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BASIC STRUCTURAL THEORY

This book introduces the basic equations of the theory of struc-
tures. Conventional presentations of these equations follow the ideas
of elastic analysis, introduced nearly two hundred years ago. The
present text is written against the background of advances made in
structural theory during the last fifty years, notably by the introduc-
tion of the so-called plastic theory. Tests on real structures in the
twentieth century revealed that structural states predicted by elas-
tic analysis cannot in fact be observed in practice, whereas plastic
ideas can be used to give accurate estimates of strength. Strength
is discussed in the first part of this book without reference to equa-
tions of elastic deformation. However, the designer is concerned also
with stiffness, for which elastic analysis is needed, and the standard
equations (suitable, for example, for computer programming) are
presented. Finally, stability is analyzed, which again is essentially an
elastic phenomenon, and it is shown that a higher factor of safety
is required to guard against buckling than is required to guaran-
tee straightforward strength. The emphasis throughout this book is
on the derivation and application of the structural equations, rather
than on details of their solution (nowadays best done by computer),
and the numerical examples are deliberately kept simple.
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Preface

University courses in structural theory (as in any other branch
of engineering) aim to teach the principles of the subject. It
is in fact difficult, if not impossible, to discuss a principle in
the abstract, and students are usually engaged in carrying out
an assortment of algebraic or numerical calculations for par-
ticular examples of structures, in the hope that fundamental
truths will be revealed.

Structural equations are straightforward and are, with
some exceptions, linear. The equations may be written eas-
ily, but unfortunately they are very numerous. Although their
solution presents no conceptual difficulty, the work involved
is so heavy that, before the advent of the electronic computer,
it was virtually impossible to obtain exact numerical results
for any but the simplest structure. Advances in structural
theory in the nineteenth century, and in the twentieth, were
directed on the one hand to the establishment of basic theo-
rems to guide the engineer towards easier formulation of the

equations, and on the other hand to the development of

vii



viii Preface

computational techniques which could lead to approximate
solutions of any required degree of accuracy.

Many of these advances were made by scientists and engi-
neers of experience and insight, and they show great creative
genius. Thus the student’s understanding will be enlightened
by, for example, the elastic reciprocal theorems, the concepts
of strain and potential energy, and by the theory underly-
ing the testing of models. Side by side with these fundamen-
tal elastic properties, however, the student may well be pre-
sented with a host of techniques such as deflexion coefficients,
slope/deflexion equations, and moment/area methods, which
might seem to be basic to the theory of structures whereas,
despite their intellectual power, they are really no more than
aids to the solution of the structural equations. The student
may well feel aggrieved to have spent time mastering meth-
ods of calculation, when the modern computer is furnished
with programs which can produce numerical solutions for any
complex structure.

Some of these topics are presented in Chapter 4, but the
discussion is brief. It is the intention of this book to present
the basic ideas of structural theory, rather than to review the
many techniques of calculation for elastic structures. These
basic ideas will enable the engineer to appreciate the way in
which a computer program delivers its solutions, without nec-
essarily investigating every detail of the computation. All of
these analyses, the theory and the calculations, fall within the
gigantic intellectual framework of the classical theory of struc-

tures, enunciated formally by Navier in 1826, and developed
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over the next century to the point where it forms the basis of
most design codes throughout the world.

There is a second and powerful reason for not concen-
trating on the conventional syllabus of nineteenth and twen-
tieth century courses on structural engineering. The methods
of elastic analysis, whether executed by hand or by computer,
purport to describe the actual state of a given structure under
a given loading system. The Navier theory appeared to be
so self-evidently correct that it was almost a century before
tests on real structures revealed that the results of elastic
analysis cannot be observed in practice. There is now over-
whelming evidence that the state of an actual structure may
be very different from that calculated confidently by the elastic
designer.

A seemingly artificial example, the four-legged table,
reveals the problem. The tripod is an ideal structure — the
forcesin the three legs which result from a given loading can be
found easily and unequivocally from simple equations. How-
ever, those same equations are insufficient to furnish the leg
forces for the conventional table with four legs, and the full
apparatus of elastic structural theory leads to those difficult
calculations to which the computer can now give a precise
answer.

This computer outputis the Navier elastic solution for this
theoretical structure. The real table, placed on a hard floor, will
rock, and if a leg is clear of the floor by a mere fraction of a
millimetre, it is certain that the force in that leg is actually

zero, whereas the computer has supplied a definite value for
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the force. Moreover, a cork wedge may be used to make the
table comfortable for its users, which exposes the task facing
the structural engineer: how are the leg forces to be evaluated,
so that the legs may be designed, when any one of the four
may be in contact with a (supposedly) rigid floor, or clear
of the floor, or supported by an elastic wedge of unknown
properties?

A real structure is, in fact, supported externally in a way
which is unknown (and unknowable) to the engineer, who nev-
ertheless is required to make a design. In modelling the struc-
ture for analysis, the conventional elastic designer is forced to
make some assumptions (as is the computer program) — for
the table, for example, that all four legs are in contact initially
with a (rigid) floor. These assumptions, seemingly innocuous
and actually of small consequence, can lead to structural solu-
tions widely different from those observed in practice. Very
small differences in boundary conditions can lead to wholly
disproportionate differences in internal structural forces, in
real multi-storey buildings as well as in the simple model of
the table. The foundations of a steel or concrete frame can set-
tle by small but — for the user — acceptable amounts; a bolted
joint, assumed to be inflexible, may slip on first loading; frame
members may be manufactured with slight dimensional errors.
Such defects seem trivial, and they do not, in fact, affect the
basicstrength of a structure, butitis these defects which reveal
that elastic calculations give a poor indication of how a struc-
ture carries its loads.

The anomaly was fully revealed in the first half of the
twentieth century by tests on buildings under construction,
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and the results led to the development of the so-called plastic
theory as an alternative to elastic analysis. Plastic theory in
its simple form makes no use of (unknowable) boundary con-
ditions in the assessment of strength — indeed, no attempt is
made to calculate the actual state of a structure. Instead, new
and powerful theorems —above all, the safe theorem — give the
designer confidence in plastic methods. Paradoxically, it is the
safe theorem which shows that conventional elastic methods,
the Navier schema — while predicting a state which is not expe-
rienced by the real structure, and which will lead to a design
which is usually wasteful of material — nevertheless gives a
safe estimate of strength.

However, simple plastic theory is concerned only with
the prediction of strength, and traditional elastic computa-
tions cannot be rejected. Even if, as is the case, the working
state of a structure is essentially unknowable, in the sense that
the internal forces are critically dependent on seemingly triv-
ial unknown imperfections, the designer may be required to
make estimates of stiffness to ensure that deflexions lie below
specified limits. A structure may well yield on first loading, but
stiffness is basically an elastic structural property, and must be
estimated somehow by the engineer. Similarly, although buck-
ling may also involve some yielding, the onset of instability can
be determined (with some empirical imprecision) by the use
of classical elastic differential equations.

This book starts, then, with a discussion of the strength
of structures, and it will be seen that statements can be made
with some confidence. Subsequent chapters discuss stiffness

and stability, and some of the traditional methods of elastic
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analysis are presented in order to predict deflexions and the
onset of buckling. The examples are deliberately kept simple,
and the necessary mathematical foundations of the subject are
outlined in three short appendices.
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n Introduction

The structures discussed in this book are assemblages of ele-
ments (e.g. beams, columns, struts, ties) that form a construc-
tion of some practical use. For example, a light steel gantry
may be needed to support a cable to power electric trains;
or simple portal frames, steel or concrete, may house a fac-
tory; or the elements may be combined into a framework for
a multi-storey building. A theory of structures is necessary to
ensure that the design of any particular construction will be
satisfactory when built.

The designer decides on the general form of a structure —
for example, using girders working in bending for a small-
span bridge, rather than a lattice truss with members work-
ing in tension or compression (alternative forms may be
examined simultaneously to achieve a best design). Design
requirements (e.g. specified imposed loads, permitted maxi-
mum deflexions) are stated, and the designer’s task is to satisfy
those requirements. The design process falls logically into two
stages: dimensions are assigned to the members of the chosen

form, and the theory of structures is then used to ensure that

1



2 Introduction

the members are comfortable, and that the overall behaviour
of the structure meets the criteria. This process, in general, is
circular; the structural analysis cannot be made until the sizes
of the members have been chosen, but those sizes depend on
the results of the structural analysis. In some cases it may be
possible to achieve a direct design without this circular pro-
cess of trial and error (and, certainly, computer programs may
be written to achieve rapidly convergent designs). This book
is concerned with the analysis of structural forms to ensure
that design criteria are met.

The three major structural criteria are strength, stiffness
and stability. Successive chapters are devoted to these topics.
Individual members must certainly be strong enough to carry
the loads they are designed to bear, but the overall strength of
acomplex structure may well be determined by the interaction
of those members. The strength of structures is examined in
Chapter 2.

Similarly, to be serviceable a structure must have dis-
placements with acceptable limits — it must be stiff enough
under the prescribed loading so that deflexions are not devel-
oped which might interfere with its design function (e.g. over-
head rails in a factory building must remain sufficiently rigid
to ensure that a gantry crane can operate without difficulty; an
electric cable must be reachable by the pantogram of a train).
Such deflexions are almost always elastic, and their calculation
is explained in Chapter 3, and continued in Chapter 4.

Finally, the structure must remain stable. A familiar form
of instability may be observed in the buckling of columns, but

other forms are possible, and they include the instability of
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Figure 1.1. Load/extension curve for a ductile material.

the structure overall. Buckling of an individual steel or con-
crete member may be sudden, and could prove disastrous for
the structure as a whole, although in certain types of construc-
tion (for example, plates and thin shells, which are outside
the scope of this book), stable buckling can occur. Stability is
studied in Chapter 5.

1.1 Structural assumptions

A first requirement of a material that is structurally useful
is that it should be ductile. That is, steel, reinforced concrete
(preferably under-reinforced), aluminium alloys, and perhaps
wrought iron are acceptable, but cast iron and glass are not;
they will shatter if incorporated as load-bearing members in a
practical structure. Figure 1.1 shows schematically the results
of a tensile test on a prismatic mild steel bar of a grade typi-
cally used in structural work. As the tensile load on the spec-
imen is increased the resulting extension is at first elastic and

proportional to the load (Hooke’s Law), and is recoverable.
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However, when the yield stress of the steel is reached the spec-
imen extends at a more or less constant load, and behaves in
a plastic way. If the test is interrupted at this stage, and the
load is removed, the extension is not fully recoverable, and
the unloading from a point such as P is elastic. The transi-
tion from elastic to plastic behaviour in such a test may be
sharp, and points A and B may almost coincide. However,
the important property of the schematic sketch of fig. 1.1 is
that possible plastic extensions, for mild steel, are many times
the extension at first yield (more than a factor of 10 before
indeed the load starts to increase with the onset of strain
hardening).

Such a mild steel bar is used in the example of a truss in
Chapter 2, but the bar could equally be made from aluminium
alloy. In that case the load/extension characteristic differs from
that shown in fig. 1.1 in that portion BP of the curve would
rise gently instead of being virtually horizontal. However, a
design based on the load at point B of the curve would be
safe for the alloy construction, and in both cases, steel and
aluminium alloy, the plastic region is sufficiently large that
extensions may be assumed to be unlimited, and to take place
at constant load (provided there is no danger of instability; see
below for the third structural assumption). The load/extension
characteristic is in fact idealized as shown in fig. 1.2.

If the mild steel member is used not in tension, but in
bendingin the form of a beam in a structural frame, then fig. 1.1
represents — again schematically, but with some accuracy — the
moment/curvature characteristic of the member. As before,

the initial response is linear and elastic, but at yield large
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increases in curvature can occur in the beam. The yield zones
are localized at plastic hinges; large rotations of the hinges can
occur at a constant value of bending moment, defined as the
full plastic moment of the beam. This value corresponds to the
plateau BPin fig. 1.1. As will be seen, the formation of a single
(or indeed more than one) plastic hinge does not necessarily
imply that the structure has attained a limiting strength; that
limit is reached when a sufficient number of hinges form so
that unacceptably large deformations can occur.

A second structural assumption is concerned with the
magnitude of the deformations. It is possible to construct
analyses which allow for finite displacements, but the straight-
forward theory of structures assumes that working deforma-
tions (that is, displacements before the limiting strength is
attained) are small compared with the overall dimensions of
the structure. By small it is implied that changes in the over-
all geometry of the structure under load are negligible; thus
the angles between the bars of a truss framework stay virtu-

ally unchanged, so that equilibrium equations involving these
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angles, and written for the undeformed structure, remain valid
for the deformed state.

Finally, a third major assumption concerns the stability
of structural members. This question is explored later but,
essentially, care must be taken if a member is used whose load/
deflexion characteristic does not exhibit the ductile plateau of
the schematic fig. 1.1, but instead involves a decrease of load

with increasing deformation.

1.2 Structural equations

The theory of structures is a branch of solid mechanics which
deals with slightly deformable bodies, and there are only three
types of basic equation which may be written to perform a
structural analysis. The first set of equations expresses the
static equilibrium of a structure — that is, internal structural
resultants (e.g. bar forces in a truss, bending moments in a
beam or frame, and so on) must be in equilibrium with the
external loads acting on the structure. The familiar equations
of statics — resolving forces, taking moments — are used to
ensure this equilibrium. As will be seen in the next chapter,
these basic equations may be used to determine the strength of
a structure constructed from materials whose limiting strength
(e.g. ayield stress or value of full plastic moment) is known.
The other two structural criteria — stiffness and stability —
require the use of the other two sets of master structural equa-
tions. Straightforwardly, if elastic deflexions are to be calcu-
lated, then the elastic properties of the material must enter

the analysis. For the trusses and beams considered in this book
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only the value of Young’s modulus is needed. Once the value is
specified for a given structural member, that member’s elastic
deformation can be calculated in terms of the applied internal
forces (i.e. tension, compression, bending moment).

Problems involving shear deformation (which are not
considered here) require the value of a second (independent)
material constant, the shear modulus; this modulus is needed,
for example, if the effects of twisting of a member (e.g. a
steel hollow-box section) are to be investigated. (There are,
in theory, 21 elastic constants for materials which possess no
isotropy or other elastic symmetry. Wood, for example, has
three mutually perpendicular planes of symmetry, two along
the grain and one at right angles. In this case, the number of
elasticconstants required in theory to specify elastic behaviour
is reduced to 9. However, for a reasonably homogeneous and
isotropic material like steel or aluminium alloy the two con-
stants suffice.)

Finally, the elastic deformations must be such that the
members still fit together when the structure is loaded, and
the structure as a whole must obey whatever boundary condi-
tions may be specified (e.g. a beam rests on a given number of
supports, a frame has its footings rigidly attached to founda-
tions, and so on). Considerations such as these are expressed
in the third set of master equations, the so-called compatibility

conditions.
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2.1 Trussed frameworks

The three equal bars shown in fig. 2.1 are supposed to be rigid
and infinitely strong; they are pinned together at B and C with
frictionless joints, and similar pins at A and D connect the
assemblage to a rigid foundation. Evidently the figure does
not represent a (two-dimensional) structure — it is a mecha-
nism (a four-bar chain, counting the ground AD as one of the
bars) incapable of carrying load. The addition of a diagonal
member AC enables load to be applied — for example, the
horizontal force W at joint C, fig. 2.2. The statical analysis of
the truss is shown in fig. 2.3, in which the bar forces shown
have been obtained by resolving horizontally and vertically
at the frictionless joints. At B the two members meeting at
right angles must each carry zero load, while the resolution
of forces at joint C shows that the added member AC carries
a tension W+/2, while the (rigid) member CD is subject to a
compression W. (In accordance with the assumption of small
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deformations, the 90- and 45-degree angles in fig. 2.3 remain
unchanged for the purpose of the resolution of forces.)

In contrast to the original three rigid members, the diag-
onal ACis a structural element which elongates slightly under
the action of its tensile load. If the load/extension character-
istic of member AC is known (that is, it has a known cross-
sectional area and elastic modulus), then its extension can be
calculated in terms of the force W, and the deflexion of point

C may be determined.

o—> W

Figure 2.2. Structure
capable of carrying load.

A D

7 7 777 7 7 7 7 7 7 7 7Y7 7




10 Strength
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The problem of the stiffness of the truss — that, is the
determination of the deflexion of joint C — is discussed in
Chapter 3. The present objective is to calculate the strength of
the simple structure shown in fig. 2.2. If the member AC can
sustain a maximum load of value 7, then clearly the greatest
value of Wis T/ V2. At this load, indefinite ductile extension of
bar AC occurs in accordance with the idealized characteristic
of fig. 1.2, and deflexions of the structure occur which are no
longer small — a mechanism of collapse (the four-bar chain)
has developed.

This analysis can hardly be dignified by the label Theory
of Structures. The structural problem proper is illustrated in
fig. 2.4, in which a second structural member BD has been
added to the truss; as before, all joints are supposed to be
freely pinned, and the two diagonals have no connexion where
they cross. Under the action of the applied load W tensions
Py and P, are developed in the two diagonal members, as
shown. Resolution of forces at joint B leads to the marked
values of tension in bars BC and BA. Tensile forces are

denoted positive, so that the tension —P>+/2 marked for bar
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BA implies that the bar is in fact in compression. (It may be
imagined that bar BD would be put into compression under
the action of the applied load W, but in fact, as will be seen,
it is possible for the value of P, to be positive.) Resolution
of forces vertically at joint C leads to the marked value of the
forcein bar CD. Resolving forces horizontally at Cleads to the
equation

P, — P, = V2W. (2.1)

No more information can be obtained from the use of
the equations of statics, and the truss is statically indetermi-
nate, or hyperstatic. The values of P; and P, have not been
determined, although they are related by eq. (2.1). Neverthe-
less, it is possible to make a statement about the strength of
the truss.

As before, the framing members AB, BC and CD are
assumed to be rigid and infinitely strong. For simplicity, the
two structural members AC and BD are taken to be identical,
and to be ductile with maximum loads in tension 7 and in
compression C. That is, it is assumed (at this stage) that there
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is no question of instability, and that each diagonal bar can
accept a maximum compressive load of value C. If a plot is
made of the bar forces P and P, fig. 2.5, then — whatever their
values — any point X representing the forces must lie within the
yield surface shown. That is, both P; and P, must lie within the
range —C and +7. Also shown in fig. 2.5 is a plot of eq. (2.1);
the point X, representing the state of the truss under the load
W, must lie on the line RS, which intersects the P; axis at
the value W+/2. As the value of W is increased this point of
intersection moves to the right, and the maximum possible
value of W is attained when the line of eq. (2.1) reaches the
corner of the yield surface (see fig. 2.60). At this stage, the
general point X can only just be contained within the yield
surface. Comparing figs 2.5 and 2.6 shows that the value of W
is given by (C + T) = W+/2, and this represents the greatest
load that the truss can carry. This collapse value could have
been written directly from an examination of eq. (2.1); if the
value of W is to be as large as possible, then P; must have its

largest value +7, and P; its smallest, —C.
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Of extreme interest is the information obtainable from
eq. (2.1) when there is no load on the truss; thatis when W = 0.
In this case P; = P,, which represents a state of self-stress,
characteristic of a hyperstatic structure but impossible for one
which is statically indeterminate. The state of self-stress is easy
to visualize for the simple truss shown in fig. 2.4. The diagonals
AC and BD might be light flexible ties, for example, in one
of which is installed a turnbuckle. To improve the stiffness of
the truss (as will be seen in Chapter 3), the turnbuckle might
be tightened to induce tension in AC, which is inescapably
accompanied by the same value of tension induced in BD.
Alternatively, the diagonals might be (as assumed) struc-
tural members capable of carrying compressive forces without
buckling; if one of these is manufactured to be slightly too long,
then it must be forced into the assembly, with resultant equal
compressive forces induced in both diagonals. These two cases
are illustrated in the plot shown in fig. 2.7: the point represent-
ing the state of the truss under zero external load must lie on

the line P; = P», and could be at X for initial tension or at Y
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for initial compression in the diagonals. If now the load W
acting on the truss is increased slowly, then the loading point
representing P; and P, moves along the line from X shown
arrowed, with P; increasing and P, decreasing (the calcula-
tion of this line is given in Chapter 3). At a certain value of the
load W the value of P; reaches T, and bar AC yields in tension.
However, the load may be increased further since the force
in member BD has not reached a limit — the extra load
results in a progressive further decrease in the value of P,
until it reaches the value —C, and the collapse corner of
the yield surface is attained (as in fig. 2.6). Similarly, starting
from the compressive state denoted by Y in fig. 2.7, member
BD first yields in compression, and the load may be further
increased until the same collapse corner of the yield surface is
reached.

In general, the initial state of self-stress in a structure is
not known. For this simple example, a turnbuckle may indeed
be used to induce desired values of initial tension in the diag-
onals, but a real structure is inevitably subject to unknown

manufacturing defects. If the structure is hyperstatic, the
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defective members must be forced into the construction, and
the initial stresses in the members cannot be pre-determined.
However, whatever the initial unloaded state of the struc-
ture, behaviour under loading follows the pattern illustrated
schematically in fig. 2.7. Indeed, with the simple assumptions
made so far, the collapse load of a ductile structure is unique,
and is not affected by the unknown initial state of self-stress.
Moreover, it is not necessary, in calculating the value of the
collapse load, to follow the history of loading such as that illus-
trated in fig. 2.7; fig. 2.5 leads inexorably to fig. 2.6 to give the
maximum value of W. This, of course, is an extremely powerful
statement, all the more so because very small manufacturing
defects can produce disproportionately large states of initial
stress.

The illustrative example is deliberately simple (with just
two structural members) in order to develop the ideas of anal-
ysis for strength. A more realistic, but still two-dimensional,
structure is shown in fig. 2.8; this outline of a bridge truss has
16 structural members, of which 3 are redundant — that is,
the truss is hyperstatic to the third degree. If, for example,
one diagonal member were removed from each of the three
bays of the truss, the equations of statics (i.e. resolution of

forces at the joints) would enable the forces in the remaining



16 Strength

13 bars to be found in terms of the loads Wy and W,. (Note that
Maxwell’s Rule states that a two-dimensional truss is statically
determinate if b = 2j — 3, where b is the number of bars and
j is the number of pinned joints. Thus, in fig. 2.8, there are 8
joints, and resolution of forces at each joint, horizontally and
vertically, gives 16 equations, 3 of which serve to determine
the support reactions. The rule is correct, but not foolproof;
the members of the truss must be arranged sensibly. If, for
example, the two diagonals of the central panel of the truss
in fig. 2.8 were removed, the rule would imply that the truss
still had one redundancy — in fact, it is twice hyperstatic but
at the same time the central panel could deform freely as a
mechanism. Attention must also be given to the precise way
such a truss is supported externally.)

The 16 bar forces Pi, P, ...in the truss shown in fig. 2.8
can be evaluated by statics in terms of the external loads W,
and W,, but only in terms of three unknowns. Formally, each
of the bar forces P is subject to a continued inequality of the
form —C < P < T, where the values of C and T may well
differ for each of the 16 members. The mathematical prob-
lem is to maximize — subject to the 16 continued inequalities —
the value of a load factor A, applied to each and every exter-
nal load (i.e. Wi and W, in this case); at this maximum value
collapse occurs, as in fig. 2.6. The problem is one of linear pro-
gramming — tedious if done by hand, but for which standard
computing programs are available. Moreover, a computer
program may be used to assist in design rather than analy-
sis. For the truss in fig. 2.8 constructed of members of known

sizes, it will be found that a regular collapse state (there are
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exceptions, which are illustrated later in connexion with struc-
tures in bending) involves 4 members of the truss reaching
their limiting loads in either tension or compression. (Knowl-
edge of the values of 3 bar forces would make the truss effec-
tively statically determinate; the fourth bar gives a mechanism,
by Maxwell’s Rule.) The computer program can then increase
the sizes of those 4 members, and the loads can be increased
until eventually all 16 members could be playing their full part

in contributing to the strength of the truss.

2.2 Virtual work

Equation (2.1) for the truss with one indeterminacy (see
fig. 2.4), was obtained directly by considering static equilib-
rium of each joint in turn. The calculation was straightforward
for this simple truss; as was seen, 16 such equations may be
written for the more complex truss of fig. 2.8, but they are still
easy to write.

However, equations such as (2.1) may be established by
the use of the potent principle of virtual work. (Proof of this
principle is outlined in Appendix A.) An imaginary (i.e. vir-
tual) displacement is given to a structure which need bear no
relation to the actual displacement which could occur under
the given loading system. That is, a statement is made about
a possible deformation pattern for the structure. Second, the
statical equations are written for the structure — for the truss,
the internal bar forces are deemed to be in equilibrium with
the externally applied loads. Thus two of the three possible
master statements of the theory of structures enter into the
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writing of the equation of virtual work; no use whatever is
made of the third master statement, expressing the properties
of the materials of which the structure is made.

In symbols, the two statements may be written:

External loads W are in equilibrium with
the internal bar forces P. (22)
Imaginary joint displacements A involve .

imaginary bar extensions e.

Then the principle of virtual work states that

> WA= Pe, (2.3)

where W stands for Wi, W, ...and so on. In this equation,
the essential feature is that the two statements can be truly
independent — the displacements A are not produced by the
loads W.

Thus, for the truss shown in fig. 2.4, the equilibrium state-
ment is expressed in the forces marked in the figure. A possible
virtual displacement (indeed the only possible displacement if
the outer bars AB and so on are rigid) is shown in fig. 2.9. The
truss has been given a sway of magnitude A; evidently, this
involves an extension (esc) in the distance AC which is occu-
pied by a diagonal bar in the real truss, and similarly a com-
pression epp in the distance BD. There are different ways of
determining these imaginary bar extensions, but for the sway
of fig. 2.9 a conventional displacement diagram suffices. Fixed
points A and D coincide with the pole o of the displacement

diagram, and are shown in lower case in fig. 2.10. The imposed
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Figure 2.9. Possible small dis-
placement of the truss.

displacement A locates the point c in the diagram, and also b,
since bar BD is supposed to be inextensible. The (imaginary)
extension of bar AC — that is, eac — occurs in the direction
oc’ in fig. 2.10 — that is, along a line parallel to AC (since dis-
placements are always assumed to be very small). However,
the bar AC can rotate rigidly about the pin A, as represented
by the dotted line ¢’c (this is actually a small arc of a circle).

o,ad

Figure 2.10. Displacement diagram corresponding to fig. 2.9.
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Thus ¢’ is located, and eac = A /+/2. Similarly egp = —A //2,
with a negative sign because of the relative positions of 0 and
b’ in fig. 2.10. The statements (2.2) can then be written as

follows:

The load W is in equilibrium with bar
forces Py and P5.

Displacement A is compatible with bar
extensions A /+/2 and —AV/2,

so that eq. (2.3) gives
WA = P1A/V2 = P,AJV2, (2.4)

which, of course, is precisely eq. (2.1).

The analysis of displacements of trusses is not trivial, and
displacement diagrams for more elaborate trusses (such as
that shown in fig. 2.8) can become very complex. As will be
seen in Chapter 3, truss analysis is simpler if the equation of
virtual work is used the other way around. That is, instead of
real equilibrium systems being connected with imaginary dis-
placements, the terms in eq. (2.3) are interpreted as referring
to the actual displacements and to artificial systems of equi-
librium. For trusses, difficult problems of geometry are then

replaced by easier problems of statics.

2.3 Structures in bending

The entire discussion of this chapter may be rewritten in terms

of beams and frames (i.e. structures subjected to bending)
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Figure 2.11. Simply supported beam.

rather than in terms of trusses (whose members act in tension
and compression). The simply supported beam shown in
fig. 2.11 is statically determinate, and the bending-moment
diagram is as shown, with a maximum value of moment Wi /4
at the midpoint B of the beam. If the beam is of uniform sec-
tion having full plastic moment Mp, then the largest value of
W is given by Wl /4 = Mp.

In fig. 2.12 the same beam is shown, but it is now clamped
at the left-hand end A. The clamp is normally assumed to
impose zero slope on the beam at A, but in fact, as far as
strength is concerned, all that is necessary is that the clamp
be sufficiently strong and stiff so that the full plastic moment
of the beam can be developed. Under the load W a bending
moment M acts at A and Mp at B, both shown hogging in
fig. 2.12(b); it is to be expected that Mp has a negative value.

The complete bending-moment diagram for the beam
may be determined conveniently by combining the free bend-
ing moments for the equivalent simply supported beam,

fig. 2.12(c), with the reactant moments due to the clamping
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Figure 2.12. (a) Propped cantilever, (b) bending moments induced by
load, (c) free bending-moment diagram, (d) reactant bending-moment
diagram, (e) general bending-moment diagram.

moment My, fig. 2.12(d). This superposition may be done ana-

lytically (as it would be in a computer program), but it is shown

graphically for this simple problem in fig. 2.12(e). Evidently,
1

1
—Ma — Mg =-WI, 2.5
SMa— My = 25)
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Figure 2.13. Yield surface for beam in fig. 2.12.

and this is the only information that can be obtained by con-
sidering the statics of the problem (cf eq. (2.1) for the truss).
However, the values of Ms and Mp are constrained to lie
within the yield surface shown in fig. 2.13; those values, repre-
sented by the point X, must lie on the plot of eq. (2.5) shown
in the figure. The intersection of the line with the M4 -axis
fixes its position for a given value of W; if that value is to be
made as large as possible, then the state of the beam is given
by Ma = Mp, Mg = —Mp. Once again, this result can be seen
directly from an examination of eq. (2.5), if the value of Wis

to be made as large as possible. The maximum value is

_ 6Mp

w
)

(2.6)

In this state, the beam is on the point of collapse by the for-

mation of the two plastic hinges in line with the real hinge
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Figure 2.14. (a) Collapse mechanism for beam in fig. 2.12, (b) virtual
mechanism.

at the prop at the right-hand end, fig. 2.14(a), this being an
elementary mechanism capable of (infinitesimal) displace-
ment.

The collapse eq. (2.6) can be written directly from
fig. 2.14(b) by equating the work done by the external load
W to the work dissipated in the plastic hinges:

Mp (0) + (—Mp) (=20) = W Gl@) , 2.7)

which leads directly to eq. (2.6).

Care has been taken with signs in writing eq. (2.7), hog-
ging movements and rotations being denoted as positive, and
sagging as negative. In fact, work dissipated in plastic-hinge
rotations is always positive — a negative value of moment
is accompanied by a negative hinge rotation. However, to
describe the general rather than the collapse state of the beam,
fig. 2.14(b) may be used as a virfual mechanism in conjunction

with the equilibrium state indicated in fig. 2.12(b). As shown
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Figure 2.15. Paths to collapse for beam in fig. 2.12, starting from states
of self-stress.

in Appendix A, the virtual-work equation for structures in

bending becomes [cf eq. (2.3)]:

Y WoA=) Mo, (2.8)

so that

W (ée) = (M) (6) + Mg (—20) , (2.9)

which is the basic equilibrium eq. (2.5).

The beam is hyperstatic; before any load is applied, there
could be a state of self-stress given by M = 2Mp, from
eq. (2.5) with W = 0. Such a state would arise, for example, if
the supports at ends A and C of the beam were not at the same
level;infig. 2.15, the initial state would be represented by point
X if the prop at the right-hand end were too low, and by Yif it
were too high. If loading of the beam starts from point X, then
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the arrowed path would be followed (again, the calculation
of this path is given in Chapter 3); a hinge would form first at
the clamped end A (Ma = Mp) and further increase of load
would be accompanied by rotation of that hinge until the value
of Mp reaches —Mp. Similarly, loading from point Y implies
that a hinge forms first at B, under the load, with the moment
at A finally reaching the full plastic value. As for the truss, the
final collapse state is independent of the (unknown) state of

initial self-stress.

2.4 Plastic theory

The calculation of the strength of structures is, of course, the
objective of what is now known as plastic theory. The theory
is usually formulated in terms of bending structures — beams
and frames — although early presentations were indeed for
trussed frameworks (with warnings about the instability of
compression members). In what follows, the bending prob-
lem is discussed, but the conclusions — above all, the bound
theorems — apply equally to any ductile structure satisfying
the assumptions outlined in Chapter 1.

In practice, a structure is acted on by a number of speci-
fied loads. For a conventional elastic analysis, each load may
be considered separately, and the elastic response, and conse-
quent elastic stresses, calculated at each critical section of the
structure. These stresses can then be summed to give greatest
and least values, and a suitable safety factor incorporated to

guard against yield at the critical sections. For example, the
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Figure 2.16. Simple rectangular portal frame.

idealised fixed-base portal frame shown in fig. 2.16 is acted
on by two loads, where V might represent self-weight and a
possible snow load, and H the action of wind blowing from left
to right. The frame is assumed to have full-strength connex-
ions at B and D, and to the footings at A and E. The greatest
(hogging) moment at critical section D of the frame occurs
when V and H act together, whereas the greatest moment at
section B occurs under the action of V alone.

For a plastic analysis, the designer (or the computer pro-
gram) arranges the loading in a way which leads to the most
critical condition for the structure as a whole. In fig. 2.16, for
example, if the worst combination involves the action of both
loads, then the portal frame would be analysed accordingly.
Instead of a safety factor based on stress, the concept of a load
factor is introduced. Both loads V and H are imagined to be
increased by the same factor A; for a frame built of members
of known strength, the largest value of X is the collapse load
factor (for straightforward simple steel structures, a collapse

load factor of value 1.75 is appropriate).
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In fact, it is possible to carry out plastic analysis with a
range of loads — each load subject to a different load factor —
and also to analyse the response of structures to random and
repeated application of such loads, each of which might be
specified to lie within certain limits (e.g. wind blowing from
left to right, not at all, or from right to left). For simplicity, the
following presentation is limited to the case in which all loads
are subject to the same value of load factor. However, a statis-
tical element may be introduced. The safety factors of stress
used in elastic design are allowed different values to reflect the
fact that it is unlikely, for example, that a crane is operating in
a factory building at the same time that a high wind is blowing
and that there is a full snow load on the roof. Such statistical
ideas find their way into plastic design. In fig. 2.16, the anal-
ysis under the vertical load V alone could be carried out at a
load factor of 1.75, while the analysis under both loads might
be subject to a lower factor of 1.4; naturally, the designer is
constrained by the more critical of these two cases.

Plastic analysis uses, perforce, the three master state-
ments of structural theory, which are formulated as the re-
quirements of equilibrium, yield and mechanism. The equi-
librium condition is no more than the familiar equations of
statics — for beams and frames, the internal bending moments
and external loads must together satisfy these equilibrium
equations. Material properties enter the analysis by the simple
statement that the value of bending moment at any section
must not exceed the value of the full plastic moment at that

section — this is the yield condition. Where the value of the full
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plastic moment is reached a plastic hinge is formed, capable of
rotation under the constant value of the full plastic moment.
The mechanism condition is the vestigial representation
of deformation; there must be some arrangement of (ductile)
plastic hinges to permit a mechanism of one degree of free-
dom (under certain circumstances, possibly more than one
degree).

The basic plastic theorems derive from these three
requirements of equilibrium, yield and mechanism, and their

proofs are outlined in Appendix B. The theorems may be dis-

played as:
Equilibri
9“1 oam Safe theorem, A <A
A= Ac 4 Yield (2.10)
Mechanism — Unsafe theorem, A > A,

In words, the uniqueness theorem states that if all three
conditions are satisfied for a given structure at a load factor 1,
then the value of the load factor is unique, and A is equal to the
collapse load factor A.. (The corresponding collapse mecha-
nism is not necessarily unique; under certain circumstances,
alternative patterns of hinges may lead to the same value of
collapse load factor.) By contrast, if a mechanism is studied
without reference to the other conditions, then the value of
load factor (perhaps calculated, as will be seen, from a work
equation) is an over-estimate of the true collapse load factor,
and is, from the point of view of design, unsafe. Finally, if only

the conditions of equilibrium and yield are considered, then
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Figure 2.17. Possible collapse mechanisms for portal frame.

a safe estimate may be made of the strength of the structure.
These theorems may be illustrated by examination of the rect-
angular portal frame shown in fig. 2.16.

The frame is redrawn in fig. 2.17(a), together with
sketches of three possible collapse mechanisms. The bending-
moment diagram for the portal frame under the given loading
consists of straight lines between the cardinal points A4 ... E;
these are the sections at which plastic hinges might form. In
general, knowledge of the values of the bending moments
Mp ... Mg enables the complete bending-moment diagram
to be constructed.

If the mechanisms of fig. 2.17 are interpreted, in the first
instance, as virtual rather than collapse mechanisms, then the

virtual-work eq. (2.8) may be used to provide relationships
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between the values of the bending moments at the five cardinal
points. The beam mechanism of fig. 2.17(b) leads to

Vi
Mg —2Mc + Mp =)\.7 (211)
(where the parameter 6 has been cancelled throughout), while

the sway mechanism of fig. 2.17(c) gives
Ma — Mg + Mp — Mg = AHh. (212)

These equilibrium equations must always be satisfied, whether
the frame is in an elastic or a plastic state; three values of
bending moments (e.g. M A, M and M) may be assigned, but
the other two are then calculable from eqs (2.11) and (2.12).
The three bending moments M4, Mg and M¢ could be
considered as the three redundancies of this hyperstatic frame,
and it would be the objective of an elastic analysis to calculate
their values. The plastic-collapse equations, however, can be
written at once. If fig. 2.17(b) is now interpreted as a plastic-
collapse mechanism and if the frame is of uniform section
having full plastic moment Mp, then the plastic work equation

(for a small displacement 6 in the collapse state) gives
Vi
A0 = (Mp) (0) + (=Mp) (=20) + (Mp) (9)
Vi
or k7 = 4Mp, (2.13)

while fig. 2.17(c) leads to

AHh = 4Mp. (2.14)
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Equations (2.13) and (2.14) can, of course, be derived from eqs
(2.11) and (2.12) by maximizing the value of the load factor
A, setting the bending moments My ... Mg equal to =Mp, as
appropriate.

Since the frame has 3 redundancies and there are 5 values
of bending moment to be determined, eqs (2.11) and (2.12) are
the only independent equilibrium equations that can be writ-
ten. Figure 2.17(d) does indeed show a different mechanism,
and the equation of virtual work leads to

Vi
M —2Mc +2Mp — Mg = X (Hh + 7) . (2.15)

Itis clear, however, that eq. (2.16) is not an independent equi-
librium equation, but merely the summation of eqs (2.11)
and (2.12); indeed, fig. 2.17(d) is the pictorial summation of
figs 2.17(b) and (c). The plastic collapse equation correspond-
ing to eq. (2.15) is

i
A <Hh + V?) = 6Mp. (2.16)

There are no other arrangements of hinges which give rise
to mechanisms; thus there are three (and only three) estimates
of the value of A, given by eqs (2.13), (2.14) and (2.16). The
unsafe theorem states that the correct value of the load factor,
A¢, 1s the smallest of the three estimates.

The three collapse equations are plotted in fig. 2.18 to
form a yield surface, this time with loads as axes rather than
internal stress resultants. The point X in the diagram repre-
sents the design (working) values of the loads V and H; it is a
consequence of the plastic theorems that if point X lies within

the boundaries of the yield surface, then the corresponding
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Figure 2.18. Yield surface for portal frame.

loads V and H are a safe combination — the portal frame will
not collapse. Point X corresponds to a load factor of unity;
as A is increased, X moves outwards along the straight line
O X, until the boundary is reached at P. The ratio OP/O X is
the collapse load factor; in the case shown in fig. 2.18, collapse
occurs by the formation of the mechanism in 2.17(d).

Figure 2.18 illustrates in fact one quarter of a (symmet-
rical) yield surface; the full boundary is obtained if negative
values of V and H are considered. Such yield boundaries (in
n-dimensional space if there are n loads) are closed surfaces
around the origin, and are convex (no re-entrant angles). The
property of safety (X lies within the yield surface) is of course
of crucial importance in structural design; there has been no
mention in the above discussion of any state of possible initial
pre-stress. The mechanism of collapse and the value of the col-
lapse load (or of the collapse load factor) are not affected at
all by pre-stress, exactly as was seen for the truss in fig. 2.4 (col-
lapseinfig. 2.7) or for the beamin fig. 2.12 (collapse in fig. 2.15).

The determination of the boundary of a yield surface

by consideration of unsafe mechanisms of collapse gives a
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Figure 2.19. Multi-storey, multi-bay frame with 18 redundancies.

powerful algorithm for calculation (historically by hand, but
now by computer). If a framed structure has a number R of
redundancies, and a number N of critical sections at which
plastic hinges might form, then there must exist (N — R) equi-
librium equations, such as eqs (2.11) and (2.12), which connect
the magnitudes of the bending moments at the critical sections
with the values of the external loads. Thus the frame shown
in fig. 2.19 has 36 critical sections, 2 at the ends and one in
the centre of each of the 6 beams, and one at each end of the
9 column lengths. The frame has 18 redundancies, and there
must exist, therefore, 18 independent equilibrium equations.
Now it was seen that an equilibrium equation could be derived
from a mechanism; therefore there must be 18 independent
mechanisms for the frame. Six are of the elementary beam
type, one of which is shown in fig. 2.19(b), and there are 3
sways, of which one is shown in fig. 2.19(c). The remaining 9
relationships are degenerate joint mechanisms, expressing the
fact that the moments acting on the ends of members meeting
at a joint must sum to zero. From these elements can be built
up a highly complex collapse mechanism.

The hinge arrangement of fig. 2.19(b) represents a partial
collapse mechanism; for complex frames, it is highly likely
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that collapse occurs with a large part of the frame remaining
statically indeterminate. The frame in fig. 2.19(b) retains 16
of the original 18 redundancies, and there is no way that the
actual values of these redundancies can be found, since they
are determined by movements of the external environment
which are unpredictable and over which the designer has no
control. A computer program will, however, provide possible
values for the redundancies and, if the collapse solution is to
be valid, these values must satisfy the yield condition — that
is, the values of bending moment at those critical sections not
involved in the collapse mechanism cannot exceed the values
of full plastic moment at those sections.

Analysis of the simple rectangular portal frame illustrates
the problem. The partial collapse mechanism in fig. 2.17(b)
leaves the frame with one redundancy. Collapse occurs accord-
ing to eq. (2.11) with Mg = Mp, Mc = —Mp and Mp = Mp,
and, as was seen, the value of the collapse load V is given by
eq. (2.13). Equation (2.12) must always be satisfied, in which
now Mg = Mp = Mp and, so that

AHh = Ma — Mg. (2.17)

Unique values of Ms and Mg cannot be found, but
they must satisfy the condition that, numerically, neither can

exceed Mp, so that
AHh < 2Mp. (2.18)
Thus the collapse mode of fig. 2.17(b) can occur if

Vi
AHh < 2Mp = b, (2.19)
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using the collapse eq. (2.13); that is

Hh < VTZ. (2.20)

The equality signin eq. (2.20) is represented by the corner
A of the yield surface in fig. 2.18; should H exceed this value,
then the collapse mode switches to that in fig. 2.17(d). The
second corner B of the yield surface, Hh = VI, represents the
transition to the mode in fig. 2.17(c).

It was noted that the mechanism method outlined above
can be programmed for the computer. Equally, the safe
approach, involving equilibrium and yield, is merely (as men-
tioned earlier) an exercise in linear programming. For the rect-
angular portal frame the two equilibrium eqs (2.11) and (2.12)

must hold, and to these are added the requirements
— (Mp); < M; < (Mp), (2.21)

where M; stands in turn for M4 ... Mg, and where, in general,
the value of Mp need not be the same at each critical section.
The value of X in eqs (2.11) and (2.12) must be maximized
subject to the restraining inequalities (2.21).

The determination of the final value of X results from the
analysis of a given frame under specified loading. For design,
the value of X is specified; what is required is the value of Mp
for a frame which just achieves the required strength (for a
non-uniform frame, the values of Mp vary from member to
member). The problem is inverted; for example, the unsafe
theorem states that if all possible mechanisms of collapse
are studied, the one that is correct gives the greatest design

value(s) for Mp.
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Indeed, for design purposes, the value of the propor-
tional load factor need not be introduced at all until the very
last stage. The frame is designed to collapse under the spec-
ified working values of the loads — that is, at unit load fac-
tor. The corresponding values of Mp are then determined. All
these values of Mp are then increased by the same chosen
load factor; if the factor were 1.75, then the members would
have strengths 1.75 times the values resulting from the design
exercise.

As afinal aid to calculation, external loads may be intro-
duced as an internal set of bending moments in equilibrium
with those loads (in the way that fixed-end moments may be
used in elastic analysis, as will be seen in Chapter 4). Any such
set will suffice, and a simple way to construct a set is to con-
sider an equivalent statically determinate frame. The rectan-
gular portal frame has been modified by the insertion of three
frictionless pins (see fig. 2.20) and a set of equilibrium

moments can be written:

VI
M; = (M3, My, My, My, My,) = (AHh, 0, =20, o) .

(2.22)
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Now the bending moments in the original frame can be
written:
M; = M; + m;, (2.23)

where my; are (unknown) self-stressing moments, in equilib-
rium therefore with zero external load. [From eq. (2.11),
for example, mpg — 2mc — mp = 0.] Equation (2.23) is illus-
trated graphically in fig. 2.12 for the propped cantilever, where
it was described as the superposition of free and reactant
moments.

If amechanism of collapse 6; is examined, then it is known
that, for this postulated mechanism, the bending moments at
the hinge locations have value Mp, so that M; = |Mp| at these
hinges. On multiplying through by the values of the hinge

rotations, and summing for the whole mechanism,

Y M=y (M7 +m)6 =) (Mp)i16i]. (2.24)

As noted above, Y m;6; =0, since the self-stressing
moments are in equilibrium with zero external load, so eq.
(2.24) becomes

D> Mo =) Mplol, (2.25)

where the suffix i has been dropped. For example, the set of
bending moments given in (2.22) used with the hinge rotations
in fig. 2.17(b) leads directly to eq. (2.13).

Finally, should a computer program furnish an elastic dis-

tribution M of bending moments (which must of necessity be
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a special case of an equilibrium distribution), then eq. (2.25)

leads to

Y Mo = Mplol; (2.26)

a plastic collapse analysis may be made directly from an elas-
tic solution. The distribution M cannot be observed by mea-
surements on a real hyperstatic structure; as noted through-
out this chapter, the actual bending moments result from the
superposition of the actions of the external loads on an initial,
unknown and unknowable, state of self-stress. However, what-
ever the starting state, the same collapse corner of the yield
surface is always reached and this is effectively demonstrated
by eq. (2.26).

2.5 Masonry

Stone (like brick) is essentially a brittle material; it has ade-
quate compressive strength, but apparently lacks the ductility
to serve as a useful structural material. However, as will be
seen, the assembly of stone into a masonry structure, such as
an arch, creates a form which has its own peculiar property of
plastic deformability. Indeed, the structural theory of masonry
can be embraced within plastic theory.

Figure 2.21(a) shows a schematic but, in fact, a reason-
ably realistic masonry arch formed from wedge-shaped stone
voussoirs. The mortar between the voussoirs is usually very
weak in tension, and in practice may be absent, so that, in real-

ity, there is nothing to prevent the stones from pulling apart.
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Figure 2.21. Simple
masonry arch.

(b)
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By contrast, the compressive forces between the voussoirs are
so small that the resulting stresses are very low — even a large-
span bridge experiences stresses well under 10 per cent of the
crushing strength of the stone. With these remarks in mind,
the material properties of masonry may be formulated. The
following three key assumptions are stated for the voussoir
arch, but are applicable to other structural forms (e.g. the ele-
ments — towers, spires, vaults, buttresses and so on — of a great
church).

Sliding failure cannot occur
It is assumed that friction is high enough between voussoirs,

or that the stones are otherwise effectively interlocked, so



2.5 Masonry 41

that they cannot slide one on another. This is a reasonable
assumption, although it is certainly possible to find occasional

evidence of slippage in a masonry structure.

Masonry has no tensile strength

Stone itself has a definite tensile strength, but it is the joints
between the stones that are weak. Thus the assumption implies
that only compressive forces can be transmitted between
masonry elements. In accordance with common sense, and
with the principles of the plastic theorems (discussed later),

this assumption is safe.

Masonry has an infinite compressive strength

This assumption is a consequence of the fact that, in practice,
stresses are far removed from the crushing strength of the
material. The assumption is obviously unsafe, but it is not

unrealistic; it is discussed further later.

Thus a picture emerges of masonry as an assemblage of stones
shaped to pack together into a coherent structural form,
with that form maintained by compressive forces transmit-
ted within the mass of the material. (Since stresses are low,
the term masonry includes not only stone and weaker bricks,
but also, say, breeze blocks and more primitive materials, such
as sun-dried mud.) The question then arises as to how such a
masonry assemblage might fail in any meaningful structural
sense. If the masonry is infinitely strong, then it would seem
that a calculation of levels of compressive stress is not relevant.

However, the idea that tension is not permissible is significant.
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Figure 2.22. Hinge formation
in masonry arch.

The arch shown in fig. 2.21(a) would be constructed on
temporary falsework or centering. When the keystone has
been placed, the centering may be removed, and the arch
immediately starts to thrust against its abutments; those abut-
ments (the river banks) inevitably give way. The arch — com-
posed of strong, virtually rigid voussoirs — must adapt to a
slightly increased span, and it does this by cracking at the
joints, shown greatly exaggerated as hinges in fig. 2.21(b). Thus
the arch is freely deformable to conform to the new span, and,
despite the brittleness of the individual elements, the structure
as a whole exhibits ductile behaviour.

The compressive structural forces must of necessity pass
through the hinge points of fig. 2.21(b), and the broken line
in the figure represents what may loosely be called the line of
thrust — that is, the resultant of the compressive forces passed
from voussoir to voussoir within the masonry profile. If a par-

ticular joint PQ is examined (fig. 2.22), then the structural
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Figure 2.23. Yield surfaces: (a) material strong in compression, (b)
allowing for crushing of material, (c) enlarged portion of yield surface,
(d) approximation to yield surface.

action at the joint is specified in terms of the magnitude, direc-
tion and point of application of the force transmitted across the
joint. The tangential component of the force is not of impor-
tance, since slip is assumed not to occur — what is needed is the
value N of the normal force across the joint together with the
value of its eccentricity e from the centre line. It is convenient
to work with a bending moment M = Ne as a second variable,
so that the stress resultants M, N define the state of the arch
at any particular section.

The hinge shown in fig. 2.22(b) forms when the eccentric-
ity e of the normal thrust just has the value #4; that is, when
M = hN. The lines M = +hN are shown as OA and OB in
fig. 2.23(a), and they represent, for any given joint between
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voussoirs, the condition that a hinge is in existence at that
joint. A general point (N, M) in the figure which lies within
the open triangle AOB represents a thrust between voussoirs
at an eccentricity less than #4; that is, the line of thrust lies
within the voussoirs at that joint and no hinge is forming. If
the general point lies on OA or OB, then a hinge is forming in
either the intrados or extrados of the arch. The general point
cannot lie outside the region AOB, since this would imply
tension at the joints.

The construction shown in fig. 2.23(a) involves the
assumption that the material has infinite compressive stress.
As the line of thrust approaches the edge of a voussoir so the
stress on the diminishing area of contact increases, and a real
stone with a finite crushing strength does not permit the line
of contact at a hinge that is illustrated in fig. 2.22(b). Thus the
lines OA and OB in fig. 2.23(a) cannot quite be reached; they
are replaced by the slightly curved lines shown in fig. 2.23(b).
The full boundary is formed by the parabolic arcs OCD and
OED in fig. 2.23(c), and the general point (N, M) must lie
within this boundary. The assumption of low mean compres-
sive stress, in fact, constrains the point (N, M) to lie within an
area such as OCE in fig. 2.23(c), and it is this area which is
enlarged in fig. 2.23(b).

The sketches shown in fig. 2.23 are again yield surfaces of
plastic theory, and plastic principles may be applied. A general
point (N, M) lying within the full yield surface of fig. 2.23(c)
represents a safe state for the masonry. The curved boundaries
of fig. 2.23(b) also represent a safe yield surface, and they may

be straightened by the device shown in fig. 2.23(d). If the mean
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compressive stresses are known not to exceed 10 per cent of
the crushing strength of the stone, then the straight lines OA
and OB may be replaced by M = £0.9AN. Thus the real arch
having a (local) ring depth of 24 is replaced, for the purposes
of analysis, by a hypothetical arch of depth 2(0.94). This kind
of shrinking is important in assessing the safety of masonry
arches.

The abutments of the arch shown in fig. 2.21 were imag-
ined to move apart, leading to the pattern of cracks illustrated
in fig. 2.21(b). The originally hyperstatic structure (with three
redundancies) has been transformed into a three-pin arch,
which is now statically determinate; for the known loading,
the value of the abutment thrust may be determined (and is,
in fact, the lowest value which maintains the arch in equilib-
rium). The three-pin arch is a well-known satisfactory struc-
tural form — the development of three hinges by cracking of
the joints does not presage collapse.

If the abutments of the arch do not move apart, or move
apart only slightly, and the voussoirs are almost but not abso-
lutely rigid, then the joints between voussoirs remain tight,
and no hinges occur to help locate the line of thrust. All the
designer may be able to show is that the line of thrust occu-
pies some such position as that shown in fig. 2.21(c), where
it lies completely within the masonry. In fact, this is all the
designer needs to show. If any one position such as that shown
in fig. 2.21(c) can be found, then this is absolute proof — by the
safe theorem of plastic theory — that the structure is safe. If the
designer can determine a way in which the structure can carry

the given loads, then the structure can certainly also find a way.
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This anthropomorphic statement does not, of itself, give
any indication of how safe the structure might be. Since the
masonry has been assumed to be of infinite compressive
strength, there is no question of failure of the material.
Instead, a geometrical criterion can be devised. As shown in
fig. 2.21(c), the shape of the line of thrust is not the same as
the shape of the profile of the arch, and there is a minimum
thickness of the arch which only just contains the line of thrust.

In 1675 Robert Hooke identified the shape of the line
of thrust by his statement: ‘as hangs the flexible line, so but
inverted will stand the rigid arch’. In other words, if the given
loading for the arch were applied to a light string, then the
shape of that string, in tension, would be the same, inverted,
as that of the arch to carry the same loads in compression. In
fig. 2.21(c), for example, if the loading resulting from the cir-
cular profile of the arch were uniform, then the line of thrust
shown in the figure would be the mathematical catenary. An
arch built with a thickness just able to contain the catenary
would be precariously stable, whereas an arch of double that
thickness would easily accommodate a wide range of possible
lines of thrust. In practice, a geometrical factor of safety of
2 appears to be appropriate, to allow for building irregulari-
ties and for movements imposed by the environment, both of
which can distort the original designed geometry.

A slightly more realistic example is shown in fig. 2.24.
For small-span (perhaps medieval) bridges, the most criti-
cal loading often results from the passage of a single vehicle

axle, applied somewhere near quarter-span. The value of P is
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Figure 2.24. (a) Masonry arch
under point load, (b) line of
thrust, reflected, (c) collapse of
arch, (d) corresponding collapse
mechanism.

required which just causes the arch to collapse. Figure 2.24(b)
shows Hooke’s hanging chain, where due allowance has been
made for the weight of the arch material and of the fill support-
ing the roadway; as shown, the hanging chain (i.e. the inverted
line of thrust) lies comfortably within the profile of the arch.

As the value of P is increased, however, a stage is reached at
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which the line of thrust can only just be contained [fig. 2.23(c)];
4 hinges have formed, and the arch is on the point of collapse
as a four-bar chain [fig. 2.23(d)].

If an existing arch were being analysed to determine a
maximum safe load P, the first step would be to shrink the
arch ring by an appropriate geometrical factor (e.g. 2), and it
is then an easy matter, on the drawing board or by computer,
to determine the value of P which would just cause collapse
of this reduced arch. This would then be the value of the safe
load for the real arch. For the purposes of design rather than
analysis, the minimum thickness of the arch ring would be
determined for the required value of P, and the arch would
then be built with twice this thickness (to achieve a geometrical
factor of 2).

The example illustrated in fig. 2.24 has been simplified,
but it is straightforward to carry out similar analyses for trains
of loads, and to determine the most critical positions of such

trains.

2.6 The structural state

The state of a structure consists of a set of internal stress resul-
tants which are in equilibrium with given external loading. For
a hyperstatic structure the equilibrium state is not unique —
there are an infinite number of such states. The actual state is
determined in the first place by imperfections of manufacture
and assembly, which generate internal self-stresses before any

external loading is applied. Second, a real structure, already
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stressed in this way, is subjected to small (in general, unknown)
movements of the environment to which it is attached, and
very small changes in these boundary conditions can lead to
large changes in the internal stress resultants.

Any scheme of calculation which purports to determine
the actual condition of a structure (e.g. internal stresses, defor-
mations) gives only one possible equilibrium state — a state,
moreover, which is not observable in practice, since the imper-
fections and boundary conditions are not in fact known.
Nevertheless it has been shown in this Chapter that, provided
the structural assumptions are obeyed (i.e. ductility, small
deformations), the overall strength of the structure may be
calculated with confidence.

The simple hyperstatic arch shown in fig. 2.21 becomes
statically determinate when subjected to a small spread of
the abutments. Two hinges form at or near the springings,
and the central hinge generates the three-pin arch. The exact
position of the central hinge depends weakly on the applied
(gravity) loading; if this loading is symmetrical about the mid-
span of the arch, then the hinge forms exactly at mid-span
(under certain circumstances, the hinge may split into two), or
otherwise at a nearby joint. In this case, then, the movements
of the abutments have determined a physically unique state
for the structure, and this state is almost independent of any
reasonable loading system.

A hyperstatic steel or concrete structure does not in gen-
eral become determinate under similar circumstances, but the

same general conclusions hold. The state of a structure is
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determined by imperfections of construction and by deforma-
tions imposed by the environment, but the resulting internal-
stress resultants must always obey the overall equations of
equilibrium. The plastic method of design selects an equi-
librium state which leads effectively to the lowest possible
stresses throughout the structure; that “plastic” state is also

not observable, but the design is safe.
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3.1 The truss

The statically determinate truss discussed in Chapter 2 is
redrawn in fig. 3.1. As before, members AB, BC and CD are
assumed to be infinitely strong and stiff. The diagonal bar AC,
of cross-sectional area A and Young’s modulus E, is the only
active member, and its elastic extension due to the force it is
carrying is

(W2 (IV2) W

—2 (3.1)

eac AE AE

As was seen from the displacement diagram of fig. 2.10,

the horizontal deflexion of the loading point C is therefore
Wi
A =242—. 32
v (32)

It was previously noted that the construction of
displacement diagrams is clumsy and difficult; a more elegant

way of deriving deflexions is through the use of virtual work.

51
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For trusses, it is far easier to write equilibrium equa-
tions than to establish relations between bar extensions and
corresponding joint displacements. Thus, in using virtual work,
the computed bar extensions, such as eq. (3.1), together with
the joint displacements A (to be determined), are taken as the
compatible set. On the other hand, the equilibrium statement
entering the virtual-work eq. (2.3) is now a set of bar forces
which equilibrate a unit load acting on the truss; the unit load
is applied at the point at which it is required to calculate the
deflexion. For the simple statically determinate example, if the
horizontal deflexion of joint C is to be determined, then a unit
horizontal load is applied at that joint (fig. 3.2). Figure 3.2 also
shows the bar forces in equilibrium with the unit load, and the
information may be tabulated — see Table 3.1.

Thus, writing eq. (2.3) in full,

wi

LA = (0)(0) + (0) (0) + (1) (0) + (v/2) (zﬁ), (3.3)

which is, of course, eq. (3.2). The dummy unit load has identi-

fied the displacement A whose value was required.
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Table 3.1

AB BC CD AC
Actual forces due to W (fig. 3.1) 0 0 -W W2
Actual elastic bar extensions e 0 0 0 2WI/AE
Bar forces due to unit load (fig. 3.2) 0 0 -1 V2

As for the analysis of forces, the calculation is trivial for
a statically determinate structure. However, the technique is
of great power when applied to the hyperstatic truss shown in
fig. 2.4, redrawn as fig. 3.3(a). As before, the two structural
members AC and BD are taken as identical, with cross-
sectional area A and Young’s modulus £, and capable of carry-
ing both tension and compression; the truss is supposed to be
initially stress-free. It was shown that only one relationship,
equation (2.1), could be established from the use of statics,

namely
Py — P, = \V2W. (3.4)

A second equation for the elastic state of the truss can

be found only by using the other two structural equations;

B 0] C
—>1
A 1
Figure 3.2. Bar forces due &q'
to unit load. 0]
A 1 D

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
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Figure 3.3. (a) Bar forces due to load W, (b) self-stressing bar forces, (c)
and (d) two possible sets of bar forces equilibrating unit load.

the elastic properties of the bars must be introduced, and
the deformation of the truss must be considered. The actual
bar extensions corresponding to the bar forces of fig. 3.3(a)
are shown in Table 3.2, together with additional infor-
mation.

Since the three outer bars are rigid, and suffer no
extension, the first 3 columns of the table could have been
omitted.

The second line of the table gives the self-stressing bar
forces shown in fig. 3.3(b), and these are used, together with

the actual bar extensions in the first line of Table 3.2, in the
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Table 3.2
AB BC CD AC BD
V2Pl 2Pl
A .
ctual el.astlc bar 0 0 0 A5 A
extensions 1 1 1
Self-stressing forces -— - —— 1 1
" A 2 2 2
[fig. 3.3(b)] V222
Bar forces due to unit 0 0 -1 V2 0
load [fig. 3.3(c)]
Bar forces due to unit 1 1 0 0 -2

load [fig. 3.3(d)]

virtual-work eq. (2.3). Since there are no external loads, the

left-hand side of the equation is zero and, in full,

) (oo (2]

+ (fpzl> (1) = (35)

that is,
P+ P, =0. (3.6)

Equations (3.4) and (3.6) solve to give

1
Pi=-P,=—W, 3.7
7 (3.7)
and the elastic solution has been obtained. [For a truss with a
greater degree of redundancy, then further self-stressing sys-
tems must be constructed. For example, the truss in fig. 2.8

has three redundancies and, conveniently, the self-stressing
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forces of fig. 3.3(b) could be applied in turn to each square
panel, leading to three equations similar to eq. (3.5)].

It is now possible to proceed to the calculation of
deflexions — for example, the horizontal displacement A of
the loading point C. As before, a unit dummy load is applied,
and fig. 3.3(c) shows a set of bar forces in equilibrium with the
unit load. These are certainly not the actual forces produced
by the load, but they satisfy the equations of equilibrium at
each joint, and thisis all thatis needed; the forces are displayed
in the third line in Table 3.2. Using virtual work as before to
combine the first and third lines of the table (and omitting
contributions from the three outer bars AB, BC and CD since
their extensions are zero), thus:

1A= (ﬁf’_l’) (V2) + (fpzl ) 0),
AE
Pyl Wi

=2— =+2—. .
or B AE (3.8)

Thus the cross-braced truss in fig. 3.3 is stiffer than the
simple truss in fig. 3.1; the addition of the extra member has
halved the deflexion A.

To reinforce the statement that any equilibrium set of
forces equilibrating the dummy unit load may be used to
derive eq. (3.8), an alternative set (of an infinite number) is
shown in fig. 3.3(d), and tabulated in the last line in Table 3.2.
Using this equilibrium statement with the elastic bar exten-
sions of the first line in the table:

LA = (fpll)(()) (IZ{) (—v2),
Pyl

wi
or —ZE \/EE, as before. (3.9)
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Figure 3.4. Yield surface for v
truss braced by flexible cables.
Initial state of pre-stress is rep-
resented by X and Y; in either X
case, limiting load is reached ¥
when P, = T.
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The diagonals AC and BD might be strong flexible cables,
introduced for the purpose of stiffening the truss; if they were
assembled to be just tight, then application of the load W
would immediately cause cable BD to go slack, and the truss
wouldrevert to that shown in fig. 3.1. To prevent this, the cables
are therefore pre-tensioned (perforce with equal loads, as has
been seen). Since all the analytical results have been linear,
the solution given [e.g. eq. (3.7)] may be simply superimposed
on the pre-existing stress state that is possible for a hyper-
static structure. As the load W is slowly increased, the force in
cable BD decreases from itsinitial tensile value until it reaches
Zero.

The yield surface shown in fig. 2.7 is redrawn in fig. 3.4,
with C = 0 since the cables are unable to accept compression.
The initial state of pre-stress is represented by some point X
on the line P; = P,, and loading from X follows a line parallel
to Py = —P, , eq. (3.7). When the loading point reaches the
Py axis, cable BD goes slack, and the load may be further
increased until the limiting tensile load 7 is reached in cable
AC. In this second phase the truss is half as stiff; the load/
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Figure 3.5. Load/deflexion curve for pre-stressed truss.

deflexion curve is shown in fig. 3.5. Alternatively, if the initial
tensions were greater than 15T, the starting point would be
represented by the point Y in fig. 3.4. Loading causes cable
AC to yield while cable BD is still in tension, and the truss
can accept further load until this cable goes slack. The load/
deflexion curve is identical to that sketched in fig. 3.5, with
the legend Cable BD slack replaced by Cable AC yielding.

3.2 Bending stiffness

The equilibrium equations for beams and frames can be repre-
sented by bending-moment diagrams (e.g. figs 2.11 and 2.12).
As discussed, the bending moments for a hyperstatic beam or
frame are not determinable by the equations of statics alone —
just as for the truss, material properties and compatibility con-
ditions must be introduced in order to obtain solutions.

For an elastic (prismatic) member in bending, the funda-

mental equation expressing deformation of that member is

M = Elx: (3.10)
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that is, the curvature « of the member at any section is pro-
portional to the bending moment M acting at that section.
The constant EI can be derived from a (slightly approximate)
stress analysis; E is the value of Young’s modulus, and / is the
second moment of area of the section about the axis of bend-
ing. (Values of I for standard beam and column sections are
given in the section tables used by the designer; for present
purposes, it is the linear relationship between moment and
curvature that is important.)

Displacements are assumed to be extremely small, so that

the full mathematical expression for curvature,
d’y
K= d—x232 (3.11)
dy 273/
(@)
can be replaced by

d’y
since the square of the slope (dy/dx) is very small indeed.
Thus the basic bending eq. (3.10) becomes

d’y

M=FEI—=.
dx?

(3.13)
As asimple example, the cantilever beam shown in fig. 3.6
is examined; a point load W is applied at the tip. All the

external forces are shown in the figure, including the bending
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Figure 3.6. Elastic cantilever beam with tip load W.

moment W/ induced at the clamped end, so that the bending

moment at any section X can be written
Mx = Wl — Wx. (3.14)

Equation (3.2) becomes

2
El% — WI— Wx
X
dy _ R
and Ely= 5Wlx2 - 6Wx3 + Ax + B,

where A and B are constants of integration.

The third and final statement of structural theory must
be used to evaluate these two constants; the compatibility
condition emerges as boundary conditions on the differential
equation. Figure 3.6 shows that both slope and deflexion are
zero at the end x = 0, so that, from eqs (3.15), A= B =0.
Finally, then, the shape of the deflected elastic cantilever has
been found; in particular, the deflexion and slope at the end

x = [ are given by

1 WP
T3 El
1 WP
T2 El

(3.16)
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Figure 3.7. (a) Propped cantilever, (b) prop removed, (c) prop force
only acting on cantilever.

while the deflexion at mid-span is SWI3/48EI. These results
may be used to find the elastic deflected form of the (hyper-
static) propped cantilever shown in fig. 2.12 and redrawn in
fig. 3.7.

The application of the load W at mid-span of the (ini-
tially stress-free) beam induces a reaction R at the prop, and
the value of R cannot be determined by statics. It may be
regarded as the single redundancy in the system, as an alterna-
tive to the unknown M4 infig. 2.12). If the prop were removed,
then the (now statically determinate) cantilever would deflect
as shown in fig. 3.7(b), with portion AB taking up the bent

form indicated by eqs (3.15), and portion BC remaining
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Figure 3.8. Conventional elastic solution for propped cantilever.

straight. The total tip deflexion is found by using the results
eqgs (3.16):

““’_@(W)< )3 @ <2El>( w3 >2=45_8vlg_113'

(3.17)

The value of R must be such that the deflexion ¢ in
fig. 3.7(c) is exactly equal to the value e.g. (3.17), that is,

RE 5 WP
= = —-———— ——— .1
c=atb=m = BE (3.18)
so that,
5
~w. 3.19
~ 16 (3.19)

Thus the value of M, in fig. 3.7(a) is given by

Wi 3
and the elastic bending-moment diagram may be constructed

as shown in fig. 3.8. The deflexion A at the loading point
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(mid-span) can be evaluated from fig. 3.7 using the value of R
that has been determined:

_ WP 5RP 7 WP
" 24EI 48 EI ~ 768 EI’

(3.21)

The corresponding deflexion of a simply supported beam
is
wi3

A= ——; 22
48EI’ (322)

the clamp at the left-hand end has reduced the deflexion in
the ratio 7:16.

The deflexion at mid-span of the free cantilever in fig. 3.6,
due to a load applied at the tip, was SWI3/48EI. It is no acci-
dent that this is exactly the value of the deflexion of the
cantilever at the tip when the load is applied at mid-span
[see (fig. 3.7(b)] and is an example of Maxwell’s Reciprocal
Theorem, which is discussed in Chapter 4.

Figure 3.8 purports to represent the actual elastic state of
the propped cantilever beam under the action of the applied
load W. However, just as for the truss, any small defects of
manufacture, or of assembly, result in an initial state of self-
stress, so that the actual values of M and My differ from
those shown in the figure. For example, if the prop at the
right-hand end of the beam were set slightly too high, then an
initial negative moment would act at end A before any external
load was applied, and the total moment acting at A under the
application of the load would be less than the value shown in

fig. 3.8. Correspondingly, the value of Mp would be greater.
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The derived values of M5 and My are in fact the changes in
value of bending moment due to the applied load, and must be
superimposed on the (unknown) initial state of self-stressing
moments.

However, the computed values of deflexion, such as that
ineq. (3.21), give an estimate of the actual elastic response of
the structure to its applied loading. That is, a hyperstatic struc-
ture as built has defects and its initial stress state is, in general,
unknown, but the structure may well respond to loading in a
way calculable by classical elastic theory.

Unfortunately, not all defects are of the sort exemplified
by arigid prop being set, initially, at the wrong level. For exam-
ple, the elastic solution of the propped cantilever required the
use of the condition of zero slope of the beam at the clamped
end. Just as the rigid prop could in fact give way, perhaps
elastically, under the action of load, so a supposedly clamped
end could rotate as bending moments are developed in the
beam. If such a rotation did take place, then the value of Ma
in fig. 3.8 would be reduced, and the numerical value of My
correspondingly increased; the value of deflexion in eq. (3.21)
would also be increased.

In general, the assumptions of perfection built into an
elastic analysis lead to calculated values of deflexions which
are likely to be exceeded in practice by a real unclad structure.
On the other hand, the effects of cladding may well not be
taken into account, and cladding could stiffen a bare skeleton.

Putting these considerations aside, and assuming that the
bending moments of fig. 3.8 will obtain in practice, then, as

the load is increased, a plastic hinge first forms at the clamped
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Figure 3.9. Yield surface for propped cantilever.

end A of the beam, when the bending moment there reaches
the full plastic value Mp. Thus, starting from the origin O in
fig. 3.9 (cf fig. 2.15), the loading path, as the value of W is
increased, follows the line Mg = —%M A(the values can be
verified from fig. 3.8). When this loading path reaches the
boundary of the yield surface, a plastic hinge forms at A, but,
as usual, the load may be increased until the bending moment
at B, under the load, also reaches the full plastic value. Dur-
ing this second stage the stiffness of the propped cantilever
is exactly that of the corresponding simply supported beam,
since the bending moment at the clamped end A remains con-
stant. The load/deflexion curve is shown in fig. 3.10 (in practice,
there will be some rounding at the junctions of the straight
lines).

A slightly different situation arises if the beam is initially
self-stressed, represented by the point Y in fig. 3.9. The load-
ing path is initially parallel to the line Mg = —%M A, but the

first plastic hinge now forms at B. In the subsequent stage of
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Figure 3.10. Load/deflexion curve for propped cantilever.

loading, the response of the structure is that of a cantilever of
length 51, so that the deflexion, on setting the length to be
I5lin eq. (3.16), is double that of the simply supported beam.
The general behaviour is still given schematically in fig. 3.10;

however in the second stage the beam is half as stiff.

3.3 Matrix formulation

To estimate the stiffness of a structure — that is, its elas-
tic response to load — somewhat complex calculations are
involved. During the course of these calculations values are
found for the internal stress resultants (e.g. bar forces, bending
moments) and, while knowledge of these may be necessary to
check the strength of the members, the final objective is to

obtain an equation of the form
A=FW. (3.23)

Anexampleis givenin eq. (3.2), where the (single) deflex-
ion A is related to the (single) load W by the factor F, which
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may be defined as the flexibility of the structure. The internal
stress resultants were computed as a necessary step in the
analysis, but do not appear specifically in the value of F.
Instead, the flexibility is a function of the geometrical proper-
ties of the members and the elastic constant(s).

In general, a structure is acted on by a series of loads
Wi, Wy, ... (i.e. a vector W), and the corresponding elastic dis-
placements of the loading points are Aq, A,, ... (i.e. a vector
A). (For a three-dimensional truss or frame, each load W is
conveniently specified by three components in the direction
of the co-ordinate axes, and similarly for each deflexion A.)
Then, exactly corresponding to eq. (3.23), it is possible to write

the general relationship
A =FW, (3.24)

where F is the flexibility matrix of the whole structure. If there
is a number 7n of loads (some of which may have zero value)
and the same number n of deflexions, then the relationship in
eq. (3.24) represents n linear equations. The flexibility matrix
F may be assembled systematically by writing the three basic

structural equations; that is:

1. Force/displacement relations are written for individual
members (e.g. axial force is related to axial extension,
and bending moment to curvature). This is the elastic
stress/strain relation.

2. Displacements of the joints of the structure are related
to deformations of individual members. This is compati-
bility.



68 Stiffness

3. [Equilibrium is established throughout the structure; the
internal stress resultants are related to the external loads

by the equations of statics.

The assembly of the flexibility matrix by computer is straight-
forward, and very little information is required to calculate a
particular truss or frame. The members must be described; that
is, their lengths, areas, second moments of area, inclinations,
and elastic moduli must be given, and the connexions between
members (and the environment) must be specified. The load-
ing system must be defined, although numerical values of the
loads are not required at this stage. Nothing else is needed for
a properly programmed computer, which eliminates the (for
the moment) unwanted internal stress resultants. The result-
ing flexibility matrix F is square (and also symmetric, as a con-
sequence of the reciprocal theorem described in Chapter 4),

and it may be inverted to give
W=F'A =KA, (3.25)

where K is known as the stiffness matrix.

The formulation of structural problems in terms of matri-
ces gives a compact and correct way of deriving the elasticstate
of a given structure under given loading. Moreover, once the
equations have been solved for particular values of the loads,
back substitution furnishes the values of the internal stress
resultants, so that checks on strength and stability may be
made. However, the number of equations to be solved for any
practical structure of modest size is very large, and exact solu-

tions are really only possible through the use of a high-speed
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computer. Even then, some economy may be achieved by
giving attention to the shape and ordering of the matrices
involved.

For nearly two centuries, and before the advent of the
computer, ways were sought to reduce the numerical work
in the analysis of elastic structures. On the one hand, basic
properties of elastic systems were discovered which enabled
some shortcuts to be made and, on the other hand, simpler but
approximate solutions to the equations were derived. Some
of these ideas are discussed in Chapter 4.



n Elastic analysis

The estimation of the stiffness of a structure, which is essen-
tially an elastic property, involves the calculation of the actual
internal stress resultants. Added to the uncertainties engen-
dered by unknown errors of manufacturing and assembly
are uncertainties of the elastic properties of the materials
used in the structure. Young’s modulus for structural steel
is known reasonably accurately, but the corresponding modu-
lus for reinforced concrete departs in practice from the value
assumed by the designer, may vary from section to section
of the structure, and certainly changes with time. The val-
ues of internal forces (e.g. bar forces, bending moments) in
a computer output must be viewed with some reserve; they
are certainly not the values that should be used for strength
calculations. [As a simple example, elastic calculations for the
propped cantilever in fig. 2.12 show that a displacement of the
rigid prop of 1/10 per cent of the span (i.e. 10 mm for a span of
10 m) leads in a typical case to an increase in bending moment
of 15 per cent.)]

70
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Bar forces P* Bar extensions e

Figure 4.1. General elastic structure: (a) forces in equilibrium, (b) com-
patible displacements.

As discussed in Chapter 2, elastic parameters need play
no part in design for strength, and plastic theory employs duc-
tile yield strength as the only material property. However,
plastic methods make no estimate of deflexions — the stiff-
ness of a structure, however it may be affected in practice by
unknown considerations, can only be estimated by an elastic
analysis. Further, such an analysis furnishes some estimate,
however suspect, of the values of the internal forces, which
can then be used to check the stability of the members — a

topic which again is ignored by a simple plastic approach.

4.1 Elastic properties

Reciprocal theorems

For well over a century, elastic systems have been known to
possess some fundamental properties, which can be demon-
strated by the application of the principle of virtual work.
Figure 4.1 represents an elastic truss (although it could be any
elastic structure — for example, a beam or frame resisting loads

by bending). Figure 4.1(a) indicates that internal bar forces P*
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are in equilibrium with external loads W*, while, as a separate
matter, displacements A are shown in fig. 4.1(b) to be compat-
ible with bar extensions e. Then the equation of virtual work

relates these two statements:

W A=) P (4.1)

Now the bar forces P* give rise to elastic bar extensions

e*, where
e = — (4.2)

a typical bar having length / and cross-sectional area A, with
E as Young’s modulus. Equation (4.1) can therefore be

written as

dDwroa=>)" ‘%ﬁe. (4.3)

The actual bar extensions e* and corresponding deflec-
tions A* are associated with the equilibrium system of
fig. 4.1(a). Similar loads W and associated bar forces P may be
imagined to lead to the deformations of fig. 4.1(b). If, there-
fore, the roles of figs 4.1(a) and (b) are interchanged, then

AE

Z W. A* = Z Tee*. (4.4)

When eqs (4.3) and (4.4) are compared, it is evident that

dWeAT=) "W A (4.5)
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Figure 4.2. Maxwell’s Reciprocal Theorem: A;; = A ;.

Equation (4.5) was derived for trusses, but it holds for any
elastic system, and it is known as Betti’s Reciprocal Theorem.
In words, if two actual states (i.e. starred and unstarred) of an
elastic body are considered, then the work done by the loads
W= of the first state on the displacements A of the second
state is equal to the corresponding work done by W on A*.
It is clear from the derivation that the theorem applies to

hyperstatic structures.
Maxwell had stated a few years earlier, in 1864, a more

specialized reciprocal theorem. In fig 4.2(a) an elastic struc-
ture is subjected to a unit load applied in a specified direction
atalocationi. Asaconsequence, the structure deflects through
a distance A j; in a specified direction at location j of the struc-
ture. Similarly, an elastic deflection A;; results at location i
from the application of a unit load at location j, shown in
fig. 3.2(b). Inserting these two statements into eq. (4.5), gives

Maxwell’s Reciprocal Theorem at once:

and this is effectively a statement of the symmetry of the

matrix of elastic flexibility coefficients.
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Figure 4.3. Influence line for a simply supported beam.

Influence lines

The simply supported beam shown in fig. 4.3 is subjected to a
pointload W atsome point X within the span; as a consequence
an elastic deflexion Ay isobserved at some other point Y. Then
eq. (4.5) states that if the same load W were applied at Y the
same deflexion Ay would be observed at X. This is a special
statically-determinate application of the reciprocal theorem.
The deflected shape of the beam, fig. 4.3(b), is of interest; it
is, in effect, a graph of the deflexion at point X as the load W
crosses the beam, and is known as the influence line, usually
plotted for a unit value of the load W.

Figure 4.4 shows a simply supported beam with an addi-
tional internal support, the system thus being hyperstatic with
one redundancy; the supports are supposed to be able to resist
both upwards and downwards loads. The reactions due to the
applied load W are denoted A, B and C in fig. 4.4(a), and it
is required to find one of these, say C. In fig. 4.4(b), a small
(virtual) displacement Ay, of the supposedly rigid support at C

has been imposed on the otherwise unloaded beam, inducing
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(b)

Figure 4.4. Influence line for a hyperstatic beam.

reactions A*, B* and C* at the supports. If eq. (4.5) is applied
to the two states sketched in fig. 4.4, then

(4) (0) + (W) (A") + (C) (=A¢) + (B) (0)

= (A7) (0) + (C*) (0) + (B¥) (0); (4.7)
that is,
A*
C= A7 (4.8)

Thus, for an arbitrary unit displacement A} = 1 of the
internal support, and for a unit load W, the value of the
reaction C at the internal support is equal to A*. Once again
fig. 4.4(b) gives, to some scale, the influence line for the
statically indeterminate reaction C as a unit load W crosses
the span.

These ideas can be used to determine internal forces in
a frame. In fig. 4.5, for example, an imaginary arbitrary (unit)
kink is introduced at the internal support to determine the
bending moment M in the beam at that support which results

from the application of the load W. The deflected form of the
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Figure 4.5. Influence line for an internal bending moment.

beam shown in fig. 4.5(b) gives the influence line, and is a plot
to some scale of the value of the bending moment M as the

(unit) load W crosses the beam.

Indirect model tests

The right-hand side of eq. (4.7) is zero by virtue of the fact
that the supports in the original real beam of fig. 4.4 are rigid.
Indeed, any deformation similar to that shown in fig. 4.4(b),
for which imaginary displacements are introduced at supports
which are in fact rigid, or similar to that in fig. 4.5(b), in which
an imaginary internal dislocation is imposed, leads to an equa-

tion of the form

Y W Ar=0, (4.9)

[cf egs (4.5) and (4.7)]. Since eq. (4.9) is homogeneous in the
starred deflexion components, it would be possible to make
real rather than imaginary displacements on a scale model of
the structure. The only requirement is that the scale model

of a beam or frame has flexural rigidities that are the same
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U |

Figure 4.6. An indirect model test.

constant proportion from section to section as those of the
original.

Beggs’s deformeter makes use of this idea. Real defor-
mations are imposed on a carefully made and properly scaled
celluloid model. (Beggs originally used cardboard, which can
give acceptable observations.) The model is cut from a sheet
of uniform thickness, the depths of the members being varied
to ensure correct values of the flexural rigidities. The required
deflexion coefficients can then be found experimentally. For
example, the portal frame shown in fig. 4.6(a) is subjected to
specified loading, and it is required to find the value of R,
the vertical component of the force induced at the foot of
the right-hand column. The corresponding column foot in the
model is given a small vertical displacement, without rotation
[fig. 4.6(b)], and the observed distorted shape of the frame
provides the deflexion coefficients at the points where the

loads are applied to the real structure.

Energy methods

The structural energy theorems are associated with Casti-

gliano, who developed them with reference to trussed
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frameworks (although he extended them to beams and frames,
and indeed to masonry arches). The essential concept is that

of internal strain energy, U. For example, if external loads

Wi, W,..., or, in general W;, induce elastic bar forces P
in the bars of a truss, then the internal strain energy U is
given by
Pl
Pe 4.10
2 Z 2 AE’ (4.10)

where, as usual, / and A are the length and area of a partic-
ular bar, and F is Young’s modulus. Then Castigliano’s first

theorem, part 1, is

aU
OA;

=W, (4.11)

and part 2 of the same theorem is

oU

— = A, 412
W (4.12)

where A; is the displacement of the truss at the section where
W, is applied.

Castigliano’s second theorem is concerned with evaluat-
ing the redundancies in a hyperstatic structure. For a truss,
if there are several redundant bars, and the forces in these
bars are, for example, R, S, T..., then the values of those
forces are such as to make the strain energy U a minimum,
that is

oU _aU U

= = = =0. 413
oR oS 9T (4-13)
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There are, of course, exactly as many equations (i.e. eq. 4.13)
as there are unknown (i.e. redundant) quantities whose values
are to be found.

The theorem may be applied to the evaluation of the
simple truss of one redundancy, the strength of which was
explored in Chapter 2 and its stiffness in Chapter 3. Figure 3.3
is redrawn with a slight change of notation in fig. 4.7; the sin-
gle redundancy has been labelled R in bar AC. As before, the
three outer members are assumed to be rigid, and the active
members of the truss are the diagonals, each of length I1/2.
The statics have been completed in fig. 4.7, and diagonal BD
carries a compression of (v2W — R). (The strain energy U
involves the squares of the bar forces, so that distinguishing
by sign between tension and compression is not of immediate
importance.) Using eq. (4.10), the strain energy stored inter-
nally due to the load Wis

1142

U =
2 AE

[R? + (V2W — R)*]. (4.14)
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Thus, using Castigliano’s second theorem, eq. (4.13),

aU
— =0=R— (V2W —R), (4.15)
R
or R = W/+/2 [cfeq. (3.7)].

Castigliano’s first theorem, part 2, eq. (4.12), may be
used to determine the horizontal deflection A of the loading

point C:

U  11V2

= = EE[2«/§(f2W—R)],

or
wi

A=+2— 4.1

\/_AE’ (4.16)

on substituting the value of R already found [cf eq. (3.8)]. (In
performing the partial differentiation of the strain energy U
it is not necessary to enter the value of R; it may be treated
as if it were a constant.)

The proofs of Castigliano’s theorems are straightforward
by the use of virtual work. For example, if the second theorem
were used to determine the values R, S, T... of the forces in
the redundant bars of a truss, then the first step is to use the
equations of statics to compute the forces in all the bars. A

typical bar carries a force P, where
P=Y aWi+aR+pS+yT+:-- (4.17)

Here, there are a number of loads Wy, W,, W3 . . . acting on

the truss, and the coefficients a;, «, 8, y ... are simple numbers,
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such as the +/2 which occurs in the truss shown in fig. 4.7. The
corresponding extension of the typical bar is

— AI_E [ZaiWi+aR+,BS+yT+~--], (4.18)

e
where the length and cross-sectional area must be inserted
appropriately for each bar of the truss. These actual bar exten-
sions e are used as the compatible set in the equation of virtual
work.

The equilibrium statement involves self-stressing sets of
bar forces, in equilibrium therefore with zero external load.
A first such set may be found by setting all but one of the
force quantities equal tozero (e.g.sayall W; =S = T = ... 0),
while R is given the value unity. Thus, from eq. (4.17), the self-
stressing force in a typical bar is just ¢, and these forces may
be evaluated throughout the truss. Thus, using this force set
with the compatible set in eq. (4.18),

0=) ae= Zﬁa [ZaiWi+aR+ﬁS+yT+--~].
(419)

The full expression for the strain energy, eq. (4.10), is

U=%Zﬁ[ZaiWi—i—aR—l—,BS—i—yT—l—-u]z, (4.20)

and it is evident that dU/9R = 0 [eq. (4.13)] gives precisely
eq. (4.19). The calculation is of course repeated for self-
stressing forces induced by § =1, T =1, and so on.

Proofs may be constructed on similar lines for Casti-
gliano’s first theorems, eqs (4.11) and (4.12), concerned with
deflexions. Should there be no load acting at a particular

section at which the deflexion is required, then a dummy
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load (denoted X) may be applied at that section, and carried
through the analysis. Equation (4.12) gives dU/3X = Ax and,

at this stage, the value of X may be set equal to zero.

4.2 Methods of calculation

Castigliano’s theorems represent basic properties of elastic
systems but, before the advent of the computer, they also pro-
vided powerful ways of dealing with the large numbers of
equations involved in the analysis of elastic structures. The
theorems apply to any elastic system, but are particularly well
adapted to the solution of trusses; they become cumbersome
when applied to structures in bending. Strain energy in bend-
ing (i.e. M?/2EI per unit length) must be integrated through-
out the length of a beam or frame, and the algebraic work can
become very heavy (although the partial differentials involved
in a strain-energy solution may be performed under the inte-
gral sign).

Similarly, the direct solution of the bending equations to
determine deflexions involves — as previously discussed — the
writing of second-order differential equations. At least some
of the work involved can be reduced by making use of standard
results. Table 4.1, for example, shows coefficients involved in
the behaviour of the simple cantilever; these coefficients were
used in Chapter 3 to investigate the elastic response of the

hyperstatic propped cantilever (see fig. 3.7).

Slope-deflexion equations

Similar deflexion coefficients can be evaluated for the simply

supported beam as recorded in Table 4.2. In this table,
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clockwise end slopes of the beam are denoted as positive.
For example, to analyse a continuous beam (i.e. a hyperstatic
beam resting on a number of supports), the deflexion coeffi-
cients in Table 4.2 may be written individually for each span,
and then pieced together to give a number of (linear) simul-
taneous equations. Further economies in the computational
process may be made by replacing specified loading patterns
by equivalent fixed-end moments.

Figure 4.8(a) shows an initially straight undeflected mem-
ber AB, which could be part of a continuous beam or of a
frame. Under the action of a given system of loads, the mem-
ber moves to A’B’, and experiences clockwise end bending
moments M and Mg and clockwise end rotations ¢ and
¢p. The deflexions of the two ends are A and Ag. The gen-
eral slope-deflexion equations relate these bending moments,
rotations and deflexions to the external loading.

If the beam were fixed-ended, the external loading would
produce certain moments M% and M at those ends, which are
the fixed-end moments shown in fig. 4.8(b). If now the system
shown in fig. 4.8(c) is superimposed on that in fig. 4.8(b), then
the original system is recovered; such superposition is possible
as a consequence of the linear nature of the elastic equations
of bending. The immediate problem is to derive relationships
connecting the quantities shown in fig. 4.8(c), which relate to a
beam without external loading. First, it is clear that if the beam
were moved laterally without bending so that the ends A and
B occupied the positions shown in fig. 4.8(c), then the slope of
the beam would be uniform and equal to (Ag — Aa)//. The

effect of the end bending moments is to increase the rotation
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Figure 4.8. Derivation of slope-deflexion equations.

atend A from (Ag — Ap) /I tothefinal value ¢ and, similarly,
for end B. Thus, using the final line in Table 4.2,

Ag—Ax\  (Ma—MY)1 (Mg — My)!

fa - ( ] ) =3 em @
Ap— A\ (Mg —Mg)l (M —My)I

o8~ ( / ) =E  em 4P
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These two equations can be written in the form in which they

are normally used:

o= (Z250) g 12 (00— 5) = (o1 )

I 6E]
A — Aa l
on = (275 ) g (200 = ME) - (41 - M5)).

(4.23)
and this is the form most convenient for solution of beam and
frame problems in terms of unknown (i.e. redundant) forces. If
deformation variables (i.e. unknown deflexions and rotations)
are taken, however, then the slope-deflexion equations may

be written:

6EI (1 Ag — A
M= = S o - (220

4.24
6E1 (4-24)

1 Ag — A
Mo =i = S {5 0n 20w - (2250

Equations (4.23) and (4.24) are simplified examples of
building blocks which may be assembled into flexibility and
stiffness matrices for any elastic structure. The full equations
would be three-dimensional, and also would involve axial
loads and consequential axial deformation of the members.

Table 4.3 gives three useful sets of fixed-end moments;
by simple superposition or by integration, the results given in
the first line of the table can be used to evaluate the results of
more complex patterns of loading.

Many other methods have been developed for the solu-
tion of structural problems, some of them of great ingenu-

ity. Their use results in substantial savings in the labour of
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Table 4.3
My My,
a b

A2 vw Cs Wab®  Wa?b

7 | f T 12

1

4 w 2
7 ' 2 wi wi
1 2, w7 3 3
2 Z 12 12

computation, but they are in fact merely efficient ways of
solving the numerous equations generated by the analysis of
even a simple structure, and contribute nothing to basic elas-
tic theory (as do, for example, the theorems of Maxwell and
Castigliano). The computational techniques were devised for
manual use and are, effectively, unnecessary in the age of the
computer.

Almost the last in the long line of techniques, how-
ever, which could today be classified as a relaxation method
for the solution of linear simultaneous equations, does give
some insight into structural behaviour. This is the method of

moment distribution, invented by Hardy Cross in 1930.

Moment distribution

Hardy Cross’s method starts with an artificial state of compat-
ible deformation for a continuous beam or frame, and then

successively adjusts the deformations so that the equations of
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Figure 4.9. Moment distribution: the carry-over factor.

equilibrium are satisfied. The artificial state is very simple —
all the joints of the structure are assumed to be fixed in posi-
tion and direction, and the application of the external loads
then leads to calculable values of fixed-end moments. These
end moments, in general, do not sum to zero at any particular
joint; that joint is then unclamped —that is, allowed to rotate so
that equilibrium is achieved. Each joint is examined in turn,
and in fact re-examined, since rotation at one joint causes
extra moments at neighbouring joints. The process, however,
is rapidly convergent, and may be carried through to the stage
when the required degree of accuracy is attained.

Two basic quantities are needed for the moment-distribu-
tion process: carry-over factors and distribution factors. The
propped cantilever shown in fig. 4.9 is subjected to a bending
moment M at the pinned end. As a consequence, a bend-
ing moment of %M is induced at the clamped end, as may be
verified immediately by the slope-deflexion eqs (4.23). The
carry-over factor for this uniform section member is %. If
the member had a non-uniform section, the carry-over fac-
tor would have some other value, depending on the way the
cross-section varies.

The same slope-deflexion equations show that the rota-
tion ¢ in fig. 4.9 has the value M!/4EI. Figure 4.10 shows
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Figure 4.10. Moment distribution: distribution factors.

an assemblage of members of uniform section meeting at a
common joint O; the length and flexural rigidity of a typical
member are denoted /. and EI,. The ends of the members
remote from O are all fixed in position and direction, and the
ends meeting at O are rigidly connected together. If now a
moment M is applied at the joint O, it is distributed in some
way between the members, with the typical member carry-
ing a moment of value M,. The joint O may be supposed to
rotate through an angle ¢, imposed equally on all the mem-

bers; typically,

_4EL
=

M, ¢. (4.25)

The sum of all moments induced in the members must be equal
to the applied moment M; that is,

El,
M=) M, =4 ) 4.26
Ym0 (420
Equations (4.25) and (4.26) combine to give
EL /1 v
M, = Eb Ky, (4.27)

" Y EL/I koo
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Figure 4.11. (a) Propped cantilever, (b) bending moments with end C
clamped, (c) bending moment WI{/8 applied at C, (d) superposition of
(b) and (c).

where k, = El, /I, is the stiffness of member r. The distribution
factoris k. /> k..

This distribution factor was calculated on the assumption
that the far ends of all members were fixed against rotation,
and it is convenient occasionally to use distribution factors
for members whose remote ends are pinned. As shown in
Table 4.2, the rotation ¢ corresponding to an applied moment
M, is equal to M, [, /3E]I, if the far end of member r is pinned.
The effective stiffness of member r is reduced to %EI, /L.

Moment distribution is a numerical process, but the
propped cantilever shown in fig. 2.12 may be used to illus-
trate the idea of clamping. The beam is redrawn in fig. 4.11(a),
and the first step is to clamp the end C and to apply the load
W, inducing the fixed-end moments shown in fig. 4.11(b). The
clamp at C is now released, since the end is supposed to be
pinned - this is equivalent to applying the bending moment
WI1/8 at end C, as shown in fig. 4.11(c). As a consequence,
a moment of half this value is induced at the fixed end A.
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Figure 4.12. Numerical example of moment distribution.

The superposition of figs 4.11(b) and (c) leads to the final
state, fig. 4.11(d) (cf fig. 3.8).

The continuous beam in fig. 4.12 has dimensions and
carries loads as shown. The section of the beam changes at
the supports, and the information required for the solution of
the problem is given in Table 4.4. The last line of the table
gives the fixed-end moments for each span; they are denoted
as positive when they act clockwise on the ends of the beams.
These bending moments are out of balance at each sup-
port; at B, for example, the clockwise moment of 96 kNm

in span AB does not balance the anticlockwise moment of

Table 4.4

Span AB BC CD DE

Length, m 6 5 5 5

Flexural rigidity, 2B 1.5B, By By
B=EI

B 60 3

— — 2 1 12 - (12

] (X Bo> 0 8 3 12)

Distribution 0.526 0474 06 04 0.571 0.429
Factors

Fixed-end —-192 96 —-320 320 —240 240 —120 120

moments, KNm




92 Elastic analysis

320 kNm in span BC. The difference of 224 kNm must be
provided by some external agency acting at B; this external
agency does not exist for the actual beam. Thus, to satisfy the
condition of equilibrium at the joint, a clockwise moment of
224 kNm must be superimposed there. The calculations can
be laid out so that the balancing process can proceed easily
and quickly.

Table 4.5 shows the distribution factors and fixed-end
moments in lines 1 and 2. Joint B is balanced in line 3. The
balancing moment of 224 kNm is thought of as being applied
to an unloaded structure, with all joints other than B (i.e. A4,
C, D and E) remaining clamped. Thus the balancing moment
divides between spans BA and BC according to the distribu-
tion factors — that is, 117 kNm to span BA and 107 kNm to
span BC. A line is drawn under the balancing values (line 3 in
Table 4.5) to show that joint B is now in equilibrium.

The carry-over factor for a uniform beam is !/, so that
the application of a moment of 117 kNm at end B in the span
AB induces a moment of 59 kNm at end A. The two carry-
over moments are shown in line 4 of Table 4.5. The bending
moments in line 1 of the table correspond to those of a contin-
uous beam with imaginary external moments applied at the
supports; the external moments have magnitudes such that
the slope of the beam at each support is horizontal. In line
4, the beam remains horizontal at A, C, D and E; however,
the external moment has been removed from joint B, and the
beam has been allowed to rotate at this support.

End A of the beam is required to remain horizontal, and

an external moment can act there. End E, however, is pinned,
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with no external moment. In line 5 of Table 5.4, a bending
moment of —120 kNm is superimposed at E, which induces
a carry-over moment of —60 kNm at D, line 6. The stiffness
of span DE is entered in Table 4.4 as three-quarters of its
actual value; the balancing process at a pinned end needs to
be carried out only once, and no further moments require
balancing. (There is also no carry-over moment to end E in
line 8 of Table 4.5.)

Several joints can be balanced simultaneously: in line 5,
both joints C and E are balanced together. With the carry-
over moments of line 6, joint B is now again out of balance
(by 40 kNm); this joint and joint D are balanced together in
line 7. The carry-over moments at joint C in line 8 happen
to balance exactly, and no further adjustment of the solution
is necessary. Had they not balanced, the process could have
been continued, the out-of-balance moments being reduced
until their values were insignificant.

The final line in Table 4.5 gives the sums of all the bend-
ing moments in each column, and these are the values of the
bending moments at the joints. The clockwise positive con-
vention implies that all these bending moments are hogging —
That is, the nett value at each joint is zero, showing that exact
balance has been achieved. The complete bending-moment
diagram for the beam can now be constructed. The free bend-
ing moments (i.e. each span treated as simply supported) are
shown in fig. 4.13, and the reactant line is positioned by the
results of the moment distribution; the nett bending moments

are given by the difference between the two.
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Figure 4.13. Solution of example, fig. 4.12.

Moment distribution may be carried out for frames. For
the two-bay, three-storey frame in fig. 2.19(a) there are now 2,
3 or 4 members meeting at each joint, and distribution factors
must be calculated accordingly. As before, the joints are first
clamped and the external forces are applied, and the resulting
bending moments are distributed until balance is attained.
However, this process, implicitly, does not allow sway of the
frame, and the horizontal loads in fig. 2.19(a) play no part in
the analysis, applied as they are to joints assumed to be fixed
in position. In reality, the sway of each of the three storeys
must be considered. An elastic displacement corresponding
to the movement in fig. 2.19(c) induces bending moments at
the ends of each of the central lengths of the columns, which
may be distributed throughout the frame — in all, three such
distributions must be made, one for the displacement of each
of the three storeys. All these numerical results may then be
superimposed so that the governing equilibrium equations are
satisfied —in fig. 2.19, the total horizontal force transmitted at
each level of the frame is the sum of the horizontal forces
applied above that level.
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5.1 Elastic buckling

A compressive axial load is applied to an initially straight elas-
tic member (i.e. a column). If the load is truly axial and the
member truly straight, then it may be expected that the only
observable response is a small shortening (a strain of less than
about 1/1000 if the column is of mild steel and is to remain
belowyield). However, when the load reaches a certain critical
value the member no longer remains straight, but deflects side-
ways at a more or less constant value of that load. Analysis of
this idealised behaviour illuminates the real structural prob-
lem of the buckling of columns.

Figure 5.1(a) illustrates the initially straight uniform
member in its supposed deflected state. The column (turned
sideways in the figure) has pinned ends, which may approach
each other freely to accommodate the axial shortening result-
ing from the elastic compression and from the development of
lateral displacements. Figure 5.1(b) is a free-body diagram of

a portion of the column of length x; from overall equilibrium

96
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Figure 5.1. (a) Buckling of initially straight pin-ended column under
axial load, (b) free-body diagram of part of column.

[fig. 5.1(a)] there can be no shear force in the column, and
the only stress resultants acting at the cut are the axial force
P and a bending moment M. For equilibrium of the forces in
fig. 5.1(b),

M+ Py =0, (5.1)
and therefore, for the uniform elastic member,

d2y
El— + Py =0. 5.2
dx? Y (5:2)

This is an extremely simple form of the basic differential
equation which arises for all similar buckling problems. The

solution of eq. (5.2) is
y = Acosax + Bsinax, (5.3)

where

o= — (54)
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and A and B are constants of integration. At the origin x = 0
and y = 0, so that A = 0. At the otherend y = 0atx =/, and
therefore

Bsinal = 0. (5.5)

The solution B = 0is inadmissible, since it contradicts the
assumption that the column isin a deflected state, and eq. (5.5)

can only be satisfied if
al =0, 7, 27, ... (5.6)

Again, o/ = 0 is inadmissible since, from eq. (5.4), this
would imply no load on the column; the first meaningful solu-

tion to the problem is given by o/ = 7, so that

EI
P. = yrzl—2; (5.7)
the deflected form is
y = Bsin nTx (5.8)

The Euler buckling load is denoted P; for this particu-
lar problem it gives the critical value of axial load at which a
pin-ended column buckles. It has not been possible to deter-
mine the magnitude of the deflexions — the value of B has
not been found and, according to this simple theory, the sinu-
soidal deflexions of eq. (5.8) can have any (small) magnitude
at the same value of P.. Those deflexions are those of a half
sine wave; the next solution of the equation, «/ = 27 from

eq. (5.6), represents a full sine wave, and can, theoretically,
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Figure 5.2. (a) Fixed-ended column, (b) free-body diagram.

be maintained in the presence of an axial force of magnitude
47?EI/ . However, whereas buckling under the Euler load
[eq. (5.7)] represents a state of neutral equilibrium, buckling
in the higher modes («/ = 27, 37 . . .) is highly unstable, and
the corresponding loads cannot in practice be attained.

The pin-ended column is statically determinate, and the
differential eq. (5.2) can be written immediately. A fixed-
ended column is shown, in its supposed buckled state, in
fig. 5.2. The two end fixings, while compelling the end to have
zero slope, are again free to approach each other axially. It is
to be expected that unknown bending moments X are induced
at the two ends by the deflexions which are developed, so that
the bending moment at a general section, shown in the free-

body diagram in fig. 5.2(b), can be written only in terms of X:

M+ Py = X, (5.9)

d2y
or EI—2 +Py=X. (5.10)
dx?
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This equation again gives rise to sinusoidal deflexions:

X
y = Acosax + Bsinax + B (5.11)
from which
dy .
Fri —aAsinax + aBcosax. (5.12)
X

Attheoriginx =0,y =0and dy/dx =0, sothat A =-X/P
and B = 0, and the deflexion y is given by

X
y=5 (1 —cosax). (5.13)

Since the deflexion is zero at x = [,
X
P (1 —cosal) =0. (5.14)

As before, the value of X cannot be zero, since a deflexion

is assumed to have occurred, so that
al =0, 2, 47, ... (5.15)

and the Euler buckling load is

EI
P. = 47121—2, (5.16)
four times the value for the corresponding pin-ended column.
As for the previous example, there are higher buckling modes
which in practice are unobtainable.
[Note that for cos @/ = 1, then sin «/ = 0, and the appar-

ently extra boundary condition of zero slope at x =/ is
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Figure 5.3. Buckled form of 3\0\/’%

fixed-ended column. | 1 |

automatically satisfied; four boundary conditions were speci-
fied, and only three unknown constants (A, B and X) entered
the analysis. In fact, symmetry was assumed in fig. 5.2(a) —
without this assumption, the two end moments should have
been specified as X7 and X5.]

It was not really necessary to have pursued the analysis
from eq. (5.9) onwards. The second-order equation must of
necessity lead to a harmonic solution, and fig. 5.3 can be drawn
at once as a (cosine) curve satisfying the zero-slope condition
at the ends. Inflexion points occur at the quarter points, and the
central portion of length /[ is the pin-ended column which
was analysed to have the buckling load of eq. (5.7), in which /
must now be replaced by 4 [; eq. (5.16) results.

The effective length of a fixed-ended column is thus half
the length of the equivalent pin-ended column. Similarly, the
effective length of a column with one end fixed and the other
totally unrestrained (a flagpole) is 2/. The intermediate case of
a column with one end fixed in position and direction and the
other end pinned is shown in fig. 5.4. The differential equation

of bending may be written as:

d’y X
El— +Py=X— —x. 5.17
w2 TPy X (5.17)
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Figure 5.4. Buckling of a fixed/pinned column.

There are two constants of integration and the unknown
bending moment X; use of the three boundary conditions

leads to the buckling equation
tanol = o, (5.18)

of which the lowest root (other than zero) is «/ = 4.493. The
buckling load is thus found to be

_ 2019EI _ a’EI
¢ P (0.699)

(5.19)

The propped cantilever in fig. 5.4 has an effective length
against buckling of approximately 0.7/.

The differential equations expressing buckling are of the
formof eq. (5.2);eqs (5.10) and (5.17) have terms on the right-
hand side representing the particular problem being studied.
For all cases in which EI is constant, the basic equation may
be written as

d*y d?y

EI— P— =0, 5.20

and this holds for any segments between applied loads; the

preliminary statical analysis (involving unknown redundant
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quantities) need not be carried out. Equation (5.20) solves to

give
y=Acosax + Bsinax + Cx + D, (5.21)

and the four constants of integration may be determined
from the boundary conditions. (For the case of a pinned end,
d’y/dx*> =0.)

An approach to the design of practical columns may be
made by the engineer assigning (with help from the building
codes) an effective length to any particular member in a build-
ing frame. The effective length depends on its end connexions
to other members; once chosen, a basic buckling strength may
be calculated from eq. (5.7). This basic strength must, however,

be modified to allow for other practical considerations.

5.2 Practical behaviour

The simple analysis given above indicates that, when a pin-
ended column buckles, it can develop unrestrained lateral
deflexions at a constant value of the (Euler) load; a simi-
lar conclusion holds for columns with other end conditions.
This theoretical behaviour results from the approximation
to the expression for curvature [eq. (3.12)] in which the
term (dy/dx)? was neglected compared with unity. If the full
expression is written (leading to highly non-linear equations),
the load/lateral deflexion curve rises gently — the axial load
must be progressively slightly increased to maintain increased

deflexions, as shown schematically in fig. 5.5. If the central
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Figure 5.5. Post-buckled load/
deflexion curve (schematic).

Lateral deflexion

deflexion of the pin-ended column is a, then the magnitude of
the bending moment there is Pa. Even at a constant value of
P, the bending moment increases with the value of a, and at
some stage becomes large enough to cause yield of the mate-
rial, which in turn leads to rapidly increasing deflexions and
perhaps catastrophic collapse, indicated by the dotted curve
in fig. 5.5.

A practical design of column attempts to predict, and pre-
vent, runaway behaviour, and is based on the analysis of the
real members used in construction, notably the steel columns
used in frames. No member is absolutely straight, and the
introduction of an initial imperfection into the analysis leads
to a more realistic approach to design. At the same time, the
solution does not involve the eigenvalue property of the dif-
ferential equation (to which there is in fact no solution until
the critical load is reached). An initially bowed column may

be represented by the curve

(5.22)

. TX
Yo = 4o S T,
in which a, is the central out-of-straightness of the member.

Equation (5.22) could be regarded as the first term in a Fourier
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series representation of the initial shape; as will be seen, this
term becomes dominant in the analysis.

When the axial load P is applied to the real pin-ended
column, the resulting bending moment produces a change of

curvature; that is, eq. (5.2) becomes

&’y dy,
Ell{— — Py =0, 5.23
(dx2 dx? ) Y (523)
that is,
d’y n’El | mx
EI@ +Py = —l—zaoslnT
— —P.aosin ”l—x (5.24)

The general solution to this equation is

y=Acosax+Bsinocx+ao< 7

e . TX
P P) sin—.  (5.25)

The conditionx =0,y =0givesA =0;andx =1/,y =0

gives
Bsinal = 0. (5.26)

This is eq. (5.5), but there is now no bar to the solution

B = 0, and the deflected form of the column is

P . X
y=a, (Pe _e P) sin —-. (5.27)

It is convenient to replace the second moment of area /

by the expression I = Ar?, where A is the area and r the radius
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of gyration of the cross-section, and to express the results in

terms of a stress o = P/A. Thus eq. (5.7) becomes

E

2
7 (l/r)z’ (5.28)

O =

where [/r is known as the slenderness ratio, and eq. (5.27)

becomes

y=ao < %e ) sin —ﬂx; (5.29)
o l
the central deflexion is

a:ao( e ) (5.30)

O — O

As the value of o approaches o, so the lateral deflexion
increases very rapidly; the first term in a Fourier representa-
tion of the initial shape becomes dominant.

The total maximum compressive stress at mid-height of
the column consists of the axial stress o together with a bend-

ing stress due to the moment Pa, that is

o 4 Dot ( Te ) (531)

1 O — O

where c is the distance from the neutral axis of the section
to the outermost compression fibre. Setting I = Ar? again,

and assuming that the critical condition for the column occurs
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Critical
stress o
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Eq. (5.28)

0]
Slenderness ratio I/r

Figure 5.6. The Perry—Robertson buckling curve, eq. (5.33).

when the total compressive stress reaches the yield limit o,
then

aoza(1+%. i ) (5.32)

This is a quadratic for the value of the critical stress o,
that is

0 — 0 [0+ (1 + 1) 0e] + 040e = 0, (5.33)

where n = a,c/r*. Equation (5.33) forms the basis of the rules
for column design given in many codes of practice, and is
shown in fig. 5.6. The value of n is assumed empirically by the
codes (and is usually taken to be proportional to the slender-
ness ratio of the column); some discussion and a calculation
are given in Appendix C.

Thus the practical design of columns involves major

empirical elements, as well as some (perhaps unnoticed)
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structural assumptions. One of these assumptions is that col-
umn loads are axial, whereas real end connexions inevitably
introduce some eccentricity of loading. In fact the response
of a column to eccentric loading is very similar to that of an
axially loaded but initially crooked member, and the empiri-
cal constant n does duty to cover both types of imperfection.
Another major consideration, which requires some judgement
on the part of the designer (aided by the design codes) is the
concept of effective length — to cover the wide range of prac-
tical end connexions of a column in a building frame (or of a
compressive member in a latticed truss).

The practical rules tend to be conservative, but not too
wasteful. Once the end conditions of a particular member have
been determined, and the working loads evaluated, then the
rules lead to designs which are generally safe. In case of doubt,
the size of a member may be increased to improve its buckling
characteristics, often without any necessary penalty in weight
or cost.

The determination of the end conditions of a compres-
sive member in a hyperstatic structure is difficult. The prob-
lem does not arise for a statically determinate structure — for
example, a pin-jointed latticed truss. If a compressive mem-
berin the determinate truss reaches its buckling limit [given by
the solution of eq. (5.33)], then yield occurs accompanied by
increasing lateral deflexions. The load/lateral deflexion curve
for the member is shown schematically in fig. 5.7 (cf fig. 5.5),
and the falling off of the load implies catastrophic collapse
for the whole structure, albeit (for a structure with properly

designed members) at the factored design collapse load. If a
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Figure 5.7. Practical load/deflexion
curve (cf. fig. 5.5).
]

Lateral deflexion

(ductile) tension member reaches its limiting load before any
such buckling occurs, then overall collapse again occurs at the
design load, but now as a quasi-static rather than a catastrophic
process.

Behaviour is different for the hyperstatic structure. It was
seen in Chapter 2 that the very simple braced square truss
can accept an initial state of self-stress; if one of the diagonal
members in fig. 2.4 were slightly oversize, then both diagonals
would start from a state of initial compression. On the appli-
cation of load, member BD may buckle when the external
load is below its design value, as shown in fig. 2.7. If the initial
loading point were at Y in this figure, then the member BD
reaches its compressive limit of value C [now interpreted as
the buckling load determined by eq. (5.33)], while member
AC carries a load below its limiting tensile value. Figure 2.7
indicates that, in theory, the external load may continue to be
increased until the tensile member reaches the limit 7', but this
conclusion must be examined in the light of the non-ductile
nature of buckling of the compressive member. (Indeed, for

any case in which the numerical value of C is less than that of
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T, fig. 2.7 indicates that an initially stress-free truss may show
the same behaviour.)

For the sake of simple calculations, the diagonal members
AC and BD were assumed to be the same; in any case, what-
ever their relative dimensions, it was seen that the (elastic)
extension of the tensile member AC was equal to the short-
ening of the compressive member BD. In general, despite
possible plastic yielding in some members and possible buck-
ling in others, if sufficient members remain elastic so that the
structure remains a structure, then the strains in a/l members
must be of the order of elastic strains. In fig. 2.4 the shortening
of the buckling member BD is contained by the elastic strain
of AC. It is, however, not clear that the limiting buckling load
(of numerical value C) can be maintained as the external load
on the truss is increased. The central deflexion of the initially
bowed member has already increased from its initial value
[eq. (5.30)], and further increase in compressive strain engen-
ders further plastic yielding at the critical section.

The practical solution for the design of members in order
to avoid such potentially catastrophic behaviour lies in the
choice of load factors. It was noted in Chapter 2 that a way
of introducing a load factor was to design the structure to just
carry the specified loading — but to construct it with mem-
bers having strengths greater than those calculated. Thus for
steel frames in bending, with no problems of stability, or for
tension members in trusses, a factor of 1.75 might be appro-
priate — the sections used would be 75 per cent stronger than
the theoretical minima. For compressive members designed

against buckling, the factor should be higher.
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The factor of 1.75 is empirical, but not arbitrary. It results
from the analysis of design rules refined in building codes
over a period of nearly a century; steel structures designed
according to those rules have been satisfactory. The same
codes incorporate implicitly a higher factor against buckling —
there is some variation, but a figure of about 2.5 has appeared
to be appropriate. Some support is given for this figure by the
numerical analysis in Appendix C.

5.3 Other buckling phenomena

All discussion in this book has been confined to planar struc-
tures — frames and trusses — but a different kind of buckling
can occur in the third dimension, not necessarily involving
axial load. A floor beam in a steel frame, for example, has
been considered to act in bending (implicitly about its strong
axis), as shown in the propped cantilever in fig. 2.12. If such
a beam is not restrained properly against lateral movement,
then it is possible that under critical loading the beam will
both twist and deflect sideways. The analysis of such lateral-
torsional buckling is more complex than that for the pin-ended
column under axial load, but initially perfect members can
exhibit the same eigenvalue properties. For example, analy-
sis of a thin deep beam with pinned ends under the action of
pure bending (i.e. a constant bending moment M) leads to the

equation:

d2 ® M2

-2 7
dx? + EI

¢ =0, (5.34)
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where ¢ is the angle of twist of the beam, EI is the flexural
rigidity of the cross-section about the weak axis, and C is the
torsional rigidity of the section (some care must be taken in
the evaluation of the constant C). Equation (5.34) is exactly
analogous to eq. (5.2), and, as before, admits the trivial solu-

tion ¢ = 0. The first meaningful solution requires that

M, = %\/EIC, (5.35)

and the lateral/torsional displacements can in theory be of any
magnitude.

Other loading conditions and end restraints lead to corre-
spondingly more complex differential equations, which may
be of fourth rather than second order, and whose solutions
may involve hyperbolic or Bessel functions. All solutions have
the same property, however — they lead to a critical value of
loading similar to the Euler P, for the simple strut.

A column forming part of a continuous building frame
is subject to both bending and axial load; exact theoretical
solutions may be found for very simple cases, but in general
recourse must be had to concepts such as effective length to
make any progress with a practical design. Similarly, a bending
moment distribution which varies over the length of a column
can be replaced by an equivalent moment M, and an inter-
active formula may be devised for a column subject to both

bending and axial load:

@) e
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where M, is given by a formula such as that in eq. (5.35), and
P. is the usual load for axial buckling. Finally, eq. (5.36) may
be modified to allow for initial practical imperfections, and to
consider possible additional bending about the weak axis.

Remarkably, despite the numerous assumptions, approx-
imations and reliance on empirical data, structural members
designed in this way can be used reliably in practical construc-
tion.






APPENDIX A

Virtual work

The equation of virtual work has been used throughout this
book; it is a useful tool for manual calculation, and it enables
easy proofs of the plastic theorems of Chapter 2 and of the
elastic principles discussed in Chapter 4. A full proof of the
equation is perhaps best presented in terms of a general stress
analysis, but the following two outlines, in terms of frames and
of trusses, while slightly incomplete, indicate the necessary

steps of the argument.

A.1 Structures in bending

An initially horizontal beam, shown in fig. A1, is acted on by
a distributed load w (which need not be uniform). A short
length dx is cut from the beam (fig. A2), and to maintain
vertical equilibrium of the element, a shear force F must act

on the vertical faces. For equilibrium, it is seen that

dF
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A w B . i .
A A AAAAAVAVAAYAAAAAAA Figure A1. An initially straight
\]'/ v %x beam.

Rotational equilibrium must also be satisfied, since the
shear forces apply a couple of magnitude Fdx, and a bending
moment M must also act on the vertical faces, to give

dM
— =F A2
P (A2)

The shear force F may be eliminated between eqs (Al)

and (A2), to give

d*m

(The effect of shear force has not been discussed in this book,
but it can be of paramount importance — for example, in the
design of thin-walled box sections used as girders in ben-
ding.)

Equation (A3) is the basic equilibrium equation for a
beam or for a straight member of a frame. The bending

moments M are not necessarily produced in the member by

wdx
¢ F+ 97 o
dx

P P Figure A2. Equilibrium of beam
element.

M am
M+dX dx

n

dx
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K
Figure A3. General displacements

of beam.

\ Radius of
curvature = 1/x

the loading w. Indeed, eq. (A3) is of second order and, on
double integration, the bending moments are determinable
only in terms of the two constants of integration, and may be
regarded as the superposition of free bending moments due
to the loading and reactant self-stressing moments. An exam-
ple is seen in the propped cantilever of figs 2.12(c) and (d),
in which one of the constants of integration was determined
from the condition that the bending moment at the right-hand
prop is zero.

As a completely separate matter, the beam may be imag-
ined to have displaced into the general position shown in
fig. A3, under the action of some unspecified loading. The
beam has deflected by an amount y at any particular section,
and experiences a curvature « at that section; also shown in
the figure is a possible hinging discontinuity 6. As usual, all

these quantities are small, and are related in the sense that

deflexions y are compatible with curvatures «
and hinge discontinuities 6. (A4)

More succinctly, the set (y, «, 6) is compatible.
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The equilibrium statement (A3) and the compatibility
statement (A4) form the two unrelated components of the
equation of virtual work.

Both sides of eq. (A3) may be multiplied by y to give

d’m

wy =437 (A5)

where y is identified in due course as a displacement, but for
the moment is assumed only to have those necessary require-
ments of continuity and differentiability necessary for the

integration of eq. (A5). Indeed, on writing

d&m
/wydx:/wydx (A6)

and integrating twice by parts, it will be seen that

d’y dM dy
dx= [ M— dx —-M . A7
/wyx f +[ydx dx} (A7)
where the expression in square brackets must be evaluated at

the limits of integration. If now:

(i) the equilibrium set (w, M) satisfies the loading boundary
conditions for a given beam or frame;

(ii) the function y represents an imposed set of displacements
satisfying the displacement boundary conditions, so that
(v, k) is a compatible set [k = d’y/dx? from eq. (3.12)];
and

(iii) the integration extends over the whole structure,

then, from (iii), the term in square bracketsin eq. (A7) must be

evaluated at the external ends of the members of the system.
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For the three simple conditions of a free, pinned, or clamped

end, the following relations hold:

Free end: M=0
dM
F=%3 =0
Pinned end: M=0 (AS)
y=0
Clampedend: y =20
d—y 0

For all these end conditions, the term in square brackets in eq.
(A7) vanishes, so that

/wy dx = /MK dx. (A9)

For other end conditions (e.g. an elastic support), eq. (A9)
is valid provided that the reactions are introduced into the
equation as external loads. Similarly, due attention must be
given to the internal connexions between the members of a
frame.

Equation (A9) is the basic virtual-work equation for
structures in bending, relating an equilibrium set (w, M) with
a compatible set (y, ). It must be emphasized that there is
no necessary connexion between the two sets. The bending
moments M can have the actual values under the external
loads w, or could be any equilibrium set satisfying eq. (A3).
Similarly, the set (y, x) may represent the actual deformed
state of the frame, or could represent any compatible set of

imposed displacements.
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Figure A4. Typical bar rs
of a pin-jointed truss.

Equation (A9) may be expanded to allow both for con-
centrated loads and for the effects of sudden changes in cur-

vature (i.e. hinge discontinuities); in the expanded form
Z Wiy + / wy dx = ZMka +/M/c dx. (A10)

On the left-hand side, the summation includes all concen-
trated loads W;, and the integral extends over all other loads;
on the right-hand side, the summation includes all hinge dis-
continuities 6 (where the corresponding values of bending
moments are M), and the integration extends over all the

rest of the frame.

A.2 Trusses

Figure A4 shows a bar rs of a plane pin-jointed truss; other
bars also meet at the two joints. A load W, acts at joint r, and
is represented by its horizontal and vertical components H,

and V,. Similarly, a load W; acts at joint s. The bar is inclined
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Figure AS. Displacements of
bar rs.

at an angle «,, to the horizontal. The following two statical

equations may be written for joint r:

H, = E P, cos o,

bars
(Al1)
V, = ZPrs sin o,

bars

where the summation is carried out over all the bars meeting at
joint r. The first of eqs (A11) may be multiplied by a quantity
h, and the second by v,; these two quantities may be thought
of as numbers, but will be identified as components of a virtual
(and independent) displacement of joint r. The two modified

equations are then added to give

Hyhy + Vv, =Y {Prs (h cOsays + vy sinayg) ). (A12)
bars
Figure AS identifies the displacement in simple brackets on
the right-hand side of eq. (A 12) as the extension rr’ of the bar
rs due to the imposed displacements /4, and v,.
Equation (A12) is written for joint r; similar equations

may be written for all the other joints of the truss. If now all
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these equations are summed, the bar force P,; appears just
twice — once in eq. (A12), and once in the similar equation
for joint s. The displacement term in brackets for joint s is the
distance ss’ marked in fig. A5; moreover, it is seen in fig. A4
that the bar force P,; occurs with a negative sign when resolu-
tion of forces is carried out at joint s. Thus in the summation
of all the equations similar to eq. (A12), the bar force P, is
multiplied by (rr’ — ss’) — that is, by the extension e,s of the
bar rs. Finally, then,

> (Hihe + Vo) =) {Z (Prsers)}. (A13)
joints joints | bars

The left-hand side of the equation is the vector product

of aload W having components H and V with a displacement

A having components /& and v, so that, dropping suffices,

> WA= Pe (A14)

This is the equation of virtual work for trusses, and it is
evident from the derivation that there is no necessary connex-
ion between the equilibrium statement (W, P) and the com-

patibility statement (A, e).
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The plastic theorems

The proofs of the plastic theorems follow from applications of
the equation of virtual work, and can be given most easily in
terms of the simple framed structure. The rectangular portal
frame in fig. B.1(a) (which is meant to represent far more
complex structures) is acted upon by loads W; all loads have
the same multiplying load factor A. The value A at collapse is
sought. As discussed in Chapter 2, the three master statements

of structural theory may be written as:

Equilibrium: Internal bending moments M in the frame are

in equilibrium with the external loads W.

Yield: The values of M are less than, or at most equal

to, the value of the full plastic moment M,,.

Mechanism: There is an arrangement of plastic hinges

which will permit deformation of the frame.

Figure B.1(b) shows a mechanism of deformation, and the

rotations # are compatible with displacements A of the loading

123
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¢ AW, AW,
_>
777777 777777 0, 0, 44 2
@ (b)

Figure B1. Schematic representation of a framed structure.

points. The internal work dissipated at a plastic hinge is M, |6/,
which is always positive; the value of M, may vary from point
to point around the frame.

Uniqueness

It will be supposed that, for a given loading on the frame,
there are two different collapse mechanisms formed at dif-
ferent load factors A* and A**. For the first mechanism the
collapse bending moments around the frame are given by a
distribution M*, where the equilibrium equations are satisfied
and |[M*| < Mp; the mechanism of collapse is (A*, 6*). A sim-
ilar statement may be made for collapse at the load factor A**,
so that

A 1 (AW, M*) satisfy the equilibrium and yield conditions.
B : (AW, M**) satisfy the equilibrium and yield conditions.
C : (A*, 6*) describes a mode of plastic deformation.

D : (A™, 6**) describes a mode of plastic deformation.
(B1)
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The collapse equation for the first mechanism may be
written by combining statements A and C in the equation of

virtual work:
D ONWAT =Y Mo, (B2)

The value of [M*| at each hinge position is equal to My, so that
the collapse load factor A* is given by

MY WA= M, |07 (B3)

Statements B and C in eq. (B1) can also be combined by

the equation of virtual work:
WY TWAT =) MO (B4)

The bending moments M** satisfy the yield condition;
that is, if mechanisms 6* and 6** have a common hinge, then
|M**| = M,, at that hinge, but otherwise |M**| < M, at the
hinge points of the mechanism 6*. Thus, in eq. (B4),

D oMTor <Y M, |07

: (B5)
so that
WY WAT < M, |67 (B6)
Comparing eq. (B3) with inequality (B6),

AP <A (B7)
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Statement D in eq. (B1) has not been used, and if the
arguments are repeated with statement D instead of statement
C, then

Thus 1* and A** have the same value —namely, the collapse
value .. The proof has shown only that the load factor at
collapse is unique. Nothing has been proved about the mode
of deformation; indeed, it is possible for different modes to

exist at the same value of collapse load factor.

The upper bound theorem (the unsafe theorem)

The theorem states that if a plastic mode of deformation is
assumed, and the work done by the external loads is equated
to the internal work dissipated, then the resulting load factor
A’ is always greater than, or at best equal to, the true load

factor A.. The following statements are used:

E : (AW, M_)is the actual collapse distribution.

F: (A, 0")is the assumed collapse mechanism.

} (B9)

The work equation for the assumed collapse mechanism

is
WY WA ="M |o']. (B10)
Statements E and F of eq. (B9) combine to give

heY WA = "Mb. (B11)
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Now |M.| < M, so that, following the previous argu-

ments,
he Y WA < My 0], (B12)
and comparison of egs (B10) and (B12) shows that

e <M. (B13)

The lower bound theorem (the safe theorem)

The theorem states that if a set of bending moments can be
found that satisfies the equilibrium and yield conditions at a
yield factor A”, then A” is always less than, or at best equal to,

the true load factor A.. The following statements are used:

G : (MW, M") represents a set of bending moments
satisfying the equilibrium and yield conditions.

H : (AW, M_)is the actual collapse distribution.

J (A, 6.)is the actual collapse mechanism.

(B14)
Statements H and J give
he Y WA= M. = M |6|. (B15)
while statements G and J give
VY WA= M6 < My 6| (B16)

as before. Hence

A< e (B17)
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The results may be displayed compactly [cf eq. (2.10) in
Chapter 2)] as

Equilibrium condition -5
A= Ac Yield condition - (B18)

Mechanism condition A > A
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Buckling calculations

The empirical constant n was introduced into eq. (5.33) to
allow for an initial central bow a, in a pin-ended column. The

value of 7 is given by

a.c a, c (1 l
r I r\r r

The values of c, the distance of the extreme compression
fibre from the neutral axis, and of r, the radius of gyration,
are physical properties of any cross-section —for a rectangular
cross-section, for example, c/r = V3.Fora range of Universal
Column sections, the value of c¢/r is very close to 2.

Empirical values of kin eq. (C1) given in design codes are
in the range 107> to 3 x 1073; using the value c/r = 2, then
eq. (C1) shows that values of a,// lie in the range 0.5 x 1073
to 1.5 x 1073, This range is used in the numerical calculations
given below.

Figure 5.6 indicates that the greatest difference between
perfect and actual behaviour occurs when the theoretical

buckling stress o. [eq. (5.28)] is equal to the yield stress oy,
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shown as A in fig. 5.6. For steel with E = 210 x 10° N/mm?
and o, = 250 N/mm?, eq. (5.26) shows that

(@10 x 10°)
0o = O¢ = - 250, (C2)

from which the slenderness ratio at point A in fig. 5.4 is
determined as //r = 91.
Setting o, = o, in eq. (5.33), the critical stress o is given

by the solution of

) -erafz)mn

and for [/r = 91, the empirical range for 5 is 91 x 107> to
273 x 1073. The corresponding values of (o/0,) from eq. (C3)
are 0.74 and 0.60.

Equation (5.30) shows how the deflexions increase from
a, toa as o approaches o.; for the range a,// 0of 0.5t01.5 x 1073
given previously, the corresponding range for a// at the critical
stress is (0.5)/(0.26) to (1.5)/(0.40); that is, 1.92 to 3.75 x 1073.
The resultant axial shortening (i.e. the approach of the ends
of the column) is proportional to the square of such small lat-
eral displacements, and is negligible compared with the elastic
axial shortening resulting from direct axial compression. Thus
at the critical condition for the column being studied, the elas-
tic compressive strain lies in the range 0.74 to 0.60 of the yield
strain of the material.

For the simple truss which has been studied throughout
this book it was seen (fig. 2.7) that the extension of the tension

member AC was equal to the compression of the diagonal BD;
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if diagonal BD suffers a compressive strain in the range 0.74 to
0.60 of the yield strain, this is exactly the tensile strain suffered
by the diagonal AC. However, the trussisnow in a critical state;
a certain value of external load has caused the compression
member to reach its critical condition — yield is just occurring.
An attempt to increase the external load further causes yield
to spread rapidly through the section; the lateral deflexion
increases markedly, and the axial compressive strain increases,
so that the tensile strain in AC also increases until the limiting
tensile load is reached. However, this entire process may be
unstable —instead of a quasi-static collapse of the truss, failure
may be sudden.

The example discussed here is highly artificial, but a gen-
eral conclusion may be drawn. In a hyperstatic truss which is
not on the point of collapse, at least one of the members is
in an elastic state, and the strain in that member is below the
elastic limit. The strains in all the other members must be of
the same elastic order, even if one or more of the members has
yielded; the members of the truss must still fit together, and
any plastic deformation which may have occurred is contained
in magnitude by the strain of the last unyielded member. If,
however, the last member to fail does so by buckling, it may
prove impossible to achieve the required design load, and,
moreover, failure may occur catastrophically.

Buckling must, in fact, be avoided in practical construc-
tion. A simple way of doing this is to increase the strength
of the compression members. For the simple square truss in
fig. 2.7, it was shown that a critical compressive stress o /o, lies

in the range 0.74 to 0.60. If the relevant compression members
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were manufactured from material having a yield stress o, in
the range 1.3 to 1.7 times that of the tension members, the
tension members would yield before a compression member
buckled. Alternatively —and this is the device implicit in prac-
tical codes of practice — the safety factor against buckling can
be set higher than the factor against tensile (or bending) yield.
It was noted that one way of incorporating a load factor in
design is to arrange for a structure to be just on the point
of collapse under the specified values of load, and to actually
build the structure stronger. Thus tensile or bending members
in steel could be manufactured to be 1.75 times as strong as
the theoretical minima. Using the range 0.74 to 0.60 achiev-
able by compression members, the load factor corresponding
to 1.75 would lie in the range 2.36 to 2.92, and compression
members could be manufactured to have buckling strengths

say 2.5 times the theoretical minima.
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