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BASIC STRUCTURAL THEORY

This book introduces the basic equations of the theory of struc-
tures. Conventional presentations of these equations follow the ideas
of elastic analysis, introduced nearly two hundred years ago. The
present text is written against the background of advances made in
structural theory during the last fifty years, notably by the introduc-
tion of the so-called plastic theory. Tests on real structures in the
twentieth century revealed that structural states predicted by elas-
tic analysis cannot in fact be observed in practice, whereas plastic
ideas can be used to give accurate estimates of strength. Strength
is discussed in the first part of this book without reference to equa-
tions of elastic deformation. However, the designer is concerned also
with stiffness, for which elastic analysis is needed, and the standard
equations (suitable, for example, for computer programming) are
presented. Finally, stability is analyzed, which again is essentially an
elastic phenomenon, and it is shown that a higher factor of safety
is required to guard against buckling than is required to guaran-
tee straightforward strength. The emphasis throughout this book is
on the derivation and application of the structural equations, rather
than on details of their solution (nowadays best done by computer),
and the numerical examples are deliberately kept simple.

Jacques Heyman is former Head of the Department of Engineering
at the University of Cambridge and the author of fourteen books,
including The stone skeleton, Elements of the theory of structures,
Structural analysis: a historical approach, Elements of stress analysis
and the two-volume set, Plastic design of frames: Volume 1, Funda-
mentals and Volume 2, Applications, with Lord Baker. He is a Fellow
of the Society of Antiquaries, the Institution of Civil Engineers and
the Royal Academy of Engineering, and an Honorary Fellow of the
Royal Institute of British architects. He was a consulting engineer
for a number of English cathedrals and a member of the Architec-
tural Advisory Panel for Westminster Abbey and the Cathedrals
Fabric Commission for England. He also has served on many British
Standards committees. Professor Heyman’s The stone skeleton won
the Choice Outstanding Academic Books Award in 1996.
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Preface

University courses in structural theory (as in any other branch

of engineering) aim to teach the principles of the subject. It

is in fact difficult, if not impossible, to discuss a principle in

the abstract, and students are usually engaged in carrying out

an assortment of algebraic or numerical calculations for par-

ticular examples of structures, in the hope that fundamental

truths will be revealed.

Structural equations are straightforward and are, with

some exceptions, linear. The equations may be written eas-

ily, but unfortunately they are very numerous. Although their

solution presents no conceptual difficulty, the work involved

is so heavy that, before the advent of the electronic computer,

it was virtually impossible to obtain exact numerical results

for any but the simplest structure. Advances in structural

theory in the nineteenth century, and in the twentieth, were

directed on the one hand to the establishment of basic theo-

rems to guide the engineer towards easier formulation of the

equations, and on the other hand to the development of

vii
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viii Preface

computational techniques which could lead to approximate

solutions of any required degree of accuracy.

Many of these advances were made by scientists and engi-

neers of experience and insight, and they show great creative

genius. Thus the student’s understanding will be enlightened

by, for example, the elastic reciprocal theorems, the concepts

of strain and potential energy, and by the theory underly-

ing the testing of models. Side by side with these fundamen-

tal elastic properties, however, the student may well be pre-

sented with a host of techniques such as deflexion coefficients,

slope/deflexion equations, and moment/area methods, which

might seem to be basic to the theory of structures whereas,

despite their intellectual power, they are really no more than

aids to the solution of the structural equations. The student

may well feel aggrieved to have spent time mastering meth-

ods of calculation, when the modern computer is furnished

with programs which can produce numerical solutions for any

complex structure.

Some of these topics are presented in Chapter 4, but the

discussion is brief. It is the intention of this book to present

the basic ideas of structural theory, rather than to review the

many techniques of calculation for elastic structures. These

basic ideas will enable the engineer to appreciate the way in

which a computer program delivers its solutions, without nec-

essarily investigating every detail of the computation. All of

these analyses, the theory and the calculations, fall within the

gigantic intellectual framework of the classical theory of struc-

tures, enunciated formally by Navier in 1826, and developed
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over the next century to the point where it forms the basis of

most design codes throughout the world.

There is a second and powerful reason for not concen-

trating on the conventional syllabus of nineteenth and twen-

tieth century courses on structural engineering. The methods

of elastic analysis, whether executed by hand or by computer,

purport to describe the actual state of a given structure under

a given loading system. The Navier theory appeared to be

so self-evidently correct that it was almost a century before

tests on real structures revealed that the results of elastic

analysis cannot be observed in practice. There is now over-

whelming evidence that the state of an actual structure may

be very different from that calculated confidently by the elastic

designer.

A seemingly artificial example, the four-legged table,

reveals the problem. The tripod is an ideal structure – the

forces in the three legs which result from a given loading can be

found easily and unequivocally from simple equations. How-

ever, those same equations are insufficient to furnish the leg

forces for the conventional table with four legs, and the full

apparatus of elastic structural theory leads to those difficult

calculations to which the computer can now give a precise

answer.

This computer output is the Navier elastic solution for this

theoretical structure. The real table, placed on a hard floor, will

rock, and if a leg is clear of the floor by a mere fraction of a

millimetre, it is certain that the force in that leg is actually

zero, whereas the computer has supplied a definite value for
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the force. Moreover, a cork wedge may be used to make the

table comfortable for its users, which exposes the task facing

the structural engineer: how are the leg forces to be evaluated,

so that the legs may be designed, when any one of the four

may be in contact with a (supposedly) rigid floor, or clear

of the floor, or supported by an elastic wedge of unknown

properties?

A real structure is, in fact, supported externally in a way

which is unknown (and unknowable) to the engineer, who nev-

ertheless is required to make a design. In modelling the struc-

ture for analysis, the conventional elastic designer is forced to

make some assumptions (as is the computer program) – for

the table, for example, that all four legs are in contact initially

with a (rigid) floor. These assumptions, seemingly innocuous

and actually of small consequence, can lead to structural solu-

tions widely different from those observed in practice. Very

small differences in boundary conditions can lead to wholly

disproportionate differences in internal structural forces, in

real multi-storey buildings as well as in the simple model of

the table. The foundations of a steel or concrete frame can set-

tle by small but – for the user – acceptable amounts; a bolted

joint, assumed to be inflexible, may slip on first loading; frame

members may be manufactured with slight dimensional errors.

Such defects seem trivial, and they do not, in fact, affect the

basic strength of a structure, but it is these defects which reveal

that elastic calculations give a poor indication of how a struc-

ture carries its loads.

The anomaly was fully revealed in the first half of the

twentieth century by tests on buildings under construction,
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and the results led to the development of the so-called plastic

theory as an alternative to elastic analysis. Plastic theory in

its simple form makes no use of (unknowable) boundary con-

ditions in the assessment of strength – indeed, no attempt is

made to calculate the actual state of a structure. Instead, new

and powerful theorems – above all, the safe theorem – give the

designer confidence in plastic methods. Paradoxically, it is the

safe theorem which shows that conventional elastic methods,

the Navier schema – while predicting a state which is not expe-

rienced by the real structure, and which will lead to a design

which is usually wasteful of material – nevertheless gives a

safe estimate of strength.

However, simple plastic theory is concerned only with

the prediction of strength, and traditional elastic computa-

tions cannot be rejected. Even if, as is the case, the working

state of a structure is essentially unknowable, in the sense that

the internal forces are critically dependent on seemingly triv-

ial unknown imperfections, the designer may be required to

make estimates of stiffness to ensure that deflexions lie below

specified limits. A structure may well yield on first loading, but

stiffness is basically an elastic structural property, and must be

estimated somehow by the engineer. Similarly, although buck-

ling may also involve some yielding, the onset of instability can

be determined (with some empirical imprecision) by the use

of classical elastic differential equations.

This book starts, then, with a discussion of the strength

of structures, and it will be seen that statements can be made

with some confidence. Subsequent chapters discuss stiffness

and stability, and some of the traditional methods of elastic
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analysis are presented in order to predict deflexions and the

onset of buckling. The examples are deliberately kept simple,

and the necessary mathematical foundations of the subject are

outlined in three short appendices.
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1 Introduction

The structures discussed in this book are assemblages of ele-

ments (e.g. beams, columns, struts, ties) that form a construc-

tion of some practical use. For example, a light steel gantry

may be needed to support a cable to power electric trains;

or simple portal frames, steel or concrete, may house a fac-

tory; or the elements may be combined into a framework for

a multi-storey building. A theory of structures is necessary to

ensure that the design of any particular construction will be

satisfactory when built.

The designer decides on the general form of a structure –

for example, using girders working in bending for a small-

span bridge, rather than a lattice truss with members work-

ing in tension or compression (alternative forms may be

examined simultaneously to achieve a best design). Design

requirements (e.g. specified imposed loads, permitted maxi-

mum deflexions) are stated, and the designer’s task is to satisfy

those requirements. The design process falls logically into two

stages: dimensions are assigned to the members of the chosen

form, and the theory of structures is then used to ensure that

1
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the members are comfortable, and that the overall behaviour

of the structure meets the criteria. This process, in general, is

circular; the structural analysis cannot be made until the sizes

of the members have been chosen, but those sizes depend on

the results of the structural analysis. In some cases it may be

possible to achieve a direct design without this circular pro-

cess of trial and error (and, certainly, computer programs may

be written to achieve rapidly convergent designs). This book

is concerned with the analysis of structural forms to ensure

that design criteria are met.

The three major structural criteria are strength, stiffness

and stability. Successive chapters are devoted to these topics.

Individual members must certainly be strong enough to carry

the loads they are designed to bear, but the overall strength of

a complex structure may well be determined by the interaction

of those members. The strength of structures is examined in

Chapter 2.

Similarly, to be serviceable a structure must have dis-

placements with acceptable limits – it must be stiff enough

under the prescribed loading so that deflexions are not devel-

oped which might interfere with its design function (e.g. over-

head rails in a factory building must remain sufficiently rigid

to ensure that a gantry crane can operate without difficulty; an

electric cable must be reachable by the pantogram of a train).

Such deflexions are almost always elastic, and their calculation

is explained in Chapter 3, and continued in Chapter 4.

Finally, the structure must remain stable. A familiar form

of instability may be observed in the buckling of columns, but

other forms are possible, and they include the instability of
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Load
(bending
moment)

Elastic

Plastic

Extension (curvature) 

P
B

A

O

Figure 1.1. Load/extension curve for a ductile material.

the structure overall. Buckling of an individual steel or con-

crete member may be sudden, and could prove disastrous for

the structure as a whole, although in certain types of construc-

tion (for example, plates and thin shells, which are outside

the scope of this book), stable buckling can occur. Stability is

studied in Chapter 5.

1.1 Structural assumptions

A first requirement of a material that is structurally useful

is that it should be ductile. That is, steel, reinforced concrete

(preferably under-reinforced), aluminium alloys, and perhaps

wrought iron are acceptable, but cast iron and glass are not;

they will shatter if incorporated as load-bearing members in a

practical structure. Figure 1.1 shows schematically the results

of a tensile test on a prismatic mild steel bar of a grade typi-

cally used in structural work. As the tensile load on the spec-

imen is increased the resulting extension is at first elastic and

proportional to the load (Hooke’s Law), and is recoverable.
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However, when the yield stress of the steel is reached the spec-

imen extends at a more or less constant load, and behaves in

a plastic way. If the test is interrupted at this stage, and the

load is removed, the extension is not fully recoverable, and

the unloading from a point such as P is elastic. The transi-

tion from elastic to plastic behaviour in such a test may be

sharp, and points A and B may almost coincide. However,

the important property of the schematic sketch of fig. 1.1 is

that possible plastic extensions, for mild steel, are many times

the extension at first yield (more than a factor of 10 before

indeed the load starts to increase with the onset of strain

hardening).

Such a mild steel bar is used in the example of a truss in

Chapter 2, but the bar could equally be made from aluminium

alloy. In that case the load/extension characteristic differs from

that shown in fig. 1.1 in that portion BP of the curve would

rise gently instead of being virtually horizontal. However, a

design based on the load at point B of the curve would be

safe for the alloy construction, and in both cases, steel and

aluminium alloy, the plastic region is sufficiently large that

extensions may be assumed to be unlimited, and to take place

at constant load (provided there is no danger of instability; see

below for the third structural assumption). The load/extension

characteristic is in fact idealized as shown in fig. 1.2.

If the mild steel member is used not in tension, but in

bending in the form of a beam in a structural frame, then fig. 1.1

represents – again schematically, but with some accuracy – the

moment/curvature characteristic of the member. As before,

the initial response is linear and elastic, but at yield large



P1: IBE
9780521897945c01 CUUS196/Heyman 978 0 521 89794 5 April 3, 2008 10:11

1.1 Structural assumptions 5

Load

Extension
O

Figure 1.2. Idealised load/extension curve.

increases in curvature can occur in the beam. The yield zones

are localized at plastic hinges; large rotations of the hinges can

occur at a constant value of bending moment, defined as the

full plastic moment of the beam. This value corresponds to the

plateau BP in fig. 1.1. As will be seen, the formation of a single

(or indeed more than one) plastic hinge does not necessarily

imply that the structure has attained a limiting strength; that

limit is reached when a sufficient number of hinges form so

that unacceptably large deformations can occur.

A second structural assumption is concerned with the

magnitude of the deformations. It is possible to construct

analyses which allow for finite displacements, but the straight-

forward theory of structures assumes that working deforma-

tions (that is, displacements before the limiting strength is

attained) are small compared with the overall dimensions of

the structure. By small it is implied that changes in the over-

all geometry of the structure under load are negligible; thus

the angles between the bars of a truss framework stay virtu-

ally unchanged, so that equilibrium equations involving these
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angles, and written for the undeformed structure, remain valid

for the deformed state.

Finally, a third major assumption concerns the stability

of structural members. This question is explored later but,

essentially, care must be taken if a member is used whose load/

deflexion characteristic does not exhibit the ductile plateau of

the schematic fig. 1.1, but instead involves a decrease of load

with increasing deformation.

1.2 Structural equations

The theory of structures is a branch of solid mechanics which

deals with slightly deformable bodies, and there are only three

types of basic equation which may be written to perform a

structural analysis. The first set of equations expresses the

static equilibrium of a structure – that is, internal structural

resultants (e.g. bar forces in a truss, bending moments in a

beam or frame, and so on) must be in equilibrium with the

external loads acting on the structure. The familiar equations

of statics – resolving forces, taking moments – are used to

ensure this equilibrium. As will be seen in the next chapter,

these basic equations may be used to determine the strength of

a structure constructed from materials whose limiting strength

(e.g. a yield stress or value of full plastic moment) is known.

The other two structural criteria – stiffness and stability –

require the use of the other two sets of master structural equa-

tions. Straightforwardly, if elastic deflexions are to be calcu-

lated, then the elastic properties of the material must enter

the analysis. For the trusses and beams considered in this book
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only the value of Young’s modulus is needed. Once the value is

specified for a given structural member, that member’s elastic

deformation can be calculated in terms of the applied internal

forces (i.e. tension, compression, bending moment).

Problems involving shear deformation (which are not

considered here) require the value of a second (independent)

material constant, the shear modulus; this modulus is needed,

for example, if the effects of twisting of a member (e.g. a

steel hollow-box section) are to be investigated. (There are,

in theory, 21 elastic constants for materials which possess no

isotropy or other elastic symmetry. Wood, for example, has

three mutually perpendicular planes of symmetry, two along

the grain and one at right angles. In this case, the number of

elastic constants required in theory to specify elastic behaviour

is reduced to 9. However, for a reasonably homogeneous and

isotropic material like steel or aluminium alloy the two con-

stants suffice.)

Finally, the elastic deformations must be such that the

members still fit together when the structure is loaded, and

the structure as a whole must obey whatever boundary condi-

tions may be specified (e.g. a beam rests on a given number of

supports, a frame has its footings rigidly attached to founda-

tions, and so on). Considerations such as these are expressed

in the third set of master equations, the so-called compatibility

conditions.
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2 Strength

2.1 Trussed frameworks

The three equal bars shown in fig. 2.1 are supposed to be rigid

and infinitely strong; they are pinned together at B and C with

frictionless joints, and similar pins at A and D connect the

assemblage to a rigid foundation. Evidently the figure does

not represent a (two-dimensional) structure – it is a mecha-

nism (a four-bar chain, counting the ground AD as one of the

bars) incapable of carrying load. The addition of a diagonal

member AC enables load to be applied – for example, the

horizontal force W at joint C, fig. 2.2. The statical analysis of

the truss is shown in fig. 2.3, in which the bar forces shown

have been obtained by resolving horizontally and vertically

at the frictionless joints. At B the two members meeting at

right angles must each carry zero load, while the resolution

of forces at joint C shows that the added member AC carries

a tension W
√

2, while the (rigid) member CD is subject to a

compression W. (In accordance with the assumption of small

8
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A

B C

D

Figure 2.1. Mechanism of
pinned bars.

deformations, the 90- and 45-degree angles in fig. 2.3 remain

unchanged for the purpose of the resolution of forces.)

In contrast to the original three rigid members, the diag-

onal AC is a structural element which elongates slightly under

the action of its tensile load. If the load/extension character-

istic of member AC is known (that is, it has a known cross-

sectional area and elastic modulus), then its extension can be

calculated in terms of the force W, and the deflexion of point

C may be determined.

A

B C

D

W

Figure 2.2. Structure
capable of carrying load.
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A

B C

D

W

W

O

O 2W
√ Figure 2.3. Bar forces due

to load W.

The problem of the stiffness of the truss – that, is the

determination of the deflexion of joint C – is discussed in

Chapter 3. The present objective is to calculate the strength of

the simple structure shown in fig. 2.2. If the member AC can

sustain a maximum load of value T, then clearly the greatest

value of W is T/
√

2. At this load, indefinite ductile extension of

bar AC occurs in accordance with the idealized characteristic

of fig. 1.2, and deflexions of the structure occur which are no

longer small – a mechanism of collapse (the four-bar chain)

has developed.

This analysis can hardly be dignified by the label Theory

of Structures. The structural problem proper is illustrated in

fig. 2.4, in which a second structural member BD has been

added to the truss; as before, all joints are supposed to be

freely pinned, and the two diagonals have no connexion where

they cross. Under the action of the applied load W tensions

P1 and P2 are developed in the two diagonal members, as

shown. Resolution of forces at joint B leads to the marked

values of tension in bars BC and BA. Tensile forces are

denoted positive, so that the tension −P2
√

2 marked for bar
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A

B C

D

W
P2

1
1
2

P−

2
1
2

P−

2
1
2

P−

P1

√

√ √

Figure 2.4. Hyperstatic
(statically indeterminate)
truss.

BA implies that the bar is in fact in compression. (It may be

imagined that bar BD would be put into compression under

the action of the applied load W, but in fact, as will be seen,

it is possible for the value of P2 to be positive.) Resolution

of forces vertically at joint C leads to the marked value of the

force in bar CD. Resolving forces horizontally at C leads to the

equation

P1 − P2 =
√

2W. (2.1)

No more information can be obtained from the use of

the equations of statics, and the truss is statically indetermi-

nate, or hyperstatic. The values of P1 and P2 have not been

determined, although they are related by eq. (2.1). Neverthe-

less, it is possible to make a statement about the strength of

the truss.

As before, the framing members AB, BC and CD are

assumed to be rigid and infinitely strong. For simplicity, the

two structural members AC and BD are taken to be identical,

and to be ductile with maximum loads in tension T and in

compression C. That is, it is assumed (at this stage) that there
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2W T

X

T

P1

P2

R

O−C

−C

Eq. (2.1)

S

√
Figure 2.5. Yield surface.

is no question of instability, and that each diagonal bar can

accept a maximum compressive load of value C. If a plot is

made of the bar forces P1 and P2, fig. 2.5, then – whatever their

values – any point X representing the forces must lie within the

yield surface shown. That is, both P1 and P2 must lie within the

range −C and +T. Also shown in fig. 2.5 is a plot of eq. (2.1);

the point X, representing the state of the truss under the load

W, must lie on the line RS, which intersects the P1 axis at

the value W
√

2. As the value of W is increased this point of

intersection moves to the right, and the maximum possible

value of W is attained when the line of eq. (2.1) reaches the

corner of the yield surface (see fig. 2.6). At this stage, the

general point X can only just be contained within the yield

surface. Comparing figs 2.5 and 2.6 shows that the value of W

is given by (C + T) = W
√

2, and this represents the greatest

load that the truss can carry. This collapse value could have

been written directly from an examination of eq. (2.1); if the

value of W is to be as large as possible, then P1 must have its

largest value +T, and P2 its smallest, −C.
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T

T

P1

P2

Collapse

O−C

−C

C+T

Figure 2.6. Bar forces at col-
lapse of the truss.

Of extreme interest is the information obtainable from

eq. (2.1) when there is no load on the truss; that is when W = 0.

In this case P1 = P2, which represents a state of self-stress,

characteristic of a hyperstatic structure but impossible for one

which is statically indeterminate. The state of self-stress is easy

to visualize for the simple truss shown in fig. 2.4. The diagonals

AC and BD might be light flexible ties, for example, in one

of which is installed a turnbuckle. To improve the stiffness of

the truss (as will be seen in Chapter 3), the turnbuckle might

be tightened to induce tension in AC, which is inescapably

accompanied by the same value of tension induced in BD.

Alternatively, the diagonals might be (as assumed) struc-

tural members capable of carrying compressive forces without

buckling; if one of these is manufactured to be slightly too long,

then it must be forced into the assembly, with resultant equal

compressive forces induced in both diagonals. These two cases

are illustrated in the plot shown in fig. 2.7: the point represent-

ing the state of the truss under zero external load must lie on

the line P1 = P2, and could be at X for initial tension or at Y
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T

T

P1

P2

Collapse

O−C

−C

X

Y

Figure 2.7. X and Y rep-
resent states of self-stress;
application of load leads to
the same unique collapse
state.

for initial compression in the diagonals. If now the load W

acting on the truss is increased slowly, then the loading point

representing P1 and P2 moves along the line from X shown

arrowed, with P1 increasing and P2 decreasing (the calcula-

tion of this line is given in Chapter 3). At a certain value of the

load W the value of P1 reaches T, and bar AC yields in tension.

However, the load may be increased further since the force

in member BD has not reached a limit – the extra load

results in a progressive further decrease in the value of P2,

until it reaches the value −C, and the collapse corner of

the yield surface is attained (as in fig. 2.6). Similarly, starting

from the compressive state denoted by Y in fig. 2.7, member

BD first yields in compression, and the load may be further

increased until the same collapse corner of the yield surface is

reached.

In general, the initial state of self-stress in a structure is

not known. For this simple example, a turnbuckle may indeed

be used to induce desired values of initial tension in the diag-

onals, but a real structure is inevitably subject to unknown

manufacturing defects. If the structure is hyperstatic, the
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W1 W2

Figure 2.8. Truss with three redundant bars.

defective members must be forced into the construction, and

the initial stresses in the members cannot be pre-determined.

However, whatever the initial unloaded state of the struc-

ture, behaviour under loading follows the pattern illustrated

schematically in fig. 2.7. Indeed, with the simple assumptions

made so far, the collapse load of a ductile structure is unique,

and is not affected by the unknown initial state of self-stress.

Moreover, it is not necessary, in calculating the value of the

collapse load, to follow the history of loading such as that illus-

trated in fig. 2.7; fig. 2.5 leads inexorably to fig. 2.6 to give the

maximum value of W. This, of course, is an extremely powerful

statement, all the more so because very small manufacturing

defects can produce disproportionately large states of initial

stress.

The illustrative example is deliberately simple (with just

two structural members) in order to develop the ideas of anal-

ysis for strength. A more realistic, but still two-dimensional,

structure is shown in fig. 2.8; this outline of a bridge truss has

16 structural members, of which 3 are redundant – that is,

the truss is hyperstatic to the third degree. If, for example,

one diagonal member were removed from each of the three

bays of the truss, the equations of statics (i.e. resolution of

forces at the joints) would enable the forces in the remaining
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13 bars to be found in terms of the loads W1 and W2. (Note that

Maxwell’s Rule states that a two-dimensional truss is statically

determinate if b = 2j − 3, where b is the number of bars and

j is the number of pinned joints. Thus, in fig. 2.8, there are 8

joints, and resolution of forces at each joint, horizontally and

vertically, gives 16 equations, 3 of which serve to determine

the support reactions. The rule is correct, but not foolproof;

the members of the truss must be arranged sensibly. If, for

example, the two diagonals of the central panel of the truss

in fig. 2.8 were removed, the rule would imply that the truss

still had one redundancy – in fact, it is twice hyperstatic but

at the same time the central panel could deform freely as a

mechanism. Attention must also be given to the precise way

such a truss is supported externally.)

The 16 bar forces P1, P2 . . . in the truss shown in fig. 2.8

can be evaluated by statics in terms of the external loads W1

and W2, but only in terms of three unknowns. Formally, each

of the bar forces P is subject to a continued inequality of the

form −C ≤ P ≤ T, where the values of C and T may well

differ for each of the 16 members. The mathematical prob-

lem is to maximize – subject to the 16 continued inequalities –

the value of a load factor λ, applied to each and every exter-

nal load (i.e. W1 and W2 in this case); at this maximum value

collapse occurs, as in fig. 2.6. The problem is one of linear pro-

gramming – tedious if done by hand, but for which standard

computing programs are available. Moreover, a computer

program may be used to assist in design rather than analy-

sis. For the truss in fig. 2.8 constructed of members of known

sizes, it will be found that a regular collapse state (there are
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exceptions, which are illustrated later in connexion with struc-

tures in bending) involves 4 members of the truss reaching

their limiting loads in either tension or compression. (Knowl-

edge of the values of 3 bar forces would make the truss effec-

tively statically determinate; the fourth bar gives a mechanism,

by Maxwell’s Rule.) The computer program can then increase

the sizes of those 4 members, and the loads can be increased

until eventually all 16 members could be playing their full part

in contributing to the strength of the truss.

2.2 Virtual work

Equation (2.1) for the truss with one indeterminacy (see

fig. 2.4), was obtained directly by considering static equilib-

rium of each joint in turn. The calculation was straightforward

for this simple truss; as was seen, 16 such equations may be

written for the more complex truss of fig. 2.8, but they are still

easy to write.

However, equations such as (2.1) may be established by

the use of the potent principle of virtual work. (Proof of this

principle is outlined in Appendix A.) An imaginary (i.e. vir-

tual) displacement is given to a structure which need bear no

relation to the actual displacement which could occur under

the given loading system. That is, a statement is made about

a possible deformation pattern for the structure. Second, the

statical equations are written for the structure – for the truss,

the internal bar forces are deemed to be in equilibrium with

the externally applied loads. Thus two of the three possible

master statements of the theory of structures enter into the
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writing of the equation of virtual work; no use whatever is

made of the third master statement, expressing the properties

of the materials of which the structure is made.

In symbols, the two statements may be written:

External loads W are in equilibrium with

the internal bar forces P.

Imaginary joint displacements � involve

imaginary bar extensions e.




(2.2)

Then the principle of virtual work states that

∑
W · � =

∑
Pe, (2.3)

where W stands for W1, W2 . . . and so on. In this equation,

the essential feature is that the two statements can be truly

independent – the displacements � are not produced by the

loads W.

Thus, for the truss shown in fig. 2.4, the equilibrium state-

ment is expressed in the forces marked in the figure. A possible

virtual displacement (indeed the only possible displacement if

the outer bars AB and so on are rigid) is shown in fig. 2.9. The

truss has been given a sway of magnitude �; evidently, this

involves an extension (eAC) in the distance AC which is occu-

pied by a diagonal bar in the real truss, and similarly a com-

pression eBD in the distance BD. There are different ways of

determining these imaginary bar extensions, but for the sway

of fig. 2.9 a conventional displacement diagram suffices. Fixed

points A and D coincide with the pole o of the displacement

diagram, and are shown in lower case in fig. 2.10. The imposed
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A

B C

D

∆

Figure 2.9. Possible small dis-
placement of the truss.

displacement � locates the point c in the diagram, and also b,

since bar BD is supposed to be inextensible. The (imaginary)

extension of bar AC – that is, eAC – occurs in the direction

oc′ in fig. 2.10 – that is, along a line parallel to AC (since dis-

placements are always assumed to be very small). However,

the bar AC can rotate rigidly about the pin A, as represented

by the dotted line c′c (this is actually a small arc of a circle).

o,a,d b,c

b'

c'

1
2

∆

1
2ACe ∆

∆

=√

√

Figure 2.10. Displacement diagram corresponding to fig. 2.9.
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Thus c′ is located, and eAC = �/
√

2. Similarly eBD = −�/
√

2,

with a negative sign because of the relative positions of o and

b′ in fig. 2.10. The statements (2.2) can then be written as

follows:

The load W is in equilibrium with bar

forces P1 and P2.

Displacement � is compatible with bar

extensions �/
√

2 and −�
√

2,




so that eq. (2.3) gives

W� = P1�/
√

2 − P2�/
√

2, (2.4)

which, of course, is precisely eq. (2.1).

The analysis of displacements of trusses is not trivial, and

displacement diagrams for more elaborate trusses (such as

that shown in fig. 2.8) can become very complex. As will be

seen in Chapter 3, truss analysis is simpler if the equation of

virtual work is used the other way around. That is, instead of

real equilibrium systems being connected with imaginary dis-

placements, the terms in eq. (2.3) are interpreted as referring

to the actual displacements and to artificial systems of equi-

librium. For trusses, difficult problems of geometry are then

replaced by easier problems of statics.

2.3 Structures in bending

The entire discussion of this chapter may be rewritten in terms

of beams and frames (i.e. structures subjected to bending)
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W CA
B

l

1
4

Wl

Figure 2.11. Simply supported beam.

rather than in terms of trusses (whose members act in tension

and compression). The simply supported beam shown in

fig. 2.11 is statically determinate, and the bending-moment

diagram is as shown, with a maximum value of moment Wl/4

at the midpoint B of the beam. If the beam is of uniform sec-

tion having full plastic moment MP, then the largest value of

W is given by Wl/4 = MP.

In fig. 2.12 the same beam is shown, but it is now clamped

at the left-hand end A. The clamp is normally assumed to

impose zero slope on the beam at A, but in fact, as far as

strength is concerned, all that is necessary is that the clamp

be sufficiently strong and stiff so that the full plastic moment

of the beam can be developed. Under the load W a bending

moment MA acts at A and MB at B, both shown hogging in

fig. 2.12(b); it is to be expected that MB has a negative value.

The complete bending-moment diagram for the beam

may be determined conveniently by combining the free bend-

ing moments for the equivalent simply supported beam,

fig. 2.12(c), with the reactant moments due to the clamping
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MA MB

(b)

MA

(d)

1
4 Wl

(c)

MA 1
4 Wl

− MB

(e)

W CA

B
l

(a)

Figure 2.12. (a) Propped cantilever, (b) bending moments induced by
load, (c) free bending-moment diagram, (d) reactant bending-moment
diagram, (e) general bending-moment diagram.

moment MA, fig. 2.12(d). This superposition may be done ana-

lytically (as it would be in a computer program), but it is shown

graphically for this simple problem in fig. 2.12(e). Evidently,

1
2

MA − MB = 1
4

Wl, (2.5)
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X

Collapse

O
MA

1
2 Wl

MB

MP−MP

−MP

MP

Eq. (2.5)

Figure 2.13. Yield surface for beam in fig. 2.12.

and this is the only information that can be obtained by con-

sidering the statics of the problem (cf eq. (2.1) for the truss).

However, the values of MA and MB are constrained to lie

within the yield surface shown in fig. 2.13; those values, repre-

sented by the point X, must lie on the plot of eq. (2.5) shown

in the figure. The intersection of the line with the MA-axis

fixes its position for a given value of W; if that value is to be

made as large as possible, then the state of the beam is given

by MA = MP, MB = −MP. Once again, this result can be seen

directly from an examination of eq. (2.5), if the value of W is

to be made as large as possible. The maximum value is

W = 6MP

l
. (2.6)

In this state, the beam is on the point of collapse by the for-

mation of the two plastic hinges in line with the real hinge
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MP

MP

W

(a)

(b)

1
2 lθ

θ

2θ

Figure 2.14. (a) Collapse mechanism for beam in fig. 2.12, (b) virtual
mechanism.

at the prop at the right-hand end, fig. 2.14(a), this being an

elementary mechanism capable of (infinitesimal) displace-

ment.

The collapse eq. (2.6) can be written directly from

fig. 2.14(b) by equating the work done by the external load

W to the work dissipated in the plastic hinges:

MP (θ) + (−MP) (−2θ) = W
(

1
2

lθ
)

, (2.7)

which leads directly to eq. (2.6).

Care has been taken with signs in writing eq. (2.7), hog-

ging movements and rotations being denoted as positive, and

sagging as negative. In fact, work dissipated in plastic-hinge

rotations is always positive – a negative value of moment

is accompanied by a negative hinge rotation. However, to

describe the general rather than the collapse state of the beam,

fig. 2.14(b) may be used as a virtual mechanism in conjunction

with the equilibrium state indicated in fig. 2.12(b). As shown
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T

Collapse

O

X

Y
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−MP

−MP

MA

MA = 2MB

Figure 2.15. Paths to collapse for beam in fig. 2.12, starting from states
of self-stress.

in Appendix A, the virtual-work equation for structures in

bending becomes [cf eq. (2.3)]:

∑
W · � =

∑
Mθ, (2.8)

so that

W
(

l
2
θ

)
= (MA) (θ) + MB (−2θ) , (2.9)

which is the basic equilibrium eq. (2.5).

The beam is hyperstatic; before any load is applied, there

could be a state of self-stress given by MA = 2MB, from

eq. (2.5) with W = 0. Such a state would arise, for example, if

the supports at ends A and C of the beam were not at the same

level; in fig. 2.15, the initial state would be represented by point

X if the prop at the right-hand end were too low, and by Y if it

were too high. If loading of the beam starts from point X, then
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the arrowed path would be followed (again, the calculation

of this path is given in Chapter 3); a hinge would form first at

the clamped end A (MA = MP) and further increase of load

would be accompanied by rotation of that hinge until the value

of MB reaches −MP. Similarly, loading from point Y implies

that a hinge forms first at B, under the load, with the moment

at A finally reaching the full plastic value. As for the truss, the

final collapse state is independent of the (unknown) state of

initial self-stress.

2.4 Plastic theory

The calculation of the strength of structures is, of course, the

objective of what is now known as plastic theory. The theory

is usually formulated in terms of bending structures – beams

and frames – although early presentations were indeed for

trussed frameworks (with warnings about the instability of

compression members). In what follows, the bending prob-

lem is discussed, but the conclusions – above all, the bound

theorems – apply equally to any ductile structure satisfying

the assumptions outlined in Chapter 1.

In practice, a structure is acted on by a number of speci-

fied loads. For a conventional elastic analysis, each load may

be considered separately, and the elastic response, and conse-

quent elastic stresses, calculated at each critical section of the

structure. These stresses can then be summed to give greatest

and least values, and a suitable safety factor incorporated to

guard against yield at the critical sections. For example, the
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Figure 2.16. Simple rectangular portal frame.

idealised fixed-base portal frame shown in fig. 2.16 is acted

on by two loads, where V might represent self-weight and a

possible snow load, and H the action of wind blowing from left

to right. The frame is assumed to have full-strength connex-

ions at B and D, and to the footings at A and E. The greatest

(hogging) moment at critical section D of the frame occurs

when V and H act together, whereas the greatest moment at

section B occurs under the action of V alone.

For a plastic analysis, the designer (or the computer pro-

gram) arranges the loading in a way which leads to the most

critical condition for the structure as a whole. In fig. 2.16, for

example, if the worst combination involves the action of both

loads, then the portal frame would be analysed accordingly.

Instead of a safety factor based on stress, the concept of a load

factor is introduced. Both loads V and H are imagined to be

increased by the same factor λ; for a frame built of members

of known strength, the largest value of λ is the collapse load

factor (for straightforward simple steel structures, a collapse

load factor of value 1.75 is appropriate).
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In fact, it is possible to carry out plastic analysis with a

range of loads – each load subject to a different load factor –

and also to analyse the response of structures to random and

repeated application of such loads, each of which might be

specified to lie within certain limits (e.g. wind blowing from

left to right, not at all, or from right to left). For simplicity, the

following presentation is limited to the case in which all loads

are subject to the same value of load factor. However, a statis-

tical element may be introduced. The safety factors of stress

used in elastic design are allowed different values to reflect the

fact that it is unlikely, for example, that a crane is operating in

a factory building at the same time that a high wind is blowing

and that there is a full snow load on the roof. Such statistical

ideas find their way into plastic design. In fig. 2.16, the anal-

ysis under the vertical load V alone could be carried out at a

load factor of 1.75, while the analysis under both loads might

be subject to a lower factor of 1.4; naturally, the designer is

constrained by the more critical of these two cases.

Plastic analysis uses, perforce, the three master state-

ments of structural theory, which are formulated as the re-

quirements of equilibrium, yield and mechanism. The equi-

librium condition is no more than the familiar equations of

statics – for beams and frames, the internal bending moments

and external loads must together satisfy these equilibrium

equations. Material properties enter the analysis by the simple

statement that the value of bending moment at any section

must not exceed the value of the full plastic moment at that

section – this is the yield condition. Where the value of the full
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plastic moment is reached a plastic hinge is formed, capable of

rotation under the constant value of the full plastic moment.

The mechanism condition is the vestigial representation

of deformation; there must be some arrangement of (ductile)

plastic hinges to permit a mechanism of one degree of free-

dom (under certain circumstances, possibly more than one

degree).

The basic plastic theorems derive from these three

requirements of equilibrium, yield and mechanism, and their

proofs are outlined in Appendix B. The theorems may be dis-

played as:

λ = λc




Equilibrium

Yield

}
− Safe theorem, λ ≤ λc

Mechanism − Unsafe theorem, λ ≥ λc


 (2.10)

In words, the uniqueness theorem states that if all three

conditions are satisfied for a given structure at a load factor λ,

then the value of the load factor is unique, and λ is equal to the

collapse load factor λc. (The corresponding collapse mecha-

nism is not necessarily unique; under certain circumstances,

alternative patterns of hinges may lead to the same value of

collapse load factor.) By contrast, if a mechanism is studied

without reference to the other conditions, then the value of

load factor (perhaps calculated, as will be seen, from a work

equation) is an over-estimate of the true collapse load factor,

and is, from the point of view of design, unsafe. Finally, if only

the conditions of equilibrium and yield are considered, then
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Figure 2.17. Possible collapse mechanisms for portal frame.

a safe estimate may be made of the strength of the structure.

These theorems may be illustrated by examination of the rect-

angular portal frame shown in fig. 2.16.

The frame is redrawn in fig. 2.17(a), together with

sketches of three possible collapse mechanisms. The bending-

moment diagram for the portal frame under the given loading

consists of straight lines between the cardinal points A . . . E;

these are the sections at which plastic hinges might form. In

general, knowledge of the values of the bending moments

MA . . . ME enables the complete bending-moment diagram

to be constructed.

If the mechanisms of fig. 2.17 are interpreted, in the first

instance, as virtual rather than collapse mechanisms, then the

virtual-work eq. (2.8) may be used to provide relationships
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between the values of the bending moments at the five cardinal

points. The beam mechanism of fig. 2.17(b) leads to

MB − 2MC + MD = λ
Vl
2

(2.11)

(where the parameter θ has been cancelled throughout), while

the sway mechanism of fig. 2.17(c) gives

MA − MB + MD − ME = λHh. (2.12)

These equilibrium equations must always be satisfied, whether

the frame is in an elastic or a plastic state; three values of

bending moments (e.g. MA, MB and MC) may be assigned, but

the other two are then calculable from eqs (2.11) and (2.12).

The three bending moments MA, MB and MC could be

considered as the three redundancies of this hyperstatic frame,

and it would be the objective of an elastic analysis to calculate

their values. The plastic-collapse equations, however, can be

written at once. If fig. 2.17(b) is now interpreted as a plastic-

collapse mechanism and if the frame is of uniform section

having full plastic moment MP, then the plastic work equation

(for a small displacement θ in the collapse state) gives

λ
Vl
2

θ = (MP) (θ) + (−MP) (−2θ) + (MP) (θ)

or λ
Vl
2

= 4MP, (2.13)

while fig. 2.17(c) leads to

λHh = 4MP. (2.14)
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Equations (2.13) and (2.14) can, of course, be derived from eqs

(2.11) and (2.12) by maximizing the value of the load factor

λ, setting the bending moments MA . . . ME equal to ±MP, as

appropriate.

Since the frame has 3 redundancies and there are 5 values

of bending moment to be determined, eqs (2.11) and (2.12) are

the only independent equilibrium equations that can be writ-

ten. Figure 2.17(d) does indeed show a different mechanism,

and the equation of virtual work leads to

MA − 2MC + 2MD − ME = λ

(
Hh + Vl

2

)
. (2.15)

It is clear, however, that eq. (2.16) is not an independent equi-

librium equation, but merely the summation of eqs (2.11)

and (2.12); indeed, fig. 2.17(d) is the pictorial summation of

figs 2.17(b) and (c). The plastic collapse equation correspond-

ing to eq. (2.15) is

λ

(
Hh + Vl

2

)
= 6MP. (2.16)

There are no other arrangements of hinges which give rise

to mechanisms; thus there are three (and only three) estimates

of the value of λ, given by eqs (2.13), (2.14) and (2.16). The

unsafe theorem states that the correct value of the load factor,

λc, is the smallest of the three estimates.

The three collapse equations are plotted in fig. 2.18 to

form a yield surface, this time with loads as axes rather than

internal stress resultants. The point X in the diagram repre-

sents the design (working) values of the loads V and H; it is a

consequence of the plastic theorems that if point X lies within

the boundaries of the yield surface, then the corresponding
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Figure 2.18. Yield surface for portal frame.

loads V and H are a safe combination – the portal frame will

not collapse. Point X corresponds to a load factor of unity;

as λ is increased, X moves outwards along the straight line

OX, until the boundary is reached at P. The ratio OP/OX is

the collapse load factor; in the case shown in fig. 2.18, collapse

occurs by the formation of the mechanism in 2.17(d).

Figure 2.18 illustrates in fact one quarter of a (symmet-

rical) yield surface; the full boundary is obtained if negative

values of V and H are considered. Such yield boundaries (in

n-dimensional space if there are n loads) are closed surfaces

around the origin, and are convex (no re-entrant angles). The

property of safety (X lies within the yield surface) is of course

of crucial importance in structural design; there has been no

mention in the above discussion of any state of possible initial

pre-stress. The mechanism of collapse and the value of the col-

lapse load (or of the collapse load factor) are not affected at

all by pre-stress, exactly as was seen for the truss in fig. 2.4 (col-

lapse in fig. 2.7) or for the beam in fig. 2.12 (collapse in fig. 2.15).

The determination of the boundary of a yield surface

by consideration of unsafe mechanisms of collapse gives a
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(a) (b) (c)

Figure 2.19. Multi-storey, multi-bay frame with 18 redundancies.

powerful algorithm for calculation (historically by hand, but

now by computer). If a framed structure has a number R of

redundancies, and a number N of critical sections at which

plastic hinges might form, then there must exist (N − R) equi-

librium equations, such as eqs (2.11) and (2.12), which connect

the magnitudes of the bending moments at the critical sections

with the values of the external loads. Thus the frame shown

in fig. 2.19 has 36 critical sections, 2 at the ends and one in

the centre of each of the 6 beams, and one at each end of the

9 column lengths. The frame has 18 redundancies, and there

must exist, therefore, 18 independent equilibrium equations.

Now it was seen that an equilibrium equation could be derived

from a mechanism; therefore there must be 18 independent

mechanisms for the frame. Six are of the elementary beam

type, one of which is shown in fig. 2.19(b), and there are 3

sways, of which one is shown in fig. 2.19(c). The remaining 9

relationships are degenerate joint mechanisms, expressing the

fact that the moments acting on the ends of members meeting

at a joint must sum to zero. From these elements can be built

up a highly complex collapse mechanism.

The hinge arrangement of fig. 2.19(b) represents a partial

collapse mechanism; for complex frames, it is highly likely
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that collapse occurs with a large part of the frame remaining

statically indeterminate. The frame in fig. 2.19(b) retains 16

of the original 18 redundancies, and there is no way that the

actual values of these redundancies can be found, since they

are determined by movements of the external environment

which are unpredictable and over which the designer has no

control. A computer program will, however, provide possible

values for the redundancies and, if the collapse solution is to

be valid, these values must satisfy the yield condition – that

is, the values of bending moment at those critical sections not

involved in the collapse mechanism cannot exceed the values

of full plastic moment at those sections.

Analysis of the simple rectangular portal frame illustrates

the problem. The partial collapse mechanism in fig. 2.17(b)

leaves the frame with one redundancy. Collapse occurs accord-

ing to eq. (2.11) with MB = MP, MC = −MP and MD = MP,

and, as was seen, the value of the collapse load V is given by

eq. (2.13). Equation (2.12) must always be satisfied, in which

now MB = MD = MP and, so that

λHh = MA − ME. (2.17)

Unique values of MA and ME cannot be found, but

they must satisfy the condition that, numerically, neither can

exceed MP, so that

λHh ≤ 2MP. (2.18)

Thus the collapse mode of fig. 2.17(b) can occur if

λHh ≤ 2MP = λ
Vl
4

, (2.19)
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using the collapse eq. (2.13); that is

Hh ≤ Vl
4

. (2.20)

The equality sign in eq. (2.20) is represented by the corner

A of the yield surface in fig. 2.18; should H exceed this value,

then the collapse mode switches to that in fig. 2.17(d). The

second corner B of the yield surface, Hh = Vl, represents the

transition to the mode in fig. 2.17(c).

It was noted that the mechanism method outlined above

can be programmed for the computer. Equally, the safe

approach, involving equilibrium and yield, is merely (as men-

tioned earlier) an exercise in linear programming. For the rect-

angular portal frame the two equilibrium eqs (2.11) and (2.12)

must hold, and to these are added the requirements

− (MP)i ≤ Mi ≤ (MP)i (2.21)

where Mi stands in turn for MA . . . ME, and where, in general,

the value of MP need not be the same at each critical section.

The value of λ in eqs (2.11) and (2.12) must be maximized

subject to the restraining inequalities (2.21).

The determination of the final value of λ results from the

analysis of a given frame under specified loading. For design,

the value of λ is specified; what is required is the value of MP

for a frame which just achieves the required strength (for a

non-uniform frame, the values of MP vary from member to

member). The problem is inverted; for example, the unsafe

theorem states that if all possible mechanisms of collapse

are studied, the one that is correct gives the greatest design

value(s) for MP.
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Figure 2.20. Statically determinate frame.

Indeed, for design purposes, the value of the propor-

tional load factor need not be introduced at all until the very

last stage. The frame is designed to collapse under the spec-

ified working values of the loads – that is, at unit load fac-

tor. The corresponding values of MP are then determined. All

these values of MP are then increased by the same chosen

load factor; if the factor were 1.75, then the members would

have strengths 1.75 times the values resulting from the design

exercise.

As a final aid to calculation, external loads may be intro-

duced as an internal set of bending moments in equilibrium

with those loads (in the way that fixed-end moments may be

used in elastic analysis, as will be seen in Chapter 4). Any such

set will suffice, and a simple way to construct a set is to con-

sider an equivalent statically determinate frame. The rectan-

gular portal frame has been modified by the insertion of three

frictionless pins (see fig. 2.20) and a set of equilibrium

moments can be written:

M◦
i ≡ (M◦

A, M◦
B, M◦

C, M◦
D, M◦

E) ≡
(

λHh, 0, −λ
Vl
4

, 0, 0
)

.

(2.22)



P1: SBT
9780521897945c02 CUUS196/Heyman 978 0 521 89794 5 April 3, 2008 11:21

38 Strength

Now the bending moments in the original frame can be

written:

Mi = M◦
i + mi , (2.23)

where mi are (unknown) self-stressing moments, in equilib-

rium therefore with zero external load. [From eq. (2.11),

for example, mB − 2mC − mD = 0.] Equation (2.23) is illus-

trated graphically in fig. 2.12 for the propped cantilever, where

it was described as the superposition of free and reactant

moments.

If a mechanism of collapse θi is examined, then it is known

that, for this postulated mechanism, the bending moments at

the hinge locations have value MP, so that Mi = |MP| at these

hinges. On multiplying through by the values of the hinge

rotations, and summing for the whole mechanism,

∑
Miθi =

∑
(M◦

i + mi )θi =
∑

(MP)i |θi | . (2.24)

As noted above,
∑

miθi = 0, since the self-stressing

moments are in equilibrium with zero external load, so eq.

(2.24) becomes

∑
M◦θ =

∑
MP |θ |, (2.25)

where the suffix i has been dropped. For example, the set of

bending moments given in (2.22) used with the hinge rotations

in fig. 2.17(b) leads directly to eq. (2.13).

Finally, should a computer program furnish an elastic dis-

tribution M of bending moments (which must of necessity be
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a special case of an equilibrium distribution), then eq. (2.25)

leads to

∑
M θ =

∑
MP |θ |; (2.26)

a plastic collapse analysis may be made directly from an elas-

tic solution. The distribution M cannot be observed by mea-

surements on a real hyperstatic structure; as noted through-

out this chapter, the actual bending moments result from the

superposition of the actions of the external loads on an initial,

unknown and unknowable, state of self-stress. However, what-

ever the starting state, the same collapse corner of the yield

surface is always reached and this is effectively demonstrated

by eq. (2.26).

2.5 Masonry

Stone (like brick) is essentially a brittle material; it has ade-

quate compressive strength, but apparently lacks the ductility

to serve as a useful structural material. However, as will be

seen, the assembly of stone into a masonry structure, such as

an arch, creates a form which has its own peculiar property of

plastic deformability. Indeed, the structural theory of masonry

can be embraced within plastic theory.

Figure 2.21(a) shows a schematic but, in fact, a reason-

ably realistic masonry arch formed from wedge-shaped stone

voussoirs. The mortar between the voussoirs is usually very

weak in tension, and in practice may be absent, so that, in real-

ity, there is nothing to prevent the stones from pulling apart.
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(a)

(c)

(b)

Figure 2.21. Simple
masonry arch.

By contrast, the compressive forces between the voussoirs are

so small that the resulting stresses are very low – even a large-

span bridge experiences stresses well under 10 per cent of the

crushing strength of the stone. With these remarks in mind,

the material properties of masonry may be formulated. The

following three key assumptions are stated for the voussoir

arch, but are applicable to other structural forms (e.g. the ele-

ments – towers, spires, vaults, buttresses and so on – of a great

church).

Sliding failure cannot occur

It is assumed that friction is high enough between voussoirs,

or that the stones are otherwise effectively interlocked, so
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that they cannot slide one on another. This is a reasonable

assumption, although it is certainly possible to find occasional

evidence of slippage in a masonry structure.

Masonry has no tensile strength

Stone itself has a definite tensile strength, but it is the joints

between the stones that are weak. Thus the assumption implies

that only compressive forces can be transmitted between

masonry elements. In accordance with common sense, and

with the principles of the plastic theorems (discussed later),

this assumption is safe.

Masonry has an infinite compressive strength

This assumption is a consequence of the fact that, in practice,

stresses are far removed from the crushing strength of the

material. The assumption is obviously unsafe, but it is not

unrealistic; it is discussed further later.

Thus a picture emerges of masonry as an assemblage of stones

shaped to pack together into a coherent structural form,

with that form maintained by compressive forces transmit-

ted within the mass of the material. (Since stresses are low,

the term masonry includes not only stone and weaker bricks,

but also, say, breeze blocks and more primitive materials, such

as sun-dried mud.) The question then arises as to how such a

masonry assemblage might fail in any meaningful structural

sense. If the masonry is infinitely strong, then it would seem

that a calculation of levels of compressive stress is not relevant.

However, the idea that tension is not permissible is significant.
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Figure 2.22. Hinge formation
in masonry arch.

The arch shown in fig. 2.21(a) would be constructed on

temporary falsework or centering. When the keystone has

been placed, the centering may be removed, and the arch

immediately starts to thrust against its abutments; those abut-

ments (the river banks) inevitably give way. The arch – com-

posed of strong, virtually rigid voussoirs – must adapt to a

slightly increased span, and it does this by cracking at the

joints, shown greatly exaggerated as hinges in fig. 2.21(b). Thus

the arch is freely deformable to conform to the new span, and,

despite the brittleness of the individual elements, the structure

as a whole exhibits ductile behaviour.

The compressive structural forces must of necessity pass

through the hinge points of fig. 2.21(b), and the broken line

in the figure represents what may loosely be called the line of

thrust – that is, the resultant of the compressive forces passed

from voussoir to voussoir within the masonry profile. If a par-

ticular joint PQ is examined (fig. 2.22), then the structural
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Figure 2.23. Yield surfaces: (a) material strong in compression, (b)
allowing for crushing of material, (c) enlarged portion of yield surface,
(d) approximation to yield surface.

action at the joint is specified in terms of the magnitude, direc-

tion and point of application of the force transmitted across the

joint. The tangential component of the force is not of impor-

tance, since slip is assumed not to occur – what is needed is the

value N of the normal force across the joint together with the

value of its eccentricity e from the centre line. It is convenient

to work with a bending moment M = Ne as a second variable,

so that the stress resultants M, N define the state of the arch

at any particular section.

The hinge shown in fig. 2.22(b) forms when the eccentric-

ity e of the normal thrust just has the value h; that is, when

M = hN. The lines M = ±hN are shown as OA and OB in

fig. 2.23(a), and they represent, for any given joint between
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voussoirs, the condition that a hinge is in existence at that

joint. A general point (N, M) in the figure which lies within

the open triangle AOB represents a thrust between voussoirs

at an eccentricity less than h; that is, the line of thrust lies

within the voussoirs at that joint and no hinge is forming. If

the general point lies on OA or OB, then a hinge is forming in

either the intrados or extrados of the arch. The general point

cannot lie outside the region AOB, since this would imply

tension at the joints.

The construction shown in fig. 2.23(a) involves the

assumption that the material has infinite compressive stress.

As the line of thrust approaches the edge of a voussoir so the

stress on the diminishing area of contact increases, and a real

stone with a finite crushing strength does not permit the line

of contact at a hinge that is illustrated in fig. 2.22(b). Thus the

lines OA and OB in fig. 2.23(a) cannot quite be reached; they

are replaced by the slightly curved lines shown in fig. 2.23(b).

The full boundary is formed by the parabolic arcs OCD and

OED in fig. 2.23(c), and the general point (N, M) must lie

within this boundary. The assumption of low mean compres-

sive stress, in fact, constrains the point (N, M) to lie within an

area such as OCE in fig. 2.23(c), and it is this area which is

enlarged in fig. 2.23(b).

The sketches shown in fig. 2.23 are again yield surfaces of

plastic theory, and plastic principles may be applied. A general

point (N, M) lying within the full yield surface of fig. 2.23(c)

represents a safe state for the masonry. The curved boundaries

of fig. 2.23(b) also represent a safe yield surface, and they may

be straightened by the device shown in fig. 2.23(d). If the mean
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compressive stresses are known not to exceed 10 per cent of

the crushing strength of the stone, then the straight lines OA

and OB may be replaced by M = ±0.9hN. Thus the real arch

having a (local) ring depth of 2h is replaced, for the purposes

of analysis, by a hypothetical arch of depth 2(0.9h). This kind

of shrinking is important in assessing the safety of masonry

arches.

The abutments of the arch shown in fig. 2.21 were imag-

ined to move apart, leading to the pattern of cracks illustrated

in fig. 2.21(b). The originally hyperstatic structure (with three

redundancies) has been transformed into a three-pin arch,

which is now statically determinate; for the known loading,

the value of the abutment thrust may be determined (and is,

in fact, the lowest value which maintains the arch in equilib-

rium). The three-pin arch is a well-known satisfactory struc-

tural form – the development of three hinges by cracking of

the joints does not presage collapse.

If the abutments of the arch do not move apart, or move

apart only slightly, and the voussoirs are almost but not abso-

lutely rigid, then the joints between voussoirs remain tight,

and no hinges occur to help locate the line of thrust. All the

designer may be able to show is that the line of thrust occu-

pies some such position as that shown in fig. 2.21(c), where

it lies completely within the masonry. In fact, this is all the

designer needs to show. If any one position such as that shown

in fig. 2.21(c) can be found, then this is absolute proof – by the

safe theorem of plastic theory – that the structure is safe. If the

designer can determine a way in which the structure can carry

the given loads, then the structure can certainly also find a way.
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This anthropomorphic statement does not, of itself, give

any indication of how safe the structure might be. Since the

masonry has been assumed to be of infinite compressive

strength, there is no question of failure of the material.

Instead, a geometrical criterion can be devised. As shown in

fig. 2.21(c), the shape of the line of thrust is not the same as

the shape of the profile of the arch, and there is a minimum

thickness of the arch which only just contains the line of thrust.

In 1675 Robert Hooke identified the shape of the line

of thrust by his statement: ‘as hangs the flexible line, so but

inverted will stand the rigid arch’. In other words, if the given

loading for the arch were applied to a light string, then the

shape of that string, in tension, would be the same, inverted,

as that of the arch to carry the same loads in compression. In

fig. 2.21(c), for example, if the loading resulting from the cir-

cular profile of the arch were uniform, then the line of thrust

shown in the figure would be the mathematical catenary. An

arch built with a thickness just able to contain the catenary

would be precariously stable, whereas an arch of double that

thickness would easily accommodate a wide range of possible

lines of thrust. In practice, a geometrical factor of safety of

2 appears to be appropriate, to allow for building irregulari-

ties and for movements imposed by the environment, both of

which can distort the original designed geometry.

A slightly more realistic example is shown in fig. 2.24.

For small-span (perhaps medieval) bridges, the most criti-

cal loading often results from the passage of a single vehicle

axle, applied somewhere near quarter-span. The value of P is
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Figure 2.24. (a) Masonry arch
under point load, (b) line of
thrust, reflected, (c) collapse of
arch, (d) corresponding collapse
mechanism.

required which just causes the arch to collapse. Figure 2.24(b)

shows Hooke’s hanging chain, where due allowance has been

made for the weight of the arch material and of the fill support-

ing the roadway; as shown, the hanging chain (i.e. the inverted

line of thrust) lies comfortably within the profile of the arch.

As the value of P is increased, however, a stage is reached at
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which the line of thrust can only just be contained [fig. 2.23(c)];

4 hinges have formed, and the arch is on the point of collapse

as a four-bar chain [fig. 2.23(d)].

If an existing arch were being analysed to determine a

maximum safe load P, the first step would be to shrink the

arch ring by an appropriate geometrical factor (e.g. 2), and it

is then an easy matter, on the drawing board or by computer,

to determine the value of P which would just cause collapse

of this reduced arch. This would then be the value of the safe

load for the real arch. For the purposes of design rather than

analysis, the minimum thickness of the arch ring would be

determined for the required value of P, and the arch would

then be built with twice this thickness (to achieve a geometrical

factor of 2).

The example illustrated in fig. 2.24 has been simplified,

but it is straightforward to carry out similar analyses for trains

of loads, and to determine the most critical positions of such

trains.

2.6 The structural state

The state of a structure consists of a set of internal stress resul-

tants which are in equilibrium with given external loading. For

a hyperstatic structure the equilibrium state is not unique –

there are an infinite number of such states. The actual state is

determined in the first place by imperfections of manufacture

and assembly, which generate internal self-stresses before any

external loading is applied. Second, a real structure, already
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stressed in this way, is subjected to small (in general, unknown)

movements of the environment to which it is attached, and

very small changes in these boundary conditions can lead to

large changes in the internal stress resultants.

Any scheme of calculation which purports to determine

the actual condition of a structure (e.g. internal stresses, defor-

mations) gives only one possible equilibrium state – a state,

moreover, which is not observable in practice, since the imper-

fections and boundary conditions are not in fact known.

Nevertheless it has been shown in this Chapter that, provided

the structural assumptions are obeyed (i.e. ductility, small

deformations), the overall strength of the structure may be

calculated with confidence.

The simple hyperstatic arch shown in fig. 2.21 becomes

statically determinate when subjected to a small spread of

the abutments. Two hinges form at or near the springings,

and the central hinge generates the three-pin arch. The exact

position of the central hinge depends weakly on the applied

(gravity) loading; if this loading is symmetrical about the mid-

span of the arch, then the hinge forms exactly at mid-span

(under certain circumstances, the hinge may split into two), or

otherwise at a nearby joint. In this case, then, the movements

of the abutments have determined a physically unique state

for the structure, and this state is almost independent of any

reasonable loading system.

A hyperstatic steel or concrete structure does not in gen-

eral become determinate under similar circumstances, but the

same general conclusions hold. The state of a structure is
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determined by imperfections of construction and by deforma-

tions imposed by the environment, but the resulting internal-

stress resultants must always obey the overall equations of

equilibrium. The plastic method of design selects an equi-

librium state which leads effectively to the lowest possible

stresses throughout the structure; that “plastic” state is also

not observable, but the design is safe.
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3.1 The truss

The statically determinate truss discussed in Chapter 2 is

redrawn in fig. 3.1. As before, members AB, BC and CD are

assumed to be infinitely strong and stiff. The diagonal bar AC,

of cross-sectional area A and Young’s modulus E, is the only

active member, and its elastic extension due to the force it is

carrying is

eAC = (W
√

2) (l
√

2)
AE

= 2
Wl
AE

. (3.1)

As was seen from the displacement diagram of fig. 2.10,

the horizontal deflexion of the loading point C is therefore

� = 2
√

2
Wl
AE

. (3.2)

It was previously noted that the construction of

displacement diagrams is clumsy and difficult; a more elegant

way of deriving deflexions is through the use of virtual work.

51
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√ Figure 3.1. Statically
determinate truss.

For trusses, it is far easier to write equilibrium equa-

tions than to establish relations between bar extensions and

corresponding joint displacements. Thus, in using virtual work,

the computed bar extensions, such as eq. (3.1), together with

the joint displacements � (to be determined), are taken as the

compatible set. On the other hand, the equilibrium statement

entering the virtual-work eq. (2.3) is now a set of bar forces

which equilibrate a unit load acting on the truss; the unit load

is applied at the point at which it is required to calculate the

deflexion. For the simple statically determinate example, if the

horizontal deflexion of joint C is to be determined, then a unit

horizontal load is applied at that joint (fig. 3.2). Figure 3.2 also

shows the bar forces in equilibrium with the unit load, and the

information may be tabulated – see Table 3.1.

Thus, writing eq. (2.3) in full,

1.� = (0) (0) + (0) (0) + (−1) (0) + (√
2
) (

2
Wl
AE

)
, (3.3)

which is, of course, eq. (3.2). The dummy unit load has identi-

fied the displacement � whose value was required.
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Table 3.1

AB BC CD AC

Actual forces due to W (fig. 3.1) 0 0 –W W
√

2
Actual elastic bar extensions e 0 0 0 2Wl/AE
Bar forces due to unit load (fig. 3.2) 0 0 –1

√
2

As for the analysis of forces, the calculation is trivial for

a statically determinate structure. However, the technique is

of great power when applied to the hyperstatic truss shown in

fig. 2.4, redrawn as fig. 3.3(a). As before, the two structural

members AC and BD are taken as identical, with cross-

sectional area A and Young’s modulus E, and capable of carry-

ing both tension and compression; the truss is supposed to be

initially stress-free. It was shown that only one relationship,

equation (2.1), could be established from the use of statics,

namely

P1 − P2 =
√

2W. (3.4)

A second equation for the elastic state of the truss can

be found only by using the other two structural equations;

A D

1

1

O

O

B
1

1

O

O

C

2√Figure 3.2. Bar forces due
to unit load.
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−
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−
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√ √ √

√

√

√√

Figure 3.3. (a) Bar forces due to load W, (b) self-stressing bar forces, (c)
and (d) two possible sets of bar forces equilibrating unit load.

the elastic properties of the bars must be introduced, and

the deformation of the truss must be considered. The actual

bar extensions corresponding to the bar forces of fig. 3.3(a)

are shown in Table 3.2, together with additional infor-

mation.

Since the three outer bars are rigid, and suffer no

extension, the first 3 columns of the table could have been

omitted.

The second line of the table gives the self-stressing bar

forces shown in fig. 3.3(b), and these are used, together with

the actual bar extensions in the first line of Table 3.2, in the
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Table 3.2

AB BC CD AC BD

Actual elastic bar
extensions

0 0 0

√
2P1l
AE

√
2P2l
AE

Self-stressing forces
[fig. 3.3(b)]

− 1√
2

− 1√
2

− 1√
2

1 1

Bar forces due to unit
load [fig. 3.3(c)]

0 0 –1
√

2 0

Bar forces due to unit
load [fig. 3.3(d)]

1 1 0 0 −√
2

virtual-work eq. (2.3). Since there are no external loads, the

left-hand side of the equation is zero and, in full,

(
− 1√

2

)
(0) +

(
− 1√

2

)
(0) +

(
− 1√

2

)
(0) +

(√
2P1l
AE

)
(1)

+
(√

2P2l
AE

)
(1) = 0; (3.5)

that is,

P1 + P2 = 0. (3.6)

Equations (3.4) and (3.6) solve to give

P1 = −P2 = 1√
2

W, (3.7)

and the elastic solution has been obtained. [For a truss with a

greater degree of redundancy, then further self-stressing sys-

tems must be constructed. For example, the truss in fig. 2.8

has three redundancies and, conveniently, the self-stressing
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forces of fig. 3.3(b) could be applied in turn to each square

panel, leading to three equations similar to eq. (3.5)].

It is now possible to proceed to the calculation of

deflexions – for example, the horizontal displacement � of

the loading point C. As before, a unit dummy load is applied,

and fig. 3.3(c) shows a set of bar forces in equilibrium with the

unit load. These are certainly not the actual forces produced

by the load, but they satisfy the equations of equilibrium at

each joint, and this is all that is needed; the forces are displayed

in the third line in Table 3.2. Using virtual work as before to

combine the first and third lines of the table (and omitting

contributions from the three outer bars AB, BC and CD since

their extensions are zero), thus:

1.� =
(√

2
P1l
AE

) (√
2
) +

(√
2

P2l
AE

)
(0) ,

or � = 2
P1l
AE

=
√

2
Wl
AE

. (3.8)

Thus the cross-braced truss in fig. 3.3 is stiffer than the

simple truss in fig. 3.1; the addition of the extra member has

halved the deflexion �.

To reinforce the statement that any equilibrium set of

forces equilibrating the dummy unit load may be used to

derive eq. (3.8), an alternative set (of an infinite number) is

shown in fig. 3.3(d), and tabulated in the last line in Table 3.2.

Using this equilibrium statement with the elastic bar exten-

sions of the first line in the table:

1.� =
(√

2
P1l
AE

)
(0) +

(√
2

P2l
AE

) (−√
2
)
,

or � = −2
P2l
AE

=
√

2
Wl
AE

, as before. (3.9)
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T

X

T

P1

P2

O

Y
Figure 3.4. Yield surface for
truss braced by flexible cables.
Initial state of pre-stress is rep-
resented by X and Y; in either
case, limiting load is reached
when P1 = T.

The diagonals AC and BD might be strong flexible cables,

introduced for the purpose of stiffening the truss; if they were

assembled to be just tight, then application of the load W

would immediately cause cable BD to go slack, and the truss

would revert to that shown in fig. 3.1. To prevent this, the cables

are therefore pre-tensioned (perforce with equal loads, as has

been seen). Since all the analytical results have been linear,

the solution given [e.g. eq. (3.7)] may be simply superimposed

on the pre-existing stress state that is possible for a hyper-

static structure. As the load W is slowly increased, the force in

cable BD decreases from its initial tensile value until it reaches

zero.

The yield surface shown in fig. 2.7 is redrawn in fig. 3.4,

with C = 0 since the cables are unable to accept compression.

The initial state of pre-stress is represented by some point X

on the line P1 = P2, and loading from X follows a line parallel

to P1 = −P2 , eq. (3.7). When the loading point reaches the

P1 axis, cable BD goes slack, and the load may be further

increased until the limiting tensile load T is reached in cable

AC. In this second phase the truss is half as stiff; the load/
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W

O

Cable BD slack

Parallel to

2 Wl
AE∆ =

2 Wl
AE∆ =

W

∆

 

2
√

√

Figure 3.5. Load/deflexion curve for pre-stressed truss.

deflexion curve is shown in fig. 3.5. Alternatively, if the initial

tensions were greater than 1/2T, the starting point would be

represented by the point Y in fig. 3.4. Loading causes cable

AC to yield while cable BD is still in tension, and the truss

can accept further load until this cable goes slack. The load/

deflexion curve is identical to that sketched in fig. 3.5, with

the legend Cable BD slack replaced by Cable AC yielding.

3.2 Bending stiffness

The equilibrium equations for beams and frames can be repre-

sented by bending-moment diagrams (e.g. figs 2.11 and 2.12).

As discussed, the bending moments for a hyperstatic beam or

frame are not determinable by the equations of statics alone –

just as for the truss, material properties and compatibility con-

ditions must be introduced in order to obtain solutions.

For an elastic (prismatic) member in bending, the funda-

mental equation expressing deformation of that member is

M = EIκ ; (3.10)
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that is, the curvature κ of the member at any section is pro-

portional to the bending moment M acting at that section.

The constant EI can be derived from a (slightly approximate)

stress analysis; E is the value of Young’s modulus, and I is the

second moment of area of the section about the axis of bend-

ing. (Values of I for standard beam and column sections are

given in the section tables used by the designer; for present

purposes, it is the linear relationship between moment and

curvature that is important.)

Displacements are assumed to be extremely small, so that

the full mathematical expression for curvature,

κ =
d2 y
dx2[

1 +
(dy

dx

)2
]3/2 , (3.11)

can be replaced by

κ = d2 y
dx2

, (3.12)

since the square of the slope (dy/dx) is very small indeed.

Thus the basic bending eq. (3.10) becomes

M = EI
d2 y
dx2

. (3.13)

As a simple example, the cantilever beam shown in fig. 3.6

is examined; a point load W is applied at the tip. All the

external forces are shown in the figure, including the bending
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W

X ∆
y

l

x
W

θ

Wl
O

Figure 3.6. Elastic cantilever beam with tip load W.

moment Wl induced at the clamped end, so that the bending

moment at any section X can be written

MX = Wl − Wx. (3.14)

Equation (3.2) becomes

EI d2 y
dx2 = Wl − Wx

or EI dy
dx = Wlx − 1

2
Wx2 + A

and EI y = 1
2

Wlx2 − 1
6

Wx3 + Ax + B,




(3.15)

where A and B are constants of integration.

The third and final statement of structural theory must

be used to evaluate these two constants; the compatibility

condition emerges as boundary conditions on the differential

equation. Figure 3.6 shows that both slope and deflexion are

zero at the end x = 0, so that, from eqs (3.15), A = B = 0.

Finally, then, the shape of the deflected elastic cantilever has

been found; in particular, the deflexion and slope at the end

x = l are given by

� = 1
3

Wl3

EI

θ = 1
2

Wl2

EI
,


 (3.16)
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(c)

Figure 3.7. (a) Propped cantilever, (b) prop removed, (c) prop force
only acting on cantilever.

while the deflexion at mid-span is 5Wl3/48EI. These results

may be used to find the elastic deflected form of the (hyper-

static) propped cantilever shown in fig. 2.12 and redrawn in

fig. 3.7.

The application of the load W at mid-span of the (ini-

tially stress-free) beam induces a reaction R at the prop, and

the value of R cannot be determined by statics. It may be

regarded as the single redundancy in the system, as an alterna-

tive to the unknown MA in fig. 2.12). If the prop were removed,

then the (now statically determinate) cantilever would deflect

as shown in fig. 3.7(b), with portion AB taking up the bent

form indicated by eqs (3.15), and portion BC remaining
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1
4 Wl

A
3

16
M =

B
5
32

M = − Wl

Wl

Figure 3.8. Conventional elastic solution for propped cantilever.

straight. The total tip deflexion is found by using the results

eqs (3.16):

a + b = 1
3EI

(W)
(

l
2

)3

+
(

l
2

) (
1

2EI

)
(W)

(
l
2

)2

= 5
48

Wl3

EI
.

(3.17)

The value of R must be such that the deflexion c in

fig. 3.7(c) is exactly equal to the value e.g. (3.17), that is,

c = a + b = Rl3

3EI
= 5

48
Wl3

EI
, (3.18)

so that,

R = 5
16

W. (3.19)

Thus the value of MA in fig. 3.7(a) is given by

MA = Wl
2

− Rl = 3
16

Wl, (3.20)

and the elastic bending-moment diagram may be constructed

as shown in fig. 3.8. The deflexion � at the loading point
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(mid-span) can be evaluated from fig. 3.7 using the value of R

that has been determined:

� = Wl3

24EI
− 5

48
Rl3

EI
= 7

768
Wl3

EI
, (3.21)

The corresponding deflexion of a simply supported beam

is

� = Wl3

48EI
; (3.22)

the clamp at the left-hand end has reduced the deflexion in

the ratio 7:16.

The deflexion at mid-span of the free cantilever in fig. 3.6,

due to a load applied at the tip, was 5Wl3/48EI. It is no acci-

dent that this is exactly the value of the deflexion of the

cantilever at the tip when the load is applied at mid-span

[see (fig. 3.7(b)] and is an example of Maxwell’s Reciprocal

Theorem, which is discussed in Chapter 4.

Figure 3.8 purports to represent the actual elastic state of

the propped cantilever beam under the action of the applied

load W. However, just as for the truss, any small defects of

manufacture, or of assembly, result in an initial state of self-

stress, so that the actual values of MA and MB differ from

those shown in the figure. For example, if the prop at the

right-hand end of the beam were set slightly too high, then an

initial negative moment would act at end A before any external

load was applied, and the total moment acting at A under the

application of the load would be less than the value shown in

fig. 3.8. Correspondingly, the value of MB would be greater.
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The derived values of MA and MB are in fact the changes in

value of bending moment due to the applied load, and must be

superimposed on the (unknown) initial state of self-stressing

moments.

However, the computed values of deflexion, such as that

in eq. (3.21), give an estimate of the actual elastic response of

the structure to its applied loading. That is, a hyperstatic struc-

ture as built has defects and its initial stress state is, in general,

unknown, but the structure may well respond to loading in a

way calculable by classical elastic theory.

Unfortunately, not all defects are of the sort exemplified

by a rigid prop being set, initially, at the wrong level. For exam-

ple, the elastic solution of the propped cantilever required the

use of the condition of zero slope of the beam at the clamped

end. Just as the rigid prop could in fact give way, perhaps

elastically, under the action of load, so a supposedly clamped

end could rotate as bending moments are developed in the

beam. If such a rotation did take place, then the value of MA

in fig. 3.8 would be reduced, and the numerical value of MB

correspondingly increased; the value of deflexion in eq. (3.21)

would also be increased.

In general, the assumptions of perfection built into an

elastic analysis lead to calculated values of deflexions which

are likely to be exceeded in practice by a real unclad structure.

On the other hand, the effects of cladding may well not be

taken into account, and cladding could stiffen a bare skeleton.

Putting these considerations aside, and assuming that the

bending moments of fig. 3.8 will obtain in practice, then, as

the load is increased, a plastic hinge first forms at the clamped
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Figure 3.9. Yield surface for propped cantilever.

end A of the beam, when the bending moment there reaches

the full plastic value MP. Thus, starting from the origin O in

fig. 3.9 (cf fig. 2.15), the loading path, as the value of W is

increased, follows the line MB = − 5
6 MA(the values can be

verified from fig. 3.8). When this loading path reaches the

boundary of the yield surface, a plastic hinge forms at A, but,

as usual, the load may be increased until the bending moment

at B, under the load, also reaches the full plastic value. Dur-

ing this second stage the stiffness of the propped cantilever

is exactly that of the corresponding simply supported beam,

since the bending moment at the clamped end A remains con-

stant. The load/deflexion curve is shown in fig. 3.10 (in practice,

there will be some rounding at the junctions of the straight

lines).

A slightly different situation arises if the beam is initially

self-stressed, represented by the point Y in fig. 3.9. The load-

ing path is initially parallel to the line MB = − 5
6 MA, but the

first plastic hinge now forms at B. In the subsequent stage of
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W
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Parallel to
Eq. (3.22)

Collapse

Eq. (3.21)

Figure 3.10. Load/deflexion curve for propped cantilever.

loading, the response of the structure is that of a cantilever of

length 1/2 l, so that the deflexion, on setting the length to be
1/2 l in eq. (3.16), is double that of the simply supported beam.

The general behaviour is still given schematically in fig. 3.10;

however in the second stage the beam is half as stiff.

3.3 Matrix formulation

To estimate the stiffness of a structure – that is, its elas-

tic response to load – somewhat complex calculations are

involved. During the course of these calculations values are

found for the internal stress resultants (e.g. bar forces, bending

moments) and, while knowledge of these may be necessary to

check the strength of the members, the final objective is to

obtain an equation of the form

� = FW. (3.23)

An example is given in eq. (3.2), where the (single) deflex-

ion � is related to the (single) load W by the factor F, which
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may be defined as the flexibility of the structure. The internal

stress resultants were computed as a necessary step in the

analysis, but do not appear specifically in the value of F.

Instead, the flexibility is a function of the geometrical proper-

ties of the members and the elastic constant(s).

In general, a structure is acted on by a series of loads

W1, W2, . . . (i.e. a vector W), and the corresponding elastic dis-

placements of the loading points are �1, �2, . . . (i.e. a vector

∆). (For a three-dimensional truss or frame, each load W is

conveniently specified by three components in the direction

of the co-ordinate axes, and similarly for each deflexion �.)

Then, exactly corresponding to eq. (3.23), it is possible to write

the general relationship

∆ = FW, (3.24)

where F is the flexibility matrix of the whole structure. If there

is a number n of loads (some of which may have zero value)

and the same number n of deflexions, then the relationship in

eq. (3.24) represents n linear equations. The flexibility matrix

F may be assembled systematically by writing the three basic

structural equations; that is:

1. Force/displacement relations are written for individual

members (e.g. axial force is related to axial extension,

and bending moment to curvature). This is the elastic

stress/strain relation.

2. Displacements of the joints of the structure are related

to deformations of individual members. This is compati-

bility.
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3. Equilibrium is established throughout the structure; the

internal stress resultants are related to the external loads

by the equations of statics.

The assembly of the flexibility matrix by computer is straight-

forward, and very little information is required to calculate a

particular truss or frame. The members must be described; that

is, their lengths, areas, second moments of area, inclinations,

and elastic moduli must be given, and the connexions between

members (and the environment) must be specified. The load-

ing system must be defined, although numerical values of the

loads are not required at this stage. Nothing else is needed for

a properly programmed computer, which eliminates the (for

the moment) unwanted internal stress resultants. The result-

ing flexibility matrix F is square (and also symmetric, as a con-

sequence of the reciprocal theorem described in Chapter 4),

and it may be inverted to give

W = F−1∆ = K∆, (3.25)

where K is known as the stiffness matrix.

The formulation of structural problems in terms of matri-

ces gives a compact and correct way of deriving the elastic state

of a given structure under given loading. Moreover, once the

equations have been solved for particular values of the loads,

back substitution furnishes the values of the internal stress

resultants, so that checks on strength and stability may be

made. However, the number of equations to be solved for any

practical structure of modest size is very large, and exact solu-

tions are really only possible through the use of a high-speed
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computer. Even then, some economy may be achieved by

giving attention to the shape and ordering of the matrices

involved.

For nearly two centuries, and before the advent of the

computer, ways were sought to reduce the numerical work

in the analysis of elastic structures. On the one hand, basic

properties of elastic systems were discovered which enabled

some shortcuts to be made and, on the other hand, simpler but

approximate solutions to the equations were derived. Some

of these ideas are discussed in Chapter 4.
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The estimation of the stiffness of a structure, which is essen-

tially an elastic property, involves the calculation of the actual

internal stress resultants. Added to the uncertainties engen-

dered by unknown errors of manufacturing and assembly

are uncertainties of the elastic properties of the materials

used in the structure. Young’s modulus for structural steel

is known reasonably accurately, but the corresponding modu-

lus for reinforced concrete departs in practice from the value

assumed by the designer, may vary from section to section

of the structure, and certainly changes with time. The val-

ues of internal forces (e.g. bar forces, bending moments) in

a computer output must be viewed with some reserve; they

are certainly not the values that should be used for strength

calculations. [As a simple example, elastic calculations for the

propped cantilever in fig. 2.12 show that a displacement of the

rigid prop of 1/10 per cent of the span (i.e. 10 mm for a span of

10 m) leads in a typical case to an increase in bending moment

of 15 per cent.)]

70
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Bar forces P*

W*

(a)

Bar extensions e 

(b)

Bar forces P*Bar forces P*

∆

Figure 4.1. General elastic structure: (a) forces in equilibrium, (b) com-
patible displacements.

As discussed in Chapter 2, elastic parameters need play

no part in design for strength, and plastic theory employs duc-

tile yield strength as the only material property. However,

plastic methods make no estimate of deflexions – the stiff-

ness of a structure, however it may be affected in practice by

unknown considerations, can only be estimated by an elastic

analysis. Further, such an analysis furnishes some estimate,

however suspect, of the values of the internal forces, which

can then be used to check the stability of the members – a

topic which again is ignored by a simple plastic approach.

4.1 Elastic properties

Reciprocal theorems

For well over a century, elastic systems have been known to

possess some fundamental properties, which can be demon-

strated by the application of the principle of virtual work.

Figure 4.1 represents an elastic truss (although it could be any

elastic structure – for example, a beam or frame resisting loads

by bending). Figure 4.1(a) indicates that internal bar forces P∗
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are in equilibrium with external loads W∗, while, as a separate

matter, displacements � are shown in fig. 4.1(b) to be compat-

ible with bar extensions e. Then the equation of virtual work

relates these two statements:

∑
W∗ · � =

∑
P∗e. (4.1)

Now the bar forces P∗ give rise to elastic bar extensions

e∗, where

e∗ = P∗l
AE

, (4.2)

a typical bar having length l and cross-sectional area A, with

E as Young’s modulus. Equation (4.1) can therefore be

written as

∑
W∗ · � =

∑ AE
l

e∗e. (4.3)

The actual bar extensions e∗ and corresponding deflec-

tions �∗ are associated with the equilibrium system of

fig. 4.1(a). Similar loads W and associated bar forces P may be

imagined to lead to the deformations of fig. 4.1(b). If, there-

fore, the roles of figs 4.1(a) and (b) are interchanged, then

∑
W · �∗ =

∑ AE
l

ee∗. (4.4)

When eqs (4.3) and (4.4) are compared, it is evident that

∑
W · �∗ =

∑
W∗ · �. (4.5)
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Figure 4.2. Maxwell’s Reciprocal Theorem: �i j = � j i .

Equation (4.5) was derived for trusses, but it holds for any

elastic system, and it is known as Betti’s Reciprocal Theorem.

In words, if two actual states (i.e. starred and unstarred) of an

elastic body are considered, then the work done by the loads

W∗ of the first state on the displacements � of the second

state is equal to the corresponding work done by W on �∗.

It is clear from the derivation that the theorem applies to

hyperstatic structures.
Maxwell had stated a few years earlier, in 1864, a more

specialized reciprocal theorem. In fig 4.2(a) an elastic struc-

ture is subjected to a unit load applied in a specified direction

at a location i. As a consequence, the structure deflects through

a distance � j i in a specified direction at location j of the struc-

ture. Similarly, an elastic deflection �i j results at location i

from the application of a unit load at location j, shown in

fig. 3.2(b). Inserting these two statements into eq. (4.5), gives

Maxwell’s Reciprocal Theorem at once:

�i j = � j i , (4.6)

and this is effectively a statement of the symmetry of the

matrix of elastic flexibility coefficients.
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X
(a)

W

Y

∆Y

BA

(b)

Figure 4.3. Influence line for a simply supported beam.

Influence lines

The simply supported beam shown in fig. 4.3 is subjected to a

point load W at some point X within the span; as a consequence

an elastic deflexion�Y is observed at some other point Y. Then

eq. (4.5) states that if the same load W were applied at Y the

same deflexion �Y would be observed at X. This is a special

statically-determinate application of the reciprocal theorem.

The deflected shape of the beam, fig. 4.3(b), is of interest; it

is, in effect, a graph of the deflexion at point X as the load W

crosses the beam, and is known as the influence line, usually

plotted for a unit value of the load W.

Figure 4.4 shows a simply supported beam with an addi-

tional internal support, the system thus being hyperstatic with

one redundancy; the supports are supposed to be able to resist

both upwards and downwards loads. The reactions due to the

applied load W are denoted A, B and C in fig. 4.4(a), and it

is required to find one of these, say C. In fig. 4.4(b), a small

(virtual) displacement �∗
C of the supposedly rigid support at C

has been imposed on the otherwise unloaded beam, inducing
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W

C BA
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A* B*

C*

*
C∆*∆

Figure 4.4. Influence line for a hyperstatic beam.

reactions A∗, B∗ and C∗ at the supports. If eq. (4.5) is applied

to the two states sketched in fig. 4.4, then

(A) (0) + (W) (�∗) + (C) (−�∗
C) + (B) (0)

= (A∗) (0) + (C∗) (0) + (B∗) (0) ; (4.7)

that is,

C = �∗

�∗
C

W. (4.8)

Thus, for an arbitrary unit displacement �∗
C = 1 of the

internal support, and for a unit load W, the value of the

reaction C at the internal support is equal to �*. Once again

fig. 4.4(b) gives, to some scale, the influence line for the

statically indeterminate reaction C as a unit load W crosses

the span.

These ideas can be used to determine internal forces in

a frame. In fig. 4.5, for example, an imaginary arbitrary (unit)

kink is introduced at the internal support to determine the

bending moment M in the beam at that support which results

from the application of the load W. The deflected form of the
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(a)

W M

(b)

Figure 4.5. Influence line for an internal bending moment.

beam shown in fig. 4.5(b) gives the influence line, and is a plot

to some scale of the value of the bending moment M as the

(unit) load W crosses the beam.

Indirect model tests

The right-hand side of eq. (4.7) is zero by virtue of the fact

that the supports in the original real beam of fig. 4.4 are rigid.

Indeed, any deformation similar to that shown in fig. 4.4(b),

for which imaginary displacements are introduced at supports

which are in fact rigid, or similar to that in fig. 4.5(b), in which

an imaginary internal dislocation is imposed, leads to an equa-

tion of the form

∑
W · �∗ = 0, (4.9)

[cf eqs (4.5) and (4.7)]. Since eq. (4.9) is homogeneous in the

starred deflexion components, it would be possible to make

real rather than imaginary displacements on a scale model of

the structure. The only requirement is that the scale model

of a beam or frame has flexural rigidities that are the same
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R(a) R(b)

Figure 4.6. An indirect model test.

constant proportion from section to section as those of the

original.

Beggs’s deformeter makes use of this idea. Real defor-

mations are imposed on a carefully made and properly scaled

celluloid model. (Beggs originally used cardboard, which can

give acceptable observations.) The model is cut from a sheet

of uniform thickness, the depths of the members being varied

to ensure correct values of the flexural rigidities. The required

deflexion coefficients can then be found experimentally. For

example, the portal frame shown in fig. 4.6(a) is subjected to

specified loading, and it is required to find the value of R,

the vertical component of the force induced at the foot of

the right-hand column. The corresponding column foot in the

model is given a small vertical displacement, without rotation

[fig. 4.6(b)], and the observed distorted shape of the frame

provides the deflexion coefficients at the points where the

loads are applied to the real structure.

Energy methods

The structural energy theorems are associated with Casti-

gliano, who developed them with reference to trussed
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frameworks (although he extended them to beams and frames,

and indeed to masonry arches). The essential concept is that

of internal strain energy, U. For example, if external loads

W1, W2 . . . , or, in general Wi, induce elastic bar forces P

in the bars of a truss, then the internal strain energy U is

given by

U = 1
2

∑
Pe = 1

2

∑ P2l
AE

, (4.10)

where, as usual, l and A are the length and area of a partic-

ular bar, and E is Young’s modulus. Then Castigliano’s first

theorem, part 1, is

∂U
∂�i

= Wi , (4.11)

and part 2 of the same theorem is

∂U
∂Wi

= �i , (4.12)

where �i is the displacement of the truss at the section where

Wi is applied.

Castigliano’s second theorem is concerned with evaluat-

ing the redundancies in a hyperstatic structure. For a truss,

if there are several redundant bars, and the forces in these

bars are, for example, R, S, T . . . , then the values of those

forces are such as to make the strain energy U a minimum,

that is

∂U
∂R

= ∂U
∂S

= ∂U
∂T

= · · · = 0. (4.13)
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Figure 4.7. The hypersta-
tic truss.

There are, of course, exactly as many equations (i.e. eq. 4.13)

as there are unknown (i.e. redundant) quantities whose values

are to be found.

The theorem may be applied to the evaluation of the

simple truss of one redundancy, the strength of which was

explored in Chapter 2 and its stiffness in Chapter 3. Figure 3.3

is redrawn with a slight change of notation in fig. 4.7; the sin-

gle redundancy has been labelled R in bar AC. As before, the

three outer members are assumed to be rigid, and the active

members of the truss are the diagonals, each of length l
√

2.

The statics have been completed in fig. 4.7, and diagonal BD

carries a compression of (
√

2W − R). (The strain energy U

involves the squares of the bar forces, so that distinguishing

by sign between tension and compression is not of immediate

importance.) Using eq. (4.10), the strain energy stored inter-

nally due to the load W is

U = 1
2

l
√

2
AE

[
R2 + (√

2W − R
)2]

. (4.14)
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Thus, using Castigliano’s second theorem, eq. (4.13),

∂U
∂R

= 0 = R − (√
2W − R

)
, (4.15)

or R = W/
√

2 [cf eq. (3.7)].

Castigliano’s first theorem, part 2, eq. (4.12), may be

used to determine the horizontal deflection � of the loading

point C:

� = ∂U
∂W

= 1
2

l
√

2
AE

[
2
√

2
(√

2W − R
)]

,

or

� =
√

2
Wl
AE

, (4.16)

on substituting the value of R already found [cf eq. (3.8)]. (In

performing the partial differentiation of the strain energy U

it is not necessary to enter the value of R; it may be treated

as if it were a constant.)

The proofs of Castigliano’s theorems are straightforward

by the use of virtual work. For example, if the second theorem

were used to determine the values R, S, T . . . of the forces in

the redundant bars of a truss, then the first step is to use the

equations of statics to compute the forces in all the bars. A

typical bar carries a force P, where

P =
∑

ai Wi + αR + βS + γ T + · · ·. (4.17)

Here, there are a number of loads W1, W2, W3 . . . acting on

the truss, and the coefficients ai , α, β, γ . . . are simple numbers,
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such as the
√

2 which occurs in the truss shown in fig. 4.7. The

corresponding extension of the typical bar is

e = l
AE

[∑
ai Wi + αR + βS + γ T + · · ·

]
, (4.18)

where the length and cross-sectional area must be inserted

appropriately for each bar of the truss. These actual bar exten-

sions e are used as the compatible set in the equation of virtual

work.

The equilibrium statement involves self-stressing sets of

bar forces, in equilibrium therefore with zero external load.

A first such set may be found by setting all but one of the

force quantities equal to zero (e.g. say all Wi = S = T = · · · 0),

while R is given the value unity. Thus, from eq. (4.17), the self-

stressing force in a typical bar is just α, and these forces may

be evaluated throughout the truss. Thus, using this force set

with the compatible set in eq. (4.18),

0 =
∑

αe =
∑ l

AE
α

[∑
ai Wi + αR + βS + γ T + · · ·

]
.

(4.19)

The full expression for the strain energy, eq. (4.10), is

U = 1
2

∑ l
AE

[∑
ai Wi + αR + βS + γ T + · · ·

]2
, (4.20)

and it is evident that ∂U/∂R = 0 [eq. (4.13)] gives precisely

eq. (4.19). The calculation is of course repeated for self-

stressing forces induced by S = 1, T = 1, and so on.

Proofs may be constructed on similar lines for Casti-

gliano’s first theorems, eqs (4.11) and (4.12), concerned with

deflexions. Should there be no load acting at a particular

section at which the deflexion is required, then a dummy
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load (denoted X) may be applied at that section, and carried

through the analysis. Equation (4.12) gives ∂U/∂X = �X and,

at this stage, the value of X may be set equal to zero.

4.2 Methods of calculation

Castigliano’s theorems represent basic properties of elastic

systems but, before the advent of the computer, they also pro-

vided powerful ways of dealing with the large numbers of

equations involved in the analysis of elastic structures. The

theorems apply to any elastic system, but are particularly well

adapted to the solution of trusses; they become cumbersome

when applied to structures in bending. Strain energy in bend-

ing (i.e. M2/2EI per unit length) must be integrated through-

out the length of a beam or frame, and the algebraic work can

become very heavy (although the partial differentials involved

in a strain-energy solution may be performed under the inte-

gral sign).

Similarly, the direct solution of the bending equations to

determine deflexions involves – as previously discussed – the

writing of second-order differential equations. At least some

of the work involved can be reduced by making use of standard

results. Table 4.1, for example, shows coefficients involved in

the behaviour of the simple cantilever; these coefficients were

used in Chapter 3 to investigate the elastic response of the

hyperstatic propped cantilever (see fig. 3.7).

Slope-deflexion equations

Similar deflexion coefficients can be evaluated for the simply

supported beam as recorded in Table 4.2. In this table,
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Table 4.1

End slope End deflexion

M

l
Ml
EI

Ml2

2EI

W
Wl2

2EI
Wl3

3EI

W Wl2

6EI
Wl3

8EI

Table 4.2

End slope, θA End slope, θB

a

l

W

b

θA

θB Wab
6EIl

(l + b) −Wab
6EIl

(l + a)

W
l/2 l/2

Wl2

16EI
− Wl2

16EI

W Wl2

24EI
− Wl2

24EI

M − Ml
6EI

Ml
3EI
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clockwise end slopes of the beam are denoted as positive.

For example, to analyse a continuous beam (i.e. a hyperstatic

beam resting on a number of supports), the deflexion coeffi-

cients in Table 4.2 may be written individually for each span,

and then pieced together to give a number of (linear) simul-

taneous equations. Further economies in the computational

process may be made by replacing specified loading patterns

by equivalent fixed-end moments.

Figure 4.8(a) shows an initially straight undeflected mem-

ber AB, which could be part of a continuous beam or of a

frame. Under the action of a given system of loads, the mem-

ber moves to A′B′, and experiences clockwise end bending

moments MA and MB and clockwise end rotations φA and

φB. The deflexions of the two ends are �A and �B. The gen-

eral slope-deflexion equations relate these bending moments,

rotations and deflexions to the external loading.

If the beam were fixed-ended, the external loading would

produce certain moments MF
A and MF

B at those ends, which are

the fixed-end moments shown in fig. 4.8(b). If now the system

shown in fig. 4.8(c) is superimposed on that in fig. 4.8(b), then

the original system is recovered; such superposition is possible

as a consequence of the linear nature of the elastic equations

of bending. The immediate problem is to derive relationships

connecting the quantities shown in fig. 4.8(c), which relate to a

beam without external loading. First, it is clear that if the beam

were moved laterally without bending so that the ends A and

B occupied the positions shown in fig. 4.8(c), then the slope of

the beam would be uniform and equal to (�B − �A) / l. The

effect of the end bending moments is to increase the rotation
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Figure 4.8. Derivation of slope-deflexion equations.

at end A from (�B − �A) / l to the final value φA and, similarly,

for end B. Thus, using the final line in Table 4.2,

φA −
(

�B − �A

l

)
=

(
MA − MF

A

)
l

3EI
−

(
MB − MF

B

)
l

6EI
, (4.21)

φB −
(

�B − �A

l

)
=

(
MB − MF

B

)
l

3EI
−

(
MA − MF

A

)
l

6EI
. (4.22)
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These two equations can be written in the form in which they

are normally used:

φA =
(

�B − �A

l

)
+ l

6EI

{
2

(
MA − MF

A

) − (
MB − MF

B

)}
φB =

(
�B − �A

l

)
+ l

6EI

{
2

(
MB − MF

B

) − (
MA − MF

A

)}
,




(4.23)

and this is the form most convenient for solution of beam and

frame problems in terms of unknown (i.e. redundant) forces. If

deformation variables (i.e. unknown deflexions and rotations)

are taken, however, then the slope-deflexion equations may

be written:

MA − MF
A = 6EI

l

{
1
3

(2φA + φB) −
(

�B − �A

l

)}

MB − MF
B = 6EI

l

{
1
3

(φA + 2φB) −
(

�B − �A

l

)}
.




(4.24)

Equations (4.23) and (4.24) are simplified examples of

building blocks which may be assembled into flexibility and

stiffness matrices for any elastic structure. The full equations

would be three-dimensional, and also would involve axial

loads and consequential axial deformation of the members.

Table 4.3 gives three useful sets of fixed-end moments;

by simple superposition or by integration, the results given in

the first line of the table can be used to evaluate the results of

more complex patterns of loading.

Many other methods have been developed for the solu-

tion of structural problems, some of them of great ingenu-

ity. Their use results in substantial savings in the labour of



P1: IBE
9780521897945c04 CUUS196/Heyman 978 0 521 89794 5 April 3, 2008 12:6

4.2 Methods of calculation 87

Table 4.3

MF
A MF

B

l

a b

BWA −Wab2

l2

Wa2b
l2

W

l/2 l/2 −Wl
8

Wl
8

W
−Wl

12
Wl
12

computation, but they are in fact merely efficient ways of

solving the numerous equations generated by the analysis of

even a simple structure, and contribute nothing to basic elas-

tic theory (as do, for example, the theorems of Maxwell and

Castigliano). The computational techniques were devised for

manual use and are, effectively, unnecessary in the age of the

computer.

Almost the last in the long line of techniques, how-

ever, which could today be classified as a relaxation method

for the solution of linear simultaneous equations, does give

some insight into structural behaviour. This is the method of

moment distribution, invented by Hardy Cross in 1930.

Moment distribution

Hardy Cross’s method starts with an artificial state of compat-

ible deformation for a continuous beam or frame, and then

successively adjusts the deformations so that the equations of
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φ

M

1
2M

Figure 4.9. Moment distribution: the carry-over factor.

equilibrium are satisfied. The artificial state is very simple –

all the joints of the structure are assumed to be fixed in posi-

tion and direction, and the application of the external loads

then leads to calculable values of fixed-end moments. These

end moments, in general, do not sum to zero at any particular

joint; that joint is then unclamped – that is, allowed to rotate so

that equilibrium is achieved. Each joint is examined in turn,

and in fact re-examined, since rotation at one joint causes

extra moments at neighbouring joints. The process, however,

is rapidly convergent, and may be carried through to the stage

when the required degree of accuracy is attained.

Two basic quantities are needed for the moment-distribu-

tion process: carry-over factors and distribution factors. The

propped cantilever shown in fig. 4.9 is subjected to a bending

moment M at the pinned end. As a consequence, a bend-

ing moment of 1
2 M is induced at the clamped end, as may be

verified immediately by the slope-deflexion eqs (4.23). The

carry-over factor for this uniform section member is 1/2. If

the member had a non-uniform section, the carry-over fac-

tor would have some other value, depending on the way the

cross-section varies.

The same slope-deflexion equations show that the rota-

tion φ in fig. 4.9 has the value Ml/4EI. Figure 4.10 shows
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O
EIr, lr

M

Figure 4.10. Moment distribution: distribution factors.

an assemblage of members of uniform section meeting at a

common joint O; the length and flexural rigidity of a typical

member are denoted lr and EIr . The ends of the members

remote from O are all fixed in position and direction, and the

ends meeting at O are rigidly connected together. If now a

moment M is applied at the joint O, it is distributed in some

way between the members, with the typical member carry-

ing a moment of value Mr . The joint O may be supposed to

rotate through an angle φ, imposed equally on all the mem-

bers; typically,

Mr = 4EIr

lr
φ. (4.25)

The sum of all moments induced in the members must be equal

to the applied moment M; that is,

M =
∑

Mr = 4φ
∑ EIr

lr
. (4.26)

Equations (4.25) and (4.26) combine to give

Mr = EIr/ lr∑
EIr/ lr

M = kr∑
kr

M, (4.27)



P1: IBE
9780521897945c04 CUUS196/Heyman 978 0 521 89794 5 April 3, 2008 12:6

90 Elastic analysis

B

W

(a)

W
A

W
C

8
Wl

8
Wl

8
Wl

16
Wl 3

16
Wl

(d)

(b)

(c)

Figure 4.11. (a) Propped cantilever, (b) bending moments with end C
clamped, (c) bending moment Wl/8 applied at C, (d) superposition of
(b) and (c).

where kr = EIr/ lr is the stiffness of member r. The distribution

factor is kr/
∑

kr .

This distribution factor was calculated on the assumption

that the far ends of all members were fixed against rotation,

and it is convenient occasionally to use distribution factors

for members whose remote ends are pinned. As shown in

Table 4.2, the rotation φ corresponding to an applied moment

Mr is equal to Mrlr/3EIr if the far end of member r is pinned.

The effective stiffness of member r is reduced to 3
4 EIr/ lr .

Moment distribution is a numerical process, but the

propped cantilever shown in fig. 2.12 may be used to illus-

trate the idea of clamping. The beam is redrawn in fig. 4.11(a),

and the first step is to clamp the end C and to apply the load

W, inducing the fixed-end moments shown in fig. 4.11(b). The

clamp at C is now released, since the end is supposed to be

pinned – this is equivalent to applying the bending moment

Wl/8 at end C, as shown in fig. 4.11(c). As a consequence,

a moment of half this value is induced at the fixed end A.
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216kN 384kN 192kN768kN

Figure 4.12. Numerical example of moment distribution.

The superposition of figs 4.11(b) and (c) leads to the final

state, fig. 4.11(d) (cf fig. 3.8).

The continuous beam in fig. 4.12 has dimensions and

carries loads as shown. The section of the beam changes at

the supports, and the information required for the solution of

the problem is given in Table 4.4. The last line of the table

gives the fixed-end moments for each span; they are denoted

as positive when they act clockwise on the ends of the beams.

These bending moments are out of balance at each sup-

port; at B, for example, the clockwise moment of 96 kNm

in span AB does not balance the anticlockwise moment of

Table 4.4

Span AB BC CD DE

Length, m 6 5 5 5
Flexural rigidity,

B = EI
2B0 1.5B0 B0 B0

B
l

(
× 60

B0

)
20 18 12

3
4

(12)

Distribution
Factors

0.526 0.474 0.6 0.4 0.571 0.429

Fixed-end
moments, kNm

−192 96 −320 320 −240 240 −120 120
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320 kNm in span BC. The difference of 224 kNm must be

provided by some external agency acting at B; this external

agency does not exist for the actual beam. Thus, to satisfy the

condition of equilibrium at the joint, a clockwise moment of

224 kNm must be superimposed there. The calculations can

be laid out so that the balancing process can proceed easily

and quickly.

Table 4.5 shows the distribution factors and fixed-end

moments in lines 1 and 2. Joint B is balanced in line 3. The

balancing moment of 224 kNm is thought of as being applied

to an unloaded structure, with all joints other than B (i.e. A,

C, D and E) remaining clamped. Thus the balancing moment

divides between spans BA and BC according to the distribu-

tion factors – that is, 117 kNm to span BA and 107 kNm to

span BC. A line is drawn under the balancing values (line 3 in

Table 4.5) to show that joint B is now in equilibrium.

The carry-over factor for a uniform beam is 1/2, so that

the application of a moment of 117 kNm at end B in the span

AB induces a moment of 59 kNm at end A. The two carry-

over moments are shown in line 4 of Table 4.5. The bending

moments in line 1 of the table correspond to those of a contin-

uous beam with imaginary external moments applied at the

supports; the external moments have magnitudes such that

the slope of the beam at each support is horizontal. In line

4, the beam remains horizontal at A, C, D and E; however,

the external moment has been removed from joint B, and the

beam has been allowed to rotate at this support.

End A of the beam is required to remain horizontal, and

an external moment can act there. End E, however, is pinned,
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with no external moment. In line 5 of Table 5.4, a bending

moment of −120 kNm is superimposed at E, which induces

a carry-over moment of −60 kNm at D, line 6. The stiffness

of span DE is entered in Table 4.4 as three-quarters of its

actual value; the balancing process at a pinned end needs to

be carried out only once, and no further moments require

balancing. (There is also no carry-over moment to end E in

line 8 of Table 4.5.)

Several joints can be balanced simultaneously: in line 5,

both joints C and E are balanced together. With the carry-

over moments of line 6, joint B is now again out of balance

(by 40 kNm); this joint and joint D are balanced together in

line 7. The carry-over moments at joint C in line 8 happen

to balance exactly, and no further adjustment of the solution

is necessary. Had they not balanced, the process could have

been continued, the out-of-balance moments being reduced

until their values were insignificant.

The final line in Table 4.5 gives the sums of all the bend-

ing moments in each column, and these are the values of the

bending moments at the joints. The clockwise positive con-

vention implies that all these bending moments are hogging –

That is, the nett value at each joint is zero, showing that exact

balance has been achieved. The complete bending-moment

diagram for the beam can now be constructed. The free bend-

ing moments (i.e. each span treated as simply supported) are

shown in fig. 4.13, and the reactant line is positioned by the

results of the moment distribution; the nett bending moments

are given by the difference between the two.
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BA DC E

288 122
234 302

194
240

480

Figure 4.13. Solution of example, fig. 4.12.

Moment distribution may be carried out for frames. For

the two-bay, three-storey frame in fig. 2.19(a) there are now 2,

3 or 4 members meeting at each joint, and distribution factors

must be calculated accordingly. As before, the joints are first

clamped and the external forces are applied, and the resulting

bending moments are distributed until balance is attained.

However, this process, implicitly, does not allow sway of the

frame, and the horizontal loads in fig. 2.19(a) play no part in

the analysis, applied as they are to joints assumed to be fixed

in position. In reality, the sway of each of the three storeys

must be considered. An elastic displacement corresponding

to the movement in fig. 2.19(c) induces bending moments at

the ends of each of the central lengths of the columns, which

may be distributed throughout the frame – in all, three such

distributions must be made, one for the displacement of each

of the three storeys. All these numerical results may then be

superimposed so that the governing equilibrium equations are

satisfied – in fig. 2.19, the total horizontal force transmitted at

each level of the frame is the sum of the horizontal forces

applied above that level.
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5.1 Elastic buckling

A compressive axial load is applied to an initially straight elas-

tic member (i.e. a column). If the load is truly axial and the

member truly straight, then it may be expected that the only

observable response is a small shortening (a strain of less than

about 1/1000 if the column is of mild steel and is to remain

below yield). However, when the load reaches a certain critical

value the member no longer remains straight, but deflects side-

ways at a more or less constant value of that load. Analysis of

this idealised behaviour illuminates the real structural prob-

lem of the buckling of columns.

Figure 5.1(a) illustrates the initially straight uniform

member in its supposed deflected state. The column (turned

sideways in the figure) has pinned ends, which may approach

each other freely to accommodate the axial shortening result-

ing from the elastic compression and from the development of

lateral displacements. Figure 5.1(b) is a free-body diagram of

a portion of the column of length x; from overall equilibrium

96
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Px

y

l

P

(a)

P

x

MP y

(b)

Figure 5.1. (a) Buckling of initially straight pin-ended column under
axial load, (b) free-body diagram of part of column.

[fig. 5.1(a)] there can be no shear force in the column, and

the only stress resultants acting at the cut are the axial force

P and a bending moment M. For equilibrium of the forces in

fig. 5.1(b),

M + Py = 0, (5.1)

and therefore, for the uniform elastic member,

EI
d2 y
dx2

+ Py = 0. (5.2)

This is an extremely simple form of the basic differential

equation which arises for all similar buckling problems. The

solution of eq. (5.2) is

y = A cos αx + B sin αx, (5.3)

where

α2 = P
EI

, (5.4)
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and A and B are constants of integration. At the origin x = 0

and y = 0, so that A = 0. At the other end y = 0 at x = l, and

therefore

B sin αl = 0. (5.5)

The solution B = 0 is inadmissible, since it contradicts the

assumption that the column is in a deflected state, and eq. (5.5)

can only be satisfied if

αl = 0, π, 2π, . . . (5.6)

Again, αl = 0 is inadmissible since, from eq. (5.4), this

would imply no load on the column; the first meaningful solu-

tion to the problem is given by αl = π , so that

Pe = π2 EI
l2

; (5.7)

the deflected form is

y = B sin
πx
l

. (5.8)

The Euler buckling load is denoted Pe; for this particu-

lar problem it gives the critical value of axial load at which a

pin-ended column buckles. It has not been possible to deter-

mine the magnitude of the deflexions – the value of B has

not been found and, according to this simple theory, the sinu-

soidal deflexions of eq. (5.8) can have any (small) magnitude

at the same value of Pe. Those deflexions are those of a half

sine wave; the next solution of the equation, αl = 2π from

eq. (5.6), represents a full sine wave, and can, theoretically,



P1: SBT
9780521897945c05 CUUS196/Heyman 978 0 521 89794 5 April 3, 2008 12:1

5.1 Elastic buckling 99

Px

y

l

P

(a)

P

x

MP
y

(b)

XX

X

Figure 5.2. (a) Fixed-ended column, (b) free-body diagram.

be maintained in the presence of an axial force of magnitude

4π2EI/ l2. However, whereas buckling under the Euler load

[eq. (5.7)] represents a state of neutral equilibrium, buckling

in the higher modes (αl = 2π , 3π . . .) is highly unstable, and

the corresponding loads cannot in practice be attained.

The pin-ended column is statically determinate, and the

differential eq. (5.2) can be written immediately. A fixed-

ended column is shown, in its supposed buckled state, in

fig. 5.2. The two end fixings, while compelling the end to have

zero slope, are again free to approach each other axially. It is

to be expected that unknown bending moments X are induced

at the two ends by the deflexions which are developed, so that

the bending moment at a general section, shown in the free-

body diagram in fig. 5.2(b), can be written only in terms of X:

M + Py = X, (5.9)

or EI
d2 y
dx2

+ Py = X. (5.10)
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This equation again gives rise to sinusoidal deflexions:

y = A cos αx + B sin αx + X
P

, (5.11)

from which

dy
dx

= −αA sin αx + αB cos αx. (5.12)

At the origin x = 0, y = 0 and dy/dx = 0, so that A = –X/P

and B = 0, and the deflexion y is given by

y = X
P

(1 − cos αx) . (5.13)

Since the deflexion is zero at x = l,

X
P

(1 − cos αl) = 0. (5.14)

As before, the value of X cannot be zero, since a deflexion

is assumed to have occurred, so that

αl = 0, 2π, 4π, . . . (5.15)

and the Euler buckling load is

Pe = 4π2 EI
l2

, (5.16)

four times the value for the corresponding pin-ended column.

As for the previous example, there are higher buckling modes

which in practice are unobtainable.

[Note that for cos αl = 1, then sin αl = 0, and the appar-

ently extra boundary condition of zero slope at x = l is
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1
4 l 1

2 l 1
4 l

Figure 5.3. Buckled form of
fixed-ended column.

automatically satisfied; four boundary conditions were speci-

fied, and only three unknown constants (A, B and X) entered

the analysis. In fact, symmetry was assumed in fig. 5.2(a) –

without this assumption, the two end moments should have

been specified as X1 and X2.]

It was not really necessary to have pursued the analysis

from eq. (5.9) onwards. The second-order equation must of

necessity lead to a harmonic solution, and fig. 5.3 can be drawn

at once as a (cosine) curve satisfying the zero-slope condition

at the ends. Inflexion points occur at the quarter points, and the

central portion of length 1/2 l is the pin-ended column which

was analysed to have the buckling load of eq. (5.7), in which l

must now be replaced by 1/2 l; eq. (5.16) results.

The effective length of a fixed-ended column is thus half

the length of the equivalent pin-ended column. Similarly, the

effective length of a column with one end fixed and the other

totally unrestrained (a flagpole) is 2l. The intermediate case of

a column with one end fixed in position and direction and the

other end pinned is shown in fig. 5.4. The differential equation

of bending may be written as:

EI
d2 y
dx2

+ Py = X − X
l

x. (5.17)
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PP
X

X
l

X
l

Figure 5.4. Buckling of a fixed/pinned column.

There are two constants of integration and the unknown

bending moment X; use of the three boundary conditions

leads to the buckling equation

tan αl = αl, (5.18)

of which the lowest root (other than zero) is αl = 4.493. The

buckling load is thus found to be

Pe = 20.19EI
l2

= π2EI

(0.699l)2 . (5.19)

The propped cantilever in fig. 5.4 has an effective length

against buckling of approximately 0.7l.

The differential equations expressing buckling are of the

form of eq. (5.2); eqs (5.10) and (5.17) have terms on the right-

hand side representing the particular problem being studied.

For all cases in which EI is constant, the basic equation may

be written as

EI
d4 y
dx4

+ P
d2 y
dx2

= 0, (5.20)

and this holds for any segments between applied loads; the

preliminary statical analysis (involving unknown redundant
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quantities) need not be carried out. Equation (5.20) solves to

give

y = A cos αx + B sin αx + Cx + D, (5.21)

and the four constants of integration may be determined

from the boundary conditions. (For the case of a pinned end,

d2 y/dx2 = 0.)

An approach to the design of practical columns may be

made by the engineer assigning (with help from the building

codes) an effective length to any particular member in a build-

ing frame. The effective length depends on its end connexions

to other members; once chosen, a basic buckling strength may

be calculated from eq. (5.7). This basic strength must, however,

be modified to allow for other practical considerations.

5.2 Practical behaviour

The simple analysis given above indicates that, when a pin-

ended column buckles, it can develop unrestrained lateral

deflexions at a constant value of the (Euler) load; a simi-

lar conclusion holds for columns with other end conditions.

This theoretical behaviour results from the approximation

to the expression for curvature [eq. (3.12)] in which the

term (dy/dx)2 was neglected compared with unity. If the full

expression is written (leading to highly non-linear equations),

the load/lateral deflexion curve rises gently – the axial load

must be progressively slightly increased to maintain increased

deflexions, as shown schematically in fig. 5.5. If the central
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Lateral deflexion
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Pe

Figure 5.5. Post-buckled load/
deflexion curve (schematic).

deflexion of the pin-ended column is a, then the magnitude of

the bending moment there is Pa. Even at a constant value of

P, the bending moment increases with the value of a, and at

some stage becomes large enough to cause yield of the mate-

rial, which in turn leads to rapidly increasing deflexions and

perhaps catastrophic collapse, indicated by the dotted curve

in fig. 5.5.

A practical design of column attempts to predict, and pre-

vent, runaway behaviour, and is based on the analysis of the

real members used in construction, notably the steel columns

used in frames. No member is absolutely straight, and the

introduction of an initial imperfection into the analysis leads

to a more realistic approach to design. At the same time, the

solution does not involve the eigenvalue property of the dif-

ferential equation (to which there is in fact no solution until

the critical load is reached). An initially bowed column may

be represented by the curve

yo = ao sin
πx
l

, (5.22)

in which ao is the central out-of-straightness of the member.

Equation (5.22) could be regarded as the first term in a Fourier
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series representation of the initial shape; as will be seen, this

term becomes dominant in the analysis.

When the axial load P is applied to the real pin-ended

column, the resulting bending moment produces a change of

curvature; that is, eq. (5.2) becomes

EI
(

d2 y
dx2

− d2 yo

dx2

)
+ Py = 0, (5.23)

that is,

EI
d2 y
dx2

+ Py = −π2EI
l2

ao sin
πx
l

= −Peao sin
πx
l

. (5.24)

The general solution to this equation is

y = A cos αx + B sin αx + ao

(
Pe

Pe − P

)
sin

πx
l

. (5.25)

The condition x = 0, y = 0 gives A = 0; and x = l, y = 0

gives

B sin αl = 0. (5.26)

This is eq. (5.5), but there is now no bar to the solution

B = 0, and the deflected form of the column is

y = ao

(
Pe

Pe − P

)
sin

πx
l

. (5.27)

It is convenient to replace the second moment of area I

by the expression I = Ar2, where A is the area and r the radius
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of gyration of the cross-section, and to express the results in

terms of a stress σ = P/A. Thus eq. (5.7) becomes

σe = π2 E

(l/r)2 , (5.28)

where l/r is known as the slenderness ratio, and eq. (5.27)

becomes

y = ao

(
σe

σe − σ

)
sin

πx
l

; (5.29)

the central deflexion is

a = ao

(
σe

σe − σ

)
. (5.30)

As the value of σ approaches σe, so the lateral deflexion

increases very rapidly; the first term in a Fourier representa-

tion of the initial shape becomes dominant.

The total maximum compressive stress at mid-height of

the column consists of the axial stress σ together with a bend-

ing stress due to the moment Pa, that is

σ + Paoc
I

(
σe

σe − σ

)
, (5.31)

where c is the distance from the neutral axis of the section

to the outermost compression fibre. Setting I = Ar2 again,

and assuming that the critical condition for the column occurs
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O
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stress σ

Eq. (5.28)

Eq. (5.33)

Aσo

Figure 5.6. The Perry–Robertson buckling curve, eq. (5.33).

when the total compressive stress reaches the yield limit σo,

then

σo = σ

(
1 + aoc

r2
.

σe

σe − σ

)
. (5.32)

This is a quadratic for the value of the critical stress σ ,

that is

σ 2 − σ [σo + (1 + η) σe] + σoσe = 0, (5.33)

where η = aoc/r2. Equation (5.33) forms the basis of the rules

for column design given in many codes of practice, and is

shown in fig. 5.6. The value of η is assumed empirically by the

codes (and is usually taken to be proportional to the slender-

ness ratio of the column); some discussion and a calculation

are given in Appendix C.

Thus the practical design of columns involves major

empirical elements, as well as some (perhaps unnoticed)



P1: SBT
9780521897945c05 CUUS196/Heyman 978 0 521 89794 5 April 3, 2008 12:1

108 Stability

structural assumptions. One of these assumptions is that col-

umn loads are axial, whereas real end connexions inevitably

introduce some eccentricity of loading. In fact the response

of a column to eccentric loading is very similar to that of an

axially loaded but initially crooked member, and the empiri-

cal constant η does duty to cover both types of imperfection.

Another major consideration, which requires some judgement

on the part of the designer (aided by the design codes) is the

concept of effective length – to cover the wide range of prac-

tical end connexions of a column in a building frame (or of a

compressive member in a latticed truss).

The practical rules tend to be conservative, but not too

wasteful. Once the end conditions of a particular member have

been determined, and the working loads evaluated, then the

rules lead to designs which are generally safe. In case of doubt,

the size of a member may be increased to improve its buckling

characteristics, often without any necessary penalty in weight

or cost.

The determination of the end conditions of a compres-

sive member in a hyperstatic structure is difficult. The prob-

lem does not arise for a statically determinate structure – for

example, a pin-jointed latticed truss. If a compressive mem-

ber in the determinate truss reaches its buckling limit [given by

the solution of eq. (5.33)], then yield occurs accompanied by

increasing lateral deflexions. The load/lateral deflexion curve

for the member is shown schematically in fig. 5.7 (cf fig. 5.5),

and the falling off of the load implies catastrophic collapse

for the whole structure, albeit (for a structure with properly

designed members) at the factored design collapse load. If a
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Figure 5.7. Practical load/deflexion
curve (cf. fig. 5.5).

(ductile) tension member reaches its limiting load before any

such buckling occurs, then overall collapse again occurs at the

design load, but now as a quasi-static rather than a catastrophic

process.

Behaviour is different for the hyperstatic structure. It was

seen in Chapter 2 that the very simple braced square truss

can accept an initial state of self-stress; if one of the diagonal

members in fig. 2.4 were slightly oversize, then both diagonals

would start from a state of initial compression. On the appli-

cation of load, member BD may buckle when the external

load is below its design value, as shown in fig. 2.7. If the initial

loading point were at Y in this figure, then the member BD

reaches its compressive limit of value C [now interpreted as

the buckling load determined by eq. (5.33)], while member

AC carries a load below its limiting tensile value. Figure 2.7

indicates that, in theory, the external load may continue to be

increased until the tensile member reaches the limit T, but this

conclusion must be examined in the light of the non-ductile

nature of buckling of the compressive member. (Indeed, for

any case in which the numerical value of C is less than that of
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T, fig. 2.7 indicates that an initially stress-free truss may show

the same behaviour.)

For the sake of simple calculations, the diagonal members

AC and BD were assumed to be the same; in any case, what-

ever their relative dimensions, it was seen that the (elastic)

extension of the tensile member AC was equal to the short-

ening of the compressive member BD. In general, despite

possible plastic yielding in some members and possible buck-

ling in others, if sufficient members remain elastic so that the

structure remains a structure, then the strains in all members

must be of the order of elastic strains. In fig. 2.4 the shortening

of the buckling member BD is contained by the elastic strain

of AC. It is, however, not clear that the limiting buckling load

(of numerical value C) can be maintained as the external load

on the truss is increased. The central deflexion of the initially

bowed member has already increased from its initial value

[eq. (5.30)], and further increase in compressive strain engen-

ders further plastic yielding at the critical section.

The practical solution for the design of members in order

to avoid such potentially catastrophic behaviour lies in the

choice of load factors. It was noted in Chapter 2 that a way

of introducing a load factor was to design the structure to just

carry the specified loading – but to construct it with mem-

bers having strengths greater than those calculated. Thus for

steel frames in bending, with no problems of stability, or for

tension members in trusses, a factor of 1.75 might be appro-

priate – the sections used would be 75 per cent stronger than

the theoretical minima. For compressive members designed

against buckling, the factor should be higher.
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The factor of 1.75 is empirical, but not arbitrary. It results

from the analysis of design rules refined in building codes

over a period of nearly a century; steel structures designed

according to those rules have been satisfactory. The same

codes incorporate implicitly a higher factor against buckling –

there is some variation, but a figure of about 2.5 has appeared

to be appropriate. Some support is given for this figure by the

numerical analysis in Appendix C.

5.3 Other buckling phenomena

All discussion in this book has been confined to planar struc-

tures – frames and trusses – but a different kind of buckling

can occur in the third dimension, not necessarily involving

axial load. A floor beam in a steel frame, for example, has

been considered to act in bending (implicitly about its strong

axis), as shown in the propped cantilever in fig. 2.12. If such

a beam is not restrained properly against lateral movement,

then it is possible that under critical loading the beam will

both twist and deflect sideways. The analysis of such lateral-

torsional buckling is more complex than that for the pin-ended

column under axial load, but initially perfect members can

exhibit the same eigenvalue properties. For example, analy-

sis of a thin deep beam with pinned ends under the action of

pure bending (i.e. a constant bending moment M) leads to the

equation:

C
d2φ

dx2
+ M2

EI
φ = 0, (5.34)
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where φ is the angle of twist of the beam, EI is the flexural

rigidity of the cross-section about the weak axis, and C is the

torsional rigidity of the section (some care must be taken in

the evaluation of the constant C). Equation (5.34) is exactly

analogous to eq. (5.2), and, as before, admits the trivial solu-

tion φ = 0. The first meaningful solution requires that

Me = π

l

√
EIC, (5.35)

and the lateral/torsional displacements can in theory be of any

magnitude.

Other loading conditions and end restraints lead to corre-

spondingly more complex differential equations, which may

be of fourth rather than second order, and whose solutions

may involve hyperbolic or Bessel functions. All solutions have

the same property, however – they lead to a critical value of

loading similar to the Euler Pe for the simple strut.

A column forming part of a continuous building frame

is subject to both bending and axial load; exact theoretical

solutions may be found for very simple cases, but in general

recourse must be had to concepts such as effective length to

make any progress with a practical design. Similarly, a bending

moment distribution which varies over the length of a column

can be replaced by an equivalent moment M, and an inter-

active formula may be devised for a column subject to both

bending and axial load:

(
M
Me

)2

+
(

P
Pe

)
= 1, (5.36)
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where Me is given by a formula such as that in eq. (5.35), and

Pe is the usual load for axial buckling. Finally, eq. (5.36) may

be modified to allow for initial practical imperfections, and to

consider possible additional bending about the weak axis.

Remarkably, despite the numerous assumptions, approx-

imations and reliance on empirical data, structural members

designed in this way can be used reliably in practical construc-

tion.
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APPENDIX A

Virtual work

The equation of virtual work has been used throughout this

book; it is a useful tool for manual calculation, and it enables

easy proofs of the plastic theorems of Chapter 2 and of the

elastic principles discussed in Chapter 4. A full proof of the

equation is perhaps best presented in terms of a general stress

analysis, but the following two outlines, in terms of frames and

of trusses, while slightly incomplete, indicate the necessary

steps of the argument.

A.1 Structures in bending

An initially horizontal beam, shown in fig. A1, is acted on by

a distributed load w (which need not be uniform). A short

length dx is cut from the beam (fig. A2), and to maintain

vertical equilibrium of the element, a shear force F must act

on the vertical faces. For equilibrium, it is seen that

dF
dx

= w. (A1)

115
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A Bw

xy

Figure A1. An initially straight
beam.

Rotational equilibrium must also be satisfied, since the

shear forces apply a couple of magnitude Fdx, and a bending

moment M must also act on the vertical faces, to give

dM
dx

= F. (A2)

The shear force F may be eliminated between eqs (A1)

and (A2), to give

d2M
dx2

= w. (A3)

(The effect of shear force has not been discussed in this book,

but it can be of paramount importance – for example, in the

design of thin-walled box sections used as girders in ben-

ding.)

Equation (A3) is the basic equilibrium equation for a

beam or for a straight member of a frame. The bending

moments M are not necessarily produced in the member by

dx

wdx

M
F

P P

dx dxdMM +

dx dxdFF +

Figure A2. Equilibrium of beam
element.
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Radius of
curvature = 1/ κ

θ

y

BA

Figure A3. General displacements
of beam.

the loading w. Indeed, eq. (A3) is of second order and, on

double integration, the bending moments are determinable

only in terms of the two constants of integration, and may be

regarded as the superposition of free bending moments due

to the loading and reactant self-stressing moments. An exam-

ple is seen in the propped cantilever of figs 2.12(c) and (d),

in which one of the constants of integration was determined

from the condition that the bending moment at the right-hand

prop is zero.

As a completely separate matter, the beam may be imag-

ined to have displaced into the general position shown in

fig. A3, under the action of some unspecified loading. The

beam has deflected by an amount y at any particular section,

and experiences a curvature κ at that section; also shown in

the figure is a possible hinging discontinuity θ . As usual, all

these quantities are small, and are related in the sense that

deflexions y are compatible with curvatures κ

and hinge discontinuities θ. (A4)

More succinctly, the set (y, κ, θ) is compatible.
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The equilibrium statement (A3) and the compatibility

statement (A4) form the two unrelated components of the

equation of virtual work.

Both sides of eq. (A3) may be multiplied by y to give

wy = d2M
dx2

y, (A5)

where y is identified in due course as a displacement, but for

the moment is assumed only to have those necessary require-

ments of continuity and differentiability necessary for the

integration of eq. (A5). Indeed, on writing∫
wy dx =

∫
d2M
dx2

y dx (A6)

and integrating twice by parts, it will be seen that∫
wy dx =

∫
M

d2 y
dx2

dx +
[

y
dM
dx

− M
dy
dx

]
, (A7)

where the expression in square brackets must be evaluated at

the limits of integration. If now:

(i) the equilibrium set (w, M) satisfies the loading boundary

conditions for a given beam or frame;

(ii) the function y represents an imposed set of displacements

satisfying the displacement boundary conditions, so that

(y, κ) is a compatible set [κ = d2 y/dx2 from eq. (3.12)];

and

(iii) the integration extends over the whole structure,

then, from (iii), the term in square brackets in eq. (A7) must be

evaluated at the external ends of the members of the system.
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For the three simple conditions of a free, pinned, or clamped

end, the following relations hold:

Free end: M = 0

F = dM
dx = 0

}

Pinned end: M = 0

y = 0

}

Clamped end: y = 0
dy
dx = 0

}




(A8)

For all these end conditions, the term in square brackets in eq.

(A7) vanishes, so that

∫
wy dx =

∫
Mκ dx. (A9)

For other end conditions (e.g. an elastic support), eq. (A9)

is valid provided that the reactions are introduced into the

equation as external loads. Similarly, due attention must be

given to the internal connexions between the members of a

frame.

Equation (A9) is the basic virtual-work equation for

structures in bending, relating an equilibrium set (w, M) with

a compatible set (y, κ). It must be emphasized that there is

no necessary connexion between the two sets. The bending

moments M can have the actual values under the external

loads w, or could be any equilibrium set satisfying eq. (A3).

Similarly, the set (y, κ) may represent the actual deformed

state of the frame, or could represent any compatible set of

imposed displacements.
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Vr

Hr
r

Vs

Hss

Prs

Prs

α rs
Figure A4. Typical bar rs
of a pin-jointed truss.

Equation (A9) may be expanded to allow both for con-

centrated loads and for the effects of sudden changes in cur-

vature (i.e. hinge discontinuities); in the expanded form

∑
Wi yi +

∫
wy dx =

∑
Mkθk +

∫
Mκ dx. (A10)

On the left-hand side, the summation includes all concen-

trated loads Wi , and the integral extends over all other loads;

on the right-hand side, the summation includes all hinge dis-

continuities θk (where the corresponding values of bending

moments are Mk), and the integration extends over all the

rest of the frame.

A.2 Trusses

Figure A4 shows a bar rs of a plane pin-jointed truss; other

bars also meet at the two joints. A load Wr acts at joint r , and

is represented by its horizontal and vertical components Hr

and Vr . Similarly, a load Ws acts at joint s. The bar is inclined
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hr

r

s

αrs

s´

vr r´

Figure A5. Displacements of
bar rs.

at an angle αrs to the horizontal. The following two statical

equations may be written for joint r :

Hr =
∑
bars

Prs cos αrs

Vr =
∑
bars

Prs sin αrs,


 (A11)

where the summation is carried out over all the bars meeting at

joint r . The first of eqs (A11) may be multiplied by a quantity

hr and the second by vr ; these two quantities may be thought

of as numbers, but will be identified as components of a virtual

(and independent) displacement of joint r . The two modified

equations are then added to give

Hr hr + Vrvr =
∑
bars

{
Prs (hr cos αrs + vr sin αrs)

}
. (A12)

Figure A5 identifies the displacement in simple brackets on

the right-hand side of eq. (A12) as the extension rr ′ of the bar

rs due to the imposed displacements hr and vr .

Equation (A12) is written for joint r ; similar equations

may be written for all the other joints of the truss. If now all



P1: SBT
9780521897945apa CUUS196/Heyman 978 0 521 89794 5 April 3, 2008 11:42

122 Appendix A

these equations are summed, the bar force Prs appears just

twice – once in eq. (A12), and once in the similar equation

for joint s. The displacement term in brackets for joint s is the

distance ss ′ marked in fig. A5; moreover, it is seen in fig. A4

that the bar force Prs occurs with a negative sign when resolu-

tion of forces is carried out at joint s. Thus in the summation

of all the equations similar to eq. (A12), the bar force Prs is

multiplied by (rr ′ − ss ′) – that is, by the extension ers of the

bar rs. Finally, then,

∑
joints

(Hr hr + Vrvr ) =
∑
joints

{∑
bars

(Prsers)

}
. (A13)

The left-hand side of the equation is the vector product

of a load W having components H and V with a displacement

� having components h and v, so that, dropping suffices,

∑
W · � =

∑
Pe. (A14)

This is the equation of virtual work for trusses, and it is

evident from the derivation that there is no necessary connex-

ion between the equilibrium statement (W, P) and the com-

patibility statement (�, e).
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The plastic theorems

The proofs of the plastic theorems follow from applications of

the equation of virtual work, and can be given most easily in

terms of the simple framed structure. The rectangular portal

frame in fig. B.1(a) (which is meant to represent far more

complex structures) is acted upon by loads W; all loads have

the same multiplying load factor λ. The value λc at collapse is

sought. As discussed in Chapter 2, the three master statements

of structural theory may be written as:

Equilibrium: Internal bending moments M in the frame are

in equilibrium with the external loads W.

Yield: The values of M are less than, or at most equal

to, the value of the full plastic moment Mp.

Mechanism: There is an arrangement of plastic hinges

which will permit deformation of the frame.

Figure B.1(b) shows a mechanism of deformation, and the

rotations θ are compatible with displacements � of the loading

123
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(a)

λW1

(b)

θ2

λW2

θ3

θ4θ1

∆1

∆2

Figure B1. Schematic representation of a framed structure.

points. The internal work dissipated at a plastic hinge is Mp|θ |,
which is always positive; the value of Mp may vary from point

to point around the frame.

Uniqueness

It will be supposed that, for a given loading on the frame,

there are two different collapse mechanisms formed at dif-

ferent load factors λ∗ and λ∗∗. For the first mechanism the

collapse bending moments around the frame are given by a

distribution M∗, where the equilibrium equations are satisfied

and |M∗| ≤ Mp; the mechanism of collapse is (�∗, θ∗). A sim-

ilar statement may be made for collapse at the load factor λ∗∗,

so that

A : (λ∗W, M∗) satisfy the equilibrium and yield conditions.

B : (λ∗∗W, M∗∗) satisfy the equilibrium and yield conditions.

C : (�∗, θ∗) describes a mode of plastic deformation.

D : (�∗∗, θ∗∗) describes a mode of plastic deformation.




(B1)
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The collapse equation for the first mechanism may be

written by combining statements A and C in the equation of

virtual work:

∑
λ∗W�∗ =

∑
M∗θ∗, (B2)

The value of |M∗| at each hinge position is equal to Mp, so that

the collapse load factor λ∗ is given by

λ∗ ∑
W�∗ =

∑
Mp

∣∣θ∗∣∣ . (B3)

Statements B and C in eq. (B1) can also be combined by

the equation of virtual work:

λ∗∗ ∑
W�∗ =

∑
M∗∗θ∗. (B4)

The bending moments M∗∗ satisfy the yield condition;

that is, if mechanisms θ∗ and θ∗∗ have a common hinge, then

|M∗∗| = Mp at that hinge, but otherwise |M∗∗| < Mp at the

hinge points of the mechanism θ∗. Thus, in eq. (B4),

∑
M∗∗θ∗ ≤

∑
Mp

∣∣θ∗∣∣ , (B5)

so that

λ∗∗ ∑
W�∗ ≤

∑
Mp

∣∣θ∗∣∣ . (B6)

Comparing eq. (B3) with inequality (B6),

λ∗∗ ≤ λ∗. (B7)
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Statement D in eq. (B1) has not been used, and if the

arguments are repeated with statement D instead of statement

C, then

λ∗ ≤ λ∗∗. (B8)

Thusλ∗ andλ∗∗ have the same value – namely, the collapse

value λc. The proof has shown only that the load factor at

collapse is unique. Nothing has been proved about the mode

of deformation; indeed, it is possible for different modes to

exist at the same value of collapse load factor.

The upper bound theorem (the unsafe theorem)

The theorem states that if a plastic mode of deformation is

assumed, and the work done by the external loads is equated

to the internal work dissipated, then the resulting load factor

λ′ is always greater than, or at best equal to, the true load

factor λc. The following statements are used:

E : (λcW, Mc) is the actual collapse distribution.

F : (�′, θ ′) is the assumed collapse mechanism.

}
(B9)

The work equation for the assumed collapse mechanism

is

λ′ ∑ W�′ =
∑

Mp
∣∣θ ′∣∣ . (B10)

Statements E and F of eq. (B9) combine to give

λc

∑
W�′ =

∑
Mcθ

′. (B11)
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Now |Mc| ≤ Mp, so that, following the previous argu-

ments,

λc

∑
W�′ ≤ Mp

∣∣θ ′∣∣ , (B12)

and comparison of eqs (B10) and (B12) shows that

λc ≤ λ′. (B13)

The lower bound theorem (the safe theorem)

The theorem states that if a set of bending moments can be

found that satisfies the equilibrium and yield conditions at a

yield factor λ′′, then λ′′ is always less than, or at best equal to,

the true load factor λc. The following statements are used:

G : (λ′′W, M′′) represents a set of bending moments

satisfying the equilibrium and yield conditions.

H : (λcW, Mc) is the actual collapse distribution.

J : (�c, θc) is the actual collapse mechanism.




(B14)

Statements H and J give

λc

∑
W�c =

∑
Mcθc = Mp |θc| , (B15)

while statements G and J give

λ′′ ∑ W�c =
∑

M′′θc ≤ Mp |θc| (B16)

as before. Hence

λ′′ ≤ λc. (B17)
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The results may be displayed compactly [cf eq. (2.10) in

Chapter 2)] as

λ = λc




Equilibrium condition

Yield condition

}
λ ≤ λc

Mechanism condition λ ≥ λc


 (B18)
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Buckling calculations

The empirical constant η was introduced into eq. (5.33) to

allow for an initial central bow ao in a pin-ended column. The

value of η is given by

η = aoc
r2

= ao

l
· c

r

(
l
r

)
= k

(
l
r

)
. (C1)

The values of c, the distance of the extreme compression

fibre from the neutral axis, and of r , the radius of gyration,

are physical properties of any cross-section – for a rectangular

cross-section, for example, c/r = √
3. For a range of Universal

Column sections, the value of c/r is very close to 2.

Empirical values of k in eq. (C1) given in design codes are

in the range 10−3 to 3 × 10−3; using the value c/r = 2, then

eq. (C1) shows that values of ao/ l lie in the range 0.5 × 10−3

to 1.5 × 10−3. This range is used in the numerical calculations

given below.

Figure 5.6 indicates that the greatest difference between

perfect and actual behaviour occurs when the theoretical

buckling stress σe [eq. (5.28)] is equal to the yield stress σo,

129
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shown as A in fig. 5.6. For steel with E = 210 × 103 N/mm2

and σo = 250 N/mm2, eq. (5.26) shows that

σo = σe = (π2)(210 × 103)
(l/r)2

= 250, (C2)

from which the slenderness ratio at point A in fig. 5.4 is

determined as l/r = 91.

Setting σo = σe in eq. (5.33), the critical stress σ is given

by the solution of

(
σ

σo

)2

− (2 + η)
(

σ

σo

)
+ 1 = 0, (C3)

and for l/r = 91, the empirical range for η is 91 × 10−3 to

273 × 10−3. The corresponding values of (σ/σo) from eq. (C3)

are 0.74 and 0.60.

Equation (5.30) shows how the deflexions increase from

ao to a asσ approachesσe; for the range ao/ l of 0.5 to 1.5×10−3

given previously, the corresponding range for a/ l at the critical

stress is (0.5)/(0.26) to (1.5)/(0.40); that is, 1.92 to 3.75 × 10−3.

The resultant axial shortening (i.e. the approach of the ends

of the column) is proportional to the square of such small lat-

eral displacements, and is negligible compared with the elastic

axial shortening resulting from direct axial compression. Thus

at the critical condition for the column being studied, the elas-

tic compressive strain lies in the range 0.74 to 0.60 of the yield

strain of the material.

For the simple truss which has been studied throughout

this book it was seen (fig. 2.7) that the extension of the tension

member AC was equal to the compression of the diagonal BD;
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if diagonal BD suffers a compressive strain in the range 0.74 to

0.60 of the yield strain, this is exactly the tensile strain suffered

by the diagonal AC. However, the truss is now in a critical state;

a certain value of external load has caused the compression

member to reach its critical condition – yield is just occurring.

An attempt to increase the external load further causes yield

to spread rapidly through the section; the lateral deflexion

increases markedly, and the axial compressive strain increases,

so that the tensile strain in AC also increases until the limiting

tensile load is reached. However, this entire process may be

unstable – instead of a quasi-static collapse of the truss, failure

may be sudden.

The example discussed here is highly artificial, but a gen-

eral conclusion may be drawn. In a hyperstatic truss which is

not on the point of collapse, at least one of the members is

in an elastic state, and the strain in that member is below the

elastic limit. The strains in all the other members must be of

the same elastic order, even if one or more of the members has

yielded; the members of the truss must still fit together, and

any plastic deformation which may have occurred is contained

in magnitude by the strain of the last unyielded member. If,

however, the last member to fail does so by buckling, it may

prove impossible to achieve the required design load, and,

moreover, failure may occur catastrophically.

Buckling must, in fact, be avoided in practical construc-

tion. A simple way of doing this is to increase the strength

of the compression members. For the simple square truss in

fig. 2.7, it was shown that a critical compressive stress σ/σo lies

in the range 0.74 to 0.60. If the relevant compression members
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were manufactured from material having a yield stress σo in

the range 1.3 to 1.7 times that of the tension members, the

tension members would yield before a compression member

buckled. Alternatively – and this is the device implicit in prac-

tical codes of practice – the safety factor against buckling can

be set higher than the factor against tensile (or bending) yield.

It was noted that one way of incorporating a load factor in

design is to arrange for a structure to be just on the point

of collapse under the specified values of load, and to actually

build the structure stronger. Thus tensile or bending members

in steel could be manufactured to be 1.75 times as strong as

the theoretical minima. Using the range 0.74 to 0.60 achiev-

able by compression members, the load factor corresponding

to 1.75 would lie in the range 2.36 to 2.92, and compression

members could be manufactured to have buckling strengths

say 2.5 times the theoretical minima.
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