obtain the following relationship between the plasma
parameters and the size of the system

no,D,
5.784
("oR)2

= Cion .
On the other hand, when 7, > T; the ambipolar diffusion coefficient (6.13) takes
the form

so that the equation for the plasma maintenance is

No[i kB Te

5.784
(n,R)? e

= Cion -

Since the ionization rate coefficient is determined by the reduced electric field E/n,),
this equation can be used to find the longitudinal electric field in the positive column.
The ionization rate coefficient should be then equal to the average frequency, at
the gas number density, for electron escape to the tube walls. Since 7, depends on
E/n, as well, we obtain a characteristic for the plasma maintenance with the form
E/n,(n,R).

Exercise 6.5. Estimate the mean lifetime of an electron in a cylindrical discharge
tube under ambipolar diffusion conditions.
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Resolution: The distribution of the electron density over the tube cross section is

2.405
ne(r) = Neo JO( r) s

R

so that the flux of electrons at the discharge tube wall is

dn, 2.405 (d
Fe = - Da = - Da neo JO(-x)
dt Jp R \adx 2.405

2.405
= Da Neo R .]1 (2405) .

On the other hand, the total number of electrons in the tube element with the length
Lis

R R \2 [2405
N, =L e(r) 2m rdr = 2nwL n, J d.
/0 n.(r) 2w r dr L ne (2'405) /0 0(x) x dx

R2
— 27l n, J1(2.405) .
TLno ) 405 7112409

The number of electrons per time unit from this tube element is 2w RL T, so that
the mean time spent by an electron in the discharge tube is

N, R?

27RLT,  5.784D,

This lifetime is obviously the inverse of the frequency for escape of electrons by
diffusion found in Exercise 6.4. In fact, from

0
" D, Vn, =0,
ot
we may write
on,
. + varhe = 0,

from which we may conclude

D, 1
Vdif = 5.784 R2 =T .
Exercise 6.6. Determine the electron distribution over the cross section of a
cylindrical tube of radius R, for the case of electrons produced in a narrow region
ro < R around the axis of the tube.
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Resolution: This situation can occur due to the variation of the gas temperature
with the distance from the tube axis (Smirnov 1981). If the discharge current is not
too small, the gas in the discharge tube is heated up owing to electron collisions. The
heat flux is then directed towards the tube walls and the gas temperature is larger
at the axis. Since the gas pressure is radially uniform the number density of the gas
molecules at the axis is lower than near the walls. Then the collisions between the
electrons and the gas molecules occur less frequently at the axis and the average
energy of electrons at the axis is higher. Since ionization is determined by collisions
of fast electrons of the energy tail of the electron distribution function, even a small
difference in the gas temperature can result in a appreciable difference between the
ionization frequencies at the axis and the tube walls.

Solving the stationary rate balance equation for the electron density in cylindrical

geometry
1 d dn,
- D, r = ne ny Cigp
r dr dr

in the region r < ry, assuming n,(r) >~ n, in the right-hand side member due to the
smallness of ry, we obtain

ny Cion
n.(r) = neyo (1— 4D, r2) ,

whereas in the region ry < r < R, where C;,,, = 0, we obtain considering the
boundary condition n,(R) = 0
In(R/7)
ne.(r) = n.(ro) n(R/ro)

Matching the above solutions at » = ry, where the electron density and its derivate
(that is, the flux) are continuous, we obtain

ny Cion
ne(ro) = N0 (1— 4Da r02)

ny Cion ne (VO) 1

f1e0 2Da 0= ln(R/rO) ro

and relating the two expressions to each other, we obtain the following condition for

the plasma maintenance
2D, 1 R
, = + In .
n, Ci(m L) 2 1o
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This condition is equivalent to that of Exercise 6.4. It relates the equality between the
rates of electron ionization and electron escape from the volume where the electrons
are generated.

Exercise 6.7. A discharge is maintained between two infinite plates. Determine
the distribution of electrons in the discharge gap and the condition for the plasma
maintenance, in the case of the electrons are not totally recombined at the wall
(that is, the probability & for electron recombination at the wall differs from unity).
Assume further that the electron ionization rate coefficient does not vary over the
discharge cross section.

Resolution: This problem with a slab geometry satisfies a rate balance equation
equivalent to that of last exercise

d*n,
- D, = 1, ny Cigy,
dx?

with x denoting the distance from the central plane of symmetry parallel to the walls
of the discharge gap. Since n.(x) = n.(—x) due to the symmetry of the problem, the
above equation has the solution

ny Cion
ne.(x) = ny cos (\/ D, x),

where n, is the electron density at the symmetry plane. In the limiting case, where
the probability of recombination at the walls is &€ = 1, we have n.(x) = 0 at
x = &£ L/2, being L the distance between the walls, and we obtain

I/l,,Ci,m L . b
D, 2 2

On the contrary, when £ < 1, the flux of charged particles recombining at the
walls is (see Appendix A.1.1 and Sect. 6.1.1)

n.(L/2) <v;> Ny <U; > ny Cion L
3 =& cos .
4 4 D, 2

being <v;> the average velocity of ions near the walls in a layer with thickness of

the order of the mean free path of ions. Since ionization in the vicinity of the walls
is insignificant, the flux of electrons recombining at the walls is

dn, . 1y Cion L
(Fe)L/Z = —D, (dx )L/2 = N0 \/no Cion D, sin (\/ D, 2) .
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Equalling both expressions, we obtain

ny Cion L 4
cot = \/no Cion Dy .
D, 2 £ <v>

At the wall the cotangent function is < 1 being its argument close to /2

cotn =~ sin — ~ -7,
n 2 n 2 n

so that we obtain

n - \/nt) Cion L = i \/no Cion Dy

2 D, 2  &<v>

and therefore

ny Cion L _ 7T/2
D, 2 148D,/ <v>L)"

The second term in the denominator of the right-hand side member is a corrective
term relatively to the case where the electron number density is zero at the wall. Let
us estimate now this term. Since D, ~<v; >2/v; ~<v;> A;, being A; the mean free
path of ions, the corrective term is of the order of A;/(£L), so that when A; < &L,
we obtain the same expression for the discharge maintenance law as the electron
number density is null at the wall.

Exercise 6.8. Determine the expressions of electron density decay in a plasma
afterglow controlled by: (i) electron-ion recombination and electron diffusion, with
a constant diffusion coefficient; (ii) electron-ion recombination only.

Resolution: (i) When the loss terms for electron density in a plasma afterglow
are electron-ion recombination, with n.(f) = n;(f) at each instant, and electron
diffusion, the electron density obeys to the relation (6.85), written here as

dne + Dse 2
ne = —an,
dt A? ¢
where Dy, is the effective electron diffusion coefficient, A is the diffusion length
of fundamental-mode, and « the electron-ion recombination coefficient. Neglecting
the dependence of Dy, on n, given by equation (6.86), we may write

dn,

2
= ne — oan
dr Bne

e

being B = D,/ A? = const.
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1

Making the substitution y = n,”", we obtain the linear differential equation

dy
dt_’By+a’

and multiplying both members by ¢~#’, we can still write

d

dt (e_ﬂty) =ae .

This equation can be integrated giving (Borysow and Phelps 1994)

0 -

or still under the form

ne(1) — n.(0) e_ﬁt
L+ (a/B) ne(2) 1+ (e/B) n(0) '

(ii) On the other hand, when only electron-recombination exists, we easily obtain
(Gritsinin et al. 1996)

n.(0)

n (1) =14+ an/(0)z.
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Plasma Spectroscopy



Chapter 7
Classification of Equilibria in Plasmas

Plasmas in complete thermodynamic equilibrium only exist in very special
conditions like, for example, in the interior of stars. Plasmas are rarely found
in equilibrium in laboratory because very often the walls enclosing such plasmas
are transparent to the radiation fields over a wide range of frequencies. The radiation
escapes and the fulfilling of the Planck radiation law is not achieved. At this point
it is not possible to describe the radiation field by a unique temperature. Another
source of disequilibrium is that walls have lower temperatures than the inner regions
of plasmas and only one thermodynamic temperature does not exist. Other factor
that contributes to the instability is the diffusion that causes the out flux of particles,
changing the local density of the excited states influencing the production of charged
particles for example.

Although most of plasmas are not found in thermal equilibrium (TE) by the
reasons presented above, the conditions to establish the TE may exist in a small
volume element with the exception of the Planck’s radiation equilibrium. In this last
case the plasmas are said in local thermodynamic equilibrium (LTE) described by
the laws presented in Table 7.2. The approach of TE is very powerful to describe the
local plasma even without Planck’s radiation equilibrium and the approximation for
local equilibrium, i.e. Maxwell, Boltzmann and Saha, may be applied. The radiation
plays a key role in the establishment of LTE in low electron density plasmas.
Deviations from LTE may be observed when the radiation field is weak.

In this chapter we will present and discuss basic concepts of most relevant
collisional-radiative models usually found in low-temperature plasmas. It will be
presented the simplest equilibrium, i.e. the corona model, followed by a description
of the excitation saturation balance (ESB) and the partial local Saha equilibrium
(pLSE). The deviation from thermodynamic equilibrium leads to different plasmas
with different classifications and distinct properties. LTE has been treated in many
books and research articles and for further details the reader should referred to
related literature, for example, van der Mullen’s work (van der Mullen 1990).
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7.1 Introduction

Atoms and ions immersed in a plasma bring a lot of information about the medium.
This information can be assessed by the atomic state distribution function (ASDF)
which describes how atoms and ions are distributed over their internal energy states.
The ASDF gives a good description of how the energy is deposited in the plasma as
a result of the microscopic processes that regulate the ionization, excitation, particle
transport, and so on.

Passive optical diagnostics like optical emission and absorption spectroscopy
may be employed to determine the ASDF and from this distribution important
parameters of the plasma, such as electronic density and temperature, may be
deduced. From the ASDF the equilibrium state of the plasma may be characterized.

Collisional radiative models may help, together with experimental results, in
the establishment of the relationship between the ASDF form and the elementary
processes underlying the kinetics of the plasma. Although numerical collisional
radiative (CR) models exist and are well employed today, in the present chapter
emphasis will be given to analytical approximations in order to present to the stu-
dents a general view of the influence of deviations from thermodynamic equilibrium.
We are interested in the classification of the atomic discharge plasmas with respect
to the excitation criteria.

In this chapter the key role played by the electrons in the excitation kinetics
is presented with emphasis in the dominant electron excitation kinetics (EEK)
plasmas with a high degree of ionization, typically >10~*. However, departures
from equilibrium leading to the so called local partial equilibrium may be useful
to describe plasmas with a lower degree of ionization.

Electrons have reduced mass and high velocity and as charged particles they
receive energy from the electric field and through collisions with heavy particles
deposit part of their energy in the medium. This process influences the form to the
ASDF as the result of the interaction and the competition between bound and free
electrons.

Proper balances are defined as the ones where the forward and the corresponding
backward processes, in the framework of microreversibility, are in equilibrium.
This chapter begins with the treatment of thermodynamic equilibrium (TE) which
is presented as a collection of proper balances. Four types of equilibrium are
fundamental to the establishment of the ASDF. The first one is called the Maxwell’s
balance which is the result of kinetic energy transfer between particles in collisions.
The second one is due to excitation and deexcitation of the atomic levels and is
known as Boltzmann’s balance. The Saha’s balance is the type of equilibrium that
regulates the ionization and the recombination of charges in the plasma, and the last
one is the Planck’s balance for interaction between matter and radiation. Generally,
the Planck’s balance is the first to be lost due to the escape of radiation from the
medium.

Improper balances occur when forward and backward processes are not in
equilibrium. In this case there is no inverse process for a given reaction or if it exists
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it is less effective. A good example is the corona equilibrium where a given excited
level is produced by electron collisions with ground state atoms and the radiation is
lost from the medium leading to a disequilibrium.

In plasmas, the electron excitation kinetics modulates the shape of the atomic
distribution function characterizing each improper balance. They are associated
with the parameters governing the macroscopic behavior of the plasmas such as in
ionizing plasmas where the improper balance creates a flow of ionization along the
state levels of the system. The transport of the charged particles out of the plasma is
enhanced by the production and transport of charged particles. Otherwise, when the
recombination is more significant than ionization, the plasma is called recombining
plasma and the improper balance is governed by the overpopulation of certain state
levels due to recombination reactions.

In this chapter the deviation from the thermodynamic equilibrium is discussed in
Sect. 7.2 while proper and improper balances are presented in Sect. 7.3. The features
and domains of micro reversibility are shown in Sect. 7.4. Maxwell, Boltzmann,
Saha and Planck equilibria are presented and discussed in Sects. 7.5, 7.6, 7.7 and
7.8 respectively.

7.2 Deviation from Thermodynamic Equilibrium

The plasma in macroscopic state may be fully characterized by temperature, number
density and chemical composition. In the thermodynamic equilibrium (TE) the
knowledge of the temperature is an important parameter to access many information
of the system with the help of statistical mechanics.

At macroscopic level, the laws of statistical mechanics govern the behavior of
particles while at microscopy level the nature of collisions and the energies involved
change the scenario picture. In this case the velocity distribution of particles is given
by a Maxwell distribution while the distribution of population among the various
excited states is described by a Boltzmann distribution. The densities of ionic states
are described by a Saha distribution and Planck’s radiation law governs distribution
of photons according to their energy. In TE the temperature is the key parameter that
determines all these distributions.

It can be stated that in TE condition each microscopic process has its inverse in a
sense that the direct and reverse processes are in equilibrium. This is the definition
of Detailed Balancing (DB).

The four types of balances related to the establishment of the Maxwell, Saha,
Boltzmann, and Planck distributions are presented schematically in Table 7.1.
These are proper balances because, as stated before, the forward processes are
compensated by backward ones establishing a microscopic equilibrium in TE
condition where the distribution functions are known.

The departure from the TE leads to a modification of ASDF changing the
equilibrium in Saha and Boltzmann balances. Here we are supposing that Planck’s
balance is responsible for this equilibrium departure. In fact, in most discharge
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Table 7.1 Illustration of the
proper balances

Balance Reaction

Maxwell |X+Y & X+Y
Ex + Ey = (Ex + AE) + (Ey — AE)
Boltzmann | X + A, + E), (i X+ A,
deexcitation <— — excitation
Saha X+A,+ |E| & X+A +e
recombination <— — ionization
Planck A, <£> A+ hv
absorption <— — spontaneous emission
Ay +hv — A+ 2hv
—> stimullated emission
Maxwell balance (M), Boltzmann balance (B), Saha
balance (S) and Planck balance (P). A, is an atom with
energy u, E is the kinetic energy of the particles and Ej,

and |E, | are the increase of internal energy and ionization
potential respectively

plasmas this balance is the first to be lost because of radiation escaping from the
medium. It was shown in reference (van der Mullen 1990) that the distribution
laws valid in TE can be derived using the principle of DB. Non-thermodynamic
equilibrium systems, where some proper balances still take place, can be described
by the DB principle.

Once the production and loss of radiation and particle number take place and
if the inverse processes no more occur, improper balances begin to be important,
leading to the departure of TE. The replacement of proper balances by improper
ones modifies the shape of the ASDF. It can be seen in Table 7.2 that the escape of
radiation from the plasma affects the Planck’s equilibrium and may influence other
balances as will be shown latter in this chapter. However if the leak of radiation is
small, when compared with the energy involved in collisions of heavy particles, the
Maxwell, Boltzmann and Saha balances remain in equilibrium and electrons, ions
and neutrals are thermalized in the same temperature, i.e. T, = Ty, where T, is the
electron temperature and Ty the heavy particles temperature.

The escape of radiation from the plasma may be accompanied of species
gradients and of their variation with time. In this context, it can be found that
locally the system remains in equilibrium. In this Local Thermal Equilibrium
(LTE) slow variations in plasma conditions may be permitted but the balances
should be reestablished instantaneously. In this last case, the characteristic times
of reactions in balance need to be short if compared with plasma time constant.
In LTE the radiation temperature 7,, and matter temperature 7, are different, i.e.
T, # T,, = T, = Ty, and the kinetics of both, radiation and matter, are decoupled.
The radiance temperature 7, is now different from that of the heavy particles. The
radiance temperature is the temperature of a black-body radiator that has the same
spectral radiance, according to Planck’s law.
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The density of spectral energy u (v, T,,4) is given by the Planck’s law when the
radiation field is in equilibrium, i.e. the absorption and emission are in equilibrium
for a given frequency v. In this case the system is in thermodynamic equilibrium.

8hv? 1

C3 hv
e /kB Trad

Another important issue in LTE condition is the spatial and temporal decoupling

u (U7 Trad) = (71)

(3 / 9 #0# V) of radiation and matter. The electrons receive energy from the

electromagnetic field and transfer it through collisions to heavy particles. Since the
rate of energy transfer is not very effective due to the small mass ratio m,/M, the
tendency is that each group, electrons and heavy particles, achieves in equilibrium
separately much more faster than the whole system.

To establish LTE a high density of particles is needed in order that collisional
transitions dominate over radiative transitions between all states, otherwise the
leak of thermal radiation will cause deviations from equilibrium distribution. For
radiative decay rates to induce less than 10 % of departure from LTE, the collisional
rates must be at least about ten times the radiative rates. A rule-of-thumb for
collisional transitions to be dominant may be written as (McWhirter 1965):

ne > 1.6 x 1012 (Te(eV)%(AE ) (e\/)))3 cm™3 (1.2)

T, is the electron temperature and AE is the excitation potential of the level p
from level g.

Plasmas that do not comply with LTE laws are said to be in non-equilibrium
and are also named non-LTE plasmas. Their properties can only be described
by evaluation of individual reaction processes between particles. In general, the
Boltzmann equation is solved to access the electron energy distribution function
(EEDF) coupled to rate balance equations for heavy particles to describe the kinetics
of the system.

Electron temperature is the temperature that describes, through Maxwell’s law,
the kinetic energy distribution of the free electrons. In this situation where electrons
and heavy particle kinetics are decoupled, we have a two-temperature (2-T) plasma,
and the ASDF is the result of the competition between Boltzmann and Saha
equilibrium balances.

If the electron density is high, i.e. the ionization degree is high, the electrons
determine the shape of the ASDF and the important parameter is the electron
temperature, which imposes the internal energy states of heavy particles.

If the gradient of particles in the plasma becomes significant, the transport
of charged particles along the distances may disturb a lot the local equilibrium
of charges perturbing the Saha balance. Electrons and ions leaving the volume
cannot contribute to the establishment of local balance between ionization and
recombination. However, this picture is not the same for all levels of the ASDF.



7.3 Proper and Improper Balances 291

Some of them may be in Saha equilibrium while others are not. Actually the upper
levels close to the continuum present rates of ionization and recombination that can
really justify a Saha balance.

7.3 Proper and Improper Balances

The thermodynamic equilibrium is not attained in real plasmas produced in
laboratory due to loss of radiation and/or particles from the medium. In each plasma
system the problem consists in evaluate the balances regulating the equilibrium or
the departure from it. In order to analyze the deviations from the thermodynamic
equilibrium we will present the principle of DB in the light of microscopic
reversibility (MR). This permits to characterize the nonequilibrium state due to the
rupture of balances listed above. If one or more of these balances are improper, a
nonequilibruim state is established. At microscopic level it characterizes the particle
changes from one quantum state to another. This elementary proper balance is
in equilibrium and the product of elementary concentrations is equal to that of
reactants, i.e. respecting the mass conservation. This is the basis for any statistical
law of TE and it is helpful to explain when only a part of the system is in equilibrium.
This partial equilibrium may be found in Maxwell, Boltzmann, Saha and Planck
balances and is denoted in the literature by pLM.E, pLB.E, pLS.E and pLPE
respectively. The lower index e is an indication that the balance is ruled by the
influence of electrons.

In Fig. 7.1 the interdependence between balances is shown. When the medium
losses radiation the Planck’s balance is affected. This escape of radiation perturbs
the balance of transition 1 <> 2, i.e. the Boltzmann balance, involving the ground
and the first excited state. The lack of re-absorption of resonant radiation in this
transition favors an overpopulation of the level n;. The Maxwell’s equilibrium
is also perturbed once the loss of energy for electrons with energy > Ej, is not
balanced by the inverse reaction, i.e. superelastic collisions, and the EEDF is also
affected mainly for high-energy electrons found in the tail of the distribution.

On the other hand, in the high-lying levels the energy gap is small and the energy
exchanges between electrons and the atoms in these states are small. These electrons
belong to the bulk of the EEDF and are in equilibrium among them, due to the very
effective collisions, assuring the Maxwell’s equilibrium for these electrons. In this
situation, it can be said that the equilibrium is partial local Maxwell pLM.E. As the
energy gap of top levels and energy of the bulk electrons are close one have also
pLB.E and pLS.E. In the example presented above where the levels at the bottom
of the energy term are excited by electron impact and the radiation produced by
de-excitation is lost from the medium we have the corona balance (CB).

Properties of each improper balance were presented by van der Mullen (1990)
according to Fig. 7.1. The Corona balance (CB), which is characterized by excitation
from the ground state level and destruction of excited levels by emission of radiation,
is found in plasmas with low electron density.
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Fig. 7.1 Comparison
between proper and improper
balances; Boltzmann (B), (+)
Saha (S), and Planck (P).
Improper balances are:
Corona (CB), excitation
saturation balance (ESB),
de-excitation saturation
balance (DSB) and capture
radiative cascade (CRC).
de-excitation (Dexc),
ionization/recombination
(ion/re), spontaneous
emission (Spe), stimulated
emission (Ste), absorption
(Abs), capture (Cap), cascade B S P
(Casc) (van der Mullen 1990)
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The excitation from one excited level to an adjacent higher-energy level is
found in excitation saturation balance (ESB). In the class of recombining plasmas
an improper balance is achieved by de-excitation from higher adjacent levels
(DSB) where one has the inward transport of charged particles. Another example
of recombining plasmas is the one regulated by the capture and cascade (CRC)
producing radiation due decay from the continuum of higher excited levels also
presenting the inward transport of charged particles or irradiated plasmas.

The ASDF is modified by the forces acting in the particles, by the transport of
radiation and particles, and by the time evolution of the medium. The plasmas with
a high-degree of ionization has high electron density which is the main player that
governs the kinetics of the system; this is why these plasmas are called electron
excitation kinetic plasma (EEK). As the transport of radiation and particles out of
the plasma increase, the system becomes more and more governed by improper
balances and the upper part of the energy terms are regulated by pLS.E balance
and the electrons from the bulk of the EEDF have a key role in regulating the
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kinetics. Otherwise, the energy levels of the bottom of the energy scheme present
a population distribution that is out of equilibrium and the time evolution of these
densities is much smaller than the characteristic time for plasma growth and decay.
In this case the collisional and radiative processes determine the density of each
excited level characterizing the ASDF. To obtain the ASDF a collisional-radiative
model needs to be used to obtain a quasi-steady state solution (QSSS) for this
system. The ASDF form is the net result of improper balances which are associated
with processes in microscopic and macroscopic levels.

Figure 7.2 shows a typical case of relationship between the energy levels and the
EEDF. The top and bottom levels are associated with parts of the EEDF. The bulk
electrons with lower energy are in resonance with energies involved to maintain the
pLB(E and pLS.E balances at top. The escape of radiation and the excitation of
lower levels modify the tail of the EEDF. In low electron density discharges, the
EEDF tail is depleted perturbing the pLME. The departure from Planck’s balance
perturbs the Boltzmann, Saha and Maxwell balances. In the case of tail electrons,
the perturbation in Maxwell balance of bulk electrons is weak. In this case only a
part of the EEDF assures the partial LM.E which maintains the Saha equilibrium
for levels with p > p* of the atomic energy diagram.

7.4 Microscopic Reversibility

The rate constants and cross sections for forward and reverse reactions are related
through the principle of detailed balancing expressing the time reversibility of the
equations of motion in a collision. Consider a collision process according to Fig. 7.3.

A and B particles collide, having internal energy states E;, reduced mass n and
relative velocity v, leading to particles C and D having internal energy states E;.,
reduced mass u' and relative velocity v'. The fundamental physical principle of
invariance under time reversal gives us the relationship between the forward and
backward processes;

kap
-

A+B  C+D (7.3)

<«
kcp

This relationship is called microscopic reversibility, see Chap. 2, Sect. 2.3. The
rate constants for forward and backward reactions are related by the detailed balance
principle, which presents the time reversibility of the collision processes. Supposing
the distribution function of velocities of particles under collision Maxwellian and
equating the forward and reverse rates, it can be found that (McWhirter 1965).

2 2
my g4 g5 Vz 0 (Vg) = m'y gc gp Vg 0’ (v}) (7.4)
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Fig. 7.2 Relationship between the EEDF (bulk and tail electrons) and the ASDF (bottom and top
levels) with respect to the improper balances

Fig. 7.3 Collision process A C
between particles A and B
resulting particles C and D

mpg and m}e are the reduced masses of particles A and B, and C and D respectively.
The cross section for inelastic collision A + B is o(vg) of A and B and ¢’ (V;e) for
the reverse reaction C + D; g4, g5, gc and gp are the degeneracies, or statistical
weights, of the energy levels of particles A, B, C and D respectively.

By the conservation of energy, we have (Smirnov 1981):

1
mpvi = _ m' a5+ E, (7.5)
2 2
E, is the threshold energy. Integrating the expression (7.4) in vg, assuming a
Maxwellian velocity distribution, the ratio between f K45 to K¢p can be obtained:
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K 1N\ 3/2 _Ea
AB _ (mR) 8cen /kT (7.6)
Kep mg 84 8B

relating the forward and backward reaction rates as a function of reduced masses,
degeneracies of the levels involved and the Boltzmann factor.

If the particle A is found in internal state & and B in state 8, before collision, the
equation for macroscopic balance (7.3) may be replaced with an equation where the
number of particles per quantum state is:

na (@) ng (B) = na (@) ng (B') (7.7)

na(a), np(B) are the number of particles A and B in « and B states respectively. The
Eq. (7.7) shows the elementary reactions between particles A and B. In this case the
particle that leaves a quantum state through a certain pathway equals the one that
arrives at the same quantum state via the reverse process. This is the principle of
microscopic reversibility.

7.5 Maxwell Balance

The equilibrium established due to elastic collisions between particles is called
Maxwell’s equilibrium. There is no change in the internal energy of particles and
only momentum is exchanged. The elastic collisions in Maxwell’s balance may be
represented by:

A (E)+B(Eg) & A(E) +B(E}) (7.8)

As it was presented in Chap. 3, the kinetic theory shows that when the
equilibrium is achieved the energy distribution of particles is a Maxwell distribution
given by:

2 u (7.9)
= exp (— ) .
V(T kT

where f(u) is normalized so that:

/oof(u) Vudu =1 (7.10)
0

In thermal equilibrium the system is characterized by a sole temperature 7 with
the different constituents of the gas mixture having the same common temperature
while the translational states are populated according to exp (— k”T)
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As the mass difference between electrons and heavy particles is big, the energy
transfer in these collisions is very low. Electrons receive energy from the electric
field while heavy particles receive energy through collisions with electrons and
redistribute it in collisions among them. Thus, electrons and heavy particles are
subject to different processes of energy balance and so that two populations with
different energies will arise characterizing a two-temperature plasma. Electrons
exchange more efficiently energy in collisions between electrons:

e@+eB) & e@)+e(B) (7.11)

while heavy particles distribute energy more efficiently through reactions like
(7.8). In this case the medium will be characterized by distributions with two-
temperatures, one for electrons 7, and another for heavy particles Ty. Collisions
between electrons and heavy particles present a perturbation to the medium
influencing the energy equipartition.

As plasmas have limited dimensions as in the laboratory, energy may escape from
the medium inducing the appearance of disequilibrium. 7y and 7, may be locally in
equilibrium but not in the whole system and the electrons may be characterized by
a local temperature in a local Maxwell equilibrium LM.E while heavy particles are
in LMyE.

The tail of the EEDF as shown in Fig. 7.2 is modified due to improper balances
while the bulk of the distribution is negligibly perturbed and the equilibrium is
assured due electron-electron collisions. In this case T, is kept for the bulk electrons
charactering a partial local Maxwell equilibrium for electrons pLM.E.

7.6 Boltzmann Balance

Consider the inelastic and superelastic collisions given by:

X (@) +Ai (B) + Ei & X (o) +Ar (B) (7.12)
deexcitation < — excitation

In the excitation process, the particle X with an internal energy state « collides
with the particle A; in an initial state i with internal energy state 8, and as a result it is
excited to a final state f with energy 8’. In plasmas, the particle X may be an electron,
ion, atom or molecule. The backward reaction is the de-excitation process. This type
of inelastic reaction is a characteristic of the Boltzmann balance. The translational
energy of particle X is converted into internal energy of particle A resulting in a
population distribution of energy levels given by:
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m(f) _
(i =€ (7.13)

where Ej is the energy difference between the initial state i and the final state f. In
this case the translational energy distributions of particles X and A are Maxwellian
with the same temperature. There is no change of masses during the reaction and
ionization does not occur.

The electrons receive energy from the electromagnetic field and due to their small
mass are accelerated attaining high energy. The reaction rates of electron induced
transitions are higher than those induced by the ions, atoms or molecules. Even at
low ionization degrees the electron collisions are dominant. It was shown (van der

Mullen 1990) that for ionization degrees (e / n ) higher than 10™* the collisions

with electrons are more important that those with neutrals. Thus the most important
processes for distribution or redistribution of atoms over their excited states are
those induced by collisions with electrons.

Otherwise for very low ratio g <« 1 the role of ions and atoms may appear.
In this case there are two types of Boltzmanm balances, i.e. one regulated by
electrons with temperature 7, and other ruled by heavy particles with temperature

Ty, characterizing a two-temperature Boltzmann balance.
As the ratio " / M, <« 1, the Boltzmann relation given by (7.13) is regulated by

the electron temperature 7, which imposes the electron temperature on the ASDF.
The temperature that results in a Boltzmann distribution for the population of the
energy level distribution is called excitation temperature. The excitation temperature
is the temperature that describes, through Boltzmann’s law, the relative population
distribution of atoms or molecules over their energy levels.

In a real case condition only part of the atomic energy levels is described by a
Boltzmann balance in equilibrium. De-exciting electron collisions with low-lying
levels, radiative escape and other disturbing processes may result that B, is appli-
cable only for part of the ASDF, generally for the high-levels part characterizing a
partial Local Boltzmann Equilibirum pLB.E.

7.7 Saha Balance

In a gas at high temperature, the collisions between atoms may ionize some of them
resulting in production of charges, i.e. electrons.

The Saha equation describes the degree of ionization of a plasma as a function
of the temperature, density, and ionization energies of the constituent atoms. The
Saha equation only holds for weakly ionized plasmas for which the Debye length is
large. The screening of the coulomb charge of ions and electrons by other charged
particles causes the reduction of the ionization potentials but in general, this effect
is negligible.
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In the Saha balance the process of ionization in the plasma is a forward process
and the backward one is the recombination,

s
X (@ +A4,(B)+|E| & X () +A (B) +e (7.14)
recombination <— — ionization

In the Saha equation an electron is created by the ionization process, which is
different of the Boltzmann balance where the number of particles is conserved. To
derive the Saha equation one can start from the Boltzmann distribution, considering
initially two-bound states [ and u of a given atom or ion:

Nu u _ Eu—E)
= B i (7.15)
N g

gy and g; are the statistical weights of the upper and lower levels respectively.

If the upper state is taken into the continuum in Eq. (7.15) we are dealing with
the creation of a pair electron-ion. The generalization of (7.15) can be done for
states in the continuum with energy E; and wavenumber k. Note that here k is the
wavenumber and not the Boltzmann constant!

Now the number of upper states N, needs to be replaced by dny, which is the
number of free electron-ion pairs with electrons in the wavenumber interval between
k and k +dk and g, replaced by dg, of the free electrons in this interval.

Supposing a normalized cube volume with side length L, the number of
wavenumber modes in the interval k and k 4dk in a solid angle d2 is given by:

L 3
dNio = ( ) Kdkd$ (7.16)
2

for each of the two directions of polarization of the electromagnetic waves
Substituting (7.16) in (7.15) and taking into account the considerations discussed
above to generalize (7.15) we find:

AN, Vg -
Ko V8 Rk (7.17)
N, w2g

Considering that E;, = #%k*/2m,, N, = / dNj and integrating over k we get:

o0
N, Vgi E h2k?
=8 exp ! /k2 exp | — dk (7.18)
N, g kT 2m kT
0
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which results in,

N. Vg (mekT\*? E,
= 7.19
N, rm?g (27rh2) P (kT (7.19)

An ion-free electron pair is formed after the ionization reaction. The average volume
occupied by the resulting ion-free electron pair is roughly V = 1/N;. Taking into
account that the Bohr radius ap and the ionization energy of the hydrogen atom Ey
are given by (Demtroeder 2010):

eoh® e

: - 7.20
el " 8e2h? (7.:20)

ap =

o is the free space permittivity, £ is the Planck’s constant, and p is the reduced
ion-free electron mass. Substituting (7.20) into (7.19) we obtain the Saha equation:

NN 2g ( kT \*? E; 721)
= eX — .
Nl glag 47TEH P kT

The Eq. (7.21) was proposed by Saha in 1921 (Griem 2005) to explain the spectra
measured from stars and so to determine their temperature. In LTE the partition
function of an atom or ion may be written as:

E,
Z(T) = n - 7.22
M= ¢ exp( kT) (1.22)
Substituting (7.22) into (7.21) the Saha equation may also be written as:
N.N;  2Z(T) ( kT \*? E
= ( )3 exp(— (7.23)
N Z(T)ay \4wEy kT

where Z;(T) is the ion partition function and E is the ionization potential of the
atom. This Saha equation is useful to relate the densities of electrons, ions and
neutrals in LTE plasmas. Departures from LTE should be taken with care in low-
density plasmas as it will be discussed later on.

The Saha balance is valid when the electron density is high enough to assure a
collisional ionization rate larger than the radiative rates. When an atom is immersed
in a high density plasma a reduction of the ionization potential occurs due to
the presence of the surrounding charges. This effect limits the number of terms
occurring in a partition. The reduction in the ionization density may be then
calculated supposing an isolated atom or ion with a charge Z—1 (Griem 2005).
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The reduction of the ionization potential AE is given by:

762

AEy =
o 47t€ol[)

(7.24)

. . . eokT 1/2
Ap is the Debye length presented in Chap. 1 and is equal to Ap = ( 0% Te ezno)

or Ap (cm) = 743 \/ Te(eV) / n (cm™3) . The Saha equation with the ionization

correction becomes:

N.N;  2Z(T) ( kT )3/2 ( EOO—AEOO)
= exp| —

- 7.25
N Z(T)a} \4nEy kT (7:25)

The competition between electrons and heavy particles regulate the estab-
lishment of Saha equilibrium, where ionization and recombination compensate
each other, leading to the appearance of a two-temperature plasma, i.e. with
one temperature for electrons and other for heavy particles. As the electrons are
dominant in the Saha balance the temperature to be considered in the Saha Eq. (7.25)
is the electron temperature.

In plasmas actually the difference between temperatures of atoms and ions is
small because the masses are practically the same which makes the energy exchange
very effective. Moreover, in the presence of Saha equilibrium the fast exchange of
atoms into ions and vice-versa tends to equalize the ion and atom temperatures.
The rate of ionization collisions increases strongly for levels near the continuum
preserving the Saha balance.

The same cannot be said to low-lying levels where recombination is impaired.
This situation characterizes a local Saha equilibrium mediated by electrons in a part
of the ASDF which is named partial local electron ruled Saha equilibrium pLSE.

A parameter normally used to characterize the ASDF is b which relates
the density of a given p level to its value as if the system was in Saha
equilibrium;

n(p)
n*(p)

This expression is important to quantify the departure of the level density from the
Saha equilibrium.

b(p) = (7.26)

7.8 Planck’s Balance

While Maxwell, Boltzmann and Saha balances deal with interactions between
particles, the Planck’s balance regulates matter-radiation interaction which may be
represented by:
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A, A+ h (7.27)

absorption <— — spontaneous emission

A, +hv — A+ 2hv (7.28)
— stimulated emission

The first approach to describe this equilibrium is the use of Boltzmann relation
(7.13); n, = n(u)/n(l) = exp(—hv/kT) which is only correct for high values of
hv/kT. n, is the number of photons at frequency v. The Wien’s approximation, also
called Wien’s law, is used to describe the spectrum of thermal radiation or blackbody
radiation. This law was first derived by Wilhelm Wien in 1896. The equation does
accurately describe the intensity of the emitted radiation in the short wavelength
range, i.e. at the high frequency limit, of the spectrum of thermal emission from
objects, but it fails to accurately fit the experimental data for long wavelengths or
low frequency emission.

Wien derived his law from thermodynamic concepts. The Wien’s law may be
written as:

2hv3 hv
I(v, T) = 2 exp T (7.29)
where I(v, T) is the amount of energy emitted per unit surface area, time, solid angle,
and frequency unities, at frequency v, being T the temperature of the blackbody. The
peak value of this curve, as determined by taking the derivative and solving for zero,
occurs at frequency v, = 5.88 x 101°T(K).

As the Wien approximation failed to describe the whole spectrum of thermal
radiation at long wavelengths, Planck proposed a law based on quantum mechanics
to describe completely the radiation spectrum as a function of frequency and
temperature of the emitting body:

hv3 1

h
2 el —1

(v, T) = 2 (7.30)

c

The Wien approximation may be derived from Planck’s law by assuming hv >
kT. In this case;

1 .
~ ek (7.31)

ez; —1

and Planck’s law approximately equals the Wien approximation at high frequencies.
In plasmas created in laboratory the dimensions of the vessel are limited and
consequently the radiation may escape from the medium causing the departure from
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equilibrium. This radiation leaks without giving rise to absorption or stimulated
emission so that it is an important source of disequilibrium. Another important
aspect is that the radiation created in one part of the plasma may be absorbed in
another region so that the radiation transfer cannot be treated as a local event. To do
a proper treatment of this non-local phenomenon we need to introduce the concept
of escape factor in order to handle it locally.

A spontaneously emitted photon may be reabsorbed; an atom initially in the
lower state is put into an upper state, reducing the apparent decay rate of this level.
The escape factor is defined as the ratio of the effective radiative decay rate to the
radiative decay rate of a spontaneously emitted photon by an isolated atom (Drawin
and Emard 1973):

Agp = N Ay (7.32)

Ay is the effective emission rate, A, the spontaneous emission rate from the
upper to the lower level and A is the escape factor. If A = 1 the plasma is optically
thin for the transition # — [ and all radiation produced in this transition escapes
from the medium. On the contrary if A = 0 all radiation produced is re-absorbed
inside the medium and the Planck balance is established. If A < 0 absorption
exceeds the total emission and if A > 1 stimulated emission is dominant.

If the plasma is homogeneous, in any real situation, the equivalent linewidth
needs to be evaluated. Another important issue are the lineshape and the geometry
of the reactor.

In a simple approach the escape factor A;; for a transition (i — j) may be written
as:

Ay = e oM (7.33)

where o; is the photon absorption cross section for the transition (i — j), n is the
density of the absorber and / is the characteristic length of the medium.
The absorption cross section o;; may be calculated by (Drawin and Emard 1973):

1 Jme? 1 \/M N
= - 7.34
%= e vV T V2R (7.34)

N is the Avogrado number and R is the ideal gas constant. Introducing the constants
values, we have:

. MO\ 2
t=oynl =513 x 1077 x f x A (A) X (T(K)) xn (cm™?) x I (cm)
(1.35)

When the medium is optically thin the photons escape from the plasma inducing
a non-thermal equilibrium condition. As explained before the escape of radiation
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emitted by transitions involving the lower levels modifies the equilibrium once the
excitation is not compensated by the re-absorption of radiation inside the plasma,
which in turn modifies the tail of the EEDF. The population density of upper levels is
then governed by the radiation field. This imposes a partial local Planck equilibrium
pLPE since it only applies to a part of the ASDF.

It was discussed in this chapter the conditions that takes the thermodynamically
equilibrium away. It was presented the Maxwell, Boltzmann, Saha and Plank
balances and showed the different steps for departure from TE. The balances are
close coupled and the departure from equilibrium of one balance affects the others.

Particles are responsible for the establishment of Maxwell, Boltzmann and Saha
equilibrium and in discharge plasmas the most important particle to describe these
equilibria are the electrons. Planck’s balance is ruled by radiation escape from the
medium, which of course affects the other balances regulated by material particles.

Exercises

Exercise 7.1. Injection of neutral beam of atoms is a technique employed to heat a
plasma and initiate a sustainable nuclear reaction. A technique usually employed
consists in accelerating a beam of charge particles and after neutralize them.
Suppose that a monoenergetic beam of protons with 10 keV passes through a gas
cell of 50 cm long containing hydrogen at 0.1 Pa at 300 K. What fraction of protons
are neutralized after passing through the cell? It is given the reaction coefficient for
collisions between the protons and the hydrogen atoms ov = 1 x 10~ #m3s~".
Resolution: The number of protons at a distance x in a slab inside the cell may be
written as:

dny = —n;(x) np o dx, where n; is the proton density and 7, is the density of
neutral hydrogen atoms. After integration we have:

n1(x) = n1(0) exp (—np0x). Discarding charge exchange reactions, the fraction
that becomes neutralized is:

n1(0) —ni(x) _ 1 — exp (—n0x)

n1(0)
The proton velocity is v = (3;;7)1/2 = 1.7 x 10% m/s. The cross section for proton-
atom collision is 7" = 1??;;;‘“;;? = 5.88 x 1072m?. The density of hydrogen
atoms in the cellisny, = 2. = 0.1 Pa = 2.42 x 10"”m™3. The fraction of

KT~ 1.38x10™23x300 K
neutralized protons is 1 — exp (—2.42 x 10" x 5.88 x 1072 x 0.5) = 0.51.

Exercise 7.2. Calculate the ionization degree of a hydrogen plasma in Local

Thermodynamic equilibrium at a temperature of 1 eV and pressure of 100 Pa.

s, : : N 100 Pa _
Resolution: The total density of particlesis n, = . = 138x10-BX11,600 K — 6.25 %
102073
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The Saha Eq. (7.21) may be used considering g; = g,

Nen; 2 kT 3/2 EH
= exp | — ;
ne ) \4nEpy P\ kr

n? 2 1 3/26 13.6
= X J—
M (0.56 x 10710)° \ 4 x 13.6 P

Considering that the plasma is macroscopically neutral, i.e. n, = n;,
2
" =6.32x 10" m™3; butn, = n, +n;son? = 6.32x 10°" (6.25 x 10*° —ny),

n? +6.32 x 10*'n; — 3.95 x 10% = 0; thus n; = 5.75 x 10*m~3

. . . 20 .
The ionization degree is /' = 5.75x10° " = 10.92, so that 92 % of particles are

6.25%10%°
ionized.
Exercise 7.3. A system is in thermodynamic equilibrium with a temperature T. Find
the average number of photons 7z in a given state with energy hv.
Resolution: The number of photons in a given state is given by

Z nexp (_hvn / kT)‘ Thus the average number of photons in one state with
energy hv is:

(M)
X el ) T o)

Exercise 7.4. Consider a hydrogen plasma in LTE with a temperature of 12,000 K
and electron density of 10'*cm™. Calculate the principal quantum number from
which the LTE may be assumed. If the electron density is 10'°%cm™ which is the
level with the same temperature? If the temperature is lowered to 6,000 K with
n, = 102cm™ which is the new minimum quantum number to assure LTE?
Resolution: Using Eq. (7.2);

which is the Planck’s distribution.

ne > 1.6 x 1012 (Te(eV)%(AE ) (eV)))3 cm™3

we can obtain:

1/3
ne

AE < 1
1.6 x 1012(Te(eV)2

Forn, = 10"ecm™ and 7, = 12,000 K = 1.03 eV, AE < 3.95 eV.
The energy of a given level of the hydrogen atom is:

—13.6

E V) = 2
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Fig. 7.4 Energy levels of Ar and Art

So, the energy differences between adjacent levels are:

n |E |AE)|
1 |—13.6 |0

2 | =34 10.2
3 | —1.51 | 1.89
4 | —0.85 | 0.66
5 | —0.54 |0.31
6 | —0.38 |0.16

So the minimum quantum number from which the level for the establishment of
LTE may be assumed as n = 3.

For n, = 10°cm™2 and 7, = 12,000 K = 1.03 eV, AE < 0.395 eV. In this
case the minimum quantum number to assure LTE is n = 5.

and forn, = 10”?cm™3 and 7, = 6,000 K = 0.58 eV, AE < 0.954 eV. In this
case the minimum quantum number to assure LTE is n = 4.
Exercises 7.5-7.9. We are interested in the study of an argon plasma at atmospheric
pressure. This plasma is created by an electrical discharge in a tube with i.d. 4 mm
with an electronic density n, = 2.1 x 107cm™. The goal is to determine the
electron temperature using the ratio between two emission lines; the first is the line
from the neutral excited argon atom, transition 3s23p54s (3P1) — 3s23p6 (lSo),

A = 1,066.66 1& and the second line from the single ionized argon ion, transition
3523p*4s (2P1/2) — 3s23p° (2P3/2), A = 723.36 A. The energy levels of Ar and
Ar™ are shown in the Fig. 7.4.
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The oscillator strengths are 0.061 and 0.18 for lines 1, 066.66 /g and 723.36 z&,
respectively. In this case, we suppose that the plasma is homogeneous, stationary, in
LTE and optically thin for the two lines considered.

Exercise 7.5. Considering the intensities of emitted lines for two systems with
different charges and the expressions for Boltzmann and Saha distributions, find the

ratio between the intensities for lines with wavelengths 1, 066.66 /g and 723.36 z&
Consider that the reduction of the ionization potential of Ar is negligible.
Resolution: The intensity of an emitted line by the Ar™ ion may be written as:

Lim (A}’+) =C NnAnmhvnm

C is a constant that relies on the calibration of the optical system, &, is the density
of the upper level of the transition, A,,, is the transition probability for spontaneous
emission (n — m), h is the Planck’s constant and v,,, the frequency of the photon
emitted during transition n — m.

The transition probability is given by:

2,2
8me vy,

Anm — em
mc3 nm

Substituting in the expression for 1,,,(Ar™) we obtain, taking into account that £ =
g”f,f,’:f and the Boltzmann distribution:

z+1 1 z+1 z+1 Eetl _ gt
+\ 8n abs n7z+1 __ 8n abs n1z+18m _ 1
Inm (A}’ ) =K A;Lm gfn+lf;1m Nm =K Azm gfn+lf;1m Nl gzl_H exXp kTe
Z+1 Fetl _ prtl
L (A}’+) =K 3 Z+1f;z1blsNz+l exp — m 1
A kT,

For the emitted line of Ar (I — j) we have:

Ilj(AV) = f“b3

; mkT,
In this case the lower state of transition j = 1

) . ) 1 . +1 2\ —3/2 E“T_H—E“T
Substituting the Saha expression (" n;" =2 g’g; (27”’ ) exp — ( ! e
J

Ij(Ar) =

4 3/2 +1 4
abs N =K 1 gl abs z+l gi 27rh2 / EIZ _Ei
/\3 f f

j N =K N 2§+1 mkT,

Ef“ — Ej is the ionization energy of argon because E =
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Now we can calculate the line ratio:

L (ArF) _ A it g (22 Et BT - B
= eXp —
IjAr) T, g fy \mkT. b T,

e

Exercise 7.6. Determine, taking into account the data given in the figure for the
energy levels of Ar and Ar™, the electron temperature knowing that the measured

ratio between the lines is /ar* L, = 4.72 x 10,
Resolution: The statistical weights (2J+ 1) of levels g, g, g and g; are 2, 4, 3

and 1 respectively. Knowing that 1 eV = 8065.73 cm™!, the electron temperature
may be found by the expression determined in the exercise 7.5:

—3/2
; 1,066.66\°2 0.18 [ 6.28 x (1.054 x 10727’
4.72x10° =2
72336 ) 3 0.061\9.11 1072 x 1.38 10727,
1 17.14 4+ 15.75 - 11.62
17 exp—
2.110 kT,

To satisfy this relation the electronic temperature should be 7, = 4.6 eV.

Exercise 7.7. Using the electron temperature found in the preceding exercise and
knowing that the electron density is n, = 2 x 107cm™3, calculate the number
densities of Ar and Ar™. Assume the plasma composed by only these two species.
Resolution: Since n, = nt = 2 x 10"cm™ from Saha equation we have:

nen; 2gi kT )2 Ej;
= exp| — ;
no gzag 4dnEy p kT

n} 2 4 46\ 15.75
- 3 exp | —
no (0.56 x 10710)7 1\ 47 x 15.75 4.6

2

I =6.0110"cm™ ny = 7.34 10%cm ™
ng

n

Exercise 7.8. The initial hypothesis of a plasma in LTE is justified for the above Ar
transition?
Resolution: Using Eq. (7.2);

ne> 1.6x 1012(Te(eV)%(AE (.q) (eV))® em™
AsT,=4.6 eV,

ne > 3.43 x 10%(AE (p.q) (eV))’ cm™3
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For the Ar transition AE (p,q) = 11.62 eV
Ne (2 X 1017cm_3) > 5.38 x 10° ¢cm?

Exercise 7.9. Is this plasma optically thin for the above Ar transition?
Resolution: Using the escape factor formula given by Eq. (7.35);

—15 A M \'"? -3
t=5.13x%x10 xfxx\(A)x(T(K)) xn(cm )xl(cm)

1/2
=5.13107" x 0.061 x 40 /><734><1012><o4—25110—5
T ' 4.6 x 11,600 ’ T
A=e"~1

The escape factor is ~100 % so the medium is optically thin for this transition.
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Chapter 8
Emission Spectroscopy

Plasmas, hot or cold, are sources of radiation. The plasmas being created from
low-pressure to atmospheric pressure, in thermodynamic equilibrium or not, emit in
a broad region of the electromagnetic spectra, from vacuum ultraviolet to infrared.
The emission spectroscopy employed in the analysis of the emitted radiation is
a non-intrusive technique with good spatial and temporal resolutions. Emission
spectroscopy may be also helpful to determine some plasma parameters as gas
temperature, vibrational temperature and fractional composition of the medium
for example. With a good optical arrangement, local measurements can be done
for these parameters with fast photo-detectors like photomultipliers tubes. Spec-
troscopic measurements of plasma parameters and species concentrations can be
done in real-time, with resolution of some nanoseconds, which allows to follow
their evolutions. These properties make the emission spectroscopy a powerful tool
to probe, for example, surface treatments by plasma. Another good example of
using emission spectroscopy in industry is the end-point detection of some etching
reactors, used in microelectronic, helping us in the stop of the etching process.

The aim of this chapter is to show the possibilities of optical emission spec-
troscopy, their limitations and interpretation of spectra. We begin with notions of
line radiation and some reminders of atomic and molecular physics without being
exhaustive about the subject. Readers interested in a deeper treatment should search
more specialized textbooks (Demtroder 2010; Herzberg 1950). In the subsequent
sections, we present notions of spontaneous, absorption and stimulated emissions
and a brief discussion of molecular bands. Applications of optical emission
spectroscopy, to infer some plasma parameters, such as actinometry, titration, gas
and vibrational temperature measurements and electronic density measurement by
line broadening are presented.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI
10.1007/ 978-3-319-09253-9_12
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310 8 Emission Spectroscopy
8.1 Line Radiation

As said before in the introduction of this chapter, the radiation plays a key role in
plasma diagnostics and its classification is of fundamental importance in order to
may be used as a plasma diagnostic tool. From quantum mechanics the radiation
due to transitions between different energy levels of a quantum system is given by
E; — E; = ho. If radiation is being emitted after transition between two discrete
levels Ef < E; it is classified as emission. Otherwise, if absorption of a quantum is
taking place Er > E;, see Fig. 8.1, we are talking about absorption. In this case a
transition is characterized by a change of dipole momentum.

As a phenomenon that occurs between two discrete energy levels, neither
emission nor absorption of photons can take place between two free electrons; one
of them needs to be bound to an atomic or molecular structure.

It is important to classify the radiation involved in electron transitions according
to the nature of the free-electron and the energy of bounded system. Electrons in the
electric field of an ions, as well as the transitions between energy levels of a neutral
atom, are shown in Fig. 8.2. When both states Er and E; belong to the continuum,
the transition is said to be free-free. Then, part of the electron kinetic energy is lost
to the field created by the positive ion or during the interaction with neutrals. In this
case the emitted radiation is in the infrared region and it is called of a continuum
bremsstrahlung.

Transitions that occur when the initial state of the electron is in the continuum of
energy and the final state is a bound-state, of an atom, for example, is called bound-
free. This kind of process occurs during an electron recombination or a dielectronic
transition and the radiation so emitted is in the continuum range. Electron-neutral
collisions belong also to this kind of transitions.

Bound-bound transitions are related to discrete energy levels and they result
in emission or absorption of radiation from ultraviolet to infrared region of the
electromagnetic spectrum.

From the optical emission spectrum it is possible to analyze the line profiles
and to have access to plasma parameters that contribute to the line broadening.

a Ey

Absorption can occur
only when

Ey AFE = hv = FEs — Fy

Ep!luton = hv

b

Downward transition

for emission of a photon
energy of

b‘pllut,ull = hv = Ey — Ey

Fig. 8.1 Radiative transition between two energy levels
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Fig. 8.2 Energy levels and A E
energy of free-free,

free-bound and bound-bound
transitions ' I free - free

bound - free

bound - bound

Many works have been published since the beginning of the twentieth century to
understand the mechanisms that broaden, for example, the lines of Balmer series of
hydrogen.

A spectral line extends over a range of frequencies, not with a single frequency,
having nonzero linewidth. In this chapter we will study the main reasons that affect
the broadening of a given line, making the central frequency may be shifted from
its nominal wavelength. There are several reasons for such broadening and shift.
The reasons may be divided into two broad categories; broadening due to local
conditions and broadening due to extended conditions (non-local effects). Here we
will discuss only broadening due to local effects once they are the most important
in low-temperature plasmas.

Broadening due to local conditions results from effects that hold in a small region
around the emitting element, usually small enough to assure local thermodynamic
equilibrium. Broadening due to extended conditions may result from changes in
the spectral distribution of the radiation as it traverses its path to the observer. The
broadening due to local effects may be natural, Doppler and by pressure effects
(Stark, van der Waals and Resonance).

8.1.1 Natural Broadening

Natural broadening has its origin on the uncertainty principle due to the finite
lifetime of an excited state linked with the uncertainty of its energy. A short lifetime
will have a large energy uncertainty and a broad emission. This broadening effect
results in a non-shifted Lorentzian profile. In a first approach, a damped harmonic
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oscillator can classically describe it. This damping is weak and may be represented
by a constant y, in the equation bellow;

x(t) = x0e(™2) cos wr (8.1)

where w = wy; here w is the angular frequency at line center. Then according to the
classical electromagnetic theory a vibrating electric charge is continually damped
by energy radiation. The energy of the oscillator expressed by Eq. (8.1) is given by
(White 1934);

E = Eye™"" (8.2)
where,
872e??
Y= 3mes ' 8-3)

Equation (8.3) e is the electron charge and m its mass. The intensity of the radiated
energy may be represented by the following Lorentzian profile (Fig. 8.3):

y 1

I(V) = o 47T2(V0 _ \))2 + ()//2)2

(8.4)

From Eq. (8.4) it can be seen that the half of the maximum intensity 7,,,,(v)/2, is
achieved when I (v) = Ly, (v) /2 = 1 /7y, then:

472(o — ) + (/22 = y%/2 > Av, =2(vo—v) = y/2n (8.5)

The line profile of natural broadening, which is a Lorentzian, has full-width-at-half-
maximum (FWHM) given by:

2 4 2 o
A=Yy = = 1161074 (8.6)

on 3mc
which is negligible.
Fig. 8.3 Line profile of I(v) A
natural broadening

Iy
Ig/? AVN

T"

SRR
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In a general way the natural broadening may be calculated by:

h
AEAt = (8.7)
41
or
A ! (8.8)
Vg = .
4ty

where t; is the mean lifetime of the transition s to i, and is inversely proportional to
Einstein’s coefficient A;. The FWHM of the natural broadening may be written as:

2
Aknaruml = 4A7_;ZC (Zn<xAm + Zm<iAim) (89)

A is the wavelength of transition s to i, and n and m are lower energy levels in
transitions from s and i, respectively.

8.1.2 Doppler Broadening

The thermal motion of atoms (or molecules) causes Doppler broadening of the
line emitted (or absorbed) by an atom (or molecule). As they have a distribution
of velocities, each photon emitted will be “red”- or “blue”-shifted by this effect
depending on the velocity of the atom relatively to the observer. Supposing that
u is the atom velocity and 6 the angle between u and the observer direction, the
frequency of the emitted radiation is shifted by (White 1934):

Av _u cos 6 (8.10)

Vo C

where vy is the line center frequency when u = 0, v = vy = Av the observed
frequency and c the velocity of light. Since the spectral line is a combination of
all the emitted radiation effects, as higher the temperature of the gas is, broader
the spectral line emitted from that gas will be. This Doppler broadening effect
is described by a Gaussian profile and there is no associated shift. The intensity
I(v) of the emitted radiation as a function of frequency, considering a Maxwellian
distribution function of velocities, is given by:

I (v) =1 exp [— b v— v0)2:| (8.11)

where M is the atomic mass of the emitter, R is the universal constant of gases and
T is the temperature.
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Fig. 8.4 Gaussian line 1(v) A
profile due to Doppler I
broadening 0
A
Ip/2 <
vy U %

Figure 8.4 shows a typical lineshape of a Doppler broadened line. In this figure,
v and v, the frequencies for Ip/2 and Av = v,—v; is the FWHM which, from
Eq. (8.11) is given by:

vo [2RT _ T
Avp=vy—v =2 " \/ 4y n2=71710 71)0\/M (8.12)

c

which can be written as;

T(K)

M ()

Adp =7.1710772, \/ (8.13)

8.1.3 Pressure Broadening

The nearby particles may affect the radiation emitted by an atom. Two limiting cases
regulate how the interactions occur:

1. Impact pressure broadening or collisional broadening: The collision of neighbor
particles with the emitting atom interrupt the emission process, and by shortening
the characteristic times for the process, they increase the uncertainty in the energy
emitted. The duration of a collision in the impact pressure broadening theory
needs to be much shorter than the lifetime of the emitting process. This effect
depends on both the density and the temperature of the gas. The broadening
effect is described by a Lorentzian profile and there may be an associated shift.

2. Quasi-static pressure broadening: The presence of other particles, like quasi-
static ions around the emitter, shifts the energy levels of the radiating particle,
resulting in the change of frequency of the emitted radiation. The duration of the
collision is much longer than the lifetime of the emission process. This effect
depends on the density of the gas, but is rather insensitive to temperature. The
form of the line profile is determined by the functional form of the perturbing
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Fig. 8.5 Long-range upper level
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force with respect to distance from the perturbing particle. There may also be
a shift in the line center. A stable distribution is a general expression for the
lineshape resulting from quasi-static pressure broadening.

In the present introductory text, we will describe the main broadening mecha-
nisms using impact pressure broadening or collisional broadening theory because
it is simple and help us to depict the physics involved in the line broadening by
collisions.

8.1.3.1 Impact Broadening

Consider a system formed by a perturber atom and another excited atom as it can be
seen in Fig. 8.5, where r is the interatomic distance.

Considering that a perturbation of a given energy level (AE) of an emitting
particle is caused by another pertuber particle in its neighborhood at a given distance
1, then we may write (Kuhn 1969):

AE = hAv ~ 7" (8.14)

The perturbation induced by this collision changes the frequency of the emitted
photon according to:

Av = Cpr™" (8.15)

here C,, is a constant due to the integrations of Eq. (8.14).

These kind of collisions are classified as long-range due to the Coulombian
interaction. The shortest distance between the collider and the perturber is referred
as impact parameter p, see Fig. 8.6.
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Figure 8.6 depicts the collision between the perturber and the emitter atom. The
change in the phase of the photon frequency during collision is a function of the
parameter p, and the velocity u.

For small variation in the potential energy of the system, during the collision, it
can be considered that the perturber atom is in a linear and uniform movement. This
approximation is known as classical approximation path. A collision occurs when a
phase change ¢ is verified. This phase shift may be calculated by:

+o00
/ Awy(t)dt = ¢ (8.16)

—0o0

substituting Eqs. (8.14) and (8.15) into (8.16) gives:

+o00
e =27 / Cor " (t)dt (8.17)
00

From Fig. 8.6 it can be seen that u?> + p> = r? and the Eq. (8.17) may be written as:

+o0 1
e= ZJr/ Cy (8.18)
oo U2+ p2 = 12]"?

. Foo 1 2 Cpay
Knowing that: 27 C, = 1 then;
—oo  [uP + p? =r?]" up"
2nCyan
g= (8.19)
up—
The impact parameter may be expressed by:
2 Cn N 1/("—1)
o= ( s ) (8.20)
ue
where (Kuhn 1969):
'n-1)/2 4 3
a4 = S W=D/, T n=2.3.46... (821

Tlmy/2 7723 8

From Eq. (8.20) it can be seen that when the phase shift decreases, the impact
parameter increases. The condition for the highest value of the impact parameter, i.e.
lowest phase change, defines the Weisskopf’s radius pg, or optical collision radius
(Griem 1997);

27 Cyay, 1/(n=1)
P0=( B ) (8.22)
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The mean free path A of a particle before the collision takes place is defined by :

1
A= (8.23)
oN,

N, is the density of perturbing particles and o is the collision cross section. Taking
into account that the Weisskopf’s radius defines, when a collision takes place, and
knowing that a classical transversal cross section is defined by o = 71,0%, the mean
frequency between collisions may be given by:

1
Veol = = 7piNpu (8.24)
Teol

The impact broadening theory supposes that the collisions are adiabatic, i.e. the
energy perturbations are only due to collisional processes. Applying the uncertainty
principle:

h
AET., = (8.25)
47
Ay =t oy (8.26)
V= = .
4~ 4PomP!

Substituting Eq. (8.22) into (8.26) it results:

(8.27)

27 Coan \ 7"V
u

1
Av= N
Vv 4 pu(

8kpT
T Kred
constant and [, is the reduced mass the Eq. (8.27) may be written as:

1/2
as the mean particle velocity is given by ( ) , where kg is the Boltzmann

1
AL = NpA’(2rCphan)* <"—”( (8.28)
C

SkBT (n—3)/2(n—1)
4

T Ured

From the Eq. (8.28) the FWHM due to collisions may be calculated by the impact
theory. Pressure broadening may also be classified by the nature of the perturbing
force as follows:

— Van der Waals broadening occurs when the emitting particle is being perturbed
by van der Waals forces. For the quasi-static case, the line profile is given by a
van der Waals profile when colliders are of different types. The energy shift as
a function of distance may be estimated taking into account the Lennard-Jones
potential as it will be shown.
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— Resonance broadening occurs when the perturbing particle is of the same type
as the emitting particle, which introduces the possibility of an energy exchange
process.

— Linear Stark broadening occurs via the linear Stark effect which results from the
interaction of an emitter with an electric field, which causes a shift in energy
linear with the field strength.

A quadratic Stark broadening occurs via the quadratic Stark effect which results
from the interaction of an emitter with an electric field causing a shift in energy
quadratic with the field strength. This case will not be discussed in the present book.

8.1.3.2 Van der Waals Broadening

The Van der Waals forces are well represented by Lennard-Jones potential which is
proportional to ¥~°, n = 6 in Eq. (8.28), resulting in:

1 8ksT \ '
Akwaals‘ = Nsz(zn C6a6)2/5 ( b ) (829)
4c T Ured
In this equation Cg, is given by (Griem 1997):
Co = PaR? (8.30)

« is the mean polarizability of the atom and Rf the difference between the squares
of the coordinates:

2 3
o= 9( méo ) (8.31)

2\ wm,e?

Jj =, upper level
+1-3(,+ 1)} ; (8.32)

R2 1 EH |:5 ZzEH
Jj =1, lower level

ST 2Ee —E | Eeo — E

h is the Planck constant, e the electron charge, m, the electron mass, Ey is the
ionization potential of hydrogen atom, E,, ionization energy of the emitter, /; the
orbital quantum number, and z the effective charge.

Combining Egs. (8.30), (8.31) and (8.32) and considering that ag¢ = 37/8, after
Eq. (8.21):

2/5
1 27wed [ 2 3 8knT \ /10
Adaass = . Npa2[ 27777 ( 502) R ( 8 ) (8.33)
4c 16 \ wmee T red
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Using the perfect gas law the Eq. (8.33) may be written as:

2/5
1 27h%ey>R? 8kaT.\ /10 p

Ahpuass = A2 0% Blg S (8.34)
4¢c '\ 8mm,3et T kT “—p h,0q>/10

Xp is the percentage of perturbing particles in the medium, Ay; is the wavelength of
the transition from s (upper level) to i (lower level).

8.1.3.3 Resonance Broadening

In a resonance transition the potential where the emitting particle is immersed is
proportional do 3 (Kuhn 1969), n = 3. So, the broadening of an emitted line is
according to Eq. (8.28) given by:

1
Adyes = A NpA? 27 Csas3) (8.35)
C

In this case Cj3 is (Griem 1997):

2
=l & (8.36)
32713£0me/1ﬁ 8i

A is the transition wavelength between the initial i and final state f with statistical
weights g; and gr respectively and f; is the oscillator strength of the transition.
Substituting the Eq. (8.36) into (8.35) we obtain the FWHM width for a line
broadening due to resonance collisions, which is Lorentzian:

2¢.
A, = o, A \/ &f (8.37)

1672eqm,c f gi

ny is the perturber particles density in the fundamental state.

8.1.3.4 Stark Broadening

The first and more complete study about Stark broadening was realized by Griem
(1964) in a systematic way, initially for hydrogen atoms. It was employed a
classical theory for Stark broadening, by considering the microfields generated by
charges around the emitter. In these first study the contributions of many collisions
of a statistical ensemble of quasi-independent charged particles resulting in the
broadening of the Balmer lines were taken into account. A general expression used
in the literature is given by Griem (1964):

A (nm) = 2.5 107" @y (n,, T,)n2? (8.38)
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the parameter o¢(n,, T.) is found in the Griem’s book for each chemical element
(not only hydrogen) for each transition i to f as a function of electron temperature
T, (K) and density n, (cm™).

A more complete study was recently realized by Gigosos and Cardenoso (Gig-
Card model) (Gigosos and Cardenoso 1996) in which the Schrodinger equation was
solved for the system atom-emitter, electrons and ions, with the ion dynamic taken
into account. The authors give tables as a function of electron temperature (until
107 K), density (from 10'* cm™ to 10'"®cm™3) and the ratio between the masses of
emitter and perturber.

8.2 Spontaneous, Induced Emission and Absorption

An atom in an initial state |i) with an eigenvalue E; may absorb photons of energy
hv from the electromagnetic field of intensity /(v), as a function of frequency v, and
brought to an upper state |u#) with a rate W;,, (s_l):

W (') = Biud (v) (8.39)

here B, is the Einstein coefficient for absorption. I(v) is proportional to number of
the photons and Av is the photon energy, being I (v) = n (v) hv. The absorption of
n photons depletes the radiation field by nhv.

Another process occurs when the radiation field induce transitions, from the
upper state |u) to a lower state |{) leading to the emission of a photon with energy
AE = hv = E, — E;. This mechanism increases the photon number and both the
initial and final photon emitted have the same direction. The rate of the induced
emission of photons is:

WS (s71) = Bud (v) (8.40)
B, ; is the Einstein coefficient for induced emission.

Another kind of emission, called fluorescence, occurs spontaneously without the
need of an external electric field. The emitted photon can take any arbitrary direction
in any mode of the radiation field. The spontaneous probability of emission per
second is given by:

W (s71) = Aug (8.41)
A, is the Einstein coefficient for spontaneous emission. It depends only of states
|u) and |i) and is independent of the radiation field. Figure 8.7 depicts the processes
of absorption, induced emission and spontaneous emission of radiation.

Supposing a system of two-levels in stationary conditions, the absorption rate
will equal the induced and spontaneous emissions. If the density of particles
populating the upper state |u) is NV, and of the lower state |i) is N;:
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Fig. 8.7 Absorption, induced ~ J
emission and spontaneous U
emission of radiation in a h v
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1

Bi,ul (U)Ni = (Bu,il (U) —+ Au,i) Nu (842)
The relationship between N; and N,, at thermal equilibrium is:

Nu i _fuTkEi
= 8" (8.43)

Substituting (8.43) in (8.42) it results for I(v):

Au,i/Bu,i
(gl/gu) (Bi,u/BM,i) ehv/kT — 1

From Planck’s radiation law the energy density of a given thermal radiation field is:

I(v) = (8.44)

8hv3 1

10 =""3 (8.45)

Inserting (8.45) into (8.44) and using microreversibility:

Bui= " B, (8.46)
8u
8hv3
A= Bui (8:47)
' C

The selection rules regulate the possible transitions in atomic and molecular
systems. In these transitions energy and angular momentum need to be conserved
according to the symmetry of the system. A transition occurs between an excited
state |u) to a lower state |i) if the dipole moment of the transition is not zero:

Dyi=e / VT Y £ 0 (8.48)

D, ; is transition dipole moment, 1/fZ is the complex conjugate of the wave function
of the state |u), v, is the wave function of the lower state |i), and 7 is the
characteristic distance of the transition, between the states involved in the transition.
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A deeper discussion about the transition dipole moment is out of the scope of the
present book. Readers more interested should search in a more specialized book
(Herzberg 1950). For our purpose, i.e. to use in emission spectroscopy to diagnose
plasmas, the notations of the principal quantum number, angular moment and the
selection rules will be presented.

The excited atomic levels are determined by the solution of the Schrodinger
equation where the eigenfunctions are the wavefunctions and the eigenvalues are
the energies of the levels. These wavefunctions are characterized by three quantum
numbers; the principal quantum number n, the quantum number related to the orbital
angular moment /, the magnetic quantum number m and the spin of electrons s. The
range of possible / numbersare/ =0, 1, 2,...(n— 1), form = —/ < m < +/ and
s = +1/2,—1/2. Labeling of levels with angular quantum number /, the maximum
number of electrons and degeneracy are shown in Table 8.1.

Wavefunctions for one electron are represented by one miniscule letter according
to convection. When talking about light atoms, spins and angular quantum numbers
combine according to Russell-Saunders in a LS coupling. In a paper published in
1925, Henry Norris Russell, a Princeton astronomer, and Frederick Albert Saunders,
a Harvard physicist, the spin-orbit coupling was proposed for atoms with small
number of electrons. For example, two valence electrons couple together to give
aresultant L and the spins of the same electrons couple together to form S. Both L
and S will in turn be coupled to form J, a vector representative of the total angular
momentum of the atom. In atoms with higher number of electrons, the spin and
angular momentum of each electron interact resulting in a j vector for this electron.
Summing over all electrons it results the total angular momentum of the atom. This
case is known as jj-coupling.

A level is represented by the electrons in the valence shell which is characterized
by three quantum number L, S and J as:

¥y, (8.49)

2S + 1 is the multiplicity of the level which is basically defined by the spin.

Table 8.1 Labeling of levels with angular quantum number /, magnetic quantum number
m, name, maximum number of electrons and degeneracy

[ | Letter | Name m Maximum number of electrons | Degeneracy
0fs sharp 0 2 1
l|p principal —1<m<+1| 6 3
21d diffuse —2<m<+42/|10 5
3|f fundamental | —3 <m < 43|14 7
4\¢g —4<m=<+4/|18 9
5'h —5<m=<+5|22 11
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Table 8.2 Selection rules for electric dipole transitions

Selection rule | Comment

Al= %1 Atoms with one electron

AL = 0,41 | Atoms with many electrons L.S coupling; 0 - 0
AS=0

AM =0, %1

AJ=0,£1 [AJ=0-»0

When a given level is excited it will be de-excited by “allowed transitions”, i.e.
the ones that obey the selection rules. The following rules, should be verified if
transitions due to the changing of electric dipole occur (Table 8.2):

Besides electric dipole transitions there are also allowed transitions by electric
quadrupole and magnetic dipole. They are much weaker than the electric dipole
transitions by orders of magnitude and they become important when the electric
dipole transitions are forbidden. Calculations show that probabilities for magnetic
dipole and quadrupole electric transitions are 10~> and 10~® of dipole transition
probabilities, respectively (Herzberg 1950). Electric quadrupole and magnetic
dipole transition selection rules will not be discussed in the present book but readers
interested may look in specialized literature (White 1934).

To calculate the total angular momentum of an atom J, we need to obtain the total

. Z . Z
orbital angular momentum L = Z'_ l;, the total spin § = Z'_lsi and then to add

LandS,ie.J = L+ S; here [; andltvi are the orbital and spin lalngular momenta of
individual electrons. This spin-orbit coupling is in the picture of Russell-Saunders
(L.S) coupling valid for atoms with 1 < Z < 30 electrons. For elements with
atomic number greater than 30, spin-orbit coupling becomes more significant and
the j-j coupling scheme is more appropriate to be used.

Four quantum numbers characterize completely a state of an atom. They are L,
S,Jand M, where [L—S| <J <L+Sand-J <M </J.Thus, there are 25 + 1
values of J when J > § and 2L + 1 values when L < S. As the energy of the levels
relies on J, the corresponding levels split into (2J + 1)-multiplet. This is important
to determine the lowest energy level of a given atom configuration.

In a multiplet state it is useful to invoke the following Hund’s rules to evaluate
the order of energy levels:

1. The lowest energy level corresponds to the state with largest spin S;

2. Among the states with a given value of S, the lowest level is the one with the
largest L;

3. For a subshell in which less than half is full, the lowest state is the one
corresponding to J = |L — §|, and for a subshell more than half full the lowest
state correspondsto J = L + S.

In the next section it will be discussed the molecular bands and structures.
The knowing of the molecular structures and transitions is useful as support of
diagnostics tools for studing experimentally low-temperature plasmas.
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8.3 Molecular Bands and Structure

In this part of the chapter, we will present the main properties of molecular states.
The description is not exhaustive and more specialized literature should be consulted
for further details about the molecular structure (Steinfeld 1974). The interaction
potential between atoms in diatomic molecules will be discussed to introduce
the rotation and vibration of molecules. Electronic states and transitions will be
presented briefly to familiarize the reader with spin-orbit interaction according to
Hund’s coupling schemes.

8.3.1 Interaction Potential in Diatomic Molecules

If two atoms combine to form a molecule, electrons of individual atoms rearrange
in a way to equilibrate the charge distribution of the valence level. To accommodate
the charge density, there is an attraction between the two nuclei and an interaction
between negative charges of two atoms. In this charge distribution rearrangement,
a stable molecule is formed. This spatial configuration of charges is accommodated
in such way that the total energy is minimum.

When the atoms of a diatomic molecule are separated to intranuclear distances
R larger than ro + rp, the interaction potential is regulated by van der Waals forces
that scale as R™° and the attraction between the nuclei is weak. On the other hand,
for R < ry + rp there is an overlap of the electron shells of A and B atoms and the
electrostatic interaction due to the increased electron density between the two nuclei
results in attraction forces that scale as R™!2.

The empirical potential of Lenard-Jones describes well the total range of
intranuclear distances, as it is illustrated in Fig. 8.8:

a b
Ep(R) = 115 = s (8.50)
where a and b are two constants that depend on the nature of atoms A and B
determined by fitting the experimentally obtained potential curve or by very precise
calculations using the Schrodinger equation.

It follows from Eq. (8.50) that V[f({t (R)y =0,Ro = (a/ b)l/ 8. The minimum of the
potential curve of Fig. 8.8 is obtained doing dE/dR = 0. This minimum point of
the potential curve gives the equilibrium distance R, = (2a/ b)l/ 6 — 21/6R,. The
binding energy at R, is Eg = —E,y; (R,) = b*/4a.

Another good approximation for the diatomic molecular potential is the Morse
potential introduced by Philip M. Morse in 1929. It is a convenient model for the
potential energy of a diatomic molecule. It constitutes an approximation for the
vibrational structure of the molecule because it explicitly includes the effects of
bond breaking, such as the existence of unbound states. It also accounts for the
anharmonicity of the oscillator. The Morse potential can also be used to model other
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A

Fig. 8.8 Lenard-Jones potential

interactions such as the interaction between an atom and a surface. The proposed
empirical potential has the form:

2
EY(R) = EB[l _ e—“(R—Re)] (8.51)

8.3.2 Adiabatic Approximation

The nuclei, due to their large masses, move slower than electrons in the shell. The
electrons can change their position in very fast manner when the nuclei present
small deviations of their position. In other words, the vibration and rotation of
the nuclei do not change during an electronic transition. The wave function of
electrons is ¥ (R, r), where R is the nuclei coordinates and r the electrons one. The
r coordinates of electrons are little affected by the changes in the nuclei positions
once the kinetic energy of nuclei are much smaller than that of electrons. This kinetic
energy of the nuclei can be regarded as a small perturbation in the Hamiltonian of
the rigid molecule Hy. So the total wave function of the nuclei and electrons may be
written as:

V¥ (ri,Ry) = x (Ry) . ¢ (1) (8.52)

The electron position is #; while the nuclear coordinate is R,,. y(R,), the nuclear wave
function, may be considered independent of ¢(7;) in a first approximation, where
the electronic wave function of a rigid molecule has a fixed nuclear position R,.
The nuclear motion is independent of the electron motion and in this approximation
the coupling between them may be neglected. This approximation, which is useful
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to solve problems for the electronic ground states of many molecules, is known
as adiabatic approximation. It was introduced in 1927 by Max Born and Robert
Oppenheimer and is named in the literature as Born-Oppenheimer approximation.

8.3.3 Rigid Rotor

Suppose a diatomic molecule with atomic masses M, and M, attached by an
hypothetical rigid bar massless. This molecule may rotate around an axis that pass
through the center of mass of the system, perpendicular to the internuclear axis with
angular velocity w, see Fig. 8.9.

The rotational energy of the rigid rotator is given by:

1 J?
Ew = _lo*= (8.53)
2 21

the moment of inertiais I = mara2 + my, rg, and the reduced mass M = M,.M,, /M, +
M. The rotational angular momentum is J/ = I/w. The contribution of electrons to
this momentum is small due to their reduced mass as well as the rotation around the
inter-nuclear axis. From quantum mechanics we know that |J|* = J (J + 1) A%,
where only discrete values of energy are permitted. The rotational energy at
equilibrium distance R, is represented by:

I+ DR

="y (8.54)

In spectroscopy is usually to express the rotational term values as F(J) = E(J)/hc;

J(J + 1)#2
F() = =BJ(J+1 8.55
D=" Sheure U+1) (855)
where B, is the rotational constant;
B, (em™) = f (8.56)
¢ 47 cMR2 '
Fig. 8.9 Sketch of a R A R B

rigid-rotor diatomic molecule
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The absorbed radiation (falling in the spectral frequencies of 10°—10'3 Hz) between
two adjacent levels may be written as:

Vor() = (E(J + 1) — E(J)) /he = 2B, (J + 1) (8.57)

The wavelengths associated with rotational transitions are observed in the range
A =107 —10"! m, i.e. microwave range.

8.3.4 Non-Rigid Rotor

In a real molecule the rotation induced centrifugal distortion increases the inter-
nuclear distance and modifies the moment of inertia. The centrifugal force Mw’R
must be compensated by a restoring force —k (R — R,) in order to keep the atoms
together. As J = lw = \/J (J + 1) %2, it can be easily shown that:

J(J+ H)#?

R =R,
+ MKR?

(8.58)

by expression (8.58) it can be seen that the centrifugal force, due to molecular
rotation, has an effect of widening the equilibrium distance. The term-values are
then corrected according to:

F()=BJ(J+1)=DJJ(J+ D+ HJ[J(J + D> +--- (8.59)
where the rotational constants are given by:
fi #3 345

= ’ De - = ’ He - ==
47 cMR? (em™) 47 ckM2RS (em™) A ck2MPRY?
(8.60)

B, (cm™)

Usually the correction to second order is enough for most part of applications.

8.3.5 Vibration of Diatomic Molecules

Besides the rotation, the molecules vibrate. Around the minimum energy of the
potential, in a first approximation we may think in a parabola with E,, =
1/2k,(R — R.)?, where k, is a constant of a hypothetical spring that connects the
two atoms. The eigenvalues of the vibrational energy are determined by the solution
of the Schrodinger equation:
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Yoy 2M 1,
g + 42 (E— 5@ M) Yuip =0 (8.61)

where w = \/ k./M. The solution of this equation results in the energy levels of the
harmonic oscillator:

E() = (v + ;) hw (8.62)

the energy is quantized and depends on the vibrational quantum number v =
0,1,2,... Note that at v = O the energy is £ (v = 0) = ;ha) and not zero. This
called the “zero-point” energy in contrast with the zero energy of the rotator. If the
vibrator was at zero energy at v = 0 of the ground electronic state a violation of the
Heisenberg uncertainty relation would appear.

The exact solution of the Schrodinger equation gives the vibrational energy
eigenvalues for vibrations that are larger and the elongation distance is far from R,:

1\ Aw? 1\2
E()=*# - .
(v) wo (v + 2) 4E; (v + 2) (8.63)

Ep is the binding energy of the rigid rotator. The energy separation between adjacent

vibrational levels decreases with the increase of the vibrational quantum numbers
and is given by:

AE(W) = E @ + 1) — E(v) = fiw [1 _ e 1)} (8.64)
2E;

In spectroscopy it is usually to express the vibrational term values as G(J) =
E(v)/hc;

1 1\’
Gv) =w.|v+ — wexe| v+ (8.65)
2 2
where the vibrational constants are:
fl 2
0= and wex,= 00 (8.66)
2mc 8mcEp

A characteristic frequency of vibrations is 10'* Hz and for rotations is 10! Hz.
During one rotation around 1000 vibrations take place resulting in a change of
nuclear distance during one period of rotation.

Due to the centrifugal distortions, the rotational constants need to be corrected:

2
B,(v) =B, — «. (v+;)+ye(v+;) + - (8.67)
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Fig. 8.10 Rotational and vibrational levels in a given electronic state of a diatomic molecule

2
Dy(v) = D, — B (v+;)+86(v+;) SE (8.68)

where o, < B, and B8, < D,. In most cases the use of the first expansion term is
enough.

8.3.6 Rotational-Vibrational Spectra

Transition between ro-vibrational levels belonging to the same electronic state are
responsible for emissions in the infrared region of the spectra from 1 to 20 pm while
pure rotational transitions, i.e. within the same vibrational and electronic states, give
origin to emissions in the microwave region of the spectra that falls from 0.1 to
10 cm (Fig. 8.10).

For hetero-nuclear diatomic molecules there is a permanent dipole in the
molecule and the radiation can be absorbed or emitted by the molecules. For
homonuclear diatomic molecules, this is not the case and pure ro-vibrational spectra
cannot occur. Only ro-vibratinal transitions between different electronic states are
possible.

The term value of a molecule modelled as a rotor-vibrating, in a given electronic
state, can be written as:

T (v.J) =G(v)+F,())= [we (v4)) —wexe (V1) + oy (v+1) + - ] +
[Bu7 G+1) DT U+ DF + BT G+ DF =+ |
(8.69)

For the transitions is important to know the selection rules. The vibrational quantum
level v can change by any integral amount, although Av = =1 gives by far the
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most intense lines of transitions. The sign 4 for convention stands for absorption
of photons while the minus represents the emission of radiation. Of course Av =
0 is related to pure rotational transitions. Higher order transitions such as Av =
+2,+£3,..., called overtones may be observed in some experiments. The rotational
quantum number J can change only by unity (Herzberg 1950).

In the spectroscopy the upper energy state of a transition is labeled with prime
as v’,J’ while the lower state with double prime v”,J”. Transitions with AJ =
J' —J" = 41 are called R-transitions whereas those with AJ = J' —J" = —1, P-
transitions. The ensemble of rotational transitions of a given vibrational transition
form in the spectrum what is called a vibrational band. The frequencies of a ro-
vibrational transition, in cm™!, are given by:

v ()= v (0" = vo+ [BI( 1) =D (0 + )T
- [B,/’J” (" +1) =D, [ (/" + 1)]2] (8.70)
vg is the band origin of the transition. The transition AJ = 0 is the origin of
Q-transitions or branch and it does not exist in pure ro-vibrational transitions of

diatomic molecules. It appears in ro-vibrational transitions between electronic states
with different total angular momentum as will be discussed the Sect. 8.3.7.

8.3.7 Electronic States and Transitions in Diatomic Molecules

The total energy of a molecule in a given electronic, vibrational and rotational state
is given by:

E=E +E,+E, (8.71)
or in terms of wave-numbers units, i.e. term values;

T=T.+G+F (8.72)
here the model of the vibrating rotator is used to represent the diatomic molecule in
different electronic states.

The transitions between two electronic states are given by:
v=T-T"=(T.-T))+ (G - G") + (F - F") (8.73)
Figure 8.11 depicts the structure of molecular transitions between two electronic

states. It can be seen the rotational and vibrational structures formed during the
electronic transitions as well as ro-vibrational spectra inside an electronic state. In
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the same manner pure rotational transitions in a given electronic and vibrational
state are illustrated.

As the F terms are small if compared with G ones and can be neglected in order
to obtain a coarse structure of the electronic transition. This rotationless structure is
also called vibrational structure since only v, is significant. The following formula
represents these all-possible transitions between the different vibrational levels of
the two participating electronic states as depicted in Fig. 8.11:

2 3
v=v,+ |, v’+1 —w./'x.’ v’+1 + w.'y.' v’+1 + -
¢ 2 2 2

1 N ny’
—|w,” (U// + 2) —w,"x.” (U// + 2) + Cl)e//ye// (U// + 2) + .- (8.74)

When a transition occurs between the same upper vibrational state v/ with different
lower states v” a v”-progression appears. The v”-progressions extend from the
v’ = 0 (first band) toward longer wavelengths. On the other hand another series
of progressions may be observed when different transitions from v’ levels fall in the
same lower state v”. This is called a v’-progression and extend from the first band
v’ = 0 towards shorter wavelengths.

Electronic

Emission
transitions (UV /vis)

\ Absortion

EA- \

——J, R

|

Jx
e
[V”. Jr.rr} 'V';,

Rotational - vibrational Pure rotational
transitions (Infrared) transitions (Microwave)

!

Fig. 8.11 Structure of molecular transitions between two electronic states
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Fig. 8.12 Emission spectrum of the second positive system of nitrogen, transition
N, (C3T1, — B*I1,), recorded in a positive column of a direct current discharge. Discharge
current of 20 mA and pressure of 2.0 Torr (Nagai 2004)

Sequences are group of transitions that have the same Av = v’ — v”. The bands
of a sequence draw close together and are a characteristic of C,, CN and N, spectra
for example.

Figure 8.12 depicts a transition N, (C31'[u — Bl g), of the nitrogen molecule
where it can be seen clearly the Av = 1, 0,—1,—-2,—3, —4 sequences that are
grouped in a short region of the blue spectrum. It can be remarked many rotational
bands belonging to different bands of sequences.

It is not the aim of this book to go deep inside in the structure of progressions
and sequences but more details on progressions and bands may be found in classical
textbooks (Herzberg 1950; Steinfeld 1974). The knowledge of these structures may
be useful in optical diagnostic of molecular plasmas.

Until now the contribution of rotation to the energy term was neglected and only
electronic and vibrational energies were taken into account. Now we are interested
in the exploration of rotational structure belonging to electronic-vibrational transi-
tions. The terms of wave-numbers units, i.e. term values may be written as:

v=vo+F (J)-F"(J") (8.75)

the quantity v, called the band origin or the zero line, is equal to v, + v, and is
constant for a given electronic-vibrational transition while F'(J’) and F” (J”) are
the rotational terms of the upper and the lower state respectively. For a non-rigid
vibrating rotator the term values may be written:
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Fo() =BJ(UJ+1)+(A—-B)A>=D,JJ(J + D] (8.76)

here A is a constant and A is the electronic angular moment component projection in
the inter-nuclear axis. The term (A — B,) A? is constant for a given vibrational level
in an electronic state and may be neglected in calculations (Herzberg 1950). All-
possible transitions between the different rotational levels of the two participating
vibrational-electronic states are given by:

v=vo+ [BI (1) =D+ )]
|8 @) =D @ )
If at least one the two states has A # 0 the selection rule for J is:
AJ=J —J"=0,%1 (8.78)

If the transition occurs between two ! states the AJ = 0 is forbidden.

As AJ = 0,=1, three series of lines may be expected during a rotational
transition between levels belonging to different electronic states. These series or
branches are given by, neglecting higher orders terms D,:

R branch; v = vy + 2B, + (3B, —B)) J + (B, — B))J> = R(J) (8.79)
Q branch; v = v, + (B, —B))J+ (B, —B)) J’=0() (8.80)

P branch; v = v, — (B, +B)) J+ (B,—B))J*=P(J) (881

The Q branch appears only when A # 0, i.e. it is not present in 'Y — !'%
transitions. When the Q branch is present, it overlaps the P and R ones resulting
in more complicated spectrum.

Due to quadratics terms in Egs. (8.79), and (8.81), one of the two branches turns
back given origin to a band head, see Fig. 8.12. It occurs usually in most bands
falling in the visible and ultraviolet regions of the spectrum. If B) — B/, is negative,
the band head occurs in the R branch. The band is degraded or shaded toward red.
On the other hand if B) — B, is positive the band head falls on the P branch and is
degraded toward the violet.

The intensity of the lines/bands emitted is proportional to the population in a
given excited state N;:

Iem = Ni Aljhl) (882)
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Fig. 8.13 (a) Hund’s coupling case a and (b) Hund’s coupling case b. ¥ and A are the components
of spin vector S and electronic orbital angular L around the inter-nuclear axis, respectively. R is the
angular momentum of nuclear rotation

Aj; is the Einstein coefficient for emission between levels i and j. At thermal
population the distribution of population of atoms/molecules in the excited level
i[isSN; = szj e~ Eif/kT Ej; is the energy difference between the i and j levels and g;
and g; their statistical weight.

The selection rules for electronic dipole transitions are the result dipole changing
during a given transition. For the angular momentum conservation, the following
rule applies:

AA =0,=£1 (8.83)
Due to symmetry properties of the wavefunction others rules become important:
+ < —and— < +; but not+ <« +and— <« — (8.84)
In the case of homonuclear diatomic molecules the following rules hold:
u <> gandg < u; butnotu <« uandg < g (8.85)

u and g stands for ungerade (uneven) and gerade (even) from German.

The composition of different angular momenta in the molecule such as the
electron spin, electronic orbital angular and nuclear momenta will result in total
angular momentum J of the molecule. When the interaction of nuclear rotation with
the electronic motion is very weak the electron spin and electronic orbital angular
momenta precess around the line joining the nuclei, see Fig. 8.13a. In this case the
mode coupling between moments called Hund’s case a.

When A = 0 and S # 0 the spin vector S is no more coupled to the inter-nuclear
axis and the addition of A and N form a resultant designed by K. It couples with
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Fig. 8.14 Sketch of the Franck-Condon transition between electronic states with cases with the
same R and with R 5 R’. (a) Transitions with Av = 0. (b) Transition with Av # 0

the spin vector S to form the total angular momentum J of the molecule. This is the
Hund’s case b.

Hund’s case a and b are found in the majority of electronic states of diatomic
molecules. The rotational levels of the electronic states are defined according each
coupling case. The aim is just to present to the reader the importance of these
couplings. There are others Hund’s cases of momenta coupling but they are not
discussed in this book. More details can be seen in the Herzberg’s book (Herzberg
1950).

The vibrational transitions between different electronic states are governed by
Franck-Condon factor. It depends on the overlap of vibrational wave functions of the
two electronic states. In Fig. 8.14 it can be seen that vertical arrows may represent
electronic transitions between vibronic states, belonging to different electronic
states, once electron transition is much faster than vibrational and rotational
movements.

In the Franck-Condon approximation, the inter-nuclear distance R is the same for
the start and final points of the transition. As the photon momentum is very small
compared to the one of the vibrating nuclei, the momentum is conserved during
the transition. The Franck-Condon transition probability is obtained from quantum
mechanical calculation as:

Vo RV (R)AR

P(R)dR =
/ WLy ROV (RYIR

(8.86)

The Eq. (8.86) gives the transition probability in the interval dR around R.
To illustrate the applications of atomic and molecular physics to diagnose low-
temperature plasmas we will present and discuss, in next sections, some optical
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emission techniques like; actinometry, titration, rotational and vibrational tempera-
ture measurements and determination of electronic density by line Stark broadening.

8.4 Actinometry

Optical diagnostics are simple and easy to implement as tools for noninvasive
measurements of nonequilibrium reactive plasmas to study the complex chemistry
of the medium. From optical emission spectra it is usually straightforward to
identify the emitting species and to follow qualitative changes in plasma properties
as a function of external parameters such as gas composition, electric power, etc.
Emission spectroscopy provides direct information only on plasma species, like
excited atoms or molecules, in electronic ro-vibrational excited states. However,
the vast majority of plasma species are in their ground electronic states. Therefore,
it is more useful to monitor the concentration of ground state plasma species. For
example, relationships between the etch rate of a material and the concentrations
of key reactive species are useful for developing kinetic models of etching in
reactive plasmas. Laser techniques are available for direct measurements of the
concentration of many ground state species, but optical emission spectroscopy is
much more widely available due to its simplicity. Thus, there is great interest
in methods using optical emission as an indirect source of information about the
concentration of ground state reactive species.

Among a wide variety of optical diagnostics techniques, a relatively and simple
technique consists in the recording the intensity of lines and bands as a function of
wavelength. Others techniques like laser-based ones, i.e. laser induced fluorescence,
needs lasers beams as probes to interrogate specific optical transitions and recording
of subsequent emissions.

In this section we discuss the simplest and easy technique of optical emission
spectroscopy called actinometry in order to illustrate the power of optical diagnos-
tics to study nonequilibrium plasma discharges.

The emission lines intensities of the atoms in the discharge are functions not only
of the densities of the emitter excited atoms but they contain contributions from the
cross sections for electron impact excitation of the excited levels as well as from the
electron energy distribution function.

In order to measure the relative density of a given specie in the ground or
metastable level using emission spectroscopy a technique known as actinometry
which, under certain conditions, allows one to monitor the concentration using
optical emission intensity ratios. This method offers the possibility of using optical
emission spectroscopy as a powerful quantitative tool for the analysis of plasma
composition. However, the absolute densities determination is difficult when using
actinometry due to the uncertainties in the calibration of the experimental set-up.
Actinometry is based on the addition of an inert trace gas of known concentration,
without disturbing the discharge, to work as a reference. This inert gas added is
called actinometer.
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Although easy to handle than optical absorption spectroscopy or laser-induced
fluorescence, the validity of actinometry is somewhat controversial and the criteria
for utilization of the technique and its limits of validity must be verified in each
case.

Optical emission actinometry involves the use of emission intensity ratios to
monitor the concentration of ground state species. The emission line intensity from
the species of interest is divided by the emission intensity of a line from an inert gas,
the actinometer, which is added to the plasma in small quantities. This normalization
of the emission signal is designed to correct, for changes in emission intensity,
which result from variation in plasma electron density, cross section for electron
impact excitation and the electron energy distribution function instead of changes in
the ground state concentration of the species of interest.

The following three conditions are sufficient to ensure that the emission line
intensity ratio of the emitter X* and the actinometer A*, i.e. Z‘: is proportional

to the concentration ratio &% :

1. X* and A* must be produced by electron impact excitation from the ground state
species X and A;

2. X* and A* must decay primarily by photon emission, i.e. a corona equilibrium is
assumed; and

3. the electron impact excitation cross sections for X and A must have a similar

threshold and shape as a function of electron energy.

When these conditions are satisfied, electron impact excitation is balanced by
optical emission, and the proportionality is assumed between the ratio of the emitted
lines and the concentrations.

Supposing that these X; states are mainly populated by electron impact from the
ground state X:

Xi
etX S X te (8.87)

The de-excitation of excited states X f is either radiative;

Alj
X} = X'+ hvy (8.88)

1

or non-radiative by quenching with species Q;

k
X*+0 > X+0 (8.89)

Empirical observations alone do not provide an understanding of the basis for the
success or failure of optical emission actinometry. Such an understanding can be
reached through identification of the basic mechanisms responsible for production
of the excited state species.
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The emission intensity Iy« of a transition X — X is then written as the
ratio between production by electron impact and loss by radiative de-excitation and
quenching:

hvyAgkSin,
(Z Ajj + ko [Q])

where n, is the electronic density, hv; is the emitted photon energy, A;; is the

Ix+ = Ceqp [X] (8.90)

Einstein coefficient of the observed transition i — j, ZAU is the summation of

all radiative de-excitation processes starting from the i level and C,,; represents a
constant which is dependent of the detection system response. The coefficient kX
can be expressed by the following:

1/2 poo
ki“:(ze) / v()oi(u)f ()" *du (8.91)

m Uh

where v(u) is the electron velocity, o;(u) is the collision cross section with threshold
uy, for the excitation of the i level and f(u) is the electron energy distribution
function (EEDF), normalized such that ;° f(u)u'/>du = 1. Substituting the Eq.
(8.91) into (8.90) and doing the ratio of the emission intensity Ix= of a given line of
the atom and the emission intensity /4= of the actinometer, we obtain:

Cx+ [X] T () o () f (1) ' dlu

Uh

B Cax [A] /OOU () oiax () f () u'/>du

-
X ~c (8.92)
e

oix* (1) and o4+ (1) are excitation cross sections of the probed atom and the acti-
nometer and C a proportionality constant. In practice, Ix=/I,+ may be proportional
to [XJ/[A] over some limited range of plasma parameters. For this reason, as stated
above, empirical observations alone do not provide an understanding of the basis
for the success or failure of actinometry. An example is the measurement of oxygen
atoms, in the ground state, density in a discharge where argon is used as actinometer.
Figure 8.15 illustrates the energy levels involved.

As an illustration of actinometry technique we present the detection of oxygen
atoms in a low-pressure positive column oxygen discharge, with argon as actinome-
ter. In low-pressure discharges the Ar(2p;) excited state is created by direct electron
impact upon the ground state. Stepwise excitation from metastable states may be
neglected, once these states of Ar are severely destroyed by collisions with oxygen
atoms.

The oxygen excited levels O (3p *P) and O(3p °P) may be created from direct
excitation of atoms O (2p**P) in the ground state or by dissociative excitation by
electron collisions from the ground state molecules. This second channel of excited
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Fig. 8.15 Illustration of the excited levels involved in the determination of oxygen atom concen-
tration in the ground state by actinometry (Pagnon et al. 1995)

atoms creation may cripple the actinometry and the validity conditions need to be
determined. Readers interested may look at the work of Pagnon et al. (1995) in order
to have an idea of the mechanisms involved.

8.5 Titration

Density of atoms in the ground state may also be determined using a titration
technique, which is based on chemiluminescence reactions. It is mainly important
to probe atoms in the discharge afterglow or post-discharges (Ricard 1996). The
experimental arrangement is depicted in Fig. 8.16 showing plasma region of a
molecular gas (A;) and the molecular reactant gas (B;) introduced in downstream
region, with absence of charges, where a faint glow is produced by the specie AM*.

The absolute density of atom A may be determined by the detection of emitted
molecular continuum AM*:

A+M, — AM* + M (8.93)
Fig. 8.16 Illustration of Spectroscopy
titration in a flowing A
afterglow. It can be seen that Plasma |
hemilumi ti
gives theorigin o the faimt. A2 | [ & wiig: e
g g E— —= - - -

glow in the post-discharge
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As an example, let’s illustrate the detection of N atoms by titration in a flowing
post-discharge. The molecular gas used to probe the atoms in this case is NOg,
which reacts with N atoms to form:

N+NO — N, + O (8.94)

The O atoms formed react with N atoms and other molecular species M, to form
NO (B *T1):

O+ N+ M, — NO (B’TI) + M, (8.95)

NO (B*Tl) — NO (X °II) + hv (NOg at A = 320 nm) (8.96)

When the flow of NO is weak the reactions (8.95) and (8.96) are dominant and the
emission of violet band of NO at 320 nm is strong. However, when the NO flux is
greater than N flux, all N atoms are consumed by NO to produce O atoms according
to Eq. (8.94) and the dominant reaction is:

0+ NO — NO, (A’B)) (8.97)
NO, (A?B)) - NO; (X A1) + hv (NO> at A = 575 nm) (8.98)

NO and O react forming NO, in the excited state that radiates a green continuum
centered at 575 nm. The equilibrium between N and NO is the extinction point of
optical emission, which allows the determination of the N atom density.

8.6 Rotational and Vibrational Temperature Measurements

The intensity of the rotational transitions of a band is proportional to the population
of molecules in a given excited state. In this part of the text we will develop a little
bit more the expression for emission intensity in order to determine rotational and
vibrational temperatures of molecules in gas discharge plasmas.

The intensity of spectral lines in a transition between electronic states, n'v'J’
(upper) and n”v"J” (lower) is given by:

a4

YA a 4
Y = N rhevAn (8.99)

Ny is the molecular density in the upper state of the transition, AZ;/"\%,, is
transition probability of the Einstein’s coefficient, J is the rotational quantum
number, v the vibrational quantum number and n the quantum number of the
electronic state. The Einstein’s coefficient AZ;/"U//J,, is proportional to the electric
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dipole matrix of the transition R and is given by (Kovacs 1969):

/V/J/
647403 Z‘R !
3h gy

An’v’]’

n//‘}//J// -

(8.100)

gy is the degerencency degree of the upper state of the transition with rotational
quantum number J’ of multiplicity 2J” + 1. Assuming that electronic, vibration and
rotation motion are independent the summation on Eq. (8.100) may be written as:

///

vzb

n'v'J’

n//v//J//

i
_ n'n
= ‘Re

S,/,N (8.101)

Inl . . o . . . oy
RZ™ is the electronic transition moment, R}/ is the vibration transition moment

p )
and Sy = E o R{(){N) , 1.e. the rotational transition moment or the Holn-
London factor. The density of molecules in the initial upper state of the transition is

given by:
Ny = (2= Sonr) (20 + 1) e~ TG +Fyhe/kT 8.102
n'v'J = Q 0,A’ e ( . )

N is the total density of the molecules in the upper state 7,/ (electronic term), G,/
(vibrational term) and F» (rotational term). T is the temperature and Q the partition
function. The factor (2 — 8y o) represents the A-splitting, with §oo» = 1 for A’ =0
and §p o = Ofor A’ # 0. Then, the intensity IZ,/,”V/,{;,, in the Eq. (8.99) may be written
now as:

YaNa 4 71 Y4 2 . .
i = ORI R | el =it (8.103)
where the constant C is:
64mcv? X
C="", (=& e Twhe/kT (8.104)

The density of molecules in a ro-vibrational level of an electronic transition is:
Ny = Ce—(Gu+Fy)he/kT (8.105)

For a rotational transition in a given vibrational level of an electronic state, the term
C ‘Rmb

/1

Rﬂn

is constant;

ava e
n//\i};{‘]” — C Sj’j”e FJ/hC/kT CSJ’]”e B J (J +1)hC/kT (8.106)

here the centrifugal distortion correction was not taken into account.
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The rotational temperature in a discharge may be, under certain conditions
(Otorbaev et al. 1989), considered as representative of the gas temperature, a
parameter of fundamental importance to study the kinetic of the plasma. Using the
Eq. (8.1006), the rotational temperature may be calculated by:

iy, B.J (J + 1)h
n("VJ)z_v(+)C (8.107)

C'Syym kT,

b
//J

The plot of In (Ic”i’svj’/’j,’: ) as a function of B, J' (J' + 1) hc gives a straight line whose

slope is inversely proportional to the gas temperature. Taking as example the Second
Positive System of nitrogen we analyze the transition v/ = 0 — v” = 0 and
the branch R to estimate the gas temperature of a positive column direct current
discharge. The figure below depicts a typical spectrum of the N, (C3Hu — B g)
transition;

Figure 8.17 shows a well resolved emission spectrum of the Second Positive
System of Nitrogen, transition N, (C3Hu, vV =0—>B I, v/ = O) recorded with
a very high-resolution monochromator. It can be seen the rotational structure of Q,
P and R branches. For 18 < J < 19 it can be remarked the triplet due to spin-orbit
coupling. The R branch is degraded towards the blue part of the spectrum and is the
best resolved branch, reason why it is commonly employed in the determination of
rotational temperature. The band-head is located in the P branch and the Q branch
overlaps the P and R branch forJ’ < 19.

The assignment of most intense lines in the P, Q and R branches shows that for
low J values the three branches overlap, which makes difficult to use these intensities
for rotational temperature measurements. Only J > 14, is a well resolved structure
present and can be used in the determination of rotational temperature.

The states No(CII,) and N2(B3Hg) have electronic orbital angular IT with
A = 1and AA = 0 which give the Holn-London factor (Kovacs 1969):

R _(J//+1+A//)(J//+1_A//)
By = i (8.108)

As the R branch corresponds to the transition AJ = +1,J = J” + 1, so:

G _ D= _ -1

R = J/ ” (8.109)

Substituting (8.109) into (8.107) gives:

1 . BJJ +1)h
ln(le 1):c _ % (kT+ ) he (8.110)
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Fig. 8.17 Spectrum of the second positive system of nitrogen, transition
N, (C*1,, v/ =0 — B*TI,, v = 0) recorded in a positive column discharge in nitrogen.
Discharge current of 20 mA and pressure of 2.0 Torr (Nagai 2004)

C' is a constant. The plot of In (,Iz{l

the rotational temperature once the slope of a straight line that joins the points
is inversely proportional to the temperature. With rotational constants for the
state No(C>I1,) (Loftus and Krupenie 1977) the rotational temperature may be
determined:

) against J’ (J” + 1) enables one to determine

_ B+ D he
Vil
kIn (J’z—l)

Figure 8.18 shows the experimental points measured in a positive column of a direct
current discharge with pressure of 2 Torr and currents of 10, 20, 40 and 50 mA.

As can be seen two regions with different slopes are found. The first one is
for the interval 14 < J < 24 corresponding to the lowest temperature and a
second one for 24 < J < 29 with highest temperature. The lowest one, 370 K for
discharge current of 10 mA, is adopted as the gas temperature. The highest, in the
case of nitrogen discharges, is attributed to mixing reactions with the N, (E3Z;')

T, (8.111)

state which perturbs the rotational-vibrational distribution of the state No(C?T1,).
From the vibrational spectra the vibrational temperature may be determined. The

knowledge of the vibrational temperature is an important parameter to characterize

the vibrational distribution function (VDF). The influence of the VDF in the
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Fig. 8.18 Experimental points obtained from spectra of the second positive system of nitrogen, R
branch, pressure of 2 Torr as a function of discharge current. Two regions with different slopes are
readily identified

kinetic of the discharge if of fundamental importance to predict the ionization and
dissociation rates in discharges. In most molecular gases discharges the VDF is far
from equilibrium and is best described by a modified Treanor distribution (Treanor
et al. 1968) named Treanor-Gordiets as shown in (Gordiets et al. 1998).

Experimentally the vibrational temperature is determined from the population
distribution of the first vibrational levels, which is close to a temperature defined by
a Boltzmann distribution of levels population. This temperature is calculated from
many emission bands of a given electronic transition in the same sequence as shown
in the Fig. 8.19 for the Second Positive System of Nitrogen molecule.

Assuming a Boltzmann distribution for the population of the first vibrational
levels and neglecting contributions of terms v> and v3 one can write:

N, _ hcow, (v+1)

8.112
No kT, ( )

In

The slope of the straight line that fits the points in a plot of /n %(”) as a function of

(v + é) is inversely proportional to the vibrational temperature. The ratio %(‘) may
be determined from the spectrum using the formula:

N, IU/U”A'OAO

= (8.113)
N() IOAU’U”AU’U”
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Fig. 8.19 Spectrum of the sequence Av = —2 of the second positive system of nitrogen recorded

in a positive column of a nitrogen discharge with pressure of 2 Torr and current of 20 mA (Nagai
2004)

8.7 Electronic Density by Line Stark Broadening

Measurement of electron density in electrical discharges is one of the most
important diagnostics to characterize low-temperature plasmas once the charges
regulate the physics and chemistry of the medium. To have access to the density
of electrons, optical emission spectroscopy is a very interesting technique because
it is non-invasive, like for example electrical probes, and offers good spatial and
temporal resolutions.

In this chapter we will focus on plasmas with electron number densities greater
than 5 x 10'3cm™ where the technique of measurement of electron density from
line broadening may be used. This range of density is normally found in low-
temperature plasmas working at atmospheric and sub-atmospheric pressure ranges.
For low-pressure discharges, electrical probes are normally employed although laser
techniques may eventually be used as it will be discussed in Chap. 10.

Optical emission spectroscopy technique based on line broadening measurement
has the possibility to do spatially and temporally resolved electron number density
measurements exploring the lineshape of the Balmer § transition (4-2) of atomic
hydrogen at 486.132 nm. In some experimental conditions, in higher density
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plasmas, Balmer « transition (3-2) of atomic hydrogen at 656.279 nm may also
be used but this line is more perturbed by resonance and van der Walls widening.

This technique requires the addition to the plasma of a small amount (typically
1 or 2% mole fraction) of hydrogen, which may either come from dissociated
water vapour in humid air or from premixing H, into the gas stream. For detection
of this line by emission, the population of the n = 4 electronic state of atomic
hydrogen must be high enough for the Hg line to be distinguishable from underlying
gas plasma emission (in air plasmas mostly First and Second Positive Systems of
nitrogen). This condition is usually fulfilled in equilibrium air plasmas or in non-
equilibrium plasmas with sufficient excitation of hydrogen electronic states.

The collisional processes occurring in plasmas perturb the emitting atoms and/or
molecules influencing the shape and width of emitted spectral lines. The main
mechanisms responsible for H, and Hg line broadenings are instrumental, natural,
Doppler, Stark, resonance, and van der Waals. Among these effects resonance and
natural ones are not important in most experimental conditions found in atmospheric
and sub-atmospheric pressure plasmas and may be neglected. The table below
presents formulas to calculate the various line broadening mechanisms that affects
lines H,, and Hg emitted in plasmas.

The emission line best suited for electron density measurement is the Hg because
the Stark effect is more pronounced while resonance and van der Waals are less
important in line widening compared with H, line. The figure below shows the
FWHM for the main broadening mechanisms when the electron density varies from
10%cm™ to 10'%cm™3, values normally found in high-pressure low-temperature
plasmas.

In the Fig. 8.20 the simulation was done for a typical value of electron and gas
temperatures of 0.8 eV and 2000 K respectively, which are typical of atmospheric
plasmas. As can be seen for electron density above 10'*cm™ the Stark effect is the
dominant mechanism for line broadening of the Hpg line.

Figure 8.21 shows the Hg line profile recorded in radio-frequency atmospheric
micro-plasma jet as a function of powers for various pressures (Souza-Corréa et al.
2010). In the case of 50 W the FWHM is 2.25 A. Considering that the apparatus
function in this case is 0.2 A and observing the Fig. 8.20, it can be seen that the most
important effect for the line broadening is the Stark effect. The electron density in

this case is found to be 1.3 x 10%cm™3.

Table 8.3 Full width at half maximum (FWHM) (nanometers) of various line broadening
mechanisms, for the H,, and Hg lines at 656.279 nm and 486.132 nm respectively. P is the pressure
in atm and T the gas temperature in K. n, is the electron density in cm™> and Xy is the mole
fraction of hydrogen atoms

Line AASmrk Akresunance A)me der Waals A)Lnatural Ak[)oppler
H, [1.0 x 10712004 | 119X, PT7! |36 PT07 |2.02 x 107*|2.35 x 107*7°3
Hg 2.0 x 1072098 | 604Xy PT™' 3.6 PT™%7 | 1.8 x 107* |3.48 x 1074703
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Fig. 8.20 FWHM for various broadening mechanisms of Hy line as a function of electron density
in an atmospheric pressure discharge. Gas temperature of 2000 K and electron temperature of
0.8 eV (Souza-Corréa et al. 2010)
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Fig. 8.21 Emission spectra of Hy line at the exit of a radio-frequency atmospheric micro-plasma
jet as a function of RF power
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Exercises

Exercise 8.1. Taking into account the Eq. (8.1) obtains the mean radiated power by
the damped classical oscillator. Then calculates the natural line width of the emitted
line emitted spontaneously from a given energy level E;.

Resolution: The mean radiated power, from Eq. (8.1), is given by:

aw ) )
()=

this expression shows that the mean radiated power decreases exponentially with

time and the 1/e of its initial value is attained at 7; = 1/y. In this case t; is the
average lifetime of the level at energy E; and is related to the Einstein coefficient A;
by 7; = (A)~".

Exercise 8.2. Calculate the natural, van der Waals, Resonance and Stark broadening
for the Balmer H,, line.
Resolution: The energy level diagram of H, line (transitions 3s-2p, 3p-2s and 3d-
2p) is shown below (a). Others transitions that are important in the calculations of
broadening mechanisms are: 3p-1s (b) and 2p-1s (c) (Fig. 8.22).
Resonant Broadening:

The transitions to be considered in the case of Hy linearen = 3ton = 2 (s — i)
but also fromn =3ton =1 (f — s) and fromn = 2ton = 1 (f — i). From Eq.
(8.37):

3¢? ;
Ades = ¢ Ay’ (/\z:fﬁf \/if n + Anffs \/if”f + lsiﬂi\/i ”i)

Si
1672e9m,c? ; s

The constants for the energy levels involved in the H, line are according to Wise
et al. (1996):

fir = 0.4162; f; = 0.079; f; = 0.425

Ay = 121.567 nm; Ay = 102.5795 nm; A = 656.279 nm
As the statistical weight is g = 2n?;
gr =2 8=28g =18

Considering that the population distribution in the energy levels is given according
to a Boltzmann distribution:

n; = nf j; e_(kiiT)



349

Exercises

j=-1/2

«™ o ™

™ I B~ ™ ™ = ™ I~ = ™ ™ ™ ™ o™ = ™
e e S T T S e T S — S T e e
o o0 e —i — | o™ — — | [Tn] np] o — — | —

Il I I Il Il Il I Il I Il Il Il Il Il I Il Il
e =~ ey e e e T~ =~ ™~ ey e e~ ey oy ey e )

lllllllllllllllllllllllllll —
||||||||||||||||||||||||||||| E——
|||||||||||||||||||||||||||||||| — =
el (PR PN, B ——— — e
s s e o e e —] — - = L
o =
|
==
R e R e B ISl —— =
[ — o — = ™ - (=] =
I | Il Il Il I I Il I
<[ o T T[T - ® 3 2, ®
oy

o) = P ) ™ el e o) —
- T
o [ ] o —
© I I - I I
= = = =

Fig. 8.22 (Continue)



350 8 Emission Spectroscopy

c % in —;—j::i,f?
n=2 : —;!_J-:lr‘fz
; P i =1/2

2p=p | [T 1 =Y

P =12

A :

n=1Y 1-&'!=UY j=1/2
j=-1/2

Fig. 8.22 Energy level diagram of H, line

and that the energy of the lower level n = 2 is 1.634 x 107'8J;

P (an (118 10°
Adjes (nm) = 4.25 (am) (27.99 +0.744 10%¢ (ITI;(% ))
Ty (K)
Doppler Broadening:
T(K
Adp =7.17107" Ay \/ ( g)
M (mol)

For the H, line AL, is 656.279 nmand M = 1 g.mol_l SO:
Alp (nm) = 4.7 107 /T (K)

Natural Broadening:
Considering the transitions and energy levels involved in H, line:

2
Aknatuml = 417:6‘ (ZA3VL + ZAZVV:)

n<3 m<2

ZAzm = (Anly=127=172 + A32!j/=1/2¢//=3/2)3s_2p

+ (Anly=1257=172 + Anly=3/257=1/2)3, 5
+ (Anly=3/257=3/2 + Analy=3/2 77 =1/2 + Analy=s/2 =32 )3d_2p
+

(Asily=12j7=172 + Asly=3ppjr=172), , = 5.149 10%s7!
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Y A = (Anlymsppy=ipp + Anly—sppr=1p2),, ,, = 1253 % 10 s~

m<2

then (Zn<3A3n n Zm<2A2m) — 1.768x10° =1 and AAygura(nm) = 2.02 1074,
Van der Waals Broadening:

j = s, upper level
R2 1 EH [5 ZZEH J pp

= 1-3L(+1 ;
J 2E00_Ej Eoo_Ej+ /(J+ )i|

Jj =1, lower level

Ey = Eo = 13.6 ¢V and E; = 12.09 eV for the H, transition. Z = 1 for a non-
ionized particle. As the H, line has seven multiplets, see the transitions diagram in
the beginning of this solution, it can be written:

=0 — Rl =4.5033[5x9.007 + 1]~ 207.31

2/5

— (R}) , =845

li=

=1 = Rl =45033 [5x9.007 + 1 —6] ~ 180.29

— (R~2)2/5

7)o = 7:99

=2 =  Rlj==45033[5 x 9.007+1—18] ~ 126.24

2/5

— (R}),_, = 6.93

l=
The transition probability for H, line in each transition is; 1.6 % for 3s-2p, 17 % for
3p-2s and 81.4 % for 3d-2p. We may now write a final expression (R;)*>:

2/5
=0

2/5 n2/5 _
7+ 0814(RY), = 7.135

2/5
(R?)™” = 0.016(R?) ;

. +0.17(R?)

2/5
1, (2R 8ksT\ " P X
waals — dc si 87Tme3€4 T kBT > ,Uvred3/10
P Xp

_ —4142
AXypars = 3.422 10 A”'kBTOJ e Lyeg/10
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Stark Broadening:

Using the expression given in Table 8.3 we have: Adg,x = 1.0 x 10~
for an electron density of n, = 102cm ™3, Adgn = 2.74 x 1073 nm.
Exercise 8.3. Calculate the natural, van der Waals, Resonance and Stark broadening
for the Balmer Hg line.

Resolution: The energy level diagram of Hp line (transitions 4s-2p, 4p-2s and
4d-2p) (a). Others transitions that are important in the calculations of broadening
mechanisms are: 4p-1s (b) and 2p-1s (c) are shown below (Fig. 8.23):

11,,0.649
n, s

Resonant Broadening:

The transitions to be considered in the case of Hg linearen = 4ton = 2 (s — i)
but also fromn =4ton=1(f — s) and fromn = 2ton = 1 (f — 7). From Eq.
(8.37) and taking into account the constants for the energy levels involved in the H,
line are according to Wise et al. (1996):

fir = 0.4162; fr; = 0.02899; f; = 0.1193

lif = 121.567 nm; lif = 97.2537 nm; Ay = 486.132 nm
As the statistical weight is g = 2n?;
gr=2; g =28; g, =32

Considering that the population distribution in the energy levels is given according
to a Boltzmann distribution and that the energy of the lower level n = 2 is 1.634 x
10718J;

P (atm)

3 _(1.’1‘s><105)
Aldyes (nm) = 2.34 26.0 +0.116 x 103%™\ 7 ®
T,(K)

Natural Broadening:
Considering the transitions and energy levels involved in Hpg line:

2
Aknamml = 417:6‘ (ZA4n + ZAZVV:)

n<4 m<2

ZA411 = (Aply=1/257=1/2 + A421j’=1/2.j”=3/2)4s_2p
n<4
+ (Aly=1/27=1/2 + A421j/=3/2=j”=1/2)4p_25
+ (Analy=3/2j0=3/2 + Andly=3)27=1/2 + Anly=s5/2 =32 )4d_2p

+ (Anly=1/2j7=1)2 +A4llj/=3/22i”=l/2)4p_lx = 1.99510%~"
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Fig. 8.23 (Continue)
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Fig. 8.23 Energy level diagram of Hg line
9.1
Yo A= (Anlmipp—ip + Anlyipp=sp),, = 1.25310%

then (Zn<4A4n + Zm<2A2m) = 1.543 10%s" and Ay (nm) = 1.83 1074
Doppler broadening:
For the Hg line AAy; is 486.132nmand M =1 g- mol~! so:

Alp (nm) = 3.5107* /T (K)

Van der Waals broadening:

Ey = Eoo = 13.6 €V and E; = 12.75 eV for the Hg transition. Z = 1 for a
non-ionized particle. As the Hg line has seven multiplets, as the H, line, see the
transitions diagram in the beginning of this solution, it can be written:

2/5

=0 = Rli=o=80[x160+1]~648 — () =13.32
=1 =  Rl=1=8.0 [5 x 16.0+1-6] ~ 600 — (R}’ =12.92
)=
=2 =  Rlj==8.0[5 x 16.0+1-18] ~504 — (R})f/_sozu.os
‘ =

The transition probability for H, line in each transition is; 1.9 % for 4s-2p, 21.6 %
for 4p-2s and 76.5 % for 4d-2p. We may now write a final expression (R?)Z/S:

2/5
=0

2/5 2/5 2/5
(R?)"" = 0.019(R?) por T 0765(Rf), 2, = 12.26

; +0.216(R;)
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Stark broadening:
Using the expression given in Table 8.3 we have: Adgg = 2.0 x 107170068,
for an electron density of n, = 102 cm™3, Adgm = 9.66 1073 nm.

Exercise 8.4. Find the resultant FWHM of the convolution of two Gaussian profiles.
Resolution:
Convolution of two Gaussian profiles:

+o0
f(Av) = / fi (Av = AY) f> (AV') d (AY)
—00
where Av = v — vy.
+o0 _ (A"_A"/)zfz _ A2 2
f@n = [ e e P neoe e d(ay)
—00

But the FWHM value is:

Avijy = Avis = g2 (v/c) (21n2)"/?

(1)01,2)21)2
Avi, = p (21n2)

_ (av—av') i

+oo A“lz _ Av,zénl
F@n =100 bon [ e a(av)
—0o0
oo _AI;Z—zAu§:1;+Au/Zznz _Av/zérﬁ
@ =n00) bon [ e a(ar)
—00

2
—[( L+ lz)ln2 AV 288 1 AV AV ln2:|
Avy Avy Avy Avy

+o00
F@0) =100 o) [ e a(av)
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s 1 1 2.3 _ 2Av 2. . _ AV P
Doing: a = (Av% + AV%) 2 Av©; b = AUlzan AV e = AUlzln2 and taking into

account that:

+o0 —(ax2 +hx+c)

/ e dx = \/7{ e(h2—4ac)/4a
oo a

_ A2 1 1 v
|: Avi‘ +<Au12+Av%> av?
T ( L+ 12)
f(Av) =11 e Avp o Av
)
n2
(a2 * i)
_niim 1 1\ a2
|: Avi‘ +<Av%+Au%>Av% :|
- Av2in2 ( 1 1 ) Av?
L - +( L+
4 4 2 2 2
2 2 Av A Av2 ) av
At FWHM, e Avi Ay = é, 1 V1 vy L n2

L4t
am? a2

1

So Av? = Avf + Av%
Exercise 8.5. Find the spectroscopic notation for the ground state configuration of
the Sc.
Resolution: Sc has 21 electrons. The orbital configuration of the Sc ground state is:
(1s)2(25)2(217)6(35)2(317)6(45)2(351)1 or [Ar](45)*(3d)". The total angular momentum
of Sc is determined by the 3d electron, once [Ar] and (4s)> have S = 0 and L = 0.
Since the 3d electron has S = 1/2 and L = 2, the total angular momentum may
have the following values: |2 —1/2] < J < 24 1/2, yielding J = 3/2 and
5/2 The possible states for the ground level are: 2Dsj or 2Dsp. According the third
Hund’s rule, less than half of the shell is full, the total angular momentum is given
byJ = |[L—S| =|2—1/2| = 3/2 so the lowest level is 2Ds».
Exercise 8.6. Considers the boron atom with the following orbital configuration:
(1s)2(2s)2(2p)1. Then the angular momentum of the boron is determined by the 1p
electron, with § = é and L = 1, once 1s and 2s subshells are completely filled.
Determine the lowest energy level of the atom.
Resolution: The coupling of S = é and L = 1 yields J = 1/2 or 3/2 resulting in
two possible states: 2P, or 2Psps. By the third Hund’s rule for atoms, the 2p shell
of the boron is less than half full and the value of J corresponding to the lowest state
isJ = |L—S|=1-1/2=1/2.; hence 2Py, is the lower energy state.
Exercise 8.7. The hydrogen molecule has a rotational constant, in the electronic
ground state, of 60.8 cm™!. Calculate the moment of inertia and obtain an
expression for the rotational energy knowing that the equilibrium distance is
0.74 x 10719 m,
Resolution: The reduced mass of the hydrogen molecule is 8.35 x 10728 kg. As
the moment of inertia is given by I = marﬁ + m;,ri and the equilibrium distance

_ . . . . mgm, 2 _ 2
R, = r, + rp, the moment of inertia may be written as I = ma”j‘_ rsze = uUR.,”.
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Fig. 8.24 Experimental points obtained from spectra of the second positive system of nitrogen, R

branch, pressure of 2 Torr as a function of discharge currents. Two regions with different slopes is
readily identified

Then I = 4.6 x 107* kg - m?. Using formula (8.55) it can be easily verified that
Enp = 12x 10721 (J 4 1) Joule.

Exercise 8.8. From Fig. 8.17 calculate the rotational (gas) temperature, i.e. the lower
temperature, and the higher temperature of the nitrogen molecules for currents of 10,
40 and 50 mA assuming that B, = 1.815 cm™! for N»(C*11,) state.

Resolution: From formula (8.111) we have:

_ B,J (J' + 1) he _ 2.61
kin(L ) m(E) @+
As an illustration for the 20 mA current (Fig. 8.24);

Using the same procedure for the other current, we have:

Discharge current (mA) | Gas temperature (K)

10 370
20 400
40 420

50 447
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Chapter 9
Absorption Spectroscopy

It was shown in the preceding chapter that emission spectroscopy could be only
used to determine the absolute density of species if the optical apparatus was
calibrated as a whole and supposing that the emission intensity has a linear response
as a function of species densities. This is a very difficult task if we are dealing
with radiative species. Concerning ground state atoms, the technique could be
employed but it is still more complicated to access to absolute values. Another more
complicated situation, for emission spectroscopy, is to measure species densities in
post-discharges, spatially or temporally resolved, where there is not excitation of
radiative states. In these conditions the best solution is the absorption spectroscopy.

The principle is simple; the medium to be probed need to be illuminated with
photons with wavelength corresponding to allowed transitions and related to the
state and specie to be interrogated. The absorption is higher when the population of
the probed specie is high and the transition has a strong oscillator strength.

The main sources of radiation employed are: continuous radiation sources like
high pressure arc discharges, line sources that emit the line to be absorbed and
coherent sources like dye lasers. The continuous radiation sources are normally
employed to measure absorptions over many lines or bands of atoms or molecules
respectively. The inconvenient is that the emitting intensity is shared in a broad
region of the spectrum and the absorbable energy in a given thin line is feeble.
The line sources such as spectral or hollow cathode lamps are good choices for
line absorption and allow an excellent match between wavelength emitted and
absorbed wavelength. Dye lasers are good to synchronize the emitted and absorbed
wavelength and provide high-photon flux with high spatial, temporal and frequency
resolutions but are more complicate to operate and more expensive. These lasers
sources will be discussed in the next chapter.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI
10.1007/ 978-3-319-09253-9_12

© Springer International Publishing Switzerland 2016 359
J.M.A_H. Loureiro, J. de Amorim Filho, Kinetics and Spectroscopy

of Low Temperature Plasmas, Graduate Texts in Physics,

DOI 10.1007/978-3-319-09253-9_9


http://dx.doi.org/10.1007/978-3-319-09253-9_12
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In this chapter we will study the basis of an incoherent absorption, i.e. absorption
of light originated from line sources, that emit spectra of lines that are absorbed by
the medium under study. This technique induces a very small perturbation of the
plasma and its implementation is very simple.

9.1 Principles of Absorption Spectroscopy

The basis of this method consists in the measurement of the absorption coefficient of
lines related to allowed optical transitions from the energy level we want to measure
the density. The spectral lines are emitted by a reference source, which generates
an incoherent beam of light that passes throughout the medium under study. A very
good reference in this field is the book of Mitchell and Zemanski (1961).

A very simple experimental arrangement is presented in Fig. 9.1. A beam of light
with intensity Iy, emitted by a reference source, i.e. the incident beam intensity,
passes through the discharge tube with length L. The transmitted beam intensity I,
is analyzed with aid of a monochromator or spectrometer.

The incoherent absorption is usually employed in the density measurement
of atoms, ions or molecules in their ground states or still to probe densities of
metastable states that sometimes are more populated than radiative ones. In these
conditions the stimulated emission, discussed in the Chap. 8, is negligible if com-
pared to the absorption. If the concentration of absorbing species is homogeneous
along the absorption length L, the transmitted intensity I, may be written as:

I, = Iye ™F 9.1)

k) is the absorption coefficient of the line for a given value of wavelength A. The
expression for k relies on the line to be absorbed, the nature and concentration
of absorbing atoms or molecules and the line shape of the emitted line and of the
absorbing atoms or molecules and the shape of the emitted line. If the beam, from
a reference source emitting a continuous spectrum is sent through the absorption

L L
lamp : :
source spectrometer
® B I i 1 et >
--------- R N B 0%
\1/> .............................................................. >
Plasma

Fig. 9.1 Sketch of an experimental apparatus for optical absorption measurements
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Fig. 9.2 Intensity of a
transmitted light as a function
of frequency in an absorption
experiment of a

monoatomic gas

Transmitted intensity of ligth I,

column, the intensity of the transmitted beam I, through a monoatomic gas shows a
frequencies distribution, like the one shown in Fig. 9.2.

If the medium under study has an isotropic radiation (emitted or absorbed) with
intensity /, of frequencies between v and v + dv and a population of atoms with the
ground state 1 and an excited state 2, we define the following probability coefficients
(Mitchell and Zemanski 1961):

B 1, = probability per second that an atom in the state 1 submitted to the
illumination of the light beam of frequencies between v and v + dv and intensity I,
will absorb a quantum of energy hv and be excited to the state 2.

Ay = probability per second that the atom in the excited state 2 will sponta-
neously emits in all direction, a quantum with energy sv and pass to the level 1.

B, 11, = probability per second that an atom will undergo the transition from the
level 2 to the level 1 when absorbs an isotropic radiation of frequencies between v
and v 4 dv and intensity /, emitting thereby a photon with energy /v in the same
direction as the stimulating photon.

If the medium is in thermodynamic equilibrium between the radiation field and
the atoms, Einstein showed that;

A2,l _ 87th1)3 g1

9.2)
B> A3 o
and
By _ & 9.3)
B, g

here g; and g, are the statistical weights of levels 1 and 2 respectively, and c is the
velocity of light. The spontaneous emission coefficient A, ; is related to the radiative
lifetime 7 of the level 2 by:
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Fig. 9.3 Infinitesimal slab dx T (em3)
where the probe beam is "
absorbed

i
.

>

1
Ay = 9.4)
T

Consider a parallel beam of light with frequencies between v and v 4+ dv and
intensity /, passing through a layer of thickness dx of absorbing atoms. The layer is
bounded by planes at x and x 4 dx, see Fig. 9.3.

Assuming that in N atoms by cm™ of which §N, are capable of absorbing the
radiation frequency between v and v + dv and in N’ atoms by cm™ with §N, may
emit in this frequency range. Neglecting re-emission, the amount of the light beam
absorbed in the slab is:

I I
d(I,8v) = — | N,dxhvB;, * — 8N.dxhvB,; " 9.5)
4 4

where /v / Ao is the intensity of the equivalent isotropic radiation for the defined

Einstein coefficient for absorption and B, is the Einstein coefficient for induced
emission. Rearranging Eq. (9.5) results:

1 dl, hv
_IV dx Sy = A (31,251\7” —qul(SN;) (96)

From Eq. (9.1) the left-hand side of Eq. (9.6) is
hv ,
kU(SV = 4 (Blyz(SNv — BZ,I(SNV) (97)
b4

Integrating over the whole absorption line profile we obtain:

hU() ,
k,dv = A (Bi12Ny — B> 1N)) 9.8)
T
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where vy is the central frequency of the absorption line profile. Substituting (9.2),
(9.3), and (9.4) into (9.8),

A2 oo N N
/kudv =0 &2 (1 _ & ) (9.9)
T T & N

If the only source of creation of excited state is the absorption of the probe light
beam N’ < N the Eq. (9.9) becomes:

A2 g N
/kudv = 80 &2 (9.10)
TgT

The Eq. (9.10) is very important because it shows that the integral of the absorption
coefficient is proportional to the density N and remains constant when /N is constant.

In the case of a Gaussian profile due to the Doppler effect, the absorption
coefficient of the line is (Mitchell and Zemanski 1961)

AXD),

2
2(A = Ao) Jm}

ky = ky,e 9.11)
ky, is the absorption coefficient at the line center Ao, ALY, is the FWHM of the
absorption line. From Eq. (9.11) it may be plotted k; as a function of the wavelength
A as it is shown in Fig. 9.4.

The total breadth of the curve or FWHM is at the place where the maximum
intensity of the absorption coefficient k. falls to one-half of its value and has a

Absorption coefficient k,
x

1

1

1

1

1

1

]

]

1

1

|

. v
) v ) M ) M ) v ) M 1
VO

Fig. 9.4 Absorption coefficient k; as a function of the wavelength A for an absorption line. Note
the breadth Av at k,,,,./2
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breadth AA. In general, the absorption coefficient of a gas depends on the nature
of the molecules or atoms gas, the particle velocity and the interaction with foreign
molecules or atoms.

In the Eq. (9.11) the absorption coefficient at the line center k), depends on the
Doppler width of the absorption line A)k?/z, the oscillator strength f of the transition
and on the concentration ny, of the atoms or molecules working as absorbers. In
MKS units the expression for k,, is given by Mitchell and Zemanski (1961):

PR \/an 2 . ©.12)
07 deme2\ w A/V?/z v '

where m is the electron mass.

The oscillator strength f of the absorbed line being known, the Eq. (9.12) shows
that the measurement of k,, leads to the determination of the concentration n, of
the atoms or molecules, once the Doppler width of the absorption line is known.

Experimentally it is not possible to measure directly k,, because the monochro-
mators have an apparatus function that need to be taken into account. During the
experiments they are measured the integrated absorption of the line emitted by the
source, the line shape of the transitions of absorbing particles in the medium and the
apparatus function used to record the line. The intensity is given by:

+00
L(AL)=C / Iy (A —y) e IRy dy (9.13)

—00

C is a constant that represents the absolute calibration of the system and F(y) is the
apparatus function of the monochromator used to record the line.

The experimental set-up for absolute concentration measurements is depicted in
Fig. 9.5. Although many configurations may be adopted, we illustrate this chapter
with a system conceived to measure absolute ground state of oxygen or hydrogen
atoms. The set-up is consisted of a microwave discharge lamp that generates the
125 nm or 130 nm resonance lines for absorption measurements on oxygen or
hydrogen ground-state atoms respectively. The lamp in this case is a surface-wave
discharge generated by a Surfatron device and operated with a flux of 2% O,—
98 % He and microwave power of 60 W. The oxygen or hydrogen is injected in the
sense indicated in the figure to reduce the cold absorption layer formed along the
optical path. The buffer gas used in this lamp is helium.

The radiation from the microwave lamp is transmitted through a MgF, window
(optically transparent for Vaccum Ultraviolet VUV absorption experiments) and
absorbed in a dc positive column of 30 cm length. The detection system includes
a VUV spectrometer of 50 cm focal length, a sodium salicylate scintillator, and a
photomultiplier tube (PMT). In this system set-up a PMT for the UV-Vis region
was used and a scintillator was employed to re-emit in the visible region when it
absorbs UV radiation. Photomultiplier tubes with windows in F, and MgF, with
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Fig. 9.5 Typical absorption experimental apparatus for probing atoms in a low-pressure positive
column discharge (Pagnon et al. 1995)

high quantum efficiency, named solar blinds, may also be employed. In order to
improve the signal to noise ratio, a lock-in amplifier was used.

Considering an absorption experiment to probe atoms density in a low-pressure
positive column of a direct current discharge, the atoms are cold and the apparatus
function is much broader than the width of the lines studied. In this case the total
intensities of incident (/p) and transmitted (/,) beams may be written as:

b:/@awz 9.14)

L:/h@n%WM (9.15)

The integration is done along the line profile. The absorption A; over a given
length L is:

Io—1
A= 0" (9.16)
Iy

To relate the absorption A;, with the density of absorbers ny, it is important to
know the profile of the line emitted by the reference source. Profiles of the incident
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line (source) and the absorption line (absorbing medium) need to be known because
they are generally different from pure Gaussian profile as is the case in low-pressure
plasmas.

In order to employ the absorption method developed by Landerburg and Richie
(1913), as presented above, the resonance lamp must satisfy some conditions as
negligible pressure broadening of the line to be absorbed and negleting Stark
effect. The main mechanisms responsible for line breadth need to be natural and
Doppler broadening. As natural width of lines may be considered negligible, the
only mechanism that broadens the line of an ideal lamp is Doppler. It is needed
also to construct a source of radiation that avoid self-absorption of the line inside
the reference lamp. This is not always feasible and very often it is necessary to
work with lamps excited by electron bombardment or with resonance lamps in
which either the vapor pressure or the thickness of the emitting layer or both are
not accurately known. In these cases, is convenient to use for frequency distribution
of the emitted radiation an empirical expression which represents roughly the line
broadening resulting from the vapor pressure and temperature conditions within the
lamp. We will present a procedure to take these effects into account now.

When both profiles, from the incident line and absorption line, are Gaussian
the following coefficient, introduced by Mitchell and Zemanski (1961), is useful
to simplify the expression for absorption.

FWHM of the incident beam (Akf/z) y

= 9.17)
FWHM of the absorption line (A)L?/z) Ak?/z

o =

Ak?,z is representative of the Doppler broadening produced by the movement of
the atoms in the plasma. We can remark that a value of o equal to unity implies
that the line emitted by the lamp is of the same shape (Gaussian in this case) and
breadth as that one of the absorption line of the atom in the absorption discharge
tube, indicating that the reference source and the absorption cell are at the same
temperature. Values of o greater than one represent a line of the same shape and
greater width than that of the absorption discharge tube or cell.
The intensities of incident and transmitted beams may be written as:

2()»7)»0) «/ln 2

Ih(h) = / Io (ho) e_[ Y } d\ (9.18)

_[26=20) s, ?
L) = / IO(AO)e[ ) (9.19)

Supposing the concentration of absorbing species constant along the absorption
length L of the discharge tube and assuming the lines emitted by the reference source
and by the absorption with Gaussian profile, the absorption A; defined by Eq. (9.16),
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taking into account the o parameter, can be written in a form of series like (Mitchell
and Zemanski 1961):

_1)n+1 (kloL)n

o0
(
Al by =3 "

n=1

(9.20)

The Fig. 9.6 depicts graphs, in form of abacuses, of kj,L as a function of Ay, and o
fortherange 0 <« <5and 0.1 < k,,L < 10.

Experimentally with the value of o determined from Eq. (9.17) one can use the
curves of Ay, (¢, kj,L) and find the k,L corresponding to experimentally measured
values of absorption. Using Eq. (9.12), knowing AAY, and f, one determines the
concentration ny, of the atoms or molecules. To illustrate the theory presented until
now we present a case study of evolution of the metastable state of argon >P,, in a
positive column direct current discharge.

ka L

Fig. 9.6 Absorption coefficient kL as a function of the absorption A; and parameter o
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9.2 Metastables in the Positive Column of Ar Direct Current
Discharge

The case proposed is the study of the evolution of the population of *P, metastable
state of argon in a low-pressure positive column of argon using the absorption
apparatus similar to the one shown in Fig. 9.4. This case study is useful to use the
concepts presented in this chapter and to show to the student a practical application
of the absorption spectroscopy in a real experimental situation.

The Fig. 9.7 is similar to the Fig. 3.9 but is reproduced here with more details
needed in the study of evolution of metastable and resonant levels of argon. The
levels 3Py and * P, are metastable state, see the selection rules in Chap. 8. The energy
levels ! P; and * P, are optically connected to the ground state level, so they are called
resonant states.

9.2.1 Study of the Evolution of Metastable and Resonant Levels

To study the evolution of metastable and resonant levels in a positive column of
argon as a function of discharge parameters, we need to establish the balance
between the creation and destruction of the states involved. The conservation
equation for the population of these states with the creation and loss mechanisms
is;

anM

atzlmV%M—P+S (9.21)

where D), is the diffusion coefficient of excited atoms, P is the loss rate of excited
atoms, as a function of time and volume, and S is the creation rate of excited atoms.

Firstly, we describe the form of source term and the loss term, evaluating the
possible destruction routes. After that, we write down an expression for the density
of excited states in the stationary regime.

Initially, lets comment on the source term. In this case, we will take into account
the main process of excited state creation, i.e. the electronic excitation from the
ground state level. An excited state M is created by electronic collision with the
ground state and de-excited by a radiative transition. The source term may be written
as:

S = n.neCM, 9.22)
CM  is the electron rate coefficient for creation of the excited state M and relies on

the electron distribution function, i.e. the electron temperature Tk, n, is the electron
density and ny is the density of Ar atoms in the ground state.
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Fig. 9.7 Schematic drawing of the first excited levels of argon with the transitions from the 3p°
4p levels to the 3p> 4s ones

The destruction of excited states may occur through different ways. Here we will
take into account the most important ones in order to have a general picture of the
kinetics of excited states in a positive column of an Ar direct current discharge.
The destruction pathways discussed are the radiative de-excitation, diffusion loss
to the walls, electron collisions, collisions with neutrals and metastable states. The
radiative lifetime of metastable states is long if compared with the time between
collisions. In these conditions they are destroyed before they emit radiation. The
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resonant states, ' P; and >P; of argon, that are optically coupled to the ground state
levels behave differently. They emit radiation before a collision takes place. This
mechanism of loss is efficient if the photon escapes from the medium. If the photon
is reabsorbed along its path by an atom in the fundamental state, the net radiative
loss is zero. The radiative level behaves as a pseudo-metastable. The theory that
addresses this phenomenon is complex and will not be discussed here. However it
can be remarked that this radiation trap increases as a function of pressure.

In the diffusion of metastable atoms to the walls of the gas discharge tube,
the atoms created in volume diffuse to the walls where they are deactivated. This
mechanism of diffusion creates a radial gradient of excited atoms.

The diffusion frequency may be defined by (Wieme et al. 1980):

Dy

v:A2

(9.23)

A is the characteristic diffusion length; A = R/2.4 for a Bessel radial distribution,
Dy is the diffusion coefficient as stated before depending on the level considered.
For the argon metastable state 3p,, the measured value for Dy, at 1 Torr (Wieme
1980) is:

Dy =32x107°T"% (cm’s™") (9.24)

considering T =300 K, Dy; = 46.42 cm?s™!.

The metastable losses by collisions with electrons are the most important. They
may be responsible for stepwise ionization, which plays a key role in discharge
plasmas. Superelastic collisions reduce de population of metastable states and
increase with electron density. The coefficient for excitation of metastable levels by
electron collisions C.. depends on the electron energy distribution function, i.e. the
electron temperature T.. The metastable states may also be destroyed by collisions
with neutrals. This de-excitation reaction is called quenching. The coefficient for
this destruction is Cyy.

Collisions between metastables atoms may ionize one of the atoms if enough
energy is available; this is called Penning ionization reaction;

AM 4 AM 5 AT e+ A (9.25)

this reaction becomes important when the metastable density ny is around
10'2 cm™3,

From Eq. (9.21) and considering the balance between creation and loss of
metastable states in stationary regime, the density may be written as:

M
nen,C,_,

(9.26)
?\lg + n()C{)—M + neCe—M

ny =
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When the electron density is low the losses by electron collisions may be
discarded and the expression (9.26) is reduced to:

nettoCet (9.27)
ny = .
?\lg + noco—M

The denominator of the above expression is a destruction frequency that relies
on the pressure and the gas temperature but that is not depended on electron
temperature.

On the other hand, if the collision with electrons are dominant the metastable
density is given by:

n,CM
= o 9.28
ny Cont ( )

As can be seen, in this case the density of metastable states depends only on
pressure and electron temperature, the latter through the electron rate coefficients.
As the electron density increases the metastable density increase linearly until a
plateau is reached.

In this case study we will obtain the coefficients C  and C,—y from the
measurements of metastable concentration n;, as a function of electron density #,,
i.e. discharge current. The experimental set-up presented in Fig. 9.5 is composed of
gas discharge tube with inside diameter of 2.6 cm and length of 50 cm. The direct
current discharge is started between an indirectly heated cathode and an anode that
are placed 30 cm from each other. Two tungsten probes placed at a radial position
r = R/2 and spaced 10 cm apart were provided for measurements of the axial
electric field strength and electron density. The population of the *P, metastable
state of argon for various currents and pressures was determined by the resonant
absorption method employing two spectral lines, 696.5 nm (transition 1 ss — 2p,)
and 714.7 nm (transition 1 ss — 2p4). The metastable states may also be destroyed
by collisions with neutrals. This quenching reaction has the coefficient C,—j; which
was proposed, for the state 3P, tobe 1.4 x 107 %cm3s! (Ferreira et al. 1985).

9.2.2 Determination of Metastable Density

In order to determine the metastable density, it is necessary to know some data.
First of all we will complete the table below calculating the Doppler broadening of
the absorption lines, the parameter o knowing that the gas discharge temperature is
300 K and that the spectral lamp source emits a line with Gaussian profile and has
the temperature indicated in the table for each line.

We have the oscillator strengths and the temperature of the source and plasma
gas discharge. The reference lamp employed is a medium with high tempera-
ture and generally is optically thick. In these conditions it can be assumed for
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Table 9.1 Determination of A)tf/z, A)t?/z and o

Wavelength
Transition | (nm) f Tyource (K) | AAS /X107 nm | Thpagma (K)| AAD,x107> nm | o
1ss—2p, | 696.5 2.9x 1072|762 2.18 300 1.37 1.59
1ss—2py | 7147 3.0 x 107% | 358 1.53 300 1.40 1.09

Table 9.2 Absorption on Pressure (Torr) | 1d (mA) | Ay | kL | ArCPy)(em™)
transition 1 ss — 2p,

(696.5 nm) 0.2 0.26 [0.64 |2.52x 10"
0.3 0.34 [0.89 |3.48x 10"

0.4 041 [1.19 |4.68x 10"

0.6 0.48 [1.56 |6.12x 10"

0.8 0.54 |1.93 |7.55x 10"

0.75 1.0 0.58 |2.23 |872x 10"
2.0 0.64 [2.86 | 1.12x 10"

4.0 0.66 |3.27 | 1.28x 10"

6.0 0.69 |3.62 | 1.42x 10"

10.0 0.70 [3.90 | 1.52x 10"

20.0 0.70 |3.88 | 1.53x 10"

didactic proposes that the spectral lines have Gaussian profile with large breadths.
The Doppler broadening of the absorption line is given by:

T(K)
M (1)

mol

Adp =717 x 10—%\/ (9.29)

The FWHM of the source above and then the medium were calculated using the
expression above and then the parameter o was determined (results are in italics)
(Table 9.1).

9.2.3 Determination of the Absorption Coefficient k) L
Using the Abacuses

The Tables 9.2 and 9.3 give the results (italics) of experiments of absorption on the
lines 696.5 nm (pressure of 0.75) and 714.7 nm (pressure of 0.75 Torr) realized
in a positive column of an argon direct current discharge. From the absorption
Ap, for a given pressure and current, we obtain the absorption coefficient ky,L,
using the abacuses of Fig. 9.6. Using Eq. (9.12) we calculate the metastable density
[ArCPy)] em™3.
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Table 9.3 Absorption on Pressure (Torr) | 1d (mA) |AL | kL | ArCPy)(em™)
t;aff;lf&; 5 = 2p4 04 006 |0.097  3.66x 101
71 06 009 [0.132 |5.01x107
0.8 0.11 |0.170 | 6.43% 10"

0.075 10 013 [0.207 | 7.85% 10"

20 022 0364 | 1.38x 10

40 029 0525 |1.99x 10"

60 0325 |0.605 |2.29x 10

100 0331 |0.636 | 2.41x 10"

200 0342 |0.657 | 2.49x 10!

9.2.4 Density of Ar(*P,) State as a Function of Electronic
Density

Employing the continuity equation and assuming the gas temperature equal to
300 K, E/N=100 Td (pressure =0.75 Torr) and E/N =10 Td (pressure = 0.075
Torr), we find the variation of Ar(CP,) as a function of n, for the two pressures
chosen. From Fig. 2 of the paper (Ferreira and Ricard 1983) we may estimate the
drift velocity V; = 8 x 10° cm/s for p = 0.075 Torr, while for p = 0.75 Torr we have
vaq = 10%cm/s.

It can be seen in Fig. 9.8 that the density of metastable Ar(*P,) state and the
electronic density n. increase with discharge current and saturate for currents higher
than 7 mA. When the pressure increases from 0.075 to 0.75 Torr the electronic
density increases and the density of metastable Ar(*P,) state decreases. For the
Ar(3P,) state the main excitation and losses processes can be depicted from the
Figs. 9.9 and 9.10 at low pressure.

The principal collisional and radiative processes used to explain with aid of a
simple kinetic scheme the evolution of populations in the 3p°4s levels are:

Ar ('So) +e — Ar (s)) +e (9.30)

Ar ('So) +e > Ar* + e (9.31)
Ar* = > Ar () + hy (9.32)
Ar (s) +e S Ar (s) +e (9.33)
Ar (s)) +e = Ar (o) + e (9.34)

Ar (pr) — Ar (s;) +hv (9.35)
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Fig. 9.8 Concentration of metastable Ar(*P,) state and electronic density calculated as a function
of pressure and discharge current. The Solid curves and dashed curves are for electron density and
metastable concentration, respectively. (filled circle, filled square) 0.75 Torr and (filled triangle,
filled inverted triangle) 0.075 Torr

Here, Ar('Sy) is the ground state of the argon atom, Ar(py) denotes a level of the
3p54p configuration, and Ar(s;) denotes a level of the 3p°4p configuration. These
latter levels often are referred to as s; latter levels will often be are referred the
correspondence between the values of j and the levels being the same as in Pachen
notation (i.e., s — ' Py, 53 —>Py; s4 —>P;; s5 —3P5) (Figs. 9.9 and 9.10)

As can be seen for currents lower than 10 mA the 3P, state is lost by diffusion
while for higher currents the transitions to other 3p° 4s levels by electron collisions,
directly and via the 3p° 4p levels, become more significate. For higher pressures
the diffusion is less important and the losses by electron collisions become more
intense.

However, at the higher currents the electron collisions establish a strong coupling
between the 3p° 4s levels and redistribute the total excited population among
them. In particular, the 7Py metastable is predominantly created and destroyed
by these excitation transfer processes, directly and via the 10 levels of the 3p°4p
configuration, for discharge currents higher than 10 mA. The P, metastable is
also principally destroyed by electron excitation transfers to the other 3p° 4s levels
at currents larger than about 10 mA. Therefore, the metastable populations tend
to saturate with increasing current as experimentally observed. In spite of the
partial trapping of the resonance radiation the radiative decay constitutes by far
the major loss process for the *P; and 'P; levels and their population increase
steadily with current under the conditions presented in this case study. Owing to
the strong collisional mixing between the levels the radiative decay of the resonance
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Fig. 9.9 Percentage contributions of excitation from the ground state (processes 9.30-9.32, filled
square) and from the other 3p°4s levels (processes 9.33-9.35, red filled circle), to the total
excitation of P, state as a function of the discharge current for p = 0.075 Torr (Ferreira et al.
1985)
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Fig. 9.10 Percentage contributions of various processes to the total loss rate of 3P, state as a
function of the discharge current for p =0.075 Torr: (filled square) diffusion; (red filled circle)
transitions to the other 3p°4s levels by electron collisions, directly and via the 3p°4p levels (Ferreira
et al. 1985)
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levels constitutes at the end the principal process through which the total excited
population and radiative states is lost at higher currents.

Note finally that the ionization of the 3p° 4s levels by electron collisions and
the collisions between pairs of 3p° 4s levels have a negligible effect in determining
the excited populations. These processes play, however, a fundamental role in the
discharge ionization balance (Ferreira et al. 1985).

9.2.5 Electron Rate Coefficients for Creation of the Excited
and Metastable States as a Function of Pressure

The balance between creation and loss of metastable states in stationary regime
given by Eq. (9.26) help us to determine the C¥ | and C,—y coefficients when
the approximations of low and high discharge current are realized according to
Eqgs. (9.27) and (9.28). Considering T=300 K, Dy, = 46.42 cm?s~! and the
characteristic diffusion length A = R/2.405 = 0.54 cm, in the region of low current
and pressure values we can obtain the Cﬁ”_ , coefficient (Table 9.4). It can be assumed
a mean value of C¥ = 7.94 x 10~%cm?® S

In the domain of high current and pressures values we can estimate the C,—y
coefficient, i.e. the coefficient for metastable losses through electronic collisions
(Table 9.5).

It can be assumed a mean value of C,_y; = 1.34 x 1072 cm®s™!. Note that in this
case Dy /A% =159.19 s, n,Copy =3.39x 10° s™! and n,C,—yy =2.95x 108 s~!

Table 9.4 Determination of electron density n,, metastable ArCP,) density
and CM_ coefficient

Pressure (Torr) | Id (mA) |n, (cm_3) Ar(P,) (cm_3) Ci”_ o (cm3s™1h)

0.075 0.4 5.89x 107 | 3.66 x 10" 8.70x 108
0.6 8.83x 107 | 5.01x 10" 7.95%x 1078
0.8 118X 10% | 6.43 % 10" 7.63x 1078
1.0 1.47x 108 | 7.85x 10" 7.48x 1078

For p=0f 0.075 Torr

Table 9.5 Determination of electron density n,, metastable Ar(*P,) density and
C,—p coefficient

Pressure (Torr) | Id (mA) |n, (cm™3) | ArCPy) (cm™3) | Compr (cm3s™!)

4.0 4.71x10° | 1.28x 10" 1.5x 1072
6.0 7.07x10° | 1.42x 10" 1.35% 1072
0.75 10.0 1.18x 10" | 1.52 x 10" 1.26 x 1072
20.0 2.36x10'% | 1.53x 10" 1.25x 1072

For p=10.75 Torr
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justifying the assumption of the collisions with electrons are dominant for
metastable losses.

In the next chapter Laser Spectroscopy techniques will be introduced to probe
atoms and molecules in low-temperature plasmas. They are based on absorption of
photons produced in a coherent beam of light as a laser. This technique opens many
other possibilities to interrogate reactive species if compared with classical emission
and absorption spectroscopies presented in Chaps. 8 and 9.

Exercises

Exercise 9.1. A 5 Torr pressure hydrogen discharge is operating with a current of
40 mA, a gas temperature of 400 K, electron temperature of 1 eV, and dissociation
degree of 3.31 x 107,

(a) Find the density of atoms in the discharge.

(b) Supposing a Boltzmann distribution for the population of excited states,
determine the density of atoms in the levels n=2 and n = 3.

(c) In the detection of excited atom density, explain why atomic emission is more
sensitive to discharge instabilities than atomic absorption.

(d) If during an experiment the absorption measured was 0.42 for an absorption
path of 10 cm, find the absorption cross section for the H(ls) — H(2p)
transition.

Resolution:

(a) The density of hydrogen atoms in the discharge may be found once the
dissociation degree is known.

p=NkTthen N = [ = 532 =121 x10"m™ = 121 x
107em™3.

[H] _ —4
(] = 3.31 x 1077, so

[H] =331 x 107* x [Hy] = 3.31 x 107 x 1.21 10"7cm™ = 4.0 10"*cm™

) Ny =Nexo— (2 [ir)
For the n = 2 and n = 3 levels the corresponding energies are:

E = _13.626V
n 9
forn=2; E, = =% = —34¢eVand for n=3 E; = -3¢V =
—1.51eV

N> = 4x 10" exp— ((13‘6 - 3~4)/1) — 1.40 x 10%cm™>
Ny =4x 108 exp— (13011 /1) =2 24 10%em


http://dx.doi.org/10.1007/978-3-319-09253-9_8
http://dx.doi.org/10.1007/978-3-319-09253-9_9

378 9 Absorption Spectroscopy

(c) Atomic emission is severely affected by fluctuations in temperature since the
intensity is dependent on the number of atoms in the excited state. However, in
the case of atomic absorption, the intensity depends on the number of atoms in
ground state that absorb energy. The number of atoms in ground state is very
high as related to the number of atoms in the excited states as can be seen by a
simple calculation;

Ny _ —5 Ny _ -
N, =3.5x 107 and i = 5.6 x 10 6

(d) The absorption experiment may be described by the Lambert-Beer law:
I, = Ipexp — Nol

The absorption is givenby: A = 1 — II(’) ,then0.42 =1 — ;(’) which results:
0.58 = exp (—4 x 101 x o x 10)
o =1.36x10"cm™2

Exercise 9.2. A portable monochromator registered a current of 80 pA when
detecting a radiation in an absorption experiment. The dark current response was
eliminated putting a shutter in front of the entrance slit and zero current was
recorded with no light striking the detector. The absorption medium was replaced
and a new current of 50 pA was recorded. Determine:

(a) The transmittance of the medium

(b) The absorption coefficient of the sample.

(c) The transmittance of the sample when the absorber is replaced by one another
with concentration that is one fourth of the former.

Resolution:

(a) Iy corresponds to a relative value of 80 while /; corresponds to a relative value
of 50, therefore:

I, 50
T="=""x100% = 62.5%
Iy 80
(b) The absorption is given by:
I, 50
A=1-"=1-7"=038
Iy 80

(c) The transmittance becomes % higher when a medium with lower concentration
is used:

50 1
A=|1- x =0.09
80 4
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The transmittance may be obtained from:

i
T="=1-A=091
Iy

Exercise 9.3. In gas discharge spectroscopy, we are interested in the identification
of chemical species absorbing or emitting radiation as well as in the determination
of their populations as the gas discharge parameters are changed. These qualitative
and quantitative analyses often require different monochromator slit widths. Explain
why the regulation of the monochromator is necessary.

Resolution: For identification of chemical species absorbing or emitting radiation,
i.e. in a qualitative analysis, wide slits are usually employed in order to increase light
throughput, increasing the sensitivity of the measurement. Wide slits in qualitative
analysis will result in overlapping of peaks losing spectral resolution. However, in
quantitative analysis, i.e. the determination of species density, the use of narrower
slit widths is required to improve resolution and thus to catch the small spectroscopic
features in details to identify a given specie.

Exercise 9.4. A gas discharge tube in argon operates at 1 Torr with a discharge
current of 30 mA and has a length of 10 cm. An absorption apparatus is employed to
measure the metastable atomic density (1ss) employing the line 696.5 nm originated
from a lamp source with a FWHM of A/\f n =2X 10~ nm with a coefficient
a = 1.33. Find:

(a) The gas discharge temperature
(b) Knowing that the measured absorption is 0.4, f = 2.9x 1072, determine the argon
metastable atomic density Ar(1ss).

Resolution:

(a) To determine the gas temperature we need first to obtain the FWHM of the
Doppler broadened profile.

AXY) D 2%1073 nm —3
thus ALY, = =15x10"" nm

¢ = .p =
AN, 1/2 1.33

Adp =717 x 1077 ¢ \/MT(“?);
mol

-3 -7 T(K)
1.5x 107" nm = 7.17 x 107" x 696.5 nm x \/ )
T=360K
(b) Using the abacus of Fig. 9.6 and knowing that a is 1.33 and A = 0.4, we find
that k;,L = 0.91. As the absorption length is 10 cm, k3, = 9.1 m™!.
We know that:

P \/mz 2
7 deome2 V' n AAID/z‘ M
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Substituting the values:

2

e In2 2 5 10, —3
9.1 = 3 X 2.9%x 107 X ny;ny = 5.68 x 10 cm
deomc? V 7w 1.5x 1073 nm

Exercise 9.5. In chemistry, it is common to use the absorbance rather than
absorption, which is defined as the common logarithm of the ratio of incident to
transmitted radiant power through a material.

I
A =log (IO

t

) = —logT = ebC

where I, is the transmitted intensity of light, Ij is the intensity of light received and
T is the transmittance of that material. & is the molar absorptivity (cm™'M™!), b is
the sample thickness and C is the analyte’s concentration.

Consider a line source that emits radiation at two wavelengths, A and A . The
absorbance at these two wavelengths are designed as A” and A”". When the two
wavelengths are measured simultaneously, the resulting absorbance is:

[T
A=1log|° + °
I, +1,

If the molar absorptivity at A" and A~ is the same, show that the absorbance is given

by: A = ebC.
Resolution:

A = log (j‘)) =ebCandA = log (;0) =& bC substituting in
I+ 1,
A=1log| + b
I, +1,

1072 5CT, + 107¢ *€1;
A = —log ( ot 0

results:

Iy+1,
As the molar absorptivity at A and A is the same, i.e. & =¢ = ¢;

I/ I//
A= —log 107¢ —log (1(’) L(),) = &bC
0 0
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Chapter 10
Laser Spectroscopy

In order to improve the existing plasma techniques and to develop new processes,
physicists and engineers need predictive models based on plasma physics, chemical
physics and hydrodynamics. The knowledge of physical and chemical data must
be checked or determined through experiments. Moreover, the reproducibility of
a process is largely related to the control of some determining plasma parameters,
which can be performed through diagnostics. For all these reasons plasma diagnostic
techniques are of fundamental importance. In the last 30 years, many types of
plasma diagnostics have been developed (Lochte-Holtgreven 1968; Donnelly et al.
1990; Preppernau et al. 1993; Jolly 1995), each of them allowing one to access one
or more plasma parameters, but no one being able to fully characterize plasmas. So,
plasma physicists have to simultaneously or successively use various diagnostics
depending on the objective of their study. Among the main techniques currently
used to characterize plasmas we may mention electric and magnetic probes, mass
spectrometry, emission and absorption spectroscopy and laser-based techniques.

At the region close to surface, at the interface surface-plasma, a region called
sheath is characterized by high gradients of the main parameters that constitute the
plasma. The diagnostics need to be done “in-situ” by non-perturbing methods with
good spatial-temporal resolution.

The most commonly used of all these diagnostics is undoubtedly plasma-induced
emission (PIE) spectroscopy. This very sensitive, in situ, non-intrusive, easy-to-use
and relatively inexpensive technique, based on the spectral analysis of de-excitation
radiation of the excited species, is employed in a large number of situations.
Moreover, PIE allows spatial and temporal resolution for heterogeneous, time-
dependent or transient plasmas. Optical emission spectroscopy is very useful in
order to detect atoms, radicals or molecules present in the plasma, but it concerns
only the excited species that have concentrations that are quite low compared to their
parent species in ground or metastable states. The mass spectrometry diagnostic
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technique is also useful for the detection of numerous molecular species, including
large molecules not accessible by PIE, but this ex-situ diagnostic gives no spatial
resolution.

Laser-based plasma diagnostics constitute a complementary technique allowing
in situ detection of ground-state atoms, small molecules and radicals. The charac-
teristics of the laser techniques are related to those of the lasers. The directivity of
the laser beam allows high spatial resolution, the relatively short pulse duration,
with pulsed lasers, is useful for temporal resolution, the narrow spectral line width
permits the selectivity of the species and the high flux, with a focused laser
beam, allows transitions with weak absorption cross sections. Laser-based plasma
diagnostic techniques have largely contributed to advances in the understanding of
active plasma kinetics. These diagnostics have achieved a tremendous evolution
since the 1970s and the development of solid-state lasers changed the picture of
laser-based diagnostics.

The spectroscopy based on lasers to diagnose plasmas, initially devoted to
fundamental research, to probe the main species and parameters of plasmas,
nowadays are used to monitor processes like deposition of thin films, advanced
nanotechnologies products, solar cells, highly efficient combustion motors, and
treatment of cancer cells.

Ideal diagnostics need to help to access to fundamental data that intervenes in
the equations governing the plasma, like Boltzmann equation, Poisson equation,
transport equation etc., it means the species densities, their distribution functions
as a function of energy and the electric field that is responsible to accelerate
charged particles. It is also important in the control of processes measuring for
example the deposition/etching rates, end-point detector and analyzes the surface
state. Nowadays we are far to have all the techniques needed to measure and control
the species and processes. Moreover, a certain number of spectroscopic measures
are possible aiding to determine local properties of plasmas as:

* the nature and density of certain reactive species like atoms, molecules/radicals,
ions in their neutral or excited states.

* temperature or energy of these species: gas temperature, vibrational and rota-
tional temperatures, translation energy

* electric field

With relation to the surface, the laser diagnostics may give a certain number of
information about their physical properties, electric and chemical composition of
the substrate.

The laser systems currently used for plasma diagnostics are composed of two or
three parts; the first one is the laser source used to pump the dye, the more current
sources are solid-state Nd: YAG lasers with two possible pump wavelengths (532 and
355 nm, which are, respectively, the second and third harmonics) and excimer lasers
emitting in the near-ultraviolet (307-380 nm, depending on the gases used); the
second part is the dye laser containing a dispersion system in the laser cavity, which
ensures a continuously tunable wavelength within the spectral range of the dye. The
total spectral range obtained with the various dyes available covers the near-UV
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and visible region (350-800 nm) (Amorim et al. 2000). It is worth to mention that
accordable OPO solid state lasers are becoming a very attractive solution to tune the
laser wavelength with transitions in atoms and molecules; the third component of the
system is the UV generator system to extend laser emission toward the ultraviolet
region (A > 200 nm) by frequency doubling and/or mixing the dye laser in nonlinear
crystals.

In this chapter we will introduce in Sect. 10.1 the principles of laser spectroscopy
followed by an explanation of many gas lasers in Sect. 10.2, solid-state lasers
in Sect. 10.3 and liquid lasers in Sect. 10.4. Experiments with absorption of one
photon are presented in Sect. 10.5. Absolute density measurements are discussed in
Sect. 10.6 while multiphoton laser induced fluorescence is studied in Sect. 10.7.

10.1 Principles of Laser Spectroscopy

The discovery of lasers revolutionized the spectroscopy given the opportunity to the
experimentalist a monochromatic light source, powerful, directive and sometimes
tunable. These properties enable the laser source to be an instrument that is not
comparable with others used in spectroscopy, allowing by its spectral finesse the
selective excitation of atoms and molecules, by its directivity diagnostics with an
excellent spatial resolution and by the spectral power density the excitation of
transitions with low absorption coefficient or multiphoton processes.

The atom or molecule excited by the absorption of one photon may, if the
excited level is a radiative state, lose all or part of its energy emitting one photon
of fluorescence. This is the principle of the laser-induced fluorescence (LIF). This
technique is the most popular between the laser-based techniques and allows one to
obtain information about the population of ground-state or long-lived, non-radiative,
excited-state atoms (see Table 10.1), molecules or radicals (see Table 10.2). This
technique has been employed for many years for diagnostics in flames (Aldén et al.
1982), combustion (Arnold et al. 1990) and plasmas (Amorim et al. 2000). The LIF

Table 10.1 Some atoms detected by one-photon LIF (Amorim et al. 2000)

Plasma
Species | source Transition Ataser (M) | Agyorecene (NM) | References
Al RF 3p2P° —4s2S |39 396 Omenetto et al. (1984)
As RF 4p3 480 —554P | 193 245 Selwyn (1987)
Cu RF 4525 —4p2p° | 325 325and 510 | Leong et al. (1986)
Fe Magnetron | a’D —y >D° 302 382 Hamamoto et al. (1986)
Ge RF 3p? 3Py — 4s3P; | 265 275 Hata et al. (1987)
Mo RF alS="p° 313 317 Omenetto et al. (1984)
Si RF 3p? 3Py — 4s3PY | 251 253 Roth et al. (1984)

Zn RF 42 1S —4ptpe 214 214 Leong et al. (1986)
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Fig. 10.1 Energy scheme of the laser induced fluorescence detection in (a) atoms and (b)
molecules

scheme can be depicted as a two-step process. First, a specific atomic or molecular
species in its ground state |1) (energy E;) is excited by resonant absorption of
laser photons (hv,,) to a higher energy electronic level |3) of energy E3 with
hviser = E3z — Ej. Then, the excited state relaxes by spontaneous emission of a
fluorescence radiation to a lower state |2) of energy E, with hvyp = E; — Ej.
The LIF radiation is emitted in the whole space surrounding the interaction volume
between the laser photon and the target. A simplified three-level scheme of LIF in
atoms and molecules is given in Fig. 10.1.

The LIF spectroscopy can be used in two different ways: as in fluorescence
spectrum mode or excitation spectrum mode. In the fluorescence spectrum mode,
the laser frequency is fixed at one absorption frequency of the species studied and
the fluorescence spectrum, which corresponds to the allowed radiative transitions
towards lower energy levels, is recorded by scanning the spectrometer wavelength.
In the latter case, the laser frequency is scanned and the induced fluorescence is
observed through an optical filter or a low-resolution spectrometer.

The fluorescence is detected when the laser frequency matches a resonant
absorption between the levels |1) and |3). In this case, high spectral resolution can
be achieved since it depends only on the line width of the laser and of the absorption
line, as illustrated in Fig. 10.2.

To implement laser-based diagnostics there is a large range of lasers available,
some operating in continuous mode and others pulsed. In this last case the repetition
frequency may have a key role if we consider the average power delivered.
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Table 10.2 Examples of molecules and radicals detected by one-photon LIF (Amorim et al. 2000)

Species | Plasma source | Transition Alaser (NM) Aftuorecene (M) | Reference

BCl RF ATl - X'zt 272 272 Gottscho and
Mandich
(1985)

CCl RF A2A - X'zt 278 278 Gottscho et al.
(1982)

CF Pulsed B2A — X°II 193 194 Hansen et al.
(1988)

CF, Pulsed AlA—> X'A 248 and 266 | 257 and 271 Hansen et al.
(1988)

C12+ RF A2 — X2 386 396 Donnelly et al.
(1982)

CH ECR B2y~ — X1 387 390 Jacob et al.
(1994)

CH ECR A2AT > X1 413 430 Jacob et al.
(1994)

CH Microwaves Ciy~ — X2 314 314 Hummernbrum
et al. (1992)

CN DC B?’Y — X2% 388 421 Hayaud et al.
(1997)

FeO DC By — Xy 579 609 Niemi et al.
(2001)

N, T DC BT — X2zt 1391 428 Davis and
Gottscho
(1983)

NH DC A3 — X33~ 336 336 Amorim et al.
(1995)

NO Pulsed A2YT > X 226 248 Fresnet et al.
(1999)

OH Afterglow A2YtT — X210 281 and 284 | 312 Adams et al.
(1989)

SiCl Afterglow B’y — X211 275 and 295 | 280 and 320 | Singleton et al.
(1992)

SiH RF AZA — X210 413 413 Tachibana et
al. (1991)

SiH, Afterglow A'B - XA 580 618 Kono et al.
(1993)

SiN DC B?Y — X°% 396 414 Walkup et al.
(1984)

Sio PECVD ATl - X' 221 248 Van der Weijer
and Zwerver
(1989)

For a given spectroscopic diagnostic, fluorescence spectrum mode or excitation
spectrum mode, the laser need to be fixed in frequency or emitting in a broad range
of frequencies where it is tunable.
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Fig. 10.2 LIF scheme when
the data acquisition is done
when the probing laser is
scanned over the absorption
line profile of the atom or
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The continuous and fixed frequency noble gas lasers most employed are He-Ne
and the ionic ones Art and Kr™. The former due to its low power, some mW, are
used in few diagnostic techniques, e.g. interferometry. The ionic lasers, mainly Ar™,
containing a tube with a length of the order of 1 m, can generate 10 W or 20 W of
output power in the green spectral region at 514.5 nm, using several tens of kilowatts
of electric power. The voltage drop across the discharge tube is few hundred volts,
whereas the current can be several tens of amperes. The total wall-plug efficiency is
thus very low, usually below 0.1 % (Paschotta et al. 2008). The laser can be switched
to other wavelengths such as 457.9 nm (blue), 488.0 nm (blue-green), or 351 nm
(ultraviolet) by rotating the intracavity prism. The highest output power is achieved
on the standard 514.5 nm line. Without an intracavity prism, argon ion lasers have a
tendency for multi-line operation with simultaneous output at various wavelengths.

There are similar noble gas ion lasers based on krypton instead of argon. Krypton
ion lasers typically emit at 647.1 nm, 413.1 nm, or 530.9 nm, but various other
lines in the visible, ultraviolet and infrared spectral region are accessible. Multi-
watt argon ion lasers can be used, e.g. for pumping titanium—sapphire lasers and dye
lasers. They are in competition today with frequency-doubled diode-pumped solid-
state lasers. The latter are far more power efficient and have longer lifetimes, but are
more expensive. Argon tubes have a limited lifetime of the order of a few thousand
hours. An argon laser may thus be preferable if it is used only during a limited
number of hours, whereas a diode-pumped solid-state laser is the better solution for
reliable and efficient long-term operation. The gas lasers present, in the absence of
intracavity line narrowing optics, a linewidth that can be of the order of 1 GHz.
On the other hand, the laser linewidth from stabilized low-power continuous-wave
lasers can be very narrow and reach down to less than 1 kHz. Although these lasers
have a very narrow linewidth the spectral domain is limited. They are employed
essentially in absorption experiments to dose density of species when the laser must
have a linewidth that is very low if compared with the Doppler broadening of the
absorption line.



10.2 Gas Lasers 389

The pulsed lasers are generally more simple design and are more employed in
plasma diagnostics. They are customarily cheaper and easier to use. In the next
sections we will present some examples of these lasers.

10.2 Gas Lasers

These lasers are composed of a low-density gas medium where the broadening of
the laser line is small, few GHz, due to the weak influence of the line broadening
mechanisms if compared with solids. Doppler effect in this case essentially governs
the broadening because the pressure of the gas in the discharge tube is on the order
of few tens of Torr. The excitation is governed by the electrical current circulating
in the gas but other mechanisms like chemical pumping, gas expansion or optical
pumping may be found. The gas lasers addressed in this book will be the ones more
employed in spectroscopy diagnostics, i.e. nitrogen, excimers, cooper vapor lasers
and CO,.

10.2.1 Nitrogen Lasers

The nitrogen lasers are the most simple and less expensive of the vibronic lasers.
Its most important oscillation is at 337 nm, belonging to the category of self-
terminating lasers, i.e. laser transitions cannot be continuously operated due to the
accumulation of population in the lower laser level. The laser action occurs in the
transition C °TI, — B 3Hg, the Second Positive System of Nj. The C 311, state
is excited in a gas discharge tube and has a lifetime of 40 ns while the lifetime of
the B 3T1 ¢ state is 10 s reason why this class of laser cannot operate in continuous
mode. In the gas discharge tube a high pressure mixture is usually employed with
40 mbar of nitrogen in 960 mbar of helium. With nitrogen lasers high power pulses
of some MW may be obtained with short duration, around 10 ns and the repetition
rate may attain 100 Hz. Energies of some mJ may be used to pump dye lasers
enabling to obtain tunable laser beam with some pJ of energy.

10.2.2 Excimer Lasers

Excimer lasers are included in an important class of molecular lasers where the
transitions occur between different electronic states of excimers molecules. These
molecules are formed by excited dimer. The excited electronic states show a
minimum in the potential curve while the ground electronic state is repulsive,
meaning that stable molecules cannot exist in this state. The stable bound molecule
exists only in the excited state forming a dimer. If a large fraction of molecules
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is excited in a given volume, the laser action can then occur on the transition
between the upper-bound state and the lower-unbound (free) state, i.e. a bound-free
transition. The first excimer laser was done in Ne; by Basov et al. (1971) in 1971
emitting at A = 170 nm.

These lasers present interesting properties; since the transition occurs between
different electronic states the emission is in UV range of the spectrum. As the lower
state of the transition is a repulsive or quasi-repulsive state the emission present
a feature of a broad continuum. Actually the gas discharge medium is a mixture
of rare gas (Kr, Ar, Xe)-(F, Cl) halogen gas that leads to the formation of the
excimer molecules. The most important examples are ArF (A = 193 nm), KrF
(A = 248 nm), XeF (A = 351 nm) and XeCl (A = 309 nm).

10.2.3 Cooper Vapor Lasers

Cooper vapor lasers are employed in applications where the high-peak power is not
necessary like in high-speed photography, micromachining and also to pump dye
lasers. One important application is in ?*>U isotope separation where large facilities
based on cooper-vapour pumped dye lasers exists in some countries. In this last
case many modules of hundreds of watts has been built. The main transition of this
laser is 2P — 2§ /2 transition, which is allowed by electric-dipole, emitting photon
in the green (A = 510 nm) and in the yellow (A = 578 nm) colors. Commercially
available cooper-vapour lasers have powers of 100 W and pulse duration of 30-50 ns
with high-repetition rates up to 10 kHz.

10.2.4 CO, Lasers

The laser transitions occur between two vibrational levels of the CO, molecule.
These lasers generally employ a mixture of CO,, N, and He to improve the
efficiency. Is one of the most powerful lasers in the market with output powers
of 100 kW and efficiencies up to 20 %. The main laser transition wavelength is
at A = 10.6 pm. Nitrogen is used in the mixture to boost large population in the
upper laser level while helium is responsible to remove population of the lower
laser level. The laser tube works generally with total pressures of 20 Torr in a
gas mixture of 1:1:8 of CO,:N,:He when operating in continuous mode. The CO;
lasers may have some constructional designs like in axial flows, sealed, waveguide
transversely excited atmospheric pressure (TEA) for example. Typical applications
of these lasers in the industry are cutting metals, marking and ablation of metals and
plastics.



10.3  Solid-State Lasers 391
10.3 Solid-State Lasers

Solid-state lasers belong to a class of high-density active media lasers well used in
spectroscopy. In this subsection we will present some general concepts, engineering
details with emphasis in its main performances like wavelengths, output power or
energy, wavelength tunability etc. These lasers are generally produced from the
introduction of an impurity, ions belonging to the transition elements of the periodic
table, in a transparent dielectric host material in crystalline or glass structure. In
particular, rare-earth or transition metal ions have been used as active impurities. For
the host material crystals like Al,O3 or fluorides like YLIF, are the most used. The
combination of oxides enables to form a synthetic garnet as Y3Al50;, (called YAG
for the acronym for yttrium aluminum garnet), which is one of the most popular
examples. Ions A’ site can accommodate transition metal ions while Y3* is used
in combination with rare-earth ions due to geometrical properties of these sites.
The rare-earth elements used to build lasers are Nd, Er, Yb, Tm and Ho while for
transition metals we have Ti, Co, Cr, and Ni.

Undoubtedly the most popular solid-state laser is the neodymium ones. The host
is a crystal YAG in which some of the Y3* is replaced by the Nd** ions. Some other
host media may be YLiF4 or YVO,. The doping levels are some % in Nd:YAG
lasers. The main pumps bands are at 730 and 800 nm. These bands are coupled
by non-radiative decay to the upper level of the laser transition “Fs;. The laser
action occurs in a transition 4F3/2—>4I“ 2 at 1.064 pm. The long lifetime of the
upper level, around 230 s, makes the Nd: YAG lasers very suitable for Q-switched
operation and its broad emission bandwidth is suitable to operate in mode-locking
to generate picosecond pulses. Nd: YAG lasers may operate in continuous or pulsed
mode, being pumped either by lamps or AlIGaAs semiconductor lasers (Svelto et al.
1998). Flash lamps configurations are used in when one or two lamps are used to
illuminate the rod, according to the desired performance of the laser. Gases used in
the lamps are Xe, with pressures of 500—1500 Torr, and Kr, pressures of 4—6 atm,
when the operating mode is pulsed or continuous respectively, with output powers
up to 3 kW. Continuous output powers of 15 W are obtained for longitudinally
diode-pumping and 100 W for transversely diode pumping scheme. Efficiencies of
10 % was mentioned in diode pumping while 3 % is a good value when lamps are
employed as pump element.

Applications such as drilling and welding demands Nd:YAG lasers with pulse
energy of 5-10 J and pulse duration of 1-100 ms at repetition rates between 10
and 100 Hz. Other uses of these lasers are in the medical domain where it is useful
in coagulation and tissue evaporation. Through an optical fibre and with aid of an
endoscope, the beam may be sent to stomach, lungs and bladder. In spectroscopy
Q-switched lasers with energies of hundreds of mJ and pulses from 0.1 to 20 ns and
repetition frequencies of 10-50 Hz are used in the pupping of dye lasers. For that
second-harmonic (A = 532 nm), third-harmonic (A = 355 nm) and even fourth-
harmonic (A = 266 nm) of the fundamental wavelength may be used in a variety
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of spectroscopic diagnostics like probing atoms and molecules in low-temperature
plasmas or in combination with many dyes to generate a broad range of wavelength.

Tunable solid-state lasers are today a class of lasers much used in spectroscopy.
The most important tunable solid-state lasers are Alexandrite (Cr:BeAl,Oy),
Ti:sapphire and Cr:LiSAF among others. Titanium Sapphire laser is undoubtedly
the most widely used tunable solid-state laser. It operate over a broad tuning range,
from 660 to 1180 nm, being the largest bandwidth laser. Ti:Sapphire lasers may
be pumped by the green beam of an Ar laser. In pulsed operation mode it may be
pumped by the frequency doubled Nd:YAG at 532 nm, as well as flashlamps may
also be employed. Relatively large energy devices, with energies from 20 mJto 1J
with pulse width of 20-100 fs is a sophisticated apparatus to be used in the study of
fast reaction kinetics.

Another class of lasers are the ones based in semiconductors. They are usually
not included in the solid-state lasers, due to the pumping mechanisms and laser
action be quite different from that employed in solid-state lasers. These lasers are
very important today because of the large variety of applications in spectroscopy but
also as pump source of solid-state lasers.

10.4 Liquid Lasers

The lasers in liquid media are generally tunable and made of a dye laser pumped
by a fixed frequency laser described above. The dye lasers have an active medium
constituted of an organic solution in a solvent as ethyl or methyl alcohol, water
or glycerol (Svelto et al. 1998). Organic dyes belong to the group of polyatomic
molecules with long chains of carbon atoms with unsaturated bonds. Example of
these groups of molecules are; (a) polymethine dyes used in lasers oscillating in the
red or infrared (A = 0.7 — 1.5 wm), (b) xanthene dyes when the laser operates in
the visible region (A = 400 — 700 pwm) and (c) coumarin dyes which oscillate in the
blue region (A = 400 — 500 pwm). These molecules have an extended absorption
band and a wide fluorescence spectrum. This is due to the large number of ro-
vibrational levels and the effective line-broadening mechanisms in liquids which
result in an unresolved structure at ambient temperature. The solution of these
complex molecules absorbs the radiation in a region of the spectra, according to
their chemical structure, and emits at higher wavelengths;

Ai(dye) > Aj(pump) (10.1)

With these lasers tunable radiation may be generated from near UV until near IR
(350-900 nm) according to the dye employed and the wavelength of the pumping
laser. An example of the region obtained with a dye laser pumped by the second
harmonic of an Nd-YAG is presented in the Fig. 10.3.
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Fig. 10.3 Spectral domain obtained with a dye laser pumped by the second har-
monic of a Nd:YAG laser (http://www.spectra-physics.com/products/high-energy-pulsed-lasers/
cobrastretch?cat=tunable&subcat=pulsed. Accessed in November 2014)

The transitions between singlet and triplet states of the dye need to be evaluated
in order to adjust the decay time and the quenching rate of these states for pulsed or
continuous operation of the laser.

The dye lasers pumped by continuous lasers enable to obtain a monochromatic
beam with very high finesse and stable in frequency with resolution of about 1 MHz.
The power delivered in this case is lower than 1 W.

On the other hand, the pulsed lasers, of simplest conception, are characterized by
lower linewidths, less than 1 GHz, but they are capable to deliver peak powers of
10 MW, which may be useful to generate harmonics with aid of non-linear crystals
thus to produce an enlargement of the spectral domain of the source.

The spectral domain of dye lasers covers wavelengths from 350 to 900 nm
according to the pumping laser source used. To extend the range of application
of these lasers, non-linear crystals are used enabling the harmonic generation or
frequency addition. Others techniques of frequency conversion may be employed
like that using the Raman Anti-Stokes effect. In this case a cell with hydrogen at
high pressure is employed to generate a UV laser beam.

To make use of frequency conversion techniques using crystals the dye laser
power needs to attain a certain threshold value because these non-linear effects have
conversion efficiencies that strongly rely on the power of the incident radiation.
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For example, in the case of second harmonic generation through a KDP crystal the
conversion efficiency is around 50 % for an incident beam power of 500 MW but it
is only few percent in the case of powers lower than 1 MW.

The KDP (potassium dihydrogen phosphate) crystal allows to extend the wave-
length domain of the dye laser to UV range until 218 nm, the limit of KDP
transmission. The wavelength range of a dye laser pumped by a Nd:YAG laser
may be enlarged by using a BBO crystal (8 barium borate) which allows to go
to 198 nm. One example of harmonic generation and frequency addition is found
when the experimentalists need photons with 205 nm to detect hydrogen atoms in
its ground state. This can be achieved in the following way;

Dye laser " kpP | Second harmonic BBO |  Addition of frequencies
Vo — 2vg, Vo - vg= 2vp+ 1y
A=615nm A =3075and 615 nm A = 205,307.5 and 615 nm

The separation of the different beams is done with aid of a Pellin-Broca prism
placed at the exit of the BBO crystal. For example, with a dye laser delivering 70 mJ
at 615 nm, 1.5-2.0 mJ of energy can be obtained at 205 nm.

10.5 One-Photon Laser Induced Fluorescence

The one-photon LIF is the simplest case of laser diagnostics. It is desired when we
are interested to probe the density of the fundamental state. The correlation between
the fluorescence signal and the concentration of the ground state is easy to work out.

Considering a collection of atoms (or molecules) where a classical three level

scheme can be depicted as in Fig. 10.1. The ground state ‘1> with density n; and
energy E| is submitted to a laser beam in order it may absorb laser photons (hv )
and may be excited to a higher electronic level ‘3> of energy Es with hvy, =
E; — E|. The excited state relaxes by spontaneous emission emitting a fluorescence
radiation to a lower state ‘2> of energy E, with hvyp = E3 — E,. The LIF radiation

is emitted in the whole space surrounding the interaction volume between the laser
photon and the target with a signal intensity given by:

Inip X A3y m3 (10.2)
where A3_; is the Einstein transition probability for spontaneous emission and 3 is

the population density of the excited level |3). The evolution of the density of the
level |3), assuming a non-saturated absorption, is given by:
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dn
= (nl - g1n3) Wiz —n3 (03 + A3) (10.3)
dt g3

where n, is the ground-state population density, g; and g3 are the statistical weights
of the levels |1) and |3), respectively, Wi_3 is the excitation rate due to the
absorption of the laser photons is given by;

Wi—3 = B3 (10.4)

B3 is the Einstein absorption coefficient, I; is the laser intensity which can be
expressed as the number of photons of energy v, that takes place in the excitation
process. The quenching rate of the level |3), due to the collisional depopulation, Q3
is given by;

03 = Ky [M] (10.5)

where K,y is the quenching coefficient and [M] the gas density. A3 is the sum of
the spontaneous de-excitation probabilities of the level |3) toward all the lower
levels which equals to the inverse of the mean radiative lifetime of level |3). For
measurements made at a time scale > f,,,, being #,, the laser pulse duration, two
situations can be found; low-laser intensity and high-laser intensity.

In stationary regime dns/dt = 0, at low laser intensity, the LIF signal is
proportional to the n; population and to the laser intensity according to:

Az
Iip = CB13lm

10.6
Az + 0Os (106)

where C is a calibration factor that relies on the geometry and the spectral response
of the optical imaging and detection system. In principle, it is possible to calculate
the absolute density n; provided that all the constants and calibration factors are
known. In practice this is rarely the case and in most experimental situations the
factor C is very difficult to evaluate. The light detected comes from the gas volume
formed by the interaction of the laser beam and the collected optical field of the
detector. In general this volume is very small, lower than mm?, providing measures
with a very good spatial resolution. Strictly speaking one cannot talk about a
stationary regime for a short laser pulse. However, if the laser pulse duration is
short when compared with the characteristic time for excited atomic state relaxation,
the Eq. (10.6) remains valid in a first approximation and it express the maximum
intensity of fluorescence as a function of the laser intensity /; and the concentration
n1. An estimation of typical values allows us to obtain the detection limit of one
photon LIF of about 10° — 10° particles cm™>.

At high laser intensity the absorption on the |1) — |3) transition may saturate
during the laser pulse. The density n3 becomes so high that the level |3) is destroyed
by stimulated emission induced by the laser beam. In this case the laser induced
de-excitation |3) — |1) occurs equilibrating the population between the levels |1)
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and |3). When this occurs a further increase of the laser intensity has no more effect
on the population n3. In this condition the density n3 is given by:

B
ny = p =8y (10.7)
B3 81

and the LIF intensity is independent of the laser intensity /; and proportional to the
concentration 7;;

83 Az
n

Iyr=C
Hr g1 1A3+Q3

(10.8)

Actually complex non-linear phenomena related to finite spectral width of the laser
might appear for high laser energies. Only density matrix equations may describe
precisely the pumping of atoms and molecules by resonant laser radiation and
the LIF mechanisms discussed above must be considered as merely descriptive.
However, in most conditions used in plasma diagnostics, the rate equation approach
is largely sufficient to describe the evolution of population density of the states and
the emission intensities. A two-level system is adequate to describe the physics
involved in the LIF process when the laser probe pulse duration is much shorter
than the radiative lifetime of the excited state created by the laser absorption. The
density of species of the excited state n3(At,.,) at the end of the laser pulse with
duration Aty is given by (Amorim et al. 2000):

S
n3 (Atigser) = 83 n {1 _ e[—(S+1)A3—2ATIam]} (10.9)
g1+g S+1

here S is the saturation parameter given by:

g1+ &3
83

S= A3__11/ B3 (V) Ujaser (V, V) dv (1010)
v

is result from the convolution of the spectral absorption coefficient B;_3 (v) with
the spectral laser energy density us.-(v, ) which relies on the radial position r of
the laser beam. If the fluorescence time is long compared to the laser pulse duration,
we need to consider a three-level system with all radiative and non-radiative loss
terms of the level ‘3> Assuming that the collection of fluorescence photons starts

just after the end of the laser pulse, the fluorescence signal is given by:

ls At
1 Al‘aver A —t/t tdA dl
LF = /// 13 (Atigser) Az—e™ " dt dA d 10.11)
L Asam 5T [T—etT] ({1 — ey gg



10.5 One-Photon Laser Induced Fluorescence 397

Gated
acquisition
electronics
—— | 7 5
Photomulti;)l_ielr /\ eCollected
tube : s LIF radiation

Spectro-
meter

Triggering
and laser
wavelength
control

r—

Pulsed,
tunable laser
system

Joulemeter

L]

Probe laser
beam

Plasma
power
supply

Fig. 10.4 Schematic diagram of a typical set-up employed in LIF diagnostics

where At is the time for signal integration, /; is the length of the interaction volume,
between the probe laser and the species, which is determined by the slit width
and height of the spectrometer, and 7 is the effective lifetime of the excited state
of the species being studied, in the interaction volume. The detection volume the
Eq. (10.11) needs to be evaluated taking into account losses due to diffusion out of
the volume being probed.

The spatial dependence of the laser beam energy is considered in Eq. (10.11)

by the integration / dA over the front end (A) of the volume under study. To

determine the absolutae specie densities from the LIF measurements, each term in
the Eq. (10.11) needs to be evaluated in order to find a relation between Iy and n;.

A typical set-up employed in the LIF diagnostics is shown in Fig. 10.4. As can
be seen the detection of fluorescence is done perpendicularly to the laser beam.

The region probed is imaged onto the entrance slit of a spectrometer by optical
lenses. The spectrometer is adjusted to transmit the fluorescence wavelength with a
bandwidth of typically 2-3 nm. The LIF light may be detected by a photomultiplier
tube, where the resulting electrical signal is integrated, averaged and stored in an
acquisition data system triggered by the laser. The detection gate depends on the
radiative and collisional lifetime of the fluorescent level. It should be as short
as possible in order to limit the quenching effect, which can become important,
depending on the species, for pressures greater than a few Torr. The spatial
resolution is obtained by moving together the laser beam and the optical detection
system. A direct spatial resolution can be obtained by imaging, through an optical
filter, the interaction volume onto the photo-cathode of a gated, CCD intensified
camera.
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10.6 Absolute Calibration Procedures

The detection of species by LIF leads only to relative values of the densities. Abso-
lute values can be obtained through the knowledge of the laser beam characteristics,
of the spectroscopic constants involved in the process, and the careful calibration of
the optical detection system. Alternative calibration techniques can be made by sub-
stituting the probed plasma medium by a source of known species concentration or
by using other absolute measurement technique with the same plasma. In the latter
case, the degree of confidence of the calibration is largely related to the possibility
of generating plasmas as similar as possible for both the absolute concentration
measurement and the laser-based diagnostic calibration if they are not performed
simultaneously. The techniques usually employed in the absolute calibration method
are resonant absorption spectroscopy, resonance enhanced multiphoton ionization
(in afterglows only), titration and Rayleigh scattering. Another method is based on a
comparative measurement at a spectrally close two-photon resonance of a noble gas
(Niemi et al. 2001). In this chapter we will discuss briefly the Rayleigh scattering,
readers interested in others calibration techniques may refer to (Amorim et al. 2000).

One of the main difficulties in calibrating LIF experiments is the evaluation of
the factor K, see Eq. (10.11), which takes into account the geometry and the spectral
response of the optical imaging and detection of the fluorescence.

The factor K can be determined by a Rayleigh scattering calibration performed
with the same system (laser and detection) as in the LIF experiment. The Rayleigh
signal at a laser frequency vg = wg/27 is expressed as:

do

1
SR =KI dA Algser Wigser (V, 1) d 10.12
R SnG 0 heon /A /VC taser Ulaser (V, 1) dv ( )

where ng is the density of the gas used to perform the Rayleigh scattering (for
example N,) for which the Rayleigh scattering cross section do/dS2 is known. The
Rayleigh signal, like the LIF signal, depends on the spatial profile of the laser energy

density; this leads to the identical integrationterm | dA writtenin Eq. (10.11). This

A
technique is particularly suitable in LIF experiments for which the wavelengths of
the laser excitation and fluorescence detection are identical or very close. This is the
case for numerous atoms, molecules and radicals (see Tables 10.1 and 10.2).

10.7 Multiphoton Laser Induced Fluorescence

Atoms belonging to the first three lines of periodical table of chemical elements like
H, N, O... have important role in the physics and chemistry of low-temperature
plasmas. The figure below shows a typical energy diagram of the first levels of these
atoms.
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Fig. 10.5 Energy levels diagram of light atoms (H, C, N, O, Cl....). The left side of the figure
corresponds to an one-photon excitation while the right part describes a two-photon excitation
scheme

The first excited level is found at energies > 80, 000 cm™! above the ground state
energy level corresponding to transitions with wavelengths < 125 nm. In this case
the one-photon laser induced fluorescence is difficult to be implemented because
lasers in the VUV are needed. The solution consists in exciting the atom to the
first allowed two-photon transition. The wavelength of the laser for a two-photon
transition is > 200 nm corresponding to a spectral domain of certain dye lasers, see
the right part of the Fig. 10.5. The excited atom may emit spontaneously a photon
and de-excite to a lower level, radiating a photon in the visible or near-infrared.
It may also absorb another photon and then be ionized. These two mechanisms of
de-excitation and ionization, may have the same probability. In the first case we have
a fluorescence induced by two-photon excitation while in the second case there is a
creation of electric charges such that in an electrical discharge may induce a photo-
galvanic effect, i.e. the modification of plasma impedance by absorption of light.

In the two-photon absorption case the equations governing the evolution of states
are more complicated than the one-photon pumping scheme, see Fig. 10.6. For an
ideal atom with three levels and considering the ionization we have:

dl’l3 Ise

g [n1—n3] Wi 3—n3 {W3,+034+A32} =B, . 8D (v) [n3—n2] (10.13)
where W) 3 is the excitation rate of level 3 due to absorption of two photons, W3 ; is
the ionization rate, Qs is the quenching rate of the level 3, see Eq. (10.5), A3» and
Bs, are the Einstein coefficients for spontaneous and induced emission respectively,
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and I, is the two-photon allowed laser induced stimulated emission associated with
the transition 3 — 2. The excitation rates for a two-photon interaction and ionization
are respectively given by:

2
o 03;
SO nd s, =

10.14
V] hl)l ( )

Wiz =

where ¢, is the laser power density, o 3 the cross section for two-photon absorption,
03, the ionization cross section and v, is the laser frequency. As the cross section for
two-photon absorption is feeble, the laser power density needs to be high in order
the rate excitation of level 3 be large enough to produce a large number of induced
fluorescence photons.

To pump the transition 1 — 3, usually one needs to use a lens to focalize the laser
beam in the region where the interaction is induced. For example, using available
commercial lasers, it is possible to obtain power densities higher than 100 Wem ™2
with a laser beam of 1 mJ of energy. The multiphoton transition occurs at the focal
volume where photon density is higher.

In general, where the depopulation terms of the level 3 are comparable, a simple
reasoning is not possible. If the multiphoton excitation is high a population inversion
may occur between levels 2 and 3 (n3 > nj). The stimulated emission created
induces a non-linearity and it is necessary to solve the Eq. (10.13) together with
the differential equations that govern the evolution of states 1, 2 and of the ions
formed by photon absorption from the level 3. One still needs to add to the coupled
ensemble of equations regulating the levels population, a set of equations describing
the intensity of stimulated emission in the focal volume, as well as an expression
for the spatio-temporal distribution of the laser flux ¢;. The equations governing the
evolution of each level are:

d 2
mo_ (nl _& n3) “23"51 + mAs, (10.15)
v
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dn2

B3s1,,
=mAzp — mAr + 325 an (1) (n3 _ & nz) (10.16)
dt c 9

d 7 i B Ise
n3_ (nl—gln3) o130 s (03, ¢Z+Q3+A3,2) B 3,2 20 (1) (n3_g3n2)

dt £3 ]’ll)] h\)[ 82
(10.17)
dn; 03,i¢1
= ' 10.18
dt 3 hy; ( )

n; (j =1,2,3,i) are the concentration of the appropriate level j, hv, is the laser
photon energy, o 3 is the two-photon excitation cross section, 03 is the ionization
cross section, g; is the statistical weight of the level j, A; is the spontaneous emission
rate coefficient for a transition from the level i to level j, O3 is the quenching
rate coefficient of level 3, Bs, is the Einstein stimulated emission coefficient for
a transition form the level 3 to level 2, c is the speed of light, and gp(v) is the
Doppler line-shape factor.

In this solution some reasonable approximations need to be made such as
considering negligible the quenching of level 2, see Fig. 10.6, the redistribution
of population between levels 1 and 2 due to the quenching of the level 3, and
ignoring the radiation trapping in the transition 2 — 1. If the quenching of level 3
is negligible the problem is strictly limited to a four levels system and the following
closure relation is imposed:

n(=0)=n +n+n3+n (10.19)

This system of differential equations is difficult to solve analytically and in
general only a numerical solution is possible. As the stimulated emission is not
isotropic one needs to take into account the geometry of the convergence of the
laser beam (caustic) and to integrate in space and in the focal volume.

As an example of comparison between theory and experiment, a simulation
is performed for the detection of hydrogen atoms, by two-photon absorption
LIF (TALIF), with the following parameters: laser beam diameter D = 0.5cm,
divergence @ = 5 x 10™* rad, lens focal length f = 35 cm. A Gaussian distribution
profile is assumed for the laser power density ¢;, as a function of both the radius r
and the time ¢, is given by:

2
¢ (x,r, 1) = Py, (20) exp |:—8(}:)) - (t_rto)z] (10.20)
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where ¢,, is the maximum intensity of the laser flux att = 7o, r = O and x = 0, rg
is the radius of the circle determined by the intersection of a plane perpendicular to
the laser beam and the caustic at distance x, § is the parameter related to the radial
distribution of the laser beam, 7 is the FWHM of the laser pulse duration, and x is the
distance along the beam path. The intersection of surfaces at planes and the caustics
at x = 0 and x are respectively, Sy = 7b* (with b = f 6/2) and S, = nr}. The
interaction volume is a stretched pseudo-hyperboloid of cylindrical symmetry [5]. In
this example for detection of hydrogen atoms the geometry dimensions charactering
the interaction volume are for length 2f20/D = 2.45 cm and diameter f = 1.75 x
1072 cm. In this example the diffusion of detecting atoms out of the interaction
volume is neglected and the laser pulse duration is < 10 ns.

In order to take into account in the calculations the evolution of stimulated
emission, the volume needs to be divided into small transversal slices in which
¢(x) is assumed constant. In each slice the coupled set of rate Eqgs. (10.15, 10.16,
10.17, and 10.18) are solved. To take into account the propagation of the two-photon
absorption laser induced stimulated emission (TALISE), the photon transport
equations in the forward and backward directions are solved simultaneously with
the rate equations for each specific slice, considering the flux coming from adjacent
cells, as shown in the Fig. 10.7.

The photon transport equations are:

dlxef 83 B3,2lsef
=|n3—""m " gp (W) hv + A3 n3AQgp (v) hy (10.21)
dx 2 c

dIse B Ise
b= _ [(m _& nz) 3.2sep gp (V) hv + A3 on3AQgp (v) hvi| (10.22)
dx 2 c

Isef

XV

Iseb

(o \

dny
dt

Fig. 10.7 Scheme of the geometry of focused laser beam. I, and I, are respectively the forward
and backward intensities of TALISE induced by TALIF
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Table 10.3 Constants used

. . . . Parameter | Value Unity
in the solution of differential 50x10-2 P
equations (Amorim et al. @13 Ox cm
2000) 03, 9.0x 1072 | cm?
Aj 4.7 % 10° s—!
A3z 4.4x107 s
B, 1.09 x 10*7 | cm’J~!s72
03 19.9 x 10710 | em3s™!

where hv is the fluorescence photon energy, /. sef and /,,, are the TALISE intensities
in the forward and backward directions, respectively, and AQ and AQ  are the
fractions of the isotropic spontaneous emission that contribute to the TALISE in

both directions, given by (Amorim et al. 2000):

(L—x)

R [@-»? +512]2

(10.23)

where L is the length of the interaction region, x is a given position region, and d
is the diameter. Considering only in x coordinate, the above system of equations
was solved in one dimensional space. When the number of cells increases, rapid
convergence is obtained.

In certain conditions the depopulation of the level 3 by TALISE is negligible
when compared with other loss channels, e.g. spontaneous emission and quenching.
As an example we may cite the low-pressure discharges when the concentration of
atoms is generally weak and/or the laser power density is not high. The repopulation
of the level 3 due to reabsorption of radiation is also negligible.

The solution of the rate equations coupled to the equations for photons trans-
portation is possible if the terms that intervene in the equations, such as Einstein’s
coefficients, cross sections, quenching coefficient and the experimental parameters,
e.g. ¢i(x, r, 1), are known.

The Fig. 10.8 shows the evolution of the populations n;, ny, n3 and n; obtained
by solving the differential equations taking into account the TALISE and the
data shown in Table 10.3. In this condition if the laser energy is constant and
the discharge pressure does not change, i.e. the density of ground-state atoms is
constant. The fluorescence signal is proportional to the concentration n; of the
ground state n;. It can be observed a depopulation of the ground state level n; after
the laser pulse and the creation of ions with density 7;.

The TALIF and TALISE, integrated over the laser pulse duration, are shown in
Fig. 10.8. It can be noticed that the TALIF and TALISE intensities are calculated
in this simulation as functions of the laser energy and compared with experimental
results for a ground-state hydrogen atom density of 10'#cm ™.

In Fig. 10.9 the TALIF and TALISE intensities, theoretical calculations, and
experimental points, are plotted as a function of the laser pulse energy. It can
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Fig. 10.8 Temporal evolution of the population 7, ny, n3 and n; obtained through the resolution
of differential equations for the particular case of hydrogen atoms. The numerical resolution was
realized for the following conditions: H ground-state atom density of 10'* cm™; laser energy
(at A = 205 nm) 1.0 mJ with a laser pulse of 5 ns duration. The coefficients used are given in
Table 10.3
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Fig. 10.9 TALIF and TALISE intensities as a function of the laser pulse energy. Calculated (/ines)
and measured TALIF (filled square) and the TALISE (filled diamond). The numerical results and
measured TALISE intensity are normalized at the laser energy of 0.8 mJ
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Table 10.4 Examples of

. Atom | Transition A[ax('r (nm) Aﬂuomxcem‘e (nm)
atoms detected by TALIF in C 22 3P — 353D 230 910
the ground state (Amorim P =P
et al. 2000) Cl 3p° 2P0 —dp *s° | 233 725,775
F 2p° 2P° —3p2D° | 170 776
H 1s 28 —3d*D 205 656
N 2p3 480 —3p4D° | 211 869
(6] 2p* 3P —3p 3P 226 845
S 3p*'D—4p'F 288 166.7
I 5p° 2P° —2p D° | 304.7 178.3
Xe 5p0 18 —dp4se 250 828

be noticed a good agreement between theory and experiment. The intensity of
TALIF is calculated over the whole solid angle while for TALISE the intensity is
integrated along the laser emission direction. Experimental and calculated curves
are normalized for a laser pulse energy of 0.8 mJ. In this figure, the TALISE signal
is represented below the TALIF to give an insight in the threshold for TALISE
with respect to the TALIF behavior. It can be observed that TALISE threshold is
at 0.23 mJ which corresponds to the region where a TALIF begins to saturate. In
this case TALISE exponential region is reached just after the threshold followed by
a saturation region.

In Table 10.4 a list with some species detected by TALIF is presented. Two-
photon absorption LIF is the diagnostic technique currently used for the detection
of atoms in which their first excited levels have energies > 6.5 eV.

Two laser photons, with wavelengths between 200 and 305 nm, are simultane-
ously absorbed to induce a resonant transition between the fundamental and the first
excited electronic level allowed by the two-photon transition selection rules. The
fluorescence signal is observed at the wavelength corresponding to the radiative
de-excitation of this level towards, generally, the first excited level of the atom.
In this scheme, where two-photons are absorbed, the probability for excitation is
much weaker than that for the one-photon LIF. This necessitates the use of high
laser fluxes (Iju50r > 108 Wcm_z), which are obtained by focusing the laser
beam in the region probed. The experimental arrangement is typically the same
as that used in one-photon LIF except the focusing of the laser beam. The detection
threshold for TALIF is in the range 10''=10'>cm™3. When varying the laser energy,
the TALIF intensity increases as the square of the laser energy and then saturates
at larger energy. Additional depopulation pathways of level 3, see Fig. 10.6, such
as the ionization by absorption of a third laser photon giving REMPI (Resonance
Enhanced Multiphoton Ionization) and the TALISE, are presented. These techniques
can be used as alternative diagnostics to TALIF.

In this chapter it was presented a brief overview of the main laser-induced
fluorescence diagnostics used to probe atoms, molecules and radicals in plasmas.
In the next chapter applications of low-temperature plasmas will be presented.
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Exercises

To detect atoms dillluted in a molecular gas with density [M], the laser induced
fluorescence may be employed. These atoms have three levels called 0,1 and 2
(Fig. 10.10). The level O is the fundamental state (energy Ey = 0) with initial
concentration ng. The levels 1 and 2 are excited electronic levels, optically coupled
between them and with the fundamental state. They have energies E; and E, with
E, < E.
Exercise 10.1. Describe the experience that allows to detect these atoms by one
photon laser induced fluorescence wavelength. Obtain the wavelength of the laser
and fluorescence.
Resolution: The scheme of the energy levels are:

The laser excitation frequency may be obtained by (Fig. 10.10):

E = hv; thus v, = EZ;EO. Asc=Av — A = 2’;, considering that £y = 0.

The wavelength of the fluorescence is Ay, = Ez"_hEl .
Exercise 10.2. Due to the laser interaction with the atomic system, the levels 1 and
2 will attain densities n; and n,. Write the expression for the fluorescence emitted
intensity by the excited atoms.

Resolution: The expression for the fluorescence emitted by the excited atoms is:
Iﬂm, =K nzAzﬁlhl)

where K is a constant related to the optical and response of the collection apparatus
system.

Exercise 10.3. Write the equations for the evolution of the concentration of different
energy levels in the approximation of low-power laser. Show and express the
different of gain and loss terms.

Resolution: We are interested to describe the time evolution of the densities of
levels involved when the laser power is low.
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dn()

o —noWoo + mAsrg+ niAip

d}’ll

= mAz1 — mAi
dt

dl’lz

a noWoo2 — n20r — mpAszg— mAs

For each level the gain terms are positive in the expression and the negative ones are
the loss terms.

Exercise 10.4. If a continuum laser is used as probe, calculate the laser induced
fluorescence intensity as a function of atoms concentration.

Resolution: If a continuum laser is employed the fluorescence intensity as a
function of atoms concentration is given by:

Lo = K nyAs 1hv
The time dependence of population of the level |2) is given by:

dnz

P noWoa2 — naQr — naAszg— mAs

Ldny
In steady state: ;> = 0, so.

noWoo = n20s + mAsrg + nAs;

noWo,2
ny =
0>+ Az + Az
Considering that Wy, = By 21, the intensity of fluorescence may be written as:
Azl
Iﬂm, =K no B(),zl] hv

Or +Ar0+ Az,

Exercise 10.5. What happens if the laser probe becomes intense? What are the
consequences for the populations of different energy levels? Consider go, g and
&> as the statistical weights of the levels.
Resolution: When a very intense beam is used to probe the atoms, the transitions
become saturated. In this case, we have:

d}’lz

P noWoz — maWag —ny (02 + Az +Az1)

The saturation has the tendency to equilibrate the populations of levels 0 and 2. The
expression for saturation is

no Woo = naWso
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Exercise 10.6. If the ionization energy of the atoms is such that, hv < E; < 2hv,
where v is the laser frequency employed in the induced fluorescence experiment,
how can be modified the rate equations, obtained in question 3, to take into account
this effect?
Resolution: As the ionization energy is hv < E; < 2hv, where v is the laser
frequency employed in the induced fluorescence experiment the equations given
in question 3 should take into account the absorption of one photon that ionizes the
atom (Fig. 10.11):

and the equations become:

dl’l()
P —noWoo2 + mAsrg + nidip
d}’ll
= mAz1 — mAi
dt
dnz
P noWoo —naWa; — nma0r — mAszo — mAs

Exercise 10.7. Consider the fundamental energy state of density ny = 10°cm™ and

energies of the first and second excited levels equal to: E; = 16, 667 cm ! B, =
28,571 cm™!. The Einstein emission coefficients of the upper and intermediary
levels are 5 x 107s™! and 2.5 x 10%s™!. Calculate the absorption coefficient for
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the transition from the ground state to the upper level. Considering go = 1, g1 = 3
and g, = 5.
Resolution: Given:

Ao =2.5x10%""

Ay =5x107s7!

1 1
A= = = 8.4 x 10"°cm = 840
E»—E; (28,571 —16,667)cm™! cm nm
Ao 8mhvd Ayg  8mhv?
= D, _ !
B2 o Boa ¢
Aro 8o 8mhv? gy 8xh
Bo, & ¢ o A3
Arodd  52.5x 108! x (840nm)?
Bo, = g2 AyoA’ x 1077 > (840nm)”" _ 445 5 1023152

g0 8mhc® 1 87 x 6.62 x 107 *Js

Exercise 10.8. In the approximation of low-power probe laser and considering
negligible quenching and ionization, what is the laser energy in a spectral interval
unit needed to obtain the concentration n, = 10~%ny? Calculate the photon density
that corresponds to a laser spectral interval of Av = 2.5 GHz.

Resolution: Considering O, = 0 and W, ; = 0, the laser energy density in a spectral
interval to obtain the concentration n, = 10 %n is:

dl’lz

=0= nOWO,Z — nzAz,o - n2A2,ls
dt

noWor = 107%ng (Aso + A1),
Wo2 = Boalig (w)

1070 (A20+A21) 1070 (2.5 x 10°+5x107) 57!

=6.74x1072' ITm™3s
Bos 4.45x102m3J—1s2

lig (w) =

The density of photons for the spectral interval Av = 2.5 GHz is:

) Lg(w) Lg(@)A 6.74x1072Im™3s x 2.5x10%s7'x 840x10~°m
n(v) = = =

hv he 6.62x1073* Js x 3108ms~!

= 7.13 x 107 photons/m?
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Exercise 10.9. The photo-ionization cross-section of the upper state is 0 = 2 x
10"cm?, the quenching coefficient is k,y = 2 x 107"cm’s™ and [M] =
2 x 10'm™3. Calculate the different terms of gain and loss terms and discuss
the approximations done in exercise 10.8.
Resolution: Let us evaluate the approximations committed in exercise 10.8

We have: 0; = 2x 107"cm?, kyy = 2 x 107 cm’s™ and [M] = 2 x 10"m=3.

In the equation for the temporal evolution of the state with n, density:
‘Z’tz = noWor —maWs; — nyQs — mAsz o — nA;,; the gain and loss terms are:

Gain: I’l()W(),z
Loss: noWy i, 1202, n2Az0, n2Az

Woa = Boalig (0) = 4.45x 102 m* 171572 x 6.74 x 1072 Im s = 300 5!
[=6.74x10"2' Im s x 2.5x10%s 7 '=1.69x10"" Im > =1.69x10""Jem ™3

1.69 x 1077Jcm™3x 840x10 ¢cm

1% i=0;CQ=0;C
2i= 01! 6.62x1073* Js

l LA —19 .2

=0; =2 X 10 X

ho o;C he cm
Wy =429x1077s7!

0> = kg [M] =2 x 107 %cm’s™ x 2x 10%cm™ = 457"

Arg =25 x 10%7!

Ay =5 x 107571
Calculating the gain and loss terms:

noWos =2 x 10"%ecm™ x 300s™! = 6 108cm3s~!
maWa; =2x10"%m™> x 4.29x 107's7! = 8.58 x 10°cm s~}
nyQr =2 x 10%ecm™> x 457" =8 x100cm™3s7!
Ay =2x10%m™ x 2.5 x 1% =5x10%cm™3s~!

Ay =2x10%m™3 x 5 x 10°s7! = 108cm™3s™!

By the results, it can be concluded that: noWy 2, n2Az0, mAz1 > mW,;, nQs
justifying the approximations assumed in exercise 10.8.
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Chapter 11
Applications of Low-Temperature Plasmas

Low-temperature plasmas are present in a broad field of technological applications
and experimented an enormous growth after the end of the twentieth century. The
most important examples of applications are lamps, pretreatment of polymer mate-
rials, packaging materials, treatment of surfaces, waste, air pollution mitigation,
microelectronics, and flat panels display. Recently new applications in medicine,
pharmacy, foods, biology, biomass and biofuel processing, attracted the interest of
the industry and the scientific community.

The purpose of this chapter is not to be exhaustive but illustrates some important
industrial and technological applications. The fields where low-temperature plasmas
are being employed today is vast, rapidly growing, and cannot be described in
a single book chapter, so clearly well beyond this textbook. Of course, much
will be left out, however a special emphasize will be stressed here in these new
breakthrough applications of plasmas in health science, production of biofuels and
agriculture.

11.1 Plasmas for Materials Processing

Plasma technologies are being used in industry due to their ability to offer a wide
spectrum of possible treatments of materials. These plasmas are in fact source of
heat and reactive species that have unique physical and chemical properties induced
by charged particles. The main applications of these discharges are (Bonizzoni and
Vassallo 2002): destruction of toxic/harmful materials, superficial modification of
materials and creation of new materials.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI
10.1007/ 978-3-319-09253-9_12
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In industry basically two kind of plasmas are employed; the plasma torches which
are thermal plasmas produced at high pressure by direct current, alternating electric
fields like RF or microwaves. These plasmas have electron temperatures around
1 eV and low-ionization degrees. One important application of these plasmas is the
mitigation of toxic-harmful substances or, as in the case of the plasma spray, to
produce coatings of thick films.

Low-temperature discharges a kind of plasma characterized by the electron
temperature higher than the ion temperature. It may be excited in low-pressure,
with low power with help of DC, RF or microwave sources. Nowadays cold
atmospheric plasmas are another option to create active species to treat materials.
The interactions of particles with the materials produce the modification of the
surfaces adding different functional properties with respect to the bulk of the
material.

One example is the change of functional characteristics of any organic materials,
since the plasma gas is at room temperature, and the organic samples cannot
withstand high-temperatures. Some properties of the surfaces can be modified
with help of electrical discharges. The plasma treatment processes produce low
environmental impact, competitive costs and particularly the possibility to modify
the surface properties of any materials. The reactive particles of the plasma, through
collisions with the material surface, break the chemical bonds producing free
radicals on the surface. These are subjected to additional reactions that depend on
the type of gas plasma used. This results in generation of layers on the surfaces
that have very different properties with respect to the bulk. The type of modification
depends on the pretreatment and composition of the substrate, on the type and the
quantity of reactive gas, the total reactor pressure, on the type of excitation power
source and the process time. Now we will present some plasma applications in fields
like modification of polymers, aeronautical, chemical, biomedical, automotive,
microelectronic and textile industries.

The polymers are a class of materials with excellent optical, structural and
chemical properties, however, they are characterized by low surface energy. This
property directly reflects the ability of adhesion of other materials on its surface, for
example, glues, inks, primers, adhesives, printing, among others (Vurzel and Polak
1970). Plasmas may be employed to functionalize the surface creating functional
groups increasing the surface energy. Many industries make extensive use of
polymers in packing and health care for example.

In a recent article Fuerst et al. (2015) deposited coatings by plasma-enhanced
chemical vapor deposition at low temperature onto a variety of substrates including
flexible polyethylene terephthalate (PET) and CdTe solar cells. The authors did
a design, fabrication, and evaluation of flexible, multilayer optical films using
hybrid nano-laminates consisting of TiO, and silicone (SiOxCyH,) as high and low
refractive index materials. They obtained an increase in the absolute transmission
of about 3 % over 410-850 nm wavelengths. An infrared reflector was designed and
applied to PET which was found to provide 70 % reflectance in the near-IR while
maintaining >80 % transmittance for visible light. The optical performance of these
flexible coatings on PET remained unchanged after automated bend testing, and
were shown to be robust with respect to humidity and thermal shock tests.
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Another important application is the production of polycrystalline diamond
coatings by microwave, RF or DC plasmas. Diamond films have many potential
applications as: wear-protection, coatings on tools, low-friction coatings, optical
components coatings, high-temperature electronics and heat sinks. Diamond has the
highest thermal conductivity and excellent electrical insulation. The dissipation of
heat with elements coated with diamond film reduces the temperature in transistors
by more than 100 °C (Suchentrunk et al. 1997). Diamond-like carbon (DLC) films
present an extremely low-coefficient of friction which is useful for lubricant-free
bearings.

Modern aircraft industry uses various materials in pursuit of high performances.
Among them, aluminum, carbon fibers, glass fibers, resins, polymers, steel, tita-
nium, and composites. Neverthless, there is an intrinsic difficulty in joining these
materials. As most often the glue is made with water-based materials, plasma
technology significantly increases the power of accession allowing the use of
materials that were previously not used due to superficial difficulties.

For maintenance reasons aircrafts have to be stripped from time to time. Today
the removal of thick paint films is performed worldwide by using toxic chemicals.
Alternative processes using plasma stripping is especially desired for small and
medium-sized aircraft components (Suchentrunk et al. 1997).

In the industry, various chemical processes using powders with lower solubility
are employed. With the aid of plasma technology one can let them water soluble,
for example, reducing production costs and time needed for the preparation of these
powders.

Many processes in non-equilibrium low-temperature plasmas which are of
commercial interest are (Vurzel and Polak 1970): oxidation of nitrogen contained
in air in microwave plasma, production of C,F, in glow discharge, decomposition
of nitrous oxide in silent discharge, synthesis of hydrocyanic acid in a nitrogen-
methane mixture, reduction of tetrachloride titanium by means of hydrogen,
reduction of zirconium halides, production of boranes (B,Hg, BioHj¢, etc.), and
hydrazine.

In the biomedical industry, plasmas may be employed for various applications
whose results provide very high performance products like:

* Bonding gaskets in gastric tubes;
* Bonding of plastic parts and injected joints;
* Increased adhesion between metal-adhesive-polymer parts

Low-temperature non-equilibrium plasmas have been extensively used in the
modification of surfaces in order to manage the interactions between materials and
biological systems, rendering the treated surfaces biocompatible. Plasma processing
in the health-care by transformation of biomaterials experimented spectacular
growth in the last years. New materials and modified surfaces have different
functionalities, for example, to enhance the adhesion of living cells; non-fouling
coatings tailored to inhibit completely the adhesion of biomolecules, cells and
bacteria “in vivo”. These plasmas are also employed to grow primer layers for the
immobilization of peptides, enzymes, antibodies, and other types of biomolecules.
Another interesting application is in the design of “smart” drug-release systems.
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Fig. 11.1 Plasmas in automotive industry (Suchentrunk et al. 1997)

The automotive industry requires high performance materials (d’ Agostino et al.
2005), mechanical properties with superior feedback and efficient solutions and low-
cost. Poor compliance or inadequate wettability is one of the problems commonly
encountered when using materials such as glass, polymers in general, composites
and metals. Operations requiring adhesion and bonding with advanced adhesives,
paint, varnish and coatings can be solved with the application of plasmas (Fig. 11.1).

The microelectronic industry is no doubt the more successful application of
plasmas in industry. The 1970s have seen a rapidly growing of plasma technologies
in microelectronics, like in dry etching processes for large scale integrated (LSI)
circuits, and plasma diagnostic methods to monitor the processes of etching.
Emission spectroscopy started to be applied extensively in attempts to understand
etching, deposition mechanisms and kinetics, coupled with the surface analysis
techniques to characterize the etched silicon and correlate with the radicals and ions
produced in gas phase. The current dimension, down to 90 nm, has only become
possible through massive research and investment in plasma like etching, PECVD,
and surface modification or cleaning. Today, two-thirds of all process steps in the
fabrication of semiconductor devices involve plasmas, and this trend is steadily
increasing. The annual growth rate in last years in this sector has been roughly 20 %
(Suchentrunk et al. 1997). Plasmas processing is also playing an ever-increasing
role in the production and processing of solar cells, and in fabricating amorphous or
microcrystalline thin layers of silicon by PECVD.

Plasma technology can be used in pre-treatment of surfaces to increase adhesion
of solder, printing and marking, silicon wafer bonding, and removal of surface metal
oxides, for example. Of course, newly manufactured fabrics have low interaction
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with pigments. The fabric treatment implies a hydrophilizing of the surface. With
this treatment, the absorption of the pigment is made much more efficiently, i.e. with
the same amount of dye, pigment can be a larger amount of tissue.

11.2 Biomass Processing and Biofuels Production

The development of methodologies to satisfy needs of the present life without
compromising those of future generations is an urgent issue for the modern society
affecting the developed and developing countries in order to promote advances in
new energy sources, materials, food and the design of new cities.

In the context of energy, despite of significant growth in proven and predicted
fossil fuel reserves over the next two decades, notably heavy crude oil, deep water
wells, and gas, present great uncertainties in the economics of their exploitation
via current extraction methodologies. More crucial is that an increasing proportion
of such carbon resources cannot be burned without breaching the United Nations
Framework Convention on Climate Change (UNFCC) targets for a 2 °C increase in
mean global temperature relative to the preindustrial level. There is clearly a rising
energy demands, predicted to climb 50 % globally by 2040 and the requirement to
mitigate current CO, emissions and hence climate change.

Similar considerations apply to ensuring a continued supply of organic materials
for applications including polymers, plastics, pharmaceuticals, optoelectronics and
pesticides, which underpin modern society, and for which significant future growth
is anticipated. The quest for sustainable resources to meet the demands of a rapidly
rising world population represents one of this century’s grand challenges. Plasma
technologies show significant potential to address the aforementioned challenges.

The processing of biological materials using plasmas is quite wide and it seems
that few possibilities have been explored to date. The polymerization of the surface
of biological materials has been reported frequently (Songa et al. 2013). In reference
(Maksimov and Nikiforov 2007), the authors report a study based on simulations
to test the feasibility of using plasma in gas or liquid phase to bleaching and/or
delignification of cotton or cellulose. In these applications, there appear to be a wide
range of chemical possibilities to manipulate biological materials using plasma for
promoting the conversion of organic molecules or macromolecules of little value in
high value-added substances.

The gasification of biomaterials for gas synthesis production is a technology
already implemented, for example by Westinghouse Plasma Corporation in China
for biomass gasification and Mepl, Pune, India, for hazardous waste. However,
research in this field is still active, with a view to improving energy efficiency, the
quality of the gas synthesis and the type of biomass used. One innovation is the
possibility of generating gas synthesis in gaseous fuels, using plasmas in liquids
(Zhang and Cha 2015). An interesting direction for research in this area is the
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development of compact burners with high energy density and more efficient, clean
ways to generate gas synthesis for applications in urban transport, waste recycling,
generators, etc.

Use of ozone-generated plasmas to delignification of biomass was tested in
laboratory scale by various groups for different types of biomass as sugarcane
bagasse (Souza-Corréa et al. 2013a), wheat straw (Schultz-Jensen et al. 2011)
and Japanese cedar (Miura et al. 2012). The technology is effective superior to
conventional pre-treatment methods in terms of conversion efficiency of enzymatic
hydrolysis, but more studies about the energy efficiency and economic point of
view are needed. In this sense, the research to obtain more effective ozonizers
could enable economically viable processes. Ozone interaction mechanism with the
biomass is relatively well known (Souza-Corréa et al. 2013b), but more research
is needed to unravel the influence and the role of other radicals (e.g. singlet states
of atomic and molecular oxygen, OH, H,O;) in biomass degradation processes.
Employing mass spectrometry authors could monitor the neutral chemical species
from sugar cane bagasse that could volatilize during the bagasse ozonation process.
Lignin fragments and some radicals liberated by direct ozone reaction with the
biomass structure were detected as can be seen in the figure below.

In Fig. 11.2 the yields of radicals as a function of time can be seen. The results,
are expressed in yields of specific masses (relative contribution to the total signal)
instead of counts per second obtained directly from the Molecular Beam Mass
Spectrometry (MBMS) to show the relative importance of each species during the
treatment. It should be mentioned that the species appearing in Fig. 11.2 are the most
abundant. Others species with less count rates, i.e. faint yields, may be important due
to its reactivity but it is not shown here.

From Fig. 11.2 it can be also noted that CO is the first radical formed when the
treatment is launched. The production almost instantaneously is in good agreement
with the reaction scheme proposed by Criegee (Souza-Corréa et al. 2013a). It
disappears after around 1 h and 15 min of treatment. The breaking of C=C bonds
is the origin of high rate of CO production in the first instant of the treatment. This
result clearly shows the accuracy of Criegee’s model to explain the ozonation of
lignin and corroborates the interpretation of oxidation of $-O-4 bonds. Important
intermediary states such as O,, CH3;OH, OH, and H,O formed as a result of the
cleavage of aromatic rings, which is a slow reaction, can be seen in the second phase
of the treatment. Further experiments are needed to discriminate O, and CH3;0OH
since they have the same mass (m/z = 32). Moreover, by using the MBMS technique
it is not possible to discriminate which amount of H,O detected by the equipment
was directly related to the Criegee’s reactions and which came from the moisture in
the bagasse samples. In this sense, other experiments should be carried out in order
to clarify this aspect as well. In the third phase, HCOOH, CO, and H3O radicals are
formed. The formation of these radicals is due to oxidation of the cathecol, which is
a secondary process and explains why these species appear lately in the treatment.
These are important results to validate the reaction paths during the interaction of
ozone with the biomass.
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Yield (%)

Fig. 11.2 Species yield (%) as a function of bagasse ozonation treatment time (moisture of 50 %)
(Souza-Corréa et al. 2013a)

Figure 11.3a—d illustrates SEM images of a bagasse surface before and after
the ozonation. From Fig. 11.2a, it can be observed that raw (or in natura)
bagasse parenchyma shows a bundle and homogeneous structure, while the bagasse
parenchyma tissue treated for 4 h has started to disrupt its surface (see Fig. 11.3b).
Moreover, in Fig. 11.3c, one can see the epidermis of the raw material, which is
composed by stomata, which are responsible for controlling the moisture content in
a plant. From Fig. 11.3c it is possible to observe some rough structures. After 4 h of
ozonation, that rugosity was reduced in comparison with the raw bagasse, smoothing
the epidermis surface (see Fig. 11.3b). All these results were an indication that the
ozone has really attacked the bagasse surface promoting its oxidation.

In this study the ozone concentration was monitored during the ozonation
by optical absorption spectroscopy. The optical results indicated that the ozone
interaction with the bagasse material was better for bagasse particle sizes less than
or equal to 0.5 mm. Both techniques have shown that the best condition for the
ozone diffusion in the bagasse was at 50 % of its moisture content. Fourier transform
infrared spectroscopy (FTIR) was employed to analyze the lignin bond disruptions
and morphology changes of the bagasse surface that occurred due to the ozonolysis
reactions as well. Appropriate chemical characterization of the lignin content in
bagasse before and after its ozonation was also carried out and the reader interested
can see in this paper for more details (Souza-Corréa et al. 2013b, 2014).
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Fig. 11.3 SEM images for (a) raw bagasse parenchyma (1500x magnification); (b) bagasse
parenchyma treated by ozone for 4 h (1500x magnification); (¢) raw bagasse epidermis (1500
magnification); (d) bagasse epidermis treated by ozone for 4 h (1500x magnification) (Souza-
Corréa et al. 2013a)

Sugarcane bagasse samples pretreated with ozone in a downstream of an
atmospheric-pressure O, DBD plasma showed delignification efficiency of approx-
imately 80% in 6 h of treatment. The efficiency of the ozonolysis process for
different pretreatment conditions was evaluated by chemical composition analyses
and enzymatic hydrolysis. The quantity of moisture in the bagasse had a large influ-
ence on delignification and saccharification of the bagasse, where 50 % moisture
content was found to be best for delignification and 65 % of the cellulose was
converted into glucose (Souza-Corréa et al. 2013a).

In another experiment, bagasse moisture was fixed in 50 %. The delignification
efficiency had small improvement as a function of particle size, varying from 75
up to 80 % when the particle size varied from 2.0 to 0.08 mm, respectively (Souza-
Corréaet al. 2014).

Another strategy is to treat the biomass in direct contact with the plasma, both
in gas phase or in liquids. The cell wall is responsible for the architecture, defense
and perception of plant environment. Furthermore, these walls are rich in sugars,
such as glucose, essential for the production of ethanol, widely used biofuel today.
The study of cell wall degradation, which is done by enzymes produced by the plant
itself, is promising in the production area of cellulosic ethanol. Low-temperature
plasmas produce reactive oxygen and nitrogen species, discussed in Sects. 11.3 and
11.4, that interact with constituents of the cell wall degrading by redox reactions
and open access to the cellulose.
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Amorim et al. (2013) employed an atmospheric-pressure argon RF microplasma
jet to treat lignin. The treatment time was carried out from 30 min to 4 h resulting
in a strong degradation of the lignin structure. The most important degradation was
observed in functional groups having asymmetric in-phase ring stretching as well as
in C=C and C=O0 stretching vibrations. Simple calculations done put in evidence
that OH bond breakings by electron collisions inside the microplasma occured. In
the afterglow, it was not observed any change on the lignin spectra.

Diffuse Reflectance Fourier Transform Infrared Spectrometry (DRIFT) was used
to characterize the lignin powder pellets and the results are shown in Fig. 11.4.
As can be seen many peaks changed as the treatment time increased. After 2 h of
treatment, the bands located at 3800-3100 cm™! wavenumber range suffered strong
depletion. For example, the area under the 3374 cm™! band had a reduction of 90 %
showing an excellent efficiency by the microplasma jet in the breaking OH bonds of
phenolic rings. Other important information from Fig. 11.4 was the strong structure
reduction of bands around 2800-2900 cm™!, after 1 h of treatment, which was due to
CH radicals of side-chain and metoxyl groups. It can be seen in the same figure that
the 1220 cm™! band suffered a drastic reduction when the treatment time increased.
These reductions in the areas under the bands indicated thatC  C+C O+ C=0
stretching in guaiacyl group and asymmetric in-phase ring stretching and C=C were
destroyed by the microplasma jet particles. Another band severely reduced was the
830 cm™! due to the breaking of bounds responsible for vibrations of C  H out-of-
plane bonds on the aromatic ring.
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Fig. 11.4 DRIFT spectra for lignin treated in glow region of the atmospheric pressure argon
microplasma jet as a function of time. Argon flow of 4.0 SLM and rf power of 20.0 W
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Further studies are needed, which could make an important contribution in the
field of biomass engineering processes, such as the discovery of new methods for
obtaining high-added value products. The experimental investigation of plasma
interaction mechanisms with biomass is a field to be explored, and experimental
techniques of monitoring in real time the effect of plasma on biomass need to be
developed.

The work described in (Song et al. 2009) reports the conversion of cellulose to
simple sugars by plasmas. This result has not been confirmed by other studies yet,
but the concept appears to be feasible. Even with this confirmation result, simple
sugars are products with a low value for the energy cost of the plasma production
so that the most cost effective alternative in this field appears to be the demand for
biomass conversion methods into higher-added value products.

While many alternative sources of renewable energy have the potential to meet
future demands for stationary power generation, biomass offers the most readily
implemented, low cost solution to a drop-in transportation fuel for blending with
and/or replacing conventional diesel via the bio-refinery concept, illustrated by
carbohydrate pyrolysis/hydrodeoxygenation or lipid transesterification. Heteroge-
neous catalysis has a rich history of facilitating energy efficient selective molecular
transformations and contributes to 90 % of chemical manufacturing processes and
to more than 20 % of all industrial products (Shuit et al. 2013). In a post-petroleum
era, catalysis will be central to overcoming the engineering and scientific barriers
to economically feasible routes to alternative source of both energy and chemicals,
notably bio-derived and solar-mediated via artificial photosynthesis.

The conventional heterogeneous catalysts involved in biodiesel production
include mixed metal oxides, alkaline metal oxides, ion-exchange resins, sulfated
oxides and immobilized enzymes. Heterogeneous catalysis has emerged as the
preferred alternative for biodiesel production because the products are easy to
separate, the catalysts are reusable, and the process is environmentally friendly.
However, this method suffers from limitations, such as mass transfer problems,
high cost and low catalyst stability, that diminish its economic feasibility and
low environmental impact on the entire biodiesel process. Carbon nanotubes
(CNTs) appear to be a promising catalyst support for biodiesel production due
to their ability to overcome the limitations faced by conventional heterogeneous
catalysts such as high specific area (Souza-Corréa et al. 2013b). Thus, important
application is the use of functionalized CNTs as catalyst support in biodiesel
production, overcoming issues such as the limitations encountered by conventional
heterogeneous catalysts, the advantages offered by functionalized CNTs and
possible methods to functionalize CNTs to serve as catalyst support in biodiesel
production. Another promising catalyst is the graphene sheets (Tatarova et al.
2014). Based on the recent research findings by the authors, functionalized CNTs
and graphene sheets (Lambert et al. 2010) can easily be produced by plasma routes
and also hold great potential to be a breakthrough technology in the biodiesel
industry.
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11.3 Plasmas in Medicine and Pharmacy

Plasma applied to medicine is a new emerging technology that is in the intercrossing
of some fields of science like plasma physics, life science and clinical medicine.
Plasma medical research is only a few years old, with experiments done in a broad
range of different experimental conditions, e.g. various atmospheric pressure plasma
sources in different in vitro/in vivo tissues, which become the comparison among
them very limited and difficult. Only a systematic study of the different plasma
sources with their respective reactive component composition will allow to evaluate
the importance of plasma induced biological effects. In this section, we will describe
the main experiments done until the present and possible explanations. The energetic
electrons produced in the plasma suffer elastic and inelastic collisions with neutrals
heating the gas or the liquid that are transported outside. It is also worth to mention
that plasmas produce radiation in a vast range of the electromagnetic spectrum that
can be important in a given process and reactive radicals.

In general, plasma medicine can be subdivided into two principal fields (von
Woedtke et al. 2013Db):

* Plasma-based or plasma supplemented techniques to treat bio-relevant surfaces,
materials and devices to specific medical applications. These include the changes
of surfaces morphology and wettability, functionalization to favor the adhesion
of living cells or inhibit adhesion of proteins, bacteria or cells. Also important is
the plasma treatment of surfaces for sterilization or bio-decontamination.

* Direct application of low-temperature plasmas in human body for therapeutic
treatment in direct interaction with living tissue. This is the main activity of
plasma medicine that constitutes the use of plasmas in dermatology, plastic
surgery/dentistry, tissue regeneration, infected wounds and inflamed skin dis-
eases.

Non-equilibrium plasmas are a particular medium because it contains neutral and
ions at near room temperature and energetic electrons with temperatures at 20,000 K
and higher. The main problem to use low-pressure plasmas in processing is the
need of vacuum reactors. As the vacuum system is inconvenient to operate due to
costs, low flexibility, materials need to be introduced in the chambers by batches
during which contamination can occur. Furthermore, the reaction rates in this case
are low becoming the treatment time relatively long. Additionally some material
cannot withstand the low pressure conditions, as for example, organic materials,
liquids, foods, living animal and plants tissues.

To circumvent the limitations of low-pressure plasmas in medical applications,
atmospheric plasma sources were developed. Its exceptional chemical activity
allows in principle to treat any surface while its low-background temperature makes
them suitable to treat heat-sensitive surfaces. At atmospheric pressure the densities
of reactants are orders of magnitude higher than at low-pressure which lead to
reactions much faster.
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Non-thermal plasma sources at atmospheric pressure can be tailored in such
way to operate at human body temperature emitting little or no harmful radiation.
With these sources a controllable amount of active species can be produced and
addressed to the area to be treated without spreading over the whole target body.
This property is important in order to limit to a minimum damage the organism in
a non-destructive intervention. This is the most important motivation in introducing
new plasma techniques in health care.

Plasma-induced physical and chemical modifications of the living tissue leading
to possible therapeutic applications had been recently reviewed by researchers
(Souza-Corréa et al. 2014; Amorim et al. 2013; Song et al. 2009; Tatarova et al.
2014; Lambert et al. 2010; von Woedtke et al. 2013b). Here we present a brief
discussion about each review article.

Kong et al. (2009) presented an introductory review on plasma health-care to
provide the community with an overview of the current status of this emerging
field, its scope, and its broad interdisciplinary approach, ranging from plasma
physics, chemistry and technology, to microbiology, biochemistry, biophysics,
medicine and hygiene. The article focuses on plasma interaction with prokaryotic
cells, eukaryotic cells, cell membranes, DNA etc., taking care that the unfamiliar
terminology to the physicists is covered and explained. The authors address the
delivery of active substances, at the molecular or ionic level responsible for cell
walls permeabilization, cell excitation (paracrine action) and the role of reactive
species into cell cytoplasm. Electric fields, charging of surfaces, current flows etc.,
are also discussed once they can also affect the tissue.

Fridman et al. (2008) present the discharge plasmas applied to medicine as a non-
equilibrium medium that is able to initiate, promote, control, and catalyze various
complex behaviors and responses in biological systems. Plasmas can be tuned to
achieve the desired medical effect, especially in medical sterilization and treatment
of different kind of skin diseases. Wound healing and tissue regeneration can be
achieved following various types of plasma treatment in a multitude of wound
pathologies. Non-equilibrium plasmas promote non-destructive treatment of tissue,
in safe, and effective matter in order to inactivate the various parasites organisms
that attack the skin.

Laroussi (2005) did a survey on the recent progress on reduced-pressure plasma-
based sterilization and/or decontamination. He also presented an overview on the
atmospheric pressure non-equilibrium plasmas employed to treat cells of bacteria
i.e. prokaryotic cells. In that paper he discussed the inactivation kinetics and the
roles of the various plasma agents in the inactivation process. Plasma temperature,
the UV emission, and concentrations of various reactive species measurements in
air plasmas were also presented.

Stoffels (2007) reviewed applications of gas plasmas in medicine and introduced
a device called plasma needle that operates in atmospheric pressure to be used in
controlled tissue coagulation by an atmospheric plasma jet, bacterial disinfection
using cold micro-plasmas and its relation to tissue-saving treatment of dental caries
and non-inflammatory tissue removal based on sublethal plasma stimulation of
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living cells. Stoffels also discussed typical diagnostic methods for assaying the
influence of cold plasmas on cells and bacteria.

Mofill et al. (2009) addressed an important issue that is the infection in hospital
environment. In the paper the authors propose a new atmospheric plasma dispenser
which has large area, robust electrode design in order to create atmospheric pressure
discharges in air to be used in hospital disinfection presenting advantages, like
higher bactericidal and fungicidal efficiency over current fluid disinfection systems.
This device can be employed in future fight against the alarming and growing threat
posed by bacterial infections in hospitals and community associated.

von Woedtke et al. (2013b) in a review article did a good analysis about the
emerging field of plasma medicine. After a survey on the history of applications of
plasma in the health care, the authors discussed present applications with an estab-
lished basis of modern plasma medicine with focus on the design, development,
characterization and challenges to be faced in the applications of plasma sources for
therapeutic applications with an outlook of future projects.

In another timely and good topical review Graves (2009) stressed the emerging
role of reactive oxygen (ROS) and reactive nitrogen species (RNS) in redox biology
and presented some applications in medicine and biology. The purpose of this paper
was to do a non-exhaustive review to identify some aspects concerning the actions
of RONS, and to suggest that plasma biomedicine researchers consider these species
as the probable active agents in related biomedical observations. Graves identified
some of the most useful and most relevant works in the field of plasma biomedicine.

von Woedtke et al. (2013a) and Kong et al. (2009) from a general picture
of medical applications of discharges proposed a classification of plasmas with
relevance for medicine as:

* Direct plasmas—the plasma interacts directly with the living tissue. The skin or
other tissue work as electrode in a manner that the electric current passes through
it, e.g. DBD discharges.

 Indirect plasmas—the surface under treatment is exposed to the gas reactive flow
that is rich in radicals and charges. The discharge is burned into two electrodes
and the living tissue to be treated is located downstream, e.g. plasma needle or
torche.

e Hybrid plasmas—is a combination of direct and indirect cases like a corona
discharge.

As aforementioned, the atmospheric plasmas are more adapted to be used
in medicine. Differently to the most common homogenous low-temperature dis-
charges, the atmospheric pressure plasma devices are strictly localized. It poses
difficulties to treat large surface areas but some solutions have been proposed (Isbary
et al. 2010). The most interesting property of strong localization of atmospheric
pressure discharges is the possibility of using the plasma reactivity to treat a well-
defined target area. This characteristic can be exploited to access hard-to-reach
regions such as the interior of organs through endoscopes (Polak et al. 2012) or
catheters (Sato et al. 2008). Here, we will emphasize two innovative plasma devices
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used in medical applications. Others propositions exist and the reader may search in
the review articles cited above in order to have a broad view about what had been
published.

The first one device designed to be treat cells, bacterias, tissues and teeth is the
plasma needle developed by Stofells’ group (Stoffels et al. 2004; Stoffels 2007;
Graves 2009). It is a He gas discharge jet that flows in a small diameter, 1 cm,
passing in a thin needle electrode working at 13.56 MHz. The plasma is produced
in a tip of the sharp needle that sometimes may attain length of some millimeters.
If a small amount of oxygen is added to the helium flow ROS radicals are created.
Without O, addition, RONS are created due to the inflow of surrounding air into the
plasma. The figure below shows model predictions of various RNOS created along
the plasma column (Graves 2009) (Fig. 11.5).

Another innovative device, DBD-based, capable of generating a low-temperature
atmospheric pressure plasma inside a 5 m long flexible tube with 2 mm inner
diameter is shown in Fig. 11.6.

The electrode arrangement consists of a double-walled PTFE tube with an inner
and an outer tube concentrically aligned with two equidistant twisted electrodes
in between. The distance between the electrodes is in the range of mm. The inner
diameter of the double-walled tube is 2 mm, whereas the complete wall thickness
is about 1 mm. The discharge operates in an argon gas flow of 1-2 slm (with
possible oxygen and/or nitrogen admixture). The high-voltage source of 10 kHz
with amplitude up to 11 kV is used. Homogeneous plasma can be ignited inside of
several meters long catheters. This electrode configuration was primarily developed
as an alternative construction of biopsy channels of endoscopes to guarantee a better
decontamination and reprocessing. Due to a jet-like plasma expanding outside the
end of the tube it can be used as an endoscope for cancer treatment. In harder-to-
reach regions inside the body such as lungs, pancreas and duodenum, a 15 pm sized
microplasma jet based on a hollow-core optical fiber was proposed (Polak et al.
2012). With this very localized plasma a single-cellular level treatment might be
possible. It could be demonstrated that the generated plasma jets are sufficient to
induce apoptosis but not necrosis in different in vitro cultivated tumor cell types
(Kim et al. 2010).

Apoptosis is a form of programmed cell death, forming vesicles from the outer
surface of the plasma membrane and the nuclear envelope, chromatin condensation,
cleavage of DNA and formation of apoptotic bodies, see Fig. 11.7. Apoptosis is a
highly regulated, energy-dependent processes while necrosis results from a trauma.
Cells that die by apoptosis don’t experiment rupture and therefore don’t cause
inflammation.

In necrosis, the cells are physically damaged, which results in rupture of
membranes and release of cellular contents causing inflammation of tissue. Necrosis
is a catastrophic injury that breaks down the mechanisms that maintain cell integrity.
The membrane is damaged and the cytoplasm leaks out, releasing enzymes, that
are recognized as antigens for which the organism responds with an alarm reaction
known as inflammation. It works as a natural reaction that helps to remove
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Fig. 11.5 (a) Sample been treat with plasma needle configuration in helium; (b) photograph of
typical discharge. (c) Plot of neutral reactive species densities, following plasma model of He
plasma needle near plasma-air boundary, with sample boundary at r = 2.0 mm (Graves 2009)

dangerous substance and dispose the necrotic tissue. One of undesired consequence
of inflammation is fibrosis or connective tissue formation, which leads to scars and
stenosis.

Beyond cancer treatment, further applications in gastroenterology is possible
with endoscopic plasma due to a combination of antibacterial effects with healing
and anti-inflammatory effects these sources could be useful for several indications.

There is no doubt today that low-temperature plasmas used in medical therapy
create large amounts of reactive oxygen and nitrogen species, ROS and RNS
respectively (Graves 2009) and have crucial role in biology and medicine (Halliwell
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Fig. 11.6 Dielectric barrier discharge inside a long flexible tube with an inner diameter of 2 mm.
The gas mixture was 1.5 slm Ar+ 20 sccm N,. (a) Commercially manufactured fluorinated
ethylene propylene tube with flat wire electrodes, wall thickness: 0.75 mm. (b) Jet-like plasma
at the end of a modified polytetrafluoroethylene (PTFE) tube with round electrode wires, wall
thickness: 1 mm (Polak et al. 2012)
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Fig. 11.7 Apoptosis and necrosis (Dangl et al. 2000)

and Gutteridge 2007). As short-living radicals, produced from air or water during
the plasma treatment, RONS delivered to the cells can dissolve in physiological
fluids and react with the living cells. However, the complete picture of this
interaction is not well understood nowadays.

The ROS are molecular species that received electron(s) and are thus reduced
forms of oxygen. The ROS includes two free radical species, the superoxide
anion O, and its protonated form the perhydroxyl radical HO,, the uncharged
and non-radical species like hydrogen peroxide H,O;, the highly reactive hydroxyl
radical OH, and singlet oxygen O(a'A,). They are toxic molecules in which
destructiveness relies on their reactivity. High concentrations may result in non-
controlled oxidation of cell structures including DNA, proteins and cell membranes.

Due to their high reactivity ROS reacts with the cells’ components. Atomic
oxygen O is one of the most important ROS that is readily formed by electron impact
dissociation and also by dissociative recombination;
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Atomic oxygen is a highly oxidizing agent that reacts with hydrogen compound
and participates in the etching and oxidation of proteins.

Hydroxyl radical OH, are generated by the presence of water molecules in the
plasma due for example the mixing of the gas with the surrounding air. They are
formed by electron impact dissociation;

H,O +e~ — H+ OH+ e~ (11.5)

and by dissociative electron recombination of H3O™ that are rapidly formed in
the gas;

H0T +¢~ — OH + H, (11.6)

Metastable states O (D), N, (A *;F) and Ox(a ' A,) formed in large concentrations
in the gas phase may lead to the production of OH;

H,0+ N, (A°Z)) > OH+H+ N (X'S]) (11.7)
H,0+ 0 (‘D) - 20H (11.8)

Another important ROS is ozone which may be formed by three-body reactions:
O+0,+0, - 03+ 0, (11.9)
O+0,+N, > O3+ N, (11.10)
Others radicals may also be formed in large concentrations like H,0,, O, , OOH,

ONOO™.

Reactive nitrogen species RNS formed in discharges has also great importance.

One important radical is NO formed, for example, by:

N+ 03 — NO + 0, (11.11)
N 4+ NO, — NO + NO (11.12)

O + NO> — NO + 0, (11.13)
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Apart the DNA breaks discussed above, the RNOS’ may lead to modification
of unsaturated fatty acid, amino acid oxidation, peptide bind cleavage, sugar
modifications and protein-protein crosslinks,

Besides reactive species, plasmas may generate ultraviolet radiation in a wave-
length range from 100-380 nm. The Vacuum UV is in the range of 100200 nm,
UV-C from 200 to 280 nm, UV-B in the range 280-315 nm and UV-A from 315
to 380 nm. These UV photons have antimicrobial effect due to strand breaks that
destruct and modify the DNA preventing the multiplication of bacterial cells.

As an example of ROS action, plasma interacts with water producing the
peroxide anion O3~ which can react with organic molecules of the tissue. The O3~
is one radical that participates in the natural defense of the organism to inactivate
the invading fungi or bacteria and to dispose damaged cells. This later process is
very important in the body to renewal damaged or dangerous cells, like cancerous,
by apoptosis.

The importance of ROS and RNS in medicine and biology was pointed out
recently in many articles (Graves 2009, Novo and Parola 2008). These radicals
are important in oxidative stress and work as mediators playing outstanding role in
major human diseases, including atherosclerosis, diabetes, cardiovascular diseases,
cancer, neurodegenerative disorders, chronic liver and lung diseases. Halliwell
(2006) discussed the role of these radicals as antioxidant agents and their function
to keep down the levels of free radicals enabling them to perform their functions
without causing too much damage.

Graves (2009) in his review identified some aspects related to the effect of
ROS in organism lifetime. Today is well accepted by the scientific community that
ROS are associated with ageing and its related diseases. For example Ristow and
Zarse (2010) put in evidence that ROS participating in mitochondrial metabolism
may be associated with increasing in lifespan. The researchers concluded that
ROS are essential signaling molecules, which are required to promote health and
longeyvity, due to calorie restriction and specifically reduced glucose metabolism in
mitochondria resulting in extend life span.

Cancer is recognized as the “emperor of all maladies” (Graves 2009). Cancer is
a tumor or malignant neoplasm that can be presented in different diseases in many
organs of the body. Today, cancer remains one of the most important diseases being
the second cause of death after cardiovascular ones. Cancer leads to deformation of
the abnormal cells and loss of cell differentiation. More than seven million people
worldwide lose their lives due to cancer and this number may reach 10—15 million
by 2020 (Nokhandani et al. 2015).

Recent works have shown that RONS species may be generated in plasmas that
can help in the killing of cancer cells (Kong et al. 2009; von Woedtke 2013; Graves
2009). Recently Ralph et al. (2010), revisited the causes of cancer in a review that
focuses on the evidence of the role of mitochondria as drivers of elevated ROS
production during malignant transformation and hence, their potential as targets for
cancer therapy. In fact, the chemistry of cancer starts with the creation of oxidants
in cells which leads to DNA damage, mutation and modification in gene expression.



11.3  Plasmas in Medicine and Pharmacy 431

* Proliferation * Adaptive genes * Senescence
* Cell survival * Mutagenesis » Cell death
<
>
—— 2
e v
T @]
- —— =
Cancer cell

* Metabolism
* Protein translation Antioxidants

> <

Fig. 11.8 ROS and cancer cell (Cairns et al. 2011). The level of ROS present in cell is decisive
to determine the proliferation or cell death. Low levels of ROS (left) provide a beneficial effect,
supporting cell proliferation and survival pathways, while excessively high ROS dose (right), may
cause detrimental oxidative stress that can lead to cell death. In a cancer cell, highly metabolic and
with protein translation generate abnormally high levels of antioxidants to counterbalance the ROS
density to safe levels. Mutagenesis may occur even with moderate concentration of ROS

The importance of ROS and antioxidants aging on cancer cells is depicted in
Fig. 11.8 according to Cairns et al. (2011) in a review article about the cancer
cell regulation and metabolism. Higher levels of ROS may lead to cell death but
relatively low-levels can lead to cell proliferation and pathways.

Some radicals are recognized to have strong reactivity in the biological medium.
For example, NO plays a signaling hole in vascular smooth muscle relaxation
(Marletta et al. 1988) and is a key specie in macrophage product responsible for
cytostatic and respiratory inhibition in tumor target cells (Stuehr and Nathan 1989).
It works as a signaling molecule in the cardiovascular system, discovery that was
honored with a Nobel Prize in Medicine in 1998 (Graves 2009).

Hydrogen peroxide H,O, is another ROS that is important as signaling molecule.
Inside the cell the NO creates O, which is converted to H>O, and reacts in the
intracellular fluid, cytosol, in order to oxidize enzymes. By a complex intracellular
chemistry, the hydrogen peroxide reacts with enzymes inactivating them.

In a recent work Yagi et al. (2015) treated mouse melanoma cells using a
nanosecond pulsed streamer discharge and determined the correlation between the
rate of cell death, mainly induced by apoptosis, and the densities of OH, O, and
NO, measured using laser-induced fluorescence (LIF). It was shown that reactive
species derived from water vapor such as OH are responsible for the melanoma cell
death, whereas those from O,, such as O and NO, are less likely responsible. The
correlation between OH density and cell death does not necessarily mean that only
the flux of OH radicals is responsible for the cell death. Other reactive species, such
as HO,, H,O, and HNOy that are derived from water vapor, may also be responsible
for the cell death because their fluxes are expected to depend on the gas flow rate
similar to OH flux. They also indicate the importance of water evaporation from the
culture medium surface in cell treatment. Others radicals are important in the cell
signaling and the reader interested can see in that paper a more complete discussion
(Graves 2009).
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In the last years, a new field derived from plasma medicine has appeared and
grown fast which is the plasma pharmacy. In reality, it is the use of discharge plas-
mas to generate, modify and stabilize pharmaceutical preparations in development
of drugs. von Woedtke et al. (2013a) discuss the possibility of plasma applications
in pharmacy, they are:

Plasma-Based Generation of Biologically Active Liquids Simple liquids like
water or physiological saline become antimicrobially active after treatment with
atmospheric pressure plasmas. These properties are attributable to the transient
on-site generation of different low-molecular reactive species. The persistence of
antiseptic activity in liquids and consequently the long-term stability of antimicro-
bially active substances generated in the liquid need further detailed research.

Plasma-Based Preparation, Optimization, or Stabilization of Pharmaceutical
Preparations A very interesting new field is the use of atmospheric pressure
plasmas to induce or catalyze chemical reactions in liquids. Plasmas opens the
door to solubilize and/or stabilize poorly soluble or non-soluble substances in
aqueous media using micelles without the detrimental side effect of high surfactant
concentrations of the respective liquids.

Nanotechnology processes induced by plasmas contributes to the synthesis,
functionalization and processing of nanomaterials and nanoparticles used for the
fabrication and optimization of innovative nanoparticulate drug-delivery systems.
Plasma-based activation of drugs in liquids may be used to activate substances
which are not stable in liquids by first-pass metabolic processes inside the body
after application and absorption.

Discharge plasmas can contribute in the preparation or modification of controlled
drug release systems as multilayered tablets or functionalized composite powders
for matrix systems by specific plasma-surface interactions.

Support of Drug Transport Across Biological Barriers Reversible manipulation
of transfer characteristics of cell membranes as well as biological barriers like skin
is called “plasma poration” that is modifying the permeability of cell membrane.
Plasma source can be helpful to bring active agents into living cells or to enhance
transdermal drug permeation. Future plasma treatments could be used to support
intracellular effectivity of pharmacological substances in cancer therapy, for exam-
ple, or to permit or enhance transcutaneous drug delivery.

Plasma-Based Stimulation of Biotechnological Processes Plasmas emit radiation
in a broad range domain and specially in UV region and -are sources of highly
reactive radicals which can promote the generation and improvement of strains
production. These radiation and species may also be used to induce desired changes
of the DNA. Low-pressure plasmas may treat spores and improve the fermentation
efficiency for production of bacteria used commercially in animal health and
agriculture.

Biotechnology plasma has potential to become an important tool to breed high-
yielding strains for production of drugs and to promote the transfer of DNA into
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suitable expression systems. This field of plasma application is at the beginning and
much efforts should be done to develop the potentialities.

To conclude, the application of plasmas in medicine and pharmacy will need
to understand and control the hole of the radicals delivered to the right place with
right dose in a given time. These exogenous sources of species and photons must
be studied in order to establish methods and protocols to control the most important
species in a given treatment of cells and tissues composed of proteins, carbohydrates
and lipids. In the next section we will see how low-temperature plasmas may be used
to treat plants, seeds and foods.

11.4 Plasmas in Biology and Agriculture

Plasmas applied in biology is another recent field of plasmas applications due to
their ability to generate reactive species and photons. As discussed in Sect. 11.3
the discharge plasmas may generate RONS’ that participate in the redox biology.
RONS’ may be generated inside the cells through many different pathways where
enzymes have an important role, this is called endogenous source of RONS’. The
plasmas as an external source of RONS may induce a series of different reactions
than the ones produced inside the cells. In a recent review about the role of reactive
oxygen and nitrogen species in redox biology and implications of plasmas on
medicine and biology, Graves (2009) writes:

One can imagine many possible future applications, including the use of plasma to protect
plants from fungus or other microbial or even parasite attack, but this will require much
additional work. In the meantime, it will be helpful to investigate more deeply the roles
played by RONS in conventional plant physiology and disease.

Plasmas may work as exogenous sources of RNOS’ modifying the redox
chemistry of plants in order to promote processes in the cells like signaling,
metabolism and immunity in plants. One example, may be the unique today, is the
work published by Puac et al. (2006) where a plasma needle set-up was employed
to induce effects in plant tissue. The authors analyzed the interaction of the plasma
needle with gametophytes and calli as representatives of small multicellular plant
organisms, two month old prothalli of Polypodium vulgare L. and parts of the
calli Fritillaria imperialis. Cell death (necrosis) of the Polypodium prothalium
occurred after high doses (power treatment time) of plasma. In these experiments
the treatment time is in the range of 120 s at a power of 100 W of the RF source
but the effective power at the plasma needle is 1 W, which is a condition that reduces
the thermal transfer to the surrounding gas and the living tissue. Figure bellow shows
the effect of the plasma in the plant tissue (Fig. 11.9).

In the treatment of fresh weight of compact calli the plasma needle treatment
doubled all treated calli fresh weight compared with the untreated sample, even for
longer exposure times. Increase in the fresh weight is an obvious implication of calli
growth, which is an irreversible increase in size, accomplished by a combination
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Fig. 11.9 Plasma treatment of sweet fern gametophyte. (a) The treatment time is 120 s, and RF
source power 100 W. Insert: 1 month old gametophyte; (b) the treatment time is 30 s and RF source
power 300 W. Insert: necrotic cells (Puac et al. 2006)

of cell division and cell enlargement. Authors concluded that RONS’ formed in
plasmas are responsible for the effects observed in plants.

Plant cells are continuously producing ROS as products of normal aerobic
metabolism and it is not surprisingly that plants have enzymatic and non-enzymatic
antioxidant mechanisms to counter balance the growth of ROS which may leads
to reach destructive levels, regulating the cellular redox balance. ROS are not only
toxic by-products acting as a cell damage agent but have other important functions in
plants. If their concentration is low, they may have a function of signaling molecules
that act at the interface between abiotic and biotic stress. They have importantrole as
coordinators of cell biology responses to numerous environment stimuli that include
pathogen attack, drought, irradiation, temperature and salt stresses.

Several cellular compartments participate in the generation of ROS (Desikan
et al. 2005). Non-enzymatic mechanisms of ROS generation, such as electron
transfer to molecular oxygen during photosynthesis and respiration, are done in
chloroplasts and mitochondria, respectively, and may also be created as by-products
of various enzymes such as photo-respiratory glycolate oxidase in peroxisomes
for example. In fact, exogenous ROS may cause a response in cells not normally
exposed to it as in pharmacological manipulation of endogenous ROS via applica-
tion of drugs that interact with enzymes that produce or inhibit ROS.

One illustration is given to show how plants through ROS react to attacks of
bacteria, fungi, viruses or other aggression (Torres 2010). Figure 11.10 shows
that ROS created inside and outside of the plant cell react to a pathogen and as
a consequence activated mechanisms called “hypersensitive response” induce a
programmed cell death at the site of infection.

Surowsky et al. (2015) in a review article summarized the research done in the
interactions of low-temperature plasmas at atmospheric pressure in contact with
solid and liquid food systems. Quality and safe are major concerns that attract much
attention today to improve the efficiency and sustainability of foods.

Atmospheric pressure plasmas are a recent technology that can be decisive in
antimicrobial efficacy mainly in temperature-delicate foods. In last 20-years the
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Fig. 11.10 Pathogen recognition leads to ROS production. Thin arrows depict signaling events
that point to ROS production both in the apoplast and inside the plant cell. Double-head arrow
indicates the cross talk between ROS in these compartments. Thick arrows point to the functions
of these ROS in relation to activation of plant defenses (Torres 2010)

number of publications dealing with microbial inactivation in foods has grown
strongly attaining around 800 papers in 2013 (Surowsky et al. 2015).

The first paper with direct treatments of foods was done by Montenegro et al.
(2002) where non-thermal plasma discharges were applied directly into reducing
the number of Escherichia coli O157:H7 cells in apple juice, by several orders of
magnitude. This is a good example of application of plasmas in liquids, a field
that recently attracted the interest of plasmas physicists (Bruggeman et al. 2009).
A plasma discharge in a liquid is medium of complex kinetics that includes a
combination of various physical-chemical processes that rely on a large number
of factors such as electric conductivity of the liquids, pH, polarity, electrodes’
geometry, and other liquid properties. Non-thermal plasmas can be created by an
electrical discharge between two electrodes placed within a liquid food. Electrons
in non-thermal plasmas are hot whereas the other larger species generated in the
solution, such as ions, excited species, and free radicals are at ambient temperature.

Cold atmospheric gas plasma has been applied in the surface treatment of
lettuce, potato and strawberry in order to inactivate microorganisms, e.g. Salmonella
enterica serovar Typhimurium, located in the food surfaces (Ferndndez et al. 2013).

Employing a plasma jet with helium and oxygen Perni et al. (2008) studied
the impact of low-temperature plasma on E. coli and Saccharomyces cerevisiae
in the pericarp of mango and honeydew melon. Inactivation were achieved after
5 s for E. coli on both surfaces and after 10 s for S. cerevisiae on mango and
30 s on honeydew melon. Longer treatment times are necessary for the same
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microorganisms located on cut surfaces of mango and honeydew melon in order
to achieve the degree of inactivation observed before.

Non-thermal atmospheric pressure plasmas have been proposed to be a prospec-
tive alternative to traditional thermal food pasteurization methods. In recent years
the effect of plasmas in the formation of off-flavors and the losses of nutritional
value have been studied. Plasma technology as a decontaminating technique in milk
was studied by Gurol et al. (2012) that achieved a significant reduction of E. coli
in milk, by more than a three order of magnitude reduction without significantly
affecting pH or color properties, employing an atmospheric corona discharge.

Dielectric barrier discharge was used to treat orange juice (Shi et al. 2011) and
proved to be safe and effective in inactivating microorganisms and can significantly
extend its shelf life, keeping the nutritional, physical, and chemical characteristics
of the orange juice. It was proved that, under the experimental conditions, there is a
pH decrease of orange juice induced by the DBD discharge.

Other application to inactivated microorganisms in apple juice was also done
with good results (Surowsky et al. 2014). Others examples can be found in the
literature in the decontamination of shell eggs (Ragni et al. 2010), water (Kamgang-
Youbi et al. 2009), cheese (Lee et al. 2012) and tomato (Pankaj et al. 2013).

An interesting application of plasmas in agriculture is the treatment of seeds to
improve germination. Ling et al. (2014) showed that cold plasma had an active effect
on soybean seed germination and in the vigor indices, which is an index that reveals
the ability of a seed to withstand a variety of different stress factors, were increased
by cold plasma treatments. Another seeds like tomato (Zhou et al. 2011) and wheat
(Sera et al. 2010) treat by plasmas significantly improved the germination rate.

An emerging and powerful method for surface decontamination of both food-
stuffs and food packaging materials is a new trend to decontaminate in-package,
offering non-thermal treatment of foods post-packaging (Pankaj et al. 2014). In
a recent study, non-thermal plasma was used to degrade pesticide residues on
strawberries. The use of pesticides in agriculture is important to the stabilization of
crop production. However, it can be a source of environmental and health problems
associated with and cannot be overlooked. Fungicides, such as azoxystrobin,
cyprodinil, fludioxonil and pyriproxyfen are relatively new pesticides that have been
introduced into the marketplace. Misra et al. (2014) employed a DBD discharge,
in atmospheric-pressure in air, to degrade pesticides residues in an in-packed
strawberries, see Fig. 11.11.

The authors quantified the degradation of fungicides, namely azoxystrobin,
cyprodinil, fludioxonil, and pyriproxyfen on strawberry surface by GC-MS/MS
analysis, under the influence of DBD discharge treatment. They explained the
observed effects doing at the same time of the treatment the electrical and optical
characterization of the plasma. They concluded that DBD discharge may ensure
chemical food safety, in addition to its proven microbicidal effects. They had shown
that plasma successfully degraded pesticide residues on strawberries. Operating
in the filamentary regime, the RONS” were responsible to reduce the levels of
azoxystrobin, cyprodinil, fludioxonil and pyriproxyfen by 69, 45, 71 and 46 %
respectively after 5 min of treatment at 80 kV (RMS).



References 437

High Voltage
High voltage gProbe e

Dielectric barrier (Aluminum) electrode

22inos
a3ejjon yIiH

Spectrometer
Ground electrode

Oscilloscope

Bergoz Current
Probe —

Data acquisition
computer

Fig. 11.11 Schematic of the DBD experimental set-up for in-package treatment. The package
shown in the figure is filled with helium for demonstration purpose (Misra et al. 2014)

The aim of this chapter was to present some important applications of low-
temperature plasmas (LTP). LTP discussed in this book, are partially ionized
gases or liquids with a broad use in many technological applications such as
microelectronics, light sources, lasers, biology and medicine. LTPs lead to the
production of atomic and molecular excited states, chemically reactive radicals,
photons, and activated surface sites, which are in the origin of the deposition of thin
films, advanced nanotechnologies products, solar cells, highly efficient combustion
motors, and treatment of cancer cells. The field where low-temperature plasmas
are being used today is large, rapidly growing, and cannot be described in just one
chapter. Of course, much is not presented but some new applications such as the use
plasmas in health care, production of biofuels and agriculture were addressed.
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E2 Erratum

The affiliation of the author “Henriques Loureiro” has been incorrectly captured in
page iv and the correct affiliation is as follows:

“Instituto Superior Técnico”

The sentence “low-temperature plasmas in Instituto Superior Técnico” in page vii
(Preface) has been incorrectly captured. The correct sentence is as follows:

“low-temperature plasmas at Instituto Superior Técnico”

The equation 3.12 (page 90, Chapter 3) is followed by an alphabet “#” which is
incorrect, “r” should be deleted.

The sentence in first paragraph of Section 3.3.1 (page 110, Chapter 3) is incorrectly
captured as “density case, in which”. The correct sentence is as follows:

“density, case in which”

The sentence in first paragraph (page 209, Chapter 5) is incorrectly captured as
“so that, the effective ionization”. The correct sentence is as follows:

“so that the effective ionization”

The last display equation (page 350, Chapter 8) is incorrectly captured. The correct
equation is as follows:

Y A = (Anlysppy=ipp + Anly—spp=1p2),, ,, = 1253 % 10 s~

m<2
The word in second paragraph (page 361, Chapter 9) is incorrectly captured as
“frequency”. The correct word is as follows:

“frequencies”

The words in second paragraph (page 374, Chapter 9) is incorrectly captured as
“becomes more”. The correct usage is as follows:

“become more”

The sentence in third paragraph (page 376, Chapter 9) is incorrectly captured as “of
metastable losses”. The correct sentence is as follows:

“for metastable losses”

The coefficient in Table 9.4 caption (page 376, Chapter 9) is incorrectly captured as
“Co—um". The correct coefficient is as follows:

“ng_o”



Erratum E3

The sentence in second paragraph (page 426, Chapter 11) is incorrectly captured as
“figure bellow show”. The correct sentence is as follows:

“The figure below shows”

The sentence in third paragraph (page 430, Chapter 11) is incorrectly captured as
“one radical that participate”. The correct sentence is as follows:

“one radical that participates”

The word in second paragraph (page 434, Chapter 11) is incorrectly captured as
“interacts”. The correct usage is as follows:

“interact”
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resonant levels, 368-371
probability coefficients, 361
transmitted beam intensity, 360-361

Actinometry, 336-339

Adiabatic approximation, 325-326
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Ambipolar diffusion coefficient
Coulomb interactions, 233
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Biologically active liquids, 432
Biomass processing and biofuels production
bagasse ozonation treatment, 418-420
biodiesel production, 422
delignification, biomass, 418
gas synthesis production, 417418
lignin treatment, 421
power generation, 422
Biomedical industry, 415
Biotechnological processes, 432-433
Boltzmann transport equation
binary collisions, 4649
collisional mechanisms, 135
collision frequency and electron density,
high-frequency discharges, 182—185
collisionless equation, 43-46
collision term
classical kinetic theory of gases, 50
hypothesis of molecular chaos, 49
Liouville equation, 51-52
nonlinear integro-differential equation,
51
reversibility of molecular dynamics,
51-52
EEDFs, 133
electron cross sections
Boltzmann equation, 132
close-coupling calculations, 130
electrical discharge modelling, 133
electron diffusion coefficient, 130
electronic excitation, 130
electron swarm experiments, 126
energy level diagram, Ar atom, 127
excitation and ionization rate
coefficients, 125
experimental and theoretical electron
cross sections, 128
Franck-Condon approximation, 132
inelastic and superelastic collisions, 125
initial total electron cross section, 130
LXcat project, 133
reverse superelastic process, 131-132
Townsend ionization coefficient,
126-127
vibrational excitation cross section, 130
electron energy distribution functions,
134-135
electron rate coefficients, 135, 136
fractional power, 137
independent variables
Boltzmann equation, 119-123
de-excitation processes, 120
drift velocity, 123
EEDF, 122, 123

Index

energy gains, de-excitation, 120
energy losses, excitation, 120
isotropic scattering, 120
Maxwellian electron energy
distribution, 120
momentum transfer, 120
vibrational/electronic states, 120
longitudinal diffusion, 225-227
Maxwellian distribution, 133
numerical procedure, 123-125
for plasmas
application to charged species, 58—59
non-Coulomb interactions, 58
Vlasov equation, 60
in spherical harmonics, 136-140, 224-225
with time-varying fields (see Time—varying
electric field)
validity
BBGKY hierarchy, 52, 56
distribution functions, 56-57
double distribution function, 53, 55
equilibrium distribution function, 56, 57
hypothesis of molecular chaos, 56
kinetic equations, 54
Liouville equation, 52, 54
Maxwell-Boltzmann distribution, 57
time-symmetric dynamics, 52
time-symmetric formalism of
mechanics, 56
triple interaction effect, 55
velocity space
cooling, electron gas (see Cooling of
electron gas)
first-order expansion (see First-order
expansion, collision integral)
inclusion, inelastic collisions (see
Inelastic collisions)
Born-Bogolioubov-Green-Kirkwood-Yvon
(BBGKY) hierarchy, 52
Bound-bound transitions, 310, 311
Bound-free transitions, 310, 311

C

Cancer treatment, 426

Carbon nanotubes (CNT), 422

Centre-of-mass system, 47

Child-Langmuir equation, 9

CO, lasers, 390

Collisionless Boltzmann equation
classical kinetic theory of gases, 43
Liouville’s theorem, 44
particle distribution function, 44, 45
statistical role, 44
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Collision phenomena, plasma
Boltzmann equation for elastic collisions,
collision term, 66
centre-of-mass system, 65
direct and reverse electron-molecule
inelastic, 67
direct and reverse processes, 66
electron distribution function, 69
electron-neutral elastic collisions, 61-63
electron velocity, decrease and increase, 69
inelastic collision, 68—69
micro-reversibility/detailed balance, 66, 67
rate coefficients, direct and reverse
processes, 70-72
Collosional pressure broadening, 314-320
Conservation laws and continuity equation,
72-74
Continuous radiation sources, 359
Continuum bremsstrahlung, 310
Cooling of electron gas
elastic collision term, 101-104
electron velocity distribution function,
104
energy conservation equation, 109
flux in velocity space
Boltzmann equation, 106
constant characteristic electron velocity,
107-108
constant collision frequency, 107
Druyvesteyn distribution, 108
elastic collisions, 106
electron distribution function, 107
hard sphere model, 107
steady-state equation, 105
Liouville’s theorem, 102
Lorentz gas model, 101
power balance, 108-110
Cooper vapor lasers, 390
Corona discharge
coaxial configuration, 24
in cylindrical geometry, 21
drift velocity, electrons, 24
electron-emitting cathode filament, 21
electron mobility, 22
energy conservation, 24
first-order modification, 24
Poisson’s equation, 22

D

Debye length, 58
De-excitation reaction, 370
Delignification of biomass, 418
Detailed Balancing (DB), 287
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Diatomic molecules
adiabatic approximation, 325-326
electronic states and transitions
Franck-Condon transition, 335
Hund’s case a and b, 335
molecular transitions structure, 331
P branch, 333
Q branch, 333
R branch, 333
rotationless/vibrational structure, 332
second positive system of nitrogen, 332
selection rules, 334
vibrational-electronic states, 333
wave-numbers units, 332
interaction potential, 324-325
non-rigid rotor, 327
rigid rotor, 326-327
rotational-vibrational spectra, 329-330
vibration, 327-329
Dielectric barrier discharge (DBD)-based
device, 426, 428
Diffuse reflectance Fourier transform infrared
spectrometry (DRIFT), 421
Direct plasmas, 423, 425
Doppler broadening, 313-314
Druyvesteyn distribution, 108
Dye lasers, 359, 392-394

E
Electrical gas discharges
multiplication factor, 36
non-self-sustained (see Non-self-sustained
discharges)
particle current density, surface, 3435
physical boundary, plasma
Bohm criterion, 26-29
cathode region, 32-34
Debye length, 25-26
floating sheath, 29-31
self-sustained (see Self-sustained
discharges)
Electron attachment
Boltzmann equation, ionization
elastic collisions, 216
electron mobility, 217
electron rate coefficient, 214
matrix inversion, 218
momentum transfer, 215
rotational excitation, 216, 217
Townsend coefficient, 214
SFg, Boltzmann equation, 218-224
Electron breakdown
HF electric field, 208-213
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Electron breakdown (cont.)
ionization-diffusion plasma front,
213-214
ionization process
afterglow plasma, 204
Dirac functions, 205
electron impact ionization, 204, 205
secondary and scattered primary
electrons, 206
secondary-electron distribution, 205
LFA, 207
Electron cyclotron resonance
Boltzmann equation, 163-167
characteristic relaxation frequency, 164
elastic and inelastic collision terms, 164
first order anisotropies, 163
hydrodynamic description, 160-163
power absorbance, field, 167-169
tensor mobility, 165
Electron diffusion
continuity equation and diffusion length,
197-199
free diffusion, magnetic field
antisymmetric tensor, 202
Legendre functions, 200
velocity distribution, 201
free electron diffusion
electron conductivity, 193-194
electron distribution function, 191, 193
free diffusion, 192
plasma physics, 194
spherical harmonics in velocity space,
192
LFA, 194-197
static magnetic field, 200-203
Electron excitation kinetics (EEK) plasmas,
286
Electronic density, line Stark broadening,
345-346
Electron-neutral elastic collisions
centre-of-mass system, 61
electron velocities, 62
scattering cross section, 63
Emission spectroscopy
actinometry
conditions, 336-337
definition, 336
emission intensity, 337, 338
excited levels, 338, 339
oxygen excited levels, 338
complications, 359
electric dipole transitions, selection rules,
323

Index

electronic density, line Stark broadening,
345-346
fluorescence emission, 321
Hund’s rules, 323, 324
induced emission, 320-321
line radiation
bound-bound transitions, 310, 311
bound-free transitions, 310, 311
continuum bremsstrahlung, 310
Doppler broadening, 313-314
free-free transitions, 310, 311
natural broadening, 311-313
pressure broadening, 314-320
transition between two energy levels,
310
molecular bands and structure
adiabatic approximation, 325-326
electronic states and transitions,
330-336
interaction potential, diatomic
molecules, 324-325
non-rigid rotor, 327-329
rigid rotor, 326-327
rotational-vibrational spectra, 329-330
vibration, diatomic molecules, 328-329
rotational and vibrational temperature
measurements
density of molecules, 341
experimental points, 343, 344
second positive system, nitrogen,
342-343, 345
spectral line intensity, 340
vibrational distribution function (VDV),
343-344
spontaneous emission, 321
titration, 339-340
transition dipole moment, 322
wavefunctions, 322

Energy conservation of electrons, 77-79
Enskog method, 89
Equilibria classification, plasmas

ASDF, 286

Boltzmann balance, 296-297

corona equilibrium, 287

EEK, 286

Maxwell balance, 295-296

microscopic reversibility, 293-295

numerical collisional radiative (CR)
models, 286

Planck’s balance, 300-303

proper and improper balances, 291-293

Saha balance, 297-300

TE, 287-291

Excimer lasers, 389-390
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F
Fabric treatment, 417
First-order expansion, collision integral
coupling between anisotropies
equilibrium isotropic electron
distribution function, 95
Lorentz gas model approximation, 95
orthogonality properties, Legendre
polynomials, 96, 98
electron conductivity, 97-98

momentum conservation equation, 98—100

relaxation, anisotropies
collision frequencies, laboratory
system, 93
density gradients, 94
Legendre polynomials, 92-93
Maxwellian isotropic component, 95

momentum transfer, collision frequency,

94
transport theory, 94
velocity anisotropic components, 87-92
Fluorescence emission, 320
Food packaging, 436
Franck-Condon transition, 132, 335
Free-free transitions, 310, 311

G

Gas lasers
CO; lasers, 390
cooper vapor lasers, 390
excimer lasers, 389-390
nitrogen lasers, 389

Gas synthesis production, 417

Gastroenterology, 427

Glow discharge
abnormal glow discharge, 18
applications, 19
Boltzmann equation, 21
cathode dark space, 18-19
cathode dark space gaining energy,

20
current transport, 19
direct-current (DC), 19
Faraday dark space contract, 19
ionization rate, 20
luminous and dark zones, 18
normal glow discharge, 18
quantitative description, 21
radial space-charge electric field,
21

steady-state glow discharge, 20
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thermionic emission, 18

Townsend (dark) discharge, 16, 17

Townsend’s ionization coefficient, 14

types, voltage-current characteristics, 16,
17

H
Hard sphere model, 107
High-frequency (HF) electric fields
characteristic frequencies
Chapman and Cowling expression,
148
for energy and momentum transfer,
147
gas number density, 149
inelastic vibrational exchanges, 150
superelastic electron-vibration (e-V)
collisions, 149
EEDF, 209
energy-averaged ionization, 208, 210
energy relaxation, 209
gas discharge breakdown, 212
inelastic collision, helium, 209
ionization threshold energy, 210
Paschen curves, 213
power absorbance, 151-153
stationary electron energy distribution
functions, 153-160
time-averaged absorbed power, 210
time dependent electron density, 208
Hund’s rules, 324
Hybrid plasmas, 425
Hypothesis of molecular chaos, 49

1
Impact pressure broadening, 314-320
Indirect plasmas, 425
Induced emission, 320-321
Inelastic collisions
collision frequency, energy transfer, 113
continuous approximation, rotational
levels, 117-119
elastic, excitation and ionization processes,
114
inelastic and superelastic processes, 110,
111
Legendre polynomials, 111
Lorentz gas model, 112
low-pressure discharge, 110
momentum transfer, 113
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Inelastic collisions (cont.)
velocity space and power balance analysis,
115-117

K
Kinetic description, plasma
Boltzmann transport equation (see
Boltzmann transport equation)
collision phenomena (see Collision
phenomena, plasma)
Hamilton’s equations, 79
Liouville relation, 79-80

L
Laser-induced fluorescence (LIF), one-photon
density and saturation parameter, 396
excited-state atoms, 385
fluorescence signal, 396
fluorescence spectrum mode, 386
laser line and species absorption profiles,
386, 388
molecules and radicals, 385, 387
noble gas ion lasers, 388
quenching, 395
schematic setup, 397
signal intensity, 394, 396
spatial dependence, 397
three-level energy scheme, 386
Laser spectroscopy
absolute calibration procedures, 398
gas lasers
CO;, lasers, 390
cooper vapor lasers, 390
excimer lasers, 389-390
nitrogen lasers, 389
liquid lasers, 392-394
multiphoton laser induced fluorescence
detected atoms, 405
differential equations constants, 403
energy levels diagram, 398-399
multiphoton transition, 400
photon transport equations, 402
populations of levels, 403—404
simulation, 401-402
TALIF and TALISE intensities, 402,
404-405
two-photon induced fluorescence,
399400
one-photon LIF
density and saturation parameter, 396
excited-state atoms, 385
fluorescence signal, 396
fluorescence spectrum mode, 386

Index

laser line and species absorption
profiles, 386, 388
molecules and radicals, 385, 387
noble gas ion lasers, 388
quenching, 395
schematic setup, 397
signal intensity, 394, 396
spatial dependence, 397
three-level energy scheme, 386
solid-state lasers, 391-392
Lenard-Jones potential, 324-325
Lignin treatment, 421
Line radiation
bound-bound transitions, 310, 311
bound-free transitions, 310, 311
continuum bremsstrahlung, 310
Doppler broadening, 313-314
free-free transitions, 310, 311
natural broadening, 311-313
pressure broadening, 314-320
transition between two energy levels, 311
Line sources, 359
Liouville’s theorem, 44
Liquid lasers, 392-394
Local field approximation (LFA)
characteristic time and distance, 195
collision operators, elastic and inelastic
collisions, 264
diffusion length, 196
divergence, energy current density, 265
electron displacement, 269
electron distribution function, 194
electron kinetics, 263
elliptic equation, 266
energy/momentum relaxation, 194
glow-discharge, 197
ground-state atoms, 264
homogeneous kinetic Boltzmann equation,
266
kinetic energy scale., 271
non-local approach, 269, 272
radial space-charge electric potential, 267
spatial diffusion, 266-267
stationary equation for energy conservation,
265
timescale, spatial diffusion, 268
Local thermal equilibrium (LTE) slow
variations, 288
Lorentz gas model, 110
Low-temperature plasma (LTP) application
biology and agriculture
antimicrobial efficacy, 434
calli growth, 433
dielectric barrier discharge, 436, 437
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food packaging materials, 436
fungicide degradation, 436
germination treatment, 436
redox biology, 433
ROS generation, 434-435
sweet fern gametophyte, 433434
biomass processing and biofuels production
bagasse ozonation treatment, 418-420
biodiesel production, 422
delignification, 418
gas synthesis production, 417-418
lignin treatment, 421
power generation, 422
material processing
aircraft industry, 415
automotive industry, 416
biomedical industry, 415
chemical vapor deposition, 414
coatings, 414
fabric treatment, 416417
low-temperature discharges, 414
microelectronic industry, 416
plasma torches, 413—414
polycrystalline diamond coatings,
414-415
medicine and pharmacy
apoptosis, 426, 428
atmospheric plasma sources, 423
biologically active liquids, 432
biotechnological processes, 432
cancer treatment, 426
dielectric barrier discharge (DBD)-
based device, 426, 428
direct plasmas, 423, 425
drug transport across biological barriers,
432
gastroenterology, 427
health care, 424
hybrid plasmas, 425
indirect plasmas, 425
nanotechnology, 432
necrosis, 426, 428
non-equilibrium plasmas, 423
plasma needle, 424, 426, 427
plasma supplemented techniques, 423
reactive nitrogen species (RNS), 425,
429, 430
ROS, 425, 428, 430, 431
skin diseases, sterilization and
treatment, 424
therapeutic applications, 424
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M
Material processing applications, 413417
Maxwell balance, 100, 295-296
Maxwell-Boltzmann distribution, 57
Medicinal and pharmacutical applications
apoptosis, 426, 428
atmospheric plasma sources, 423
biologically active liquids, 432
biotechnological processes, 432
cancer treatment, 426
dielectric barrier discharge (DBD)-based
device, 426, 428
direct plasmas, 423, 425
drug transport across biological barriers,
432
gastroenterology, 427
health care, 424
hybrid plasmas, 425
indirect plasmas, 425
nanotechnology, 432
necrosis, 426, 428
non-equilibrium plasmas, 423
plasma needle, 424, 426, 427
plasma supplemented techniques, 423
reactive nitrogen species (RNS), 425, 429,
430
ROS, 425, 428, 430, 431
skin diseases, sterilization and treatment,
424
therapeutic applications, 424
Metastables, argon direct current dischage
absorption coefficient determination, using
abacuses, 372-373
electronic density
collisional and radiative processes, 373
electron collisions, 374-376
excitation from ground state, 374-375
electronic rate coefficients, 376-377
first excited levels, 368369
metastable density determination, 371-372
resonant levels
conservation equation, 368
destruction of excited states, 369-370
diffusion mechanism, 370
electron collisions, 370
Penning ionization reaction, 370
quenching, 370
superelastic collisions, 370
Microelectronic industry, 416
Microscopic reversibility, 293-295
Microwave discharge, Boltzmann equation
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Microwave discharge, Boltzmann
equation (cont.)
characteristic frequency, energy relaxation,
248
cylindrical argon discharges, 254, 256
DC discharge, 249
EEDF, post-discharge, 260, 261
electron ionization rate coefficient, 250
electron-ion recombination, 259
electron rate coefficients, 251
ionization rate coefficient, 251-253
kinetic relaxation process, 257
population distribution, 252
secondary electron production, 258
temporal electron energy distribution
function, 260
temporal evolution, electron diffusion
coefficient, 261, 262
time-averaged energy gain per collision,
249
time-evolution algorithm, 260
VDF, 252
Moments of Boltzmann equation
conservation laws and continuity equation,
72-74
equation for
energy conservation of electrons, 77-79
momentum conservation, 75-77
Momentum conservation equation, 75-77
Morse potential, 324
Multiphoton laser induced fluorescence
detected atoms, 405
differential equations constants, 403
energy levels diagram, 398-399
multiphoton transition, 400
photon transport equations, 402
populations of levels, 403-404
simulation, 401402
TALIF and TALISE, 401-405
two-photon induced fluorescence, 399—400

N
Nanotechnology, 432
Natural broadening, 311-313
Necrosis, 426, 428
Nitrogen lasers, 389
Noble gas ion lasers, 388
Non-equilibrium plasmas, 423
Non-rigid rotor diatomic molecules, 327
Non-self-sustained discharges

ionization, collisions

Arrhenius for thermally activated
processes, 12

Index

cathode irradiation, 10

discharge current density, 10, 11

electron current density, 12

multiplication grid, electrons, 11

Townsend’s ionization coefficient, 12
multiplication, secondary effects

characteristic current-voltage, 14

electron collisions, ionization, 13

electron-ion pair, 15

ions impingement, 13

kinetic theory, 15

low space-charge fields, 13

Paschen’s law, 15

space-charge distortion, 14
primary discharge characteristics, 3—6
space-charge effects, 6-10

(0]

One-photon laser-induced fluorescence (LIF)
density and saturation parameter, 396
excited-state atoms, 385
fluorescence signal, 396
fluorescence spectrum mode, 386
laser line and species absorption profiles,

386, 388
molecules and radicals, 385, 387
noble gas ion lasers, 388
quenching, 395
schematic setup, 397
signal intensity, 394, 396
spatial dependence, 397
three-level energy scheme, 386

Optical absorption measurements, 360-367

Ozonation treatment
lignin, 418
sugarcane bagasse, 418-420

P
Paschen’s law, 15
Penning ionization reactions, 261, 370
Planck’s balance for interaction, 286
Planck’s radiation law, 287
Plasma-induced emission (PIE) spectroscopy,
383-384

Plasma needle, 424, 426, 427
Plasma torches, 413414
Polycrystalline diamond coatings, 414-415
Power absorbance, 151-153
Power generation, 422
Pressure broadening

classification, 318

impact/collosional
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long-range collisions, 315
mean free path, 317
optical collision/Weisskopf’s radius,
317
perturber and emitter atom collision,
315, 316
phase shift calculation, 316
uncertainty principle, 317
quasi-static, 315
resonance, 318, 319
Stark broadening, 318, 320
Van der Waals, 318-319
Primary free discharges
characteristics, 3—6
electron-ion recombination coefficient, 5
permanent external ionizing agents, 3
photo-electron emission, 4
saturation electron current density, 6
space-charge density, 4
strong X-rays source, 5

Q

Quadratic Stark broadening, 318
Quasi-static pressure broadening, 315
Quenching, 370

R
Radio-frequency (RF) electric fields
time-dependent Boltzmann equation,
169-175
time-dependent velocity distributions,
175-182
Reactive nitrogen species (RNS), 425, 429,
430

Reactive oxygen species (ROS), 425, 428, 430,

431, 434-435
Resonance broadening, 318, 319
Rigid rotor diatomic molecules, 326-327

S
Self-sustained discharges
corona discharge, 21-25
glow discharge, 16-21
Solid-state lasers, 391-392
Space charge fields
ambipolar diffusion (see Ambipolar
diffusion coefficient)
Boltzmann equation, discharge
anisotropies, electron distribution
function, 244
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continuous electron flow components,
velocity space, 245
LFA, 248
Maxwellian energy distribution, 247
microwave discharge, 248-257
radial movement, diffusion, 245
steady-state plasma, 245, 246
Child-Langmuir equation, 9
collisionless case, 9
electron mobility, 8
field distortion, 7
glow discharge, 10
Poisson’s equation, 7, 8
spatial distributions, electric field, 8, 10
steady-state continuity equation, 7
surface charge density, 6-7

Spontaneous emission, 321
Stark broadening, 318, 320, 346-348
Stationary electron energy distribution

functions

in argon, 155

EEDF, 154

electron-vibration superelastic processes,
158

fractional power transfer, 159, 160

Maxwellian distribution, 156

percentage electron energy loss, argon, 157

time-averaged energy gain per collision,
154

time constant, 153

Sulfur hexafluoride (SFg), Boltzmann equation

critical reduced electric field strengths, 222,
223

electron cross sections, 219, 220

fractional power, 221, 222

global warming greenhouse gas, 218

six-term Boltzmann method, 220

Townsend ionization coefficient, 219, 220,
224

Superelastic collisions, 370

TALIF. See Two-photon laser-induced

fluorescence (TALIF)

TALISE. See Two-photon absorption laser

induced stimulated emission
(TALISE)

Therapeutic applications, 424
Thermodynamic equilibrium (TE)

EEDF, 290
laws of statistical mechanics, 287
Maxwell’s law, 290
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Thermodynamic equilibrium (TE) (cont.)
non-thermodynamic equilibrium systems,
288
Planck’s radiation law, 287, 290
proper balances, 287, 288
Saha distribution, 287, 291
Time-dependent Boltzmann equation
characteristic relaxation frequency, 169
EEDF, 169, 175
elastic and inelastic collisions, 171, 172
electron velocity distribution, 172
energy-averaged power balance equation,
175
energy-exchange processes, 171
Fourier series, 171
Legendre polynomials, 171
mean power absorbed per electron, 170
nonlocal equations, 172
vibrational excitation, 169
Time-dependent velocity distributions
EEDF
energy-averaged electron energy, 181
hydrogen, 180
nitrogen, 177, 180
phase-delay approaches, 182
electron drift velocity in N,, 178, 179
electron energies, 176
relaxation frequency, 176
vibrational excitation, 179—180
Time-symmetric formalism, 52
Time-varying electric field
electron cyclotron resonance (see Electron
cyclotron resonance)
HF (see High-frequency (HF) electric
fields)

Index

RF (see Radio-frequency (RF) electric

fields)

Titration technique, 339-340

Townsend (dark) discharge, 16

Townsend’s ionization coefficient, 12

Two-photon absorption laser induced
stimulated emission (TALISE),
402-405

Two-photon laser-induced fluorescence
(TALIF), 401-405

\'%
Van der Waals broadening, 318-319
Velocity anisotropic components
anisotropic component, 90
Boltzmann equation, molecules, 88
diffusion gradients and external forces, 88
Enskog method, 89
Legendre functions, 90, 92
Lorentz force, 88
Lorentz gas model, 89
space-charge fields, 88
spherical harmonics, 90
weakly ionized gases, 87
Vibrational distribution function (VDF), 252,
344
Vlasov equation
Coulomb interactions, 60
long-distance interactions, 60
space-charge force, 60

W
Wien’s law, 301
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