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Preface to the Fourth Edition

The purpose of this work is to present a broad overview of the theory of hyper-
bolic conservation laws, with emphasis on its genetic relation to classical continuum
physics. The background, scope and plan are outlined in the Introduction, following
this preface. The book was originally published fifteen years ago, and a third, revised
edition appeared in 2010. Nevertheless, in order to keep pace with recent develop-
ments in the area, it has become necessary to prepare this substantially expanded and
updated new edition.

In the face of the explosive growth of research, in volume, diversity and technical
complexity, the encyclopedic ambitions of the project had to be moderated. Thus, a
number of significant recent theoretical developments are barely touched upon here,
or are merely sketched. For the same reason, it is not feasible to present the mul-
titude of diverse applications that have mushroomed over the past few years. Still,
the updated bibliography, now comprising close to two thousand entries, provides a
panoramic view of the entire area.

The underlying objective of the work to promote synergy between the analysis
of hyperbolic systems of conservation laws and continuum physics is particularly
relevant at the present time, as the analytical theory is finally preparing the ground
for taking up the challenge posed by systems in several spatial dimensions. The Eu-
ler equations of gas dynamics currently serve as the port of entry into that area of
research. The new edition provides a brief account of recent developments is that
direction and also strives to bring to the fore the noteworthy, albeit undeservedly
neglected, paradigm of the system of elastodynamics.

The present edition places increased emphasis on the theory of hyperbolic sys-
tems of balance laws with dissipative source, modeling relaxation phenomena. The
part of the theory pertaining to classical solutions in several spatial dimensions is
expounded in the heavily revised and expanded Chapter V, while weak BV solutions
in one spatial dimension are discussed in a newly added chapter (XVI).

A substantial portion of the original text has been reorganized so as to streamline
the exposition, update the information, and enrich the collection of examples. In
particular, several chapters of the latest edition have been expanded by the addition



of new sections, elaborating on previously raised issues or introducing new topics
for discussion.

VIII Preface to the Fourth Edition
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Introduction

The seeds of continuum physics were planted with the works of the natural philoso-
phers of the eighteenth century, most notably Euler; by the mid-nineteenth century,
the trees were fully grown and ready to yield fruit. It was in this environment that
the study of gas dynamics gave birth to the theory of quasilinear hyperbolic systems
in divergence form, commonly called hyperbolic conservation laws; and these two
subjects have been traveling hand in hand over the past two hundred years. This book
aims at presenting the theory of hyperbolic conservation laws from the standpoint of
its genetic relation to continuum physics. A sketch of the early history of this relation
follows the Introduction. Even though research is still marching at a brisk pace, both
fields have attained by now the degree of maturity that would warrant the writing of
such an exposition.

In the realm of continuum physics, material bodies are realized as continuous
media, and so-called “extensive quantities,” such as mass, momentum and energy, are
monitored through the fields of their densities, which are related by balance laws and
constitutive equations. A self-contained, though skeletal, introduction to this branch
of classical physics is presented in Chapter II. The reader may flesh it out with the
help of a specialized text on the subject.

In its primal formulation, the typical balance law stipulates that the time rate of
change in the amount of an extensive quantity stored inside any subdomain of the
body is balanced by the rate of flux of this quantity through the boundary of the sub-
domain together with the rate of its production inside the subdomain. In the absence
of production, a balanced extensive quantity is conserved. The special feature that
renders continuum physics amenable to analytical treatment is that, under quite nat-
ural assumptions, statements of gross balance, as above, reduce to field equations,
i.e., partial differential equations in divergence form.

The collection of balance laws in force demarcates and identifies particular con-
tinuum theories, such as mechanics, thermomechanics, electrodynamics, and so on.
In the context of a continuum theory, constitutive equations encode the material prop-
erties of the medium, for example, heat-conducting viscous fluid, elastic solid, elas-
tic dielectric, etc. The coupling of these constitutive relations with the field equations
gives birth to closed systems of partial differential equations, dubbed “balance laws”



XII Introduction

or “conservation laws,” from which the equilibrium state or motion of the continuous
medium is to be determined. Historically, the vast majority of noteworthy partial dif-
ferential equations were generated through that process. This is eminently the case
for hyperbolic systems of conservation laws, as may be seen from the historical ac-
count. The central thesis of the book is that the umbilical cord joining continuum
physics with the theory of partial differential equations should not be severed, as it
is still carrying nourishment in both directions.

Systems of balance laws may be elliptic, typically in statics; hyperbolic, in
dynamics, for media with “elastic” response; mixed elliptic-hyperbolic, in statics
or dynamics, when the medium undergoes phase transitions; parabolic or mixed
parabolic-hyperbolic, in the presence of viscosity, heat conductivity or other diffu-
sive mechanisms. Accordingly, the basic notions shall be introduced, in Chapter I, at
a level of generality that would encompass all of the above possibilities. Neverthe-
less, since the subject of this work is hyperbolic conservation laws, the discussion
will eventually focus on such systems, beginning with Chapter III.

The term “homogeneous hyperbolic conservation law” refers to first-order sys-
tems of partial differential equations in divergence form,

(HCL) ∂tH(U)+
m

∑
α=1

∂αGα(U) = 0,

that are of hyperbolic type. The state vector U , with values in Rn, is to be determined
as a function of the spatial variables (x1, . . . ,xm) and time t. The given functions H
and G1, . . . ,Gm are smooth maps from Rn to Rn. The symbol ∂t stands for ∂/∂ t and
∂α denotes ∂/∂xα . The notion of hyperbolicity will be specified in Section 3.1.

Solutions to hyperbolic conservation laws may be visualized as propagating
waves. When the system is nonlinear, the profiles of compression waves get pro-
gressively steeper and eventually break, generating jump discontinuities which prop-
agate on as shocks. Hence, inevitably, the theory has to deal with weak solutions.
This difficulty is compounded further by the fact that, in the context of weak so-
lutions, uniqueness is lost. It thus becomes necessary to devise proper criteria for
singling out admissible weak solutions. Continuum physics naturally induces such
admissibility criteria through the Second Law of thermodynamics. These may be in-
corporated in the analytical theory, either directly, by stipulating outright that admis-
sible solutions should satisfy “entropy” inequalities, or indirectly, by equipping the
system with a minute amount of diffusion, which has negligible effect on smooth
solutions but reacts stiffly in the presence of shocks, weeding out those that are
not thermodynamically admissible. The notions of “entropy” and “vanishing dif-
fusion,” which will play a central role throughout the book, will be introduced in
Chapters III and IV.

Chapter V discusses the Cauchy problem and the initial-boundary value problem
for hyperbolic systems of balance laws, in the context of classical solutions. It is
shown that these problems are locally well-posed and the resulting smooth solutions
are stable, even within the broader class of admissible weak solutions, but their life
span is finite, unless there is a dissipative source that thwarts the breaking of waves.
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The analysis underscores the stabilizing effect of the Second Law of thermodynamics
and the role of dissipation modeling relaxation.

The Cauchy problem in the large may be considered only in the context of weak
solutions. This is still terra incognita for systems of more than one equation in sev-
eral space dimensions, as the analysis is at present facing seemingly insurmountable
obstacles. It may turn out that the Cauchy problem is not generally well-posed, either
because of catastrophic failure of uniqueness (see Section 4.8), or because distribu-
tional solutions fail to exist. In the latter case one would have to resort to the class
of weaker, measure-valued solutions ( see Section 17.3). It is even conceivable that
hyperbolic systems should be perceived as mere shadows, in the Platonic sense, of
diffusive systems with minute viscosity or dispersion. Nevertheless, this book will
focus on success stories, namely problems admitting standard distributional weak
solutions. These encompass scalar conservation laws in one or several space dimen-
sions, systems of hyperbolic conservation laws in a single space dimension, as well
as systems in several space dimensions whenever invariance (radial symmetry, sta-
tionarity, self-similarity, etc.) reduces the number of independent variables to two.

Chapter VI provides a detailed presentation of the rich and definitive theory of
L∞ and BV solutions to the Cauchy problem and the initial-boundary value problem
for scalar conservation laws in several space dimensions.

Beginning with Chapter VII, the focus of the investigation is fixed on systems of
conservation laws in one space dimension. In that setting, the theory has a number
of special features that are of great help to the analyst, so major progress has been
achieved.

Chapter VIII provides a systematic exposition of the properties of shocks. In par-
ticular, various shock admissibility criteria are introduced, compared and contrasted.
Admissible shocks are then combined, in Chapter IX, with another class of particular
solutions, called centered rarefaction waves, to synthesize wave fans that solve the
classical Riemann problem. Solutions of the Riemann problem may in turn be em-
ployed as building blocks for constructing solutions to the Cauchy problem, in the
class BV of functions of bounded variation. Two construction methods based on this
approach will be presented here: the random choice scheme, in Chapter XIII, and a
front tracking algorithm, in Chapter XIV. Uniqueness and stability of these solutions
will also be established.

Chapter XV outlines an alternative construction of BV solutions to the Cauchy
problem, for general strictly hyperbolic systems of conservation laws, by the method
of vanishing viscosity.

Chapter XVI discusses the construction of BV solutions by the random choice
method for strictly hyperbolic systems of balance laws with a dissipative source,
governing relaxation phenomena.

The above construction methods generally apply when the initial data have suf-
ficiently small total variation. This restriction seems to be generally necessary be-
cause, in certain systems, when the initial data are “large” even weak solutions to the
Cauchy problem may blow up in finite time. Whether such catastrophes may occur
to solutions of the field equations of continuum physics is at present a major open
problem. For a limited class of systems, which however contains several important
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representatives, solutions with large initial data can be constructed by means of the
functional analytic method of compensated compactness. This approach, which rests
on the notions of measure-valued solution and the Young measure, will be outlined in
Chapter XVII.

There are other interesting properties of weak solutions, beyond existence and
uniqueness. In Chapter X, the notion of characteristic is extended from classical
to weak solutions; and it is employed for obtaining a very precise description of
regularity and long-time behavior of solutions to scalar conservation laws, in Chapter
XI, as well as to systems of two conservation laws, in Chapter XII.

The final Chapter XVIII discusses problems in two spatial dimensions, and time,
in which geometry and invariance reduce the number of variables to two, namely
the Riemann problem for scalar conservation laws, flows past obstacles and shock
collisions in gas dynamics, cavitation in elastodynamics and isometric immersion of
surfaces in differential geometry.

The bibliography, comprising close to two thousand entries, is quite extensive
but far from comprehensive. Next to recent developments, it also provides reference
to earlier work that may have been superseded, so as to enable the reader to trace the
evolution of the field.

In order to highlight the fundamental ideas, the discussion proceeds from the
general to the particular, notwithstanding the clear pedagogical merits of the reverse
course. Even so, under proper guidance, the book may also serve as a text. With that
in mind, the pace of the proofs is purposely uneven: slow for the basic, elementary
propositions that may provide material for an introductory course; faster for the more
advanced technical results that are addressed to the experienced analyst. Even though
the various parts of this work fit together to form an integral entity, readers may select
a number of independent itineraries through the book. Thus, those principally inter-
ested in the conceptual foundations of the theory of hyperbolic conservation laws, in
connection to continuum physics, need go through Chapters I-V only. Chapter VI, on
the scalar conservation law, may be read virtually independently of the rest. Students
intending to study solutions as compositions of interacting elementary waves may
begin with Chapters VII-IX and then either continue on to Chapters X-XII or else
pass directly to Chapters XIII, XIV and XVI. Similarly, Chapter XV relies solely on
Chapters VII and VIII, while Chapter XVIII depends on Chapters III, VII, VIII and
IX. Finally, only Chapter VII is needed as a prerequisite for the functional analytic
approach expounded in Chapter XVII.

Certain topics are perhaps discussed in excessive detail, as they are of special in-
terest to the author; and a number of results are published here for the first time. On
the other hand, several important aspects of the theory and its applications are barely
touched upon, or are only sketched very briefly. They include the stability theory of
multi-space-dimensional shocks and boundary conditions, the newly emerging the-
ory of hyperbolic conservation laws with random initial data, the derivation of the
balance laws of continuum physics from the kinetic theory of gases, the study of
phase transitions and a host of diverse applications. Each one of these areas would
warrant the writing of a specialized monograph. The most conspicuous absence is a
discussion of numerics, which, beyond its practical applications, also provides valu-
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able insight to the theory. Fortunately, a number of texts on the numerical analysis of
hyperbolic conservation laws are currently available and may fill this gap.

Geometric measure theory, functional analysis and dynamical systems provide
the necessary tools in the theory of hyperbolic conservation laws, but to a great ex-
tent the analysis employs custom-made techniques, with strong geometric flavor,
underscoring wave propagation and wave interaction. This may leave the impression
that the area is insular, detached from the mainland of partial differential equations.
However, the reader will soon realize that the field of hyperbolic conservation laws
is far-reaching and highly diversified, as it is connected by bridges with the realms
of elliptic equations, parabolic equations, dispersive equations and the equations of
the kinetic theory.



A Sketch of the Early History of Hyperbolic

Conservation Laws

The general theory, and even the name itself, of hyperbolic conservation laws
emerged just fifty years ago, and yet the special features of this class of systems
of partial differential equations had been identified long before, in the context of par-
ticular examples arising in mathematical physics. The aim here is to trace the early
seminal works that launched the field and set it on its present course. A number of
relevant classic papers have been collected in Johnson and Chéret [1].

The ensuing exposition will describe how the subject emerged out of fluid dy-
namics, how its early steps were frustrated by the confused state of thermodynamics,
how it was set on a firm footing, and how it finally evolved into a special branch of
the theory of partial differential equations.

This section may be read independently of the rest of the book, as it is essentially
self-contained, but the student will draw extra benefit by revisiting it after getting
acquainted with the current state of the art expounded in the main body of the text.
Accordingly, in order to highlight the connection between past and present, the his-
tory is presented here with the benefit of hindsight: current terminology is freely
used, and symbols and equations drawn from the original sources have been translit-
erated to modern notation.

Since the early history of hyperbolic conservation laws is inextricably inter-
twined with gas dynamics, we begin with a brief review of the theory of ideal gases,
as it stood at the turn of the nineteenth century. Details on this topic are found in the
historical tract by Truesdell [1].

The state of the ideal gas is determined by its density ρ , pressure p and (absolute)
temperature θ , which are interrelated by the law associated with the names of Boyle,
Gay-Lussac and Mariotte:

(1) p = Rρθ ,

where R is the universal gas constant. In the place of ρ , one may equally employ its
inverse u = 1/ρ , namely the specific volume.

The specific heat at constant pressure or at constant volume, cp or cu , is the rate
of change in the amount of heat stored in the gas as the temperature varies, while the
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pressure or the specific volume is held fixed. The ratio γ = cp/cu is a constant bigger
than one, called the adiabatic exponent.

Barotropic thermodynamic processes, in which p = p(ρ), may be treated in the
realm of mechanics, with no regard to temperature. The simplest example is an
isothermal process, in which the temperature is held constant, so that, by (1),

(2) p = a2ρ.

Subtler is the case of an isentropic or adiabatic process,1 in which the temperature
and the specific volume vary simultaneously in such a proportion that the amount of
heat stored in any part of the gas remains fixed. As shown by Laplace and by Poisson,
this assumption leads to

(3) p = a2ργ .

The oldest, and still most prominent, paradigm of a hyperbolic system of conser-
vation laws is provided by the Euler equations for barotropic gas flow, which express
the conservation of mass and momentum, relating the velocity field v with the den-
sity field and the pressure field. The pertinent publications by Euler, culminating in
his definitive formulation of hydrodynamics, are collected in Euler [1], which also
contains informative commentary by Truesdell. In addition to the equations that bear
his name, Euler derived what is now called the Bernoulli equation for irrotational
flow, so named because in steady flow it reduces to the celebrated law discovered by
Daniel Bernoulli. We will encounter the aforementioned equations on several occa-
sions in the main body of this book, beginning with Section 3.3.6.

Internal forces in an elastic fluid are transmitted by the hydrostatic pressure,
which is a scalar field. As a result, the Euler equations form a system of conser-
vation laws with distinctive geometric structure. Conservation laws of more generic
type, manifesting the tensorial nature of the flux field, as discussed here in Chapter
I, emerged in the 1820s from the pioneering work of Cauchy [1,2,3,4] on the theory
of elasticity. Nevertheless, as we shall see below, the early work on hyperbolic con-
servation laws dealt almost exclusively with the one-space-dimensional setting, for
which the Euler equations constitute a fully representative example.

In an important memoir on the theory of sound, published in 1808, Poisson [1]
considers the Euler equations and the Bernoulli equation for rectilinear isothermal
flow of an ideal gas, namely

(4)

⎧⎨⎩
∂tρ+∂x(ρv) = 0

∂t(ρv)+∂x(ρv2)+a2∂xρ = 0,

1 The term “adiabatic” was coined in 1859 by Rankine, who also originated the use of the
symbol γ for the adiabatic exponent. However, in the sequel we will employ the newer
terminology “isentropic,” while reserving “adiabatic” for a related but different use; see
Section 2.5.
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(5) ∂tφ +
1
2
(∂xφ)2 +a2 logρ = 0,

where φ is the velocity potential, v = ∂xφ . By eliminating ρ between (5) and (4)1 ,
he derives a second order equation for φ alone:

(6) ∂ 2
t φ +2(∂xφ)(∂x∂tφ)+(∂xφ)2∂ 2

x φ −a2∂ 2
x φ = 0.

Employing a method of solving differential equations devised by Laplace and by
Legendre, he concludes that any φ that satisfies the functional equation

(7) ∂xφ = f (x+(a−∂xφ)t),

for some arbitrary smooth function f , is a particular solution of (6).
In current terminology, one recognizes Poisson’s solution as a simple wave (see

Section 7.6) on which the Riemann invariant (see Section 7.3) v+a logρ is constant,
and thus v satisfies the equation

(8) ∂tv+v∂xv−a∂xv = 0,

admitting solutions

(9) v = f (x+(a−v)t),

with f an arbitrary smooth function.
Forty years after the publication of Poisson’s paper, the British astronomer

Challis [1] made the observation that (9), with f (x) =−sin( 1
2πx), yields v = 0 along

the straight line x = −at and v = 1 along the straight line x = −1− (a−1)t, which
raises the paradox that v must be simultaneously equal to 0 and 1 at the point (−a,1)
of intersection of these straight lines. This is the earliest reference to the breakdown
of classical solutions, which pervades the entire theory of hyperbolic conservation
laws.

The issue raised by Challis was addressed almost immediately by Stokes [1], his
colleague at the University of Cambridge. Stokes notes that, according to Poisson’s
solution (9), along each straight line x = x̄− (a− f (x̄))t, we have v(x, t) = f (x̄) and

(10) ∂xv(x, t) =
f ′(x̄)

1+ t f ′(x̄)
.

Thus, unless f is nondecreasing, the wave will break at t =−1/ f ′(x̄), where f ′(x̄) is
the minimum of f ′. He then ponders what would happen after singularities develop
and comes up with an original and bold conjecture. In his own words: “Perhaps the
most natural supposition to make for trial is that a surface of discontinuity is formed,
in passing across which there is an abrupt change of density and velocity.” He seems
highly conscious that this is a far-reaching idea, going well beyond the particular
setting of Poisson’s solution, as he writes: “Although I was led to the subject by
considering the interpretation of the integral (9), the consideration of a discontinuous
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motion is not here introduced in connection with that interpretation, but simply for
its own sake; and I wish the two subjects to be considered as quite distinct.”

Stokes then proceeds to characterize the jump discontinuities that conform to
the governing physical laws of conservation of mass and momentum, which underlie
the Euler equations in the realm of smooth flows. Assuming that density and velocity
jump from (ρ−,v−) to (ρ+,v+) across a line of discontinuity propagating with speed
σ (i.e., having slope σ ), he shows that

(11)

⎧⎨⎩
ρ+v+−ρ−v− = σ(ρ+−ρ−)

ρ+v2
++a2ρ+−ρ−v2−−a2ρ− = σ(ρ+v+−ρ−v−).

By eliminating σ between the above two equations, he gets

(12) ρ−ρ+(v+−v−)2 = a2(ρ+−ρ−)2.

Thus, Stokes [1] introduces, in the context of the Euler equations (4) for isother-
mal flow, the notion of a shock wave and derives what are now known as the Rankine-
Hugoniot jump conditions (see Section 8.1), which characterize distributional weak
solutions of (4). This paper is one of the cornerstones of the theory of hyperbolic
conservation laws. However, the development of the subject was soon to hit a road-
block.

Stokes’s idea of contemplating flows with jump discontinuities was criticized,
apparently in private, by Sir William Thomson (Lord Kelvin), and later by Lord
Rayleigh, in private correspondence (Rayleigh [1]) as well as in print (Rayleigh [2,
§253]), on the following grounds: they argued that jump discontinuities should not
produce or consume mechanical energy. A calculation shows that this would require

(13) 2ρ−ρ+ log
(
ρ−
ρ+

)
= ρ2

−−ρ2
+ ,

which is incompatible with ρ− �= ρ+.
In order to place the above argument in the present context of the theory of con-

servation laws, one should notice that any smooth solution of the Euler equations (4)
automatically satisfies the conservation law of mechanical energy

(14) ∂t
( 1

2ρv2 +a2ρ logρ
)
+∂x

( 1
2ρv3 +a2ρv logρ+a2ρv

)
= 0.

In current terminology, 1
2ρv2 + a2ρ logρ is an entropy for the system (4), with en-

tropy flux 1
2ρv3 + a2ρv logρ + a2ρv; see Section 7.4. Assuming that mechanical

energy should be conserved, even in the presence of shocks, induces the jump con-
dition

(15) 1
2ρ+v3

++a2ρ+v+ logρ++a2ρ+v+− 1
2ρ−v3

−−a2ρ−v− logρ−−a2ρ−v−

= σ
[ 1

2ρ+v2
++a2ρ+ logρ+− 1

2ρ−v2
−−a2ρ− logρ−

]
.

Eliminating σ between (11)1 and (15), and making use of (12), one arrives at (13).
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Stokes was convinced, and perhaps also intimidated, by the above criticism. On
June 5, 1877 he answered Lord Rayleigh in an apologetic tone, renouncing his the-
ory: “Thank you for pointing out the objection to the queer kind of motion in the
paper you refer to. Sir W. Thomson pointed the same out to me many years ago,
and I should have mentioned it if I had the occasion to write anything bearing on
the subject, or if, without that, my paper had attracted attention. It seemed, however,
hardly worthwhile to write a criticism on a passage in a paper which was buried
among other scientific antiquities” (Stokes [2]). Moreover, when his collected works
were published in 1880, he deleted the part of the 1848 paper that discussed dis-
continuous flows and inserted an annotation to the effect that shocks are impossible
because they are incompatible with energy conservation, expressed by (13) (Stokes
[3]). A more detailed account of the correspondence between Stokes, Rayleigh and
Thomson, with references to the original sources, is found in Salas [1].

Stokes’s vindication had to wait for the development of thermodynamics. Still, it
is puzzling that he was prepared to abandon his theory so readily, even though, as we
shall see below, by 1880 substantial progress had already been made in the subject.

To follow these developments in chronological order, let us return to the late
1840s. Airy [1], the Astronomer Royal, had demonstrated in 1845 that the propa-
gation of longitudinal water waves in a shallow channel is governed, in Lagrangian
coordinates, by the second-order equation

(16) ∂ 2
t w = a2(1+∂xw)−3∂ 2

x w.

One may recast (16) as a hyperbolic system of conservation laws, by setting
u = 1+∂xw and v = ∂tw:

(17)

⎧⎨⎩
∂tu−∂xv = 0

∂tv+∂x
( 1

2 a2u−2
)
= 0.

This system, written in Eulerian coordinates, is known as the shallow-water equa-
tions, and is identical to the Euler equations for isentropic flow, with adiabatic expo-
nent γ = 2. The derivation is found in Section 7.1.

Reacting to Challis’s paper of 1848, Airy [2] observes that, in a similar fashion,
System (4) of the Euler equations for isothermal flow may be recast, in Lagrangian
coordinates, as the scalar second-order equation

(18) ∂ 2
t w = a2(1+∂xw)−2∂ 2

x w,

where w is the displacement, so that u = 1+ ∂xw is specific volume and v = ∂tw is
velocity.

Airy then notes that (16) and (18), respectively, admit solutions

(19) ∂tw−2a(1+∂xw)−
1
2 = constant ,

(20) ∂tw−a log(1+∂xw) = constant ,
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whose derivation he attributes to De Morgan. This is the first instance that Riemann
invariants appear explicitly in print, in connection to simple waves.

With reference to Stokes’s work, Airy conjectures that tidal bores in long rivers
and surf on extensive flat sand may turn out to be represented by solutions of his
shallow-water equations, with jump discontinuities.

The next notable contribution came from Earnshaw [1]. The starting point in his
analysis is the observation that if y(x, t) satisfies

(21) ∂t y− f (∂xy) = constant ,

for some function f , then

(22) ∂ 2
t y = [ f ′(∂xy)]2∂ 2

x y.

He compares (22) with the equation of rectilinear barotropic motion of a fluid in
Lagrangian coordinates,

(23) ρ0∂ 2
t y+∂x p(∂xy) = 0,

where y(x, t) is the position of the fluid particle x at time t, ρ0 is the reference density
and p is the pressure. Thus one may obtain particular solutions of (23) in the form
(21), with f computed from [ f ′(u)]2 =−ρ−1

0 p′(u).
Assuming ρ0 = 1, in current practice one introduces the specific volume u = ∂xy,

the velocity v = ∂t y, and recasts (23) as the equivalent first-order system

(24)

⎧⎨⎩ ∂tu−∂xv = 0

∂tv+∂x p(u) = 0 .

Then v− f (u) are Riemann invariants of (24) and the solutions v− f (u) = constant
represent simple waves.

Earnshaw computes f (u), and thereby finds solutions (21), for isothermal flow,
in which p = a2ρ = a2u−1, and for isentropic flow, where p = a2ργ = a2u−γ , with
γ > 1. In current notation,

(25) v±a logu = constant ,

(26) v± 2aγ
1
2

γ−1
u−

γ−1
2 = constant .

Depending on the sign, he envisages these solutions as waves of “condensation”
or waves of “rarefaction . The term “compression” is currently used in the place of
“condensation .

Another interesting observation due to Earnshaw is that the Euler equations admit
traveling wave solutions (“waves propagating without undergoing a change of type,”
in his terminology) if and only if p = a−b/ρ , which identifies what is now known

”
”
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as the Chaplygin gas; see Section 2.5. This is the earliest encounter with a nonlinear
system that is linearly degenerate; see Section 7.5. Earnshaw further notes that for
this special p, the equation of motion (23), in Lagrangian coordinates, is linear.

We now come to a landmark in the development of the theory of hyperbolic
conservation laws, namely the celebrated paper by Riemann [1]. This is the earliest
work in which the Euler equations are treated from the perspective of analysis. It
should be noted, however, that the author takes great pains to motivate his work from
physics. He expresses the hope that, beyond their purely mathematical interest, his
results will find applications in acoustics.

Riemann considers the rectilinear barotropic flow of a gas with general equation
of state p = p(ρ), subject only to the condition p′(ρ) > 0, and writes the Euler
equations in the form

(27)

⎧⎨⎩ ∂t logρ+v∂x logρ =−∂xv

∂tv+v∂xv =−p′(ρ)∂x logρ.

As we saw above, what are now known as Riemann invariants were already present
in the works of Poisson, Airy, and Earnshaw, albeit exclusively in connection with
simple waves. By contrast, Riemann defines his invariants

(28) r =
1
2

[
v+

∫ √
p′(ρ)dρ

]
, s =

1
2

[
−v+

∫ √
p′(ρ)dρ

]
,

in the context of any smooth solution of (27), and shows that they satisfy

(29) ∂t r =−(v+
√

p′(ρ))∂xr , ∂t s =−(v−
√

p′(ρ))∂xs ,

so that r and s, respectively, stay constant along what are now deemed forward and
backward characteristics.

Riemann then devises what is now known as a hodograph transformation (see
Section 12.2), which recasts the nonlinear system (29) as a linear equation by revers-
ing the roles of (x, t) and (r,s) as independent and dependent variables. To that end,
upon observing that

(30) ∂r

[
x− (v−

√
p′(ρ))t

]
=−∂s

[
x− (v+

√
p′(ρ))t

]
,

he introduces the potential w(r,s),

(31) ∂rw = x− (v+
√

p′(ρ))t, −∂sw = x− (v−
√

p′(ρ))t,

and shows that it satisfies a linear equation

(32) ∂r∂sw = m(∂rw+∂sw),

where m is some function of ρ , induced by p(ρ), and thus depends solely on r+ s.
In particular, m = −(2a)−1 = constant, in the isothermal case p = a2ρ . One has to
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determine w(r,s) by solving (32), then get x(r,s) and t(r,s) from (31), and finally
invert these functions to obtain r(x, t) and s(x, t).

Next, Riemann considers solutions with jump discontinuities, under the addi-
tional assumption p′′(ρ) ≥ 0. By balancing mass and momentum across a shock
x = ξ (t), with left state (ρ−,v−), right state (ρ+,v+), and speed ξ̇ , he derives the
jump conditions in the form

(33) ξ̇ = v−±
[
ρ+
ρ−

p(ρ+)− p(ρ−)
ρ+−ρ−

] 1
2
= v+±

[
ρ−
ρ+

p(ρ+)− p(ρ−)
ρ+−ρ−

] 1
2
.

He does not address the issue of energy conservation, as he was probably unaware
of the objections to Stokes’s work raised by Kelvin and by Rayleigh. Nevertheless,
he emphasizes that, on grounds of stability, only compressive shocks are physically
meaningful. Actually, he postulates shock admissibility in the guise of what is now
called the Lax E-condition (see Section 8.3), namely

(34) v++
√

p′(ρ+)< ξ̇ < v−+
√

p′(ρ−)

for forward shocks, and similarly for backward shocks. He also constructs what is
now known as the shock curve or the Hugoniot locus (see Section 8.2) and describes
its shape.

Finally, Riemann introduces and solves the celebrated problem that now bears
his name (see Chapter IX), namely, he demonstrates that a jump in the state variables
(ρ,v) is generally resolved into an outgoing wave fan consisting of a backward and
a forward wave, each of which may be either a compressive shock or a centered
rarefaction simple wave.

Riemann’s remarkable paper provides the foundation for the general theory of
hyperbolic systems of conservation laws in one space dimension. As we shall see,
shocks cannot be isothermal or isentropic in gas flow that conserves energy, together
with mass and momentum. This has prompted the complaint, widely circulating in
the literature, that Riemann’s treatment of shocks is deficient. We have seen already
that it is the same argument that forced Stokes to abandon his theory of isother-
mal shocks. Nevertheless, such criticism is off the mark. Riemann’s equation (33)
on jump condition is mathematically accurate within the framework of isentropic
gas dynamics, which is a physically legitimate simplification of the more complete,
thermodynamic theory.

After 1860, the notion of shocks was progressively gaining acceptance. By 1870,
judging by a footnote in Rankine [1], Kelvin, one of the early critics of Stokes’s
ideas, was prepared to admit compressive shocks, while rejecting rarefaction shocks
as unstable.

In 1877, Christoffel [1] considered shocks of barotropic gas flow in three-
dimensional space, and derived the corresponding jump conditions. In fact, the com-
mon practice of bracketing the symbol of a field to denote its jump across a shock
was introduced by him. See Hölder [1].

Between 1875 and 1889, Ernst Mach, with his students’ assistance, performed
the earliest experiments on shock waves, at the German University of Prague. He
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employed electric sparks triggered by the discharge of a Leiden jar to generate shock
waves in the layer of air confined between parallel glass plates, one of which was
covered with soot. The path of the shock was then determined from the marks it
left on the soot. By means of this device, he managed to measure the speed of the
shocks, showing that they are supersonic. He also observed that the oblique incidence
of a shock on a rigid boundary may induce regular or irregular (now called Mach)
reflection. The phenomenon of Mach reflection was also detected in surface waves,
in liquids (mercury, milk, syrup). The shocks were generated by dropping a V-shaped
iron wire on the liquid surface. Later on, by using the more powerful optical schlieren
method, Mach and his students demonstrated that projectiles moving through the air
at supersonic speed are surrounded by bow shocks. A historical account of Mach’s
experiments, with references to the original publications, which appeared in Vols. 72-
92 of the Vienna Academy Sitzungsherichte, is found in Krehl and van der Geest [1].

The mid-nineteenth century was a period of rapid strides in mastering the prin-
ciples of thermodynamics. The central role of the internal energy ε was recognized,
and the law of energy conservation was established. The notion of entropy was intro-
duced, and named, by Clausius [1], and the Second Law of thermodynamics was for-
mulated. Soon the specific entropy s took its place on the list of thermodynamic vari-
ables, next to ε, θ , p, u and ρ . General thermal equations of state ε = ε(ρ,θ) were
considered by Kirchhoff [1], and equivalent caloric equations of state ε = ε(u,s)
were introduced by Gibbs [1], who postulated the rule that now bears his name:

(35) dε = θds− pdu.

Nevertheless, as we shall see below, most authors adhered to the special case of the
ideal gas, with equations of state

(36) ε =
R

γ−1
θ , p = Rρθ , s =

R
γ−1

log
θ

ργ−1 .

As regards fluid dynamics, it became clear that the system of the Euler equations
had to be supplemented with an additional, independent field equation, expressing
the conservation of (combined mechanical and thermal) energy. This equation was
derived by Kirchhoff [1,2] for thermoviscoelastic, heat-conducting gases. In the ab-
sence of viscosity and heat conductivity, attaching the conservation of energy equa-
tion to the Euler equations yields another important paradigm of a hyperbolic system
of conservation laws, which will be encountered on several occasions in the main
body of this book, beginning with Section 3.3.5.

The task of determining the jump conditions that express energy conservation in
the presence of shocks was undertaken by Rankine [1] and by Hugoniot [2].

Rankine derives his jump conditions for a shock wave moving into an undis-
turbed medium, by balancing the loss in mechanical energy at the shock against the
heat flux, so that the total energy production is nil. It is not easy to follow his discus-
sion,2 which is based on physical arguments, but eventually he arrives at the correct
equations.

2 For a reconstruction of Rankine’s argument, see Rayleigh [4].
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In contrast to Rankine’s approach, the treatment by Hugoniot [2] is in a clear
mathematical style. He considers the rectilinear motion of general nonlinear elas-
tic media, in Lagrangian coordinates. First, he discusses at length barotropic mo-
tion, governed by the scalar second-order equation (23), or equivalently by the first-
order system (24). He reproduces (reinvents?) the results of Earnshaw and Riemann,
without citing either of these authors. In particular, he determines the two fami-
lies of Riemann invariants, by the same procedure as Earnshaw, and then shows,
as Riemann already had, that they are constant along characteristics of the same
family. He also points out the connection between Riemann invariants and simple
waves.

The pathbreaking contribution of Hugoniot is found in Chapter V of his memoir,
where he discusses shocks, and especially in §§ 149-158, where he derives the jump
condition dictated by energy conservation. It is there that one encounters for the first
time the full set of jump conditions in Lagrangian coordinates:

(37)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ(u+−u−) = v−−v+

σ(v+−v−) = p+− p−

σ(ε++ 1
2 v2

+− ε−− 1
2 v2−) = p+v+− p−v− ,

(38) ε+− ε−+
1
2
(p++ p−)(u+−u−) = 0,

(39)
p+
p−

=
2u−+(γ−1)(u−−u+)
2u++(γ−1)(u+−u−)

.

He seems unaware that Rankine [1] had already obtained a similar result.
The above equations have had a great impact in the theory of gas dynamics and

its applications. Consequently, all jump conditions associated with shocks are now
collectively known as “Rankine-Hugoniot jump conditions,” even though the name
“Stokes jump conditions” would represent a more accurate reflection of the historical
record.

Another important contribution by Hugoniot [1] is the introduction and study
of weak waves (also known as acceleration waves), namely propagating character-
istic surfaces across which the state variables themselves are continuous but their
derivatives experience jump discontinuities. Weak waves had appeared earlier in the
acoustic research of Euler.

By the turn of the twentieth century, the field of hyperbolic conservation laws was
branching out, finding applications in the science and technology of combustion,

written for an ideal gas, with internal energy ε = pu/(γ − 1); see (36). Combining
the three equations in (37) yields the famous jump condition

which does not involve v or σ . Hugoniot derives this equation for the case of the
ideal gas, in the form
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detonation, and aerodynamics. We shall not pursue the history of developments in
those new directions, because the aim here is to trace the evolution of the core ideas
that have led to the present state of affairs in the mathematical theory. An account
of the subject of detonations, as it stood in the early 1900s, is found in the book by
Jouguet [3]. A good starting point for getting acquainted with the enormous literature
on aerodynamics is the text by von Mises [1], which contains historical references
and an extensive bibliography.

The state of the art in the basic theory of hyperbolic conservation laws around
1900 is exemplified by the books of Duhem [1], Hadamard [1], and Weber [1]. Weber
mainly elaborates upon the aforementioned paper by Riemann. For his part, Hadamard
makes a presentation of the work of Riemann in conjunction with the results of
Hugoniot. Both Duhem and Hadamard provide detailed expositions on the propaga-
tion of shock and weak waves, in several space dimensions. In particular, Hadamard
makes the important observation that when an irrotational flow crosses a weak wave
it remains irrotational, while after crossing a non-planar shock it acquires vorticity.
Duhem emphasizes the implications of thermodynamics. He postulates the Second
Law in the form of the celebrated field inequality that now bears his name (see Sec-
tion 2.3):

(40) ρ0ṡ+Div
(

1
θ

Q
)
≥ 0,

where Q is the heat flux vector. Furthermore, he shows that in the absence of viscosity
and heat conductivity, the system of conservation laws for mass, momentum and
energy, in conjunction with the Gibbs rule (35), implies that smooth thermodynamic
processes are necessarily isentropic: ṡ = 0.

With the dawn of the new century, the theory was confronted by the issue of phys-
ical admissibility of shocks. The reader may recall that in the previous century sev-
eral authors, beginning with Riemann, had subscribed to the view that compressive
shocks are stable, and thereby admissible, in contrast to rarefaction shocks, which
are patently unstable, as they are apt to disintegrate into rarefaction simple waves.
However, the connection between shock stability and the Second Law of thermo-
dynamics was still elusive. A related point of contention was the physical status of
shocks in barotropic flows, in view of Rayleigh’s argument that they fail to conserve
mechanical energy.

The first step in addressing these questions was taken by Jouguet [1,2], who
demonstrated that in an ideal gas only compressive shocks are compatible with the
Second Law of thermodynamics. Indeed, in the absence of heat flux, Q = 0, (40)
reduces to ṡ ≥ 0, and ṡ generated by a shock propagating with speed σ has the same
sign as σ(s−− s+). By virtue of (36),

(41) s+− s− =
R

γ−1
log

(
p+uγ+
p−uγ−

)
.

Furthermore, p+/p− is related to u+/u− by Hugoniot’s equation (39). One then
easily sees that s+− s− has the same sign as u+− u− and hence the opposite sign
from ρ+−ρ− .
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Following upon the above work, Duhem [2] shows that weak compressive shocks
in fact satisfy the Second Law of thermodynamics in any gas with equation of state
p = p(u,s), subject only to the constraint puu > 0. In the process, he makes the im-
portant observation that the entropy jump across a weak shock is of cubic order in the
strength of the shock. He further proves that weak compressive shocks are subsonic
relative to the denser gas and supersonic relative to the more rarefied gas. Thus, in
current terminology, Duhem demonstrates that when the system of conservation laws
for gas dynamics is genuinely nonlinear, the Lax E-condition manifests the Second
Law of thermodynamics for weak shocks; see Section 8.5.

In parallel with Jouguet’s work, Zemplén [1] investigates the balance between
mechanical and thermal energy produced by shocks in ideal gases, and shows that
mechanical energy is converted into heat at compressive shocks, while at rarefaction
shocks this process would be reversed. Thus the Second Law of thermodynamics
allows only for shocks that convert mechanical energy into heat.

With regard to barotropic flow, p = p(ρ), Burtton [1], Weber [1], and Rayleigh
[3] are ultimately prepared to grant physical status to shocks so long as they comply
with the Second Law of thermodynamics, which they interpret as a requirement that
the production of mechanical energy be nonpositive. Weber demonstrates that only
compressive shocks meet this requirement, when p′′(ρ)≥ 0. He operates in Eulerian
coordinates, but in order to avoid writing too many new equations, here we transcribe
his calculation to Lagrangian coordinates: The rate of mechanical energy production
by a shock propagating with speed σ is

(42) Ė =−σ
{

1
2

v2
+− 1

2
v2
−−

∫ u+

u−
p(u)du

}
+ p+v+− p−v− .

Since mass and momentum are conserved, u± , p± and v± are related by the first two
jump conditions in (37), with the help of which (42) may be written as

(43) Ė = σ
{∫ u+

u−
p(u)du− 1

2
(p++ p−)(u+−u−)

}
.

It is now clear that, assuming p′′(u) > 0, Ė < 0 if and only if σ(u+− u−) > 0, i.e.,
σ(ρ+−ρ−)< 0.

In current terminology, Weber is employing mechanical energy 1
2 v2 − ∫

p(u)du
as a convex entropy for the system (24), with associated entropy flux vp(u), and is
showing that when the system is genuinely nonlinear, then the entropy admissibility
condition is equivalent to the Lax E-condition; see Section 8.5.

An alternative, albeit related, way of identifying physically admissible shocks
is through the “vanishing viscosity” approach. Stokes [1] and Hugoniot [2], among
others, were aware that viscosity and/or heat conductivity would smear shocks. This
was formalized by Duhem [1]. Thus the loss of mechanical energy incurred at shocks
could be attributed to the workings of “internal friction” induced by viscosity and
heat conductivity. Passing to the zero viscosity limit may be justified by showing
that physically admissible shocks can be paired with viscous traveling waves having
the same end-states and the same speed. By changing coordinates, one may consider
just stationary shocks and steady-state viscous waves.
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The conservation laws of mass, momentum and energy for rectilinear flow of
heat-conducting viscous fluids read

(44)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tρ+∂x(ρv) = 0

∂t(ρv)+∂x(ρv2 + p−μ∂xv) = 0

∂t(ρε+ 1
2ρv2)+∂x(ρvε+ 1

2ρv3 + pv−μv∂xv− k∂xθ) = 0,

where μ is the viscosity and k is the conductivity. In the absence of viscosity and
heat conductivity, stationary shocks satisfy the jump conditions

(45)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρ+v+ = ρ−v− = m

mv++ p+ = mv−+ p− = a

mε++ 1
2 mv2

++ p+v+ = mε−+ 1
2 mv2−+ p−v− = b.

The objective is to determine the shock layer (also called shock profile or shock
structure), namely a steady-state solution

(46)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρv = m

ρv2 + p−μv′ = a

ρvε+ 1
2ρv3 + pv−μvv′ − kθ ′ = b

of (44), on (−∞,∞), for the assigned parameters m, a and b. Here and below, the
prime denotes differentiation with respect to x.

The above program was initiated almost simultaneously, and apparently indepen-
dently, by Rayleigh3 [4] and by G.I. Taylor [1]. Their approaches are surprisingly
similar. Assuming the gas is ideal (36), they eliminate p, ρ, ε and θ between the
equations in (46), ending up with a second-order equation for v alone:

(47)
kμ
Rm

(vv′)′ =
(

2k
R

+
μ

γ−1

)
vv′ − ka

Rm
v′ − γ+1

2(γ−1)
mv2 +

aγ
γ−1

v−b.

For k = 0 or μ = 0, Taylor solves (47) in closed form. He also derives the asymp-
totic form of the solution when both k and μ are positive but |v+− v−| is small. In
particular, he points out that only compressive shocks may support viscous profiles.

Becker [1] treated the same problem, still for ideal gases, by observing that, in
consequence of (46), the temperature as a function of the specific volume satisfies a
first-order differential equation that may be integrated in closed form in the special
situation where k/μ equals the specific heat cp at constant pressure.

3 In addition to dealing with the issue at hand, Rayleigh’s memoir provides an interesting
review of the development of the theory of shock waves in the nineteenth century.
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During the Second World War, prominent physicists and mathematicians, coming
from various areas of expertise, were attracted to gas dynamics. An important issue
at the time was the behavior of real gases at high temperature and at high pressure,
beyond the range of validity of the polytropic model. In that connection, Bethe [1]
demonstrates that in gases with equation of state p = p(u,s), the condition puu > 0
alone does not guarantee that compressive shocks of arbitrary strength are compatible
with the Second Law of thermodynamics and stable. For that purpose, one must make
additional assumptions, such as ups + 2θ > 0 and θ pu + ppu < 0, which may fail
when the gas undergoes phase transitions.

Another important contribution from the same era is the work of Weyl [1], which
extends the investigation on shock layers, initiated by Rayleigh [4], G.I. Taylor [1],
and Becker [1], to gases with general equations of state. By combining the equations
in (46), Weyl derives the first-order system

(48)

{
μmu′ = m2u+ p−a

kθ ′ = mε− 1
2 m3u2 +amu−b,

in the variables (u,θ), where u is the specific volume ρ−1. Noting that, by virtue
of (45), (u±,θ±) are equilibrium points of (48), he realizes the shock profile as the
orbit joining (u−,θ−), which is an unstable node, with (u+,θ+), which is a saddle.
The definitive treatment of this problem was provided two years later by Gilbarg [1],
establishing the existence of the shock layer, for arbitrary positive μ, k, and showing
that it converges to (a) a shock when both μ and k tend to zero; (b) a continuous shock
layer when μ tends to zero, while k is held fixed; and (c) to a generally discontinuous
shock layer when k tends to zero, while μ is held fixed. As we shall see in Section
8.6, Weyl’s approach has now become standard practice in the general theory of
hyperbolic conservation laws.

The roster of prominent scientists who contributed to the field as part of the war
effort includes von Neumann. He prepared a number of expository reports [1,2,3]
on the theory of shock waves in gas dynamics, with many insightful observations.
In particular, he elaborated on the problem of oblique shock reflection, reviving and
popularizing Mach’s contributions from the nineteenth century. He also championed
the idea of obtaining solutions by means of scientific computation; see von Neumann
[4]. The proceedings of a panel discussion, held on August 17, 1949, chaired by von
Neumann [5] and involving Burgers, Heisenberg, von Karman and other experts,
provide a glimpse of what were perceived as major open problems at that time. Re-
markably, many of the issues raised there are still unresolved.

By the late 1940s, a large amount of information on hyperbolic conservation
laws had been amassed, mainly in the guise of gas dynamics. It had been derived
by mathematicians, physicists, chemists and engineers over a period of 150 years,
and had been presented in a wide variety of styles and levels of rigor. The task of
consolidating this material was undertaken by Courant and Friedrichs [1], who pro-
vide a magisterial synthesis of the subject, in mathematical language. Their book
has played – and continues to play – an important role in disseminating the physical
underpinnings of the theory to the mathematical community.

After 1950, following the contemporaneous trends in the general area of partial
differential equations, research in hyperbolic conservation laws focuses on the qual-
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itative theory of the Cauchy problem. The seeds for establishing the local existence
of classical solutions had already been planted in the 1930s by the work of Schauder
[1] on quasilinear hyperbolic equations of second order. Schauder’s strategy, which
employs a hierarchy of L2 “energy” estimates on the derivatives of solutions to lin-
earized equations and then passes to the quasilinear case via a fixed point argument,
has been exploited widely over the past decades, culminating in the definitive theory
of the Cauchy problem for symmetrizable systems of conservation laws, expounded
here in Chapter V.

Since classical solutions to the Cauchy problem generally break down in finite
time, one may at best hope to establish the existence of weak solutions in the large.
The first successful attempt in that direction was made in the seminal paper by Hopf
[1], which treats the Cauchy problem for the simplest nonlinear scalar conservation
law

(49) ∂tu+∂x

(
1
2

u2
)
= 0.

This equation was originally proposed by Bateman [1], in an obscure publication, as
a simple model for the system of conservation laws of gas dynamics. It reappeared in-
dependently in the work of Burgers [1] on turbulence, and is now universally known
as the Burgers equation.

Adopting Burgers’s viewpoint, Hopf treats (49) as the μ ↓ 0 limit of the Burgers
equation with viscosity

(50) ∂tu+∂x

(
1
2

u2
)
= μ∂ 2

x u.

By employing the celebrated Hopf-Cole transformation

(51) u =−2μ∂x logφ ,

so named because it was also discovered independently by Cole [1], he reduces (50)
to the classical heat equation

(52) ∂tφ = μ∂ 2
x φ .

This enables him to solve the Cauchy problem for the equation (50), with initial data
u0, in the explicit form

(53) u(x, t) =

∫ ∞

−∞

x− y
t

exp
{
− 1

2μ
F(x,y, t)

}
dy∫ ∞

−∞
exp

{
− 1

2μ
F(x,y, t)

}
dy

,

where

(54) F(x,y, t) =
(x− y)2

2t
+
∫ y

0
u0(z)dz .
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Letting μ ↓ 0 in (53), he arrives at a weak solution u(x, t) to the Cauchy problem for
the Burgers equation (49), which is determined explicitly by the initial data u0(x)
through

(55) u(x, t) =
x− y(x, t)

t
, a.e. on (−∞,∞)× (0,∞),

where y(x, t) is the minimizer of the function F(x,y, t), with respect to y on (−∞,∞).
He also investigates the geometric structure and the large-time behavior of this
solution.

Hopf’s paper stimulated intensive research on the scalar conservation law, ini-
tially in one and eventually in several space dimensions, which generated the rich
theory presented in Chapters VI and XI.

The next major milestone, marking the conclusion of this historical introduction,
is the landmark paper by Lax [2], which coins the term “hyperbolic conservation
law” and launches the field as a new principal branch in the theory of partial differ-
ential equations. This was accomplished by distilling, generalizing and formalizing
the raw material that had accumulated over the years in the context of special sys-
tems, as reported above.

The first part of Lax’s paper extends the aforementioned work of Hopf, and in
particular devises a generalization of (55) that solves the Cauchy problem, for general
convex scalar conservation laws. The reader may find an account of this theory in
Section 11.4.

The second part of the paper lays the foundations for the general theory of sys-
tems of hyperbolic conservation laws in one space dimension, by introducing the no-
tions of strict hyperbolicity, genuine nonlinearity, Riemann invariants, simple waves
and the Lax E-condition, which all come together in the construction of shock and
rarefaction wave curves and the solution of the Riemann problem. To a great extent,
the present state of the art in the theory of hyperbolic systems of conservation laws
in one space dimension, as presented here in Chapters VII, VIII and IX, is an elabo-
ration of the above themes. It is fair to say that Lax’s paper set the direction for the
development of the field of hyperbolic conservation laws over the past fifty years.
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I

Balance Laws

The general, mathematical theory of balance laws expounded in this chapter has
been designed to provide a unifying framework for the multitude of balance laws
of classical continuum physics, obeyed by so-called “extensive quantities” such as
mass, momentum, energy, etc. The ambient space for the balance law will be Rk, with
typical point X . In the applications to continuum physics, Rk will stand for physical
space, of dimension one, two or three, in the context of statics; and for space-time,
of dimension two, three or four, in the context of dynamics.

The generic balance law will be introduced through its primal formulation, as a
postulate that the production of an extensive quantity in any domain is balanced by a
flux through the boundary; it will then be reduced to a field equation. It is this reduc-
tion that renders continuum physics mathematically tractable. It will be shown that
the divergence form of the field equation is preserved under change of coordinates,
and that the balance law, in its original form, may be retrieved from the field equa-
tion. The properties discussed in this chapter derive solely from the divergence form
of the field equations and thus apply equally to balance laws governing equilibrium
and evolution.

The field equations for a system of balance laws will be combined with constitu-
tive equations, relating the flux and production density with a state vector, to obtain
a closed quasilinear first order system of partial differential equations in divergence
form.

It will be shown that symmetrizable systems of balance laws are endowed with
companion balance laws which are automatically satisfied by smooth solutions,
though not necessarily by weak solutions. The issue of admissibility of weak so-
lutions will be raised.

Solutions will be considered with shock fronts or weak fronts, in which the state
vector field or its derivatives experience jump discontinuities across a manifold of
codimension one.

The theory of BV functions, which provide the natural setting for solutions with
shock fronts, will be surveyed and the geometric structure of BV solutions will be
described.

© Springer-Verlag Berlin Heidelberg 2016
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Grundlehren der mathematischen Wissenschaften 325,
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Highly oscillatory weak solutions will be constructed, and a first indication of
the stabilizing role of admissibility conditions will be presented.

The setting being Euclidean space, it will be expedient to employ matrix notation
at the expense of obscuring the tensorial nature of the fields. The symbol Mr×s will
denote throughout the vector space of r× s matrices and Rr shall be identified with
Mr×1. The (r−1)-dimensional Hausdorff measure in Rr will be denoted by H r−1.
Other standard notation to be used here includes Sr−1 for the unit sphere in Rr and
Bρ(X) for the ball of radius ρ centered at X . In particular, Bρ will stand for Bρ(0).

1.1 Formulation of the Balance Law

Let X be an open subset of Rk. A proper domain in X is any open bounded subset
of X , with Lipschitz boundary. A balance law on X postulates that the production
of a certain “extensive” quantity in any proper domain D is balanced by the flux of
this quantity through the boundary ∂D of D .

The salient feature of an extensive quantity is that both its production and its flux
are additive over disjoint subsets. Thus, the production in the proper domain D is
given by the value P(D) of a (signed) Radon measure P on X . Similarly, with
every proper domain D is associated a countably additive set function QD , defined
on Borel subsets of ∂D , such that the flux in or out of D through any Borel subset
C of ∂D is given by QD (C ). Hence, the balance law simply states

(1.1.1) QD (∂D) = P(D),

for every proper domain D in X .
For the purposes of this book, it will suffice to consider flux set functions QD

that are absolutely continuous with respect to the Hausdorff measure H k−1. Hence
with each proper domain D in X is associated a density flux function qD ∈ L1(∂D)
such that

(1.1.2) QD (C ) =
∫

C
qD (X)dH k−1(X),

for any Borel subset C of ∂D .
Borel subsets C of ∂D are oriented by means of the outward unit normal N to

D , at points of C . The fundamental postulate in the theory of balance laws is that the
flux depends solely on the surface and its orientation, i.e., if C is concurrently a Borel
subset of the boundaries of two distinct proper domains D1 and D2 , sharing the same
outward normal on C , then QD1(C ) = QD2(C ), and thereby qD1(X) = qD2(X), for
almost all (with respect to H k−1) X ∈ C .

In analogy to the flux measure, one might be tempted to limit consideration to
production measures P that are absolutely continuous with respect to Lebesgue
measure, and are thus represented by a production density function p ∈ L1

loc(X ):

(1.1.3) P(D) =
∫

D
p(X)dX .
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Though adequate for many applications, such a simplification would be too restric-
tive for our needs, as we must deal extensively with balance laws for entropy-like
quantities, which incur nonzero production on shock fronts of zero Lebesgue mea-
sure.

1.2 Reduction to Field Equations

At first glance, the notion of a balance law, as introduced in Section 1.1, appears
too general to be of any use. It turns out, however, that the balancing requirement
(1.1.1) induces severe restrictions on density flux functions. Namely, the value of qD

at X ∈ ∂D may depend on D solely through the outward normal N at X , and the
dependence is “linear”. This renders the balance law quite concrete, reducing it to a
field equation.

1.2.1 Theorem. Consider the balance law (1.1.1) on X where P is a signed Radon
measure and the QD are induced, through (1.1.2), by density flux functions qD that
are bounded, |qD (X)| ≤C, for all proper domains D and any X ∈ ∂D . Then,
(i) With each N ∈ Sk−1 is associated a bounded measurable function aN on X , with
the following property: Let D be any proper domain in X and suppose X is some
point on ∂D where the outward unit normal to D exists and is N. Assume further
that X is a Lebesgue point of qD , relative to H k−1, and that the upper derivate of
|P| at X, with respect to Lebesgue measure, is finite. Then

(1.2.1) qD (X) = aN(X).

(ii) There exists a vector field A ∈ L∞(X ;M1×k
)

such that, for any fixed N ∈ Sk−1,

(1.2.2) aN(X) = A(X)N, a.e. on X .

(iii) The function A satisfies the field equation

(1.2.3) divA = P,

in the sense of distributions on X .

Proof. Fix any N ∈ Sk−1 and then take any hyperplane C , of codimension one, with
normal N and nonempty intersection with X . For X ∈ C ∩X , let B−

r (X) denote
the semiball {Y ∈ Br(X) : (Y −X) ·N < 0}. The limit

(1.2.4) aN(X) = lim
r↓0

1
H k−1 (C ∩Br(X))

∫
C∩Br(X)

qB−
r (X)(Y )dH k−1(Y ),

exists for almost all (with respect to H k−1) X ∈ C ∩X and defines a bounded,
H k−1-measurable function. By repeating the above construction for every hyper-
plane with normal N, we define aN on all of X .
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In order to study the properties of aN , we fix N ∈ Sk−1, together with a hyperplane
C with normal N, and a ball B in X , centered at some point on C ∩X . We then
apply the balance law to cylindrical domains

(1.2.5) D =
⋃

−δ<τ<ε
Aτ , Aτ = {X : X − τN ∈ C ∩B} ,

where δ and ε are small nonnegative numbers. This yields

(1.2.6)
∫
Aε

aN(X)d H k−1(X)+
∫

A−δ

a−N(X)d H k−1(X) = P(D)+O(δ )+O(ε),

where the terms O(δ ) and O(ε) account for the contribution of the flux through
the lateral boundary of the cylindrical domain. Setting δ = 0 and letting ε ↓ 0, we
derive from (1.2.6) an estimate which, applied to all balls B, implies that, as τ ↓ 0,
aN (X + τN)→−a−N(X), in L∞ (C ∩X ) weak∗. Similarly, setting ε = 0 and letting
δ ↓ 0, we deduce that, as τ ↑ 0, a−N (X + τN) → −aN(X), again in L∞ (C ∩X )
weak∗. In particular, this implies that aN is Lebesgue measurable on X .

Returning to (1.2.6), and now letting both δ ↓ 0 and ε ↓ 0, we conclude that
a−N(X) = −aN(X), for almost all (with respect to H k−1) X ∈ C ∩X , unless C
belongs to the (at most) countable family of hyperplanes with normal N for which
|P|(C ∩X ) > 0. Henceforth, we will refer to these exceptional hyperplanes as
singular.

Fig. 1.2.1

To show (1.2.1), consider any proper domain D in X and fix any X ∈ ∂D where
the outward unit normal is N and the tangential hyperplane is C . Assume, further,
that X is a Lebesgue point of qD and that the upper derivate of |P| at X , with respect
to Lebesgue measure, is finite. For r positive and small, write the balance law, first
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for the domain D ∩Br(X), then for the semiball {Y ∈Br(X) : (Y −X) ·N < 0}; see
Fig. 1.2.1.

Combining the resulting two equations yields

(1.2.7)
∫

∂D∩Br(X)

qD (Y )dH k−1(Y )−
∫

C∩Br(X)

aN(Y )dH k−1(Y ) = o
(
rk−1).

Dividing (1.2.7) by rk−1, letting r ↓ 0, and recalling (1.2.4), we arrive at (1.2.1), thus
establishing assertion (i) of the theorem.

Fig. 1.2.2

We will verify (1.2.2) by employing the celebrated Cauchy tetrahedron argu-
ment. We introduce the standard orthonormal basis {Eα : α = 1, · · · ,k} in Rk and
assemble the m-row vector field A ∈ L∞(X ;M1×k

)
with components aEα :

(1.2.8) A(X) =
[
aE1(X), · · · ,aEk(X)

]
.

Fix any N ∈ Sk−1 with nonzero components Nα (the argument has to be slightly
modified when some of the Nα vanish), and take any X ∈ X with the following
properties: X is a Lebesgue point of the k + 1 functions aE1 , · · · ,aEk and aN ; the
upper derivate of |P| at X , with respect to Lebesgue measure, is finite. For r positive
and small, consider the simplex1

(1.2.9) D = {Y : (Yα −Xα)sgnNα >−r, α = 1, · · · ,k; (Y −X) ·N < r} .
Notice that ∂D consists of one face C with outward normal N and k faces Cα , for
α = 1, · · · ,k, with respective outward normals (−sgnNα)Eα . Furthermore, we have
H k−1(Cα) = |Nα |H k−1(C ). We select r so that none of the faces of D lies on a
singular hyperplane. The balance law for D then reads

1 The Cauchy tetrahedron argument derives its name from the special case k = 3. Figure
1.2.2 depicts the setting when k = 2 and both N1 and N2 are negative.
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(1.2.10)
∫
C

aNdH k−1 −
k

∑
α=1

(sgnNα)
∫
Cα

aEαdH k−1 = P(D).

Upon dividing (1.2.10) by H k−1(C ) and then passing to the limit along any se-
quence of r that tends to zero, while avoiding the (at most countable) set of values
for which some face of D lies on a singular hyperplane, one arrives at

(1.2.11) aN(X) =
k

∑
α=1

aEα (X)Nα = A(X)N,

which establishes (1.2.2).
It remains to show (1.2.3). For Lipschitz continuous A, one may derive (1.2.3) by

applying the divergence theorem to the balance law. In the general case where A is
merely in L∞, we resort to mollification. We fix any test function ψ ∈ C∞

0 (R
k) with

total mass one, supported in the unit ball, we rescale it by ε ,

(1.2.12) ψε(X) = ε−kψ
(
ε−1X

)
,

and employ it to mollify, in the customary fashion, P and A on the set Xε ⊂ X of
points whose distance from X c exceeds ε:

(1.2.13) pε = ψε ∗P, Aε = ψε ∗A.

For any hypercube D ⊂ Xε , we apply the divergence theorem to the smooth field
Aε and use Fubini’s theorem to get

(1.2.14)
∫
D

divAε(X)dX =
∫
∂D

Aε(X)N(X)dH k−1(X)

=
∫
∂D

∫
Rk

ψε(Y )A(X −Y )N(X)dY dH k−1(X)

=
∫
Rk

ψε(Y )
∫

∂DY

A(Z)N(Z)dH k−1(Z)dY,

where DY denotes the Y -translate of D , that is DY = {Z : Z +Y ∈ D}. By virtue of
the balance law,

(1.2.15)
∫

∂DY

A(Z)N(Z)dH k−1(Z) =
∫

∂DY

aN(Z)dH k−1(Z) = P(DY ),

for almost all Y in the ball {Y : |Y |< ε}. Hence (1.2.14) gives

(1.2.16)
∫

D
divAε(X)dX =

∫
Rk

ψε(Y )P(DY )dY =
∫
D

pε(X)dX ,

whence we infer
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(1.2.17) divAε(X) = pε(X), X ∈ Xε .

Letting ε ↓ 0 yields (1.2.3), in the sense of distributions on X . This completes the
proof.

In the following section we shall see that the course followed in the proof of
the above theorem can be reversed: departing from the field equation (1.2.3), one
may retrieve the flux density functions qD and thereby restore the balance law in its
original form (1.1.1).

1.3 Change of Coordinates and a Trace Theorem

The divergence form of the field equations of balance laws is preserved under coor-
dinate changes, so long as the fields transform according to appropriate rules. In fact,
this holds even when the flux fields are merely locally integrable.

1.3.1 Theorem. Let X be an open subset of Rk and let A ∈ L1
loc

(
X ;M1×k

)
and

P ∈ M (X ) satisfy the field equation

(1.3.1) divA = P,

in the sense of distributions on X . Consider any bilipschitz homeomorphism X∗ of
X to a subset X ∗ of Rk, with Jacobian matrix

(1.3.2) J =
∂X∗

∂X

such that

(1.3.3) det J ≥ a > 0, a.e. on X .

Then, A∗ ∈ L1
loc

(
X ∗;M1×k

)
and P∗ ∈ M (X ∗), defined by

(1.3.4) A∗ ◦X∗ = (det J)−1 AJ�,

(1.3.5) 〈P∗,ϕ∗〉= 〈P,ϕ〉, where ϕ = ϕ∗ ◦X∗,

satisfy the field equation

(1.3.6) divA∗ = P∗,

in the sense of distributions on X ∗.

Proof. It follows from (1.3.1) that

(1.3.7)
∫
X

Agradϕ dX + 〈P,ϕ〉= 0,
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for any Lipschitz function ϕ with compact support in X , since one can always con-
struct a sequence {ϕm} of test functions in C∞

0 (X ), supported in a compact subset
of X , such that, as m → ∞, ϕm → ϕ , uniformly, and gradϕm → gradϕ , boundedly
almost everywhere on X .

Given any test function ϕ∗ ∈ C∞
0 (X

∗), consider the function ϕ = ϕ∗ ◦X∗, Lip-
schitz with compact support in X . Notice that gradϕ = J�gradϕ∗. Furthermore,
dX∗ = (det J)dX . By virtue of these and (1.3.4), (1.3.5), we can write (1.3.7) as

(1.3.8)
∫

X ∗
A∗gradϕ∗dX∗+ 〈P∗,ϕ∗〉= 0,

which establishes (1.3.6). The proof is complete.

1.3.2 Remark. In the special, yet common, situation (1.1.3) where the measure P is
induced by a production density field p ∈ L1

loc (X ), (1.3.5) implies that P∗ is also
induced by a production density field p∗ ∈ L1

loc (X
∗), given by

(1.3.9) p∗ ◦X∗ = (det J)−1 p.

Even though in general the field A is only defined almost everywhere on an open
subset of Rk, it turns out that the field equation induces a modicum of regularity,
manifesting itself in trace theorems, which will allow us to identify the flux through
surfaces of codimension one and thus retrieve the balance law in its original form.
We begin with planar surfaces.

1.3.3 Lemma. Assume A ∈ L∞(K ;M1×k
)

and P ∈ M (K ) satisfy (1.3.1), in the
sense of distributions, on a cylindrical domain K = B× (α,β ), where B is a ball
in Rk−1. Let Ek denote the k-base vector in Rk and set X = (x, t), with x in B and t in
(α,β ). Then, after one modifies, if necessary, A on a set of measure zero, the function
a(x, t) = A(x, t)Ek acquires the following properties: One-sided limits a(·,τ±) in
L∞(B) weak∗ exist, for any τ ∈ (α,β ), and can be determined by

(1.3.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a(x,τ−) = ess lim
t↑τ

A(x, t)Ek = lim
ε↓0

1
ε

τ∫
τ−ε

A(x, t)Ekdt,

a(x,τ+) = ess lim
t↓τ

A(x, t)Ek = lim
ε↓0

1
ε

τ+ε∫
τ

A(x, t)Ekdt,

where the limits are taken in L∞(B) weak∗. Furthermore, for any τ ∈ (α,β ) and any
Lipschitz continuous function ϕ with compact support in K ,
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(1.3.11)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
B

a(x,τ−)ϕ(x,τ)dx =
∫

B×(α,τ)

A(X)gradϕ(X)dX + 〈P,ϕ〉B×(α,τ) ,

−
∫
B

a(x,τ+)ϕ(x,τ)dx =
∫

B×(τ,β )

A(X)gradϕ(X)dX + 〈P,ϕ〉B×(τ,β ) .

Thus, a(·,τ−) = a(·,τ+) = a(·,τ), unless τ belongs to the (at most) countable set of
points with |P|(B×{τ})> 0. In particular, when P is absolutely continuous with
respect to Lebesgue measure, the function τ �→ a(·,τ) is continuous on (α,β ), in the
weak∗ topology of L∞(B).

Proof. Fix ε positive and small. If r is the radius of B, let Bε denote the ball in
Rk−1 with the same center as B and radius r− ε . As in the proof of Theorem 1.2.1,
we mollify A and P on Bε × (α+ ε,β − ε) through (1.2.13). The resulting smooth
fields Aε and pε satisfy (1.2.17). We also set aε(x, t) = Aε(x, t)Ek .

We multiply (1.2.17) by any Lipschitz function ϕ on Rk−1, with compact support
in Bε , and integrate the resulting equation over Bε × (r,s), α+ ε < r < s < β − ε .
After an integration by parts, this yields

(1.3.12)
∫

Bε

aε(x,s)ϕ(x)dx−
∫

Bε

aε(x,r)ϕ(x)dx

=

s∫
r

∫
Bε

{Aε(x, t) Πk gradϕ(x)+ pε(x, t)ϕ(x)}dxdt,

where Πk denotes the projection of Rk to Rk−1. It follows that the total variation
of the function t �→ ∫

Bε

aε(x, t)ϕ(x)dx, over the interval (α + ε,β − ε), is bounded,

uniformly in ε > 0. Therefore, starting out from some countable family {ϕ�} of
test functions, with compact support in B, that is dense in L1(B), we may invoke
Helly’s theorem in conjunction with a diagonal argument to extract a sequence {εm},
with εm → 0 as m → ∞ , and identify a countable subset G of (α,β ), such that, for
any � = 1,2 · · · , the sequence {∫

B
aεm(x, t)ϕ�(x)dx} converges, as m → ∞ , for every

t ∈ (α,β )\G, and the limit function has bounded variation over (α,β ). The resulting
limit functions, for all �, may be collectively represented as

∫
B

a(x, t)ϕ�(x)dx, for

some function t �→ a(·, t) taking values in L∞(B). Clearly, a(x, t) = A(x, t)Ek, a.e.
in K . Thus, a does not depend on the particular sequence {εm} employed for its
construction, and (1.3.10) holds for any τ ∈ (α,β ).

Given any τ ∈ (α,β ) and any Lipschitz function ϕ with compact support in K ,
we multiply (1.2.17) by ϕ and integrate the resulting equation over Bε × (α+ ε,s),
where s ∈ (α+ ε,τ)\G. After an integration by parts, this yields

(1.3.13)
∫

Bε

aε(x,s)ϕ(x,s)dx =
∫

Bε×(a+ε,s)

[Aε(X)gradϕ(X)+ pε(X)ϕ(X)]dX .
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In (1.3.13) we first let ε ↓ 0 and then s ↑ τ thus arriving at (1.3.11)1 . The proof of
(1.3.11)2 is similar.

When P is absolutely continuous with respect to Lebesgue measure, (1.3.12)
implies that the family of functions t �→ ∫

Bε

aε(x, t)ϕ�(x)dx, parametrized by ε , is ac-

tually equicontinuous, and hence
∫
B

a(x, t)ϕ�(x)dx is continuous on (α,β ), for any

� = 1,2, · · · . Thus, t �→ a(· ; t) is continuous on (α,β ), in L∞(B) weak∗. This com-
pletes the proof.

The k-coordinate direction was singled out, in the above proposition, just for con-
venience. Analogous continuity properties are clearly enjoyed by AEα , in the direc-
tion of any base vector Eα , and indeed by AN, in the direction of any N ∈ Sk−1. Thus,
departing from the field equation (1.2.3), one may retrieve the flux density functions
aN , for planar surfaces, encountered in Theorem 1.2.1. The following proposition
demonstrates that even the flux density functions qD , for general proper domains D ,
may be retrieved by the same procedure.

1.3.4 Theorem. Assume that A ∈ L∞(X ;M1×k
)

and P ∈M (X ) satisfy (1.3.1), in
the sense of distributions, on an open subset X of Rk. Then, with any proper domain
D in X is associated a bounded H k−1-measurable function qD on ∂D such that

(1.3.14)
∫
∂D

qD (X)ϕ(X)dH k−1(X) =
∫
D

A(X)gradϕ(X)dX + 〈P,ϕ〉D ,

for any Lipschitz continuous function ϕ on Rk, with compact support in X .

Fig. 1.3.1

Proof. Consider the cylindrical domain K ∗ = {X∗ = (x, t) : x ∈ B, t ∈ (−1,1)},
where B is the unit ball in Rk−1. Fix any proper domain D in X .

Since D is a Lipschitz domain, with any point X̄ ∈ ∂D is associated a bilipschitz
homeomorphism X from K ∗ to some open subset K of X such that X(0) = X̄ ,
X(B× (−1,0)) = D ∩K and X(B×{0}) = ∂D ∩K ; see Fig. 1.3.1.
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Consider the inverse map X∗ of X , with Jacobian matrix J, given by (1.3.2) and
satisfying (1.3.3). Construct A∗ ∈ L∞(K ∗;M1×k), by (1.3.4), and P∗ ∈ M (K ∗),
by (1.3.5), which will satisfy (1.3.6) on K ∗, in the sense of distributions.

We now apply Lemma 1.3.3 to identify the function a∗(x, t) on K ∗ , which is
equal to A∗(x, t)Ek , a.e on K ∗, and by (1.3.10) satisfies

(1.3.15) a∗(x,0−) = ess lim
t→0

A∗(x, t)Ek = lim
ε↓0

1
ε

0∫
−ε

A∗(x, t)Ekdt.

We fix any Lipschitz continuous function ϕ on Rk, with compact support in K ,
and let ϕ∗ = ϕ ◦X , for X∗ ∈ K ∗. By virtue of (1.3.11),

(1.3.16)∫
B

a∗(x,0−)ϕ∗(x,0)dx =
∫

B×(−1,0)

A∗(X∗)gradϕ∗(X∗)dX∗+ 〈P∗,ϕ∗〉B×(−1,0) .

We employ the homeomorphism X∗ in order to transform (1.3.16) into an equation on
X . Using that gradϕ = J�gradϕ∗ and recalling (1.3.4) and (1.3.5), we may rewrite
(1.3.16) as

(1.3.17)
∫

∂D∩K

qD (X)ϕ(X)dH k−1(X) =
∫
D

A(X)gradϕ(X)dX + 〈P,ϕ〉D ,

where we have set

(1.3.18) qD =
dx

dH k−1 a∗ ◦X∗ =
det J

E�
k JN

a∗ ◦X∗,

with N denoting the outward unit normal to D .
Equation (1.3.17) establishes (1.3.14) albeit only for ϕ with compact support in

K . It should be noted, however, that the right-hand side of (1.3.17) does not depend
on the homeomorphism X∗ and thus the values of qD on ∂D∩K are intrinsically de-
fined, independently of the particular construction employed above. Hence, one may
easily pass from (1.3.17) to (1.3.14), for arbitrary Lipschitz continuous functions ϕ
with compact support in X , by a straightforward partition of unity argument. This
completes the proof.

The reader can find, in the literature cited in Section 1.10, more refined versions
of the above proposition, in which A is assumed to be merely locally integrable or
even just a measure, as well as alternative methods of proof. For instance, in a more
abstract approach, one establishes the existence of qD by showing that the right-hand
side of (1.3.14) can be realized as a bounded linear functional on L1(∂D).

1.3.5 Remark. In the applications of the theory, one often needs an explicit con-
struction of qD from A. This is easily obtained for domains D with simple geometric
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structure. To begin with, when D is the half-space {X ∈ Rk : X ·N < 0} for some
N ∈ Sk−1, Lemma 1.3.3 implies

(1.3.19) qD (X) = ess lim
t→0

A(X − tN)N = lim
ε→0

1
ε

∫ ε

0
A(x− tN)Ndt,

with limits taken in L∞(Rk−1) weak∗. Consider next any D with the following prop-
erty. With any X0 ∈ ∂D are associated r > 0, ε0 > 0 and N ∈ Sk−1 such that for all
X in the set C = ∂D

⋂
Br(X0) and t ∈ (0,ε0), the point X − tN lies in D . Then,

applying (1.3.14) with test function ϕ foliated by the translates of C in the direction
– N, we conclude that (1.3.19) holds for X in C , with the limits now taken in L∞(C )
weak∗.

1.4 Systems of Balance Laws

We consider the situation where n distinct balance laws, with production measures
induced by production density fields, act simultaneously in X , and collect their field
equations (1.2.3) into the system

(1.4.1) divA(X) = P(X),

where now A is a n× k matrix field and P is a n-column vector field. The divergence
operator acts on the row vectors of A, yielding as divA a n-column vector field.

We assume that the state of the medium is described by a state vector field U ,
taking values in an open subset O of Rn, which determines the flux density field A
and the production density field P at the point X ∈ X by constitutive equations

(1.4.2) A(X) = G(U(X),X), P(X) = Π(U(X),X),

where G and Π are given smooth functions defined on O ×X and taking values in
Mn×k and Rn, respectively.

Combining (1.4.1) with (1.4.2) yields

(1.4.3) divG(U(X),X) = Π(U(X),X),

namely a (formally) closed quasilinear first order system of partial differential equa-
tions from which the state vector field is to be determined. Any equation of the form
(1.4.3) will henceforth be called a system of balance laws, if n ≥ 2, or a scalar bal-
ance law when n = 1. In the special case where there is no production, Π ≡ 0,
(1.4.3) will be called a system of conservation laws, if n ≥ 2, or a scalar conser-
vation law when n = 1. This terminology is not quite standard: in lieu of “system
of balance laws” certain authors favor the term “system of conservation laws with
source.” When G and Π do not depend explicitly on X , the system of balance laws is
called homogeneous.

Notice that when coordinates are stretched in the vicinity of some fixed point
X̄ ∈ X , i.e., X = X̄ + εY , then, as ε ↓ 0, the system of balance laws (1.4.3) reduces
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to a homogeneous system of conservation laws with respect to the Y variable. This is
why local properties of solutions of general systems of balance laws may be investi-
gated, without loss of generality, in the simpler setting of homogeneous systems of
conservation laws.

A Lipschitz continuous field U that satisfies (1.4.3) almost everywhere on X
will be called a classical solution. A measurable field U that satisfies (1.4.3) in the
sense of distributions, i.e., G(U(X),X) and Π(U(X),X) are locally integrable and

(1.4.4)
∫

X
[G(U(X),X)gradϕ(X)+ϕ(X)Π(U(X),X)]dX = 0,

for any test function ϕ ∈ C∞
0 (X ), is a weak solution. Any weak solution which is

Lipschitz continuous is necessarily a classical solution.

1.4.1 Notation. For α = 1, · · · ,k, Gα(U,X) will denote the α-th column vector of
the matrix G(U,X).

1.4.2 Notation. Henceforth, D will denote the differential with respect to the U vari-
able. When used in conjunction with matrix notations, D shall be regarded as a row
operation: D =

[
∂/∂U1, · · · ,∂/∂Un

]
.

1.5 Companion Balance Laws

Consider a system (1.4.3) of balance laws on an open subset X of Rk, resulting from
combining the field equation (1.4.1) with constitutive relations (1.4.2). A smooth
function Q, defined on O ×X and taking values in M1×k, is called a companion of
G if there is a smooth function B, defined on O ×X and taking values in Rn, such
that, for all U ∈ O and X ∈ X ,

(1.5.1) DQα(U,X) = B(U,X)�DGα(U,X), α = 1, · · · ,k.
The relevance of (1.5.1) stems from the observation that any classical solution U

of the system of balance laws (1.4.3) is automatically also a (classical) solution of
the companion balance law

(1.5.2) divQ(U(X),X) = h(U(X),X),

with

(1.5.3) h(U,X) = B(U,X)�Π(U,X)+∇ ·Q(U,X)−B(U,X)�∇ ·G(U,X).

In (1.5.3) ∇· denotes divergence with respect to X , holding U fixed – as opposed to
div, which treats U as a function of X .

One determines the companion balance laws (1.5.2) of a given system of balance
laws (1.4.3) by identifying the integrating factors B that render the right-hand side of
(1.5.1) a gradient of a function of U . The relevant integrability condition is
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(1.5.4) DB(U,X)�DGα(U,X) = DGα(U,X)�DB(U,X), α = 1, · · · ,k,

for all U ∈ O and X ∈ X . Clearly, one can satisfy (1.5.4) by employing any B that
does not depend on U ; in that case, however, the resulting companion balance law
(1.5.2) is just a trivial linear combination of the equations of the original system
(1.4.3). For nontrivial B, which vary with U , (1.5.4) imposes 1

2 n(n−1)k conditions
on the n unknown components of B. Thus, when n = 1 and k is arbitrary one may use
any (scalar-valued) function B. When n = 2 and k = 2, (1.5.4) reduces to a system
of two equations in two unknowns from which a family of B may presumably be
determined. In all other cases, however, (1.5.4) is formally overdetermined and the
existence of nontrivial companion balance laws should not be generally expected.
Nevertheless, as we shall see in Chapter III, the systems of balance laws of continuum
physics are endowed with natural companion balance laws.

The system of balance laws (1.4.3) is called symmetric when the n× n matrices
DGα(U,X),α = 1, · · · ,k, are symmetric, for any U ∈O and X ∈X ; say O is simply
connected and

(1.5.5) G(U,X)� = DΓ (U,X)�,

for some smooth function Γ , defined on O ×X and taking values in M1×k. In that
case one may satisfy (1.5.4) by taking B(U,X)≡U , which induces the companion

(1.5.6) Q(U,X) =U�G(U,X)−Γ (U,X).

Conversely, if (1.5.1) holds for some B with the property that, for every fixed
X ∈ X , B(· ,X) maps diffeomorphically O to some open subset O∗ of Rn, then
the change U∗ = B(U,X) of state vector reduces (1.4.3) to the equivalent system of
balance laws

(1.5.7) divG∗(U∗(X),X) = Π∗(U∗(X),X),

with

(1.5.8) G∗(U∗,X) = G(B−1(U∗,X),X), Π∗(U∗,X) = Π(B−1(U∗,X),X),

which is symmetric. Indeed, upon setting

(1.5.9) Q∗(U∗,X) = Q(B−1(U∗,X),X),

(1.5.10) Γ ∗(U∗,X) =U∗�G∗(U∗,X)−Q∗(U∗,X),

one easily obtains from (1.5.1) that

(1.5.11) G∗(U∗,X)� = DΓ ∗(U∗,X)�.

We have thus demonstrated that a system of balance laws is endowed with nontrivial
companion balance laws if and only if it is symmetrizable.
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We shall see that the presence of companion balance laws has major implica-
tions for the theory of systems of balance laws arising in physics. Quite often, in
order to simplify the analysis, it becomes necessary to make simplifying physical
assumptions that truncate the system of balance laws while simultaneously trimming
proportionately the size of the state vector. Such truncations cannot be performed
arbitrarily without destroying the mathematical structure of the system, which goes
hand in hand with its relevance to physics. For a canonical truncation, it is neces-
sary to operate on (or at least think in terms of) the symmetric form (1.5.7) of the
system, and adhere to the rule that dropping the i-th balance law should be paired
with “freezing” (i.e., assigning fixed values to) the i-th component U∗i of the special
state vector U∗. Then, the resulting truncated system will still be symmetric and will
inherit the companion

(1.5.12) Q̂ = Q∗ −∑U∗iG∗i ,

where the summation runs over all i for which the i-balance law has been eliminated
and U∗i has been frozen. G∗i denotes the i-th row vector of G∗.

Despite (1.5.1), and in contrast to the behavior of classical solutions, weak solu-
tions of (1.4.3) need not satisfy (1.5.2). Nevertheless, one of the tenets of the theory
of systems of balance laws is that admissible weak solutions should at least satisfy
the inequality

(1.5.13) divQ(U(X),X)≤ h(U(X),X),

in the sense of distributions, for a designated family of companions. Relating this
postulate to the Second Law of thermodynamics and investigating its implications
for stability of weak solutions are among the principal objectives of this book.

Notice that an inequality (1.5.13), holding in the sense of distributions, can al-
ways be turned into an equality by subtracting from the right-hand side some non-
negative measure M ,

(1.5.14) divQ(U(X),X) = h(U(X),X)−M ,

and may thus be realized, by virtue of Theorem 1.3.4, as the field equation of a
balance law.

1.6 Weak and Shock Fronts

The regularity of solutions of a system of balance laws will depend on the nature
of the constitutive functions. The focus will be on solutions with “fronts”, that is
singularities assembled on manifolds of codimension one. To get acquainted with
this sort of solutions, we consider here two kinds of fronts in a particularly simple
setting.

In what follows, F will be a smooth (k− 1)-dimensional manifold, embedded
in the open subset X of Rk, with orientation induced by the unit normal field N.
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Fig. 1.6.1

U will be a (generally weak) solution of the system of balance laws (1.4.3) on X
which is continuously differentiable on X \F , but is allowed to be singular on F .
In particular, (1.4.3) holds for any X ∈ X \F . See Fig. 1.6.1.

First we consider the case where F is a weak front, that is, U is Lipschitz con-
tinuous on X and as one approaches F from either side the gradient of U attains
distinct limits grad−U , grad+U . Thus [[gradU ]] = grad+U − grad−U is the jump
experienced by gradU across F . Since U is continuous, tangential derivatives of U
cannot jump across F and hence [[gradU ]] = [[∂U/∂N]]N�, where [[∂U/∂N]] denotes
the jump of the normal derivative ∂U/∂N across F . Therefore, taking the jump of
(1.4.3) across F at any point X ∈ F yields the following condition on [[∂U/∂N]]:

(1.6.1) D[G(U(X),X)N]

[[
∂U
∂N

]]
= 0.

Next we assume F is a shock front, that is, as one approaches F from either
side, U attains distinct limits U−,U+ and thus experiences a jump [[U ]] = U+−U−
across F . Both U− and U+ are continuous functions on F . Since U is a (weak)
solution of (1.4.3), we may write (1.4.4) for any ϕ ∈ C∞

0 (X ). In (1.4.4) integration
over X may be replaced with integration over X \F . Since U is C1 on X \F , we
may integrate by parts in (1.4.4). Using that ϕ has compact support in X and that
(1.4.3) holds for any X ∈ X \F , we get

(1.6.2)
∫

F
ϕ(X)[G(U+,X)−G(U−,X)]N dH k−1(X) = 0,

whence we deduce that the following jump condition must be satisfied at every point
X of the shock front F :

(1.6.3) [G(U+,X)−G(U−,X)]N = 0.

Notice that (1.6.3) may be rewritten in the form
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(1.6.4)
{∫ 1

0
D[G(τU++(1− τ)U−,X)N]dτ

}
[[U ]] = 0.

Comparing (1.6.4) with (1.6.1) we conclude that weak fronts may be regarded as
shock fronts with “infinitesimal” strength: |[[U ]]| vanishingly small.

With each U ∈ O and X ∈ X we associate the variety

(1.6.5) V (U,X) =
{
(N,V ) ∈ Sk−1 ×Rn : D[G(U,X)N]V = 0

}
.

The number of weak fronts and shock fronts of small strength that may be sustained
by solutions of (1.4.3) will depend on the size of V . In the extreme case where, for
all (U,X), the projection of V (U,X) onto Rn contains only the vector V = 0, (1.4.3)
is called elliptic. Thus a system of balance laws is elliptic if and only if it cannot
sustain any weak fronts or shock fronts of small strength. The opposite extreme to
ellipticity, where V attains the maximal possible size, is hyperbolicity, which will be
introduced in Chapter III.

1.7 Survey of the Theory of BV Functions

The space of BV functions provides a natural setting for solutions of systems of bal-
ance laws with shock fronts. Indeed, a prominent feature of these functions is that
their points of discontinuity assemble on manifolds of codimension one. Comprehen-
sive treatment of the theory of BV functions can be found in the references cited in
Section 1.10, so only properties relevant to our purposes will be listed here, without
proofs.

1.7.1 Definition. A scalar function v is of locally bounded variation on an open
subset X of Rk if v ∈ L1

loc(X ) and grad v is a (Rk-valued) Radon measure M on
X , i.e.,

(1.7.1) −
∫

X
vdivΨ(X)dX =

∫
X
Ψ(X)dM (X),

for any test function Ψ ∈ C∞
0 (X ;M1×k). When v ∈ L1(X ) and M is finite, v is a

function of bounded variation on X , with total variation

(1.7.2) TVX v = |M |(X ) = sup
|Ψ(X)|=1

∫
X

v(X)divΨ(X)dX .

The set of functions of bounded variation and locally bounded variation on X will
be denoted by BV (X ) and BVloc(X ), respectively.

Clearly, the Sobolev space W 1,1(X ), of L1(X ) functions with derivatives in
L1(X ), is contained in BV (X ); and W 1,1

loc (X ) is contained in BVloc(X ).
The following proposition provides a useful criterion for testing whether a given

function has bounded variation:
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1.7.2 Theorem. Let {Eα ,α = 1, · · · ,k} denote the standard orthonormal basis of
Rk. If v ∈ BVloc(X ), then

(1.7.3) limsup
h↓0

1
h

∫
Y
|v(X +hEα)−v(X)|dX = |Mα |(Y ) , α = 1, · · · ,k,

for any open bounded set Y with Y ⊂ X . Conversely, if v ∈ L1
loc(X ) and the left-

hand side of (1.7.3) is finite for every Y as above, then v ∈ BVloc(X ).

As a corollary, the above proposition yields the following result on compactness:

1.7.3 Theorem. Any sequence {v�} in BVloc(X ), such that ‖v�‖L1(Y ) and TVY v�
are uniformly bounded on every open bounded Y ⊂ X , contains a subsequence
which converges in L1

loc(X ), as well as almost everywhere on X , to some function
v in BVloc(X ), with TVY v ≤ liminf�→∞ TVY v� .

Functions of bounded variation are endowed with fine geometric structure, as
described in

1.7.4 Theorem. The domain X of any v ∈ BVloc(X ) is the union of three, pairwise
disjoint, subsets C ,J , and I with the following properties:

(a) C is the set of points of approximate continuity of v, i.e., with each X̄ ∈ C is
associated v0 ∈ R such that

(1.7.4) lim
r↓0

1
rk

∫
Br(X̄)

|v(X)−v0|dX = 0.

(b) J is the set of points of approximate jump discontinuity of v, i.e., with each
X̄ ∈ J are associated N in Sk−1 and distinct v− ,v+ in R such that

(1.7.5) lim
r↓0

1
rk

∫
B±

r (X̄)

|v(X)−v±|dX = 0,

where B±
r (X̄) denote the semiballs Br(X̄)∩{X : (X − X̄) ·N

>
< 0}. Moreover, J

is countably rectifiable, i.e., it is essentially covered by the countable union of
C1 (k − 1)-dimensional manifolds {Fi} embedded in Rk: H k−1(J \⋃Fi) = 0.
Furthermore, when X̄ ∈ J ∩Fi then N is normal on Fi at X̄ .
(c) I is the set of irregular points of v; its (k− 1)-dimensional Hausdorff measure
is zero: H k−1(I ) = 0.

Up to this point, the identity of a BV function is unaffected by modifying its val-
ues on any set of (k-dimensional Lebesgue) measure zero, i.e., BVloc(X ) is actually a
space of equivalence classes of functions, specified only up to a set of measure zero.
However, when dealing with the finer behavior of these functions, it is expedient to
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designate a canonical representative of each equivalence class, with values specified
up to a set of (k− 1)-dimensional Hausdorff measure zero. This will be effected in
the following way.

Suppose g is a continuous function on R and let v ∈ BVloc(X ). With reference to
the notation of Theorem 1.7.4, the normalized composition g̃◦v of g and v is defined
by

(1.7.6) g̃◦v(X) =

⎧⎪⎨⎪⎩
g(v0), if X ∈ C

∫ 1

0
g(τv−+(1− τ)v+)dτ, if X ∈ J

and arbitrarily on the set I of irregular points, whose (k−1)-dimensional Hausdorff
measure is zero. In particular, one may normalize v itself:

(1.7.7) ṽ(X) =

⎧⎨⎩
v0 , if X ∈ C

1
2 (v−+v+), if X ∈ J .

Thus every point of C becomes a Lebesgue point.
The appropriateness of the above normalization is indicated by the following

generalization of the classical chain rule:

1.7.5 Theorem. Assume g is continuously differentiable on R, with derivative Dg,
and let v ∈ BVloc(X )∩L∞(X ). Then g ◦ v ∈ BVloc(X )∩L∞(X ). The normalized
function D̃g◦v is locally integrable with respect to the measure M = gradv and

(1.7.8) grad(g◦v) = (D̃g◦v)gradv

in the sense

(1.7.9) −
∫

X
g(v(X))divΨ(X)dX =

∫
X
(D̃g◦v)(X)Ψ(X)dM (X),

for any test functionΨ ∈C∞
0 (X ;M1×k).

Next we review certain important geometric properties of a class of sets in Rk

that are intimately related to the theory of BV functions.

1.7.6 Definition. A subset D of Rk has (locally) finite perimeter when its indicator
function χD has (locally) bounded variation on Rk.

Let us apply Theorem 1.7.4 to the indicator function χD of a set D with lo-
cally finite perimeter. Clearly, the set C of points of approximate continuity of χD

is the union of the sets of density points of D and Rk\D . The complement of C ,
i.e., the set of X in Rk that are not points of density of either D or Rk\D , consti-
tutes the measure theoretic boundary ∂D of D . It can be shown that D has finite
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perimeter if and only if H k−1(∂D) < ∞, and its perimeter may be measured by
TVRkχD or by H k−1(∂D). The set of points of approximate jump discontinuity of
χD is called the reduced boundary of D and is denoted by ∂ ∗D . By Theorem 1.7.4,
∂ ∗D ⊂ ∂D , H k−1(∂D\∂ ∗D) = 0 and ∂ ∗D is covered by the countable union of
C1 (k− 1)-dimensional manifolds. Moreover, the vector N ∈ Sk−1 associated with
each point X of ∂ ∗D may naturally be interpreted as the measure theoretic outward
normal to D at X . Sets with Lipschitz boundary have finite perimeter. In fact, one
can reformulate the entire theory of balance laws by considering as proper domains
sets that are not necessarily Lipschitz, as postulated in Section 1.1, but merely have
finite perimeter.

1.7.7 Definition. Assume D has finite perimeter and let v ∈ BVloc(R
k). v has inward

and outward traces v− and v+ at the point X̄ of the reduced boundary ∂ ∗D of D ,
where the outward normal is N, if

(1.7.10) lim
r↓0

1
rk

∫
B±

r

|v(X)−v±|dX = 0.

It can be shown that the traces v± are defined for almost all (with respect to
H k−1) points of ∂ ∗D and are locally integrable on ∂ ∗D . Furthermore, the following
version of the Gauss-Green theorem holds:

1.7.8 Theorem. Assume v ∈ BV (Rk) so M = gradv is a finite measure. Consider
any bounded set D of finite perimeter, with set of density points D∗ and reduced
boundary ∂ ∗D . Then

(1.7.11) M (D∗) =
∫
∂ ∗D

v+NdH k−1.

Furthermore, for any Borel subset F of ∂D ,

(1.7.12) M (F ) =
∫

F
(v−−v+)NdH k−1.

In particular, the set J of points of approximate jump discontinuity of any v in
BVloc(R

k) may be covered by the countable union of oriented surfaces and so (1.7.12)
will hold for any measurable subset F of J .

For v ∈ BV (X ), the measure M = gradv may be decomposed into the sum
of three mutually singular measures: its continuous part, which is absolutely con-
tinuous with respect to k-dimensional Lebesgue measure; its jump part, which is
concentrated on the set J of points of approximate jump discontinuity of v; and its
Cantor part. In particular, the Cantor part of the measure of any Borel subset of X
with finite (k−1)-dimensional Hausdorff measure vanishes.

1.7.9 Definition. v ∈ BV (X ) is a special function of bounded variation, namely
v ∈ SBV (X ), if the Cantor part of the measure gradv vanishes.
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It turns out that SBV (X ) is a proper subspace of BV (X ) and it properly contains
W 1,1(X ).

For k = 1, the theory of BV functions is intimately related with the classical
theory of functions of bounded variation. Assume v is a BV function on a (bounded
or unbounded) interval (a,b)⊂ (−∞,∞). Let ṽ be the normalized form of v. Then

(1.7.13) TV(a,b)v = sup
�−1

∑
j=1

|ṽ(x j+1)− ṽ(x j)|,

where the supremum is taken over all (finite) meshes a < x1 < x2 < · · · < x� < b.
Furthermore, (classical) one-sided limits ṽ(x±) exist at every x ∈ (a,b) and are both
equal to ṽ(x), except possibly on a countable set of points. When k = 1, the compact-
ness Theorem 1.7.3 reduces to the classical Helly theorem.

Any v ∈ SBV (a,b) is the sum of an absolutely continuous function and a saltus
function. Accordingly, the measure gradv is the sum of the pointwise derivative v′
of v, which exists almost everywhere on (a,b), and the (at most) countable sum of
weighted Dirac masses, located at the points of jump discontinuity of v and weighted
by the jump.

A vector-valued function U is of (locally) bounded variation on X when each
one of its components has (locally) bounded variation on X ; and its total variation
TVX U is the sum of the total variations of its components. All of the discussions,
above, for scalar-valued functions, and in particular the assertions of Theorems 1.7.2,
1.7.3, 1.7.4, 1.7.5 and 1.7.8, generalize immediately to (and will be used below for)
vector-valued functions of bounded variation.

1.8 BV Solutions of Systems of Balance Laws

We consider here weak solutions U ∈ L∞(X ) of the system (1.4.3) of balance laws,
which are in BVloc(X ). In that case, by virtue of Theorem 1.7.5, the function G◦U
is also in BVloc(X )∩L∞(X ) and (1.4.3) is satisfied as an equality of measures. The
first task is to examine the local form of (1.4.3), in the light of Theorems 1.7.4, 1.7.5,
and 1.7.8.

1.8.1 Theorem. A function U ∈ BVloc(X )∩L∞(X ) is a weak solution of the system
(1.4.3) of balance laws if and only if (a) the measure equality

(1.8.1) [DG(Ũ(X),X) , gradU(X)]+∇ ·G(Ũ(X),X) = Π(Ũ(X),X)

holds on the set C of points of approximate continuity of U; and (b) the jump condi-
tion

(1.8.2) [G(U+,X)−G(U−,X)]N = 0

is satisfied for almost all (with respect to H k−1) X on the set J of points of approx-
imate jump discontinuity of U, with normal vector N and one-sided limits U−,U+ .
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Proof. In (1.8.1) and in (1.8.6), (1.8.7), below, the symbol ∇· denotes divergence
with respect to X , holding U fixed – as opposed to div which treats U as a function
of X . Let M denote the measure defined by the left-hand side of (1.4.3). On C , M
reduces to the measure on the left-hand side of (1.8.1), by virtue of Theorem 1.7.5.
Recalling the Definition 1.7.7 of trace and the characterization of one-sided limits in
Theorem 1.7.4, we deduce (G◦U)± = G◦U± at every point of J . Thus, if F is any
Borel subset of J , then on account of the remark following the proof of Theorem
1.7.8,

(1.8.3) M (F ) =
∫

F
[G(U−,X)−G(U+,X)]NdH k−1.

Therefore, M = Π in the sense of measures if and only if (1.8.1) and (1.8.2) hold.
This completes the proof.

Consequently, the set of points of approximate jump discontinuity of a BV solu-
tion is the countable union of shock fronts.

As we saw in Section 1.5, when G has a companion Q, the companion balance
law (1.5.2) is automatically satisfied by any classical solution of (1.4.3). The follow-
ing proposition describes the situation in the context of BV weak solutions.

1.8.2 Theorem. Assume the system of balance laws (1.4.3) is endowed with a com-
panion balance law (1.5.2). Let U ∈ BVloc(X ) ∩ L∞(X ) be a weak solution of
(1.4.3). Then the measure

(1.8.4) N = divQ(U(X),X)−h(U(X),X)

is concentrated on the set J of points of approximate jump discontinuity of U and
the inequality (1.5.13) will be satisfied in the sense of measures if and only if

(1.8.5) [Q(U+,X)−Q(U−,X)]N ≥ 0

holds for almost all (with respect to H k−1) X ∈ J .

Proof. By virtue of Theorem 1.7.5, we may write (1.4.3) and (1.8.4) as

(1.8.6) [D̃G◦U ,gradU ]+∇ ·G−Π = 0,

(1.8.7) N = [D̃Q◦U ,gradU ]+∇ ·Q−h.

On account of (1.7.6), if X is in the set C of points of approximate continuity of
U ,

(1.8.8) D̃G◦U(X) = DG(Ũ(X),X), D̃Q◦U(X) = DQ(Ũ(X),X).

Combining (1.8.6), (1.8.7), (1.8.8) and using (1.5.1), (1.5.3), we deduce that N van-
ishes on C .
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From the Definition 1.7.7 of trace and the characterization of one-sided limits in
Theorem 1.7.4, we infer (Q◦U)± = Q◦U± . If F is a bounded Borel subset of J ,
we apply (1.7.12), keeping in mind the remark following the proof of Theorem 1.7.8.
This yields

(1.8.9) N (F ) =
∫

F
[Q(U−,X)−Q(U+,X)]NdH k−1.

Therefore, N ≤ 0 if and only if (1.8.5) holds. This completes the proof.

1.9 Rapid Oscillations and the Stabilizing Effect of Companion

Balance Laws

Consider a homogeneous system of conservation laws

(1.9.1) divG(U(X)) = 0

and assume that

(1.9.2) [G(W )−G(V )]N = 0

holds for some states V,W in O and N ∈ Sk−1. Then one may construct highly os-
cillatory weak solutions of (1.9.1) on Rk by the following procedure: start with any
finite family of parallel (k− 1)-dimensional hyperplanes, all of them orthogonal to
N, and define a function U on Rk which is constant between adjacent hyperplanes,
taking the values V and W in alternating order. It is clear that U is a weak solution of
(1.9.1), by virtue of (1.9.2) and Theorem 1.8.1.

One may thus construct a sequence of solutions that converges in L∞ weak∗ to
some U of the form U(X) = ρ(X ·N)V +[1−ρ(X ·N)]W , where ρ is any measurable
function from R to [0,1]. It is clear that, in general, such U will not be solutions of
(1.9.1), unless G(·)N happens to be affine along the straight line segment in Rn that
connects V to W . This type of instability distinguishes systems that may support
shock fronts from elliptic systems that cannot.

Assume now G is equipped with a companion Q and [Q(W )−Q(V )]N �= 0. No-
tice that imposing the admissibility condition divQ(U)≤ 0 would disqualify the os-
cillating solutions constructed above, because, by virtue of Theorem 1.8.2, it would
not allow jumps both from V to W and from W to V , in the direction N. Consequently,
inequalities (1.5.13) seem to play a stabilizing role. To what extent this stabilizing is
effective will be a major issue for discussion in the book.

1.10 Notes

The principles of the theory of balance laws were conceived in the process of lay-
ing down the foundations of elasticity, in the 1820’s. Theorem 1.2.1 has a long and
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celebrated history. The crucial discovery that the flux density is necessarily a linear
function of the outward normal was made by Cauchy [1,2]. The argument that the
flux density through a surface may depend on the surface solely through its outward
normal is attributed to Hamel and to Noll [2]. For recent developments of these ideas
in the context of continuum physics, see Gurtin and Martins [1], Degiovanni, Mar-
zocchi and Musesti [1], Marzocchi and Musesti [1,2] and Šilhavý [2,3,4]. The proof
here borrows ideas from Ziemer [1]. With regard to the issue of retrieving the bal-
ance law from its field equation, which is addressed by Theorem 1.3.4, Chen and Frid
[1,5,6] have developed a comprehensive theory of divergence measure fields which
yields a more explicit construction of the trace than by the method presented here,
under the additional mild technical assumption that the surface may be foliated (akin
to Remark 1.3.5). For further developments of that approach, see Chen [9,10], Chen
and Frid [8,9], Frid [7], Chen and Torres [1,2], and Chen, Torres and Ziemer [1,2].
An alternative, less explicit, functional analytic approach is found in Anzellotti [1].
An important question, currently under investigation, is whether the conclusion of
Theorem 1.3.1 still holds in the more general situation where the change of coordi-
nates belongs to some Sobolev space W 1,p or even to the space BV .

The observation that systems of balance laws are endowed with nontrivial com-
panions if and only if they are symmetrizable is due to Godunov [1,2,3], and to
Friedrichs and Lax [1]; see also Boillat [1] and Ruggeri and Strumia [1]. For a discus-
sion of proper truncations of systems of balance laws arising in physics, see Boillat
and Ruggeri [1].

As already noted in the historical introduction, in one space dimension, weak
fronts are first encountered in the acoustic research of Euler while shock fronts were
introduced by Stokes [1]. Fronts in several space dimensions were first studied by
Christoffel [1]. The connection between shock fronts and phase transitions will not
be pursued here. For references to this active area of research see Section 8.7.

Comprehensive expositions of the theory of BV functions can be found in the
treatise of Federer [1], the monographs of Giusti , and Ambrosio, Fusco and Pallara
[1], and the texts of Evans and Gariepy [1] and Ziemer [2]. Theorems 1.7.5 and 1.7.8
are taken from Volpert [1]. The theory of special functions of bounded variation is
elaborated in Ambrosio, Fusco and Pallara [1].

An insightful discussion of the issues raised in Section 1.9 is found in DiPerna
[10]. These questions will be elucidated by the presentation of the method of com-
pensated compactness, in Chapter XVI.



II

Introduction to Continuum Physics

In continuum physics, material bodies are modeled as continuous media whose
motion and equilibrium is governed by balance laws and constitutive relations.

The list of balance laws identifies the theory, for example mechanics, thermome-
chanics, electrodynamics, etc. The referential (Lagrangian) and the spatial (Eulerian)
formulation of the typical balance law will be presented. The balance laws of mass,
momentum, energy, and the Clausius-Duhem inequality, which demarcate contin-
uum thermomechanics, will be recorded.

The type of constitutive relation encodes the nature of material response. The
constitutive equations of thermoelasticity and thermoviscoelasticity will be intro-
duced. Restrictions imposed by the Second Law of thermodynamics, the principle of
material frame indifference, and material symmetry will be discussed.

2.1 Kinematics

Fig. 2.1.1

The ambient space is Rm, of dimension one, two or three. Two copies of Rm shall
be employed, one for the reference space, the other for the physical space. A body
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is identified by a reference configuration, namely an open subset B of the reference
space. Points of B will be called particles. The typical particle will be denoted by x
and time will be denoted by t.

A placement of the body is a bilipschitz homeomorphism of its reference config-
uration B to some open subset of the physical space. A motion of the body over the
time interval (t1, t2) is a Lipschitz map χ of B× (t1, t2) to Rm whose restriction to
each fixed t in (t1, t2) is a placement. Thus, for fixed x ∈ B and t ∈ (t1, t2), χ(x, t)
specifies the position in physical space of the particle x at time t; for fixed t ∈ (t1, t2),
the map χ(·, t) : B →Rm yields the placement of the body at time t; finally, for fixed
x ∈ B, the curve χ(x, ·) : (t1, t2) → Rm describes the trajectory of the particle x in
physical space. See Fig. 2.1.1.

The reference configuration generally renders an abstract representation of the
body. In practice, however, one often identifies the reference space with the physical
space and employs as reference configuration an actual placement of the body, by
identifying material particles with the point in physical space that they happen to
occupy in that particular placement.

The aim of continuum physics is to monitor the evolution of various fields as-
sociated with the body, such as density, stress, temperature, etc. In the referential or
Lagrangian description, one follows the evolution of fields along particle trajecto-
ries, while in the spatial or Eulerian description one monitors the evolution of fields
at fixed position in space. The motion allows us to pass from one formulation to the
other. For example, considering some illustrative field w, we write w = f (x, t) for its
referential description and w = φ(χ, t) for its spatial description. The motion relates
f and φ by φ(χ(x, t), t) = f (x, t), for x ∈ B, t ∈ (t1, t2).

Either formulation has its relative merits, so both will be used here. Thus, in or-
der to keep proper accounting, three symbols would be needed for each field, one
to identify it, one for its referential description, and one for its spatial description
(w, f , and φ in the example, above). However, in order to control the proliferation of
symbols and make the physical interpretation of the equations transparent, the stan-
dard notational convention is to employ the single identifying symbol of the field for
all three purposes. To prevent ambiguity in the notation of derivatives, the following
rules will apply: Partial differentiation with respect to t will be denoted by an overdot
in the referential description and by a t-subscript in the spatial description. Gradient,
differential and divergence1 will be denoted by Grad, ∇ and Div, with respect to the
material variable x, and by grad, d and div, with respect to the spatial variable χ .
Thus, referring again to the typical field w with referential description w = f (x, t)
and spatial description w = φ(χ, t), ẇ will denote ∂ f/∂ t, wt will denote ∂φ/∂ t,
Gradw will denote gradx f , and gradw will denote gradχφ . This notation may appear
confusing at first but the student of the subject soon learns to use it efficiently and
correctly.

The motion χ induces two important kinematical fields, namely the velocity

1 For consistency with matrix notations, gradients will be realized as m-column vectors and
differentials will be m-row vectors, namely the transpose of gradients. As in Chapter I, the
divergence operator will be acting on row vectors.
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(2.1.1) v = χ̇,

in L∞(B×(t1, t2);Rm), and the deformation gradient, which, its name notwithstand-
ing, is the differential of the motion:

(2.1.2) F = ∇χ,

in L∞(B× (t1, t2);Mm×m). In accordance with the definition of placement, we shall
be assuming

(2.1.3) det F ≥ a > 0 a.e.

These fields allow us to pass from spatial to material derivatives; for example, as-
suming w is a Lipschitz field,

(2.1.4) ẇ = wt +(dw)v,

(2.1.5) Gradw = F�gradw, ∇w = (dw)F.

By virtue of the polar decomposition theorem, the local deformation of the
medium, expressed by the deformation gradient F , may be realized as the composi-
tion of a pure stretching and a rotation:

(2.1.6) F = RU,

where the symmetric, positive definite matrix

(2.1.7) U = (F�F)1/2

is called the right stretch tensor and the proper orthogonal matrix R is called the
rotation tensor.

Turning to the rate of change of deformation, we introduce the referential and
spatial velocity gradients (which are actually differentials):

(2.1.8) Ḟ = ∇v, L = dv.

L is decomposed into the sum of the symmetric stretching tensor D and the skew-
symmetric spin tensor W :

(2.1.9) L = D+W, D = 1
2 (L+L�), W = 1

2 (L−L�).

The spin tensor is just a representation of the vorticity vector ω = curlv as a skew
symmetric matrix.

The class of Lipschitz continuous motions allows for shocks but is not sufficiently
broad to also encompass motions involving cavitation in elasticity, vortices in hydro-
dynamics, vacuum in gas dynamics, etc. Even so, we shall continue to develop the
theory under the assumption that motions are Lipschitz continuous, deferring con-
siderations of generalization until such need arises.
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2.2 Balance Laws in Continuum Physics

Consider a motion χ of a body with reference configuration B ⊂ Rm, over a time
interval (t1, t2). The typical balance law of continuum physics postulates that the
change over any time interval in the amount of a certain extensive quantity stored in
any part of the body is balanced by a flux through the boundary and a production in
the interior during that time interval. With space and time fused into space-time, the
above statement yields a balance law of the type considered in Chapter I, ultimately
reducing to a field equation of the form (1.2.3).

To adapt to the present setting the notation of Chapter I, we take space-time
Rm+1 as the ambient space Rk, and set X = B× (t1, t2), X = (x, t). With reference
to (1.4.1), we partition the flux density field A into a n×m matrix-valued spatial part
Ψ and a Rn-valued temporal partΘ , namely A = [−Ψ |Θ ]. In the notation introduced
in the previous section, (1.4.1) now takes the form

(2.2.1) Θ̇ = DivΨ +P.

This is the referential field equation for the typical balance law of continuum physics.
The fieldΘ is the density of the balanced quantity;Ψ is the flux density field through
material surfaces; and P is the production density.

The corresponding spatial field equation may be derived by appealing to Theorem
1.3.1. The map X∗ that carries (x, t) to (χ(x, t), t) is a bilipschitz homeomorphism
of X to some subset X ∗ of Rm+1, with Jacobian matrix (cf. (1.3.2), (2.1.1), and
(2.1.2)):

(2.2.2) J =

[
F v
0 1

]
.

Notice that (1.3.3) is satisfied by virtue of (2.1.3). Theorem 1.3.1 and Remark
1.3.2 now imply that ifΘ ∈ L1

loc (X ;Rn),Ψ ∈ L1
loc

(
X ;Mn×k

)
and P∈ L1

loc (X ;Rn),
then (2.2.1) holds in the sense of distributions on X if and only if

(2.2.3) Θ ∗
t +div(Θ ∗v�) = divΨ ∗+P∗

holds in the sense of distributions on X ∗, where the fields Θ ∗ ∈ L1
loc(X

∗;Rn),
Ψ ∗ ∈ L1

loc(X
∗;Mn×m) and P∗ ∈ L1

loc(X
∗,Rn) are defined by

(2.2.4) Θ ∗ = (det F)−1Θ , Ψ ∗ = (det F)−1ΨF�, P∗ = (det F)−1P.

It has thus been established that the referential (Lagrangian) field equations
(2.2.1) and the spatial (Eulerian) field equations (2.2.3) of the balance laws of con-
tinuum physics are related by (2.2.4) and are equivalent within the function class of
fields considered here.

As we have seen, in order to pass from Lagrangian to Eulerian coordinates, and
vice versa, one has to apply Theorem 1.3.1 for a bilipschitz homeomorphism that is
not given in advance, but is generated by the motion itself, which also affects the
balanced fields. This coupling, which has no bearing on whether the referential and
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the spatial formulations of balance laws are equivalent, has nonetheless fostered an
unwarranted aura of mystery about the issue.

In anticipation of the forthcoming discussion of material symmetry, it is useful to
investigate how the fieldsΘ ,Ψ ,P andΘ ∗,Ψ ∗,P∗ transform under isochoric changes
of the reference configuration of the body, induced by a bilipschitz homeomorphism
x̄ of B to some subset B̄ of another reference space Rm, with Jacobian matrix

(2.2.5) H =
∂ x̄
∂x

, detH = 1,

Fig. 2.2.1

see Figure 2.2.1. By virtue of Theorem 1.3.1, the Lagrangian field equation (2.2.1)
on B will transform into an equation of exactly the same form on B̄, with fields Θ̄ ,
Ψ̄ and P̄ related toΘ ,Ψ and P by

(2.2.6) Θ̄ =Θ , Ψ̄ =ΨH�, P̄ = P.

In the corresponding Eulerian field equations, the fields Θ̄ ∗,Ψ̄ ∗ and P̄∗ are obtained
through (2.2.4): Θ̄ ∗ = (det F̄)−1Θ̄ , Ψ̄ ∗ = (det F̄)−1Ψ̄ F̄� and P̄∗ = (det F̄)−1P̄,
where F̄ denotes the deformation gradient relative to the new reference configura-
tion B̄. By the chain rule, F̄ = FH−1 and so

(2.2.7) Θ̄ ∗ =Θ ∗, Ψ̄ ∗ =Ψ ∗, P̄∗ = P∗,

i.e., as was to be expected, the spatial fields are not affected by changing the reference
configuration of the body.
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In continuum physics, theories are identified by means of the list of balance laws
that apply in their context. The illustrative example of thermomechanics will be pre-
sented in the next section. It should be noted, however, that in addition to balance
laws with physical content there are others that simply express useful, purely kine-
matic properties. Equation (2.1.8), Ḟ = ∇v, which expresses the compatibility be-
tween the fields F and v, provides an example in that direction.

At first reading, one may skip the remainder of this section, which deals with a
special topic for future use, and pass directly to the next Section 2.3.

In what follows, we derive, for m = 3, a set of kinematic balance laws whose
referential form is quite complicated and yet whose spatial form is very simple or
even trivial. This will demonstrate the usefulness of switching from the Lagrangian
to the Eulerian formulation and vice versa.

A smooth function ϕ on the set of F ∈ M3×3 with det F > 0 is called a null
Lagrangian if the Euler-Lagrange equation

(2.2.8) Div
[
∂Fϕ(F)

]
= 0,

associated with the functional
∫
ϕ(F)dx, holds for every smooth deformation gradi-

ent field F . Any null Lagrangian ϕ admits a representation as an affine function

(2.2.9) ϕ(F) = tr(AF)+ tr(BF∗)+α det F +β

of F , its determinant det F , and its adjugate matrix F∗ = (det F)F−1 = (∂F det F)�.
By combining (2.2.8) with Ḟ = ∇v, one deduces that if ϕ is any null Lagrangian

(2.2.9), then the conservation law

(2.2.10) ϕ̇(F) = Div
[
v�∂Fϕ(F)

]
holds for any smooth motion with deformation gradient F and velocity v.

The aim here is to show that, for any null Lagrangian (2.2.9), the “quasi-static”
conservation law (2.2.8) as well as the “kinematic” conservation law (2.2.10) actually
hold even for motions that are merely Lipschitz continuous, i.e.,

(2.2.11) Div
(
∂F F

)
= 0,

(2.2.12) Div
(
∂F F∗)= 0,

(2.2.13) Div
(
∂F det F

)
= 0,

(2.2.14) Ḟ = Div
(
v�∂F F

)
,

(2.2.15) Ḟ∗ = Div
(
v�∂F F∗),
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(2.2.16) ˙det F = Div
(
v�∂F det F

)
,

for any bounded measurable deformation gradient field F and velocity field v.
Clearly, (2.2.11) is obvious and (2.2.14) is just an alternative way of writing the

familiar Ḟ = ∇v. Furthermore, since

(2.2.17)
∂F∗

αi
∂Fjβ

=
3

∑
k=1

3

∑
γ=1

εi jkεαβγFkγ ,

where εi jk and εαβγ are the standard permutation symbols, (2.2.12) follows from
the observation that ∂Fkγ/∂xβ = ∂ 2χk/∂xβ ∂xγ is symmetric in (β ,γ) while εαβγ is
skew-symmetric in (β ,γ).

To see (2.2.13), consider the trivial balance law (2.2.3), with Θ ∗ = 0, Ψ ∗ = I,
P∗ = 0, and write its Lagrangian form (2.2.1), where on account of (2.2.4), Θ = 0,
Ψ = (det F)(F�)−1 = (F∗)� = ∂ det F/∂F , P = 0. Similarly, (2.2.16) is the La-
grangian form (2.2.1) of the trivial balance law (2.2.3), with Θ ∗ = 1,Ψ ∗ = v�,
and P∗ = 0. Indeed, in that case, by virtue of (2.2.4) we deduce that Θ = det F ,
Ψ = (det F)(F−1v)� = (F∗v)� = v�(∂ det F/∂F), and P = 0.

It remains to verify (2.2.15). We begin with the simple conservation law

(2.2.18) (F−1)t = (dx)t = dxt =−d(F−1v),

in Eulerian coordinates, and derive its Lagrangian form (2.2.1), through (2.2.4). Thus
Θ = (det F)F−1 = F∗, while the fluxΨ , in components form, reads

(2.2.19) Ψαiβ =
3

∑
j=1

(det F)
[
F−1
β j F−1

αi −F−1
α j F−1

β i

]
v j .

The quantity in brackets vanishes when α = β and/or i = j; otherwise, it represents a
minor of the matrix F−1 and thus is equal to det F−1 multiplied by the corresponding
entry of the matrix (F−1)−1 = F . Hence, recalling (2.2.17),

(2.2.20) (det F)
[
F−1
β j F−1

αi −F−1
α j F−1

β i

]
=

3

∑
k=1

3

∑
γ=1

εi jkεαβγFkγ =
∂F∗

αi
∂Fjβ

,

and this establishes (2.2.15).

2.3 The Balance Laws of Continuum Thermomechanics

Continuum thermomechanics, which will serve as a representative model throughout
this work, is demarcated by the balance laws of mass, linear momentum, angular
momentum, energy, and entropy whose referential and spatial field equations will
now be introduced.

In the balance law of mass, there is neither flux nor production so the referential
and spatial field equations read
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(2.3.1) ρ̇0 = 0,

(2.3.2) ρt +div(ρv�) = 0,

where ρ0 is the reference density and ρ is the density associated with the motion,
related through

(2.3.3) ρ = ρ0(det F)−1.

Note that (2.3.1) implies that the value of the reference density associated with a
particle does not vary with time: ρ0 = ρ0(x). (2.3.2) is also referred to as the equation
of continuity.

In the balance law of linear momentum, the production is induced by the body
force (per unit mass) vector b, with values in Rm, while the flux is represented by a
stress tensor taking values in Mm×m. The referential and spatial field equations read

(2.3.4) (ρ0v)· = DivS+ρ0b,

(2.3.5) (ρv)t +div(ρvv�) = divT +ρb,

where S denotes the Piola-Kirchhoff stress and T denotes the Cauchy stress, related
by

(2.3.6) T = (det F)−1SF�.

For any unit vector ν , the value of Sν at (x, t) yields the stress (force per unit area)
vector transmitted at the particle x and time t across a material surface with normal ν ;
while the value of Tν at (χ, t) gives the stress vector transmitted at the point χ in
space and time t across a spatial surface with normal ν .

In the balance law of angular momentum, production and flux are the moments
about the origin of the production and flux involved in the balance of linear momen-
tum. Consequently, the referential field equation is

(2.3.7) (χ ∧ρ0v)· = Div(χ ∧S)+χ ∧ρ0b,

where ∧ denotes cross product. Under the assumption that ρ0v, S and ρ0b are in L1
loc

while the motion χ is Lipschitz continuous, we may use (2.3.4), (2.1.1) and (2.1.2)
to reduce (2.3.7) into

(2.3.8) SF� = FS�.

Similarly, the spatial field equation of the balance of angular momentum reduces, by
virtue of (2.3.5), to the statement that the Cauchy stress tensor is symmetric:

(2.3.9) T� = T.

There is no need to perform that calculation since (2.3.9) also follows directly from
(2.3.6) and (2.3.8).
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In the balance law of energy, the energy density is the sum of the (specific)
internal energy (per unit mass) ε and kinetic energy. The production is the sum of
the rate of work of the body force and the heat supply (per unit mass) r. Finally,
the flux is the sum of the rate of work of the stress tensor and the heat flux. The
referential and spatial field equations thus read

(2.3.10) (ρ0ε+ 1
2ρ0|v|2)· = Div(v�S+Q�)+ρ0v�b+ρ0r,

(2.3.11) (ρε+ 1
2ρ|v|2)t +div [(ρε+ 1

2ρ|v|2)v�] = div(v�T +q�)+ρv�b+ρr,

where the referential and spatial heat flux vectors Q and q, with values in Rm, are
related by

(2.3.12) q = (det F)−1FQ.

Finally, the balance law of entropy is expressed by the Clausius-Duhem inequal-
ity

(2.3.13) (ρ0s)· ≥ Div
(

1
θ

Q�
)
+ρ0

r
θ
,

(2.3.14) (ρs)t +div(ρsv�)≥ div
(

1
θ

q�
)
+ρ

r
θ
,

in its referential and spatial form, respectively. The symbol s stands for (specific) en-
tropy and θ denotes the (absolute) temperature. Thus, the entropy flux is just the heat
flux divided by temperature. The term r

θ represents the external entropy supply (per
unit mass), induced by the heat supply r. However, the fact that (2.3.13) and (2.3.14)
are mere inequalities rather than equalities signifies that there may be additional in-
ternal entropy production, which is not specified a priori in the context of this theory,
apart from being constrained to be nonnegative. This last condition is dictated by (and
in fact expresses) the Second Law of thermodynamics. As a nonnegative distribution,
the internal entropy production is necessarily a measure N . Adding N to the right-
hand side turns the Clausius-Duhem inequality into an equality which, by virtue of
Theorem 1.3.3, is the field equation of a balance law. In particular, this demonstrates
that the referential form (2.3.13) and the spatial form (2.3.14) are equivalent even
when the fields are merely locally integrable.

The motion and the entropy (or temperature) field together constitute a thermo-
dynamic process. The fields of internal energy, stress, heat flux, and temperature (or
entropy) are determined from the thermodynamic process by means of constitutive
relations that characterize the material response of the body. In particular, the con-
stitutive equation for the stress is required to satisfy identically the balance law of
angular momentum as expressed by (2.3.8) or (2.3.9). Representative material classes
will be introduced in the following Sections, 2.5 and 2.6.

The field equations of the balance laws of mass, linear momentum and energy,
coupled with the constitutive relations, render a closed system of evolution equations
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that should determine the thermodynamic process from assigned body force field b,
heat supply field r, boundary conditions, and initial conditions.

The remaining balance law of entropy plays a markedly different role. The
Clausius-Duhem inequality (2.3.13) or (2.3.14) is regarded as a criterion of ther-
modynamic admissibility for thermodynamic processes that already comply with the
balance laws of mass, momentum and energy. In this regard, smooth thermodynamic
processes are treated differently from thermodynamic processes with discontinuities.

It is a tenet of continuum thermodynamics that the constitutive relations should
be constrained by the requirement that any smooth thermodynamic process that
balances mass, momentum and energy must be automatically thermodynamically
admissible. To implement this requisite, the first step is to derive from the Clausius-
Duhem inequality the dissipation inequality

(2.3.15) ρ0ε̇−ρ0θ ṡ− tr(SḞ�)− 1
θ

Q ·G ≤ 0,

(2.3.16) ρε̇−ρθ ṡ− tr(T D)− 1
θ

q ·g ≤ 0,

in Lagrangian or Eulerian form, respectively, which does not involve the extrane-
ously assigned body force and heat supply. The new symbols G and g appearing in
(2.3.15) and (2.3.16) denote the temperature gradient:

(2.3.17) G = Gradθ , g = gradθ , G = F�g.

To establish (2.3.15), one first eliminates the body force b between the field equa-
tions (2.3.1), (2.3.4) and (2.3.10) of the balance laws of mass, linear momentum and
energy to get

(2.3.18) ρ0ε̇ = tr(SḞ�)+DivQ�+ρ0r,

and then eliminates the heat supply r between the above equation and the Clausius-
Duhem inequality (2.3.13). Similarly, (2.3.16) is obtained by combining (2.3.2),
(2.3.5) and (2.3.11) with (2.3.14) in order to eliminate b and r. Of course, (2.3.15)
and (2.3.16) are equivalent: either one implies the other by virtue of (2.3.3), (2.3.6),
(2.3.17), (2.1.9) and (2.3.9). In the above calculations it is crucial that the underly-
ing thermodynamic process is assumed smooth, because this allows us to apply the
classical product rule of differentiation on terms like |v|2, v�S, θ−1Q etc., which in-
duces substantial cancellation. It should be emphasized that the dissipation inequal-
ities (2.3.15) and (2.3.16) are generally meaningless for thermodynamic processes
with discontinuities.

The constitutive equations are required to satisfy identically the dissipation in-
equality (2.3.15) or (2.3.16), which will guarantee that any smooth thermodynamic
process that balances mass, momentum and energy is automatically thermodynam-
ically admissible. The implementation of this requisite for specific material classes
will be demonstrated in the following Sections 2.5 and 2.6.
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Beyond taking care of smooth thermodynamic processes, as above, the Clausius-
Duhem inequality is charged with the additional responsibility of certifying the ther-
modynamic admissibility of discontinuous processes. This is a central issue, with
many facets, which will surface repeatedly in the remainder of the book.

When dealing with continuous media with complex structure, e.g., mixtures of
different materials, it becomes necessary to replace the Clausius-Duhem inequality
with a more general entropy inequality in which the entropy flux is no longer taken
a priori as heat flux divided by temperature but is instead specified by an individual
constitutive relation. It turns out, however, that in the context of thermoelastic or
thermoviscoelastic media, which are the main concern of this work, the requirement
that such an inequality must hold identically for any smooth thermodynamic process
that balances mass, momentum and energy implies in particular that entropy flux is
necessarily heat flux divided by temperature, so that we fall back to the classical
Clausius-Duhem inequality.

To prepare the ground for the forthcoming investigation of material symmetry,
it is necessary to discuss the law of transformation of the fields involved in the bal-
ance laws when the reference configuration undergoes a change induced by an iso-
choric bilipshitz homeomorphism x̄, with unimodular Jacobian matrix H (2.2.5); see
Fig. 2.2.1. The deformation gradient F and the stretching tensor D (cf. (2.1.9)) will
transform into new fields F̄ and D̄:

(2.3.19) F̄ = FH−1, D̄ = D.

The reference density ρ0 , internal energy ε , Piola-Kirchhoff stress S, entropy s, tem-
perature θ , referential heat flux vector Q, density ρ , Cauchy stress T , and spatial
heat flux vector q, involved in the balance laws, will also transform into new fields
ρ̄0, ε̄, S̄, s̄, θ̄ , Q̄, ρ̄, T̄ , and q̄ according to the rule (2.2.6) or (2.2.7), namely,

(2.3.20) ρ̄0 = ρ0, ε̄ = ε, S̄ = SH�, s̄ = s, θ̄ = θ , Q̄ = HQ,

(2.3.21) ρ̄ = ρ, T̄ = T, q̄ = q.

Also the referential and spatial temperature gradients G and g will transform into
Ḡ and ḡ with

(2.3.22) Ḡ = (H−1)�G, ḡ = g.

2.4 Material Frame Indifference

The body force and heat supply are usually induced by external factors and are as-
signed in advance, while the fields of internal energy, stress, entropy and heat flux
are determined by the thermodynamic process. Motions may influence these fields
inasmuch as they deform the body: rigid motions, which do not change the distance
between particles, should have no effect on internal energy, temperature or referential
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heat flux and should affect the stress tensor in such a manner that the resulting stress
vector, observed from a frame attached to the moving body, looks fixed. This re-
quirement is postulated by the fundamental principle of material frame indifference
which will now be stated with precision

Consider any two thermodynamic processes (χ,s) and (χ#,s#) of the body such
that the entropy fields coincide, s# = s, while the motions differ by a rigid (time
dependent) rotation2:

(2.4.1) χ#(x, t) = O(t)χ(x, t), x ∈ B, t ∈ (t1, t2),

(2.4.2) O�(t)O(t) = O(t)O�(t) = I, det O(t) = 1, t ∈ (t1, t2).

Note that the fields of deformation gradient F, F#, spatial velocity gradient L, L# and
stretching tensor D, D# (cf. (2.1.8), (2.1.9)) of the two processes (χ,s), (χ#,s#) are
related by

(2.4.3) F# = OF, L# = OLO�+ ȮO�, D# = ODO�.

Let (ε,S,θ ,Q) and (ε#,S#,θ #,Q#) denote the fields for internal energy, Piola-
Kirchhoff stress, temperature and referential heat flux associated with the processes
(χ,s) and (χ#,s#). The principle of material frame indifference postulates:

(2.4.4) ε# = ε, S# = OS, θ # = θ , Q# = Q.

From (2.4.4), (2.3.17) and (2.4.3) it follows that the referential and spatial tempera-
ture gradients G, G# and g, g# of the two processes are related by

(2.4.5) G# = G, g# = Og.

Furthermore, from (2.3.6), (2.3.12) and (2.4.3) we deduce the following relations
between the Cauchy stress tensors T, T # and the spatial heat flux vectors q, q# of the
two processes:

(2.4.6) T # = OTO�, q# = Oq.

The principle of material frame indifference should be reflected in the constitu-
tive relations of continuous media, irrespectively of the nature of material response.
Illustrative examples will be considered in the following two sections.

2.5 Thermoelasticity

In the framework of continuum thermomechanics, a thermoelastic medium is identi-
fied by the constitutive assumption that, for any fixed particle x and any motion, the

2 An alternative, albeit equivalent, realization of this setting is to visualize a single thermo-
dynamic process monitored by two observers attached to individual coordinate frames that
rotate relative to each other. When adopting that approach, certain authors are allowing for
reflections, in addition to proper rotations.



2.5 Thermoelasticity 37

value of the internal energy ε , the Piola-Kirchhoff stress S, the temperature θ , and
the referential heat flux vector Q, at x and time t, is determined solely by the value at
(x, t) of the deformation gradient F , the entropy s, and the temperature gradient G,
through constitutive equations

(2.5.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε = ε̂(F,s,G),

S = Ŝ(F,s,G),

θ = θ̂(F,s,G),

Q = Q̂(F,s,G),

where ε̂, Ŝ, θ̂ and Q̂ are smooth functions defined on the subset of Mm×m ×R×Rm

with detF > 0. Moreover, θ̂(F,s,G)> 0. When the thermoelastic medium is homo-
geneous, the same functions ε̂, Ŝ, θ̂ and Q̂ and the same value ρ0 of the reference
density apply to all particles x ∈ B.

The Cauchy stress T and the spatial heat flux q are also determined by consti-
tutive equations of the same form, which may be derived from (2.5.1) and (2.3.6),
(2.3.12). When employing the spatial description of the motion, it is natural to sub-
stitute on the list (2.5.1) the constitutive equations of T and q for the constitutive
equations of S and Q; also on the list (F,s,G) of the state variables to replace the ref-
erential temperature gradient G with the spatial temperature gradient g (cf. (2.3.17)).

The above constitutive equations will have to comply with the conditions stip-
ulated earlier. To begin with, as postulated in Section 2.3, every smooth thermody-
namic process that balances mass, momentum and energy must satisfy identically
the Clausius-Duhem inequality (2.3.13) or, equivalently, the dissipation inequality
(2.3.15). Substituting from (2.5.1) into (2.3.15) yields

(2.5.2) tr [(ρ0∂F ε̂− Ŝ)Ḟ�]+ρ0(∂sε̂− θ̂)ṡ+ρ0∂Gε̂ Ġ− θ̂−1Q̂ ·G ≤ 0.

It is clear that by suitably controlling the body force b and the heat supply r one may
construct smooth processes that balance mass, momentum and energy and attain at
some point (x, t) arbitrarily prescribed values for F, s, G, Ḟ , ṡ and Ġ, subject only to
the constraint det F > 0. Hence (2.5.2) cannot hold identically unless the constitutive
relations (2.5.1) are of the following special form:

(2.5.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε = ε̂(F,s),

S = ρ0∂F ε̂(F,s),

θ = ∂sε̂(F,s),

Q = Q̂(F,s,G),

(2.5.4) Q̂(F,s,G) ·G ≥ 0.
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Thus the internal energy may depend on the deformation gradient and on the entropy
but not on the temperature gradient. The constitutive equations for stress and tem-
perature are induced by the constitutive equation of internal energy, through caloric
relations, and are likewise independent of the temperature gradient. Only the heat
flux may depend on the temperature gradient, subject to the condition (2.5.4) which
implies that heat always flows from the hotter to the colder part of the body.

Another requirement on constitutive relations is that they observe the principle
of material frame indifference, formulated in Section 2.4. By combining (2.4.4) and
(2.4.3)1 with (2.5.3), we deduce that the functions ε̂ and Q̂ must satisfy the conditions

(2.5.5) ε̂(OF,s) = ε̂(F,s), Q̂(OF,s,G) = Q̂(F,s,G),

for all proper orthogonal matrices O. A simple calculation verifies that when (2.5.5)
hold, then the remaining conditions in (2.4.4) will be automatically satisfied, by
virtue of (2.5.3)2 and (2.5.3)3 .

To see the implications of (2.5.5), we apply it with O = R�, where R is the rota-
tion tensor in (2.1.6), to deduce

(2.5.6) ε̂(F,s) = ε̂(U,s), Q̂(F,s,G) = Q̂(U,s,G).

It is clear that, conversely, if (2.5.6) hold then (2.5.5) will be satisfied for any proper
orthogonal matrix O. Consequently, the principle of material frame indifference is
completely encoded in the statement (2.5.6) that the internal energy and the referen-
tial heat flux vector may depend on the deformation gradient F solely through the
right stretch tensor U .

When the spatial description of motion is to be employed, the constitutive equa-
tion for the Cauchy stress

(2.5.7) T = ρ∂F ε̂(F,s)F�,

which follows from (2.3.6), (2.3.3) and (2.5.3)2 , will satisfy the principle of material
frame indifference (2.4.6)1 so long as (2.5.6) hold. For the constitutive equation of
the spatial heat flux vector

(2.5.8) q = q̂(F,s,g),

the principle of material frame indifference requires (recall (2.4.6)2, (2.4.3)1 and
(2.4.5)2):

(2.5.9) q̂(OF,s,Og) = Oq̂(F,s,g),

for all proper orthogonal matrices O.
The final general requirement for constitutive relations is that the Piola-Kirchhoff

stress satisfy (2.3.8), for the balance of angular momentum. This imposes no addi-
tional restrictions, however, because a simple calculation reveals that once (2.5.5)1
holds, S computed through (2.5.3)2 will automatically satisfy (2.3.8). Thus in ther-
moelasticity, material frame indifference implies balance of angular momentum.
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The constitutive equations undergo further reduction when the medium is en-
dowed with material symmetry. Recall from Section 2.3 that when the reference
configuration of the body is changed by means of an isochoric bilipschitz homeo-
morphism x̄ with unimodular Jacobian matrix H (2.2.5), then the fields transform
according to the rules (2.3.19), (2.3.20), (2.3.21) and (2.3.22). It follows, in partic-
ular, that any medium that is thermoelastic relative to the original reference config-
uration will stay so relative to the new one, as well, even though the constitutive
functions will generally change. Any isochoric transformation of the reference con-
figuration that leaves invariant the constitutive functions for ε,T and θ manifests
material symmetry of the medium. Consider any such transformation and let H be
its Jacobian matrix. By virtue of (2.3.19)1 , (2.3.20)2 and (2.5.3)1 , the constitutive
function ε̂ of the internal energy will remain invariant, provided

(2.5.10) ε̂(FH−1,s) = ε̂(F,s).

A simple calculation verifies that when (2.5.10) holds, the constitutive functions for
T and θ , determined through (2.5.7) and (2.5.3), are automatically invariant under
that H. On account of (2.3.19)1 and (2.3.22)2, the constitutive function q̂ of the heat
flux will be invariant under H if

(2.5.11) q̂(FH−1,s,g) = q̂(F,s,g).

It is clear that the set of matrices H with determinant one for which (2.5.10)
and (2.5.11) hold forms a subgroup G of the special linear group SL(m), called the
symmetry group of the medium. In certain media, G may contain only the identity
matrix I in which case material symmetry is minimal. When G is nontrivial, it dic-
tates through (2.5.10) and (2.5.11) conditions on the constitutive functions of the
medium.

Maximal material symmetry is attained when G ≡ SL(m). In that case the
medium is a thermoelastic fluid. Applying (2.5.10) and (2.5.11) with selected ma-
trix H = (det F)−1/mF ∈ SL(m), we deduce that ε̂ and q̂ may depend on F solely
through its determinant or, equivalently by virtue of (2.3.3), through the density ρ :

(2.5.12) ε = ε̃(ρ,s), q = q̃(ρ,s,g).

The Cauchy stress may then be obtained from (2.5.7) and the temperature from
(2.5.3)3 . The calculation gives

(2.5.13) T =−pI,

(2.5.14) p = ρ2∂ρ ε̃(ρ,s), θ = ∂sε̃(ρ,s).

In the standard texts on thermodynamics, (2.5.14) are usually presented in the guise
of the Gibbs relation:

(2.5.15) θds = dε+ pd
(

1
ρ

)
.
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The constitutive function q̃ in (2.5.12) must also satisfy the requirement (2.5.9) of
material frame indifference which now assumes the simple form

(2.5.16) q̃(ρ,s,Og) = Oq̃(ρ,s,g),

for all proper orthogonal matrices O. The final reduction of q̃ that satisfies (2.5.16) is

(2.5.17) q = κ(ρ,s, |g|)g,

where κ is a scalar-valued function. We have thus shown that in a thermoelastic
fluid the internal energy depends solely on density and entropy. The Cauchy stress
is a hydrostatic pressure, likewise depending only on density and entropy. The heat
flux obeys Fourier’s law with thermal conductivity κ which may vary with density,
entropy and the magnitude of the heat flux.

The simplest classical example of a thermoelastic fluid is the ideal gas, which is
identified by Boyle’s law

(2.5.18) p = Rρθ ,

combined with the constitutive assumption that internal energy is proportional to
temperature:

(2.5.19) ε = cθ .

In (2.5.18), R is the universal gas constant divided by the molecular weight of the
gas, and c in (2.5.19) is the specific heat. The constant γ = 1+R/c is the adiabatic
exponent. The classical kinetic theory predicts γ = 1+ 2/n, where n is the number
of degrees of freedom of the gas molecule. The maximum value γ = 5/3 is attained
when the gas is monatomic.

Combining (2.5.18) and (2.5.19) with (2.5.13) and (2.5.14), one easily deduces
that the constitutive relations for the ideal gas, in normalized units, read

(2.5.20) ε = cργ−1e
s
c , p = Rργe

s
c , θ = ργ−1e

s
c .

The ideal gas model provides a satisfactory description of the behavior of ordi-
nary gases, over a wide range of density and temperature, but it becomes less reliable
at extreme values of the state variables, especially near the point of transition to the
liquid phase. Accordingly, a large number of equations have been proposed, with
theoretical or empirical provenances, that would apply to “real gases”. The most
classical example is the van der Waals gas, in which (2.5.18) is replaced by

(2.5.21) (p+aρ2)(1−bρ) = Rρθ ,

where a and b are positive parameters. It corresponds to constitutive relations
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(2.5.22)

ε = c
(

ρ
1−bρ

)γ−1

e
s
c +aρ, p = R

(
ρ

1−bρ

)γ
e

s
c , θ =

(
ρ

1−bρ

)γ−1

e
s
c .

A more exotic model is the Chaplygin gas, with equations of state in the form

(2.5.23)

ε =
1

2ρ2 f (s)− 1
ρ

g(s)+h(s), p = g(s)− 1
ρ

f (s), θ =
1

2ρ2 f ′(s)− 1
ρ

g′(s)+h′(s).

Notice that at low density the pressure becomes negative, which runs counter to con-
ventional wisdom. However, it is this feature that renders the Chaplygin gas attractive
to cosmologists, as they are relating it to “dark matter”.

An isotropic thermoelastic solid is a thermoelastic material with symmetry group
G the proper orthogonal group SO(m). In that case, to obtain the reduced form of the
internal energy function ε̂ we combine (2.5.10) with (2.5.6)1 . Recalling (2.1.7) we
conclude that

(2.5.24) ε̂(OUO�,s) = ε̂(U,s),

for any proper orthogonal matrix O. In particular, we apply (2.5.24) for the proper
orthogonal matrices O that diagonalize the symmetric matrix U : OUO� = Λ . This
establishes that, in consequence of material frame indifference and material symme-
try, the internal energy of an isotropic thermoelastic solid may depend on F solely as
a symmetric function of the eigenvalues of the right stretch tensor U . Equivalently,

(2.5.25) ε = ε̃(J1, · · · ,Jm,s),

where (J1, · · · ,Jm) are invariants of U . In particular, when m = 3, one may employ
J1 = |F |2, J2 = |F∗|2 and J3 = det F , where F∗ is the adjugate matrix of F . The
reduced form of the Cauchy stress for the isotropic thermoelastic solid, computed
from (2.5.25) and (2.5.7), is recorded in the references cited in Section 2.9. The
reader may also find there explicit examples of constitutive functions for specific
compressible or incompressible isotropic elastic solids.

In an alternative, albeit equivalent, formulation of thermoelasticity, one regards
the temperature θ , rather than the entropy s, as a state variable and writes a consti-
tutive equation for s rather than for θ . In that case it is also expedient to monitor the
Helmholtz free energy

(2.5.26) ψ = ε−θs

in the place of the internal energy ε . One thus starts out with constitutive equations

(2.5.27)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ = ψ̄(F,θ ,G),

S = S̄(F,θ ,G),

s = s̄(F,θ ,G),

Q = Q̄(F,θ ,G),
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in the place of (2.5.1). The requirement that all smooth thermodynamic processes
that balance mass, momentum and energy must satisfy identically the dissipation
inequality (2.3.15) reduces (2.5.27) to

(2.5.28)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ = ψ̄(F,θ),

S = ρ0∂F ψ̄(F,θ),

s =−∂θ ψ̄(F,θ),

Q = Q̄(F,θ ,G),

(2.5.29) Q̄(F,θ ,G) ·G ≥ 0,

which are the analogs 3 of (2.5.3), (2.5.4). The principle of material frame indiffer-
ence and the presence of material symmetry further reduce the above constitutive
equations. In particular, ψ̄ satisfies the same conditions as ε̂ , above.

We conclude the discussion of thermoelasticity with remarks on special thermo-
dynamic processes. A process is called adiabatic if the heat flux Q vanishes identi-
cally; it is called isothermal when the temperature field θ is constant; and it is called
isentropic if the entropy field s is constant. Note that (2.5.29) implies Q̄(F,θ ,0) = 0
so, in particular, all isothermal processes are adiabatic. Materials that are poor con-
ductors of heat are commonly modeled as nonconductors of heat, characterized by
the constitutive assumption Q̂ ≡ 0. Thus every thermodynamic process of a noncon-
ductor is adiabatic.

In an isentropic process, the entropy is set equal to a constant, s ≡ s̄; the consti-
tutive relations for the temperature and the heat flux are discarded and those for the
internal energy and the stress are restricted to s = s̄:

(2.5.30)

⎧⎨⎩ ε = ε̂(F, s̄),

S = ρ0∂F ε̂(F, s̄).

In particular, for an ideal gas, on account of (2.5.20),

(2.5.31) ε =
κ

γ−1
ργ−1, p = κργ ,

where κ = Rexp(s̄/c).
In an isentropic process, the motion is determined solely by the balance laws

of mass and momentum, in conjunction with the constitutive relations (2.5.30). This
may create the impression that isentropic thermoelasticity is isomorphic to the purely
mechanical theory of hyperelasticity. However, this is not entirely accurate, because

3 The constitutive equations in the form (2.5.3) are called caloric and in the form (2.5.28)
are called thermal.
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isentropic thermoelasticity inherits from thermodynamics the Second Law in the fol-
lowing guise: To sustain an isentropic process, one must control the heat supply r
in such a manner that the ensuing motion, under the constant entropy field, satis-
fies the energy balance law (2.3.10). When the process is also adiabatic, Q = 0, the
Clausius-Duhem inequality (2.3.13) reduces to r ≤ 0, in which case (2.3.10) implies

(2.5.32) (ρ0ε+ 1
2ρ0|v|2)· ≤ Div(v�S)+ρ0v�b.

The Eulerian form of this inequality is

(2.5.33) (ρε+ 1
2ρ|v|2)t + div [(ρε+ 1

2ρ|v|2)v�]≤ div(v�T )+ρv�b.

The above inequalities play in isentropic thermoelasticity the role played by the
Clausius-Duhem inequality (2.3.13), (2.3.14) in general thermoelasticity: for smooth
motions, they hold identically, as equalities, by virtue of (2.3.4) and (2.5.30). By con-
trast, in the context of motions that are merely Lipschitz continuous, they are extra
conditions serving as the test of thermodynamic admissibility of the motion.

In practice, the isentropic theory is employed when it is judged that the effect of
entropy fluctuation is negligible. This is not an uncommon situation, for the follow-
ing reason. In smooth adiabatic processes, Q = 0, and if in addition r = 0, (2.3.18) in
conjunction with (2.5.3) yields ṡ = 0. Thus, in the absence of heat supply, adiabatic
processes starting out isentropically stay isentropic for as long as they are smooth.
The smoothness requirements are met when F, v and s are merely Lipschitz con-
tinuous, which allows for processes with weak fronts, though not with shocks. As
we shall see later, even after shocks develop, so long as they remain weak, entropy
fluctuation is small (of third order) in comparison to the fluctuation of density and
velocity, and may thus be neglected.

In isothermal thermoelasticity, θ is set equal to a constant θ̂ , the heat supply r is
regulated to balance the energy equation, and the motion is determined solely by the
balance laws of mass and momentum. The only constitutive equations needed are

(2.5.34)

⎧⎨⎩ψ = ψ̄(F, θ̂),

S = ρ0∂F ψ̄(F, θ̂),

namely the analogs of (2.5.30). The implications of the Second Law of thermo-
dynamics are seen, as before, by combining (2.3.10) with (2.3.13), assuming now
θ = θ̂ =constant. This yields

(2.5.35) (ρ0ψ+ 1
2ρ0|v|2). ≤ Div(v�S)+ρ0v�b,

with Eulerian form

(2.5.36) (ρψ+
1
2
ρ|v|2)t +div [(ρψ+

1
2
ρ|v|2)v�]≤ div(v�T )+ρv�b,

which should be compared to (2.5.32) and (2.5.33). We conclude that isothermal
and isentropic thermoelasticity are essentially isomorphic, with the Helmholtz free
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energy, at constant temperature, in the former, playing the role of internal energy, at
constant entropy, in the latter.

In an isothermal process θ = θ̂ for an ideal gas,

(2.5.37) ψ = klogρ, p = kρ ,

where k = Rθ̂ .

2.6 Thermoviscoelasticity

We now consider an extension of thermoelasticity that encompasses materials with
internal dissipation induced by viscosity of the rate type. The internal energy ε , the
Piola-Kirchhoff stress S, the temperature θ , and the referential heat flux vector Q
may now depend not only on the deformation gradient F , the entropy s and the
temperature gradient G, as in (2.5.1), but also on the time rate Ḟ of the deformation
gradient:

(2.6.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε = ε̂(F, Ḟ ,s,G),

S = Ŝ(F, Ḟ ,s,G),

θ = θ̂(F, Ḟ ,s,G),

Q = Q̂(F, Ḟ ,s,G).

As stipulated in Section 2.3, every smooth thermodynamic process that bal-
ances mass, momentum and energy must satisfy identically the dissipation inequality
(2.3.15). Substituting from (2.6.1) into (2.3.15) yields

(2.6.2)

tr [(ρ0∂F ε̂− Ŝ)Ḟ�]+ tr(ρ0∂Ḟ ε̂ F̈�)+ρ0(∂sε̂− θ̂)ṡ+ρ0∂Gε̂Ġ− θ̂−1Q̂ ·G ≤ 0.

By suitably controlling the body force b and heat supply r, one may construct smooth
processes that balance mass, momentum and energy and attain at some point (x, t)
arbitrarily prescribed values for F, Ḟ , s, G, F̈ , ṡ and Ġ, subject only to the constraint
det F > 0. Consequently, the inequality (2.6.2) cannot hold identically unless the
constitutive functions in (2.6.1) have the following special form:

(2.6.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε = ε̂(F,s),

S = ρ0∂F ε̂(F,s)+Z(F, Ḟ ,s,G),

θ = ∂sε̂(F,s),

Q = Q̂(F, Ḟ ,s,G),
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(2.6.4) tr [Z(F, Ḟ ,s,G)Ḟ�]+
1

θ̂(F,s)
Q̂(F, Ḟ ,s,G) ·G ≥ 0.

Comparing (2.6.3) with (2.5.3) we observe that, again, the internal energy, which
may depend solely on the deformation gradient and the entropy, determines the con-
stitutive equation for the temperature by the same caloric equation of state. On the
other hand, the constitutive equation for the stress now includes the additional term
Z which contributes the viscous effect and induces internal dissipation manifested in
(2.6.4).

The constitutive functions must be reduced further to comply with the principle
of material frame indifference, postulated in Section 3.4. In particular, frame indif-
ference imposes on internal energy the same condition (2.5.5)1 as in thermoelasticity,
and the resulting reduction is, of course, the same:

(2.6.5) ε̂(F,s) = ε̂(U,s),

where U denotes the right stretch tensor (2.1.7). Furthermore, when (2.6.5) holds,
the constitutive equation for the temperature, derived through (2.6.3)3 , and the term
ρ0∂F ε̂(F,s), in the constitutive equation for the stress, will be automatically frame
indifferent. It remains to investigate the implications of frame indifference on Z and
on the heat flux. Since the analysis will focus eventually on thermoviscoelastic fluids,
it will be expedient to switch at this point from S and Q to T and q; also to replace, on
the list (F, Ḟ ,s,G) of state variables, Ḟ with L (cf. (2.1.8)) and G with g (cf. (2.3.17)).
We thus write

(2.6.6) T = ρ∂F ε̂(F,s)F�+ Ẑ(F,L,s,g),

(2.6.7) q = q̂(F,L,s,g).

Recalling (2.4.3) and (2.4.5), we deduce that the principle of material frame indiffer-
ence requires

(2.6.8)

⎧⎨⎩ Ẑ(OF,OLO�+ ȮO�,s,Og) = OẐ(F,L,s,g)O�

q̂(OF,OLO�+ ȮO�,s,Og) = Oq̂(F,L,s,g),

for any proper orthogonal matrix O. In particular, for any fixed state (F,L,s,g)
with spin W (cf. (2.1.9)), we may pick O(t) = exp(−tW ), in which case O(0) = I,
Ȯ(0)=−W . It then follows from (2.6.8) that Ẑ and q̂ may depend on L solely through
its symmetric part D and hence (2.6.6) and (2.6.7) may be written as

(2.6.9) T = ρ∂F ε̂(F,s)F�+ Ẑ(F,D,s,g),

(2.6.10) q = q̂(F,D,s,g),

with Ẑ and q̂ such that
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(2.6.11)

⎧⎨⎩ Ẑ(OF,ODO�,s,Og) = OẐ(F,D,s,g)O�

q̂(OF,ODO�,s,Og) = Oq̂(F,D,s,g),

for all proper orthogonal matrices O.
For the balance law of angular momentum (2.3.9) to be satisfied, Ẑ must also be

symmetric: Ẑ� = Ẑ. Notice that in that case the dissipation inequality (2.6.4) may be
rewritten in the form

(2.6.12) tr [Ẑ(F,D,s,g)D]+
1

θ̂(F,s)
q̂(F,D,s,g) ·g ≥ 0.

Further reduction of the constitutive functions results when the medium is en-
dowed with material symmetry. The rules of transformation of the fields under
isochoric change of the reference configuration are recorded in (2.3.19), (2.3.20),
(2.3.21) and (2.3.22). As in Section 2.5, we introduce here the symmetry group G of
the material, namely the subgroup of SL(m) formed by the Jocobian matrices H of
those isochoric transformations x̄ of the reference configuration that leave the consti-
tutive functions for ε, T, θ and q invariant. Thus, G is the set of all H ∈ SL(m) with
the property

(2.6.13)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ε̂(FH−1,s) = ε̂(F,s),

Ẑ(FH−1,D,s,g) = Ẑ(F,D,s,g),

q̂(FH−1,D,s,g) = q̂(F,D,s,g).

The material will be called a thermoviscoelastic fluid when G ≡ SL(m). In that
case, applying (2.6.13) with H = (det F)−1/mF ∈ SL(m), we conclude that ε̂, Ẑ and
q̂ may depend on F solely through its determinant or, equivalently, through the den-
sity ρ . Therefore, the constitutive equations of the thermoviscoelastic fluid reduce to

(2.6.14)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε = ε̃(ρ,s),

T =−pI + Z̃(ρ,D,s,g),

p = ρ2∂ρ ε̃(ρ,s), θ = ∂sε̃(ρ,s),

q = q̃(ρ,D,s,g).

For frame indifference, Z̃ and q̃ should still satisfy, for any proper orthogonal ma-
trix O, the conditions

(2.6.15)

⎧⎨⎩ Z̃(ρ,ODO�,s,Og) = OZ̃(ρ,D,s,g)O�,

q̃(ρ,ODO�,s,Og) = Oq̃(ρ,D,s,g),

which follow from (2.6.11). It is possible to write down explicitly the form of the
most general functions Z̃ and q̃ that conform with (2.6.15). Here, it will suffice to
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record the most general constitutive relations, for m=3, that are compatible with
(2.6.15) and are linear in (D,g), namely

(2.6.16) T =−p(ρ,s)I +λ (ρ,s)(trD)I +2μ(ρ,s)D,

(2.6.17) q = κ(ρ,s)g,

which identify the compressible, heat-conducting Newtonian fluid.
The bulk viscosity λ + 2

3μ , shear viscosity μ and thermal conductivity κ of a
Newtonian fluid are constrained by the inequality (2.6.12), which here reduces to

(2.6.18) λ (ρ,s)(trD)2 +2μ(ρ,s)trD2 +
κ(ρ,s)
θ̃(ρ,s)

|g|2 ≥ 0.

This inequality will hold for arbitrary D and g if and only if

(2.6.19) μ(ρ,s)≥ 0, 3λ (ρ,s)+2μ(ρ,s)≥ 0, κ(ρ,s)≥ 0.

For actual dissipation, at least one of μ , 3λ +2μ and κ should be strictly positive.

2.7 Incompressibility

Many fluids, and even certain solids, such as rubber, may be stretched or sheared
with relative ease, while exhibiting disproportionately high stiffness when subjected
to deformations that would change their volume. Continuum physics treats such ma-
terials as incapable of sustaining any volume change, so that the density ρ stays
constant along particle trajectories. The incompressibility condition

(2.7.1) det F = 1, trD = divv� = 0,

in Lagrangian or Eulerian coordinates, is then appended to the system of balance
laws, as a kinematic constraint. In return, the stress tensor is decomposed into two
parts:

(2.7.2) S =−p(F−1)�+ Ŝ, T =−pI + T̂ ,

where Ŝ or T̂ , called the extra stress, is determined, as before, by the thermodynamic
process, through constitutive equations, while the other term, which represents a hy-
drostatic pressure, is not specified by a constitutive relation but is to be determined,
together with the thermodynamic process, by solving the system of balance laws of
mass, momentum and energy, subject to the kinematic constraint (2.7.1).

The salient property of the hydrostatic pressure is that it produces no work under
isochoric deformations. To motivate (2.7.2) by means of the Second Law of thermo-
dynamics, let us consider an incompressible thermoelastic material with constitutive
equations for ε,θ and Q as in (2.5.1), but only defined for F with det F = 1, and
S unspecified. The dissipation inequality again implies (2.5.2) with Ŝ replaced by
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S, ∂F ε̂ replaced by the tangential derivative ∂ τF ε̂ on the manifold det F = 1, and Ḟ
constrained to lie on the subspace

(2.7.3) tr [(F−1)�Ḟ�] = tr [(F∗)�Ḟ�] = tr [(∂F det F)Ḟ�] = ˙det F = 0.

Therefore, tr [(ρ0∂ τF ε̂−S)Ḟ�]≤ 0 for all Ḟ satisfying (2.7.3) if and only if

(2.7.4) S =−p(F−1)�+ρ0∂ τF ε̂(F,s),

for some scalar p.
In incompressible Newtonian fluids, the stress is still given by (2.6.16), where,

however, ρ is constant and p(ρ,s) is replaced by the undetermined hydrostatic pres-
sure p. When the incompressible fluid is inviscid, the entire stress tensor is subsumed
by the undetermined hydrostatic pressure.

2.8 Relaxation

The state variables of continuum physics, introduced in the previous sections, repre-
sent statistical averages of certain physical quantities, such as velocity, translational
kinetic energy, rotational kinetic energy, chemical energy etc., associated with the
molecules of the material. These quantities evolve and eventually settle, or “relax”,
to states in local equilibrium, characterized by equipartition of energy and other con-
ditions dictated by the laws of statistical physics. The constitutive relations of ther-
moelasticity, considered in earlier sections, are relevant so long as local equilibrium
is attained in a time scale much shorter than the time scale of the gross motion of
the material body. In the opposite case, where the relaxation time is of the same
order of magnitude as the time scale of the motion, relaxation mechanisms must
be accounted for even within the framework of continuum physics. This is done by
introducing additional, internal state variables, measuring the deviation from local
equilibrium. The states in local equilibrium span a manifold embedded in the ex-
tended state space. The internal state variables satisfy special constitutive relations,
in the form of balance laws with dissipative source terms that act to drive the state
vector towards local equilibrium.

An enormous variety of relaxation theories are discussed in the literature; the
reader may catch a glimpse of their common underlying structure through the fol-
lowing example.

We consider a continuous medium that does not conduct heat and whose isen-
tropic response is governed by constitutive relations

(2.8.1) ε = ε̂(F,Σ),

(2.8.2) S = P(F)+ρ0Σ,

for the internal energy and the Piola-Kirchhoff stress, where Σ is an internal variable
taking values in Mm×m and satisfying a balance law of the form
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(2.8.3) ρ0Σ̇ =
1
τ
[Π(Σ)−F ].

Thus, the material exhibits instantaneous elastic response, embodied in the term
P(F), combined with viscous response induced by relaxation of Σ. The positive con-
stant τ is called the relaxation time.

The postulate that any smooth motion of the medium that balances linear mo-
mentum (2.3.4) must satisfy identically the entropy inequality (2.5.32) yields

(2.8.4) S = ρ0∂F ε̂(F,Σ),

(2.8.5) tr
[
∂Σε̂(F,Σ)Σ̇�]≤ 0.

Upon combining (2.8.4) and (2.8.5) with (2.8.2) and (2.8.3), we deduce

(2.8.6) ε = σ(F)+ tr(ΣF�)+h(Σ),

(2.8.7) P(F) = ρ0∂Fσ(F), Π(Σ) =−∂Σh(Σ).

When h is strictly convex, the source term in (2.8.3) is dissipative and acts to
drive Σ towards local equilibrium Σ = H(F), where H is the inverse function of Π.
Π−1 exists since −Π is strictly monotone, namely,

(2.8.8) tr{[Π(Σ)−Π(Σ̄)][Σ− Σ̄]�}< 0, for any Σ �= Σ̄.

In local equilibrium the medium responds like an elastic material with internal energy

(2.8.9) ε = ε̃(F) = σ(F)+ tr [H(F)F�]+h(H(F))

and Piola-Kirchhoff stress

(2.8.10) S = P(F)+ρ0H(F) = ρ0∂F ε̃(F).

2.9 Notes

The venerable field of continuum physics has been enjoying a resurgence, concomi-
tant with the rise of interest in the behavior of materials with nonlinear response. The
encyclopedic works of Truesdell and Toupin [1] and Truesdell and Noll [1] contain
reliable historical information as well as massive bibliographies and may serve as
excellent guides for following the development of the subject from its inception, in
the 18th century, to the mid 1960’s. The text by Gurtin [1] provides a clear, elemen-
tary introduction to the area. A more advanced treatment, with copious references,
is found in the book of Silhavy [1]. The text by Müller [2] is an excellent presenta-
tion of thermodynamics from the perspective of modern continuum physics. Other
good sources, emphasizing elasticity theory, are the books of Ciarlet [1], Hanyga [1],
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Marsden and Hughes [1] and Wang and Truesdell [1]. The monograph by Antman
[3] contains a wealth of material on the theory of elastic strings, rods, shells and
three-dimensional bodies, with emphasis on the qualitative analysis of the governing
balance laws.

The referential description of motion was conceived by Euler, and was eventually
named Lagrangian so as to highlight the analogy with the formulation of Analyti-
cal Dynamics by Lagrange. On the other hand, the spatial, or Eulerian, description,
which was effectively employed by Euler, was introduced by Daniel Benoulli and by
D’Alembert.

On the equivalence of the referential (Lagrangian) and spatial (Eulerian) descrip-
tion of the field equations for the balance laws of continuum physics, see Dafermos
[17] and Wagner [2,3]. It would be useful to know whether this holds under more
general assumptions on the motion than Lipschitz continuity. For instance, when
the medium is a thermoelastic gas, it is natural to allow regions of vacuum in the
placement of the body. In such a region the density vanishes and the specific volume
(determinant of the deformation gradient) becomes infinitely large. For other exam-
ples in which the equations get simpler as one passes from Eulerian to Lagrangian
coordinates, see Peng [2].

The kinematic balance laws (2.2.15) and (2.2.16) were first derived by Qin[1], in
the context of smooth motions, by direct calculation. It is interesting that, as we see
here, they are valid when the motions are merely Lipschitz continuous and in fact, as
shown by Demoulini, Stuart and Tzavaras [2], even under slightly weaker hypothe-
ses. The connection to null Lagrangians was first pointed out in this last reference.
For a detailed treatment of null Lagrangians, see Ball, Currie and Olver [1]. For the
differential geometric interpretation of the kinematic balance laws, see Wagner [3,4].

The field equations for the balance laws considered here were originally derived
by Euler [1,2], for mass, Cauchy [3,4], for linear and angular momentum, and Kirch-
hoff [1], for energy. The Clausius-Duhem inequality was postulated by Clausius [1],
for the adiabatic case; the entropy flux term was introduced by Duhem [1] and the en-
tropy production term was added by Truesdell and Toupin [1]. More general entropy
inequalities were first considered by Müller [1].

The use of frame indifference and material symmetry to reduce constitutive equa-
tions originated in the works of Cauchy [4] and Poisson [2]. In the ensuing century,
this program was implemented (mostly correctly but occasionally incorrectly) by
many authors, for a host of special constitutive equations. In particular, the work
of the Cosserats [1], Rivlin and Ericksen [1], and others in the 1940’s and 1950’s
contributed to the clarification of the concepts. The principle of material frame in-
difference and the definition of the symmetry group were ultimately postulated with
generality and mathematical precision by Noll [1].

The postulate that constitutive equations should be reduced so that the Clausius-
Duhem inequality will be satisfied automatically by smooth thermodynamic pro-
cesses that balance mass, momentum and energy was first stated as a general prin-
ciple by Coleman and Noll [1]. The examples presented here were adapted from
Coleman and Noll [1], for thermoelasticity, and Coleman and Mizel [1], for thermo-
viscoelasticity.



2.9 Notes 51

In his doctoral dissertation (1873), van der Waals introduced the equation of state
that now bears his name, in order to account for the volume of gas molecules and for
intermolecular forces. Gallavotti [1] discusses its interpretation from the standpoint
of statistical physics. The van der Waals gas has served over the years as a simple
model for phase transitions.

As we saw in the historical introduction, the special features of the Chaplygin
gas were first noticed by Earnshaw [1]. The classical contributions of Chaplygin [1]
are expounded in the text by von Mises [1]. The Chaplygin gas is currently finding
new applications in cosmology. For a surprising application of the equation of state
of this gas to differential geometry, see Section 18.7.

Coleman and Gurtin [1] have developed a general theory of thermoviscoelastic
materials with internal state variables, of which the example presented in Section 2.8
is a special case. Constitutive relations of this type were first considered by Maxwell
[1]. A detailed discussion of relaxation phenomena in gas dynamics is found in the
book by Vincenti and Kruger [1].



III

Hyperbolic Systems of Balance Laws

The ambient space for the system of balance laws, introduced in Chapter I, will be
visualized here as space-time, and the central notion of hyperbolicity in the time di-
rection will be motivated and defined. Companions to the flux, considered in Section
1.5, will now be realized as entropy-entropy flux pairs.

Numerous examples will be presented of hyperbolic systems of balance laws
arising in continuum physics.

3.1 Hyperbolicity

Returning to the setting of Chapter I, we visualize Rk as Rm ×R, where Rm, with
m = k − 1, is “space” with typical point x, and R is “time” with typical value t,
so X = (x, t). We write ∂t for ∂/∂Xk and ∂α for ∂/∂Xα , α = 1, . . . ,m. We retain
the symbol div to denote divergence with respect to the x-variable in Rm. As in
earlier chapters, in matrix operations div will be acting on row vectors. We also
recall the Notation 1.4.2, which will remain in force throughout this work: D denotes
the differential [∂/∂U1, . . . ,∂/∂Un], regarded as a row operation.

We denote Gk by H, reassign the symbol G to denote the n × m matrix with
column vectors (G1, . . . ,Gm), and rewrite the system of balance laws (1.4.3) in the
form

(3.1.1) ∂tH(U(x, t),x, t)+divG(U(x, t),x, t) = Π(U(x, t),x, t).

3.1.1 Definition. The system of balance laws (3.1.1) is called hyperbolic in the
t-direction if, for any fixed U ∈ O, (x, t) ∈ X and ν ∈ Sm−1, the n × n matrix
DH(U,x, t) is nonsingular and the eigenvalue problem

(3.1.2)

[
m

∑
α=1

ναDGα(U,x, t)−λDH(U,x, t)

]
R = 0
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has real eigenvalues λ1(ν ;U,x, t), · · · ,λn(ν ;U,x, t), called characteristic speeds, and
n linearly independent eigenvectors R1(ν ;U,x, t), · · · ,Rn(ν ;U,x, t).

A class of great importance are the symmetric hyperbolic systems of balance laws
(3.1.1), in which, for any U ∈ O and (x, t) ∈ X , the n×n matrices DGα(U,x, t), for
α = 1, · · · ,m, are symmetric and DH(U,x, t) is symmetric positive definite.

The definition of hyperbolicity may be naturally interpreted in terms of the no-
tion of fronts, introduced in Section 1.6. A front F of the system of balance laws
(3.1.1) may be visualized as a one-parameter family of m−1 dimensional manifolds
in Rm, parametrized by t, i.e., as a surface propagating in space. In that context, if we
renormalize the normal N on F so that N = (ν ,−s) with ν ∈ Sm−1, then the wave
will be propagating in the direction ν with speed s. Therefore, comparing (3.1.2)
with (1.6.1) we conclude that a system of n balance laws is hyperbolic if and only
if n distinct weak waves can propagate in any spatial direction. The eigenvalues of
(3.1.2) will determine the speed of propagation of these waves while the correspond-
ing eigenvectors will specify the direction of their amplitude.

When F is a shock front, (1.6.3) may be written in the current notation as

(3.1.3) −s[H(U+,x, t)−H(U−,x, t)]+ [G(U+,x, t)−G(U−,x, t)]ν = 0,

which is called the Rankine-Hugoniot jump condition. By virtue of Theorem 1.8.1,
this condition should hold at every point of approximate jump discontinuity of any
function U of class BVloc that satisfies the system (3.1.1) in the sense of measures.

It is clear that hyperbolicity is preserved under any change U∗ = U∗(U,x, t) of
state vector with U∗(·,x, t) a diffeomorphism for every fixed (x, t)∈X . In particular,
since DH(U,x, t) is nonsingular, we may employ, locally at least, H as the new state
vector. Thus, without essential loss of generality, one may limit the investigation to
hyperbolic systems of balance laws that have the special form

(3.1.4) ∂tU(x, t)+divG(U(x, t),x, t) = Π(U(x, t),x, t).

For simplicity and convenience, we shall henceforth regard the special form (3.1.4) as
canonical. The reader should keep in mind, however, that when dealing with systems
of balance laws arising in continuum physics it may be advantageous to keep the state
vector naturally provided, even at the expense of having to face the more complicated
form (3.1.1) rather than the canonical form (3.1.4).

3.2 Entropy-Entropy Flux Pairs

Assume that the system of balance laws (1.4.3), which we now write in the form
(3.1.1), is endowed with a companion balance law (1.5.2). We set Qk ≡ η , reassign
Q to denote the m-row vector (Q1, . . . ,Qm) and recast (1.5.2) in the new notation:

(3.2.1) ∂tη(U(x, t),x, t)+divQ(U(x, t),x, t) = h(U(x, t),x, t).
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As we shall see in Section 3.3, in the applications to continuum physics, companion
balance laws of the form (3.2.1) are intimately related with the Second Law of ther-
modynamics. For that reason, η is called an entropy for the system (3.1.1) of balance
laws and Q is called the entropy flux associated with η .

Equation (1.5.1), for α = k, should now be written as

(3.2.2) Dη(U,x, t) = B(U,x, t)�DH(U,x, t).

Assume the system is in canonical form (3.1.4) so that (3.2.2) reduces to Dη = B�.
Then (1.5.1) and the integrability condition (1.5.4) become

(3.2.3) DQα(U,x, t) = Dη(U,x, t)DGα(U,x, t), α = 1, · · · ,m,

(3.2.4) D2η(U,x, t)DGα(U,x, t) = DGα(U,x, t)�D2η(U,x, t), α = 1, · · · ,m.

Notice that (3.2.4) imposes 1
2 n(n−1)m conditions on the single unknown func-

tion η . Therefore, as already noted in Section 1.5, the problem of determining a
nontrivial entropy-entropy flux pair for (3.1.1) is formally overdetermined, unless
either n = 1 and m is arbitrary, or n = 2 and m = 1. However, when the system is
symmetric, we may satisfy (3.2.4) with η = 1

2 |U |2. Conversely, if (3.2.4) holds and
η(U,x, t) is uniformly convex in U , then the change U∗ = Dη(U,x, t)� of state vec-
tor renders the system symmetric. Thus, systems of balance laws in canonical form
(3.1.4) that are endowed with a convex entropy are necessarily hyperbolic.

An interesting, alternative form of the integrability condition is obtained by pro-
jecting (3.2.4) in the direction of an arbitrary ν ∈ Sm−1 and then multiplying the
resulting equation from the left by R j(ν ;U,x, t)� and from the right by Rk(ν ;U,x, t),
with j �= k. So long as λ j(ν ;U,x, t) �= λk(ν ;U,x, t), this calculation yields

(3.2.5) R j(ν ;U,x, t)�D2η(U,x, t)Rk(ν ;U,x, t) = 0, j �= k.

Moreover, (3.2.5) holds even when λ j(ν ;U,x, t) = λk(ν ;U,x, t), provided that one
selects the eigenvectors R j(ν ;U,x, t) and Rk(ν ;U,x, t) judiciously in the eigenspace
of this multiple eigenvalue.

Notice that (3.2.5) imposes on η 1
2 n(n−1) conditions for each fixed ν , and hence

a total of 1
2 n(n−1)m conditions for m linearly independent – and thereby all – ν in

Sm−1. A notable exception occurs for systems in which the Jacobian matrices of the
components of their fluxes commute:

(3.2.6) DGα(U,x, t)DGβ (U,x, t) = DGβ (U,x, t)DGα(U,x, t), α,β = 1, . . . ,m.

Indeed, in that case the Ri(ν ;U,x, t) do not vary with ν and hence (3.2.5) represents
just 1

2 n(n− 1) conditions on η . We will revisit this very special class of systems in
Section 6.10.

The issue of the overdeterminacy of (3.2.5), in one spatial dimension, will be
examined in depth in Section 7.4.
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3.3 Examples of Hyperbolic Systems of Balance Laws

Out of a host of hyperbolic systems of balance laws in continuum physics, only
a small sample will be presented here. They will serve as beacons for guiding the
development of the general theory.

3.3.1 The Scalar Balance Law:

The single balance law (n = 1)

(3.3.1) ∂tu(x, t)+divG(u(x, t),x, t) = ϖ(u(x, t),x, t)

is always hyperbolic. Any function η(u,x, t) may serve as entropy, with associated
entropy flux and entropy production computed by

(3.3.2) Q =
∫ u ∂η

∂u
∂G
∂u

du,

(3.3.3) h =
m

∑
α=1

[
∂η
∂u

∂Gα

∂xα
− ∂Qα

∂xα

]
+ϖ

∂η
∂u

+
∂η
∂ t

.

Equation (3.3.1), the corresponding homogeneous scalar conservation law, and
especially their one space dimensional (m = 1) versions will serve extensively as
models for developing the theory of general systems.

3.3.2 Thermoelastic Nonconductors of Heat:

The theory of thermoelastic media was discussed in Chapter II. Here we shall em-
ploy the referential (Lagrangian) description so the fields will be functions of (x, t).
For consistency with the notation of the present chapter, we shall use ∂t to denote
material time derivative (in lieu of the overdot employed in Chapter II) and ∂α to
denote partial derivative with respect to the α-component xα of x. For definiteness,
we assume the physical space has dimension m = 3. We also adopt the standard
summation convention: repeated indices are summed over the range 1,2,3.

The constitutive equations are recorded in Section 2.5. Since there is no longer
danger of confusion, we may simplify the notation by dropping the “hat” from the
symbols of the constitutive functions. Also for simplicity we assume that the medium
is homogeneous, with reference density ρ0 = 1.

As explained in Chapter II, a thermodynamic process is determined by a motion
χ and an entropy field s. In order to cast the field equations of the balance laws as a
first order system of the form (3.1.1), we monitor χ through its derivatives (2.1.1),
(2.1.2) and thus work with the state vector U = (F,v,s), taking values in R13. In that
case we must append to the balance laws of linear momentum (2.3.4) and energy
(2.3.10) the compatibility condition (2.1.8)1. Consequently, our system of balance
laws reads
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(3.3.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tFiα −∂αvi = 0, i,α = 1,2,3

∂tvi −∂αSiα(F,s) = bi , i = 1,2,3

∂t
[
ε(F,s)+ 1

2 |v|2
]−∂α [viSiα(F,s)] = bivi + r,

with (cf. (2.5.3))

(3.3.5) Siα(F,s) =
∂ε(F,s)
∂Fiα

, θ(F,s) =
∂ε(F,s)
∂ s

.

A lengthy calculation verifies that the system (3.3.4) is hyperbolic on a certain
region of the state space if for every (F,s) lying in that region

(3.3.6)
∂ε(F,s)
∂ s

> 0,

(3.3.7)
∂ 2ε(F,s)
∂Fiα∂Fjβ

νανβξiξ j > 0, for all ν and ξ in S2 .

On account of (3.3.5)2 , condition (3.3.6) simply states that the absolute temperature
must be positive. (3.3.7), called the Legendre-Hadamard condition, means that ε is
rank-one convex in F , i.e., it is convex along any direction ξ�ν with rank one. An
alternative way of expressing (3.3.7) is to state that for any unit vector ν the acoustic
tensor N(ν ;F,s), defined by

(3.3.8) Ni j(ν ;F,s) =
∂ 2ε(F,s)
∂Fiα∂Fjβ

νανβ , i, j = 1,2,3

is positive definite. In fact, for the system (3.3.4), the characteristic speeds in the
direction ν are the six square roots of the three eigenvalues of the acoustic tensor,
and zero with multiplicity seven.

Recall from Chapter II that, in addition to the system of balance laws (3.3.4),
thermodynamically admissible processes should also satisfy the Clausius-Duhem
inequality (2.3.13), which here takes the form

(3.3.9) −∂t s ≤− r
θ(F,s)

.

By virtue of (3.3.5), every classical solution of (3.3.4) will satisfy (3.3.9) identically
as an equality.1 Hence, in the terminology of Section 3.2, −s is an entropy for the
system (3.3.4) with associated entropy flux zero.2 Weak solutions of (3.3.4) will not

1 Thus, for classical solutions it is convenient to substitute the equality (3.3.9) for the third
equation in (3.3.4). In particular, if r ≡ 0, the entropy s stays constant along particle trajec-
tories and one may determine F and v just by solving the first two equations of (3.3.4).

2 Identifying −s as the “entropy”, rather than s itself which is the physical entropy, may look
strange. This convention is adopted because it is more convenient to deal with functionals
of the solution that are nonincreasing with time.
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necessarily satisfy (3.3.9). Therefore, the role of (3.3.9) is to weed out undesirable
weak solutions. The extension of a companion balance law from an identity for clas-
sical solutions into an inequality for weak solutions will play a crucial role in the
general theory of hyperbolic systems of balance laws.

It should be noted that a solution (F,v,s) of (3.3.4) is not relevant to elastody-
namics, unless F is a deformation gradient (2.1.2), or equivalently

(3.3.10) ∂βFiα −∂αFiβ = 0, i = 1,2,3, α,β = 1,2,3.

In that case, as shown in Section 2.3, (F,v) will also satisfy the kinematic conserva-
tion laws (2.2.15) and (2.2.16), namely

(3.3.11) ∂tF∗
γk −∂α(εi jkεαβγviFjβ ) = 0, k = 1,2,3, γ = 1,2,3

(3.3.12) ∂t(detF)−∂α(viF∗
αi) = 0.

Recall that (3.3.11) and (3.3.12) hold even when F and v are merely in L∞.
The Rankine-Hugoniot jump conditions (3.1.3) for a shock front propagating in

the direction ν ∈ S2 with speed σ here take the form

(3.3.13)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−σ [[Fiα ]] = [[vi]]να i,α = 1,2,3

−σ [[vi]] = [[Siα(F,s)]]να i = 1,2,3

−σ [[ε(F,s)+ 1
2 |v|2]] = [[viSiα(F,s)]]να ,

where the double bracket denotes the jump of the enclosed quantity across the shock.
By combining the three equations in (3.3.13), we can eliminate the velocity:

(3.3.14) −σ
{
[[ε]]− tr

(
1
2 (S++S−)�[[F ]]

)}
= 0.

Any shock associated with the physically relevant solution must also satisfy the
jump condition

(3.3.15) [[Fiα ]]νβ = [[Fiβ ]]να , i = 1,2,3, α,β = 1,2,3

induced by (3.3.10), or equivalently,

(3.3.16) [[Fiα ]] = wiνα , i = 1,2,3, α = 1,2,3

for some vector w ∈ R3. By virtue of (3.3.13)1, this condition holds automatically,
with w=σ−1[[v]], for any shock with speed σ �= 0. However, (3.3.16) disqualifies any
isentropic shock with speed σ = 0. Indeed, for any such shock joining (F−,s,v−) and
(F+,s,v+), (3.3.13)2 together with (3.3.5), (3.3.8) and (3.3.16) would imply N̄w = 0,
where

(3.3.17) N̄ =
∫ 1

0
N(ν ,(1− τ)F−+ τF+,s)dτ.
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Since N̄ is positive definite, this yields w = 0 so no such shock is possible. On the
other hand, there exist stationary nonisentropic shocks compatible with (3.3.16).

The inequality (1.8.5) induced by (3.3.9) takes the form

(3.3.18) σ [[s]]≤ 0,

which implies that whenever a material particle crosses a nonstationary shock, its
physical entropy increases.

3.3.3 Isentropic Motion of Thermoelastic Nonconductors of Heat:

The physical background of isentropic processes was discussed in Section 2.5. In
particular, as noted earlier, in the absence of heat supply, r = 0, any thermoelastic
process that starts out isentropically remains isentropic for as long as it stays smooth.
Moreover, the assumption of constant entropy is often a satisfactory approximation
even for weak solutions. The entropy is fixed at a constant value s̄ and, for simplicity,
is dropped from the notation. The state vector reduces to U = (F,v) with values in
R12. The system of balance laws results from (3.3.4) by discarding the balance of
energy:

(3.3.19)

⎧⎨⎩ ∂tFiα −∂αvi = 0, i,α = 1,2,3

∂tvi −∂αSiα(F) = bi , i = 1,2,3

and we still have

(3.3.20) Siα(F) =
∂ε(F)

∂Fiα
, i,α = 1,2,3.

The system (3.3.19) is hyperbolic if ε is rank-one convex, i.e., (3.3.7) holds at s = s̄.
The characteristic speeds in the direction ν ∈ S2 are the six square roots of the three
eigenvalues of the acoustic tensor (3.3.8), at s = s̄, and zero with multiplicity six.

As explained in Section 2.5, in addition to (3.3.19) thermodynamically admissi-
ble isentropic motions must also satisfy the inequality (2.5.32), which in the current
notation reads

(3.3.21) ∂t [ε(F)+ 1
2 |v|2]−∂α [viSiα(F)]≤ bivi .

By virtue of (3.3.20), any classical solution of (3.3.19) satisfies identically (3.3.21)
as an equality. Thus, in the terminology of Section 3.2, η = ε(F)+ 1

2 |v|2 is an en-
tropy for the system (3.3.19). Note that (3.3.19) is in canonical form (3.1.4) and that
Dη = (S(F) , v). Therefore, as shown in Section 3.2, when the internal energy ε(F)
is uniformly convex, then changing the state vector from U = (F,v) to U∗ = (S,v)
will render the system (3.3.19) symmetric hyperbolic. It should be noted, however,
that even though ε(F) may be convex on a portion of the state space (especially near
its minimum point), it cannot be globally convex, unless it is quadratic, in which case
(3.3.19) is linear. This is a consequence of the principle of material frame indiffer-
ence, which requires that ε(F) be invariant under rigid rotations.
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Weak solutions of (3.3.19) will not necessarily satisfy (3.3.21). We thus en-
counter again the situation in which a companion balance law is extended from an
identity for classical solutions into an inequality serving as admissibility condition
on weak solutions.

Classical or weak solutions of (3.3.19) that are relevant to elastodynamics must
also satisfy (3.3.10), and thereby the kinematic conservation laws (3.3.11) and
(3.3.12).

The Rankine-Hugoniot jump conditions (3.1.3) for a shock front propagating in
the direction ν ∈ S2 with speed σ take the form

(3.3.22)

⎧⎨⎩−σ [[Fiα ]] = [[vi]]να i,α = 1,2,3

−σ [[vi]] = [[Siα(F)]]να i = 1,2,3.

Shocks associated with physically relevant solutions should also satisfy (3.3.14) and
(3.3.15), which, as we saw above, disqualifies all stationary shocks.

The inequality (1.8.5) induced by (3.3.21) is

(3.3.23) −σ [[ε(F)+ 1
2 |v|2

]]− [[viSiα(F)]]να ≤ 0 ,

which, in conjunction with (3.3.22), reduces to

(3.3.24) −σ
{
[[ε]]− tr

(
1
2 (S++S−)� [[F ]]

)}
≤ 0 ,

namely the analog of (3.3.14) that does not involve the velocity.
The passage from (3.3.4) to (3.3.19) provides an example of the truncation pro-

cess that is commonly employed in continuum physics for simplifying systems of
balance laws by dropping a number of the equations while simultaneously reduc-
ing proportionately the size of the state vector, according to the rules laid down in
Section 1.5. In fact, one may derive the companion balance law (3.3.21) for the trun-
cated system (3.3.19) from the companion balance law (3.3.9) of the original system
(3.3.4) by using the recipe (1.5.12). Recall that in a canonical truncation, the elim-
ination of any equation should be paired with freezing the corresponding compo-
nent of the special state vector that symmetrizes the system. Thus, for instance, one
may canonically truncate the system (3.3.19) by dropping the i-th of the last three
equations while freezing the i-th component vi of velocity, or else by dropping the
(i,α)-th of the first nine equations while freezing the (i,α)-th component Siα(F) of
the Piola-Kirchhoff stress.

As explained in Section 2.5, the balance laws for isothermal processes of ther-
moelastic materials are obtained by replacing in (3.3.19), (3.3.20) and (3.3.21) the
internal energy ε(F), at constant entropy, with the Helmholtz free energy ψ(F), at
constant temperature.

3.3.4 Isentropic Motion with Relaxation:

We consider isentropic motions of the material considered in Section 2.8, assuming
for simplicity that the reference density ρ0 = 1 and the body force b = 0. The state
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vector is U = (F,v,Σ), with values in R21. The system of balance laws is composed
of the compatibility equation (2.1.8)1 , the balance of linear momentum (2.3.4) and
the balance law (2.8.3) for the internal variable Σ:

(3.3.25)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tFiα −∂αvi = 0, i,α = 1,2,3

∂tvi −∂α [Piα(F)+Σiα ] = 0, i = 1,2,3

∂tΣiα =
1
τ
[Πiα(Σ)−Fiα ], i,α = 1,2,3.

Furthermore,

(3.3.26) Piα(F) =
∂σ(F)

∂Fiα
, Πiα(Σ) =−∂h(Σ)

∂Σiα
.

In addition to (3.3.25), thermodynamically admissible (isentropic) motions
should satisfy the entropy inequality (2.5.32), which here takes the form

(3.3.27) ∂t
[
σ(F)+ tr(ΣF�)+h(Σ)+ 1

2 |v|2
]−∂α [viPiα(F)+viΣiα ]≤ 0,

so that, in the terminology of Section 3.2, σ(F)+ tr(ΣF�)+ h(Σ)+ 1
2 |v|2 is an en-

tropy for (3.3.25).
The system (3.3.25) is hyperbolic when

(3.3.28)
∂ 2σ(F)

∂Fiα∂Fjβ
νανβξiξ j +ναναξiζi +

∂ 2h(Σ)
∂Σiα∂Σ jβ

νανβζiζ j > 0,

for all ν ∈ S2 and (ξ ,ζ )� ∈ S5.

3.3.5 Thermoelastic Fluid Nonconductors of Heat:

The system of balance laws (3.3.4) governs the adiabatic thermodynamic processes
of all thermoelastic media, including, in particular, thermoelastic fluids. In the latter
case, however, it is advantageous to employ spatial (Eulerian) description. The reason
is that, as shown in Section 2.5, the internal energy, the temperature, and the Cauchy
stress in a thermoelastic fluid depend on the deformation gradient F solely through
the density ρ . We may thus dispense with F and describe the state of the medium
through the state vector U = (ρ,v,s) which takes values in the (much smaller) space
R5.

The fields will now be functions of (χ, t). However, for consistency with the
notational conventions of this chapter, we will replace the symbol χ by x. Also we
will be using ∂t (rather than a t-subscript as in Chapter II) to denote partial derivatives
with respect to t.

The balance laws in force are for mass (2.3.2), linear momentum (2.3.5) and
energy (2.3.11). The constitutive relations are (2.5.12), with q̃ ≡ 0, (2.5.13) and
(2.5.14). To simplify the notation, we drop the “tilde” and write ε(ρ,s) in place
of ε̃(ρ,s). Therefore, the system of balance laws takes the form



62 III Hyperbolic Systems of Balance Laws

(3.3.29)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ+div(ρv�) = 0

∂t(ρv)+div(ρvv�)+grad p(ρ,s) = ρb,

∂t [ρε(ρ,s)+ 1
2ρ|v|2]+div [(ρε(ρ,s)+ 1

2ρ|v|2 + p(ρ,s))v�]

= ρb ·v+ρr,

with

(3.3.30) p(ρ,s) = ρ2ερ(ρ,s), θ(ρ,s) = εs(ρ,s).

The system (3.3.29) will be hyperbolic if

(3.3.31) εs(ρ,s)> 0, pρ(ρ,s)> 0.

The characteristic speeds in the direction ν ∈ S2 are v ·ν , with multiplicity three, and
v ·ν±√

pρ(ρ,s), with multiplicity one. The quantity c(ρ,s) =
√

pρ(ρ,s) expresses
the speed of propagation of a weak front as perceived by an observer carried by the
fluid flow, and is called the sonic speed.

In addition to (3.3.29), thermodynamically admissible processes must also satisfy
the Clausius-Duhem inequality (2.3.14), which here reduces to

(3.3.32) ∂t(−ρs)+div(−ρsv�)≤−ρ r
θ(ρ,s)

.

When the process is smooth, it follows from (3.3.29) and (3.3.30) that (3.3.32) holds
identically, as an equality.3 Consequently, η = −ρs is an entropy for the system
(3.3.29) with associated entropy flux −ρsv�. Once again we see that a companion
balance law is extended from an identity for classical solutions into an inequality
serving as a test for the physical admissibility of weak solutions.

Changing the state variables from (ρ,v,s) to (ρ,m,E), where m = ρv is the
momentum density and E = ρε + 1

2ρ|v|2 is the energy density, reduces (3.3.29) to
its canonical form. A long, routine calculation shows that, by virtue of (3.3.31), the
entropy η =−ρs is a convex function of (ρ,m,E).

The Rankine-Hugoniot jump conditions for a shock front propagating in the di-
rection ν ∈ S2 with speed σ read as follows:

(3.3.33)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[[ρ(v ·ν−σ)]] = 0

[[ρ(v ·ν−σ)v+ p(ρ,s)ν ]] = 0

[[ρ(v ·ν−σ)(ε(ρ,s)+ 1
2 |v|2

)
+ p(ρ,s)v ·ν ]] = 0.

3 Thus for smooth solutions it is often convenient to substitute the simpler equality (3.3.32)
for the third equation of (3.3.29). Notice that the smoothness requirement is met when ρ,v
and s are merely Lipschitz continuous, which allows for flows with weak fronts.
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By combining these equations, one derives the analog of (3.3.14):

(3.3.34) ρ±(v± ·ν−σ){[[ε]]+ 1
2 (p++ p−)[[ρ−1]]

}
= 0.

Notice that (3.3.33) admits shocks with v± · ν = σ and [[p]] = 0. These fronts
propagate with characteristic speed and are called contact discontinuities or vortex
sheets. Fluid particles may slide at different speeds on either side of a vortex sheet,
but they cannot cross it. In addition, (3.3.33) support shocks with v± ·ν �= σ , which
are traversed by the orbits of fluid particles. The quantity in braces, in (3.3.34), van-
ishes along these shocks.

The inequality (1.8.5) induced by (3.3.32) here takes the form

(3.3.35) ρ±(v± ·ν−σ)[[s]]≥ 0 ,

which implies that when fluid particles cross a shock the physical entropy increases.

3.3.6 Isentropic Flow of Thermoelastic Fluids:

As shown above, in the absence of heat supply, r = 0, thermoelastic flows starting
out isentropically remain isentropic for as long as they stay smooth. Furthermore, the
assumption of constant entropy is satisfactory even after shocks develop, provided
their amplitude is small. In an isentropic flow, the entropy is fixed at a constant value
and is dropped from the notation. The state vector reduces to U = (ρ,v), with values
in R4. The system of balance laws results from (3.3.29) by discarding the balance of
energy:

(3.3.36)

⎧⎨⎩ ∂tρ+div(ρv�) = 0

∂t(ρv)+div(ρvv�)+grad p(ρ) = ρb,

with

(3.3.37) p(ρ) = ρ2ε ′(ρ).

The system (3.3.36) is hyperbolic if

(3.3.38) p′(ρ)> 0.

The characteristic speeds in the direction ν ∈ S2 are v · ν , with multiplicity two,
and v ·ν±√

p′(ρ), with multiplicity one. The quantity c(ρ) =
√

p′(ρ) is the sonic
speed. In particular, (3.3.38) is satisfied in the case of the ideal gas (2.5.31), as long
as ρ > 0.

Thermodynamically admissible isentropic motions must satisfy the inequality
(2.5.33), which here reduces to

(3.3.39) ∂t [ρε(ρ)+ 1
2ρ|v|2]+div [(ρε(ρ)+ 1

2ρ|v|2 + p(ρ))v�]≤ ρb ·v.
It should be noted that the system (3.3.36) results from the system (3.3.29) by canon-
ical truncation, as described in Section 1.5, and in particular the companion balance
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law (3.3.39) can be derived from the companion balance law (3.3.32) by means of
(1.5.12).

The pattern has by now become familiar: By virtue of (3.3.37), any classical
solution of (3.3.36) satisfies identically (3.3.39), as an equality, so that the function
η = ρε(ρ) + 1

2ρ|v|2 is an entropy for the system (3.3.36). At the same time, the
inequality (3.3.39) is employed to weed out physically inadmissible weak solutions.

The system (3.3.36) attains its canonical form by changing the state variables
from (ρ,v) to (ρ,m), where m = ρv is the momentum density. It is easily seen that,
on account of (3.3.37) and (3.3.38), the above entropy η is a convex function of
(ρ,m).

The Rankine-Hugoniot jump conditions for a shock front propagating in the di-
rection ν ∈ S2 with speed σ take the form

(3.3.40)

⎧⎨⎩ [[ρ(v ·ν−σ)]] = 0

[[ρ(v ·ν−σ)v+ p(ρ)ν ]] = 0.

As in the nonisentropic case, we have contact discontinuities or vortex sheets, with
v± ·ν = σ , and [[p]] = 0, as well as shocks with v± ·ν �= σ .

The inequality (1.8.5) induced by (3.3.39) is

(3.3.41) [[ρ(v ·ν−σ)(ε(ρ)+ 1
2 |v|2)+ p(ρ)v ·ν ]]≤ 0.

By virtue of (3.3.40), the inequality (3.3.41) may be written as

(3.3.42) ρ±(v± ·ν−σ){[[ε]]+ 1
2 (p++ p−)[[ρ−1]]

}≤ 0.

For a broad class of equations of state, which includes the polytropic gas, (3.3.42)
implies that when fluid particles cross a shock their density increases and their nor-
mal speed decreases.

We now assume that we have a smooth isentropic flow, with body force derived
from a potential

(3.3.43) b =−gradg,

and monitor the evolution of the spin tensor W introduced in Section 2.1. Upon
combining the two equations in (3.3.36), we get

(3.3.44) ∂tv+Lv+grad [h(ρ)+g] = 0,

where L is the velocity gradient and h = ε + p/ρ is the enthalpy, with derivative
h′(ρ) = p′(ρ)/ρ . From (2.1.9), Lv = 2Wv+L�v and L�v = grad( 1

2 |v|2), so that

(3.3.45) ∂tv+2Wv+grad
[
h(ρ)+ 1

2 |v|2 +g
]
= 0.

We differentiate (3.3.45) and take the skew-symmetric part, which gives

(3.3.46) ∂tW +(dW )v+WL−L�W� = 0,
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or, upon using (2.1.4) and (2.1.9),

(3.3.47) Ẇ +WD+DW = 0.

Thus, when W , and thereby the vorticity ω = curlv, vanish at some point in space-
time, they must vanish all along the trajectory of the particle that happens to occupy
that position. In particular, if the vorticity vanishes for all x at t = 0, then it must
vanish everywhere, for as long as the flow stays smooth. Such a flow is called irro-
tational or potential, as the velocity field derives from a potential φ :

(3.3.48) v = gradφ .

Substituting v from (3.3.48) into (3.3.45), setting W = 0 and integrating the resulting
equation, we deduce that irrotational flows satisfy the Bernoulli equation

(3.3.49) ∂tφ + 1
2 |gradφ |2 +h(ρ)+g = 0.

The constants of integration have been absorbed into the term ∂tφ .
Thus irrotational flows may be determined by solving the Bernoulli equation

(3.3.49) together with the continuity equation (3.3.36)1, which now takes the form

(3.3.50) ∂tρ+div [ρ(gradφ)�] = 0.

The above analysis applies even when ρ and v are merely Lipschitz continuous,
i.e., irrotationality is preserved even in the presence of weak fronts, but it generally
breaks down when jump discontinuities develop, because shocks generate vorticity.
However, it has been common practice to employ the system (3.3.49), (3.3.50) even
in the regime of weak solutions, notwithstanding that the resulting flows may fail
to satisfy the balance of momentum equation (3.3.36)2 . This is in the same spirit as
considering discontinuous isentropic flows, s =constant, even though they may fail
to satisfy the energy balance equation (3.3.29)3 . Similar to the isentropic approxima-
tion, the error is small when the discontinuities (shocks) are weak. A major limitation
is that irrotational flow cannot support vortex sheets. Indeed, since φ is Lipschitz, its
tangential derivatives must be continuous across jump discontinuities. The condition
v± ·ν = σ , characterizing vortex sheets, would imply that the normal derivative of φ
would also be continuous, so no such jump discontinuities may exist.

The equations governing isothermal flow are obtained by replacing in (3.3.36),
(3.3.37) and (3.3.39) the internal energy ε(ρ), at constant entropy, with the Helmholtz
free energy ψ(ρ), at constant temperature.

Isentropic and isothermal flows of thermoelastic fluids are examples of flows in
which the pressure depends solely on the density, which are known as barotropic.

3.3.7 The Boltzmann Equation and Extended Thermodynamics:

In contrast to continuum physics, kinetic theories realize matter as an aggregate of
interacting molecules, and characterize the state by means of the molecular density
function f (ξ ,x, t) of the velocity ξ ∈R3 of molecules occupying the position x ∈R3
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at time t. In the classical kinetic theory, which applies to monatomic gases, f (ξ ,x, t)
satisfies the Boltzmann equation

(3.3.51) ∂t f +ξ ·gradx f = Q[ f ],

where Q stands for a complicated integral operator that accounts for changes in f
incurred by collisions between molecules.

A formal connection between the continuum and the kinetic approach can be
established by monitoring the family of moments

(3.3.52) Fi1...iN =
∫
R3

ξi1 · · ·ξiN f dξ , i1, · · · , iN = 1,2,3

of the density f . Indeed, these moments satisfy an infinite system of evolution equa-
tions

(3.3.53)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tF +∂ jFj = 0

∂tFi +∂ jFi j = 0 , i = 1,2,3

∂tFi j +∂kFi jk = Pi j , i, j = 1,2,3

∂tFi jk +∂�Fi jk� = Pi jk , i, j,k = 1,2,3

· · · · · · · · · · · · · · ·

∂tFi1...iN +∂mFi1...iN m = Pi1...iN , i1, . . . , iN = 1,2,3.

In the above equations, and throughout this section, ∂i denotes ∂/∂xi and we employ
the summation convention: repeated indices are summed over the range 1,2,3. The
term Pi1...iN denotes the integral of ξi1 · · ·ξiN Q[ f ] over R3. Because of the special
structure of Q, the trace Pii of Pi j vanishes.

We notice that each equation of (3.3.53) may be regarded as a balance law, in the
spirit of continuum physics. In that interpretation, the moments of f are playing the
role of both density and flux of balanced extensive quantities. In fact, the flux in each
equation becomes the density in the following one. Under the identification

(3.3.54) F = ρ ,

(3.3.55) Fi = ρvi , i = 1,2,3,

(3.3.56) Fi j = ρviv j −Ti j , i, j = 1,2,3,

(3.3.57) 1
2 Fii = ρε+ 1

2ρ|v|2,
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(3.3.58) 1
2 Fiik =

(
ρε+ 1

2ρ|v|2
)
vk −Tkivi +qk, k = 1,2,3,

the first equation in (3.3.53) renders conservation of mass, the second equation ren-
ders conservation of linear momentum, and one half the trace of the third equation
renders conservation of energy, for a heat-conducting viscous gas with density ρ ,
velocity v, internal energy ε , Cauchy stress T and heat flux q. We regard T as the
superposition, T =−pI +σ , of a pressure p =− 1

3 Tii and a shearing stress σ that is
traceless, σii = 0. By virtue of (3.3.56) and (3.3.57),

(3.3.59) ρε = 3
2 p ,

which is compatible with the constitutive equations (2.5.20) of the ideal gas, for
γ = 5/3.

Motivated by the above observations, one may construct a full hierarchy of con-
tinuum theories by truncating the infinite system (3.3.53), retaining only a finite
number of equations. The resulting systems, however, will not be closed, because
the highest order moments, appearing as flux(es) in the last equation(s), and also the
production terms on the right-hand side remain undetermined. In the spirit of con-
tinuum physics, extended thermodynamics closes these systems by postulating that
the highest order moments and the production terms are related to the lower order
moments by constitutive equations that are determined by requiring that all smooth
solutions of the system satisfy identically a certain inequality, akin to the Clausius-
Duhem inequality. This induces a companion balance law which renders the system
symmetrizable and thereby hyperbolic. The principle of material frame indifference
should also be observed by the constitutive relations.

To see how the program works in practice, let us construct a truncation of (3.3.53)
with state vector U = (ρ,v, p,σ ,q), which has dimension 13, as σ is symmetric and
traceless. For that purpose, we retain the first three of the equations of (3.3.53), for a
total of 10 independent scalar equations, and also extract 3 equations from the fourth
equation of (3.3.53) by contracting two of the indices. By virtue of (3.3.54), (3.3.55),
(3.3.56), (3.3.57), (3.3.58) and since P, Pi and Pii vanish, we end up with the system

(3.3.60)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ+∂ j
(
ρv j

)
= 0

∂t
(
ρvi

)
+∂ j

(
ρviv j + pδi j −σi j

)
= 0

∂t
(
ρε+ 1

2ρ|v|2
)
+∂k

{(
ρε+ 1

2ρ|v|2 + p
)
vk −σk jv j +qk

}
= 0

∂t
(
ρviv j − 1

3ρ|v|2δi j −σi j
)
+∂k

(
Fi jk − 1

3 F��kδi j
)
= Pi j

∂t
{(
ρε+ 1

2ρ|v|2 + p
)
vk −σk jv j +qk

}
+ 1

2∂iFj jik =
1
2 Piik .

This system can be closed by postulating that Fi jk , Fj jik , Pi j and Piik are functions of
the state vector U = (ρ,v, p,σ ,q), which are determined by requiring that all smooth
solutions satisfy identically an inequality

(3.3.61) ∂tϕ+∂iψi ≤ 0,
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where ϕ and ψi are (unspecified) functions of U , and ϕ(U) is convex. After a lengthy
calculation (see the references cited in Section 3.4), one obtains complicated albeit
quite explicit constitutive relations:

(3.3.62) Fi jk = ρviv jvk +
(

pvk +
2
5 qk

)
δi j +

(
pvi +

2
5 qi

)
δ jk +

(
pv j +

2
5 q j

)
δik ,

(3.3.63) Fj jik =
(
ρ|v|2 +7p

)
vivk +

(
pδik −σik

)|v|2 −σi jv jvk

−σk jv jvi +
14
5
(qivk +qkvi)+

4
5

q jv jδik +
p
ρ
(5pδik −7σik) ,

(3.3.64) Pi j = τ0σi j , Piik = 2τ0σkivi − τ1qk .

To complete the picture, p, τ0 and τ1 must be specified as functions of (ρ,θ).
The special vector U∗ = B(U), in the notation of Section 1.5, that symmetrizes

the system has components

(3.3.65) U∗ =
1
θ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5p
2ρ

−θs− 1
2
|v|2 + 1

2p
σi jviv j − ρ

5p2 qivi|v|2

vi − 1
p
σi jv j +

ρ
5p2

(|v|2qi +2q jv jvi
)

−1+
2ρ
3p2 qkvk

− 1
2p
σi j − ρ

5p2

(
viq j +v jqi − 2

3 vkqkδi j
)

ρ
5p2 qi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In particular, as explained in Section 1.5, truncating the system (3.3.60) by dropping
the last two equations should be paired with “freezing” the last two components
of U∗, i.e., by setting q = 0 and σ = 0. In that case, the system of the first three
equations of (3.3.60) reduces to the system (3.3.29), in the particular situation where
b = 0, r = 0 and ρε and p are related by (3.3.59). If one interprets (ρ,v, p) as the
basic state variables and (σ ,q) as internal state variables, as explained in Section 2.8,
then (3.3.29) becomes the relaxed form of the system (3.3.60).

3.3.8 Nonlinear Electrodynamics:

Another rich source of interesting systems of hyperbolic balance laws is electromag-
netism. The underlying system consists of Maxwell’s equations

(3.3.66)

⎧⎨⎩ ∂tB =− curlE

∂tD = curlH − J
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(3.3.67) divB� = 0, divD� = ρ

on R3, relating the electric field E, the magnetic field H, the electric displacement
D, the magnetic induction B, the current J, and the charge ρ . In turn, the current and
charge are interrelated by the continuity equation

(3.3.68) ∂tρ+divJ� = 0.

Constitutive relations determine E and H from the state vector U = (B,D). For
example, when the medium is a homogeneous electric conductor, with linear dielec-
tric response, at rest relative to the inertial frame, then D = εE and B = μH, where
ε is the dielectric constant and μ is the magnetic permeability. In order to account
for nonlinear dielectric response and cross-coupling of electromagnetic fields, one
postulates general constitutive equations

(3.3.69) E =
∂η(B,D)

∂D
, H =

∂η(B,D)

∂B
,

or

(3.3.70) D =
∂h(B,E)
∂E

, H =−∂h(B,E)
∂B

,

where η is the electromagnetic field energy and h is the Lagrangian. Notice that η is
the Legendre transform of h with respect to E.

Physically admissible fields must also satisty the dissipation inequality

(3.3.71) ∂tη(B,D)+divQ�(B,D)≤−J ·E,
where

(3.3.72) Q = E ∧H

is the Poynting vector. A straightforward calculation shows that smooth solutions of
(3.3.66), (3.3.69) satisfy (3.3.71) identically, as an equality. Therefore, (η ,Q) consti-
tutes an entropy-entropy flux pair for the system of balance laws (3.3.66), (3.3.69).
Since Dη = (H,E), it follows from the discussion in Section 3.2 that when the elec-
tromagnetic field energy function is uniformly convex, then the change of state vec-
tor from U = (B,D) to U∗ = (H,E) renders the system symmetric hyperbolic. It
should be noted, however, that even though η may be convex on a portion of the
state space (especially near its minimum point) it cannot be globally convex, un-
less it is quadratic, in which case (3.3.66) is linear. This is a consequence of the
requirement that the Lagrangian h(B,E) be invariant under Lorentz transformations,
and hence may depend on (B,E) solely through the scalar quantities |B|2 −|E|2 and
B ·E. This in turn implies that η must be invariant under rigid rotations and thus
may depend on (B,D) solely through the scalar quantities |B|2, |D|2 and B ·D. No
such function of (B,D) may be globally convex, unless it is quadratic. In this re-
spect, there is remarkable similarity between electomagnetism and elastodynamics.
Another important consequence of the Lorentz invariance of the Lagrangian is that
E ∧H = B∧D. An illustration is provided by the Born-Infeld constitutive relations4

4 These were designed so that, contrary to the classical linear theory, the electromagnetic
energy generated by a point charge at rest is finite.
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(3.3.73)

⎧⎪⎪⎨⎪⎪⎩
E =

∂η
∂D

=
1
η
[D+B∧Q], H =

∂η
∂B

=
1
η
[B−D∧Q]

η =
√

1+ |B|2 + |D|2 + |Q|2, Q = D∧B = E ∧H.

Here η is not globally convex, but the resulting system (3.3.66) is still hyperbolic.
Under constitutive relations (3.3.69), any smooth solution of both (3.3.66) and

(3.3.67) satisfies the additional balance law

(3.3.74) ∂tP(B,D)+divL(B,D) =−ρE +B∧ J,

with

(3.3.75) P = B∧D, L = ED�+HB�+(η−E ·D−H ·B)I.

In particular, in the Born-Infeld case,

(3.3.76) P = Q, L = η−1(I +BB�+DD�−QQ�).

The reader should note the difference between (3.3.71) and (3.3.74): The former is
contingent solely on (3.3.66), while the latter requires both (3.3.66) and (3.3.67) to
hold.

The Rankine-Hugoniot jump conditions for a shock front propagating in the di-
rection ν ∈ S2 with speed σ take the form

(3.3.77)

⎧⎨⎩−σ [[B]] = [[E]]∧ν

−σ [[D]] =−[[H]]∧ν .
For compatibility with (3.3.67), shocks should also satisfy the jump conditions

(3.3.78) [[B]] ·ν = 0, [[D]] ·ν = 0.

Notice that (3.3.78) follow from (3.3.77), when σ �= 0. On the other hand, (3.3.78) in
conjunction with hyperbolicity rule out the possibility of shocks with [[E]] and [[H]]
collinear to ν , that would satisfy (3.3.77) for σ = 0.

The inequality (1.8.5) induced by (3.3.71) reads

(3.3.79) −σ [[η(B,D)]]+ [[E ∧H]] ·ν ≤ 0.

It is also noteworthy that under the Born-Infeld constitutive relations (3.3.73), the
jump conditions (3.3.77), (3.3.78) imply

(3.3.80) −σ [[P]]+ [[L]]ν = 0 ,

with P and L given by (3.3.76). This means, in particular, that the extra balance law
(3.3.74) is automatically satisfied not only by smooth, but even by BV weak solutions
of (3.3.66) and (3.3.67).
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3.3.9 Magnetohydrodynamics:

Interesting systems of hyperbolic balance laws arise in the context of electromechan-
ical phenomena, where the balance laws of mass, momentum and energy of con-
tinuum thermomechanics are coupled with Maxwell’s equations. As an illustrative
example, we consider here the theory of magnetohydrodynamics, which describes
the interaction of a magnetic field with an electrically conducting thermoelastic fluid.
The equations follow from a number of simplifying assumptions, which will now be
outlined.

Beginning with Maxwell’s equations, the electric displacement D is considered
negligible so (3.3.66) yields J = curlH. The magnetic induction B is related to the
magnetic field H by the classical relation B = μH. The electric field is generated by
the motion of the fluid in the magnetic field and so is given by E = B∧v = μH ∧v.

The fluid is a thermoelastic nonconductor of heat whose thermomechanical prop-
erties are still described by the constitutive relations (3.3.30). The balance of mass
(3.3.29)1 remains unaffected by the presence of the electromagnetic field. On the
other hand, the electromagnetic field exerts a force on the fluid which should be ac-
counted as body force in the balance of momentum (3.3.29)2 . The contribution of
the electric field E to this force is assumed negligible while the contribution of the
magnetic field is J∧B =−μH ∧ curlH. On account of the identity

(3.3.81) −H ∧ curlH = div [HH�− 1
2 (H ·H)I],

this body force may be realized as the divergence of the Maxwell stress tensor. We
assume there is no external body force. To account for the electromagnetic effects on
the energy equation (3.3.29)3 , the internal energy should be augmented by the elec-
tromagnetic field energy 1

2μ|H|2, and μ(H ∧v)∧H = μ|H|2v−μ(H ·v)H, namely
the Poynting vector, should be added to the flux. The electromagnetic energy produc-
tion −J ·E =−μ(H ∧v) ·curlH and the rate of work (J∧B) ·v =−μ(H ∧curlH) ·v
of the electromagnetic body force cancel each other out.

We thus arrive at

(3.3.82)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ+ div(ρv�) = 0

∂t(ρv)+ div [ρvv�−μHH�]+ grad
[
p(ρ,s)+ 1

2μ|H|2]= 0

∂t
[
ρε(ρ,s)+ 1

2ρ|v|2 + 1
2μ|H|2]

+div
[
(ρε(ρ,s)+ 1

2ρ|v|2 + p(ρ,s)+μ|H|2)v�−μ(H ·v)H�]= ρr

∂tH − curl(v∧H) = 0.

The above system of balance laws, with state vector U = (ρ,v,s,H), will be hy-
perbolic if (3.3.31) hold. Thermodynamically admissible solutions of (3.3.82) should
also satisfy the Clausius-Duhem inequality (3.3.32), with r = 0. By virtue of (3.3.30),
it is easily seen that any classical solution of (3.3.82) satisfies identically (3.3.32) as
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an equality. Thus −ρs is an entropy for the system (3.3.82), with associated entropy
flux −ρsv.

The system (3.3.82) is supplemented by (3.3.67), namely

(3.3.83) divH = 0.

Magnetohydrodynamics supports a richer family of shocks than plain fluid dy-
namics. The Rankine-Hugoniot jump conditions associated with the system (3.3.82),
for a shock propagating in the direction ν ∈ S2 with speed σ , read

(3.3.84)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[[ρ(v ·ν−σ)]] = 0

[[ρ(v ·ν−σ)v+(p+ 1
2μ|H|2)ν−μ(H ·ν)H]] = 0

[[(v ·ν−σ)(ρε+ 1
2ρ|v|2 + 1

2μ|H|2)+(v ·ν)(p+ 1
2μ|H|2)−μ(H ·ν)(H ·v)]] = 0

[[(v ·ν−σ)H − (H ·ν)v]] = 0.

They are supplemented by the jump condition

(3.3.85) [[H ·ν ]] = 0,

for (3.3.83), which asserts that the jump of the magnetic field must be tangential to
the shock.

Upon combining (3.3.84) with (3.3.85), and after a lengthy calculation, one ar-
rives at the analog of (3.3.34):

(3.3.86) ρ±(v± ·ν−σ)
{
[[ε]]+

1
2
(p++ p−)[[ρ−1]]− 1

4
[[ρ−1]]

∣∣[[H]]
∣∣2}= 0.

The jump conditions (3.3.84), (3.3.85) support three types of shocks, namely:

(a) Contact discontinuities, akin to vortex sheets in fluid dynamics, with speed
σ = v± · ν and [[p]] = 0, [[v]] = 0, [[H]] = 0, but [[ρ]] �= 0. No entropy is produced
by such jumps.

(b)Transverse shocks, with [[ρ]] = 0, [[p]] = 0 and [[s]] = 0. In that case, [[v]] and [[H]]
must be collinear,

(3.3.87) [[v]] =±
(
μ
ρ

) 1
2
[[H]],

so in particular the velocity jump is tangential to the shock, [[v ·ν ]] = 0. Furthermore,
the strength of the magnetic field is continuous across these shocks, [[ |H| ]] = 0.
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(c) Shocks across which all fields, ρ, p, η , v and H sustain nonzero jumps. When
the Clausius-Duhem inequality (3.3.32) is satisfied, these shocks are termed com-
pressive, as density, pressure and entropy increase across them. Compressive shocks
form two subfamilies, distinguished by their speed and accordingly dubbed fast and
slow. The strength of the magnetic field increases across fast compressive shocks and
decreases across slow compressive shocks.

There are corresponding types of weak magnetohydrodynamic waves, forming
intricate geometric patterns.

3.4 Notes

As pointed out in the historical introduction, the theory of nonlinear hyperbolic sys-
tems of balance laws traces its origins to the mid 19th century and has developed
over the years conjointly with gas dynamics. The classic monograph by Courant and
Friedrichs [1] amply surveys, in mathematical language, the state of the subject at
the end of the Second World War. It is the distillation of this material that has laid
the foundations of the formalized mathematical theory in its present form.

The great number of books on the theoretical and the numerical analysis of hy-
perbolic systems of conservation laws published in recent years is a testament to the
vitality of the field. The fact that these books complement each other, as they differ
in scope, style and even content, is indicative of the breadth of the area.

Students who prefer to make their first acquaintance with the subject through a
bird’s-eye view may begin with the outlines in the treatise by M.E. Taylor [2], the
textbooks by Evans [2], Hörmander [2], and Lax [7], or the lecture notes of Lax
[5], Liu [28], Dafermos [6,10], and Bressan [15,16]. To a certain extent, some of the
above references are dated, but the last two are current. In fact, Bressan [15] lists
many of the important open problems, while Bressan [16] is an introduction to the
field with text adorned with numerous informative figures.

On the theoretical side, Jeffrey [2], Rozdestvenski and Janenko [1], and Smoller
[3] are early comprehensive texts at an introductory level. The more recent books by
Serre [11], Bressan [9], Holden and Risebro [2], and LeFloch [5] combine a general
introduction to the subject with advanced, deeper investigations in selected direc-
tions. The encyclopedic article by Chen and Wang [1] uses the Euler equations of
gas dynamics as a springboard for surveying broadly the theory of strictly hyperbolic
systems of conservation laws in one space dimension. Finally, Majda [4], Chang and
Hsiao [3], Li, Zhang and Yang [1], Yuxi Zheng [1], Lu [2], Perthame [2], Benzoni-
Gavage and Serre [2], Ben-Artzi and Falcovitz [1], and Tartar [4] are specialized
monographs, more narrowly focussed. The above books will be cited again, in later
chapters, as their content becomes relevant to the discussion, and thus the reader will
get some idea of their respective offerings.

Turning to numerical analysis, LeVeque [1] is an introductory text, while the
books by Godlewski and Raviart [1,2], and LeVeque [2] provide a more com-
prehensive and technical coverage together with a voluminous list of references.
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Other useful sources are the books by Kröner [1], Sod [1], Toro [1], Kulikovski,
Pogorelov and Semenov [1], and Holden and Risebro [2], and the lecture notes
of Tadmor [2].

Another rich resource is the text by Whitham [2] which presents a panorama
of connections of the theory with a host of diverse applications as well as a survey
of ideas and techniques devised over the years by applied mathematicians studying
wave propagation, of which many are ready for more rigorous analytical develop-
ment. Zeldovich and Raizer [1,2], and Vincenti and Kruger [1] are excellent intro-
ductions to gas dynamics from the perspective of physicists and may be consulted
for building intuition.

The student may get a sense of the evolution of research activity in the field over
the past twenty years by consulting the Proceedings of the International Conferences
on Hyperbolic Problems which are held biennially. Those that have already appeared
at the time of this writing, listed in chronological order and under the names of their
editors, are: Carasso, Raviart and Serre [1], Ballmann and Jeltsch [1], Engquist and
Gustafsson [1], Donato and Oliveri [1], Glimm, Grove, Graham and Plohr [1], Fey
and Jeltsch [1], Freistühler and Warnecke [1], Hou and Tadmor [1], Benzoni-Gavage
and Serre [3], Tadmor, Liu and Tzavaras [1], Tatsien Li and Song Jiang [1], and
Ancona, Bressan, Marcati and Marson [1].

An insightful perspective on the state of the subject at the turn of the century is
provided by Serre [16].

The term ”entropy” in the sense employed here was introduced by Lax [4]. A col-
lection of informative essays on various notions of “entropy” in physics and mathe-
matics is found in the book edited by Greven, Keller and Warnecke [1]. The question
whether entropies may exist for systems endowed with symmetry groups, such as in-
variance under rotations and Galilean transformations, is addressed in Sever [15,16].

The systems (3.3.29) and (3.3.36) are commonly called Euler’s equations. There
is voluminous literature on various aspects of their theory, some of which will be
presented in subsequent chapters. For rudimentary aspects, the reader may consult
any text on fluid mechanics, for example Chorin and Marsden [1]. A classification of
convex entropies is found in Harten [1] and Harten, Lax, Levermore and Morokoff
[1].

The literature on nonlinear elastodynamics is less extensive. Good references,
with copious bibliography, are the books by Truesdell and Noll [1], and Antman [3].

The book by Cercignani [1] is an excellent introduction to the Boltzmann equa-
tion. For recent developments in the program of bridging the kinetic with the contin-
uum theory of gases, see the informative survey articles by Villani [1], and Vasseur
[7]. See also Berthelin and Vasseur [1].

For a thorough treatment of extended thermodynamics and its relation to the ki-
netic theory, the reader should consult the monograph by Müller and Ruggeri [1]. The
issue of generating simpler systems by truncating more complex ones is addressed
in detail by Boillat and Ruggeri [1].

For a systematic development of electrothermomechanics, along the lines of the
development of continuum thermomechanics in Chapter II, see Coleman and Dill
[1], and Grot [1]. Numerous examples of electrodynamical problems involving hy-
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perbolic systems of balance laws are presented in Bloom [1]. Particularly relevant to
the presentation here is the article by Serre [25]. See also Boillat [3,5]. The consti-
tutive equations (3.3.73) were proposed by Born and Infeld [1]. The reader may find
some of their remarkable properties, together with relevant references, in Chapter V.
For magnetohydrodynamics see for example the texts of Cabannes [1], Jeffrey [1],
Landau and Lifshitz [1], and Kulikovskiy and Lyubimov [1].

The theory of relativity is a rich source of interesting hyperbolic systems of bal-
ance laws, which will not be tapped in this work. When the fluid velocity is compara-
ble to the speed of light, the Euler equations should be modified to account for special
relativistic effects; cf. Taub [1], Friedrichs [3], and the book by Christodoulou [1].
The study of these equations from the perspective of the theory of hyperbolic balance
laws has already produced a substantial body of literature. For orientation and exten-
sive bibliography, the reader may consult the recent monograph by Groah, Smoller
and Temple [2] or the survey articles by Smoller and Temple [3], and Groah, Smoller
and Temple [1]. See also Ruggeri [1,2], Smoller and Temple [1,2], Pant [1], and Jing
Chen [1].

Interesting hyperbolic systems of conservation laws also arise in differential ge-
ometry, in connection to the isometric immersion and evolution of surfaces, with
shocks manifesting themselves as “kinks”; see Section 18.7 and Arun and Prasad
[1].

Numerous additional examples of hyperbolic conservation laws in one space di-
mension will be presented in Chapter VII.



IV

The Cauchy Problem

The theory of the Cauchy problem for hyperbolic conservation laws is confronted
with two major challenges. First, classical solutions, starting out from smooth initial
values, spontaneously develop discontinuities; hence, in general, only weak solutions
may exist in the large. Next, weak solutions to the Cauchy problem fail to be unique.
One does not have to dig too deep in order to encounter these difficulties. As shown
in Sections 4.2, 4.4 and 4.8, they arise even at the level of the simplest nonlinear
hyperbolic conservation laws, in one or several space dimensions.

The Cauchy problem for weak solutions will be formulated in Section 4.3. To
overcome the obstacle of nonuniqueness, restrictions need to be imposed that will
weed out unstable, physically irrelevant, or otherwise undesirable solutions, in hope
of singling out a unique admissible solution. Two admissibility criteria will be intro-
duced in this chapter: the requirement that admissible solutions satisfy a designated
entropy inequality; and the principle that admissible solutions should be limits of
families of solutions to systems containing diffusive terms, as the diffusion asymp-
totically vanishes. A preliminary comparison of these criteria will be conducted.

A preliminary discussion on the issue of identifying mathematically and physi-
cally meaningful boundary conditions will be presented in Section 4.7.

The final section 4.8 of this chapter collects a representative sample of results
on the Euler equations of (isentropic) gas dynamics, in three spatial dimensions,
emerging from work of older or recent vintage and highlighting current research
trends in that important area of hyperbolic conservation laws.

4.1 The Cauchy Problem: Classical Solutions

To avoid trivial complications, we focus the investigation on homogeneous hyper-
bolic systems of conservation laws in canonical form,

(4.1.1) ∂tU(x, t)+divG(U(x, t)) = 0,

even though the analysis can be extended in a routine manner to general hyperbolic
systems of balance laws (3.1.1). The spatial variable x takes values in Rm and time
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t takes values in [0,T ), for some T > 0 or possibly T = ∞. The state vector U takes
values in some open subset O of Rn and G= (G1, . . . ,Gm) is a given smooth function
from O to Mn×m. The system (4.1.1) is hyperbolic when, for every fixed U ∈ O and
ν ∈ Sm−1, the n×n matrix

(4.1.2) Λ(ν ;U) =
m

∑
α=1

ναDGα(U)

has real eigenvalues λ1(ν ;U), . . . ,λn(ν ;U) and n linearly independent eigenvectors
R1(ν ;U), . . . ,Rn(ν ;U).

To formulate the Cauchy problem, we assign initial conditions

(4.1.3) U(x,0) =U0(x), x ∈ Rm,

where U0 is a function from Rm to O .
A classical solution of (4.1.1) is a locally Lipschitz function U , defined on

Rm × [0,T ) and taking values in O , which satisfies (4.1.1) almost everywhere. This
function solves the Cauchy problem, with initial data U0 , if it also satisfies (4.1.3)
for all x ∈ Rm.

As we shall see, the theory of the Cauchy problem is greatly enriched when the
system is endowed with an entropy η with associated entropy flux Q, related by

(4.1.4) DQα(U) = Dη(U)DGα(U), α = 1, · · · ,m.

In that case, any classical solution of (4.1.1) will satisfy the additional conservation
law

(4.1.5) ∂tη(U(x, t))+divQ(U(x, t)) = 0.

As we proceed with the development of the theory, it will become clear that con-
vex entropy functions exert a stabilizing influence on solutions. As a first indication
of that effect, the following proposition shows that for systems endowed with a con-
vex entropy, the range of influence of the initial data on solutions of the Cauchy
problem is finite.

4.1.1 Theorem. Assume (4.1.1) is a hyperbolic system, with characteristic speeds
λ1(ν ;U) ≤ ·· · ≤ λn(ν ;U), which is endowed with an entropy η(U) and associated
entropy flux Q(U). Suppose U(x, t) is a classical solution of (4.1.1) on Rm × [0,T ),
with initial data (4.1.3), where U0 is constant on a half-space: For some ξ ∈ Sm−1,
U0(x) = Ū = constant whenever x · ξ ≥ 0. Assume, further, that D2η(Ū) is positive
definite. Then, for any t ∈ [0,T ), U(x, t) = Ū whenever x ·ξ ≥ λn(ξ ;Ū)t.

Proof. Without loss of generality, we may assume that η(Ū) = 0, Dη(Ū) = 0,
Qα(Ū) = 0, DQα(Ū) = 0, α = 1, . . . ,m, since otherwise we just replace the given
entropy-entropy flux pair with the new pair

(4.1.6) η̄(U) = η(U)−η(Ū)−Dη(Ū)[U −Ū ],
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(4.1.7) Q̄(U) = Q(U)−Q(Ū)−Dη(Ū)
[
G(U)−G(Ū)

]
.

For each s ∈ R, ν ∈ Sm−1 and U ∈ O , we define

(4.1.8) Φ(s,ν ;U) = sη(U)−Q(U)ν ,

noting thatΦ(s,ν ;Ū) = 0 and DΦ(s,ν ;Ū) = 0. Furthermore, upon using (4.1.4) and
(4.1.2),

(4.1.9) D2Φ(s,ν ;Ū) = D2η(Ū)[sI −Λ(ν ;Ū)].

Hence, for j,k = 1, . . . ,n,

(4.1.10)
R j(ν ;Ū)�D2Φ(s,ν ;Ū)Rk(ν ;Ū) = [s−λk(ν ;Ū)]R j(ν ;Ū)�D2η(Ū)Rk(ν ;Ū).

The right-hand side of (4.1.10) vanishes for j �= k, by virtue of (3.2.5), and has the
same sign as s−λk(ν ;Ū) for j = k, since D2η(Ū) is positive definite.

For ε > 0, we set s̄ = max
ν∈Sm−1

λn(ν ;Ū)+ε and ŝ = λn(ξ ;Ū)+ε . Then there exists

δ = δ (ε) such that

(4.1.11)

⎧⎨⎩Φ(s̄,ν ;U)> 0, for 0 < |U −Ū |< δ (ε), ν ∈ Sm−1

Φ(ŝ,ξ ;U)> 0, for 0 < |U −Ū |< δ (ε).

To establish the assertion of the theorem, it suffices to show that for each fixed
ε > 0 and t ∈ [0,T ), U(x, t) = Ū whenever x ·ξ ≥ ŝt.

With any point (y,τ), where τ ∈ (0,T ) and y ·ξ ≥ ŝτ , we associate the cone

(4.1.12) Ky,τ = {(x, t) : 0 ≤ t ≤ τ, |x− y| ≤ s̄(τ− t), x ·ξ ≥ y ·ξ − ŝ(τ− t)} ,

which is contained in the set {(x, t) : 0 ≤ t < T, x ·ξ ≥ ŝt}. Thus, the boundary of the
t-section of Ky,τ is the union Pt ∪St of a subset Pt of a hyperplane perpendicular
to ξ , and a subset St of the sphere with center y and radius s̄(τ − t). The outward
unit normal to the t-section at a point x is −ξ if x ∈ Pt , and s̄−1(τ − t)−1(x− y)
if x ∈ St . Therefore, integrating (4.1.5) over Ky,τ , applying Green’s theorem and
using the notation (4.1.8) we obtain

(4.1.13)
τ∫

0

∫
Pt

Φ(ŝ,ξ ;U)dH m−1(x)dt+
τ∫

0

∫
St

Φ
(
s̄,−s̄−1(τ− t)−1(x−y);U

)
dH m−1(x)dt = 0.

After this preparation, assume that the assertion of the theorem is false. Since U(x, t)
is continuous, and U(x,0) = Ū for x ·ξ ≥ 0, one can find (y,τ), with τ ∈ (0,T ) and
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y ·ξ ≥ ŝτ , such that U(y,τ) �= Ū and |U(x, t)−Ū |< δ (ε) for all (x, t) ∈Ky,τ . In that
case, (4.1.13) together with (4.1.11) yields a contradiction. The proof is complete.

It is interesting that in the above proof a crude, “energy”, estimate provides the
sharp value of the rate of growth of the range of influence of the initial data.

As we shall see in Chapter V, the Cauchy problem is well-posed in the class of
classical solutions, so long as U0 is sufficiently smooth and T is sufficiently small. In
the large, however, the situation is quite different. This will be demonstrated in the
following section.

4.2 Breakdown of Classical Solutions

Here we shall make the acquaintance of two distinct mechanisms, namely “wave
breaking” and “mass confinement,” that may induce the breakdown of classical so-
lutions of the Cauchy problem for nonlinear hyperbolic conservation laws.

We shall see first that nonlinearity forces compressive wave profiles to become
steeper and eventually break, so that a derivative of the solution blows up. This will
be demonstrated in the context of the simplest example of a nonlinear hyperbolic
conservation law in one spatial variable, namely the Burgers equation

(4.2.1) ∂tu(x, t)+∂x
(

1
2 u2(x, t)

)
= 0.

This deceptively simple-looking equation pervades the theory of hyperbolic con-
servation laws, as it repeatedly emerges, spontaneously, in the analysis of general
systems; see for instance Section 7.6.

Suppose u(x, t) is a smooth solution of the Cauchy problem for (4.2.1), with ini-
tial data u0(·), defined on some time interval [0,T ). The characteristics of (4.2.1)
associated with this solution are integral curves of the ordinary differential equation
dx/dt = u(x, t). Letting an overdot denote differentiation, ·= ∂t +u∂x , in the charac-
teristic direction, we may rewrite (4.2.1) as u̇ = 0, which shows that u stays constant
along characteristics. This implies, in turn, that characteristics are straight lines.

Setting ∂xu = v and differentiating (4.2.1) with respect to x yields the equation
∂tv+ u∂xv+ v2 = 0, or v̇+ v2 = 0. Therefore, along the characteristic issuing from
any point (x̄,0) where u′0(x̄)< 0, |∂xu| will be an increasing function which blows up
at t̄ = [−u′0(x̄)]

−1. It is thus clear that u(x, t) must break down, as a classical solution,
at or before time t̄.

For an alternative, instructive, perspective on wave breaking, let us associate with
any point (x, t) on the domain of the above solution the number y = x− tu(x, t). Thus
y marks the interceptor on the x-axis of the characteristic associated with u that passes
through the point (x, t). Then (x, t) �→ (y, t) induces a new coordinate system. In
the spirit of continuum physics, one may regard (x, t) as “Eulerian coordinates” and
(y, t) as “Lagrangian coordinates”. Expressed in Lagrangian coordinates, the solution
takes the simple form u(y, t) = u0(y), with bounded derivatives: ∂yu(y, t) = u′0(y)
and ∂tu(y, t) = 0. However, the problem arises when one switches back to Eulerian
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coordinates, since x = y+ tu0(y) implies that the transformation becomes singular
when xy = 1+ tu′0(y) vanishes.

One may stop at the critical time where the earliest singularity develops, or else
seek the so called maximal development region, namely the largest subset of the
upper half-plane on which u exists, as a classical solution. In Lagrangian coordinates
this is the set of (y, t) with tu′0(y)>−1.

For future reference, we shall compare and contrast the behavior of solutions of
(4.2.1) with the behavior of solutions to Burgers’s equation with damping:

(4.2.2) ∂tu(x, t)+∂x
(

1
2 u2(x, t)

)
+u(x, t) = 0.

The arguments employed above for (4.2.1), adapted to (4.2.2), yield that the evo-
lution of classical solutions u, and their derivatives v = ∂xu, along characteristics
dx/dt = u(x, t), is now governed by the equations u̇+u = 0, and v̇+v2 +v = 0. The
last equation exemplifies the competition between the destabilizing action of nonlin-
ear response and the smoothing effect of damping: When the initial data u0 satisfy
u′0(x)≥−1, for all x ∈ (−∞,∞), then damping prevails, ∂xu remains bounded, and a
global classical solution exists for the Cauchy problem. By contrast, if u′0(x̄) < −1,
for some x̄ ∈ (−∞,∞), then waves break in finite time, as v= ∂xu must blow up along
the characteristic issuing from the point (x̄,0).

To see an alternative scenario for breaking down of classical solutions, consider
the Cauchy problem for the Burgers equation (4.2.1), with initial data u0(·) supported
in the interval [0,1]. Suppose a classical solution u(x, t) exists on some time interval
[0,T ). In that case, by virtue of Theorem 4.1.1, u(·, t) will be supported in [0,1], for
any t ∈ [0,T ). We define the weighted total mass

(4.2.3) M(t) =
1∫

0

xu(x, t)dx,

and use (4.2.1) and Schwarz’s inequality to derive the differential inequality

(4.2.4) Ṁ(t) =− 1
2

1∫
0

x∂x
(
u2(x, t)

)
dx = 1

2

1∫
0

u2(x, t)dx ≥ 3
2 M2(t).

Thus, if M(0) > 0, M(t) must blow up no later than at time t∗ = 2
3 M(0)−1. The

interpretation is that the constraints on the rate of growth of the size of the range
of influence of classical solutions, imposed by Theorem 4.1.1, confines the “mass”,
hampering dispersion. This results in segregation of the positive from the negative
part of the mass, eventually leading to blowup. However, it is not difficult to see that
in the present context waves will start breaking no later than at time t̄ = 1

6 M(0)−1, i.e.,
the wave-breaking catastrophe will occur before the mass confinement catastrophe
may materialize.

As we shall see in Section 7.8, the wave breaking catastrophe occurs generically
to solutions of genuinely nonlinear systems of hyperbolic conservation laws in one
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spatial dimension, as waves propagating along characteristics are confined to a plane
and thus cannot avoid colliding with each other. By contrast, in several space dimen-
sions wave breaking may be averted as it competes with dispersion. Nevertheless, as
we shall see in Sections 6.1 and 4.8, waves still break for scalar conservation laws
in several space dimensions and for the Euler equations in three spatial dimensions.
The discussion of systems in which dispersion prevails and prevents the breaking of
waves lies beyond the scope of this book. An example of such a system, arising in
elastodynamics, will be exhibited in Section 5.5.

4.3 The Cauchy Problem: Weak Solutions

In view of the examples of breakdown of classical solutions presented in the previous
section—and many more that will be encountered throughout the text—it becomes
imperative to consider weak solutions to systems of conservation laws (4.1.1). The
natural notion for a weak solution should be determined in conjunction with an exis-
tence theory. The issue of existence of weak solutions has been settled in a definitive
manner for scalar conservation laws, in any number of spatial variables (see Chapter
VI), and at least partially for systems in one spatial variable (see Chapters XIII–
XVII); it remains totally unsettled, however, for systems in several spatial variables.
In the absence of a definitive existence theory, and in order to introduce a number
of relevant notions, without imposing technical growth conditions on the flux func-
tion G, we shall define here as weak solutions of (4.1.1) locally bounded, measurable
functions U , defined on Rm × [0,T ) and taking values in O , which satisfy (4.1.1) in
the sense of distributions.

Recalling Lemma 1.3.3, we normalize any weak solution U of (4.1.1) so that
the map t �→ U(·, t) becomes continuous on [0,T ) in L∞(Rm) weak∗. A normalized
weak solution of (4.1.1) will then solve the Cauchy problem (4.1.1), (4.1.3) if it also
satisfies (4.1.3) almost everywhere on Rm. Lemma 1.3.3 also implies

(4.3.1)
T∫
τ

∫
Rm

[
∂tΦU +

m

∑
α=1

∂αΦGα(U)

]
dxdt +

∫
Rm

Φ(x,τ)U(x,τ)dx = 0,

for every Lipschitz test function Φ(x, t), with compact support in Rm × [0,T ) and
values in M1×n, and any τ ∈ [0,T ). In particular,

(4.3.2)
T∫

0

∫
Rm

[
∂tΦU +

m

∑
α=1

∂αΦGα(U)

]
dxdt +

∫
Rm

Φ(x,0)U0(x)dx = 0,

which may serve as an equivalent definition of a weak solution of (4.1.1), (4.1.3). The
continuity of t �→U(·, t) also induces the desirable semigroup property: if U(x, t) is a
weak solution of (4.1.1) on [0,T ), with initial values U(x,0), then for any τ ∈ [0,T )
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the function Uτ(x, t) = U(x, t + τ) is a weak solution of (4.1.1) with initial values
Uτ(x,0) =U(x,τ).

An important class of weak solutions are those in which U is a function of locally
bounded variation on Rm × [0,T ). Such solutions satisfy the system (4.1.1) in the
sense of measures and the initial conditions (4.1.3) as the trace of U at t = 0. On the
set of points of approximate jump discontinuity, BV solutions satisfy the Rankine-
Hugoniot jump conditions (3.1.3), which here take the following form:

(4.3.3) −s [U+−U−]+ [G(U+)−G(U−)]ν = 0.

As the system is in divergence form, there is a mechanism of regularity transfer
from the spatial to the temporal variables, which can be illustrated in the context of
BV solutions:

4.3.1 Theorem. Let U be a bounded weak solution of (4.1.1) on [0,T ) such that, for
any fixed t ∈ [0,T ), U(·, t) ∈ BV (Rm) and TVRmU(·, t) ≤ V , for all t ∈ [0,T ). Then
t �→U(·, t) is Lipschitz continuous in L1(Rm) on [0,T ),

(4.3.4) ‖U(·,σ)−U(·,τ)‖L1(Rm) ≤ aV |σ − τ|, 0 ≤ τ < σ < T,

where a depends solely on the Lipschitz constant of G. In particular, U is in BVloc on
Rm × [0,T ).

Proof. Fix 0 ≤ τ < σ < T and anyΨ ∈C∞
0
(
Rm;M1×n

)
, with |Ψ(x)| ≤ 1 for x ∈Rm.

Using the test function Φ(x, t) = f (t)Ψ(x), where f ∈ C∞
0 [0,T ), with f (t) = 1 for

t ∈ [0,σ ], write (4.3.1), first for τ = σ , then for τ = τ , and subtract to get

(4.3.5)
∫
Rm

Ψ(x)[U(x,σ)−U(x,τ)]dx =
σ∫
τ

∫
Rm

m

∑
α=1

∂αΨ(x)Gα(U(x, t))dxdt.

The spatial integral on the right-hand side is majorized by the total variation of
G(U(·, t)), which in turn is bounded by aV . Taking the supremum of (4.3.5) over
allΨ with |Ψ(x)| ≤ 1, we arrive at (4.3.4).

Theorem 1.7.2 together with (4.3.4) implies that U is in BVloc on Rm × [0,T ).
The proof is complete.

4.4 Nonuniqueness of Weak Solutions

Extending the notion of solution from classical to weak introduces a new difficulty:
nonuniqueness. To see this, consider the Cauchy problem for the Burgers equation
(4.2.1), with initial data

(4.4.1) u(x,0) =
{−1, x < 0

1, x > 0.
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This is an example of the celebrated Riemann problem, which will be discussed
at length in Chapter IX. The problem (4.2.1), (4.4.1) admits infinitely many weak
solutions, including the family

(4.4.2) uα(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, −∞ < x ≤−t

x
t
, −t < x ≤−αt

−α, −αt < x ≤ 0

α, 0 < x ≤ αt

x
t
, αt < x ≤ t

1, t < x < ∞,

for any α ∈ [0,1]. Indeed, uα(x, t) satisfies (4.2.1), in the classical sense, provided
x/t /∈ {0,±α,±1}. The lines x/t =±1, for α ∈ [0,1], and x/t =±α , for α in (0,1),
are just weak fronts, across which uα is continuous. Finally, for α �= 0, the line x = 0
is a stationary shock front across which the Rankine-Hugoniot jump condition (4.3.5)
holds.

To resolve the issue of nonuniqueness, additional restrictions, in the form of ad-
missibility conditions, shall be imposed on weak solutions. At the outset, reasonable
admissibility criteria should meet at least some of the following requirements:
(a) They should be dictated, or at least motivated, by physics.
(b) They should be compatible with other established admissibility conditions.
(c) They should be broad enough to allow for existence of admissible solutions,
and yet sufficiently narrow to disqualify spurious solutions. Ideally, they should be
capable of singling out a unique admissible solution.

The issue of admissibility of weak solutions to hyperbolic conservation laws will
be a central theme in this book, requiring lengthy discussions, which will commence
in the following two sections and culminate in Chapters VIII and IX. In particular, it
will turn out that u0(x, t) is the sole admissible solution of the simple problem (4.2.1),
(4.4.1) considered in this section.

4.5 Entropy Admissibility Condition

As we saw in Chapter III, every system of balance laws arising in continuum physics
is accompanied by an entropy inequality that must be satisfied by any physically
meaningful process, as it expresses, explicitly or implicitly, the Second Law of ther-
modynamics. This motivates the following procedure for characterizing admissible
weak solutions of hyperbolic systems of conservation laws.

Assume our system (4.1.1) is endowed with a designated entropy η , associated
with an entropy flux Q, so that (4.1.4) holds. A weak solution of (4.1.1), in the sense
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of Section 4.3, defined on Rm× [0,T ), will satisfy the entropy admissibility criterion,
relative to η , if

(4.5.1) ∂tη(U(x, t))+divQ(U(x, t))≤ 0

holds, in the sense of distributions, on Rm × [0,T ).
Clearly, any classical solution of (4.1.1) is admissible, as it satisfies the equality

(4.1.5). Another relevant remark is that the entropy admissibility criterion induces a
time irreversibility condition on solutions: if U(x, t) is an admissible weak solution
of (4.1.1) that satisfies (4.5.1) as a strict inequality, then Ū(x, t) =U(−x,−t), which
is also a solution, is not admissible.

A natural question is how one may designate an appropriate entropy for the ad-
missibility criterion. For instance, it is clear that a weak solution that is admissible
relative to an entropy η fails to be admissible relative to the entropy η̄ =−η . When
the system derives from physics, then it is physics that should designate the natu-
ral entropy. In the absence of guidance from physics, one has to use mathematical
arguments. It is, of course, desirable that the admissibility criterion induced by the
designated entropy should be compatible with admissibility conditions induced by
alternative criteria, to be introduced later. Another natural condition is that admissi-
ble weak solutions should enjoy reasonable stability properties. As we shall see, all
of the above requirements are met when the designated entropy η(U) is convex, or
at least “convexlike”.

The reader should bear in mind that convexity is a relevant property of the entropy
only when the system is in canonical form. In the general case, convexity of η should
be replaced by the condition that the (n×n matrix-valued) derivative DB(U,x, t) of
the (n-vector-valued) function B(U,x, t) in (3.2.2) is positive definite.

A review of the examples considered in Section 3.3 reveals that the entropy, as
a function of the state vector that converts the system of balance laws into canon-
ical form, is indeed convex in the case of the thermoelastic fluid (example 3.3.5),
the isentropic thermoelastic fluid (example 3.3.6) and magnetohydrodynamics (ex-
ample 3.3.9). This may raise expectations that in the equations of continuum physics
entropy is generally convex. However, as we shall see, this is not always the case;
hence the necessity to consider a broader class of entropy functions.

For any weak solution U satisfying the entropy admissibility criterion, the left-
hand side of (4.5.1) is a nonpositive distribution, and thereby a measure, which shall
be dubbed the entropy production measure. Then Lemma 1.3.3 implies that the map
t �→ η(U(·, t)) is continuous on [0,T )\F in L∞(Rm) weak∗, where F is at most
countable. Furthermore, for every nonnegative Lipschitz test function ψ(x, t), with
compact support in Rm × [0,T ), and any τ ∈ [0,T )\F ,

(4.5.2)
T∫
τ

∫
Rm

[
∂tψ η(U)+

m

∑
α=1

∂αψQα(U)

]
dxdt +

∫
Rm

ψ(x,τ)η(U(x,τ))dx ≥ 0.

It would be important to determine conditions under which the set F is actually
empty, but the presence of wildly oscillating, exotic solutions for the Euler equations,
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which will be demonstrated in Section 4.8, is an indication that answering this ques-
tion will not be easy. Indeed, at the time of this writing, there is a rigorous proof that
F = /0 only in the scalar case, n = 1 (see Section 6.8). As we shall see, it is a great
help to the analysis if at least 0 /∈ F , in which case (4.5.2), with τ = 0, becomes

(4.5.3)
T∫

0

∫
Rm

[
∂tψ η(U)+

m

∑
α=1

∂αψQα(U)

]
dxdt +

∫
Rm

ψ(x,0)η(U0(x))dx ≥ 0.

Accordingly, it is (4.5.3), rather than the slightly weaker condition (4.5.1), that is
often postulated in the literature as the entropy admissibility criterion for the weak
solution U . It should be noted, however, that admissible weak solutions character-
ized through (4.5.3) do not necessarily possess the desirable semigroup property,
i.e., U(x, t) admissible does not generally imply that Uτ(x, t) = U(x, t + τ) is also
admissible, for all τ ∈ [0,T ). Thus, in the author’s opinion, admissibility should be
defined either through (4.5.1) alone or through (4.5.2), for all τ ∈ [0,T ). An eventual
proof that, at least in certain systems, F is empty will render the distinction moot.

A first indication of the enhanced regularity enjoyed by admissible weak solu-
tions when the entropy is convex is provided by the following

4.5.1 Theorem. Assume U(x, t) is a weak solution of (4.1.1) on Rm × [0,T ), which
satisfies the entropy admissibility condition (4.5.1) relative to a uniformly convex
entropy η . Then t �→U(·, t) is continuous on [0,T )\F in LP

loc(R
m), for any p∈ [1,∞),

where F is at most countable. Moreover, (4.5.2) holds for some τ in [0,T ), if and
only if t �→U(·, t) is continuous from the right at τ in Lp

loc(R
m), for any p ∈ [1,∞).

Proof. Since both t �→ U(·, t) and t �→ η(U(·, t)) are continuous on [0,T )\F in
L∞(Rm) weak∗, and η is uniformly convex, it follows that t �→ U(·, t) is strongly
continuous on [0,T )\F in Lp(D), for any compact subset D of Rm and p ∈ [1,∞).

Assume now (4.5.2) holds, for some τ ∈ [0,T ). Fix ε > 0 and apply (4.5.2) for
ψ(x, t) = φ(x)g(t), where ϕ ∈C∞

0 (R
m), with ϕ(x)≥ 0 for x ∈Rm, while g is defined

by g(t) = 1− ε−1(t − τ), for 0 ≤ t < τ + ε , and g(t) = 0, for t + ε ≤ t < ∞ . This
gives

(4.5.4)
1
ε

τ+ε∫
τ

∫
Rm

ϕ(x) [η(U(x,τ))−η(U(x, t))]dxdt ≥ O(ε).

By Lemma 1.3.3, letting ε ↓ 0, we deduce ess lim
t↓τ

η(U(·, t))≤ η(U(·,τ)), where the

limit is taken in L∞(D) weak∗, for any compact subset D of Rm. Recalling that
lim
t↓τ

U(·, t) = U(·,τ), again in L∞(D) weak∗, and that η(U) is uniformly convex, it

follows that, as t ↓ τ, U(·, t)→U(·,τ), strongly in Lp(D), for any p ∈ [1,∞).
Conversely, assuming t �→ U(·, t) is right-continuous in Lp

loc(R
m) at τ , we fix

any nonnegative Lipschitz function ψ(x, t) with compact support in Rm × [0,T )
and set φ(x, t) = h(t)ψ(x, t), where h(t) = 0, for 0 ≤ t ≤ τ , h(t) = ε−1(t − τ), for
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τ < t ≤ τ + ε , and h(t) = 1, for τ + ε < t < T . Upon applying (4.5.1) to the test
function φ , and then letting ε ↓ 0, we arrive at (4.5.2). The proof is complete.

The implications of (4.5.3) or (4.5.2) are further elucidated by the following

4.5.2 Theorem. Let U(x, t) be a weak solution of (4.1.1), (4.1.3), on Rm × [0,T ),
with U0(·)− Ū ∈ L2(Rm), for some fixed state Ū . Assume U satisfies the entropy
admissibility condition (4.5.1) relative to a uniformly convex entropy η , normalized1

so that η(Ū) = 0, Dη(Ū) = 0. Then U satisfies (4.5.3) if and only if

(4.5.5)
∫
Rm
η(U(x,τ))dx ≤

∫
Rm
η(U0(x))dx , 0 < τ < T.

It thus follows that (4.5.2) holds for all τ ∈ [0,T ) if and only if the function
t �→ ∫

Rm η(U(x, t))dx is nonincreasing on [0,T ).

Proof. Assume (4.5.3) holds and fix any τ ∈ (0,T ). For ε > 0 small, r > 0 and s > 0,
set

(4.5.6) h(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 0 ≤ t < τ

ε−1(τ− t)+1 τ ≤ t < τ+ ε

0 τ+ ε ≤ t < T ,

(4.5.7) φ(x, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 |x|− r− s(τ− t)< 0

ε−1[r+ s(τ− t)−|x|]+1 0 ≤ |x|− r− s(τ− t)< ε

0 |x|− r− s(τ− t)≥ ε ,

and write (4.5.3) for the test function ψ(x, t) = h(t)φ(x, t) to get

(4.5.8)
1
ε

∫ τ+ε

τ

∫
|x|<r

η(U(x,τ))dxdt ≤
∫
|x|<r+sτ

η(U0(x))dx

−1
ε

∫ τ

0

∫
r+s(τ−t)<|x|<r+s(τ−t)+ε

[
sη(U)+

Q(U) · x
|x|

]
dxdt +O(ε).

Recalling that η is uniformly convex, η(Ū) = 0, Dη(Ū) = 0, and thereby we have
DQα(Ū) = 0, α = 1, · · · ,m, normalize Q by Q(Ū) = 0, and fix s sufficiently large
for sη ≥ |Q| to hold on the range of the solution U . In (4.5.8), let ε ↓ 0, use the weak
lower semicontinuity of

∫
η(U)dx, and then let r ↑ ∞ , to arrive at (4.5.5).

1 As explained in the proof of Theorem 4.1.1.
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Conversely, assume (4.5.5) holds. Since U(·,τ) → U0(·), in L∞(Rm) weak∗, as
τ ↓ 0, (4.5.5) and the weak lower semicontinuity of

∫
η(U)dx imply U(·,τ)→U0(·)

in Lp
loc(R

m). This in turn yields (4.5.3), by virtue of Theorem 4.5.1. The proof is
complete.

The monotonic decay of total entropy, manifested in (4.5.5), is physically ap-
pealing. It hinges on the admissibility condition (4.5.2) in conjunction with the weak
lower semicontinuity of the map V �→ ∫

η(V )dx, for which convexity of η(V ) is both
necessary and sufficient, so long as V is unrestricted. However, in Chapter III we en-
countered important systems arising in mechanics and electrodynamics, in which the
entropy function is not allowed to be convex. What saves the day is that the state vec-
tor for such systems must satisfy side conditions that may render

∫
η(V )dx weakly

lower semicontinuous even for η(V ) that are not convex.
For illustration, let us consider the system (3.3.19) that governs the isentropic mo-

tion of thermoelastic media. Recall that the entropy function η = ε(F)+ 1
2 |v|2 fails

to be convex, because the internal energy function ε(F) is not allowed to be convex.
Nevertheless, it is known (references in Section 4.9) that since F is constrained to be
a gradient, the map F �→ ∫

ε(F)dx is lower semicontinuous in L∞ weak∗ if and only
if ε(F) is quasiconvex in the sense of Morrey, namely, letting K denote the standard
hypercube in R3,

(4.5.9) ε(F̂)≤
∫
K

ε(F̂ +∇χ)dx

holds for every constant matrix F̂ and any Lipschitz vector field χ with compact
support in K . In physical terms, (4.5.9) stipulates that ε is quasiconvex when any
homogeneous deformation of K minimizes the internal energy stored in K among
all placements of K with the same boundary values.

Convexity of ε(F) is a sufficient condition for quasiconvexity, but it is not nec-
essary. On the other hand, rank-one convexity (3.3.7), with s constant, is a necessary
condition for quasiconvexity of ε(F) but it is not sufficient. In fact, since (4.5.9) is
nonlocal, it is not easy to test whether any particular rank-one convex, but not convex,
function is quasiconvex.

A method for constructing physically admissible, nonconvex but quasiconvex in-
ternal energies is based on that (4.5.9) holds as equality when ε(F) = ϕ(F), where
ϕ(F) is any null Lagrangian in the form (2.2.9). Thus null Lagrangians are continu-
ous in L∞ weak∗. It follows that internal energies with constitutive equations

(4.5.10) ε(F) = θ(F,F∗,det F),

where θ(F,H,δ ) is convex in R19, are lower semicontinuous in L∞ weak∗ and
thereby quasiconvex. Constitutive equations of this type are termed polyconvex. They
provide realistic models for actual elastic materials and are playing an important role
in elastostatics. Their role is elastodynamics will be elucidated in Section 5.4. For
present purposes, when the internal energy function is polyconvex, the assertions of
Theorem 4.5.2 hold for the system (3.3.19) of isentropic thermoelasticity.
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As we shall see later, the entropy admissibility condition eliminates some, but not
necessarily all, of the undesirable, spurious weak solutions of hyperbolic systems of
conservation laws. A potential remedy is to require that (4.5.3) hold simultaneously
for every convex entropy of the system. However, this appears promising only for
the very special class of systems that are endowed with a rich family of entropies
and in particular, as we shall see in Chapter VI, for scalar conservation laws. In that
connection, one should be aware of the following

4.5.3 Remark. Assume (4.1.1) is endowed with an entropy-entropy flux pair (η̄ , Q̄)
with D2η̄ positive definite on O , and consider the stronger admissibility condition
on solutions U of (4.1.1), namely, that the inequality (4.5.3) must hold for every
entropy-entropy flux pair (η ,Q) with η convex. In that case, ∂tη(U)+divQ(U) will
be a measure for any entropy-entropy flux pair (η ,Q). This follows from the obser-
vation that any C2 entropy-entropy flux pair (η ,Q) may be written as the difference
of the entropy-entropy flux pairs (kη̄+η ,kQ̄+Q) and (kη̄ ,kQ̄), where the Hessians
of both kη̄+η and kη̄ are positive definite on any compact subset of O , for k suffi-
ciently large.

In the absence of a rich family of entropies and when (4.5.1) for a single en-
tropy does not suffice for weeding out all spurious solutions, one may attempt to
single out the physically admissible solution by adopting a more selective admis-
sibility condition, always in the spirit of the Second Law of thermodynamics. As
(4.5.5) manifests that admissible solutions must be dissipative, it is natural to inquire
whether the solution exhibiting dissipation at the highest rate has special status. One
may experiment with various characterizations of maximal dissipativeness. Thus, in
the setting of Theorem 4.5.2, a solution U may be termed maximally dissipative if
for every t ∈ [0,T ) and any other solution Û that coincides with U on Rm × [0, t],
either

(4.5.11) D+
∫
Rm

η(U(x, t))dx ≤ D+

∫
Rm
η(Û(x, t))dx,

where D+ and D+ denote the upper and lower right Dini derivatives; or, alternatively,
if there is a decreasing sequence {tk}, tk → t as k → ∞ , such that

(4.5.12)
∫
Rm

η(U(x, tk))dx ≤
∫
Rm
η(Û(x, tk))dx, k = 1,2, . . . .

Notice that (4.5.11) and (4.5.12) are in the same spirit, but neither one implies the
other. We will return to these considerations, briefly in Section 4.8 and more thor-
oughly in Section 9.7.

Whenever the admissible solution U is of class BVloc , Theorem 1.8.2 implies that
the entropy production measure is concentrated on the set of points of approximate
jump discontinuity of U , i.e., on the shock fronts. In that case, (4.5.1) reduces to the
local condition (1.8.5), which in the present notation takes the form
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(4.5.13) −s [η(U+)−η(U−)]+ [Q(U+)−Q(U−)]ν ≤ 0.

For admissibility of U relative to the entropy η , (4.5.12) has to be tested at any point
of a shock that propagates in the direction ν ∈ Sm−1 with speed s.

As an application, let us test the admissibility of the family uα(x, t) of solu-
tions to (4.2.1), (4.4.1), defined by (4.4.2), relative to the entropy-entropy flux pair(

1
2 u2, 1

3 u3
)
. It is clear that, for any α ∈ (0,1], the stationary shock x = 0 violates

(4.5.12). Thus, the sole admissible solution in that family is u0(x, t), which is Lips-
chitz continuous, away from the origin.

4.6 The Vanishing Viscosity Approach

According to the viscosity criterion, a solution U of (4.1.1) is admissible provided
it is the μ ↓ 0 limit of solutions Uμ to a system of conservation laws with diffusive
terms:

(4.6.1) ∂tU(x, t)+
m

∑
α=1

∂αGα(U(x, t)) = μ
m

∑
α,β=1

∂α [Bαβ (U(x, t))∂βU(x, t)],

where the Bαβ are n×n matrix-valued functions defined on O .
The motivation for this principle and the term “vanishing viscosity” derive from

continuum physics: as we saw in earlier chapters, the balance laws for thermoelastic
materials under adiabatic conditions induce first order systems of hyperbolic type.
By contrast, the balance laws for thermoviscoelastic, heat-conducting materials, in-
troduced in Section 2.6, generate systems of second order in the spatial variables,
containing diffusive terms akin to those appearing on the right-hand side of (4.6.1).
In nature, every material has viscous response and conducts heat, to a certain degree.
Classifying a particular material as an elastic nonconductor of heat simply means
that viscosity and heat conductivity are negligible, albeit not totally absent. Conse-
quently, the theory of adiabatic thermoelasticity may be physically meaningful only
as a limiting case of thermoviscoelasticity, with viscosity and heat conductivity tend-
ing to zero. It is this premise that underlies the vanishing viscosity approach.

In laying down (4.6.1), the first task is to select the n× n matrices Bαβ (U), for
α,β = 1, . . . ,m. In the case of systems of physical origin, the natural choice for these
matrices is dictated, or at least suggested, by physics. For example, thermoelastic
fluid nonconductors of heat should be regarded as Newtonian fluids with constitutive
equations (2.6.16), (2.6.17) having vanishingly small viscosity and heat conductivity.
Accordingly, when (4.1.1) stands for the system (3.3.29) of balance laws of mass,
momentum and energy for thermoelastic fluids that do not conduct heat (with zero
body force and heat supply), the appropriate choice for the corresponding system
(4.6.1), with diffusive terms, should be2

2 We write this system in components form, let ∂i denote ∂/∂xi and employ the summation
convention: repeated indices are summed over the range 1,2,3.
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(4.6.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ+∂ j(ρv j) = 0

∂t (ρvi)+∂ j (ρviv j)+∂i p(ρ,s) = λ∂i∂ jv j +μ∂ j (∂iv j +∂ jvi)

∂t
[
ρε(ρ,s)+ 1

2ρ|v|2
]
+∂ j

[(
ρε(ρ,s)+ 1

2ρ|v|2 + p(ρ,s)
)
v j
]

= λ∂i (vi∂ jv j)+μ∂ j
[(
∂iv j +∂ jvi

)
vi
]
+κ∂i∂iθ .

The reader should take notice that (4.6.2) contains three independent physical
parameters, namely the bulk viscosity λ + 2

3μ , the shear viscosity μ and the thermal
conductivity κ , which might all be very small albeit of different orders of magnitude.
Thus, one should be prepared to consider formulations of the vanishing viscosity
principle, more general than (4.6.1), involving several independent small parameters.
However, this generalization will not be pursued here.

Physics suggests the natural form for (4.6.1) in every example considered in
Section 3.3, including electromagnetism, magnetohydrodynamics, etc. On the other
hand, in the absence of guidance from physics, or for mere analytical and computa-
tional convenience, one may experiment with artificial viscosity added to the right-
hand side of (4.1.1). For example, one may add artificial viscosity to (4.2.1) to derive
the Burgers equation with viscosity:

(4.6.3) ∂tu(x, t)+∂x
(

1
2 u2(x, t)

)
= μ∂ 2

x u(x, t).

It is clear that artificial viscosity should be selected in such a way that the Bαβ
induce dissipation and thus render the Cauchy problem for (4.6.1) well-posed. The
temptation is to use for Bαβ matrices that would render (4.6.1) parabolic; and in
particular the zero matrix if α �= β and the identity matrix if α = β , which would re-
duce the right-hand side to μΔU . The physically motivated example (4.6.2) demon-
strates, however, that confining attention to the parabolic case would be ill-advised.
In general, one has to deal with systems of intermediate parabolic-hyperbolic type,
in which case establishing the well-posedness of the Cauchy problem may require
considerable effort. See Section 5.5.

Assuming a vanishing viscosity mechanism has been selected, rendering the
Cauchy problem (4.6.1), (4.1.3) well-posed, the question arises as to the sense of
convergence of the family {Uμ} of solutions, as μ ↓ 0. This is of course a serious
issue: requiring very strong convergence may raise unreasonable expectations for
compactness of the family {Uμ}. On the other hand, if the sense of convergence is
too weak, it is not clear that limUμ will be a solution of (4.1.1). Various aspects of
this problem will be discussed later, mainly in Chapters VI, XV and XVII.

Another important task is to compare admissibility of solutions in the sense of
the vanishing viscosity approach and admissibility in the sense of a designated en-
tropy inequality (4.5.1), as discussed in Section 4.5. In continuum thermodynamics,
presented in Chapter II, whenever (4.6.1) results from actual constitutive equations
compatible with the Clausius-Duhem inequality, and (4.5.1) is, or derives from, the
Clausius-Duhem inequality, solutions of (4.1.1) obtained by the vanishing viscosity
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approach will automatically satisfy (4.5.1). For example, solutions of (3.3.29) ob-
tained as the (λ ,μ,κ) ↓ 0 limit of solutions of (4.6.2) will satisfy automatically the
inequality (3.3.32).

If η(U) is an entropy for (4.1.1), associated with the entropy flux Q(U), then any
(classical) solution Uμ of (4.6.1) satisfies the identity

(4.6.4) ∂tη
(
Uμ

)
+

m

∑
α=1

∂αQα
(
Uμ

)
= μ

m

∑
α,β=1

∂α
[
Dη

(
Uμ

)
Bαβ

(
Uμ

)
∂βUμ

]
− μ

m

∑
α,β=1

(
∂αUμ

)� D2η
(
Uμ

)
Bαβ

(
Uμ

)
∂βUμ .

The second term on the right-hand side should be dissipative, so that the quadratic
form associated with D2ηBαβ must be positive semidefinite. Beyond that, however,
this term is entrusted with the responsibility of dominating the first term on the right-
hand side of (4.6.4) as well as the right-hand side of (4.6.1). A sufficient, though not
necessary, condition for this will be

(4.6.5)
m

∑
α,β=1

ξ�α D2η(U)Bαβ (U)ξβ ≥ a
m

∑
α=1

∣∣∣∣∣ m

∑
β=1

Bαβ (U)ξβ

∣∣∣∣∣
2

,

for some positive constant a, any U ∈ O and all ξα ∈ Rn, α = 1, · · · ,m. Notice that
when Bαβ vanishes for α �= β , and is the identity for α = β , (4.6.5) reduces to the
statement that η(U) is uniformly convex.

Suppose now that the initial data U0 and the solution Uμ of (4.6.1), (4.1.3) tend

may assume that η(Ū) = 0 and Dη(Ū) = 0, since otherwise we may replace η(U)
by η̄(U), defined by (4.1.6). We make the further assumption that actually Ū is the
minimum of η over O . This of course will automatically be the case when η(U)
is convex. Under these hypotheses, integrating (4.6.4) over Rm × [0,T ) yields the
estimate

(4.6.6) μ
T∫

0

∫
Rm

m

∑
α,β=1

(
∂αUμ

)�D2η
(
Uμ

)
Bαβ

(
Uμ

)
∂βUμ dxdt ≤

∫
Rm

η (U0(x))dx.

We have now laid the groundwork for showing that the viscosity admissibility
criterion implies the entropy admissibility condition.

4.6.1 Theorem. Under the assumptions on η(U) and {Uμ} stated above, suppose
that a sequence {Uμk}, with μk → 0 as k → ∞ , converges boundedly almost every-
where on Rm × [0,T ) to some function U. Then U is a weak solution of (4.1.1),
(4.1.3) on Rm × [0,T ), which satisfies the entropy admissibility condition (4.5.3).

Proof. We multiply (4.6.1) by any Lipschitz test function Φ(x, t), taking values in
M1×n with compact support in Rm × [0,T ) and integrate the resulting equation over

sufficiently fast, as |x| → ∞ , to a constant state Ū . Without loss of generality we
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Rm × [0,T ). After an integration by parts, with respect to the time and spatial vari-
ables, we deduce

(4.6.7)
T∫

0

∫
Rm

[
∂tΦUμ +

m

∑
α=1

∂αΦGα
(
Uμ

)]
dxdt +

∫
Rm

Φ(x,0)U0(x)dx

= μ
T∫

0

∫
Rm

m

∑
α=1

∂αΦ Bαβ
(
Uμ

)
∂βUμ dxdt.

By virtue of (4.6.5) and (4.6.6), as μk → 0, the right-hand side tends to zero, and
hence the limit function U satisfies the equation (4.3.2).

Next we multiply (4.6.4) by any nonnegative Lipschitz test function ψ(x, t), with
compact support in Rm × [0,T ), and integrate the resulting equation over the strip
Rm × [0,T ). Integrating by parts with respect the spatial and time variables, we end
up with the identity

(4.6.8)
T∫

0

∫
Rm

[
∂tψ η

(
Uμ

)
+

m

∑
α=1

∂αψQα
(
Uμ

)]
dxdt +

∫
Rm

ψ(x,0)η
(
U0(x)

)
dx

= μ
T∫

0

∫
Rm

∂αψDη
(
Uμ

)
Bαβ

(
Uμ

)
∂βUμ dxdt

+μ
T∫

0

∫
Rm

ψ
m

∑
α,β=1

(
∂αUμ

)�D2η
(
Uμ

)
Bαβ

(
Uμ

)
∂βUμ dxdt.

On account of (4.6.5) and (4.6.6), the first term on the right-hand side tends to zero,
as μk → 0, while the second term is nonnegative. Therefore, the limit function U
satisfies the inequality (4.5.3). This completes the proof.

More general admissibility conditions, of the same genre as the viscosity crite-
rion, may be formulated by replacing (4.6.1) with a system of the form

(4.6.9)

∂tU +
m

∑
α=1

∂αGα(U) = μ
m

∑
α,β=1

∂α [Bαβ (U)∂βU ]+ν
m

∑
α,β ,γ=1

∂α [Hαβγ(U)∂β∂γU ],

involving third, and sometimes even fourth, order differential operators and two
“vanishing” parameters μ and ν . For example, in the place of (4.6.3) one may take

(4.6.10) ∂tu(x, t)+∂x(
1
2 u2(x, t)) = μ∂ 2

x u(x, t)+ν∂ 3
x u(x, t).
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The approach to admissibility via (4.6.9) is suggested by physics when the dissipative
effect of viscosity coexists with some dispersive mechanism induced, for instance, by
capillarity. Accordingly, the admissibility condition associated with (4.6.9) is termed
the viscosity-capillarity criterion. Which solutions of (4.1.1) pass this test of admis-
sibility will generally depend not only on the choice of Bαβ and Hαβγ , but also on the
relative rate by which μ and ν tend to zero. As a minimum requirement, (4.6.9) must
be compatible with the Second Law of thermodynamics, i.e., a proposition analogous
to Theorem 4.6.1 must hold for the entropy-entropy flux pair provided by physics.

4.7 Initial-Boundary Value Problems

Suppose that the hyperbolic system of conservation laws (4.1.1) is posed on a proper,
open subset D of Rm, with Lipschitz boundary ∂D and outward unit normal field ν .
To formulate a well-posed problem for (4.1.1) on the cylinder X = D × (0,T ), in
addition to assigning initial data U(x,0) =U0(x) on the base D ×{0}, one must also
prescribe boundary conditions on the lateral boundary B = ∂D × (0,T ).

Typically, homogeneous boundary conditions associated with the systems of con-
servation laws in continuum physics may be cast in the form

(4.7.1) P(U(x, t))ν(x) = 0, (x, t) ∈ B,

where P is a smooth function defined on O and taking values in Mn×m. Classical
examples include the clamped boundary condition

(4.7.2) v(x, t) = 0, (x, t) ∈ B,

or the traction-free boundary condition

(4.7.3) S(F(x, t))ν(x) = 0, (x, t) ∈ B,

for the system (3.3.19) of isentropic elastodynamics, in Lagrangian coordinates, and
the corresponding no-penetration (slip boundary)

(4.7.4) ρ(x, t)v(x, t) ·ν(x) = 0, (x, t) ∈ B,

or constant pressure

(4.7.5) p(ρ(x, t)) = p0, (x, t) ∈ B,

boundary conditions for the Euler equations (3.3.36). The natural question of char-
acterizing the class of P that render the initial-boundary value problem well-posed,
in the regime of classical solutions, will be addressed later, in Section 5.6.

A separate issue, which will be discussed here briefly, is how to interpret the
boundary condition (4.7.1) in the context of weak solutions. Whenever the weak
solution U is a BV function on X , its inner trace U− is well-defined on B (cf.
Section 1.7). Consequently, within the BV framework, (4.7.1) may be interpreted
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in a virtually classical, pointwise sense. The situation is different when the weak
solution U is merely in L∞, so that its trace on B cannot be identified. Nevertheless,
by Theorem 1.3.4, one may still define on B the normal component of vector fields
whose space-time divergence is a bounded measure on X . In particular, since the
space-time divergence of (G1(U), · · · ,Gn(U),U) vanishes on X , one may define the
trace GB ∈ L∞(B;Rn) of G(U)ν on B, by means of Equation (1.3.14), which here
takes the form

(4.7.6)
T∫

0

∫
∂D

ΦGB dH m−1(x)dt −
∫
D

Φ(x,0)U0(x)dx

=

T∫
0

∫
D

[
∂tΦU +

m

∑
α=1

∂αΦGα(U)

]
dxdt,

for any Lipschitz test function Φ compactly supported in Rm × [0,T ) and taking
values in M1×n.

More generally, when U satisfies an entropy admissibility condition (4.5.1), one
may define the trace QB ∈ L∞(B) of Q(U)ν on B by means of

(4.7.7)

T∫
0

∫
∂D

ψQB dH m−1(x)dt =
T∫

0

∫
D

[
∂tψ η(U)+

m

∑
α=1

∂αψQα(U)

]
dxdt + 〈P,ψ〉X ,

where P is the nonpositive entropy production measure and ψ is any Lipschitz test
function with compact support in Rm × (0,T ). Moreover, under the conditions de-
scribed in Remark 4.5.3, (4.7.7) will hold for all smooth entropy-entropy flux pairs
(η ,Q).

We conclude that boundary conditions (4.7.1) may be defined for L∞ weak so-
lutions, provided that the rows of the matrix P(U) are entropy fluxes. In particular,
this is the case in the examples (4.7.2), (4.7.3), (4.7.4) and (4.7.5), recorded above,
in which the rows of P(U) are linear combinations of the rows of G(U):

(4.7.8) P(U) = BG(U), U ∈ O,

for some n×n matrix B. For P(U) of the form (4.7.8), it follows from (4.7.6) that L∞

weak solutions to the initial-boundary value problem are fully characterized by the
equation

(4.7.9)
∫ T

0

∫
D

[
∂tΦU +

m

∑
α=1

∂αΦGα(U)

]
dxdt +

∫
D
Φ(x,0)U0(x)dx = 0,

for every Lipschitz test function Φ(x, t), with compact support in Rm× [0,T ), values
in M1×n, and trace on ∂D that lies in the orthogonal complement of the kernel of B.
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An alternative approach to boundary value problems stems from the viewpoint,
presented in Section 4.6, that the hyperbolic system (4.1.1) should be regarded as
a system with diffusion, such as (4.6.1), with vanishing viscosity coefficient μ . On
the basis of this premise, one should consider boundary conditions suitable for the
parabolic system (4.6.1) and let the limiting process dictate how these boundary con-
ditions relate to the hyperbolic system (4.1.1). Boundary layers may form, as μ → 0,
on parts of the boundary B, so that one should not expect that the resulting solution
to the hyperbolic system will satisfy the assigned boundary conditions everywhere.
Nevertheless, when the system (4.1.1) is endowed with an entropy-entropy flux pair
compatible with (4.6.1), as described in Section 4.6, then it is possible to derive use-
ful information on the boundary behavior of solutions. As an illustration, consider the
initial-boundary value problem for the system (4.6.1), with initial conditions U =U0
on D and boundary conditions U = Ū on B, where Ū is some fixed state. As in
Section 4.6, assume that, for any μ > 0, this problem possesses a classical solution
Uμ on X , and that some sequence {Uμk}, with μk → 0 as k → ∞, converges bound-
edly almost everywhere on X to a (weak) solution U of (4.1.1). Suppose (η ,Q) is
an entropy-entropy flux pair satisfying (4.6.7). We write (4.6.6) for the normalized
entropy-entropy flux pair (η̄ , Q̄), defined by (4.1.6), (4.1.7), multiply by any non-
negative Lipschitz test function ψ with compact support in Rm × [0,T ), integrate
over D × (0,T ), integrate by parts, and use the initial and boundary conditions thus
obtaining the following equation:

(4.7.10)
T∫

0

∫
D

[
∂tψ η̄(Uμ)+

m

∑
α=1

∂αψ Q̄α(Uμ)

]
dxdt +

∫
D

ψ(x,0) η̄(U0(x))dx

= μ
T∫

0

∫
D
∂αψDη̄(Uμ)Bαβ (Uμ)∂βUμdxdt

+μ
∫ T

0

∫
D
ψ

m

∑
α,β=1

(
∂αUμ

)�D2η̄(Uμ)Bαβ (Uμ)∂βUμdxdt.

The argument employed in Section 4.6 shows that, as μ → 0, the first term on
the right-hand side of (4.7.10) tends to zero while the second term stays nonnegative.
Therefore,

(4.7.11)
∫ T

0

∫
D

[
∂tψ η̄(U)+

m

∑
α=1

∂αψ Q̄α(U)

]
dxdt +

∫
D

ψ(x,0) η̄(U0(x))dx ≥ 0.

To return to the original entropy-entropy flux pair (η ,Q), we write (4.7.6) for
Φ = ψDη(Ū). Upon combining the resulting equation with the inequality (4.7.11),
we obtain
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(4.7.12)
T∫

0

∫
D

[
∂tψ η(U)+

m

∑
α=1

∂αψQα(U)

]
dxdt +

∫
D

ψ(x,0)η(U0(x))dx

≥
T∫

0

∫
∂D

ψ
{

Q̄B −Dη(Ū)[ḠB −GB]
}

dH m−1(x)dt,

where we have set

(4.7.13) ḠB = G(Ū)ν , Q̄B = Q(Ū)ν .

Finally, we combine (4.7.12) with (4.7.7),

(4.7.14)
T∫

0

∫
∂D

ψ
{

QB − Q̄B −Dη(Ū)
[
GB − ḠB

]}
dH m−1(x)dt ≥ 〈P,ψ〉X ,

assuming ψ(x,0) = 0, x ∈Rm . By letting the support of ψ shrink about points of B,
we deduce the pointwise condition

(4.7.15) QB − Q̄B −Dη(Ū)[GB − ḠB]≥ 0.

The quantity on the left-hand side of (4.7.15) may be interpreted as the density of a
surface measure that represents the entropy loss in the boundary layer.

The inequality (4.7.15) furnishes some information on the boundary conditions
induced by the vanishing viscosity approach. Naturally, this information becomes
more precise when the system (4.1.1) is endowed with multiple independent en-
tropies compatible with (4.6.1). In particular, as we shall see in Section 6.9, for the
scalar conservation law a sufficiently large collection of inequalities (4.7.15) charac-
terizes completely the solution to the initial-boundary value problem constructed by
the vanishing viscosity approach.

4.8 Euler Equations

The Euler equations (3.3.36), governing isentropic gas flow in one, two or three
spatial dimensions, offer the primordial, and still most important, example of a hy-
perbolic system of conservation laws. They have long served as the paradigm for the
entire class, and they command an enormous literature, addressing properties tied
to their special structure as well as generic properties shared by other hyperbolic
systems of conservation laws. So as to set the stage for the issues of concern in the
remainder of the book, we present in this section a representative sample of proper-
ties of the Euler equations, in three spatial dimensions, emerging from research work
of recent or older vintage. The analysis will only be sketched here – for the details,
the reader may consult the bibliography cited in Section 4.9.

We write (3.3.36), with zero body force, b = 0, as a system in canonical form,
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(4.8.1)

⎧⎨⎩ ∂tρ+divm� = 0

∂tm+div
(
ρ−1mm�)+grad p(ρ) = 0,

using as state variables the mass density ρ and the momentum density m = ρv.
Recalling (3.3.39), we infer that the system (4.8.1) is endowed with the entropy-

entropy flux pair

(4.8.2) η = ρε(ρ)+
1
2
ρ−1|m|2 , Q = ηρ−1m+ p(ρ)ρ−1m,

where ε ′(ρ) = ρ−2 p(ρ).
In the realm of classical solutions, one may combine the two equations in (4.8.1)

and write the system in the form

(4.8.3)

⎧⎨⎩ ∂tρ+(v·grad)ρ+ρ divv = 0

∂tv+(v·grad)v+ p′(ρ)gradρ = 0,

with state variables (ρ,v).
The systems (4.8.1), (4.8.3) are hyperbolic, and the entropy η is a uniformly

convex function of (ρ,m), as long as p′(ρ) > 0. Throughout this section we shall
be assuming, for simplicity, that the gas is ideal, with equations of state (2.5.31),
namely p = κργ , where, in accordance with basic kinetic theory, γ ∈ (1,5/3] . The
sonic speed is c(ρ) = [κγργ−1]

1
2 . Thus our system is hyperbolic for ρ > 0, but hy-

perbolicity breaks down at ρ = 0. The presence of vacuum complicates the analysis
of the Euler equations.

One may restore hyperbolicity to the full physical range, including vacuum, by
replacing ρ by the new state variable ω = β−1c(ρ), with β = γ−1

2 , thus transforming
(4.8.3) into

(4.8.4)

⎧⎨⎩ ∂tω+(v·grad)ω+βω divv = 0

∂tv+(v·grad)v+βω gradω = 0,

which is a symmetric hyperbolic system, even for ω = 0. As we shall see in Section
5.1, this guarantees that the Cauchy problem for (4.8.4), with initial data (ω0,v0) in
a Sobolev space of sufficiently high order and ω0 ≥ 0, possesses a unique classical
solution (ω,v) on some maximal time interval [0,T ). Furthermore, if T is finite, then
some derivative of ω and/or v must blow up as t tends to T . Clearly, the solution
(ω,v) induces classical solutions (ρ,m) and (ρ,v) to the systems (4.8.1) and (4.8.3),
on the same time interval [0,T ).

We now employ an argument, similar in spirit to that encountered in Section 4.2
for the Burgers equation, to demonstrate that the lifespan T of the aforementioned
classical solution is typically finite, as a result of mass confinment. We consider the
Cauchy problem for (4.8.1), with initial values ρ(x,0) = ρ0 = constant, for x ∈ R3,
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and m(x,0) supported in the unit ball, m(x,0) = 0 if |x| ≥ 1. Suppose there exists
a classical solution (ρ(x, t),m(x, t)) on some time interval [0,T ). The fast charac-
teristic speed in the direction ν ∈ S2 is v · ν + c(ρ). Then, by virtue of Theorem
4.1.1, we have ρ(x, t) = ρ0 and m(x, t) = 0, for any t ∈ [0,T ) and |x| ≥ r(t), where
r(t) = 1+ c(ρ0)t. In particular, from (4.8.1)1,

(4.8.5)
∫

|x|<r(t)

[ρ(x, t)−ρ0]dx = 0, 0 ≤ t < T.

We will monitor the evolution of the weighted radial momentum

(4.8.6) M(t) =
∫

|x|<r(t)

x ·m(x, t)dx.

We differentiate (4.8.6) with respect to t, express the time derivative ∂tm in terms of
spatial derivatives, through (4.8.1)2 , and integrate by parts to get

(4.8.7) Ṁ(t) =
∫

|x|<r(t)

[
ρ−1|m|2 +3κ

(
ργ −ργ0

)]
dx.

Since γ > 1, (4.8.5) and Jensen’s inequality imply

(4.8.8)
∫

|x|<r(t)

(
ργ −ργ0

)
dx ≥ 0.

Furthermore, by (4.8.6), (4.8.5) and Schwarz’s inequality,

(4.8.9) M2(t)≤
∫

|x|<r(t)

ρ|x|2dx
∫

|x|<r(t)

ρ−1|m|2dx ≤ 4π
3
ρ0r5(t)

∫
|x|<r(t)

ρ−1|m|2dx.

Upon combining (4.8.7) with (4.8.8) and (4.8.9), we end up with the differential
inequality

(4.8.10) Ṁ(t)≥ 3
4πρ0

[1+ c(ρ0)t]−5M2(t).

After an elementary integration, recalling that c(ρ0) =
[
κγργ−1

0

] 1
2
, we conclude that

if

(4.8.11) M(0)>
16π

3
(κγ)

1
2 ρ

γ+1
2

0 ,

then M(t) will blow up in finite time. Thus, classical solutions of the Cauchy problem
for the system of isentropic gas dynamics, with large initial data, generally break
down in finite time.
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More refined analysis, reported in the literature cited in Section 4.9, shows that
the above arguments may be extended for establishing breakdown of classical solu-
tions in nonisentropic gas dynamics, and even when the initial data are not necessar-

The above argument verifies that the lifespan of classical solutions to the Cauchy
problem for the Euler equations (4.8.1) is generally finite, but it does not pinpoint
when and how catastrophe occurs. Typically, classical solutions blow up as the result
of wave breaking, but before turning to that issue, we shall discuss an alternative
manifestation of mass confining, in the presence of vacuum.

Let us consider the Cauchy problem for the system (4.8.1), with initial data
(ρ0,m0), m0 = ρ0v0 , that vanish outside a bounded subset Ω of R3. Assume that
there exists a (generally weak) solution (ρ,m) on some time interval [0,T ), which
satisfies the entropy admissibility condition (4.5.2) for the entropy-entropy flux pair
(4.8.2). The gas will disperse into the vacuum, with finite speed, so that, for each
t ∈ [0,T ), (ρ,m) will be supported in some bounded set Ωt . We shall estimate the
size of Ωt with the help of an interesting estimate, derived as follows.

We start out from the identity

(4.8.12)
1
2
ρ|tv− x|2 + t2ρε =

1
2
|x|2ρ− tx·m+ t2η(ρ,m).

After a long but straightforward calculation, using (4.8.1) and the entropy inequality,
we deduce

(4.8.13)

∂t

(
1
2
ρ|tv− x|2 + t2ρε

)
+div

(
[
1
2
ρ|tv− x|2 + t2ρε]v+ t p[tv− x]

)
≤ t[2ρε−3p].

In particular, when (ρ,m) is a classical solution, (4.8.13) holds as equality.
For the ideal gas (2.5.31), 2ρε−3p= (5−3γ)ρε . Thus, integrating (4.8.13) over

R3 yields the differential inequality

(4.8.14)
d
dt

∫
R3

(
1
2
ρ|tv− x|2 + t2ρε

)
dx ≤ 5−3γ

t

∫
R3

(
1
2
ρ|tv− x|2 + t2ρε

)
dx,

whence

(4.8.15)
∫
R3

ρε dx ≤Ct3(1−γ).

The physical interpretation of (4.8.15) is that gas expansion converts internal to ki-
netic energy, and as a result the internal energy decays.

By Hölder’s inequality,

(4.8.16)
∫
R3

ρdx ≤
⎛⎝∫
R3

ργdx

⎞⎠ 1
γ

|Ωt |
1−γ
γ ≤Ct

3(1−γ)
γ |Ωt |

1−γ
γ ,

ily large.
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where |Ωt | denotes the volume ofΩt . The left-hand side of (4.8.16) is a positive con-
stant, namely the conserved mass of the gas. Therefore, |Ωt | ≥ At3, for some positive
constant A. We now discuss whether classical solutions are capable of sustaining, in
the long term, growth of |Ωt | at the above rate.

Assume then that the above solution is smooth, in which case Ω and Ωt are open
sets with smooth boundaries denoted by Γ and Γt . On Γt , (4.8.3) and (4.8.4) reduce
to the transport equation

(4.8.17) ∂tv+(v ·grad)v = 0.

Consequently, for any x ∈ Γ , v stays constant, equal to v0(x), along the straight line
y = x+ tv0(x), and

(4.8.18) Γt = {y ∈ R3 : y = x+ tv0(x), x ∈ Γ },

for all t ∈ [0,T ). Therefore, for t sufficiently small,

(4.8.19) Ωt = {y ∈ R3 : y = x+ tv0(x), x ∈Ω},

whence

(4.8.20) |Ωt |=
∫
Ω

det [I + t gradv0(x)]dx.

Thus, for t small, |Ωt | is a polynomial:

(4.8.21) |Ωt |= Jt3 +Kt2 +Lt +N,

(4.8.22) J =
∫
Ω

det [gradv0(x)]dx.

Since the above argument may be repeated after substituting 0 by any t̄ ∈ [0,T ),
we conclude that (4.8.21) holds for all t ∈ [0,T ). It is now clear that if J ≤ 0, then
the solution cannot accommodate the requirement |Ωt | ≥ At3, for t large. Thus, the
lifespan of any classical solution with initial data satisfying J ≤ 0 is necessarily finite.

In the present situation, the demise of the classical solution may occur either as a
result of wave breaking, or because a singularity forms at the interface between gas
and vacuum. Let us discuss the latter possibility, within the following setting: The
interface Γt is still a smooth surface and the solution (ρ,v) is still smooth on Ωt , but
allowed to be singular across Γt .

First we test whether the interface may be a shock. To that end, we apply the
Rankine-Hugoniot conditions (3.3.40), with ν the unit exterior normal on Ωt , to
infer that the jump in the pressure p, and thereby also in the density ρ , vanishes.

where J, K, L depend on gradv0 , and N = |Ω |. Actually, the constants J, K and L are
integrals over Ω of null Lagrangians of v0 , and thus fully determined by the values
of v0 and gradv0 on Γ . In particular,
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Thus the singularity at the interface must be milder than a jump discontinuity. We
seek conditions that would allow the interface to accelerate at a controlled rate. For
that purpose, the natural assumption is that the square of the sonic speed c must be
Lipschitz, with normal derivative that jumps across the interface:

(4.8.23)
[[
∂c2

∂ν

]]
= g,

where g is a bounded function that is necessarily nonnegative. Indeed, when (4.8.23)
holds, the second equation of the system (4.8.4), restricted to the interface, yields

(4.8.24) ∂tv+(v ·grad)v =
g

γ−1
ν ,

which should be compared and contrasted to (4.8.17). Since g ≥ 0, (4.8.24) signals
acceleration of the interface. In particular, for g suitably large, the volume of Ωt may
grow at a rate compatible with the requirement |Ωt | ≥ At3, thus allowing for the
existence of solutions in the large with no singularities, beyond those lying on the
interface with vacuum. More on that in Section 5.6.

We now turn to the question of the breakdown of classical solutions due to wave
breaking. As we saw in Section 4.2, in the context of Burgers’s equation, the physical
description of the phenomenon is that, due to the nonlinearity, wave speed depends
on the wave amplitude and this may generate steep wave profiles that eventually
break. The same mechanism is present in the Euler equations. Indeed, as we shall see
in Section 7.8, compressive waves for the Euler equations, in one space dimension,
must break. However, in three dimensions the situation is more delicate. To begin
with, the steepening of wave profiles due to compression competes with dispersion,
which has the opposite effect. This delays, and may even thwart, the breaking of
waves. The difficulty is compounded by the presence of vorticity, whose potential
contribution to the development of singularities is not yet fully understood. So as
to focus on the effects of compression, we shall eliminate the fallout of vorticity by
limiting our discussion to irrotational flow.

In irrotational flow, the velocity derives from a potential φ , through (3.3.48),
and the Euler equations reduce to the system (3.3.49), (3.3.50), where h is the
enthalpy. We assume, for simplicity, that the body force vanishes, g = 0. Since
h′(ρ) = p′(ρ)/ρ > 0, one may realize the density as function of enthalpy, ρ = ρ(h).

In what follows, we shall be employing the summation convention. Inserting in
(3.3.50) ρ as a function of h, with h given by (3.3.49), reduces the mass conservation
equation to the quasilinear wave equation

(4.8.25) ∂ 2
t φ − c2(ρ)Δφ =−2(∂ jφ)(∂t∂ jφ)− (∂iφ)(∂ jφ)(∂i∂ jφ),

for the potential φ , where c(ρ) stands for the sonic speed. Notice that linearization
of (4.8.25) about any rest state ρ = ρ0 , v = 0 yields the classical wave equation.

A remarkable feature of (4.8.25) is that it may be realized as an Euler-Lagrange
equation. Indeed, recall that ∂iφ = vi , for i = 1,2,3, and set ∂tφ =−v0 . Introducing
the Lagrangian
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(4.8.26) L(v0, v1, v2, v3) = p(ρ(h)), h = v0 − 1
2

vivi

and using d p
dρ

dρ
dh = ρ, we deduce

(4.8.27)
∂L
∂v0

= ρ,
∂L
∂vi

=−ρvi , i = 1,2,3,

which implies

(4.8.28) ∂t
∂L
∂v0

−∂i
∂L
∂vi

= ∂tρ+∂i(ρvi) = 0.

We consider the Cauchy problem for (4.8.25), under assigned initial conditions

(4.8.29) φ(x,0) = φ0(x), ∂tφ(x,0) = φ1(x), x ∈ R3.

As a corollary to Theorem 5.1.1, which will be proved in Chapter V, whenever
φ0 ∈ W 4,2(R3) and φ1 ∈ W 3,2(R3), there exists a unique classical C2 solution φ ,
locally in time. Considerable effort has been expended in monitoring classical so-
lutions, under the assumption that the initial data reside in Sobolev spaces of suf-
ficiently high order, with norms of small size delimited by a parameter ε . The task
requires powerful analysis, utilizing to a full extent the underlying geometric struc-
ture of (4.8.25) and in particular its manifestation as an Euler-Lagrange equation.
Unfortunately, this work is too technical and laborious to be presented here, even in
abridged form, so the reader should consult the bibliography cited in Section 4.9.
The next paragraph provides a sketchy summary of the main conclusions.

In three spatial dimensions, dispersion induces O(t−1) decay rate on derivatives
of solutions to the Cauchy problem for the classical wave equation. The solutions
to the quasilinear wave equation (4.8.25) inherit that property at the level of first
derivatives. However, at the level of derivatives of second order there is an even con-
test between nonlinearity and dispersion. Dispersion manages to prolong the lifespan
of classical solutions to O(exp 1

ε ), a major improvement over the one-dimensional
situation, where the lifespan is merely O( 1

ε ). Nevertheless, nonlinearity eventually
prevails, driving second derivatives to infinity. The insightful proof proceeds by in-
troducing special coordinates, adapted to the wave profiles, identifying the principal
direction along which second derivatives grow and eventually break, in contrast to
transversal directions along which dispersion dominates, keeping the size of deriva-
tives under control. The analysis in these coordinates is quite explicit, so that in addi-
tion to exposing the breaking of waves it also provides a description of the maximal
development of the solution.

We close this section with certain surprising, and perhaps disturbing, facts con-
cerning weak solutions of the Euler equations. The analysis in the forthcoming Sec-
tion 5.2 will establish that whenever the Cauchy problem for (4.8.1) possesses a clas-
sical solution on some time interval [0,T ), this solution is unique, not only among
other classical solutions, but even within the broader class of L∞ weak solutions that
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satisfy the entropy admissibility condition (4.5.3), for the entropy-entropy flux pair
(4.8.2). However, in the absence of a classical solution, the above entropy inequal-
ity is no longer sufficiently selective for singling out a unique admissible solution.
This remarkable fact will be demonstrated by considering the Cauchy problem for
(4.8.1) under initial data that are periodic in each component xi of x, with period 1.
It will thus be convenient to regard the solutions at time t as functions defined on the
standard torus T3. The existence of multiple solutions is established by the following

4.8.1 Theorem. There exist m0 in L∞(T3) such that the Cauchy problem for the Euler
equations (4.8.1) with initial data

(4.8.30) ρ(x,0) = 1, m(x,0) = m0(x), x ∈ T3,

admits infinitely many L∞ weak solutions (ρ,m) on [0,∞), satisfying the admissibility
condition (4.5.2) for the entropy-entropy flux pair (4.8.2).

The proof is lengthy and technical, so only a rough sketch will be presented here.
The details are found in the bibliography cited in Section 4.9.

A surprising feature of the Euler equations is that, in the setting of L∞ weak so-
lutions, the Cauchy problem is underdetermined to the extent that one may prescribe
the density field ρ together with the length |m| of the momentum field and still leave
room for constructing infinitely many solutions satisfying the entropy admissibility
condition. Accordingly, let us prescribe ρ ≡ 1, in which case (4.8.1) reduces to

(4.8.31)

⎧⎨⎩divm� = 0

∂tm+div
(
mm�)= 0.

Sidestepping, for the time being, the requirement of entropy admissibility, we fix
T > 0 and a C1 function M with positive values on [0,T ] and seek L∞ solutions of
(4.8.31) on [0,T ] that satisfy initial and terminal conditions

(4.8.32) m(·,0) = m0(·), m(·,T ) = 0,

together with the constraint

(4.8.33) |m(x, t)|= M(t), a.e. on T3 × (0,T ).

An obvious compatibility condition is |m0(x)| ≤ M(0), a.e. on T3.
Assuming (4.8.33), it is instructive to rewrite (4.8.31) in the equivalent form

(4.8.34)

⎧⎨⎩ divm�(x, t) = 0

∂tm(x, t)+divU(x, t) = 0,

(4.6.35) U(x, t) = m(x, t)m�(x, t)− 1
3
|m(x, t)|2I.
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Thus, in the spirit of continuum physics, we are regarding (4.8.31) as the composi-
tion of a system of conservation laws (4.8.34) with a constitutive equation (4.8.35).
Notice that the 3× 3 matrix-valued function U is symmetric and traceless. In what
follows, N stands for the space of symmetric and traceless 3×3 matrices.

The first step in the analysis is to introduce a class of functions deemed subsolu-
tions to the above system.

A subsolution of (4.8.32), (4.8.33), (4.8.34) and (4.8.35) is a function u defined
on T3 × [0,T ], taking values in R3, and having the following properties:

(a) The function t �→ u(·, t) is continuous on [0,T ], in L∞(T3;R3) weak∗, and

(4.8.36) u(·,0) = m0(·), u(·,T ) = 0.

(b) u is C1 on T3 × (0,T ) and satisfies

(4.8.37)

⎧⎨⎩divu�(x, t) = 0

∂tu(x, t)+divU(x, t) = 0,

for some C1 function U on T3 × (0,T ) with values in N.
(c) For any x ∈ T3 and t ∈ (0,T ),

(4.8.38) u(x, t)u�(x, t)−U(x, t)≤ 1
3

M2(t)I.

Let it be noted that, for any fixed w ∈ R3 and W ∈ N,

(4.8.39) ww�−W ≥ 1
3
|w|2I.

Thus (4.8.38) implies |u(x, t)| ≤ M(t), for all x ∈ T3 and t ∈ (0,T ).
We proceed under the assumption that the set of subsolutions associated with

m0 ≡ 0 is nonempty, for any choice of positive M, as it contains the zero function.
We let X denote the closure of X in the weak topology of L2(T3 × [0,T ]).

On X we define the functional

(4.8.40) J[u] =
∫ T

0

∫
T3

[|u(x, t)|2 −M2(t)
]

dxdt,

with nonpositive values. Members of X inherit from X the properties (4.8.37),
in the sense of distributions, and (4.8.38), almost everywhere, since the maximum
eigenvalue of symmetric matrices is a convex function. From this observation and
(4.8.39) follows that m ∈ X is a solution of (4.8.32), (4.8.33), (4.8.34) and (4.8.35)
if and only if J[m] = 0.

Since |u(x, t)| ≤ M(t), for all u ∈ X , it follows that any m ∈ X with J[m] = 0
must be a point of continuity of J. It turns out that the converse is also true: if J is

m0 , M and T is nonempty. We denote this set by X . In particular, X associated with
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continuous at m ∈X , then J[m] = 0. The reason is that if J[u]< 0, for some u ∈X ,
then there exist v ∈ X that are weakly close to u, and yet J[v] differs substantially
from J[u]. The precise statement is provided by the following proposition whose
technical proof is found in the literature cited in Section 4.9.

4.8.2 Lemma. Let u be any subsolution and (τ1,τ2) any subinterval of (0,T ). Then
there exist sequences {vn} in X such that u− vn is supported in the time interval
(τ1,τ2), vn → u in L∞weak∗ and

(4.8.41)

liminf
n→∞

∫ T

0

∫
T3

|vn(x, t)−u(x, t)|2dxdt ≥ a
∫ τ2

τ1

∫
T3

[|u(x, t)|2 −M2(t)
]2

dxdt

holds, with a > 0 independent of u.

The perturbations of the subsolution u, within X , that are “slight”, in the sense
of the weak topology, and yet incur sizable changes to the entropy typically involve
rapid oscillations. Indeed the presence of wild oscillations is the trademark of the
theory at hand.

We view X as a complete metric space. The functional J is of Baire class 1
(pointwise limit of continuous functions), whence the set of its points of continuity
is dense in X . Each and everyone of these points furnishes a solution to (4.8.31),
(4.8.32), (4.8.33). Henceforth, we call these solutions exotic.

We now turn to the question of admissibility of exotic solutions. By virtue of
(4.8.2) and (4.8.33),

(4.8.42) η(x, t) =
1
2

M2(t)+ ε(1), Q(x, t) =
[

1
2

M2(t)+ ε(1)+ p(1)
]

m(x, t).

Notice that the divergence of Q� vanishes. Thus, when Ṁ(t)≤ 0, the solution (1,m)
satisfies the entropy admissibility criterion (4.5.1) on T3 × (0,∞). In particular, if M
is constant, the entropy is conserved on T3 × (0,T ).

The above properties underscore the difference between exotic and standard so-
lutions, say of class BV . In the latter case entropy is produced exclusively by jump
discontinuities. As noted in (sub)section 3.3.6, solutions to the Euler equations may
support two types of jump discontinuities, namely compressive shocks and vortex
sheets (contact discontinuities). Compressive shocks, which produce entropy, cannot
take part in the exotic solutions, because they involve jumps in the density. By con-
trast, vortex sheets, which are compatible with uniform density, are probably present
in exotic solutions and may serve as building blocks for the oscillatory profiles of
these solutions. However, vortex sheets do not produce entropy and hence the decay
of η encoded in (4.8.42) cannot be attributed to the presence of jump discontinuities,
but is due to an alternative mechanism. We shall discuss related issues in Section 6.8
and 11.13.

Even though Ṁ(t) ≤ 0 guarantees that the exotic solutions satisfy (4.5.1), the
more selective entropy admissibility criterion (4.5.2) will not hold, unless t = 0 is a
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point of right continuity of the function t �→m(·, t), in the strong L1(T3;R3) topology.
It turns out that given m in X one may construct, with the help of the properties of
X encoded in Lemma 4.8.2, m̄ in X such that m̄(·,τ) = M(τ), for some τ ∈ (0,T ),
and m̄(·, t) = m(·, t), for t near T . It is now clear that if one replaces M by M̄ and
m0 by m̄0 , where M̄(t) = M(t +τ) and m̄0(·) = m̄(·,τ), the resulting exotic solutions
will satisfy (4.5.2).

Refined, technical, analysis shows that, in fact, one may even construct entropy
dissipating exotic solutions that are Hölder (though not Lipschitz) continuous.

The discovery of exotic solutions, with massive non uniqueness, for the Euler
equations, is alarming, so one hopes that they will be disqualified as being physi-
cally inadmissible. Nevertheless, we saw above that these solutions pass the entropy
admissibility test. On the other hand, because of the afforded flexibility in setting
M(t), none of the exotic solutions may satisfy the maximal dissipativeness crite-
rion (4.5.11). Another risk is that standard solutions that were formerly pronounced
maximally dissipative may lose this status in competition with exotic solutions. The
reader may find relevant comments on this issue in Section 9.11.

4.9 Notes

To a great extent, it is the breaking of waves catastrophe that sets the tone for the
theory of nonlinear hyperbolic systems of conservation laws. This effect was in-
troduced, in Section 4.2, through the paradigm of the Burgers equation, but, as we
shall see in Section 7.8, it pervades all (genuinely) nonlinear systems of conserva-
tion laws in one spatial dimension. The drive to wave breaking is still present in
several spatial dimensions, but it has to compete with dispersion, which may delay
or even prevent outright the breakdown of classical solutions, in systems that sat-
isfy the so called null condition. In that direction, out of a voluminous literature, see
for instance Christodoulou [1], Klainerman [1], Klainerman and Sideris [1], Sideris
[2,3,4], Agemi [1], Chae and Huh [1], and Ta-tsien Li [1].

In particular, for the three-dimensional Euler equations the competing mecha-
nisms of wave breaking and dispersion are nearly evenly matched. As a result, the
proof that wave breaking eventually prevails, noted in Section 4.8, requires very del-
icate analysis. Following the pioneering work of John [2], the breakdown of classical
solutions was established by Alinhac [1,2,3]. However, the definitive treatment that
provides a detailed description of the breaking of waves, is due to Christodoulou [2],
for the relativistic Euler equations, and to Christodoulou and Miao [1], for the clas-
sical Euler equations. These proofs are very technical, occupying several hundred
pages of text. The recent paper by Holzegel, Klainerman, Speck and Wong [1] provides

of the subject. Speck [1] is a monograph extending the results to general
quasilinear wave equations, in three spatial dimensions.

The proof outlined in Section 4.8 that mass confinement is an alternative motor
for the breakdown of classical solutions to the Euler equations, has been adapted
from Sideris [1]. The argument, in the same section, that the volume of a gas mass

a very readable survey of the above work, placed in the context of the historical dev-
elopement
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is expanding in vacuum at cubic order and that growth at such rate cannot be sus-
tained unless singularities develop at the interface, is taken from Serre [31]. In that
connection, see also Chemin [1], Liu and Yang [1], and Yang and Zhu [2]. For a
proof of breakdown of classical solutions to the Euler equations in the presence of
vacuum, by the method of characteristics, see Chae and Ha [1]. An interesting class
of global (dubbed “eternal”) classical solutions to the Euler equations in two-space
dimensions is presented in Serre [13,31] and in Grassin and Serre [1]. See also Chen
and Young [3]. For time periodic solutions, see Georgiev and LeFloch [1].

Nonuniqueness of weak solutions to the Cauchy problem and the need of devel-
oping selection criteria poses another challenge to the theory of hyperbolic conserva-
tion laws, with many facets that will be discussed extensively in ensuing chapters of
the book. In particular, as we saw in the historical introduction and in Chapters II and
III, the entropy admissibility criterion, introduced in Section 4.5, is an abstraction of
the Clausius-Duhem inequality, expressing the Second Law of thermodynamics, and
it has been applied in concrete situations, at least since the turn of the twentieth cen-
tury. The earliest explicit reference to this criterion, in its abstract form, is found in
Kruzkov [1], but its central importance was recognized after the publication of the
seminal paper by Lax [4], which, inter alia, introduced the term “entropy” in the
present context. Considering the direction of the inequality (4.5.1), which is oppo-
site to the direction of the Clausius-Duhem inequality (2.3.13), the term “free en-
ergy” rather than “entropy” would have been more appropriate, from the standpoint
of continuum physics.

As we saw in Section 4.5, convexity of the entropy, which is a necessary pre-
requisite according to the definition of the concept by Lax [4], induces a modicum
of stability to admissible L∞ weak solutions, but is not always satisfied in the sys-
tems arising in continuum physics. For the weaker, but still sufficient, condition of
quasiconvexity, noted in Section 4.5, see Morrey [1], Dacorogna [1], and Müller and
Fonseca [1]. Šverak [1] shows that rank-one convexity is not generally sufficient for
quasiconvexity. Polyconvexity was introduced by Ball [1], in the context of elasto-
statics. We shall return to this notion in Section 5.4. Remark 4.5.3 is due to Gui-Qian
Chen [9].

For various experimentations with the idea of maximal dissipativeness, see
Dafermos [32], Demoulini, Stuart and Tzavaras [1], Gangbo and Westdickenberg
[1], Westdickenberg [1], Chiodaroli and Kreml [1], and Feireisl [2]. We will return
to this issue in greater detail, albeit within a more narrow scope, in Section 9.7.

In later chapters, we shall have frequent encounters with the vanishing viscosity
approach, both as a method for constructing solutions and as a means of identifying
admissible shocks. It is for the latter purpose that the method was originally intro-
duced by Rayleigh [4] and G.I. Taylor [1]; see the historical introduction.

An exposition of the theory of intermediate parabolic-hyperbolic type systems is
presented in the monographs by Songmu Zheng [1] and Hsiao [3], as well as in the
survey article by Hsiao and Jiang [1], where the reader will find an extensive list of
references.

For the viscosity-capillarity admissibility condition on weak solutions, see Slem-
rod [3] and LeFloch [5].
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For a more detailed discussion of initial-boundary value problems, and related
bibliography, the reader should consult Chapters V and VI. The inequalities (4.7.8)
were first derived by Bardos, Leroux and Nédélec [1], for scalar conservation laws,
and were then extended to systems, in one spatial dimension, by DuBois and LeFloch
[1]. As we shall see in Section 6.9, these inequalities completely characterize admis-
sible boundary conditions in the scalar case.

Following the pioneering work of De Lellis and Szekelyhidi [1,2], and Buck-
master, De Lellis, Isett and Szekelyhidi [1], the theory of exotic solutions for the
Euler equations, outlined here in Section 4.8, was further developed in Chiodaroli
[1], Chiodaroli and Kreml [1,2], Chiodaroli, Feireisl and Kreml [1], Feireisl [2], Fei-

[1], and Villani [2]. In particular, Lemma 4.8.2 is taken from Feireisl [2].
and Kreml [1], Feireisl, Kreml and Vasseur [1], Chiodaroli, De Lellis and Kremlreisl



V

Entropy and the Stability of Classical Solutions

It is a tenet of continuum physics that the Second Law of thermodynamics is es-
sentially a statement of stability. In the examples discussed in the previous chapters,
the Second Law manifests itself in the presence of companion balance laws, to be
satisfied identically, as equalities, by classical solutions, and to be imposed as ther-
modynamic admissibility inequality constraints on weak solutions of the systems of
balance laws. A recurring theme in the exposition of the theory of hyperbolic systems
of balance laws in this book will be that companion balance laws induce stability un-
der various guises. Here the reader will get a glimpse of the implications of entropy
inequalities on the stability of classical solutions.

It will be shown that when the system of balance laws is endowed with a com-
panion balance law induced by a convex entropy, the initial value problem is locally
well-posed in the context of classical solutions: sufficiently smooth initial data gen-
erate a classical solution defined on a maximal time interval, typically of finite dura-
tion. However, in the presence of damping induced by relaxation or other dissipative
mechanisms, and when the initial data are sufficiently small, the classical solution
exists globally in time. Classical solutions are unique and depend continuously on
their initial values, not only within the class of classical solutions but even within
the broader class of weak solutions that satisfy the companion balance law as an
inequality admissibility constraint.

Similar existence and stability results will be established, even when the entropy
fails to be convex, in the following two situations: (a) the entropy is convex only in
the direction of a certain cone in state space but the system is equipped with spe-
cial companion balance laws, called involutions, whose presence compensates for
the lack of convexity in complementary directions; or (b) the system is endowed
with complementary entropies and the principal entropy is polyconvex. This struc-
ture arises in elastodynamics and electromagnetism.

The chapter will close with a brief discussion of the existence of classical solu-
tions to the initial-boundary value problems.

From the standpoint of analytical technique, this chapter presents the aspects of
the theory of quasilinear hyperbolic systems of balance laws that can be tackled by
the methodology of the linear theory, namely energy estimates and Fourier analysis.

© Springer-Verlag Berlin Heidelberg 2016
C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,
Grundlehren der mathematischen Wissenschaften 325,
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5.1 Convex Entropy and the Existence of Classical Solutions

The aim in this section is to establish local existence of classical solutions to the
Cauchy problem

(5.1.1) ∂tU(x, t)+
m

∑
α=1

∂αGα(U(x, t)) = 0, x ∈ Rm, t > 0,

(5.1.2) U(x,0) =U0(x), x ∈ Rm,

for a homogeneous system of conservation laws endowed with a convex entropy η .
The flux G, entropy η and associated entropy flux Q are smooth functions defined
on a closed ball Bρ in Rn, centered at the origin.

Throughout this chapter, we will employ the following notation. A multi-index r

for the order of r, and ∂ r = ∂ r1 . . .∂ rm . Thus ∂ r is a differential operator of order |r|.
For � = −1,0,1, . . . , H� and Hm

� will denote the Sobolev spaces W l,2(Rm;Rn) and
W l,2(Rm;Mn×m), with respective norms ‖·‖� and |||·|||� . In particular, Hm

� is identical
to the Cartesian product space [H�]

m. We will also use the symbol ∇ for the gradient
operator (∂1, . . . ,∂m). Hence V ∈ H� implies ∇V ∈ Hm

�−1 and |||∇V |||�−1 ≤ ‖V‖� . By
the Sobolev embedding theorem, for � > m

2 +1, H� is continuously embedded in the
space C1(Rm;Rn) of continuously differentiable n-vector fields on Rm.

For U ∈ Bρ , we introduce the n×n matrices

(5.1.3) A(U) = D2η(U),

(5.1.4) Jα(U) = A(U)DGα(U) , α = 1, · · · ,m,

which are symmetric, by virtue of (3.2.4).
The main result of this section is the following

5.1.1 Theorem. Assume the system of conservation laws (5.1.1) is endowed with a
convex entropy η , so that A(U) is positive definite for any U ∈ Bρ . Suppose the
initial data U0 lie in H� , for some � > m

2 + 1, and take values in a ball Bρ0 with
radius ρ0 < ρ . Then there exist T∞ ≤ ∞ and a unique continuously differentiable
function U on Rm × [0,T∞), taking values in Bρ , which is a classical solution to the
Cauchy problem (5.1.1), (5.1.2), on the time interval [0,T∞). Furthermore,

(5.1.5) U(·, t) ∈
�⋂

k=0

Ck([0,T∞) ; H�−k).

The interval [0,T∞) is maximal in that if T∞ < ∞ then

(5.1.6)
∫ T∞

0
|||∇U(·, t)|||L∞ dt = ∞

is an m-tuple of nonnegative integers: r = (r1, . . . ,rm) . We put |r| = r1 + · · ·+ rm ,
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and/or limsup
t→T∞

‖U(·, t)‖L∞ = ρ .

The traditional proof of the above theorem, found in the literature cited in Section
5.7, and even in the second edition of the present book, determines the solution of
(5.1.1), (5.1.2), in a suitable function space F , as a fixed point of the map that carries
V ∈ F to the solution U ∈ F of the linearized system

(5.1.7) ∂tU(x, t)+
m

∑
α=1

DGα(V (x, t))∂αU(x, t) = 0,

with initial conditions (5.1.2). This approach is effective when the entropy η is con-
vex, because in that case multiplication by A(V ) renders the system (5.1.7) symmet-
ric; however, it is inapplicable under the conditions to be encountered in Sections
5.3 and 5.4, where the entropy fails to be convex and the compensatory estimates
are inexorably tied to the geometric structure of (5.1.1) and do not carry over to the
linearized form (5.1.7).

Accordingly, we shall employ here the vanishing viscosity method, which deter-
mines solutions to (5.1.1) as the ε → 0 limit of solutions of the parabolic system

(5.1.8) ∂tU(x, t)+
m

∑
α=1

∂αGα(U(x, t)) = εΔU(x, t).

This approach may not lead to the proof of Theorem 5.1.1 via the most direct route,
but it has the advantage of rendering the passage to the following sections of this
chapter as effortless as possible. Another benefit of the vanishing viscosity method
is that it starts out at an elementary level. The sole prerequisite is knowing how to
solve the Cauchy problem for the classical heat equation.

The first step is to establish local existence for the Cauchy problem for (5.1.8),
(5.1.2), with fixed ε > 0. The dominant term in (5.1.8) is the Laplacian, so the entropy
will not play any role at this stage.

Throughout this chapter, we shall employ c to denote some generic positive con-
stant that may depend at most on ρ and on bounds of G, η and their derivatives on
Bρ .

5.1.2 Lemma. As in the statement of Theorem 5.1.1, assume that U0 takes values in
Bρ0 , ρ0 < ρ , and belongs to H� , with � > m

2 +1. Set ω0 = ‖U0‖� . Then for any fixed

on the time interval [0,Tω,ε) , taking values in Bρ and such that

(5.1.9) U(·, t) ∈C0([0,Tω,ε);H�)
⋂

L2([0,Tω,ε);H�+1),

with

(5.1.10) ‖U(·, t)‖� < ω, 0 ≤ t < Tω,ε .

ω > ω0 and ε > 0, there exist Tω,ε , 0 < Tω,ε ≤ ∞ , and a solution U of (5.1.8), (5.1.2)

Moreover, if Tω,ε < ∞ , then limsup
t→Tω,ε

‖U(·, t)‖� = ω and/or limsup
t→Tω,ε

‖U(·, t)‖L∞ = ρ .
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Proof. Fix ω1, with ω0 < ω1 < ω . With T > 0, to be specified below, we associate
the class V of Lipschitz functions V defined on Rm × [0,T ], taking values in Bρ and
satisfying

(5.1.11) V (·, t) ∈ L∞([0,T ];H�), sup
[0,T ]

‖V (·, t)‖� ≤ ω1.

By standard weak lower semicontinuity of Lp norms, V is a complete metric space
under the metric

(5.1.12) d(V,V̄ ) = sup
[0,T ]

‖V (·, t)−V̄ (·, t)‖0 .

For any given V ∈ V , we construct the solution U on Rm × [0,T ] of the linear
parabolic system (coupled heat equations)

(5.1.13) ∂tU(x, t)− εΔU(x, t) =−
m

∑
α=1

∂αGα(V (x, t)) ,

with initial condition (5.1.2). Thus

(5.1.14) (4πε)
m
2 U(x, t) =

∫
Rm

t−
m
2 exp

[
−|x− y|2

4εt

]
U0(y)dy

−
∫ t

0

∫
Rm

(t − τ)−m
2 exp

[
− |x− y|2

4ε(t − τ)
] m

∑
α=1

∂αGα(V (y,τ))dydτ .

We proceed to establish a priori bounds on U and in particular to show that if T is
suitably small, then U ∈ V and the map that carries V to U is a contraction. The
unique fixed point of that map will be the solution to (5.1.8), (5.1.2) on the time
interval [0,T ].

To begin with, by virtue of (5.1.14) and (5.1.11),

(5.1.15) ‖U(·, t)−U0(·)‖L∞ ≤ cω(
√
εt + t),

for 0 ≤ t ≤ T , which shows, in particular, that when T is sufficiently small, U(·, t)
takes values in Bρ , for any t ∈ [0,T ].

We fix any multi-index r of order |r| ≤ �, set Ur = ∂ rU,U0r = ∂ rU0 and apply ∂ r

to (5.1.13) to get

(5.1.16) ∂tUr(x, t)− εΔUr(x, t) =−
m

∑
α=1

∂α∂ rGα(V (x, t)).

Since ‖V (·, t)‖L∞ < ρ and ‖V (·, t)‖� < ω , familiar interpolation estimates from the
theory of Sobolev spaces yield

(5.1.17) ‖∂ rGα(V (·, t))‖0 ≤ c‖V (·, t)‖� ≤ cω,
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for any r, with |r| ≤ �, and any t ∈ [0,T ]. Then by standard theory of the heat
equation, Ur as solution to (5.1.16) with initial values U0r , belongs to the spaces
C0([0,T ];H0)

⋂
L2([0,T ];H1). This yields two “energy” integrals, namely

(5.1.18)
∫
Rm

|Ur(x, t)|2dx+2ε
∫ t

0

∫
Rm

|∇Ur|2dxdτ

=
∫
Rm

|U0r(x)|2dx+2
∫ t

0

∫
Rm

m

∑
α=1

∂αU�
r ∂

rGα(V )dxdτ

≤
∫
Rm

|U0r(x)|2dx+ ε
∫ t

0

∫
Rm

|∇Ur|2dxdτ+
ctω2

ε
,

which is derived formally by multiplying (5.1.16) by 2U�
r , integrating the resulting

equation over Rm × [0, t] and integrating by parts, and holds for any r with |r| ≤ �,
and

(5.1.19) 2
∫ t

0

∫
Rm

|∂τUr|2dxdτ+ ε
∫
Rm

|∇Ur(x, t)|2dx

= ε
∫
Rm

|∇U0r(x)|2dx−2
∫ t

0

∫
Rm
∂τU�

r

m

∑
α=1

∂α∂ rGα(V )dxdτ

≤
∫ t

0

∫
Rm

|∂τUr|2dxdτ+ c(t + ε)ω2,

which is derived formally by multiplying (5.1.16) by 2∂tU�
r , integrating the resulting

equation over Rm× [0, t] and integrating by parts, and holds for any r with |r| ≤ �−1.
Upon summing (5.1.18) over all r of order |r| ≤ �, and (5.1.19) over all r of order

|r| ≤ �−1, we deduce the estimates

(5.1.20) ‖U(·, t)‖2
� ≤ ω2

0 +
ctω2

ε
,

(5.1.21)
∫ t

0
‖∂τU(·,τ)‖2

�−1dτ ≤ (ε+ ct)ω2.

In particular, (5.1.20) implies that when T is sufficiently small, sup
[0,T ]

‖U(·, t)‖� < ω1

and thus U ∈ V .
We now fix V and V̄ in V and consider the solutions U and Ū of (5.1.13), (5.1.2)

induced by them. Then

(5.1.22) ∂t(U −Ū)− εΔ(U −Ū) =−
m

∑
α=1

∂α [Gα(V )−Gα(V̄ )].
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Multiplying (5.1.22) by 2(U −Ū)�, integrating over Rm × [0, t], t ∈ (0,T ), and
integrating by parts we deduce

(5.1.23)
∫
Rm

|U(x, t)−Ū(x, t)|2dx+2ε
∫ t

0

∫
Rm

|∇(U −Ū)|2dxdτ

= 2
∫ t

0

∫
Rm

m

∑
α=1

∂α(U −Ū)�[Gα(V )−Gα(V̄ )]dxdτ

≤ ε
∫ t

0

∫
Rm

|∇(U −Ū)|2dxdτ+
cT
ε

sup
[0,T ]

∫
Rm

|V (x,τ)−V̄ (x,τ)|2dx.

Recalling (5.1.12), we conclude that if
cT
ε

= μ2 < 1, then d(U,Ū) ≤ μd(V,V̄ ),
which establishes that the map V �→ U possesses a unique fixed point, which is the
unique solution U to (5.1.8), (5.1.2) on the time interval [0,T ].

Let ρ1 = ‖U(·,T )‖0 ≤ ρ . If ρ1 = ρ the lemma has been proved with Tω,ε = T .
On the other hand, if ρ1 < ρ and since ‖U(·,T )‖� ≤ ω1 < ω , we may extend the
solution U of (5.1.8), (5.1.2) beyond T by solving, as above, a new Cauchy problem
for (5.1.8) with initial data U(·,T ) and (ρ1,ω1) in the role of (ρ0,ω0). By iterating
this process, one extends U to a maximal time interval [0,Tω,ε), with either Tω,ε = ∞
or Tω,ε < ∞ , in which case limsup

t→Tω,ε
‖U(·, t)‖L∞ = ρ and/or limsup

t→Tω,ε
‖U(·, t)‖� = ω .

This completes the proof of Lemma 5.1.2.

The next step is to derive bounds on the solution to (5.1.8), (5.1.2) that are sus-
tained even as ε→ 0. Notice that (5.1.15) and (5.1.21) hold for t ∈ [0,Tω,ε) and meet
this requirement. The next proposition establishes the main estimate in that direction,
with the convex entropy moving to center stage and the viscosity term reduced to a
merely supporting role.

5.1.3 Lemma. Assume A(U), defined by (5.1.3), is positive definite for U ∈ Bρ .
Then there exists c0 > 1, depending solely on ρ, � and on bounds of G,η and their
derivatives on Bρ , with the following property. Let U0 ∈H� , � >

m
2 +1, taking values

in Bρ0 , ρ0 < ρ . Fix any ω ≥ c0‖U0‖� and, with reference to Lemma 5.1.2, consider
the lifespan Tω,ε of the solution U to (5.1.8), (5.1.2) that satisfies (5.1.10). Then

t ∈ [0,Tω ],

(5.1.24) ‖U(·, t)‖� ≤ c0‖U0(·)‖� exp
∫ t

0
g(τ)dτ,

where

(5.1.25) g(t)≤ c
[
|||∇U(·, t)|||L∞ + ε|||∇U(·, t)|||2L∞

]
.

Tω,ε > Tω , where Tω is a positive constant independent of ε ∈ (0,1), and for any
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Proof. For any multi-index r, of order |r| ≤ �, we consider (5.1.16) for V = U and
write it in the form

(5.1.26) ∂tUr +
m

∑
α=1

DGα(U)∂αUr

=
m

∑
α=1

{DGα(U)∂αUr −∂ r[DGα(U)∂αU ]}+ εΔUr .

In the summation on the right-hand side of the above equation, the terms with deriva-
tives of (the highest) order l+1 cancel out. Hence, by familiar interpolation estimates
in Sobolev space (commonly referred to as Moser estimates), which can be found in
the literature cited in Section 5.7, one obtains

(5.1.27) ‖DGα(U)∂αUr −∂ r[DGα(U)∂αU ]‖0 ≤ c|||∇U |||L∞ |||∇U |||�−1 .

Then (5.1.26) induces the following “energy” integral:

(5.1.28)
∫
Rm

U�
r (x, t)A(U(x, t))Ur(x, t)dx−

∫
Rm

U�
0r(x)A(U0(x))U0r(x)dx

=−2ε
∫ t

0

∫
Rm
∂αU�

r A(U)∂αUr dxdτ−4ε
∫ t

0

∫
Rm

m

∑
α=1

U�
r ∂αA(U)∂αUr dxdτ

−ε
∫ t

0

∫
Rm

m

∑
α=1

U�
r [∂αDA(U)∂αU ]Ur dxdτ

+
∫ t

0

∫
Rm

m

∑
α=1

U�
r [∂αJα(U)−DA(U)∂αGα(U)]Ur dxdτ

+2
∫ t

0

∫
Rm

m

∑
α=1

U�
r A(U)[DGα(U)∂αUr −∂ r[DGα(U)∂αU ]]dxdτ,

which may be derived formally upon multiplying (5.1.26) by 2U�
r A(U), integrating

the resulting equation over Rm × [0, t], and integrating by parts. In the process, one
uses the following identities, which manifest the symmetry of the matrices A(U) and
Jα(U):

(5.1.29) 2U�
r A(U)∂tUr = ∂t [U�

r A(U)Ur]−U�
r ∂tA(U)Ur ,

(5.1.30) U�
r ∂tA(U)Ur =−U�

r [
m

∑
α=1

DA(U)∂αGα(U)]Ur + εU�
r [DA(U)ΔU ]Ur ,
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(5.1.31) U�
r [DA(U)ΔU ]Ur =

m

∑
α=1

∂α [U�
r [∂αA(U)]Ur]

−2
m

∑
α=1

U�
r [∂αA(U)]∂αUr −

m

∑
α=1

U�
r [∂αDA(U)∂αU ]Ur ,

(5.1.32) U�
r A(U)ΔUr =

m

∑
α=1

∂α [U�
r A(U)∂αUr]

−
m

∑
α=1

∂αU�
r A(U)∂αUr −

m

∑
α=1

U�
r ∂αA(U)∂αUr ,

(5.1.33)
m

∑
α=1

2U�
r A(U)DGα(U)∂αUr

=
m

∑
α=1

∂α [U�
r Jα(U)Ur]−

m

∑
α=1

U�
r ∂αJα(U)Ur .

Since A(U) is positive definite,

(5.1.34)
∫
Rm
∂αU�

r (x,τ)A(U(x,τ))∂αUr(x,τ)dx ≥ μ
∫
Rm

|∂αUr(x,τ)|2dx.

By the Cauchy-Schwarz inequality,

(5.1.35) 2
∫
Rm

U�
r (x,τ)∂αA(U(x,τ))∂αUr(x,τ)dx

≤ μ
∫
Rm

|∂αUr(x,τ)|2dx+ c
∫
Rm

|∂αU(x,τ)|2|Ur(x,τ)|2dx.

Therefore, summing (5.1.28) over all r with |r| ≤ � and using (5.1.34), (5.1.35) and
(5.1.27), we obtain

(5.1.36) ∑
|r|≤�

∫
Rm

U�
r (x, t)A(U(x, t))Ur(x, t)dx

≤ ∑
|r|≤�

∫
Rm

U�
0r(x)A(U0(x))U0r(x)dx+ c

∫ t

0
g(τ)‖U(·,τ)‖2

�dτ,

with g bounded as in (5.1.25).
Again, since A(U) is positive definite,

(5.1.37) ∑
|r|≤�

∫
Rm

U�
r (x, t)A(U(x, t))Ur(x, t)dx ≥ μ‖U(·, t)‖2

� .
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Therefore, (5.1.36) yields

(5.1.38) ‖U(·, t)‖2
� ≤ c2

0‖U0(·)‖2
� +2

∫ t

0
g(τ)‖U(·,τ)‖2

�dτ,

whence (5.1.24) follows by the Gronwall lemma.
Since |||∇U(·,τ)|||L∞ ≤ c‖U(·,τ)‖� ≤ cω , it is clear from (5.1.24) that there is

Tω > 0 such that c0‖U0‖� <ω implies ‖U(·, t)‖� <ω for all t ∈ [0,Tω ], i.e. Tω < Tω,ε ,
for all ε ∈ (0,1). This completes the proof of the lemma.

We have now set the stage for dealing with the hyperbolic system (5.1.1) by
letting ε → 0 in (5.1.8).

5.1.4 Lemma. Assume A(U) is positive definite for U ∈ Bρ , and take U0 ∈ H� , for

introduced in Lemma 5.1.3, and identify the corresponding Tω . Then there exists a
classical solution U to (5.1.1), (5.1.2), defined on Rm × [0,Tω ] and taking values in
Bρ . For any t ∈ [0,Tω ],U(·, t) ∈ H� , ‖U(·, t)‖� ≤ ω and

(5.1.39) ‖U(·, t)‖� ≤ c0‖U0(·)‖� exp
∫ t

0
c|||∇U(·,τ)|||L∞dτ.

Furthermore, the function t �→U(·, t) is continuous in H� on [0,Tω ].

of (5.1.8), (5.1.2), with ε = εk , on the time interval [0,Tω ]. By Lemma 5.1.3, {Uk}
is bounded in L∞([0,Tω ];H�), with ‖Uk(·, t)‖� < ω , for 0 ≤ t ≤ Tω . Furthermore,
it follows from (5.1.21) that {Uk} is also bounded in W 1,2([0,Tω ];H�−1). There-
fore, by standard theory of Sobolev spaces, {Uk} is equicontinuous and thereby con-
tains a subsequence, denoted again by {Uk}, which converges, uniformly on compact
sets, to some continuous function U on Rm × [0,Tω ], taking values in Bρ and sat-
isfying (5.1.1), (5.1.2), in the sense of distributions. For any t ∈ [0,Tω ], the bound
‖Uk(·, t)‖� < ω implies that Uk(·, t) → U(·, t), weakly in H� , and ‖U(·, t)‖� ≤ ω .
This in turn gives U(·, t) ∈C1(Rm), with |||∇U(·, t)|||L∞ ≤ cω , and since U is a solu-
tion of (5.1.1), ∂tU(·, t) ∈C0(Rm), with ‖∂tU(·, t)‖L∞ ≤ cω . Thus U is Lipschitz.

To that end, we notice that Vk =Uk −U solves the equation

(5.1.40) ∂tVk +
m

∑
α=1

DGα(U)∂αVk = εΔUk −
m

∑
α=1

[DGα(Uk)−DGα(U)]∂αUk ,

on Rm × [0,Tω ], with initial condition Vk(·,0) = 0. Hence, multiplying (5.1.40) by
2V�

k A(U), integrating the resulting equation over Rm × [0, t], for t ∈ [0,Tω ], and in-
tegrating by parts yields

� > m
2 + 1, with values in Bρ0 , ρ0 < ρ . Fix ω ≥ c0‖U0‖� , where c0 is the constant

Proof. Take any sequence {εk} , with εk → 0, as k → ∞ , and let Uk be the solution

Next we show that Uk(·, t)→U(·, t), strongly in H0 , as k →∞ , for any t ∈ [0,Tω ].
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(5.1.41)
∫
Rm

V�
k (x, t)A(U(x, t))Vk(x, t)dx

=
∫ t

0

∫
Rm

V�
k {∂tA(U)+

m

∑
α=1

∂αJα(U)}Vk dxdτ

−2
∫ t

0

∫
Rm

V�
k A(U)[DGα(Uk)−DGα(U)]∂αUk dxdτ

−2εk

∫ t

0

∫
Rm

m

∑
α=1

∂α [V�
k A(U)]∂αUk dxdτ.

Since A(U) is positive definite,

(5.1.42)
∫
Rm

V�
k (x, t)A(U(x, t))Vk(x, t)dx ≥ μ‖Vk(·, t)‖2

0 .

Therefore, (5.1.41) induces an inequality of the form

(5.1.43) ‖Vk(·, t)‖2
0 ≤ cω

∫ t

0
‖Vk(·,τ)‖2

0dτ+ cω2εkt,

Since {Uk(·, t)} converges to U(·, t), strongly in H0 and weakly in H� , we in-
fer by interpolation that the convergence is strong in H�−1 and also uniform in Rm.
Moreover, ∇Uk(·, t) → ∇U(·, t), uniformly in Rm, for any t ∈ [0,Tω ]. In particular,
recalling that (5.1.24) holds for the Uk , with g bounded as in (5.1.25), and letting

It remains to prove that t �→ U(·, t) is continuous in H� on [0,Tω ]. Considering
that (5.1.1) is invariant under time translations and reflections, it will suffice to show
that t �→U(·, t) is right-continuous at t = 0, i.e., U(·, t)→U0(·) in H� , as t → 0.

We begin with the identity

(5.1.44) ∑
|r|≤�

∫
Rm

U�
r A(U)Ur dx− ∑

|r|≤�

∫
Rm

U�
kr A(Uk)Ukr dx

=− ∑
|r|≤�

∫
Rm

U�
kr [A(Uk)−A(U)]Ukr dx

− ∑
|r|≤�

∫
Rm

2(Ukr −Ur)
�A(U)Ur dx

− ∑
|r|≤�

∫
Rm

(Ukr −Ur)
�A(U)(Ukr −Ur)dx,

two terms tend to zero, while the last term has a definite sign:

whence we conclude that Vk(·, t)→ 0, strongly in H0 , as k → ∞ , for any t ∈ [0,Tω ].

k → ∞ , we verify that U satisfies (5.1.39).

which holds for any fixed t ∈ [0,Tω ], and let k → ∞ . On the right-hand side, the first
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(5.1.45) ∑
|r|≤�

∫
Rm

(Ukr −Ur)
�A(U)(Ukr −Ur)dx ≥ μ‖Uk −U‖2

� .

It follows that, as k → ∞ , the limit inferior of the left-hand side of (5.1.44) is non-
positive. Recalling that the Uk satisfy (5.1.36), we conclude that

(5.1.46) ∑
|r|≤�

∫
Rm

U�
r (x, t)A(U(x, t))Ur(x, t)dx

− ∑
|r|≤�

∫
Rm

U�
0r(x)A(U0(x))U0r(x)dx ≤ cω3t.

We now write the identity

(5.1.47) ∑
|r|≤�

∫
Rm

[Ur(x, t)−U0r(x)]�A(U0(x))[Ur(x, t)−U0r(x)]dx

= ∑
|r|≤�

∫
Rm

U�
r (x, t)A(U(x, t))Ur(x, t)dx

− ∑
|r|≤�

∫
Rm

U�
0r(x)A(U0(x))U0r(x)dx

− ∑
|r|≤�

∫
Rm

U�
r (x, t)[A(U(x, t))−A(U0(x))]Ur(x, t)dx

− ∑
|r|≤�

∫
Rm

2[Ur(x, t)−U0r(x)]�A(U0(x))U0r(x)dx

and let t → 0. On the right-hand side, the last term tends to zero, because U is a
continuous function and ‖U(·, t)‖� ≤ ω , whence it follows that t �→U(·, t) is at least
weakly continuous in H� . Similarly, the penultimate term tends to zero, because the

contribution of the remaining two terms is non-positive, by virtue of (5.1.46). We
thus conclude that, as t → 0, the limit inferior of the left-hand side of (5.1.47) is
nonpositive. On the other hand, since A(U) is positive definite,

(5.1.48) ∑
|r|≤�

∫
Rm

[Ur(x, t)−U0r(x)]�A(U0(x))[Ur(x, t)−U0r(x)]dx

≥ μ‖U(·, t)−U0(·)‖2
� .

Hence, t �→ U(·, t) is continuous in H� . In particular, U is a continuously differen-
tiable, classical solution to (5.1.1), (5.1.2). On account of (5.1.15), we may reduce,
if necessary, the size of Tω so as to secure that ‖U(·, t)‖L∞ < ρ for t ∈ [0,Tω ]. This
completes the proof of the lemma.

Proof of Theorem 5.1.1. We start out with the solution U to (5.1.1), (5.1.2) on [0,Tω ]
constructed in Lemma 5.1.4, and set ρ1 = ‖U(·,Tω)‖∞ < ρ , ω1 = ‖U(·,Tω)‖� . Thus

Uk satisfy (5.1.15), and this estimate is then passed on to U , as k → ∞ . Finally, the
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we may extend U beyond Tω by solving a new Cauchy problem for (5.1.1) with
initial data U(·,Tω) and (ρ1,c0ω1) in the role of (ρ0,ω). By iterating this process,
one extends U to a maximal time interval [0,T∞), with either T∞ = ∞ or T∞ < ∞ , in
which case limsup

t→T∞
‖U(·, t)‖L∞ = ρ or limsup

t→T∞
‖U(·, t)‖� = ∞ . On account of (5.1.39),

‖U(·, t)‖� may become unbounded only if (5.1.6) holds.
Time, and mixed space-time, derivatives of U may be determined from space

derivatives by employing the system (5.1.1). Hence (5.1.5) follows as a result of
U(·, t) ∈C0([0,T∞];H�), which has already been established.

The uniqueness of the solution will be established in Section 5.2, under quite
weak hypotheses of regularity. This completes the proof of the theorem.

As noted in Chapter IV, T∞ = ∞ is a rare occurrence: Generically, smooth solu-
tions break down in finite time, as shocks develop.

The proof of Theorem 5.1.1 hinges on the presence of the symmetric positive def-
inite matrix-valued function A(U) that acts as symmetrizer by rendering the matrix-
valued functions Jα(U), defined by (5.1.4), symmetric. It is fortuitous that here A(U)
is the Hessian matrix of η(U), as there are systems endowed with symmetrizers that
do not derive from an entropy. In fact, existence of solutions to the Cauchy problem
has been established even for systems equipped with so-called symbolic symmetriz-
ers. These include, in particular, all hyperbolic systems in which the multiplicity of
each characteristic speed λi(ν ;U) does not vary with ν or U .

5.2 Relative Entropy and the Stability of Classical Solutions

The aim here is to show that the presence of a convex entropy guarantees that clas-
sical solutions of the initial value problem depend continuously on the initial data,
even within the broader class of admissible bounded weak solutions.

5.2.1 Theorem. Assume the system of conservation laws (5.1.1) is endowed with an
entropy-entropy flux pair (η ,Q), where D2η(U) is positive definite on Bρ . Suppose
Ū is a classical solution of (5.1.1) on [0,T ), taking values in Bρ , with initial data
Ū0 . Let U be any weak solution of (5.1.1) on [0,T ), taking values in Bρ , which
satisfies the entropy admissibility condition (4.5.3), and has initial data U0 . Then

(5.2.1)
∫
|x|<r

|U(x, t)−Ū(x, t)|2dx ≤ aebt
∫
|x|<r+st

|U0(x)−Ū0(x)|2dx

holds for any r > 0 and t ∈ [0,T ), with positive constants s,a, depending solely
on bounds on G,η ,Q and their derivatives on Bρ , and b that also depends on the
Lipschitz constant of Ū . In particular, Ū is the unique admissible weak solution of
(5.1.1) with initial data Ū0 and values in Bρ .

Proof. On Bρ ×Bρ we define the functions

(5.2.2) h(U,Ū) = η(U)−η(Ū)−Dη(Ū)[U −Ū ],
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(5.2.3) Yα(U,Ū) = Qα(U)−Qα(Ū)−Dη(Ū)[Gα(U)−Gα(Ū)],

(5.2.4) Zα(U,Ū) = A(Ū)
{

Gα(U)−Gα(Ū)−DGα(Ū)[U −Ū ]
}
,

all of quadratic order in U − Ū (recall (4.1.4) and (5.1.3)). Consequently, since
D2η(U) is positive definite on Bρ , there is a positive constant s such that

(5.2.5) |Y (U,Ū)| ≤ sh(U,Ū).

Let us fix any nonnegative, Lipschitz continuous test function ψ with compact
support on Rm× [0,T ) and evaluate h,Y and Z along the two solutions U(x, t), Ū(x, t).
Since U satisfies the inequality (4.5.3), while Ū , being a classical solution, satisfies
identically (4.5.3) as an equality, we deduce

(5.2.6)∫ T

0

∫
Rm

[∂tψ h(U,Ū)+
m

∑
α=1

∂αψYα(U,Ū)]dxdt +
∫
Rm
ψ(x,0)h(U0(x),Ū0(x))dx

≥−
∫ T

0

∫
Rm

{∂tψDη(Ū)[U −Ū ]+
m

∑
α=1

∂αψDη(Ū)[Gα(U)−Gα(Ū)]}dxdt

−
∫
Rm
ψ(x,0)Dη(Ū0(x))[U0(x)−Ū0(x)]dx.

Next we write (4.3.2) for both solutions U and Ū , using the Lipschitz continuous
vector field ψDη(Ū) as test function Φ , to get

(5.2.7)
∫ T

0

∫
Rm

{∂t [ψDη(Ū)][U −Ū ]+
m

∑
α=1

∂α [ψDη(Ū)][Gα(U)−Gα(Ū)]}dxdt

+
∫
Rm
ψ(x,0)Dη(Ū0(x))[U0(x)−Ū0(x)]dx = 0.

Since Ū is a classical solution of (5.1.1), and by virtue of (5.1.3), (5.1.4),

(5.2.8)

∂tDη(Ū) = ∂tŪ�A(Ū) =−
m

∑
α=1

∂αŪ�Jα(Ū)� =−
m

∑
α=1

∂αŪ�A(Ū)DGα(Ū)

so that, recalling (5.2.4),

(5.2.9) ∂tDη(Ū)[U−Ū ]+
m

∑
α=1

∂αDη(Ū)[Gα(U)−Gα(Ū)] =
m

∑
α=1

∂αŪ�Zα(U,Ū).
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Combining (5.2.6), (5.2.7) and (5.2.9) yields

(5.2.10)∫ T

0

∫
Rm

[∂tψ h(U,Ū)+
m

∑
α=1

∂αψYα(U,Ū)]dxdt +
∫
Rm
ψ(x,0)h(U0(x),Ū0(x))dx

≥
∫ T

0

∫
Rm
ψ

m

∑
α=1

∂αŪ�Zα(U,Ū)dxdt.

We now fix t ∈ (0,T ) and r > 0. For any σ ∈ (0, t] and ε positive small, write
(5.2.10) for the test function ψ(x,τ) = χ(x,τ)ω(τ), with

(5.2.11) ω(τ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 0 ≤ τ < σ

ε−1(σ − τ)+1 σ ≤ τ < σ + ε

0 σ + ε ≤ τ < ∞

(5.2.12) χ(x,τ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 |x|− r− s(σ − τ)< 0

ε−1[r+ s(t − τ)−|x|]+1 0 ≤ |x|− r− s(t − τ)< ε

0 |x|− r− s(t − τ)≥ ε

where s is the constant appearing in (5.2.5). The calculation gives

(5.2.13)

1
ε

∫ σ+ε

σ

∫
|x|<r+s(t−σ)

h(U(x,τ),Ū(x,τ))dxdτ ≤
∫
|x|<r+st

h(U0(x),Ū0(x))dx

− 1
ε

∫ σ

0

∫
r+s(t−τ)<|x|<r+s(t−τ)+ε

[
sh(U,Ū)+

Y (U,Ū)x
|x|

]
dxdτ

−
∫ σ

0

∫
|x|<r+s(t−τ)

m

∑
α=1

∂αŪ�Zα(U,Ū)dxdτ+O(ε).

We let ε ↓ 0. The second integral on the right-hand side of (5.2.13) is nonnegative on
account of (5.2.5). Hence,

(5.2.14)
∫
|x|<r+s(t−σ)

h(U(x,σ),Ū(x,σ))dx ≤
∫
|x|<r+st

h(U0(x),Ū0(x))dx

−
∫ σ

0

∫
|x|<r+s(t−τ)

m

∑
α=1

∂αŪ�Zα(U,Ū)dxdτ,
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for all points σ of L∞ weak* continuity of η(U(·,τ)) in (0, t). As noted above,
h(U,Ū) and the Zα(U,Ū) are of quadratic order in U −Ū and, in addition, h(U,Ū)
is positive definite, due to the convexity of η . Thus, upon setting

(5.2.15) u(τ) =
∫
|x|<r+s(t−τ)

|U(x,τ)−Ū(x,τ)|2dx ,

(5.2.14) implies

(5.2.16) u(σ)≤ au(0)+b
∫ σ

0
u(τ)dτ ,

for almost all σ ∈ (0, t). Since u(·) is weakly lower semicontinuous, (5.2.16) holds
for all σ ∈ [0, t]. Then Gronwall’s inequality yields u(t)≤ au(0)ebt , which is (5.2.1).
Notice that a and s depend solely on bounds on G,η ,Q and their derivatives on Bρ
while b also depends on the Lipschitz constant of Ū . This completes the proof.

It is remarkable that a single entropy inequality, with convex entropy, manages
to weed out all but one solution of the initial value problem, so long as a classical
solution exists. As we shall see, however, when no classical solution exists, just one
entropy inequality is no longer generally sufficient to single out any particular weak
solution. In particular, as we saw in Section 4.8, the Cauchy problem for the Euler
equations (3.3.36), under specially constructed initial data, admits infinitely many
weak solutions satisfying the entropy admissibility condition (4.5.3), relative to the
entropy ρε(ρ)+ 1

2ρ|v|2, as an equality. The issue of uniqueness of weak solutions is
knotty and will be a major topic for discussion in subsequent chapters.

The functions h(U,Ū) and Y (U,Ū) of U , defined by (5.2.2) and (5.2.3), are com-
monly called the relative entropy and associated relative entropy flux, with respect to
the state Ū .

5.2.2 Remark. In the proof of Theorem 5.2.1 one only needs that h(U,Ū) is positive
definite for all Ū in the range of the classical solution. This may well hold, even for
η that fails to be convex, when the classical solution is special, e.g., it is a constant
state Ū which is a strong minimum of η .

5.3 Involutions and Contingent Entropies

The previous three sections have illustrated the beneficent role of convex entropies.
Nevertheless, the entropy associated with systems of balance laws in continuum
physics is not always convex. Indeed, we have already encountered, in Chapter III,
the cases of isentropic elastodynamics (Section 3.3.3) and electrodynamics (Section
3.3.8), in which invariance, dictated by physics, is incompatible with global convex-
ity of the entropy. The objective in this and the following section is to identify special
structure in such systems that may compensate for lack of convexity in the entropy.

Recall that solutions of the system (3.3.19) with relevance to elastodynamics
should also satisfy the equations (3.3.10). Notice that (3.3.10) is not independent
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of (3.3.19). Indeed, in a Cauchy problem, (3.3.19)1 implies that when (3.3.10) is
satisfied by the initial data, then it will hold for all t > 0.

The equations of electrodynamics exhibit similar behavior: in addition to the
hyperbolic system (3.3.66), the magnetic induction and the electric displacement
must also satisfy (3.3.67). However, in a Cauchy problem, by virtue of (3.3.66) and
(3.3.68), both equalities in (3.3.67) will hold automatically for all t > 0, so long as
they are satisfied by the initial data.

One recognizes a similar structure in many other systems arising in contin-
uum physics, and so an examination of its implications in a general framework is
warranted.

We consider the class of hyperbolic systems (5.1.1) with the property that the
symmetry condition

(5.3.1) MαGβ (U)+MβGα(U) = 0, U ∈ Bρ , α,β = 1, . . . ,m

holds for some family of k×n matrices Mα , α = 1, . . . ,m. A direct consequence of
(5.3.1) is that any (generally weak) solution U to the Cauchy problem for (5.1.1) will
satisfy the additional equation

(5.3.2)
m

∑
α=1

Mα∂αU = 0,

so long as the initial data do so. We call (5.3.2) an involution for (5.1.1). Thus
(3.3.10) is an involution for both (3.3.19) and (3.3.4), while (3.3.67) is an involution
for (3.3.66). Typically, for systems in this class arising in physics, the only relevant
solutions are those that also satisfy the involution.

With any ν ∈ Sm−1 we associate the k×n matrix

(5.3.3) N(ν) =
m

∑
α=1

ναMα .

By virtue of (4.1.2) and (5.3.1),

(5.3.4) N(ν)Λ(ν ;U) = 0, ν ∈ Sm−1, U ∈ Bρ ,

which shows that, in the presence of involutions, zero must be an eigenvalue of
Λ(ν ;U), with geometric multiplicity at least equal to the rank of N(ν), and any
eigenvector Ri(ν ;U) of Λ(ν ;U) with nonzero eigenvalue λi(ν ;U) must lie in the
kernel of N(ν).

It should also be noted that any shock associated with a solution of (5.1.1), com-
patible with the involution (5.3.2), propagating in the direction ν must satisfy the
jump condition

(5.3.5) N(ν)[U+−U−] = 0,

so that its amplitude U+−U− must lie in the kernel of N(ν).
In this section, we will be operating under the assumption
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(5.3.6) dim kerΛ(ν ;U) = rank N(ν), ν ∈ Sm−1, U ∈ Bρ

in which case the kernel of N(ν) is spanned by the eigenvectors of Λ(ν ;U) with
nonzero eigenvalue and thus coincide with the range of Λ(ν ;U). This is indeed
the case for the system (3.3.19) of isentropic elastodynamics, where the kernel of
Λ(ν ;U) is six-dimensional and the rank of N(ν) is six, though not for the system
(3.3.4) of nonisentropic thermoelasticity, in which the kernel of Λ(ν ;U) is seven-
dimensional. Systems with involutions, such as (3.3.4) in which the dimension of
ker Λ(ν ;U) is larger than the rank of N(ν) may be handled by the same methodol-
ogy at the expense of introducing additional structure – the reader should be spared
from such complications.

We now introduce the involution cone

(5.3.7) C =
⋃

ν∈Sm−1

ker N(ν),

embedded in the state space Rn. In particular, for the system (3.3.19) of isentropic
elastodynamics C = {(F,v) : F = uw�, u,w,v ∈R3}, while for the system (3.3.66)
of electrodynamics C occupies the entire state space R6. As we shall see, all inter-
esting action takes place on C .

The presence of involutions affords a natural broadening of the notion of entropy.
Recall that the definition of an entropy-entropy flux pair (η ,Q) for the system (5.1.1)
has been crafted so that the extra conservation law

(5.3.8) ∂tη(U(x, t))+
m

∑
α=1

∂αQα(U(x, t)) = 0

is automatically satisfied by any C1 solution U of (5.1.1). However, in the present
setting, it is reasonable to require that (5.3.8) holds identically just for C1 solutions
of (5.1.1) that also satisfy the involution (5.3.2). This motivates the following

5.3.1 Definition. In a system of conservation laws (5.1.1), endowed with the invo-
lution (5.3.2), a smooth, scalar-valued function η on Bρ is a contingent entropy,
associated with the 1× k matrix-valued contingent entropy flux Q(U), if there is a
k-vector-valued function Ξ(U) on Bρ such that

(5.3.9) DQα(U) = Dη(U)DGα(U)+Ξ(U)�Mα , α = 1, . . . ,m.

In particular, any entropy is a contingent entropy, with Ξ = 0. On the other hand,
by virtue of (3.3.11) and (3.3.12), detF and the nine entries of the matrix F∗ are
contingent entropies for the system (3.3.19) of isentropic elastodynamics, which are
not entropies. Similarly, on account of (3.3.74), the three components of B∧D are
contingent entropies for the system (3.3.66), which are not entropies. The useful role
of these particular contingent entropies will be exposed in the next section. Another
interesting example of contingent entropies for (3.3.19), which will not be used here,
are the components of the 3-vector F�v. The associated contingent entropy fluxes
are the corresponding rows of the 3×3 matrix F�S+(ε+ 1

2 |v|2)I.
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The integrability condition for (5.3.9), which generalizes the symmetry relation
(3.2.4), is that the n×n matrices

(5.3.10) Jα(U) = A(U)DGα(U)+DΞ(U)�Mα , α = 1, . . . ,m,

are symmetric.
The results of Section 5.1 are not applicable to the system (3.3.19) of isen-

tropic elastodynamics, because, as we have seen, global convexity of the entropy
η = ε(F)+ 1

2 |v|2 is incompatible with the laws of physics. Nevertheless, the physi-
cally legitimate assumption (3.3.7) that the internal energy ε(F) is rank-one convex
guarantees that η is convex at least on the involution cone C . The aim in this section
is to demonstrate that, in the presence of the involution (5.3.2), local existence and
stability of classical solutions to the Cauchy problem may be established under the
assumption that the system (5.1.1) is endowed with a contingent entropy η that is
convex merely on the involution cone, i.e.,

(5.3.11) X�A(U)X ≥ 2μ|X |2, X ∈ C , U ∈ Bρ ,

with μ > 0.
In the place of Theorems 5.1.1 and 5.2.1 we here have the following propositions:

5.3.2 Theorem. Assume the hyperbolic system (5.1.1) of conservation laws satisfies
(5.3.1), (5.3.6) and is endowed with a contingent entropy η that is convex on the
involution cone C , so that (5.3.11) holds. Suppose the initial data U0 lie in H� ,
for some � > m

2 + 1, take values in a ball Bρ0 with radius ρ0 < ρ , and satisfy the
involution (5.3.2). Then there exist T∞ ≤ ∞ and a unique continuously differentiable
function U on Rm × [0,T∞), taking values in Bρ , which is a classical solution to the
Cauchy problem (5.1.1), (5.1.2) on the time interval [0,T∞). Furthermore,

(5.3.12) U(·, t) ∈
�⋂

k=

Ck([0,T∞) ; H�−k).

The interval [0,T∞) is maximal in that if T∞ < ∞ , then

(5.3.13)
∫ T∞

0
|||∇U(·, t)|||L∞dt = ∞ ,

and/or limsup
t→T∞

‖U(·, t)‖L∞ = ρ .

5.3.3 Theorem. Assume the hyperbolic system (5.1.1) of conservation laws satisfies
(5.3.1), (5.3.6) and is endowed with a contingent entropy-entropy flux pair (η ,Q),
where η is convex on the involution cone C , so that (5.3.11) holds. Suppose Ū is
a classical solution of (5.1.1) on [0,T ), taking values in Bρ , with initial values Ū0
satisfying the involution (5.3.2). Furthermore, assume Ū(x, t) → 0, |x| → ∞ , uni-
formly in t ∈ [0,T ). Let U be any weak solution of (5.1.1) on [0,T ), taking values in
Bρ , which satisfies the entropy admissibility condition (4.5.3) and has initial values

0
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uniformly in t ∈ [0,T ). Finally, let ‖U(·, t)−Ū(·, t)‖0 be bounded on [0,T ). Under
the above hypotheses, there are constants a and κ , depending on ρ and on bounds
of G,η ,Q and their derivatives on Bρ , and b that also depends on the Lipschitz
constant of Ū , such that if

(5.3.14) limsup
x→y,t→τ

|U(x, t)−U(y,τ)|< κ, y ∈ Rm, τ ∈ [0,T ),

then

In particular, Ū is the unique solution of the Cauchy problem for (5.1.1), with initial
data Ū0 , within the class of admissible weak solutions with sufficiently small local
oscillation (5.3.14) and the same asymptotic behavior as Ū at |x|=

The following lemma, which manifests how involutions compensate for the lack
of convexity of the entropy outside the involution cone, will play a pivotal role in the
proof of the above two propositions.

5.3.4 Lemma. Let P be a bounded measurable symmetric n×n matrix-valued func-
tion on Rm, such that

(5.3.16) X�P(x)X ≥ 2μ|X |2, X ∈ C , x ∈ Rm.

Assume further that there is a finite covering of Rm by the union of open sets
Ω0,Ω1, . . . ,ΩK with the property that for J = 0,1, . . . ,K,

(5.3.17) |P(x)−P(y)|< 1
2
μ, x,y ∈ΩJ .

Then there is δ , depending solely on the covering, such that

(5.3.18)
∫
Rm

S(x)�P(x)S(x)dx ≥ μ‖S‖2
0 −δ‖S‖2

−1 ,

holds for any S ∈ L2(Rm ; Rn) that satisfies the involution

(5.3.19)
m

∑
α=1

Mα∂αS = 0,

in the sense of distributions on Rm.

Proof. Fix U ∈ Bρ and consider the linear differential operator

(5.3.20) L =
m

∑
α=1

DGα(U)∂α .

U0 satisfying the involution (5.3.2). Moreover, assume that U(x, t)→ 0, as |x| → ∞ ,

(5.3.15)
∫
Rm

|U(x, t)−Ū(x, t)|2dx ≤ aebt
∫
Rm

|U0(x)−Ū0(x)|2dx, a.e on [0,T ].

∞ .
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We seek a solution Φ ∈ H1 to the equation

(5.3.21) LΦ+Φ = S,

with the help of the Fourier transform:

(5.3.22) [i|ξ |Λ(ν ;U)+ I]Φ̂(ξ ) = Ŝ(ξ ), ξ ∈ Rm,

where ν = |ξ |−1ξ and Λ(ν ;U) is defined by (4.1.2). The n× n matrix on the left-
hand side of (5.3.22) is nonsingular, since Λ(ν ;U) has only real eigenvalues. Fur-
thermore, by virtue of (5.3.19), Ŝ(ξ ) lies in the kernel of N(ν), which is spanned by
the eigenvectors of Λ(ν ;U) with nonzero eigenvalue. It follows that (5.3.22) admits
a solution Φ̂(ξ ) with

(5.3.23) |Φ̂(ξ )|2 ≤ c2(1+ |ξ |2)−1|Ŝ(ξ )|2, ξ ∈ Rm,

whence

(5.3.24) ‖Φ‖0 ≤ c‖S‖−1.

Next we consider a partition of unity ψ0,ψ1, . . . ,ψK subordinate to the covering
Ω0,Ω1, . . . ,ΩK , i.e., for J = 0,1, . . . ,K, ψJ ∈C∞(Rm), spt ψJ ⊂ΩJ and

(5.3.25)
K

∑
J=0

ψ2
J (x) = 1, x ∈ Rm.

We also fix yJ ∈ΩJ

(5.3.26)
∫
Rm

S(x)�P(x)S(x)dx =
K

∑
J=0

∫
Rm
ψ2

J (x)S(x)
�P(x)S(x)dx

=
K

∑
J=0

∫
Rm
ψ2

J (x)S(x)
�P(yJ)S(x)dx

+
K

∑
J=0

∫
Rm
ψ2

J (x)S(x)
�[P(x)−P(yJ)]S(x)dx.

By virtue of (5.3.17),

(5.3.27)
K

∑
J=0

∫
Rm
ψ2

J (x)S(x)
�[P(x)−P(yJ)]S(x)dx ≥−1

2
μ‖S‖2

0 .

For each J = 0,1, . . . ,K we split ψJS into

(5.3.28) ψJS = XJ +YJ ,

where

, for J = 0,1, . . . ,K, and write
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(5.3.29) XJ = L (ψJΦ),

(5.3.30) YJ = [ψJI −
m

∑
α=1

∂αψJDGα(U)]Φ .

Setting ν = |ξ |−1ξ and recalling (5.3.4),

(5.3.31) N(ν)X̂J(ξ ) = i|ξ |N(ν)Λ(ν ,U)(ψ̂JΦ)(ξ ) = 0,

so both the real and the imaginary parts of X̂J(ξ ) lie in C , for any ξ ∈ Rm and for
J = 0,1, . . . ,K. Thus, applying Parseval’s relation and using (5.3.16) we deduce

(5.3.32)∫
Rm

XJ(x)�P(yJ)XJ(x)dx =
∫
Rm

X̂J(ξ )∗P(yJ)X̂J(ξ )dξ ≥ 2μ
∫
Rm

|XJ(x)|2dx.

Furthermore, from (5.3.30) and (5.3.24) we infer

(5.3.33)
∫
Rm

|YJ(x)|2dx ≤ c1‖S‖2
−1 , J = 0, . . . ,K.

We now return to (5.3.26). On account of (5.3.28), (5.3.32) and (5.3.33),

(5.3.34)
∫
Rm
ψ2

J (x)S(x)
�P(yJ)S(x)dx

≥ 7
8

∫
Rm

XJ(x)�P(yJ)XJ(x)dx−8
∫
Rm

YJ(x)�P(yJ)YJ(x)dx

≥ 7
4
μ
∫
Rm

|XJ(x)|2dx− c2‖S‖2
−1 .

Again by (5.3.28) and (5.3.33),

(5.3.35)
∫
Rm

|XJ(x)|2dx ≥ 6
7

∫
Rm
ψ2

J (x)|S(x)|2dx− c3‖S‖2
−1 .

Combining (5.3.25), (5.3.26), (5.3.27), (5.3.34) and (5.3.35), we arrive at (5.3.18).
This completes the proof of the lemma.

Proof of Theorem 5.3.2. The solution to (5.1.1), (5.1.2), under the current assump-
tions, will be constructed by the vanishing viscosity method, namely as the ε → 0
limit of solutions to the parabolic system (5.1.8), with the same initial data (5.1.2).
This approach, which was already tested in Section 5.1, is also effective in the
present setting because, when (5.3.1) holds, the parabolic system (5.1.8) inherits
from the hyperbolic system (5.1.1) the involution (5.3.2).1 Indeed, if U is a solution
of (5.1.8) with initial data (5.1.2) satisfying the involution (5.3.2), then the function

1 Note that this is not the case for the linearized system (5.1.7) and as a result the traditional
approach seems inapplicable under the current assumptions, in the presence of involutions.
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Z = ∑Mα∂αU is the solution of the heat equation ∂tZ = εΔZ with zero initial data,
and thus vanishes identically.

The construction of the solution in the present setting will closely parallel the
treatment of the classical case, in Theorem 5.1.1. A number of modifications shall be
needed to account for the fact that η is no longer a convex entropy but it is merely
a contingent entropy which is convex only on the involution cone. In order to keep
duplication at a minimum, we shall not write a lengthy self-contained proof, but we
will simply retrace the steps in the proof of Theorem 5.1.1, through the Lemmas
5.1.2, 5.1.3 and 5.1.4, interjecting the adjustments, as needed.

To begin with, Lemma 5.1.2 does not rest on the presence of an entropy and
hence it applies here, without any modification. We thus know that for any fixed
ε > 0 and ω > ‖U0‖� there exists a solution U of (5.1.8), (5.1.2) on a time interval
[0,Tω,ε), taking values in Bρ and satisfying (5.1.10). We proceed to derive bounds
for U , independent of ε , by retracing the steps in the proof of Lemma 5.1.3.

Equations (5.1.26), (5.1.27), (5.1.29), (5.1.30), (5.1.31) and (5.1.32) are still
valid. We may no longer count on symmetry of the matrices A(U)DGα(U). Never-
theless, upon switching to (5.3.10) as definition of Jα(U), (5.1.33) still holds, since
U , and thereby Ur , satisfy the involution (5.3.2). With that modification, the basic
“energy” integral (5.1.28) remains in force.

The next obstacle is that we no longer have (5.1.34) and (5.1.37) , because A(U)
is not necessarily positive definite. We shall compensate for the loss of convexity of
η(U), with the help of Lemma 5.3.4, as follows. Since U0 ∈ H� ,

(5.3.36) |A(U0(x))−A(U0(y))|< 1
4
μ,

for all x and y in the set Ω0 = {z ∈ Rm : |z|> α}, for α sufficiently large. Next we
cover the compact set Ω c

0 by the union of balls Ω1, . . . ,ΩK with radii so small that
(5.3.36) also holds for any x and y in ΩI , I = 1, . . . ,K . Finally, recalling (5.1.15), we
restrict U to a time interval [0,T ], with T < Tω,ε so small that

(5.3.37) |A(U(x, t))−A(U0(x))|< 1
8
μ,

for all x ∈ Rm and t ∈ [0,T ]. It follows that, for any fixed t ∈ [0,T ], the covering
Ω0,Ω1, . . . ,ΩK of Rm meets the conditions in Lemma 5.3.4, with A(U(·, t)) in the
role of P(·). In particular, in the place of (5.1.34) and (5.1.37) we now have

(5.3.38)
∫
Rm
∂αU�

r (x,τ)A(U(x,τ))∂αUr(x,τ)dx

≥ μ
∫
Rm

|∂αUr(x,τ)|2dx−δ
∫
Rm

|Ur(x,τ)|2dx,

(5.3.39) ∑
r≤�

∫
Rm

U�
r (x, t)A(U(x, t))Ur(x, t)dx ≥ μ‖U(·, t)‖2

� − c‖U(·, t)‖2
�−1 .
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Therefore, (5.3.38) in conjunction with (5.1.28), (5.1.35) and (5.1.27), demonstrates
that (5.1.36) is still valid here, with

(5.3.40) g(τ)≤ c[1+ |||∇U(·,τ)|||L∞ + ε|||∇U(·,τ)|||2L∞ ].

With reference to (5.3.39), in order to estimate the term ‖U(·, t)‖�−1 , we multiply
(5.1.26) by 2U�

r , integrate the resulting equation over Rm× [0, t], t ∈ [0,T ], integrate
by parts the term 2εU�

r ΔUr and sum over all multi-indices r of order |r| ≤ �− 1.
Upon using (5.1.27), we deduce

(5.3.41) ‖U(·, t)‖2
�−1 ≤ ‖U0(·)‖2

�−1 + c
∫ t

0
[1+ |||∇U(·,τ)|||L∞ ]‖U(·,τ)‖2

�dτ.

Combining (5.1.36) with (5.3.39) and (5.3.41), we infer that (5.1.38), and thereby
(5.1.24), hold in the present setting, with g bounded through (5.3.40).

As in Lemma 5.1.3, we conclude that for any fixed ω > c0‖U0‖� , solutions U to
(5.1.8), (5.1.2), with ‖U(·, t)‖� < ω , exist on a time interval [0,Tω ], for any ε > 0.

By retracing the steps in the proof of Lemma 5.1.4, we now construct a solution
U to the Cauchy problem (5.1.1), (5.1.2) as the limit of a sequence {Uk} of solutions

compact subsets of Rm × [0,Tω ]. Furthermore, Uk(·, t) → U(·, t), weakly in H� , for
any fixed t ∈ [0,Tω ].

Next we demonstrate that Uk(·, t)→U(·, t), strongly in H0 , for any t ∈ [0,Tω ]. To
that end, we set Vk =Uk −U and appeal to (5.1.41), which still holds in the present
setting. However, we may no longer use (5.1.42), since A(U) is not necessarily pos-
itive definite. In its place, we employ

(5.3.42)
∫
Rm

V�
k (x, t)A(U(x, t))Vk(x, t)dx ≥ μ‖Vk(·, t)‖2

0 −δ‖Vk(·, t)‖2
−1 ,

since U satisfies (5.1.1) and Uk satisfies (5.1.8), with the same initial data,

(5.3.43) Vk(x, t) =
m

∑
α=1

∂α
∫ t

0
[Gα(U(x,τ))−Gα(Uk(x,τ))+ εk∂αUk(x,τ)]dτ

whence

(5.3.44) ‖Vk(·, t)‖−1 ≤ c
∫ t

0
[‖Vk(·,τ)‖0 + ε‖Uk(·,τ)‖1]dτ.

Combining (5.1.41) with (5.3.42) and (5.3.44), we deduce

(5.3.45) ‖Vk(·, t)‖2
0 ≤ c(ω+ t)

∫ t

0
‖Vk(·,τ)‖2

0dτ+ cω2εkt(1+ εkt),

which is comparable to (5.1.43) and implies Vk(·, t)→ 0, strongly in H0 , for every t in
[0,Tω ]. Since Uk(·, t)→U(·, t), weakly in H� , this yields Uk(·, t)→U(·, t), strongly
in H�−1 and uniformly in Rm. Moreover, ∇Uk(·, t)→ ∇U(·, t), uniformly in Rm, for

Uk to (5.1.8), (5.1.2) with ε = εk , εk → 0, as k → ∞ . The convergence is uniform on

which follows from Lemma 5.3.4. We can handle the term ‖Vk(·, t)‖−1 by noting that
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any t ∈ [0,Tω ]. In particular, since the Uk satisfy (5.1.24), with g bounded through
(5.3.40), we infer

(5.3.46) ‖U(·, t)‖� ≤ c0‖U0‖� exp
∫ t

0
c[1+ |||∇U(·,τ)|||L∞ ]dτ.

The next step is to verity that t �→U(·, t) is continuous on [0,Tω ]. As in the proof
of Lemma 5.1.4, we consider the identity (5.1.44), which is still valid in the present

zero, while the limit superior of the third term is nonpositive. Indeed, even though
we no longer have (5.1.45), in its place, by Lemma 5.3.4,

(5.3.47) ∑
|r|≤�

∫
Rm

(Ukr −Ur)
�A(U)(Ukr −Ur)dx ≥ μ‖Uk −U‖2

� − c‖Uk −U‖2
�−1 ,

and, as noted above, ‖Uk −U‖�−1 → 0. Since the limit superior of the left-hand
side of (5.1.44) is nonpositive and the Uk satisfy (5.1.36), with g bounded through
(5.3.40), we deduce the inequality

(5.3.48) ∑
|r|≤�

∫
Rm

U�
r (x, t)A(U(x, t))Ur(x, t)dx

− ∑
|r|≤�

∫
Rm

U�
0r(x)A(U0(x))U0r(x)dx ≤ cω2(1+ω)t,

which is the analog of (5.1.46).
Continuing along the road map of the proof of Lemma 5.1.4, we observe that the

identity (5.1.47) remains in force in the present setting. We no longer have (5.1.48),
but instead, by virtue of Lemma 5.3.4,

(5.3.49) ∑
|r|≤�

∫
Rm

[Ur(x, t)−U0r(x)]�A(U0(x))[Ur(x, t)−U0r(x)]dx

≥ μ‖U(·, t)−U0(·)‖2
� − c‖U(·, t)−U0(·)‖2

�−1 .

On account of (5.1.21), with ε = 0, ‖U(·, t)−U0(·)‖�−1 = O(t), as t → 0. On the
other hand, as t → 0, the limit superior of the right-hand side of (5.1.47) is non-
positive, in consequence of U(·, t) → U0(·), weakly in H� , together with (5.3.48)
and (5.1.15). It thus follows that ‖U(·, t)−U0(·)‖� → 0, as t → 0, i.e., t �→U(·, t) is
right-continuous at t = 0, and thereby continuous on [0,Tω ].

The remainder of the proof of the theorem just redoubles the final steps in
the proof of Theorem 5.1.1: One extends the solution U of (5.1.1), (5.1.2), con-
structed above, beyond Tω by solving a new Cauchy problem for (5.1.1) with ini-
tial data U(·,Tω), and iterates this process until reaching a maximal time inter-
val [0,T∞). The lifespan T∞ may be finite only if limsup

t→T∞
‖U(·, t)‖L∞ = ρ and/or

setting, and let k → ∞ . On the right-hand side of (5.1.44), the first two terms tend to
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t→T∞

unless (5.3.13) holds. Finally, (5.3.12) follows from U(·, t) ∈ C0([0,T∞];H�) and
(5.1.1). This completes the proof of the theorem.

Proof of Theorem 5.3.3. It will suffice to retrace the steps in the proof of Theorem
5.2.1, making the necessary adjustments.

The definitions (5.3.2) and (5.3.4) for h(U,Ū) and Zα(U,Ū) will remain intact.
However, so as to account for the assumption that η is now merely a contingent
entropy, the definition (5.3.3) for Yα(U,Ū) must be replaced by

(5.3.50)
Yα(U,Ū) = Qα(U)−Qα(Ū)−Dη(Ū)[Gα(U)−Gα(Ū)]−Ξ(Ū)�Mα [U −Ū ].

As a result of this change, in the place of (5.2.6) we now have

(5.3.51)
∫ T

0

∫
Rm

[∂tψh(U,Ū)+
m

∑
α=1

∂αψYα(U,Ū)]dxdt

+
∫
Rm
ψ(x,0)h(U0(x),Ū0(x))dx ≥−

∫ T

0

∫
Rm
∂tψDη(Ū)[U −Ū ]dxdt

−
∫ T

0

∫
Rm

m

∑
α=1

∂αψ{Dη(Ū)[Gα(U)−Gα(Ū)]+Ξ(Ū)�Mα [U −Ū ]}dxdt.

Equation (5.2.7) is still in force, but (5.2.8) must be modified to reflect the sym-
metry of the new Jα(U), defined by (5.3.10). Taking into account that Ū satisfies the
involution (5.3.2), we get

(5.3.52) ∂tDη(Ū) = ∂tŪ�A(Ū) =−
m

∑
α=1

∂αŪ�DGα(Ū)�A(Ū)

=−
m

∑
α=1

∂αŪ�Jα(Ū)� =−
m

∑
α=1

∂αŪ�Jα(Ū)

=−
m

∑
α=1

∂αŪ�A(Ū)DGα(Ū)−
m

∑
α=1

∂αΞ(Ū)�Mα .

Combining (5.3.51) with (5.2.7) and (5.3.52), and using that U −Ū satisfies the
involution (5.3.2), we conclude that (5.2.10) is still in force in the present setting. We
fix any point σ ∈ (0,T ) of L∞ weak∗ continuity of η(U(·, t)) and ε positive small,
and apply (5.2.10) for the test function ψ(x, t) = χ(x)ω(t), where ω is defined by
(5.2.11) and χ is any C∞

0 (R
m) function such that χ(x) = 1 for all x with |x| < ε−1.

Letting ε → 0, we deduce

limsup‖U(·, t)‖� = ∞ . On account of (5.3.46), ‖U(·, t)‖� cannot become unbounded
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(5.3.53)
∫
Rm

h(U(x,σ),Ū(x,σ))dx

≤
∫
Rm

h(U0(x),Ū0(x))dx−
∫ σ

0

∫
Rm

m

∑
α=1

∂αŪ�Zα(U,Ū)dxdt.

By virtue of (5.2.2),

(5.3.54) h(U,Ū) =
1
2
(U −Ū)�H(U,Ū)(U −Ū),

where

(5.3.55) H(U,Ū) = 2
∫ 1

0

∫ z

0
A(sU +(1− s)Ū)dsdz.

On account of (5.3.11),

(5.3.56) X�H(U,Ū)X ≥ 2μ|X |2, X ∈ C , U ∈ Bρ , Ū ∈ Bρ .

Since Ū is Lipschitz, when (5.3.14) holds with κ sufficiently small there is ε > 0
such that |x− y|< 2ε implies

(5.3.57) |H(U(x, t),Ū(x, t))−H(U(y, t),Ū(y, t))|< 1
2
μ,

for all t ∈ [0,T ). Furthermore, in view of the prescribed behavior of U(x, t) and

Ω0 = {z ∈ Rm : |z| > α}, for large α . Let us fix some covering of the compact set
Ω c

0 by balls Ω1, . . . ,ΩK of radius ε . Then, for any fixed t ∈ [0,T ), Ω0,Ω1, . . . ,ΩK
provide a covering of Rm which meets the conditions laid down in Lemma 5.3.4,
with H(U(·, t),Ū(·, t)) in the role of P(·). Hence

(5.3.58)∫
Rm

h(U(x,σ),Ū(x,σ))dx ≥ 1
2
μ‖U(·,σ)−Ū(·,σ)‖2

0 −
1
2
δ‖U(·,σ)−Ū(·,σ)‖2

−1 .

From

(5.3.59)

U(·,σ)−Ū(·,σ) =U0(·)−Ū0(·)−
m

∑
α=1

∂α
∫ σ

0
[Gα(U(·, t))−G(Ū(·, t))]dt,

it follows that

(5.3.60) ‖U(·,σ)−Ū(·,σ)‖−1 ≤ ‖U0(·)−Ū0(·)‖0 + c
∫ σ

0
‖U(·, t)−Ū(·, t)‖0dt.

Ū(x, t) as |x| → ∞ , (5.3.57) will also hold for all t ∈ [0,T ) and all x and y in the set
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Combining (5.3.53), (5.3.58), (5.3.60) and (5.2.4) we deduce that the function u
defined by u(t) = ‖U(·, t)−Ū(·, t)‖0 satisfies an integral inequality

(5.3.61) u(σ)≤ au(0)+b
∫ σ

0
u(t)dt,

for almost all σ ∈ [0,T ), with a depending solely on bounds of G,η and their deriva-
tives on Bρ , and b that also depends on T and on the Lipschitz constant of Ū .
Applying Gronwall’s inequality to (5.3.61), we arrive at (5.3.15). This completes the
proof.

It should be noted that in certain systems (5.1.1) of conservation laws relations
of the form (5.3.2), introduced through the initial data, may be preserved by (at
least classical) solutions even though the Mα are not induced by symmetry relations
(5.3.1). A case in point is the condition ω = curlv = 0 of irrotational flow which is
preserved by smooth solutions of the Euler equations (3.3.16) but breaks down after
discontinuities develop.

There are also systems of conservation laws equipped with involutions involv-
ing nonlinear functions of the state vector and its spatial derivatives. For example,
(2.2.12) and (2.2.13) may be regarded as nonlinear involutions for the system (3.3.19)
of isentropic elastodynamics. Furthermore, if one writes (3.3.19) in Eulerian coordi-
nates, then the linear involution (3.3.10) becomes nonlinear: Fjβ ∂ jFiα −Fjα ∂ jFiβ = 0
(with summation convention). However, the most celebrated example of a system
with nonlinear involutions is provided by the Einstein equations of general relativity.

Theorem 5.3.2, 5.3.3 and their proofs serve as confirmation that, from the stand-
point of analysis, the notion of contingent entropy is the natural extension of the
notion of entropy for systems of conservation laws endowed with involutions. Nev-
ertheless, in the applications of the above theorems to systems arising in continuum
physics, such as (3.3.19), η is an actual entropy. The importance of contingent en-
tropies that are not entropies will become clear in the following section.

The preconditions for applying Theorems 5.3.2 and 5.3.3 are not met by every
system with non-convex entropy and involutions encountered in physics. For exam-
ple, as noted above, in the system (3.3.66) of electrodynamics (with J = 0), endowed
with the involutions (3.3.67) (with ρ = 0), the involution cone is the entire state
space R6, on which the electromagnetic filed energy η fails to be convex. Even
when the conditions for applying these theorems are present, as in the case of the
system (3.3.19) of elastodynamics, it should be noted that, in comparison to Theo-
rem 5.2.1, Theorem 5.3.3 requires more and delivers less. In the following section we
will identify special structure, associated with the presence of contingent entropies
in certain systems encountered in continuum physics, that may remedy the above
shortcomings.
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5.4 Contingent Entropies and Polyconvexity

We consider here systems of conservation laws with involutions and a nonconvex
contingent entropy, as in the previous section, but also endowed with supplemen-
tary contingent entropies rendering existence and stability of solutions to the Cauchy
problem as strong as that inferred by Theorems 5.1.1 and 5.2.1.

The systems (3.3.19), of elastodynamics, and (3.3.66), of electrodynamics, will
serve as models. As noted in the previous section, (3.3.19) is endowed with the invo-
lution (3.3.10), the entropy η = ε(F)+ 1

2 |v|2 and ten contingent entropies, namely
detF and the nine entries of the adjugate matrix F∗. Similarly, (3.3.66) is equipped
with the involution (3.3.67), the electromagnetic field energy η(B,D) and three con-
tingent entropies, namely the components of the vector B∧D. Accordingly, through-
out this section we will be operating under the following

5.4.1 Assumptions. In the system of the conservation laws (5.1.1), the flux G satisfies
the symmetry condition (5.3.1), which induces the involution (5.3.2). The system is
endowed with the principal contingent entropy-entropy flux pair (η ,Q) and a family
of N supplementary contingent entropy-entropy flux pairs (W I ,XI), I = 1, . . . ,N.

As a contingent entropy pair, (η ,Q) must satisfy (5.3.9), for some k-vector-
valued function Ξ(U). Similarly, for I = 1, . . . ,N,

(5.4.1) DXI
α(U) = DW I(U)DGα(U)+Ω I(U)�Mα , α = 1, . . . ,m,

for some k-vector-valued function Ω I(U). It will be convenient to assemble the W I

into a N-vector W , the XI into a N ×m matrix X and the Ω I into a N × k matrix Ω ,
in which case (5.4.1) may be written as the matrix equation

(5.4.2) DXα(U) = DW (U)DGα(U)+Ω(U)�Mα , α = 1, . . . ,m.

Every component Ui of the state vector U may be regarded as an entropy, and
thereby as a contingent entropy, with associated flux the i-th row Gi of the ma-
trix G. For convenience, we embed these entropy pairs in the list of supplemen-
tary pairs recorded in the Assumption 5.4.1. Thus, we assume that N ≥ n and for
I = 1, . . . ,n, W I(U) =UI , XI

α(U) = GI
α(U) and Ω I(U) = 0.

The equation (5.3.8), together with

(5.4.3) ∂tW (U(x, t))+
m

∑
α=1

∂αXα(U(x, t)) = 0

must hold for any classical solution U of (5.1.1) that satisfies the involution (5.3.2).
On the other hand, admissible weak solutions U must satisfy the inequality (4.5.3)
for the principal contingent entropy-entropy flux pair (η ,Q). Typically, in systems
with involutions, such as (3.3.19) and (3.3.66), encountered in continuum physics,
the principal contingent entropy is an actual entropy.
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The objective of this section is to demonstrate that in the above setting the re-
quirement of convexity on the principal entropy may be relaxed into the following
weaker condition:

5.4.2 Definition. The principal contingent entropy η is called polyconvex, relative
to the contingent entropies W , if it admits a representation

(5.4.4) η(U) = θ(W (U)), U ∈ Bρ ,

where θ is a smooth function defined on an open neighborhood F of W (Bρ) in RN

whose Hessian matrix is positive definite on every W ∈ F .

In the example of elastodynamics, with W = (F,v,F∗,det F) arranged as a 22-
vector, the principal entropy η = ε(F)+ 1

2 |v|2 will be polyconvex when the internal
energy function ε(F) admits a representation

(5.4.5) ε(F) = θ(F,F∗,det F),

where θ(F,H,δ ) is a smooth function with positive definite Hessian on an open
neighborhood of the manifold {(F,H,δ ) : det F > 0, H = F∗, δ = det F}, embed-
ded in R19. This is a physically reasonable hypothesis which has been discussed
thoroughly in the literature, especially in the context of elastostatics. We have al-
ready encountered it in Section 4.5, where it was noted that it implies that ε(F) is
rank-one convex and thereby η is convex on the involution cone. However, as we
shall see here, the implications of polyconvexity on stability of solutions are much
stronger than the consequences of mere convexity on the involution cone, discussed
in the previous section.

The situation is similar with the system (3.3.66) of electrodynamics, in which
case W = (B,D,B∧D), arranged as a 9-vector. Polyconvexity is a natural condition
for the electromagnetic field energy η , which serves as principal entropy. Indeed, in
the Born-Infeld case (3.3.73), η is polyconvex.

We introduce the following notation for the function θ(W ) : θW I for the partial
derivative ∂θ/∂W I ; θW for the differential [θW 1 · · ·θW N ], treated as a 1× n matrix;
and θWW for the N ×N Hessian matrix.

For U ∈ Bρ we define the n×n matrices

(5.4.6) A(U) = D2η(U)−
N

∑
I=1

θWI(W (U))D2W I ,

(5.4.7) Jα(U) = A(U)DGα(U)+Γ (U)�Mα , α = 1, . . . ,m,

where

(5.4.8) Γ (U) = DΞ(U)−
N

∑
I=1

θWI(W (U))DΩ I(U).
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It is clear that A(U) is symmetric. As already noted in Section 5.3, (5.3.9) implies
that the matrices

(5.4.9) D2η(U)DGα(U)+DΞ(U)�Mα , α = 1, . . . ,m,

are symmetric. Similarly, (5.4.1) implies that the matrices

(5.4.10)

are also symmetric. It thus follows that the matrices Jα(U), for α = 1, . . . ,m, are
symmetric.

From (5.4.5) and (5.4.6),

(5.4.11) A(U) = DW (U)�θWW (W (U))DW (U),

so that if η is polyconvex then A(U) is positive definite.
The following proposition establishes the local existence of classical solutions to

the Cauchy problem for systems with polyconvex entropy.

5.4.3 Theorem. Let the hyperbolic system (5.1.1) of conservation laws satisfy the
Assumptions 5.4.1, with a principal contingent entropy η that is polyconvex (5.4.4).
Suppose the initial data U0 lie in H� , for some � > m

2 +1, take values in a ball Bρ0
with radius ρ0 < ρ , and satisfy the involution (5.3.2). Then there exist T∞ ≤ ∞ and
a unique continuously differentiable function U on Rm × [0,T∞), taking values in
Bρ , which is a classical solution to the Cauchy problem (5.1.1), (5.1.2) on the time
interval [0,T∞). Furthermore,

(5.4.12) U(·, t) ∈
�⋂

k=0

Ck([0,T∞);H�−k).

The interval [0,T∞) is maximal in that if T∞ < ∞, then

(5.4.13)
∫ T∞

0
|||∇U(·, t)|||L∞dt = ∞ ,

and/or limsup
t→T∞

‖U(·, t)‖L∞ = ρ .

Proof. Following the vanishing viscosity approach, we construct the solution to
(5.1.1), (5.1.2) as the ε → 0 limit of solutions to (5.1.8), (5.1.2), by retracing the
steps in the proof of Theorem 5.1.1, through the Lemmas 5.1.2, 5.1.3 and 5.1.4.
In fact, the notation here has been designed so that, upon substituting (5.4.6) and
(5.4.7) for (5.1.3) and (5.1.4) as definitions of A(U) and Jα(U), one may transfer
virtually verbatim the text and the equations from Section 5.1 to the present setting.
The straightforward verification is left to the reader.

We now turn to the question of uniqueness and stability of classical solutions
within a class of weak solutions that will be dubbed mild.

D2W I(U)DGα(U)+DΩ I(U)�Mα , α = 1, . . . ,m
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5.4.4 Definition. A measurable function U , defined on Rm× [0,T ) and taking values
in Bρ , is a mild solution to (5.1.1), (5.1.2) if

(5.4.14)∫ T

0

∫
Rm

[∂tV�W (U)+
m

∑
α=1

∂αV�Xα(U)]dxdt +
∫
Rm

V�(x,0)W (U0(x))dx = 0

holds for all Lipschitz N-vector-valued test functions V , with compact support in
Rm × [0,T ).

Notice that (5.4.14) holds when U satisfies (5.4.3), in the sense of distributions,
together with the initial condition W (U(·, t)) → W (U0(·)) in L∞ weak∗, as t → 0.
In particular, any mild solution of (5.1.1), (5.1.2) is a weak solution, since (5.1.1)
is embedded in (5.4.3). Clearly, any classical solution of (5.1.1), (5.1.2) is a mild
solution, because (5.4.3) and the initial conditions are automatically satisfied in that
case. However, it comes as a surprise that in the applications one often encounters
even discontinuous mild solutions. For example, any weak solution (F,v) of the sys-
tem (3.3.19) of isentropic elastodynamics is mild. Indeed, as we saw in Section 2.3,
(3.3.11) and (3.3.12) hold for any L∞ fields that satisfy (3.3.19)1 and the involution
(3.3.10). Moreover, as noted in Section 4.5, null Lagrangians (2.2.9) are continuous
functions in L∞ weak∗, and hence F(·, t) → F0(·), in L∞ weak∗, as t → 0, implies
F∗(·, t) → F∗

0 (·) and det F(·, t) → det F0(·), in L∞ weak∗, as t → 0. Similarly, BV
weak solutions (B,D) of the system (3.3.66) of electrodynamics, with Born-Infeld
constitutive relations (3.3.73) and involutions (3.3.67), are necessarily mild solu-
tions, because all shocks satisfy (3.3.80). Thus, (3.3.74) will hold for such solutions.
Moreover, in the BV setting there is sufficient regularity so that B(·, t)→ B0(·) and
D(·, t)→ D0(·), as t → 0, implies B(·, t)∧D(·, t)→ B0(·)∧D0(·), as t → 0.

A mild solution U will be admissible if it is admissible as a weak solution, i.e.,
if (4.5.3) is satisfied for the principal contingent entropy-entropy flux pair. In par-
ticular, any BV solution of (3.3.66), under the Born-Infeld constitutive relation, is
admissible, because shocks do not incur energy production. Of course, this is not the
case with the system (3.3.19) of elastodynamics.

The following proposition is the analog of Theorem 5.2.1:

5.4.5 Theorem. Let the hyperbolic system (5.1.1) of conservation laws satisfy the
Assumptions 5.4.1, with a principal contingent entropy η that is polyconvex (5.4.4).
Suppose Ū is a classical solution of (5.1.1) on [0,T ), taking values in Bρ , with initial
data Ū0 satisfying the involution (5.3.2). Let U be any admissible mild solution of
(5.1.1) on [0,T ), taking values in Bρ , with initial data U0 satisfying the involution
(5.3.2). Then

(5.4.15)
∫
|x|<r

|U(x, t)−Ū(x, t)|2dx ≤ aebt
∫
|x|<r+st

|U0(x)−Ū0(x)|2dx

holds for any r > 0 and t ∈ [0,T ), with positive constants s,a, depending solely
on bounds of G,η ,Q and their derivatives on Bρ , and b that also depends on the
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Lipschitz constant of Ū . In particular, Ū is the unique admissible mild solution of
(5.1.1) with initial data Ū0.

Proof. We retrace the steps in the proof of Theorem 5.2.1, with the needed modifi-
cations. On Bρ ×Bρ we define

(5.4.16) h(U,Ū) = η(U)−η(Ū)−θW (W (Ū))[W (U)−W (Ū)],

(5.4.17) Yα(U,Ū) = Qα(U)−Qα(Ū)−θW (W (Ū))[Xα(U)−Xα(Ū)]

+[θW (W (Ū))Ω(Ū)�−Ξ(Ū)�]Mα [U −Ū ],

(5.4.18) Zα(U,Ū) =−DGα(Ū)�DW (Ū)�θWW (W (Ū))[W (U)−W (Ū)]

+DW (Ū)�θWW (W (Ū))[Xα(U)−Xα(Ū)]

−DW (Ū)�θWW (W (Ū))Ω(Ū)�Mα [U −Ū ]

+Γ (Ū)�Mα [U −Ū ],

where Γ is given by (5.4.8).
Recalling Definition 5.4.2, we see that h(U,Ū) is of quadratic order in U −Ū and

positive definite. Upon using (5.3.9), (5.4.2) and (5.4.4), we deduce

(5.4.19) DYα(U,Ū) = [θW (W (U))−θW (W (Ū))]DW (U)DGα(U)

+[Ξ(U)−Ξ(Ū)]�Mα−θW (W (Ū))[Ω(U)−Ω(Ū)]�Mα ,

which vanishes at U = Ū , so that Y (U,Ū) is also of quadratic order in U − Ū . In
particular, for s large, (5.2.5) holds.

Turning to Z(U,Ū), and by virtue of (5.4.2),

(5.4.20) DZα(U,Ū) =−DGα(Ū)�DW (Ū)�θWW (W (Ū))DW (U)

+DW (Ū)�θWW (W (Ū))DW (U)DGα(U)

+DW (Ū)�θWW (W (Ū))[Ω(U)−Ω(Ū)]�Mα

+Γ (Ū)�Mα .
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Recalling (5.4.6), (5.4.7) and since Jα is symmetric, we conclude that

(5.4.21)
DZα(Ū ,Ū) =−DGα(Ū)�A(Ū)+A(Ū)DGα(Ū)+Γ (Ū)�Mα = M�

α Γ (Ū).

As in the proof of Theorem 5.2.1, we fix a nonnegative, Lipschitz continuous test
function ψ with compact support in Rm × [0,T ), and evaluate h,Y and Z along the
two solutions U(x, t) and Ū(x, t). As an admissible weak solution, U must satisfy
the inequality (4.5.3), while Ū being a classical solution, will satisfy (4.5.3) as an
equality. We thus deduce

(5.4.22)∫ T

0

∫
Rm

[∂tψ h(U,Ū)+
m

∑
α=1

∂αψYα(U,Ū)]dxdt +
∫
Rm
ψ(x,0)h(U0(x),Ū0(x))dx

≥ −
∫ T

0

∫
Rm

{
∂tψ θW (W (Ū))[W (U)−W (Ū)]

+
m

∑
α=1

∂αψ{θW (W (Ū))[Xα(U)−Xα(Ū)]

−[θW (W (Ū))Ω(Ū)�−Ξ(Ū)�]Mα [U −Ū ]}
}

dxdt

−
∫
Rm
ψ(x,0)θW (W (Ū0(x)))[W (U0(x))−W (Ū0(x))]dx.

Next we write (5.4.14) for both U and Ū , with test function V T = ψθW (W (Ū)).
This yields

(5.4.23)
∫ T

0

∫
Rm

{
∂t [ψθW (W (Ū))][W (U)−W (Ū)]

+
m

∑
α=1

∂α [ψθW (W (Ū))][Xα(U)−Xα(Ū)]

}
dxdt

+
∫
Rm
ψ(x,0)θW (W (Ū0(x)))[W (U0(x))−W (Ū0(x))]dx = 0.

Furthermore, since both U and Ū satisfy the involution (5.3.2),

(5.4.24)
∫ T

0

∫
Rm

m

∑
α=1

∂α
{
ψ[θW (W (Ū))Ω(Ū)�−Ξ(Ū)�]

}
Mα [U −Ū ]dxdt = 0.

By virtue of (5.4.2) and ∑Mα∂αŪ = 0,
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(5.4.25) ∂tθW (W (Ū)) = ∂tW (Ū)�θWW (W (Ū))

=
m

∑
α=1

∂αXα(Ū)�θWW (W (Ū))

=−
m

∑
α=1

∂αŪ�DXα(Ū)�θWW (W (Ū))

=−
m

∑
α=1

∂αŪ�[DW (Ū)DGα(Ū)+Ω(Ū)�Mα ]
�θWW (W (Ū))

=−
m

∑
α=1

∂αŪ�DGα(Ū)�DW (Ū)�θWW (W (Ū)).

Similarly,

(5.4.26) ∂αθW (W (Ū)) = ∂αŪ�DW (Ū)�θWW (W (Ū)),

(5.4.27) ∂α [θW (W (Ū))Ω(Ū)�−Ξ(Ū)�]

∂αŪ�DW (Ū)�θWW (W (Ū))Ω(Ū)�−∂αŪ�Γ (Ū)�.

Therefore, recalling (5.4.18),

(5.4.28) ∂tθW (W (Ū))[W (U)−W (Ū)]+
m

∑
α=1

∂αθW (W (Ū))[Xα(U)−Xα(Ū)]

−
m

∑
α=1

∂α [θW (W (Ū))Ω(Ū)�−Ξ(Ū)�]Mα [U −Ū ] =
m

∑
α=1

∂αŪ�Zα(U,Ū).

On account of (5.4.21),

(5.4.29)
m

∑
α=1

∂αŪ�DZα(Ū ,Ū) =

[ m

∑
α=1

Mα∂αŪ
]�
Γ (Ū) = 0.

Consequently, the right-hand side of (5.4.28) is of quadratic order in U −Ū .
By combining (5.4.22), (5.4.23), (5.4.24) and (5.4.28), we recover (5.2.10). The

remainder of the proof follows along the lines of the proof of Theorem 5.2.1: depart-
ing from (5.2.10) and fixing any t ∈ (0,T ), we derive (5.2.13), for σ ∈ (0, t), and
then (5.2.12), for any σ of L∞ weak∗ continuity of η(U(·,τ)). This in turn yields
(5.2.14), for u defined by (5.2.15), and thereby (5.4.15). The proof is complete.

In particular, Theorems 5.4.3 and 5.4.5 apply to the class of systems of con-
servation laws that are endowed with an involution and are equipped with a convex
contingent entropy η(U) (just take W (U)≡U). One may attempt to reduce the more
general class of systems endowed with an involution and equipped with a polycon-
vex contingent entropy to the above special class by means of the following proce-
dure. Assume that the system (5.1.1) is endowed with the involution (5.3.2) and is



5.4 Contingent Entropies and Polyconvexity 145

equipped with a principal contingent entropy-entropy flux pair (η(U),Q(U)) which
is polyconvex (5.4.4), relative to the contingent entropies W . We seek functions S(Ψ)
and Π(Ψ), defined on RN and taking values in MN×m and M1×m, respectively, such
that

(5.4.30) S(W (U)) =W (U), Π(W (U)) = Q(U)

and, in addition, (θ(Ψ), Π(Ψ)) is a (generally contingent) entropy-entropy flux pair
for the extended system

(5.4.31) ∂tΨ(x, t)+divS(Ψ(x, t)) = 0.

When functions satisfying the above specifications can be found, one may construct
solutions to the Cauchy problem (5.1.1), (5.1.2) by first solving (5.4.31) with initial
conditions

(5.4.32) Ψ(x,0) =W (U0(x)),

and then getting U from the equation W (U) =Ψ . The merit of this approach lies in
that (5.4.31) is now equipped with a convex (possibly contingent) entropy θ .

The above program has been implemented successfully for the systems of elas-
todynamics and electrodynamics.

In elastodynamics, U = (F,v)�,Ψ = (F,v,Θ ,ω)� , σ = σ(F,Θ ,ω), the ex-
tended system reads

(5.4.33)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tFiα −∂αvi = 0, α = 1,2,3; i = 1,2,3

∂tvi −∂α
(
∂σ
∂Fiα

+
∂σ
∂Θβ j

∂F∗
β j

∂Fıα
+
∂σ
∂ω

∂ det F
∂Fiα

)
= 0, i = 1,2,3

∂tΘβ i −∂α
( ∂F∗

β i

∂Fjα
v j

)
= 0, β = 1,2,3; i = 1,2,3

∂tω−∂α
(
∂ det F
∂Fjα

v j

)
= 0,

and the entropy-entropy flux pair is

(5.4.34) θ = 1
2 |v|2 +σ(F,Θ ,ω),

(5.4.35) Πα =−
(
∂σ
∂Fiα

+
∂σ
∂Θβ j

∂F∗
β j

∂Fiα
+
∂σ
∂ω

∂ det F
∂Fiα

)
vi .

On the “manifold” Ψ = W (U) = (F,v,F∗,det F)�, (5.4.33) reduces to the system
(3.3.19) (with b= 0) together with the kinematic conservation laws (3.3.11), (3.3.12),
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while (θ ,Π) reduces to the classical entropy-entropy flux pair recorded in Section
3.3.3.

In electrodynamics, for the Born-Infeld constitutive relations, where U =(B,D)�,
Ψ = (B,D,P)�, the extended system reads

(5.4.36)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tB+ curl[θ−1(D+B∧P)] = 0

∂tD− curl[θ−1(B−D∧P)] = 0

∂tP−div[θ−1(I +BB�+DD�−PP�)] = 0,

and the entropy-entropy flux pair is

(5.4.37) θ = (1+ |B|2 + |D|2 + |P|2) 1
2 ,

(5.4.38) Π = P−θ−2[P−DλB− (D ·P)D− (B ·P)B].
Again, on the “manifold”Ψ =W (U) = (B,D,D∧B)� (5.4.36) reduces to Maxwell’s
equations (3.3.66) (with J = 0), together with the supplementary conservation law
(3.3.74), while (θ ,Π) reduces to the entropy-entropy flux pair (η ,Q) recored in
(3.3.73).

5.5 The Role of Damping and Relaxation

This section discuss the Cauchy problem

(5.5.1) ∂tU(x, t)+
m

∑
α=1

∂αGα(U(x, t))+P(U(x, t)) = 0, x ∈ Rm, t > 0,

(5.5.2) U(x,0) =U0(x), x ∈ Rm,

for a homogeneous system of balance laws endowed with a convex entropy. As in
the previous sections of this chapter, the flux G, source P, entropy η and associated
entropy flux Q are smooth functions defined on a closed ball Bρ in Rn, centered at
the origin.

We assume P(0) = 0, so U = 0 is an equilibrium state for (5.5.1). Furthermore,
as in (4.1.6), (4.1.7), we normalize the entropy by η(0) = 0, Q(0) = 0, Dη(0) = 0,
and DQ(0) = 0. The source is a lower order term in (5.5.1). Consequently, a straight-
forward adaptation of the analysis from Section 5.1 yields the following extension of
Theorem 5.1.1:

5.5.1 Theorem. Assume A(U), defined by (5.1.3), is positive definite for any U ∈Bρ .
Suppose the initial data U0 lie in H� , for some � > m

2 + 1, and take values in a ball
U ∈ Bρ0 , with radius ρ0 < ρ . Then there exist T∞ ≤ ∞ and a unique continuously
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differentiable function U on Rm × [0,T∞), taking values in Bρ , which is a classical
solution to the Cauchy problem (5.5.1), (5.5.2) on the time interval [0,T∞). Further-
more,

(5.5.3) U(·, t) ∈
�⋂

k=0

Ck([0,T∞);H�−k).

The interval [0,T∞) is maximal in that if T∞ < ∞

(5.5.4)
∫ T∞

0
|||∇U(·, t)|||L∞ dt = ∞

and/or limsup
t→T∞

‖U(·, t)‖L∞ = ρ.

The aim here is to identity conditions on the source and the initial data that would
render the solution to the Cauchy problem (5.5.1), (5.5.2) global in time, i.e., T∞ =∞ .
The simple example (4.2.2), discussed in Section 4.2, raises the expectation that this
may be achieved when the source exerts a damping effect and the initial data take
values close to the equilibrium state.

Classical solutions of (5.5.1) satisfy the extra balance law

(5.5.5) ∂tη(U(x, t))+
m

∑
α=1

∂αQα(U(x, t))+Dη(U(x, t))P(U(x, t)) = 0.

We shall call the source dissipative if it incurs a nonnegative entropy production:

(5.5.6) Dη(U)P(U)≥ 0, U ∈ Bρ .

We proceed to estimate the effect of the presence of a dissipative source. We fix
initial data U0 in H�+1 , for � > m

2 + 1, and consider the solution U to the Cauchy
problem (5.5.1), (5.5.2), on the maximal time interval [0,T∞).

The first step is to integrate (5.5.5) over Rm × [0, t], t ∈ [0,T∞), which yields

(5.5.7)
∫
Rm
η(U(x, t))dx+

∫ t

0

∫
Rm

Dη(U)P(U)dxdτ =
∫
Rm
η(U0(x))dx.

Next we fix any multi-index r, of order 1 ≤ |r| ≤ �, set Ur = ∂ rU,U0r = ∂ rU0
and apply ∂ r to (5.5.1) to get

(5.5.8) ∂tUr +
m

∑
α=1

DGα(U)∂αUr +DP(U)Ur = DP(U)Ur −∂ rP(U)

+
m

∑
α=1

{DGα(U)∂αUr −∂ r[DGα(U)∂αU ]},

which holds in H0 , for any t ∈ [0,T∞).

, then
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We multiply (5.5.8) by 2U�
r A(U) and then integrate the resulting equation over

Rm × [0, t], t ∈ [0,T∞). After an integration by parts, using (5.1.29), (5.1.30) for
ε = 0, and (5.1.31), we deduce

(5.5.9)
∫
Rm

U�
r (x, t)A(U(x, t))Ur(x, t)dx+2

∫ t

0

∫
Rm

U�
r A(0)DP(0)Ur dxdτ

=
∫
Rm

U�
0r(x)A(U0(x))U0r(x)dx

+
∫ t

0

∫
Rm

m

∑
α=1

U�
r [∂αJα(U)−DA(U)∂αGα(U)]Ur dxdτ

+
∫ t

0

∫
Rm

m

∑
α=1

2U�
r A(U){DGα(U)∂αUr −∂ r[DGα(U)∂αU ]}dxdτ

+
∫ t

0

∫
Rm

2U�
r A(U)[DP(U)Ur −∂ rP(U)]dxdτ

−
∫ t

0

∫
Rm

2U�
r [A(U)DP(U)−A(0)DP(0)]Ur dxdτ.

We sum (5.5.9) over all r with 1 ≤ |r| ≤ �, and combine the resulting equation with
(5.5.7). We use that A(U) is positive definite and estimate the right-hand side with
the help of (5.1.27) and the similar bound

(5.5.10) ‖DP(U)Ur −∂ rP(U)‖0 ≤ c|||∇U |||L∞ |||∇U |||�−2 .

We thus end up with the estimate

(5.5.11) μ‖U(·, t)‖2
� +2 ∑

1≤|r|≤�

∫ t

0

∫
Rm

U�
r A(0)DP(0)Ur dxdτ

≤ c‖U0(·)‖2
� + c

∫ t

0
[‖U‖L∞ + |||∇U |||L∞ ]|||∇U |||2�−1dτ,

where μ > 0.
In the above estimate, it is the second term on the right-hand side that may be

responsible for the growing, and eventual blowing up, of ‖U(·, t)‖� . This, however,
may be offset by the second term on the left-hand side, which manifests the damping
action of the dissipative source. Indeed, this term is nonnegative since the matrix
A(0)DP(0) is at least positive semidefinite, by virtue of (5.5.6). In fact, the damping
definitely prevails when ‖U0‖� is small and the source is dissipative definite in the
sense

(5.5.12) Dη(U)P(U)≥ a|U |2, U ∈ Bρ ,

with a > 0. Indeed, (5.5.12) implies that the matrix A(0)DP(0) is positive definite,
and hence
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(5.5.13) ∑
1≤|r|≤�

∫ t

0

∫
Rm

U�
r A(0)DP(0)Urdxdτ ≥ a

∫ t

0
|||∇U |||2�−1dτ.

It is now clear that ‖U(·,τ)‖L∞ and |||∇U(·,τ)|||L∞ small on the interval [0, t] im-
ply ‖U(·, t)‖� ≤ c‖U0(·)‖� , and this last inequality, with ‖U0(·)‖� small, implies
in turn that ‖U(·, t)‖L∞ and |||∇U(·,τ)|||L∞ are small. It thus follows that when the
source is dissipative definite (5.5.12), ‖U0(·)‖� small renders ‖U(·, t)‖� , and thereby
|||∇U(·,τ)|||L∞ , uniformly bounded on [0,T∞), whence T∞ = ∞, by virtue of (5.5.4).

Recall that the identity (5.5.9), and thereby the estimate (5.5.11), were derived
under the assumption U0 ∈ H�+1 . Nevertheless, the size of ‖U0‖�+1 does not enter
in the final estimate ‖U(·, t)‖� ≤ c‖U0(·)‖� . Therefore, by completion of H�+1 in H�

and on account of the weak lower semicontinuity property of norms, we conclude
that under the assumption (5.5.12), we have T∞ = ∞ even when U0 is merely in H� ,
with ‖U0‖� sufficiently small.

For the balance laws arising in the applications, dissipative sources are ubiqui-
tous, but it is only on rare occasions that they may turn out to be dissipative definite.
Indeed, systems (5.5.1) encountered in physics commonly result from the coupling
of conservation laws with balance laws, and thereby appear in the special form

(5.5.14)

⎧⎨⎩ ∂tV +∑m
α=1 ∂αFα(V,W ) = 0

∂tW +∑m
α=1 ∂αHα(V,W )+Π(V,W ) = 0.

An illustrative example is provided by the system governing isentropic gas flow
through a porous medium, namely (3.3.6) with body force −v:

(5.5.15)

⎧⎨⎩ ∂tρ+div(ρv�) = 0

∂t(ρv)+div(ρvv�)+grad p(ρ)+ρv = 0.

It is now clear that a source in a system of the form (5.5.14) can only be partially
dissipative and at best it may satisfy

(5.5.16) Dη(U)P(U)≥ a|P(U)|2, U ∈ Bρ ,

with a > 0. When (5.5.16) holds, we shall term the source dissipative semidefinite.
When (5.5.16) replaces (5.5.12), one may no longer rely on (5.5.11) alone, for

bounding ‖U(·, t)‖� on [0,T∞), but needs supplementary estimates, manifesting the
synergy between source and flux. Such estimates are in force on condition that the
system

(5.5.17) ∂tV +
m

∑
α=1

DGα(0)∂αV +DP(0)V = 0,

resulting from linearization of (5.5.1) about the equilibrium state U = 0, does not
admit traveling wave front solutions



150 V Entropy and the Stability of Classical Solutions

(5.5.18) V (x, t) = ϕ(x ·ν−λi(ν;0)t)R j(ν;0),

which are not attenuated by entropy dissipation. Equivalently, the above requirement
is expressed by the Kawashima condition

(5.5.19) DP(0)Ri(ν ;0) �= 0, ν ∈ Sm−1, i = 1, . . . ,n.

As shown in the references cited in Section 5.7, (5.5.19) implies that, for any
ν ∈ Sm−1, there exists a n×n skew symmetric matrix K(ν) that renders the matrix

(5.5.20) M(ν) = K(ν)Λ(ν ;0)+A(0)DP(0)

positive definite. This has the following important implications:

5.5.2 Lemma. Assume that the source is dissipative semidefinite (5.5.16), and the
matrices M(ν), defined by (5.5.20), with K(ν) skew-symmetric, are positive definite
for all ν ∈ Sm−1. Let V ∈C([0,T ];H1) be a solution to the linear system

(5.5.21) ∂tV +
m

∑
α=1

DGα(0)∂αV +κ DP(0)V = Z,

on the time interval [0,T ], for some Z ∈ L2([0,T ];H0). Then, for any t ∈ [0,T ],

(5.5.22)
∫ t

0

∫
Rm

|∇V |2dxdτ ≤ c
∫ t

0

∫
Rm

∇V�A(0)DP(0)∇V dxdτ

+c|κ|
∫ t

0

∫
Rm

V�A(0)DP(0)V dxdτ

+c‖V (·, t)‖2
1 + c‖V (·,0)‖2

1 + c
∫ t

0

∫
Rm

|Z|2dxdτ.

Proof. We introduce the Fourier transform V (x, t) �→ V̂ (ξ , t) of V with respect to the
spatial variable. Applying the Fourier transform to the system (5.5.21) and setting
ξ = |ξ |ν , with ν ∈ Sm−1, we obtain the equation

(5.5.23) ∂tV̂ (ξ , t)+ i|ξ |Λ(ν ;0)V̂ (ξ , t)+κDP(0)V̂ (ξ , t) = Ẑ(ξ , t).

We now multiply (5.5.23) by i|ξ |V̂ ∗(ξ , t)K(ν). Since iK(ν) is Hermitian, and
upon using (5.5.20), we deduce

(5.5.24)
1
2
∂t [i|ξ |V̂ ∗K(ν)V̂ ]−|ξ |2V̂ ∗M(ν)V̂ + |ξ |2V̂ ∗A(0)DP(0)V̂

−iκ|ξ |V̂ ∗K(ν)DP(0)V̂ = i|ξ |V̂ ∗K(ν)Ẑ.

By (5.5.16), both matrices A(0)DP(0) and A(0)DP(0)−aDP(0)�DP(0) are positive
semidefinite. It follows that the eigenspace of the symmetric part of A(0)DP(0),
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associated with the zero eigenvalue, coincides with the kernel of the matrix DP(0).
Hence

(5.5.25) |DP(0)V̂ |2 ≤ cRe[V̂ ∗A(0)DP(0)V̂ ].

We now integrate the real part of (5.5.24) over Rm × [0, t]. Upon using that
M(ν) is positive definite, together with Parseval’s relation, (5.5.25) and the Cauchy-
Schwarz inequality, we arrive at (5.5.22). This completes the proof.

We have now laid the groundwork for establishing the existence of global clas-
sical solution to the Cauchy problem (5.5.1), (5.5.2), under the assumption that the
source is dissipative semidefinite and it satisfies the Kawashima condition (5.5.19).

5.5.3 Theorem. Assume A(U) is positive definite, the source is dissipative semidefi-
nite (5.5.16), and the matrices M(ν), defined by (5.5.20), with K(ν) skew-symmetric,

ball Bρ0 , with radius ρ0 < ρ , lie in H� , for some � > m
2 +1, and ‖U0‖� is sufficiently

small, then the Cauchy problem (5.5.1), (5.5.2) admits a global classical solution U ,
on the time interval [0,∞).

Proof. We write (5.5.1) as

(5.5.26) ∂tU +
m

∑
α=1

DGα(0)∂αU =−
m

∑
α=1

[DGα(U)−DGα(0)]∂αU −P(U),

which is in the form (5.5.21), for κ = 0. By virtue of (5.5.5) and (5.5.16),

(5.5.27)
∫ t

0

∫
Rm

|P(U)|2dxdτ ≤ c
∫
Rm

|U0(x)|2dx.

Therefore, by (5.5.22), with κ = 0,

(5.5.28)
∫ t

0

∫
Rm

|∇U |2dxdτ ≤ c
∫ t

0

∫
Rm

∇U�A(0)DP(0)∇Udxdτ

+c‖U(·, t)‖2
1 + c‖U0(·)‖2

1 + c
∫ t

0
‖U‖L∞ |||∇U |||20dτ.

Next we fix any multi-index r of order 1 ≤ |r| ≤ �−1 and write (5.5.8) as

(5.5.29) ∂tUr +
m

∑
α=1

DGα(0)∂αUr +DP(0)Ur =−
m

∑
α=1

[DGα(U)−DGα(0)]∂αUr

−[DP(U)−DP(0)]Ur +DP(U)Ur −∂ rP(U)

+
m

∑
α=1

{DGα(U)∂αUr −∂ r[DGα(U)∂αU ]},

in the form (5.5.21), with κ = 1. Therefore, on account of (5.5.22), (5.1.27) and
(5.5.10),

are positive definite, for all ν ∈ Sm−1. When the initial data U0 , taking values in a
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(5.5.30)
∫ t

0

∫
Rm

|∇Ur|2dxdτ ≤ c
∫ t

0

∫
Rm

∇U�
r A(0)DP(0)∇Ur dxdτ

+c
∫ t

0

∫
Rm

U�
r A(0)DP(0)Ur dxdτ+ c‖U(·, t)‖2

� + c‖U0(·)‖2
�

+c
∫ t

0
[‖U‖2

L∞ + |||∇U |||2L∞ ]|||∇U |||2�−1dτ.

We sum (5.5.30) over all r, with 1 ≤ |r| ≤ �−1, and combine the result with (5.5.28)
to get

(5.5.31)
∫ t

0
|||∇U |||2�−1dτ ≤ c ∑

1≤|r|≤�

∫ t

0

∫
Rm

U�
r A(0)DP(0)Ur dxdτ

+c‖U(·, t)‖2
� + c‖U0(·)‖2

� + c
∫ t

0
[‖U‖L∞ + |||∇U |||L∞ ]|||∇U |||2�−1dτ.

Next we multiply (5.5.11) by a large positive number and add the resulting in-
equality to (5.5.31). This yields the following estimate:

(5.5.32) ‖U(·, t)‖2
� +

∫ t

0
|||∇U |||2�−1dτ

≤ c‖U0(·)‖2
� + c

∫ t

0
[‖U‖L∞ +‖U‖2

L∞ + |||∇U |||L∞ + |||∇U |||2L∞ ]|||∇U |||2�−1dτ.

We are now back in the situation we were before: As long as ‖U(·,τ)‖L∞ and
|||∇U(·,τ)|||L∞ stay small for τ ∈ [0, t], (5.5.32) yields ‖U(·, t)‖� ≤ c‖U0(·)‖� . In
return, this last inequality, with ‖U0(·)‖� small, keeps ‖U(·, t)‖� , and thereby also
‖U(·, t)‖L∞ and |||∇U(·, t)|||L∞ , small. We thus conclude that if ‖U0(·)‖� is suffi-
ciently small, then |||∇U(·, t)|||L∞ stays bounded, uniformly on [0,T∞), in which case,
by (5.5.4), T∞ = ∞ and the classical solution U to (5.5.1), (5.5.2) is global. This
completes the proof.

In the literature cited in Section 5.7, the reader will find alternative, often tech-
nical, treatments of the Cauchy problem, under slightly different hypotheses and/or
in different function spaces. There is also extensive bibliography on the long time
behavior of classical solutions. Clearly, (5.5.7) indicates that solutions must tend
to “equilibrium”, where the entropy production vanishes. The asymptotic behavior
of solutions has been established either by use of “energy” type estimates in time-
weighted Sobolev spaces, or by treating (5.5.1) as a perturbation of its linearized
form (5.5.17). The large time behavior of solutions of the latter system, in various
Lp spaces, can be determined quite precisely with the help of its Green function.
Because of the synergy between dissipation and dispersion, the rate of decay of solu-
tions to equilibrium in Lp depends on the value of p. Out of a host of very technical
theorems, we record below one of the simplest:
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5.5.4 Theorem. Consider the Cauchy problem (5.5.1), (5.5.2) in Rm, for m ≥ 2,
assuming that the system has the following properties:
(a) An entropy η(U) exists and A(U) is positive definite.
(b) If E denotes the set of zeros of the source P and M is the orthogonal complement
of the range of P, then U ∈ E if and only if Dη(U) ∈ M .
(c) For U ∈ E , Dη(U)A−1(U) is a symmetric positive semidefinite matrix whose
kernel is M .
Under the above conditions, for any U0 ∈ H� , � >

m
2 + 1, with ‖U0‖� sufficiently

small, there exists a global classical solution U to (5.5.1), (5.5.2) on [0,∞) and

(5.5.33) ‖∂ rU(·, t)‖0 ≤ c‖U0(·)‖�(1+ t)−
|r|
2 , 0 ≤ |r| ≤ �.

If, in addition, U0 ∈ L1, with ‖U0‖L1 sufficiently small, then

(5.5.34) ‖∂ rU(·, t)‖0 ≤ c[‖U0‖L1 +‖U0‖�](1+ t)−
|r|
2 −m

4 , 0 ≤ |r| ≤ �−1.

The stretching of the space-time coordinates (x, t) �→ (μx,μt), μ > 0, transforms
the systems (5.5.1) into

(5.5.35) ∂tU(x, t)+
m

∑
α=1

∂αGα(U(x, t))+
1
μ

P(U(x, t)) = 0,

so that there is an intimate relation between the long time behavior of solutions to
(5.5.1) and the asymptotic behavior of solutions to (5.5.35), as μ → 0.

Relaxation phenomena are often governed by systems in the form (5.5.35), with
μ being the relaxation parameter. The special structure of such systems has been
variously abstracted in the literature. Here we outline a simple popular framework,
related to (5.5.14), which captures numerous application.

We thus consider systems consisting of k conservation laws coupled with n− k
balance laws:

(5.5.36)

⎧⎨⎩
∂tV +∑m

α=1 ∂αFα(V,W ) = 0

∂tW +∑m
α=1 ∂αHα(V,W )+ 1

μ Π(V,W ) = 0,

equipped with a uniformly convex entropy η(V,W ) and associated entropy flux
Q(V,W ). Since the entropy is convex, (5.5.36) is hyperbolic, with characteristic
speeds λ1(ν ;V,W )≤ ·· · ≤ λn(ν ;V,W ), for any ν ∈ Sm−1.

We assume that the source is dissipative semidefinite, so that

(5.5.37) DWη(V,W )Π(V,W )≥ a|Π(V,W )|2,

with a > 0. We also assume that the (n− k)× (n− k) matrix DWΠ(0,0) has rank
n− k, whence, for |V | < δ , the equation Π(V,W ) = 0 yields W = Φ(V ), depicting
the (n− k)-dimensional local equilibrium manifold, embedded in Rn.
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The natural conjecture is that, as the relaxation parameter tends to zero, the stiff
term in the system (5.5.36) will force the state (V,W ) to relax to the equilibrium
manifold (V,Φ(V )), on which V will be governed by the relaxed system

(5.5.38) ∂tV +
m

∑
α=1

∂α Ĝα(V ) = 0,

where Ĝ(V ) = G(V,Φ(V )). Indeed, this has been verified in various settings, as re-
ported in the references cited in Section 5.7. It should be noted, however, that the con-
vergence of (V,W ) to (V,Φ(V )), as μ → 0, cannot be uniform in time unless the ini-
tial data (V0,W0) for (5.5.36) happen to lie on the equilibrium manifold, W0 =Φ(V0).
In the opposite case, a boundary layer must form across t = 0, joining the initial data
to the equilibrium manifold.

The following proposition summarizes the special structure that the relaxed sys-
tem (5.5.38) inherits from its parent system (5.5.36).

5.5.5 Theorem. The relaxed system (5.5.38) is equipped with the entropy function
η̂(V ) =η(V,Φ(V )), with associated entropy flux Q̂(V ) =Q(V,Φ(V )). Furthermore,
η̂(V ) is uniformly convex, so that (5.5.38) is hyperbolic, with characteristic speeds
λ̂1(V ;ν), . . . , λ̂k(V ;ν). Finally, the so-called subcharacteristic condition

(5.5.39) λ1(ν ;V,Φ(V ))≤ λ̂1(ν ;V )≤ ·· · ≤ λ̂k(ν ;V )≤ λn(ν ;V,Φ(V ))

holds for all ν ∈ Sm−1 and |V |< δ .

Proof. By (5.5.37), the entropy production is minimized on the equilibrium manifold,
and hence

(5.5.40) DWη(V,Φ(V )) = 0.

Therefore, for any fixed V , with |V |< δ , and α = 1, . . . ,m, (3.2.3) and (5.5.40) imply

(5.5.41) DV Q̂α = DV Qα +(DW Qα)DVΦ

= (DVη)DV Gα +(DVη)(DW Gα)DVΦ = (DV η̂)DV Ĝα ,

with DV Qα , DW Qα , DV Gα , DW Gα and DVη all evaluated at (V,Φ(V )). We con-
clude that (η̂ , Q̂) is an entropy-entropy flux pair for (5.5.38).

By virtue of (5.5.40), we obtain

(5.5.42) D2
V η̂ = D2

Vη+(DVWη)DVΦ ,

(5.5.43) DWVη+(D2
Wη)DVΦ = 0,

with D2
Vη , DVWη , DWVη and D2

Wη evaluated at (V,Φ(V )).
For ξ ∈ Rk and ζ ∈ Rn−k, we set
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(5.5.44) B(V,W ;ξ ,ζ ) = ξ�(D2
Vη)ξ+ξ

�(DVWη)ζ+ζ�(DWVη)ξ+ζ�(D2
Wη)ζ

(5.5.45) Iα(V,W ;ξ ,ζ ) = ξ�[(D2
Vη)(DV Fα)+(DVWη)(DV Hα)]ξ

+ξ�[(D2
Vη)(DW Fα)+(DVWη)(DW Hα)]ζ

+ζ�[(DWVη)(DV Fα)+(D2
Wη)(DV Hα)]ξ

+ζ�[(DWVη)(DW Fα)+(D2
Wη)(DW Hα)]ζ ,

(5.5.46) B̂(V ;ξ ) = ξ�(D2
V η̂)ξ ,

(5.5.47) Îα(V ;ξ ) = ξ�(D2
V η̂)(DV Ĝα)ξ .

Upon using (5.5.42) and (5.5.43),

(5.5.48) B̂(V ;ξ ) = B(V,Φ(V );ξ ,(DVΦ)ξ ),

(5.5.49) Îα(V ;ξ ) = Iα(V,Φ(V );ξ ,(DVΦ)ξ ).

Since η is uniformly convex, (5.5.48) implies that η̂ is also uniformly convex.
For any ν ∈ Sm−1, λ1(ν ;V,W ) and λn(ν ;V,W ) are the minimum and the maxi-

mum of the Rayleigh quotient

(5.5.50)
∑m
α=1 να Iα(V,W ;ξ ,ζ )

B(V,W ;ξ ,ζ )
,

over all ξ ∈Rk\{0} and ζ ∈Rn−k. Similarly, λ̂1(ν ;V ) and λ̂k(ν ;V ) are the minimum
and the maximum of the Rayleigh quotient

(5.5.51)
∑m
α=1 να Îα(V ;ξ )

B̂(V ;ξ )
,

over all ξ ∈ Rk\{0}. Thus, the subcharacteristic condition (5.5.39) follows from
(5.5.48) and (5.5.49). The proof is complete.

For illustration, consider the system

(5.5.52)

⎧⎨⎩
∂tu(x, t)+∂xv(x, t) = 0

∂tv(x, t)+∂x p(u(x, t))+ 1
μ [v(x, t)− f (u(x, t))],

in one spatial dimension, which has served as a paradigm in the literature. Assum-
ing p′(u) = a2(u), with a(u) > 0, (5.5.52) is strictly hyperbolic, with characteristic
speeds λ1 =−a(u), λ2 = a(u). The local equilibrium manifold is the curve v = f (u),
embedded in the u-v plane, and the relaxed system is the scalar conservation law
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(5.5.53) ∂tu(x, t)+∂x f (u(x, t)) = 0,

with characteristic speed λ̂ = f ′(u). As noted above, the subcharacteristic condition

(5.5.54) −a(u)≤ f ′(u)≤ a(u)

is a necessary prerequisite for the existence of a convex entropy η(u,v) for the sys-
tem (5.5.52) that renders the source dissipative. We will return to the system (5.5.52)
in Chapters XVI and XVII, where we shall see, in particular, that (5.5.54) in strict
inequality form is also sufficient for the existence of a convex entropy.

In Section 4.6, we encountered an alternative mechanism inducing entropy pro-
duction, namely viscosity. The relevant systems are in the form (4.6.1) and the en-
tropy production is encoded in the second term on the right-hand side of (4.6.4).
In analogy with the terminology introduced above in the context of systems with
source, we shall call the viscosity term dissipative when the quadratic form asso-
ciated with D2ηBαβ is positive semidefinite, and in particular dissipative definite
when the quadratic form is positive definite or dissipative semidefinite when (4.6.5)
holds with a > 0. Dissipative definite viscosity renders the system (4.6.1) parabolic,
in which case the Cauchy problem is well-posed and admits very smooth solutions.
However, viscosity terms commonly encountered in systems arising in continuum
physics are only dissipative semidefinite. Indeed, such systems often appear in the
form

(5.5.55)

⎧⎨⎩
∂tV +∑m

α=1 ∂αFα(V,W ) = 0

∂tW +∑m
α=1 ∂αHα(V,W ) = μ∑m

α,β=1 ∂α [Bαβ (V,W )∂βW ],

to be compared with (5.5.36). For an example, see (4.6.2).
The existence and long time behavior of solutions to the Cauchy problem for the

systems with semidefinite dissipative viscosity has been investigated extensively, in
various settings. The emerging theory closely parallels, in scope, methodology and
conclusions, the theory of the Cauchy problems for systems of balance laws with
dissipative semidefinite source, outlined above. In particular, for well-posedness of
the Cauchy problem, when the viscosity is merely dissipative semidefinite, one needs
the supplementary condition that the system

(5.5.56) ∂tV +
m

∑
α=1

DGα(0)∂αV = μ
m

∑
α,β=1

Bαβ (0)∂α∂βV

resulting from linearization of (4.6.1) about the equilibrium state U = 0 does not
admit undamped traveling wave front solutions (5.5.18). This requirement is met
when the Kawashima condition

(5.5.57)
m

∑
α,β=1

νανβBαβ (0)Ri(ν ;0) �= 0, ν ∈ Sm−1, i = 1, . . . ,n

holds. This is the counterpart of the Kawashima condition (5.5.19), for systems of
balance laws with dissipative semidefinite source.
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An intimate relation between viscous relaxation and relaxation induced by a stiff
source emerges if one writes a formal expansion of solutions to (5.5.36) in powers
of the (small) relaxation parameter μ . At the zero degree level, μ0, this yields the
relaxed hyperbolic system (5.5.38). At the next level, μ1, the result is a system with
viscosity:

(5.5.58) ∂tV +
m

∑
α=1

∂α Ĝ(V ) = μ
m

∑
α,β=1

∂α [B̂αβ (V )∂βV ].

Furthermore, the viscosity is dissipative with respect to the entropy η̂(V ) of (5.5.38).
The subcharacteristic condition (5.5.39) is an alternative, though related, manifesta-
tion of stability.

In order to avoid the cumbersome calculation for determining the coefficients
B̂αβ in (5.5.58), for general systems, let us illustrate the above in the context of
the simple system (5.5.52). We have seen already that the scalar conservation law
(5.5.53) is the relaxed system. In order to get to the next level, of degree μ , we
substitute v = f (u)+ μw into (5.5.52), eliminate ∂tu with the help of (5.5.52)1 and
then drop all terms of order μ , which yields

(5.5.59) w = [ f ′(u)2 −a(u)2]∂xu.

Finally, we substitute v = f (u)+μw into (5.5.52)1 to get

(5.5.60) ∂tu+∂x f (u) = μ∂x{[a(u)2 − f ′(u)2]∂xu},
which is of the form (5.5.56). The relation between the subcharacteristic condition
(5.5.54) and disspativeness of viscosity in (5.5.60) is now quite clear.

In continuum physics, one encounters a host of evolutionary systems with the
feature that wave amplification induced by nonlinear advection cohabits and com-
petes with some kind of dissipation; and the former is in control far from equilib-
rium, while the latter prevails in the vicinity of equilibrium, securing the existence
of smooth solutions in the large. Such systems are generally treated by methods akin
to those employed in this section, namely “energy” type estimates that bring out the
balance between amplification and damping. This subject, which already commands
a large body of literature, lies beyond the scope of the present book. Nevertheless, in
order to give a taste of the wide diversity of systems with such features, a few repre-
sentative examples will be recorded below, and a small sample of relevant references
will be listed in Section 5.7.

We begin with the so-called Euler-Poisson system

(5.5.61)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tρ+div(ρv�) = 0

∂t(ρv)+div(ρvv�)+ gradp(ρ) = aρ gradψ

Δψ = b(ρ− ρ̄).
For a = −1, b = 4πG and ρ̄ = 0, (5.5.61) governs the flow of a gas in the gravita-
tional field generated by its own mass. This is the “attractive” case. In the opposite,
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“repulsive” case, where both a and b are positive constants, this system models the
movement of electrons in a plasma. In that connection, the aggregate of the elec-
trons is regarded as an elastic fluid with density ρ and pressure p(ρ), flowing with
velocity v; while the much heavier ions are assumed stationary, merely providing
a uniform background of positive charge, proportional to ρ̄ . The combined charge
of electrons and ions, which is proportional to ρ − ρ̄ , generates the electrostatic
potential ψ , and thereby the electric field gradψ that sets the electrons in motion.
As in (5.5.15), we are dealing here with the hyperbolic system of the Euler equa-
tions, with a source induced by some feedback mechanism, which derives from the
Poisson equation (5.5.61)3 and is dissipative at least when the flow of electrons is
irrotational, curl v = 0. Recall from Section 3.3.6 that flows starting out irrotational
stay irrotational for as long as they are smooth. It has been shown that sufficiently
smooth, irrotational Cauchy data, close to equilibrium ρ = ρ̄, v = 0, ψ = 0, generate
globally defined smooth solutions. On the other hand, solutions starting out far from
equilibrium generally develop singularities in a finite time.

The situation is similar for the system

(5.5.62)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tρ+div(ρv�) = 0

∂t(ρv)+div(ρvv�)+ gradp(ρ)+μ−1ρv = aρ gradψ

Δψ = b(ρ− ρ̄),
associated with the hydrodynamic model of semiconductors. Here μ > 0 is a relax-
ation parameter. Notice that (5.5.62) combines the dissipative mechanisms encoun-
tered in (5.5.15) and (5.5.61).

The balance laws for continuous media with internal friction, such as viscosity
and heat conductivity, yield systems exhibiting similar behavior. The reason is that
one may trace the lineage of these media back to elasticity, and hence, even though
the resulting systems are not hyperbolic, they inherit features of hyperbolicity, giving
rise to a destabilizing wave amplification mechanism that competes with the damping
induced by the internal friction.

A first example is the system (4.6.2), which governs the flow of heat conducting
thermoviscoelastic fluids with Newtonian viscosity. Internal friction manifests itself
on the right-hand side of the second and the third equation, while the first equation
retains its hyperbolic character.

Still another example with similar features is the system

(5.5.63)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tu−∂xv = 0

∂tv−∂xσ(u,θ) = 0

∂t [ε(u,θ)+ 1
2 v2]−∂x[σ(u,θ)v] = ∂xq(u,θ ,∂xθ),

which governs rectilinear motion, in Lagrangian coordinates, of a heat-conducting
thermoelastic medium. Here u is the strain (deformation gradient), v is the velocity,
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θ is the (absolute) temperature, σ is the stress, ε is the internal energy, q is the
heat flux, and the reference density is taken to be one. For compliance with (2.5.28)
and (2.5.29), the material response functions ε,σ and q must satisfy εu = σ −θσθ
and q(u,θ ,g)g ≥ 0. These should be supplemented with the natural assumptions
σu > 0, εθ > 0 and qg > 0. Here internal friction is provided by thermal diffusion.

Internal friction of yet another nature, but with similar effects, is induced by
fading memory, encountered in viscoelastic continuous media in which the stress σ
at the particle x and time t is no longer solely determined, as in elastic materials,
by the deformation gradient at (x, t), but also depends on the past history of the
deformation gradient at x. The balance laws are then expressed by functional-partial
differential equations. A simple, one-dimensional model system that captures the
damping effect of memory reads

(5.5.64)

⎧⎪⎨⎪⎩
∂tu(x, t)+∂xv(x, t) = 0

∂tv(x, t)+∂x p(u(x, t))+
∫ t

−∞
k′(t − τ)∂xq(u(x,τ))dτ = 0,

where k is a smooth integrable relaxation kernel on [0,∞), with k(τ) > 0, k′(τ) < 0
and k′′(τ) ≥ 0, for τ ∈ [0,∞), and p′(u) > k(0)q′(u) > 0. Notice that (5.5.64) is
intimately related to (5.5.52), as the latter system, for f ≡ 0, may be rewritten in the
form

(5.5.65)

⎧⎪⎪⎨⎪⎪⎩
∂tu(x, t)+∂xv(x, t) = 0

∂tv(x, t)+∂x p(u(x, t))+
∫ t

−∞
[exp(− t − τ

μ
)]′∂x p(u(x,τ))dτ = 0.

The above systems, (5.5.63) and (5.5.64), share the property that smooth initial
data near equilibrium generate globally defined smooth solutions, while smooth so-
lutions starting out from “large” initial values generally blow up in finite time. See
the relevant references in Section 5.7.

An alternative decay mechanism acting on the systems of balance laws of con-
tinuum physics is dispersion. It is particularly effective when the dimension of the
space is large and solutions stay close to equilibrium. As we saw in Section 4.8, in
systems that are fully nonlinear, such as the Euler equations, dispersion may delay
but not prevent the breaking of waves. However, in systems with gentler nonlinearity,
satisfying the so-called null condition, dispersion renders the existence of globally
defined smooth solutions to the Cauchy problem, with initial data close to equilib-
rium. As a typical example, consider the system (3.3.19) of equations of isentropic
elastodynamics. For convenience, assume that the reference space coincides with the
physical space, and that the reference configuration, with F ≡ I, is an isotropic equi-
librium state, so that the internal energy ε(F) is a function (2.5.21) of the principal
invariants (J1,J2,J3) of the right stretch tensor (2.1.7). Assume, further, that ε(F) is
rank-one convex and satisfies the null condition

(5.5.66)
3

∑
i, j,k=1

3

∑
α,β ,γ=1

∂ 3ε(F)

∂Fiα∂Fjβ ∂Fkγ
νανβνγνiν jνk = 0,
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at F = I, for any vector ν ∈ R3. Then the Cauchy problem with initial data (F0,v0)
close to (I,0), in an appropriate Sobolev space, admits a unique, globally defined
classical solution. For isotropic incompressible elastic media, the relevant null con-
dition is automatically satisfied. There is voluminous literature on these issues, a
sample of which is cited in Section 5.7.

5.6 Initial-Boundary Value Problems

The issue of properly formulating the initial-boundary value problem for systems of
hyperbolic conservation laws and establishing local existence of classical solutions
has been the object of intensive study in recent years. A fairly definitive, albeit highly
technical and complicated, theory has emerged, which lies beyond the scope of this
book. Fortunately, detailed expositions are now available, in books and survey arti-
cles, referenced in Section 5.7. In order to convey to the reader a taste of the current
state of this theory, a representative result will be recorded here, along the lines of
the formulation of initial-boundary value problems presented in Section 4.7.

We begin by fixing as domain the half-space

(5.6.1) D = {x ∈ Rm : ν · x < 0} ,
with outward unit normal ν ∈ Sm−1. We seek solutions to the system

(5.6.2) ∂tU(x, t)+
m

∑
α=1

∂αGα(U(x, t)) = 0, x ∈ D , t ∈ (0,T ) ,

satisfying initial conditions

(5.6.3) U(x,0) =U0(x) , x ∈ D ,

and boundary conditions in the special form (4.7.1), (4.7.8), namely,

(5.6.4) BG(U(x, t))ν = 0, x ∈ ∂D , t ∈ (0,T ) ,

where B is a constant n×n matrix.
We make the following assumptions on the system (5.6.2). The flux G(U) is a

smooth n×m matrix-valued function defined on Bρ . For normalization, G(0) = 0.
Furthermore, (5.6.2) is endowed with a smooth entropy η(U) such that D2η(U) is
positive definite on Bρ . This implies, in particular, that (5.6.2) is hyperbolic, so that
for any U ∈Bρ and ξ ∈ Sm−1, the matrixΛ(ξ ;U), defined by (4.1.2), possesses real
eigenvalues (characteristic speeds) λ1(ξ ;U)≤ ·· · ≤ λn(ξ ;U) and associated linearly
independent eigenvectors R1(ξ ;U), · · · ,Rn(ξ ;U). We require that each eigenvalue
has constant multiplicity on Sm−1 ×Bρ .

Turning to the boundary conditions (5.6.4), we introduce the “manifold” of
boundary data

(5.6.5) M = {U ∈ Bρ : BG(U)ν = 0}
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and assume that the boundary is noncharacteristic, in the sense that, for a certain
k = 0, · · · ,n and all U ∈ M ,

(5.6.6) λk(ν ;U)< 0 < λk+1(ν ;U),

where λ0(ν ;U) =−∞ and λn+1(ν ;U) = ∞ . Thus k characteristic fields are incoming
to D and n− k characteristic fields are outgoing from D , through ∂D .

We assume, further, that for any U ∈ M the rank of BΛ(ν ;U) is k and

(5.6.7) Ek(ν ;U)⊕ker[BΛ(ν ;U)] = Rn,

where Ek(ν ;U) denotes the subspace of Rn spanned by R1(ν ;U), · · · ,Rk(ν ;U). To
motivate this condition, we linearize the system (5.6.2) and the boundary condition
(5.6.4) about any constant state U ∈ M :

(5.6.8) ∂tV (x, t)+
m

∑
α=1

DGα(U)∂αV (x, t) = 0, x ∈ D , t ∈ (0,T ),

(5.6.9) BΛ(ν ;U)V (x, t) = 0, x ∈ ∂D , t ∈ (0,T ).

Thus, roughly speaking, the role of (5.6.7) is to ensure that the trace of V on ∂D is
determined by combining the boundary conditions with the information carried to
the boundary by the n− k outgoing characteristic fields.

The final assumption on the boundary conditions is the uniform Kreiss-Lopatinski
condition, which is formulated as follows. For each state U ∈ M , vector ξ ∈ Sm−1

tangent to the boundary, i.e., ξ · ν = 0, and complex number z with Rez > 0, we
define the matrix

(5.6.10) M(z,ξ ;U) =Λ(ν ;U)−1[zI + iΛ(ξ ;U)].

We denote by E(z,ξ ;U) the subspace of Rn spanned by the eigenvectors associated
with the eigenvalues of M(z,ξ ;U) with negative real part and require that

(5.6.11) |W | ≤ c|BΛ(ν ;U)W |, for all W ∈ E(z,ξ ;U),

where c is a positive constant, independent of U,ξ and z. To interpret this assumption,
notice that the linear system (5.6.8) admits solutions of the form

(5.6.12) V (x, t) = exp(iξ · x+ zt)W (ν · x),

where the function W (τ) satisfies the ordinary differential equation

(5.6.13) Ẇ +M(z,ξ ;U)W = 0.

The role of (5.6.11) is to rule out solutions (5.6.12) that satisfy the boundary con-
dition (5.6.9) and exhibit “tame” growth in the spatial directions but grow exponen-
tially with time.
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Finally, we turn to the initial condition (5.6.3). For j = 0,1, · · · , we let Hj de-
note the Sobolev space W j,2(D ;Rn), and assume U0 ∈ H� , for � > m

2 +1. One may
then calculate formally, from (5.6.2), the initial values U1(x), · · · ,U�−1(x) of the time
derivatives ∂tU(x,0), · · · ,∂ �−1

t U(x,0) of solutions. Thus

(5.6.14) U1 =−
m

∑
α=1

DGα(U0)∂αU0 ,

(5.6.15) U2 =−
m

∑
α=1

DGα(U0)∂αU1 −
m

∑
α=1

D2Gα(U0)[U1,∂αU0],

and so on. Moreover, Uj ∈ H�− j , j = 0, · · · , �−1. In particular, the trace of Uj on the
hyperplane ∂D is well-defined, for j = 0, · · · , �− 1. We then require that the initial
data be compatible with the boundary condition, in the sense

(5.6.16) B∂ j
t G(U(x, t))ν = 0, t = 0, x ∈ ∂D , j = 0, · · · , �−1,

namely,

(5.6.17) BG(U0(x))ν = 0, x ∈ ∂D ,

(5.6.18) BΛ(ν ;U0(x))U1(x) = 0, x ∈ ∂D ,

and so on.
We have now laid the preparation for stating the existence theorem:

5.6.1 Theorem. Under the above assumptions on the system, the boundary condi-
tions and the initial data, there exists a unique classical solution U ∈C1(D× [0,T∞))
of the initial-boundary value problem (5.6.2), (5.6.3), (5.6.4), for some 0 < T∞ ≤ ∞ .
Furthermore,

(5.6.19) U(·, t) ∈
�⋂

j=0

C j([0,T∞);H�− j).

The interval [0,T∞) is maximal in that if T∞ < ∞ then

(5.6.20) limsup
t→T∞

|||∇U(·, t)|||L∞ = ∞

and/or limsup
t→T∞

‖U(·, t)‖L∞ = ρ .

The (lengthy and technical) proof proceeds from linear systems with constant
coefficients to linear systems with variable coefficients, and then passes to quasilinear
systems via linearization (5.6.8), (5.6.9) and a fixed point argument, for the map
U �→V .
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It should be noted that the assumptions in the above theorem are too restrictive
for dealing with many natural initial-boundary value problems arising in continuum
physics. In the Euler equations, for isentropic or nonisentropic gas flow, the assump-
tion that the characteristic speeds have constant multiplicity is indeed valid (see Sec-
tions 3.3.5 and 3.3.6); but the assumption that the boundary is noncharacteristic is
often violated, for instance in the case of no-penetration (or slip) boundary condi-
tions v · ν = 0. In the equations of isentropic or nonisentropic elastodynamics, the
condition that the characteristic speeds have constant multiplicity is often violated,
for example in the vicinity of the natural state of an isotropic elastic solid where
the multiplicity of the characteristic speed associated with shear waves undergoes a
transition. Moreover, the boundary is always characteristic, as the system possesses
zero characteristic speeds. Beyond that, one needs to consider more general domains
D and homogeneous or inhomogeneous boundary conditions on ∂D of more gen-
eral form than (5.6.4). These issues are addressed by more sophisticated versions of
Theorem 5.6.1. References are cited in Section 5.7.

Instead of appealing to the general theory, outlined above, it is often advanta-
geous to treat initial-boundary value problems for particular systems of conservation
laws arising in continuum physics ab initio, taking advantage of their special struc-
ture. As an illustrative example, let us consider the system (3.3.19), which governs
the isentropic motion of an elastic solid, in Lagrangian coordinates, assuming for
simplicity that the body force vanishes, so that

(5.6.21)

⎧⎨⎩ ∂tFiα −∂αvi = 0, i,α = 1,2,3

∂tvi −∂αSiα(F) = 0, i = 1,2,3.

In (5.6.21) and in what follows, we employ the summation convention.
As noted in (sub)section 3.3.3, the Piola-Kirchhoff stress S derives from a po-

tential (3.3.20), so that η = ε(F)+ 1
2 |v|2 is an entropy for the system. We assume

that the internal energy function ε(F) satisfies ε(F) ≥ 0, ε(I) = 0 and is rank-one
convex, i.e.

(5.6.22) Aiα jβ (F)νανβξiξ j > 0, for all ν and ξ in S2,

where

(5.6.23) Aiα jβ (F) =
∂Siα(F)

∂Fjβ
=

∂ 2ε(F)

∂Fiα∂Fjβ
.

Notice the important symmetry relations

(5.6.24) Aiα jβ (F) = A jβ iα(F) .

We also define

(5.6.25) Biα jβkγ(F) =
∂Aiα jβ (F)

∂Fkγ
=

∂ 3ε(F)

∂Fiα∂Fjβ ∂Fkγ
.
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The reference configuration of the elastic body is a bounded domain Ω of R3,
with smooth boundaryΓ , which is assumed clamped, so that the boundary conditions
read

(5.6.26) v(x, t) = 0, x ∈ Γ , t > 0.

We also assign initial conditions

(5.6.27) F(x,0) = F0(x), v(x,0) = v0(x), x ∈Ω ,

assuming that

(5.6.28) F0 ∈W m−1,2(Ω ;M3×3), v0 ∈W m,2(Ω ;R3),

with m ≥ 4. For r = 0,1, · · ·,m, we shall denote by ‖ · ‖r and |||·|||r the norms of

the Sobolev spaces W r,2(Ω ;R3) and W r,2(Ω ;M3×3). Also
(r)
v will denote the time

derivative ∂ r
t v of v, of order r. On account of (5.6.28), one may derive candidates

vr ∈W m−r,2(Ω ;R3) for the initial values of
(r)
v , by combining (5.6.21) with (5.6.27):

(5.6.29) v1
i (x) = ∂αSiα(F0(x)), i = 1,2,3, x ∈Ω ,

(5.6.30) v2
i (x) = ∂α [Aiα jβ (F

0(x))∂βv0
j(x)], i = 1,2,3, x ∈Ω ,

and so on. In that setting:

5.6.2 Theorem. Assume the initial data (F0,v0) are compatible with the boundary
condition (5.6.26), in the sense that vr ∈ W 1,2

0 (Ω ;R3) , for r = 0, · · ·,m− 1. Then
there exists a unique classical solution (F,v) to (5.6.21), (5.6.26), (5.6.27) on a time
interval [0,T ], and

(5.6.31) v(·, t) ∈
m⋂

r=0

Cr([0,T ] ; W m−r,2(Ω ;R3)).

The regularity of F and its time derivatives may be inferred by combining the first
equation of (5.6.21) with (5.6.31). The condition detF > 0, necessary for physical
admissibility of the solution, can be secured by taking detF0 > 0 and T sufficiently
small.

Detailed proofs of the above proposition are found in the references cited in Sec-
tion 5.7. A formal, sketchy, derivation of the key estimate will suffice for the present
purposes. Our strategy is to monitor the pointwise behavior of the solution and its
derivatives with the help of L2 bounds on derivatives of higher order. Thus, assum-
ing (F,v) is a solution of (5.6.21), (5.6.26), (5.6.27), on the time interval [0,T ], with
the properties recounted in Theorem 5.6.2, the aim is to show that, for T sufficiently
small, the functional
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(5.6.32) E(t) =
m

∑
r=0

‖(r)v (·, t)‖m−r

is bounded on [0,T ]. Setting

(5.6.33) M =
∣∣∣∣∣∣F0(·)∣∣∣∣∣∣m−1 , N =

m−1

∑
r=0

‖vr(·)‖m−r−1 ,

we will be operating under the ansatz

(5.6.34) |||F(·, t)|||m−1 ≤ 2M,
m−1

∑
r=0

‖(r)v (·, t)‖m−r−1 ≤ 2N, t ∈ [0,T ],

which shall be verified a posteriori.
The approach followed in earlier sections for establishing such estimates for the

Cauchy problem, by differentiating the equations of the system with respect to the
spatial variables, cannot be applied here, because the boundary behavior of spatial
derivatives is not known a priori. We only know that, by virtue of (5.6.26), time
derivatives of v, of any order, vanish on Γ . We shall take advantage of that in esti-
mating the simpler functional

(5.6.35) G(t) =
m−1

∑
r=0

‖(r)v (·, t)‖1 +‖(m)
v (·, t)‖0 .

For r = 0, · · ·,m−1, we apply ∂ r+1
t to (5.6.21) to get

(5.6.36)
(r+2)

vi (x, t) = ∂α [Aiα jβ (F(x, t))∂β
(r)
v j(x, t)]+Zr

i (x, t),

where

(5.6.37) Zr
i (x, t) = ∂α [∂ r+1

t Siα(F(x, t))−Aiα jβ (F(x, t))∂β
(r)
v j(x, t)].

We multiply (5.6.36) by 2
(r+1)

vi and integrate the resulting equation on Ω × [0, t].
Recalling the symmetry condition (5.6.24), and after an integration by parts,

(5.6.38)
∫
Ω
[ |(r+1)

v (x, t)|2 +Aiα jβ (F(x, t))∂α
(r)
vi(x, t)∂β

(r)
v j(x, t)]dx

=
∫
Ω
[ |vr+1(x)|2 +Aiα jβ (F

0(x))∂αvr
i (x)∂βvr

j(x)]dx

+
∫ t

0

∫
Ω
[2Zr

i (x,τ)
(r+1)

vi (x,τ)+Biα jβkγ(F)∂α
(r)
vi(x,τ)∂β

(r)
v j(x,τ)∂γvk(x,τ)]dxdτ.

We supplement (5.6.38) with the total energy (entropy) conservation law:
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(5.6.39)
∫
Ω
[ε(F(x, t))+

1
2
|v(x, t)|2]dx =

∫
Ω
[ε(F0(x))+

1
2
|v0(x)|2]dx.

In order to avoid proliferation of symbols, we adopt the following convention:
In the sequel, a,b and K will stand for generic positive constants, with a depending
on M, b depending on M and on N, and K depending on

∣∣∣∣∣∣F0
∣∣∣∣∣∣

m−1 and ‖v0‖m . In
particular, for r = 0, · · ·,m, ‖vr‖m−r ≤ K.

By virtue of (5.6.22) and since
(r)
v (·, t) ∈ W 1,2

0 (Ω ;R3), Gårding’s inequality ap-
plies:

(5.6.40)
∫
Ω

Aiα jβ (F(x, t))∂α
(r)
vi(x, t)∂β

(r)
v j(x, t)dx ≥ μ‖(r)v (·, t)‖2

1 −a‖(r)v (·, t)‖2
0 ,

with μ > 0. Moreover, since m ≥ 4, standard calculus inequalities for Sobolev spaces
yield

(5.6.41) ‖Zr(·, t)‖0 ≤ bE(t), r = 1, · · ·,m−1.

Upon combining (5.6.38) with (5.6.39), (5.6.40) and (5.6.41), one arrives at an
estimate in the form

(5.6.42) G(t)≤ K +b
∫ t

0
E(τ)dτ.

To estimate spatial derivatives of
(r)
v , of order greater than one, we view (5.6.36)

as a strongly elliptic system

(5.6.43) Aiα jβ (x, t)∂α∂β
(r)
v j(x, t) =

(r+2)
vi (x, t)−Y r

i (x, t),

where

(5.6.44) Y r
i (x, t) = Zr

i (x, t)+Biα jβkγ(F(x, t))∂αFkγ(x, t)∂β
(r)
v j(x, t).

For s = 0, · · ·,m− r−2, we employ the standard estimates from the theory of elliptic
systems:

(5.6.45) ‖(r)v (·, t)‖s+2 ≤ a
[
‖(r+2)

v (·, t)‖s +‖(r)v (·, t)‖s +‖Y r(·, t)‖s

]
.

By virtue of calculus inequalities for Sobolev spaces,

(5.6.44) ‖Y r(·, t)‖s ≤ bE(t), ‖∂tY r(·, t)‖s ≤ bE(t), r = 1, · · ·,m−2.

Hence

(5.6.45) ‖Y r(·, t)‖s ≤ K +b
∫ t

0
E(τ)dτ.
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For r = 0, · · ·,m− 2, one may estimate recursively, with the help of (5.6.45),

‖(r)v ‖m−r in terms of ‖(r)v ‖0 , · · ·,‖
(m)
v ‖0 , when m− r is even, or of ‖(r)v ‖1, · · ·,‖

(m−1)
v ‖1,

when m− r is odd, all of which are parts of G. We thus end up with an estimate in
the form

(5.6.47) E(t)≤ b
[

K +G(t)+
∫ t

0
E(τ)dτ

]
.

Combining (5.6.47) with (5.6.42), yields E(t) ≤ K exp(bt), which establishes that
E(t) is bounded on [0,T ], so long as the ansatz (5.6.34) holds. This is indeed the
case, since

(5.6.48) Fiα(x, t) = F0
iα(x)+

∫ t

0
∂αvi(x,τ)dτ,

(r)
vi(x, t) = vr

i (x)+
∫ t

0

(r+1)
vi (x,τ)dτ

yield

(5.6.49) |||F(·, t)|||m−1 ≤ M+K(ebt −1),
m−1

∑
r=0

‖(r)v (·, t)‖m−r−1 ≤ N +K(ebt −1),

which in turn imply (5.6.34), when T is sufficiently small.
For a complete, rigorous proof of Theorem 5.6.2, one may construct the solution

to (5.6.21), (5.6.26), (5.6.27) by establishing the existence of a fixed point of the map
that carries Φ , in a suitable function class, to F , where (F,v) is the solution to the
linear system

(5.6.50)

⎧⎨⎩
∂tFiα −∂αvi = 0, i,α = 1,2,3

∂tvi −Aiα jβ (Φ)∂αFjβ = 0, i = 1,2,3,

with boundary conditions (5.6.26) and initial conditions (5.6.27). Alternatively, one
may employ the vanishing viscosity method, obtaining the solution to (5.6.21),
(5.6.26), (5.6.27) as the ε → 0 limit of solutions to the system

(5.6.51)

⎧⎨⎩ ∂tFiα −∂αvi = 0, i,α = 1,2,3

∂tvi −∂αSiα(F) = εΔvi , i = 1,2,3,

under the same boundary and initial conditions. In either approach, the crucial task
is to demonstrate that the functional E(t) is bounded, uniformly in Φ , for the system
(5.6.50), or uniformly in ε , for the system (5.6.51).

Unless it is clamped, the boundary of moving bodies varies with time. Thus,
tracking the evolution of continuous media in Eulerian coordinates often leads to
initial-boundary value problems with a free boundary that is to be determined as part
of the solution. This usually raises serious technical complications. One may attempt
to circumvent that obstacle by switching to Lagrangian coordinates, in which case
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the domain becomes the fixed reference configuration of the body. However, the price
to pay is that typically the equations in Lagrangian form are complicated and lack
the symmetries of their Eulerian counterparts. In particular, this is encountered in the
Euler equations of gas dynamics.

For illustration, let us consider the isentropic expansion of a gaseous mass that is
confined, at t = 0, in a bounded domain of R3, surrounded by vacuum. The evolution
of the gas in that setting has been modeled, in Section 4.6, as a Cauchy problem for
the Euler equations (4.8.1), by visualizing the vacuum as a gas with zero density. It
was pointed out that, insofar as the focus stays on classical solutions, it is preferable
to switch state variables from density ρ to the weighted sonic speed ω , because,
unlike the Euler equations (4.8.3), the symmetric system (4.8.4) is hyperbolic even
at the vacuum state. When the initial data (ω0,v0), extended to all of R3, lie in the
Sobolev space W 3,2, Theorem 5.1.1 guarantees the existence of a classical solution
to the Cauchy problem for (4.8.4), and thereby to the Euler equations (4.8.3), at least
locally in time. However, as already discussed in Section 4.8, the lifespan of this
classical solution is generally finite, because either waves break inside the gas cloud
or singularities develop on the interface between gas and vacuum. The breaking of
waves is associated with the transition from a classical to a weak solution, containing
shocks, and falls outside the scope of the present discussion, which will focus on
interfacial singularities.

The nature of interfacial singularities was discussed in Section 4.8. The balance
laws force the pressure, and thereby the density, to be continuous across the inter-
face. It was argued that the natural condition, encoded in (4.8.23), is that the normal
derivative of the square of the sonic speed must experience a jump across the inter-
face. To test whether solutions may stay smooth in the interior, even after the onset
of interfacial singularities, one introduces, through the initial data, singularities of
this type at t = 0, and attempts to construct classical solutions to the resulting initial-
boundary value problem. In that setting, the interface must be treated as a free bound-
ary, to be determined as part of the solution. A result in that direction is the following

5.6.3 Theorem. Consider the isentropic flow of an ideal gas, with equation of state
p = κργ , 1 < γ ≤ 2, which occupies, at t = 0, a bounded set Ω of R3, with smooth
boundary Γ , surrounded by vacuum. At t = 0, the density of the gas is ρ0 ∈C∞(Ω),
such that

(5.6.52) ρ0(x)> 0, x ∈Ω , ρ0(x) = 0, x ∈ Γ ,

(5.6.53) ργ−1
0 (x)≥ Adist(x,Γ ), x ∈Ω ,

with A > 0. The initial velocity is v0 ∈C∞
0 (Ω ;R3). Then, for some T > 0, there exists

a C2 function χ , defined on Ω × [0,T ] and taking values in R3, with the following
properties: (a) χ(·,0) is the identity map on Ω ; (b) for any t ∈ [0,T ], χ(·, t) maps
diffeomorphically Ω to an open set Ωt , and also maps Γ to the boundary Γt of Ωt ;
(c) χ induces a unique C1 solution (ρ,v) to the Euler equations (4.8.3), defined on
{(x, t) : t ∈ [0,T ], x ∈Ωt} and satisfying the initial conditions
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(5.6.54) ρ(x,0) = ρ0(x), v(x,0) = v0(x), x ∈Ω

and the boundary conditions

(5.6.55) p(ρ(x, t)) = 0, v(x, t) ·ν(x, t) =V (x, t), t ∈ [0,T ], x ∈ Γt ,

where ν denotes the external unit normal on Γt and V stands for the normal speed of
the surface Γt .

The nature of the singularity across the interface is encoded in (5.6.53) – recall
that the square of the sonic speed is proportional to ργ−1. The regularity restrictions
imposed on the initial data in Ω are excessive. Solutions exist under considerably
weaker hypotheses (initial data in a Sobolev space of sufficiently high order, satisfy-
ing compatibility conditions, which however are rather awkward to state.)

The proof of the above proposition, which is found in the bibliography cited in
Section 5.7, is lengthy and technical. The following remarks will convey a taste of
the methodology.

To overcome the obstacle raised by the presence of the free boundary, we re-
formulate the problem in Lagrangian coordinates. We employ the notational con-
ventions introduced in Sections 2.1-2.3, with slight modifications, for compatibility
with the notation of Section 4.8, for the Euler equations. Thus, material particles will
be identified by y (Lagrangian coordinates), while position in physical space will be
labelled by x (Eulerian coordinates). For any particular field, we shall be using the
same symbol for denoting both its Lagrangian representation, as function of (y, t),
and its Eulerian representation, as function of (x, t). To prevent confusion, material
time derivatives (holding y fixed) will be denoted by an overdot, while spatial time
derivatives (holding x fixed) will be denoted by ∂t .

We choose the physical space R3 as reference space, and the physical placement
Ω of the gas, at time t = 0, as reference configuration. Thus the reference density
is ρ0(y). The function χ(y, t), appearing in the statement of the theorem, represents
the motion of the gas. Thus χ(y,0) = y, for all y ∈Ω . The motion induces the defor-
mation gradient field F(y, t), by F = ∇χ , and the velocity field v(y, t), in Lagrangian
coordinates, by v = χ̇ . On account of (2.3.3), the density field in Lagrangian coordi-
nates is ρ(y, t) = ρ0(y)J−1(y, t), where J = detF .

In Lagrangian coordinates, the Euler equations assume the form (2.3.4), namely
(when the body force vanishes),

(5.6.56) ρ0(y)v̇(y, t) = DivS(F(y, t)),

where S is the Piola-Kirchhoff stress. For the ideal gas, the Cauchy stress tensor is
−κργ I and hence, by virtue of (2.3.6),

(5.6.57) S =−κργJ(F−1)� =−κργ(F∗)�,

where F∗ is the adjugate matrix of F , and hence (F∗)� is the cofactor matrix of F .
On account of (2.2.13), the divergence of the cofactor matrix of F vanishes, whence
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(5.6.58) DivS(F(y, t)) =−κ(F∗)�(y, t)Grad [ργ0 (y)J
−γ(y, t)].

The solution to (5.6.56), (5.6.58) is obtained by the vanishing viscosity method,
as the ε → 0 limit of solutions to the system

(5.6.59) ρ0(y)v̇(y, t) = DivS(F(y, t))+ εDiv Ṡ(F(y, t)).

One recognizes in (5.6.59) the equations of motion of a viscoelastic material with a
special constitutive equation for the Piola-Kirchhoff stress, of the type introduced in
Section 2.6.

In broad terms, the construction of the solution follows here the path taken earlier
in treating the elastic solid with clamped boundary (Theorem 5.6.2), and proceeds
by establishing L2 estimates on derivatives of the solution, extracted from “energy”
integrals. These combine bounds on the quantity

(5.6.60) E(t) =
4

∑
k=0

‖(2k)
χ (t)‖2

4−k ,

with L2 estimates on certain derivatives of the vorticity field. The degeneracy at the
boundary renders the task of deriving these estimates much harder than what was
encountered in the case of the clamped boundary. In particular, some of these esti-
mates are tied to the nonlinear structure of the system. As a result one cannot ap-
proach the construction of the solution via linearization, by analogy to (5.6.50). The
success of the vanishing viscosity approach hinges on the particular choice Ṡ for
the viscous term, which preserves the delicate features of the Piola-Kirchhoff stress
for the Euler equations. The details of the hard and lengthy derivations of the esti-
mates are recorded in the bibliography cited in Section 5.7, albeit only for the case
Ω = T2 × (0,1).

5.7 Notes

A comprehensive treatment of classical solutions to the initial and initial-boundary
value problem for hyperbolic systems of conservation laws is found in the mono-
graph by Benzoni-Gavage and Serre [2].

Local existence of classical solutions to the Cauchy problem for symmetrizable
systems of conservation laws has been established by a variety of methods, ultimately
relying on the hierarchy of “energy” estimates derived by differentiating the system
with respect to the spatial variables.

The earliest, and still most popular, approach, expounded in Benzoni-Gavage
and Serre [2], constructs solutions to (5.1.1) by an iteration process on the linearized
systems (5.1.7). It was originated by Schauder [1], in the context of the quasilinear
second-order wave equation, and has attained its present general form through the
contributions of several authors, in particular Friedrichs [2], Gårding [1] and Majda
[3]. Godunov [3], Makino, Ukai and Kawashima [1], Chemin [1], Lax [1], M.E. Tay-
lor [1,2] and Métivier [1] have used symmetrizers other than the Hessian of a convex
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entropy, or even symbolic symmetrizers. In that connection, recall the symmetrized
form (4.8.4) for the Euler equations, which retains hyperbolicity even at the vacuum
state.

For the Euler equations for incompressible fluids, it has been shown by Beale,
Kato and Majda [1] that classical solutions to the Cauchy problem persist for as
long as the vorticity stays bounded. For the case of compressible fluids, Chemin
[2] explains how breakdown of classical solutions arises as a result of explosion in
vorticity, compression, or the velocity divergence.

An alternative way of establishing Theorem 5.1.1, by Kato [1], is based on
the theory of abstract evolution equations. The method of vanishing viscosity was
adopted here because it also applies to the cases where the entropy is convex only in
the direction of the involution cone or it is merely polyconvex.

The use of relative entropy for proving, as in Theorems 5.2.1, 5.3.3 and 5.4.5,
uniqueness and stability of classical solutions within a broader class of admissible
weak solutions (informally referred to as “weak-strong uniqueness” ) originated in
the works of Dafermos [9,10] and DiPerna [7]. This approach has now been extended
in several directions: the weak solution may be very weak – just measure-valued –
or the system may be of intermediate hyperbolic-parabolic type, or even arising in
the kinetic theory. A representative sample, out of a large number of relevant papers,
is Brenier, De Lellis and Szekelyhidi [1], LeFloch [8], Christoforou and Tzavaras
[1], Lattanzio and Tzavaras [2], Tzavaras [7], Demoulini, Stuart and Tzavaras [3],
Berthelin, Tzavaras and Vasseur [1], Luo and Smoller [1,2], Germain [1], Elling [5],
Miroshnikov and Trivisa [1], and Feireisl and Novotny [1]. In fact, under certain
conditions, the method may even yield uniqueness of weak solutions; see DiPerna
[7], Chen, Frid and Li [1], Gui-Qiang Chen and Yachun Li [1,2], Gui-Qiang Chen
and Jun Chen [1], Kwon [3], Kwon and Vasseur [2], Choi and Vasseur [1], Serre and
Vasseur [1], Feireisl, Kreml and Vasseur [1], and Leger and Vasseur [2]. By using the
last paper, Texier and Zumbrun [2] show that the relative entropy condition implies
the Lopatinski (stability) condition for extreme shocks of arbitrary strength.

There are interesting examples of classical solutions in which the relative entropy
production (second term on the right-hand side of (5.2.14)) happens to be non posi-
tive. Then (5.2.1) holds with b = 0, yielding stability, uniformly in time. Such con-
ditions may be induced by a suitable selection of state vector. This situation arises,
for instance, in the case of the rarefaction wave in rectilinear isentropic gas flow. See
Gui-Qiang Chen [7], Chen and Frid [7], and Serre [30].

Hyperbolic systems of conservation laws with involutions were discussed by
Boillat [4] and Dafermos [14]. In particular, Boillat [4] presents examples arising in
general relativity. The notion of contingent entropy is due to Serre [22]. The analysis
in Section 5.3 follows and extends Dafermos [14,27,37]. An intimate relation ex-
ists between involutions and the theory of compensated compactness, as formalized
by Murat and Tartar; see Tartar [1,2]. In that connection, “involution cone” corre-
sponds to “characteristic cone.” In particular, for the equations of elastodynamics,
see Hughes, Kato and Marsden [1], and Dafermos and Hrusa [1].

Section 5.4 follows Dafermos [27], which improves upon the treatment of this
topic in earlier editions of the book. As already noted in Section 4.9, the notion of
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polyconvexity in elastostatics was introduced by Ball [1], as a condition rendering the
internal energy function weakly lower semicontinuous. It is from P.G. LeFloch that
the author originally heard the idea of extending the system of conservation laws
in elastodynamics by appending conservation laws for the invariants of the stretch
tensor. Explicit extensions were first published by Qin [1] and by Demoulini, Stuart
and Tzavaras [2]. See also Lattanzio and Tzavaras [1]. Tzavaras [8] embeds the ex-
tended system of elastodynamics in a relaxation scheme. In particular, he discusses
the example of the equations of gas dynamics, which are endowed with a convex
entropy in their Eulerian formulation, whereas the entropy in their Lagrangian for-
mulation is merely polyconvex. Brenier [2] presents two distinct extensions of the
equations of electrodynamics, for the Born-Infeld constitutive relations, including
the one recorded here, and discusses its asymptotics in various regimes. This inves-
tigation continues in Brenier [4] and Brenier and Yong [1]. See also Neves and Serre
[1]. Serre [22] devises the proper extension in electrodynamics, under general con-
stitutive relations, by exploiting the contingent entropy-entropy flux pair (3.3.76).

There is extensive literature on the existence and long time behavior of globally
defined classical solutions to the Cauchy problem for systems of balance laws with
source satisfying a Kawashima-type condition. Variants of this condition are encoun-
tered in several papers by Kawashima and coworkers, but its first appearance is in
Shizuta and Kawashima [1], and so it is often referred to as the Kawashima-Shizuta
condition. The reader may find results with the flavor of Theorems 5.5.3 and 5.5.4 in
Hanouzet and Natalini [1], Yong [6], Yang, Zhu and Zhao [3], Bianchini, Hanouzet
and Natalini [1], Kawashima and Yong [1,2], Xu and Kawashima [1,2], Yanni Zeng
[6], and in the bibliography of these papers. See also Beauchard and Zuazua [1], Hu
and Wang [1], Luo, Xin and Zeng [1], Mascia and Natalini [2], and Peng and Wang
[1]. A survey on the role of viscous dissipation is found in Tai-Ping Liu [30].

The setting of the general relaxation framework, in Section 5.5, follows Chen,
Levermore and Liu [1]. For an interesting alternative framework, see Bouchut [1].
The connection between relaxation and diffusion was first recognized in the kinetic
theory of gases, where it is effected by means of the Chapman-Enskog expansion
(e.g. Cercignani [1]). Chapman-Enskog type expansions have also been employed in
order to relate classes of hyperbolic balance laws (5.5.1) with systems with diffusion
in the form (4.6.1); see Kawashima and Yong [1,2].

There is voluminous literature on various aspects of relaxation theory. For a his-
torical retrospective, see Mascia [4]. Surveys and extensive bibliographies are found
in Natalini [3] and Yong [4]. Relevant references include Tai-Ping Liu [21], Nishi-
bata and Yu [1], Wei-Cheng Wang and Zhouping Xin [1], Donatelli and Marcati
[1], Hsiao and Pan [1], Shen, and Winther [1], Yong [2,3,5], Yang and Zhu [1],
Yang, Zhu and Zhao [3], Liu and Yong [1], Natalini and Terracina [1], Xin and Xu
[1], DiFrancesco and Lattanzio [1], Fan and Härterich [1], Fan and Luo [1], Bed-
jaoui, Klingenberg and LeFloch [1], Berthelin and Bouchut [1], Junca and Rascle
[1], Tadmor and Tang [2], Carbou and Hanouzet [1], Carbou, Hanouzet and Natal-
ini [1], Chalons and Coulombel [1], Lambert and Marchesin [1], Yanni Zeng [4,5],
Miroshnikov and Trivisa [2], and Lattanzio and Tzavaras [1]. In particular, the sys-
tem (5.2.18) with p(u) = a2u, proposed by Jin and Xin [1], has served widely as
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a vehicle for understanding and explaining the features of relaxation. We will visit
the theory of this system in Section 17.5, and the reader may find the relevant refer-
ences in Section 17.9. Baudin, Coquel and Tran [1] propose a variant of the above
relaxation scheme, which bears a curious relationship to the one-dimensional Born-
Infeld system; see Serre [11]. We will also come across relaxation in Section 6.6,
with references in Section 6.11.

The intimate relation between relaxation and diffusion also manifests itself in
the large time behavior of solutions to hyperbolic systems with “frictional” damping
and in particular in the simple system governing the isentropic flow of a gas through
a porous medium; see Hsiao and Liu [1], Tai-Ping Liu [25], Serre and Xiao [1],
Hsiao and Luo [1], Luo and Yang [1], Nishihara and Yang [1], Hsiao and Pan [2,3],
Hsiao, Li and Pan [1], Hsiao and Li [1,2], Nishihara, Wang and Yang [1,2,3], Marcati
and Mei [1], He and Li [1], Liu and Natalini [1], Marcati and Pan [1], Marcati and
Nishihara [1], Marcati, mei and Rubino [1], Pan [1,2], Li and Saxton [1], Huang and
Pan [1,2], Lattanzio and Rubino [1], Huang, Marcati and Pan [1], Di Francesco and
Marcati [1], Lan and Lin [1], Dafermos and Pan [1], and Huang, Pan and Wang [1].

Out of a huge literature on nonhyperbolic systems that nevertheless exhibit be-
havior similar to that of hyperbolic systems with damping, here is a small repre-
sentative sample: For the Euler-Poisson system, see Poupaud, Rascle and Vila [1],
Dehua Wang [1,3], Wang and Chen [1], Guo [1], Engelberg, Liu and Tadmor [1], Li,
Markowich and Mei [1], Feldman, Ha and Slemrod [1], Jang [1], Chae and Tadmor
[1], and Tadmor and Wei [1]. For the semiconductor equations, see the monograph
by Markowich, Ringhofer and Schmeiser [1], which contains a comprehensive list
of references; also Guo and Strauss [1]. For the system of radiation hydrodynamics,
coupling the Euler equations with an elliptic equation accounting for the flux of radi-
ation energy, see Rohde and Yong [1], Rohde, Wang and Xie [1], and Rohde and Xie
[1,2]. The monographs by Lions [2] and Feireisl [1] treat the system of equations
for compressible viscoelastic fluids, in several space dimensions, and provide an
exhaustive bibliography. Of course, the literature on the incompressible case, which
includes the classical Navier-Stokes equations, is vast. The system of magnetohydro-
dynamics for viscous fluids is discussed in Chen and Wang [4,5], and Dehua Wang
[4]. For the equations of radiation magnetohydrodynamics, see Rohde and Yong [2].
For the system of one-dimensional thermoviscoelasticity, see Dafermos and Hsiao
[2], and Dafermos [12]. For the equations of one-dimensional thermoelasticity, see
Slemrod [1], Dafermos and Hsiao [3], and the detailed survey article by Racke [1].
Finally, for the equations of one-dimensional viscoelasticity, with viscosity induced
by fading memory dependence, see MacCamy [1], Dafermos and Nohel [1], Dafer-
mos [15], and the monograph by Renardy, Hrusa and Nohel [1].

A thorough discussion of initial-boundary value problems, including the details
on the material sketched in Section 5.6, is found in Benzoni-Gavage and Serre [2].
See also the survey article by Higdon [1]. In particular, Theorem 5.6.2, on the equa-
tions of elastodynamics, is taken from Dafermos and Hrusa [1], while Theorem 5.6.3,
on the Euler equations, in the presence of vacuum, is due to Coutand and Shkoller
[2]. For related results on the last problem, see Coutand and Shkoller [1], Makino
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[1], Liu and Yang [1], Liu, Xin and Yang [1], Tong Yang [4], Xu and Yang [1], and
Jang and Masmoudi [1].

For perspectives on stability issues see Benzoni-Gavage, Rousset, Serre and
Zumbrun [1]. See also Benzoni-Gavage and Coulombel [1]. The vanishing viscosity
approach and the related questions on the nature and stability of resulting boundary
layers have been actively investigated in recent years; see H.O. Kreiss [1], Benab-

` es [1],

´ and Zumbrun [1,2], and

dallah and Serre [1], Gisclon and Serre [1], Gisclon [1], Grenier and Gu
Kreiss and Kreiss [1], Xin [6], Serre and Zumbrun [1], Serre [14, 17, 24], Joseph
and LeFloch [1,2,3], Rousset [1,2,3],
vier, Williams and Zumbrun [5,6].

Métivier Guès, Méti-



VI

The L1 Theory for Scalar Conservation Laws

The theory of the scalar balance law, in several spatial dimensions, has reached a
state of virtual completeness. In the framework of classical solutions, the elementary,
yet effective, method of characteristics yields a sharper version of Theorem 5.1.1,
determining explicitly the life span of solutions with Lipschitz continuous initial
data and thereby demonstrating that in general this life span is finite. Thus one must
deal with weak solutions, even when the initial data are very smooth.

In regard to weak solutions, the special feature that sets the scalar balance law
apart from systems of more than one equation is the size of its family of entropies. It
will be shown that the abundance of entropies induces an effective characterization
of admissible weak solutions as well as very strong L1-stability and L∞-monotonicity
properties. Armed with such powerful a priori estimates, one can construct admissi-
ble weak solutions in a number of ways. As a sample, construction by the method of
vanishing viscosity, the theory of L1-contraction semigroups, the layering method,
a relaxation method and an approach motivated by the kinetic theory will be pre-
sented here. The method of vanishing viscosity will also be employed for solving
the initial-boundary value problem. When the initial data are functions of locally
bounded variation then so are the solutions. Remarkably, however, even solutions
that are merely in L∞ exhibit the same geometric structure as BV functions, with
jump discontinuities assembling on “manifolds” of codimension one.

The chapter will close with a description of the seemingly insurmountable obsta-
cles encountered in the study of weak solutions for hyperbolic systems of conserva-
tion laws in several spatial dimensions, and an account of current efforts to bypass
these obstructions.

In order to expose the elegance of the theory, the discussion will be restricted to
the homogeneous scalar conservation law, even though the general, inhomogeneous
balance law (3.3.1) may be treated by the same methodology, at the expense of rather
minor technical complications.

The issue of stability of weak solutions with respect to the weak* topology of L∞

will be addressed in Chapter XVI. The special case of a single space variable, m = 1,
has a very rich theory of its own, certain aspects of which will be presented in later
chapters and especially in Chapter XI.
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6.1 The Cauchy Problem: Perseverance and Demise

of Classical Solutions

We consider the Cauchy problem for a homogeneous scalar conservation law:

(6.1.1) ∂tu(x, t)+divG(u(x, t)) = 0, x ∈ Rm, t > 0,

(6.1.2) u(x,0) = u0(x), x ∈ Rm .

The flux G(u) = (G1(u), . . . ,Gm(u)) is a given smooth function on R, taking values
in M1×m.

A characteristic of (6.1.1), associated with a continuously differentiable solution
u, is an orbit ξ : [0,T )→ Rm of the system of ordinary differential equations

(6.1.3)
dx
dt

= G′(u(x, t))� .

With every characteristic ξ we associate the differential operator

(6.1.4)
d
dt

= ∂t +G′(u(ξ (t), t))grad ,

which determines the directional derivative along ξ . In particular, since u satisfies
(6.1.1), du/dt = 0, i.e., u is constant along any characteristic. By virtue of (6.1.3),
this implies that the slope of the characteristic is constant. Thus all characteristics
are straight lines along which the solution is constant. With the help of this property,
one may study classical solutions of (6.1.1), (6.1.2) in minute detail. In particular,
for scalar conservation laws Theorem 5.1.1 admits the following refinement:

6.1.1 Theorem. Assume that u0 , defined on Rm , is bounded and Lipschitz continu-
ous. Let

(6.1.5) κ = ess inf
y∈Rm

divG′(u0(y)).

Then there exists a classical solution u of (6.1.1), (6.1.2) on the maximal interval
[0,T∞), where T∞ = ∞ when κ ≥ 0 and T∞ = −κ−1 when κ < 0. Furthermore, if u0
is Ck so is u.

Proof. Assume first that u0 ∈ C∞
0 (R

m) and let u be the unique smooth classical so-
lution of (6.1.1), (6.1.2), defined on the maximal time interval [0,T∞), in accordance
to Theorem 5.1.1. By the properties of characteristics, stated above, with any point
(x, t) in Rm × [0,T∞) is associated y ∈ Rm such that

(6.1.6) y = x− tG′(u(x, t))�, u(x, t) = u0(y).

From (6.1.6) one easily gets
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(6.1.7) ∇u(x, t) =
∇u0(y)

1+ t divG′(u0(y))
, ∂tu(x, t) =

−G′(u0(y)) ·∇u0(y)
1+ t divG′(u0(y))

,

which implies, in particular, that T∞ = ∞ if κ ≥ 0, or T∞ =−κ−1 if κ < 0.
Suppose now u0 is merely Lipschitz on Rm. Set T∞ = ∞ if κ ≥ 0, or T∞ =−κ−1

if κ < 0. With the help of mollifiers, we construct a sequence {u0n} in C∞
0 (R

m) that
converges to u0, uniformly on compact sets, and also ∇u0n(y) tends to ∇u0(y) at
every Lebesgue point y of ∇u0 .

The classical solution un of (6.1.1) with initial value u0n is defined on a maxi-
mal time interval [0,Tn). We set T = liminf

n→∞
Tn , noting that 0 < T ≤ Tn . By virtue of

(6.1.7), the un are equilipschitzean on every compact subset of Rn × [0,T ), whence
some subsequence of {un} converges, uniformly on compact sets, to a locally Lip-
schitz function u. Clearly u inherits from {un} the property (6.1.6). This in turn
implies that if u0 is differentiable at some point y, then u is differentiable along the
characteristic x = y+ tG′(u0(y)) and the derivatives are given by (6.1.7). In particu-
lar, u is the classical solution of (6.1.1), (6.1.2) on the time interval [0,T ). If T = T∞ ,
(6.1.7) implies that [0,T∞) is the maximal time interval and the assertion of the the-
orem has been proved. On the other hand, if T < T∞ , (6.1.7) implies that u may be
extended to t = T and u(·,T ) is Lipschitz on Rm. We may thus repeat the process
and prolong the time interval of existence of u up to [0,T∞), which is necessarily
maximal.

Finally, the implicit function theorem, applied to (6.1.6), yields that when u0 is
Ck the solution u is also Ck. This completes the proof.

From the above considerations it becomes clear that the lifespan of classical so-
lutions is generally finite. It is thus imperative to deal with weak solutions.

An alternative, instructive way of viewing classical solutions u to (6.1.1) is by
realizing them as “level surfaces” of functions f (v;x, t), defined on R×Rm×R; that
is

(6.1.8) f (u(x, t);x, t) = 0

whenever u satisfies (6.1.1). It is easy to see that for that purpose f must satisfy the
transport equation

(6.1.9) ∂t f (v;x, t)+
m

∑
α=1

G′
α(v)∂α f (v;x, t) = 0.

Thus, we have transformed the nonlinear equation (6.1.1) into a linear one, at the
price of increasing the number of independent variables from m+1 to m+2. In par-
ticular, to solve the initial value problem (6.1.1), (6.1.2), one should solve a Cauchy
problem for (6.1.9) with initial condition f (v;x,0) = v−u0(x). Since (6.1.9) is lin-
ear, a solution of this Cauchy problem will exist on R×Rm ×R. The resulting f
will in turn induce, through (6.1.8), the classical solution u to (6.1.1), (6.1.2), which
will be valid up until fv vanishes for the first time. We shall return to the transport
equation (6.1.9), in the context of weak solutions, in Section 6.7.
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6.2 Admissible Weak Solutions and their Stability Properties

In Section 4.2, we saw that the initial value problem for a scalar conservation law may
admit more than one weak solution, thus raising the need to impose admissibility
conditions. In Section 4.5, we discussed how entropy inequalities may serve that
purpose. Recall from Section 3.3.1 that for the scalar conservation law (6.1.1) any
smooth function η may serve as an entropy, with associated entropy flux

(6.2.1) Q(u) =
∫ u

η ′(ω)G′(ω)dω,

and entropy production zero. It will be convenient to relax slightly the regularity con-
dition and allow entropies (and thereby entropy fluxes) that are merely locally Lips-
chitz continuous. Similarly, G need only be locally Lipschitz continuous. It turns out
that in order to properly characterize admissible weak solutions, one has to impose
the entropy inequality

(6.2.2) ∂tη(u(x, t))+divQ(u(x, t))≤ 0

for every convex entropy-entropy flux pair:

6.2.1 Definition. A bounded measurable function u on Rm × [0,∞) is an admissible
weak solution of (6.1.1), (6.1.2), with u0 in L∞(Rm), if the inequality

(6.2.3)
∫ ∞

0

∫
Rm

[∂tψ η(u)+
m

∑
α=1

∂αψQα(u)]dxdt +
∫
Rm
ψ(x,0)η(u0(x))dx ≥ 0

holds for every convex function η , with Q determined through (6.2.1), and all non-
negative Lipschitz continuous test functionsψ on Rm× [0,∞), with compact support.

Applying (6.2.3) with η(u) = ±u, Q(u) = ±G(u) shows that (6.2.3) implies
(4.3.2), i.e., any admissible weak solution in the sense of Definition 6.2.1 is in par-
ticular a weak solution as defined in Section 4.3. Also note that if u is a classical
solution of (6.1.1), (6.1.2), then (6.2.3) holds automatically, as an equality, i.e., all
classical solutions are admissible. Several motivations for (6.2.3) will be presented
in subsequent sections.

To verify (6.2.3) for all convex η , it would suffice to test it just for some family of
convex η with the property that the set of linear combinations of its members, with
nonnegative coefficients, spans the entire set of convex functions. To formulate ex-
amples, consider the following standard notation: For w ∈R ,w+ denotes max{w,0}
and sgnw stands for −1,1 or 0, as w is negative, positive or zero. Notice that any
Lipschitz continuous function is the limit of a sequence of piecewise linear convex
functions

(6.2.4) c0u+
k

∑
i=1

ci(u−ui)
+
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with ci > 0, i = 1, · · · ,k. Consequently, it would suffice to verify (6.2.3) for the en-
tropies ±u, with entropy flux ±G, together with the family of entropy-entropy flux
pairs

(6.2.5) η(u; ū) = (u− ū)+, Q(u; ū) = sgn(u− ū)+[G(u)−G(ū)],

where ū is a parameter taking values in R. Equally well, one may use the celebrated
family of entropy-entropy flux pairs of Kruzkov:

(6.2.6) η(u; ū) = |u− ū|, Q(u; ū) = sgn(u− ū)[G(u)−G(ū)].

From Remark 4.5.3 one infers that admissible weak solutions u render the distri-
bution ∂tη(u)+divQ(u) a measure for any (not necessarily convex) entropy-entropy
flux pair.

The fundamental existence and uniqueness theorem, which will be demonstrated
by several methods in subsequent sections, is

6.2.2 Theorem. For each u0 ∈ L∞(Rm), there exists a unique admissible weak solu-
tion u of (6.1.1), (6.1.2) and

(6.2.7) u(·, t) ∈C0([0,∞);L1
loc(R

m)).

The following proposition establishes the most important properties of admissi-
ble weak solutions of the scalar conservation law, namely, stability in L1 and mono-
tonicity in L∞:

6.2.3 Theorem. Let u and ū be admissible weak solutions of (6.1.1) with respective
initial data u0 and ū0 taking values in a compact interval [a,b]. There is s > 0,
depending solely on [a,b], such that, for any t > 0 and r > 0

(6.2.8)
∫
|x|<r

[u(x, t)− ū(x, t)]+dx ≤
∫
|x|<r+st

[u0(x)− ū0(x)]+dx,

(6.2.9) ‖u(·, t)− ū(·, t)‖L1(Br)
≤ ‖u0(·)− ū0(·)‖L1(Br+st )

.

Furthermore, if

(6.2.10) u0(x)≤ ū0(x), a.e. on Rm ,

then

(6.2.11) u(x, t)≤ ū(x, t), a.e. on Rm × [0,∞).

In particular, the (essential) range of both u and ū is contained in [a,b].

Proof. The salient feature of the scalar conservation law that induces (6.2.8) is that
the functions η(u; ū), Q(u; ū), defined through (6.2.5), constitute entropy-entropy
flux pairs not only in the variable u, for fixed ū, but also in the variable ū, for fixed u.
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Consider any nonnegative Lipschitz continuous function φ(x, t, x̄, t̄), defined on
Rm × [0,∞)×Rm × [0,∞) and having compact support. Fix (x̄, t̄) in Rm × [0,∞) and

(6.2.12)∫ ∞

0

∫
Rm

{∂tφ(x, t, x̄, t̄)η(u(x, t); ū(x̄, t̄))+
m

∑
α=1

∂xα φ(x, t, x̄, t̄)Qα(u(x, t); ū(x̄, t̄))}dxdt

+
∫
Rm
φ(x,0, x̄, t̄)η(u0(x); ū(x̄, t̄))dx ≥ 0.

Interchanging the roles of u and ū, we similarly obtain, for any fixed point (x, t) in
Rm × [0,∞):

(6.2.13)∫ ∞

0

∫
Rm

{∂t̄φ(x, t, x̄, t̄)η(u(x, t); ū(x̄, t̄))+
m

∑
α=1

∂x̄α φ(x, t, x̄, t̄)Qα(u(x, t); ū(x̄, t̄))}dx̄dt̄

+
∫
Rm
φ(x, t, x̄,0)η(u(x, t); ū0(x̄))dx̄ ≥ 0.

Integrating over Rm× [0,∞) (6.2.12), with respect to (x̄, t̄), and (6.2.13), with respect
to (x, t), and then adding the resulting inequalities yields

(6.2.14)
∫ ∞

0

∫
Rm

∫ ∞

0

∫
Rm

{(∂t +∂t̄)φ(x, t, x̄, t̄)η(u(x, t); ū(x̄, t̄))

+
m

∑
α=1

(∂xα +∂x̄α )φ(x, t, x̄, t̄)Qα(u(x, t); ū(x̄, t̄))}dxdtdx̄dt̄

+
∫ ∞

0

∫
Rm

∫
Rm
φ(x,0, x̄, t̄)η(u0(x); ū(x̄, t̄))dxdx̄dt̄

+
∫ ∞

0

∫
Rm

∫
Rm
φ(x, t, x̄,0)η(u(x, t); ū0(x̄))dxdx̄dt ≥ 0.

We fix a smooth nonnegative function ρ on R with compact support and total
mass one:

(6.2.15)
∫ ∞

−∞
ρ(ξ )dξ = 1.

Consider any nonnegative Lipschitz test function ψ on Rm×[0,∞), with compact
support. For positive small ε , write (6.2.14) with

(6.2.16) φ(x, t, x̄, t̄) = ε−(m+1)ψ(
x+ x̄

2
,
t + t̄

2
)ρ(

t − t̄
2ε

)
m

∏
β=1

ρ(
xβ − x̄β

2ε
)

and then let ε ↓ 0. Noting that

write (6.2.3) for the entropy-entropy flux pair η(u; ū(x̄, t̄)), Q(u; ū(x̄, t̄)), and the test
function ψ(x, t) = φ(x, t, x̄, t̄):
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(6.2.17) (∂t +∂t̄)φ(x, t, x̄, t̄) = ε−(m+1)∂tψ(
x+ x̄

2
,
t + t̄

2
)ρ(

t − t̄
2ε

)
m

∏
β=1

ρ(
xβ − x̄β

2ε
),

(6.2.18)

(∂xα +∂x̄α )φ(x, t, x̄, t̄) = ε−(m+1)∂αψ(
x+ x̄

2
,
t + t̄

2
)ρ(

t − t̄
2ε

)
m

∏
β=1

ρ(
xβ − x̄β

2ε
),

(6.2.19) |η(u(x, t); ū0(x̄))−η(u0(x); ū0(x̄))| ≤ |u(x, t)−u0(x)|,

(6.2.20) |η(u0(x); ū(x̄, t̄))−η(u0(x); ū0(x̄))| ≤ |ū(x̄, t̄)− ū0(x̄)|,

recalling Theorem 4.5.1, and using standard convergence theorems, we conclude that

(6.2.21)∫ ∞

0

∫
Rm

{∂tψ(x, t)η(u(x, t); ū(x, t))+
m

∑
α=1

∂αψ(x, t)Qα(u(x, t); ū(x, t))}dxdt

+
∫
Rm
ψ(x,0)η(u0(x); ū0(x))dx ≥ 0.

From (6.2.5) it is clear that there is s > 0 such that

(6.2.22) |Q(u; ū)| ≤ sη(u; ū),

for all u and ū in the range of the solutions.
Fix r > 0, t ≥ 0 and ε > 0 small; write (6.2.21) for ψ(x,τ) = χ(x,τ)ω(τ), with

χ and ω defined by (5.3.12) and (5.3.11) to get

(6.2.23)
1
ε

∫ t+ε

t

∫
|x|<r

[u(x,τ)− ū(x,τ)]+dxdτ ≤
∫
|x|<r+st

[u0(x)− ū0(x)]+dx

−1
ε

∫ t

0

∫
r+s(t−τ)<x<r+s(t−τ)+ε

[
sη(u; ū)+

Q(u; ū)x
|x|

]
dxdτ+O(ε).

On account of (6.2.22), the second integral on the right-hand side of (6.2.23) is non-
negative. Thus, letting ε ↓ 0, recalling Theorem 4.5.1, and using that [ · ]+ is a convex
function, we arrive at (6.2.8).

Interchanging the roles of u and ū in (6.2.8) we deduce a similar inequality which
added to (6.2.8) yields (6.2.9).

Clearly, (6.2.10) implies (6.2.11), by virtue of (6.2.8). In particular, applying
this monotonicity property, first for ū0(x) ≡ b and then for u0(x) ≡ a, we deduce
u(x, t)≤b and ū(x, t) ≥ a a.e. Interchanging the roles of u and ū, we conclude that
the essential range of both solutions is contained in [a,b]. Thus s in (6.2.22) depends
solely on [a,b]. This completes the proof.
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From (6.2.9) we immediately draw the following conclusion on uniqueness and
finite dependence:

6.2.4 Corollary. There is at most one admissible weak solution of (6.1.1), (6.1.2).

6.2.5 Corollary. The value of the admissible weak solution at any point (x̄, t̄) depends
solely on the restriction of the initial data to the ball Bst̄(x̄)

Another important consequence of (6.2.9) is that any admissible weak solution
of (6.1.1) with initial data of locally bounded variation is itself a function of locally
bounded variation:

6.2.6 Theorem. Let u be an admissible weak solution of (6.1.1) with initial data
u0 ∈ BVloc(R

m) taking values in an interval [a,b]. Then u ∈ BVloc(R
m × (0,∞)). For

any fixed t > 0, u(·, t) is in BVloc(R
m) and

(6.2.24) TVBr u(·, t)≤ TVBr+st u0(·),

for every r > 0, where s depends solely on [a,b].

Proof. Let {Eα , α = 1, · · · ,m} denote the standard orthonormal basis of Rm. Note
that, for α = 1, · · · ,m, the function ū, defined by ū(x, t) = u(x+ hEα , t), h > 0, is
an admissible weak solution of (6.1.1) with initial data ū0, ū0(x) = u0(x + hEα).
Therefore, by virtue of (6.2.9), for any t ∈ (0,T ),

(6.2.25)
∫
|x|<r

|u(x+hEα , t)−u(x, t)|dx ≤
∫
|x|<r+st

|u0(x+hEα)−u0(x)|dx.

Since u0 ∈ BVloc(R
m), Theorem 1.7.2 and (1.7.3) yield that u(·, t) ∈ BVloc(R

m) and
(6.2.24) holds.

Thus ∂αu(·, t) is a Radon measure which is bounded on any ball of radius r in Rm,
uniformly on compact time intervals. Since u is bounded, it follows from Theorem
1.7.5 that divG(u(·, t)) has the same property. In particular, the distributions ∂αu and
divG(u) are locally finite measures on Rm × (0,∞). Because (6.1.1) is satisfied in
the sense of distributions, ∂tu will also be a measure on Rm × (0,∞). Consequently,
u ∈ BVloc(R

m × (0,∞)). This completes the proof.

The trivial, constant, solutions of (6.1.1) are stable, not only in L1 but also in
any Lp. Since u may be renormalized, it suffices to establish Lp-stability for the zero
solution.

6.2.7 Theorem. Let u be an admissible weak solution of (6.1.1), (6.1.2), with initial
data taking values in a compact interval [a,b]. There is s > 0, depending solely on
[a,b], such that, for any 1 ≤ p ≤ ∞ , t ≥ 0, and r > 0,

(6.2.26) ‖u(·, t)‖Lp(Br) ≤ ‖u0(·)‖Lp(Br+st ) .

.
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Proof. For 1 ≤ p < ∞ , consider the convex entropy η(u) = |u|p, with entropy flux Q
determined through (6.2.1). Note that there is s > 0, independent of p, such that

(6.2.27) |Q(u)| ≤ sη(u), u ∈ [a,b].

Fix r > 0, t ≥ 0 and ε > 0 small; write (6.2.3) for the above entropy-entropy flux
pair and the test function ψ(x,τ) = χ(x,τ)ω(τ), with χ and ω defined by (5.3.12)
and (5.3.11). This yields

(6.2.28)
1
ε

∫ t+ε

t

∫
|x|<r

|u(x,τ)|pdxdτ ≤
∫
|x|<r+st

|u0(x)|pdx

−1
ε

∫ t

0

∫
r+s(t−τ)<|x|<r+s(t−τ)+ε

[
sη(u)+

Q(u)x
|x|

]
dxdτ+O(ε).

We know that the range of u is contained in [a,b] and so, by (6.2.27), the second
integral on the right-hand side of (6.2.28) is nonnegative. Thus, letting ε ↓ 0 and
using that |u|p is convex, we arrive at (6.2.26). This completes the proof.

The following sections will present various methods of constructing admissible
weak solutions of (6.1.1), (6.1.2), inducing alternative proofs of Theorem 6.1.1.

6.3 The Method of Vanishing Viscosity

The aim here is to construct admissible weak solutions of the scalar hyperbolic con-
servation law (6.1.1) as the μ ↓ 0 limit of solutions of the family of parabolic equa-
tions

(6.3.1) ∂tu(x, t)+divG(u(x, t)) = μΔu(x, t), x ∈ Rm , t ∈ [0,∞),

where Δ stands for Laplace’s operator with respect to the spatial variables, namely
Δ = ∑m

α=1 ∂ 2
α , and μ is a positive parameter.

The motivation for this approach has already been presented in Section 4.6. Note
that (6.3.1) is not necessarily related to any specific physical model and so the term
μΔu should be regarded as “artificial viscosity”.

Because (6.3.1) is parabolic, the initial value problem (6.3.1), (6.1.2) always has
a unique solution, which is smooth for t > 0 (assuming G is regular) even when the
initial data u0 are merely in L∞. For example, if the derivative G′ is Hölder continu-
ous, then the solution u of (6.3.1), (6.1.2) is continuously differentiable with respect
to t and twice continuously differentiable with respect to the spatial variables, on
Rm × (0,∞).

Espousing the premise that “relevant” solutions of (6.1.1), (6.1.2) are μ ↓ 0 limits
of solutions of (6.3.1), (6.1.2) provides the first justification of the notion of admis-
sible weak solution postulated by Definition 6.2.1:
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6.3.1 Theorem. Let uμ denote the solution of (6.3.1), (6.1.2). Assume that for some

almost everywhere on Rm × [0,∞). Then u is an admissible weak solution of (6.1.1),
(6.1.2) on Rm × [0,∞).

Proof. Consider any smooth convex entropy function η , with associated entropy flux
Q determined through (6.2.1). Multiply (6.3.1) by η ′(uμ(x, t)) and use (6.2.1) to get

(6.3.2) ∂tη(uμ)+divQ(uμ) = μΔη(uμ)−μη ′′(uμ)|∇uμ |2.

Multiply (6.3.2) by any smooth nonnegative test function ψ , with compact sup-
port in Rm × [0,∞), integrate over Rm × [0,∞), and integrate by parts. Taking into
account that the last term in (6.3.2) is nonnegative yields the inequality

(6.3.3)
∫ ∞

0

∫
Rm

[∂tψ η(uμ)+
m

∑
α=1

∂αψQα(uμ)]dxdt +
∫
Rm
ψ(x,0)η(u0(x))dx

≥−μ
∫ ∞

0

∫
Rm
Δψ η(uμ)dxdt.

Setting μ = μk in (6.3.3) and letting k → ∞ , we conclude that the limit u of
{uμk} satisfies (6.2.3) for all smooth convex entropy functions η and all smooth
nonnegative test functions ψ . By completion we infer that (6.2.3) holds even when
η and ψ are merely Lipschitz continuous. This completes the proof.

That (6.1.1) and (6.3.1) are perfectly matched becomes clear by comparing
Theorem 6.2.3 with

6.3.2 Theorem. Let uμ and ūμ be solutions of (6.3.1) with respective initial data u0
and ū0 that are in L1(Rm) and take values in a compact interval [a,b]. Then, for any
t > 0,

(6.3.4)
∫
Rm

[uμ(x, t)− ūμ(x, t)]+dx ≤
∫
Rm

[u0(x)− ū0(x)]+dx,

(6.3.5) ‖uμ(·, t)− ūμ(·, t)‖L1(Rm) ≤ ‖u0(·)− ū0(·)‖L1(Rm) .

Furthermore, if

(6.3.6) u0(x)≤ ū0(x), a.e. on Rm,

then

(6.3.7) uμ(x, t)≤ ūμ(x, t), on Rm × (0,∞).

In particular, the range of both uμ and ūμ is contained in [a,b].

sequence {μk}, with μk ↓ 0 as k → ∞ ,{uμk} converges to some function u, boundedly
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Proof. To simplify the notation, we drop the subscript μ and denote uμ and ūμ by
u and ū. From standard theory of parabolic equations it follows that when u0(·) and
ū0(·) are in L1(Rm)∩L∞(Rm), then u(·, t), ū(·, t) and their spatial derivatives of any
order are also in L1(Rm)∩L∞(Rm), with norms uniformly bounded with respect to t
on compact subsets of (0,∞).

For ε > 0, we define the function ηε on R by

(6.3.8) ηε(w) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 −∞ < w ≤ 0

w2

4ε
0 < w ≤ 2ε

w− ε 2ε < w < ∞ .

Since both u and ū satisfy (6.3.1), one easily verifies the equation

(6.3.9) ∂tηε(u− ū)+
m

∑
α=1

∂α{η ′
ε(u− ū)[Gα(u)−Gα(ū)]}

−
m

∑
α=1

η ′′
ε (u− ū)[Gα(u)−Gα(ū)]∂α(u− ū)

= μΔηε(u− ū)−μη ′′
ε (u− ū)|∇(u− ū)|2.

Fix 0 < s < t < ∞ and integrate (6.3.9) over Rm × (s, t). Considering that the last
term on the right-hand side of (6.3.9) is nonnegative, we thus obtain the inequality

(6.3.10)
∫
Rm
ηε(u(x, t)− ū(x, t))dx−

∫
Rm
ηε(u(x,s)− ū(x,s))dx

≤
m

∑
α=1

∫ t

s

∫
Rm
η ′′
ε (u− ū) [Gα(u)−Gα(ū)]∂α(u− ū)dxdτ.

Notice that η ′′
ε (u− ū)[Gα(u)−Gα(ū)] is bounded, uniformly for ε > 0. Also, it is

clear that as ε ↓ 0,ηε(u(x, t)− ū(x, t)) converges pointwise to [u(x, t)− ū(x, t)]+ while
η ′′
ε (u(x, t)− ū(x, t))[Gα(u(x, t))−Gα(ū(x, t))] converges pointwise to zero. There-

fore, (6.3.10) and the Lebesgue dominated convergence theorem imply

(6.3.11)
∫
Rm

[u(x, t)− ū(x, t)]+dx−
∫
Rm

[u(x,s)− ū(x,s)]+dx ≤ 0,

whence we deduce (6.3.4), by letting s ↓ 0.
Interchanging the roles of u and ū in (6.3.4) we derive a similar inequality which

added to (6.3.4) yields (6.3.5).
Clearly, (6.3.6) implies (6.3.7), by virtue of (6.3.4). In particular, applying this

monotonicity property, first for ū0(x) ≡ b and then for u0(x) ≡ a, we deduce that
u(x, t) ≤ b and ū(x, t) ≥ a. Interchanging the roles of u and ū, we conclude that the
range of both solutions is contained in [a,b]. This completes the proof.
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Estimate (6.3.5) may be employed to estimate the modulus of continuity in the
mean of solutions of (6.3.1) with initial data in L∞(Rm)∩L1(Rm).

6.3.3 Lemma. Let uμ be the solution of (6.3.1), (6.1.2), where u0 is in L1(Rm) and
takes values in a compact interval [a,b]. In particular,

(6.3.12)
∫
Rm

|u0(x+ y)−u0(x)|dx ≤ ω(|y|), y ∈ Rm ,

for some nondecreasing function ω on [0,∞), with ω(r) ↓ 0 as r ↓ 0. There is a
constant c, depending solely on [a,b], such that, for any t > 0,

(6.3.13)
∫
Rm

|uμ(x+ y, t)−uμ(x, t)|dx ≤ ω(|y|), y ∈ Rm ,

(6.3.14)∫
Rm

|uμ(x, t +h)−uμ(x, t)|dx ≤ c(h2/3 +μh1/3)‖u0‖L1(Rm) +2ω(h1/3), h > 0.

Proof. Fix t > 0. For any y ∈ Rm, the function ūμ(x, t) = uμ(x+ y, t) is the solution
of (6.3.1) with initial data ū0(x) = u0(x+ y). Applying (6.3.5) yields

(6.3.15)
∫
Rm

|uμ(x+ y, t)−uμ(x, t)|dx ≤
∫
Rm

|u0(x+ y)−u0(x)|dx

whence (6.3.13) follows.
We now fix h > 0. We normalize G by subtracting G(0) so henceforth we may

assume, without loss of generality, that G(0) = 0. We multiply (6.3.1) by a bounded
smooth function φ , defined on Rm, and integrate the resulting equation over the strip
Rm × (t, t +h). Integration by parts yields

(6.3.16)
∫
Rm
φ(x)[uμ(x, t +h)−uμ(x, t)]dx

=
∫ t+h

t

∫
Rm

{
m

∑
α=1

∂αφ(x)Gα(uμ(x,τ))+μΔφ(x)uμ(x,τ)}dxdτ.

Let us set

(6.3.17) v(x) = uμ(x, t +h)−uμ(x, t).

One may establish (6.3.14) formally by inserting φ(x) = sgnv(x) in (6.3.16). How-
ever, since the function sgn is discontinuous, we have to mollify it first, with the help
of a smooth, nonnegative function ρ on R, with support contained in [−m−1/2,m−1/2]
and total mass one, (6.2.15):

(6.3.18) φ(x) =
∫
Rm

h−m/3
m

∏
β=1

ρ(
xβ − zβ

h1/3 ) sgnv(z)dz.
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Notice that |∂αφ | ≤ c1h−1/3 and |Δφ | ≤ c2h−2/3. Moreover, by virtue of (6.3.5), with
ū ≡ 0 ,‖u(·,τ)‖L1(Rm) ≤ ‖u0(·)‖L1(Rm) . Therefore, (6.3.16) implies

(6.3.19)
∫
Rm
φ(x)v(x)dx ≤ c(h2/3 +μh1/3)‖u0‖L1(Rm) ,

where c depends solely on [a,b]. On the other hand, observing that

(6.3.20)

|v(x)|−v(x)sgnv(z) = |v(x)|− |v(z)|+[v(z)−v(x)]sgnv(z)≤ 2|v(x)−v(z)|,
we obtain from (6.3.18):

(6.3.21) |v(x)|−φ(x)v(x) =
∫
Rm

h−m/3
m

∏
β=1

ρ(
xβ − zβ

h1/3 )[|v(x)|−v(x)sgnv(z)]dz

≤ 2
∫
|ξ |<1

m

∏
β=1

ρ(ξβ )|v(x)−v(x−h1/3ξ )|dξ .

Combining (6.3.17), (6.3.21), (6.3.19), and (6.3.13), we arrive at (6.3.14). This com-
pletes the proof.

We have now laid the groundwork for presenting a

Proof of Theorem 6.2.2. Assume first that u0 ∈ L∞(Rm)∩ L1(Rm). Let uμ denote
the solution of (6.3.1), (6.1.2), with 0 < μ < 1. By (6.3.14), {uμ(·, t)}, regarded as
a family in C0([0,∞);L1(Rm)), is uniformly equicontinuous. Furthermore, (6.3.13)
implies that, for any fixed t in [0,∞),{uμ(·, t)} is contained in a compact set of
L1

loc(R
m). Hence, by virtue of the Ascoli theorem, with any sequence {μk}, μk → 0

as k → ∞ , is associated a subsequence, denoted again by {μk}, and a function u in
C0([0,∞);L1

loc(R
m)) such that {uμk(·, t)} converges to u(·, t) in L1

loc(R
m), uniformly

for t in any compact subset of [0,∞). Passing if necessary to a further subsequence,
always denoted by {μk}, we infer that {uμk} converges to u boundedly almost every-
where on Rm × [0,∞), and hence, on account of Theorem 6.3.1, u is an admissible
weak solution to (6.1.1), (6.1.2). Since the admissible solution is unique (Corollary
6.2.4), the whole family {uμ} must converge to u, as μ ↓ 0. Furthermore, by (6.3.14)
and weak lower semicontinuity in L1(Rm), u(·, t) lies in C0([0,∞);L1(Rm)).

Suppose now u0 ∈ L∞(Rm). For r > 0, let χr denote the characteristic function
of the ball Br(0), and ur denote the admissible weak solution of (6.1.1), with initial
data χru0 ∈ L∞(Rm)∩ L1(Rm). As r → ∞ , χru0 → u0 in L1

loc(R
m). Therefore, on

account of (6.2.9), the family {ur} will converge in L1
loc to some function u. Clearly,

u is an admissible weak solution of (6.1.1), (6.1.2). By Corollary 6.2.4, this solution
is unique. Now, by Corollary 6.2.5, u ≡ ur on any compact subset of Rm × [0,∞), if
r is sufficiently large. Since ur(·, t) ∈ C0([0,∞);L1(Rm)), it follows that u(·, t) is in
C0([0,∞);L1

loc(R
m)). This completes the proof.
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6.4 Solutions as Trajectories of a Contraction Semigroup and the

Large Time Behavior of Periodic Solutions

For t ∈ [0,∞), consider the map S(t) that carries u0 ∈ L∞(Rm)∩L1(Rm) to the ad-
missible weak solution u of (6.1.1), (6.1.2) restricted to t, i.e., S(t)u0(·) = u(·, t). By
virtue of the properties of admissible weak solutions demonstrated in the previous
two sections, S(t) maps L∞(Rm)∩L1(Rm) to L∞(Rm)∩L1(Rm) and

(6.4.1) S(0) = I (the identity),

(6.4.2) S(t + τ) = S(t)S(τ), for any t and τ in [0,∞),

(6.4.3) S(·)u0 ∈C0([0,∞);L1(Rm)),

(6.4.4) ‖S(t)u0 −S(t)ū0‖L1(Rm) ≤ ‖u0 − ū0‖L1(Rm), for any t in [0,∞).

Consequently, S(·) is a L1-contraction semigroup on L∞(Rm)∩L1(Rm).
Naturally, the question arises whether one may construct S(·) ab initio, through

the theory of nonlinear contraction semigroups in Banach space. This would pro-
vide a direct, independent proof of existence of admissible weak solutions of (6.1.1),
(6.1.2) as well as an alternative derivation of their properties.

To construct the semigroup, we must realize (6.1.1) as an abstract differential
equation

(6.4.5)
du
dt

+A(u) � 0,

for a suitably defined nonlinear transformation A, with domain D(A) and range
R(A) in L1(Rm). This operator may, in general, be multivalued, i.e., for each
u ∈ D(A), A(u) will be a nonempty subset of L1(Rm) which may contain more than
one point.

For u smooth, one should expect A(u) = divG(u). However, the task of extending
D(A) to u that are not smooth is by no means straightforward, because the construc-
tion should somehow reflect the admissibility condition encoded in Definition 6.2.1.
First we perform a preliminary extension. For convenience, we normalize G so that
G(0) = 0.

6.4.1 Definition. The (possibly multivalued) transformation Â, with domain D(Â) in
L1(Rm), is defined by u ∈ D(Â) and w ∈ Â(u) if u,w and G(u) are all in L1(Rm) and
the inequality

(6.4.6)
∫
Rm

{
m

∑
α=1

∂αψ(x)Qα(u(x))+ψ(x)η ′(u(x))w(x)}dx ≥ 0



holds for any convex entropy function η , such that η ′ is bounded on R, with asso-
ciated entropy flux Q determined through (6.2.1), and for all nonnegative Lipschitz
continuous test functions ψ on Rm, with compact support.

Applying (6.4.6) for the entropy-entropy flux pairs ±u,±G(u), verifies that

(6.4.7) Â(u) =
m

∑
α=1

∂αGα(u)

holds, in the sense of distributions, for any u∈D(Â). In particular, Â is single-valued.
Furthermore, the identity

(6.4.8)
∫
Rm

{
m

∑
α=1

∂αψQα(u)+ψ η ′(u)
m

∑
α=1

∂αGα(u)}dx = 0,

which is valid for any u ∈C1
0(R

m) and every entropy-entropy flux pair, implies that
C1

0(R
m) ⊂ D(Â). In particular, D(Â) is dense in L1(Rm). For u ∈ C1

0(R
m), Â(u) is

given by (6.4.7). Thus Â is indeed an extension of (6.4.7).
The reader may have already noticed the similarity between (6.4.6) and (6.2.3).

Similar to (6.2.3), to verify (6.4.6) it would suffice to test it just for the entropies ±u
and the family (6.2.5) or (6.2.6) of entropy-entropy flux pairs.

6.4.2 Definition. The (possibly multivalued) transformation A, with domain D(A) in
L1(Rm), is the graph closure of Â, i.e., u ∈ D(A) and w ∈ A(u) if (u,w) is the limit
in L1(Rm)×L1(Rm) of a sequence {(uk,wk)} such that uk ∈ D(Â) and wk ∈ Â(uk).

The following propositions establish properties of A, implying that it is the gen-
erator of a contraction semigroup on L1(Rm).

6.4.3 Theorem. The transformation A is accretive, that is if u and ū are in D(A),
then

(6.4.9) ‖(u+λw)− (ū+λ w̄)‖L1(Rm) ≥ ‖u− ū‖L1(Rm),λ > 0,w ∈ A(u), w̄ ∈ A(ū).

Proof. It is the property of accretiveness that renders the semigroup generated by A
contractive. Consequently, the proof of Theorem 6.4.3 bears close resemblance to
the demonstration of the L1-contraction estimate (6.2.9) in Theorem 6.2.3.

In view of Definition 6.4.2, it would suffice to show that the “smaller” trans-
formation Â is accretive. Accordingly, fix some u, ū in D(Â) and let w = Â(u) and
w̄ = Â(ū). Consider any nonnegative Lipschitz continuous function φ on Rm ×Rm,
with compact support. Fix x̄ in Rm and write (6.4.6) for the entropy-entropy flux

(6.4.10)∫
Rm

sgn[u(x)− ū(x̄)]{
m

∑
α=1

∂xα φ(x, x̄) [Gα(u(x))−Gα(ū(x̄))]+φ(x, x̄)w(x)}dx ≥ 0.
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pair η(u; ū(x̄)), Q(u; ū(x̄)) of the Kruzkov family (6.2.6) and for the test function
ψ(x) = φ(x, x̄) to obtain
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We may interchange the roles of u and ū and derive the analog of (6.4.10), for any
fixed x in Rm:

(6.4.11)∫
Rm

sgn[ū(x̄)−u(x)]{
m

∑
α=1

∂x̄α φ(x, x̄) [Gα(ū(x̄))−Gα(u(x))]+φ(x, x̄) w̄(x̄)}dx̄ ≥ 0.

Integrating over Rm (6.4.10), with respect to x̄, and (6.4.11), with respect to x, and
then adding the resulting inequalities yields

(6.4.12)
∫
Rm

∫
Rm

sgn[u(x)− ū(x̄)]{
m

∑
α=1

(∂xα +∂x̄α )φ(x, x̄) [Gα(u(x))−Gα(ū(x̄))]

+φ(x, x̄)[w(x)− w̄(x̄)]}dxdx̄ ≥ 0.

Fix a smooth nonnegative function ρ on R with compact support and total mass
one, (6.2.15). Take any nonnegative Lipschitz continuous test functionψ on Rm, with
compact support. For positive small ε , write (6.4.12) with

(6.4.13) φ(x, x̄) = ε−mψ(
x+ x̄

2
)

m

∏
β=1

ρ(
xβ − x̄β

2ε
),

and let ε ↓ 0. Noting that

(6.4.14) (∂xα +∂x̄α )φ(x, x̄) = ε−m∂αψ(
x+ x̄

2
)

m

∏
β=1

ρ(
xβ − x̄β

2ε
),

(6.4.15)∫
Rm
σ(x){

m

∑
α=1

∂αψ(x) [Gα(u(x))−Gα(ū(x))]+ψ(x)[w(x)− w̄(x)]}dx ≥ 0,

where σ is some function such that

(6.4.16) σ(x)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
= 1 if u(x)> ū(x)

∈ [−1,1] if u(x) = ū(x)

=−1 if u(x)< ū(x).

Upon choosing ψ with ψ(x) = 1 for |x|< r, ψ(x) = 1+r−|x| for r ≤ |x|< r+1 and
ψ(x) = 0 for r+1 ≤ |x|< ∞ , and letting r → ∞ , we obtain

(6.4.17)
∫
Rm
σ(x)[w(x)− w̄(x)]dx ≥ 0,

for some function σ as in (6.4.16).



Take now any λ > 0 and use (6.4.17), (6.4.16) to conclude

(6.4.18)

‖(u+λw)− (ū+λ w̄)‖L1(Rm) ≥
∫
Rm
σ(x){u(x)− ū(x)+λ [w(x)− w̄(x)]}dx

≥
∫
Rm
σ(x)[u(x)− ū(x)]dx = ‖u− ū‖L1(Rm) .

This completes the proof.

An immediate consequence (actually an alternative, equivalent restatement) of
the assertion of Theorem 6.4.3 is

6.4.4 Corollary. For any λ > 0, (I + λA)−1 is a well-defined, single-valued,
L1-contractive transformation, defined on the range R(I +λA) of I +λA.

6.4.5 Theorem. The transformation A is maximal, that is

(6.4.19) R(I +λA) = L1(Rm), f or any λ > 0.

Proof. By virtue of Definition 6.4.2 and Corollary 6.4.4, it will suffice to show that
R(I +λ Â) is dense in L1(Rm); for instance that it contains L1(Rm)∩L∞(Rm). We
thus fix f ∈ L1(Rm)∩L∞(Rm) and seek solutions u ∈ D(Â) of the equation

(6.4.20) u+λ Â(u) = f .

Recall that Â(u) admits the representation (6.4.7), in the sense of distributions. Thus,
solving (6.4.20) amounts to determining an admissible weak solution of a first-order
quasilinear partial differential equation, namely the stationary analog of (6.1.1).

Motivated by the method of vanishing viscosity, discussed in Section 6.3, we
shall construct solutions to (6.4.20) as the μ ↓ 0 limit of solutions of the family of
elliptic equations

(6.4.21) u(x)+λdivG(u(x))−μΔu(x) = f (x), x ∈ Rm.

For any fixed μ > 0, (6.4.21) admits a solution in H2(Rm). We have to show that, as
μ ↓ 0, the family of solutions of (6.4.21) converges, boundedly almost everywhere,
to some function u which is the solution of (6.4.20). The proof will be partitioned
into the following steps.

6.4.6 Lemma. Let uμ and ūμ be solutions of (6.4.21) with respective right-hand sides
f and f̄ that are in L1(Rm) and take values in a compact interval [a,b]. Then

(6.4.22)
∫
Rm

[uμ(x)− ūμ(x)]+dx ≤
∫
Rm

[ f (x)− f̄ (x)]+dx,

(6.4.23) ‖uμ − ūμ‖L1(Rm) ≤ ‖ f − f̄‖L1(Rm) .
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Furthermore, if

(6.4.24) f (x)≤ f̄ (x), a.e. on Rm ,

then

(6.4.25) uμ(x)≤ ūμ(x), on Rm.

In particular, the range of both u and ū is contained in [a,b].

Proof. It is very similar to the proof of Theorem 6.3.2 and so it will be left to the
reader.

6.4.7 Lemma. Let uμ denote the solution of (6.4.21), with right-hand side f in
L∞(Rm)∩ L1(Rm). Then, as μ ↓ 0,{uμ} converges boundedly a.e. to the solution
u of (6.4.20).

Proof. For any y ∈ Rm, the function ūμ , defined by ūμ(x) = uμ(x+ y), is a solution
of (6.4.21) with right-hand side f̄ , f̄ (x) = f (x+ y). Hence, by (6.4.23),

(6.4.26)
∫
Rm

|uμ(x+ y)−uμ(x)|dx ≤
∫
Rm

| f (x+ y)− f (x)|dx.

Thus the family {uμ} is uniformly bounded and uniformly equicontinuous in L1. It
follows that every sequence {μk}, with μk → 0 as k →∞ , will contain a subsequence,
labeled again as {μk}, such that

(6.4.27) uμk → u, boundedly a.e. on Rm,

where u is in L∞(Rm)∩L1(Rm).
Consider now any smooth convex entropy function η , with associated entropy

flux Q, determined by (6.2.1). Then uμ will satisfy the identity

(6.4.28) η ′(uμ)uμ +λdivQ(uμ)−μΔη(uμ)+μη ′′(uμ)|∇uμ |2 = η ′(uμ) f .

Multiplying (6.4.28) by any nonnegative smooth test function ψ on Rm, with com-
pact support, and integrating over Rm yields

(6.4.29)
∫
Rm

{λ
m

∑
α=1

∂αψQα(uμ)+ψ η ′(uμ)( f −uμ)}dx ≥−μ
∫
Rm
Δψ η dx.

From (6.4.27) and (6.4.29),

(6.4.30)
∫
Rm

{
m

∑
α=1

∂αψQα(u)+ψ η ′(u)λ−1( f −u)}dx ≥ 0,

which shows that u is indeed a solution of (6.4.20).



By virtue of Corollary 6.4.4, the solution of (6.4.20) is unique and so the entire
family {uμ} converges to u, as μ ↓ 0. This completes the proof.

Once accretiveness and maximality have been established, the Crandall-Liggett
theory of semigroups in nonreflexive Banach space ensures that A generates a con-
traction semigroup S(·) on D(A) = L1(Rm). S(·)u0 can be constructed by solving the
differential equation (6.4.5) through the implicit difference scheme

(6.4.31)

⎧⎪⎨⎪⎩
1
ε
[uε(t)−uε(t − ε)]+A(uε(t)) � 0, t > 0

uε(t) = u0 , t < 0.

For any ε > 0, a unique solution uε of (6.4.31) exists on [0,∞), by virtue of Theorem
6.4.5 and Corollary 6.4.4. It can be shown, further, that Corollary 6.4.4 provides the
necessary stability to ensure that, as ε ↓ 0, uε(·) converges, uniformly on compact
subsets of [0,∞), to some function that we denote by S(·)u0.

The general properties of S(·) follow from the Crandall-Liggett theory: When
u0 ∈ D(A), S(t)u0 stays in D(A) for all t ∈ [0,∞). In general, S(t)u0 may fail to
be differentiable with respect to t, even when u0 ∈ D(A). Thus S(·)u0 should be
interpreted as a weak solution of the differential equation (6.4.5).

The special properties of S(·) are consequences of the special properties of A
induced by the propositions recorded above (e.g. Lemma 6.4.6). The following the-
orem, whose proof can be found in the references cited in Section 6.11, summarizes
the properties of S(·) and in particular provides an alternative proof for the existence
of a unique admissible weak solution to (6.1.1), (6.1.2) (Theorem 6.2.2) and its basic
properties (Theorems 6.2.3 and 6.2.7).

6.4.8 Theorem. The transformation A generates a contraction semigroup S(·) in
L1(Rm), namely a family of maps S(t) : L1(Rm)→ L1(Rm), t ∈ [0,∞), which satisfy
the semigroup property (6.4.1), (6.4.2); the continuity property (6.4.3), for any u0 in
L1(Rm); and the contraction property (6.4.4), for any u0 , ū0 in L1(Rm). If

(6.4.32) u0 ≤ ū0 , a.e. on Rm,

then

(6.4.33) S(t)u0 ≤ S(t)ū0 , a.e. on Rm.

For 1 ≤ p ≤ ∞ , the sets Lp(Rm)∩L1(Rm) are positively invariant under S(t) and,
for any t ∈ [0,∞),

(6.4.34) ‖S(t)u0‖Lp(Rm) ≤ ‖u0‖Lp(Rm) , f or all u0 ∈ Lp(Rm)∩L1(Rm).

If u0 ∈ L∞(Rm)∩ L1(Rm), then S(·)u0 is the admissible weak solution of (6.1.1),
(6.1.2), in the sense of Definition 6.2.1.
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The reader should note that the approach via semigroups suggests a notion of
admissible weak solution to (6.1.1), (6.1.2) for any, even unbounded, u0 in L1(Rm).
These are not necessarily distributional solutions of (6.1.1), unless the flux G exhibits
linear growth at infinity.

The theory of contraction semigroups in Banach space provides the proper setting
for describing the long time behavior of solutions to the Cauchy problem (6.1.1),
(6.1.2), when the initial data are periodic, say

(6.4.35) u0(x+ ei) = u0(x), x ∈ Rm, i = 1, . . . ,m,

where (e1, . . . ,em) is the standard basis of Rm. The spatial periodicity property is
passed on to the solution u, for any fixed t ∈ [0,∞). It is thus expedient to realize
u0(·) and u(·, t) as functions on the standard torus Tm, in which case, by virtue of
(6.2.9), the family of maps S(t), t ≥ 0, that carry u0(·) to u(·, t) constitutes a L1-
contraction semigroup on L∞(Tm).

The L1 contraction property implies that the orbit γ(u0) =
⋃

t≥0 S(t)u0 of the
trajectory Su0 of the semigroup, emanating from u0 , is relatively compact in L1(Tm).
Furthermore, by the semigroup property, γ(S(t)u0) ⊂ γ(u0), for all t ∈ [0,∞). Thus,
the nonempty, compact omega limit set

(6.4.36) ω(u0) =
⋂
t≥0

γ(S(t)u0),

of u0 encodes the long time behavior of the solution of (6.1.1), (6.1.2), because, as
t → ∞ , u(·, t)→ ω(u0), in Lp(Tm), for any 1 ≤ p < ∞ .

The omega limit set is invariant, S(t)ω(u0) = ω(u0), for 0 ≤ t < ∞ , and min-
imal, in that ω(u0) = γ(v0) = ω(v0), for any v0 ∈ ω(u0). To see that, suppose
v0 = limn→∞ S(tn)u0 and w0 = limk→∞ S(τk)u0 , with tn → ∞ and τk → ∞ . Fix any
subsequence {τkn} of {τk}, with sn = τkn − tn > n. Since

(6.4.37) ‖S(sn)v0 −w0‖L1 ≤ ‖S(sn)v0 −S(sn)S(tn)u0‖L1 +‖S(τkn)u0 −w0‖L1 ,

we conclude that S(sn)v0 → w0 , as n → ∞ , i.e., w0 ∈ ω(v0).
The minimality of ω(u0), in conjunction with Theorem 6.2.7 and the weak lower

semicontinuity of Lp norms, implies that, for any 1 ≤ p ≤ ∞ , ω(u0) lies on a sphere
in Lp(Tm), centered at 0. It is also easy to see (references in Section 6.11) that the
semigroup S restricted toω(u0) becomes a semigroup of L1 isometries, which admits
an extension into a group Ŝ of L1 isometries. Furthermore, for any v0 ∈ω(u0), Ŝ(t)v0
is an almost periodic function with values in L1(Tm).

The case of (6.1.1) with linear flux demonstrates that an omega limit set that
satisfies all the constraints listed in the previous paragraph may still be quite large.
However, nonlinearity in the flux induces damping that may shrink the omega limit
set to a single point, namely the constant function equal to the conserved mean value
of the solution.

Linear degeneracy of G in the spatial direction marked by the nonzero vector
ξ ∈ Rm is encoded in the set
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(6.4.38) Nξ = {u ∈ R : ξ ·G′′(u) = 0}.

The following proposition states optimal conditions for the asymptotic decay of pe-
riodic solutions to their mean value.

6.4.9 Theorem. Let u be the admissible solution to the Cauchy problem (6.1.1),
(6.1.2), with initial data u0 ∈ L∞(Rm) satisfying the periodicity condition (6.4.35). If
the mean value

(6.4.39)
∫
Tm

u0(x)dx = u

is not an interior point of the set Nξ , for any nonzero ξ ∈ Zm, then

(6.4.40) u(·, t)→ u, as t → ∞ ,

the convergence being in Lp(Tm), for every 1 ≤ p < ∞ .

Sketch of Proof. Assume, without loss of generality, that u0 ∈ BV (Tm), in which
case ω(u0) ⊂ BV (Tm). Fix any v0 ∈ ω(u0). One needs to show that v0 = u, a.e. on
Tm. Since the mean value of v0 is u, it would suffice to prove that the set V of x in
Tm with v0(x)> has measure zero, or equivalently that the BV function φ ,

(6.4.41) φ(x) = χV (x)−
∫
Tm
χV (y)dy, x ∈ Tm,

vanishes a.e. on Tm. By basic integral geometry, one may demonstrate that φ van-
ishes by establishing the vanishing of its integral over every geodesic hyperplane of
codimension one, Pξ ,ρ = {x : ξ ·x = ρ}, with ξ ∈ Zm \{0} and ρ ∈R. The proof of
that, found in the references cited in Section 6.11, rests on the minimality of ω(u0)
which in particular implies that v0 ∈ ω(v0).

6.5 The Layering Method

The admissible weak solution of (6.1.1), (6.1.2) will here be determined as the h ↓ 0
limit of a family {uh} of functions constructed by patching together classical solu-
tions of (6.1.1) in a stratified pattern. In addition to providing another method for
constructing solutions and thereby an alternative proof of the existence Theorem
6.2.2, this approach also offers a different justification of the admissibility condition,
Definition 6.2.1.

The initial data u0 are in L∞(Rm), taking values in a compact interval [a,b]. The
construction of approximate solutions will involve mollification of functions on Rm

by forming their convolution with a kernel λh constructed as follows. We start out
with a nonnegative, smooth function ρ on R, supported in [−1,1], which is even,
ρ(−ξ ) = ρ(ξ ) for ξ ∈ R, and has total mass one, (6.2.15). For h > 0, we set

u
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(6.5.1) λh(x) = (ph)−m
m

∏
β=1

ρ(
xβ
ph

),

with

(6.5.2) p =
√

m qγ‖u0‖L∞(Rm) ,

where q denotes the total variation of the function ρ and γ is the maximum of |G′′(u)|
over the interval [a,b]. We employ λh to mollify functions f ∈ L∞(Rm):

(6.5.3) (λh ∗ f )(x) =
∫
Rm
λh(x− y) f (y)dy, x ∈ Rm.

From (6.5.3) and (6.5.1) it follows easily

(6.5.4) inf(λh ∗ f )≥ ess inf f , sup(λh ∗ f )≤ esssup f ,

(6.5.5) ‖λh ∗ f‖L1(Br)
≤ ‖ f‖L1(Br+

√
mph)

, for any r > 0,

(6.5.6) ‖∂α(λh ∗ f )‖L∞(Rm) ≤
q
ph

‖ f‖L∞(Rm) , α = 1, · · · ,m.

A somewhat subtler estimate, which depends crucially on λh being an even function,
and whose proof can be found in the references cited in Section 6.11, is

(6.5.7) |
∫
Rm
χ(x)[(λh ∗ f )(x)− f (x)]dx| ≤ ch2‖χ‖C2(Rm)‖ f‖L∞(Rm) ,

for all χ ∈C∞
0 (R

m).
The construction of the approximate solutions proceeds as follows. After the

parameter h > 0 has been fixed, Rm × [0,∞) is partitioned into layers:

(6.5.8) Rm × [0,∞) =
∞⋃
�=0

Rm × [�h, �h+h).

The initial value uh(·,0) is determined by

(6.5.9) uh(·,0) = λh ∗u0(·).
By virtue of (6.5.6) and (6.5.2), uh(·,0) is Lipschitz continuous, with Lipschitz con-
stant ω = 1/pγ . Hence, by Theorem 6.1.1, (6.1.1) with initial data uh(·,0) admits a
classical solution uh on the layer Rm × [0,h).

Next we determine uh(·,h) by mollifying the limit uh(·,h−) of uh(·, t) as t ↑ h:

(6.5.10) uh(·,h) = λh ∗uh(·,h−).

We extend uh to the layer Rm × [h,2h) by solving (6.1.1) with data uh(·,h) at t = h.
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Continuing this process, we determine uh on the general layer [�h, �h+ h) by
solving (6.1.1) with data

(6.5.11) uh(·, �h) = λh ∗uh(·, �h−)

at t = �h. We thus end up with a measurable function uh on Rm × [0,∞) which takes
values in the interval [a,b]. Inside each layer Rm × [�h, �h+ h), uh is a classical so-
lution of (6.1.1). However, as one crosses the border t = �h between adjacent layers,
uh experiences jump discontinuities, from uh(·, �h−) to uh(·, �h).

6.5.1 Theorem. As h ↓ 0, the family {uh} constructed above converges boundedly
almost everywhere on Rm × [0,∞) to the admissible solution u of (6.1.1), (6.1.2).

The proof is an immediate consequence of the following two propositions to-
gether with uniqueness of the admissible solution, Corollary 6.2.4. The fact that the
limit of classical solutions yields the admissible weak solution provides another jus-
tification of Definition 6.2.1.

6.5.2 Lemma. (Consistency). Assume that for some sequence {hk}, with hk → 0 as
k → ∞ ,

(6.5.12) uhk(x, t)→ u(x, t), a.e. on Rm × [0,∞).

Then u is an admissible weak solution of (6.1.1), (6.1.2).

Proof. Consider any convex entropy function η with associated entropy flux Q de-
termined through (6.2.1). In the interior of each layer, uh is a classical solution of
(6.1.1) and so it satisfies the identity

(6.5.13) ∂tη(uh(x, t))+divQ(uh(x, t)) = 0.

Fix any nonnegative smooth test function ψ on Rm × [0,∞), with compact sup-
port. Multiply (6.5.13) by ψ , integrate over each layer, integrate by parts, and then
sum the resulting equations over all layers to get

(6.5.14)
∫ ∞

0

∫
Rm

[∂tψ η(uh)+
m

∑
α=1

∂αψQα(uh)]dxdt +
∫
Rm
ψ(x,0)η(uh(x,0))dx

=−
∞

∑
�=1

∫
Rm
ψ(x, �h)[η(uh(x, �h))−η(uh(x, �h−))]dx.

Combining (6.5.11) with Jensen’s inequality and using (6.5.7) yields
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(6.5.15)
∫
Rm
ψ(x, �h)[η(uh(x, �h))−η(uh(x, �h−))]dx

≤
∫
Rm
ψ(x, �h)[λh ∗η(uh)(x, �h−))−η(uh(x, �h−))]dx ≤Ch2.

The summation on the right-hand side of (6.5.14) contains O(1/h) many nonzero
terms. Therefore, passing to the k → ∞ limit along the sequence {hk} in (6.5.14)
and using (6.5.12), (6.5.9), and (6.5.15), we conclude that u satisfies (6.2.3). This
completes the proof.

6.5.3 Lemma. (Compactness). There is a sequence {hk}, with hk → 0 as k → ∞ , and
a L∞ function u on Rm × [0,∞) such that (6.5.12) holds.

Proof. The first step is to establish the weaker assertion that for some sequence {hk},
with hk → 0 as k → ∞ , and a function u,

(6.5.16) uhk(·, t)→ u(·, t), as k → ∞ , in L∞(Rm) weak∗ ,

for almost all t in [0,∞). To this end, fix any smooth test function χ on Rm, with
compact support, and consider the function

(6.5.17) vh(t) =
∫
Rm
χ(x)uh(x, t)dx, t ∈ [0,∞).

Notice that vh is smooth on [�h, �h+h) and satisfies

(6.5.18)
∫ �h+h

�h

∣∣∣∣ d
dt

vh(t)
∣∣∣∣dt =

∫ �h+h

�h

∣∣∣∣−∫
Rm
χ(x)

m

∑
α=1

∂αGα(u(x, t))dx
∣∣∣∣dt

=
∫ �h+h

�h

∣∣∣∣∫
Rm

m

∑
α=1

∂αχ(x)Gα(u(x, t))dx
∣∣∣∣dt ≤Ch.

On the other hand, vh experiences jump discontinuities across the points t = �h which
can be estimated with the help of (6.5.11) and (6.5.7):

(6.5.19) |vh(�h)−vh(�h−)|=
∣∣∣∣∫

Rm
χ(x)[uh(x, �h)−uh(x, �h−)]dx

∣∣∣∣≤Ch2.

From (6.5.18) and (6.5.19) it follows that the total variation of vh over any com-
pact subinterval of [0,∞) is bounded, uniformly in h. Therefore, by Helly’s theorem
(cf. Section 1.7), there is a sequence {hk}, hk → 0 as k → ∞ , such that vhk(t) con-
verges for almost all t in [0,∞).

By Cantor’s diagonal process, we may construct a subsequence of {hk}, which
will be denoted again by {hk}, such that the sequence

(6.5.20)
{∫

Rm
χ(x)uhk(x, t)dx

}
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converges for almost all t, for every member χ of any given countable family of test
functions. Consequently, the sequence (6.5.20) converges for any χ in L1(Rm). Thus,
for almost any t in [0,∞) there is a bounded measurable function on Rm, denoted by
u(·, t), such that (6.5.16) holds.

We now strengthen the mode of convergence in (6.5.16). For any y ∈ Rm, the
functions uh and ūh , ūh(x, t) = uh(x+y, t), are both solutions of (6.1.1) in every layer.
Let us fix t > 0 and r > 0. Suppose t ∈ [�h, �h+h). Applying repeatedly (6.2.9) and
(6.5.5) (recalling (6.5.11)), we conclude

(6.5.21)∫
|x|<r

|uh(x+ y, t)−uh(x, t)|dx ≤
∫
|x|<r+s(t−�h)

|uh(x+ y, �h)−uh(x, �h)|dx

≤
∫
|x|<r+s(t−�h)+

√
mph

|uh(x+ y, �h−)−uh(x, �h−)|dx

≤ . . .≤
∫
|x|<r+st+

√
mp(t+h)

|u0(x+ y)−u0(x)|dx.

It follows that the family {uh(·, t)} is equicontinuous in the mean on every com-
pact subset of Rm. Therefore, the convergence in (6.5.16) is upgraded to strongly in
L1

loc(R
m). Thus, passing to a final subsequence we arrive at (6.5.12). This completes

the proof.

6.6 Relaxation

Another interesting method for constructing admissible weak solutions of (6.1.1) is
through relaxation. The point of departure is a semilinear system of m+1 equations,

(6.6.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tv(x, t)+

m

∑
α=1

cα∂αv(x, t) =
1
μ

m

∑
α=1

[Fα(v(x, t))−Zα(x, t)]

∂tZα(x, t)− cα∂αZα(x, t) =
1
μ
[Fα(v(x, t))−Zα(x, t)], α = 1, · · · ,m,

in the m+1 unknowns (v,Z1, · · · ,Zm), where μ is a small positive parameter while,
for α = 1, · · · ,m, the cα are given constants and the Fα are specified smooth functions
such that

(6.6.2) F ′
α(v)< 0, −∞ < v < ∞ , α = 1, · · · ,m,

(6.6.3)

Notice that solutions of (6.6.1) satisfy the conservation law

Fα(0) = 0, Fα(v)→±∞ , as v →∓∞ , α = 1, · · · ,m.
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(6.6.4) ∂t [v(x, t)−
m

∑
α=1

Zα(x, t)]+
m

∑
α=1

cα∂α [v(x, t)+Zα(x, t)] = 0.

Because of the form of the right-hand side of (6.6.1), one should expect that, as
μ ↓ 0, the variables Zα “relax” to their equilibrium states Fα(v), in which case (6.6.4)
reduces to a scalar conservation law (6.1.1) with1

(6.6.5) u = v−
m

∑
α=1

Fα(v), Gα(u) = cα [v+Fα(v)], α = 1, · · · ,m.

The above considerations suggest a program for constructing solutions of (6.1.1)
as asymptotic limits of solutions of (6.6.1).

The first step is to examine the Cauchy problem for (6.6.1), under assigned initial
conditions

(6.6.6) v(x,0) = v0(x), Zα(x,0) = Zα0(x), α = 1, · · · ,m, x ∈ Rm.

Since (6.6.1) is semilinear hyperbolic, when the initial data (v0,Z10, · · · ,Zm0)
are in C1

0(R
m) there exists a unique classical solution (v,Z1, · · · ,Zm) defined on a

maximal time interval [0,T ), for some 0 < T ≤ ∞ . For any t ∈ [0,T ), the functions
(v(·, t),Z1(·, t), · · · ,Zm(·, t)) are in C1

0(R
m). Furthermore, if T < ∞

(6.6.7)

Here we need (possibly weak) solutions, under a broader class of initial data,
which exist globally in time. Such solutions do indeed exist because, under our as-
sumptions (6.6.2), (6.6.3), the effect of the right-hand side in (6.6.1) is dissipative.
This is manifested in the following

6.6.1 Theorem. For any initial data (v0,Z10, · · · ,Zm0) in L1(Rm)∩L∞(Rm), there ex-
ists a unique weak solution (v,Z1, · · · ,Zm) of (6.6.1), (6.6.6) on Rm× [0,∞) such that
(v(·, t),Z1(·, t), · · · ,Zm(·, t)) are in C0([0,∞);L1(Rm)). If

(6.6.8) a ≤ v0(x)≤ b, Fα(b)≤ Zα0(x)≤ Fα(a), α = 1, · · · ,m, x ∈ Rm,

then
(6.6.9)

a ≤ v(x, t)≤ b , Fα(b)≤ Zα(x, t)≤ Fα(a) , α = 1, · · · ,m , (x, t) ∈ Rm × [0,∞).

Furthermore, if (v̄, Z̄1, · · · , Z̄m) is another solution of (6.6.1), with initial data
(v̄0, Z̄10, · · · , Z̄m0) in L1(Rm)∩L∞(Rm), then, for any t ∈ [0,∞),

1 By virtue of (6.6.2), the transformation (6.6.5)1 may be inverted to express v as a smooth,
increasing function of u, and it is in that sense that Gα , defined by (6.6.5)2, should be
realized as a function of u.

,

‖v(·, t)‖L∞(Rm) +
m

∑
α=1

‖Zα(·, t)‖L∞(Rm) → ∞ , as t ↑ T.
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(6.6.10)
∫
Rm

{[v(x, t)− v̄(x, t)]+ +
m

∑
α=1

[Z̄α(x, t)−Zα(x, t)]+}dx

≤
∫
Rm

{[v0(x)− v̄0(x)]+ +
m

∑
α=1

[Z̄α0(x)−Zα0(x)]+}dx,

(6.6.11) ‖v(·, t)− v̄(·, t)‖L1(Rm) +
m

∑
α=1

‖Zα(·, t)− Z̄α(·, t)‖L1(Rm)

≤ ‖v0(·)− v̄0(·)‖L1(Rm) +
m

∑
α=1

‖Zα0(·)− Z̄α0(·)‖L1(Rm) .

In particular, if

(6.6.12) v0(x)≤ v̄0(x), Zα0(x)≥ Z̄α0(x), α = 1, · · · ,m, x ∈ Rm,

then
(6.6.13)

v(x, t)≤ v̄(x, t), Zα(x, t)≥ Z̄α(x, t), α = 1, · · · ,m, (x, t) ∈ Rm × [0,∞).

Proof. The first step is to establish (6.6.10) under the simplifying assumption that
both solutions (v,Z1, · · · ,Zm) and (v̄, Z̄1, · · · , Z̄m) are classical, with initial data
(v0,Z10, · · · ,Zm0) and (v̄0, Z̄10, · · · , Z̄m0) in C1

0(R
m). For ε > 0, we recall the func-

tion ηε defined through (6.3.8) and note that

(6.6.14) ∂t [ηε(v− v̄)+
m

∑
α=1

ηε(Z̄α −Zα)]+
m

∑
α=1

cα∂α [ηε(v− v̄)−ηε(Z̄α −Zα)]

=
1
μ

m

∑
α=1

[η ′
ε(v− v̄)−η ′

ε(Z̄α −Zα)][Fα(v)−Fα(v̄)+ Z̄α −Zα ]

follows readily from (6.6.1). For fixed values of v, v̄,Zα , Z̄α , of any sign, the right-
hand side of (6.6.14) has a nonpositive limit as ε ↓ 0. Therefore, integrating (6.6.14)
over Rm × (0, t) and letting ε ↓ 0 we arrive at (6.6.10).

When (6.6.12) holds, (6.6.10) immediately implies (6.6.13). Notice that, for any
constants a and b, (a,F1(a), · · · ,Fm(a)) and (b,F1(b), · · · ,Fm(b)) are particular so-
lutions of (6.6.1) and hence (6.6.8) implies (6.6.9). In particular, blow-up (6.6.7)
cannot occur for any T and thus the solutions exist on Rm × [0,∞).

To get (6.6.11), it suffices to write (6.6.10) with the roles of (v,Z1, · · · ,Zm)
and (v̄, Z̄1, · · · , Z̄m) reversed and then add the resulting inequality to the original
(6.6.10).

We have now verified all the assertions of the theorem, albeit within the con-
text of classical solutions, with initial data in C1

0(R
m). Nevertheless, by virtue of the

L1-contraction estimate (6.6.11), weak solutions of (6.6.1), with any initial data in
L1(Rm)∩L∞(Rm), satisfying the asserted properties, may readily be constructed as
L1 limits of sequences of classical solutions. This completes the proof.
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Our next task is to investigate the limiting behavior of solutions of (6.6.1) as
μ ↓ 0. The mechanism that induces the Zα to relax to their equilibrium values Fα(v)
will be captured through an entropy-like inequality. We define the family

(6.6.15) Φα(Zα) =−
∫ Zα

0
F−1
α (w)dw, α = 1, · · · ,m

of nonnegative, convex functions on (−∞,∞). Assuming (v,Z1, · · · ,Zm) is a classical
solution of (6.6.1), with initial data (v0,Z10, · · · ,Zm0) in C1

0(R
m), we readily verify

that

(6.6.16) ∂t

[
1
2 v2 +

m

∑
α=1

Φα(Zα)
]
+

m

∑
α=1

cα∂α
[

1
2 v2 −Φα(Zα)

]

=
1
μ

m

∑
α=1

[v−F−1
α (Zα)][Fα(v)−Zα ].

Since v−F−1
α (Zα) = F−1

α (Fα(v))−F−1
α (Zα), the mean value theorem implies

(6.6.17) −[v−F−1
α (Zα)][Fα(v)−Zα ]≥ 1

k
[Fα(v)−Zα ]2 ,

where k is any upper bound of −F ′
α over the range of v. Therefore, upon integrating

(6.6.16) over Rm × [0,∞) we deduce the inequality

(6.6.18)
∫ ∞

0

∫
Rm

m

∑
α=1

[Fα(v)−Zα ]2dxdt ≤ kμ
∫
Rm

[
1
2 v2

0 +
m

∑
α=1

Φα(Zα0)
]
dx.

As explained in the proof of Theorem 6.6.1, weak solutions of (6.6.1) are constructed
as L1 limits of sequences of classical solutions, and hence the inequality (6.6.18) will
hold even for weak solutions with initial data in L1(Rm)∩L∞(Rm).

6.6.2 Theorem. Let (vμ ,Zμ1 , · · · ,Zμm) denote the family of solutions of (6.6.1), (6.6.6),
with parameter μ > 0, and initial data (v0,F1(v0), · · · ,Fm(v0)), where v0 is in
L1(Rm)∩ L∞(Rm). Then there is a bounded measurable function v on Rm × [0,∞)
such that, as μ ↓ 0,

(6.6.19) vμ(x, t)−→ v(x, t), Zμα (x, t)−→ Fα(v(x, t)), α = 1, · · · ,m,

almost everywhere on Rm × [0,∞). The function

(6.6.20) u(x, t) = v(x, t)−
m

∑
α=1

Fα(v(x, t))

is the admissible weak solution of the conservation law (6.1.1), with flux functions
Gα defined through (6.6.5), and initial data

(6.6.21) u0(x) = v0(x)−
m

∑
α=1

Fα(v0(x)), x ∈ Rm.
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Proof. Let us set, for (x, t) ∈ Rm × [0,∞),

(6.6.22) uμ(x, t) = vμ(x, t)−
m

∑
α=1

Zμα (x, t),

(6.6.23) Gμ
α(x, t) = cα [vμ(x, t)+Zμα (x, t)].

By virtue of (6.6.4),

(6.6.24) ∂tuμ(x, t)+divGμ(x, t) = 0.

First we show that there is a bounded measurable function u on Rm × [0,∞) and
some sequence {μn}, with μn ↓ 0 as n → ∞ , such that

(6.6.25) uμn(·, t)−→ u(·, t), n → ∞ ,

in L∞(Rm) weak∗, for all t ∈ [0,∞). To that end, let us fix any test function χ in
C∞

0 (R
m) and define the family of functions

(6.6.26) wμ(t) =
∫
Rm
χ(x)uμ(x, t)dx, t ∈ [0,∞),

which, on account of (6.6.24), are continuously differentiable with derivative

(6.6.27)
d
dt

wμ(t) =
m

∑
α=1

∫
Rm
∂αχ(x)Gμ

α(x, t)

bounded, uniformly in μ > 0. It then follows from Arzela’s theorem that there is a
sequence {μn}, with μn ↓ 0 as n→∞ , such that {wμn} converges for all t ∈ [0,∞). By
Cantor’s diagonal process we may construct a subsequence of {μn}, denoted again
by {μn}, such that the sequence

(6.6.28)
{∫

Rm
χ(x)uμn(x, t)dx

}
is convergent for all t ∈ [0,∞) and every member χ of any given countable fam-
ily of test functions. Consequently, (6.6.28) is convergent for any χ ∈ L1(Rm).
Thus, for each t ∈ [0,∞) there is a bounded measurable function on Rm, denoted
by u(·, t), such that (6.6.25) holds in L∞(Rm) weak∗. Next we note that, by the
L1 contraction estimate (6.6.11), for any fixed t in [0,∞) the family of functions
(vμ(·, t),Zμ1 (·, t), · · · ,Zμm(·, t)) is equicontinuous in the mean. Hence, the conver-
gence in (6.6.25) is upgraded to strongly in L1(Rm). In particular,

(6.6.29) uμn(x, t)−→ u(x, t), n → ∞ ,

almost everywhere on Rm × [0,∞).
We now apply (6.6.18) for our solutions (vμn ,Zμn

1 , · · · ,Zμn
m ) and, passing if nec-

essary to a subsequence, denoted again by {μn}, we obtain
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(6.6.30) Fα(vμn(x, t))−Zμn
α (x, t)→ 0, n → ∞ , α = 1, · · · ,m,

almost everywhere on Rm × [0,∞).
Combining (6.6.22), (6.6.29) and (6.6.30), we deduce

(6.6.31) vμn(x, t)−
m

∑
α=1

Fα(vμn(x, t))→ u(x, t), n → ∞ ,

almost everywhere on Rm × [0,∞). Because of the monotonicity assumption (6.6.2),
(6.6.31) implies that the sequence {vμn} itself must be convergent, say

(6.6.32)

almost everywhere on Rm× [0,∞), where v is a function related to u through (6.6.20).
Furthermore, (6.6.30) and (6.6.32) together imply

(6.6.33) Zμn
α (x, t)→ Fα(v(x, t)),

almost everywhere on Rm × [0,∞).
By virtue of (6.6.22), (6.6.23), (6.6.24), (6.6.32) and (6.6.33), u is a weak solution

of (6.1.1), with fluxes Gα defined through (6.6.5). We proceed to show that this
solution is admissible. We fix any constant v̄ and write (6.6.14) for the two solutions
(vμn ,Zμn

1 , · · · ,Zμn
m ) and (v̄,F1(v̄), · · · ,Fm(v̄)). We apply this (distributional) equation

to any nonnegative Lipschitz continuous test function ψ , with compact support on
Rm × [0,∞) and let ε ↓ 0. Since the ε ↓ 0 limit of the right-hand side of (6.6.14) is
nonpositive, this calculation gives

(6.6.34)
∫ ∞

0

∫
Rm
∂tψ [(vμn − v̄)+ +

m

∑
α=1

(Fα(v̄)−Zμn
α )+]dxdt

+
∫ ∞

0

∫
Rm

m

∑
α=1

cα∂αψ [(vμn − v̄)+− (Fα(v̄)−Zμn
α )+]dxdt

+
∫
Rm
ψ(x,0)[(v0 − v̄)+ +

m

∑
α=1

(Fα(v̄)−Fα(v0))
+]dx ≥ 0.

Letting n → ∞ and using (6.6.32) and (6.6.33), (6.6.34) yields

(6.6.35)
∫ ∞

0

∫
Rm
∂tψ [(v− v̄)+ +

m

∑
α=1

(Fα(v̄)−Fα(v))+]dxdt

+
∫ ∞

0

∫
Rm

m

∑
α=1

cα∂αψ [(v− v̄)+− (Fα(v̄)−Fα(v))+]dxdt

+
∫
Rm
ψ(x,0)[(v0 − v̄)+ +

m

∑
α=1

(Fα(v̄)−Fα(v0))
+]dx ≥ 0.

On account of (6.6.2), v− v̄ and Fα(v̄)−Fα(v) have the same sign. Furthermore, if
we set ū= v̄−∑Fα(v̄), then v− v̄ and u− ū also have the same sign. Therefore, upon
using (6.6.20), (6.6.21), and (6.6.5), we may rewrite (6.6.35) as

vμn(x, t)→ v(x, t), n → ∞ ,

n → ∞ , α = 1, · · · ,m,
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(6.6.36)∫ ∞

0

∫
Rm

[∂tψ η(u; ū)+
m

∑
α=1

∂αψQα(u; ū)]dxdt +
∫
Rm
ψ(x,0)η(u0; ū)dx ≥ 0,

where (η(u; ū),Q(u; ū)) is the entropy-entropy flux pair defined by (6.2.5). As noted
in Section 6.2, the set of entropy-entropy flux pairs (6.2.5), with ū arbitrary, is “com-
plete” and hence (6.6.36) implies that (6.2.3) will hold for any entropy-entropy flux
pair (η ,Q) with η convex. This verifies that u is the admissible weak solution of
(6.1.1), with initial data u0 given by (6.6.21). Since u is unique, the convergence in
(6.6.29), (6.6.32) and (6.6.33) applies not only along the particular sequence {μn}
but also along the whole family {μ}, as μ ↓ 0. This completes the proof.

Theorem 6.6.2 demonstrates how, starting out from a given system (6.6.1), one
may construct, by relaxation, admissible solutions of a particular scalar conservation
law induced by (6.6.1). Of course, we are interested in the reverse process, namely
to determine the appropriate system (6.6.1) whose relaxed form is a given scalar
conservation law (6.1.1). This may be accomplished when, given the fluxes Gα(u),
it is possible to select constants cα in such a way that the transformations (6.6.5)
implicitly determine functions Fα(v) that satisfy the assumptions (6.6.2) and (6.6.3).
Let us normalize the given fluxes by Gα(0) = 0, α = 1, · · · ,m. Since our solutions
will be a priori bounded, let us assume, without loss of generality, that the G′

α(u) are
uniformly bounded on (−∞,∞). From (6.6.5),

(6.6.37) (m+1)v = u+
m

∑
α=1

1
cα

Gα(u).

Therefore, the first constraint is to fix the |cα | so large that

(6.6.38) (m+1)
dv
du

= 1+
m

∑
α=1

1
cα

G′
α(u)≥

1
2
,

in order to secure that the map v �→ u will possess a smooth inverse. Next we note

(6.6.39) F ′
α(v) =−1+

1
cα

G′
α(u)

du
dv

=−1+
m+1

cα
[1+

m

∑
β=1

1
cβ

G′
β (u)]

−1G′
α(u),

so that, by selecting the |cα | sufficiently large, we can satisfy both assumptions
(6.6.2) and (6.6.3). Restrictions on cα that maintain that the convective character-
istic speeds cα should be high relative to the characteristic speeds G′

α of the relaxed
conservation law are called subcharacteristic conditions.

6.7 A Kinetic Formulation

This section discusses an alternative, albeit equivalent, characterization of admissible
weak solutions to (6.1.1), (6.1.2), which, as we shall see below, is motivated by the
kinetic theory.
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It has already been noted that the entropy production for any solution of (6.1.1)
satisfying (6.2.2) is a nonpositive measure. In particular, if u is an admissible solution
of (6.1.1), (6.1.2) in the sense of Definition 6.2.1, then for any v ∈ (−∞,∞),

(6.7.1) ∂t{|u−v|− |v|}+ div{sgn (u−v) [G(u)−G(v)]− sgn v G(v)}=−2νv ,

where νv is a nonnegative measure on Rm×R+. For |v|> sup |u0|= sup |u|, we have
2νv = |∂tu+div G(u)|= 0.

We realize {νv} as a nonnegative measure ν on R×Rm ×R+ and differentiate
(6.7.1), in the sense of distributions, with respect to v, to deduce

(6.7.2) ∂tχ(v;u)+
m

∑
α=1

G′
α(v)∂αχ(v;u) = ∂vν ,

where χ denotes the function

(6.7.3) χ(v;u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if 0 < v < u

−1 if u < v < 0

0 otherwise.

The entropy production by any entropy-entropy flux pair (η ,Q) is easily ex-
pressed in terms of ν . Indeed, let us multiply (6.7.2) by η ′(v) and integrate with
respect to v over (−∞,∞). Recalling (6.2.1) and after an integration by parts, we
obtain

(6.7.4) ∂t

∫ ∞

−∞
η ′(v)χ(v;u)dv+ div

∫ ∞

−∞
Q′(v)χ(v;u)dv =−

∫ ∞

−∞
η ′′(v)dν(v; ·, ·).

One easily verifies that if p(v) is any C1 function, then

(6.7.5)
∫ ∞

−∞
p′(v)χ(v;u)dv = p(u)− p(0),

and so (6.7.4) yields

(6.7.6) ∂tη(u)+ divQ(u) =−
∫ ∞

−∞
η ′′(v)dν(v; ·, ·).

In particular, when η(u) is convex the right-hand side of (6.7.6) is nonpositive. Fur-
thermore, applying (6.7.6) for η(u) = 1

2 u2 and integrating with respect to (x, t) over
Rm × [0,∞), we deduce

(6.7.7)
∫ ∞

0

∫
Rm

∫ ∞

−∞
dν(v;x, t)≤ 1

2

∫
Rm

u2
0(x)dx.

It is remarkable that (6.7.2) fully characterizes admissible weak solutions of
(6.1.1), as shown in the following

6.7.1 Theorem. A bounded measurable function u(x, t) on Rm × [0,∞) is the ad-
missible solution to (6.1.1), (6.1.2) if and only if the function χ(v;u(x, t)), defined
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through (6.7.3), satisfies (6.7.2) on R×Rm × [0,∞), for some nonnegative measure
ν , together with the initial condition

(6.7.8) χ(v;u(x,0)) = χ(v;u0(x)), v ∈ (−∞,∞), x ∈ Rm.

Proof. Equation (6.7.2) admits solutions χ(· ;u(·, t)) ∈ C0([0,∞);L1(R×Rm)) and
thus the initial condition (6.1.2) is attained strongly in L1(Rm). Hence it remains
to show that (6.2.2) holds for every entropy-entropy flux pair (η ,Q) with η convex.
Since u is bounded, it will suffice to establish (6.2.2) for entropies with linear growth,
i.e., with |η ′(u)| bounded on (−∞,∞).

Starting out from (6.7.2), one can show, as above, that (6.7.6) holds, albeit
only for functions η(v) whose derivative η ′(v) vanishes for |v| large (in order
to perform the integration by parts, as it is no longer known that ν vanishes for
|v|> sup |u0|).

Fix any convex function η , with linear growth, and then for k = 1,2, · · · , set
ηk(v) = η(v)φ(v/k), where φ is a smooth even function on (−∞,∞), with φ(v) = 1
for |v| ≤ 1, φ(v) = 0 for |v| ≥ 2, and φ ′(v)< 0 for v ∈ (1,2). We thus have

(6.7.9) ∂tηk(u)+ divQk(u) =−
∫ ∞

−∞
η ′′

k (v)dν(v; ·, ·)

=−
∫ ∞

−∞

[
η ′′(v)φ

(v
k

)
+

2
k
η ′(v)φ ′

(v
k

)
+

1
k2η(v)φ

′′
(v

k

)]
dν(v; ·, ·).

For k large, ηk(u) = η(u) and Qk(u) = Q(u), on the range of the solution. Fur-
thermore, η ′′(v)φ(v/k) → η ′′(v) monotonically, as k → ∞ . Finally, it is clear that
η ′(v)φ ′(v/k) = O(1) and η(v)φ ′′(v/k) = O(k), as k → ∞ . Thus, letting k → ∞ in
(6.7.9), we arrive at (6.7.6), and thereby at (6.2.2). This completes the proof.

The kinetic formulation (6.7.2), which may serve as an alternative, albeit equiv-
alent, definition of admissible weak solutions of (6.1.1), provides a powerful instru-
ment for discovering properties of these solutions. In particular, one obtains an al-
ternative, direct proof of the L1 contraction property (6.2.9), even under the more
general assumption that the initial data are merely in L1(Rm) and not necessarily in
L∞(Rm); see references in Section 6.11.

Up to this point, we have been facing nonlinearity as an agent that provokes the
development of discontinuities in solutions with smooth initial values. It turns out,
however, that nonlinearity may also play the opposite role, of smoothing out solu-
tions with rough initial data. In the course of the book, we shall encounter various
manifestations of such behavior. The kinetic formulation provides valuable insight
into the compactifying and smoothing effects of nonlinearity in scalar conservation
laws. This will become evident in the next Section 6.8, but it is also seen in the fol-
lowing regularity theorem whose (hard and technical) proof is found in the references
cited in Section 6.11.
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6.7.2 Theorem. Assume there are r ∈ (0,1] and C ≥ 0 such that

(6.7.10) meas{v : |v| ≤ ‖u0‖L∞ , |p+G′(v)P| ≤ δ} ≤Cδ r,

for all δ ∈ (0,1), p ∈ R , P ∈ Rm with p2 + |P|2 = 1. Then the admissible weak
solution u of (6.1.1), (6.1.2) satisfies

(6.7.11) u(·, t) ∈C0((0,∞);W s,1
loc (R

m)),

for any s ∈ (
0, r

2r+1

)
.

It is condition (6.7.10) that encodes the aspect of nonlinearity of G responsible
for the regularizing effect. For example, (6.7.10) fails, for any r, when G is linear,
but it is satisfied, with r = 1, if the Gα are uniformly convex functions, G′′

α(u) > 0,
α = 1, · · · ,m.

The section closes with a discussion on how the kinetic formulation (6.7.2) of
the scalar conservation law may be motivated by the kinetic theory of matter. As
we saw in Chapter III, Example 3.3.7, in the classical kinetic theory of gases the
state of the gas at the point x and time t is described by the molecular density func-
tion f (ξ ,x, t) of the molecular velocity ξ . The evolution of f is governed by the
Boltzmann equation (3.3.51), which monitors the changes in the distribution of
molecular velocities due to transport and collisions. The connection between the
kinetic and the continuum approaches is established by identifying intensive quanti-
ties, such as density, velocity, pressure, temperature, etc., with appropriate moments
of the molecular density function f , and then showing that these fields satisfy the
balance laws of continuum physics. Thus, in principle one may construct solutions
to systems of balance laws by treating the fields as moments of a molecular density
in an underlying kinetic model with density function whose zero moment satisfies
the scalar conservation law (6.1.1).

In the model, the “velocity” v is scalar-valued and the “molecular density”
f (v;x, t), at the point x and time t, is allowed to take positive and negative values.
Then u is obtained from f by

(6.7.12) u(x, t) =
∫ ∞

−∞
f (v;x, t)dv.

In turn, f satisfies the transport equation

(6.7.13) ∂t f (v;x, t)+
m

∑
α=1

G′
α(v)∂α f (v;x, t) =

1
μ
[χ(v;u(x, t))− f (v;x, t)] ,

where μ is a small positive parameter and χ(v;u) is the function defined by (6.7.3).
Readers familiar with the kinetic theory will recognize in (6.7.13) a model of the
BGK approximation to the classical Boltzmann equation. Hopefully, as μ ↓ 0, the
stiff term on the right-hand side will force f (v;x, t) to “relax” to χ(v;u(x, t)) which
satisfies (6.7.2). Before verifying that this expectation will be fulfilled, let us discuss
properties of solutions of (6.7.13), (6.7.12).
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6.7.3 Theorem. Let u0 ∈ L∞(Rm)
⋂

L1(Rm). For any μ > 0, there exist bounded
measurable functions

(6.7.14) fμ(· ; ·, t) ∈C0([0,∞);L1(R×Rm)), uμ(·, t) ∈C0([0,∞);L1(Rm))

which provide the unique solution of (6.7.13), (6.7.12) with initial data

(6.7.15) fμ(v;x,0) = χ(v;u0(x)), v ∈ (−∞,∞), x ∈ Rm,

induced by u0. For any (x, t) ∈ Rm × [0,∞),

(6.7.16) fμ(v;x, t) ∈
⎧⎨⎩ [0,1] if v > 0

[−1,0] if v < 0.

If ( f̄μ , ūμ) is another solution of (6.7.13), (6.7.12), with initial data induced by ū0 in
L∞(Rm)

⋂
L1(Rm), then, for any t > 0,

(6.7.17) ‖ fμ(· ; ·, t)− f̄μ(· ; ·, t)‖L1(R×Rm) ≤ ‖ fμ(· ; ·,0)− f̄μ(· ; ·,0)‖L1(R×Rm)

(6.7.18) ‖uμ(·, t)− ūμ(·, t)‖L1(Rm) ≤ ‖u0(·)− ū0(·)‖L1(Rm).

Furthermore, if

(6.7.19) u0(x)≤ ū0(x), x ∈ Rm,

then

(6.7.20) fμ(v;x, t)≤ f̄μ(v;x, t), v ∈ (−∞,∞), x ∈ Rm, t ∈ [0,∞),

(6.7.21) uμ(x, t)≤ ūμ(x, t), x ∈ Rm, t ∈ [0,∞).

Proof. Taking, for the time being, the existence of ( fμ ,uμ) and ( f̄μ , ūμ) for granted,
we integrate (6.7.13) along characteristics dx/dt = G′(v)� , dv/dt = 0 to deduce

(6.7.22)

fμ(v;x, t)= e−
t
μ fμ(v;x−tG′(v)�,0)+

1
μ

∫ t

0
e−

t−τ
μ χ(v;uμ(x−(t−τ)G′(v)�,τ))dτ.

Thus (6.7.16) readily follows from (6.7.22), (6.7.15) and the properties of the func-
tion χ .

We write the analog of (6.7.22) for the other solution ( f̄μ , ūμ) and subtract the
resulting equation from (6.7.22) to get
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(6.7.23) fμ(v;x, t)− f̄μ(v;x, t)= e−
t
μ [ fμ(v;x−tG′(v)�,0)− f̄μ(v;x−tG′(v)�,0)]

+
1
μ

∫ t

0
e−

t−τ
μ [χ(v;uμ(x− (t − τ)G′(v)�,τ))− χ(v; ūμ(x− (t − τ)G′(v)�,τ))]dτ

whence, upon using

(6.7.24)
∫ ∞

−∞
|χ(v;uμ)−χ(v; ūμ)|dv ≤ |uμ − ūμ |,

which follows from (6.7.3), and recalling (6.7.12),

(6.7.25) ‖ fμ(· ; ·, t)− f̄μ(· ; ·, t)‖L1(R×Rm) ≤ e−
t
μ ‖ fμ(· ; ·,0)− f̄μ(· ; ·,0)‖L1(R×Rm)

+
1
μ

∫ t

0
e−

t−τ
μ ‖χ(v;uμ(x− (t − τ)G′(v)�,τ))

−χ(v; ūμ(x− (t − τ)G′(v)�,τ))‖L1(R×Rm)dτ

≤ e−
t
μ ‖ fμ(· ; ·,0)− f̄μ(· ; ·,0)‖L1(R×Rm)

+(1− e−
t
μ ) max

0≤τ≤t
‖ fμ(· ; ·,τ)− f̄μ(· ; ·,τ)‖L1(R×Rm) .

Clearly, (6.7.25) implies (6.7.17) and this in turn yields (6.7.18). In particular, there
is at most one solution to (6.7.13), (6.7.12), (6.7.15). Furthermore, this solution can
be constructed from the integral equation (6.7.22) by Picard iteration.

Since χ(v;u) is increasing in u, (6.7.23) and (6.7.12) guarantee that (6.7.19) im-
plies (6.7.20) and (6.7.21). This completes the proof.

We now turn to the limiting behavior of solutions as μ ↓ 0.

6.7.4 Theorem. For μ > 0, let ( fμ ,uμ) denote the solution of (6.7.13), (6.7.12),
(6.7.15) with u0 ∈ L∞(Rm)

⋂
L1(Rm). Then, as μ ↓ 0,

(6.7.26) uμ(x, t)→ u(x, t),

(6.7.27) fμ(v;x, t)→ χ(v;u(x, t)),

in L1
loc , where χ(v;u) satisfies (6.7.2) for some bounded, nonnegative measure ν ,

and hence u is the admissible weak solution of (6.1.1.), (6.1.2).

Proof. The first step is to demonstrate that the family {( fμ ,uμ) : μ > 0} is equicon-
tinuous in the mean. This is clearly the case in the v and x directions by virtue of
the contraction property (6.7.17), (6.7.18). For any w ∈ R and y ∈ Rm, the functions
( f̄μ , ūμ) defined by f̄μ(v;x, t) = fμ(v+w;x+ y, t), ūμ(x, t) = uμ(x+ y, t) are solu-
tions of (6.7.13), (6.7.12) with initial data f̄μ(v;x,0) = χ(v+w;u0(x+ y)), and so
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(6.7.28)
∫ ∞

0

∫
Rm

| fμ(v+w;x+ y, t)− fμ(v;x, t)|dxdv

≤
∫ ∞

0

∫
Rm

|χ(v+w;u0(x+ y))−χ(v;u0(x))|dxdv,

(6.7.29)
∫
Rm

|uμ(x+ y, t)−uμ(x, t)|dx ≤
∫
Rm

|u0(x+ y)−u0(x)|dx.

Equicontinuity in the t-direction easily follows from the above, in conjunction with
the transport equation (6.7.13) itself; the details are omitted.

Next we consider the function

(6.7.30) ωμ(v;x, t) =
∫ v

−∞

[
χ(w;uμ(x, t))− fμ(w;x, t)

]
dw.

Let us fix (x, t), assuming for definiteness uμ(x, t) > 0 (the other cases being simi-
larly treated). Clearly, ωμ(−∞;x, t) = 0. By virtue of (6.7.3) and (6.7.16), ωμ(· ;x, t)
is nondecreasing on the interval (−∞,uμ(x, t)) and nonincreasing on the interval
(uμ(x, t),∞). Finally, on account of (6.7.12), ωμ(∞;x, t) = 0. Consequently, we may
write

(6.7.31)
1
μ
[
χ(v;uμ(x, t))− fμ(v;x, t)

]
= ∂vνμ ,

where νμ is a nonnegative measure which is bounded, uniformly in μ > 0.
It follows that from any sequence {μk}, μk → 0 as k → ∞ , we may extract a sub-

sequence, denoted again by {μk}, so that {( fμk , uμk)} converges in L1
loc to functions

( f ,u), and {νμk} converges weakly in the space of measures to a bounded non-
negative measure ν . Clearly, f (v;x, t) = χ(v;u(x, t)) and (6.7.2) holds. By unique-
ness, the whole family {( fμ ,uμ)} converges to (χ(· ;u),u), as μ ↓ 0. This completes
the proof.

It is interesting that the transport equation (6.1.9), which, as we saw in Section
6.1, generates the classical solutions of (6.1.1), also arises in the theory of weak
solutions, in the guise of (6.7.13) or (6.7.7). Remarkably, there is another connec-
tion between (6.1.10) and weak solutions of (6.1.1), emerging from the following
considerations. Let u(x, t) be the admissible weak solution of (6.1.1), (6.1.2), with
initial datum u0 that is 1-periodic in xα and takes values in an interval [a,b]⊂ (0,1).
Thus u(·, t) will also be 1-periodic in xα and will take values in [a,b]. Let C denote
the closed unit cube in Rm, C = [0,1]m. The aim is to characterize u(·, t) through
its level sets in C . For that purpose, we introduce the function f (v;x, t), defined for
v ∈ [0,1], x ∈ C and t ≥ 0 by

(6.7.32) {x ∈ C : f (v;x, t)≤ 1}= {x ∈ C : u(x, t)≥ v}.
One may recover u from f through

(6.7.33) u(x, t) =
∫ 1

0
h(1− f (v;x, t))dv,
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where h denotes the Heaviside function, h(y) = 0 for y < 0 and h(y) = 1 for y ≥ 0.
As shown in the literature cited in Section 6.11, f satisfies the abstract differential

equation

(6.7.34) ∂t f +
m

∑
α=1

Q′
α(v)∂α f +∂K ( f ) � 0,

on the Hilbert space H = L2([0,1]×C ), where ∂K denotes the subdifferential of
the closed convex cone K = { f ∈ H : fv ≥ 0}, i.e.,

(6.7.35) ∂K ( f ) = {g ∈ H :
∫ 1

0

∫
C
( f̄ − f )gdxdv ≤ 0, for all f̄ ∈ K }.

The usefulness of the above observation lies in that the equation (6.7.34) involves a
maximal monotone operator and thus generates a contraction semigroup on H. It is
easily seen that the initial value f (v;x,0) can be adjusted in such a way that u(x,0),
computed through (6.7.33), coincides with the given initial data u0(x). Therefore, the
existence, uniqueness, stability and even numerical construction of f , and thereby of
u, follow from the standard functional analytic theory of contraction semigroups in
Hilbert space. The details on this approach, and its connection to the kinetic formu-
lation, are found in the references listed in Section 6.11.

6.8 Fine Structure of L∞ Solutions

According to Theorem 6.2.6, admissible solutions u to the scalar conservation law
(6.1.1), with initial values u0 of locally bounded variation on Rm, have locally
bounded variation on the upper half-space, and thereby inherit the fine structure
of BV functions described in Sections 1.7 and 1.8. In particular, the points of ap-
proximate jump discontinuity of u assemble on the (at most) countable union of C1

manifolds of codimension one. Furthermore, u has (generally distinct) traces on both
sides of any oriented manifold of codimension one. However, when u0 is merely
in L∞ the above structure is generally lost, as may be seen by considering the case
where (6.1.1) is linear. On the other hand, we saw in Section 6.7 (Theorem 6.7.2)
that nonlinearity in the flux function may exert a smoothing influence on L∞ solu-
tions. As another manifestation of this phenomenon, we shall see here that when the
conservation law is linearly nondegenerate, in a sense to be made precise below, ad-
missible solutions that are merely in L∞ are nevertheless endowed with fine structure
that closely resembles the structure of BV functions.

For the present purposes, the distinction between spatial and temporal vari-
ables is irrelevant, so it will be convenient to revert to the formulation and nota-
tions of Chapter I, by fusing the m-dimensional space and 1-dimensional time into
k-dimensional space-time, k = m+ 1, and representing (x, t) by the vector X , with
Xα = xα , α = 1, · · · ,m and Xk = t. In what follows, div will denote the divergence
operator in Rk, acting on k-row vectors.

On some open subset X of Rk, we consider scalar balance laws in the form
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(6.8.1) div G(u(X)) = νG ,

where νG is a Radon measure. A function u ∈ L∞(X ) will be called an admissible
solution of (6.8.1) if, for any companion Q of G,

(6.8.2) div Q(u(X)) = νQ ,

where νQ is a Radon measure on X .
We recall, from Section 1.5, that companions Q are related to G by

(6.8.3) Q′(u) = η ′(u)G′(u),

where η is some scalar-valued function.
In the setting of Section 6.2, Gk(u) = u, Qk(u) = η(u) and νG = 0. As noted

in Section 6.2, any admissible solution u in the sense of Definition 6.2.1 renders the
distribution divQ(u) a measure, for any companion Q (and in particular a nonpositive
measure whenever Qk is convex), so that it is also an admissible solution in the above
sense.

In order to expunge linear systems, we introduce the following notion (compare
with (6.7.10)):

6.8.1 Definition. The balance law (6.8.1) is called linearly nondegenerate if for each
N ∈ Sk−1

(6.8.4) G′(u)N �= 0, for almost all u ∈ (−∞,∞).

The fine structure of admissible solutions of linearly nondegenerate scalar bal-
ance laws is described by the following

6.8.2 Theorem. Assume (6.8.1) is linearly nondegenerate and let u be an admissible
solution on X . Then X is the union of three pairwise disjoint subsets C , J and
I with the following properties:

(a) C is the set of points of vanishing mean oscillation of u, i.e., for X̄ ∈ C

(6.8.5) lim
r↓0

1
rk

∫
Br(X̄)

|u(X)− ūr(X̄)|dX = 0,

where ūr(X̄) denotes the average of u on the ball Br(X̄).
(b) J is rectifiable, namely it is essentially covered by the countable union of C1

(k − 1)-dimensional manifolds {Fi} embedded in Rk: H k−1(J \⋃Fi) = 0.
When X̄ ∈ J

⋂
Fi , then the normal on Fi at X̄ is interpreted as the normal on

J at X̄ . The function u has distinct inward and outward traces u− and u+ , in
the sense of Definition 1.7.7, at any point X̄ ∈ J .

(c) The (k−1)-dimensional Hausdorff measure of I is zero: H k−1(I ) = 0.

A comparison between Theorems 1.7.4 and 6.8.2 reveals the striking similarity
in the fine structure of admissible L∞ solutions and BV functions. The reader should
note, however, that there are some differences as well: points in the set C have merely
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vanishing mean oscillation in admissible L∞ solutions, whereas they are Lebesgue
points in the BV case. Furthermore, if u is a BV solution of (6.8.1), with νG = 0,
then, on account of Theorem 1.8.2, for any companion Q, νQ is concentrated on the
set J of points of jump discontinuity. However, it is not known at the present time
whether this important property carries over to L∞ admissible solutions, except for
n = 1; see Section 11.14.

The reader should consult the references in Section 6.11 for the proof of Theorem
6.8.2, which is lengthy and technical. Even so, a brief outline of some of the key
ingredients is here in order.

Admissible L∞ solutions u to (6.8.1) on X may be characterized by the kinetic
formulation, discussed in Section 6.7. In the present setting, (6.7.2) takes the form

(6.8.6)
k

∑
α=1

G′
α(v)∂α χ(v;u) = ∂vν ,

where χ is the function defined by (6.7.3) and ν is a bounded measure on R×X .
Notice that here, in contrast to Section 6.7, the measure ν need not be nonnegative,
as the notion of admissible solution adopted in this section is broader.

In analogy to (6.7.6), the measure νQ associated with any companion Q induced
by some η through (6.8.3) is related to the measure ν by

(6.8.7) νQ =−
∫ ∞

−∞
η ′′(v)dν(v; ·).

The measure ν also determines the “jump set” J , in Theorem 6.8.2, by

(6.8.8) J = {X ∈ X : limsup
r↓0

|ν |(R×Br(X))

rk−1 > 0},

where |ν | denotes the total variation measure of ν .
The resolution of the fine structure of u is achieved by “blowing up” the neigh-

borhood of any point X ∈ X , that is by rescaling u and ν in the vicinity of X in
a manner that leaves (6.8.6) invariant. The linear nondegeneracy condition (6.8.4),
in conjunction with velocity averaging estimates for the transport equation (6.8.6),
induces the requisite compactness, so that the limits u∞ and ν∞ of u and ν under
rescaling exist and satisfy (6.8.6). When X �∈ J , the measure ν∞ vanishes. On the
other hand, when X ∈ J , ν∞ is the tensor product of a measure on R and a measure
on X . It is by studying solutions of (6.8.6) with ν having this special tensor product
structure that the assertion of Theorem 6.8.2 is established.

By the same techniques one verifies that admissible solutions of linearly non-
degenerate scalar balance laws share another important property with BV functions,
namely they have one-sided traces on manifolds of codimension one:

6.8.3 Theorem. Let u be an admissible solution of the linearly nondegenerate bal-
ance law (6.8.1) on a Lipschitz subset X of Rk with boundary B. Assume that for
any companion Q the measure νQ in (6.8.2) is finite on X . Then u has a strong trace
uB ∈ L∞(B) on B.
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The strong trace is realized in L1
loc , roughly as follows: Suppose that B contains a

compact subset P of a (k−1)-dimensional hyperplane with outward unit normal N.
Then the restriction of uB to P is characterized by

(6.8.9) ess lim
τ↓0

∫
P
|u(X − τN)−uB(X)|dH k−1(X) = 0.

In the general case, one employs Lipschitz transformations on Rk to map “pieces” of
B into “pieces” P of a hyperplane, and then uses the above characterization.

Theorem 6.8.3 plays an important role in the theory of boundary value prob-
lems for scalar conservation laws, as we shall see in Section 6.9. Another important
implication of Theorem 6.8.3 is the following

6.8.4 Corollary. Assume that the scalar conservation law (6.1.1) is linearly nonde-
generate, and let u be an L∞ weak solution of the Cauchy problem (6.1.1), (6.1.2), on
the upper half-space, which satisfies the inequalities (6.2.2), in the sense of distribu-
tions, for every convex entropy η . Then the map t �→ u(·, t) is strongly continuous in
L1

loc(R
m), for any t ∈ [0,∞).

In particular, for linearly nondegenerate scalar conservation laws, admissible so-
lutions to the Cauchy problem may be characterized merely by the set of inequalities
(6.2.2), rather than by the stronger condition (6.2.3). Thus, referring back to the dis-
cussion on entropy admissibility, in Section 4.5, we conclude that for scalar, linearly
nondegenerate conservation laws, the set F is empty.

6.9 Initial-Boundary Value Problems

Let D be an open bounded subset of Rm, with smooth boundary ∂D and outward
unit normal field ν . Here we consider the initial-boundary value problem

(6.9.1) ∂tu(x, t)+div G(u(x, t)) = 0, (x, t) ∈ X ,

(6.9.2) u(x, t) = 0, (x, t) ∈ B,

(6.9.3) u(x,0) = u0(x), x ∈ D ,

in the domain X = D × (0,∞), with lateral boundary B = ∂D × (0,∞).
The boundary condition (6.9.2) shall be interpreted in the context of the vanishing

viscosity approach, as explained in Section 4.7. The inequality (4.7.5) motivates the
following notion of admissible weak solution:

6.9.1 Definition. A bounded measurable function u on X is an admissible weak
solution of (6.9.1), (6.9.2), (6.9.3), with initial data u0 ∈ L∞(D), if the inequality
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(6.9.4)
∫ ∞

0

∫
D
[∂tψ η(u)+

m

∑
α=1

∂αψ Qα(u)]dxdt +
∫

D
ψ(x,0)η(u0(x))dx

≥
∫ ∞

0

∫
∂D
ψ
{

Q0
B −η ′(0)[G0

B −GB]
}

dH m−1(x)dt

holds for every convex entropy η , with associated entropy flux Q determined by
(6.2.1), and all nonnegative Lipschitz continuous test functions ψ with compact sup-
port in Rm× [0,∞). GB denotes the trace of the normal component of G on B, while
G0

B and Q0
B stand for G(0)ν and Q(0)ν , respectively.

Notice that (6.9.4) implies ∂tη + divQ ≤ 0, and in particular ∂tu+ divG = 0,
so that the traces QB and GB of the normal components of Q and G on B are well
defined. Furthermore, (4.7.8) holds on B, in the form

(6.9.5) QB −Q0
B −η ′(0)[GB −G0

B]≥ 0.

At the price of technical complications, but without any essential difficulty, the
special boundary condition u = 0 may be replaced with u = û(x, t), for any suffi-
ciently smooth function û.

The justification of Definition 6.9.1 is provided by

6.9.2 Theorem. For each u0 ∈ L∞(D), there exists a unique admissible weak solution
u of (6.9.1), (6.9.2), (6.9.3), and

(6.9.6) u(·, t) ∈C0([0,∞);L1(D)).

Furthermore, if u0 ∈ BV (D), then u ∈ BVloc(X ).

Before establishing the existence of solutions by proving the above theorem, we
demonstrate uniqueness and stability by means of the following analog of Theorem
6.2.3:

6.9.3 Theorem. Let u and ū be admissible weak solutions of (6.9.1), (6.9.2) with
respective initial values u0 and ū0. Then, for any t > 0,

(6.9.7)
∫

D
[u(x, t)− ū(x, t)]+ dx ≤

∫
D
[u0(x)− ū0(x)]

+ dx,

(6.9.8) ‖u(·, t)− ū(·, t)‖L1(D) ≤ ‖u0(·)− ū0(·)‖L1(D) .

Furthermore, if

(6.9.9) u0(x)≤ ū0(x), a.e. on D ,

then

(6.9.10) u(x, t)≤ ū(x, t), a.e. on X .
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Proof. We sketch the proof under the simplifying assumption that both u and ū attain
strong traces uB and ūB on B, in which case the traces of the normal components
of G and Q on B are obtained via ordinary composition:

(6.9.11) GB = G(uB)ν , QB = Q(uB)ν , ḠB = G(ūB)ν , Q̄B = Q(ūB)ν .

The above assumption will hold when u and ū are BV functions or when u and ū are
merely in L∞ and G is linearly nondegenerate; see Theorem 6.8.3.

We retrace the steps in the proof of Theorem 6.2.3, employing the same entropy-
entropy flux pair (η(u; ū),Q(u; ū)), defined by (6.2.5), and the same test function
φ(x, t, x̄, t̄), given by (6.2.16). However, we now integrate over D × [0,∞), instead of
Rm× [0,∞), and substitute (6.9.4) for (6.2.3). We thus obtain, in the place of (6.2.21),

(6.9.12)∫ ∞

0

∫
D
{∂tψ η(u; ū)+

m

∑
α=1

∂αψ Qα(u; ū)}dxdt +
∫

D
ψ(x,0)η(u0(x); ū0(x))dx

≥
∫ ∞

0

∫
∂D
ψ sgn[uB − ūB]+[GB − ḠB]dH m−1(x)dt.

We verify that, as a consequence of the boundary condition (6.9.5), the integral on
the right-hand side of (6.9.12) is nonnegative. Indeed, the integrand vanishes where
uB ≤ ūB , and has the sign of GB − ḠB where uB > ūB . In the latter case, we
examine, separately, the following three subcases:

(a) uB > ūB ≥ 0: (6.9.5), written for the solution u and the entropy-entropy flux
pair (η(u; ūB),Q(u; ūB)), yields GB ≥ ḠB .

(b) 0 ≥ uB > ūB : (6.9.5), written for the solution ū and the entropy-entropy flux
pair (η(uB; ū),Q(uB; ū)), again yields GB ≥ ḠB .

(c) uB > 0 > ūB : (6.9.5), written for the solution u and the entropy-entropy flux
pair (η(u;0),Q(u;0)), yields GB ≥ G0

B . Similarly, (6.9.5), written for the solu-
tion ū and the entropy-entropy flux pair (η(0; ū),Q(0; ū)), yields ḠB ≤ G0

B . In
particular, GB ≥ ḠB .

We apply (6.9.12) for the test function ψ(x,τ) = χ(x)ω(τ), where χ(x) = 1
for x ∈ D , and ω is defined by (5.3.11). Since the right-hand side of (6.9.12) is
nonnegative, we deduce

(6.9.13)
1
ε

∫ t+ε

t

∫
D
[u(x,τ)− ū(x,τ)]+ dxdτ ≤

∫
D
[u0(x)− ū0(x)]

+ dx.

Letting ε ↓ 0, we arrive at (6.9.7). In turn, (6.9.7) readily implies the remaining as-
sertions of the theorem. The proof is complete.

The next task is to construct the solution to (6.9.1), (6.9.2), (6.9.3) by the vanish-
ing viscosity method. We thus consider the family of parabolic equations
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(6.9.14) ∂tu(x, t)+ div G(u(x, t)) = μΔu(x, t), (x, t) ∈ X ,

with boundary condition (6.9.2) and initial condition (6.9.3). For any μ > 0, (6.9.14),
(6.9.2), (6.9.3) admits a unique solution uμ which is smooth on D̄ × (0,∞). By the
maximum principle,

(6.9.15)
∣∣uμ(x, t)∣∣≤ sup |u0(·)| , x ∈ D , t ∈ (0,∞).

Upon retracing the steps in the proof of Theorem 6.3.2, except that now (6.3.10)
should be integrated over D × (s, t) instead of Rm × (s, t), one readily obtains

6.9.4 Theorem. Let uμ and ūμ be solutions of (6.9.14), (6.9.2) with respective initial
data u0 and ū0. Then, for any t > 0,

(6.9.16)
∫

D

[
uμ(x, t)− ūμ(x, t)

]+ dx ≤
∫

D
[u0(x)− ū0(x)]

+ dx,

(6.9.17) ‖uμ(·, t)− ūμ(·, t)‖L1(D) ≤ ‖u0(·)− ū0(·)‖L1(D).

Furthermore, if

(6.9.18) u0(x)≤ ū0(x), a.e. on D ,

then

(6.9.19) uμ(x, t)≤ ūμ(x, t), (x, t) ∈ D × (0,∞).

We proceed to show that the family {uμ : μ > 0} of solutions to (6.9.14), (6.9.2),
(6.9.3) is relatively compact in L1.

6.9.5 Lemma. Let uμ be the solution of (6.9.14), (6.9.2), (6.9.3) with initial data
u0 ∈ L∞(D)

⋂
W 2,1(D). Then, for any t > 0,

(6.9.20)
∥∥∂tuμ(·, t)

∥∥
L1(D)

≤ c0 ‖u0(·)‖W 1,1(D) +μ ‖u0(·)‖W 2,1(D) ,

(6.9.21)
m

∑
β=1

∥∥∂βuμ(·, t)
∥∥

L1(D)
≤ a(t)‖u0(·)‖W 1,1(D) +μb(t)‖u0(·)‖W 2,1(D) ,

where c0 and the continuous functions a(t), b(t) do not depend on μ .

Proof. For h > 0, we apply (6.9.17) for the two solutions, uμ(x, t), with initial value
u0(x), and ūμ(x, t) = uμ(x, t +h), with initial value ū0(x) = uμ(x,h). Upon dividing
by h, and then letting h ↓ 0, we deduce

∥∥∂tuμ(·, t)
∥∥

L1(D)
≤ ∥∥∂tuμ(·,0)

∥∥
L1(D)

, whence
(6.9.20) follows with the help of (6.9.14).

One cannot use the same procedure for estimating spatial derivatives, because
shifting in the spatial direction no longer carries solutions into solutions. We thus
have to employ a different argument.
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For ε > 0, we define the function

(6.9.22) ηε(w) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−w− ε −∞ < w ≤−2ε

w2

4ε
−2ε < w ≤ 2ε

w− ε 2ε < w < ∞ .

We set w = ∂βuμ , differentiate (6.9.14) with respect to xβ , multiply the resulting
equation by η ′

ε(w) and integrate over D . After an integration by parts, this yields

(6.9.23)
d
dt

∫
D
ηε(w)dx =

∫
D

[
ηε(w)−η ′

ε(w)w
]

div G′(uμ)dx

−μ
∫

D
η ′′
ε (w) |∇w|2 dx+

∫
∂D

[μη ′
ε(w)

∂w
∂ν

−ηε(w)G′(0)ν]dH m−1(x).

As ε ↓ 0, the integrand on the left-hand side of (6.9.23) tends to |w|. On the
right-hand side, the first integral is O(ε) and the second integral is nonnegative.
To estimate the integral over ∂D , we note that since uμ vanishes on the bound-

ary, ∂αuμ =
∂uμ
∂ν

να , α = 1, · · · ,m. In particular, w =
∂uμ
∂ν

νβ . Then (6.9.14) im-

plies
∂uμ
∂ν

G′(0)ν = μΔuμ . Finally, it is clear that
∂w
∂ν

=
∂ 2uμ
∂ν2 νβ +O(1)

∂uμ
∂ν

and

Δuμ =
∂ 2uμ
∂ν2 +O(1)

∂uμ
∂ν

. We thus have

(6.9.24) μη ′
ε(w)

∂w
∂ν

−ηε(w)G′(0)ν = μ[η ′
ε(w)−

ηε(w)
w

]
∂ 2uμ
∂ν2 νβ +O(1)μ

∂uμ
∂ν

,

which tends to O(1)μ
∂uμ
∂ν

, as ε ↓ 0. Therefore, in the limit, as ε ↓ 0, (6.9.23) yields

(6.9.25)
d
dt

∫
D

∣∣∂βuμ
∣∣dx ≤ c

∫
∂D
μ
∣∣∣∣∂uμ
∂ν

∣∣∣∣dH m−1(x)≤ c′
∫

D
μ
∣∣Δuμ

∣∣dx.

We sum (6.9.25) over β = 1, · · · ,m, and also substitute μΔuμ by ∂tuμ + div G(uμ).
Using (6.9.15), (6.9.20) and applying Gronwall’s inequality, we arrive at (6.9.21).
The proof is complete.

Proof of Theorem 6.9.2. Assume first u0 ∈ L∞(D)
⋂

W 2,1(D). By virtue of Lemma
6.9.5, the family {uμ : μ > 0} of solutions to (6.9.14), (6.9.2), (6.9.3) is relatively
compact in L1(D × (0,T )), for any T > 0. Therefore, recalling (6.9.15), we may
extract a sequence {uμk}, with μk ↓ 0 as k → ∞ , which converges boundedly almost
everywhere on D × (0,∞) to some function u. As shown in Section 4.7, u satisfies
(6.9.4) and hence is the unique solution of (6.9.1), (6.9.2), (6.9.3). In particular, the
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entire family {uμ: μ > 0} converges to u, as μ ↓ 0. Moreover, it follows from (6.9.20),
(6.9.21) that u is in BVloc(D × (0,∞)) and, for any T > 0,

(6.9.26) TVD×(0,T )u ≤ c(T )‖u0‖W 1,1(D) .

In addition, u inherits from (6.9.15) the maximum principle: |u(x, t)| ≤ sup |u0(·)|.
Assume now u0 ∈ L∞(D). We construct a sequence of functions {u0n} in

L∞(D)
⋂

W 2,1(D) with ‖u0n‖L∞(D) ≤ ‖u0‖L∞(D) and u0n → u0 in L1(D). By virtue
of (6.9.8), the sequence {un} of admissible solutions to (6.9.1), (6.9.2), with ini-
tial data u0n , converges in L1 to a function u which satisfies (6.9.4) and hence
is the admissible solution of (6.9.1), (6.9.2), (6.9.3). Moreover, when u0 is in
BV (D), the sequence {u0n} may be constructed with the additional requirement that
‖u0n‖W 1,1(D) ≤ C

[
TVDu0 +‖u0‖L∞(D)

]
, in which case (6.9.26) implies that u is in

BV (D × (0,T )), for any T > 0. This completes the proof.

6.10 The L1 Theory for Systems of Conservation Laws

The successful treatment of the scalar conservation law, based on L1 and L∞ esti-
mates, which we witnessed in the previous sections, naturally raises the expectation
that a similar approach may also be effective for systems of conservation laws. Un-
fortunately, this does not seem to be the case. In order to gain some insight into the
difficulty, let us consider the Cauchy problem for a symmetrizable system of conser-
vation laws:

(6.10.1) ∂tU +
m

∑
α=1

∂αGα(U) = 0, x ∈ Rm, t > 0,

(6.10.2) U(x,0) =U0(x), x ∈ Rm.

In analogy to Definition 6.2.1, for the scalar case, we shall require that admissible
solutions of (6.10.1), (6.10.2) satisfy (4.5.3), for any entropy-entropy flux pair (η ,Q)
with η convex. The first test of this should be whether the trivial, constant solutions
Ū of (6.10.1) are Lp-stable in the class of admissible solutions:

(6.10.3) ‖U(·, t)−Ū‖Lp(Br) ≤ cp‖U0(·)−Ū‖Lp(Br+st ) .

Since the system is symmetrizable, and thereby endowed with a convex entropy
of quadratic growth, (6.10.3) will be satisfied at least for p = 2, by virtue of Theorem
5.3.1. The question then arises whether such an estimate may also hold for p �= 2,
with the cases p = 1 and p = ∞ being of particular interest.

For the linear system

(6.10.4) ∂tV +
m

∑
α=1

DGα(Ū)∂αV = 0,
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resulting from linearizing (6.10.1) about a constant state Ū , it is known (references in
Section 6.11) that the following three statements are equivalent: (a) the zero solution
is Lp-stable for some p �= 2; (b) the zero solution is Lp-stable for all 1 ≤ p ≤ ∞ ;
(c) the Jacobian matrices DGα(Ū) commute:

(6.10.5) DGα(Ū)DGβ (Ū) = DGβ (Ū)DGα(Ū), α,β = 1, · · · ,m.

The system (6.10.1) inherits (6.10.5) as a necessary condition for Lp-stability:

6.10.1 Theorem. Assume that the constant state Ū is Lp-stable, (6.10.3) for some
p �= 2, within the class of classical solutions. Then (6.10.5) holds.

Sketch of Proof. For ε small, let Uε(x, t) denote the solution of (6.10.1) with initial
values Uε(x,0) = Ū + εV0(x), where V0 ∈ H� for � > m

2 + 1. By Theorem 5.1.1, Uε
exists, as a classical solution, on a time interval with length O(ε−1). Furthermore,

(6.10.6) Uε(x, t) = Ū + εV (x, t)+O(ε2),

where V (x, t) is the solution of (6.10.4) with initial value V0(x). Now if (6.10.3)
is satisfied by the solutions Uε , for any ε > 0, it follows that the zero solution of
(6.10.4) is Lp-stable and hence (6.10.5) must hold. This completes the proof.

A similar argument shows that (6.10.3) is also necessary for stability of solutions
of (6.10.1), (6.10.2) in the space BV :

(6.10.7) TVBrU(·, t)≤ c TVBr+stU0(·).

The above results douse any hope that the elegant L1 and BV theory of the scalar
conservation law may be readily extended to general systems of conservation laws
for which (6.10.5) is violated. A question of some relevance is whether (6.10.3) may
at least hold in the special class of systems that satisfy (6.10.5). This is indeed the
case, at least for systems of just two conservation laws:

6.10.2 Theorem. Let (6.10.1) be a symmetrizable system of two conservation laws
(n = 2) with the property that (6.10.5) holds for all Ū . Then, for any fixed Ū and
1 ≤ p ≤ 2, there are δ > 0 and cp > 0 such that (6.10.3) holds for any admissible
solution U of (6.10.1), (6.10.2), taking values in the ball Bδ (Ū).

The proof, which is found in the references cited in Section 6.11, employs a
convex entropy η for (6.10.1) such that

(6.10.8) c|U −Ū |p ≤ η(U)≤C|U −Ū |p, U ∈ Bδ (Ū).

Recall that in order to construct an entropy for a system of n conservation laws in
m spatial variables, one has to solve the generally overdetermined system (3.2.4) of
1
2 n(n−1)m equations for the single scalar η . However, as noted in Section 3.2, when
(6.10.5) holds, the number of independent equations is reduced to 1

2 n(n−1), and in
the special case n = 2 to just one. It thus becomes possible to construct a convex
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The class of systems that satisfy (6.10.5) includes, in particular, the scalar con-
servation laws (n= 1), in any spatial dimension m, as well as the systems of arbitrary
size n, in a single spatial dimension (m = 1); but beyond that it contains very few
representatives of (even modest) physical interest. An example is the system

(6.10.9) ∂tU +
m

∑
α=1

∂α [Fα(|U |)U ] = 0,

which governs the flow of a fluid in an anisotropic porous medium. The special fea-
tures of this system make it analytically tractable, so that it may serve as a vehicle for
exhibiting some of the issues facing the study of hyperbolic systems of conservation
laws in several space dimensions.

If U is a classical solution of (6.10.9), it is easy to see that its “density” ρ = |U |
satisfies the scalar conservation law

(6.10.10) ∂tρ+
m

∑
α=1

∂α [ρFα(ρ)] = 0,

while its directional unit vector fieldΘ = ρ−1U satisfies the transport equation

(6.10.11) ∂tΘ +
m

∑
α=1

Fα(ρ)∂αΘ = 0.

Thus, classical solutions to the Cauchy problem (6.10.9), (6.10.2) can be constructed
by first solving (6.10.10), with initial data ρ(·,0) = |U0(·)|, say by the method of
characteristics expounded in Section 6.1, and then determiningΘ by its property of
staying constant along the trajectories of the ordinary differential equation

(6.10.12)
dx
dt

= F(ρ(x, t)).

It is not obvious how to adapt the above procedure to weak solutions. It is of
course still possible to determine ρ as the admissible weak solution of (6.10.10) with
initial data |U0| merely in L∞, but it is by no means clear how one should interpret
(6.10.12) when F(ρ(x, t)) is just an L∞ function. In fact, it has been shown (refer-
ences in Section 6.11) that the Cauchy problem for (6.10.9) is generally ill-posed in
L∞. A relevant, powerful theory of ordinary differential equations Ẋ = P(X) exists,
but it requires that P be a divergence-free vector field in BV . In order to use that the-
ory, we restrict the initial data so that |U0| is a positive function of locally bounded
variation on Rm. This will guarantee, by virtue of Theorems 6.2.3 and 6.2.6, that ρ
is a positive function of locally bounded variation on the upper half-space. Next, we
rescale the time variable and rewrite (6.10.12) in the implicit form

entropy with the requisite property (6.10.8), for 1 ≤ p ≤ 2, by solving a Goursat
problem on Bδ (Ū). In fact, under additional assumptions on the system, it is even
possible to construct convex entropies that satisfy (6.10.8) for all p, and for such
systems constant solutions are Lp-stable over the full range 1 ≤ p ≤ ∞ .
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(6.10.13)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dt
dτ

= ρ(x, t)

dx
dτ

= ρ(x, t)F(ρ(x, t)),

which has the desired feature that the vector field (ρ,ρF(ρ)) is divergence-free on
the upper half-space, by virtue of (6.10.10).

By eliminating τ in the family of solutions (t(τ),x(τ)) of (6.10.13), one obtains
the family of curves x= x(t), namely the formal trajectories of (6.10.12), along which
Θ stays constant. ThusΘ can be determined from its initial data, which may merely
be in L∞. Finally, it can be shown (references in Section 6.11) that U = ρΘ is a weak
solution of (6.10.9), (6.10.2):

6.10.3 Theorem. For any U0 ∈ L∞(Rm;Rn) with |U0| ∈ BVloc(R
m), there exists a

unique L∞ weak solution U of (6.10.9), (6.10.2) on [0,∞), such that ρ = |U | is the
admissible weak solution of (6.10.10) with initial data ρ(·,0) = |U0(·)|.

It has been shown, further, that the above solution depends continuously on its
initial value in L1

loc , and it satisfies the entropy admissibility condition, for any con-
vex entropy of (6.10.9), at least when the set of critical points of the function ρF(ρ)
on (0,∞) has measure zero.

On the other hand, the Cauchy problem for (6.10.9) is ill-posed in BV , even when
the initial data have small total variation:

6.10.4 Theorem. Let m ≥ 3 and n ≥ 2. For any nonzero Ū ∈Rn, such that |Ū | is not
a critical point of ρF(ρ), and any δ > 0, there exist initial data U0 that take values
in Bδ (Ū), are equal to Ū for |x| > 1, have total variation on Rm that is less than
δ , and have the property that if U is any admissible L∞ weak solution of (6.10.9),
(6.10.2) on some time interval [0,T ), then the total variation of U on Rm × [0,T ) is
infinite.

The reader should bear in mind that (6.10.9) is so special that the above should
not necessarily be interpreted as representative of the behavior of generic systems.
The theory of hyperbolic systems of conservation laws in several spatial variables is
still in its infancy.

6.11 Notes

More extensive discussion on the breakdown of classical solutions of scalar conser-
vation laws can be found in Majda [4]. Theorem 6.1.1 is due to Conway [1]. For a
systematic study of the geometric features of shock formation and propagation, see
Izumiya and Kossioris [1], and Danilov and Mitrovic [3]. The reduction of (6.1.1) to
the linear transport equation (6.1.10) is classical; see Courant-Hilbert [1,§I.5].

There is voluminous literature on weak solutions of the scalar conservation law.
The investigation was initiated in the 1950’s, in the framework of the single space
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dimension, stimulated by the seminal paper of Hopf [1], already cited in the historical
introduction. References to this early work will be provided, as they become relevant,
in Section 11.12.

The first existence proof in several space dimensions is due to Conway and
Smoller [1], who recognized the relevance of the space BV and constructed solutions
with bounded variation through the Lax-Friedrichs difference scheme. The definitive
treatment in the space BV was later given by Volpert [1], who was apparently the
first to realize the L1 contraction property in several space dimensions. Building on
Volpert’s work, Kruzkov [1] proposed the characterization of admissible weak solu-
tions recorded in Section 6.2, derived the L1 contraction estimate, and established the
convergence of the method of vanishing viscosity along the lines of our discussion
in Section 6.3. More delicate treatment is needed when the flux is merely continu-
ous in u; see Kruzhkov and Panov [1], Bénilan and Kruzkov [1], and Andreianov,
Bénilan and Kruzhkov [1]. Moreover, when the flux is discontinuous the notion of
an admissible weak solution must be clarified and redefined; see Panov [8,9,10], An-
dreianov, Karlsen and Risebro [1], and Audusse and Perthame [1]. On the other hand,
the analysis extends routinely to inhomogeneous scalar balance laws (3.3.1), though
solutions may blow up in finite time when the production grows superlinearly with
u; see Natalini, Sinestrari and Tesei [1]. In particular, the inhomogeneous conserva-
tion law of “transport type,” with flux G(u,x) = f (u)V (x), has interesting structure,
especially when divV = 0; see Caginalp [1] and Otto [2].

New ideas, with geometric flavor, are needed in order to treat scalar conservation
laws on a manifold, because the notion of entropy does not extend to that setting in
a straightforward manner; see Amorim, Ben-Artzi and LeFloch [1], Ben-Artzi and
LeFloch [1], Ben-Artzi, Falcovitz and LeFloch [1], LeFloch and Okutmustur [1],
Dziuk, Kröner and Müller [1], Kröner, Müller and Strehlau [1], and Panov [3].

The theory of nonlinear contraction semigroups in general, not necessarily reflex-
ive, Banach space is due to Crandall and Liggett [1]. The application to the scalar
conservation law presented in Section 6.4 is taken from Crandall [1]. For an alterna-
tive functional analytic characterization of admissible solutions, see Portilheiro [1].

The construction of solutions by the layering method, discussed in Section 6.5,
was suggested by Roždestvenskii [1] and was carried out by Kuznetsov [1] and
Douglis [2].

There is an active research program aiming at treating hyperbolic conservation
laws as the “relaxed” form of larger, but simpler, systems that may govern, or model,
relaxation phenomena in physics. Further discussion and references are found in
Chapter XVII. The presentation in Section 6.6 follows Katsoulakis and Tzavaras [1].
Though artificially constructed for the purposes of the analysis, (6.6.1) may be inter-
preted a posteriori as a system governing the evolution of an ensemble of interacting
particles, at the mesoscopic scale. See Katsoulakis and Tzavaras [2], and Jin, Kat-
soulakis and Xin [1]. An alternative construction of solutions to multidimensional
scalar conservation laws by a relaxation scheme is discussed in Natalini [2].

The kinetic formulation described in Section 6.7 is due to Perthame and Tadmor
[1], and Lions, Perthame and Tadmor [2]. Theorem 6.7.2 was first established by Li-
ons, Perthame and Tadmor [2], with s< r/(r+2). The improved range s< r/(2r+1)
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was derived by Tadmor and Tao [1], with the help of a sharper velocity averaging
estimate. A detailed discussion, with extensions, applications and an extensive bib-
liography, is found in the recent monograph and survey article by Perthame [2,3].
For related results, see Giga and Miyakawa [1], Bäcker and Dressler [1], Brenier
[1], James, Peng and Perthame [1], Natalini [2], Perthame [1], Perthame and Pul-
virenti [1], Hwang [1,2], Vasseur [2,3,5], Westdickenberg and Noelle [1], Kissling
and LeFloch [1], and Dalibard [1]. The mechanism that induces the regularizing ef-
fect stated in Theorem 6.7.2 plays a prominent role in the theory of nonlinear trans-
port equations in general, including the classical Boltzmann equation (cf. DiPerna
and Lions [1]).

The surprising association of the level sets of admissible solutions with contrac-
tion semigroups in Hilbert space, outlined in Section 6.7, was discovered by Brenier
[3]. See also Bolley, Brenier and Loeper [1].

For another interesting example of a kinetic model that relaxes, in the hydrody-
namic limit, to the scalar conservation law, see Portilheiro and Tzavaras [1].

There are several other methods for constructing solutions, most notably by
fractional stepping, spectral viscosity approximation, or through various difference
schemes that may also be employed for efficient computation. See, for exam-
ple, Bouchut and Perthame [1], Chen, Du and Tadmor [1], Cockburn, Coquel and
LeFloch [1], and Crandall and Majda [1]. For references on the numerics the reader
should consult LeVeque [1], Godlewski and Raviart [1,2], and Kröner [1].

In addition to L1 and BV , other function spaces are relevant to the theory. DeVore
and Lucier [1] show that solutions of (6.1.1) reside in Besov spaces.

Perthame and Westdickenberg [1] establish a total oscillation diminishing prop-
erty for solutions.

To get a feel for the limiting behavior of solutions when the conservation law is
singularly perturbed, the reader may consult Botchorishvilli, Perthame and Vasseur
[1], for the effect of stiff sources, Hwang [3], for diffusive-dispersive limits, Aggar-
wal, Colombo and Goatin [1], for nonlocal effects, and Dalibard [2], for the conse-
quences of homogenization.

The fine structure of L∞ solutions, and in particular Theorem 6.8.2, is discussed
in De Lellis, Otto and Westdickenberg [1]. See also De Lellis and Rivière [1], De
Lellis and Golse [1], and Crippa, Otto and Westdickenburg [1]. Theorem 6.8.3 is due
to Vasseur [4]. See also Chen and Rascle [1], and, for more recent developments,
Panov [5,6], and Kwon and Vasseur [1].

The construction of BV solutions to the initial-boundary value problem by the
method of vanishing viscosity, expounded in Section 6.9, is taken from Bardos, Le-
roux and Nédélec [1]. For a proof of Theorem 6.9.3 when u and ū are merely in
L∞, see Otto [1] and Málek, Nečas, Rokyta and Růžička [1]. For recent results in
that direction, see Kwon [1], and Coclite, Karlsen and Kwon [1]. For the initial-
boundary value problem in L∞, with the flux vanishing at the boundary, see Bürger,
Frid and Karlsen [1]. The case of discontinuous flux is discussed by Carrillo [1].
Solutions in L∞ have been constructed via the kinetic formulation by Nouri, Omrane
and Vila [1], and Tidriri [1]. For measure-valued solutions, see Szepessy [1], and
Kondo and LeFloch [1].
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The large time behavior of solutions of (6.1.1), (6.1.2) is discussed in Conway
[1], Engquist and E [1], Bauman and Phillips, and Feireisl and Petzeltová [1]. Chen
and Frid [1,3,4,6] set a framework for investigating, in general systems of conserva-
tion laws, decay of solutions induced by scale invariance and compactness. In par-
ticular, this theory establishes the long time behavior of solutions of (6.1.1), (6.1.2)
when u0 is either periodic or of the form u0(x) = v(|x|−1x)+w(x), with w ∈ L1(Rm).
This framework has been refined by Panov [11,13] and extended to the almost pe-
riodic case by Frid [5], and Panov [12]. The approach, via contraction semigroups,
leading to Theorem 6.4.9, is taken from Dafermos [35]. In that connection, see also
Dafermos and Slemrod [1].

For stochastic effects see Lions, Perthame and Souganidis [2,3], Gess and Sougani-
dis [1,2], and the references in these interesting papers.

The proof that (6.10.5) is necessary and sufficient for Lp-stability in symmetriz-
able linear systems, is due to Brenner [1]. Rauch [1] demonstrated Theorem 6.10.1,
and Dafermos [22] proved Theorem 6.10.2. See also Frid and LeFloch [1], for a
uniqueness result. Theorem 6.10.3 is due to Ambrosio and De Lellis [1]. See also
Ambrosio, Bouchut and De Lellis [1]. Finally, Bressan [11,13] and De Lellis [1,2]
explain why the Cauchy problem for the system (6.10.9) is not generally well-posed
in L∞ or in BV , when m > 1 (Theorem 6.10.4). By contrast, when m = 1 the Cauchy
problem for this system is well-posed and has an interesting theory; see Temple [2],
Isaacson and Temple [1], Liu and Wang [1], Tveito and Winther [1], Freistühler [7],
and Panov [4].



VII

Hyperbolic Systems of Balance Laws

in One-Space Dimension

Chapters VII-XVI will be devoted to the study of systems of balance laws in one
space dimension. This narrowing of focus is principally dictated by necessity: At
the present time the theory of multidimensional systems is terra incognita, replete
with fascinating problems. In any event, the reader should bear in mind that certain
multidimensional phenomena, with special symmetry, such as wave focussing, may
be studied in the context of the one-space-dimensional theory. We will return to
several space dimensions in Chapter XVII.

This chapter introduces many of the concepts that serve as foundation of the
theory of hyperbolic systems of balance laws in one space dimension: strict hyper-
bolicity; Riemann invariants and their relation to entropy; simple waves; genuine
nonlinearity and its role in the breakdown of classical solutions.

In order to set the stage, the chapter opens with the presentation of a number of
illustrative examples of hyperbolic systems of balance laws in one space dimension,
arising in physics or other branches of science and technology.

7.1 Balance Laws in One-Space Dimension

When m = 1, the general system of balance laws (3.1.1) reduces to

(7.1.1) ∂tH(U(x, t),x, t)+∂xF(U(x, t),x, t) = Π(U(x, t),x, t).

Systems (7.1.1) naturally arise in the study of gas flow in ducts, vibration of elas-
tic bars or strings, etc., in which the medium itself is modeled as one-dimensional.
The simplest examples are homogeneous systems of conservation laws, beginning
with the scalar conservation law

(7.1.2) ∂tu+∂x f (u) = 0.

Despite its apparent simplicity, the scalar conservation law provides valuable in-
sight into complex processes, in physics and elsewhere. The simple hydrodynamic
theory of traffic flow in a stretch of highway is a case in point.
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The state of the traffic at location x and time t is described by the traffic density
ρ(x, t) (measured, say, in vehicles per mile) and the traffic speed v(x, t) (in miles per
hour). The fields ρ and v are related by the law of conservation of vehicles, which is
identical to mass conservation (2.3.2), for rectilinear motion:

(7.1.3) ∂tρ+∂x(ρv) = 0.

This equation is then closed by the behavioral assumption that drivers set their ve-
hicles’ speed according to the local density, v = g(ρ). In order to account for the
congestion effect, g must be decreasing with ρ , for instance g(ρ) = v0(1−ρ/ρ0),
where v0 is the speed limit and ρ0 is the saturation density beyond which traffic
crawls to a standstill. For that g(ρ), (7.1.3) becomes

(7.1.4) ∂tρ+∂x

[
v0ρ

(
1− ρ

ρ0

)]
= 0.

This simplistic model manages, nevertheless, to capture some of the qualitative
features of traffic flow in congested highways, and serves as the springboard for more
sophisticated models, developed in the references cited in Section 7.10.

Another important example of a scalar conservation law is the Buckley-Leverett
equation

(7.1.5) ∂tu+∂x

[
u2

u2 +a(1−u)2

]
= 0,

where a is some positive parameter. It provides a simple model for the rectilinear flow
of two immiscible fluids (phases), such as oil and water, through a porous medium,
and thus finds applications in enhanced oil recovery operations by the petroleum
industry. The variable u, taking values in [0,1], measures the saturation (i.e., vol-
ume fraction) of one of the fluid phases, and the flux measures the fractional flow
rate of that phase. Thus, the equation expresses mass conservation. If one neglects
the effects of inertia and capillarity, the fractional flow rate is determined through
Darcy’s law, and it depends on the ratio of viscosities as well as on the ratio of rel-
ative permeabilities of the two phases. In turn, the relative permeabilities depend on
the saturation u, and hence the equation closes. The empirical flux function employed
in (7.1.5) captures the salient traits of the fractional flow rate. It should be noted that,
in contrast to (7.1.4), the second derivative of the flux in (7.1.5) changes sign on
[0,1]. As we shall see later, this renders the structure of solutions substantially more
complex.

Still another instructive example of a scalar conservation law arises in chromatog-
raphy in a single solute. The concentration c of a dilute solute of a chemical species
moving, with speed v, through the interstices of a finely divided solid bed of parti-
cles, and absorbed on the solid surfaces, satisfies the conservation law

(7.1.6) ∂xc+∂t [v−1g(c)] = 0,

where x is the space variable along the bed, t is time, and g(c) is the column isotherm
function. The reader should notice that space and time exchange roles in this case.
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An interesting example of a scalar conservation law (7.1.2) in which both
variables are spatial arises in the theory of composite materials consisting of an
incompressible matrix, such as rubber, reinforced with inextensible fibers. In the
mathematical modeling, it is assumed that one fiber passes from any particle of the
matrix, so the material is inextensible in the direction of the tangent to that fiber. In
the equilibrium state of a body made of this material, the fibers are assumed par-
allel straight lines, tangential to some fixed vector A ∈ R3. Taking this equilibrium
state as reference configuration, we consider a placement (bilipschitz homeomor-
phism) X∗ = X∗(X), with deformation gradient F = ∂X∗/∂X . Each fiber becomes
a Lipschitz curve with tangent vector field A∗ = FA. As the fibers are inextensi-
ble, |A∗| = 1. Furthermore, since the material is incompressible, det F = 1. Hence
A∗� = (det F)−1A�F�, so that div A∗� = 0, by virtue of Theorem 1.3.1. Assume
now that A� = (1,0,0) and that the deformation is planar, with F13,F23,F31 and F32
all zero. Thus A∗� = (F11,F21,0), where F11 and F21 depend solely on the first two
coordinates (x,y) of X∗. Assuming F11 > 0, setting F21 = u(x,y) and noting that
|A∗| = 1 implies F11 =

√
1−u2, we conclude that div A∗� = 0 reduces to the scalar

conservation law

(7.1.7) ∂yu+∂x

√
1−u2 = 0.

Thermoelasticity is a rich source of interesting examples of systems. In La-
grangian coordinates, the rectilinear adiabatic flow of a thermoelastic fluid (gas) in a
duct is governed by the one-dimensional version of (3.3.4), in the form

(7.1.8)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tu−∂xv = 0

∂tv+∂x p(u,s) = 0

∂t
[
ε(u,s)+ 1

2 v2
]
+∂x[vp(u,s)] = 0,

where u is the speci f ic volume (u = 1/ρ , on account of (2.3.3)), v denotes the ve-
locity, ε is the internal energy and p stands for the pressure (-p is the stress). Note
that ρ > 0 restricts u to positive values.

The thermodynamic relations (3.3.5) here read

(7.1.9) p(u,s) =−εu(u,s), θ(u,s) = εs(u,s).

The system (7.1.8) is hyperbolic if

(7.1.10) εs(u,s)> 0, εuu(u,s)> 0,

that is, the absolute temperature θ is positive and the internal energy ε is convex in
u, or equivalently, pu(u,s)< 0.

The one-dimensional version of (3.3.19),

(7.1.11)

⎧⎨⎩ ∂tu−∂xv = 0

∂tv−∂xσ(u) = 0,
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with monotone increasing σ , σ ′(u)> 0, is the hyperbolic system governing the rec-
tilinear isentropic flow of a gas, as well as the isentropic longitudinal oscillation of
an elastic solid bar and the isentropic shearing motion of an elastic layer. For the case
of a gas, where u is the specific volume, (7.1.11) written with σ =−p, is commonly
known as the p-system. In the case of the bar, u is the strain. Specific volume and
strain are both restricted to positive values, whereas in the case of the shearing mo-
tion u may take values of either sign. In what follows, we shall often use (7.1.11) as a
mathematical paradigm under the assumption that σ is a smooth monotone increas-
ing function on (−∞,∞).

In Eulerian coordinates, rectilinear isentropic flow of a gas is governed by the
one-dimensional version of (3.3.36), namely

(7.1.12)

⎧⎨⎩
∂tρ+∂x(ρv) = 0

∂t(ρv)+∂x[ρv2 + p(ρ)] = 0.

This system is hyperbolic when p′(ρ) > 0. In particular, when the fluid is an ideal
gas (2.5.31), (7.1.12) becomes

(7.1.13)

⎧⎨⎩
∂tρ+∂x(ρv) = 0

∂t(ρv)+∂x[ρv2 +κργ ] = 0.

For γ > 1, hyperbolicity breaks down at the vacuum state ρ = 0.
The so called system of pressureless gas dynamics

(7.1.14)

⎧⎨⎩
∂tρ+∂x(ρv) = 0

∂t(ρv)+∂x
(
ρv2

)
= 0,

which is not hyperbolic, governs the flow of an aggregate of “sticky” particles: col-
liding particles fuse into a single particle that combines their masses and moves with
velocity that conserves the total linear momentum. The propensity of solutions of
(7.1.14) to develop mass concentrations may serve as an explanation for the forma-
tion of large-scale structures in the universe.

Next we derive the system that governs isentropic, planar oscillations of a three-
dimensional, homogeneous thermoelastic medium, with reference density ρ0 = 1.
In the terminology and notation of Chapter II, we consider motions in the particular
form χ = x+φ(x ·ν , t), where ν is the (constant) unit vector pointing in the direction
of the oscillation. For consistency with the notation of this chapter, we shall denote
the scalar variable x ·ν by x, so that ∂x = ∑3

α=1 να∂α . The velocity in the ν-direction
is v(x, t) = ∂tφ(x, t). We also set u(x, t) = ∂xφ(x, t), in which case the deformation
gradient is F = I+u⊗ν . The stress vector, per unit area, on planes perpendicular to
ν is σ(u) = S(I +uν�)ν , where S(F) is the Piola-Kirchhoff stress. We thus end up
with a system of six conservation laws
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(7.1.15)

⎧⎨⎩ ∂tu−∂xv = 0

∂tv−∂xσ(u) = 0,

which looks identical to (7.1.11), except that here u, v and σ are no longer scalars
but 3-vectors.

The internal energy ε(F) also becomes a function of u: ε(I+uν�) = e(u). Then,
(2.5.30) yields σ(u) = ∂e(u)/∂u. Thus the Jacobian matrix of σ(u) is the Hessian
matrix of e(u), which in turn is the acoustic tensor (3.3.8) evaluated at F = I +uν�.
The system (7.1.15) is hyperbolic when the function e(u) is convex.

As explained in Section 2.5 (recall (2.5.25)), when the medium is an isotropic
solid, the internal energy depends on F solely through the invariants |F |, |F∗| and
detF . Here F = I+uν� and so |F |2 = 3+2u ·ν+ |u|2, |F∗|2 = (u ·ν)2+4u ·ν+ |u|2
and detF = 1+ u · ν . Thus, the internal energy depends on just two variables, |u|
and u · ν . If, in addition, the material is incompressible, the kinematic constraint
(2.7.1) becomes u · ν = 0, in which case the internal energy depends solely on |u|,
e(u) = h(|u|). The stress tensor is now given by (2.7.2), where p is the hydrostatic
pressure. After a short calculation, recalling that σ = Sν , we deduce that (7.1.15)
takes the form

(7.1.16)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu−∂xv = 0

∂tv+∂x pν−∂x

(
h′(|u|)
|u| u

)
= 0.

However, the incompressibility condition u · ν = 0 implies ∂xv · ν = 0; let us take
v · ν = 0 so as to eliminate a trivial rigid motion in the direction ν . Then (7.1.16)2
yields ∂x p = 0, and thus (7.1.16) reduces to

(7.1.17)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu−∂xv = 0

∂tv−∂x

(
h′(|u|)
|u| u

)
= 0.

The special symmetry encoded in the flux function of (7.1.17) induces rich geo-
metric structure which is a gift to the geometer at the expense of the analyst who has
to deal with particular analytical difficulties, a taste of which will emerge later. The
next example indicates that the same symmetry structure arises in other contexts as
well.We derive the system that governs the oscillation of a flexible, extensible elastic
string. The reference configuration of the string lies along the x-axis, and is assumed
to be a natural state of (linear) density one. The motion χ = χ(x, t) is monitored
through the velocity v = ∂tχ and the stretching u = ∂xχ which take values in R3 or
in R2, depending on whether the string is free to move in 3-dimensional space or
is constrained to undergo planar oscillations. The tension τ of the string is assumed
to depend solely on |u|, τ = τ(|u|), which measures the stretch of the string. Since
the string cannot sustain any compression, the natural range of |u| is [1,∞), and τ
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is assumed to satisfy τ(r) > 0, [τ(r)/r]′ > 0, for r > 1. The compatibility relation
between u and v together with balance of momentum, in Lagrangian coordinates,
yields the hyperbolic system

(7.1.18)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu−∂xv = 0

∂tv−∂x

(
τ(|u|)
|u| u

)
= 0,

which is identical to (7.1.17).
Our next example is the classical system of conservation laws that governs the

propagation of long gravity waves in shallow water. It may be derived either by
asymptotic analysis of the Euler equations or ab initio, by appealing to gross balance
of mass and momentum. We follow here the latter approach.

An incompressible, inviscid fluid of density one flows isentropically in an open
channel with horizontally level bottom and unit width. The atmospheric pressure on
the free surface is taken to be zero. The flow is driven by the hydrostatic pressure
gradient induced by variations in the height of the free surface. Assume the channel
lies along the x-axis, the y-axis is vertical, pointing upwards, and the bottom rests on
the x-z plane. It is assumed that the height of the free surface is constant in the z-
direction and thus is described by a function h of (x, t) alone. Moreover, the velocity
vector points in the x-direction and is constant on any cross section of the channel,
so its length is likewise described by a function v of (x, t).

As explained in Section 2.7, the stress tensor for an incompressible, inviscid fluid
is just a hydrostatic pressure −pI. The balance of linear momentum in the y and the
z-direction yields ∂y p = −g and ∂z p = 0, respectively, where g is the acceleration
of gravity. Thus, p = g[h(x, t)− y], for 0 ≤ y ≤ h(x, t). Integrating with respect to y
and z, we find that the total pressure force exerted on the x-cross section at time t is
P(x, t) = 1

2 gh2(x, t).
We treat the flow in the channel as a rectilinear motion of a continuum governed

by conservation of mass and linear momentum, exactly as in (7.1.12), where now
the role of density is naturally played by the cross sectional area h and the role of
pressure is played by the pressure force P. We thus arrive at the system of shallow
water waves:

(7.1.19)

⎧⎨⎩
∂th+∂x(hv) = 0

∂t(hv)+∂x
(
hv2 + 1

2 gh2
)
= 0.

Notice that (7.1.19) is identical to (7.1.13), with γ = 2.
As we saw earlier, the flow of two phases through a porous medium, with volume

fractions u and 1− u, is governed by the Buckley-Leverett equation (7.1.5). In the
case of the flow of n phases, with respective volume fractions U1, · · · ,Un ,

(7.1.20) U1 + · · ·+Un = 1,

the conservation of mass equations reduce to a system of the following form:
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(7.1.21) ∂tUi +∂x

[
ciU2

i

∑n
j=1 c jU2

j

]
= 0 , i = 1, · · · ,n.

Notice that (7.1.20) and (7.1.21) are compatible. Of course, one may eliminate one of
the unknowns, with the help of (7.1.20), thus reducing the size of the system (7.1.21)
by one. For instance, when n = 3 and c1 = c2 = c3 ,

(7.1.22)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tu+∂x

[
u2

u2 +v2 +(1−u−v)2

]
= 0

∂tv+∂x

[
v2

u2 +v2 +(1−u−v)2

]
= 0.

Systems of this type are employed by the petroleum industry in oil recovery opera-
tions.

Systems with interesting features govern the propagation of planar electromag-
netic waves through special isotropic dielectrics in which the electromagnetic energy
depends on the magnetic induction B and the electric displacement D solely through
the scalar r = (B ·B+D ·D)

1
2 ; i.e., in the notation of Section 3.3.8, η(B,D) = ψ(r),

with ψ ′(0) = 0, ψ ′′(0) > 0, and ψ ′(r) > 0,ψ ′′(r) > 0 for r > 0. Waves propagating
in the direction of the 3-axis are represented by solutions of Maxwell’s equations
(3.3.66), with J = 0, in which the fields B,D,E and H depend solely on the single
spatial variable x = x3 and on time t. In particular, (3.3.66) imply B3 = 0 and D3 = 0
so that B and D should be regarded as vectors in R2 satisfying the hyperbolic system

(7.1.23)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tB−∂x

[
ψ ′(r)

r
AD

]
= 0

∂tD+∂x

[
ψ ′(r)

r
AB

]
= 0,

where A is the alternating 2×2 matrix, with A11 = A22 = 0, A12 =−A21 = 1.
Returning to the general balance law (7.1.1), we note that H and/or F may depend

explicitly on x, to account for inhomogeneity of the medium. For example, isentropic
gas flow through a duct of (slowly) varying cross section a(x) is governed by the
system

(7.1.24)

⎧⎨⎩
∂t [a(x)ρ]+∂x[a(x)ρv] = 0

∂t [a(x)ρv]+∂x[a(x)ρv2 +a(x)p(ρ)] = a′(x)p(ρ),

which reduces to (7.1.12) in the homogeneous case a =constant. On the other hand,
explicit dependence of H or F on t, indicating “ageing” of the medium, is fairly rare.
By contrast, dependence of Π on t is not uncommon, because external forcing is
generally time-dependent.

The source Π may depend on the state vector U , to account for relaxation or
reaction effects. A simple example of the latter case is provided by the system
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(7.1.25)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ+∂x(ρv) = 0

∂t(ρv)+∂x[ρv2 +(γ−1)cρθ ] = 0

∂t
[
cρθ +βρz+ 1

2ρv2
]
+∂x

[(
γcρθ +βρz+ 1

2ρv2
)
v
]
= 0

∂t(ρz)+∂x(ρzv) =−δh(θ −θi)ρz,

which governs the flow of a combustible ideal gas in a duct. In addition to density
ρ , velocity v and temperature θ , the state vector here comprises the mass fraction z
of the unburnt gas, which takes values in [0,1]. The first three equations in (7.1.25)
express the balance of mass, momentum and energy. As in (2.5.18), the equation of
state for the pressure is p = Rρθ = (γ − 1)cρθ , where γ is the adiabatic exponent
and c is the specific heat. On the other hand, unlike (2.5.19), the internal energy
here depends also on z, ε = cθ +β z, where β > 0 is the heat of reaction (assumed
exothermic). In the fourth equation of (7.1.25), which governs the reaction, h is the
standard Heaviside function (h(ζ ) = 0 for ζ < 0 and h(ζ ) = 1 for ζ ≥ 0), θi is the
ignition temperature and δ > 0 is the reaction rate.

A simple model system that captures the principal features of (7.1.25) is

(7.1.26)

⎧⎨⎩ ∂t(u+β z)+∂x f (u) = 0

∂t z =−δh(u)z,

where both u and z are scalar variables, and f (u) is a strictly increasing convex
function.

As an example of a source that manifests relaxation, consider the isothermal flow
of a binary mixture of ideal gases in a duct. Both constituents of the mixture satisfy
partial balance laws of mass and momentum: For α = 1,2,

(7.1.27)α

⎧⎨⎩
∂tρα +∂x(ραvα) = 0

∂t(ραvα)+∂x
[
ραv2

α +ναρα
]
= χα .

The coupling is induced by the source term χα , which accounts for the momentum
transfer to the α-constituent by the other constituent, as a result of the disparity
between v1 and v2 . In particular, χ1 +χ2 = 0. In nonisothermal flow, the coupling is
enhanced by the balance law of energy. In more sophisticating modeling of mixtures,
the density gradient appears, along with the density, as a state variable (Fick’s law),
in which case second-order spatial derivatives of the concentrations emerge in the
field equations. Such terms induce diffusion, similar to the effect of heat conduction
or viscosity. Here, however, we shall deal with the simple system (7.1.27)1-(7.1.27)2 ,
which is hyperbolic.

So as to realize the mixture as a single continuous medium, it is expedient to
replace the original state vector (ρ1,ρ2,v1,v2) with new state variables (ρ,c,v,m),
where ρ and v are the density and mean velocity of the mixture, that is, ρ = ρ1+ρ2 ,
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ρv = ρ1v1 +ρ2v2 , c is the concentration of the first constituent, i.e., c = ρ1/ρ , and
m = (−1)αρα(v−vα). It is assumed that χα = βρα(vα −v) = (−1)αβm, where β
is a positive constant. One may then rewrite the system (7.1.27) in the form

(7.1.28)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ+∂x(ρv) = 0

∂t(ρc)+∂x(ρcv+m) = 0

∂t(ρv)+∂x

[
ρv2 +(ν2 +(ν1 −ν2)c)ρ+

m2

ρc(1− c)

]
= 0

∂t(ρcv+m)+∂x

[
ρcv2 +2mv+

m2

ρc
+ν1cρ

]
=−βm.

Indeed, the second and fourth equations in the above system are just (7.1.27)1, rewrit-
ten in terms of the new state variables, while the first and the third equations are
obtained by adding the corresponding equations of (7.1.27)1 and (7.1.27)2 .

Single-space-dimensional systems (7.1.1) also derive from multispace-dimensi-
onal systems (3.1.1), in the presence of symmetry (planar, cylindrical, radial, etc.)
that reduces spatial dependence to a single parameter. In that process, parent multi-
dimensional homogeneous systems of conservation laws may yield one-dimensional
inhomogeneous systems of balance laws, as a reflection of multidimensional geo-
metric effects. For example, the single-space-dimensional system governing radial,
isentropic gas flow, which results from the homogeneous Euler equations (3.3.36), is
inhomogeneous:

(7.1.29)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tρ+∂r(ρv)+

2ρv
r

= 0

∂t(ρv)+∂r[ρv2 + p(ρ)]+
2ρv2

r
= 0.

In particular, certain multidimensional phenomena, such as wave focusing, may be
investigated in the framework of one space dimension.

7.2 Hyperbolicity and Strict Hyperbolicity

As in earlier chapters, to avoid inessential technical complications, the theory will be
developed in the context of homogeneous systems of conservation laws in canonical
form:

(7.2.1) ∂tU(x, t)+∂xF(U(x, t)) = 0.

F is a C3 map from an open convex subset O of Rn to Rn.
Often in the applications, systems (7.2.1) govern planar front solutions, namely,

U =U(ν ·x, t), in the spatial direction ν ∈ Sm−1, of multispace-dimensional systems
of conservation laws (4.1.1). In that connection,
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(7.2.2) F(U) =
m

∑
α=1

ναGα(U), U ∈ O.

Referring to the examples introduced in Section 7.1, in order to cast the system
(7.1.8) of thermoelasticity in canonical form, we have to switch from (u,v,s) to
new state variables (u,v,E), where E = ε + 1

2 v2 is the total energy. Similarly, the
system (7.1.12) of isentropic gas flow is written in canonical form in terms of the
state variables (ρ,m), where m = ρv is the momentum.

By Definition 3.1.1, the system (7.2.1) is hyperbolic if for every U ∈ O the n×n
Jacobian matrix DF(U) has real eigenvalues λ1(U) ≤ ·· · ≤ λn(U) and n lineary
independent eigenvectors R1(U), · · · ,Rn(U). For future use, we also introduce left
(row) eigenvectors L1(U), · · · ,Ln(U) of DF(U), normalized by

(7.2.3) Li(U)R j(U) =

⎧⎨⎩0 if i �= j

1 if i = j.

Henceforth, the symbols λi , Ri and Li will be reserved to denote these objects.
Clearly, the multispace-dimensional system (4.1.1) is hyperbolic if and only if all

one-space-dimensional systems (7.2.1) resulting from it through (7.2.2), for arbitrary
ν ∈ Sm−1, are hyperbolic. Thus hyperbolicity is essentially a one-space-dimensional
notion.

For the system (7.1.11) of one-dimensional isentropic elasticity, in Lagrangian
coordinates, which will serve throughout as a vehicle for illustrating the general con-
cepts, we have

(7.2.4) λ1 =−σ ′(u)1/2 , λ2 = σ ′(u)1/2 ,

(7.2.5) R1 =
1
2

⎛⎝−σ ′(u)−1/2

−1

⎞⎠ , R2 =
1
2

⎛⎝−σ ′(u)−1/2

1

⎞⎠ ,

(7.2.6) L1 = (−σ ′(u)1/2 , −1), L2 = (−σ ′(u)1/2 , 1).

The eigenvalue λi of DF , i = 1, · · · ,n, is called the i-characteristic speed of the
system (7.2.1). The term derives from the following

7.2.1 Definition. An i-characteristic, i = 1, · · · ,n, of the system (7.2.1), associated
with a classical solution U , is a C1 function x = x(t), with graph contained in the
domain of U , which is an integral curve of the ordinary differential equation

(7.2.7)
dx
dt

= λi(U(x, t)).

The standard existence-uniqueness theory for ordinary differential equations
(7.2.7) implies that through any point (x̄, t̄) in the domain of a classical solution
of (7.2.1) passes precisely one characteristic of each characteristic family.
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Characteristics are carriers of waves of various types. For example, Eq. (1.6.1),
for the general system (1.4.3) of balance laws, specialized to (7.2.1), implies that
weak fronts propagate along characteristics. As a result, the presence of multiple
eigenvalues of DF may induce severe complexity in the behavior of solutions, be-
cause of resonance. It is thus natural to single out systems that are free from such
complication:

7.2.2 Definition. The system (7.2.1) is strictly hyperbolic if for any U ∈ O the
Jacobian DF(U) has real, distinct eigenvalues

(7.2.8) λ1(U)< · · ·< λn(U).

By virtue of (7.2.4), the system (7.1.11) of isentropic elasticity in Lagrangian
coordinates is strictly hyperbolic. The same is true for the system (7.1.8) of adiabatic
thermoelasticity, for which the characteristic speeds are

(7.2.9) λ1 =−
√
−pu(u,s), λ2 = 0, λ3 =

√
−pu(u,s).

The system (7.1.13) for the ideal gas has characteristic speeds

(7.2.10) λ1 = v− (κγ)1/2ρ
γ−1

2 , λ2 = v+(κγ)1/2ρ
γ−1

2 ,

and so it is strictly hyperbolic on the part of the state space with ρ > 0.
Furthermore, any one-dimensional system resulting, through (7.2.2), from the

Euler equations for two-dimensional isentropic flow is strictly hyperbolic.
In view of the above examples, the reader may form the impression that strict

hyperbolicity is the norm in systems arising in continuum physics. However, this
is not the case. For example, the system (7.1.15) of planar elastic oscillations fails
to be strictly hyperbolic in those directions ν for which the acoustic tensor (3.3.8)
has multiple eigenvalues. Indeed, it has been shown that in one-space-dimensional
systems (7.2.1), of size n = ±2,±3,±4 (mod 8), which result from parent three-
space-dimensional systems (4.1.1) through (7.2.2), strict hyperbolicity necessarily
fails, at least in some spatial direction ν ∈ S2. In particular, one-dimensional sys-
tems resulting from the Euler equations for two-dimensional non-isentropic flow
(n = 4), or for three-dimensional isentropic or non-isentropic flow (n = 4 or n = 5)
are not strictly hyperbolic. Actually, failure of strict hyperbolicity is often a byprod-
uct of symmetry. For instance, the systems (7.1.17) and (7.1.18) are not strictly
hyperbolic.

In systems of size n = 2, strict hyperbolicity typically fails at isolated umbilic
points, at which DF reduces to a multiple of the identity matrix. Even the presence
of a single umbilic point is sufficient to create havoc in the behavior of solutions.
This will be demonstrated in following chapters by means of the simple system

(7.2.11)

⎧⎨⎩ ∂tu+∂x[(u2 +v2)u] = 0

∂tv+∂x[(u2 +v2)v] = 0,
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which is a caricature of (7.1.17) and (7.1.18). The characteristic speeds of (7.2.11)
are

(7.2.12) λ1 = u2 +v2 , λ2 = 3(u2 +v2),

with corresponding eigenvectors

(7.2.13) R1 =

(
v
−u

)
, R2 =

(
u
v

)
,

so this system is strictly hyperbolic, except at the origin (0,0) which is an umbilic
point.

We close this section with the derivation of a useful identity. We apply D to both
sides of the equation DFR j = λ jR j and then multiply, from the left, by R�

k ; we also
apply D to DFRk = λkRk and then multiply, from the left, by R�

j . Upon combining
the resulting two equations, we deduce

(7.2.14)
(Dλ jRk)R j − (DλkR j)Rk = DF [R j,Rk]−λ jDR jRk +λkDRkR j , j,k = 1, · · · ,n,

where [R j,Rk] denotes the Lie bracket:

(7.2.15) [R j,Rk] = DR jRk −DRkR j .

In particular, at a point U ∈ O where strict hyperbolicity fails, say λ j(U) = λk(U),
(7.2.14) yields

(7.2.16) (Dλ jRk)R j − (DλkR j)Rk = (DF −λ jI)[R j,Rk].

Upon multiplying (7.2.16), from the left, by L j(U) and by Lk(U), we conclude from
(7.2.3):

(7.2.17) Dλ j(U)Rk(U) = Dλk(U)R j(U) = 0.

7.3 Riemann Invariants

Consider a hyperbolic system (7.2.1) of conservation laws on O ⊂ Rn. A very im-
portant concept is introduced by the following

7.3.1 Definition. An i-Riemann invariant of (7.2.1) is a smooth scalar-valued func-
tion w on O such that

(7.3.1) Dw(U)Ri(U) = 0, U ∈ O.

For example, recalling (7.2.5), one readily verifies that the functions
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(7.3.2)

are, respectively, 1- and 2-Riemann invariants of the system (7.1.11). Similarly, it
can be shown that

(7.3.3) w = v+
2(κγ)1/2

γ−1
ρ
γ−1

2 , z = v− 2(κγ)1/2

γ−1
ρ
γ−1

2

are 1- and 2-Riemann invariants of the system (7.1.13) of isentropic flow of an ideal
gas.1

By solving the first-order linear differential equation (7.3.1) for w, one may con-
struct in the vicinity of any point U ∈ O n−1 i-Riemann invariants whose gradients
are linearly independent and span the orthogonal complement of Ri . For example,
the reader may verify as an exercise that the three pairs of functions

(7.3.4)

are, respectively, 1-, 2-, and 3-Riemann invariants of the system (7.1.8) of adiabatic
thermoelasticity.

Riemann invariants are particularly useful in systems with the following special
structure:

7.3.2 Definition. The system (7.2.1) is endowed with a coordinate system of Riemann
invariants if there exist n scalar-valued functions (w1, · · · ,wn) on O such that, for any
i, j = 1, · · · ,n, with i �= j, w j is an i-Riemann invariant of (7.2.1).

An immediate consequence of Definitions 7.3.1 and 7.3.2 is

7.3.3 Theorem. The functions (w1, · · · ,wn) form a coordinate system of Riemann
invariants for (7.2.1) if and only if

(7.3.5) Dwi(U)R j(U)

⎧⎨⎩= 0 if i �= j

�= 0 if i = j

i.e., if and only if, for i = 1, · · · ,n, Dwi(U) is a left eigenvector of the matrix
DF(U), associated with the characteristic speed λi(U). Equivalently, the tangent
hyperplane to the level surface of wi at any point U, is spanned by the vectors
R1(U), . . . ,Ri−1(U),Ri+1(U), . . . ,Rn(U).

1 In the isothermal case, γ = 1, w = v+κ1/2 logρ , z = v−κ1/2 logρ .

w =−
∫ u√

σ ′(ω)dω +v, z =−
∫ u√

σ ′(ω)dω −v

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

s , −
∫ u√

−pω(ω,s)dω +v

v , −p(u,s)

s , −
∫ u√

−pω(ω,s)dω −v
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Assuming (7.2.1) is endowed with a coordinate system (w1, · · · ,wn) of Riemann
invariants and multiplying from the left by Dwi , i = 1, · · · ,n, we reduce this system
to diagonal form:

(7.3.6) ∂twi +λi∂xwi = 0, i = 1, · · · ,n,

which is equivalent to the original form (7.2.1), albeit only in the context of clas-
sical solutions. The left-hand side of (7.3.6) is just the derivative of wi in the i-
characteristic direction. Therefore,

7.3.4 Theorem. Assume (w1, · · · ,wn) form a coordinate system of Riemann invari-
ants for (7.2.1). For i = 1, · · · ,n, wi stays constant along every i-characteristic as-
sociated with any classical solution U of (7.2.1).

Clearly, any hyperbolic system of two conservation laws is endowed with a co-
ordinate system of Riemann invariants. By contrast, in systems of size n ≥ 3, coor-
dinate systems of Riemann invariants will exist only in the exceptional case where
the formally overdetermined system (7.3.5), with n(n− 1) equations for the n un-
known (w1, · · · ,wn), has a solution. By the Frobenius theorem, the hyperplane to
the level surface of wi will be spanned by R1, . . . ,Ri−1, Ri+1, . . . ,Rn if and only
if, for i �= j �= k �= i, the Lie bracket [R j,Rk] (cf. (7.2.15)) lies in the span of
{R1, · · · ,Ri−1,Ri+1, · · · ,Rn}. Consequently, the system (7.2.1) is endowed with a co-
ordinate system of Riemann invariants if and only if

(7.3.7) [R j,Rk] = αk
j R j −α j

k Rk , j,k = 1, · · · ,n,

where the α�
i are scalar fields.

When a coordinate system (w1, · · · ,wn) of Riemann invariants exists for (7.2.1),
it is convenient to normalize the eigenvectors R1, · · · ,Rn so that

(7.3.8) Dwi(U)R j(U) =

⎧⎨⎩0 if i �= j

1 if i = j.

In that case we note the identity

(7.3.9) DwiDR jRk =D(DwiR j)Rk−R�
j D2wiRk =−R�

j D2wiRk , i, j,k = 1, · · · ,n,

which implies, in particular, Dwi[R j,Rk] = 0, i = 1, · · · ,n, i.e.,

(7.3.10) [R j,Rk] = 0, j,k = 1, · · · ,n.

Recalling the identity (7.2.14) and using (7.2.15), (7.3.10), we deduce that when-
ever λ j(U) �= λk(U), DR j(U)Rk(U) lies in the span of {R j(U),Rk(U)}. This, to-
gether with (7.3.8) and (7.3.9), yields

(7.3.11) R�
j D2wiRk =−DwiDR jRk = 0, i �= j �= k �= i.
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When (7.2.1) possesses a coordinate system (w1, · · · ,wn) of Riemann invariants,
the map that carries U to W = (w1, · · · ,wn)

� is locally a diffeomorphism. It is often
convenient to regard W rather than U as the state vector. To avoid proliferation of
symbols, when there is no danger of confusion we shall be using the same symbol to
denote fields as functions of either U or W . By virtue of (7.3.8), ∂U/∂wi = Ri and
so the chain rule yields, for the typical function φ ,

(7.3.12)
∂φ
∂wi

= DφRi , i = 1, · · · ,n.

For example, (7.3.10) reduces to ∂R j/∂wk = ∂Rk/∂w j = ∂ 2U/∂w j∂wk .
We proceed to derive certain identities that will help us later to establish other

remarkable properties of systems endowed with a coordinate system of Riemann
invariants. Upon combining (7.2.14), (7.2.15), (7.3.10) and (7.3.12), we deduce

(7.3.13) − ∂R j

∂wk
= g jkR j +gk jRk , j,k = 1, · · · ,n; j �= k,

where we have set

(7.3.14) g jk =
1

λ j −λk

∂λ j

∂wk
, j,k = 1, · · · ,n ; j �= k.

Notice that g jk may be defined even when λ j = λk , because at such points ∂λ j/∂wk
vanishes by virtue of (7.2.17) and (7.3.12). From (7.3.13),

(7.3.15) − ∂ 2R j

∂wi∂wk
=
∂g jk

∂wi
R j −g jk(g jiR j +gi jRi)+

∂gk j

∂wi
Rk −gk j(gkiRk +gikRi).

Since Ri,R j,Rk are linearly independent for i �= j �= k �= i, and the right-hand side of
(7.3.15) has to be symmetric in (i,k), we deduce

(7.3.16)
∂g jk

∂wi
=
∂g ji

∂wk
, i �= j �= k �= i,

(7.3.17)
∂gi j

∂wk
+gi jg jk −gi jgik +gikgk j = 0, i �= j �= k �= i.

Of the hyperbolic systems of conservation laws of size n ≥ 3 that arise in the
applications, few possess coordinate systems of Riemann invariants. A noteworthy
example is the system of electrophoresis:

(7.3.18) ∂tUi +∂x

[
ciUi

∑n
j=1 Uj

]
= 0, i = 1, · · · ,n,

where c1 < c2 < · · ·< cn are positive constants. This system governs the process used
to separate n ionized chemical compounds in solution by applying an electric field.
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In that context, Ui denotes the concentration and ci measures the electrophoretic
mobility of the i-th species. In particular, Ui ≥ 0. As an exercise, the reader may
verify that the characteristic speeds of (7.3.18) are given by

(7.3.19) λi = μi

n

∑
j=1

Uj , i = 1, · · · ,n,

where for i = 1, · · · ,n−1 the value of μi at U is the solution of the equation

(7.3.20)
n

∑
j=1

c jUj

c j −μ
=

n

∑
j=1

Uj

lying in the interval (ci,ci+1); and μn = 0. Moreover, (7.3.18) is endowed with a
coordinate system (w1, · · · ,wn) of Riemann invariants, where, for i = 1, · · · ,n− 1,
the value of wi at U is the solution of the equation

(7.3.21)
n

∑
j=1

Uj

c j −w
= 0

that lies in the interval (ci,ci+1); and

(7.3.22) wn =
n

∑
j=1

1
c j

Uj .

Later we shall see that the system (7.3.18) has very special structure and a host of
interesting properties.

Another interesting system endowed with coordinate systems of Riemann in-
variants is (7.1.23), which, as we recall, governs the propagation of planar electro-
magnetic waves through special isotropic dielectrics. This is seen by passing from
(B1,B2,D1,D2) to the new state vector (p,q,a,b) defined through

(7.3.23)

⎧⎨⎩
√

2pexp(ia) = B2 +D1 − i(B1 −D2)

√
2qexp(ib) =−B2 +D1 + i(B1 +D2).

In particular, p2 +q2 = r2. A simple calculation shows that, at least in the context of
classical solutions, (7.1.23) reduces to

(7.3.24)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂t p+∂x

[
ψ ′(r)

r
p
]
= 0

∂tq−∂x

[
ψ ′(r)

r
q
]
= 0,

(7.3.25)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ta+

ψ ′(r)
r

∂xa = 0

∂tb− ψ ′(r)
r

∂xb = 0.
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Notice that (7.3.24) constitutes a closed system of two conservation laws, from which
p,q, and thereby r, may be determined. Subsequently (7.3.25) may be solved, as
two independent nonhomogeneous scalar conservation laws, to determine a and b.
In particular, a and b together with any pair of Riemann invariants of (7.3.24) will
constitute a coordinate system of Riemann invariants for (7.1.23).

7.4 Entropy-Entropy Flux Pairs

Entropies play a central role in the theory of hyperbolic systems of conservation laws
in one space dimension. Adapting the discussion of Section 3.2 to the present setting,
we infer that functions η and q on O constitute an entropy-entropy flux pair for the
system (7.2.1) if

(7.4.1) Dq(U) = Dη(U)DF(U), U ∈ O.

Furthermore, the integrability condition (3.2.4) here reduces to

(7.4.2) D2η(U)DF(U) = DF(U)�D2η(U), U ∈ O.

Upon multiplying (7.4.2) from the left by R j(U)� and from the right by Rk(U),
j �= k, we deduce that (7.4.2) is equivalent to

(7.4.3) R j(U)�D2η(U)Rk(U) = 0, j,k = 1, · · · ,n; j �= k,

with the understanding that (7.4.3) holds automatically when λ j(U) �= λk(U) but may
require renormalization of eigenvectors Ri associated with multiple characteristic
speeds. (Compare with (3.2.5).) Note that the requirement that some entropy η is
convex may now be conveniently expressed as

(7.4.4) R j(U)�D2η(U)R j(U)> 0, j = 1, · · · ,n.
When the system (7.2.1) is symmetric,

(7.4.5) DF(U)� = DF(U), U ∈ O,

it admits two interesting entropy-entropy flux pairs:

(7.4.6) η = 1
2 |U |2, q =U ·F(U)−h(U),

(7.4.7) η = h(U), q = 1
2 |F(U)|2,

where h is defined by the condition

(7.4.8) Dh(U) = F(U)�.

As explained in Chapter III, the systems (7.1.8), (7.1.11), (7.1.13) are endowed
with entropy-entropy flux pairs, respectively,



244 VII Hyperbolic Systems of Balance Laws in One-Space Dimension

(7.4.9) η =−s, q = 0,

(7.4.10) η = 1
2 v2 + e(u), q =−vσ(u), e(u) =

∫ u
σ(ω)dω,

(7.4.11) η =
1
2
ρv2 +

κ
γ−1

ργ , q =
1
2
ρv3 +

κγ
γ−1

ργv,

induced by the Second Law of thermodynamics.2 In fact, (7.4.10), with vσ and σdω
interpreted as v ·σ and σ ·dω , constitutes an entropy-entropy flux pair even for the
system (7.1.15). When expressed as functions of the canonical state variables, that is
(u,v,E) for (7.4.9), (u,v) for (7.4.10), and (ρ,m) for (7.4.11), the above entropies
are convex.

In developing the theory of systems (7.2.1), it will be useful to construct en-
tropies with given specifications. These must be solutions of (7.4.2), which is a linear,
second-order system of 1

2 n(n−1) partial differential equations in a single unknown
η . Thus, when n = 2, (7.4.2) reduces to a single linear hyperbolic equation which
may be solved to produce an abundance of entropies. By contrast, for n ≥ 3, (7.4.2)
is formally overdetermined. Notwithstanding the presence of special solutions such
as (7.4.6) and (7.4.7), one should not expect an abundance of entropies, unless (7.2.1)
is special. It is remarkable that the overdeterminacy of (7.4.2) vanishes when (7.2.1)
is endowed with a coordinate system (w1, · · · ,wn) of Riemann invariants. In that case
it is convenient to seek η and q as functions of the state vector W = (w1, · · · ,wn)

�.
Upon multiplying (7.4.1), from the right, by R j(U) and by using (7.3.12), we deduce
that (7.4.1) is now equivalent to

(7.4.12)
∂q
∂w j

= λ j
∂η
∂w j

, j = 1, · · · ,n.

The integrability condition associated with (7.4.12) takes the form

(7.4.13)
∂ 2η

∂w j∂wk
+g jk

∂η
∂w j

+gk j
∂η
∂wk

= 0, j,k = 1, · · · ,n; j �= k,

where g jk , gk j are the functions defined through (7.3.14). An alternative, useful
expression for g jk arises if one derives (7.4.13) directly from (7.4.3). Indeed, for
j,k = 1, · · · ,n,

(7.4.14)

R�
j D2ηRk = D(DηR j)Rk −DηDR jRk = D(DηR j)Rk −

n

∑
i=1

∂η
∂wi

DwiDR jRk .

Combining (7.4.3), (7.3.12), (7.3.10) and (7.3.9), we arrive at an equation of the form
(7.4.13) with

2 In the isothermal case, γ = 1, the entropy-entropy flux pair of (7.1.13) takes the following
form: η = 1

2ρv2 +κρ logρ, q = 1
2ρv3 +κρv logρ+κρv.
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(7.4.15) g jk = R�
j D2w jRk , j,k = 1, · · · ,n; j �= k.

The reader may verify directly, as an exercise, with the help of (7.2.14), (7.3.8),
(7.3.11), (7.3.10), (7.3.9) and (7.3.12), that (7.3.14) and (7.4.15) are equivalent.

Applying (7.4.14) with k = j, using (7.3.12), (7.3.9) and recalling (7.4.4), we de-
duce that, in terms of Riemann invariants, the convexity condition on η is expressed
by the set of inequalities

(7.4.16)
∂ 2η
∂w2

j
+

n

∑
i=1

ai j
∂η
∂wi

≥ 0, j = 1, · · · ,n,

where

(7.4.17) ai j = R�
j D2wiR j , i, j = 1, · · · ,n.

The system (7.4.13) contains 1
2 n(n− 1) equations in the single unknown η and

thus seems overdetermined when n ≥ 3. It turns out, however, that this set of equa-
tions is internally consistent. To see this, differentiate (7.4.13) with respect to wi to
get

(7.4.18)
∂ 3η

∂wi∂w j∂wk
=−∂g jk

∂wi

∂η
∂w j

+g jk

(
g ji

∂η
∂w j

+gi j
∂η
∂wi

)

−∂gk j

∂wi

∂η
∂wk

+gk j

(
gki

∂η
∂wk

+gik
∂η
∂wi

)
.

The system (7.4.13) will be integrable if and only if, for i �= j �= k �= i, the right-
hand side of (7.4.18) is symmetric in (i, j,k). But this is always the case, on account
of the identities (7.3.16) and (7.3.17). Consequently, it is possible to construct, in a
neighborhood of any given state W̄ = (w̄1, · · · , w̄n)

�, entropies η with prescribed val-
ues {η(w1, w̄2, · · · , w̄n),η(w̄1,w2, · · · , w̄n), · · · ,η(w̄1, · · · , w̄n−1,wn)} along straight
lines parallel to the coordinate axes. When n = 2, this amounts to solving a classical
Goursat problem.

We have thus shown that systems endowed with coordinate systems of Riemann
invariants are also endowed with an abundance of entropies. For this reason, such
systems are called rich. In particular, the system (7.3.18) of electrophoresis and the
system (7.1.23) of electromagnetic waves are rich. The reader will find how to con-
struct the family of entropies of these systems in the references cited in Section 7.10.

7.5 Genuine Nonlinearity and Linear Degeneracy

The feature distinguishing the behavior of linear and nonlinear hyperbolic systems
of conservation laws is that in the former, characteristic speeds being constant, all
waves of the same family propagate with fixed speed; while in the latter, wave speeds
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vary with wave-amplitude. As we proceed with our study, we will encounter various
manifestations of nonlinearity, and in every case we shall notice that its effects will
be particularly pronounced when the characteristic speeds λi vary in the direction of
the corresponding eigenvectors Ri . This motivates the following

7.5.1 Definition. For the hyperbolic system (7.2.1) of conservation laws on O,U in
O is called a state of genuine nonlinearity of the i-characteristic family if

(7.5.1) Dλi(U)Ri(U) �= 0,

or a state of linear degeneracy of the i-characteristic family if

(7.5.2) Dλi(U)Ri(U) = 0.

When (7.5.1) holds for all U ∈ O , i is a genuinely nonlinear characteristic family,
while if (7.5.2) is satisfied for all U ∈O , then i is a linearly degenerate characteristic
family. When every characteristic family is genuinely nonlinear, (7.2.1) is a genuinely
nonlinear system.

It is clear that the i-characteristic family is linearly degenerate if and only if the
i-characteristic speed λi is constant along the integral curves of the vector field Ri .

The scalar conservation law (7.1.2), with characteristic speed λ = f ′(u), is gen-
uinely nonlinear when f has no inflection points: f ′′(u) �= 0. In particular, the Burgers
equation (4.2.1) is genuinely nonlinear.

Using (7.2.4) and (7.2.5), one readily checks that the system (7.1.11) is genuinely
nonlinear when σ ′′(u) �= 0. As an exercise, the reader may verify that the system
(7.1.12) is genuinely nonlinear if 2p′(ρ)+ρ p′′(ρ) > 0 so, in particular, the system
(7.1.13) for the ideal gas is genuinely nonlinear. The system (7.1.19) of waves in
shallow water is likewise genuinely nonlinear.

On account of (7.2.9), the 2-characteristic family of the system (7.1.8) of ther-
moelasticity is linearly degenerate. It turns out that the other two characteristic fam-
ilies are genuinely nonlinear, provided σuu(u,s) �= 0.

Consider next the system (7.1.15) of planar elastic oscillations in the direction
ν , recalling that σ(u) = ∂e(u)/∂u, with e(u) convex. The six characteristic speeds
are the square roots ±√μ1 ,±√μ2 ,±√μ3 of the eigenvalues μ1(u), μ2(u), μ3(u)
of the Hessian matrix of e(u), namely the eigenvalues of the acoustic tensor (3.3.8)
evaluated at F = I+uν�. A simple calculation shows that the characteristic families
associated with the characteristic speeds ±√μ� are genuinely nonlinear at u = Fν if

(7.5.3)
3

∑
i, j,k=1

∂ 3e(u)
∂ui∂u j∂uk

ξiξ jξk =
3

∑
i, j,k=1

3

∑
α,β ,γ=1

∂ 3ε(F)

∂Fiα∂Fjβ ∂Fkγ
ξiξ jξkνανβνγ �= 0,

where ξ is the eigenvector of the acoustic tensor associated with the eigenvalue μ� .
Applying the above to the special system (7.1.17), one finds that μ1 = h′′(|u|)

is a simple eigenvalue, with eigenvector u, and μ2 = μ3 = h′(|u|)/|u| is a dou-
ble eigenvalue, with eigenspace the orthogonal complement of u. Thus, the char-
acteristic speeds ± [h′′(|u|)]1/2 are associated with longitudinal oscillations, while
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± [h′(|u|)/|u|]1/2 are associated with transverse oscillations. However, only trans-
verse oscillations that are also orthogonal to ν are compatible with incompressibility.
The characteristic families associated with ± [h′′(|u|)]1/2 are genuinely nonlinear at
u if h′′′(|u|) �= 0, while the characteristic families associated with ± [h′(|u|)/|u|]1/2

are linearly degenerate. Clearly, the same conclusions apply to the system of elastic
string oscillations (7.1.18), with τ(|u|) replacing h′(|u|). For this system, all trans-
verse oscillations are physically meaningful, as the incompressibility constraint is
no longer relevant. The model system (7.2.11) exhibits similar behavior, as its 1-
characteristic family is linearly degenerate, while its 2-characteristic family is gen-
uinely nonlinear, except at the origin.

In the system (7.1.22) of three-phase flow through a porous medium, genuine
nonlinearity breaks down along the three lines of symmetry u = v, u = 1−u−v and
v = 1−u−v, as well as along a closed curve surrounding the point u = v = 1/3.

Finally, in the system (7.3.18) of electrophoresis the n-characteristic family is
linearly degenerate while the rest are genuinely nonlinear.

The system of Maxwell’s equations (3.3.66) for the Born-Infeld medium (3.3.73)
has the remarkable property that planar oscillations in any spatial direction ν ∈ S2

are governed by a system whose characteristic families are all linearly degenerate.
Quite often, linear degeneracy results from the loss of strict hyperbolicity. Indeed,

an immediate consequence of (7.2.17) is

7.5.2 Theorem. In the hyperbolic system (7.2.1) of conservation laws, assume that
the j- and k-characteristic speeds coincide: λ j(U) = λk(U) , U ∈ O . Then both the
j- and the k-characteristic families are linearly degenerate.

When the system (7.2.1) is endowed with a coordinate system (w1, · · · ,wn) of
Riemann invariants and one uses W = (w1, · · · ,wn)

� as state vector, the conditions
of genuine nonlinearity and linear degeneracy assume an elegant and suggestive
form. Indeed, upon using (7.3.12), we deduce that (7.5.1) and (7.5.2) are respectively
equivalent to

(7.5.4)
∂λi

∂wi
�= 0

and

(7.5.5)
∂λi

∂wi
= 0.

7.6 Simple Waves

In the context of classical solutions, the scalar conservation law (7.1.2), with charac-
teristic speed λ = f ′(u), takes the form

(7.6.1) ∂tu(x, t)+λ (u(x, t))∂xu(x, t) = 0.
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As noted already in Section 6.1, by virtue of (7.6.1) u stays constant along charac-
teristics and this, in turn, implies that each characteristic propagates with constant
speed, i.e., it is a straight line. It turns out that general hyperbolic systems (7.2.1) of
conservation laws admit special solutions with the same features:

7.6.1 Definition. A classical, C1 solution U of the hyperbolic system (7.2.1) of con-
servation laws is called an i-simple wave if U stays constant along any i-characteristic
associated with it.

Thus a C1 function U , defined on an open subset of R2 and taking values in O , is
an i-simple wave if it satisfies (7.2.1) together with

(7.6.2) ∂tU(x, t)+λi(U(x, t))∂xU(x, t) = 0.

In particular, in an i-simple wave each i-characteristic propagates with constant speed
and so it is a straight line.

If U is an i-simple wave, combining (7.2.1) with (7.6.2) we deduce

(7.6.3)

⎧⎨⎩ ∂xU(x, t) = a(x, t)Ri(U(x, t))

∂tU(x, t) =−a(x, t)λi(U(x, t))Ri(U(x, t)),

where a is a scalar field. Conversely, any C1 function U that satisfies (7.6.3) is nec-
essarily an i-simple wave.

It is possible to give still another characterization of simple waves, in terms of
Riemann invariants:

7.6.2 Theorem. A classical, C1 solution U of (7.2.1) is an i-simple wave if and only
if every i-Riemann invariant is constant on each connected component of the domain
of U .

Proof. For any i-Riemann invariant w, ∂xw = Dw∂xU and ∂tw = Dw∂tU . If U is an
i-simple wave, ∂xw and ∂tw vanish identically, by virtue of (7.6.3) and (7.3.1), so that
w is constant on any connected component of the domain of U .

Conversely, recalling that the gradients of i-Riemann invariants span the orthog-
onal complement of Ri , we infer that when ∂xw=Dw∂xU vanishes identically for all
i-Riemann invariants w, ∂xU must satisfy (7.6.3)1 . Substituting (7.6.3)1 into (7.2.1)
we conclude that (7.6.3)2 holds as well, i.e., U is an i-simple wave. This completes
the proof.

Any constant function U = Ū qualifies, according to Definition 7.6.1, to be
viewed as an i-simple wave, for every i = 1, · · · ,n. It is expedient, however, to re-
fer to such trivial solutions as constant states and reserve the term simple wave for
solutions that are not constant on any open subset of their domain. The following
proposition, which demonstrates that simple waves are the natural neighbors of con-
stant states, is stated informally, in physical rather than mathematical terminology.
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The precise meaning of assumptions and conclusions may be extracted from the
proof.

7.6.3 Theorem. Any weak front moving into a constant state propagates with con-
stant characteristic speed of some family i. Furthermore, the wake of this front is
necessarily an i-simple wave.

Proof. The setting is as follows: The system (7.2.1) is assumed strictly hyperbolic.
U is a classical, Lipschitz solution which is C1 on its domain, except along the graph
of a C1 curve x = χ(t). U is constant, Ū , at any point of its domain lying on one side,
say to the right, of the graph of χ . By contrast, ∂xU and ∂tU attain nonzero limits
from the left along the graph of χ . Thus, according to the terminology of Section
1.6, χ is a weak front propagating with speed χ̇ = dχ/dt. In particular, (1.6.1) here
reduces to

(7.6.4) [DF(Ū)− χ̇I][[∂U/∂N]] = 0,

which shows that χ̇ is constant and equal to λi(Ū) for some i.
Next we show that to the left of, and sufficiently close to, the graph of χ

the solution U is an i-simple wave. By virtue of Theorem 7.6.2, it suffices to
prove that n − 1 independent i-Riemann invariants, which will be denoted by
w1, · · · ,wi−1,wi+1, · · · ,wn , are constant.

For U near Ū , the vectors {Dw1(U), · · · ,Dwi−1(U),Dwi+1(U), · · · , Dwn(U)}
span the orthogonal complement of Ri(U) and this is also the case for the vec-
tors {L1(U), · · · ,Li−1(U),Li+1(U), · · · ,Ln(U)}. Consequently, there is a nonsingular
(n−1)× (n−1) matrix B(U) such that

(7.6.5) L j(U) = ∑
k �=i

B jk(U)Dwk(U), j = 1, · · · , i−1, i+1, · · · ,n.

Multiplying (7.2.1), from the left, by L j(U) yields

(7.6.6) L j(U)∂tU +λ j(U)L j(U)∂xU = 0, j = 1, · · · ,n.

Combining (7.6.5) with (7.6.6), we conclude

(7.6.7) ∑
k �=i

B jk∂twk +∑
k �=i
λ jB jk∂xwk = 0, j = 1, · · · , i−1, i+1, · · · ,n.

We regard (7.6.7) as a first-order linear inhomogeneous system of n − 1 equa-
tions in the n − 1 unknowns w1, · · · ,wi−1,wi+1, · · · ,wn . In that sense, (7.6.7) is
strictly hyperbolic, with characteristic speeds λ1, · · · ,λi−1,λi+1, · · · ,λn . Along the
graph of χ , the n − 1 Riemann invariants are constant, namely, equal to their
values at Ū : w1(Ū), · · · ,wi−1(Ū),wi+1(Ū), · · · ,wn(Ū). Also, the graph of χ is
non-characteristic for the system (7.6.7). Consequently, the standard uniqueness the-
orem for the Cauchy problem for linear hyperbolic systems implies that (7.6.7) may
admit only one solution compatible with the Cauchy data, namely the trivial one:
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w1 = w1(Ū), · · · ,wi−1 = wi−1(Ū),wi+1 = wi+1(Ū), · · · ,wn = wn(Ū). This completes
the proof.

At any point (x, t) in the domain of an i-simple wave U of (7.2.1), we let ξ (x, t)
denote the slope at (x, t) of the i-characteristic associated with U , i.e.,

(7.6.8) ξ (x, t) = λi(U(x, t)).

The derivative of ξ in the direction of the line with slope ξ is zero, that is

(7.6.9) ∂tξ +ξ∂xξ = 0.

Thus ξ satisfies the Burgers equation (4.2.1).
In the vicinity of any point (x̄, t̄) in the domain of U , we shall say that the i-simple

wave is an i-rarefaction wave if ∂xξ (x̄, t̄)> 0, i.e., if the i-characteristics diverge, or
an i-compression wave if ∂xξ (x̄, t̄) < 0, i.e., if the i-characteristics converge. This
terminology originated in the context of gas dynamics.

Since in an i-simple wave U stays constant along i-characteristics, on a small
neighborhood X of any point (x̄, t̄) where ∂xξ (x̄, t̄) �= 0 we may use the single vari-
able ξ to label U , i.e., there is a function Vi , defined on an interval (ξ̄ − ε, ξ̄ + ε),
with ξ̄ = λi(U(x̄, t̄)), taking values in O and such that

(7.6.10) U(x, t) =Vi(ξ (x, t)), (x, t) ∈ X .

Furthermore, by virtue of (7.6.3) and (7.6.8), Vi satisfies

(7.6.11) V̇i(ξ ) = b(ξ )Ri(Vi(ξ )), ξ ∈ (ξ̄ − ε, ξ̄ + ε),

(7.6.12) λi(Vi(ξ )) = ξ , ξ ∈ (ξ̄ − ε, ξ̄ + ε),
where b is a scalar function and an overdot denotes derivative with respect to ξ .

Conversely, if Vi satisfies (7.6.11), (7.6.12) and ξ is any C1 solution of (7.6.9)
taking values in the interval (ξ̄ − ε, ξ̄ + ε), then U =Vi(ξ (x, t)) is an i-simple wave.
The above considerations motivate the following

7.6.4 Definition. An i-rarefaction wave curve in the state space Rn, for the hyper-
bolic system (7.2.1), is a curve U =Vi(·), where the function Vi satisfies (7.6.11) and
(7.6.12).

Rarefaction wave curves will provide one of the principal tools for solving the
Riemann problem in Chapter IX. The construction of these curves is particularly
simple in the neighborhood of states of genuine nonlinearity:

7.6.5 Theorem. Assume Ū ∈ O is a state of genuine nonlinearity of the i-
characteristic family of the hyperbolic system (7.2.1) of conservation laws. Then
there exists a unique i-rarefaction wave curve Vi through Ū . If Ri is normalized on a
neighborhood of Ū through
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(7.6.13) Dλi(U)Ri(U) = 1,

and Vi is reparametrized by τ = ξ − ξ̄ , where ξ̄ = λi(Ū), then Vi is the solution of
the ordinary differential equation

(7.6.14) V̇i = Ri(Vi)

with initial condition Vi(0) = Ū . In particular, Vi is C3. The more explicit notation
Vi(τ;Ū) shall be employed when it becomes necessary to display the point of origin
of this rarefaction wave curve.

Proof. Any solution Vi of (7.6.14) clearly satisfies (7.6.11) with b = 1. At ξ = ξ̄ , i.e.,
τ = 0, λi(Vi) = λi(Ū) = ξ̄ . Furthermore, λ̇i(Vi) =Dλi(Vi)V̇i = 1, by virtue of (7.6.14)
and (7.6.13). This establishes (7.6.12) and completes the proof.

By contrast, when the i-characteristic family is linearly degenerate, differentiat-
ing (7.6.12) with respect to ξ and combining the resulting equation with (7.6.11)
yields a contradiction: 0 = 1. In that case, i-characteristics in any i-simple wave are
necessarily parallel straight lines. It is still true, however, that any i-simple wave
takes values along some integral curve of the differential equation (7.6.14).

Motivated by Theorem 7.6.2, we may characterize rarefaction wave curves in
terms of Riemann invariants:

7.6.6 Theorem. Every i-Riemann invariant is constant along any i-rarefaction wave
curve of the system (7.2.1). Conversely, if Ū is any state of genuine nonlinearity
of the i-characteristic family of (7.2.1) and w1, · · · ,wi−1,wi+1, · · · ,wn are indepen-
dent i-Riemann invariants on some neighborhood of Ū , then the i-rarefaction curve
through Ū is determined implicitly by the system of equations w j(U) = w j(Ū), for
j = 1, · · · , i−1, i+1, · · · ,n.

Proof. Any i-rarefaction curve Vi satisfies (7.6.11). If w is an i-Riemann invariant
of (7.2.1), multiplying (7.6.11), from the left, by Dw(Vi(ξ )) and using (7.3.1) yields
ẇ(Vi(ξ )) = 0, i.e., w stays constant along Vi .

Assume now w1, · · · ,wi−1,wi+1, · · · ,wn are i-Riemann invariants such that
Dw1, · · · ,Dwi−1,Dwi+1, · · · ,Dwn are linearly independent. Then the n− 1 surfaces
w j(U) = w j(Ū) , j = 1, · · · , i− 1, i+ 1, · · · ,n, intersect transversely to form a C1

curve Vi through Ū , parametrized by arclength s, whose tangent V
′
i must satisfy, on

account of Definition 7.3.1, V
′
i (s) = c(s)Ri(V (s)), for some nonzero scalar function

c. For as long as Vi is a state of genuine nonlinearity of the i-characteristic field,
λ ′

i (Vi) = DλiV
′
i = cDλiRi �= 0. We may thus find the proper parametrization s = s(ξ )

so that Vi satisfies both (7.6.11) and (7.6.12). This completes the proof.

As an application of Theorem 7.6.6, we infer that the 1- and 2-rarefaction wave
curves of the system (7.1.11) through a point (ū, v̄), with σ ′′(ū) �= 0, are determined,
in terms of the Riemann invariants (7.3.2), by the equations



252 VII Hyperbolic Systems of Balance Laws in One-Space Dimension

(7.6.15)

Similarly, the 1- and 3-rarefaction wave curves of the system (7.1.8) through a
point (ū, v̄, s̄), with puu(ū, s̄) �= 0, are described in terms of the Riemann invariants
(7.3.4), by the equations

(7.6.16)

When the system (7.2.1) is endowed with a coordinate system (w1, · · · ,wn) of
Riemann invariants and we use W = (w1, · · · ,wn)

�, instead of U , as our state vari-
able, the rarefaction wave curves assume a very simple form. Indeed, by virtue of
Theorem 7.6.4, the i-rarefaction wave curve through the point W̄ = (w̄1, · · · , w̄n)

� is
the straight line w j = w̄ j , j �= i, parallel to the i-axis.

7.7 Explosion of Weak Fronts

The aim here is to expose the decisive role played by genuine nonlinearity in the
amplification and eventual explosion of weak fronts.

We consider a Lipschitz continuous solution U of the strictly hyperbolic system
(7.2.1), defined on a strip (−∞,∞)× [0,T ) and having the following structure: A
C1 curve x = χ(t) issues from the origin, and U(x, t) = Ū = constant on the set
{(x, t) : 0 ≤ t < T, x > χ(t)}, while on the set {(x, t) : 0 ≤ t < T, x < χ(t)} U is C2

and its first and second partial derivatives attain non-zero limits, as x ↑ χ(t). Thus,
χ(·) is a weak front moving into a constant state.

On the set {(x, t) : 0 ≤ t < T, x < χ(t)},

(7.7.1) ∂tU(x, t)+DF(U(x, t))∂xU(x, t) = 0.

Since U(χ(t)−, t) = Ū ,

(7.7.2) ∂tU(χ(t)−, t)+ χ̇(t)∂xU(χ(t)−, t) = 0.

By combining (7.7.1) with (7.7.2),

(7.7.3)
[
DF(Ū)− χ̇(t)I

]
∂xU(χ(t)−, t) = 0.

Therefore, χ̇(t) is constant, equal to λi(Ū), for some characteristic family i, and

(7.7.4) ∂xU(χ(t)−, t) = a(t)Ri(Ū).

The function a(t) measures the strength of the weak front.
We multiply (7.7.4), from the left, by Li(Ū), use (7.2.3) and differentiate with

respect to t to get

(7.7.5)
da(t)

dt
= Li(Ū)

[
∂x∂tU(χ(t))−, t)+λi(Ū)∂x∂xU(χ(t)−, t)

]
.

v = v̄±
∫ u

ū

√
σ ′(ω)dω.

v = v̄±
∫ u

ū

√
−pω(ω, s̄)dω , s = s̄.
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Next, we multiply (7.7.1), from the left, by Li(U(x, t)),

(7.7.6) Li(U(x, t)) [∂tU(x, t)+λi(U(x, t))∂xU(x, t)] = 0,

then differentiate with respect to x and let x ↑ χ(t). Upon combining χ̇(t) = λi(Ū),
(7.7.2), (7.7.5), (7.7.4) and (7.2.3), we conclude that a(t) satisfies an ordinary differ-
ential equation of Bernoulli type:

(7.7.7)
da
dt

+Dλi(Ū)Ri(Ū)a2 = 0.

Thus, if Ū is a state of genuine nonlinearity for the i-characteristic family and
Dλi(Ū)Ri(Ū)a(0) < 0, then the strength of the weak wave increases with time
and eventually explodes as t ↑ [−Dλi(Ū)Ri(Ū)a(0)

]−1. The issue of breakdown
of classical solutions will be discussed from a broader perspective in the following
section.

7.8 Existence and Breakdown of Classical Solutions

When the system (7.2.1) is equipped with a convex entropy, Theorem 5.1.1 guaran-
tees the existence of a unique, locally defined, classical solution, with initial data U0
in the Sobolev space H2. In one space dimension, however, there is a sharper exis-
tence theory which applies to quasilinear hyperbolic systems in general, that may or
may not be conservation laws, and does not rely on the existence of entropies:

7.8.1 Theorem. Assume (7.2.1) is strictly hyperbolic on O . For any initial data U0 in
C1(−∞,∞), with values in a compact subset of O and bounded derivative, there exists
a unique C1 solution of the Cauchy problem on a strip (−∞,∞)× [0,T∞), for some
0<T∞≤∞ , and values in O . Moreover, if T∞<∞ , then, as t ↑ T∞ , ‖∂xU(·, t)‖L∞ → ∞
and/or the range of U(·, t) escapes from every compact subset of O .

The proof of the above theorem, which may be found in the references cited in
Section 7.10, relies on pointwise bounds for U and ∂xU obtained by monitoring the
evolution of U and its derivatives along characteristics. Estimates of this nature will
be established below but they will be employed for establishing the breakdown of
classical solutions in finite time.

We have already encountered a number of examples of breakdown of classical
solutions, notably for scalar conservation laws, in Section 6.1, and for weak fronts, in
Section 7.7. Breakdown also occurs in the presence of compressive simple waves. In-
deed, as shown in Section 7.6, an i-simple wave solution U is obtained by taking the
composition (7.6.10) of a (smooth) solution Vi to the ordinary differential equation
(7.6.11) with a classical solution ξ to the Burgers equation (7.6.9). When that solu-
tion of (7.6.9) breaks down, so does the i-simple wave. The above examples involve
a single characteristic family. The aim here is to demonstrate that, in the presence of
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genuine nonlinearity, the interaction of waves from different characteristic families
cannot prevent the breakdown of smooth solutions.

Any classical, C2 solution U of (7.2.1) on (−∞,∞)× [0,T ) may be written as

(7.8.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂xU =

n

∑
j=1

a jR j(U)

∂tU =−
n

∑
j=1

a jλ j(U)R j(U)

with

(7.8.2) a j = L j(U)∂xU, j = 1, · · · ,n.
In view of (7.6.3), one may interpret (7.8.1) as a decomposition of U into simple
waves, one for each characteristic family, with respective strengths a1, · · · ,an . Our
aim is to study the evolution of ai along the i-characteristics associated with U . We
let

(7.8.3)
d
dt

= ∂t +λi∂x

denote differentiation in the i-characteristic direction. Combining (7.8.2) with (7.8.1)
yields

(7.8.4) ∂tai = Li∂t∂xU +∂xU�DL�
i ∂tU

= ∂x(Li∂tU)−∂tU�DL�
i ∂xU +∂xU�DL�

i ∂tU

= ∂x(Li∂tU)+
n

∑
j,k=1

(λ j −λk)R�
j DL�

i Rka jak ,

(7.8.5) λi∂xai = ∂x(λiLi∂xU)− (Dλi∂xU)(Li∂xU)

= ∂x(λiLi∂xU)−
n

∑
j,k=1

(DλiR j)δika jak ,

where δik is the Kronecker delta. From (7.2.1), Li∂tU +λiLi∂xU = 0. Also, by virtue
of (7.2.3), R�

j DL�
i Rk = −LiDR jRk . Therefore, combining (7.8.3), (7.8.4), (7.8.5)

and symmetrizing we conclude

(7.8.6)
dai

dt
=

n

∑
j,k=1

γi jka jak

with

(7.8.7) γi jk =− 1
2 (λ j −λk)Li[R j,Rk]− (DλiR j)δik ,
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where [R j,Rk] denotes the Lie bracket (7.2.15). Note, in particular, that

(7.8.8) γiii =−DλiRi ,

(7.8.9) γi j j = 0, j �= i.

It is clear that in any argument showing blow-up of ai through (7.8.6), the co-
efficient γiii will play a pivotal role. By virtue of (7.8.8), γiii never vanishes when
the i-characteristic family is genuinely nonlinear, and vanishes identically when the
i-characteristic family is linearly degenerate.

To gain insight, let us consider first the case where U is just an i-simple wave,
i.e., ai �= 0 and a j = 0 for j �= i. In that case, (7.8.6) reduces to

(7.8.10)
dai

dt
= γiiia2

i .

Furthermore, since U is constant along characteristics, γiii in (7.8.10) is a constant.
When γiii �= 0 and ai has the same sign as γiii , (7.8.10) induces blow-up of ai in a
finite time.

Next we consider the noteworthy special case where the system (7.2.1) is en-
dowed with a coordinate system (w1, · · · ,wn) of Riemann invariants. In that case
L j = Dw j and so, by (7.8.2),

(7.8.11) a j = ∂xw j .

Moreover, in virtue of (7.8.7), (7.3.10) and (7.3.12), (7.8.6) reduces to

(7.8.12)
dai

dt
=−

n

∑
j=1

∂λi

∂w j
aia j .

We seek an integrating factor for (7.8.12). If φ is any smooth scalar function of U ,
we get from (7.8.1):

(7.8.13)
dφ
dt

= Dφ(∂tU +λi∂xU) = ∑
j �=i

(λi −λ j)(DφR j)a j = ∑
j �=i

(λi −λ j)
∂φ
∂w j

a j .

Combining (7.8.12) with (7.8.13) yields

(7.8.14)
d
dt
(eφai) =−eφ

∂λi

∂wi
a2

i −∑
j �=i

eφ [
∂λi

∂w j
− (λi −λ j)

∂φ
∂w j

]aia j .

From (7.3.14) and (7.3.16), it follows that there exists φ that satisfies

(7.8.15)
∂φ
∂w j

=
1

λi −λ j

∂λi

∂w j
, j = 1, · · · , i−1, i+1, · · · ,n.

For that φ , (7.8.14) reduces to
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(7.8.16)
d
dt
(eφai) =−e−φ

∂λi

∂wi
(eφai)

2.

When the i-characteristic family is genuinely nonlinear, ∂λi/∂wi �= 0. Whenever
e−φ ∂λi/∂wi is bounded away from zero, uniformly on the range of the solution,
(7.8.16) will induce blowup of ai , in finite time, along any characteristic emanating
from a point x̄ of the x-axis where ai has the opposite sign of ∂λi/∂wi . Uniform
boundedness of e−φ ∂λi/∂wi is maintained, because, by Theorem 7.3.4, the range
of any classical solution in the state space of Riemann invariants coincides with the
range of its initial values. In the opposite case where the i-characteristic family is
linearly degenerate, so that ∂λi/∂wi vanishes identically, (7.8.16) implies that ∂xwi
stays bounded for as long as the solution exists. We have thus established

7.8.2 Theorem. Assume (7.2.1) is endowed with a coordinate system of Riemann
invariants (w1, · · · ,wn). Suppose the i-characteristic family is genuinely nonlinear.
Then any classical solution U with bounded initial values U0 , such that dwi(U0)/dx

time.

7.8.3 Theorem. Assume the strictly hyperbolic system (7.2.1) is linearly degener-
ate and is endowed with a coordinate system of Riemann invariants (w1, · · · ,wn),

U0 ∈C1(−∞,∞) with values in O , there exists a unique C1 solution U to the Cauchy
problem on the upper half-plane (−∞,∞)× [0,∞).

We now return to the general situation. When the i-characteristic field is gen-
uinely nonlinear, and thus, by (7.8.8), γiii �= 0, the term γiiia2

i in (7.8.6) will have a
destabilizing effect. Any expectation that this may be offset by the remaining terms in
(7.8.6), which account for the interaction effects with the other characteristic fields, is
not likely to be fulfilled, at least when the initial data are constant outside a bounded
interval, for the following reason. Equation (7.8.9) rules out the possibility of self-
interactions of the remaining characteristic fields: all interactions, other than γiiia2

i ,
involve two distinct characteristic families. Now, when the initial data are constant
outside a bounded interval, mutual interactions eventually become insignificant, be-
cause waves of distinct characteristic families propagate with different speeds and
thus eventually separate. Consequently, in the long run the term γiiia2

i becomes the
dominant factor and drives ai to infinity in finite time. The above heuristic arguments
can be formalized and lead to the following

7.8.4 Theorem. Assume (7.2.1) is a genuinely nonlinear strictly hyperbolic system
of conservation laws. Consider initial data U0 ∈ C2(−∞,∞) such that U0(x) = Ū ,
a constant state, for x ≤ a and x ≥ b. If (b− a)2 max |U ′′

0 (x)| is a sufficiently small
positive number, then the classical solution of the initial value problem breaks down
in finite time.

In the literature cited in Section 7.9, the reader will find the (long and tech-
nical) proof of the above theorem as well as analogous results on the breakdown

has the opposite sign from ∂λi/∂wi at some point x̄ ∈ (−∞,∞), breaks down in finite

on a domain O = {U ∈ Rn : ai < wi < bi , i = 1, · · · ,n}. For any initial data
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of classical solutions under weaker hypotheses, namely when the requirement of
strict hyperbolicity of the system is relaxed and only some of the characteristic fam-
ilies are genuinely nonlinear. There are also extensions of Theorem 7.8.3, in which
global existence of C1 solutions is established when the characteristic families are
merely weakly linearly degenerate relative to some constant state Ū , in that, for
i = 1, · · · ,n, DλiRi need only vanish along the i-rarefaction wave curve emanating
from Ū , and the initial data U0 ∈C1(−∞,∞) stay close to Ū , in the sense that

(7.8.17) sup{(1+ |x|)1+μ(|U0(x)−Ū |+ |U ′
0(x)|)}

is sufficiently small, for some μ > 0.
There is also a substantial body of research on the initial-boundary value prob-

lem. For comparison with the discussion in Section 5.6, let us consider a strictly
hyperbolic system (7.2.1) on the quadrant {(x, t) : x > 0, t > 0}, under the as-
sumption that the boundary x = 0 is noncharacteristic, i.e., λk(U) < 0 < λk+1(U),
for some k = 0, · · · ,n, with λ0(U) = −∞ , λn+1(U) = ∞ . We impose boundary
conditions of the form (5.6.4), namely BF(U(0, t)) = 0, where B is a n × n ma-
trix such that, for any U in the manifold M = {U : BF(U) = 0}, Rn is the di-
rect sum of the kernel of BDF(U) and the subspace spanned by the eigenvectors
{Rk+1(U), · · · ,Rn(U)} associated with the incoming characteristic families. We also
assign initial data U0 ∈ C1([0,∞);Rn) that are compatible with the boundary con-
ditions, in that BF(U0(0)) = 0 and B[DF(U0(0))]2U ′

0(0) = 0. Under the above hy-
potheses, one can show (a) local existence of classical solutions; (b) breakdown, in
finite time, of classical solutions, when (at least some of) the incoming characteristic
families are genuinely nonlinear; and (c) global existence of classical solutions, when
all of the incoming characteristic families are (at least) weakly linearly degenerate
and the supremum (7.8.17) of the initial data is sufficiently small.

7.9 Weak Solutions

In view of the breakdown of classical solutions, demonstrated in the previous sec-
tion, in order to solve the initial value problem in the large, for nonlinear hyperbolic
systems of conservation laws, one has to resort to weak solutions. As explained in
Chapter IV, the issue of the admissibility of weak solutions will have to be addressed.

In earlier chapters, we mainly considered weak solutions that are merely bounded
measurable functions. Existence in that function class will indeed be established, for
certain systems, in Chapter XVII, through the functional analytic method of com-
pensated compactness. On the other hand, there are systems of three conservation
laws for which the Cauchy problem is not well-posed in L1. Apparently, the function
class of choice for hyperbolic systems of conservation laws in one spatial dimen-
sion is BV , which provides the natural framework for envisioning the most important
features of weak solutions, namely shocks and their interactions.

The finite domain of dependence property for solutions of hyperbolic systems,
combined with the fact that our system (7.2.1) is invariant under uniform stretching
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of coordinates: x = x̄+ ay , t = t̄ + aτ , a > 0, suggests that the admissibility of
BV weak solutions may be decided locally, through examination of shocks and wave
fans. These issues will be discussed thoroughly in the following two chapters.

7.10 Notes

The general mathematical framework of the theory of hyperbolic systems of conser-
vation laws in one space dimension was set in the seminal paper of Lax [2], which
distills the material collected over the years in the context of special systems. The
notions of Riemann invariants, genuine nonlinearity, simple waves and simple wave
curves, at the level of generality considered here, were introduced in that paper. The
books by Smoller [3] and Serre [11] contain expositions of these topics, illustrated
by interesting examples.

The simple hydrodynamic model (7.1.4) for traffic flow was introduced by
Lighthill and Whitham [1]. Its elaborations and extensions have provided the vehicle
for exhibiting and exploring a variety of features of hyperbolic systems of conser-
vation laws. Extensions address traffic flow on road networks, under proper mod-
eling of interactions at the junctions. In particular, when users plan their itinerary
so as to minimize their personal travel cost, the network is expected to operate
at a state of Nash equilibrium. Systems of conservation laws with the same flavor
model pedestrian flow and gas flow in a network of pipes. A comprehensive treat-
ment is found in the monograph by Garavello and Piccoli [2]. Other references in-
clude Holden and Risebro [3], Aw and Rascle [1], Tong Li [1,2,3,4], Greenberg [4,5],
Colombo [1], Greenberg, Klar and Rascle [1], Bagnerini and Rascle [1], Benzoni-
Gavage and Colombo [1], Tong Li and Hailiang Liu [1,2], Coclite, Garavello and
Piccoli [1], Herty and Rascle [1], Garavello and Piccoli [1,2,3,4,5,6,7,8], Benzoni-
Gavage, Colombo and Gwiazda [1], Colombo, Goatin and Priuli [1], Colombo,
Goatin and Piccoli [1], Colombo, Goatin and Rosini [1], Berthelin, Degond, Delitala
and Rascle [1], D’Apice, Manzo and Piccoli [1], Marigo and Piccoli [1], Godvik and
Hanche-Olsen [1], Coclite and Garavello [1], Colombo and Marcellini [4], Colombo,
Marcellini and Rascle [1], Colombo and Garavello [1,2] Colombo and Mauri [1],
Colombo and Marcellini [1,2,3], Chalons, Goatin and Seguin [1], Amadori, Goatin
and Rosini [1], Goatin [2], Garavello [1], Garavello and Goatin [1,2], Lee and Liu
[1], Bressan and Han [1,2], and Bressan, Liu, Shen and Yu [1].

The derivation of the chromatography equation (7.16), the Buckley-Leverett
equation (7.1.5) for two-phase flow, and the systems (7.1.21) and (7.1.22) for multi-
phase flow is found in the book by Rhee, Aris and Amundson [1], which also pro-
vides extensive discussions and a generous list of references. See also Bourdarias,
Gisclon and Junca [1].

For the equation (7.1.7) of the rubber sheet reinforced with inextensible fibers,
see Choksi [1].

The connection of the system (7.1.14) of pressureless gas dynamics with astro-
physics is discussed in Shandarin and Zeldovich [1]. For a different application of
the system of pressureless gas dynamics, see Ha, Huang and Wang [1].
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A systematic, rigorous exposition of the theory of one-dimensional elastic con-
tinua (strings, rods, etc.) is found in the book by Antman [1]. See also Antman [2],
and Antman and Jian-Guo Liu [1]. The system (7.1.17) was studied by Freistühler.

The shallow water wave system (7.1.19), originally derived (in a somewhat dif-
ferent form) by Lagrange [1], has been used extensively in hydraulic theory to model
flood and tidal waves and bores. A few relevant references, out of an immense bib-
liography, are Airy [1], Saint Venant [1], Stoker [1], Whitham [1], Gerbeau and
Perthame [1], and Holden and Risebro [5].

The system (7.1.23) for planar electromagnetic waves was studied thoroughly by
Serre [4].

As we saw in the historical introduction, Riemann invariants were first consid-
ered by Earnshaw [1] and by Riemann [1], in the context of the systems (7.1.11)
and (7.1.12) of isentropic gas dynamics. Conditions for existence of coordinate sys-
tems of Riemann invariants and its implications on the existence of entropies were
investigated by Conlon and Liu [1] and by Sévennec [1]. The calculation of the char-
acteristic speeds and Riemann invariants of the system (7.3.18) of electrophoresis
is due to Fife and Geng [1]. A detailed exposition of the noteworthy properties of
this system is contained in Serre [11]. Serre [4] shows that the system (7.1.23) is
equivalent to (7.3.24), (7.3.25) even within the realm of weak solutions.

As already mentioned in Section 1.10, the special entropy-entropy flux pair
(7.4.6), for symmetric systems, was noted by Godunov [1,2,3] and by Friedrichs
and Lax [1]. Over the years, a great number of entropy-entropy flux pairs with spe-

The system (7.1.25) represents the (inviscid) Zeldovich-von Neumann-Döring
combustion theory, which reduces, as the reaction rate tends to infinity, to the simpler
Chapman-Jouguet combustion theory. See the book by Williams [1]. The system
(7.1.26) was proposed by Majda [1], as a model for the Zeldovich-von Neumann-
Döring theory. As δ → ∞ , it yields a model for the Chapman-Jouguet theory.

For a general thermodynamic theory of mixtures, see I. Müller [2] and Müller
and Ruggeri [1]. A thorough treatment of the mathematical properties of the non-
isothermal version of the system (7.1.28) is given in Ruggeri and Simić [1].

There are many other interesting examples of hyperbolic systems of conserva-
tion laws, for example the equations governing sedimentation and suspension flows
(Bürger and Wendland [1], Bürger [1]), the system of flood waves (Whitham [2]), the
system of polymer flooding (Holden, Risebro and Tveito [1]), the system of granu-
lar flow and its slow erosion limit (Amadori and Shen [1,2,3,4], Bressan and Shen
[3], Cattani, Colombo and Graziano [1], Colombo, Guerra and Shen [1], Shen and
Zhang [1], May, Shearer and Daniels [1], Shearer and Giffen [1], Shearer, Gray and
Thornton [1]), and a system modeling the advance of avalanches (Shen [1]).

The possibility of recovering the flux F from the eigenvectors R1, · · · ,Rn of DF
is discussed by Dafermos [22], when n = 2, and by Jenssen and Kogan [1], for any n.

The failure of strict hyperbolicity in one space-dimensional systems deriving
from three-space-dimensional parent systems is discussed by Lax [6]. The system
(7.2.11) has been used extensively as a vehicle for demonstrating the features of
non-strictly hyperbolic systems of conservation laws, beginning with the work of
Keyfitz and Kranzer [2].
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cial properties have been constructed, mainly for systems of two conservation laws,
beginning with the pioneering paper of Lax [4]. We shall see some of that work in
later chapters. The characterization of systems of size n ≥ 3 endowed with an abun-
dance of entropies is due to Tsarev [1], who calls them semi-Hamiltonian, and Serre
[6], who named them rich. A comprehensive exposition of their theory is contained
in Serre [11]. For more recent developments in that direction, see Jenssen and Kogan
[2]. For related discussions, see Sever [5,6].

Theorem 7.5.2 is due to Boillat [2].
The earliest examples of simple waves appear in the works of Poisson [1], Airy

[2], and Earnshaw [1]; see the historical introduction. Theorem 7.6.3 is taken from
Lax [2], who attributes the proof to Friedrichs.

A thorough discussion on the explosion of weak waves in continuum physics,
together with extensive bibliography, are found in the encyclopedic article by Peter
Chen [1]. Danilov and Mitrovic [1] describe the process of shock generation by the
collision of two weak waves, in a scalar conservation law.

3 John’s formula for γi jk is different from (7.8.7) but, of course, the two expressions are
equivalent.

Local existence of C1 solutions to the initial value problem in one space dimen-
sion was established by Friedrichs [1], Douglis [1], and Hartman and Winter [1]. For
a comprehensive treatment of the initial as well as the initial-boundary value prob-
lem see the monograph by Ta-tsien Li and Wen-ci Yu [1]. Under certain conditions
on the initial data, smooth solutions may exist globally in time.

It was pointed out in the historical introduction that the process of wave-breaking
was first described by Stokes [1]. The earliest result on generic breakdown of clas-
sical solutions to systems of conservation laws caused by wave-breaking is due to
Lax [3], who proved directly the case n = 2 of Theorem 7.8.2. This work was ex-
tended in several directions: Klainerman and Majda [1] established breakdown in the
case n = 2 so long as neither of the two characteristic families is linearly degenerate.
John [1] derived3 (7.8.6) and used it to prove Theorem 7.8.3. A detailed discussion
is found in Hörmander [1,2]. Tai-Ping Liu [13] gives an extension of Theorem 7.8.3
covering the case where some of the characteristic families are linearly degenerate.
Ta-tsien Li, Zhou Yi and De-xing Kong [1] consider the case of weakly linearly de-
generate characteristic families. See also Ta-tsien Li and De-xing Kong [1], Kong and
Yang [1], and Ta-tsien Li and Libin Wang [1,3]. A direct proof of Theorem 7.8.2, for
any n, is found in Serre [11]. Precise estimates for the equations of (nonisentropic)
gas flow and inhomogeneous nonlinear wave equations are found in Geng Chen [1]
and Chen and Young [1]. In particular, for the system of nonisentropic gas flow, see
Chen, Young and Zhang [1], and Hualin Zheng [1]. For systems with relaxation, see
Li and Liu [2,3,4].

Corli and Guès [1] consider systems with a linearly degenerate characteristic field
and establish the local existence of “stratified” weak solutions, which have Lipschitz
continuous components along the Riemann invariants of the degenerate field, but
the remaining component may have infinite variation. See also Heibig [1]. On the
other hand, the plausible conjecture that solutions to the Cauchy problem for totally
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degenerate systems, under smooth initial data, are globally smooth is generally false;
see Neves and Serre [2].

Examples of systems for which the Cauchy problem is not well-posed in L1 are
found in Bressan and Shen [1]. See also Lewicka [1].



VIII

Admissible Shocks

Shock fronts were introduced in Section 1.6, for general systems of balance laws, and
were placed in the context of BV solutions in Section 1.8. They were encountered
again, briefly, in Section 3.1, where the governing Rankine-Hugoniot condition was
recorded.

Since shock fronts have codimension one, important aspects of their local behav-
ior may be investigated, without loss of generality, within the framework of systems
in one space dimension. This will be the object of the present chapter. The discussion
will begin with an exploration of the geometric features of the Rankine-Hugoniot
condition, leading to the introduction of the Hugoniot locus.

The necessity of imposing admissibility conditions on weak solutions was pointed
out in Chapter IV. These in turn induce, or at least motivate, admissibility conditions
on shocks. Indeed, the prevailing view is that the issue of admissibility of general
BV weak solutions should be resolved through a test applied to every point of the
shock set. In particular, the shock admissibility conditions associated with the en-
tropy condition of Section 4.5 and the vanishing viscosity approach of Section 4.6
will be introduced, and they will be compared with each other as well as with other
important shock admissibility conditions proposed by Lax and by Liu.

8.1 Strong Shocks, Weak Shocks,

and Shocks of Moderate Strength

For the hyperbolic system

(8.1.1) ∂tU +∂xF(U) = 0,

in one space dimension, the Rankine-Hugoniot jump condition (3.1.3) reduces to

(8.1.2) F(U+)−F(U−) = s(U+−U−).

Actually, (8.1.2) is as general as the multi-space-dimensional version (3.1.3), once
the direction ν of propagation of the shock has been fixed and F has been defined
through (7.2.2).
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When (8.1.2) holds, we say that the state U− , on the left, is joined to the state U+ ,
on the right, by a shock of speed s. Note that “left” and “right” may be interchanged in
(8.1.2), by the invariance of (8.1.1) under the transformation (x, t) �→ (−x,−t). Nev-
ertheless, later on we shall introduce admissibility conditions inducing irreversibility,
as a result of which the roles of U− and U+ cannot be interchanged.

The jump U+−U− is the amplitude and its size |U+−U−| is the strength of the
shock. Properties established without restriction on the strength are said to hold even
for strong shocks. Quite often, however, we shall have to impose limitations on the
strength of shocks: |U+ −U−| < δ , with δ depending on DF through parameters
such as the size of the gaps between characteristic speeds of distinct families, which
induce the separation of waves of different families, and the size of derivatives of
the functions λi and Ri , which manifest the nonlinearity of the system. In particular,
when δ depends solely on the size of the first derivatives of the λi and Ri , the shock
is of moderate strength; while if δ also depends on the size of second derivatives,
the shock is termed weak. Of course, the size of these parameters may be changed
by rescaling the variables x, t and U , so the relevant factor is the relative rather than
the absolute size of δ .

Notice that (8.1.2) may be written as

(8.1.3) [A(U−,U+)− sI](U+−U−) = 0,

where we are using the notation

(8.1.4) A(V,U) =
∫ 1

0
DF(τU +(1− τ)V )dτ.

Thus s must be a real eigenvalue of A(U−,U+), with associated eigenvector U+−U−.
If for some Ū ∈ O the characteristic speed λi(Ū) is a simple eigenvalue of DF(Ū),
then for V and U near Ū , A(V,U) will have a simple real eigenvalue μi(V,U) with
associated eigenvector Si(V,U). In particular, A(U,U) = DF(U) whence we get
μi(U,U) = λi(U), Si(U,U) = Ri(U). Notice that A(V,U), and thereby also μi(V,U)
and Si(V,U), are symmetric in (V,U). Therefore, (finite) Taylor expansion of these
functions about the midpoint 1

2 (V +U) yields

(8.1.5) μi(V,U) = λi(
1
2 (V +U))+O(|V −U |2),

(8.1.6) Si(V,U) = Ri(
1
2 (V +U))+O(|V −U |2).

Suppose then that for a shock of moderate strength

(8.1.7) s = μi(U−,U+),

(8.1.8) U+−U− = ζSi(U−,U+).

Thus s will be close to the characteristic speed λi. Such a shock is then called an
i-shock.
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An interesting implication of (8.1.5), (8.1.7) is the useful identity

(8.1.9) s = 1
2 [λi(U−)+λi(U+)]+O(|U−−U+|2).

In special systems it is possible to associate even strong shocks with a particular
characteristic family. For example, the Rankine-Hugoniot condition

(8.1.10)

⎧⎨⎩v+−v−+ s(u+−u−) = 0

σ(u+)−σ(u−)+ s(v+−v−) = 0

for the system (7.1.11) of isentropic elasticity implies

(8.1.11) s =±
√
σ(u+)−σ(u−)

u+−u−
.

Recalling the characteristic speeds (7.2.4) of this system, it is natural to call shocks
propagating to the left (s < 0) 1-shocks and shocks propagating to the right (s > 0)
2-shocks.

Another important example is the system (7.1.8), which governs rectilinear adi-
abatic flow of inviscid gases. The Rankine-Hugoniot jump conditions read 1

(8.1.12)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v+−v−+ r(u+−u−) = 0

p(u+,s+)− p(u−,s−)− r(v+−v−) = 0

v+p(u+,s+)−v−p(u−,s−)− r[ε(u+,s+)+ 1
2 v2

+− ε(u−,s−)− 1
2 v2−] = 0.

The 2-shocks, associated with the characteristic speed λ2 = 0, are stationary, r = 0,
in which case (8.1.12) reduces to v− = v+ and p− = p+ . On the other hand, 1-shocks
and 3-shocks propagate with negative and positive speed

(8.1.13) r =±
√

− p(u+,s+)− p(u−,s−)
u+−u−

.

Furthermore, when r �= 0, we may combine the three equations in (8.1.12) to deduce
the celebrated Hugoniot equation

(8.1.14) ε(u+,s+)− ε(u−,s−) =−1
2
[p(u+,s+)+ p(u−,s−)](u+−u−)

(see the historical introduction), which does not involve velocity or the shock speed,
but relates only the thermodynamic state variables u and s.

1 Here r stands for shock speed, as the symbol s is retained to denote specific entropy.
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8.2 The Hugoniot Locus

The set of points U in state space that may be joined to a fixed point Ū by a shock is
called the Hugoniot locus of Ū . It has a simple geometric structure in the vicinity of
any point U of strict hyperbolicity of the system.

8.2.1 Theorem. For a given state Ū ∈O , assume that the characteristic speed λi(Ū)
is a simple eigenvalue of DF(Ū). Then there is a C3 curve U =Wi(τ) in state space,
called the i-shock curve through Ū , and a C2 function s = si(τ), both defined for τ in
some neighborhood of 0, with the following property: A state U can be joined to Ū
by an i-shock of moderate strength and speed s if and only if U = Wi(τ), s = si(τ),
for some τ . Furthermore, Wi(0) = Ū and

(8.2.1) si(0) = λi(Ū),

(8.2.2) ṡi(0) = 1
2 Dλi(Ū)Ri(Ū),

(8.2.3) Ẇi(0) = Ri(Ū),

(8.2.4) Ẅi(0) = DRi(Ū)Ri(Ū).

The more explicit notation Wi(τ;Ū), si(τ;Ū) shall be employed when one needs to
identify the point of origin of this shock curve.

Proof. Recall the notation developed in Section 8.1 and, in particular, Equations
(8.1.7), (8.1.8). A state U may be joined to Ū by an i-shock of speed s if and only if

(8.2.5) U = Ū + τSi(Ū ,U),

(8.2.6) s = μi(Ū ,U).

Accordingly, we consider the function

(8.2.7) H(U,τ) =U −Ū − τSi(Ū ,U),

defined on O ×R, and note that H(Ū ,0) = 0 , DH(Ū ,0) = I. Consequently, by the
implicit function theorem, there is a curve U =Wi(τ) in state space, with Wi(0) = Ū ,
such that H(U,τ) = 0 for τ near 0 if and only if U =Wi(τ). We then define

(8.2.8) si(τ) = μi(Ū ,Wi(τ)).

In particular, si(0) = μi(Ū ,Ū) = λi(Ū). Furthermore, differentiating (8.2.5) with re-
spect to τ and setting τ = 0, we deduce Ẇi(0) = Si(Ū ,Ū) = Ri(Ū). To establish the
remaining equations (8.2.2) and (8.2.4), we appeal to (8.1.5) and (8.1.6) to get
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(8.2.9) si(τ) = λi(
1
2 (Ū +Wi(τ)))+O(τ2)

= λi(Ū)+ 1
2τDλi(Ū)Ri(Ū)+O(τ2),

(8.2.10) Wi(τ) = Ū + τRi(
1
2 (Ū +Wi(τ)))+O(τ3)

= Ū + τRi(Ū)+ 1
2τ

2DRi(Ū)Ri(Ū)+O(τ3).

This completes the proof.

In particular, if Ū is a point of strict hyperbolicity of the system (8.1.1), Theorem
8.2.1 implies that the Hugoniot locus of Ū is the union of n shock curves, one for
each characteristic family.

The shock curve constructed above is generally confined to the regime of shocks
of moderate strength, because of the use of the implicit function theorem, which
applies only when the strength of the shock, measured by |τ|, is sufficiently small:
|τ| < δ with δ depending on the C1 norm of Si , which in turn can be estimated in
terms of the C1 norm of DF and the inverse of the gap between λi and the other char-
acteristic speeds. Nevertheless, in special systems one may often use more delicate
analytical or topological arguments or explicit calculation to extend shock curves to
the range of strong shocks. For example, in the case of the system (7.1.11), combin-
ing (8.1.10) with (8.1.11) we deduce that the Hugoniot locus of any point (ū, v̄) in
state space consists of two curves

(8.2.11) v = v̄±
√

[σ(u)−σ(ū)](u− ū) ,

defined on the whole range of u.
Another noteworthy case of a system in which the shock curves may be extended

to the realm of strong shocks is (7.1.8). Recalling the discussion at the end of Section
8.1, we infer that the 2-shock curve through the state (ū, v̄, s̄) is determined by the
Rankine-Hugoniot jump conditions

(8.2.12) v = v̄, p(u,s) = p(ū, s̄).

Since pu < 0, (8.2.12) describes a simple curve parametrized by s. As regards the
other two shock curves, the Hugoniot equation (8.1.14), with (u−,s−) = (ū, s̄) and
(u+,s+) = (u,s), determines the projection of the Hugoniot locus on the u-s plane.
Realizing this projection as a curve s = s(u), we differentiate with respect to u and
use (7.1.9) to get

(8.2.13) [2θ −θu(u− ū)]
ds
du

= p− p̄− pu(u− ū).

Since θ > 0, (8.2.13) induces a simple curve s = s(u) on some neighborhood of
ū. When the equations of state satisfy 2θ − uθu > 0 on their domain of definition,
as is the case with ideal gases (2.5.20), the curve s(u) is extended to the regime of
strong shocks. However, if 2θ−uθu is allowed to change signs, upon encountering a
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singular point at which 2θ −θu(u− ū) and p− p̄− pu(u− ū) vanish simultaneously,
s(u) may split into infinitely many branches. The velocity components of the 1- and
the 3-shock curves follow from (8.1.12):

(8.2.14) v(u) = v̄±
√

−[p(u,s(u))− p(ū, s̄)](u− ū).

As we shall see in Section 8.5, parametrizing the shock curves by u will elucidate the
admissibility of strong shocks. In order to prepare the ground for that investigation,
we differentiate (8.2.13) to get

(8.2.15)

[2θ−θu(u− ū)]
d2s
du2 +[2θs−θus(u− ū)]

(
ds
du

)2

+2[θu−θuu(u− ū)]
ds
du

=−puu(u− ū).

The shock speed, r = r(u), parametrized by u, is determined by (8.1.13), with
(u−,s−) = (ū, s̄) and (u+,s+) = (u,s(u)). Upon using (8.2.13), we deduce

(8.2.16) r
dr
du

=
θ

(u− ū)2
ds
du

.

Returning to the general system (8.1.1), we note that the i-shock curves intro-
duced above have common features with the i-rarefaction wave curves defined in
Section 7.6. Indeed, recalling Theorems 7.6.5 and 8.2.1, and, in particular, compar-
ing (7.6.14) with (8.2.3), (8.2.4), we deduce

8.2.2 Theorem. Assume Ū ∈ O is a point of genuine nonlinearity of the
i-characteristic family of the hyperbolic system (8.1.1) of conservation laws, and
λi(Ū) is a simple eigenvalue of DF(Ū). Normalize Ri so that (7.6.13) holds on some
neighborhood of Ū . Then the i-rarefaction wave curve Vi , defined through Theorem
7.6.5, and the i-shock curve Wi , defined through Theorem 8.2.1, have a second order
contact at Ū .

Recall that, by Theorem 7.6.6, i-Riemann invariants are constant along i-rarefac-
tion wave curves. At the same time, as shown above, i-shock curves are very close
to i-rarefaction wave curves. It is then to be expected that i-Riemann invariants vary
very slowly along i-shock curves. Indeed,

8.2.3 Theorem. The jump of any i-Riemann invariant across a weak i-shock is of
third order in the strength of the shock.

Proof. Assume λi(Ū) is a simple eigenvalue of DF(Ū) and consider the i-shock
curve Wi through Ū . For any i-Riemann invariant w, differentiating along the curve
Wi(·),
(8.2.17) ẇ = DwẆi ,

(8.2.18) ẅ = Ẇ�
i D2wẆi +DwẄi .
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By virtue of (8.2.3) and (7.3.1), ẇ = 0 at τ = 0.
We now apply D to (7.3.1) and then multiply the resulting equation from the right

by Ri to deduce the identity

(8.2.19) R�
i D2wRi +DwDRiRi = 0.

Combining (8.2.18), (8.2.3), (8.2.4) and (8.2.19), we conclude that ẅ = 0 at τ = 0.
This completes the proof.

In the special case where the system (8.1.1) is endowed with a coordinate system
(w1, · · · ,wn) of Riemann invariants, we may calculate the leading term in the jump of
w j across a weak i-shock, i �= j, as follows. The Rankine-Hugoniot condition reads

(8.2.20) F(Wi(τ))−F(Ū) = si(τ)[Wi(τ)−Ū ].

Differentiating with respect to τ yields

(8.2.21) [DF(Wi(τ))− si(τ)I]Ẇi(τ) = ṡi(τ)[Wi(τ)−Ū ].

Multiplying (8.2.21), from the left, by Dw j(Wi) gives

(8.2.22) (λ j − si)ẇ j = ṡiDw j[Wi −Ū ].

Next we differentiate (8.2.22), with respect to τ , thus obtaining

(8.2.23) (λ j − si)ẅ j +(λ̇ j −2ṡi)ẇ j = s̈iDw j[Wi −Ū ]+ ṡiẆ�
i D2w j[Wi −Ū ].

We differentiate (8.2.23), with respect to τ , and then set τ = 0. We use (8.2.1), (8.2.2),
(8.2.3), (7.3.12) and that both ẇ j and ẅ j vanish at 0, by virtue of Theorem 8.2.3, to
conclude

(8.2.24)
···
w j=

1
2

1
λ j −λi

∂λi

∂wi
R�

i D2w jRi ,

where
···
w j is evaluated at 0 and the right-hand side is evaluated at Ū .

Returning to the general case, we next investigate how the shock speed func-
tion si(τ) evolves along the i-shock curve. We multiply (8.2.21), from the left, by
Li(Wi(τ)) to get

(8.2.25) [λi(Wi(τ))− si(τ)]Li(Wi(τ))Ẇi(τ) = ṡi(τ)Li(Wi(τ))[Wi(τ)−Ū ].

For τ sufficiently close to 0, but τ �= 0,

(8.2.26) Li(Wi(τ))Ẇi(τ)> 0, τLi(Wi(τ))[Wi(τ)−Ū ]> 0,

by virtue of (8.2.3). In the applications it turns out that (8.2.26) continue to hold
for a broad range of τ , often extending to the regime of strong shocks. In that case,
(8.2.25) and (8.2.21) immediately yield the following
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8.2.4 Lemma. Assume (8.2.26) hold. Then

(8.2.27) ṡi(τ)> 0 i f and only i f τ[λi(Wi(τ))− si(τ)]> 0,

(8.2.28) ṡi(τ) = 0 i f and only i f λi(Wi(τ)) = si(τ).

Moreover, ṡi(τ) = 0 implies that Ẇi(τ) is collinear to Ri(Wi(τ)).

In order to see how si varies across points where ṡi vanishes, we differentiate
(8.2.25) with respect to τ and then evaluate the resulting expression at any τ where
ṡi(τ) = 0. Since si(τ) = λi (Wi(τ)) and Ẇi(τ) = aRi (Wi(τ)), upon recalling (7.2.3)
we deduce

(8.2.29) s̈i(τ)Li
(
Wi(τ)

)[
Wi(τ)−Ū

]
= a2Dλi

(
Wi(τ)

)
Ri
(
Wi(τ)

)
,

whence it follows that at points where ṡi = 0, s̈i has the same sign as τDλiRi .
By Lemma 8.2.4, si constant implies that the i-shock curve is an integral curve

of the vector field Ri , along which λi is constant. Consequently, all points along
such a shock curve are states of linear degeneracy of the i-characteristic family. The
converse of this statement is also valid:

8.2.5 Theorem. Assume the i-characteristic family of the hyperbolic system (8.1.1) of
conservation laws is linearly degenerate and λi(Ū) is a simple eigenvalue of DF(Ū).
Then the i-shock curve Wi through Ū is the integral curve of Ri through Ū . In fact,
under the proper parametrization, Wi is the solution of the differential equation

(8.2.30) Ẇi = Ri(Wi)

with initial condition Wi(0) = Ū . Along Wi , the characteristic speed λi and all
i-Riemann invariants are constant. The shock speed function si is also constant:

(8.2.31) si(τ) = λi(Wi(τ)) = λi(Ū).

Proof. Let Wi denote the solution of (8.2.30) with initial condition Wi(0) = Ū . Then

(8.2.32) [DF(Wi(τ))−λi(Wi(τ))I]Ẇi(τ) = 0.

Since Dλi(U)Ri(U) = 0, λ̇i(Wi(τ)) = 0 and so λi(Wi(τ)) = λi(Ū). Integrating
(8.2.32) from 0 to τ yields

(8.2.33) F(Wi(τ))−F(Ū) = λi(Ū)[Wi(τ)−Ū ],

which establishes that Wi is the i-shock curve through Ū , with corresponding shock
speed function si given by (8.2.31). This completes the proof.

The following important implication of Theorem 8.2.5 provides an alternative
characterization of linear degeneracy:
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8.2.6 Corollary. When the i-characteristic family of the hyperbolic system (8.1.1) is
linearly degenerate, there exist traveling wave solutions

(8.2.34) U(x, t) =V (x−σt),

for any σ in the range of the i-characteristic speed λi .

Proof. Let σ = λi(Ū), for some state Ū . Consider the i-shock curve Wi through Ū ,
which satisfies (8.2.30). Take any C1 function τ = τ(ξ ) and define U by (8.2.34),
with V (ξ ) =Wi(τ(ξ )). On account of (8.2.30) and (8.2.31),

(8.2.35) ∂tU +∂xF(U) =
dτ
dξ

[
DF

(
Wi(τ)

)−λi
(
Wi(τ)

)
I
]

Ri
(
Wi(τ)

)
= 0.

The proof is complete.

It is natural to inquire whether an i-shock curve may be an integral curve of the
vector field Ri in the absence of linear degeneracy. It turns out that this may only
occur under very special circumstances:

8.2.7 Theorem. For the hyperbolic system (8.1.1), assume Ū is a state of gen-
uine nonlinearity for the i-characteristic family and λi(Ū) is a simple eigenvalue
of DF(Ū). The i-shock curve through Ū coincides with the integral curve of the field
Ri (i.e., the i-rarefaction wave curve) through Ū if and only if the latter is a straight
line in state space.

Proof. If the i-shock curve Wi through Ū coincides with the integral curve of Ri
through Ū , then Ẇi(τ) must be collinear to Ri(Wi(τ)). In that case, (8.2.21) implies

(8.2.36) [λi(Wi(τ))− si(τ)]Ẇi(τ) = ṡi(τ)[Wi(τ)−Ū ].

For τ near 0, but τ �= 0, it is λi(Wi(τ)) �= si(τ), by genuine nonlinearity. Therefore,
(8.2.36) implies that the graph of Wi is a straight line through Ū .

Conversely, assume the integral curve of Ri through Ū is a straight line, which
may be parametrized as U = Wi(τ), where Wi is some smooth function satisfying
Wi(0) = Ū , as well as (8.2.3) and (8.2.4) (note that DRi(Ū)Ri(Ū) is necessarily
collinear to Ri(Ū)). We may then determine a scalar-valued function si(τ) such that

(8.2.37) F(Wi(τ))−F(Ū) =
∫ τ

0
DF(Wi(ζ ))Ẇi(ζ )dζ

=
∫ τ

0
λi(Wi(ζ ))Ẇi(ζ )dζ = si(τ)[Wi(τ)−Ū ].

Thus Wi is the i-shock curve through Ū . This completes the proof.

Special as it may be, the class of hyperbolic systems of conservation laws with
coinciding shock and rarefaction wave curves of each characteristic family includes
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some noteworthy examples. Consider, for instance, the system (7.3.18) of elec-
trophoresis. Notice that, for i = 1, · · · ,n, the level surfaces of the i-Riemann in-
variant Wi , determined through (7.3.21) or (7.3.22), are hyperplanes. In particular,
for i = 1, · · · ,n, the integral curves of the vector field Ri are the straight lines pro-
duced by the intersection of the level hyperplanes of the n− 1 Riemann invariants
w1 , · · · , wi−1 , wi+1 , · · · , wn . Consequently, the conditions of Theorem 8.2.7 apply
to the system (7.3.18).

In the presence of multiple characteristic speeds, the Hugoniot locus may contain
multi-dimensional varieties, in the place of shock curves. In that connection it is
instructive to consider the model system (7.2.11), for which the origin is an umbilic
point. When a state (ū, v̄) is joined to a state (u,v) by a shock of speed s, the Rankine-
Hugoniot condition reads

(8.2.38)

⎧⎨⎩ (u2 +v2)u− (ū2 + v̄2)ū = s(u− ū)

(u2 +v2)v− (ū2 + v̄2)v̄ = s(v− v̄).

Notice that when (ū, v̄) �= (0,0), the Hugoniot locus of (ū, v̄) consists of the circle
u2 + v2 = ū2 + v̄2, along which the shock speed is constant, s = ū2 + v̄2, and the
straight line v̄u = ūv, which connects (ū, v̄) to the origin. Thus, the 1-characteristic
family provides a case in which Theorem 8.2.5 applies, while, at the same time,
the 2-characteristic family satisfies the assumptions of Theorem 8.2.7. On the other
hand, the Hugoniot locus of the umbilic point (0,0) is the entire plane, because any
point (u,v) can be joined to (0,0) by a shock of speed s = u2 +v2.

Not all systems in which strict hyperbolicity fails exhibit the same behavior. For
instance, the Hugoniot locus of (0,0) for the system

(8.2.39)

⎧⎨⎩ ∂tu+∂x[2(u2 +v2)u] = 0

∂tv+∂x[(u2 +v2)v] = 0,

in which strict hyperbolicity also fails at the origin, consists of two lines, namely the
u-axis and the v-axis.

8.3 The Lax Shock Admissibility Criterion;

Compressive, Overcompressive and Undercompressive Shocks

The object of this section is to introduce conditions under which the interaction of a
shock with its surrounding “smoother” part of the solution is stable. A manifestation
of stability would be that smooth waves of small amplitude colliding with the shock
are absorbed, transmitted and/or reflected as waves with small amplitude, without
affecting the integrity of the shock itself, by changing substantially its strength or its
speed of propagation. With this in mind, let us consider a solution of (8.1.1), on the
upper half-plane, consisting of a constant state U− , on the left, joined to a constant
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state U+ , on the right, by a shock x = st. In particular, the Rankine-Hugoniot jump
condition (8.1.2) holds. Assume that the speed s of the shock satisfies

(8.3.1)

⎧⎨⎩λ1(U−)≤ ·· · ≤ λi−1(U−)< s < λi(U−)≤ ·· · ≤ λn(U−)

λ1(U+)≤ ·· · ≤ λ j(U+)< s < λ j+1(U+)≤ ·· · ≤ λn(U+) ,

for some i = 1, · · · ,n and j = 1, · · · ,n, with the understanding that if i = 1 then
λi−1(U−) =−∞ and if j = n then λ j+1(U+) = ∞ . The plan is to construct a family of

(8.1.1) with small oscillation are closely approximated by solutions of the linearized
system. Thus, in order to reach the desired conclusion without facing laborious tech-
nical details, we make the simplifying assumption that DF(U) is constant, equal to
DF(U−), for |U −U−| < ε , and also constant, equal to DF(U+), for |U −U+| < ε .
We then seek solutions of (8.1.1), on the upper half-plane, in the form

(8.3.2) U(x, t) =

⎧⎨⎩U−+∑n
k=1ω

−
k (x, t)Rk(U−) , x < st +σ(t)

U++∑n
k=1ω

+
k (x, t)Rk(U+) , x > st +σ(t) ,

where the ω±
k (x, t) and σ(t) are C1 functions such that |ω±

k |< aε and |σ̇ |< aε , for
some a << 1. Since F(U) = F(U±)+DF(U±)(U −U±) in the vicinity of U± , and
Rk(U±) are eigenvectors of DF(U±) with eigenvalue λk(U±), U from (8.3.2) will
satisfy (8.1.1), for x �= st +σ(t), if, for k = 1, · · · ,n,

(8.3.3)

⎧⎨⎩ ∂tω−
k (x, t)+λk(U−)∂xω−

k (x, t) = 0 , x < st +σ(t)

∂tω+
k (x, t)+λk(U+)∂xω+

k (x, t) = 0 , x > st +σ(t)

and it will also satisfy the Rankine-Hugoniot jump conditions across the perturbed
shock x = st +σ(t) if

(8.3.4)
n

∑
k=1

[λk(U+)− s− σ̇ ]ω+
k Rk(U+)−

n

∑
k=1

[λk(U−)− s− σ̇ ]ω−
k Rk(U−) = σ̇(U+−U−).

By virtue of (8.3.3), ω±
k are constant along k-characteristics, which are straight

lines with slope λk(U±). In particular, on account of (8.3.1), ω−
i , · · · ,ω−

n and
ω+

1 , · · · ,ω+
j are everywhere determined by their prescribed initial data, at t = 0. By

contrast, ω−
1 , · · · ,ω−

i−1 and ω+
j+1, · · · ,ω+

n are determined partly by their prescribed
initial data, at t = 0, and partly by their values along the shock. The latter are con-
strained by the Rankine-Hugoniot condition (8.3.4), which shall be regarded as a
system of n equations in the n+ i− j unknowns ω−

1 , · · · ,ω−
i−1,ω

+
j+1, · · · ,ω+

n and σ̇ .
Commonly, shocks satisfy (8.3.1) with i = j so that

(8.3.5)

⎧⎨⎩λi−1(U−)< s < λi(U−)

λi(U+)< s < λi+1(U+).

solutions by perturbing slightly the constant states U− and U+ . Classical solutions of
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In that case, the shock is called compressive, a term borrowed from gas dynamics (see
below). For compressive shocks, the number of unknowns in (8.3.4) is n, matching
the number of equations. If in addition

(8.3.6) det [R1(U−), · · · ,Ri−1(U−),U+−U−,Ri+1(U+), · · · ,Rn(U+)] �= 0 ,

one readily shows, by the implicit function theorem, that (8.3.4) determines uniquely
ω−

1 , · · · ,ω−
i−1,ω

+
j+1, · · · ,ω+

n and σ̇ . Under this condition, a solution U of the form
(8.3.2) is uniquely determined upon prescribing initial data ω±

k (x,0), within the al-
lowable range, and the shock is termed evolutionary.

Shocks satisfying (8.3.1) with i < j are called overcompressive. In that case,
the number of equations in (8.3.4) exceeds the number of unknowns, so that ex-
istence of solutions U of the form (8.3.2) is not guaranteed. Nevertheless, shocks
of this type do arise in certain applications. A simple example is provided by Sys-
tem (7.2.11): recalling the form of its Hugoniot locus, described in Section 8.2, we
consider a shock of speed s, joining, on the left, a state (u−,v−), lying on the unit
circle, to a state (u+,v+) = a(u−,v−), on the right, where a is some constant. From
(7.2.12), λ1(u−,v−) = 1, λ2(u−,v−) = 3, λ1(u+,v+) = a2, λ2(u+,v+) = 3a2. Fur-
thermore, the Rankine-Hugoniot condition (8.2.38) yields s = a2 +a+1. Therefore,
if a ∈ (− 1

2 ,0), then λ2(u−,v−) > λ1(u−,v−) > s > λ2(u+,v+) > λ1(u+,v+), i.e.,
the shock is overcompressive.

In the opposite case, where (8.3.1) holds with i > j, the shock is termed under-
compressive.

In that situation, (8.3.4) is underdetermined and generally admits multiple so-
lutions. However, when shocks of this type arise in the applications, the Rankine-
Hugoniot jump conditions are usually supplemented with equations of the form
G(U−,U+,s) = 0, dubbed kinetic relations, which render the solution unique.

The above will be clarified further in Section 8.6.
The conditions (8.3.1) exclude shocks traveling with characteristic speed but

such shocks do exist. In particular, any shock joining U− , on the left, with U+ ,
on the right, and traveling with speed s will be called a left i-contact discontinuity
if s = λi(U−), a right i-contact discontinuity if s = λi(U+), and simply an i-contact
discontinuity if s = λi(U−) = λi(U+). By virtue of Theorem 8.2.5, any weak shock
associated with a linearly degenerate characteristic family is necessarily a contact
discontinuity.

In what follows, we assume λi is a simple eigenvalue of DF and focus attention
on compressive i-shocks of moderate strength. In that case, |s−λi| is small compared
to both λi+1 −λi and λi −λi−1 , so that the first and the fourth inequalities in (8.3.5)
always hold. The remaining two inequalities, slightly relaxed to allow for left and/or
right i-contact discontinuities, combine into

(8.3.7) λi(U+)≤ s ≤ λi(U−),

which is the celebrated Lax E-condition. Furthermore, as U+−U− is nearly collinear
to Ri(U±), (8.3.6) is implied by hyperbolicity.
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For orientation, let us consider a few examples, beginning with the scalar conser-
vation law (7.1.2). The characteristic speed is λ (u) = f ′(u) and so (8.3.7) takes the
form

(8.3.8) f ′(u+)≤ s ≤ f ′(u−) ,

where s is the shock speed computed through the Rankine-Hugoniot jump condition:

(8.3.9) s =
f (u+)− f (u−)

u+−u−
.

The reader will immediately realize the geometric interpretation of (8.3.8) upon
noticing that f ′(u−) and f ′(u+) are the slopes of the graph of f at the points
(u−, f (u−)) and (u+, f (u+)), while s is the slope of the chord that connects
(u−, f (u−)) with (u+, f (u+)). In particular, when (7.1.2) is genuinely nonlinear, i.e.,
f ′′(u) �= 0 for all u, then (8.3.8) reduces to u− < u+ if f ′′(u) < 0, and u− > u+ if
f ′′(u)> 0.

Next we consider the system (7.1.11) of isentropic elasticity. The characteristic
speeds are recorded in (7.2.4) and the shock speeds in (8.1.11), so that (8.3.7) as-
sumes the form

(8.3.10)

σ ′(u+)≥ σ(u+)−σ(u−)
u+−u−

≥ σ ′(u−) or σ ′(u+)≤ σ(u+)−σ(u−)
u+−u−

≤ σ ′(u−),

for 1-shocks or 2-shocks, respectively. The geometric interpretation of (8.3.10) is
again clear. When (7.1.11) is genuinely nonlinear, i.e., σ ′′(u) �= 0 for all u, (8.3.10)
reduces to u− < u+ or u− > u+ if σ ′′(u)> 0, and to u− > u+ or u− < u+ if σ ′′(u)< 0.
Equivalently, in terms of velocity, by virtue of (8.1.10): v− < v+ if σ ′′(u) > 0 and
v− > v+ if σ ′′(u)< 0, for both shock families.

A similar analysis applies to the system (7.1.13) of isentropic flow of an ideal
gas, with characteristic speeds given by (7.2.10), and yields that a 1-shock (or 2-
shock) that joins the state (ρ−,v−), on the left, to the state (ρ+,v+), on the right,
satisfies the Lax E-condition if and only if ρ− < ρ+ (or ρ− > ρ+). In other words,
the passing of an admissible shock front compresses the gas.

Returning now to the general system (8.1.1), let us consider a state U− , on the
left, which is joined to a state U+ , on the right, by an i-shock of moderate strength,
with speed s. Assuming λi(U−) is a simple eigenvalue of DF(U−), let Wi denote the
i-shock curve through U− (cf. Theorem 8.2.1), so that U− =Wi(0) and U+ =Wi(τ).
Furthermore, λi(U−) = si(0) and s = si(τ). We show that if τ < 0 and ṡi(·) ≥ 0
on (τ,0), then the shock satisfies the Lax E-condition. Indeed, ṡi(·) ≥ 0 implies
s = si(τ) ≤ si(0) = λi(U−), which is the right half of (8.3.7). At the same time,
so long as (8.2.27) and (8.2.28) hold at τ, ṡi(·) ≥ 0 implies, by virtue of Lemma
8.2.4, that s = si(τ)≥ λi(Wi(τ)) = λi(U+), namely, the left half of (8.3.7). A similar
argument demonstrates that the Lax E-condition also holds when τ > 0 and ṡi(·)≤ 0
on (0,τ), but it is violated if either τ < 0 and ṡi(·)< 0 on (τ,0) or τ > 0 and ṡi(·)> 0
on (0,τ). The implications of the above statements to the genuine nonlinear case, in
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which, by virtue of (8.2.2), ṡi(·) does not change sign across 0, are recorded in the
following

8.3.1 Theorem. Assume U− is a point of genuine nonlinearity of the i-characteristic
family of the system (8.1.1), with Dλi(U−)Ri(U−)> 0 (or < 0). Suppose λi(U−) is a
simple eigenvalue of DF(U−) and let Wi denote the i-shock curve through U− , with
U− = Wi(0). Then a weak i-shock that joins U− to a state U+ = Wi(τ) satisfies the
Lax E-condition if and only if τ < 0 (or τ > 0).

Thus, in the genuinely nonlinear case, one half of the shock curve is compatible
with the Lax E-condition (8.3.7), as strict inequalities, and the other half is incom-
patible with it. When U− is a point of linear degeneracy of the i-characteristic field,
so that ṡi(0) = 0, the situation is more delicate: If s̈i(0)< 0, ṡi(τ) is positive for τ < 0
and negative for τ > 0, so that weak i-shocks that join U− to U+ =Wi(τ) are admis-
sible, regardless of the sign of τ . On the other hand, if s̈i(0)> 0, ṡi(τ) is negative for
τ < 0 and positive for τ > 0, in which case all (sufficiently) weak i-shocks violate the
Lax E-condition. As noted above, when the i-characteristic family itself is linearly
degenerate, i-shocks are i-contact discontinuities satisfying (8.3.7) as equalities.

The relation of (8.3.5), (8.3.6) to stability, hinted by the heuristic analysis in the
beginning of this section, is established by

8.3.2 Theorem. Assume the system (8.1.1) is strictly hyperbolic. Consider initial
data U0 such that U0(x) =UL(x) for x in (−∞,0) and U0(x) =UR(x) for x in (0,∞),
where UL and UR are smooth functions that are bounded, together with their first
derivatives, on (−∞,∞). Assume, further, that the state U− = UL(0), on the left,
is joined to the state U+ = UR(0), on the right, by a compressive shock satisfying
(8.3.5) and (8.3.6). Then there exist: T > 0; a smooth function x = χ(t) on [0,T ),
with χ(0) = 0; and a function U on (−∞,∞)× [0,T ) with initial values U0 and the
following properties. U is smooth and satisfies (8.1.1), in the classical sense, for
any (x, t), with t ∈ [0,T ) and x �= χ(t). Furthermore, for t ∈ [0,T ) one-sided limits
U(χ(t)−, t) and U(χ(t)+, t) exist and are joined by a compressive shock of speed
χ̇(t).

The proof, which is found in the references cited in Section 8.8, employs point-
wise bounds on U and its derivatives, obtained by monitoring the evolution of these
functions along characteristics; i.e., it is of the same genre as the proof of Theorem
7.8.1. The role of (8.3.5) and (8.3.6) is to secure that characteristics of each family,
originating either at the x-axis or at the graph of the shock, will reach every point
of the upper half-plane. Compare with the discussion at the opening of this section.
One may gain some insight from the very simple special case n = 1.

We thus consider the scalar conservation law (7.1.2) and assign initial data u0
such that u0(x) = uL(x) for x ∈ (−∞,0) and u0(x) = uR(x) for x ∈ (0,∞), where
uL and uR are bounded and uniformly Lipschitz continuous functions on (−∞,∞).
Furthermore, u− = uL(0) and u+ = uR(0) satisfy
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(8.3.11) f ′(u+)<
f (u+)− f (u−)

u+−u−
< f ′(u−).

Let u−(x, t) and u+(x, t) be the classical solutions of (7.1.2) with initial data uL(x)
and uR(x), respectively, which exist on (−∞,∞)× [0,T ), for some T > 0, by virtue
of Theorem 6.1.1. On [0,T ) we define the function χ as the solution of the ordinary
differential equation

(8.3.12)
dx
dt

=
f (u+(x, t))− f (u−(x, t))

u+(x, t)−u−(x, t)

with χ(0) = 0. Finally, we define the function u on (−∞,∞)× [0,T ) by

(8.3.13) u(x, t) =

⎧⎨⎩u−(x, t), t ∈ [0,T ), x < χ(t)

u+(x, t), t ∈ [0,T ), x > χ(t).

Clearly, u satisfies (7.1.2), in the classical sense, for any (x, t) with t ∈ [0,T ) and
x �= χ(t). Furthermore, u(χ(t)−, t) and u(χ(t)+, t) are joined by a shock of speed
χ̇(t). Finally, for T sufficiently small, the Lax E-condition

(8.3.14) f ′(u(χ(t)+, t))< χ̇(t)< f ′(u(χ(t)−, t)), t ∈ [0,T ),

holds by continuity, since it is satisfied at t = 0. Notice that it is because of the Lax E-
condition that the solution u solely depends on the initial data, i.e., it is independent
of the “extraneous” information carried by uL(x) for x > 0 and uR(x) for x < 0.

As noted in Section 7.1, one-dimensional systems of conservation laws arise ei-
ther in connection to media that are inherently one-dimensional or in the context of
multispace-dimensional media wherein the fields stay constant in all but one spatial
dimension. In the latter situation, Theorem 8.3.2 establishes the stability of planar
shock fronts, albeit only for perturbations that likewise vary solely in the normal
spatial direction. Naturally, it is important to investigate the stability of multispace-
dimensional planar shocks under a broader class of perturbations and, more gener-
ally, the stability of non-planar shock fronts in Rm.

The type of problem addressed by Theorem 8.3.2 may be formulated for hyper-
bolic systems (4.1.1) of conservation laws in Rm as follows. Let UL ,UR be smooth
functions on Rm, and F a smooth (m− 1)-dimensional hypersurface embedded in
Rm and oriented by means of its unit normal vector field ν . Assume that the traces
U− and U+ of UL and UR on F satisfy the Rankine-Hugoniot jump condition (4.3.5).
Denote by U0 the function on Rm that coincides with UL on the negative side of F
and with UR on the positive side of F . One has to construct an m-dimensional hyper-
surface S embedded in Rm× [0,T ), with trace F at t = 0, together with a piecewise
smooth solution U of (4.1.1) on Rm × [0,T ), with initial values U0 , such that U is
smooth for (x, t) /∈ S . Thus S will be a shock evolving out of F .

The above problem has been solved under the following assumptions. The system
(4.1.1) is endowed with a uniformly convex entropy and satisfies a certain structural
condition, valid in particular for the Euler equations of isentropic or nonisentropic
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gas dynamics. At each point of F , where the unit normal is ν , (8.3.5) and (8.3.6)
hold, with λ j(ν ;U) and R j(ν ;U) in the place of λ j(U) and R j(U). Finally, a com-
plicated set of compatibility conditions, involving the normal derivatives ∂ pUL/∂ν p

and ∂ pUR/∂ν p of UL and UR , up to a certain order depending on m, is satisfied on
F . These are needed in order to avert the emission of spurious waves from F .

The construction of S and U is performed within the framework of Sobolev
spaces and involves quite sophisticated tools (pseudodifferential operators, paradif-
ferential calculus, etc.). The relevant references are listed in Section 8.8.

Another serious issue of concern is the internal stability of shocks. It turns out
that the Lax E-condition is effective in that direction as well, so long as the system
is genuinely nonlinear and the shocks are weak; however, it is insufficient in more
general situations. For that purpose, we have to consider additional, more selective
shock admissibility criteria, which will be introduced in the following sections.

8.4 The Liu Shock Admissibility Criterion

The Liu shock admissibility test is more discriminating than the Lax E-condition and
strives to capture the internal stability of shocks. By its very design, it makes sense
only in the context of shocks joining states that may be connected by shock curves.
Thus, its applicability to general systems is limited to shocks of moderate strength.
Nevertheless, in special systems it also applies to strong shocks.

For a given state U− , assume λi(U−) is a simple eigenvalue of DF(U−) so
that the i-shock curve Wi(τ;U−) through U− is well defined, by Theorem 8.2.1. An
i-shock that joins U− , on the left, to a state U+ =Wi(τ+;U−), on the right, of speed
s, satisfies the Liu E-condition if

(8.4.1) s = si(τ+;U−)≤ si(τ;U−), for all τ between 0 and τ+ .

The justification of the above admissibility criterion will be established a poste-
riori, through its connection to other, physically motivated, shock admissibility cri-
teria, as well as by its role in the construction of stable solutions to the Riemann
problem, in Chapter IX.

As U− and U+ are joined by an i-shock, U− must also lie on the i-shock curve
emanating from U+ , say U− =Wi(τ−;U+). So long as (8.2.26) holds along the above
shock curves, (8.4.1) is equivalent to the dual statement

(8.4.2) s = si(τ−;U+)≥ si(τ;U+), for all τ between 0 and τ− .

We proceed to verify that (8.4.1) implies (8.4.2) under the hypothesis that all min-
ima of the function si(τ;U−) are nondegenerate. (The general case may be re-
duced to the above by a perturbation argument, and the proof of the converse
statement is similar.) For definiteness, we assume that τ+ > 0, in which case
τ− < 0. From (8.4.1) it follows that either ṡi(τ+;U−) < 0 or ṡi(τ+;U−) = 0 and
s̈i(τ+;U−) > 0. Thus, by virtue of (8.2.27), (8.2.28) and (8.2.29), either λi(U+) < s
or λi(U+) = s and Dλi(U+)Ri(U+) > 0. In either case, recalling (8.2.1) and (8.2.2),
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we deduce that si(τ;U+) < s for τ < 0, near zero. If (8.4.2) is violated for some
τ ∈ (τ−,0), si(τ;U+)− s must be changing sign across some τ0 ∈ (τ−,0). Let
U0 = Wi(τ0;U+). Since both U− and U0 are joined to U+ by shocks of speed s, U−
and U0 can also be joined to each other by a shock of speed s, i.e., U0 =Wi(τ1;U−),
for some τ1 ∈ (0,τ+), and si(τ1;U−) = s. Thus, (8.4.1) implies ṡi(τ1;U−) = 0
and s̈i(τ1;U−) > 0, and so, on account of (8.2.28) and (8.2.29), λi(U0) = s and
Dλi(U0)Ri(U0) > 0. But then (8.2.28) and (8.2.29) again yield ṡi(τ0;U+) = 0 and
s̈i(τ0;U+) < 0 so that, contrary to our hypothesis, si(τ;U+)− s cannot change sign
across τ0 .

In particular, applying (8.4.1) and (8.4.2) for τ = 0 and recalling (8.2.1), we arrive
at (8.3.1). We have thus established

8.4.1 Theorem. Within the range where (8.2.26) holds, any shock satisfying the Liu
E-condition also satisfies the Lax E-condition.

When the system is genuinely nonlinear, these two criteria coincide, at least in
the realm of weak shocks:

8.4.2 Theorem. Assume the i-characteristic family is genuinely nonlinear and λi is
a simple characteristic speed. Then weak i-shocks satisfy the Liu E-condition if and
only if they satisfy the Lax E-condition.

Proof. The Liu E-condition implies the Lax E-condition by Theorem 8.4.1. To show
the converse, assume the state U− , on the left, is joined to the state U+ =Wi(τ+;U−),
on the right, by a weak i-shock of speed s, which satisfies the Lax E-condition (8.3.1).
Suppose, for definiteness, Dλi(U−)Ri(U−)> 0 (the case of the opposite sign is simi-
lar). By virtue of Theorem 8.3.1, τ+ < 0. Since the shock is weak, by Theorem 8.2.1,
ṡi(τ;U−)> 0 on the interval (τ+,0). Then s = si(τ+;U−)< si(τ;U−) for τ ∈ (τ+,0),
i.e., the Liu E-condition holds. This completes the proof.

When the system is not genuinely nonlinear and/or the shocks are not weak, the
Liu E-condition is stricter than the Lax E-condition. This will be demonstrated by
means of the following examples.

Let us first consider the scalar conservation law (7.1.2). The shock curve is the
u-axis and we may use u as the parameter ξ . The shock speed is given by (8.3.9). It
is then clear that a shock joining the states u− and u+ will satisfy the Liu E-condition
(8.4.1), (8.4.2) if and only if

(8.4.3)
f (u+)− f (u0)

u+−u0
≤ f (u+)− f (u−)

u+−u−
≤ f (u0)− f (u−)

u0 −u−

holds for every u0 between u− and u+ . This is the celebrated Oleinik E-condition. It
is easily memorized as a geometric statement: When u− < u+ (or u− > u+) the shock
that joins u− , on the left, to u+ , on the right, is admissible if the arc of the graph of f
with endpoints (u−, f (u−)) and (u+, f (u+)) lies above (or below) the chord that con-
nects the points (u−, f (u−)) and (u+, f (u+)). Letting u0 converge to u− and to u+ ,
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we deduce that (8.4.3) implies (8.3.8). The converse, of course, is generally false,
unless f is convex or concave. We have thus demonstrated that in the scalar conser-
vation law the Liu E-condition is stricter than the Lax E-condition when f contains
inflection points. In the genuinely nonlinear case, the Liu and Lax E-conditions are
equivalent.

We now turn to the system (7.1.11) of isentropic elasticity. The shock curves are
determined by (8.2.11) so we may use u as parameter instead of ξ . The shock speed
is given by (8.1.11). Therefore, a shock joining the states (u−,v−) and (u+,v+) will
satisfy the Liu E-condition (8.4.1), (8.4.2) if and only if

(8.4.4)
σ(u0)−σ(u−)

u0 −u−
≤
>
σ(u+)−σ(u−)

u+−u−
≤
>
σ(u+)−σ(u0)

u+−u0

holds for all u0 between u− and u+ , where “≤” applies for 1-shocks and “≥” applies
for 2-shocks. This is called the Wendroff E-condition. In geometric terms, it may
be stated as follows: When s(u+− u−) < 0 (or > 0) the shock that joins (u−,v−),
on the left, to (u+,v+), on the right, is admissible if the arc of the graph of σ with
endpoints (u−,σ(u−)) and (u+,σ(u+)) lies below (or above) the chord that con-
nects the points (u−,σ(u−)) and (u+,σ(u+)). Clearly, there is close analogy with
the Oleinik E-condition. Letting u0 in (8.4.4) converge to u− and to u+ , we deduce
that the Wendroff E-condition implies the Lax E-condition (8.3.4). The converse is
true when σ is convex or concave, but false otherwise. Thus, for the system (7.1.11)
the Liu E-condition is stricter than the Lax E-condition when σ contains inflection
points. In the genuinely nonlinear case, the Liu and Lax E-conditions are equivalent.

As we shall see, the Oleinik E-condition and the Wendroff E-condition follow
naturally from other admissibility criteria. To a great extent these special
E-conditions provided the motivation for postulating the general Liu E-condition.

8.5 The Entropy Shock Admissibility Criterion

The idea of employing entropy inequalities to weed out spurious weak solutions of
general hyperbolic systems of conservation laws was introduced in Section 4.5 and
was used repeatedly in Chapters IV, V, and VI. It was observed that in the context of
BV weak solutions, the entropy condition reduces to the set of inequalities (4.5.9),
to be tested at every point of the shock set. For the system (8.1.1), in one space
dimension, (4.5.9) assumes the form

(8.5.1) −s[η(U+)−η(U−)]+q(U+)−q(U−)≤ 0,

where (η ,q) is an entropy-entropy flux pair satisfying (7.4.1), Dq = DηDF . The
quantity on the left-hand side of (8.5.1) will be called henceforth the entropy produc-
tion across the shock.

The fact that the entropy condition reduces to a pointwise test on shocks has
played a dominant role in shaping the prevailing view that admissibility need be
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tested only at the level of shocks, i.e., that a general BV weak solution will be admis-
sible if and only if each one of its shocks is admissible.

In setting up an entropy admissibility condition (8.5.1), the first task is to des-
ignate the appropriate entropy-entropy flux pair (η ,q). Whenever (8.1.1) arises in
connection to physics, the physically appropriate entropy should always be desig-
nated. In particular, the pairs (7.4.9), (7.4.10) and (7.4.11) must be designated for the
systems (7.1.8), (7.1.11) and (7.1.13), respectively.2

In the absence of guidelines from physics, or when the entropy-entropy flux pair
supplied by physics is inadequate to rule out all spurious shocks, additional entropy-
entropy flux pairs must be designated (whenever available), motivated by other ad-
missibility criteria, such as viscosity. In that connection, we should bear in mind that,
as demonstrated in earlier chapters, convexity of the entropy function is a desirable
feature.

Let us begin the investigation with the scalar conservation law (7.1.2). The shock
speed s is given by (8.3.3). In accordance with the discussion in Chapter VI, admis-
sible shocks must satisfy (8.5.1) for all convex functions η . However, as explained
in Section 6.2, (8.5.1) need be tested only for the family (6.2.5) of entropy-entropy
flux pairs, namely

(8.5.2) η(u; ū) = (u− ū)+ , q(u; ū) = sgn(u− ū)+[ f (u)− f (ū)].

It is immediately seen that (8.5.1) will be satisfied for every (η ,q) in the family
(8.5.2) if and only if (8.4.3) holds for all u0 between u− and u+ . We have thus re-
derived the Oleinik E-condition encountered in Section 8.4. This implies that, for the
scalar conservation law, the entropy admissibility condition, applied for all convex
entropies, is equivalent to the Liu E-condition.

It is generally impossible to recover the Oleinik E-condition from the entropy
condition (8.5.1) for a single entropy-entropy flux pair. Take for example

(8.5.3) η(u) = 1
2 u2 , q(u) =

∫ u

0
ω f ′(ω)dω.

By virtue of (8.3.3) and after a short calculation, (8.5.1) takes the form

(8.5.4) 1
2 [ f (u+)+ f (u−)](u+−u−)−

∫ u+

u−
f (ω)dω ≤ 0.

Notice that the entropy production across the shock is here measured by the signed
area of the domain bordered by the arc of the graph of f with endpoints (u−, f (u−)),
(u+, f (u+)), and the chord that connects (u−, f (u−)) with (u+, f (u+)). Clearly, the

2 In applying (8.5.1) to the system (7.1.8), with entropy-entropy flux pair (7.4.9), one should
not confuse s in (7.4.9), namely the physical entropy, with s in (8.5.1), the shock speed.
Since q = 0, (8.5.1) here states that “after a shock passes, the physical entropy must in-
crease.” The reader is warned that this statement is occasionally misinterpreted as a general
physical principle and is applied even when it is no longer appropriate.
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Oleinik E-condition (8.4.3) implies (8.5.4) but the converse is generally false. More-
over, neither does (8.5.4) generally imply the Lax E-condition (8.3.8) nor is the con-
verse true. However, when f is convex or concave, (8.5.4), (8.4.3) and (8.3.2) are all
equivalent.

Next we turn to the system (7.1.11) of isentropic elasticity. We employ the
entropy-entropy flux pair (η ,q) given by (7.4.10). An interesting, rather lengthy, cal-
culation, which involves the Rankine-Hugoniot condition (8.1.10), shows that (8.5.1)
here reduces to

(8.5.5) s{ 1
2 [σ(u+)+σ(u−)](u+−u−)−

∫ u+

u−
σ(ω)dω} ≤ 0.

The quantity in braces on the left-hand side of (8.5.5) measures the signed area of the
set bordered by the arc of the graph of σ with endpoints (u−,σ(u−)), (u+,σ(u+))
and the chord that connects (u−,σ(u−)) with (u+,σ(u+)). Hence, the Wendroff
E-condition (8.4.4) implies (8.5.5) but the converse is generally false. Condition
(8.5.5) does not necessarily imply the Lax E-condition (8.3.10) nor is the converse
valid. However, when σ is convex or concave, (8.5.5), (8.4.4) and (8.3.10) are all
equivalent. Of course, the system (7.1.11) is endowed with a rich collection of en-
tropies, so one may employ additional entropy-entropy flux pairs to recover the Wen-
droff E-condition from the entropy condition, but this shall not be attempted here.

We now consider the entropy shock admissibility condition (8.5.1) for a general
system (8.1.1), under the assumption that U− and U+ are connected by a shock curve.
In particular, this will encompass the case of shocks of moderate strength. We thus
assume λi(U−) is a simple characteristic speed, consider the i-shock curve Wi(τ;U−)
through U− , and let U+ =Wi(τ+;U−), s = si(τ+;U−). The entropy production along
the i-shock curve is given by

(8.5.6) E(τ) =−si(τ)[η(Wi(τ))−η(U−)]+q(Wi(τ))−q(U−) .

Differentiating (8.5.6) and using (7.4.1) yields

(8.5.7) Ė =−ṡi[η(Wi)−η(U−)]− siDη(Wi)Ẇi +Dη(Wi)DF(Wi)Ẇi .

Combining (8.5.7) with (8.2.21) (for Ū =U−), we deduce

(8.5.8) Ė =−ṡi {η(Wi)−η(U−)−Dη(Wi)[Wi −U−]} .
Notice that the right-hand side of (8.5.8) is of quadratic order in the strength of

the shock. Therefore, the entropy production E(τ+) across the shock, namely the
integral of Ė(τ) from 0 to τ+ , is of cubic order in τ+ . We have thus established the
following

8.5.1 Theorem. The entropy production across a weak shock is of third order in the
strength of the shock.

When U− is a point of linear degeneracy of the i-characteristic family, ṡi(0;U−)
vanishes and so the entropy production across the shock will be of (at most) fourth
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order in the strength of the shock. In particular, when the i-characteristic family is
linearly degenerate, ṡi vanishes identically, by Theorem 8.2.5, and so

8.5.2 Theorem. When the i-characteristic family is linearly degenerate, the entropy
production across any i-shock (i-contact discontinuity) is zero.

Turning now to the issue of admissibility of the shock, we observe that when
η is a convex function, the expression in braces on the right-hand side of (8.5.8) is
nonpositive. Thus Ė and ṡi have the same sign. Consequently, the entropy admissi-
bility condition E(τ+)≤ 0 will hold if τ+ < 0 and ṡi ≥ 0 on (τ+,0), or if τ+ > 0 and
ṡi ≤ 0 on (0,τ+); while it will be violated when either τ+ < 0 and ṡi < 0 on (τ+,0)
or τ+ > 0 and ṡi > 0 on (0,τ+). Recalling our discussion in Section 8.3, we conclude
that the entropy admissibility condition and the Lax E-condition are equivalent in the
range of τ , on either side of 0, where ṡi(τ) does not change sign. In particular, this
will be the case when the characteristic family is genuinely nonlinear and the shocks
are weak:

8.5.3 Theorem. When the i-characteristic family is genuinely nonlinear and λi
is a simple characteristic speed, the entropy admissibility condition and the Lax
E-condition for weak i-shocks are equivalent.

In order to escape from the realm of genuine nonlinearity and weak shocks, let
us consider the condition

(8.5.9)

Recalling (7.4.3), (7.4.4) and Theorem 8.2.1, we conclude that when the entropy η
is convex, (8.5.9) will always hold for weak i-shocks; it will also be satisfied for
shocks of moderate strength when the i-shock curves extend into that regime; and
may even hold for strong shocks, so long as Ẇi and Wi −U− keep pointing nearly in
the direction of Ri .

8.5.4 Theorem. Assume that the i-shock curve Wi(τ;U−) through U− , and corre-
sponding shock speed function si(τ;U−), are defined on an interval (α,β ) containing
0, and satisfy (8.5.9) for τ ∈ (α,β ), where η is a convex entropy of the system. Then
any i-shock joining U− , on the left, to U+ = Wi(τ+;U−), on the right, with speed
s, that satisfies the Liu E-condition (8.4.1), also satisfies the entropy admissibility
condition (8.5.1).

Proof. We set

(8.5.10)

By virtue of (8.5.9),

(8.5.11) τQ̇(τ)≤ 0.

τ Ẇ�
i (τ;U−)D2η(Wi(τ;U−)) [Wi(τ;U−)−U−]≥ 0.

Q(τ) = η(Wi(τ;U−))−η(U−)−Dη(Wi(τ;U−)) [Wi(τ;U−)−U−].
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Integrating (8.5.8) from 0 to τ+ , integrating by parts, and using (8.5.10), (8.5.11) and
(8.4.1), we obtain

(8.5.12) E(τ+) =−
∫ τ+

0
ṡi(τ;U−)Q(τ)dτ =−sQ(τ+)+

∫ τ+

0
si(τ;U−)Q̇(τ)dτ

≤−sQ(τ+)+ s
∫ τ+

0
Q̇(τ)dτ = 0,

which shows that the shock satisfies (8.5.1). This completes the proof.

In the realm of strong shocks, the above hierarchy of the various admissibility
criteria may be violated. We have seen that for the system (7.1.11) of isentropic
thermoelasticity, under the condition σ ′′(u)< 0 of genuine nonlinearity, compressive
shocks of arbitrary strength satisfy the entropy admissibility criterion (8.5.5) induced
by the Second Law of thermodynamics, as well as the Liu E-condition (8.4.4). We
proceed to test whether this also applies to the system (7.1.8) of rectilinear adiabatic
gas flow, under the assumption puu > 0 of genuine nonlinearity for the first and the
third characteristic families.

Assume first that the constitutive equations satisfy 2θ − uθu > 0 on their do-
main, as is the case with ideal gases (2.5.20). Then the initial value problem for
the differential equation (8.2.13), which governs the shock curves, is well-posed.
Consider states (u−,v−,s−) and (u+,v+,s+) joined by a 3-shock, propagating with
speed r+ > 0, that compresses the medium, i.e., u+ > u− . Thus s+ = s(u+), where
s(u) denotes the solution of (8.2.13), for ū = u− , with initial condition s(u−) = s− .
From (8.2.13) and (8.2.15) we deduce that both ds/du and d2s/du2 vanish at u− .
Moreover, differentiating (8.2.15) with respect to u yields d3s/du3 < 0 at u−. There-
fore, ds/du < 0, at least for u−u− positive and small. The above are in accordance
with Theorems 8.5.1, 8.5.3 and 8.5.4. We now note that, by virtue of (8.2.15), any
critical point of s(u), for u > u− , must be a strict maximum. Hence, ds/du < 0 for
all u ∈ (u−,u+). In particular, this implies that the entropy shock admissibility cri-
terion s+ < s− , induced by the entropy-entropy flux pair (−s,0) and expressing the
Second Law of thermodynamics, is satisfied by the shock. Furthermore, it follows
from (8.2.16) that the shock speed r(u) is decreasing on (u−,u+), whence

(8.5.13)
√

−pu(u−,s−) = r(u−)> r(u)> r(u+) = r+, u− < u < u+ .

Similarly, s− = s(u−), where now s(u) denotes the solution of (8.2.13), for ū = u+ ,
with initial condition s(u+) = s+ . Similar arguments yield

√−pu(u+,s+)< r+ . We
conclude that, under the assumptions puu > 0 and 2θ−uθu > 0, 3-shocks of arbitrary
strength that compress the medium satisfy the Lax E-condition, the Liu E-condition,
and the entropy shock admissibility criterion. This also holds for compressive
1-shocks.

By contrast, it is possible to construct constitutive equations satisfying the ther-
modynamic relations (7.1.9) together with the hyperbolicity conditions (7.1.10), but
allowing 2θ − uθu to change sign, for which (7.1.8) supports compressive shocks
that satisfy the Liu E-condition but violate the Second Law of thermodynamics. Such
conditions may arise when the gas undergoes phase transitions.



8.6 Viscous Shock Profiles 285

8.6 Viscous Shock Profiles

The idea of using the vanishing viscosity approach for identifying admissible weak
solutions of hyperbolic systems of conservation laws was introduced in Section 4.6.
In the present setting of one space dimension, for the system (8.1.1), Equation (4.6.1)
reduces to

(8.6.1) ∂tU(x, t)+∂xF(U(x, t)) = μ∂x[B(U(x, t))∂xU(x, t)].

As already explained in Section 4.6, the selection of the n × n matrix-valued
function B may be suggested by the physical context of the system or it may just be
an artifact of the analysis. Consider for example the dissipative systems

(8.6.2) ∂tu+∂x f (u) = μ∂ 2
x u,

(8.6.3)

⎧⎨⎩
∂tu−∂xv = 0

∂tv−∂xσ(u) = μ∂x(u−1∂xv),

(8.6.4)

⎧⎨⎩ ∂tu+∂x[(u2 +v2)u] = μ∂ 2
x u

∂tv+∂x[(u2 +v2)v] = μ∂ 2
x v,

associated with the hyperbolic systems (7.1.2), (7.1.11), and (7.2.11). In so far as
(7.1.11) is interpreted as the system of isentropic gas dynamics, the selection of
viscosity in (8.6.3) is dictated by physics3. On the other hand, in (8.6.2) and (8.6.4)
the viscosity is artificial.

In contrast to the entropy criterion, it is not at all clear that admissibility of weak
solutions by means of the vanishing viscosity criterion is decided solely at the level
of the shock set. However, taking that premise for granted, it will suffice to test
admissibility in the context of solutions in the simple form

(8.6.5) U(x, t) =

⎧⎨⎩U− , x < st

U+ , x > st,

namely a shock of constant speed s joining the constant state U− , on the left, to the
constant state U+ , on the right. Presumably, functions (8.6.5) may be approximated,
as μ ↓ 0, by a family of solutions Uμ of (8.6.1) in the form of traveling waves, namely
functions of the single variable x− st. Taking advantage of the scaling in (8.6.1), we
seek a family of solutions in the form

3 Compare with (4.6.2). The variable viscosity coefficient μu−1 is adopted so that in the
spatial setting, where measurements are usually performed, viscosity will be constant μ .
Of course this will make sense only when u > 0.
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(8.6.6) Uμ(x, t) =V
(

x− st
μ

)
.

Substituting in (8.6.1), we deduce that V should satisfy the ordinary differential equa-
tion

(8.6.7) [B(V (τ))V̇ (τ)]· = Ḟ(V (τ))− sV̇ (τ),

where the overdot denotes differentiation with respect to τ = (x − ct)/μ . We are
interested in solutions in which V̇ vanishes at V =U− and so, upon integrating (8.6.7)
once with respect to τ ,

(8.6.8) B(V )V̇ = F(V )−F(U−)− s[V −U−].

Notice that the right-hand side of (8.6.8) vanishes on the set of V that may be joined
to U− by a shock of speed s. This set includes, in particular, the state U+ . Thus both
U− and U+ are equilibrium points of (8.6.8).

A viscous shock profile connecting the left state U− and the right state U+ of
a shock is a smooth arc with endpoints U− and U+ that is an invariant set of the
differential equation (8.6.8) and, in addition, at any nonequilibrium point on the arc
the flow is directed from U− to U+ .

The shock that joins U− , on the left, to U+ , on the right, is said to satisfy the
viscous shock admissibility criterion if U− can be connected to U+ by a viscous
shock profile.

Determining viscous shock profiles is important not only because they shed light
on the issue of admissibility but also because they provide information (at least when
the matrix B is physically motivated) on the nature of the sharp transition modeled by
the shock, the so-called structure of the shock. Indeed, the stretching of coordinates
involved in (8.6.6), as μ ↓ 0, allows one, as it were, to observe the shock under the
microscope.

In general, the viscous shock profile may contain a (finite or infinite) number of
equilibrium points, with any two consecutive ones connected by orbits of (8.6.8).
As an extreme case, notice that when the shock joining U− and U+ is a contact
discontinuity associated with a linearly degenerate characteristic family, then, by
virtue of Theorem 8.2.5, every point of the shock curve connecting U− and U+ is an
equilibrium point of (8.6.8) and hence the shock curve itself serves as the viscous
shock profile. We now consider the more typical situation in which U− and U+ are
the only equilibrium points on the viscous shock profile, so that U− is the α-limit set
and U+ is the ω-limit set of an orbit of (8.6.8).

For orientation, and in order to establish a connection with the discussion in
Section 8.3, let us assume that the speed s of a shock joining U− , on the left, with U+ ,
on the right, satisfies (8.3.1). For definiteness, let us choose the identity as viscosity
matrix B, so that viscous shock profiles shall be orbits of the system

(8.6.9) V̇ = F(V )−F(U−)− s[V −U−].

Recalling (8.1.2) and linearizing (8.6.9) about U± yields
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(8.6.10) Ẇ = [DF(U±)− sI]W.

The matrix DF(U−)− sI has eigenvalues λ1(U−)− s , · · · , λn(U−)− s of which, by
(8.3.1), the first i− 1 are negative and the remaining n− i+ 1 positive. Similarly,
of the eigenvalues λ1(U+)− s , · · · , λn(U+)− s of the matrix DF(U+)− sI the first
j are negative and the remaining n− j are positive. It follows that U− and U+ are
locally isolated equilibrium points of (8.6.9). Furthermore, on some neighborhood
of U−, any orbit of (8.6.9) whose α-limit set is U− dwells on the unstable manifold
U , which has dimension n− i+ 1 and is tangent at U− to the hyperplane spanned

any orbit of (8.6.9) whose ω-limit set is U+ dwells on the stable manifold S , which
has dimension j and is tangent at U+ to the hyperplane spanned by the eigenvectors
R1(U+), · · · ,R j(U+). We assume that the strength of the shock is commensurate to
this local structure, so that viscous shock profiles are orbits lying on the intersection
of U and S .

For compressive shocks, i.e., i = j, dimU + dimS = n+ 1, so that U and S
intersect transversely to form a curve which is the unique viscous shock profile con-
necting U− and U+ . Furthermore, this profile is structurally stable, i.e., stable under
small perturbations of U− ,U+ and the flux function F . Figure 8.6.1(a) depicts a pat-
tern of this type, for n = 2 and i = j = 1, in which the unstable node U− is connected
with the saddle U+ by a unique, structurally stable viscous shock profile. Figure 8.6.2
depicts a configuration for n = 3 and i = j = 2, in which the two-dimensional unsta-
ble manifold U and the two-dimensional stable manifold S intersect transversely
to form the unique, structurally stable viscous shock profile connecting U− with U+ .

For overcompressive shocks, i.e., i < j, dimU +dimS = n+1+ j− i, so that
U

⋂
S is a manifold of dimension j− i+1≥ 2. Therefore, U− and U+ are connected

by infinitely many viscous shock profiles. This configuration is also structurally sta-
ble. Figure 8.6.1(b) depicts a pattern of this type, for n = 2, i = 1 and j = 2, in
which the unstable node U− is connected with the stable node U+ by infinitely many
viscous shock profiles.

For undercompressive shocks, i.e., i > j, dimU + dimS < n + 1, so that,
generically, U and S do not intersect. Thus, generically, no viscous shock pro-
file connecting U− with U+ exists; and in the nongeneric situation where it exists,
it is structurally unstable. This is seen in Figure 8.6.1(c), depicting a pattern of this
type, for n = 2, i = 2 and j = 1, in which a structurally unstable viscous shock profile
connects the saddles U− and U+ .

The situation described above, in which the existence of viscous shock profiles
hinges on compressibility alone, arises when the shock is weak or when the system
has special structure. In general, the existence of viscous shock profiles also depends
on the internal structure of the shock. In order to gain insight on this issue, we first
consider two simple examples, beginning with the case of the scalar conservation
law (7.1.2) with corresponding dissipative equation (8.6.2). The system (8.6.8) now
reduces to the scalar equation

(8.6.11) u̇ = f (u)− f (u−)− s(u−u−).

by the eigenvectors Ri(U−), · · · ,Rn(U−). Similarly, on some neighborhood of U+ ,
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it is nonnegative when u− < u+ and nonpositive when u− > u+ . Recalling (8.3.3),
we conclude that in the scalar conservation law (7.1.2), a shock satisfies the viscous
shock admissibility criterion if and only if the Oleinik E-condition (8.4.3) holds.
When (8.4.3) holds as a strict inequality for any u0 (strictly) between u− and u+ ,
then u− is connected to u+ with a single orbit. By contrast, when (8.4.3) becomes
equality for a set of intermediate u0 , we need more than one orbit and perhaps even a
number of contact discontinuities in order to build the viscous shock profile. In that
case one may prefer to visualize the shock as a composite of several shocks and/or
contact discontinuities, all traveling with the same speed.

Next we turn to the system (7.1.11) and the corresponding dissipative system
(8.6.3). In that case (8.6.8) reads

(8.6.12)

⎧⎨⎩
0 =−v+v−− s(u−u−)

u−1v̇ =−σ(u)+σ(u−)− s(v−v−).

The reason we end up here with a combination of algebraic and differential equa-
tions, rather than just differential equations, is that B is a singular matrix. In any
event, upon eliminating v between the two equations in (8.6.12), we deduce

(8.6.13) su−1u̇ = σ(u)−σ(u−)− s2(u−u−).

Since u > 0, (u−,v−) will be connected to (u+,v+) by a viscous shock profile if and
only if the right-hand side of (8.6.13) does not change sign between u− and u+ and
is in fact nonnegative when s(u+− u−) > 0 and nonpositive when s(u+− u−) < 0.
In view of (8.1.13), we conclude that in the system (7.1.11) of isentropic elasticity a
shock satisfies the viscous shock admissibility criterion if and only if the Wendroff
E-condition (8.4.4) holds.

It was the Oleinik E-condition and the Wendroff E-condition, originally derived
through the above argument, that motivated the general Liu E-condition. We now
proceed to show that the viscous shock admissibility criterion is generally equivalent
to the Liu E-condition, at least in the range of shocks of moderate strength. For
simplicity, only the special case B= I will be discussed here; the case of more general
B is treated in the references cited in Section 8.8.

8.6.1 Theorem. Assume λi is a simple eigenvalue of DF . Then an i-shock of moderate
strength satisfies the viscous shock admissibility criterion, with B = I, if and only if
it satisfies the Liu E-condition.

Proof. Assume the state U− , on the left, is joined to the state U+ , on the right, by
an i-shock of moderate strength and speed s. In order to apply the viscous shock
admissibility test, the first task is to construct a curve in state space that connects U+

with U− and is invariant under the flow generated by (8.6.9). To that end, we embed
(8.6.9) into a larger, autonomous, system by introducing a new (scalar) variable r :

It is clear that u− will be connected to u+ by a viscous shock profile if and only if
the right-hand side of (8.6.11) does not change sign between u− and u+ , and indeed
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(8.6.14)

⎧⎨⎩ V̇ = F(V )−F(U−)− r[V −U−]

ṙ = 0.

Notice that the Jacobian matrix of the right-hand side of (8.6.14), evaluated at the
equilibrium point V =U− , r = λi(U−), is

(8.6.15) J =

⎛⎜⎜⎝
DF(U−)−λi(U−)I 0

0 0

⎞⎟⎟⎠ ,

with eigenvalues λ j(U−)−λi(U−), j = 1, · · · ,n, and 0; the corresponding eigenvec-
tors being

(8.6.16)

⎛⎝R j(U−)

0

⎞⎠ , j = 1, · · · ,n, and

⎛⎝0

1

⎞⎠ .

We see that J has two zero eigenvalues, associated with a two-dimensional eigen-
space, while the remaining eigenvalues are nonzero real numbers. The center man-
ifold theorem then implies that any trajectory of (8.6.14) that is confined in a small
neighborhood of the point (U−,λi(U−)) must lie on a two-dimensional manifold M ,
which is invariant under the flow generated by (8.6.14), and may be parametrized by

(8.6.17) V =Φ(ζ ,r) =U−+ζRi(U−)+S(ζ ,r), r = r,

with

(8.6.18) S(0,λi(U−)) = 0, Sζ (0,λi(U−)) = 0, Sr(0,λi(U−)) = 0.

In particular, the equilibrium point (U+,s) of (8.6.14) must lie on M , in which case
U+ = Φ(ρ,s), for some ρ near zero. Thus U− and U+ are connected by the smooth
curve V =Φ(ζ ,s), for ζ between 0 and ρ , and this curve is invariant under the flow
generated by (8.6.9).

The flow induced by (8.6.14)1 along the invariant curve V =Φ(·,r) is represented
by a function ζ = ζ (·) which satisfies the scalar ordinary differential equation

(8.6.19) ζ̇ = g(ζ ,r),

with g defined through

(8.6.20) g(ζ ,r)Φζ (ζ ,r) = F(Φ(ζ ,r))−F(U−)− r[Φ(ζ ,r)−U−].

In particular, recalling (8.6.17) and (8.6.18),

(8.6.21) g(0,r) = 0, gζ (0,r) = λi(U−)− r.

Clearly, the viscous shock admissibility criterion will be satisfied if and only if
ρg(ζ ,s)≥ 0 for all ζ between 0 and ρ .
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Suppose now the shock satisfies the Liu E-condition. Thus, if Wi denotes the
i-shock curve through U− and si is the corresponding shock speed function, so that
U− =Wi(0),U+ =Wi(τ+), s = si(τ+), we must have si(τ) ≥ s for τ between 0 and
τ+ . For definiteness, let us assume U+−U− points nearly in the direction of Ri(U−),
in which case both ρ and τ+ are positive.

We fix r < s, with s− r very small, consider the curve Φ(·,r) and identify κ > 0
such that [Φ(κ,r)−U+]

�Ri(U−) = 0. We show that g(ζ ,r)> 0, 0 < ζ < κ . Indeed,
if g(ζ ,r)= 0 for some ζ , 0< ζ < κ , then, by virtue of (8.6.20), the stateΦ(ζ ,r) may
be joined to the state U− by a shock of speed r. Thus, Φ(ζ ,r) lies on the shock curve
Wi , say Φ(ζ ,r) = Wi(τ), for some τ . By the construction of κ , since 0 < ζ < κ ,
it is necessarily 0 < τ < τ+ . However, in that case it is r = si(τ) ≥ s, namely, a
contradiction to our assumption r < s. This establishes that g(ζ ,r) does not change
sign on (0,κ). At the same time, recalling (8.6.21), gζ (0,r) = si(0)− r ≥ s− r > 0,
which shows that g(ζ ,r)> 0, 0 < ζ < κ . Finally, we let r ↑ s, in which case κ → ρ .
Hence g(ζ ,s)≥ 0 for ζ ∈ (0,ρ).

By a similar argument one shows the converse, namely that ρg(ζ ,s) ≥ 0, for ζ
between 0 and ρ , implies si(τ) ≥ s, for τ between 0 and τ+ . This completes the
proof.

Combining Theorems 8.4.1, 8.4.2 and 8.6.1, we conclude that the viscous shock
admissibility criterion generally implies the Lax E-condition but the converse is gen-
erally false, unless the system is genuinely nonlinear and the shocks are weak.

It should be emphasized that the equivalence between the viscous shock admissi-
bility criterion and the Liu E-condition generally hinges on the choice of the viscosity
matrix B. To see this, consider the simple system

(8.6.22) ∂t(u,v,w)�+∂x(u2,v2,w2)� = 0,

which consists of three uncoupled copies of the Burgers equation. The undercom-
pressive shock joining the state (−3,7,−1)�, on the left, with the state (5,−5,3)�,
on the right, and propagating with speed s = 2, violates the Lax E-condition, the
Liu E-condition and also the viscous shock admissibility criterion when the viscos-
ity matrix is B = I. However, this shock does satisfy the viscous shock admissibility
condition for the symmetric positive definite viscosity matrix

(8.6.23) B =

⎛⎜⎜⎜⎜⎝
9 8 2

8 9 2

2 2 1

⎞⎟⎟⎟⎟⎠ .

Indeed, the corresponding viscous shock profile is given by

(8.6.24) V (τ) = (1,1,1)�+ tanh(2τ)(4,−6,2)�, −∞ < τ < ∞ .

Our next task is to compare the viscous shock admissibility criterion with the
entropy shock admissibility criterion. We thus assume that the system (8.1.1) is
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equipped with an entropy-entropy flux pair (η ,q), satisfying (7.4.1), Dq = DηDF .
The natural compatibility condition between the entropy and the viscosity matrix
B was already discussed in Section 4.6. We write (a weaker form of) the condition
(4.6.7) in the present, one-dimensional setting:

(8.6.25) H�D2η(U)B(U)H ≥ 0, H ∈ Rn, U ∈ O.

As already noted in Section 4.6, when B = I, (8.6.25) will hold if and only if η is
convex.

8.6.2 Theorem. When (8.6.25) holds, any shock that satisfies the viscous shock ad-
missibility criterion also satisfies the entropy shock admissibility criterion.

Proof. Consider a shock of speed s that joins the state U− , on the left, with the state
U+ , on the right, and satisfies the viscous shock admissibility condition.

Assume first U− is connected to U+ with a single orbit of (8.6.8), i.e., there is
a function V which satisfies (8.6.8), and thereby also (8.6.7), on (−∞,∞), together
with the conditions V (τ)→U± , as τ →±∞ . We multiply (8.6.7), from the left, by
Dη(V (τ)) and use (7.4.1) to get

(8.6.26) [Dη(V )B(V )V̇ ]· −V̇�D2η(V )B(V )V̇ = q̇(V )− sη̇(V ).

Integrating (8.6.26) over (−∞,∞) and using (8.6.25), we arrive at (8.5.1). We have
thus proved that the shock satisfies the entropy condition.

In the general case where the viscous shock profile contains intermediate equi-
librium points, we realize the shock as a composite of a (finite or infinite) number of
simple shocks of the above type and/or contact discontinuities, all propagating with
the same speed s. As shown above, the entropy production across each simple shock
is nonpositive. On the other hand, by Theorem 8.5.2, the entropy production across
any contact discontinuity will be zero. Therefore, combining the partial entropy pro-
ductions, we conclude that the total entropy production (8.5.1) is nonpositive. This
completes the proof.

The converse of Theorem 8.6.2 is generally false. Consider for example the sys-
tem (7.1.11) of isentropic elasticity, with corresponding dissipative system (8.6.3)
and entropy-entropy flux pair (7.4.10), which satisfy the compatibility condition
(8.6.25). As shown in Section 8.5, the entropy shock admissibility criterion is tested
through the inequality (8.5.5), which follows from, but does not generally imply, the
Wendroff E-condition (8.4.4).

To be robust, the viscosity approach should generate the shock (8.6.5) as the
μ ↓ 0 limit of solutions of (8.6.1) that are perturbations of the associated viscous
shock profile (8.6.6). Passing to the μ ↓ 0 limit, for fixed t, is equivalent, by rescaling
coordinates, to passing to the t → ∞ limit, for fixed μ . One may thus plausibly argue
that viscous shock profiles employed to test the admissibility of shocks must derive
from traveling wave solutions of the system (8.6.1) that are asymptotically stable.
This issue has been investigated thoroughly in recent years and a complete theory
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has emerged, warranting the writing of a monograph on the subject. A detailed pre-
sentation would lie beyond the scope of the present book, so only the highlights shall
be reported here. For details and proofs the reader may consult the references cited
in Section 8.8.

For simplicity, we limit our discussion to viscosity matrix B = I and normalize
(8.6.1) by setting μ = 1. We consider a weak i-shock, joining the states U− , on
the left, and U+ , on the right, which admits a viscous shock profile V . A change
of variable x �→ x + st renders the shock stationary. The viscous shock profile V
is called asymptotically stable if the solution U(x, t) of (8.6.1) with initial values
U(x,0) =V (x)+U0(x), where U0 is a “small” perturbation decaying at ±∞ , satisfies

(8.6.27) U(x, t)→V (x+h), as t → ∞ ,

for some appropriate phase shift h ∈ R.
Motivated by the observation that the total mass of solutions of (8.6.1) is con-

served, it seems natural to require that the convergence in (8.6.27) be in L1(−∞,∞).
In particular, this would imply that V (x+ h) carries the excess mass introduced by
the perturbation:

(8.6.28)
∫ ∞

−∞
U0(x)dx =

∫ ∞

−∞
[V (x+h)−V (x)]dx = h[U+−U−].

In the scalar case, n = 1, any viscous shock profile is asymptotically stable
in L1(−∞,∞), under arbitrary perturbations U0 ∈ L1(−∞,∞), with h determined
through (8.6.28).

For systems, n ≥ 2, the single scalar parameter h is generally inadequate to bal-
ance the vectorial equation (8.6.28), in which case (8.6.27) cannot hold in L1(−∞,∞),
as no h-translate of V alone may carry the excess mass. Insightful analysis of the
asymptotics of (8.6.1) suggests that, for large t, the solution U should develop a
viscous shock profile accompanied by a family of so-called diffusion waves, which
share the burden of carrying the mass:

(8.6.29) U(x, t)∼V (x+h)+W (x, t)+∑
j<i
θ j(x, t)R j(U−)+∑

j>i
θ j(x, t)R j(U+) .

The j-term in the summation on the right-hand side of (8.6.29) represents a decou-
pled j-diffusion wave. The scalar function θ j is a self-similar solution,

(8.6.30) θ j(x, t) =
1√
t
φ j

(
x−λ jt√

t

)
,

of the nonlinear diffusion equation

(8.6.31) ∂tθ j +∂x

[
λ jθ j +

1
2 (Dλ jR j)θ 2

j

]
= ∂ 2

x θ j .

In (8.6.30) and (8.6.31), λ j , Dλ j and R j are evaluated at U− , for j = 1, · · · , i−1, or
at U+ , for j = i+1, · · · ,n. Thus the j-diffusion wave has a bell-shaped profile which
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propagates at characteristic speed λ j ; its peak decays like O(t−
1
2 ), while its mass

stays constant, say m jR j . The remaining term W on the right-hand side of (8.6.29)
represents the coupled diffusion wave, which satisfies a complicated linear diffusion
equation and decays at the same rate as the uncoupled diffusion waves, but carries no
mass. Therefore, mass conservation as t → ∞ yields, in lieu of (8.6.28), the equation

(8.6.32)
∫ ∞

−∞
U0(x)dx = ∑

j<i
m jR j(U−)+h[U+−U−]+∑

j>i
m jR j(U+),

which dictates how the excess mass is distributed among the viscous shock profile
and the decoupled diffusion waves. Since U+−U− and Ri(U±) are nearly collinear,
(8.6.32) determines explicitly and uniquely the phase shift h of the viscous shock
profile as well as the masses m j of the j-diffusion waves.

It has been established that the viscous shock profile V is asymptotically stable
(8.6.27) in L∞(−∞,∞), for the h determined through (8.6.32), under any perturbation
U0 ∈ H1(−∞,∞) of V with

(8.6.33)
∫ ∞

−∞
(1+ x2)|U0(x)|2dx << 1,

provided only that the eigenvalue λi is simple and the shock satisfies the strict form
of the Lax E-condition. It should be noted that this assertion holds even when the
i-characteristic family fails to be genuinely nonlinear.

The orderly structure depicted above disintegrates when dealing with overcom-
pressive or undercompressive shocks, and occasionally even with strong compres-
sive shocks. In order to catch a glimpse of the geometric complexity that may arise
in such cases, let us discuss the construction of viscous shock profiles for 2-shocks
of the simple system (7.2.11), with dissipative form (8.6.4). The properties of shocks
were already discussed in Section 8.3. Taking advantage of symmetry under rotations
and scaling properties of the system, we may fix, without loss of generality, the left
state (u−,v−) at the point (1,0). The right state (u+,v+) will be located at a point
(a,0), with a ∈ (− 1

2 ,0). In that case, as shown in Section 8.3, the shock speed is
s = a2 +a+1 and the shock is overcompressive (8.3.7). Notice that the state (b,0),
where b = −1− a, is also joined to (1,0) by a 2-shock of the same speed s, which
satisfies the Lax E-condition and is not overcompressive, but does not satisfy the Liu
E-condition.

The system (8.6.8) associated with (8.6.4) reads:

(8.6.34)

⎧⎨⎩ u̇ =−s(u−1)+u(u2 +v2)−1

v̇ =−sv+v(u2 +v2);

or, equivalently, in polar coordinates (ρ,θ), u = ρ cosθ , v = ρ sinθ :

(8.6.35)

⎧⎨⎩ ρ̇ = ρ(ρ2 − s)+(s−1)cosθ

ρθ̇ =−(s−1)sinθ .
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Notice that (8.6.34) possesses three equilibrium points: (a) (1,0) which is an unstable
node; (b) (a,0) which is a stable node; and (c) (b,0) which is a saddle. The phase
portrait, which may be easily determined through elementary analysis of (8.6.34) and
(8.6.35), is depicted in Fig. 8.6.3.

(1, 0)(b, 0) (a, 0)
u

v

Fig. 8.6.3

Even though the shock joining (1,0) to (b,0) violates the Liu E-condition, these
states are connected by two viscous shock profiles, symmetric with respect to the u-
axis. By contrast, the states (1,0) and (a,0) are connected by infinitely many viscous
shock profiles. To test the asymptotic stability of any one of these viscous shock
profiles, say (ū(τ), v̄(τ)), in the light of our discussion above, we introduce a small
perturbation (u0(x),v0(x)) and inquire whether the solution (u,v)(x, t) of (8.6.4) with
initial values

(8.6.36) (u,v)(x,0) =
(

ū(
x
μ
)+u0(x), v̄(

x
μ
)+v0(x)

)
satisfies

(8.6.37) (u,v)(x, t)→
(

û
(

x− st
μ

)
, v̂
(

x− st
μ

))
, as t → ∞ ,

where (û(τ), v̂(τ)) is a (generally different) viscous shock profile. Because no diffu-
sion waves are possible here, the convergence in (8.6.37) must be in L1(−∞,∞). In
particular, the v-component of the excess mass conservation yields
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(8.6.38)∫ ∞

−∞
v0(x)dx =

∫ ∞

−∞

[
v̂
(

x− st
μ

)
− v̄

(
x− st
μ

)]
dx = μ

∫ ∞

−∞
[v̂(τ)− v̄(τ)]dτ.

It can be shown that the integral on the right-hand side of (8.6.38) is uniformly
bounded, independently of the choice of v̄ and v̂. Consequently, when v0 is fixed
so that

∫
v0dx �= 0, (8.6.38) cannot hold when μ is sufficiently small. Thus, inso-

far as shock admissibility hinges on stability of the connecting shock profiles, the
overcompressive shocks of the system (7.2.11) should be termed inadmissible.

A very technical theory of linear stability for multi-space-dimensional viscous
shock profiles has emerged in recent years, paralleling the corresponding theory for
multi-space-dimensional shocks, briefly outlined at the end of Section 8.3. Exposi-
tions are found in the references cited in Section 8.8.

As pointed out in Section 4.6, in certain cases the physically relevant admissibil-
ity condition is provided not by the viscosity criterion but by the viscosity-capillarity
criterion, in which (8.6.1) is replaced by

(8.6.39)
∂tU(x, t)+∂xF(U(x, t)) = μ∂x[B(U(x, t))∂xU(x, t)]+ν∂x[H(U(x, t))∂ 2

x U(x, t)].

In general, diffusion is dominant when ν = o(μ2), while dispersion prevails if
μ = o(

√
ν). The two effects are balanced when ν = μ2. In that case, shock profiles

are governed by the ordinary differential equation

(8.6.40) H(V )V̈ +B(V )V̇ = F(V )−F(U−)− s[V −U−],

replacing (8.6.8). A theory of these profiles is gradually emerging in the literature.

8.7 Nonconservative Shocks

In continuum physics one occasionally encounters quasilinear hyperbolic systems

(8.7.1) ∂tU(x, t)+A(U(x, t))∂xU(x, t) = 0

that are not in conservative form. In that case, it is not possible to characterize weak
solutions within the setting of the theory of distributions. It is still possible, however,
to introduce a notion of weak solution within the class BV of functions of bounded
variation by postulating jump conditions that play the role of the Rankine-Hugoniot
jump condition (8.1.2) at the points of approximate jump discontinuity.

Appropriate jump conditions can be motivated by prior information on shock
profiles, deriving from the vanishing viscosity approach, the vanishing viscosity-
capillarity argument, or from (so-called) kinetic relations in the theory of phase tran-
sitions. The formulation of this theory proceeds along the following lines.

To (8.7.1) one links a function V (τ ;U−,U+), defined on (−∞,∞)×Rn ×Rn and
taking values in Rn, which has the following properties:
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(8.7.2) V (−∞ ;U−,U+) =U− , V (∞ ;U−,U+) =U+ ,

(8.7.3) V (τ ;U,U) =U,

(8.7.4) |∂τV (τ ;U−,U+)−∂τV (τ ;Ū−,Ū+)| ≤ a|(U+−Ū+)− (U−−Ū−)|,
for all U,U− ,U+ , Ū− , Ū+ in Rn, any τ ∈ (−∞,∞), and some a > 0. One then re-
quires that a shock joining the state U− , on the left, with the state U+ , on the right,
and propagating with speed s must satisfy the jump condition

(8.7.5)
∞∫

−∞

A(V (τ ;U−,U+))∂τV (τ ;U−,U+)dτ = s[U+−U−].

In the above setting, V (· ;U−,U+) represents the shock profile. Notice that in the
conservative case, A(U) = DF(U), (8.7.5) reduces to the Rankine-Hugoniot jump
condition (8.1.2), regardless of the particular choice of V .

The literature cited in Section 8.8 explains how the above device naturally leads
to a notion of weak solution to (8.7.1), within the framework of BV functions.

8.8 Notes

The study of shock waves originated in the context of gas dynamics. The book by
Courant and Friedrichs [1], already cited in Chapter III, presented a coherent, mathe-
matical exposition of material from the physical and engineering literature, accumu-
lated over the past 150 years, paving the way for the development of a general theory
by Lax [2].

For as long as gas dynamics remained the prototypical paradigm, the focus of
the research effort was set on strictly hyperbolic, genuinely nonlinear systems. The
intricacy of shock patterns in nonstrictly hyperbolic systems was not recognized until
recently, and this subject is currently undergoing active development.

Expositions of many of the topics covered in this chapter are also contained in
the books of Smoller [3] and Serre [11].

The notion of Hugoniot locus in gas dynamics may be traced back to the work of
Riemann [1]; but the definition of shock curves in the general setting is due to Lax
[2], who first established the properties stated in Theorems 8.2.1, 8.2.2 and 8.2.3.
The elegant proof of Theorem 8.2.1 is here taken from Serre [11]. The significance
of systems with coinciding shock and rarefaction wave curves was first recognized
by Temple [3], who conducted a thorough study of their noteworthy properties. A
detailed discussion is also contained in Serre [11].

For gas dynamics, the statement that admissible shocks should be subsonic rel-
ative to their front state and supersonic relative to their back state is found in the
pioneering paper of Riemann [1]. This principle was postulated as a general shock
admissibility criterion, namely the Lax E-condition, by Lax [2], who also proved
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Theorem 8.3.1. A proof of Theorem 8.3.2 is given in Ta-tsien Li and Wen-ci Yu [1].
See also Hsiao and Chang [1]. A different connection between the Lax E-condition
and stability is established in Smoller, Temple and Xin [1].

Shock admissibility in the absence of genuine nonlinearity was first discussed by
Bethe [1] and Weyl [1], for the system of gas dynamics. The Liu E-condition and
related Theorems 8.4.1, 8.4.2 and 8.5.4 are due to Tai-Ping Liu [2]. The motivation
was provided by the Oleinik E-condition, derived in Oleinik [4], and the Wendroff
E-condition, established in Wendroff [1]. This admissibility criterion was apparently
anticipated in the 1960’s by Chang and Hsiao [1,2] (see also Hsiao and Zhang [1])
but their work was not published until much later.

The entropy shock admissibility condition has been part of the basic theory of
continuum thermomechanics for over a century (see the historical introduction). The
form (8.5.1), for general systems (8.1.1), was postulated by Lax [4], who established
Theorems 8.5.1, 8.5.3 and 8.6.2. The proofs of Theorems 8.5.1, 8.5.2, 8.5.3 and 8.5.4,
based on Equation (8.5.8), are here taken from Dafermos [11]. Stricter versions of
the entropy admissibility criterion that are equivalent to the Liu E-condition have
been proposed by Dafermos (see Section 9.7) and by Liu and Ruggeri [1].

The relevance of the condition 2θ−uθu > 0 to the equations of state in the system
(7.1.8) of gas dynamics was originally recognized by Bethe [1]. Dafermos [30] shows
that when Bethe’s condition fails, as may occur in physical gases undergoing phase
transitions, the Liu E-condition no longer guarantees that strong shocks will satisfy
the Second Law of thermodynamics.

As we saw in the historical introduction, the notion of viscous shock profile was
introduced to gas dynamics by Rayleigh [4] and G.I. Taylor [1], and then devel-
oped by Becker [1], Weyl [1], and Gilbarg [1]. The general form (8.6.8), for systems
(8.1.1), was first written down by Gelfand [1].

Theorem 8.6.1 is due to Majda and Pego [1]. See also Conlon [2]. An earlier
paper by Foy [1] had established the result in the special case where the system is
genuinely nonlinear and the shocks are weak. Also Mock [1] has proved a similar
result under the assumption that the system is genuinely nonlinear and it is endowed
with a convex entropy. The issue of characterizing appropriate viscosity matrices B
has been discussed by several authors, including Conley and Smoller [1,3], Majda
and Pego [1], and Serre [11]. See also Bianchini and Spinolo [1].

For a detailed study of viscous shock profiles in isentropic (or isothermal) elas-
todynamics, under physically natural assumptions, see Antman and Malek-Madani
[1]. The case of general, nonisentropic, gas dynamics, with nonconvex equations of
state, was investigated by Pego [2], who established that strong shocks satisfying the
Liu E-condition do not necessarily admit viscous shock profiles when the viscosity
is dominated by the heat conductivity. The existence of viscous shock profiles with
large amplitude for a general class of systems of two conservation laws that are not
necessarily strictly hyperbolic is discussed by Yang, Zhang and Zhu [1]. The sys-
tem (8.6.22), with viscosity matrix (8.6.23), is treated in detail by Mailybaev and
Marchesin [1].

Smooth shock profiles are also induced by alternative dissipative or dispersive
mechanisms, such as: capillarity (for an early study, see Conley and Smoller [2]; see
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also Bertozzi and Shearer [1], as well as numerous references below); and relaxation
(see Tai-Ping Liu [21], Yong and Zumbrun [1], Dressel and Yong [1], and numer-
ous references below). The study of shock profiles associated with solutions to the
Boltzmann equation is still in progress; see Caflisch and Nicolaenko [1], and Liu and
Yu [4].

To keep matters relatively simple, the discussion in this chapter has been biased
in favor of shocks with moderate strength for strictly hyperbolic systems, as just
only hints have been provided on the complexity associated with strong shocks for
systems in which strict hyperbolicity, or even hyperbolicity proper, fails. To a great
extent, the bewildering variety of shock structure encountered in the equations of
mathematical physics is a consequence of symmetry, which is a cause of delight
for the geometer and frustration for the analyst. In particular, the existence and sta-
bility of shocks in systems with rotational invariance, with application to elasticity
and magnetohydrodynamics, has been discussed by Brio and Hunter [1], Freistühler
[1,2,3,4,5,6], Freistühler and Liu [1], and Freistühler and Szmolyan [1]. A thorough
investigation has been conducted on the admissibility of overcompressive and un-
dercompressive shocks in the realm of nonstrictly hyperbolic systems of two conser-
vation laws with quadratic or cubic flux functions. Viscosity or viscosity-capillarity
conditions, as well as kinetic relations, have been employed for that purpose as ad-
missibility criteria. The ultimate test of success of this endeavor is the well-posedness
of the Riemann problem, to be discussed in Chapter IX. Out of an extensive body
of literature, a sample is M. Shearer [2], Schaeffer and Shearer [1], Schecter and
Shearer [1], Schaeffer, Schecter and Shearer [1], Jacobs, MacKinney and Shearer [1],
Schulze and Shearer [1], Čanić and Plohr [1], Asakura and Yamazaki [1], Marchesin
and Mailybaev [1], and Mailybaev and Marchesin [2,3]. For additional related ref-
erences, see Section 9.12. The discussion of the stability of overcompressive shocks
for the system (7.2.11) was borrowed from Tai-Ping Liu [27]; see also Tai-Ping Liu
[27].

Another class of jump discontinuities that has not been discussed here are phase
boundaries and transonic shocks, which arise in systems of conservation laws of
mixed, elliptic-hyperbolic type, governing phase transitions or transonic gas flow.
A prototypical example is the system (7.1.11) with nonmonotone σ(u), and in partic-
ular the classical (isentropic) van der Waals fluid, whose shock curves are described
in LeFloch and Thanh [3]. Entropy, viscosity and viscosity-capillarity admissibil-
ity criteria have been tried in that context, together with a new criterion based on
kinetic relations, motivated by considerations at the microscale. A relevant, com-
prehensive reference on the physical background is the interesting monograph by
Abeyaratne and Knowles [3]. Shocks induced by such kinetic relations are typically
undercompressive. A sample of references in that area are Abeyaratne and Knowles
[1,2], Asakura [2], Bedjaoui and LeFloch [1], Benzoni-Gavage [4], Fan [3,4], Hagan
and Slemrod [1], Hayes and LeFloch [2,3], Hayes and Shearer [1], R.D. James [1],
Keyfitz [2], Keyfitz and Warnecke [1], Pego [3], Pence [1], Rosakis [1], M. Shearer
[2,5], Slemrod [2,3,4], and Truskinovsky [1,2]. The area is amply surveyed in
the article by Fan and Slemrod [1] and in the paper and monograph by LeFloch
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[4,5]. A thoughtful discussion of the admissibility issue for solutions to the Euler
equations is found in Slemrod [8].

The admissibility of detonation waves in the theory of combustion also poses
interesting and difficult problems. It has been discussed by Tai-Ping Liu and Tong
Zhang [1] in the context of the highly simplified model of Chapman-Jouguet type
that results from letting δ → ∞ in (7.1.26).

The asymptotic stability theory of viscous shock profiles, which was just sketched
in Section 8.6, is presented in detail in the text by Serre [11]. The seminal papers
in that direction include Ilin and Oleinik [1], on the scalar case; Goodman [1],
on systems for perturbations with zero excess mass; Tai-Ping Liu [19], where the
decoupled diffusion waves were introduced; and Szepessy and Xin [1], where the
coupled diffusion waves first appeared. The definitive treatment of the scalar case is
found in the survey by Serre [21], which presents, among other topics, the relevant
contributions by Freistüler and Serre [2,3]. For a comprehensive recent treatment,
with precise estimates on the rate of decay established by the use of the Green’s func-
tion of the system, the reader should consult the memoir by Liu and Zeng [4], as well
as the earlier paper [3], by the same authors, together with Liu and Yu [5]. For earlier
works and for extensions of the theory, dealing with contact discontinuities, under-
compressive shocks, boundary effects on stationary shocks, nonstrictly hyperbolic
systems, and various types of viscosity, and based on either energy estimates or on
Green’s function, see Matsumura and Nishihara [1,4], Tai-Ping Liu [20,26], Liu and
Nishihara [1], Liu and Xin [2,3], Liu and Yu [1], Tai-Ping Liu and Yanni Zeng [1,2],
Liu and Zumbrun [1], Chern and Liu [1], Lan, Liu and Yu [1], Goodman, Szepessy
and Zumbrun[1], Kawashima and Matsumura [1], Xin [3,5], Luo and Xin [1], Huang,
Matsumura and Xin [1], Huang Xin and Yang [1], Fries [1,2], and Yanni Zeng [1,2,3].

The asymptotic stability of viscous rarefaction wave profiles has also been inves-
tigated along similar lines; see Liu and Yu [6], Matsumura and Nishihara [2,3,5], Liu,
Matsumura and Nishihara [1], Liu and Xin [1], Xin [1,2], Nishihara, Yang and Zhao
[1], and Yang and Zhao [1]. Finally, for the asymptotic stability of composite viscous
waves, shocks and/or rarefaction, see Huang, Li and Matsumura [1], and Huang and
Matsumura [1].

A parallel theory has emerged on the asymptotic stability of relaxation shock
profiles (including contact discontinuities) and relaxation rarefaction wave profiles;
see Tai-Ping Liu [21], Hsiao and Pan [1], Tao Luo [1], Luo and Xin [1], Hailiang Liu
[1], Mascia and Natalini [1], Mascia and Zumbrun [5], Yang and Zhu [1], Huijiang
Zhao [2], Ueda and Kawashima [1], and Feimin Huang, Ronghua Pan and Yi Wang
[1]. In the same vein, Kawashima and Nishibata [1,2], and Kawashima and Tanaka
[1] establish the asymptotic stability of shock and rarefaction profiles for a scalar
balance law with dissipative source induced by coupling to an elliptic equation (a
radiating gas model). See also Lattanzio, Mascia and Serre [1].

The competition between viscosity and dispersion in controlling the asymptotic
behavior of shock profiles is investigated by Perthame and Ryzhik [1]. The asymptotic
stabilityof weak detonation waves, in the context of the simple model (7.1.26) equip-
ped with viscosity, was established by Szepessy [3]. For the effect of damping, see
Liao, Wang and Yang [1].
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The topic of shock stability, which was barely touched upon in Section 8.3,
had its origins in the physics literature (e.g., Erpenbeck [1]) but has evolved, over
the past thirty years, into an active field of mathematical research. By a suitable
change of coordinates, the shock may be reduced to a stationary surface and thus
may be treated by the machinery developed for the study of boundary value prob-
lems, outlined in Section 5.6. One may employ various notions of stability, spectral,
linear or nonlinear, independently or interconnectedly. The construction and stabil-
ity theory of multi-dimensional shocks was pioneered by Majda [2,3,4]. This sem-
inal work has been extended in various directions and now encompasses compres-
sive, undercompressive, and overcompressive shocks for hyperbolic systems, as well
as phase boundaries for systems that change type. A small sample of relevant ref-
erences, out of a voluminous literature, includes Benzoni-Gavage [2,3], Corli and
Sablé-Tougeron [1], Franchéteau and Métivier [1], Freistühler [8], Freistühler and
Rohde [1], Freistühler and Szmolyan [2], Freistühler, Szmolyan and Wächtler [1],
Freistühler and Trakhinin [1], Godin [1], Métivier [2], Serre [18], Coulombel [1,2],
Freistühler and Plaza [1], Lewicka and Zumbrun [1], Howard [1,2], and Barker,
Freistühler and Zumbrun [1]. Detailed expositions are found in the monograph by
Benzoni-Gavage and Serre [2], and the survey article by Métivier [3]. The same
methodology has been used in the investigation of existence and stability of multi-
dimensional detonation fronts; see Costanzino, Jenssen, Lyng and Williams [1].

Closely related to the above, in spirit as well as in technique, is the stabiliity the-
ory for one-dimensional viscous, capillary, radiative, and relaxation shock profiles,
phase boundaries and detonation fronts. This has been an area of active research over
the past several years, and it is still undergoing rapid development. The survey pa-
pers by Zumbrun [5.6,10] provide detailed expositions, together with an exhaustive
list of references. A sample of relevant contributions is Zumbrun [3,4,7,8,9], Gard-
ner and Zumbrun [1], Howard and Zumbrun [1,2], Benzoni-Gavage, Serre and Zum-
brun [1,2], Benzoni-Gavage [8], Guès, Métivier, Williams and Zumbrun [1,2,3,4,7],
Hoff and Zumbrun [1,2], Lyng and Zumbrun [1], Plaza and Zumbrun [1], Mascia
and Zumbrun [1,2,3,4,5,6], Texier and Zumbrun [1], Barker, Humpherys, Rudd and
Zumbrun [1], Howard, Raoofi and Zumbrun [1], Métivier, Texier and Zumbrun [1],
Howard [1], Jenssen, Lyng and Williams [1], Barker, Lewicka and Zumbrun [1],
Nguyen and Zumbrun [1], Ha and Yu [1], Härterich [2], Kreiss, Kreiss and Lorenz
[1], and Luo, Rauch, Xie and Xin [1]. Similar ideas and techniques apply in the in-
vestigation of stability of periodic solutions to systems of conservation laws with
viscous dissipation; see Oh and Zumbrun [1,2], Beck, Sandstede and Zumbrun [1],
Freistühler and Szmolyan [3], and Serre [23].

A parallel theory is emerging on the stability of shock profiles associated with
finite difference systems that result from discretization of hyperbolic systems of con-
servation laws; see Jian-Guo Liu and Zhou Ping Xin [1,2], Jiang and Yu [1], Liu and
Yu [2], and Benzoni-Gavage [6].

The notion of weak solution for quasilinear hyperbolic systems that are not in
conservation form, outlined in Section 8.7, was introduced by LeFloch [2], and Dal
Maso, LeFloch and Murat [1]. For developments and applications of these ideas,
see Amadori, Baiti, LeFloch and Piccoli [1], Hayes and LeFloch [2,3], LeFloch and



302 VIII Admissible Shocks

Tzavaras [1,2], and references in Section 14.13. For a survey and list of diverse appli-
cations, see LeFloch [4], and Berthon, Coquel and LeFloch [1]. For stability issues,
see Xiao-Biao Lin [1].



IX

Admissible Wave Fans and the Riemann Problem

The property of systems of conservation laws to be invariant under uniform stretch-
ing of the space-time coordinates induces the existence of self-similar solutions,
which stay constant along straight-line rays emanating from some focal point in
space-time. Such solutions depict a collection of waves converging to the focal point
and interacting there to produce a jump discontinuity which is in turn resolved into
an outgoing wave fan.

This chapter investigates the celebrated Riemann problem, whose object is the
resolution of jump discontinuities into wave fans. A solution will be constructed
in three different ways, namely: (a) by the classical method of piecing together
elementary centered solutions encountered in earlier chapters, i.e., constant states,
shocks joining constant states, and centered rarefaction waves bordered by constant
states or contact discontinuities; (b) by minimizing the total entropy production of
the outgoing wave fan; and (c) by a vanishing viscosity approach which employs
time-dependent viscosity so that the resulting dissipative system is invariant under
stretching of coordinates, just like the original hyperbolic system. A new type of
discontinuity, called a delta shock, will emerge in the process.

The issue of admissibility of wave fans will be raised. In particular, it will be
examined whether shocks contained in solutions constructed by any one of the above
methods are necessarily admissible.

Next, the wave fan that best approximates the complex wave pattern generated
by the interaction of two wave fans will be determined.

A system will be exhibited in which bounded initial data generate a resonating
wave pattern that drives the solution amplitude to infinity, in finite time.

9.1 Self-Similar Solutions and the Riemann Problem

The hyperbolic system of conservation laws

(9.1.1) ∂tU +∂xF(U) = 0
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is invariant under uniform stretching of coordinates: (x, t) �→ (αx,αt); hence it
admits self-similar solutions, defined on the space-time plane and constant along
straight-line rays emanating from the origin. Since (9.1.1) is also invariant under
translations of coordinates: (x, t) �→ (x+ x̄, t + t̄), the focal point of self-similar solu-
tions may be translated from the origin to any fixed point (x̄, t̄) in space-time.

A (generally weak) self-similar solution U of (9.1.1), defined on the upper or on
the lower half-plane and focussed at the origin admits the representation

(9.1.2) U(x, t) =V
(x

t

)
, −∞ < x < ∞ , and 0 < t < ∞ or −∞ < t < 0,

where V is a bounded measurable function on (−∞,∞), which satisfies the ordinary
differential equation

(9.1.3) [F(V (ξ ))−ξV (ξ )]·+V (ξ ) = 0,

in the sense of distributions. To verify this statement for U defined on the upper
half-plane in the form (9.1.2), we fix any test function φ with compact support on
(−∞,∞)× (0,∞) and notice that

(9.1.4)
∫ ∞

0

∫ ∞

−∞
[∂tφ(x, t)U(x, t)+∂xφ(x, t)F(U(x, t))]dxdt

=
∫ ∞

−∞
{ψ̇(ξ )[F(V (ξ ))−ξV (ξ )]−ψ(ξ )V (ξ )}dξ ,

where

(9.1.5) ψ(ξ ) =
∫ ∞

0
φ(ξ t, t)dt, −∞ < ξ < ∞ .

The case of U defined on the lower half-plane in the form (9.1.2) is treated in a
similar manner, yielding again (9.1.3).

From (9.1.3) we infer that F(V )−ξV is Lipschitz and

(9.1.6) F(V (ξ ))−ξV (ξ )−F(V (ζ ))+ζV (ζ ) =−
∫ ξ

ζ
V (θ)dθ

holds for all ζ and ξ in (−∞,∞).
The domain (−∞,∞) of any bounded measurable solution V of (9.1.3) is par-

titioned into the set S of points of discontinuity of V , the set W of points ξ of
continuity of V with the property

(9.1.7) λi(V (ξ )) = ξ ,

for some i ∈ {1, . . . ,n}, and the set C of points ξ of continuity of V such that
λi(V (ξ )) �= ξ , for i = 1, . . . ,n.

Any increasing sequence {ζk} and decreasing sequence {ξk} converging to a
point ξ of S contain subsequences, again denoted by {ζk} and {ξk}, such that
{V (ζk)} and {V (ξk)} converge to respective limits V− and V+ . By virtue of (9.1.6),
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(9.1.8) F(V+)−F(V−) = ξ [V+−V−].

In particular, when one-sided limits V (ξ±) exist, ξ marks a shock and (9.1.8) ex-
presses the Rankine-Hugoniot jump condition. However, at the present level of gen-
erality, we cannot preclude the possibility that different sequences converging to ξ
may generate distinct limiting values V− and/or V+ . In any case, from (9.1.8) fol-
lows that whenever |V+ −V−| is sufficiently small ξ must be close to λi(V±) for
some i ∈ {1, . . . ,n}. This in turn implies that any point of continuity of V in the clo-
sure of S must belong to W . At the same time, any point of continuity of V in the
closure of W also belongs to W . Thus S

⋃
W is closed and C is open.

As an open set, C is the (at most) countable union of disjoint open intervals. Let
us fix ξ and ζ in any one of these open intervals, say I . We rewrite (9.1.6) in the
form

(9.1.9) (A−ξ I)[V (ξ )−V (ζ )] =−
∫ ξ

ζ
[V (θ)−V (ζ )]dθ ,

where A is the n×n matrix

(9.1.10) A =
∫ 1

0
[sDF(V (ζ ))+(1− s)DF(V (ξ ))]ds.

As ζ → ξ , ξ is bounded away from the eigenvalues of A and the right-hand side of
(9.1.9) behaves like o(1)|ξ − ζ |. Thus (9.1.9) implies that V is Lipschitz on I and
its derivative vanishes almost everywhere, i.e., V is constant on I .

The above constraints still leave ample room for complexity in the structure of
V , depending on the properties of the system (9.1.1). However, a simple and or-
derly configuration emerges when (9.1.1) is strictly hyperbolic and the range of V is
confined in a ball Bδ (Ū), with small radius δ , centered at some state Ū . The size
of δ is subjected to the same type of constraints characterizing shocks of moderate
strength in Section 8.1. Under these assumptions the sets S and W are confined
in the union of n intervals of length O(δ ) centered at the points λ1(Ū), . . . ,λn(Ū).
We let Si and Wi denote the parts of S and W lying in the vicinity of λi(Ū), and
identify the convex hull [ζi , ξi ] of the closed set Si

⋃
Wi . Thus V takes constant

values U0 ,U1 , . . . ,Un on the intervals (−∞ , ζ1), (ξ1 , ζ2), . . . , (ξn , ∞). Each inter-
val [ζi , ξi] may also contain an open subset of C denoted by Ci . We call [ζi , ξi]
an i-wave. We conclude that under the above assumptions V comprises a fan of n
waves, one of each characteristic family, propagating at nearly characteristic speed
and separated by constant states. The wave fan is outgoing from the origin when the
self-similar solution is defined on the upper half-plane, or incoming into the origin
when the self-similar solution is defined on the lower half-plane.

The structure of the i-wave becomes particularly clear when the function V has
bounded variation. In that case Si is countable and one-sided limits V± = V (ξ±)
exist at every ξ ∈ Si , satisfying the jump condition (9.1.8). Thus Si consists of
i-shocks. Furthermore, V is differentiable almost everywhere. In particular, if V is
differentiable at a point ξ ∈ Wi , (9.1.3) and (9.1.7) yield
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(9.1.11) [DF(V (ξ ))−ξ I]V̇ (ξ ) = 0,

(9.1.12) Dλi(V (ξ ))V̇ (ξ ) = 1.

Thus, V̇ (ξ ) is a nonzero vector, collinear to the i-th right eigenvector Ri(V (ξ )) of
DF(V (ξ )). Furthermore, V (ξ ) is necessarily a state of genuine nonlinearity of the
i-th characteristic family. Accordingly, we realize Wi as the centered i-simple wave
component of the i-wave, which will be a rarefaction wave in the case of an outgoing
wave fan or a compression wave in the case of an incoming wave fan.

We now demonstrate that V has bounded variation on [ζi , ξi], at least when the
i-wave is unidirectional, in the sense that the left i-th eigenvector Li(Ū) of DF(Ū)
may be oriented in such a way that

(9.1.13) Li(Ū)[V (ξ )−V (ζ )]≥ 0

holds for any pair (ζ ,ξ ) of points of continuity of V with1 ξi−1 < ζ < ξ < ζi+1 .
Fixing points of continuity ζ and ξ , as above, with ξi−1 < ζ < ξ < ζi+1 , we pass

from (9.1.6), via (9.1.9) to

(9.1.14) [DF(Ū)−λi(Ū)I][V (ξ )−V (ζ )]

= O(δ )[V (ξ )−V (ζ )]−
∫ ξ

ζ
[V (θ)−V (ζ )]dθ .

We write

(9.1.15) V (ξ )−V (ζ ) =
n

∑
k=1

akRk(Ū).

Multiplying (9.1.15) from the left by Li(Ū) and recalling (7.2.3) and (9.1.13) we
deduce ai ≥ 0. On the other hand, combining (9.1.14) with (9.1.15) yields

(9.1.16) ∑
k �=i

|ak| ≤ cδai + cδ (ζ −ξ ).

Hence

(9.1.17) TV[ζi,ξi]V (·)≤ Li(Ū)[Ui −Ui−1]+ cδ 2.

In the following sections, we shall impose admissibility conditions on wave fans,
requiring, for instance, that any jump discontinuity must meet some or all of the
shock admissibility criteria discussed in Chapter VIII, and as a minimum must sat-
isfy the Lax E-condition. Notice that the Lax E-condition induces the monotonicity
of the function λi(V (ξ )) on any incoming or outgoing i-wave [ζi , ξi]. As we shall see
in the sequel, in any strictly hyperbolic system, admissible outgoing i-waves of mod-
erate strength end up being unidirectional, though this is not necessarily the case for

1 For i = 1, ξi−1 =−∞ ; for i = n, ζi+1 = ∞ .
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incoming i-waves. However, when the i-characteristic field is genuinely nonlinear,
then under the Lax E-condition even incoming i-waves must be unidirectional. The
reason is that, as we saw in Chapter VIII, when the i characteristic field is genuinely
nonlinear, then λi varies monotonically along the i wave curve, at least near the point
of origin.

From now on, we confine our discussion to wave fans with bounded variation.
As a function of bounded variation, V is the sum of a saltus function, representing
the shocks, and a continuous function. In turn, the continuous part is the sum of an
absolutely continuous function and a purely singular function, the so-called “Cantor
part”. It has been shown (references cited in Section 9.11) that when the system is
genuinely nonlinear, the continuous part is Lipschitz, so in particular V is an SBV
function. This is an indication of the role of genuine nonlinearity in fostering discon-
tinuity or Lipschitz continuity, while impeding the “middle ground” of mere continu-
ity. Other manifestations of that feature of genuine nonlinearity will be encountered
later, most notably in Chapter XI. Of central importance will be to understand how
a jump discontinuity at the origin, introduced by the initial data, is resolved into an
outgoing wave fan. This is the object of the

9.1.1 Riemann Problem: Determine a self-similar (generally weak) solution U of
(9.1.1) on (−∞,∞)× (0,∞), with initial condition

(9.1.18) U(x,0) =

⎧⎨⎩UL , for x < 0

UR , for x > 0,

where UL and UR are given states in O .

Following our discussion, above, we shall seek a solution of the Riemann prob-
lem in the form (9.1.2), where V satisfies the ordinary differential equation (9.1.3),
on (−∞,∞), together with boundary conditions

(9.1.19) V (−∞) =UL , V (∞) =UR .

The specter of nonuniqueness again raises the issue of admissibility, which will be
the subject of discussion in the following sections.

9.2 Wave Fan Admissibility Criteria

Various aspects of admissibility have already been discussed, for general weak solu-
tions, in Chapter IV, and for single shocks, in Chapter VIII. We have thus encountered
a number of admissibility criteria and we have seen that they are strongly interrelated
but not quite equivalent. As we shall see later, the most discriminating among these
criteria, namely viscous shock profiles and the Liu E-condition, are sufficiently pow-
erful to weed out all spurious solutions, so long as we are confined to strictly hyper-
bolic systems and shocks of moderate strength. However, once one moves to systems
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that are not strictly hyperbolic and/or to solutions with strong shocks, the situation
becomes murky. The question of admissibility is still open.

Any rational new admissibility criterion should adhere to certain basic principles,
the fruits of accumulated experience. They include:

9.2.1 Localization: The test of admissibility of a solution should apply individ-
ually to each point (x̄, t̄) in the domain and should thus involve only the restric-
tion of the solution to an arbitrarily small neighborhood of (x̄, t̄), say the circle
{(x, t) : |x− x̄|2 + |t − t̄|2 < r2} where r is fixed but arbitrarily small. This is compat-
ible with the general principle that solutions of hyperbolic systems should have the
local dependence property.

9.2.2 Evolutionarity: The test of admissibility should be forward-looking, with-
out regard for the past. Thus, admissibility of a solution at the point (x̄, t̄) should de-
pend solely on its restriction to the semicircle {(x, t) : |x− x̄|2 + |t − t̄|2 < r2 , t ≥ t̄}.
This is in line with the principle of time irreversibility, which pervades the admissi-
bility criteria we have encountered thus far, such as entropy, viscosity, etc.

9.2.3 Invariance Under Translations: A solution U will be admissible at (x̄, t̄)
if and only if the translated solution Ū , Ū(x, t) =U(x+ x̄, t + t̄), is admissible at the
origin (0,0).

9.2.4 Invariance Under Dilations: A solution U will be admissible at (0,0) if
and only if, for each α > 0, the dilated solution Ūα , Ūα(x, t) =U(αx,αt), is admis-
sible at (0,0).

Let us focus attention on weak solutions U with the property that, for each fixed
point (x̄, t̄) in the domain, the limit

(9.2.1) Ū(x, t) = lim
α↓0

U(x̄+αx, t̄ +αt)

exists in L1
loc((−∞,∞)× (0,∞)). Notice that in that case Ū is necessarily a self-

similar solution of (9.1.1). In the spirit of the principles listed above, one may use
the admissibility of Ū at the origin as a test for the admissibility of U at the point
(x̄, t̄). Since Ū depicts a fan of waves radiating from the origin, such tests constitute
wave fan admissibility criteria.

Passing to the limit in (9.2.1) is tantamount to observing the solution U under a
microscope focused at the point (x̄, t̄). When U ∈ BVloc , the limit exists, by virtue of
Theorem 1.7.4, except possibly on the set of irregular points (x̄, t̄), which has one-
dimensional Hausdorff measure zero. In particular, if (x̄, t̄) is a point of approximate
continuity of U , then Ū(x, t) will be a constant state U0 , while if (x̄, t̄) is a point of
approximate jump discontinuity, then Ū(x, t) =U− , for x < st, and Ū(x, t) =U+ , for
x > st, where U± are the approximate one-sided limits of U , and s is the slope of the
jump discontinuity at (x̄, t̄). Whether the limit will also exist at the irregular points
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(x̄, t̄) of U , where the resulting wave fan Ū should be more complex, will be inves-
tigated in Chapter XI, for genuinely nonlinear scalar conservation laws; in Chapter
XII, for genuinely nonlinear systems of two conservation laws; and in Chapter XIV,
for general genuinely nonlinear systems of conservation laws.

As we saw in Section 9.1, the wave fan Ū is generally a composite of constant
states, shocks, and centered rarefaction waves. The simplest wave fan admissibility
criterion postulates that the fan is admissible if each one of its shocks, individually,
satisfies the shock admissibility conditions discussed in Chapter VIII. As we shall
see in the following section, this turns out to be adequate in many cases. Other fan
admissibility criteria, which regard the wave fan as an entity rather than as a col-
lection of individual waves, include the entropy rate condition and the viscous fan
profile test. These will be discussed later.

9.3 Solution of the Riemann Problem via Wave Curves

The aim here is to construct a solution of the Riemann problem by piecing together
constant states, centered rarefaction waves, and admissible shocks. We limit our
investigation to the case where wave speeds of different characteristic families are
strictly separated. This will cover waves of small amplitude in general strictly hyper-
bolic systems as well as waves of any amplitude in special systems such as (7.1.11),
in which all 1-waves travel to the left and all 2-waves travel to the right.

Let us then consider an outgoing wave fan (9.1.2), of bounded variation. Fol-
lowing the discussion in Section 9.1, (−∞,∞) is decomposed into the union of the
shock set S , the rarefaction wave set W , and the constant state set C . Since the
wave speeds of distinct characteristic families are strictly separated, S =

⋃n
i=1 Si

and W =
⋃n

i=1 Wi , where Si is the (at most countable) set of points of jump dis-
continuity of V that are i-shocks, and Wi is the (possibly empty) set of points of
continuity of V that satisfy (9.1.7). The set Si

⋃
Wi is closed and contains points in

the range of wave speeds of the i-characteristic family.
We now assume that the shocks satisfy the Lax E-condition, i.e., for all ξ ∈ Si ,

(9.3.1) λi(V (ξ+))≤ ξ ≤ λi(V (ξ−)).

Then Si
⋃

Wi is necessarily a closed interval [ζi , ξi]. Indeed, suppose Si
⋃

Wi is
disconnected. Then there is an open interval (ζ , ξ ) ⊂ C with endpoints ζ and ξ
contained in Si

⋃
Wi . In particular, V (ζ+) = V (ξ−). On the other hand, by virtue

of (9.1.7) and (9.3.1), ζ ≥ λi(V (ζ+)), ξ ≤ λi(V (ξ−)), which is a contradiction
to ζ < ξ . Notice further that any ξ ∈ Si with ξ > ζi (or ξ < ξi) is the limit of
an increasing (or decreasing) sequence of points of Wi and so λi(V (ξ−)) = ξ (or
λi(V (ξ+)) = ξ ). We have thus established the following

9.3.1 Theorem. Assume the wave speeds of distinct characteristic families are
strictly separated. Any self-similar solution (9.1.2) of the Riemann Problem (9.1.1),
(9.1.18), with shocks satisfying the Lax E-condition, comprises n+1 constant states
UL =U0 ,U1 , · · · ,Un−1 ,Un =UR . For i= 1, · · · ,n , Ui−1 is joined to Ui by an i-wave,
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namely a sequence of centered i-rarefaction waves and/or i-shocks with the property
that i-shocks bordered from the left (and/or the right) by i-rarefaction waves are left
(and/or right) i-contact discontinuities (Fig. 9.3.1).

Single i-shocks and single i-rarefaction waves are elementary i-waves. The term
composite i-wave will be employed when it is necessary to recall or emphasize that
the i-wave may contain more than one elementary i-wave.

U

U

0

1

Un-1

Un

x

t

Fig. 9.3.1

It will be shown in the following two sections that the locus of states that may be
joined on the right (or left) of a fixed state Ū ∈O by an admissible i-wave, composed
of i-rarefaction waves and admissible i-shocks, is a Lipschitz curve Φi(τ;Ū) (or
Ψi(τ;Ū)), called the forward (or backward) i-wave curve through Ū , which may
be parametrized so that

(9.3.2) Φi(τ;Ū) = Ū + τRi(Ū)+Pi(τ;Ū),

(9.3.3) Ψi(τ;Ū) = Ū + τRi(Ū)+Qi(τ;Ū),

where Pi and Qi are Lipschitz continuous functions of (τ,U) that vanish at τ = 0, and
their Lipschitz constant becomes arbitrarily small if τ is restricted to a sufficiently
small neighborhood of the origin.

Taking, for the time being, the existence of wave curves with the above properties
for granted, we note that to solve the Riemann problem we have to determine an
n-tuple ε =(ε1, · · · ,εn), realized as a point in Rn, such that, starting out from U0 =UL
and computing successively Ui =Φi(εi;Ui−1), i= 1, · · · ,n, we end up with Un =UR .
Accordingly, we define the function
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(9.3.4) Ω(ε;Ū) =Φn(εn;Φn−1(εn−1; · · ·Φ1(ε1;Ū) · · ·)).
Clearly,

(9.3.5) Ω(ε;Ū) = Ū +
n

∑
i=1
εiRi(Ū)+G(ε;Ū),

where G is a Lipschitz function that vanishes at ε = 0 and whose Lipschitz constant
becomes arbitrarily small when ε is confined to a sufficiently small neighborhood of
the origin. When UR is sufficiently close to UL , there exists a unique ε near 0 such
that Ω(ε;UL) =UR . Indeed, this ε may be constructed through the iteration scheme:
ε(0) = 0 and for m = 1,2, . . .

(9.3.6) ε(m)
i = Li(UL)

[
UR −UL

]−Li(UL)G
(
ε(m−1);UL

)
, i = 1, . . . ,n,

which converges by an obvious contraction argument. This generates a solution to the
Riemann problem that is unique within the class of self-similar solutions with waves
of moderate strength. The wave fan joining UL with UR is conveniently identified by
its left state UL and the n-tuple ε = (ε1, . . . ,εn). The value of εi determines the i-wave
amplitude and |εi| measures the i-wave strength.

In the special case where the Φi are C2,1, we shall see that

(9.3.7) Φ̇i(0;Ū) = Ri(Ū), Φ̈i(0;Ū) = DRi(Ū)Ri(Ū).

Then Ω is also C2,1. Since Ω(0, · · · ,0,εi,0, · · · ,0;Ū) =Φi(εi;Ū),

(9.3.8)
∂Ω
∂εi

(0;Ū) = Ri(Ū), 1 ≤ i ≤ n,

(9.3.9)
∂ 2Ω
∂ε2

i
(0;Ū) = DRi(Ū)Ri(Ū), 1 ≤ i ≤ n.

Moreover, for j<k, Ω(0, · · · ,0,ε j,0, · · · ,0,εk,0, · · · ,0;Ū)=Φk
(
εk;Φ j

(
ε j;Ū

))
and

so

(9.3.10)
∂ 2Ω
∂ε j∂εk

(0;Ū) = DRk(Ū)R j(Ū), 1 ≤ j < k ≤ n.

By virtue of (9.3.8), (9.3.9) and (9.3.10),

(9.3.11)
UR =UL + ∑n

i=1 εiRi(UL)+
1
2 ∑n

i=1 ε2
i DRi(UL)Ri(UL)

+ ∑n
j=1 ∑n

k= j+1 ε jεkDRk(UL)R j(UL)+O
(|ε|3).

Clearly, we may also synthesize the solution of the Riemann problem in the
reverse order, starting out from Un = UR and computing successively the states
Ui−1 =Ψi(εi;Ui) , i= n, · · · ,1, until we reach U0 =UL . Under certain circumstances,
a mixed strategy may be advantageous. For example, the most efficient procedure for
solving the Riemann problem for a system of two conservation laws, n= 2, is to draw
the forward 1-wave curve Φ1(ε1;UL) through the left state UL and the backward
2-wave curve Ψ2(ε2;UR) through the right state UR . The intersection of these two
curves will determine the intermediate constant state: UM =Φ1(ε1;UL) =Ψ2(ε2;UR).
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9.4 Systems with Genuinely Nonlinear

or Linearly Degenerate Characteristic Families

Our project here is to construct the wave curves for systems in which waves are par-
ticularly simple. When the i-characteristic family is linearly degenerate, no centered
i-rarefaction waves exist and hence, by Theorem 8.2.5, any i-wave is necessarily an
i-contact discontinuity. In that case the forward and backward i-wave curves coincide
with the shock curve Wi in Theorem 8.2.5, namely, Φi(τ;Ū) =Ψi(τ;Ū) =Wi(τ;Ū).

When the i-characteristic family is genuinely nonlinear, i-contact discontinuities
are ruled out by Theorem 8.2.1, and so any i-wave of small amplitude must be either a
single centered i-rarefaction wave or a single compressive i-shock. Let us normalize
the field Ri so that (7.6.13) holds, DλiRi = 1. The states that may be joined to Ū
by a weak i-shock lie on the i-shock curve Wi(τ;Ū) described by Theorem 8.2.1.
On account of Theorem 8.3.1, the shock that joins Ū , on the left, with Wi(τ;Ū), on
the right, is compressive if and only if τ < 0. On the other hand, by Theorem 7.6.5,
the state Ū may be joined on the right (or left) by centered i-rarefaction waves to
states Vi(τ;Ū) for τ > 0 (or τ < 0). It then follows that we may construct the forward
i-wave curve by Φi(τ;Ū) =Wi(τ;Ū), for τ < 0, and Φi(τ;Ū) =Vi(τ;Ū), for τ > 0.
Similarly, the backward i-wave curve is defined by Ψi(τ;Ū) = Vi(τ;Ū), for τ < 0,
and Ψi(τ;Ū) = Wi(τ;Ū), for τ > 0. These curves are C2,1, on account of Theorem
8.2.2, and satisfy (9.3.2), (9.3.3) and (9.3.7), by Theorem 8.2.1.

In view of the above discussion, we have now established the existence of solu-
tion to the Riemann problem for systems with characteristic families that are either
genuinely nonlinear or linearly degenerate:

9.4.1 Theorem. Assume the system (9.1.1) is strictly hyperbolic and each charac-
teristic family is either genuinely nonlinear or linearly degenerate. For |UR −UL|
sufficiently small, there exists a unique self-similar solution (9.1.2) of the Riemann
problem (9.1.1), (9.1.18), with small total variation. This solution comprises n+ 1
constant states UL = U0 ,U1 , · · · ,Un−1 ,Un = UR . When the i-characteristic family
is linearly degenerate, Ui is joined to Ui−1 by an i-contact discontinuity, while when
the i-characteristic family is genuinely nonlinear, Ui is joined to Ui−1 by either a
centered i-rarefaction wave or a compressive i-shock.

In particular, Theorem 9.4.1 applies to the Riemann problem for the system
(7.1.12) of isentropic gas dynamics, when 2p′(ρ)+ρ p′′(ρ) > 0, so that both char-
acteristic families are genuinely nonlinear; also for the system (7.1.8) of adiabatic
thermoelasticity, under the assumption puu(u,s) �= 0, in which case the 1- and the
3-characteristic families are genuinely nonlinear while the 2-characteristic family is
linearly degenerate.

As a simple illustration, let us consider the system (7.1.11) of isentropic ther-
moelasticity, in Lagrangian coordinates, assuming that σ(u) is defined on (−∞,∞)
and 0 < a ≤ σ ′(u)≤ b < ∞ , σ ′′(u)< 0. Under these conditions, the wave curves are
globally defined and the Riemann problem may be solved even when the end-states
(uL,vL) and (uR,vR) lie far apart. It is convenient to reparametrize the wave curves,



9.4 Systems with Genuinely Nonlinear 313

employing u as the new parameter. In that case, the forward 1-wave curveΦ1 and the
backward 2-wave curveΨ2 through the typical point (ū, v̄) of the state space may be
represented as v = ϕ(u; ū, v̄) and v = ψ(u; ū, v̄), respectively. Recalling the form of
the Hugoniot locus (8.2.11) and rarefaction wave curves (7.6.15) for this system, we
deduce that

(9.4.1) ϕ(u; ū, v̄) =

⎧⎪⎨⎪⎩
v̄−√

[σ(u)−σ(ū)](u− ū) , u ≤ ū

v̄+
∫ u

ū

√
σ ′(ω)dω, u > ū

(9.4.2) ψ(u; ū, v̄) =

⎧⎪⎨⎪⎩
v̄+

√
[σ(u)−σ(ū)](u− ū) , u ≤ ū

v̄−
∫ u

ū

√
σ ′(ω)dω, u > ū.

Figure 9.4.1 depicts a solution of the Riemann problem that comprises a compressive
1-shock and a centered 2-rarefaction wave. The intermediate constant state (uM,vM)
is determined on the u-v plane as the intersection of the forward 1-wave curve Φ1
through (uL,vL) with the backward 2-wave curve Ψ2 through (uR,vR), namely by
solving the equation

(9.4.3) vM = ϕ(uM;uL,vL) = ψ(uM;uR,vR).

For systems of two conservation laws it is often expedient to perform the con-
struction of the intermediate constant state on the plane of Riemann invariants rather
than in the original state space. The reason is that, as noted in Section 7.6, in the plane
of Riemann invariants rarefaction wave curves become straight lines parallel to the
coordinate axis. This facilitates considerably the task of locating the intersection of
wave curves of different characteristic families. Figure 9.4.2 depicts the configura-
tion of the wave curves of Figure 9.4.1 in the plane w-z of Riemann invariants.

In particular, Riemann problems with end-states (uL,vL) whose solutions consist,
as above, of a compressive 1-shock and a 2-rarefaction wave, are generated by the
collision of a compressive 1-shock, joining states (uL,vL) and (u0,v0), with a slower
compressive 1-shock that joins (u0,v0) and (uR,vR). Similarly, the collision of two
compressive 2-shocks leads to Riemann problems whose solutions consist of a 1-
rarefaction wave and a compressive 2-shock.

The situation is more complicated when the medium in (7.1.11) is a gas, in which
case σ ′(u)→ 0 as u → ∞ . This will be discussed in Section 9.6.
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The most celebrated case of a Riemann problem pertains to the system of conser-
vation laws of mass, momentum and energy governing the adiabatic rectilinear flow
of an inviscid gas in a duct. There is an exhaustive treatment of this problem in the
texts cited in Section 9.11, so a brief presentation will suffice for present purposes.
The problem is usually considered for the Eulerian form of the system – namely the
one-dimensional version of (3.3.29) – with density ρ , velocity v and pressure p as
state variables, and shock curves parametrized by p. Here, however, we deal with the
Lagrangian form (7.1.8), with state variables the specific volume u, velocity v and
entropy s. Furthermore, the shock curves will be parametrized by u. This approach
is convenient for extending the shock curves into the realm of strong shocks by tak-
ing advantage of the representation of s(u) as solution of the differential equation
(8.2.13).

We make the assumptions pu < 0, for hyperbolicity, puu > 0, so that the 1- and the
3-characteristic families are genuinely nonlinear, and ps = −θu > 0, which renders
the differential equation (8.2.13), for the 1- and 3-shock curves, well-posed in the
large. The 2-characteristic family is linearly degenerate.

Under the above assumptions, the solution to the Riemann problem, with end-
states (uL,vL,sL) and (uR,vR,sR), is expected to comprise a compressive 1-shock
or 1-rarefaction wave, joining (uL,vL,sL) with a state (u−M,v−M,s−M), followed by a
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stationary contact discontinuity that joins (u−M,v−M,s−M) with a state (u+M,v+M,s+M), and
a compressive 3-shock or 3-rarefaction wave, joining (u+M,v+M,s+M) with (uR,vR,sR).
The pressure associated with the above states will be denoted by pL , p−M , p+M and pR .
The Rankine-Hugoniot jump conditions for the contact discontinuity require that

The 1- and 3-shock curves are determined by (8.2.13), (8.2.14), while the 1- and
3-rarefaction wave curves are given by (7.6.16). Hence the projections Φ andΨ of
the forward 1-wave curve and the backward 3-wave curve through the state (ū, v̄, s̄),
parametrized by u, are

(9.4.4)

Φ(u; ū, v̄, s̄) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

v̄−√
[−p(u,s(u))+ p(ū, s̄)](u− ū), p(u,s(u))

)
, u ≤ ū

(
v̄+

∫ u

ū

√
−pω(ω, s̄)dω, p(u, s̄)

)
, u > ū

(9.4.5)

Ψ(u; ū, v̄, s̄) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

v̄+
√

[−p(u,s(u))+ p(ū, s̄)](u− ū), p(u,s(u))
)
, u ≤ ū

(
v̄−

∫ u

ū

√
−pω(ω, s̄)dω, p(u, s̄)

)
, u > ū

where s(u) denotes the solution of (8.2.13) with initial condition s(ū) = s̄. Solutions
to the Riemann problem are generated by intersections of the curves Φ(·,uL,vL,sL)
andΨ(·,uR,vR,sR):

(9.4.6) (vM, pM) =Φ(u−M;uL,vL,sL) =Ψ(u+M;uR,vR,sR).

As asserted by Theorem 9.4.1, when (uL,vL,sL) and (uR,vR,sR) are close to each
other, there exists a unique local intersection, and thereby a unique solution to the
Riemann problem. Whether the 1- and 3- waves will be compressive shocks or rar-
efaction waves will depend on the relative location of the end states in state space.
We shall not attempt here to provide a complete classification of possible wave con-
figurations, since this can be found in the references cited in Section 9.11. As an
illustrative example, we consider the Riemann problem induced by the collision of
two compressive shocks of the third family for an ideal gas (2.5.20), with γ ≤ 5/3,
whose solution comprises a compressive shock of the third family, a rarefaction wave
of the first family and a contact discontinuity, as depicted in Figure 9.4.3. By con-
trast, when γ > 5/3 the collision of two weak compressive shocks of the same family
yields compressive shocks of both families together with a contact discontinuity.

The wave curves Φ andΨ are defined in the large and hence, as in the isentropic
case, one may use them to solve the Riemann problem even when the end-states
lie far apart. The study of this problem reveals that, depending on the equations of
state and on the relative location of (uL,vL,sL) and (uR,vR,sR), the two wave curves

v−M = v+M = vM and p−M = p+M = pM . Thus, for solving the Riemann problem it is
expedient to track the projection of the wave curves on the v-p plane.
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may intersect at a single point, at multiple points, or not at all, resulting in a unique
solution, multiple solutions, or no solution to the Riemann problem.
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9.5 General Strictly Hyperbolic Systems

Our next task is to describe admissible wave fans, and construct the correspond-
ing wave curves, for systems with characteristic families that are neither genuinely
nonlinear nor linearly degenerate. In that case, the Lax E-condition is no longer suf-
ficiently selective to single out a unique solution to the Riemann problem so the more
stringent Liu E-condition will be imposed on shocks.

We begin with the scalar conservation law (7.1.2), where f (u) may have in-
flection points. The Liu E-condition is now expressed by the Oleinik E-condition
(8.4.3). By Theorem 9.3.1, the solution of the Riemann problem comprises two con-
stant states uL and uR joined by a wave that is a sequence of shocks and/or centered
rarefaction waves. There exists precisely one such wave with shocks satisfying the
Oleinik E-condition, and it is constructed by the following procedure: When uL < uR
(or uL > uR), we let g denote the convex (or concave) envelope of f over the inter-
val [uL,uR] (or [uR,uL]); namely, g(u) is the infimum (or supremum) of all convex
combinations θ1 f (u1)+θ2 f (u2), with θ1 ≥ 0, θ2 ≥ 0, θ1 +θ2 = 1, u1,u2 ∈ [uL,uR]
(or [uR,uL]) and θ1u1 + θ2u2 = u. Thus the graph of g may be visualized as the
configuration of a flexible string anchored at the points (uL, f (uL)),(uR, f (uR))
and stretched under (or over) the “obstacle” {(u,v) : uL ≤ u ≤ uR , v ≥ f (u)} (or
{(u,v) : uR ≤ u ≤ uL , v ≤ f (u)}). The slope ξ = g′(u) is a continuous nondecreas-
ing (or nonincreasing) function whose inverse u = ω(ξ ) generates the (generally
composite) wave u = ω(x/t). In particular, the flat parts of g′(u) give rise to the
shocks while the intervals over which g′(u) is strictly monotone generate the rar-
efaction waves. Figure 9.5.1 depicts an example in which the resulting wave consists
of a centered rarefaction wave followed by a contact discontinuity, which is in turn
followed by another centered rarefaction wave bordered on the right by a left contact
discontinuity.
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To prepare the ground for the investigation of systems, we construct waves, and
corresponding wave curves, for the simple system (7.1.11), where σ(u) may have in-
flection points. The Liu E-condition here reduces to the Wendroff
E-condition (8.4.4). As in the genuinely nonlinear case, we shall employ u as pa-
rameter and determine the forward 1-wave curve Φ1 and the backward 2-wave curve
Ψ2 , through the state (ū, v̄), in the form v=ϕ(u; ū, v̄) and v=ψ(u; ū, v̄), respectively.
Recalling the equations (8.2.11) for the Hugoniot locus, the equations (7.6.15) for the
rarefaction wave curves, and (8.4.4), one easily verifies that

(9.5.1)

(9.5.2)

where g′(ω;u, ū) is the derivative, with respect to ω , of the monotone increasing,
continuously differentiable function g(ω;u, ū) which is constructed by the following
procedure: For fixed u ≤ ū (or u ≥ ū), g(·,u, ū) is the convex (or concave) envelope
of σ(·) over the interval [u, ū] (or [ū,u]). Indeed, as in the case of the scalar conser-
vation law discussed above, the states (ū, v̄) and (u,v), v = φ(u; ū, v̄), are joined by
a (generally composite) 1-wave (ω(x/t),υ(x/t)), where ω(ξ ) is the inverse of the
function ξ =

√
g′(ω;u, ū) and

(9.5.3)

Again, the flat parts of g′ give rise to shocks while the intervals over which g′ is
strictly monotone generate the rarefaction waves. In the genuinely nonlinear case,
σ ′′(u) < 0, (9.5.1) and (9.5.2) reduce to (9.4.1) and (9.4.2). Once φ and ψ have
been determined, the Riemann problem is readily solved, as in the genuinely nonlin-
ear case, by locating the intermediate constant state (uM,vM) through the equation
(9.4.3).

After this preparation, we continue with a somewhat sketchy and informal de-
scription of the construction of wave curves for general systems. To avoid aggra-
vating complications induced by various degeneracies, we limit the investigation to

ϕ(u; ū, v̄) = v̄+
∫ u

ū

√
g′(ω;u, ū)dω,

ψ(u; ū, v̄) = v̄−
∫ u

ū

√
g′(ω;u, ū)dω,

v(ξ ) = v̄+
∫ ω(ξ )

ū

√
g′(ω;u, ū)dω.
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i-characteristic families that are piecewise genuinely nonlinear in the sense that if U
is a state of linear degeneracy, Dλi(U)Ri(U) = 0, then D(Dλi(U)Ri(U))Ri(U) �= 0.
This implies, in particular, that the set of states of linear degeneracy of the i-
characteristic family is locally a smooth manifold of codimension one, which is
transversal to the vector field Ri . The scalar conservation law (7.1.2) and the sys-
tem (7.1.11) of isentropic elasticity will satisfy this assumption when the functions
f (u) and σ(u) have isolated, nondegenerate inflection points, i.e., f ′′′(u) and σ ′′′(u)
are nonzero at any point u where f ′′(u) and σ ′′(u) vanish. Even after these simplifi-
cations, the construction is complicated. The ideas may become more transparent if
the reader refers back to the model system (7.1.11) to illustrate each step. Familiarity
with Lemma 8.2.4 and the remarks following its statement will also prove helpful.

Assuming the i-characteristic family is piecewise genuinely nonlinear, we con-
sider the forward i-wave curve Φi(τ;Ū) through a point Ū of genuine nonlinearity,
say Dλi(Ū)Ri(Ū) = 1. Then Φi starts out as in the genuinely nonlinear case, namely,
for τ positive small it coincides with the i-rarefaction wave curve Vi(τ;Ū) through Ū ,
while for τ negative, near zero, it coincides with the i-shock curve Wi(τ;Ū) through
Ū . In particular, (9.3.7) holds. We shall follow Φi along the positive τ-direction; the
description for τ < 0 is quite analogous.

For τ > 0,Φi(τ;Ū) will stay with the i-rarefaction wave curve Vi(τ;Ū) for as
long as the latter dwells in the region of genuine nonlinearity: Dλi(Vi)Ri(Vi) > 0.
Suppose now Vi(τ;Ū) first encounters the set of states of linear degeneracy of the
i-characteristic family at the state Ũ =Vi(τ̃;Ū) : Dλi(Ũ)Ri(Ũ) = 0. The set of states
of linear degeneracy in the vicinity of Ũ forms a manifold M of codimension 1,
transversal to the vector field Ri ; see Fig. 9.5.2 (a,b).

The extension of Φi beyond Ũ is constructed as follows: For τ∗ < τ̃ , with
τ̃− τ∗ small, we draw the i-shock curve Wi(ζ ;U∗) through the state U∗ =Vi(τ∗,Ū).
On account of (8.2.1), si(0;U∗) = λi(U∗) and since Dλi(U∗)Ri(U∗) > 0, (8.2.2)
implies that for ζ negative, near 0, ṡi(ζ ;U∗) > 0 and si(ζ ;U∗) < λi(Wi(ζ ;U∗)).
However, after crossing M ,Wi(ζ ;U∗) enters the region where Dλi(U)Ri(U) < 0
and thus λi(Wi(ζ ;U∗)) will become decreasing. Eventually, ζ ∗ will be reached
where si(ζ ∗;U∗) = λi(Wi(ζ ∗;U∗)). For ζ < ζ ∗, by virtue of Lemma 8.2.4, we have
si(ζ ,U∗)> λi(Wi(ζ ;U∗)) and ṡi(ζ ,U∗)< 0. Finally, a value ζ � will be attained such
that si(ζ �;U∗) = λi(U∗). Then the state U � = Wi(ζ �;U∗), on the right, is joined
to U∗, on the left, by a left i-contact discontinuity with speed λi(U∗). This shock
satisfies the Liu E-condition, since si(ζ ;U∗) > λi(U∗) for ζ < ζ �. In particular,
λi(U∗) = si(ζ �;U∗) > λi(U �). Consequently, Ū , on the left, is joined to U �, on the
right, by an admissible i-wave, comprising the i-rarefaction wave that joins U∗ to Ū
and the admissible left i-contact discontinuity that joins U � to U∗. It can be shown
that as U∗ moves along the curve Vi(τ;Ū) from Ũ towards Ū , the corresponding U �

traces a curve, say Γ . If U∗ = Ũ , then U � = Ũ so Γ starts out from Ũ . Also Γ at Ũ
is tangential to Ri(Ũ). We adjoin Γ to Vi(τ;Ū) and consider it as the continuation of
Φi(τ;Ū) beyond Ũ , with the proper parametrization.

Φi(τ;Ū) will stay with Γ up until a state Û is reached at which one of the fol-
lowing two alternatives first occurs:
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One possibility is depicted in Fig. 9.5.2(a): Γ crosses another manifold N
of states of linear degeneracy of the i-characteristic family, entering the region
Dλi(U)Ri(U) > 0, and eventually U∗ backs up to a position U0 so that the corre-
sponding U �, denoted by Û , satisfies λi(Û) = λi(U0). In that case, Φi(τ;Ū) is ex-
tended beyond Û as the i-rarefaction curve Vi(ζ ;Û) through Û , properly
reparametrized. Any state U on that curve is joined, on the right, to Ū by a composite
i-wave comprising an i-rarefaction wave that joins U0 to Ū , an i-contact discontinuity
that joins Û to U0, and a second i-rarefaction wave that joins U to Û .

The alternative is depicted in Fig. 9.5.2(b): U∗ backs up all the way to Ū and the
corresponding U �, denoted by Û , satisfies λi(Û) < λi(Ū). In that case Û lies on the
i-shock curve through Ū , say Û = Wi(τ̂;Ū). As si(τ̂;Ū) = λi(Ū) > λi(Û), Lemma
8.2.4 implies ṡi(τ̂;Ū) < 0. Then Φi(τ;Ū) is extended beyond Û along the i-shock
curve Wi(τ;Ū). Any state U on this arc of the curve is joined, on the right, to Ū by a
single i-shock that satisfies the Liu E-condition.

By continuing this process we complete the construction of Φi(τ;Ū) within the
range of waves of moderate strength, and for certain systems even for strong waves.
Furthermore, careful review of the construction verifies that the graph of Φi contains
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all states in a small neighborhood of Ū that may be joined to Ū by an admissible
i-wave.

As we saw earlier, before crossing any manifold of states of linear degeneracy,
Φi is C2,1. Its regularity may be reduced to C1,1 after the first crossing with such a
manifold, and it may become merely Lipschitz beyond a second crossing (references
in Section 9.12). Nevertheless, (9.3.2) will still hold, within the realm of waves of
moderate strength, so that the range of τ for which the Lipschitz constant of Pi(τ;U)
is small transcends the manifolds of states of linear degeneracy, and does not depend
on their number. Consequently, one may trace wave curves for any strictly hyperbolic
system whose flux may be realized as the C1 limit of a sequence of fluxes with
characteristic families that are piecewise genuinely nonlinear.

Later on, in Section 9.8, we will encounter an alternative construction of wave
curves, for general strictly hyperbolic systems, without any requirement of piecewise
genuine nonlinearity, which resembles the construction for the scalar conservation
law described earlier in this section.

Once wave curves satisfying (9.3.2) are in place, one may employ the construc-
tion of the solution to the Riemann problem, described above, thus arriving at the
following generalization of Theorem 9.4.1:

9.5.1 Theorem. Assume the system (9.1.1) is strictly hyperbolic. For |UR −UL| suf-
ficiently small, there exists a unique self-similar solution (9.1.2) of the Riemann
problem (9.1.1), (9.1.18), with small total variation. This solution comprises n+ 1
constant states UL =U0 ,U1 , · · · ,Un−1 ,Un =UR , and Ui is joined to Ui−1 by an ad-
missible i-wave, composed of i-rarefaction waves and (at most countable) i-shocks
which satisfy the Liu E-condition.

9.6 Failure of Existence or Uniqueness;

Delta Shocks and Transitional Waves

The orderly picture painted by Theorem 9.5.1 breaks down when one leaves the
realm of strictly hyperbolic systems and waves of small amplitude.

The following exemplifies the difficulties that may be encountered in the con-
struction of solutions. We consider the isentropic flow of an infinitely long column
of a polytropic gas, with equation of state p = 1

γ ρ
γ , γ > 1, under the following initial

conditions. The density is constant ρ̄ > 0, throughout the length of the column. The
right half of the column is subjected to a uniform impulse ρ̄ v̄ > 0, while the left half
is subjected to an equal and opposite impulse −ρ̄ v̄. Thus, in Lagrangian coordinates,
we have to solve the Riemann problem for the system (7.1.11), with σ(u) =− 1

γ u−γ

for initial data
(
uL,vL

)
=
(
ū,−v̄

)
and

(
uR,vR

)
=
(
ū, v̄

)
, where ū = 1/ρ̄ .

With reference to (9.4.1) and (9.4.2), it is clear that any intersection of the for-
ward 1-wave curve through (ū,−v̄) with the backward 2-wave curve through (ū, v̄)
will take place at uM > ū, so that the jump discontinuity at the origin will be resolved
into two rarefaction waves. In that range,
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Fig. 9.6.1

(9.6.1)

⎧⎪⎨⎪⎩
ϕ
(
u; ū, v̄

)
= 2

1−γ
(
u

1−γ
2 −w

)
, u ≥ ū,

ψ
(
u; ū, v̄

)
=− 2

1−γ
(
u

1−γ
2 −w

)
, u ≥ ū,

where we have set

(9.6.2) w = ū
1−γ

2 + 1−γ
2 v̄.

The form of the solution will depend on the sign of w. Figure 9.6.1 depicts the wave
curves when w > 0,w = 0 or w < 0.

When w > 0, the wave curves intersect at uM = w
2

1−γ , vM = 0, and the Riemann
problem admits the solution

(9.6.3) (u(ξ ),v(ξ ))=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ū,−v̄

)
, −∞ <ξ ≤−ξF(

|ξ |− 2
γ+1 , − 2

γ−1 |ξ |
γ−1
γ+1 + 2

γ−1 |ξ0|
γ−1
γ+1

)
, −ξF < ξ ≤−ξS(

uM,0
)
, −ξS < ξ < ξS(

|ξ |− 2
γ+1 , 2

γ−1 |ξ |
γ−1
γ+1 − 2

γ−1 |ξ0|
γ−1
γ+1

)
, ξS ≤ ξ < ξF(

ū, v̄
)
, ξF ≤ ξ < ∞,

where ξF = ū−
γ+1

2 and ξS = w
γ+1
γ−1 .

When w = 0, the two wave curves intersect at infinity. As w ↓ 0, (u(ξ ),v(ξ )) of
(9.6.3) reduces to
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(9.6.4) (u(ξ ),v(ξ )) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
ū,−v̄

)
, ∞ < ξ ≤−ξF(

|ξ |− 2
γ+1 , 2

γ−1 sgnξ |ξ |
γ−1
γ+1

)
, −ξF < ξ < ξF(

ū, v̄
)
, ξF ≤ ξ < ∞.

Notice that the singularity of u at ξ = 0 is integrable while v is continuous. It is
then easy to check that (u(ξ ),v(ξ )), defined by (9.6.4), satisfies, in the sense of
distributions, (9.1.3) for the system (7.1.11), namely

(9.6.5)

⎧⎪⎨⎪⎩
(−v−ξu)·+u = 0(

1
γ u−γ −ξv

)·
+v = 0,

and thus solves the Riemann problem for w = 0. That u(0) = ∞ simply means that
the density ρ vanishes along the line x = 0.

When w < 0, the two wave curves fail to intersect, even at infinity, and no stan-
dard solution to the Riemann problem may thus be constructed. The physical prob-
lem is of course still solvable. Indeed, we may reformulate and solve it, in Eulerian
coordinates, as a Riemann problem for the system (7.1.13), where κ = 1/γ , with data:
ρ(x,0) = ρ̄, x∈(−∞,∞); v(x,0)=−v̄, x ∈ (−∞,0); and v(x,0) = v̄, x ∈ (0,∞). The
solution comprises two rarefaction waves whose tail ends recede from each other
with respective speeds ± 2

γ−1 w, leaving in the wake between them a vacuum state
where ρ vanishes. The discussion of Section 2.2 does not cover the mapping of this
flow to Lagrangian coordinates, because the determinant ρ−1 of the deformation gra-
dient is unbounded on the vacuum state. In fact, under this change of coordinates the
full sector in physical space-time occupied by the vacuum state is mapped to the
single line x = 0 in the reference space-time. Consequently, u = ρ−1 becomes very
singular at ξ = 0:

(9.6.6)

(u(ξ ),v(ξ )) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
ū,−v̄

)
, −∞ < ξ ≤−ξF(

|ξ |− 2
γ+1 − 4

γ−1 wδ0,
2
γ−1 sgnξ

[
|ξ |

γ−1
γ+1 −w

])
, −ξF < ξ < ξF(

ū, v̄
)
, ξF ≤ ξ < ∞ ,

where δ0 denotes the Dirac delta function at the origin. In fact, (u(ξ ),v(ξ )) of (9.6.6)
is a distributional solution of (9.6.5), providing one regards u−γ(ξ ) as a continuous
function that vanishes at the origin ξ = 0. In the (x, t) coordinates, (9.6.6) induces the
stationary singularity − 4

γ−1 wtδ0 on u, along the t-axis. This new type of singularity
that supports point masses is called a delta shock.

One might argue that the delta shock appeared here because we employed
Lagrangian coordinates, which are ill-suited to this problem. It turns out, however,
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that delta shocks are often present in solutions of the Riemann problem, especially
for systems that are not strictly hyperbolic. Relevant references are cited in Section
9.12. As we shall see in Section 9.8, the method of vanishing viscosity contributes
insight into the formation of delta shocks.

Failure of strict hyperbolicity is also a source of difficulties in regard to unique-
ness of solutions to the Riemann problem. The Liu E-condition is no longer suf-
ficiently selective to single out a unique solution. To illustrate this, let us consider
the Riemann problem for the model system (7.2.11), with data (uL,vL) = (1,0)
and (uR,vR) = (a,0), where a ∈ (− 1

2 ,0). One solution comprises the two constant
states (1,0) and (a,0) joined by an overcompressive shock, of speed s = 1+a+a2,
which satisfies the Liu E-condition. There is, however, another solution comprising
three constant states, (1,0),(−1,0) and (a,0), where (−1,0) is joined to (1,0) by a
1-contact discontinuity of speed 1 and (a,0) is joined to (−1,0) by a 2-shock of
speed s = 1−a+a2. Both shocks satisfy the Liu E-condition. Following the discus-
sion on this system in Section 8.6, one may be inclined to disqualify overcompressive
shocks, in which case the second solution of the Riemann problem emerges as the
admissible one. This of course hinges on the premise that (8.6.4) is the proper dissi-
pative form of (7.2.11).

The issue of nonuniqueness also arises in the context of (usually not strictly hy-
perbolic) systems that admit undercompressive shocks. Consider, for definiteness,
such a system of two conservation laws. Any undercompressive shock is crossed
by both 1-characteristics, from right to left, and 2-characteristics, from left to right.
Consequently, such a shock may be incorporated into a wave fan that contains a com-
pressive 1-shock, or 1-rarefaction wave, on its left, and a compressive 2-shock, or
2-rarefaction wave, on its right. In that capacity, the undercompressive shock serves
as a “bridge” joining the two characteristic families and so is dubbed a transitional
wave. It is also possible to have rarefaction transitional waves that are composites
of a 1-rarefaction and a 2-rarefaction. These may occur when the 1-rarefaction wave
curve and the 2-rarefaction wave curve meet tangentially on the line along which
strict hyperbolicity fails, λ1(U) = λ2(U). The possibility of including transitional
waves renders the family of solutions to the Riemann problem richer and thereby the
issue of uniqueness thornier. As pointed out in Chapter VIII, viscosity or viscosity-
capillarity conditions, as well as kinetic relations, are being used as admissibility
criteria for these undercompressive shocks. The importance of working with gen-
uine physical systems cannot be overemphasized at this point.

9.7 The Entropy Rate Admissibility Criterion

According to the entropy shock admissibility criterion, the entropy production across
shocks, defined by the left-hand side of (8.5.1), must be negative, so in particular the
total entropy shall be decreasing. We have seen, however, that this requirement is
generally insufficiently discriminating to rule out all spurious solutions. A wave fan
admissibility criterion will be introduced here, which is a strengthened version of the
entropy admissibility condition, as it stipulates that the combined entropy production
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of all shocks in the fan is not just negative but as small as possible, or equivalently,
as it turns out, that the total entropy is not just decreasing but actually decreasing at
the highest allowable rate.

We assume that our system (9.1.1) is endowed with a designated entropy-entropy
flux pair (η(U),q(U)) and consider the admissibility of wave fans U(x, t) =V (x/t),
with prescribed end-states V (−∞) = UL and V (∞) = UR . The combined entropy
production of the shocks in V is given by

(9.7.1) PV = ∑
ξ
{q(V (ξ+))−q(V (ξ−))−ξ [η(V (ξ+))−η(V (ξ−))]} ,

where the summation runs over the at most countable set of points ξ of jump discon-
tinuity of V .

Because of the Rankine-Hugoniot jump condition (9.1.8), for anyΘ ∈M1×n and
a ∈ R, the entropy-entropy flux pair (η(U)+ΘU + a , q(U)+ΘF(U)) yields the
same value for the combined entropy production as (η(U),q(U)). One may thus
assume, without loss of generality, that

(9.7.2) η
(
UL
)
= η

(
UR

)
= 0.

After this normalization, the rate of change of the total entropy in the wave fan is
given by

(9.7.3) ḢV =
d
dt

∞∫
−∞

η(U(x, t))dx =
d
dt

∞∫
−∞

η
(

V
(

x
t

))
dx =

∞∫
−∞

η(V (ξ ))dξ .

Actually, PV and ḢV are related through

(9.7.4) ḢV = PV +q
(
UL
)−q

(
UR

)
.

To verify this, begin with the identity

(9.7.5) η(V (ξ )) = [ξη(V (ξ ))−q(V (ξ ))]·+ q̇(V (ξ ))−ξ η̇(V (ξ )),

which holds in the sense of measures, and note that the generalized chain rule, The-
orem 1.7.5, yields

(9.7.6) q̇(V )−ξ η̇(V ) =
[
D̃q(V )−ξ D̃η(V )

]
V̇ .

trated in the set of points of jump discontinuity of V . Therefore, combining (9.7.1),
(9.7.2), (9.7.3) and (9.7.5), one arrives at (9.7.4).

9.7.1 Definition. A wave fan U(x, t)=V (x/t), with V (−∞)=UL ,V (∞)=UR , meets
the entropy rate admissibility criterion if PV ≤ PV̄ , or equivalently ḢV ≤ ḢV̄ ,
holds for any other wave fan Ū(x, t) = V̄ (x/t) with the same end-states, namely
V̄ (−∞) =UL , V̄ (∞) =UR .

From (9.7.6), (7.4.1) and (9.1.6) it follows that the measure q̇(V )−ξ η̇(V ) is concen-
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In its connection to continuum physics, the entropy rate admissibility criterion is
a more stringent version of the Second Law of thermodynamics: not only should the
physical entropy increase, but it should be increasing at the maximum rate allowed
by the balance laws of mass, momentum and energy. The kinetic theory seems to
lend some credence to that thesis, at least for waves of small amplitude (references
in Section 9.12). However, the status of the entropy rate principle shall ultimately
be judged on the basis of its implications in the context of familiar systems, and its
comparison to other, firmly established, admissibility conditions. This will be our
next task.

We begin our investigation by testing the entropy rate criterion on the scalar
conservation law. In that case a wave fan consists of a single, generally composite,
wave.

9.7.2 Theorem. For the scalar conservation law (7.1.2), a wave fan satisfies the
entropy rate criterion for an arbitrary designated strictly convex entropy η if and
only if every shock satisfies the Oleinik E-condition (8.4.3).

Proof. For simplicity, we confine the proof to the class of unidirectional wave fans,
even though the assertion is true even without that restriction. Let u(x, t) = v(x/t)
be any unidirectional wave fan for (7.1.2), with prescribed end-states uL and uR .
Assuming for definiteness that uL < uR (the opposite case, uL > uR , is similar), v is
a nondecreasing function on (−∞,∞) solving the differential equation

(9.7.7) [ f (v(ξ ))−ξv(ξ )]·+v(ξ ) = 0, −∞ < ξ < ∞ ,

with boundary conditions v(−∞) = uL and v(∞) = uR .

Fig. 9.7.1

We extend v into a maximal monotone multivalued function ṽ, by assigning the
interval [v(ξ−),v(ξ+)] as values of ṽ at any point ξ of jump discontinuity of v. We



326 IX Admissible Wave Fans and the Riemann Problem

then consider the (maximal monotone) inverse function ξ of ṽ and set

(9.7.8) h(u) = f (uL)+
∫ u

uL

ξ (v)dv, uL ≤ u ≤ uR .

We notice that h is a convex function on [uL,uR] with h(uL) = f (uL), h(uR) = f (uR).
Furthermore, for any u ∈ (uL,uR), either h(u) = f (u) or h(u) �= f (u) and

(9.7.9) h(u) =
(u+−u) f (u−)+(u−u−) f (u+)

u+−u−
,

with uL ≤ u− < u+ ≤ uR . Thus the graph of h, depicted in Fig. 9.7.1, is a concatena-
tion of arcs of the graph of f , corresponding to the rarefaction waves of v, and chords
of the graph of f , corresponding to the shocks of v. Furthermore, the constant states
of v correspond to the points of jump discontinuity of h′. In particular, the h induced
by the unique wave fan, constructed in Section 9.5, whose shocks satisfy the Oleinik
E-condition, is the lower convex envelope of the graph of f over [uL,uR], i.e., the
function g depicted in Figs 9.5.1 and 9.7.1. Conversely, any convex function h on
[uL,uR] with the above properties generates a wave fan v of (7.1.2) with end-points
uL and uR .

We now designate some convex entropy function η , with associated flux q,
q′(u) = η ′(u) f ′(u), and calculate the entropy production of the shocks in v through
(9.7.1):

(9.7.10) Pv = ∑
shocks

{q(v(ξ+))−q(v(ξ−))−ξ [η(v(ξ+))−η(v(ξ−))]}

=
∫ uR

uL

[q′(v)−h′(v)η ′(v)]dv

=
∫ uR

uL

[ f ′(v)−h′(v)]η ′(v)dv

=
∫ uR

uL

[h(v)− f (v)]η ′′(v)dv.

Since h(v)≥ g(v), for v ∈ [uL,uR], Pv is minimized when h = g, i.e., v is the unique
wave fan with shocks satisfying the Oleinik E-condition, constructed in Section 9.5.
This completes the proof.

We now turn to general strictly hyperbolic systems but limit our investigation to
shocks with small amplitude:

9.7.3 Theorem. For any strictly hyperbolic system (9.1.1) of conservation laws, with
designated entropy-entropy flux pair (η ,q), where η is (locally) uniformly convex, a
wave fan with waves of moderate strength may satisfy the entropy rate admissibility
criterion only if every shock satisfies the Liu E-condition.
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Proof. We will establish the assertion of the theorem by contradiction: given any
wave fan containing some shock that violates the Liu E-condition, we will construct
a wave fan with lower entropy rate. In order to convey the essence of the argument
with minimal technicalities, we will discuss, in full detail, the special case where
the given wave fan consists of a single shock. Then we will describe briefly how to
handle the general case.

Accordingly, assume that states UL and UR , with |UR −UL| = δ , positive and
small, are joined by an i-shock of speed s,

(9.7.11) F(UR)−F(UL) = s[UR −UL],

that violates the Liu E-condition. Under the normalization assumption (9.7.2), the
entropy rate for this shock is zero. The aim is to construct a wave fan V , with the
same end-states UL ,UR and ḢV < 0.

Let UR =Wi(τR;UL). For definiteness, assume τR > 0. Since the Liu E-condition
is violated, the set of τ ∈ (0,τR) with si(τ;UL)< s is nonempty. Let τL be the infimum
of that set, and assume τL > 0, as the case τL = 0 is simpler. Thus, si(τL;UL) = s, and
si(τ;UL) is decreasing at τL . We consider the generic case ṡi(τL;UL)< 0.

Upon setting UM =Wi(τL;UL),

(9.7.12) F(UM)−F(UL) = s[UM −UL].

Combining (9.7.11) and (9.7.12),

(9.7.13) F(UR)−F(UM) = s[UR −UM],

which shows that UM also lies on the i-shock curve emanating from UR , namely that
UM =Wi(τR;UR) and si(τR;UR) = s.

One may thus regard the i-shock joining UL with UR as the superposition of two
i-shocks, one that joins UL with UM and one that joins UM with UR , both propagating
with the same speed s. The aim is to perform a perturbation that splits the original
shock into two shocks, one with speed slightly lower than s and the other with speed
slightly higher than s, and then show that the resulting wave fan has negative entropy
rate.

We begin by fixing a small positive number τ . The wave fan V will consist of
(n+ 2) constant states UL = U0 , · · · ,Ui−1 , Ũ ,Ui , · · · ,Un = UR , joined by shocks.
For j = 1, · · · , i−1, Uj is joined to Uj−1 by a j-shock, Uj = Wj(ε j;Uj−1), of speed
s j:

(9.7.14) F(Uj)−F(Uj−1) = s j[Uj −Uj−1], j = 1, · · · , i−1.

Ũ is joined to Ui−1 by an i-shock, Ũ =Wi(τL + τ;Ui−1), of speed s−:

(9.7.15) F(Ũ)−F(Ui−1) = s−[Ũ −Ui−1].

Ũ is also joined to Ui by an i-shock, Ũ =Wi(τR + εi;Ui), of speed s+:

(9.7.16) F(Ũ)−F(Ui) = s+[Ũ −Ui].
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Finally, for j = i+1, · · · ,n, Uj−1 is joined to Uj by a j-shock, Uj−1 =Wj(ε j;Uj), of
speed s j:

(9.7.17) F(Uj−1)−F(Uj) = s j[Uj−1 −Uj], j = i+1, · · · ,n.
The amplitudes (ε1, · · · ,εn) of the waves are computed from the equation

(9.7.18) Ω(ε1, · · · ,εn;τ) = 0,

where

(9.7.19) Ω(ε1, · · · ,εn;τ) =Wi(τR + εi;Wi+1(εi+1; · · ·Wn(εn;UR) · · ·))
−Wi(τL + τ;Wi−1(εi−1; · · ·W1(ε1;UL) · · ·)).

Observing that

(9.7.20) Ω(ε1, · · · ,εn;τ) =−
i−1

∑
j=1
ε jR j(UL)+

n

∑
j=i+1

ε jR j(UR)

−τẆi(τL;UL)+ εiẆi(τR;UR)+G(ε1, · · · ,εn;τ),

where G and its first derivatives vanish at (0 · · · ,0;0), we conclude that, for τ
sufficiently small, (9.7.15) has a unique solution. One still needs to verify that
s− = si(τL + τ;Ui−1) is smaller than s+ = si(τR + εi;Ui) and this will be done be-
low.

By combining (9.7.11), (9.7.14), (9.7.15), (9.7.16) and (9.7.17), we deduce

(9.7.21) (s− s−)[Ũ −UL]+ (s− s+)[UR −Ũ ]

=
i−1

∑
j=1

(s j − s−)[Uj −Uj−1]+
n

∑
j=i+1

(s j − s+)[Uj −Uj−1].

For j = 1, · · · , i−1, i+1, · · · ,n,

(9.7.22) Uj −Uj−1 = a jR j(UL)+S j , |S j|= O(δ )|a j|.
Thus, upon setting

(9.7.23) �= |(s− s−)Li(UL)[Ũ −UL]| ,
we deduce, from (9.7.21):

(9.7.24) |a j|= O(δ )�, j = 1, · · · , i−1, i+1, · · · ,n,

(9.7.25) (s− s−)[Ũ −UL]+ (s− s+)[UR −Ũ ] = O(δ 2)�,

which implies, in particular, that (s−s−) and (s−s+) have opposite signs. Recalling
that ṡi(τL;UL)< 0, we conclude that s− < s < s+ .
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We now compute ḢV from (9.7.3):

(9.7.26) ḢV =
i−2

∑
j=1

(s j+1 − s j)η(Uj)+(s−− si−1)η(Ui−1)+(s+− s−)η(Ũ)

+(si+1−s+)η(Ui)+
n−1

∑
j=i+1

(s j+1−s j)η(Uj).

Upon rearranging the terms in the above summations:

(9.7.27) ḢV =
i−1

∑
j=1

(s−− s j)[η(Uj)−η(Uj−1)]+(s+− s−)η(Ũ)

+
n

∑
j=i+1

(s+− s j)[η(Uj)−η(Uj−1)].

By adding and subtracting terms, the above may be rewritten as

(9.7.28) ḢV = (s− s−){η(Ũ)−Dη(Ũ)[Ũ −UL]−η(UL)}
+(s+− s){η(Ũ)−Dη(Ũ)[Ũ −UR]−η(UR)}

+
i−1

∑
j=1

(s−− s j){η(Uj)−η(Uj−1)−Dη(Ũ)[Uj −Uj−1]}

+
n

∑
j=i+1

(s+− s j){η(Uj)−η(Uj−1)−Dη(Ũ)[Uj −Uj−1]}.

Since η is strictly convex, and recalling (9.7.23) and (9.7.25),

(9.7.29)

⎧⎨⎩−(s− s−){η(Ũ)−Dη(Ũ)[Ũ −UL]−η(UL)} ≥ α�|Ũ −UL|

−(s+− s){η(Ũ)−Dη(Ũ)[Ũ −UR]−η(UR)} ≥ α�|Ũ −UR|,
with α > 0. On the other hand, by virtue of (9.7.24),

(9.7.30)⎧⎨⎩ |η(Uj)−η(Uj−1)−Dη(Ũ)[Uj −Uj−1]| ≤ O(δ )�|Ũ −UL|, j = 1, · · · , i−1

|η(Uj)−η(Uj−1)−Dη(Ũ)[Uj −Uj−1]| ≤ O(δ )�|Ũ −UR|, j = i+1, · · · ,n.

Hence, ḢV < 0, which establishes the assertion of the theorem in the special case
where the wave fan consists of a single shock violating the Liu E-condition.

The general case where the shock that violates the Liu E-condition is part of a
wave fan V̄ is treated in a similar fashion. One perturbs V̄ in such a way that the
shock violating the Liu E-condition splits into two shocks, decreasing the entropy
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rate, while the change in the entropy rate resulting from the perturbation of the other
waves is of higher order. The process of perturbing V̄ is tedious but conceptually
straightforward. The reader may consult the references cited in Section 9.12. This
completes the proof.

Theorem 9.7.4 motivates an alternative construction of the admissible solution
to the Riemann problem (9.1.1), (9.1.18) by minimizing the entropy rate functional
ḢV over all wave fans with end-states UL and UR .

9.7.4 Theorem. Consider any strictly hyperbolic system (9.1.1) that is endowed with
a uniformly convex entropy η(U). When |UR −UL| is sufficiently small, there exists
a solution U(x, t) = V (x/t) of the Riemann problem (9.1.1), (9.1.18), where V (ξ )
minimizes the entropy rate ḢV , or equivalently the total entropy production PV ,
over all wave fans with unidirectional i-waves of moderate strength and end-states
UL and UR . Furthermore, this solution is identical to the unique solution with shocks
satisfying the Liu E-condition, established by Theorem 9.5.1.

Proof. Assume UL and UR lie in a ball Bδ 2(Ū) with center at some state Ū and
radius δ 2, where δ is a small positive number. We consider the family of outgo-
ing wave fans with values in the ball Bδ (Ū), end-states UL ,UR and unidirectional
i-waves. This family is nonempty, as it contains the wave fan with end-states UL and
UR whose i-waves are (not necessarily admissible) i-shocks. Indeed, to construct this
wave fan we define, in the place of (9.3.4),

(9.7.31) Ω(ε;U) =Wn(ε;Wn−1(ε; . . .W1(ε1,U) . . .)),

where Wi denotes the i-shock curve, and observe that (9.3.5) still holds with G and its
first derivatives vanishing at ε = 0. Therefore, for δ sufficiently small there exists a
unique n-tuple ε = (ε1, . . . ,εn) withΩ(ε;UL) =UR , and the resulting wave fan takes
values in Bδ (Ū).

We now fix some wave fan V in the above family, which as shown in Section 9.1,
comprises n waves [ζ1 , ξ1], . . . , [ζn , ξn] separated by constant states U0 ,U1 , . . . ,Un .
In what follows, c stands for a generic positive constant that does not depend on δ
and V .

We write

(9.7.32) Ui −Ui−1 =
n

∑
k=1

aikRk(Ū), i = 1, . . . ,n,

noting that |aik| ≤ cδ , for i,k = 1, . . . ,n. Furthermore, by (9.1.6), |aik| ≤ cδ 2, for
i �= k. On the other hand, since

(9.7.33)
n

∑
i=1

(Ui −Ui−1) =UR −UL ,
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(9.7.34)
n

∑
i=1

aik = Lk(Ū)[UR −UL], k = 1, . . . ,n.

Hence |Ui −Ui−1| ≤ cδ 2, for i = 1, . . . ,n, which implies

(9.7.35) TV(−∞,∞)V (·)≤ cδ 2,

by virtue of (9.1.17).
It now follows from Helly’s theorem that, within the family of wave fans under

consideration, any minimizing sequence {V�} for the functional (9.7.3) contains a
subsequence converging to a minimizer V . On account of Theorem 9.7.3, any shock
of V must satisfy the Liu E-condition and thus V coincides with the unique admissi-
ble solution to the Riemann problem established by Theorem 9.5.1. This completes
the proof.

The effectiveness of the entropy rate criterion established above in general strictly
hyperbolic systems, for waves of moderate strength, does not necessarily extend to
the realm of strong waves, as the following situation may arise. For a wave fan con-
taining a rarefaction wave of moderate strength consider a modified wave fan in
which the rarefaction wave has been replaced by a rarefaction shock. The resulting
net change in the entropy rate will be the sum of the positive term contributed by the
rarefaction shock and the possibly negative term accounting for the change in speed
and amplitude of the remaining shocks in the wave fan. As noted in the closing para-
graph of the proof of Theorem 9.7.3, the second term is of lower order than the first
when all the waves are of moderate strength. However, this is no longer necessarily
true in the presence of very strong waves, so that the modified wave fan, with the
rarefaction shock, may have lower entropy rate than the original one. Whether the
entropy rate criterion selects the same solution as other shock admissibility condi-
tions, for strong shocks, will depend on the detailed structure of the Hugoniot locus
for the particular system, and thus should be tested on a case by case basis. The con-
clusions of such tests are recorded below. The proofs, which usually require lengthy
calculations, are found in the literature cited in Section 9.11.

Since the entropy rate criterion was motivated by the Second Law of thermody-
namics, it is natural to test it on the systems of conservation laws of gas dynamics.

9.7.5 Theorem. For the system of isentropic or isothermal rectilinear flow of an
ideal gas, namely (7.1.11) with σ = −p, p = κu−γ , γ ≥ 1, and designated entropy
the mechanical energy, i.e., η = 1

2 v2 + κ
γ−1 u1−γ , when γ > 1, or η = 1

2 v2 +κ logu,
when γ = 1, the standard solution to the Riemann problem, with shocks satisfying the
Lax E-condition, minimizes the entropy rate.

9.7.6 Theorem. For the general system of rectilinear flow of an ideal gas, namely
(7.1.8) with equations of state (2.5.20), for γ ≥ 5/3, and designated entropy minus
the physical entropy, i.e., η = −s, the standard solution to the Riemann problem,
with shocks satisfying the Lax E-condition, minimizes the entropy rate.
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The reader should note that 5/3 is the value for the adiabatic exponent γ predicted
by the kinetic theory in the case of a monatomic ideal gas. When γ < 5/3 (poly-
atomic gases), the situation is different. Consider a wave fan comprising three con-
stant states (uL,vL,sL), (uM,vM,sM) and (uR,vR,sR), where the first two are joined
by a stationary 2-contact discontinuity, while the second and the third are joined by a
3-rarefaction wave. In particular, we have vM = vL , p(uM,sM) = p(uL,sL), sM = sR ,
and z(uM,vM,sM) = z(uR,vR,sR), where z(u,v,s) denotes the second 3-Riemann in-
variant listed in (7.3.4). The total entropy production of this wave fan is of course
zero. For uR/uL in a certain range, there is a second wave fan with the same end-
states, which comprises four constant states (uL,vL,sL), (u1,v1,s1), (u2,v2,s2) and
(uR,vR,sR), where the first two are joined by a 1-shock that satisfies the Lax E-
condition, the second is joined to the third by a 2-contact discontinuity, while the last
two are joined by a 3-shock that violates the Lax E-condition. It turns out that when
uM/uL is not too large, i.e., the contact discontinuity is not too strong, the total en-
tropy production of the second wave fan is positive, and hence the first wave fan has
lower entropy rate. By contrast, when uM/uL is sufficiently large, the total entropy
production of the second wave fan is negative and so the first wave fan no longer
satisfies the entropy rate criterion.

Similar issues arise for systems that are not strictly hyperbolic. Let us consider
our model system (7.2.11). Recall the two wave fans with the same end-states (1,0)
and (a,0), a ∈ (− 1

2 ,0), described in Section 9.6: The first one comprises the states
(1,0) and (a,0), joined by an overcompressive shock of speed 1+a+a2. The second
comprises three states, (1,0),(−1,0) and (a,0), where the first two are joined by a 1-
contact discontinuity of speed 1, while the second is joined to the third by a 2-shock
of speed 1−a+a2. If we designate the entropy-entropy flux pair

(9.7.36) η = 1
2 (u

2 +v2), q = 3
4 (u

2 +v2)2,

the entropy production of the overcompressive shock is 1
4 (a

2 −1)(1−a)2 while the
entropy production of the second wave fan is 1

4 (a
2 − 1)(1+ a)2. Thus the entropy

rate criterion favors the overcompressive shock, even though, as we saw in Section
8.6, this is incompatible with the stable shock profile condition. The reader should
bear in mind, however, that these conclusions are tied to our selections for artificial
viscosity and entropy. Whether (8.6.4) is the proper dissipative form and (9.7.36)
is the natural entropy-entropy flux pair for (7.2.11) may be decided only when this
system is considered in the context of some physical model.

9.8 Viscous Wave Fans

The viscous shock admissibility criterion, introduced in Section 8.6, characterizes
admissible shocks for the hyperbolic system of conservation laws (9.1.1) as μ ↓ 0
limits of traveling wave solutions of the associated dissipative system (8.6.1). The
aim here is to extend this principle from single shocks to general wave fans. The dif-
ficulty is that, in contrast to (9.1.1), the system (8.6.1) is not invariant under uniform
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stretching of the space-time coordinates and thus it does not possess traveling wave
fans as solutions. As a remedy, it has been proposed that in the place of (8.6.1) one
should employ a system with time-varying viscosity,

(9.8.1) ∂tU(x, t)+∂xF(U(x, t)) = μt∂ 2
x U(x, t),

which is invariant under the transformation (x, t) �→ (αx,αt). It is easily seen that
U = Vμ(x/t) is a self-similar solution of (9.8.1) if and only if Vμ(ξ ) satisfies the
ordinary differential equation

(9.8.2) μV̈μ(ξ ) = Ḟ(Vμ(ξ ))−ξV̇μ(ξ ).

A self-similar solution U = V (x/t) of (9.1.1) is said to satisfy the viscous wave
fan admissibility criterion if V is the almost everywhere limit, as μ ↓ 0, of a uniformly
bounded family of solutions Vμ of (9.8.2).

In addition to serving as a test of admissibility, the viscous wave fan criterion
suggests an alternative approach for constructing solutions to the Riemann problem
(9.1.1), (9.1.12). Towards that end, one has to show that for any fixed μ > 0 there
exists some solution Vμ(ξ ) of (9.8.2) on (−∞,∞), with boundary conditions

(9.8.3) Vμ(−∞) =UL , Vμ(+∞) =UR ,

and then prove that the family {Vμ(ξ ) : 0 < μ < 1} has uniformly bounded variation
on (−∞,∞). In that case, by Helly’s theorem (cf. Section 1.7), a convergent sequence
{Vμm} may be extracted, with μm ↓ 0 as m → ∞ , whose limit V induces the solution
U(x, t) =V (x/t) to the Riemann problem.

The above program has been implemented successfully under a variety of con-
ditions. One may solve the Riemann problem under quite general data UL and UR
albeit for special systems, most notably for pairs of conservation laws. Alternatively,
one may treat general systems but only in the context of waves of moderate strength,
requiring that |UR −UL| be sufficiently small. Let us consider this last situation first.
The analysis is lengthy and technical so only the main ideas shall be outlined. For
the details, the reader may consult the references cited in Section 9.11.

The crucial step is to establish a priori bounds on the total variation of Vμ(ξ ) over
(−∞,∞), independent of μ . To prepare the ground for systems, let us begin with the
scalar conservation law (7.1.2). Setting λ (u) = f ′(u) and V̇μ(ξ ) = a(ξ ), we write
(9.8.2) in the form

(9.8.4) μ ȧ+[ξ −λ (Vμ(ξ ))]a = 0.

The solution of (9.8.4) is a(ξ ) = τφ(ξ ), where

(9.8.5) φ(ξ ) =
exp[− 1

μ g(ξ )]∫ ∞
−∞ exp[− 1

μ g(ζ )]dζ
,

(9.8.6) g(ξ ) =
∫ ξ

s
[ζ −λ (Vμ(ζ ))]dζ .
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The lower limit of integration s is selected so that g(ξ )≥ 0 for all ξ in (−∞,∞). The
amplitude τ is determined with the help of the assigned boundary conditions, that is
Vμ(−∞) = uL ,Vμ(∞) = uR , τ = uR −uL . From (9.8.5) it follows that the L1 norm of
a(ξ ) is bounded, uniformly in μ , and so the family {Vμ : 0 < μ < 1} has uniformly
bounded variation on (−∞,∞).

Turning now to general strictly hyperbolic systems (9.1.1), we realize Vμ(ξ ) as
the assemblage of (composite) waves associated with distinct characteristic families,
by writing

(9.8.7) V̇μ(ξ ) =
n

∑
j=1

a j(ξ )R j(Vμ(ξ )).

We substitute V̇μ from (9.8.7) into (9.8.2). Upon multiplying the resulting equation,
from the left, by Li(Vμ(ξ )), we deduce

(9.8.8) μ ȧi +[ξ −λi(Vμ(ξ ))]ai = μ
n

∑
j,k=1

βi jk(Vμ(ξ ))a jak ,

where

(9.8.9) βi jk(U) =−Li(U)DR j(U)Rk(U).

In (9.8.8), the left-hand side coincides with the left-hand side of (9.8.4), for the scalar
conservation law, while the right-hand side accounts for the interactions of distinct
characteristic families. The reader should notice the analogy between (9.8.8) and
(7.8.6). It should also be noted that when our system is endowed with a coordi-
nate system (w1, · · · ,wn) of Riemann invariants, ai(ξ ) = ẇi(Vμ(ξ )). In that case, as
shown in Section 7.3, for j �= k, DR jRk lies in the span of {R j,Rk} and so (9.8.9)
implies βi jk = 0 when i �= j �= k �= i. For special systems, such as (7.3.18), with co-
inciding shock and rarefaction wave curves, DR jR j is collinear to R j and so βi jk = 0
even when i �= j = k so that the equations in (9.8.8) decouple. In general, the thrust of
the analysis is to demonstrate that in the context of solutions with small oscillation,
i.e., ai small, the effect of interactions, of quadratic order, will be even smaller.

The solution of (9.8.8) may be partitioned into

(9.8.10) ai(ξ ) = τiφi(ξ )+θi(ξ ),

where

(9.8.11) φi(ξ ) =
exp[− 1

μ gi(ξ )]∫ ∞
−∞ exp[− 1

μ gi(ζ )]dζ
,

(9.8.12) gi(ξ ) =
∫ ξ

si

[ζ −λi(Vμ(ζ ))]dζ ,

and θi(ξ ) satisfies the equation
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(9.8.13) μθ̇i+[ξ−λi(Vμ(ξ ))]θi = μ
n

∑
j,k=1

βi jk(Vμ(ξ ))[τ jφ j(ξ )+θ j][τkφk(ξ )+θk].

The differential equations (9.8.13) may be transformed into an equivalent system
of integral equations by means of the variation of parameters formula:

(9.8.14)

θi(ξ ) = φi(ξ )
∫ ξ

ci

φ−1
i (ζ )βi jk(Vμ(ζ ))[τ jφ j(ζ )+θ j(ζ )][τkφk(ζ )+θk(ζ )]dζ .

Careful estimation shows that

(9.8.15) |θi(ξ )| ≤ c(τ2
1 + · · ·+ τ2

n )
n

∑
j=1
φ j(ξ ),

which verifies that, in (9.8.10), θi is subordinate to τiφi , i.e., the characteristic fami-
lies decouple to leading order.

It can be shown, by means of a contraction argument, that for any fixed (τ1, · · · ,τn)
in a small neighborhood of the origin, there exists some solution Vμ(ξ ) of (9.8.2) on
(−∞,∞), which satisfies (9.8.7), (9.8.10) and (9.8.15). To solve the boundary value
problem (9.8.2), (9.8.3), the (τ1, · · · ,τn) have to be selected so that

(9.8.16)
n

∑
j=1

∫ ∞

−∞
[τ jφ j(ξ )+θ j(ξ )]R j(Vμ(ξ ))dξ =UR −UL .

It has been proved that (9.8.16) admits a unique solution (τ1, · · · ,τn), at least when
|UR −UL| is sufficiently small. The result is summarized in the following

9.8.1 Theorem. Assume the system (9.1.1) is strictly hyperbolic on O and fix any
state UL ∈ O . There is δ > 0 such that for any UR ∈ O with |UR −UL| < δ and
every μ > 0, the boundary value problem (9.8.2), (9.8.3) possesses a solution Vμ(ξ ),
which admits the representation (9.8.7), (9.8.10) with (τ1, · · · ,τn) close to the origin
and θi obeying (9.8.15). Moreover, the family {Vμ(ξ ) : 0 < μ < 1} of solutions has
uniformly bounded (and small) total variation on (−∞,∞). In particular, one may
extract a sequence {Vμm(ξ )}, with μm ↓ 0 as m → ∞ , which converges, boundedly
almost everywhere, to a function V (ξ ) such that the wave fan U =V (x/t) solves the
Riemann problem (9.1.1), (9.1.18).

Careful analysis of the process that generates V (ξ ) as the limit of the sequence
{Vμm(ξ )} reveals that V (ξ ) has the structure described in Theorem 9.3.1. Further-
more, for any point ξ of jump discontinuity of V,V (ξ−), on the left, is connected
to V (ξ+), on the right, by a viscous shock profile, and so the viscous shock admis-
sibility criterion is satisfied (with B = I), as discussed in Section 8.6. In particular,
any shock of V satisfies the Liu E-condition and thus V coincides with the unique
solution established by Theorem 9.5.1.
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The construction of the solution Vμ(ξ ) to the boundary value problem (9.8.2),
(9.8.3) and the derivation of the bound on the total variation of the family {Vμ},
asserted by Theorem 9.8.1, do not depend on the fact that the system (9.8.1) is con-
servative but apply equally well to any system

(9.8.17) μV̈μ(ξ ) = A(Vμ(ξ ))V̇μ(ξ )−ξV̇μ(ξ ),

so long as the matrix A(U) has real distinct eigenvalues. If V (ξ ) is the μ ↓ 0 limit of
Vμ(ξ ), the function U(x, t) =V (x/t) may be interpreted as a solution of the Riemann
problem for the strictly hyperbolic, nonconservative system

(9.8.18) ∂tU +A(U)∂xU = 0,

even though it does not necessarily satisfy that system in the sense of distributions.
Viscous wave fans induce an alternative, implicit construction of wave curves

for general strictly hyperbolic systems (9.1.1), without any requirement of piecewise
genuine nonlinearity.

To trace the forward i-wave curve that emanates from some fixed state Ū , assume
that a state Û , on the right, is connected to Ū , on the left, by an i-wave of moderate
strength. Suppose this wave is the μ ↓ 0 limit of a family of viscous wave fans Vμ(ξ ).
Thus Vμ is defined for ξ in a small neighborhood of ξ̄ = λi(Ū), it takes values near
Ū , and μV̇μ(ξ ) is small. We stretch the domain by rescaling the variable, ξ = μζ .
We also rescale the a j in the expansion (9.8.7) by setting w j = μa j , and assemble
the vector W = (w1, · · · ,wn). Then we may recast (9.8.7), (9.8.8) into an autonomous
first order system

(9.8.19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V ′ =
n

∑
j=1

w jR j(V )

w′
j = [λ j(V )−ξ ]w j +

n

∑
k,�=1

β jk�(V )wkw� , j = 1, · · · ,n

ξ ′ = μ

μ ′ = 0,

where the prime denotes differentiation with respect to ζ .
Linearization of (9.8.19) about the equilibrium point V = Ū , W = 0, ξ = λi(Ū),

μ = 0 yields the system

(9.8.20)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V ′ =
n

∑
j=1

w jR j(Ū)

w′
j = [λ j(Ū)−ξ ]w j , j = 1, · · · ,n

ξ ′ = μ

μ ′ = 0.
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The center subspace N of this system consists of all vectors (V,W,ξ ,μ) ∈ R2n+2

with w j = 0 for j �= i, and therefore has dimension n+ 3. By the center manifold
theorem, any solution of (9.8.19) that dwells in the vicinity of the above equilibrium
point must lie on a (n+ 3)-dimensional manifold M , which is tangential to N at
the equilibrium point, is invariant under the flow generated by (9.8.19), and admits
the local representation

(9.8.21) w j = ϕ j(V,ω,ξ ;μ), j �= i,

where ω stands for wi . By the theory of skew-product flows, the functions ϕ j can
be selected so that ϕ j(V,0,ξ ;μ) = 0, for all V,ξ and μ close to Ū , λi(Ū) and 0. We
may thus set

(9.8.22) w j = ωψ j(V,ω,ξ ;μ), j �= i,

where ψ j(Ū ,0,λi(ū);0) = 0, since M is tangential to N at the equilibrium point.
We also introduce a new variable τ such that

(9.8.23)
d

dτ
=

1
ω

d
dζ

.

In order to see how the components (Vμ ,ωμ ,ξμ) of our solution evolve on M as
functions of τ , we combine (9.8.19), (9.8.22) and (9.8.23) to deduce

(9.8.24)
dVμ
dτ

= Pμ(Vμ ,ωμ ,ξμ),

(9.8.25)
dωμ
dτ

= pμ(Vμ ,ωμ ,ξμ)−ξμ ,

where we have set

(9.8.26) Pμ(V,ω,ξ ) = Ri(V )+∑
j �=i
ψ j(V,ω,ξ ;μ)R j(V ),

(9.8.27) pμ(V,ω,ξ ) = λi(V )+
n

∑
k,�=1

ωβik�(V )ψk(V,ω,ξ ;μ)ψ�(V,ω,ξ ;μ).

In particular, P0(Ū ,0,λi(Ū)) = Ri(Ū), p0(Ū ,0,λi(Ū)) = λi(Ū).
To derive an equation for ξμ(τ), we note that (9.8.23) together with (9.8.19)3

yield dξμ/dτ = ξ ′μ/ω = μ/ω . We differentiate this relation with respect to τ and
use (9.8.25) to get

(9.8.28) μ
d2ξμ
dτ2 =−

(
dξμ
dτ

)2

[pμ(Vμ ,ωμ ,ξμ)−ξμ ].

As μ ↓ 0, (Vμ ,ωμ ,ξμ) converge uniformly to (V,ω,ξ ). In particular, we have
V (0) = Ū , ω(0) = 0 and V (s) = Û , for some, say positive, small s. By virtue of
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(9.8.28), [0,s] is the union of an at most countable family of τ-intervals, associated
with shocks, over which dξ/dτ = 0, and τ-intervals, associated with rarefaction
waves, over which ξ = p0(V,ω,ξ ). Furthermore, at points of transition from shock
to rarefaction (or rarefaction to shock), d2ξμ/dτ2 should be nonnegative (or nonpos-
itive). It then follows that

(9.8.29) ξ (τ) =
dg
dτ

(τ), 0 ≤ τ ≤ s,

where g is the convex envelope, over [0,s], of the function

(9.8.30) f (τ) =
τ∫

0

p0(V (σ),ω(σ),ξ (σ))dσ , 0 ≤ τ ≤ s,

i.e., g(τ) = inf{θ1 f (τ1) + θ2 f (τ2) : θ1 ≥ 0, θ2 ≥ 0, θ1 + θ2 = 1, 0 ≤ τ1 ≤ τ2 ≤ s,
θ1τ1 +θ2τ2 = τ}. Then (9.8.24) and (9.8.25) yield

(9.8.31) V (t) = Ū +

τ∫
0

P0(V (σ),ω(σ),ξ (σ))dσ , 0 ≤ τ ≤ s,

(9.8.32) ω(τ) = f (τ)−g(τ), 0 ≤ τ ≤ s.

It can be shown that, once P0(V,ω,ξ ) and p0(V,ω,ξ ) are specified, the system of
equations (9.8.29), (9.8.31) and (9.8.32) can be solved by Picard iteration to yield the
functions V (τ), ω(τ) and ξ (τ), over [0,s], for any small positive s. The treatment of
negative s is similar, except that now g is the concave envelope of f over [s,0]. Hence,
these equations provide an implicit representation of the i-wave curve Φi emanating
from Ū , by setting Φi(s;Ū) = V (s). By its definition through (9.8.23), τ is nearly
equal to the projection of V − Ū on Ri . Thus, the above construction of the i-wave
curve closely resembles the construction of the wave for the scalar conservation law
described at the opening of Section 9.5.

Our next project is to construct, by the method of viscous wave fans, solutions to
the Riemann problem for systems of just two conservation laws,

(9.8.33)

{
∂tu+∂x f (u,v) = 0
∂tv+∂xg(u,v) = 0,

albeit under unrestricted initial data

(9.8.34)
(
u(x,0),v(x,0)

)
=

{(
uL,vL

)
, x < 0(

uR,vR
)
, x > 0.

The crucial restriction will be that fv and gu have the same sign, say for definiteness

(9.8.35) fv(u,v)< 0, gu(u,v)< 0, for all (u,v).
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In particular, the system is strictly hyperbolic. Coupled symmetric systems and the
system (7.1.11) of isentropic elastodynamics are typical representatives of this class.
The analysis will demonstrate how delta shocks may emerge as “concentrations” in
the limit of viscous profiles.

Equations (9.8.2), (9.8.3) here take the form

(9.8.36)

⎧⎨⎩ μ üμ(ξ ) = ḟ
(
uμ(ξ ),vμ(ξ )

)−ξ u̇μ(ξ )

μ v̈μ(ξ ) = ġ
(
uμ(ξ ),vμ(ξ )

)−ξ v̇μ(ξ ),

(9.8.37)
(
uμ(−∞),vμ(−∞)

)
=
(
uL,vL

)
,

(
uμ(∞),vμ(∞)

)
=
(
uR,vR

)
.

The importance of the assumption (9.8.35) stems from the following

9.8.2 Lemma. Let
(
uμ(ξ ),vμ(ξ )

)
be a solution of (9.8.36), and (9.8.37) on

(−∞,∞). Then one of the following holds:

(a) Both uμ(ξ ) and vμ(ξ ) are constant on (−∞,∞).

(b) uμ(ξ ) is strictly increasing (or decreasing), with no critical points on (−∞,∞);
vμ(ξ ) has at most one critical point on (−∞,∞), which is necessarily a maxi-
mum (or minimum).

(c) vμ(ξ ) is strictly increasing (or decreasing), with no critical points on (−∞,∞);
uμ(ξ ) has at most one critical point on (−∞,∞), which is necessarily a maxi-
mum (or minimum).

Proof. Notice that u̇μ
(
ξ0
)
= 0 and üμ

(
ξ0
)
= 0 imply v̇μ

(
ξ0
)
= 0; while v̇μ

(
ξ0
)
= 0

and v̈μ
(
ξ0
)
= 0 imply u̇μ

(
ξ0
)
= 0. Therefore, by uniqueness of solutions to the

initial value problem for ordinary differential equations, if either one of uμ(ξ ) and
vμ(ξ ) has degenerate critical points, then both these functions must be constant on
(−∞,∞).

Turning to nondegenerate critical points, note that u̇μ
(
ξ0
)
= 0 and üμ

(
ξ0
)
< 0

(or üμ
(
ξ0
)
> 0) imply v̇μ

(
ξ0
)
> 0 (or v̇μ

(
ξ0
)
< 0); similarly, v̇μ

(
ξ0
)
= 0 and

v̈μ
(
ξ0
)
< 0 (or v̈μ

(
ξ0
)
> 0) imply u̇μ

(
ξ0
)
> 0 (or u̇μ

(
ξ0
)
< 0).

Suppose now vμ(ξ ) has more than one nondegenerate critical point and pick two
consecutive ones, a maximum at ξ1 and a minimum at ξ2 . For definiteness, assume
ξ1 < ξ2 . Then v̇μ

(
ξ1
)
= 0, v̈μ

(
ξ1
)
< 0, v̇μ

(
ξ2
)
= 0, v̈μ

(
ξ2
)
> 0 and v̇μ(ξ ) < 0

for ξ ∈ (
ξ1 , ξ2

)
. Hence, u̇μ

(
ξ1
)
> 0 and u̇μ

(
ξ2
)
< 0. Therefore, there exists ξ0 in(

ξ1 , ξ2
)

such that u̇μ
(
ξ0
)
= 0 and üμ

(
ξ0
)
< 0. But this implies v̇μ

(
ξ0
)
> 0, which

is a contradiction. The case ξ1 > ξ2 also leads to a contradiction. The same argument
shows that uμ(ξ ) may have at most one nondegenerate critical point.

Finally, suppose both uμ(ξ ) and vμ(ξ ) have nondegenerate critical points, say
at ξ1 and ξ2 , respectively. For definiteness, assume ξ1 < ξ2 and ξ2 is a maximum
of vμ(ξ ). Then v̇μ(ξ ) > 0 for ξ ∈ (−∞ ,ξ2

)
and v̇μ

(
ξ2
)
= 0, v̈μ

(
ξ2
)
< 0. This

implies u̇μ
(
ξ2
)
> 0, whence ξ1 is necessarily a minimum of uμ(ξ ), with u̇μ

(
ξ1
)
= 0,
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üμ
(
ξ1
)
> 0. This in turn implies v̇μ

(
ξ1
)
< 0, which is a contradiction. All other

possible combinations lead to similar contradictions. The proof is complete.

Because of the very special configuration of the graphs of uμ(ξ ) and vμ(ξ ), it
is relatively easy to establish the existence of solutions to (9.8.36), (9.8.37). Indeed,
it turns out that for that purpose it is sufficient to bound a priori the unique “peak”
attained by uμ(ξ ) or vμ(ξ ), in terms of the given data

(
uL,vL

)
,
(
uR,vR

)
, and the

parameter μ . The reader may find the derivation of such estimates, and resulting
proof of existence, in the literature cited in Section 9.12, under the assumption that
either the growth of f (u,v) and g(u,v) is restricted by

(9.8.38) | f (u,v)| ≤ h(v)(1+ |u|)p, |g(u,v)| ≤ h(u)(1+ |v|)p,

where h is a continuous function and p < 2, or the system (9.8.33) is endowed with
an entropy η(u,v), with the property that the eigenvalues of the Hessian matrix
D2η(u,v) are bounded from below by (1+ |u|)−p(1+ |v|)−p, for some p < 3. The
first class of systems contains in particular (7.1.11), and the second class includes all
symmetric systems.

Assuming (uμ ,vμ) exist, we pass to the limit, as μ ↓ 0, in order to obtain solutions
of the Riemann problem. For that purpose, we shall need estimates independent of
μ . Let us consider, for definiteness, the case where vμ(ξ ) is strictly increasing on
(−∞,∞), while uμ(ξ ) is strictly increasing on

(−∞,ξμ
)
, attains its maximum at

ξμ , and is strictly decreasing on
(
ξμ ,∞

)
. All other possible configurations may be

treated in a similar manner.
Let us set ū = max{uL,uR} and identify the points ξ� ∈

(−∞,ξμ
)∪{−∞} and

ξr ∈
(
ξμ , ∞

)∪ {∞} with the property u
(
ξ�
)
= u

(
ξr
)
= ū. For any open interval

(a,b)⊂ (−∞,∞), using (9.8.36)1 and (9.8.35), we deduce

(9.8.39)
b∫

a

[
uμ(ξ )− ū

]
dξ ≤

ξr∫
ξ�

[
uμ(ξ )− ū

]
dξ =−

ξr∫
ξ�

ξ u̇μ(ξ )dξ

= μ u̇μ
(
ξr
)−μ u̇μ (ξ�)− f

(
ū,vμ(ξr)

)
+ f

(
ū,vμ(ξ�)

)≤ f
(
ū,vL

)− f
(
ū,vR

)
.

By virtue of (9.8.39), there is a sequence {μk}, μk ↓ 0 as k → 0, such that {ξμk}
converges to some point ξ0 ∈ (−∞,∞)∪{±∞}, {vμk(ξ )} converges, pointwise on
(−∞,∞), to a monotone increasing function v(ξ ), and {uμk(ξ )} converges, point-
wise on

(−∞,ξ0
)∪ (ξ0 , ∞

)
, to a locally integrable function u(ξ ), which is mono-

tone increasing on (−∞,ξ0) and monotone decreasing on (ξ0 , ∞). Furthermore, it is
easily seen that u(−∞) = uL , u(∞) = uR , v(−∞) = vL and v(∞) = vR .

When ξ0 = −∞ (or ξ0 = ∞), u(ξ ) is a monotone increasing (or decreasing)
function on (−∞,∞), in which case (u(ξ ),v(ξ )) is a standard solution to the Rie-
mann problem. The situation becomes interesting when ξ0 ∈ (−∞,∞). In that case,
as k → ∞ , uμk → u+ωδξ0

, in the sense of distributions, where δξ0
denotes the Dirac

delta function at ξ0 and ω ≥ 0.
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We multiply both equations in (9.8.36) by a test function ϕ ∈ C∞
0 (−∞,∞), inte-

grate the resulting equations over (−∞,∞), and integrate by parts to get

(9.8.40)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞∫
−∞

{
μuμ ϕ̈+

[
f
(
uμ ,vμ

)−ξuμ
]
ϕ̇−uμϕ

}
dξ = 0,

∞∫
−∞

{
μvμ ϕ̈+

[
g
(
uμ ,vμ

)−ξvμ
]
ϕ̇−vμϕ

}
dξ = 0.

We apply (9.8.40) for test functions that are constant over some open interval con-
taining ξ0 and let μ ↓ 0 along the sequence {μk} thus obtaining

(9.8.41)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞∫
−∞

[ f (u(ξ ),v(ξ ))−ξu(ξ )]ϕ̇(ξ )dξ =

∞∫
−∞

u(ξ )ϕ(ξ )dξ +ωϕ
(
ξ0
)
,

∞∫
−∞

[g(u(ξ ),v(ξ ))−ξv(ξ )]ϕ̇(ξ )dξ =

∞∫
−∞

v(ξ )ϕ(ξ )dξ .

By shrinking the support of ϕ around ξ0, one deduces that

(9.8.42)

⎧⎪⎪⎨⎪⎪⎩
lim
ξ↑ξ0

[ f (u(ξ ),v(ξ ))−ξu(ξ )]− lim
ξ↓ξ0

[ f (u(ξ ),v(ξ ))−ξu(ξ )] = ω,

lim
ξ↑ξ0

[g(u(ξ ),v(ξ ))−ξv(ξ )]− lim
ξ↓ξ0

[g(u(ξ ),v(ξ ))−ξv(ξ )] = 0,

where all four limits exist (finite). In particular, this implies that the functions
f (u(ξ ),v(ξ )) and g(u(ξ ),v(ξ )) are locally integrable on (−∞,∞), and (9.8.41)
holds for arbitrary ϕ ∈C∞

0 (−∞,∞). Equivalently,

(9.8.43)

⎧⎨⎩
[ f (u,v)−ξu]·+u+ωδξ0

= 0,

[g(u,v)−ξv]·+v = 0,

in the sense of distributions. We thus conclude that when ω = 0 then (u(ξ ),v(ξ )) is
a standard solution of the Riemann problem, possibly with u

(
ξ0
)
= ∞ , just like the

solution (9.6.4) for the system (7.1.11). Whereas, when ω > 0,
(
u(ξ )+ωδξ0

,v(ξ )
)

may be interpreted as a nonstandard solution to the Riemann problem, containing a
delta shock at ξ0, like the solution (9.6.6) for the system (7.1.11).

We now assume that the system is endowed with an entropy-entropy flux pair
(η ,q), where η(u,v) is convex, with superlinear growth,

(9.8.44)
η(u,v)
|u|+ |v| → ∞ , as |u|+ |v| → ∞ ,



342 IX Admissible Wave Fans and the Riemann Problem

and show that (u(ξ ),v(ξ )) is a standard solution to the Riemann problem, i.e.,ω = 0.
We multiply (9.8.36)1 by ηu

(
uμ ,vμ

)
, (9.8.36)2 by ηv

(
uμ ,vμ

)
, and add the resulting

two equations to get

(9.8.45) μη̈
(
uμ ,vμ

)−μ[ηuuu̇2
μ+2ηuvu̇μ v̇μ+ηvvv̇2

μ
]
= q̇

(
uμ ,vμ

)−ξ η̇(uμ ,vμ).
We let η̄=max{η(uL,vL

)
,η
(
uR,vR

)} and then identify the greatest number ξL in(−∞,ξ0
)∪{−∞} and the smallest number ξR in

(
ξ0 , ∞

)∪{∞} with the property
that η(uμ(ξL),vμ(ξL)) = η

(
uμ
(
ξR
)
,vμ

(
ξR
))

= η̄ . Using (9.8.45),

(9.8.46)

ξR∫
ξL

[
η
(
uμ ,vμ

)− η̄]dξ =−
ξR∫
ξL

ξ η̇
(
uμ ,vμ

)
dξ

≤ q
(
uμ
(
ξL
)
,vμ

(
ξL
))−q

(
uμ
(
ξR
)
,vμ

(
ξR
))
.

The right-hand side of (9.8.46) is bounded, uniformly in μ > 0. Therefore, com-
bining (9.8.46) with (9.8.44) yields

(9.8.47)
∫

{uμ≥ū}
uμ(ξ )dξ → 0, as ū → ∞ ,

uniformly in μ > 0, and hence ω = 0.
It is clear that the same argument applies to all possible configurations of(

uμ(ξ ),vμ(ξ )
)
. We have thus established

In particular, any symmetric system of two conservation laws, with fv = gu �= 0,
satisfies the assumptions of the above theorem. In the literature cited in Section 9.12,
the reader will find assumptions on f and g under which the resulting solution to the
Riemann problem is necessarily bounded. It has also been shown that any shock in
these solutions satisfies the viscous shock admissibility criterion and thereby the Liu
E-condition.

Following up on the discussion in Section 8.6, one may argue that wave fan
solutions of the Riemann problem, with end-states UL and UR , should not be termed
admissible unless they are captured through the t → ∞ asymptotics of solutions of
parabolic systems (8.6.1), under initial data U0(x) which decay sufficiently fast to UL

9.8.3 Theorem. Assume that the system (9.8.33), where fvgu > 0, is endowed with
a convex entropy η(u,v), exhibiting superlinear growth (9.8.44). Then sequences
{(uμk ,vμk

)} of solutions to (9.8.36), (9.8.37), with μk → 0 as k → ∞ , converge
pointwise, as well as in the sense of distributions, to standard solutions (u,v) of
the Riemann problem (9.8.33), (9.8.34). At least one of the functions u(ξ ), v(ξ ) is
monotone on (−∞,∞), while the other may have at most one extremum, which may
be bounded or unbounded.
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and UR , as x → ∓∞ . In fact, the results reported in Section 8.6 on the asymptotic
stability of viscous shock profiles address a special case of the above issue. The
complementary special case, the asymptotic stability of rarefaction waves, has also
been studied extensively (references in Section 9.12). The task of combining the
above two ingredients so as to synthesize the full solution of the Riemann problem
has not yet been accomplished in a definitive manner.

9.9 Interaction of Wave Fans

Up to this point, we have exploited the invariance of systems of conservation laws
under uniform rescaling of the space-time coordinates in order to perform stretchings
that reveal the local structure of solutions. However, one may also operate at the
opposite end of the scale by performing contractions of the space-time coordinates
that will provide a view of solutions from a large distance from the origin. It is
plausible that initial data U0(x) which converge sufficiently fast to states UL and UR ,
as x →−∞ and x →∞ , generate solutions that look from afar like centered wave fans
joining the state UL , on the left, with the state UR , on the right. Actually, as we shall
see in later chapters, this turns out to be true. Indeed, it seems that the quintessential
property of hyperbolic systems of conservation laws in one space dimension is that
the Riemann problem describes the asymptotics of solutions at both ends of the time
scale: instantaneous and long-term.

The purpose here is to discuss a related question, which, as we shall see in Chap-
ter XIII, is of central importance in the construction of solutions by the random
choice method. We consider three wave fans: the first, joining a state UL , on the left,
with a state UM , on the right; the second, joining the state UM , on the left, with a
state UR , on the right; and the third, joining the state UL , on the left, with the state

with the respective n-tuples α = (α1, · · · ,αn), β = (β1, · · · ,βn) and ε = (ε1, · · · ,εn)
of wave amplitudes. On the basis of the arguments presented above, it is natural to
regard the wave fan ε as the result of the interaction of the wave fan α , on the left,
with the wave fan β , on the right. Recalling (9.3.4), UM =Ω(α;UL),UR =Ω(β ;UM)
and UR =Ω(ε;UL), whence we deduce

(9.9.1) Ω(ε;UL) =Ω(β ;Ω(α;UL)).

This determines implicitly the relation

(9.9.2) ε = E(α;β ;UL).

Our task is to study the properties of the function E in the vicinity of (0;0;UL).
Let us first consider systems with characteristic families that are either genuinely

nonlinear (7.6.13) or linearly degenerate (7.5.2), in which case the wave curves Φi ,
and thereby Ω and E, are all C2,1 functions. Since Ω(0;Ū) = Ū ,

(9.9.3) E(α;0;UL) = α, E(0;β ;UL) = β ,

UR , on the right. These may be identified by their left states UL ,UM and UL , together
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whence

(9.9.4)
∂Ek

∂αi
(0;0;UL) = δik ,

∂Ek

∂β j
(0;0;UL) = δ jk ,

namely, the Kronecker delta.
Starting from the identity

(9.9.5) E(α;β ;UL)−E(α;0;UL)−E(0;β ;UL)+E(0;0;UL)

=
n

∑
i, j=1

{E(α1, · · · ,αi,0, · · · ,0;0, · · · ,0,β j, · · · ,βn;UL)

−E(α1, · · · ,αi−1,0, · · · ,0;0, · · · ,0,β j, · · · ,βn;UL)

−E(α1, · · · ,αi,0, · · · ,0;0, · · · ,0,β j+1, · · · ,βn;UL)

+E(α1, · · · ,αi−1,0, · · · ,0;0, · · · ,0,β j+1, · · · ,βn;UL)},
one immediately deduces

(9.9.6) E(α;β ;UL) = α+β +
n

∑
i, j=1

αiβ j

∫ 1

0

∫ 1

0

∂ 2E
∂αi∂β j

dρdσ ,

with ∂ 2E/∂αi∂β j at (α1, · · · ,αi−1,ραi,0, · · · ,0;0, · · · ,0,σβ j,β j+i, · · · ,βn;UL).
We say the i-wave of the wave fan α and the j-wave of the wave fan β are

approaching when either (a) i > j or (b) i = j, the i-characteristic family is genuinely
nonlinear, and at least one of αi , βi is negative, i.e., corresponds to a shock. The
amount of wave interaction of the fans α and β will be measured by the quantity

(9.9.7) D(α,β ) = ∑
app

|αi||β j|,

where ∑app denotes summation over all pairs of approaching waves. The crucial
observation is that when the wave fans α and β do not include any approaching
waves, i.e., D(α,β ) = 0, then the wave fan ε is synthesized by “gluing together”
the wave fan α , on the left, and the wave fan β , on the right; that is, ε = α +β . In
particular, whenever the i-wave of α and the j-wave of β are not approaching, either
because i < j or because i = j and both αi and βi are positive (i.e., they correspond
to rarefaction waves) then

(9.9.8) E(α1, · · · ,αi,0, · · · ,0;0, · · · ,0,β j, · · · ,βn;UL)

= (α1, · · · ,αi,0, · · · ,0)+(0, · · · ,0,β j, · · · ,βn),
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whence it follows that the corresponding (i, j)-term in the summation on the right-
hand side of (9.9.6) vanishes. Thus (9.9.6) reduces to

(9.9.9) ε = α+β +∑
app
αiβ j

∂ 2E
∂αi∂β j

(0;0;UL)+D(α,β )O(|α|+ |β |).

The salient feature of (9.9.9), which will play a key role in Chapter XIII, is that
the effect of wave interaction is induced solely by pairs of approaching waves and
vanishes in the absence of such pairs. In order to determine the leading interaction
term, of quadratic order, we first differentiate (9.9.1) with respect to β j and set β = 0.
Upon using (9.3.8), this yields

(9.9.10)
n

∑
k=1

∂Ek

∂β j
(α;0;UL)

∂Ω
∂εk

(E(α;0;UL);UL) = R j(Ω(α;UL)).

Next we differentiate (9.9.10) with respect to αi and set α = 0. Recall that we are in-
terested only in the case where the i-wave of α and the j-wave of β are approaching,
so in particular i ≥ j. Therefore, upon using (9.9.3), (9.9.4), (9.3.8), (9.3.9), (9.3.10)
and (7.2.15), we conclude

(9.9.11)
n

∑
k=1

∂ 2Ek

∂αi∂β j
(0;0;UL)Rk(UL) =−[Ri(UL),R j(UL)],

whence

(9.9.12)
∂ 2Ek

∂αi∂β j
(0;0;UL) =−Lk(UL)[Ri(UL),R j(UL)].

In particular, when the system is endowed with a coordinate system of Riemann in-
variants, under the normalization (7.3.8) the Lie brackets [Ri,R j] vanish (cf. (7.3.10)),
and hence the quadratic term in (9.9.9) drops out.

Upon combining (9.9.9) with (9.9.12), we arrive at

9.9.1 Theorem. In a system with characteristic families that are either genuinely
nonlinear or linearly degenerate, let ε = (ε1, · · · ,εn) be the wave fan generated
by the interaction of the wave fan α = (α1, · · · ,αn), on the left, with the wave fan
β = (β1, · · · ,βn), on the right. Then

(9.9.13) ε = α+β −∑
i> j
αiβ jL[Ri,R j]+D(α,β )O(|α|+ |β |),

where L denotes the n × n matrix with k-row vector the left eigenvector Lk , and
D(α,β ) is the amount of wave interaction of α and β . When the system is endowed
with a coordinate system of Riemann invariants, the quadratic term vanishes.

We now consider wave interactions for systems with characteristic families that
may be merely piecewise genuinely nonlinear, so that the incoming and outgoing
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wave fans will contain composite i-waves, each one comprising a finite sequence of
elementary i-waves, namely i-shocks and i-rarefactions. There are two obstacles to
overcome. The first is technical: As noted in Section 9.5, the wave curves Φi , and
thereby the functions Ω and E, may now be merely Lipschitz continuous. Thus, the
derivation, above, of (9.9.13) is no longer valid, as it relies on Taylor expansion. The
most serious difficulty, however, is how to identify approaching waves. It is clear that
an i-wave, on the left, and a j-wave, on the right, will be approaching if i > j and
not approaching if i < j. The situation is more delicate when both incoming waves
belong to the same characteristic family. Recall that in the genuinely nonlinear case
two incoming i-waves always approach when at least one of them is a shock and
never approach when both are rarefactions. By contrast, here two incoming i-wave
fans may include pairs of non-approaching i-shocks as well as pairs of approaching
i-rarefaction waves. Consequently, the analog of Theorem 9.9.1 for such systems is
quite involved:

9.9.2 Theorem. In a system with characteristic families that are either piecewise
genuinely nonlinear or linearly degenerate, let ε = (ε1, . . . ,εn) be the wave fan gen-
erated by the interaction of the wave fan α = (α1, . . . ,αn), on the left, with the wave
fan β = (β1, . . . ,βn), on the right. Then

(9.9.14) ε = α+β +O(1)D(α,β ),

where

(9.9.15) D(α,β ) = ∑θ |γ||δ |,
with the summation running over all pairs of elementary waves, such that the first
one, with amplitude γ , is part of an i-wave fan incoming from the left, while the
second one, with amplitude δ , is part of a j-wave fan incoming from the right; and
the weighting factor θ is selected according to the following rules.

(a) When i < j, then θ = 0.

(b) When either i > j or i = j and γδ < 0, then θ = 1.

(c) When i = j and γδ > 0, then θ is determined as follows:

(c)1 If both incoming elementary waves are i-shocks, with respective speeds σL and
σR , then

(9.9.16)1 θ = (σL −σR)
+ .

(c)2 If the elementary wave incoming from the left is an i-shock with speed σL , while
the elementary wave incoming from the right is an i-rarefaction, joining states UR
and Vi(τR;UR), then

(9.9.16)2 θ =
1
τR

τR∫
0

[σL −λi(Vi(τ;UR))]
+dτ.
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(c)3 If the elementary wave incoming from the left is an i-rarefaction, joining states
UL and Vi(τL;UL), while the elementary wave incoming from the right is an
i-shock with speed σR , then

(9.9.16)3 θ =
1
τL

τL∫
0

[λi(Vi(τ ′;UL))−σR]
+dτ ′.

(c)4 If, finally, both incoming elementary waves are i-rarefactions, with the one
on the right joining UR and Vi(τR;UR) and the one on the left joining UL and
Vi(τL;UL), then

(9.9.16)4 θ =
1

τLτR

τL∫
0

τR∫
0

[λi(Vi(τ ′;UL))−λi(Vi(τ;UR))]
+dτdτ ′.

Sketch of Proof. The objective here is to explain why and how the weighting factor
θ comes into play. For the case where an i-elementary wave, incoming from the
left, is interacting with a j-elementary wave, incoming from the right, it is easy to
understand, on the basis of our earlier discussions in this section, why it should be
θ = 0 when i < j and θ = 1 when i > j; the real difficulty arises when i = j.

It should be noted that if one accepts (9.9.16)1 as the correct value for the weight-
ing factor θ in the case of interacting shocks, then (9.9.16)2 , (9.9.16)3 and (9.9.16)4 ,
which concern rarefaction waves, may be derived as follows. Any i-rarefaction wave
is visualized as a fan of infinitely many (nonadmissible) i-rarefaction shocks, each
with infinitesimal amplitude and characteristic speed, and then its contribution to
the amount of wave interaction is evaluated by tallying the contributions of these
infinitesimal shocks, using (9.9.16)1 .

In what follows, it will be shown that (9.9.16)1 does indeed provide the correct
value for the weighting factor when each incoming wave fan consists of a single
i-shock. The proof for general incoming wave fans, which can be found in the refer-
ences cited in Section 9.12, is long and technical.

Assume the i-shock incoming from the left joins UL with UM and has amplitude
γ and speed σL , while the i-shock incoming from the right joins UM with UR and has
amplitude δ and speed σR . By the Lax E-condition, σL ≥ λi(UM) ≥ σR , so that the
relative speed θ = σL −σR of the two incoming shocks is nonnegative. Notice that θ
essentially measures the angle between these two shocks; accordingly, θ is dubbed
the incidence angle.

The collision of the two incoming shocks will generate an outgoing wave fan
ε = (ε1, . . . ,εn), which is determined by solving the Riemann problem with end-
states UL and UR . For simplicity, we assume that the i-wave fan of ε consists of a
single i-shock, joining ŪL with ŪR , having amplitude εi and speed σ .

There are two distinct possible wave configurations, as depicted in Fig. 9.9.1 (a)
and (b), depending on whether γ and δ have the same or opposite signs. In either
case we have ε = ε(γ,δ ;UL), where ε(0,δ ;UL) = (0, . . . ,0,δ ,0, . . . ,0) and where
ε(γ,0;UL) = (0, . . . ,0,γ,0, . . . ,0). Therefore, εi = γ + δ +O(γδ ) and ε j = O(γδ ),
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for j �= i. This relatively crude bound, O(γδ ), for the amount of wave interaction
will suffice for the intended applications, in Chapter XIII, when γδ < 0, as in that
case the cancellation in the linear term dominates. By contrast, when γδ > 0 a more
refined estimate is needed. It is at this point that the incidence angle θ will come into
play, as a measure of the rate the shock speed varies along the shock curve.

Recalling the discussion in Section 9.3,

(9.9.17) ŪL =UL +∑
j<i
ε jR j(UM)+O(|εL|)γ+o(|εL|),

(9.9.18) ŪR =UR +∑
j>i
ε jR j(UM)+O(|εR|)δ +o(|εR|),

(9.9.19) F(ŪL) = F(UL)+∑
j<i
ε jλ j(UM)R j(UM)+O(|εL|)γ+o(|εL|),

(9.9.20) F(ŪR) = F(UR)+∑
j>i
ε jλ j(UM)R j(UM)+O(|εR|)δ +o(|εR|),

where εL and εR stand for (ε1, . . . ,εi−1,0, . . . ,0) and (0, . . . ,0,εi+1, . . . ,εn), respec-
tively.
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For convenience, we measure the amplitude of i-shocks by the projection of their
jump on the left eigenvector Li(UM). Thus

(9.9.21)

γ = Li(UM)[UM −UL], δ = Li(UM)[UR −UM], εi = Li(UM)[ŪR −ŪL].

Starting out from the equation

(9.9.22) [ŪR −ŪL]− [UM −UL]− [UR −UM] = [ŪR −UR]− [ŪL −UL],

multiplying it from the left by Li(UM), and using (9.9.17), (9.9.18) and (9.9.21), we
deduce

(9.9.23) εi = γ+δ +O(|εL|+ |εR|)(γ+δ )+o(|εL|+ |εR|).
Similarly, we consider the equation

(9.9.24)

σ [ŪR −ŪL]−σL[UM −UL]−σR[UR −UM] = [F(ŪR)−F(UR)]− [F(ŪL)−F(UL)],

which we get by combining the Rankine-Hugoniot jump conditions for the three
shocks; we multiply it from the left by Li(UM) and use (9.9.19) and (9.9.20) to get

(9.9.25) σεi = σLγ+σRδ +O(|εL|+ |εR|)(γ+δ )+o(|εL|+ |εR|).
Recalling that σL −σR = θ , (9.9.25) together with (9.9.23) yield

(9.9.26)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σL = σ +

δθ
γ+δ

+O(|εL|+ |εR|)+o(|εL|+ |εR|)(γ+δ )−1

σR = σ − γθ
γ+δ

+O(|εL|+ |εR|)+o(|εL|+ |εR|)(γ+δ )−1.

Substituting σL and σR from (9.9.26) into (9.9.24) and using (9.9.22), (9.9.17),
(9.9.18), (9.9.19) and (9.9.20), we obtain

(9.9.27) ∑
j �=i
ε j|λ j(UM)−σ |R j(UM)

=
−δθ
γ+δ

[UM −UL]+
γθ
γ+δ

[UR −UM]+O(|εL|+ |εR|)(γ+δ )+o(|εL|+ |εR|).

Multiplying the above equation, from the left, by L j(UM), j �= i, and noting that

(9.9.28) L j(UM)[UM −UL] = O(γ2), L j(UM)[UR −UM] = O(δ 2),

we deduce
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(9.9.29) ε j = O(1)θγδ , j �= i.

Equations (9.9.23) and (9.9.25) then give

(9.9.30) εi = γ+δ +O(1)θγδ ,

(9.9.31) σεi = σLγ+σRδ +O(1)θγδ .

We have thus established the assertion of the theorem, for the special case considered
here.

One may regard the amplitude of a shock as its “mass” and the product of the
amplitude with the speed of a shock as its “momentum”. Thus, one may interpret
(9.9.30) as balance of “mass” and (9.9.31) as balance of “momentum” under collision
of two shocks. Equation (9.9.14) may then be interpreted as balance of “mass” under
collision of wave fans. Similarly, one may define the “momentum” of a composite
i-wave comprising, say, M i-shocks with amplitude γI and speed σI , I = 1, . . . ,M,
and N i-rarefaction waves, joining states UJ and Vi(τJ ;UJ), by tallying the “mo-
menta” of its constituent elementary waves:

(9.9.32) Γi =
M

∑
I=1

σIγI +
N

∑
J=1

τJ∫
0

λi(Vi(τ;UJ))dτ.

Then (9.9.31) admits the following extension. When two incoming wave fans α and
β interact, the “momentum” Γi of the outgoing i-wave is related to the “momenta”
Γ−

i and Γ+
i of the incoming i-waves by

(9.9.33) Γi = Γ−
i +Γ+

i +O(1)D(α,β ), i = 1, . . . ,n.

9.10 Breakdown of Weak Solutions

As we saw in the previous section, wave collisions may induce wave amplification.
The following example shows that, as a result, there exist resonating wave patterns
that drive the oscillation and/or total variation of weak solutions to infinity, in finite
time.

Consider the system

(9.10.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tu+∂x(uv+w) = 0

∂tv+∂x(
1

16 v2) = 0

∂tw+∂x(u−uv2 −vw) = 0.

The characteristic speeds are λ1 = −1, λ2 =
1
8 v, λ3 = 1, so that strict hyperbolicity

holds for −8 < v < 8. The first and third characteristic families are linearly degener-
ate, while the second characteristic family is genuinely nonlinear. Clearly, the system
is partially decoupled: the second, Burgers-like, equation by itself determines v.
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The Rankine-Hugoniot jump conditions for a shock of speed s, joining the state
(u−,v−,w−), on the left, with the state (u+,v+,w+), on the right, here read

(9.10.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u+v+−u−v−+w+−w− = s(u+−u−)

1
16 v2

+− 1
16 v2− = s(v+−v−)

u+−u−−u+v2
++u−v2−−v+w++v−w− = s(w+−w−).

One easily sees that 1-shocks are 1-contact discontinuities, with s = −1, v− = v+
and

(9.10.3)1 w+−w− =−(v±+1)(u+−u−).

Similarly, 3-shocks are 3-contact discontinuities, with s = 1, v− = v+ and

(9.10.3)3 w+−w− =−(v±−1)(u+−u−).

Finally, for 2-shocks, s = 1
16 (v− + v+), and v+ < v− , in order to satisfy the Lax

E-condition.
Collisions between any two shocks, joining constant states, induce a jump dis-

continuity, which can be resolved by solving simple Riemann problems. In particular,
when a 1-shock or a 3-shock collides with a 2-shock, the 2-shock remains undis-
turbed, as (9.10.1)2 is decoupled from the other two equations of the system. This
collision, however, produces both a 1- and a 2-outgoing shock, which may be inter-
preted as the “transmitted” and the “reflected” part of the incident 1- or 2-shock.

We now construct a piecewise constant, admissible solution of (9.10.1) with wave
pattern depicted in Fig. 9.10.1: Two 2-shocks issue from the points (−1,0) and (1,0),
with respective speeds 1

4 and − 1
4 . On the left of the left 2-shock, v = 4; on the right

of the right 2-shock, v =−4; and v = 0 between the two 2-shocks. A 1-shock issues
from the origin (0,0), and upon colliding with the left 2-shock it is partly transmitted
as a 1-shock and partly reflected as a 3-shock. This 3-shock, upon impinging on the
right 2-shock, is in turn partly transmitted as a 3-shock and partly reflected as a 1-
shock, and the process is repeated ad infinitum.

By checking the Rankine-Hugoniot conditions (9.10.2), one readily verifies that,
for instance, initial data

(9.10.4) (u(x,0),v(x,0),w(x,0)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−65,+4,+225), −∞ <x <−1

(+15,0,−15), −1 < x < 0

(−15,0,+15), 0 < x < 1

(−63,−4,−225), 1 < x < ∞

generate a solution with the above structure.
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(–1,0) (0,0) (1,0)

Fig. 9.10.1

The aim is to demonstrate that each reflection increases the strength of the shock
by a constant factor. With collisions becoming progressively more frequent as the
distance between the two 2-shocks is decreasing, until finally vanishing at t = 4, the
conclusion will then be that the oscillation of the solution explodes as t ↑ 4. It will
be convenient to measure the strength of 1- and 3-shocks by the size of the jump of
u across them.

Let us first examine the interaction depicted in Fig. 9.10.2, where a 1-shock hits
the left 2-shock, from the right.
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Fig. 9.10.2 Fig. 9.10.3

We need to compare the strength |u3 − u2| of the reflected 3-shock with the
strength |u3−u4| of the incident 1-shock. We write the Rankine-Hugoniot conditions,
(9.10.2) or (9.10.3), as applicable, for the five shocks involved in the interaction:
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(9.10.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w3 −w4 =−(u3 −u4)

w1 −w0 =−5(u1 −u0)

w3 −w2 = u3 −u2

−4u0 +w4 −w0 =
1
4 (u4 −u0)

u4 −u0 +16u0 +4w0 =
1
4 (w4 −w0)

−4u1 +w2 −w1 =
1
4 (u2 −u1)

u2 −u1 +16u1 +4w1 =
1
4 (w2 −w1).

After elementary eliminations, one arrives at

(9.10.6) u3 −u2 =− 10
9 (u3 −u4),

which shows that as the 1-shock is reflected into a 3-shock, the strength increases by
a factor 10/9.

Next we examine the interaction depicted in Fig. 9.10.3, where a 3-shock hits
the right 2-shock from the left. By again writing the Rankine-Hugoniot conditions,
completely analogous to (9.10.5), and after straightforward eliminations, one ends up
once more with (9.10.6). Thus, the strength |u2−u3| of the reflected 1-shock exceeds
the strength |u4 −u3| of the incident 3-shock by a factor 10/9.

We have now confirmed that the oscillation of the solution blows up as t ↑ 4.
The above setting, which renders the calculation particularly simple, may appear at
first as a singular, isolated example. However, after some reflection one realizes that
the wave resonance persists under small perturbations of the equations and/or initial
data, i.e., this kind of catastrophe may be generic.

Catastrophes of a different nature may occur as well: The total variation may
blow up even though the oscillation remains bounded. This may be demonstrated in
the context of the system

(9.10.7)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tu+∂x(uv2 +w) = 0

∂tv+∂x(
1

16 v2) = 0

∂tw+∂x(u−uv4 −v2w) = 0,

which has the same characteristic speeds as (9.10.1) and similarly admits piecewise
constant solutions with the wave pattern depicted in Fig. 9.10.1. It is possible to
adjust the speeds of the two 2-shocks in such a manner that after any two successive
reflections, 1- and 3-shocks regain their original left and right states, i.e., the solution
takes values in a finite set of states. On the other hand, as t approaches from below
the time t∗ of collision of the two 2-shocks, the number of shocks, of fixed strength,
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that cross the t-time line grows without bound, thus driving the total variation to
infinity. Details may be found in the references cited in Section 9.12.

In view of the above, one should not expect global existence of weak solutions
to the Cauchy problem for general systems of conservation laws and general initial
data. Consequently, the aim of the theory should be to establish existence in the
large, either for general systems under “small” initial data, or for special systems
under general initial data. The hope is that this special class will include the systems
arising in continuum physics, which are endowed with special features.

9.11 Notes

As pointed out in the historical introduction, the Riemann problem was originally
formulated, and solved, by Riemann [1], in the context of the system (7.1.12) of
isentropic gas dynamics.

For details on the structure of general self-similar solutions to hyperbolic conser-
vation laws, outlined in Section 9.1, and proofs that, for genuinely nonlinear systems,
such solutions are necessarily special functions of bounded variation, the reader is
referred to Dafermos [28] and Elling and Roberts [2].

The method of shock and rarefaction wave curves, conceived by Riemann, was
gradually developed in order to solve special Riemann problems, for the system of
isentropic or adiabatic gas dynamics, describing wave interactions and shock tube
experiments. This early research is surveyed in Courant and Friedrichs [1]. The dis-
tillation of that work led to the solution, by Lax [2], of the Riemann problem, with
weak waves, for strictly hyperbolic systems of conservation laws with character-
istic families that are genuinely nonlinear or linearly degenerate (Theorem 9.4.1).
Detailed expositions of the solution to the Riemann problem for the system of adia-
batic (nonisentropic) gas dynamics are found in the texts by Smoller [3], Serre [11],
Godlewski and Raviart [2], Holden and Risebro [5], and especially in the monograph
by Chang and Hsiao [3]. Early references addressing the issue of large data include
Smoller [1,2], Smith [1] and Sever [1,2,3]. In particular, Sever [3] sounds the warning
that, even for genuinely nonlinear systems, the standard shock admissibility criteria
may be inadequate for securing uniqueness of solutions to the Riemann problem with
large data.

Dealing with systems that are not genuinely nonlinear required additional effort.
Following the prescription of the Oleinik E-condition, the form of the solution of the
Riemann problem for the general scalar conservation law was described by Gelfand
[1], through an example. Subsequently, Wendroff [1] solved the Riemann problem
for the systems (7.1.11) and (7.1.8), when σuu may change sign. The construction
of the solution for (7.1.2) and (7.1.11) described in this section, which employs the
convex or concave envelope of f and σ , is found in Dafermos [2] and Leibovich [1].
The above results were apparently anticipated by research in China, in the 1960’s,
which did not circulate in the international scientific community until much later,
e.g., Chang and Hsiao [1,2], and Hsiao and Zhang [1]. The monograph by Chang
and Hsiao [3] provides a detailed exposition and many references. In particular, Chen
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and Young [2] investigate whether vacuum states may arise in the solution to the Rie-
mann problem for the equations of nonisentropic flow of gases with general equa-
tions of state. The study of special systems motivated the solution by Tai-Ping Liu [1]
of the Riemann problem for arbitrary piecewise genuinely nonlinear, strictly hyper-
bolic systems of conservation laws. A more precise analysis, by Iguchi and LeFloch
[1], of the structure of wave fan curves associated with piecewise genuinely nonlin-
ear characteristic families has led to the solution of the Riemann problem for more
general strictly hyperbolic systems of conservation laws, not necessarily piecewise
genuinely nonlinear. See also Ancona and Marson [4]. The observation that wave fan
curves may be merely Lipschitz is due to Bianchini [6].

For systems with flux functions that are merely Lipschitz continuous, the Rie-
mann problem is solved by Correia, LeFloch and Thanh [1]. For systems in which
the flux function experiences jump discontinuities, see LeFloch and Thanh [2,4]. See
also Holden and Risebro [4], Chalons, Raviart and Seguin [1], Colombo and Mar-
cellini [1], and Andreianov [1]. The Riemann problem for balance laws is discussed
in Hong and Temple [1], and in Goatin and LeFloch [4]

For early references on delta shocks, consult Keyfitz and Kranzer [2,3,4]. A de-
tailed presentation is found in the memoir by Sever [12], and a “retrospective and
prospective” in Keyfitz [4]. To a great extent, the theory of delta shocks was devel-
oped in conjunction with the study of the pressureless gas model. In that connection,
see Li, Zhang and Yang [1], Feimin Huang [2], Sever [10,11], and the references
cited in Section 11.14. Furthermore, Gui-Qiang Chen and Hailiang Liu [1,2] demon-
strate that in the limit, as the response of the pressure to the density relaxes to zero,
solutions of the Riemann problem for the system of isentropic or nonisentropic gas
dynamics reduce to solutions of the equations of pressureless gas dynamics with
delta shocks. Delta shocks are also discussed by Ercole [1], Joseph [1], Hayes and
LeFloch [1], Tan [1], Tan, Zhang and Zheng [1], Sheng and Zhang [1], Hanchun
Yang [1], Li and Yang [1], Brenier [3], Danilov and Shelkovich [1,2], Danilov and
Mitrovich [2], Panov and Shelkovich [1], Shelkovich [1,2,3], Keyfitz and Tsikkou
[1], Tsikkou [3], and Joseph and Sahoo [2].

The entropy rate admissibility criterion was proposed by Dafermos [3]. For mo-
tivation from the kinetic theory, see Ferziger and Kaper [1, §5.5] and Kohler [1].
Additional motivation is provided by the vanishing viscosity approach; see Bethuel,
Despres and Smets [1]. A proof that the entropy rate criterion characterizes admissi-
ble L∞ solutions for genuinely nonlinear scalar conservation laws is found in Blaser
and Rivière [1]. Theorems 9.7.2 and 9.7.5 are from Dafermos [32], while Theorem
9.7.6 is due to Hsiao [1]. A detailed alternative proof of Theorem 9.7.3 appears in
Dafermos [18]. Finally, Theorem 9.7.4 is taken from Dafermos [29].

The efficacy of the entropy rate criterion has also been tested on systems that
change type, modeling phase transitions (Hattori [1,2,3,4,5,6,7], Pence [2]). See also
Aavatsmark [1], Sever [7], and Krejčı́ and Straskraba [1].

The status of the entropy rate criterion for the Euler equations in two space di-
mensions is discussed in Chiodaroli and Kreml [1].

An alternative characterization of the solution of the Riemann problem by means
of an entropy inequality is due to Heibig and Serre [1]. For other results on entropy
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minimization see Tadmor [1], Kröner, LeFloch and Thanh [1], Belletini, Bertini,
Mariani and Novega [1], and Bonaschi, Carillo, DiFrancesco and Peletier [1].

The study of self-similar solutions of hyperbolic systems of conservation laws as
limits of self-similar solutions of dissipative systems with time-dependent artificial
viscosity was initiated, independently, by Kalasnikov [1], Tupciev [1,2], and Dafer-
mos [4]. This approach was initially employed, in Dafermos [4,5] and Dafermos and
DiPerna [1], for solving the Riemann problem in the case of strictly hyperbolic sys-
tems of two conservation laws. In particular, the treatment here of the system (9.8.33)
has been adapted from Dafermos and DiPerna [1].

Theorem 9.8.1, due to Tzavaras [3], provided the earliest complete construction
of solutions to the Riemann problem, for general strictly hyperbolic systems of con-
servation laws, without any assumption of piecewise genuine nonlinearity. A parallel
construction, at the same level of generality, by means of the standard vanishing vis-
cosity approach (see Chapter XV), was later provided by Bianchini and Bressan [5],
and Bianchini [6]. In fact, the last reference motivated the construction of wave fan
curves by the method of viscous wave fans, developed here, in Section 9.8. An alter-
native construction of the wave fan curves, also by the method of viscous wave fans,
is found in Joseph and LeFloch [4].

For construction of solutions to the Riemann problem for particular hyperbolic
systems through the viscous wave fan approach, the reader may consult the following
references: Yong Jung Kim [1], Slemrod and Tzavaras [1,3], Tzavaras [2, 5], and
Andreianov [2], for strictly hyperbolic systems; Boutin, Coquel and LeFloch, for
coupled systems; Ercole [1], Keyfitz and Kranzer [3,4], Joseph [1], Tan [1], Tan,
Zhang and Zheng [1], Sheng and Zhang [1], and Li and Yang [1], for nonstrictly
hyperbolic systems with delta shocks; Slemrod [4], and Fan [1,2], for systems of
mixed type; and Slemrod [7], for solutions with spherical symmetry to the system of
isentropic gas dynamics.

Explicit constructions of solutions to Riemann problems for the systems of isen-
tropic or nonisentropic gas flow, via the standard vanishing viscosity approach, are
found in Lin and Yang [1], Huang, Jian and Wang [1], Huang, Wang and Yang [1,2],
Huang, Li and Wang [1], Huang and Li [1], Huang, Wang, Wang and Yang [1],
Zhang, Pan, Wang and Tan [1], and Zhang, Pan and Tan [1].

On the question of whether structurally stable solutions of a Riemann problem,
even in the presence of strong and/or undercompressible shocks, may be approxi-
mated by viscous wave fans, see Schecter [4,5,6], Lin and Schecter [1], Schecter and
Szmolyan [1], Weishi Liu [1], and Xiao-Biao Lin [1,2,3,4,5,6]. For related numerical
computations, see Schecter, Marchesin and Plohr [3].

There are numerous extensions of the idea of modifying standard perturbations
of systems of conservation laws so as to preserve self-similarity of solutions. In that
connection, see Li, Zhang and Yang [1], for the system of pressureless gas dynam-
ics in two space dimensios; Slemrod and Tzavaras [2], and Tzavaras [1], for the
Broadwell system of gas dynamics; Joseph and LeFloch [1,2,3,4,5], and LeFloch and
Rohde [1], for the Riemann problem on a half-plane or on a quarter-plane, for gen-
eral viscosity matrices, or when viscosity is replaced by time-dependent viscosity-
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capillarity or relaxation; Jiequan Li and Peng Zhang [1], for the system (7.1.26)
modeling combustion, with the constant reaction rate δ replaced by δ/t.

The current status of the theory of the Riemann problem for systems that are not
strictly hyperbolic is far from definitive. Both existence and admissibility of solutions
raise thorny issues, as wave fans may comprise a great variety of exotic waves such as
overcompressive or undercompressive shocks, delta shocks, and oscillations. It is fu-
tile to aim for an all-encompassing theory; one should focus, instead, on specific sys-
tems arising in continuum physics, most notably in elasticity and multi-phase flows.
Progress has been made on the classification of such systems and on the existence
and uniqueness of admissible solutions; see Glimm [2], Azevedo and Marchesin [1],
Azevedo, Marchesin, Plohr and Zumbrun [1,2], Freistühler [3], Isaacson, Marchesin
and Plohr [1], Isaacson, Marchesin, Plohr and Temple [1,2], Isaacson and Temple
[2], Schaeffer and Shearer [2], Schecter, Marchesin and Plohr [1,2], M. Shearer [4,5],
Shearer, Schaeffer, Marchesin and Paes-Leme [1], Schecter and Shearer [1], Schulze
and Shearer [1], Tang and Ting [1], Zhu and Ting [1], Čanić [1,2], Čanić and Peters
[1], Peters and Čanić [1], Ercole [1], Keyfitz and Kranzer [1,2,3], Tan [1], Tan, Zhang
and Zheng [1], Schecter [1,2,3], Chalons and Coquel [1], Hanche-Olsen, Holden and
Risebro [1], Azevedo, de Souza, Furtado and Marchesin [1], Azevedo, Eschenazi,
Marchesin and Palmeira [1], Lambert and Marchesin [2], Rodrigues-Bermúdez and
Marchesin [1], Chapiro, Marchesin and Schecter [1], and Silva and Marchesin [1].
Ostrov [3] provides an instructive example, in which one obtains distinct solutions
to the Riemann problem, via the vanishing viscosity method, by varying the relative
size of viscosity coefficients.

The reader may get some idea of the wide variety of wave configurations encoun-
tered in solutions of the Riemann problem for systems arising in continuum physics
from Tong Zhang and Yuxi Zheng [2], which treats the system of balance laws gov-
erning Chapman-Jouguet combustion. Interesting Riemann problems arise even in
differential geometry; see Bascar and Prasad [1].

The solution of the Riemann problem for systems of mixed type, employed to
model phase transitions, comprises phase boundaries, in addition to classical shocks
and rarefaction waves. As already noted in Section 8.8, the admissibility of phase
boundaries is dictated by kinetic relations. Solutions of Riemann problems of this
type are found in Fan [1,2,5,6], Frid and Liu [1], Hattori [1,2,3,4,7,8], Holden [1],
Hsiao [2], Hsiao and DeMottoni [1], Keyfitz [1], LeFloch and Thanh [1], Mercier
and Piccoli [1,2], Pence [2], M. Shearer [1,3], Shearer and Yang [1], Slemrod [5],
Corli and Fan [1], and Fan and Lin [1]. For an informative discussion and additional
references, see the monograph by LeFloch [5].

The Riemann problem has also been posed for quasilinear hyperbolic systems
(9.8.18) that are not in conservative form, and solved either by piecing together
rarefaction waves and shocks defined by the approach outlined in Section 8.7 (see
LeFloch and Liu [1], LeFloch and Tzavaras [1], and Colombo and Monti [1]) or
via the vanishing viscosity approach (Bianchini and Bressan [5], Bianchini [6]). R.
Young [10] exhibits systems in that form for which the Riemann problem admits
multiple solutions containing rarefaction waves and no shocks.
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For the solution of the Riemann problem on the quarter-plane by the vanishing
viscosity method, see Bianchini and Spinolo [1]. Equally well, one may employ a
construction via viscous wave fans, as explained in Section 9.8. See Christoforou
and Spinolo [1,2,3]. For applications, see Andrianov and Warnecke [1,2], LeFloch
and Thanh [2], LeFloch and Shearer [1], and Joseph and Sahoo [1].

So-called generalized Riemann problems, in which the initial data are smooth
(rather than constant) on both sides of a jump discontinuity, are discussed in Ta-tsien
Li and De-yin Kong [2], Ta-tsien Li and Libin Wang [2,4,5,6], Mentrelli and Ruggeri
[1], Ben Artzi [1], and Ben-Artzi and Li [1]. For a comprehensive treatment, see the
monograph by Ben-Artzi and Falcovitz [1].

The study of interactions of wave fans and the original proof of Theorem 9.9.1,
for genuinely nonlinear systems, is due to Glimm [1]. The derivation presented here
is taken from Yong [1]. For systems that are not genuinely nonlinear, wave interaction
estimates were originally obtained by Tai-Ping Liu [15], who was the first to realize
the key role of the incidence angle. For recent detailed and rigorous expositions see
Iguchi and LeFloch [1], and Tai-Ping Liu and Tong Yang [7]. For a discussion on
wave interactions in (nonlinear) elastic strings, see R. Young [5], and in the theory
of relativity see Groah, Smoller and Temple [1]. For composite wave interactions in
isentropic gas dynamics, producing solutions with surprising features, see R. Young
[9]. A complete classification of possible wave interactions for the equations of non-
isentropic ideal gas flow is found in Chang and Hsiao [3], and in Chen, Endres and
Jenssen [1]. For a description of actual wave interactions, see Greenberg [1,2] for
the system of isentropic elasticity, Liu and Zhang [1] for a scalar combustion model,
and Luo and Yang [1] for the Euler equations of isentropic gas flow with frictional
damping.

The example of breakdown of weak solutions presented in Section 9.10 is taken
from Jenssen [1]. Additional examples were constructed by Baiti and Jenssen [3],
R. Young [5,6], Young and Szeliga [1], and Jenssen and Young [1]. In particular,
it is shown that even solutions starting out from initial data with arbitrarily small
total variation may blow up in finite time when the characteristic speeds of distinct
families are not uniformly separated on the range of the solution. For earlier work
indicating rapid magnification, or even blowing up, in the supremum or the total
variation of solutions, see Jeffrey [2], R. Young [2], and Joly, Métivier and Rauch
[2]. No blowing up has been detected thus far in solutions of systems with physical
interest, raising the hope that the special structure of these systems may offset the
agents of instability. See, however, Tsikkou [1], and Bressan, Chen, Zhang and Zhu
[1].



X

Generalized Characteristics

As already noted in Section 7.9, the function space of choice for weak solutions
of hyperbolic systems of conservation laws in one space dimension is BV , since it is
within its confines that one may discern shocks and study their propagation and inter-
actions. The notion of characteristic, introduced in Section 7.2 for classical solutions,
will here be extended to the framework of BV weak solutions. It will be established
that generalized characteristics propagate either with classical characteristic speed or
with shock speed. In particular, it will be shown that the extremal backward charac-
teristics, emanating from any point in the domain of an admissible solution, always
propagate with classical characteristic speed. The implications of these properties to
the theory of weak solutions will be demonstrated in following chapters.

10.1 BV Solutions

We consider the strictly hyperbolic system

(10.1.1) ∂tU +∂xF(U) = 0

of conservation laws. Throughout this chapter, U will denote a bounded measurable
function on (−∞,∞)× (0,∞), of class BVloc , which is a weak solution of (10.1.1).
By the theory of BV functions in Section 1.7, (−∞,∞)×(0,∞) =C

⋃
J

⋃
I where

C is the set of points of approximate continuity of U,J denotes the set of points of
approximate jump discontinuity (shock set) of U , and I stands for the set of irregular
points of U . The one-dimensional Hausdorff measure of I is zero : H 1(I ) = 0.
The shock set J is essentially covered by the (at most) countable union of C1 arcs.
With any (x̄, t̄)∈J are associated one-sided approximate limits U± and a “tangent”
line of slope (shock speed) s which, as shown in Section 1.8, are related by the
Rankine-Hugoniot jump condition (8.1.2).

We shall be assuming throughout that the Lax E-condition, introduced in Section
8.3, holds here in a strong sense: each shock is compressive but not overcompressive.
That is, if U± are the one-sided limits and s is the corresponding shock speed associ-
ated with any point of the shock set, then there is i ∈ {1, · · · ,n} such that
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(10.1.2) λi−1(U±)< λi(U+)≤ s ≤ λi(U−)< λi+1(U±).

In (10.1.2), the first inequality is not needed when i = 1 and the last inequality is un-
necessary when i = n. Moreover, since (10.1.1) is strictly hyperbolic, the first and the
last inequalities will hold automatically whenever the oscillation of U is sufficiently
small.

For convenience, we normalize U as explained in Section 1.7. In particular, at
every point (x̄, t̄) ∈ C , U(x̄, t̄) equals the corresponding approximate limit U0 . Re-
calling that H 1(I ) = 0 and using Theorem 1.7.2, we easily conclude that there
is a subset N of (0,∞), of measure zero, having the following properties: for
any fixed t̄ �∈ N , the function U(·, t̄) has locally bounded variation on (−∞,∞),
and (x̄, t̄) ∈ C if and only if U(x̄−, t̄) = U(x̄+, t̄), while (x̄, t̄) ∈ J if and only if
U(x̄−, t̄) �=U(x̄+, t̄). In the latter case, U− =U(x̄−, t̄) and U+ =U(x̄+, t̄).

The above properties of U follow just from membership in BV . The fact that
U is also a solution of (10.1.1) should induce additional structure. On the basis of
experience with special systems, to be discussed in later chapters, it seems plausible
to expect the following: U should be (classically) continuous on C and the one-
sided limits U± at points of J should be attained in the classical sense. Moreover,
I should be the (at most) countable set of endpoints of the arcs that comprise J .
Uniform stretching of the (x, t) coordinates about any point of I should yield, in the
limit, a wave fan with the properties described in Section 9.1, i.e., I should consist
of shock generation and shock interaction points. To what extent the picture painted
above accurately describes the structure of solutions of general hyperbolic systems
of conservation laws will be discussed in later chapters.

10.2 Generalized Characteristics

Characteristics associated with classical, Lipschitz continuous, solutions were intro-
duced in Section 7.2, through Definition 7.2.1. They provide one of the principal
tools of the classical theory for the study of analytical and geometric properties of
solutions. It is thus natural to attempt to extend the notion to the framework of weak
solutions.

Here we opt to define characteristics of the i-characteristic family, associated
with the weak solution U , exactly as in the classical case, namely as integral curves
of the ordinary differential equation (7.2.7), in the sense of Filippov:

10.2.1 Definition. A generalized i-characteristic for the system (10.1.1), associated
with the (generally weak) solution U , on the time interval [σ ,τ] ⊂ [0,∞), is a Lips-
chitz function ξ : [σ ,τ]→ (−∞,∞) which satisfies the differential inclusion

(10.2.1) ξ̇ (t) ∈Λi(ξ (t), t), a.e. on [σ ,τ],

where

(10.2.2) Λi(x̄, t̄) :=
⋂
ε>0

[ ess inf
[x̄−ε,x̄+ε]

λi(U(x, t̄)) , ess sup
[x̄−ε,x̄+ε]

λi(U(x, t̄)) ] .
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From the general theory of contingent equations like (10.2.1), one immediately
infers the following

10.2.2 Theorem. Through any fixed point (x̄, t̄) ∈ (−∞,∞)× [0,∞) pass two (not
necessarily distinct) generalized i-characteristics, associated with U and defined on
[0,∞), namely the minimal ξ−(·) and the maximal ξ+(·), with ξ−(t) ≤ ξ+(t) for
t ∈ [0,∞). The funnel-shaped region confined between the graphs of ξ−(·) and ξ+(·)
comprises the set of points (x, t) that may be connected to (x̄, t̄) by a generalized
i-characteristic associated with U .

Other standard properties of solutions of differential inclusions also have useful
implications for the theory of generalized characteristics: If {ξm(·)} is a sequence
of generalized i-characteristics, associated with U and defined on [σ ,τ], which con-
verges to some Lipschitz function ξ (·), uniformly on [σ ,τ], then ξ (·) is necessarily
a generalized i-characteristic associated with U . In particular, if ξm(·) is the mini-
mal (or maximal) generalized i-characteristic through a point (xm, t̄) and xm ↑ x̄ (or
xm ↓ x̄), as m → ∞, then {ξm(·)} converges to the minimal (or maximal) generalized
i-characteristic ξ−(·) (or ξ+(·)) through the point (x̄, t̄).

In addition to classical i-characteristics, i-shocks that satisfy the Lax E-condition
are obvious examples of generalized i-characteristics. In fact, it turns out that these
are the only possibilities. Indeed, even though Definition 10.2.1 would seemingly
allow ξ̇ to select any value in the interval Λi , the fact that U is a solution of (10.1.1)
constrains generalized i-characteristics associated with U to propagate either with
classical i-characteristic speed or with i-shock speed:

10.2.3 Theorem. Let ξ (·) be a generalized i-characteristic, associated with U and
defined on [σ ,τ]. The following holds for almost all t ∈ [σ ,τ] : When (ξ (t), t) ∈ C ,
then ξ̇ (t) = λi(U0) with U0 =U(ξ (t)±, t). When (ξ (t), t)∈J , then ξ̇ (t) = s, where
s is the speed of the i-shock that joins U− , on the left, to U+ , on the right, with
U± = U(ξ (t)±, t). In particular, s satisfies the Rankine-Hugoniot condition (8.1.2)
as well as the Lax E-condition (10.1.2).

Proof. Upon recalling the properties of BV solutions recorded in Section 10.1, it
becomes clear that for almost all t ∈ [σ ,τ] with (ξ (t), t) ∈ C the interval Λi(ξ (t), t)
reduces to the single point λi(U(ξ (t)±, t)) and so ξ̇ (t) = λi(U(ξ (t)±, t)), by virtue
of (10.2.1).

Applying the measure equality (10.1.1) to arbitrary subarcs of the graph of ξ ,
and using Theorem 1.7.8 (in particular Equation (1.7.12)), yields

(10.2.3) F(U(ξ (t)+, t))−F(U(ξ (t)−, t)) = ξ̇ (t)[U(ξ (t)+, t)−U(ξ (t)−, t)],

almost everywhere on [σ ,τ]. Consequently, for almost all t ∈ [σ ,τ] with (ξ (t), t)
in J , we have ξ̇ (t) = s, where s is the speed of a shock that joins the two states
U− =U(ξ (t)−, t) and U+ =U(ξ (t)+, t). Because of the structure of solutions, there
is j ∈ {1, · · · ,n} such that λ j−1(U±) < λ j(U+) ≤ s ≤ λ j(U−) < λ j+1(U±). On the
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other hand, (10.2.1) implies that s lies in the interval with endpoints λi(U−) and
λi(U+). Therefore, j = i and (10.1.2) holds. This completes the proof.

The above theorem motivates the following terminology:

10.2.4 Definition. A generalized i-characteristic ξ (·), associated with U and defined
on [σ ,τ], is called shock-free if U(ξ (t)−, t) =U(ξ (t)+, t), for almost all t in [σ ,τ].

A consequence of the proof of Theorem 10.2.3 is that (10.2.1) is equivalent to

(10.2.4) ξ̇ (t) ∈ [λi(U(ξ (t)+, t)) , λi(U(ξ (t)−, t))], a.e. on [σ ,τ].

In what follows, an important role will be played by the special generalized charac-
teristics that manage to propagate at the maximum or minimum allowable speed:

10.2.5 Definition. A generalized i-characteristic ξ (·), associated with U and defined
on [σ ,τ], is called a left i-contact if

(10.2.5) ξ̇ (t) = λi(U(ξ (t)−, t)), a.e. on [σ ,τ],

and/or a right i-contact if

(10.2.6) ξ̇ (t) = λi(U(ξ (t)+, t)), a.e. on [σ ,τ].

Clearly, shock-free i-characteristics are left and right i-contacts. Note that, since
they are generalized i-characteristics, left (or right) i-contacts should also satisfy
the assertion of Theorem 10.2.3, namely ξ̇ (t) = s for almost all t ∈ [σ ,τ] with
(ξ (t), t) in J . Of course this is impossible in systems that do not admit left (or
right) contact discontinuities. In any such system, left (or right) contacts are nec-
essarily shock-free. In particular, recalling Theorem 8.2.1, we conclude that when
the i-characteristic family for the system (10.1.1) is genuinely nonlinear and the
oscillation of U is sufficiently small, then any left or right i-contact is necessarily
shock-free.

10.3 Extremal Backward Characteristics

With reference to some point (x̄, t̄) ∈ (−∞,∞)× [0,∞), a generalized characteristic
through (x̄, t̄) is dubbed backward when defined on [0, t̄], or forward when defined
on [t̄,∞). The extremal, minimal and maximal, backward and forward generalized
characteristics through (x̄, t̄) propagate at extremal speeds and are thus natural candi-
dates for being contacts. This turns out to be true, at least for the backward extremal
characteristics, in consequence of the Lax E-condition:

10.3.1 Theorem. The minimal (or maximal) backward i-characteristic, associated
with U , emanating from any point (x̄, t̄) of the upper half-plane is a left (or right)
i-contact.
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Proof. Let ξ (·) denote the minimal backward i-characteristic emanating from (x̄, t̄)
and defined on [0, t̄]. We fix ε > 0 and select t̄ = τ0 > τ1 > · · · > τk = 0, for
some k ≥ 1, through the following algorithm: We start out with τ0 = t̄. Assum-
ing τm > 0 has been determined, we let ξm(·) denote the minimal backward i-
characteristic emanating from (ξ (τm)− ε,τm). If ξm(t) < ξ (t) for 0 < t ≤ τm , we
set τm+1 = 0, m+ 1 = k and terminate. Otherwise, we locate τm+1 ∈ (0,τm) with
the property ξm(t) < ξ (t) for τm+1 < t ≤ τm and ξm(τm+1) = ξ (τm+1). Clearly,
this algorithm will terminate after a finite number of steps. Next we construct a
left-continuous, piecewise Lipschitz function ξε(·) on [0, t̄], with jump discontinu-
ities (when k ≥ 2) at τ1, · · · ,τk−1 , by setting ξε(t) = ξm(t) for τm+1 < t ≤ τm ,
with m = 0,1, · · · ,k−1, and ξε(0) = ξk−1(0). Then

(10.3.1) ξε(t̄)−ξε(0) = (k−1)ε+
k−1

∑
m=0

∫ τm

τm+1

ξ̇m(t)dt ≥
∫ t̄

0
λi(U(ξε(t)+, t))dt.

As ε ↓ 0,ξε(t)→ ξ (t), from the left, for any t ∈ [0, t̄]. To see this, fix some t ∈ [0, t̄].
Then (ξε(t), t) lies on the minimal backward characteristic emanating from some
point (ξ (τε)− ε,τε), with τε ≥ t. Take any sequence {εk} such that εk → 0 and
τεk → τ , as k →∞. Thus (ξ (τεk)−εk,τεk)→ (ξ (τ),τ). It then follows by the standard
theory of contingent equations, like (10.2.1), that the sequence of minimal backward
characteristics emanating from (ξ (τεk)−εk,τεk) must converge to ξ (·), uniformly on
[0, t]. In particular, ξεk(t)→ ξ (t), as k → ∞. Therefore, letting ε ↓ 0, (10.3.1) yields

(10.3.2) ξ (t̄)−ξ (0)≥
∫ t̄

0
λi(U(ξ (t)−, t))dt.

On the other hand, ξ̇ (t)≤ λi(U(ξ (t)−, t)), almost everywhere on [0, t̄], and therefore
ξ̇ (t) = λi(U(ξ (t)−, t)) for almost all t ∈ [0, t̄], i.e., ξ (·) is a left i-contact.

Similarly one shows that the maximal backward i-characteristic emanating from
(x̄, t̄) is a right i-contact. This completes the proof.

In view of the closing remarks in Section 10.2, Theorem 10.3.1 has the following
corollary:

10.3.2 Theorem. Assume the i-characteristic family for the system (10.1.1) is gen-
uinely nonlinear and the oscillation of U is sufficiently small. Then the minimal and
the maximal backward i-characteristics, emanating from any point (x̄, t̄) of the upper
half-plane, are shock-free.

The implications of the above theorem will be seen in following chapters.
For future use, it will be expedient to introduce here a special class of backward

characteristics emanating from infinity:

10.3.3 Definition. A minimal (or maximal) i-separatrix, associated with the solution
U , is a Lipschitz function ξ : [0, t̄)→ (−∞,∞) such that ξ (t) = limm→∞ ξm(t), uni-
formly on compact time intervals, where ξm(·) is the minimal (or maximal) backward
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i-characteristic emanating from a point (xm, tm), with tm → t̄, as m→∞ . In particular,
when t̄ = ∞ , the i-separatrix ξ (·) is called a minimal (or maximal) i-divide.

Note that the graphs of any two minimal (or maximal) i-characteristics may run
into each other but they cannot cross. Consequently, the graph of a minimal (or max-
imal) backward i-characteristic cannot cross the graph of any minimal (or maximal)
i-separatrix. Similarly, the graphs of any two minimal (or maximal) i-separatrices
cannot cross. In particular, any minimal (or maximal) i-divide divides the upper half-
plane into two parts in such a way that no forward i-characteristic may cross from
the left to the right (or from the right to the left).

Minimal or maximal i-separatrices are necessarily generalized i-characteristics,
which, by virtue of Theorem 10.3.1, are left or right i-contacts. In particular, when the
i-characteristic family is genuinely nonlinear and the oscillation of U is sufficiently
small, Theorem 10.3.2 implies that minimal or maximal i-separatrices are shock-free.

The following propositions recount conditions under which divides exist:

10.3.4 Lemma. Suppose that there are i-characteristics ϕ and ψ , associated with U ,
issuing, at t = 0, from the x-axis and satisfying the following properties: ϕ(t)<ψ(t),
for t ∈ [0,∞) and ψ is maximal (or ψ is minimal). Then there exists a minimal (or
maximal) i-divide ξ such that ϕ(t)≤ ξ (t)≤ ψ(t), for t ∈ [0,∞).

Proof. Assuming ϕ is maximal, let ξm denote the minimal backward i-characteristic
emanating from the point (xm, tm), where ϕ(tm)< xm < ψ(tm) and tm → ∞ , m → ∞ .
The graph of ξm cannot intersect the graph of ϕ , since ϕ is maximal, and even though
it may meet the graph of ψ , it cannot cross it, because ξm is minimal. Therefore,
ϕ(t) < ξm(t) ≤ ψ(t), for t ∈ [0, tm]. It then follows from the Ascoli theorem that
{ξm} contains subsequences converging to a minimal i-divide ξ with the asserted
properties. The case where ψ is minimal is treated in a similar fashion. This com-
pletes the proof.

10.3.5 Corollary. When U is spatially periodic, U(x+ L, t) = U(x, t), at least one
minimal and one maximal i-divide issue from any period-length interval of the x-
axis.

Indeed, to construct the minimal i-divide it suffices to apply Lemma 10.3.4, with
ϕ the maximal i-characteristic issuing from (0,0) and ψ defined by ψ(t) = ϕ(t)+L,
for t ∈ [0,∞). Similarly, the existence of the maximal i-divide follows from Lemma
10.3.4 upon selecting ψ as the minimal i-characteristic issuing from (L,0) and then
defining ϕ by ϕ(t) = ψ(t)−L, for t ∈ [0,∞). Of course, the minimal and maximal
i-divides may coincide.

This chapter will close with the following remark: Generalized characteristics
were introduced here in connection to BV solutions of (10.1.1) defined on the entire
upper half-plane. It is clear, however, that the notion and many of its properties are of
purely local nature and thus apply to BV solutions defined on arbitrary open subsets
of R2.
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10.4 Notes

The presentation of the theory of generalized characteristics in this chapter follows
Dafermos [19]. An exposition of the general theory of differential inclusions is found
in the monograph by Filippov [1]. An early paper introducing generalized character-
istics (for scalar conservation laws) as solutions of the classical characteristic equa-
tions, in the sense of Filippov, is Wu [1]. See also Hörmander [1]. Glimm and Lax
[1] employ an alternative definition of generalized characteristics, namely Lipschitz
curves propagating either with classical characteristic speed or with shock speed,
constructed as limits of a family of “approximate characteristics.” In view of Theo-
rem 10.2.3, the two notions are closely related.

The notion of divide was introduced in Dafermos [21].
Even though generalized characteristics will be considered here in the setting of

BV solutions, they may be defined and used within the broader context of L∞ weak
solutions, in which the Definition 10.2.1 makes sense. Classes of weak solutions,
encountered in the applications, that may not be in BV and yet the approach via
generalized characteristics is effective, include those with characteristic speeds in
BV and those in which one-sided limits U(x±, t) exist for all x ∈ (−∞,∞) and almost
all t ∈ (0,∞).

Generalized characteristics in several space dimensions are considered by
Poupaud and Rascle [1], in the context of linear transport equations with discon-
tinuous coefficients.



XI

Scalar Conservation Laws in One Space Dimension

Despite its apparent simplicity, the scalar conservation law in one space dimension
possesses a surprisingly rich theory, which deserves attention not only for its intrinsic
interest but also because it provides valuable insight in the behavior of systems. The
discussion here will employ the theory of generalized characteristics developed in
Chapter X.

The bulk of this chapter will be devoted to the genuinely nonlinear case, the
special feature of which is that the extremal backward generalized characteristics are
essentially classical characteristics, that is, straight lines along which the solution is
constant. This property induces such a heavy constraint that one is able to derive very
precise information on regularity and large time behavior of solutions.

Solutions are (classically) continuous at points of approximate continuity and
locally Lipschitz continuous in the interior of the set of points of continuity. Points
of approximate jump discontinuity lie on classical shocks. The remaining, irregular,
points are at most countable and are formed by the collision of shocks and/or the
focusing of compression waves. Generically, solutions with smooth initial data are
piecewise smooth.

Genuine nonlinearity gives rise to a host of dissipative mechanisms that affect
the large-time behavior of solutions. Entropy dissipation induces O(t−

p
p+1 ) decay of

solutions with initial data in Lp(−∞,∞). When the initial data have compact support,
spreading of characteristics generates N-wave profiles. Confinement of characteris-
tics under periodic initial data induces O(t−1) decay in the total variation per period
and the formation of sawtoothed profiles.

Another important feature of admissible weak solutions of the Cauchy problem
for the genuinely nonlinear scalar conservation law is that they are related explicitly
to their initial values, through the Lax function. This property, which will be estab-
lished here by the method of generalized characteristics, may serve alternatively as
the starting point for developing the general theory of solutions to the Cauchy prob-
lem.

Additional insight is gained from comparison theorems on solutions. It will be
shown that the lap number of any admissible solution is nonincreasing with time.
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Moreover, the L1 distance of any two solutions is generally nonincreasing, but typi-
cally conserved, whereas a properly weighted L1 distance is strictly decreasing.

One of the advantages of the method of generalized characteristics is that it read-
ily extends to inhomogeneous, genuinely nonlinear balance laws. This theory will
be outlined here and two examples will be presented in order to demonstrate how
inhomogeneity and source terms may affect the large-time behavior of solutions.

By contrast, one is faced with considerable complexity when genuine nonlinear-
ity fails. This will be demonstrated in the context of the simplest case of a flux with a
single inflection point. The presence of the inflection point has serious implications
on the generic regularity and the long time behavior of solutions.

The tools provided by the theory of generalized characteristics will be employed
for determining whether, in the absence of bounded variation, entropy may be pro-
duced at points of continuity of solutions.

11.1 Admissible BV Solutions and Generalized Characteristics

The next eight sections of this chapter deal with the scalar conservation law

(11.1.1) ∂tu(x, t)+∂x f (u(x, t)) = 0

that is genuinely nonlinear, f ′′(u) > 0, −∞ < u < ∞. We are assuming throughout
that u is an admissible weak solution on (−∞,∞)× [0,∞) with initial data u0 that
are bounded and have locally bounded variation on (−∞,∞). By virtue of Theorem
6.2.6, u is in BVloc , and for any t ∈ [0,∞) the function u(·, t) has locally bounded
variation on (−∞,∞).

As noted in Section 8.5, the entropy shock admissibility criterion will be satis-
fied almost everywhere (with respect to one-dimensional Hausdorff measure) on the
shock set J of the solution u, for any entropy-entropy flux pair (η ,q) with η con-
vex. This in turn implies that the Lax E-condition will also hold almost everywhere
on J . Consequently, we have

(11.1.2) u(x+, t)≤ u(x−, t),

for almost all t ∈ (0,∞) and all x ∈ (−∞,∞).
On account of Theorem 10.2.3, a Lipschitz curve ξ (·), defined on the time inter-

val [σ ,τ] ⊂ [0,∞), will be a generalized characteristic, associated with the solution
u, if for almost all t ∈ [σ ,τ]

(11.1.3)

ξ̇ (t) =

⎧⎪⎪⎨⎪⎪⎩
f ′(u(ξ (t)±, t)), when u(ξ (t)+, t) = u(ξ (t)−, t)

f (u(ξ (t)+, t))− f (u(ξ (t)−, t))
u(ξ (t)+, t)−u(ξ (t)−, t)

, when u(ξ (t)+, t)< u(ξ (t)−, t).
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The special feature of genuinely nonlinear scalar conservation laws is that general-
ized characteristics that are shock-free are essentially classical characteristics:

11.1.1 Theorem. Let ξ (·) be a generalized characteristic for (11.1.1), associated
with the admissible solution u, shock-free on the time interval [σ ,τ]. Then there is a
constant ū such that

(11.1.4) u(ξ (τ)+,τ)≤ ū ≤ u(ξ (τ)−,τ),

(11.1.5) u(ξ (t)+, t) = ū = u(ξ (t)−, t), σ < t < τ ,

(11.1.6) u(ξ (σ)−,σ)≤ ū ≤ u(ξ (σ)+,σ).

In particular, the graph of ξ (·) is a straight line segment with slope f ′(ū).

Proof. Fix r and s, σ ≤ r < s ≤ τ . For ε > 0, the conservation law for the domains
{(x, t) : r < t < s, ξ (t)− ε < x < ξ (t)} and {(x, t) : r < t < s, ξ (t) < x < ξ (t)+ ε}
takes the form

(11.1.7)
∫ ξ (s)

ξ (s)−ε
u(x,s)dx−

∫ ξ (r)

ξ (r)−ε
u(x,r)dx

=
∫ s

r
{ f (u(ξ (t)− ε+, t))− f (u(ξ (t)−, t))− ξ̇ (t)[u(ξ (t)− ε+, t)−u(ξ (t)−, t)]}dt,

(11.1.8)
∫ ξ (r)+ε

ξ (r)
u(x,r)dx−

∫ ξ (s)+ε

ξ (s)
u(x,s)dx

=
∫ s

r
{ f (u(ξ (t)+ ε−, t))− f (u(ξ (t)+, t))− ξ̇ (t)[u(ξ (t)+ ε−, t)−u(ξ (t)+, t)]}dt.

By virtue of Definition 10.2.4, ξ̇ (t) = f ′(u(ξ (t)±, t)) , a.e. on [r,s]. Then, since f is
convex, the right-hand sides of both (11.1.7) and (11.1.8) are nonnegative. Conse-
quently, multiplying (11.1.7) and (11.1.8) by 1/ε and letting ε ↓ 0 yields

(11.1.9) u(ξ (s)−,s)≥ u(ξ (r)−,r), u(ξ (s)+,s)≤ (u(ξ (r)+,r), σ ≤ r < s ≤ τ.

We now fix t1 and t2 , σ < t1 < t2 < r, such that u(ξ (t1)−, t1) = u(ξ (t1)+, t1),
u(ξ (t2)−, t2) = u(ξ (t2)+, t2). For any fixed t ∈ (t1, t2), we apply (11.1.9) first with
r = t1 , s = t2 , then with r = t1 , s = t, and finally with r = t, s = t2 . This yields
(11.1.5). To complete the proof, we apply (11.1.9) for s = τ, r ∈ (σ ,τ), to obtain
(11.1.4), and for r = σ , s ∈ (σ ,τ), to deduce (11.1.6).

11.1.2 Corollary. Assume ξ (·) and ζ (·) are distinct generalized characteristics for
(11.1.1), associated with the admissible weak solution u, which are shock-free on the
time interval [σ ,τ]. Then ξ (·) and ζ (·) cannot intersect for any t ∈ (σ ,τ).
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The above two propositions have significant implications for extremal backward
characteristics:

11.1.3 Theorem. Let ξ−(·) and ξ+(·) denote the minimal and maximal backward
characteristics, associated with some admissible solution u, emanating from any
point (x̄, t̄) ∈ (−∞,∞)× (0,∞). Then

(11.1.10)

⎧⎨⎩u(ξ−(t)−, t) = u(x̄−, t̄) = u(ξ−(t)+, t)
0 < t < t̄,

u(ξ+(t)−, t) = u(x̄+, t̄) = u(ξ+(t)+, t)

(11.1.11)

⎧⎨⎩u0(ξ−(0)−)≤ u(x̄−, t̄)≤ u0(ξ−(0)+)

u0(ξ+(0)−)≤ u(x̄+, t̄)≤ u0(ξ+(0)+).

In particular, u(x̄+, t̄) ≤ u(x̄−, t̄) holds for all (x̄, t̄) ∈ (−∞,∞) × (0,∞) and
ξ−(·), ξ+(·) coincide if and only if u(x̄+, t̄) = u(x̄−, t̄).

Proof. By virtue of Theorem 10.3.2, both ξ−(·) and ξ+(·) are shock-free on [0, t̄].
We may then apply Theorem 11.1.1, with σ = 0 and τ = t̄. On account of (11.1.4),
when u(x̄+, t̄) = u(x̄−, t̄) we have ū = u(x̄±, t̄) and thus ξ−(·), ξ+(·) coincide. In
the general case, consider an increasing (or decreasing) sequence {xn}, converg-
ing to x̄, such that u(xn+, t̄) = u(xn−, t̄), n = 1,2, · · · . Let ξn(·) denote the unique
backward characteristic emanating from (xn, t̄). Then u(ξn(t)±, t) = u(xn±, t̄) for all
t ∈ (0, t̄). As noted in Section 10.2, the sequence {ξn(·)} converges from below (or
above) to ξ−(·) (or ξ+(·)). Consequently, u(ξ−(t)−, t) = limu(xn±, t̄) = u(x̄−, t̄) (or
u(ξ+(t)+, t) = limu(xn±, t̄) = u(x̄+, t̄)). The proof is complete.

We now turn to the properties of forward characteristics:

11.1.4 Theorem. A unique forward generalized characteristic, associated with an
admissible solution u, issues from any point (x̄, t̄) ∈ (−∞,∞)× (0,∞).

Proof. Suppose two distinct forward characteristics φ(·) and ψ(·) issue from (x̄, t̄),
such that φ(s)<ψ(s) for some s > t̄. Let ξ (·) denote the maximal backward charac-
teristic emanating from (φ(s),s) and ζ (·) denote the minimal backward characteris-
tic emanating from (ψ(s),s), both being shock-free on [0,s]. For t ∈ [t̄,s], ξ (t)≥ φ(t)
and ζ (t)≤ψ(t); hence ξ (·) and ζ (·) must intersect at some t ∈ [t̄,s), in contradiction
to Corollary 11.1.2. This completes the proof.

Note that, by contrast, multiple forward characteristics may issue from points
lying on the x-axis. In particular, the focus of any centered rarefaction wave must
necessarily lie on the x-axis.

The next proposition demonstrates that, once they form, jump discontinuities
propagate as shock waves for eternity:
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11.1.5 Theorem. Let χ(·) denote the unique forward generalized characteristic, as-
sociated with the admissible solution u, issuing from a point (x̄, t̄) such that t̄ > 0 and
u(x̄+, t̄)< u(x̄−, t̄). Then u(χ(s)+,s)< u(χ(s)−,s) for all s ∈ [t̄,∞).

Proof. Let ξ−(·) and ξ+(·) denote the minimal and maximal backward character-
istics emanating from (x̄, t̄). Since u(x̄+, t̄) < u(x̄−, t̄), ξ−(·) and ξ+(·) are distinct:
ξ−(0)< ξ+(0).

Fix any s ∈ [t̄,∞) and consider the minimal and maximal backward characteris-
tics ζ−(·) and ζ+(·) emanating from (χ(s),s). For t ∈ [0, t̄], necessarily ζ−(t)≤ ξ−(t)
and ζ+(t)≥ ξ+(t). Thus ζ−(0)< ζ+(0) so that ζ−(·) and ζ+(·) are distinct. Conse-
quently, u(χ(s)+,s)< u(χ(s)−,s). This completes the proof.

In view of the above, it is possible to identify the points from which shocks
originate:

11.1.6 Definition. We call (x̄, t̄) ∈ (−∞,∞)× [0,∞) a shock generation point if
some forward generalized characteristic χ(·) issuing from (x̄, t̄) is a shock, i.e.,
u(χ(t)+, t) < u(χ(t)−, t), for all t > t̄, while every backward characteristic ema-
nating from (x̄, t̄) is shock-free.

When (x̄, t̄) is a shock generation point with t̄ > 0, there are two possibilities:
u(x̄+, t̄) = u(x̄−, t̄) or u(x̄+, t̄)< u(x̄−, t̄). In the former case, the shock starts out at
(x̄, t̄) with zero strength and develops as it evolves. In the latter case, distinct mini-
mal and maximal backward characteristics ξ−(·) and ξ+(·) emanate from (x̄, t̄). The
sector confined between the graphs of ξ−(·) and ξ+(·) must be filled by characteris-
tics, connecting (x̄, t̄) with the x-axis, which, by definition, are shock-free and hence
are straight lines. Thus in that case the shock is generated at the focus of a centered
compression wave, so it starts out with positive strength.

11.2 The Spreading of Rarefaction Waves

We are already familiar with the destabilizing role of genuine nonlinearity: compres-
sion wave fronts get steeper and eventually break, generating shocks. It turns out,
however, that at the same time, genuine nonlinearity also exerts a regularizing influ-
ence by inducing the spreading of rarefaction wave fronts. It is remarkable that this
effect is purely geometric and is totally unrelated to the regularity of the initial data:

11.2.1 Theorem. For any admissible solution u,

(11.2.1)

Proof. Fix x,y and t with x < y and t > 0. Let ξ (·) and ζ (·) denote the maximal
or minimal backward characteristics emanating from (x, t) and (y, t), respectively.

f ′(u(y±, t))− f ′(u(x±, t))
y− x

≤ 1
t
, −∞ < x < y < ∞ , 0 < t < ∞ .
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By virtue of Theorem 11.1.3, ξ (0) = x − t f ′(u(x±, t)), ζ (0) = y− t f ′(u(y±, t)).
Furthermore, ξ (0)≤ ζ (0), on account of Corollary 11.1.2. This immediately implies
(11.2.1). The proof is complete.

Notice that (11.2.1) establishes a one-sided Lipschitz condition for f ′(u(·, t)),
with Lipschitz constant independent of the initial data. By the general theory of scalar
conservation laws, presented in Chapter VI, admissible solutions of (11.1.1) with
initial data in L∞(−∞,∞) may be realized as a.e. limits of sequences of solutions with
initial data of locally bounded variation on (−∞,∞). Consequently, (11.2.1) should
hold even for admissible solutions with initial data that are merely in L∞(−∞,∞).
Clearly, (11.2.1) implies that, for fixed t > 0 , f ′(u(·, t)), and thereby also u(·, t),
have bounded variation over any bounded interval of (−∞,∞). We have thus shown
that, because of genuine nonlinearity, solutions are generally smoother than their
initial data:

11.2.2 Theorem. Admissible solutions of (11.1.1), with initial data in
L∞(−∞,∞), are in BVloc on (−∞,∞)×(0,∞) and satisfy the one-sided Lipschitz con-
dition (11.2.1).

11.3 Regularity of Solutions

The properties of generalized characteristics established in the previous section lead
to a precise description of the structure and regularity of admissible weak solutions.

11.3.1 Theorem. Let χ(·) be the unique forward generalized characteristic and
ξ−(·),ξ+(·) the extremal backward characteristics, associated with an admissible
solution u, emanating from any point (x̄, t̄) ∈ (−∞,∞)× (0,∞). Then (x̄, t̄) is a point
of continuity of the function u(x−, t) relative to the set {(x, t) : 0 ≤ t ≤ t̄, x ≤ ξ−(t)
or t̄ < t < ∞, x ≤ χ(t)} and also a point of continuity of the function u(x+, t) relative
to the set {(x, t) : 0 ≤ t ≤ t̄, x ≥ ξ+(t) or t̄ < t < ∞, x ≥ χ(t)}. Furthermore, χ(·) is
differentiable from the right at t̄ and

(11.3.1)
d+

dt
χ(t̄) =

⎧⎪⎪⎨⎪⎪⎩
f ′(u(x̄±, t̄)), i f u(x̄+, t̄) = u(x̄−, t̄)

f (u(x̄+, t̄))− f (u(x̄−, t̄))
u(x̄+, t̄)−u(x̄−, t̄)

, i f u(x̄+, t̄)< u(x̄−, t̄).

Proof. Take any sequence {(xn, tn)} in the set {(x, t) : 0 ≤ t < t̄, x ≤ ξ−(t) or
t̄ < t < ∞, x ≤ χ(t)}, which converges to (x̄, t̄) as n → ∞. Let ξn(·) denote the mini-
mal backward characteristic emanating from (xn, tn). Clearly, ξn(t)≤ ξ−(t) for t ≤ t̄.
Thus, as n → ∞,{ξn(·)} converges from below to ξ−(·). Hence, {u(xn−, tn)} con-
verges to u(x̄−, t̄).

Similarly, for any sequence {(xn, tn)} in the set {(x, t) : 0 ≤ t < t̄, x ≥ ξ+(t) or
t̄ < t < ∞ , x ≥ χ(t)}, converging to (x̄, t̄), the sequence {u(xn+, tn)} converges to
u(x̄+, t̄).
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For ε > 0,

(11.3.2)
1
ε
[χ(t̄ + ε)−χ(t̄)] =

1
ε

∫ t̄+ε

t̄
χ̇(t)dt,

where χ̇(t) is determined through (11.1.3), with ξ ≡ χ . As shown above, χ̇(t) is
continuous from the right at t̄ and so, letting ε ↓ 0 in (11.3.2), we arrive at (11.3.1).
This completes the proof.

The above theorem has the following corollary:

11.3.2 Theorem. Let u be an admissible solution and assume u(x̄+, t̄) = u(x̄−, t̄),
for some (x̄, t̄) ∈ (−∞,∞)× (0,∞). Then (x̄, t̄) is a point of continuity of u. A unique
generalized characteristic χ(·), associated with u, defined on [0,∞), passes through
(x̄, t̄). Furthermore, χ(·) is differentiable at t̄ and χ̇(t̄) = f ′(u(x̄±, t̄)).

Next we focus attention on points of discontinuity.

11.3.3 Theorem. Let u be an admissible solution and assume u(x̄+, t̄) < u(x̄−, t̄),
for some (x̄, t̄) ∈ (−∞,∞)× (0,∞). When the extremal backward characteristics
ξ−(·), ξ+(·) are the only backward generalized characteristics emanating from (x̄, t̄)
that are shock-free on (0, t̄), then (x̄, t̄) is a point of jump discontinuity of u in the fol-
lowing sense: There is a generalized characteristic χ(·), associated with u, defined
on [0,∞) and passing through (x̄, t̄), such that (x̄, t̄) is a point of continuity of the
function u(x−, t) relative to {(x, t) : 0 < t < ∞ , x ≤ χ(t)} and also a point of conti-
nuity of the function u(x+, t) relative to {(x, t) : 0 < t < ∞ , x ≥ χ(t)}. Furthermore,
χ(·) is differentiable at t̄ and

(11.3.3) χ̇(t̄) =
f (u(x̄+, t̄))− f (u(x̄−, t̄))

u(x̄+, t̄)−u(x̄−, t̄)
.

Proof. Fix any point on the x-axis, in the interval (ξ−(0),ξ+(0)), and connect it to
(x̄, t̄) by a characteristic χ(·). Extend χ(·) to [t̄,∞) as the unique forward character-
istic issuing from (x̄, t̄).

verges to (x̄, t̄), as n → ∞ . Let ξn(·) denote the minimal backward characteristic
emanating from (xn, tn). As n → ∞ , {ξn(·)}, or a subsequence thereof, will converge
to some backward characteristic emanating from (x̄, t̄), which is a straight line and
shock-free. Since ξn(t) ≤ χ(t), this implies that {ξn(·)} must necessarily converge
to ξ−(·). Consequently, {u(xn−, tn)} converges to u(x̄−, t̄), as n → ∞ .

Similarly, for any sequence {(xn, tn)} in {(x, t) : 0< t <∞ , x≥ χ(t)}, converging
to (x̄, t̄), the sequence {u(xn+, tn)} converges to u(x̄+, t̄).

To verify (11.3.3), we start out again from (11.3.2), where now ε may be positive
or negative. As shown above, t̄ is a point of continuity of χ̇(t) and so, letting ε → 0,
we arrive at (11.3.3). This completes the proof.

Take any sequence {(xn, tn)} in the set {(x, t) : 0 < t < ∞ , x ≤ χ(t)}, that con-
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11.3.4 Theorem. The set of irregular points of any admissible solution u is countable.
(x̄, t̄) ∈ (−∞,∞)× (0,∞) is an irregular point if and only if u(x̄+, t̄)< u(x̄−, t̄) and,
in addition to the extremal backward characteristics ξ−(·), ξ+(·), there is at least
another, distinct, backward characteristic ξ (·), associated with u, emanating from
(x̄, t̄), which is shock-free on (0, t̄). Irregular points are generated by the collision of
shocks and/or by the focusing of centered compression waves.

Proof. Necessity follows from Theorems 11.3.2 and 11.3.3. To show sufficiency,
consider the subset X of the interval [ξ−(0),ξ+(0)] such that, for x∈X , the straight
line segment connecting the points (x,0) and (x̄, t̄) is a characteristic associated with
u, which is shock-free on (0, t̄).

When X ≡ [ξ−(0),ξ+(0)] , (x̄, t̄) is the focus of a centered compression wave
and the assertion of the theorem is clearly valid. In general, however, X will
be a closed proper subset of [ξ−(0),ξ+(0)], containing at least the three points
ξ−(0), ξ (0) and ξ+(0). The complement of X relative to [ξ−(0),ξ+(0)] will then
be the (at most) countable union of disjoint open intervals. Let (α−,α+) be one
of these intervals, contained, say in (ξ−(0),ξ (0)). The straight line segments con-
necting the points (α−,0) and (α+,0) with (x̄, t̄) will be shock-free character-
istics ζ−(·) and ζ+(·) along which u is constant, say u− and u+ . Necessarily,
u(x̄−, t̄) ≥ u− > u+ > u(x̄+, t̄). Consider a characteristic χ(·) connecting a point
of (α−,α+) with (x̄, t̄). Then ζ−(t) < χ(t) < ζ+(t), 0 ≤ t < t̄. Take any sequence
{(xn, tn)} in the set {(x, t) : 0 ≤ t < t̄, ζ−(t) ≤ x ≤ χ(t)}, converging to (x̄, t̄), as
n → ∞ . If ξn(·) denotes the minimal backward characteristic emanating from (xn, tn),
the sequence {ξn(·)} will necessarily converge to ζ−(·). In particular, this implies
u(xn−, tn) −→ u− , as n → ∞ . Similarly one shows that if {(xn, tn)} is any se-
quence in the set {(x, t) : 0 ≤ t < t̄, χ(t) ≤ x ≤ ζ+(t)} converging to (x̄, t̄), then
u(xn+, tn) −→ u+ , as n → ∞ . Thus, near t̄ χ(·) is a shock, which is differentiable
from the left at t̄ with

(11.3.4)
d−

dt
χ(t̄) =

f (u+)− f (u−)
u+−u−

.

Since f ′(u−)> d−
dt χ(t̄)> f ′(u+), we conclude that (x̄, t̄) is an irregular point of u.

We have thus shown that (x̄, t̄) is a point of collision of shocks, one for each
open interval of the complement of X , and centered compression waves, when the
measure of X is positive.

For fixed positive ε , we consider irregular points (x̄, t̄), as above, with the addi-
tional property ξ+(0)− ξ (0) > ε, ξ (0)− ξ−(0) > ε . It is easy to see that one may
fit an at most finite set of such points in any bounded subset of the upper half-plane.
This in turn implies that the set of irregular points of any admissible solution is (at
most) countable. The proof is complete.

The effect of genuine nonlinearity, reflected in the properties of characteristics, is
either to smooth out solutions by rarefaction or to form jump discontinuities through
compression. Aspects of this polarizing influence, which impedes the existence of
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solutions with “intermediate” regularity, are manifested in the following Theorems
11.3.5, 11.3.6 and 11.3.10.

To begin with, every admissible BV solution is necessarily a special function of
bounded variation, in the sense of Definition 1.7.9:

11.3.5 Theorem. There is an (at most) countable set T ⊂ [0,∞) such that, for
any t ∈ [0,∞)\T , u(·, t) belongs to SBVloc(−∞,∞). Furthermore, u belongs to
SBVloc

(
(−∞,∞)× [0,∞)

)
.

The proof of the above proposition is found in the literature cited in Section
11.14. A rough explanation of this phenomenon runs as follows. Because of Theo-
rem 11.2.2, for fixed t > 0, the solution u may decrease, but not increase, rapidly with
respect to x. Furthermore, by virtue of the properties of characteristics, a continuous,
but not abrupt, rapid decrease may only occur shortly before a compression wave
breaks (especially on the brink of focussing of a centered compression wave). Thus,
the development of a Cantor part for u(·, t) may be induced by the almost simulta-
neous breaking of infinitely many compression waves, which is a rare, nongeneric,
event

Next, we shall see that continuity is automatically upgraded to Lipschitz conti-
nuity:

11.3.6 Theorem. Assume the set C of points of continuity of an admissible solution
u has nonempty interior C 0. Then u is locally Lipschitz on C 0.

Proof. Fix any point (x̄, t̄) ∈ C 0 and assume that the circle Br of radius r, cen-
tered at (x̄, t̄), is contained in C 0. Consider any point (x, t) at a distance ρ < r
from (x̄, t̄). The (unique) characteristics, associated with u, passing through (x̄, t̄)
and (x, t) are straight lines with slopes f ′(u(x̄, t̄)) and f ′(u(x, t)), respectively, which
cannot intersect inside the circle Br . Elementary trigonometric estimations then
imply that | f ′(u(x, t))− f ′(u(x̄, t̄))| cannot exceed cρ/r, where c is any upper
bound of 1 + f ′(u)2 over Br . Hence, if a > 0 is a lower bound of f ′′(u) over
Br , |u(x, t)−u(x̄, t̄)| ≤ c

arρ . This completes the proof.

The reader should be aware that admissible solutions have been constructed
whose set of points of continuity has empty interior.

We now investigate the regularity of admissible solutions with smooth initial
data. In what follows, it shall be assumed that f is Ck+1 and u is the admissible
solution with Ck initial data u0 , for some k ∈ {1,2, · · · ,∞}.

For (x, t) ∈ (−∞,∞)× (0,∞), we let y−(x, t) and y+(x, t) denote the interceptors
on the x-axis of the minimal and maximal backward characteristics, associated with
u, emanating from the point (x, t). In particular,

(11.3.5) x = y−(x, t)+ t f ′(u0(y−(x, t)) = y+(x, t)+ t f ′(u0(y+(x, t)),

(11.3.6) u(x−, t) = u0(y−(x, t)), u(x+, t) = u0(y+(x, t)).
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For fixed t > 0, both y−(·, t) and y+(·, t) are monotone nondecreasing and the first
one is continuous from the left while the second is continuous from the right. Con-
sequently,

(11.3.7) 1+ t
d
dy

f ′(u0(y))≥ 0, y = y±(x, t),

holds for all (x, t) ∈ (−∞,∞)× (0,∞).
Any point (x̄, t̄) ∈ (−∞,∞)× (0,∞) of continuity of u is necessarily also a point

of continuity of y±(x, t) and y−(x̄, t̄) = y+(x̄, t̄). Therefore, by virtue of (11.3.5),
(11.3.6), and the implicit function theorem we deduce

11.3.7 Theorem. If (x̄, t̄) ∈ (−∞,∞)× (0,∞) is a point of continuity of u and

(11.3.8) 1+ t̄
d
dy

f ′(u0(y))> 0, y = y±(x̄, t̄),

then u is Ck on a neighborhood of (x̄, t̄).

With reference to Theorem 11.3.3, if (x̄, t̄) is a point of jump discontinuity of u,
then (x̄, t̄) is a point of continuity of y−(x, t) and y+(x, t) relative to the sets of points

sequently, the implicit function theorem together with (11.3.5) and (11.3.6) yields

11.3.8 Theorem. If (11.3.8) holds at a point (x̄, t̄) ∈ (−∞,∞)× (0,∞) of jump dis-
continuity of u, then, in a neighborhood of (x̄, t̄), the shock χ(·) passing through (x̄, t̄)
is Ck+1 and u is Ck on either side of the graph of χ(·).

Next we consider shock generation points, introduced by Definition 11.1.6.

11.3.9 Theorem. If (x̄, t̄) ∈ (−∞,∞)× (0,∞) is a shock generation point, then

(11.3.9) 1+ t̄
d
dy

f ′(u0(y)) = 0, y−(x̄, t̄)≤ y ≤ y+(x̄, t̄).

Furthermore, when k ≥ 2,

(11.3.10)
d2

dy2 f ′(u0(y)) = 0, y−(x̄, t̄)≤ y ≤ y+(x̄, t̄).

Proof. Recall that there are two types of shock generation points: points of continu-
ity, in which case y−(x̄, t̄) = y+(x̄, t̄), and foci of centered compression waves, with
y−(x̄, t̄) < y+(x̄, t̄). When (x̄, t̄) is a point of continuity, (11.3.9) is a consequence
of (11.3.7) and Theorem 11.3.7. When (x̄, t̄) is the focus of a compression wave,
x̄ = y+ t̄ f ′(u0(y)) for any y ∈ [y−(x̄, t̄),y+(x̄, t̄)] and this implies (11.3.9).

When y−(x̄, t̄) < y+(x̄, t̄), differentiation of (11.3.9) with respect to y yields
(11.3.10). To establish (11.3.10) for the case (x̄, t̄) is a point of continuity, we take

{(x, t) : 0 < t < ∞ , x ≤ χ(t)} and {(x, t) : 0 < t < ∞ , x ≥ χ(t)}, respectively. Con-
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any sequence {xn} that converges from below (or above) to x̄. Then {y−(xn, t̄)} will
approach from below (or above) y±(x̄, t̄). Because of (11.3.7), 1+ t̄ d

dy f ′(u0(y)) ≥ 0
for y = y−(xn, t̄); and this together with (11.3.9) imply that y±(x̄, t̄) is a critical point
of d

dy f ′(u0(y)). The proof is complete.

For k ≥ 3, the set of functions u0 in Ck with the property that d
dy f ′(u0(y)) has

infinitely many critical points in a bounded interval is of the first category. Therefore,
generically, initial data u0 ∈Ck , with k ≥ 3, induce solutions with a locally finite set
of shock generation points and thereby with a locally finite set of shocks. In other
words,

11.4 Divides, Invariants and the Lax Formula

The theory of generalized characteristics will be used here to establish interesting
and fundamental properties of admissible solutions of (11.1.1). The starting point
will be a simple but, as we shall see, very useful identity.

Let us consider two admissible solutions u and u∗, with corresponding initial val-
ues u0 and u∗0 , and trace one of the extremal backward characteristics ξ (·), associated
with u, and one of the extremal backward characteristics ξ ∗(·), associated with u∗,
that emanate from any fixed point (x, t) ∈ (−∞,∞)× (0,∞). Thus, ξ (·) and ξ ∗(·)
will be straight lines, and along ξ (·) u will be constant, equal to u(x−, t) or u(x+, t),
while along ξ ∗(·) u∗ will be constant, equal to u∗(x−, t) or u∗(x+, t). In particular,
ξ̇ (τ) = f ′(u(x±, t)) and ξ̇ ∗(τ) = f ′(u∗(x±, t)) , 0 < τ < t.

We write (11.1.1), first for u then for u∗, we combine the resulting two equations,
integrate over the triangle with vertices (x, t),(ξ (0),0),(ξ ∗(0),0), and apply Green’s
theorem thus arriving at the identity

(11.4.1)∫ t

0
{ f (u(x±, t))− f (u∗(ξ (τ)−,τ))− f ′(u(x±, t))[u(x±, t)−u∗(ξ (τ)−,τ)]}dτ

+
∫ t

0
{ f (u∗(x±, t))− f (u(ξ ∗(τ)−,τ))− f ′(u∗(x±, t))[u∗(x±, t)−u(ξ ∗(τ)−,τ)]}dτ

=
∫ ξ (0)

ξ ∗(0)
[u0(y)−u∗0(y)]dy.

As a consequence of the convexity of f , both integrals on the left-hand side of
(11.4.1) are nonpositive. Thus (11.4.1) provides a comparison of the two solutions,
which will find numerous applications in the sequel.

11.3.10 Theorem. Generically, admissible solutions of (11.1.1) with initial data in
Ck, k ≥ 3, are piecewise Ck smooth functions and do not contain centered compres-
sion waves. In particular, solutions with analytic initial data are always piecewise
analytic.
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As a first application of (11.4.1), we use it to locate divides associated with an
admissible solution u. The notion of divide was introduced by Definition 10.3.3. In
the context of the genuinely nonlinear scalar conservation law, following the discus-
sion in Section 10.3, divides are shock-free and hence, by virtue of Theorem 11.1.1,
straight lines along which u is constant.

11.4.1 Theorem. A divide, associated with the admissible solution u, with initial
data u0 , along which u is constant ū, issues from the point (x̄,0) of the x-axis if and
only if

(11.4.2)

Proof. Assume that (11.4.2) holds. We apply (11.4.1) with u∗ = ū, t ∈ (0,∞), and
x = x̄+ t f ′(ū). In particular, ξ ∗(τ) = x̄+τ f ′(ū) and ξ ∗(0) = x̄. Hence the right-hand
side of (11.4.1) is nonnegative, on account of (11.4.2). But then both integrals on the
left-hand side must vanish, so that u(x±, t) = ū. We have thus established that the
straight line x = x̄+ t f ′(ū) is a shock-free characteristic on [0,∞), which is a divide
associated with u.

Conversely, assume the straight line x = x̄+ t f ′(ū) is a divide associated with
u. Take any z ∈ (−∞,∞) and fix ũ such that ũ < ū if z > x̄ and ũ > ū if z < x̄. The
straight lines z+ t f ′(ũ) and x̄+ t f ′(ū) will then intersect at a point (x, t) with t > 0.
We apply (11.4.1) with u∗ ≡ ũ, in which case ξ (0) = x̄, ξ ∗(0) = z. The left-hand side
is nonpositive and so

(11.4.3)
∫ x̄

z
[u0(y)− ũ]dy ≤ 0.

Letting ũ → ū we arrive at (11.4.2). This completes the proof.

The above proposition has implications for the existence of important time in-
variants of solutions:

11.4.2 Theorem. Assume u0 is integrable over (−∞,∞) and the maxima

(11.4.4) max
x

∫ −∞

x
u0(y)dy = q− , max

x

∫ ∞

x
u0(y)dy = q+

exist. If u is the admissible solution with initial data u0 , then, for any t > 0,

(11.4.5) max
x

∫ −∞

x
u(y, t)dy = q− , max

x

∫ ∞

x
u(y, t)dy = q+ .

Proof. Notice that q− exists if and only if q+ exists and in fact, by virtue of Theorem
11.4.1, both maxima are attained on the set of x̄ with the property that the straight
line x = x̄+ t f ′(0) is a divide associated with u, along which u is constant, equal to
zero. But then, again by Theorem 11.4.1, both maxima in (11.4.5) will be attained at
x̂ = x̄+ t f ′(0).

∫ z

x̄
[u0(y)− ū]dy ≥ 0, −∞ < z < ∞ .
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We now normalize f by f (0) = 0 and take the integral of (11.1.1), first over the
domain {(y,τ) : 0 < τ < t,−∞ < y < x̄+ τ f ′(0)} and then also over the domain
{(y,τ) : 0 < τ < t, x̄ + τ f ′(0) < y < ∞}. Applying Green’s theorem, and since u
vanishes along the straight line x = x̄+ τ f ′(0),

(11.4.6)
∫ −∞

x̂
u(y, t)dy =

∫ −∞

x̄
u0(y)dy,

∫ ∞

x̂
u(y, t)dy =

∫ ∞

x̄
u0(y)dy,

which verifies (11.4.5). The proof is complete.

One of the most striking features of genuinely nonlinear scalar conservation laws
is that admissible solutions may be determined explicitly from the initial data by the
following procedure. We start out with the Legendre transform

(11.4.7) g(v) = max
u

[uv− f (u)],

noting that the maximum is attained at u = [ f ′]−1(v). With given initial data u0(·) we
associate the Lax function

(11.4.8) G(y,x, t) =
∫ y

0
u0(z)dz+ tg

(
x− y

t

)
,

defined for (x, t) ∈ (−∞,∞)× (0,∞) and y ∈ (−∞,∞).

11.4.3 Theorem. For fixed (x, t) ∈ (−∞,∞)× (0,∞), the Lax function G(y,x, t) is
minimized at a point ȳ ∈ (−∞,∞) if and only if the straight line segment that con-
nects the points (x, t) and (ȳ,0) is a generalized characteristic associated with the
admissible solution u with initial data u0 , which is shock-free on (0, t).

Proof. We fix y and ȳ in (−∞,∞), integrate (11.1.1) over the triangle with vertices
(x, t),(y,0),(ȳ,0), and apply Green’s theorem to get

(11.4.9)
∫ ȳ

0
u0(z)dz+

∫ t

0

[
x− ȳ

t
u(ȳ+ τ

x− ȳ
t

±,τ)− f (u(ȳ+ τ
x− ȳ

t
±,τ))

]
dτ

=
∫ y

0
u0(z)dz+

∫ t

0

[
x− y

t
u(y+ τ

x− y
t

±,τ)− f (u(y+ τ
x− y

t
±,τ))

]
dτ.

By virtue of (11.4.7) and (11.4.8), the left-hand side of (11.4.9) is less than or equal
to G(ȳ,x, t), with equality holding if and only if f ′(u(ȳ+ τ x−ȳ

t ±,τ)) = x−ȳ
t , almost

everywhere on (0, t), i.e., if and only if the straight line segment that connects the
points (x, t) and (ȳ,0) is a shock-free characteristic. Similarly, the right-hand side
of (11.4.9) is less than or equal to G(y,x, t), with equality holding if and only if
the straight line segment that connects the points (x, t) and (y,0) is a shock-free
characteristic. Assuming then that the straight line segment connecting (x, t) with
(ȳ,0) is a shock-free characteristic, we deduce from (11.4.9) that G(ȳ,x, t)≤G(y,x, t)
for any y ∈ (−∞,∞).
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Conversely, assume G(ȳ,x, t)≤ G(y,x, t), for all y ∈ (−∞,∞). In particular, pick
y so that (y,0) is the intercept by the x-axis of the minimal backward character-
istic emanating from (x, t). As shown above, y is a minimizer of G(· ,x, t) and so
G(y,x, t) = G(ȳ,x, t). Moreover, the right-hand side of (11.4.9) equals G(y,x, t) and
so the left-hand side equals G(y,x, t). As explained above, this implies that the
straight line segment connecting (x, t) with (ȳ,0) is a shock-free characteristic. The
proof is complete.

The above proposition may be used to determine the admissible solution u from
the initial data u0: For fixed (x, t) ∈ (−∞,∞)× (0,∞), we let y− denote the smallest
and y+ denote the largest minimizer of G(· ,x, t) over (−∞,∞). We then have

(11.4.10) u(x±, t) = [ f ′]−1
(

x− y±
t

)
.

On account of Theorems 11.3.2, 11.3.3 and 11.3.4, we conclude that (x, t) is a point
of continuity of u if and only if y− = y+ ; a point of jump discontinuity of u if and

of u if and only if y− < y+ and there exist additional minimizers of G(· ,x, t) in
the interval (y−,y+). One may develop the entire theory of the Cauchy problem for
genuinely nonlinear scalar conservation laws on the basis of the above construc-
tion of admissible solutions, in lieu of the approach via generalized characteristics.
It should be noted, however, that the method of generalized characteristics affords
greater flexibility, as it applies to solutions defined on arbitrary open subsets of R2,
not necessarily on the entire upper half-plane.

The change of variables u = ∂xv, reduces the conservation law (11.1.1) to the
Hamilton-Jacobi equation

(11.4.11) ∂tv(x, t)+ f (∂xv(x, t)) = 0.

In that context, u is an admissible weak solution of (11.1.1) if and only if v is a
viscosity solution of (11.4.11); see references in Section 11.14. In fact, Theorems
11.4.2 and 11.4.3 reflect properties of solutions of Hamilton-Jacobi equations rather
than of hyperbolic conservation laws, in that they readily extend to the multi-space
dimensional versions of the former though not of the latter.

11.5 Decay of Solutions Induced by Entropy Dissipation

Genuine nonlinearity gives rise to a multitude of dissipative mechanisms which, act-
ing individually or collectively, affect the large time behavior of solutions. In this
section we shall get acquainted with examples in which the principal agent of damp-
ing is entropy dissipation.

11.5.1 Theorem. Let u be the admissible solution with initial data u0 such that

only if y− < y+ and y− , y+ are the only minimizers of G(· ,x, t); or an irregular
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(11.5.1)
∫ x+�

x
u0(y)dy = O(�r), as �→ ∞ ,

for some r ∈ [0,1), uniformly in x on (−∞,∞). Then

(11.5.2) u(x±, t) = O
(

t−
1−r
2−r

)
, as t → ∞ ,

uniformly in x on (−∞,∞).

Proof. We fix (x, t) ∈ (−∞,∞)× (0,∞) and write (11.4.1) for u∗ ≡ 0. Notice that
ξ (0)− ξ ∗(0) = t[ f ′(u(x±, t))− f ′(0)]. Also recall that both integrals on the left-
hand side are nonpositive. Consequently, using (11.5.1), we deduce

(11.5.3) Φ(u(x±, t)) = O(tr−1), as t → ∞ ,

uniformly in x on (−∞,∞), where we have set

(11.5.4) Φ(u) =
f (0)− f (u)+u f ′(u)
| f ′(u)− f ′(0)|r =

∫ u
0 v f ′′(v)dv

|∫ u
0 f ′′(v)dv|r .

A simple estimation yields Φ(u) ≥ K|u|2−r, with K > 0, and so (11.5.3) implies
(11.5.2). This completes the proof.

In particular, when u0 ∈ Lp (11.5.1) holds with r = 1− 1
p , by virtue of Hölder’s

inequality. Therefore, Theorem 11.5.1 has the following corollary:

11.5.2 Theorem. Let u be the admissible solution with initial data u0 in
Lp(−∞,∞), 1 ≤ p < ∞ . Then

(11.5.5) u(x±, t) = O
(

t−
p

p+1
)
, as t → ∞ ,

uniformly in x on (−∞,∞).

In the above examples, the comparison function was the solution u∗ ≡ 0. Next
we consider the case where the comparison function is the solution of a Riemann
problem comprising two constant states u− and u+ , u− > u+ , joined by a shock,
namely,

(11.5.6) u∗(x, t) =

⎧⎨⎩ u− , x < st

u+ , x > st,

where

(11.5.7) s =
f (u+)− f (u−)

u+−u−
.
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11.5.3 Theorem. Let u denote the admissible solution with initial data u0 such that
the improper integrals

∫ 0
−∞[u0(y)−u−]dy and

∫ ∞
0 [u0(y)−u+]dy exist, for u− and u+

with u− > u+ . Normalize the origin x = 0 so that

(11.5.8)
∫ 0

−∞
[u0(y)−u−]dy+

∫ ∞

0
[u0(y)−u+]dy = 0.

(11.5.9) χ(t) = st +o(1),

with s given by (11.5.7), and

(11.5.10) u(x±, t) =

⎧⎨⎩u−+o(t−1/2), uni f ormly f or x < χ(t)

u++o(t−1/2), uni f ormly f or x > χ(t).

In view of the above, (11.5.8) implies that the right-hand side of (11.4.1) is o(1),
as t → ∞ , uniformly in x on (−∞,∞). The same will then be true for each integral on
the left-hand side of (11.4.1), because they are of the same sign (nonpositive).

Consider first points (x, t) ∈ (−∞,∞)× (0,∞) with x < min{χ(t),st}. Then
ξ (τ)< sτ, 0 < τ < t, and so the first integral on the left-hand side of (11.4.1) yields

(11.5.11) t{ f (u(x±, t))− f (u−)− f ′(u(x±, t))[u(x±, t)−u−]}= o(1).

Since f is uniformly convex, (11.5.11) implies u(x±, t)−u− = o(t−1/2).
A similar argument demonstrates that for points (x, t) ∈ (−∞,∞)× (0,∞) with

x > max{χ(t),st}, we have u(x±, t)−u+ = o(t−1/2).
Next, consider points (x, t)∈ (−∞,∞)×(0,∞) with st ≤ x < χ(t). Then ξ (·) will

have to intersect the straight line x = sτ , say at τ = r, r ∈ [0, t], in which case the first
integral on the left-hand side of (11.4.1) gives

(11.5.12) (t − r){ f (u(x±, t))− f (u+)− f ′(u(x±, t))[u(x±, t)−u+]}= o(1),

(11.5.13) r{ f (u(x±, t))− f (u−)− f ′(u(x±, t))[u(x±, t)−u−]}= o(1).

Consider any forward characteristic χ(·) issuing from (0,0). Then, as t → ∞ ,

Proof. Fix any (x, t) ∈ (−∞,∞)× (0,∞) and write (11.4.1) for the solution u, with
initial data u0 , and the comparison solution u∗ given by (11.5.6). By virtue of
f ′(u−) > s > f ′(u+), as t → ∞ , ξ ∗(0) → −∞ , uniformly in x on (−∞,st), and
ξ ∗(0)→∞ , uniformly in x on (st,∞). Similarly, as t →∞ , ξ (0)→−∞ , uniformly in
x on (−∞ ,χ(t)), and ξ (0)→ ∞ uniformly in x on (χ(t),∞). Indeed, in the opposite
case one would be able to find a sequence {(xn, tn)}, with tn → ∞ as n → ∞ , such that
the intercepts ξn(0) of the minimal backward characteristics ξn(·) emanating from
(xn, tn) are confined in a bounded set. But then some subsequence of {ξn(·)} would
converge to a divide issuing from some point (x̄,0). However, this is impossible, be-
cause, since u− > u+ , (11.5.8) is incompatible with (11.4.2), for any x̄ ∈ (−∞,∞)
and every ū ∈ (−∞,∞).
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For x < χ(t), it was shown above that ξ (0) → −∞ , as t → ∞ , and this in turn
implies r → ∞ . Thus, by (11.5.13) and the convexity of f , u(x±, t) = u− + o(1).
Then (11.5.12) implies that t − r = o(1) so that χ(t)− st = o(1) and (11.5.13)
yields (11.5.11). From (11.5.11) and the convexity of f we deduce, as before,
u(x±, t)−u− = o(t−1/2).

A similar argument establishes that for points (x, t) ∈ (−∞,∞)× (0,∞) with
χ(t) < x ≤ st we have u(x±, t)− u+ = o(t−1/2) and also χ(t)− st = o(1). This
completes the proof.

11.6 Spreading of Characteristics and Development of N-Waves

Another feature of genuine nonlinearity, affecting the large-time behavior of solu-
tions, is spreading of characteristics. In order to see the effects of this mechanism,
we shall study the asymptotic behavior of solutions with initial data of compact sup-
port. We already know, on account of Theorem 11.5.2, that the amplitude decays to
zero as O(t−1/2). The closer examination here will reveal that asymptotically the so-
lution attains the profile of an N-wave, namely, a centered rarefaction wave flanked
on both sides by shocks whose amplitudes decay like O(t−1/2).

11.6.1 Theorem. Let u be the admissible solution with initial data u0 , such that
u0(x) = 0 for |x| > �. Consider the minimal forward characteristic χ−(·) issuing
from (−�,0) and the maximal forward characteristic χ+(·) issuing from (�,0). Then

(11.6.1) u(x±, t) = 0, f or t > 0 and x < χ−(t) or x > χ+(t).

As t → ∞ ,

(11.6.2) f ′(u(x±, t)) =
x
t
+O(

1
t
), f or χ−(t)< x < χ+(t),

(11.6.3) u(x±, t) =
1

f ′′(0)
[
x
t
− f ′(0)]+O(

1
t
), f or χ−(t)< x < χ+(t),

(11.6.4)

⎧⎨⎩ χ−(t) = t f ′(0)− [2q−t f ′′(0)]1/2 +O(1)

χ+(t) = t f ′(0)+ [2q+t f ′′(0)]1/2 +O(1),

with q− and q+ given by (11.4.4). Moreover, the decreasing variation of u(·, t) over
the interval [χ−(t),χ+(t)] is O(t−1).

Proof. Since χ−(·) is minimal and χ+(·) is maximal, the extremal backward charac-
teristics emanating from any point (x, t) with t > 0 and x < χ−(t) or x > χ+(t) will
be intercepted by the x-axis outside the support of u0 . This establishes (11.6.1).
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On the other hand, the minimal or maximal backward characteristic ξ (·) em-
anating from a point (x, t) with t > 0 and χ−(t) < x < χ+(t) will be intercepted
by the x-axis inside the interval [−�,�], that is, ξ (0) ∈ [−�,�]. Consequently, as
t → ∞ , x− t f ′(u(x±, t)) = ξ (0) = O(1), which yields (11.6.2).1

On account of Theorem 11.5.2, u is O(t−1/2), as t → ∞ , and thus, assuming f is
C3 , f ′(u) = f ′(0)+ f ′′(0)u+O(t−1). Therefore, (11.6.3) follows from (11.6.2).

0 ≥ χ̇−(t)− f ′(0) ≥ O(t−1/2), 0 ≤ χ̇+(t)− f ′(0) ≤ O(t−1/2) and this in turn yields
0 ≥ χ−(t)− t f ′(0)≥ O(t1/2) ,0 ≤ χ+(t)− t f ′(0)≤ O(t1/2). Next we appeal to The-
orem 11.4.2: A divide x = x̄+ t f ′(0) originates from a point (x̄,0), with x̄ ∈ [−�,�],
along which u is zero, and for any t > 0,

(11.6.5)
∫ χ−(t)

x̄+t f ′(0)
u(y, t)dy = q− ,

∫ χ+(t)

x̄+t f ′(0)
u(y, t)dy = q+ .

In (11.6.5) we insert u from its asymptotic form (11.6.3), and after performing the
simple integration we deduce

(11.6.6)
1

2q±t f ′′(0)
[χ±(t)− t f ′(0)]2 = 1+O(t−1/2)

whence (11.6.4) follows. The proof is complete.

11.7 Confinement of Characteristics

and Formation of Saw-toothed Profiles

The confinement of the intercepts of extremal backward characteristics in a bounded
interval of the x-axis induces bounds on the decreasing variation of characteristic
speeds and thereby, by virtue of genuine nonlinearity, on the decreasing variation of
the solution itself.

11.7.1 Theorem. Let χ−(·) and χ+(·) be generalized characteristics on [0,∞), as-
sociated with an admissible solution u, and χ−(t) < χ+(t) for t ∈ [0,∞). Then,
for any t > 0, the decreasing variation of the function f ′(u(·, t)) over the interval
(χ−(t),χ+(t)) cannot exceed [χ+(0)− χ−(0)]t−1. Thus the decreasing variation of
u(·, t) over the interval (χ−(t),χ+(t)) is O(t−1) as t → ∞ .

Proof. Fix t > 0 and consider any mesh χ−(t) < x1 < x2 < · · · < x2m < χ+(t)
such that (xi, t) is a point of continuity of u and also u(x2k−1, t) > u(x2k, t),

1 As t → ∞ , the ξ (0) accumulate at the set of points from which divides originate. In the
generic case where (11.4.2) holds, with ū = 0, at a single point x̄, which we normalize so
that x̄ = 0, the ξ (0) accumulate at the origin and hence in (11.6.2) O(t−1) is upgraded to
o(t−1). When, in addition, u0 is C1 and u′0(0) > 0, then in (11.6.2) O(t−1) is improved to
O(t−2) and, for t large, the profile u(·, t) is C1 on the interval (χ−(t),χ+(t)).

To derive the asymptotics of χ±(t), as t → ∞ , we first observe that on account of
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k = 1, · · · ,m. Let ξi(·) denote the (unique) backward characteristic emanating from
(xi, t). Then χ−(0) ≤ ξ1(0) ≤ ·· · ≤ ξ2m(0) ≤ χ+(0). Furthermore, we have that
ξi(0) = xi − t f ′(u(xi, t)) and so

(11.7.1)
m

∑
k=1

t[ f ′(u(x2k−1, t))− f ′(u(x2k, t))]≤ χ+(0)−χ−(0)

whence the assertion of the theorem follows. This completes the proof.

In particular, referring to the setting of Theorem 11.6.1, we deduce that the de-
creasing variation of the N-wave profile u(·, t) over the interval (χ−(t),χ+(t)) is
O(t−1), as t → ∞ .

Another corollary of Theorem 11.7.1 is that when the initial data u0 , and thereby
the solution u, are periodic in x, then the decreasing variation, and hence also the total
variation, of u(·, t) over any period interval is O(t−1) as t → ∞ . We may achieve finer
resolution than O(t−1) by paying closer attention to the initial data:

11.7.2 Theorem. Let u be an admissible solution with initial data u0 . Assume
χ−(t) = x− + t f ′(ū) and χ+(t) = x+ + t f ′(ū), x− < x+ , are adjacent divides as-
sociated with u, that is (11.4.2) holds for x̄ = x− and x̄ = x+ but for no x̄ in the
interval (x−,x+). Then

(11.7.2)
∫ χ+(t)

χ−(t)
u(x, t)dx =

∫ x+

x−
u0(y)dy = (x+− x−)ū, t ∈ [0,∞).

Consider any forward characteristic ψ(·) issuing from the point ( x−+x+
2 ,0). Then, as

t → ∞ ,

(11.7.3) ψ(t) = 1
2 [χ−(t)+χ+(t)]+o(1),

(11.7.4) u(x±, t)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ū+

1
f ′′(ū)

x−χ−(t)
t

+o
(

1
t

)
, f or χ−(t)< x < ψ(t)

ū+
1

f ′′(ū)
x−χ+(t)

t
+o

(
1
t

)
, f or ψ(t)< x < χ+(t).

Moreover, the decreasing variation of u(·, t) over the intervals (χ−(t),ψ(t)) and
(ψ(t),χ+(t)) is o(t−1) as t → ∞ .

Proof. To verify the first equality in (11.7.2), it suffices to integrate (11.1.1) over
the parallelogram {(x,τ) : 0 < τ < t, χ−(τ) < x < χ+(τ)} and then apply Green’s
theorem. The second equality in (11.7.2) follows because (11.4.2) holds for both
x̄ = x− and x̄ = x+ .

For t > 0, we let ξ t−(·) and ξ t
+(·) denote the extremal backward characteristics

emanating from the point (ψ(t), t). As t ↑ ∞ , ξ t−(0) ↓ x− and ξ t
+(0) ↑ x+ , because



386 XI Scalar Conservation Laws in One Space Dimension

otherwise there would exist divides originating at points (x̄,0) with x̄ ∈ (x−,x+),
contrary to our assumptions. It then follows from Theorem 11.7.1 that the decreasing
variation of f ′(u(·, t)), and thereby also the decreasing variation of u(·, t) itself, over

The extremal backward characteristics emanating from any point (x, t) with
χ−(t) < x < ψ(t) (or ψ(t) < x < χ+(t)) will be intercepted by the x-axis inside
the interval [x−,ξ t−(0)] (or [ξ t

+(0),x+]) and thus

(11.7.5) x− t f ′(u(x±, t)) =

⎧⎨⎩ x−+o(t−1), for χ−(t)< x < ψ(t)

x++o(t−1), for ψ(t)< x < χ+(t).

Since u(χ−(t), t) = u(χ+(t), t) = ū, Theorem 11.7.1 implies u− ū = O(t−1) and so,
as t → ∞ , f ′(u) = f ′(ū)+ f ′′(ū)(u− ū)+O(t−2). This together with (11.7.5) yield
(11.7.4).

Finally, introducing u from (11.7.4) into (11.7.2) we arrive at (11.7.3). The proof
is complete.

We shall employ the above proposition to describe the asymptotics of periodic
solutions:

file consisting of wavelets of the form (11.7.4). The number of wavelets (or teeth) per
period equals the number of divides per period or, equivalently, the number of points
on any interval of the x-axis of period length at which the primitive of the function
u0 − ū attains its minimum. In particular, in the generic case where the minimum of
the primitive of u0 − ū is attained at a single point on each period interval, u tends
to a sawtooth-shaped profile with a single tooth per period.

Proof. It is an immediate corollary of Theorems 11.4.1 and 11.7.2. If u0 is periodic,
(11.4.2) may hold only when ū is the mean of u0 and is attained at points x̄ where the
primitive of u0 − ū is minimized. The set of such points is obviously invariant under
period translations and contains at least one (generically precisely one) point in each
interval of period length.

11.8 Comparison Theorems and L1 Stability

The assertions of Theorem 6.2.3 will be reestablished here, in sharper form, for the
special case of genuinely nonlinear scalar conservation laws (11.1.1), in one space
dimension. The key factor will be the properties of the function

(11.8.1) Q(u,v,w) =

⎧⎪⎨⎪⎩
f (v)− f (u)− f (u)− f (w)

u−w
[v−u], if u �= w

f (v)− f (u)− f ′(u)[v−u], if u = w,

the intervals (χ−(t),ψ(t)) and (ψ(t),χ+(t)) is o(t−1) as t → ∞ .

11.7.3 Theorem. When the initial data u0 are periodic, with mean ū, then, as the time
t → ∞ , the admissible solution u tends, at the rate o(t−1), to a periodic serrated pro-
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defined for u,v and w in R. Clearly, Q(u,v,w) = Q(w,v,u). Since f is uniformly
convex, Q(u,v,w) will be negative when v lies between u and w, and positive when v
lies outside the interval with endpoints u and w. In particular, for the Burgers equation
(4.2.1), Q(u,v,w) = 1

2 (v−u)(v−w).
The first step is to refine the ordering property:

11.8.1 Theorem. Let u and ū be admissible solutions of (11.1.1), on the upper half-
plane, with respective initial data u0 and ū0 such that

(11.8.2) u0(x)≤ ū0(x), f or all x ∈ (y, ȳ).

Let ψ(·) be any forward characteristic, associated with the solution u, issuing from
the point (y,0), and let ψ̄(·) be any forward characteristic, associated with ū, issuing
from (ȳ,0). Then, for any t > 0 with ψ(t)< ψ̄(t),

(11.8.3) u(x, t)≤ ū(x, t), f or all x ∈ (ψ(t), ψ̄(t)).

Proof. We fix any interval (z, z̄) with ψ(t) < z < z̄ < ψ̄(t) and consider the maxi-
mal backward characteristic ξ (·), associated with the solution u, emanating from the
point (z, t), and the minimal backward characteristic ζ̄ (·), associated with ū, emanat-
ing from the point (z̄, t). Thus, ξ (0)≥ y and ζ̄ (0)≤ ȳ.

Suppose first ξ (0)< ζ̄ (0). We integrate the equation

(11.8.4) ∂t [u− ū]+∂x[ f (u)− f (ū)] = 0

over the trapezoid {(x,τ) : 0 < τ < t, ξ (τ)< x < ζ̄ (τ)} and apply Green’s theorem
to get

(11.8.5)
∫ z̄

z
[u(x, t)− ū(x, t)]dx−

∫ ζ̄ (0)

ξ (0)
[u0(x)− ū0(x)]dx

=−
∫ t

0
Q(u(ξ (τ),τ), ū(ξ (τ),τ),u(ξ (τ),τ))dτ

−
∫ t

0
Q(ū(ζ̄ (τ),τ),u(ζ̄ (τ),τ), ū(ζ̄ (τ),τ))dτ.

Both integrals on the right-hand side of (11.8.5) are nonpositive. Hence, by virtue of
(11.8.2), the integral of u(·, t)− ū(·, t) over (z, z̄) is nonpositive.

Suppose now ξ (0)≥ ζ̄ (0). Then the straight lines ξ (·) and ζ̄ (·) must intersect at
some time s ∈ [0, t). In that case we integrate the Equation (11.8.4) over the triangle
{(x,τ) : s < τ < t, ξ (τ) < x < ζ̄ (τ)} and employ the same argument as above to
deduce that the integral of u(·, t)− ū(·, t) over (z, z̄) is again nonpositive.

Since (z, z̄) is an arbitrary subinterval of (ψ(t), ψ̄(t)), we conclude (11.8.3). The
proof is complete.

As a corollary of the above theorem, we infer that the number of sign changes of
the function u(·, t)− ū(·, t) over (−∞,∞) is nonincreasing with time. Indeed, assume
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there are points −∞ = y0 < y1 < · · · < yn < yn+1 = ∞ such that, on each interval
(yi,yi+1),u0(·)− ū0(·) is nonnegative when i is even and nonpositive when i is odd.
Let ψi(·) be any forward characteristic, associated with the solution u, issuing from
the point (yi,0) with i odd, and ψ̄i(·) any forward characteristic, associated with ū,
issuing from (yi,0) with i even. These curves are generally assigned finite life spans,
according to the following prescription. At the time t1 of the earliest collision be-
tween some ψi and some ψ̄ j , these two curves are terminated. Then, at the time t2
of the next collision between any (surviving) ψk and ψ̄� , these two curves are like-
wise terminated; and so on. By virtue of Theorem 11.8.1, u(·, t)− ū(·, t) undergoes
n sign changes for any t ∈ [0, t1), n−2 sign changes for any t ∈ [t1, t2), and so on. In
particular, the so-called lap number, which counts the crossings of the graph of the
solution u(·, t) with any fixed constant ū, is nonincreasing with time.

By Theorem 6.2.3, the spatial L1 distance of any pair of admissible solutions of
a scalar conservation law is nonincreasing with time. In the present setting, it will be
shown that it is actually possible to determine under what conditions the L1 distance
is strictly decreasing and at what rate:

11.8.2 Theorem. Let u and ū be admissible solutions of (11.1.1) with initial data u0
and ū0 in L1(−∞,∞). Thus ‖u(·, t)− ū(·, t)‖L1(−∞,∞) is a nonincreasing function of t
which is locally Lipschitz on (0,∞). For any fixed t ∈ (0,∞), consider the (possibly
empty and at most countable) sets

(11.8.6)

⎧⎨⎩J = {y ∈ (−∞,∞) : u+ < ū+ ≤ ū− < u−},

J̄ = {y ∈ (−∞,∞) : ū+ < u+ ≤ u− < ū−},
where u± and ū± stand for u(y±, t) and ū(y±, t), respectively. Let

(11.8.7)1 u∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u± if u+ = u− ,

u− if u+ < u− and
f (u+)− f (u−)

u+−u−
≥ f (ū+)− f (ū−)

ū+− ū−
,

u+ if u+ < u− and
f (u+)− f (u−)

u+−u−
<

f (ū+)− f (ū−)
ū+− ū−

,

(11.8.7)2 ū∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ū± if ū+ = ū− ,

ū− if ū+ < ū− and
f (ū+)− f (ū−)

ū+− ū−
≥ f (u+)− f (u−)

u+−u−
,

ū+ if ū+ < ū− and
f (ū+)− f (ū−)

ū+− ū−
<

f (u+)− f (u−)
u+−u−

.
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Then

(11.8.8)
d+

dt
‖u(·, t)− ū(·, t)‖L1(−∞,∞) = 2 ∑

y∈J

Q(u−, ū∗,u+)+2 ∑
y∈J̄

Q(ū−,u∗, ū+).

Proof. First we establish (11.8.8) for the special case where u(·, t)− ū(·, t) undergoes
a finite number of sign changes on (−∞,∞). We thus assume that there are points
−∞ = y0 < y1 < · · ·< yn < yn+1 = ∞ such that u(·, t)− ū(·, t) is nonnegative on the
intervals (yi,yi+1) with i even, and nonpositive on the intervals (yi,yi+1) with i odd.
In particular, any y ∈ J must be one of the yi , with i odd, and any y ∈ J̄ must be
one of the yi , with i even.

Let ψi(·) be the (unique) forward characteristic, associated with the solution u,
issuing from the point (yi, t) with i odd, and let ψ̄i(·) be the forward characteristic,
associated with ū, issuing from (yi, t) with i even. We fix s > t with s− t so small that
no collisions of the above curves may occur on [t,s], and integrate (11.8.4) over the
domains {(x,τ) : t < τ < s, ψi(τ) < x < ψ̄i+1(τ)}, for i odd, and over the domains
{(x,τ) : t < τ < s , ψ̄i(τ)< x < ψi+1(τ)}, for i even. We apply Green’s theorem and
employ Theorem 11.8.1, to deduce

(11.8.9) ‖u(·,s)− ū(·,s)‖L1(−∞,∞)−‖u(·, t)− ū(·, t)‖L1(−∞,∞)

= ∑
i even

∫ ψi+1(s)

ψ̄i(s)
[u(x,s)− ū(x,s)]dx+ ∑

i odd

∫ ψ̄i+1(s)

ψi(s)
[ū(x,s)−u(x,s)]dx

− ∑
i even

∫ yi+1

yi

[u(x, t)− ū(x, t)]dx− ∑
i odd

∫ yi+1

yi

[ū(x, t)−u(x, t)]dx

= ∑
i odd

∫ s

t
{Q(u(ψi(τ)−,τ), ū(ψi(τ)−,τ),u(ψi(τ)+,τ))

+Q(u(ψi(τ)+,τ), ū(ψi(τ)+,τ),u(ψi(τ)−,τ))}dτ

+ ∑
i even

∫ s

t
{Q(ū(ψ̄i(τ)−,τ),u(ψ̄i(τ)−,τ), ū(ψ̄i(τ)+,τ))

+Q(ū(ψ̄i(τ)+,τ),u(ψ̄i(τ)+,τ), ū(ψ̄i(τ)−,τ))}dτ.

By virtue of Theorem 11.3.1, as s ↓ t the integrand in the first integral on the right-
hand side of (11.8.9) tends to zero, if yi �∈ J , or to 2Q(u−, ū∗,u+), if yi ∈ J .
Similarly, the integrand in the second integral on the right-hand side of (11.8.9) tends
to zero, if yi �∈ J̄ , or to 2Q(ū−,u∗, ū+), if yi ∈ J̄ . Therefore, upon dividing (11.8.9)
by s− t and letting s ↓ t, we arrive at (11.8.8).

We now turn to the general situation, where u(·, t)− ū(·, t) may undergo in-
finitely many sign changes over (−∞,∞), observing that in that case, the open set
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{x ∈ (−∞,∞) : u(x±, t)− ū(x±, t) < 0} is the countable union of disjoint open in-
tervals (yi, ȳi). For m = 1,2, · · · , we let um denote the admissible solution of our
conservation law (11.1.1) on (−∞,∞)× [t,∞), with

(11.8.10) um(x, t) =

⎧⎪⎪⎨⎪⎪⎩
ū(x, t), x ∈

∞⋃
i=m

(yi, ȳi)

u(x, t), otherwise.

Thus um(·, t)− ū(·, t) undergoes a finite number of sign changes over (−∞,∞) and so,
for τ ≥ t, d+

dτ ‖um(·,τ)− ū(·,τ)‖L1 is evaluated by the analog of (11.8.8). Moreover,
the function τ �→ d+

dτ ‖um(·,τ)− ū(·,τ)‖L1 is right-continuous at t and the modulus of
right continuity is independent of m. To verify this, note that the total contribution of
small jumps to the rate of change of ‖um(·,τ)− ū(·,τ)‖L1 is small, controlled by the
total variation of u(·, t) and ū(·, t) over (−∞,∞), while the contribution of the (finite
number of) large jumps is right-continuous, on account of Theorem 11.3.1. There-

According to the above theorem, the L1 distance of u(·, t) and ū(·, t) may decrease
only when the graph of either of these functions happens to cross the graph of the
other at a point of jump discontinuity. More robust contraction is realized in terms
of a new metric which weighs the L1 distance of two solutions by a weight specially
tailored to them.

For v and v̄ in BV (−∞,∞), let

fore, by passing to the limit, as m → ∞ , we establish (11.8.8) for general solutions u
and ū. The proof is complete.

(11.8.11) ρ(v, v̄) =
∫ ∞

−∞
{(V (x)+V̄ (∞)−V̄ (x))[v(x)− v̄(x)]+

+(V̄ (x)+V (∞)−V (x))[v̄(x)−v(x)]+}dx,

where the superscript + denotes “positive part”, w+ =max{w,0}, and V or V̄ denotes
the variation function of v or v̄, V (x) = TV(−∞,x)v(·), V̄ (x) = TV(−∞,x)v̄(·).

11.8.3 Theorem. Let u and ū be admissible solutions of (11.1.1) with initial data u0
and ū0 in BV (−∞,∞). Then, for any fixed t ∈ (0,∞),

(11.8.12)
d+

dt
ρ(u(·, t), ū(·, t))≤−

∫ ∞

−∞
Q(u(x, t), ū(x, t),u(x, t))dV c

t (x)

−
∫ ∞

−∞
Q(ū(x, t),u(x, t), ū(x, t))dV̄ c

t (x)

− ∑
y∈K

(u−−u+)Q(u−, ū∗,u+)− ∑
y∈ ¯K

(ū−− ū+)Q(ū−,u∗, ū+)

+(Vt(∞)+V̄t(∞)){ ∑
y∈J

Q(u−, ū∗,u+)+ ∑
y∈J̄

Q(ū−,u∗, ū+)},
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where Vt or V̄t is the variation function of u(·, t) or ū(·, t);V c
t or V̄ c

t denotes the
continuous part of Vt or V̄t ; u± or ū± stand for u(y±, t) or ū(y±, t), u∗ and ū∗ are
again determined through (11.8.7)1 and (11.8.7)2; the sets J and J̄ are defined by
(11.8.6) and K or ¯K denotes the set of jump points of u(·, t) or ū(·, t):

(11.8.13)

⎧⎨⎩K = {y ∈ (−∞,∞) : u+ < u−}
¯K = {y ∈ (−∞,∞) : ū+ < ū−}.

Proof. We begin as in the proof of Theorem 11.8.2: We assume there is a partition
of the real line: −∞ = y0 < y1 < · · · < yn < yn+1 = ∞ such that, on each interval
(yi,yi+1), u(·, t)− ū(·, t) is nonnegative when i is even and nonpositive when i is
odd. We consider the forward characteristic ψi(·), associated with u, issuing from
each point (yi, t), with i odd, and the forward characteristic ψ̄i(·), associated with ū,
issuing from each (yi, t), with i even.

ψ̄i(·), all characteristics to be considered below will be associated with the solution
u. The argument varies somewhat, depending on whether the forward characteristic
χ0 issuing from (yi, t) lies to the left or to the right of ψ̄i(·); for definiteness, we shall
treat the latter case, which is slightly more complicated.

We fix ε positive small and identify all z1, · · · ,zN , yi < z1 < · · ·< zN < yi+1 , such
that u(zI−, t)− u(zI+, t) ≥ ε, I = 1, · · · ,N. We consider the forward characteristic
χI(·) issuing from the point (zI , t), I = 1, · · · ,N. Then we select s > t with s− t so
small that the following hold:

(a) No intersection of any two of the characteristics χ0,χ1, · · · ,χN ,ψi+1 may oc-
cur on the time interval [t,s].

(b) For I = 1, · · · ,N, if ζI(·) and ξI(·) denote the minimal and the maximal back-
ward characteristics emanating from the point (χI(s),s), then the total variation of
u(·, t) over the intervals (ζI(t),zI) and (zI ,ξI(t)) does not exceed ε/N.

(c) If ζ (·) denotes the minimal backward characteristic emanating from (ψi+1(s),s),
then the total variation of u(·, t) over the interval (ζ (t),yi+1) does not exceed ε .

(d) If ζ0(·) is the minimal backward characteristic emanating from (ψi(s),s) and
ξ0(·) is the maximal backward characteristic emanating from (χ0(s),s), then the to-
tal variation of u(·, t) over the intervals (ζ0(t),yi) and (yi,ξ0(t)) does not exceed ε .

For I = 0, · · · ,N − 1, and some k to be fixed later, we pick a mesh on the inter-
val [χI(s),χI+1(s)] : χI(s) = x0

I < x1
I < · · · < xk

I < xk+1
I = χI+1(s); and likewise for

[χN(s),ψi+1(s)] : χN(s) = x0
N < x1

N < · · · < xk
N < xk+1

N = ψi+1(s). For I = 0, · · · ,N
and j = 1, · · · ,k, we consider the maximal backward characteristic ξ j

I (·) emanating

We focus our attention on some (yi,yi+1) with i even. We shall discuss only the
case −∞ < yi < yi+1 < ∞ , as the other cases are simpler. With the exception of



392 XI Scalar Conservation Laws in One Space Dimension

from the point (x j
I ,s) and identify its intercept z j

I = ξ j
I (t) by the t-time line. We also

set z0
0 = yi ,zk+1

N = yi+1 and zk+1
I−1 = z0

I = zI , I = 1, · · · ,N.
We now note the identity

(11.8.14) R−S =−D,

where

(11.8.15) R =
∫ χ0(s)

ψ̄i(s)
Vt(yi)[u(x,s)− ū(x,s)]dx

+
N

∑
I=0

k

∑
j=0

∫ x j+1
I

x j
I

Vt(zi
I+)[u(x,s)− ū(x,s)]dx,

(11.8.16) S =
N

∑
I=0

k

∑
j=0

∫ z j+1
I

z j
I

Vt(z
j
I+)[u(x, t)− ū(x, t)]dx,

(11.8.17)

D=
N

∑
I=0

k

∑
j=1

∫ s

t
[Vt(z

j
I+)−Vt(z

j−1
I +)]Q(u(ξ j

I (τ),τ), ū(ξ
j

I (τ)−,τ),u(ξ j
I (τ),τ))dτ

+
N

∑
I=1

∫ s

t
[Vt(zI+)−Vt(zk

I−1+)]Q(u(χI(τ)−,τ), ū(χI(τ)−,τ),u(χI(τ)+,τ))dτ

+
∫ s

t
[Vt(yi+)−Vt(yi)]Q(u(χ0(τ)−,τ), ū(χ0(τ)−,τ),u(χ0(τ)+,τ))dτ

−
∫ s

t
Vt(yi)Q(ū(ψ̄i(τ)−,τ),u(ψ̄i(τ)+,τ), ū(ψ̄i(τ)+,τ))dτ

−
∫ s

t
Vt(zk

N+)Q(u(ψi+1(τ)−,τ), ū(ψi+1(τ)−,τ),u(ψi+1(τ)+,τ))dτ.

To verify (11.8.14), one first integrates (11.8.4) over the following domains:
{(x,τ) : t < τ < s, ψ̄i(τ) < x < χ0(τ)},{(x,τ) : t < τ < s, ξ j

I (τ) < x < ξ j+1
I (τ)},

{(x,τ) : t < τ < s, χI(τ) < x < ξ 1
I (τ)},{(x,τ) : t < τ < s, ξ k

I (τ) < x < χI+1(τ)},
{(x,τ) : t < τ < s, ξ k

N(τ) < x < ψi+1(τ)} and applies Green’s theorem; then forms
the weighted sum of the resulting equations, with respective weights Vt(yi),Vt(z

j
I+),

Vt(zI+),Vt(zk
I+),Vt(zk

N+).
To estimate R, we note that Vt(yi) ≥ Vs(χ0(s)), and Vt(z

j
I+) ≥ Vs(x

j
I+),

I = 0, · · · ,N, j = 0, · · · ,k. Hence, if we pick the x j+1
I − x j

I sufficiently small, we can
guarantee
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(11.8.18) R ≥
∫ ψi+1(s)

ψ̄i(s)
Vs(x)[u(x,s)− ū(x,s)]dx− (s− t)ε.

To estimate S, it suffices to observe that Vt(·) is nondecreasing, and so

(11.8.19) S ≤
∫ ψi+1(t)

ψ̄i(t)
Vt(x)[u(x, t)− ū(x, t)]dx.

To estimate D, observe that by the properties of Q all five terms are nonnega-
tive. For I = 0, · · · ,N and j = 1, · · · ,k,Vt(z

j
I+)−Vt(z

j−1
I +) ≥ V c

t (z
j
I )−V c

t (z
j−1
I ).

Furthermore,

(11.8.20)
Q(u(ξ j

I (τ),τ), ū(ξ
j

I (τ)−,τ),u(ξ j
I (τ),τ)) = Q(u(z j

I , t), ū(pτ(z
j
I ), t),u(z

j
I , t)),

where the monotone increasing function pτ is determined through

(11.8.21) pτ(x) = x+(τ− t)[ f ′(u(x, t))− f ′(ū(pτ(x), t))].

Upon choosing the x j+1
I − x j

I so small that the oscillation of V c
t (·) over each one of

the intervals (z j
I , z j+1

I ) does not exceed ε , the standard estimates on Stieltjes integrals
imply

(11.8.22)
N

∑
I=0

k

∑
j=1

[Vt(z
j
I+)−Vt(z

j−1
I +)]Q(u(ξ j

I (τ),τ), ū(ξ
j

I (τ)−,τ),u(ξ j
I (τ),τ))

≥
∫ yi+1

yi

Q(u(x, t), ū(pτ(x), t),u(x, t))dV c
t (x)− cε.

We now combine (11.8.14) with (11.8.18), (11.8.19), (11.8.17) and (11.8.22),
then we divide the resulting inequality by s− t, we let s ↓ t, and finally we let ε ↓ 0.
This yields

(11.8.23)

d+

dt

∫ ψi+1(t)

ψ̄i(t)
Vt(x)[u(x, t)− ū(x, t)]dx

≤ −
∫ yi+1

yi

Q(u(x, t), ū(x, t),u(x, t))dV c
t (x)

−∑(u−−u+)Q(u−, ū∗,u+)+ Vt(yi)Q(ū−,u∗, ū+)

+Vt(yi+1)Q(u−, ū∗,u+),
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where the summation runs over all y in K
⋂
(yi,yi+1) and also over yi if yi ∈ K

and χ0 lies to the right of ψ̄i . The u± , ū± , u∗ and ū∗ are of course evaluated at the
corresponding y

Next we focus attention on intervals (yi , yi+1) with i odd. A completely symmet-
rical argument yields, in the place of (11.8.23),

(11.8.24)

d+

dt

∫ ψ̄i+1(t)

ψi(t)
(Vt(∞)−Vt(x))[ū(x, t)−u(x, t)]dx

≤ −
∫ yi+1

yi

Q(u(x, t), ū(x, t),u(x, t))dV c
t (x)

−∑(u−−u+)Q(u−, ū∗,u+)+(Vt(∞)−Vt(yi+))Q(u−, ū∗,u+)

+(Vt(∞)−Vt(yi+1))Q(ū−,u∗, ū+),

where the summation runs over all y in K
⋂
(yi,yi+1), and also over yi+1 if yi+1 ∈K

and the forward characteristic, associated with u, issuing from the point (yi+1, t) lies
to the left of ψ̄i+1 .

We thus write (11.8.23), for all i even, then (11.8.24), for all i odd, and sum over
i = 0, · · · ,n. This yields

(11.8.25)

≤−
∫ ∞

−∞
Q(u(x, t), ū(x, t),u(x, t))dV c

t (x)

− ∑
y∈K

(u−−u+)Q(u−, ū∗,u+)+ Vt(∞){ ∑
y∈J

Q(u−, ū∗,u+)+ ∑
y∈J̄

Q(ū−,u∗, ū+)}.

By employing a technical argument, as in the proof of Theorem 11.8.2, one shows
that (11.8.25) remains valid even when u(·, t)− ū(·, t) is allowed to undergo infinitely
many sign changes on (−∞,∞).

We write the inequality resulting from (11.8.25) by interchanging the roles of
u and ū, and then combine it with (11.8.25). This yields (11.8.12). The proof is
complete.

The estimate (11.8.12) is sharp, in that it holds as equality, at least for piece-
wise smooth solutions. All terms on the right-hand side of (11.8.12) are nega-
tive, with the exception of the terms −(u− − u+)Q(u−, ū∗,u+), for y ∈ J , and
−(ū−− ū+)Q(ū−,u∗, ū+), for y ∈ J̄ . However, even these positive terms are offset
by the negative terms Vt(∞)Q(u−, ū∗,u+) and V̄t(∞)Q(ū−,u∗, ū+). Thus, the distance
function ρ(u(·, t), ū(·, t)) is generally strictly decreasing.

An analog of the functional ρ will be employed in Chapter XIV for establishing
L1 stability of solutions for systems of conservation laws.

d+

dt

∫ ∞

−∞
{Vt(x)[u(x, t)− ū(x, t)]+ +(Vt(∞)−Vt(x))[ū(x, t)−u(x, t)]+}dx
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11.9 Genuinely Nonlinear Scalar Balance Laws

The notion of generalized characteristic may be extended in a natural way to gen-
eral systems of balance laws, and may be used, in particular, for deriving a precise
description of the structure of solutions of genuinely nonlinear, scalar balance laws

(11.9.1) ∂tu(x, t)+∂x f (u(x, t),x, t)+g(u(x, t),x, t) = 0.

Extending the analysis from (11.1.1) to (11.9.1) is rather straightforward, so it will
suffice to outline here the main steps, with few proofs.

We assume that f and g are, respectively, C2 and C1 given functions, defined
on (−∞,∞)× (−∞,∞)× [0,∞), and the genuine nonlinearity condition, namely
fuu(u,x, t) > 0, holds for all (u,x, t). We will be dealing with solutions u(x, t) of
(11.9.1), of class BVloc on the upper half-plane (−∞,∞)× [0,∞), such that u(·, t)
has locally bounded variation in x on (−∞,∞), for any fixed t ∈ [0,∞), and the Lax
E-condition (11.1.2) holds for almost all t ∈ [0,∞) and all x ∈ (−∞,∞). Solutions
in this class may be constructed by solving the Cauchy problem with initial data
that are bounded and have locally bounded variation on (−∞,∞), for instance by the
vanishing viscosity method expounded in Chapter VI. Restrictions have to be im-
posed on f and g in order to prevent the blowing up of the solution in finite time.
For that purpose, it is sufficient to assume | fu| ≤ A, for u in bounded intervals, and
fx −gu ≤ B, for all u, uniformly on the upper half-plane. The reader may find details
in the references cited in Section 11.14.

Along the lines of Definition 10.2.1, a generalized characteristic of (11.9.1), as-
sociated with the solution u, is a Lipschitz curve ξ (·), defined on some closed time
interval [σ ,τ]⊂ [0,∞), and satisfying the differential inclusion

(11.9.2) ξ̇ (t) ∈ [ fu(u(ξ (t)+, t),ξ (t), t), fu(u(ξ (t)−, t),ξ (t), t)] ,

for almost all t ∈ [σ ,τ]. As in Section 11.1, it can be shown that (11.9.2) is actually
equivalent to

(11.9.3)

ξ̇ (t) =

⎧⎪⎪⎨⎪⎪⎩
fu(u(ξ (t)±, t),ξ (t), t), if u(ξ (t)+, t) = u(ξ (t)−, t)

f (u(ξ (t)+, t),ξ (t), t)− f (u(ξ (t)−, t),ξ (t), t)
u(ξ (t)+, t)−u(ξ (t)−, t)

, if u(ξ (t)+, t)< u(ξ (t)−, t)

for almost all t ∈ [σ ,τ]; compare with (11.1.3).
As with Definition 10.2.4, the characteristic ξ (·) is called shock-free on [σ ,τ] if

u(ξ (t)−, t) = u(ξ (t)+, t), almost everywhere on [σ ,τ]. The key result is the follow-
ing generalization of Theorem 11.1.1.

11.9.1 Theorem. Let ξ (·) be a generalized characteristic for (11.9.1), associated
with the admissible solution u, which is shock-free on [σ ,τ]. Then there is a C1

function v on [σ ,τ] such that

(11.9.4) u(ξ (τ)+,τ)≤ v(τ)≤ u(ξ (τ)−,τ),
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(11.9.5) u(ξ (t)+, t) = v(t) = u(ξ (t)−, t), σ < t < τ,

(11.9.6) u(ξ (σ)−,σ)≤ v(σ)≤ u(ξ (σ)+,σ).

Furthermore, (ξ (·),v(·)) satisfy the classical characteristic equations

(11.9.7)

⎧⎨⎩ ξ̇ = fu(v,ξ , t)

v̇ =− fx(v,ξ , t)−g(v,ξ , t)

on (σ ,τ). In particular, ξ (·) is C1 on [σ ,τ].

Proof. Let I = {t ∈ (σ ,τ) : u(ξ (t)−, t) = u(ξ (t)+, t)}. For t ∈ I, set v(t)= u(ξ (t)±, t).
In particular, (11.9.3) implies

(11.9.8) ξ̇ (t) = fu(v(t),ξ (t), t) , a.e. on (σ ,τ).

Fix r and s, σ ≤ r < s ≤ τ . For ε > 0, we integrate the measure equality (11.9.1)
over the set {(x, t) : r < t < s,ξ (t)− ε < x < ξ (t)}, apply Green’s theorem, and use
(11.9.8) and fuu > 0 to get

(11.9.9)

ξ (s)∫
ξ (s)−ε

u(x,s)dx−
ξ (r)∫

ξ (r)−ε
u(x,r)dx+

s∫
r

ξ (t)∫
ξ (t)−ε

g(u(x, t),x, t)dxdt

=

s∫
r

{ f (u(ξ (t)− ε+, t),ξ (t)− ε, t)− f (v(t),ξ (t), t)

− fu(v(t),ξ (t), t)[u(ξ (t)− ε+, t)−v(t)]}dt

≥
s∫

r

{ f (u(ξ (t)− ε+, t),ξ (t)− ε, t)− f (u(ξ (t)− ε+, t),ξ (t), t)}dt.

Multiplying (11.9.9) by 1/ε and letting ε ↓ 0 yields

(11.9.10) u(ξ (s)−,s)≥ u(ξ (r)−,r)−
s∫

r

{ fx(v(t),ξ (t), t)+g(v(t),ξ (t), t)}dt.

Next we integrate (11.9.1) over the set {(x, t) : r < t < s, ξ (t) < x < ξ (t)+ ε}
and follow the same procedure, as above, to deduce

(11.9.11) u(ξ (s)+,s)≤ u(ξ (r)+,r)−
s∫

r

{ fx(v(t),ξ (t), t)+g(v(t),ξ (t), t)}dt.
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For any t ∈ (σ ,τ), we apply (11.9.10) and (11.9.11), first for r = t, s ∈ I∩ (t,τ),
then for s = t, r ∈ I ∩ (σ , t). This yields u(ξ (t)−, t) = u(ξ (t)+, t). Therefore,
I coincides with (σ ,τ) and (11.9.5) holds. For any r and s in (σ ,τ), (11.9.10) and
(11.9.11) combine into

(11.9.12) v(s) = v(r)−
s∫

r

{ fx(v(t),ξ (t), t)+g(v(t),ξ (t), t)}dt.

In conjunction with (11.9.8), (11.9.12) implies that (ξ (·),v(·)) are C1 functions on
[σ ,τ] which satisfy the system (11.9.7).

To verify (11.9.4) and (11.9.6), it suffices to write (11.9.10), (11.9.11), first for
s = τ , r ∈ (σ ,τ) and then for r = σ , s ∈ (σ ,τ). This completes the proof.

11.9.2 Remark. When the balance law is a conservation law, g ≡ 0, and f does not
depend explicitly on t, (11.9.7) implies ḟ (v,ξ ) = 0, that is, f stays constant along
shock-free characteristics.

The family of backward generalized characteristics emanating from any point
(x̄, t̄) of the upper half-plane spans a funnel bordered by the minimal backward
characteristic ξ−(·) and the maximal backward characteristic ξ+(·). Theorem 10.3.2
is readily extended to systems of balance laws, and in the present context yields
that both ξ−(·) and ξ+(·) are shock-free on (0, t̄). Thus, upon substituting Theorem
11.9.1 for Theorem 11.1.1, one easily derives the following generalization of Theo-
rem 11.1.3:

11.9.3 Theorem. Let u be an admissible solution of (11.9.1) with initial data u0 .
Given any point (x̄, t̄) on the upper half-plane, consider the solutions (ξ−(·),v−(·))
and (ξ+(·),v+(·)) of the system (11.9.7), satisfying initial conditions ξ−(t̄) = x̄,
v−(t̄) = u(x̄−, t̄) and ξ+(t̄) = x̄, v+(t̄) = u(x̄+, t̄). Then ξ−(·) and ξ+(·) are respec-
tively the minimal and the maximal backward characteristics emanating from (x̄, t̄).
Furthermore,

(11.9.13)

⎧⎨⎩u(ξ−(t)−, t) = v−(t) = u(ξ−(t)+, t)
0 < t < t̄,

u(ξ+(t)−, t) = v+(t) = u(ξ+(t)+, t)

(11.9.14)

⎧⎨⎩u0(ξ−(0)−)≥ v−(0)≥ u0(ξ−(0)+)

u0(ξ+(0)−)≥ v+(0)≥ u0(ξ+(0)+).

In particular, u(x̄+, t̄) ≤ u(x̄−, t̄) holds for all (x̄, t̄) ∈ (−∞,∞) × (0,∞) and
ξ−(·), ξ+(·) coincide if and only if u(x̄+, t̄) = u(x̄−, t̄).

Theorems 11.1.4 and 11.1.5, which describe properties of forward characteristics
for homogeneous conservation laws, can also be readily extended to nonhomoge-
neous balance laws:
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11.9.4 Theorem. A unique forward generalized characteristic χ(·), associated with
an admissible solution u, issues from any point (x̄, t̄) ∈ (−∞,∞)× (0,∞). Further-
more, if u(x̄+, t̄)< u(x̄−, t̄), then u(χ(s)+,s)< u(χ(s)−,s) for all s ∈ [t̄,∞).

Solutions of the inhomogeneous balance law (11.9.1) have similar structure, and
enjoy similar regularity properties with the solutions of the homogeneous conserva-
tion law (11.1.1), described in Section 11.3. A number of relevant propositions are
stated below. The reader may find the proofs in the literature cited in Section 11.14.

11.9.5 Theorem. Let u be an admissible solution and assume u(x̄+, t̄) = u(x̄−, t̄),
for some (x̄, t̄) ∈ (−∞,∞)× (0,∞). Then (x̄, t̄) is a point of continuity of u. A unique
generalized characteristic χ(·), associated with u, defined on [0,∞), passes through
(x̄, t̄). Furthermore, χ(·) is differentiable at t̄ and χ̇(t̄) = fu(u(x̄±, t̄), x̄, t̄).

11.9.6 Theorem. Let u be an admissible solution and assume u(x̄+, t̄)< u(x̄−, t̄), for
some (x̄, t̄) ∈ (−∞,∞)× (0,∞). When the extremal backward characteristics ξ−(·),
ξ+(·) are the only backward generalized characteristics emanating from (x̄, t̄) that
are shock-free, then (x̄, t̄) is a point of jump discontinuity of u in the following sense:
There is a generalized characteristic χ(·), associated with u, defined on [0,∞) and
passing through (x̄, t̄), such that (x̄, t̄) is a point of continuity of the function u(x−, t)

(11.9.15) χ̇(t̄) =
f (u(x̄+, t̄), x̄, t̄)− f (u(x̄−, t̄), x̄, t̄)

u(x̄+, t̄)−u(x̄−, t̄)
.

11.9.7 Theorem. The set of irregular points of any admissible solution u is countable.
(x̄, t̄) ∈ (−∞,∞)× (0,∞) is an irregular point if and only if u(x̄+, t̄)< u(x̄−, t̄) and,
in addition to the extremal backward characteristics ξ−(·) , ξ+(·), there is at least
another, distinct, backward characteristic ξ (·), associated with u, emanating from
(x̄, t̄), which is shock-free. Irregular points are generated by the collision of shocks
and/or by the focusing of centered compression waves.

11.9.8 Theorem. Assume that f and g are, respectively, Ck+1 and Ck functions on
(−∞,∞)× (−∞,∞)× [0,∞), for some 3 ≤ k ≤ ∞ . Let u be an admissible solution
with initial data u0 in Ck. Then u(x, t) is Ck on the complement of the closure of
the shock set. Furthermore, generically, u is piecewise smooth and does not contain
centered compression waves.

The large-time behavior of solutions of inhomogeneous, genuinely nonlinear
balance laws can be widely varied, and the method of generalized characteristics
provides an efficient tool for determining the asymptotic profile. Two typical, very
simple, examples will be presented in the following two sections to demonstrate the
effect of source terms or inhomogeneity on the asymptotics of solutions with periodic
initial data.

relative to {(x, t) : 0 < t < ∞ , x ≤ χ(t)} and also a point of continuity of the function
u(x+, t) relative to {(x, t) : 0 < t < ∞ , x ≥ χ(t)}. Furthermore, χ(·) is differentiable
at t̄ and
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11.10 Balance Laws with Linear Excitation

We consider the balance law

(11.10.1) ∂tu(x, t)+∂x f (u(x, t))−u(x, t) = 0,

with f ′′(u)> 0, −∞ < u < ∞ . For convenience, we normalize f and the space-time
frame so that f (0) = 0 and f ′(0) = 0.

The aim is to demonstrate that, as a result of the competition between the desta-
bilizing action of the source term and the damping effect of genuine nonlinearity,
periodic solutions with zero mean become asymptotically standing waves of finite
amplitude.

In what follows, u(x, t) will denote an admissible solution of (11.10.1), of lo-
cally bounded variation on the upper half-plane, with initial values u(x,0) = u0(x) of
locally bounded variation on (−∞,∞).

The system (11.9.7) for shock-free characteristics here takes the form

(11.10.2)

⎧⎨⎩ ξ̇ = f ′(v)

v̇ = v.

In particular, divides are characteristics that are shock-free on [0,∞). Clearly, u grows
exponentially along divides, with the exception of stationary ones, x= x̄, along which
u vanishes. The following proposition, which identifies the points of origin of station-
ary divides, should be compared with Theorem 11.4.1.

11.10.1 Lemma. The line x = x̄ is a stationary divide, associated with the solution
u, if and only if

(11.10.3)
z∫

x̄

u0(x)dx ≥ 0, −∞ < z < ∞ ,

i.e., x̄ is a minimizer of the primitive of u0(·).

Proof. The reason it is possible here to locate the point of origin of divides with such
precision is that the homogeneous balance law (11.10.1) may be regarded equally
well as an inhomogeneous conservation law:

(11.10.4) ∂t
[
e−tu(x, t)

]
+∂x

[
e−t f (u(x, t))

]
= 0.

Assume first (11.10.3) holds. Fix any t̄ > 0 and consider the minimal backward
characteristic ξ (·) emanating from the point (x̄, t̄). We integrate (11.10.4) over the
set bordered by the graph of ξ (·), the line x = x̄ and the x-axis. Applying Green’s
theorem and using Theorem 11.9.3 and (11.10.2) yields
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(11.10.5)
t̄∫

0

e−t { f ′(u(ξ (t), t)u(ξ (t), t)− f (u(ξ (t), t))
}

dt

+

t̄∫
0

e−t f (u(x̄±, t))dt +
z∫

x̄

u0(x)dx = 0.

All three terms on the left-hand side of (11.10.5) are nonnegative and hence they
should all vanish. Thus u(x̄±, t) = 0, t ∈ (0,∞), and x = x̄ is a stationary divide.

Conversely, assume x = x̄ is a stationary divide, along which u vanishes. Fix
any z < x̄. For ε > 0, let χ(·) be the curve issuing from the point (z,0) and having
slope χ̇(t) = f ′

(
εet

)
. Suppose χ(·) intersects the line x = x̄ at time t̄. We integrate

(11.10.4) over the set {(x, t) : 0 ≤ t ≤ t̄,χ(t) ≤ x ≤ x̄} and apply Green’s theorem.
Upon adding and subtracting terms that depend solely on t, we end up with

(11.10.6)
t̄∫

0

e−t { f
(
εet)− f (u(χ(t)+, t))− f ′

(
εet)[εet −u(χ(t)+, t)

]}
dt

−
t̄∫

0

e−t f
(
εet)dt =

x̄∫
z

[u0(x)− ε]dx.

Both terms on the left-hand side of the above equation are nonpositive, and hence so
also is the right-hand side. Letting ε ↓ 0, we arrive at (11.10.3), for any z < x̄. The
case z > x̄ is handled by the same method. This completes the proof.

Next we show that between adjacent stationary divides the solution attains
asymptotically a standing wave profile of finite amplitude. The following proposi-
tion should be compared with Theorem 11.7.2.

11.10.2 Lemma. Assume x = x− and x = x+, x− < x+ , are adjacent divides, associ-
ated with the solution u, i.e., (11.10.3) holds for x̄ = x− and x̄ = x+ , but not for any
x̄ in the interval

(
x−,x+

)
. Consider any forward characteristic ψ(·) issuing from the

point
( x−+x+

2 ,0
)
. Then, as t → ∞ ,

(11.10.7) u(x±, t) =

⎧⎨⎩v−(x)+o(1), uni f ormly f or x− < x < ψ(t)

v+(x)+o(1), uni f ormly f or ψ(t)< x < x+ ,

where v−(x) and v+(x) are solutions of the differential equation ∂x f (v) = v, with
v−(x−) = 0 and v+(x+) = 0. Furthermore,

(11.10.8) ψ(t) = x0 +o(1),
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where x0 is determined by the condition

(11.10.9)

x0∫
x−

v−(y)dy+

x+∫
x0

v+(y)dy = 0.

In particular, if u0 is differentiable at x± and u′0(x±) > 0, then the order o(1) in
(11.10.7) and (11.10.8) is upgraded to exponential: O(e−t).

Proof. As t →∞ , the minimal backward characteristic ζ (·) emanating from the point
(ψ(t), t) converges to a divide which is trapped inside the interval [x−,x+) and thus
is stationary. Since x− and x+ are adjacent, ζ (·) must converge to x− . In particular,
ζ (0) = x−+o(1), as t → ∞ .

We fix t > 0 and pick any x ∈ (x−,ψ(t)]. Let ζ (·) denote the minimal backward
characteristic emanating from (x, t); it is intercepted by the x-axis at ξ (0) = ξ0 , with
x− ≤ ξ0 ≤ ζ (0). In particular, ξ0 = x−+o(1), as t → ∞ . Recalling Theorem 11.9.3,
we integrate the system (11.10.2) to get v(τ) = ūeτ , 0 ≤ τ ≤ t, for some ū such that
u0 (ξ0−)≤ ū ≤ u0 (ξ0+), and

(11.10.10) x−ξ0 =

t∫
0

f ′(v(τ))dτ =
u(x−,t)∫

ū

f ′(v)
v

dv.

Now, (11.10.10) implies u(x−, t) = O(1) whence ū = e−tu(x−, t) = O(e−t). In
turn, by virtue of ξ0 = x−+o(1) and ū = O(e−t), (11.10.10) yields the upper half of
(11.10.7). When u′0(x−)> 0, then ū = O(e−t) implies ξ0 = x−+O(e−t) and so o(1)
is upgraded to O(e−t). The lower half of (11.10.7) is treated by the same method.

Integrating (11.10.1) over [x−,x+]× [0, t], we deduce
x+∫
x−

u(x, t)dx = 0, so that

(11.10.7) yields (11.10.8), (11.10.9). The proof is complete.

If M = 0, (11.10.3) is satisfied for at least one x̄ in each period interval. Therefore,
Lemma 11.10.2 has the following corollary, akin to Theorem 11.7.3.

11.10.3 Theorem. When the initial data u0 are periodic, with mean zero, then, as
t → ∞ , the solution u tends to a periodic serrated profile consisting of wavelets of
the form (11.10.7). The number of wavelets per period equals the number of points x̄
in any period interval for which (11.10.3) holds. In the generic case where (11.10.3)
is satisfied at a single point x̄ in each period interval, u tends to a sawtooth profile
with a single tooth per period.

11.11 An Inhomogeneous Conservation Law

Here we discuss the large-time behavior of periodic solutions of an inhomogeneous
conservation law

When the initial data u0(·) are periodic, with mean M, then the solution u(·, t), at
time t, is also periodic, with mean Met , and thus blows up as t → ∞ , unless M = 0.
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(11.11.1) ∂tu(x, t)+∂x f (u(x, t),x) = 0,

where f is a C2 function with the following properties:

(c) The set of critical points consists of minima and saddles. For some ū in
(−∞,∞), b in (0,1), xk = b+ k and k = 0,±1,±2, . . . the following conditions
hold: fu

(
ū,xk

)
= fx

(
ū,xk

)
= 0, fuu

(
ū,xk

)
fxx
(
ū,xk

)− f 2
ux
(
ū,xk

)
> 0, and also

fu(0,k) = fx(0,k) = 0, fuu(0,k) fxx(0,k)− f 2
ux(0,k)< 0.

(d) Normalization: f (0,k) = 0, hence f
(
ū,xk

)
< 0.

A typical example of such a function is f (u,x) = u2 − sin2(πx).
The system (11.9.7), for shock-free characteristics, here takes the form

(11.11.2)

⎧⎨⎩ ξ̇ = fu(v,ξ )

v̇ =− fx(v,ξ ).

As noted in Remark 11.9.2, orbits of (11.11.2) are level curves of the function f (u,x).
By virtue of the properties of f , the phase portrait of (11.11.2) has the form depicted
in Fig. 11.11.1. Orbits dwelling on level curves f = p, with p > 0, are unidirectional,
from left to right or from right to left. By contrast, orbits dwelling on level curves
f = p, with p < 0, are periodic. Finally, orbits dwelling on the level curves f = 0 are
heteroclinic, joining neighboring saddle points; and in particular those dwelling on
the nonnegative branch, v = v+(x), join (k+1,0) to (k,0), while those dwelling on
the nonpositive branch, v = v−(x), join (k,0) to (k+1,0), k = 0,±1,±2, . . ..

Fig. 11.11.1

For p ∈ [ f (ū,b),∞)\{0}, we define T (p) as follows: If p < 0, T (p) is the period
around the level curve f = p. If p > 0, T (p) is the time it takes to traverse a ξ -
interval of length two, along the level curve f = p. The flow along any orbit moves
at a swift pace, except near the equilibrium points (k,0), where it slows down. In the
linearized system about (k,0), the sojourn in the vicinity of the equilibrium point,

(a) Periodicity in x: f (u,x+1) = f (u,x), −∞ < u < ∞ , −∞ < x < ∞ .

(b) Genuine nonlinearity: fuu(u,x)≥ μ > 0, −∞ < u < ∞ , −∞ < x < ∞ .
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along the orbit on the level p, lasts for −λ−1
0 log |p| time units, where ±λ0 are the

eigenvalues of the Jacobian matrix of the vector field ( fu ,− fx), evaluated at the
saddle point (0,k), i.e., λ0 =

[
f 2
ux(k,0)− fuu(k,0) fxx(k,0)

]1/2. Therefore,

(11.11.3)
T (p)
log |p| =− 2

λ0
+o(1), as p → 0.

For any M ∈ (−∞,∞), the equation (11.11.1) admits a unique admissible periodic
stationary solution uM(x), with mean M. Let

(11.11.4) M± =

1∫
0

v±(x)dx.

(11.11.5) uM(x) =

⎧⎨⎩v+(x), k ≤ x < k+a
k = 0,±1,±2, . . .

v−(x), k+a < x < k+1,

where a ∈ (0,1) is determined by

(11.11.6)
a∫

0

v+(x)dx+
1∫

a

v−(x)dx = M.

The aim is to show that, as t → ∞ , 1-periodic solutions of (11.11.1), with mean M,
converge to uM . We shall only discuss the interesting case M− < M < M+ .

11.11.1 Theorem. Let u(x, t) be the admissible solution of (11.11.1), on the upper
half-plane, with initial data u0(x) which are 1-periodic functions with mean M in
(M−,M+). Then, as t → ∞ , for any λ < λ0 ,

(11.11.7) f (u(x±, t),x) = o
(

e−λ t
)
, uniformly on (−∞,∞),

(11.11.8)

u(x±, t) =

⎧⎪⎪⎨⎪⎪⎩
v+(x)+o

(
e−

1
2λ t

)
, k ≤ x < χk(t)

k = 0,±1,±2, . . .

v−(x)+o
(

e−
1
2λ t

)
, χk(t)< x ≤ k+1,

where

(11.11.9) χk(t) = k+a+o
(

e−
1
2λ t

)
,

For M ≥ M+ or M ≤ M− , uM(x) is just the unique level curve f = p ≥ 0 with mean
M. By contrast, for M− < M < M+ , uM is a weak solution containing a single ad-
missible stationary shock per period:
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with a determined through (11.11.6).

Proof. We fix any k = 0,±1,±2, . . ., and note that

(11.11.10)
k+1∫
k

u(x, t)dx = M.

Since M ∈ (M−,M+), (11.11.10) implies that there are x ∈ (k,k + 1) such that
f (u(x−, t),x) = p < 0. For such an x, the minimal backward characteristic ζ (·) em-
anating from (x, t) is the restriction to [0, t] of the T (p)-periodic orbit that dwells on
the level curve f = p. The minimal backward characteristic ζ̄ (·) emanating from the
point (x̄, t), where x̄ = x−ε with ε positive and small, will likewise be the restriction
to [0, t] of a periodic orbit dwelling on some level curve f = p̄, with |p− p̄| small.
It is now clear from the phase portrait, Fig. 11.11.1, that if t is larger than the period
T (p) the graphs of ζ (·) and ζ̄ (·) must intersect at some time τ ∈ (0, t), in contradic-

Suppose next there is x ∈ [k,k+1] with f (u(x−, t),x) = p > 0. We fix x̄ such that
x̄ < x < x̄+1 and f (u(x̄−, t), x̄) < 0. If ζ (·) and ξ (·) denote the minimal backward
characteristics emanating from the points (x̄, t) and (x, t), respectively, then we have
ζ (τ)< ξ (τ)< ζ (τ)+1, for 0 < τ < t. Hence, |x−ξ (0)|< 2. But then t ≤ T (p) and
hence f (u(x−, t),x)→ 0, as t → ∞, in this case as well.

By genuine nonlinearity and f (u(x−, t),x) = o(1), for t large, u(x−, t) must be
close to either v−(x) or v+(x). Since admissible solutions are allowed to jump only
downwards, there exists a characteristic χk(·), with χk(t) ∈ (k,k+ 1) for t ∈ [0,∞),
such that, for t large, u(x−, t) is close to v−(x) if k ≤ x < χk(t), and close to v+(x)
if χk(t)< x ≤ k+1. Minimal backward characteristics emanating from points (x, t),
with χk−1(t) < x < χk(t) and f (u(x−, t)) = p

>
< 0, are trapped between χk−1(·) and

χk(·), so that our earlier estimate t ≤ T (p) becomes sharper: t ≤ 1
2 T (p)+O(1). This

together with (11.11.3) implies (11.11.7), which in turn yields (11.11.8). Finally, by
combining (11.11.8) with (11.11.10), we arrive at (11.11.9), where a is determined
through (11.11.6). The proof is complete.

A more detailed picture of the asymptotic behavior of the above solution u(x, t)
emerges by locating its divides. On account of (11.11.7), any divide must be dwelling
on the level curve f = 0. We shall see that the point of origin of any divide within the
period interval [χk−1(0),χk(0)] may be determined explicitly from the initial data.
For that purpose we introduce the function

(11.11.11) vk(x) =

⎧⎨⎩v+(x), −∞ < x ≤ k

v−(x), k < x < ∞ ,

which is a steady-state solution of (11.11.1):

(11.11.12) ∂tvk(x)+∂x f (vk(x),x) = 0.

tion to Theorem 11.9.4. Thus t ≤ T (p) and hence f (u(x−, t),x)→ 0, as t → ∞ , by
virtue of (11.11.3).
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11.11.2 Theorem. Under the assumptions of Theorem 11.11.1, a divide associated
with the solution u(x, t) issues from the point (x̄,0), with χk−1(0)≤ x̄ ≤ χk(0), if and
only if x̄ is a minimizer of the function

(11.11.13) Φk(z) =
z∫

k

[u0(x)−vk(x)]dx,

over (−∞,∞).

Proof. Assume first x̄ ∈ [χk−1(0),χk(0)] minimizes Φk over (−∞,∞). We construct
the characteristic ξ (·), associated with the solution vk , issuing from the point (x̄,0).
Thus, ξ (·) will be determined by solving the system (11.11.2) with initial con-
ditions ξ (0) = x̄ and v(0) = v−(x̄) if x̄ ≥ k, or v(0) = v+(x̄) if x̄ < k. In either
case, ξ̇ (t) = fu (vk(ξ (t)),ξ (t)). We fix any t̄ > 0 and consider the minimal back-
ward characteristic ζ (·), associated with the solution u(x, t), emanating from the
point (ξ (t̄), t̄) and intercepted by the x-axis at ζ (0) = z ∈ [χk−1(0),χk(0)]. Thus,
ζ̇ (t) = fu (u(ζ (t)−, t),ζ (t)). We subtract (11.11.12) from (11.11.1) and integrate
the resulting equation over the set bordered by the x-axis and the graphs of ξ (·) and
ζ (·) over [0, t̄]. Applying Green’s theorem yields

(11.11.14)
t̄∫

0

{ f (u(ξ (t)−, t),ξ (t))− f (vk(ξ (t)),ξ (t))

− fu (vk(ξ (t)),ξ (t)) [u(ξ (t)−, t)−vk(ξ (t))]}dt

−
t̄∫

0

{ f (u(ζ (t)−, t),ζ (t))− f (vk(ζ (t)),ζ (t))

− fu(u(ζ (t)−, t),ζ (t)) [u(ζ (t)−, t)−vk(ζ (t))]}dt

=

x̄∫
z

[u0(x)−vk(x)]dx =Φk(x̄)−Φk(z).

Both terms on the left-hand side of the above equation are nonnegative, while the
right-hand side is nonpositive. Thus, all three terms must vanish and ξ (·) is indeed a
divide associated with u(x, t).

Conversely, assume (x̄,0) is the point of origin of a divide ξ (·) associated with
the solution u(x, t). Thus ξ (·) will solve the system (11.11.2) with initial condi-
tions ξ (0) = x̄ and v(0) = v−(x̄) if x̄ ≥ k, or v(0) = v+(x̄) if x̄ < k. In either case,
u(ξ (t)±, t) = vk(ξ (t)), t ∈ (0,∞). We fix any z ∈ (k − 1,k + 1) and construct the
characteristic ζ (·), associated with the solution vk , that issues from the point (z,0).
Thus, vk(ζ (t)) = v+(ζ (t)) if z ≤ k, or vk(ζ (t)) = v−(ζ (t)) if z ≥ k. In either case,
ζ̇ (t) = fu (vk(ζ (t)),ζ (t)) and ζ (t)− ξ (t) → 0, as t → ∞ . We subtract (11.11.12)
from (11.11.1) and integrate the resulting equation over the set bordered by the x-
axis and the graphs of ξ (·) and ζ (·) on [0,∞). Applying Green’s theorem yields
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(11.11.15)
∞∫

0

{ f (u(ζ (t)−, t),ζ (t))− f (vk(ζ (t)),ζ (t))

− fu (vk(ζ (t)),ζ (t)) [u(ζ (t)−, t)−vk(ζ (t))]}dt

=

z∫
x̄

[u0(x)−vk(x)]dx =Φk(z)−Φk(x̄).

The left-hand side, and thereby also the right-hand side, of (11.11.15) is nonnegative.
Therefore, x̄ minimizes Φk over (k − 1,k + 1), and hence even over (−∞,∞), as
M ∈ (M−,M+). The proof is complete.

As t →∞ , the family of minimal backward characteristics emanating from points
(χk(t), t) converges monotonically to the divide that issues from (x+,0), where x+
is the largest of the minimizers of Φk . Similarly, the family of maximal backward
characteristics emanating from the points (χk−1(t), t) converges monotonically to
the divide that issues from (x−,0), where x− is the smallest of the minimizers of Φk .
Generically, Φk should attain its minimum at a single point, in which case x− = x+ .

11.12 When Genuine Nonlinearity Fails

As shown in the previous sections of this chapter, jump discontinuities in admissible
BV solutions of scalar conservation laws with convex flux are necessarily compres-
sive shocks. It is this property that induces the special features of extremal backward
characteristics, recorded in Theorem 11.1.3, which are instrumental for rendering the
structure of BV solutions simple and elegant. By contrast, when the flux possesses
inflection points, the emergence of contact discontinuities causes considerable com-
plications. The tool of generalized characteristics is still effective, but the analysis
becomes quite cumbersome.

In this section we discus the simplest case of a scalar conservation law

(11.12.1) ∂tu(x, t)+∂x f (u(x, t)) = 0,

with smooth flux f possessing a single inflection point at the origin,

(11.12.2) u f ′′(u)< 0, u �= 0,

which is nondegenerate with order some even natural number m. For convenience,
we scale u so that

(11.12.3) f ( j)(0) = 0, j = 0,1, ...,m, f (m+1)(0) =−m! .

The reader should bear in mind that this example exhibits only part of the com-
plexity that may be encountered in the absence of genuine nonlinearity. To begin
with, under the assumption (11.12.2), the Oleinik E-condition only allows for left
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contact discontinuities; right contact discontinuities are inadmissible. Moreover, cen-
tered rarefaction waves cannot be generated by wave interactions. Still, rarefaction
simple waves that are not centered may radiate out of left contact discontinuities.

We let u be the solution of (11.12.1) on (−∞,∞)× [0,∞) with initial data u0
taking values in an interval [−ū, ū] and having locally bounded variation on (−∞,∞).
We normalize u0(·) and u(·, t) by making them continuous from the left.

A Lipschitz curve ξ (·), defined on the time interval [σ ,τ] ⊂ [0,∞), will be a
generalized characteristic associated with the solution u if (11.1.3) holds for almost
all t ∈ [σ ,τ].

The solution u satisfies the admissibility condition

(11.12.4) ∂tη(u(x, t))+∂xq(u(x, t))≤ 0,

for any convex function η , in the role of entropy, with entropy flux q determined by
q′(u) = η ′(u) f ′(u). If ξ (·) is a characteristic defined on [σ ,τ], one easily derives,
from (11.1.3) and (11.12.4) that

(11.12.5)
q(u(ξ (t)+, t))−q(u(ξ (t), t))− ξ̇ (t)[η(u(ξ (t)+, t))−η(u(ξ (t), t))]≤ 0,

for almost all t ∈ [σ ,τ]. Recalling Section 8.4, (11.12.5) implies that the Oleinik
E-condition (8.4.3) holds for almost all t ∈ [σ ,τ] with u(ξ (t)+, t) �= u(ξ (t), t).

Fig. 11.12.1

We now consider the minimal and the maximal backward characteristics φ(·)
and ψ(·) emanating from some fixed point (x̄, t̄) of the upper half-plane. By The-
orem 10.3.1, φ(·) is a left contact and ψ(·) is a right contact. Actually, since right
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contact discontinuities are ruled out by the Oleinik E-condition, ψ(·) must be shock-
free and thereby also a left contact. The above properties induce structure to φ(·)
and ψ(·) depicted in Fig. 11.12.1 and roughly described as follows. Both φ(·) and
ψ(·) are convex functions on [0, t̄]. The graph of φ(·) is a C1 curve composed of
linear segments and/or arcs of left contact discontinuities, while the graph of ψ(·) is
a polygonal chain with vertices at the points of intersection with left contact discon-
tinuities. The function u(φ(t), t) is continuous and monotone nonincreasing when
u(x̄, t̄) > 0, or monotone nondecreasing when u(x̄, t̄) < 0. By contrast, u(ψ(t), t) is
constant along each line segment of the polygonal chain, with alternating signs on
adjacent segments. The full description of the structure of extremal backward char-
acteristics is expounded in the following two propositions:

11.12.1 Theorem. Let φ(·) be the minimal backward characteristic emanating from
the point (x̄, t̄) of (−∞,∞)× (0,∞). Then u(φ(t), t) is a continuous function on (0, t̄),
which is nondecreasing when u(x̄, t̄) < 0, nonincreasing when u(x̄, t̄) > 0 and con-
stant, equal to zero, when u(x̄, t̄) = 0. For t ∈ (0, t̄),

(11.12.6) φ̇(t) = f ′(u(φ(t), t)),

so that φ(·) is a convex C1 function. Furthermore, the interval (0, t̄) is the union of
disjoint subsets O and C with the following properties. O is the countable union of
pairwise disjoint open intervals, O =

⋃
(αn,βn), with the property that, for all t in

(αn,βn), u(φ(t), t) = u(φ(t)+, t) = u(φ(αn),αn) = u(φ(βn),βn), so the restriction of
the graph of φ(·) to (αn,βn) is a straight line segment with slope f ′(u(φ(αn),αn)).
On the other hand, for any t ∈ C , u(φ(t)+, t) �= u(φ(t), t) and

(11.12.7) f ′(u(φ(t), t)) =
f (u(φ(t)+, t))− f (u(φ(t), t))

u(φ(t)+, t)−u(φ(t), t)
.

11.12.2 Theorem. Let ψ(·) be the maximal backward characteristic emanating from
the point (x̄, t̄) of (−∞,∞)× (0,∞). Then ψ(·) is convex and shock-free on (0, t̄).
Furthermore,

(i) When u(x̄+, t̄) �= 0, there is a finite mesh 0 = a0 < a1 < · · ·< ak+1 = t̄ such that
the graph of ψ(·) is a polygonal chain with vertices at the points (ψ(an),an), for
n = 0, . . . ,k+1. Moreover,

(11.12.8)
u(ψ(t), t) = u(ψ(t)+, t) = u(ψ(an+1)+,an+1), an < t < an+1, n = 0, . . . ,k,

(11.12.9) u(ψ(an),an) = u(ψ(an+1)+,an+1), n = 1, . . . ,k,

(11.12.10)

⎧⎨⎩u0(ψ(0))≥ u(ψ(a1)+,a1), if u(ψ(a1)+,a1)> 0,

u0(ψ(0))≤ u(ψ(a1)+,a1), if u(ψ(a1)+,a1)< 0,
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(11.12.11) ψ̇(t) = f ′(u(ψ(an+1)+,an+1)), an < t < an+1, n = 0, . . . ,k,

(11.12.12)

f ′(u(ψ(an),an)) =
f (u(ψ(an)+,an))− f (u(ψ(an),an))

u(ψ(an)+,an)−u(ψ(an),an)
, n = 1, . . . ,k.

(ii) When u(x̄+, t̄) = u(x̄, t̄) = 0, there is a ∈ [0, t̄] such that ψ(t) = x̄ for t in [a, t̄]
and u(ψ(t)+, t) = u(ψ(t), t) = 0 for t in (a, t̄]. Moreover, if a > 0, there is an
increasing sequence 0 = a0 < a1 < .. . , with an → a and ψ(an)→ x̄, as n → ∞ ,
such that (11.12.8), (11.12.9), (11.12.10), (11.12.11) and (11.12.12) all hold, for
n = 1,2, . . . . In particular,

(11.12.13) u(ψ(t), t)→ 0, f ′(u(ψ(t), t))→ 0, as t → a.

The complete proof of the above theorems, which is quite lengthy, is found in the
bibliography cited in Section 11.14. Here we provide a sketch, bypassing the more
technical steps.

Consider the entropy function

(11.12.14) η(u) = exp[−μ f ′(u)],

which is convex on [−ū, ū] when μ is fixed sufficiently large. It induces an entropy
flux q satisfying

(11.12.15) q(w)−q(v)− f ′(v)[η(w)−η(v)] =
∫ w

v
η ′(ω)[ f ′(ω)− f ′(v)]dω

=−μ exp[−μ f ′(v)]
∫ z

0
θ exp(−μθ)dθ ≤ 0,

for any v,w, and z = f ′(w)− f ′(v).
Suppose now ξ (·) is any left contact characteristic defined on some time inter-

val [σ ,τ] ⊂ [0,∞). In particular, ξ̇ (t) = f ′(u(ξ (t), t)), for almost all t ∈ [σ ,τ]. We

tropy (11.12.14), over the set {(x, t) : r < t < s, ξ (t)− ε < x < ξ (t)}. Upon using
(11.12.15),

(11.12.16)
∫ ξ (s)

ξ (s)−ε
η(u(x,s))dx−

∫ ξ (r)

ξ (r)−ε
η(u(x,r))dx

≤
∫ s

r
{q(u(ξ (t)−ε, t))−q(u(ξ (t), t))− ξ̇ (t)[η(u(ξ (t)−ε, t))−η(u(ξ (t), t))]}≤ 0.

Thus, multiplying (11.12.16) by 1/ε and passing to the limit as ε → 0, we deduce
that f ′(u(ξ (r),r))≤ f ′(u(ξ (s),s)).

Since both φ(·) and ψ(·) are left contacts, we conclude that f ′(u(φ(t), t)) and
f ′(u(ψ(t), t)) are nondecreasing functions on (0, t̄), whence φ(·) and ψ(·) are con-
vex.

fix r, s and ε , with σ ≤ r < s ≤ τ and ε > 0, and integrate (11.12.4), for the en-
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A key step in the proof is to verify that u(φ(t), t) cannot switch signs on (0, t̄].
Notice that when u(x̄−, t̄) does not vanish, and since f ′(u(φ(t), t) is nondecreasing
on (0, t̄], sign changes of u(φ(t), t) cannot occur by passing through zero. Thus any
sign change, say at time τ ∈ (0, t̄), would incur a jump on u(φ(t), t) thereby imparting
a jump on the variation of u(·, t) across the time line t = τ . On the basis of this
observation, a long and tedious argument, found in the bibliography listed in Section
11.14, and based on the interplay between the properties of minimal and maximal
backward characteristics, demonstrates that u(φ(t), t) is continuous at every t. Thus
u(φ(t), t) is a monotone continuous function on (0, t̄], which preserves the sign of
u(x̄−, t̄).

By contract, u(ψ(t), t) may undergo sign changes, but when u(x̄+, t̄) �= 0 their
number is (at most) finite. To see this, suppose there are 0 < b1 < · · · < bk < t̄ such
that ui = u(ψ(bi),bi) is positive, for i even, and negative, for i odd. If φi(·) denotes
the minimal backward characteristic emanating from (ψ(bi),bi), then u0(φi(0))≥ ui ,
for i even, and u0(φi(0))≤ ui , for i odd. Hence, the sum of |ui+1−ui|, for i= 1, . . . ,k,
is bounded by the total variation of u0(·) over the interval [φ(0),ψ(0)]. On the other
hand, if u(x̄+, t̄) �= 0 and since f ′(u(ψ(t), t)) is nondecreasing, |ui+1−ui|> δ , where
δ is some positive number, independent of i. Thus k cannot be too large.

We conclude that there exist 0 = a0 < a1 < · · ·< ak+1 = t̄ such that u(ψ(t), t) has
a constant sign on each interval (an,an+1), alternating on adjacent intervals. Since
f is convex on (−∞,0) and concave on (0,∞), Theorem 11.1.1 applies and yields
(11.12.8). In particular, the graph of ψ(·) is a polygonal chain with vertices at the
points (ψ(an),an).

Notice that ψ(·) is the minimal forward characteristics issuing from the vertex
(ψ(an),an), while the maximal forward characteristic is some shock χ(·). Recalling
the properties of ψ and since χ must satisfy the Lax E-condition, we deduce

(11.12.17) f ′(u(ψ(an),an))≤ f ′(u(ψ(an+1)+,an+1))≤ ψ̇(an)≤ χ̇(an)

=
f (u(ψ(an)+,an))− f (u(ψ(an),an))

u(ψ(an)+,an)−u(ψ(an),an)
≤ f ′(u(ψ(an),an)),

which verifies (11.12.12). Thus the vertices of the chain are the points of intersection
of ψ(·) with left contact discontinuities.

We return to the minimal backward characteristic φ(·), assuming for definiteness
that u(x̄, t̄), and thereby also u(φ(t), t), are positive. Suppose that the set O of t in
(0, t̄) with u(φ(t)+, t)> 0 is nonempty. The stability estimates established in Chapter
VI, namely

(11.12.18) TV[y,z]u(·, t)≤ TV[y−λ (t−τ), z+λ (t−τ)]u(·,τ),

(11.12.19)
∫ z

y
|u(x, t)−u(x,τ)|dx ≤ λ (t − τ)TV[y−λ (t−τ), z+λ (t−τ)]u(·,τ),

which hold for any −∞< y< z<∞ and 0≤ τ < t <∞ , with λ an upper bound of | f ′|
on [−ū, ū], imply that if τ ∈ O then t ∈ O for all t in some interval [τ,τ + δ ). Thus
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O has nonempty interior, which will be the (at most) countable union of pairwise
disjoint open intervals (αn,βn). We may then invoke Theorem 11.1.1 to conclude
that u(φ(t), t) is constant on each interval (αn,βn) and the restriction of the graph of
φ to (αn,βn) is a straight line segment. The complement C of O is the set of t ∈ (0, t̄)
with u(φ(t)+, t)< 0. It is clear that βn ∈ C . It can also be shown that αn ∈ C . Since
φ(·) is a left contact, (11.12.7) holds for almost all t ∈ C . It can be shown that in fact
(11.12.7) holds for all t ∈ C . This completes the sketch of the proof of Theorems
11.12.1 and 11.12.2.

In the literature cited in Section 11.14, the reader will find a systematic discus-
sion of the regularity of BV solutions to the Cauchy problem for the conservation
law (11.12.1), under the assumptions (11.12.2), (11.12.3). The tools are the proper-
ties of the extremal backward characteristics, expounded above, but the analysis is
quite technical and the emerging structure of solutions is considerably more com-
plex than what was encountered in Section 11.3 for the genuinely nonlinear case.
It is still true that, generically, C∞ initial data generate solutions that are piecewise
C∞ smooth. However, in addition to a finite collection of compressive shocks and
left contact discontinuities such solutions may now contain a finite number of weak
waves. A weak wave of order m is a characteristic across which ∂ k

x u is continuous, for
k = 0, . . . ,m−1, but ∂m

x u experiences jump discontinuities. Weak waves are straight
line segments emerging tangentially out of left contact discontinuities and terminat-
ing upon colliding with a compressive shock or left contact discontinuity. A weak
wave of order 1 is triggered by a “grazing ray”, i.e., by the glancing collision of a
characteristic, from the left, on a left contact discontinuity, while a weak wave of
order m > 1 is emitted when a weak wave of order m−1 collides, from the right, with
a left contact discontinuity. See Fig. 11.12.2.

Fig. 11.12.2

We now turn to the question of the long time behavior of solutions. The following
proposition provides the first indication on the regularizing and dissipative effect of
the nonlinearity of the flux f .
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11.12.3 Theorem. Let u be the admissible BV solution to the Cauchy problem for
(11.12.1), with initial data u0 in L1(−∞,∞). Then

(11.12.20) TV(−∞,∞)F(u(·, t))≤ 2
t

∫ ∞

−∞
|u0(x)|dx, 0 < t < ∞ ,

where F is the monotone increasing function defined by

(11.12.21) F(u) = f (u)−u f ′(u), −∞ < u < ∞ .

Proof. Fix t > 0 and take any mesh −∞ < x−� < · · · < x0 < · · · < xs < ∞ such that
u(xi+, t) = u(xi, t), for i = −�, . . . ,s, and u(xi, t) < u(xi+1, t), when i is even, and
u(xi, t)> u(xi+1, t), when i is odd.

With each i = −�, . . . ,s, we associate a backward characteristic χi(·) emanating
from (xi, t), which is a left contact on (0, t) and is determined as follows.

(a) When i is even and u(xi, t)< 0 or when i is odd and u(xi, t)> 0, then χi(·) is the
minimal backward characteristic φi(·) emanating from (xi, t).

(b) When i is even and u(xi, t) > 0 or when i is odd and u(xi, t) < 0, then χi(·) is
identified through the following process. We consider the maximal backward
characteristic ψi(·) emanating from (xi, t), whose graph, by Theorem 11.12.2, is
a polygonal chain with vertices (ψ(an),an), where 0 = a0 < a1 < · · ·< ak+1 = t.
If k = 0 or k = 1, we identify χi(·) with ψi(·) on [0, t]. On the other hand, if
k ≥ 2, we construct the minimal backward characteristic φi(·) emanating from
(ψi(ak−1),ak−1) and identify χi(·) with ψi(·) on the time interval [ak−1, t] and
with φ(·) on the time interval [0,ak−1).

It is easy to see that the graphs of χi(·) and χi+1(·) cannot intersect on (0, t]. We
then integrate (11.12.1) over the set {(x,τ) : 0 < τ < t, χi(τ)< x < χi+1(τ)}. Since
both χi(·) and χi+1(·) are left contacts, recalling (11.12.21) we deduce

(11.12.22)
∫ t

0
F(u(χi+1(τ),τ))dτ−

∫ t

0
F(u(χi(τ),τ))dτ

=
∫ χi+1(0)

χi(0)
u0(x)dx−

∫ xi+1

xi

u(x, t)dx.

We now show that

(11.12.23)
∣∣∣∣∫ t

0
F(u(χi+1(τ),τ))dτ−

∫ t

0
F(u(χi(τ),τ))dτ

∣∣∣∣
≥ t|F(u(xi+1, t))−F(u(xi, t))|.

To verify (11.12.23), one has to investigate the different situations that may arise,
depending on whether i is even or odd, in connection with the signs of u(xi, t) and
u(xi+1, t). It will suffice to discuss here two cases that are representative of the rest.
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Suppose first u(xi, t) < 0 < u(xi+1, t) (in particular, i is even). In that case,
χi(·) and χi+1(·) are the minimal backward characteristics φi(·) and φi+1(·) ema-
nating from (xi, t) and (xi+1, t). By virtue of Theorem 11.12.2, for τ ∈ (0, t),we have
u(χi(τ),τ)≤ u(xi, t) and u(χi+1(τ),τ)≥ u(xi+1, t). Since F is increasing, we arrive
at (11.12.23).

Suppose next 0 < u(xi, t) < u(xi+1, t) (in particular, i is even). In that case,
χi+1(·) is still the minimal backward characteristic φi(·) emanating from (xi+1, t)
and hence, as above, u(χi+1(τ),τ) ≥ u(xi+1, t). On the other hand, χi(·) coin-
cides with the maximal backward characteristic ψi(·), emanating from (xi, t), over
the time interval [ak−1, t], and with the minimal backward characteristic φ(·), em-
anating from (ψi(ak−1,ak−1)), over the time interval [0,ak−1). We now observe
that u(χi(τ),τ) = u(xi, t), for τ ∈ [ak, t], and u(χi(τ),τ) ≤ 0, for τ ∈ (0,ak). Thus
(11.12.23) holds in this case as well.

Once (11.12.23) has been established, we combine it with (11.12.22) and sum
over i = −�, . . . ,s− 1. Recalling Theorem 6.2.7, we arrive at (11.12.20). This com-
pletes the proof.

The assumption that the initial data have locally bounded variation did not play
any role in the derivation of the estimate (11.12.20). We may thus infer, by comple-
tion, that if u is the admissible solution to the Cauchy problem for (11.12.1), with
initial data u0 that are merely in L∞(−∞,∞), then, for any fixed t > 0, the function
F(u(·, t)) has locally bounded variation on (−∞,∞). This implies, in particular, that
one-sided limits u(x±, t) exist, for all (x, t) in (−∞,∞)× (0,∞). It is then possible to
extend the notion and theory of generalized characteristics to the realm of these so-
lutions. Furthermore, by virtue of (11.12.3), we have |v−w|m+1 ≤ c|F(v)−F(w)|,
whence, for any fixed t > 0, u(·, t) belongs to the space of function with bounded
variation of fractional order 1

m+1 . In fact, as shown in the references listed in Section
11.14, for any t ≥ 0, the characteristic speed f ′(u(·, t)) is of locally bounded vari-
ation on (−∞,∞). Thus u(·, t) belongs to the space of functions of locally bounded
variation of fractional order 1

m . This is the counterpart of Theorem 11.2.2, from the
genuinely nonlinear to the present case.

Before embarking on the next project, which is the investigation of the long time
behavior of solutions with initial data that are either periodic or have compact sup-
port, we need the following preparation.

With any u �= 0, we associate the unique u∗ �= u with the property

(11.12.24) f ′(u) =
f (u∗)− f (u)

u∗ −u
.

Thus u∗ is the unique state that may be joined to u, on the right, by a left contact
discontinuity. We know that u and u∗ have opposite signs and that f ′(u∗)< f ′(u). It
can also be shown that, by virtue of (11.12.3),

(11.12.25) lim
u→0

f ′(u)
f ′(u∗)

= ρm ,

where ρm is the unique positive solution of the equation
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(11.12.26) mρ
m+1

m +(m+1)ρ −1 = 0.

For example, when m = 2, ρ2 =
1
4 . It is important to note that ρm < 1

m+1 .
We begin with the case of initial data with compact support:

11.12.4 Theorem. Let u be the admissible BV solution to the Cauchy problem for
(11.12.1), with initial data u0 that are supported in the interval [−�,0] and carry
mass

(11.12.27)
∫ 0

−�
u0(x)dx = M.

Then, as t → ∞ ,

(11.12.28) f ′(u(x, t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, −∞ < x ≤ χ(t)

x
t
+O(tr−1), χ(t)< x ≤ 0

0, 0 < x < ∞

where r is any constant with ρm < r < 1
m+1 and

(11.12.29) χ(t) =−
[

m+1
m

|M|
] m

m+1
t

1
m+1 +O(tr).

Proof. Clearly, x = 0 is the maximal forward characteristic issuing from (0,0) and
hence u(x, t) = 0 for any (x, t) with x > 0. Similarly, letting χ(·) denote the minimal
forward characteristic issuing from (−�,0), we have u(x, t) = 0, for all (x, t) with
x < χ(t).

Fix any r in the interval
(
ρm , 1

m+1

)
. By virtue of (11.12.25), there is δ > 0 such

that

(11.12.30) f ′(u)> r f ′(u∗), −δ ≤ u ≤ δ .

On account of Theorem 11.12.3 and (11.12.3), u(x, t) = O(t−
1

m+1 ), as t → ∞ ,
uniformly in x. Thus there exists T > 0 such that |u(x, t)| ≤ δ , for −∞ < x < ∞ and
t ≥ T .

We now fix any point (x, t), with t > T , χ(t)< x < 0 and u(x+, t) = u(x, t) �= 0,
and proceed to verify (11.12.28). We consider the minimal backward characteris-
tic φ(·) emanating from (x, t), with the properties recounted in Theorem 11.12.1.
Since φ(·) is convex, x− t f ′(u(x, t)) ≤ φ(0) ≤ 0, which provides the upper bound
to f ′(u(x, t)) asserted by (11.12.28). We shall derive the lower bound through the
following procedure.
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We identify the point φ(T ) of interception of φ(·) by the time line t = T . One
immediately gets the desired lower bound to f ′(u(x, t)) when φ(·) is shock free on
(T, t), since in that case

(11.12.31) x− t f ′(u(x, t)) = φ(T )−T f ′(u(x, t))≥ φ(T )≥−�−λT,

where λ is any upper bound to − f ′ on [−ū, ū].
The alternative, more difficult, situation arises when φ(·) is shock-free on a time

interval (α, t), with α ∈ (T, t), but u(φ(α)+,α) �= u(φ(α),α). In that case,

(11.12.32) x− t f ′(u(x, t)) = φ(α)−α f ′(u(x, t))≥ φ(α),

so we need a lower bound for φ(α). To that end, we show that φ(·) satisfies the
differential inequality

(11.12.33) φ̇(τ)≥ r
τ

φ(τ), T ≤ τ ≤ α.

We first verify (11.12.33) for any τ with u(φ(τ)+,τ) �= u(φ(τ),τ). Let ψ(·)
denote the maximal backward characteristic emanating from (φ(τ),τ). By virtue of
Theorem 11.12.2 and (11.12.30), recalling that |u(φ(τ),τ)| ≤ δ ,

(11.12.34) φ̇(τ) = f ′(u(φ(τ),τ))≥ r f ′(u(φ(τ)+,τ)) = rψ̇(τ)≥ rψ̇(s),

for s ∈ [0,τ]. Integrating (11.12.34), with respect to s, over [0,τ], and recalling that
ψ(0)≤ 0, ψ(τ) = φ(τ), we deduce

(11.12.35) τφ̇(τ)≥ rφ(τ),

which establishes (11.12.33) for this class of τ .
Next we consider any τ ∈ [T,α) with u(φ(τ)+,τ) = u(φ(τ),τ). In that case, by

Theorem 11.12.1, there exists β ∈ (τ,α] such that φ(·) is shock-free on [τ,β ) but
u(φ(β )+,β ) �= u(φ(β ),β ). In particular,

(11.12.36) φ(β )−β φ̇(β ) = φ(τ)− τφ̇(β )

and φ̇(τ) = φ̇(β ). Furthermore, as shown above, β φ̇(β ) ≥ rφ(β ). It then follows
that

(11.12.37) rφ(τ)− τφ̇(τ) = rφ(β )−β φ̇(β )+(1− r)(β − τ)φ̇(β )≤ 0,

which establishes (11.12.33) for this class of τ as well.
Upon integrating the differential inequality (11.12.33), we conclude that φ(α) is

O(αr), and hence a fortiori O(tr). This together with (11.12.32) completes the proof
of (11.12.28).

Finally, we determine χ(t) by appealing to mass conservation:

(11.12.38)
∫ 0

χ(t)
u(x, t)dx =

∫ 0

−�
u0(x)dx = M.



416 XI Scalar Conservation Laws in One Space Dimension

Notice that (11.12.28) allows for two values:

(11.12.39) u(x, t) =±
[
−x

t

] 1
m
+O

(
tr− 2

m+1

)
.

However, shock admissibility rules out jumps from (−x/t)
1
m to −(−x/t)

1
m or vice

versa, whence u retains a constant sign on (χ(t),0), namely positive when M > 0 or
negative when M < 0. In either case, combining (11.12.39) with (11.12.38) we arrive
at (11.12.29). This completes the proof.

We conclude this section with a discussion of the periodic case.

11.12.5 Theorem. Let u be the admissible BV solution to the Cauchy for (11.2.1),
with initial data u0 that are periodic,

(11.12.40) u0(x+ �) = u0(x), −∞ < x < ∞ ,

and have zero mean

(11.12.41)
∫ �

0
u0(x)dx = 0.

Then

(11.12.42) − f ′(u(x, t))≤ k�
t
, −∞ < x < ∞ , 0 < t < ∞ .

Proof. Recalling (11.12.25) for u∗ constructed via (11.12.24), we infer

(11.12.43) f ′(u)> ρ f ′(u∗), −ū ≤ u ≤ ū,

for some ρ < 1. We proceed to show that

(11.12.44) −t f ′(u(y+, t))≤ k̂�,

for every (y, t) such that u(y, t) and u(y+, t) have opposite signs. The constant k̂ in
(11.12.42) depends solely on ρ .

We consider the maximal backward characteristic ψ(·) emanating from (y, t).
By Theorem 11.12.2, the graph of ψ(·) is a polygonal chain with vertices at points
(ψ(an),an), where 0 = a0 < a1 < · · · < ak+1 = t. For fixed n = 1, . . . ,k + 1, we
let φn(·) denote the minimal backward characteristic emanating from the vertex
(ψ(an),an) of the chain. The key point is to show

(11.12.45) φ̇n(τ)≥ ρ
an −an−1

τ −an−1
f ′(u(ψ(an)+,an)), τ ∈ (an−1,an].

We first verify (11.12.45) for any τ ∈ (an−1,an] with u(φn(τ)+,τ) �= u(φn(τ),τ).
Let χ(·) denote the maximal backward characteristic emanating from (φn(τ),τ).
Then, on account of Theorems 11.12.1, 11.12.2, recalling (11.12.43),
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(11.12.46) φ̇n(τ) = f ′(u(φn(τ),τ))≥ ρ f ′(u(φn(τ)+,τ)) = ρχ̇(τ)≥ ρχ̇(s),

for any s ∈ [an−1,τ], whence

(11.12.47) (τ−an−1)ψ̇(τ)≥ ρχ(τ)−ρχ(an−1).

Combining (11.12.47) with

(11.12.48) χ(an−1)≤ ψ(an−1) = ψ(an)− (an −an−1) f ′(u(ψ(an)+,an))

and since χ(τ)−φn(τ)≥ φn(an) = ψ(an), we arrive at (11.12.45).
Next we consider any τ ∈ (an−1,an) with u(φn(τ)+,τ) = u(φn(τ),τ). By virtue

of Theorem 11.12.2, there is β ∈ (τ,an] such that φn(·) is shock free on [τ,β ),
φ̇n(τ) = φ̇n(β ), but u(φn(β )+,β ) �= u(φn(β ),β ). As shown above, (11.12.45) holds
for τ = β and so

(11.12.49) φ̇n(τ) = φ̇n(β )≥ ρ
an −an−1

β −an−1
f ′(u(ψ(an)+,an))

≥ ρ
an −an−1

τ−an−1
f ′(u(ψ(an)+,an)),

which verifies (11.12.45) for τ in that class, as well.
Integrating (11.12.45), we find that, for any τ ∈ (an−1,an),

(11.12.50) φn(an)−φn(τ)≥ ρ(an −an−1) log
an −an−1

τ−an−1
f ′(u(ψ(an)+,an)).

At the same time we have

(11.12.51) ψ(τ)−ψ(an) =−(an − τ) f ′(u(ψ(an)+,an)).

We add (11.12.50) and (11.12.51), recalling that φn(an) = ψ(an). We also note that
ψ(τ)− φn(τ) < �, since otherwise the maximal backward characteristic emanating
from (φ(an)− �,an) would intersect φn(·) on the interval (an−1,an). Thus, upon set-
ting τ = an−1 +ρ(an −an−1), we conclude

(11.12.52) −(an −an−1) f ′(u(ψ(an)+,an))≤ (1−ρ−ρ log ρ)−1�.

By virtue of (11.12.12), (11.12.25) and (11.12.43),

(11.12.53) ρk+1−n f ′(u(ψ(an)+,an))≤ f ′(u(y+, t)),

so (11.12.52) yields

(11.12.54) −(an −an−1) f ′(u(y+, t))≤ ρk+1−n(1−ρ+ρ log ρ)−1�.

By summing (11.12.54) over n = 1 . . . ,k+ 1, we arrive at (11.12.44), with constant
k̂ = [(1−ρ)(1−ρ+ρ log ρ)]−1.
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We now proceed to the proof of (11.12.42). We fix (x, t) with −∞ < x < ∞
and t > 0. Since u(·, t) has zero mean, there is y ∈ [x − �,x) with the property
u(y, t)≤ 0, u(y+, t)≥ 0. Let χ(·) and ψ(·) denote the maximal backward characteris-
tics emanating from (x, t) and (y, t). For τ ∈ [t/2, t), χ̇(τ)≤ f ′(u(x, t)). Furthermore,
using (11.12.44), −τψ̇(τ)≤ 2k̂�, for τ ∈ [t/2, t). Hence

(11.12.55) χ
( t

2

)
≥ x− t

2
f ′(u(x, t)),

(11.12.56) ψ
( t

2

)
≤ y+ k̂�.

Subtracting (11.12.56) from (11.12.55) and using that x> y and χ(t/2)−ψ(t/2)≤ �,
we arrive at (11.12.42), with k = 2(k̂+1). This completes the proof.

11.13 Entropy Production

In view of the central role of entropy dissipation in the theory of hyperbolic conserva-
tion laws, it is important to determine the location of entropy sinks. We have already
seen that in the realm of BV solutions entropy is solely produced on the shock set:
the measure (4.5.1) vanishes on the set of points of approximate continuity. Never-
theless, there are indications that entropy concentration is tied to the BV structure of
the characteristic speed of the solution rather than of the solution itself. Indeed, it has
been shown (references in Section 11.14) that in the case of scalar conservation laws
in one spatial dimension entropy may only be produced at points of discontinuity of
L∞ solutions. To convey a taste in a simple setting, we show here that no entropy may
be produced by continuous, not necessarily BV , solutions.

By Theorem 11.3.6, any continuous solution of a genuinely nonlinear scalar con-
servation law has bounded variation. Nevertheless, continuous solutions with un-
bounded variation exist when the flux possesses inflection points. This is also the
case in the setting of certain balance laws with convex flux, where the source induces
continuity, without bounded variation, on solutions (references in Section 11.14).

We thus consider the conservation law

(11.13.1) ∂tu(x, t)+∂x f (u(x, t)) = 0,

with f an arbitrary C2 function. We let U− , U+ and U0 denote the (possibly empty)
sets of u with f ′′(u)< 0, f ′′(u)> 0 and f ′′(u) = 0. We will prove the following

11.13.1 Theorem. Assume u is a continuous function on some open set O of R2 that
satisfies (11.13.1) in the sense of distributions. Then

(11.13.2) ∂tη(u(x, t))+∂xq(u(x, t)) = 0

holds, in the sense of distributions, for every entropy-entropy flux pair (η ,q). In par-
ticular, any continuous solution and its time reversal satisfy the admissibility condi-
tion 6.2.1.
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The assertion (11.13.2) is localized and thus, in order to simplify the presenta-
tion, we may assume, without loss of generality, that u is defined and continuous
on some strip (−∞,∞)× [0,s]. The proof of the above proposition will employ the
theory of generalized characteristics. Characteristics associated with the continuous
solution u of (11.13.1) are classical solutions of the ordinary differential equation
dx
dt = f ′(u(x, t)). In the absence of Lipschitz continuity, the standard theory of or-
dinary differential equations guarantees existence but not uniqueness of solutions.
Nevertheless, we here have

11.13.2 Lemma. Let ξ (·) be any characteristic associated with the continuous solu-
tion u of (11.13.1), defined on [0,s]. Then u(ξ (t), t) is constant on [0,s], and thus the
graph of ξ (·) is a straight line segment. In particular, a unique characteristic passes
through any point of the strip (−∞,∞)× [0,s].

Proof. We set u(ξ (s),s) = ū. When ū∈U+ , we fix r ∈ [0,s) and ε > 0, with s−r and
ε so small that u(x, t) ∈ U+ on {(x, t) : t ∈ [r,s], ξ (t)− ε ≤ x ≤ ξ (t)+ ε}. We then
apply the conservation law to the domains {(x, t) : r ≤ t ≤ s, ξ (t)−ε ≤ x≤ ξ (t)} and
{(x, t) : r ≤ t ≤ s, ξ (t)≤ x ≤ ξ (t)+ε} which yields (11.1.7) and (11.1.8). The right-
hand sides of both (11.1.7) and (11.1.8) are nonnegative and thus, upon dividing
by ε and letting ε → 0, we deduce u(ξ (r),r) = u(ξ (s),s) = ū. A straightforward
continuation argument then yields u(ξ (t), t) = ū, for all t ∈ [0,s].

By the same argument, one reaches the same conclusion: u(ξ (t), t) = ū, t ∈ [0,s],
when ū belongs to U− , in which case the right-hand sides of (11.1.7) and (11.1.8)
are nonpositive, or when ū belongs to the interior of U0 , in which case the right-hand
sides of (11.1.7) and (11.1.8) vanish. Finally, since the boundary points of U0 are not
interconnected, the assertion u(ξ (t), t) = ū, for t ∈ [0,s], still holds when ū lies on
the boundary of U0. This completes the proof.

Since the graphs of characteristics are nonintersecting straight line segments, we
deduce

11.13.3 Corollary. For any −∞ < x < y < ∞ and 0 < t < s,

(11.13.3) − 1
s− t

≤ f ′(u(y, t))− f ′(u(x, t))
y− x

≤ 1
t
.

The next step is to establish entropy conservation for a particular family of do-
mains. We fix any smooth entropy-entropy flux pair (η ,q), with q′(u) = η ′(u) f ′(u),
and state the following

11.13.4 Lemma. Let us fix −∞ < a < b < ∞ and 0 < t < t̄ < s, and set ua = u(a, t),
ub = u(b, t), ā = a+(t̄ − t) f ′(ua), b̄ = b+(t̄ − t) f ′(ub). Then
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(11.13.4)
∫ b̄

ā
η(u(x, t̄))dx−

∫ b

a
η(u(x, t))dx

+(t̄ − t)[q(ub)− f ′(ub)η(ub)−q(ua)+ f ′(ua)η(ua)] = 0.

Proof. Fix ε positive small and consider any finite partition of the interval [a,b] by
points a = a1 ≤ b1 ≤ a2 ≤ b2 ≤ ·· · ≤ an ≤ an = b satisfying the following condi-
tions. Whenever ai < bi , the open interval (ai,bi) is contained in either U+ or U− .
Moreover,

(11.13.5) μ

(
U c

0

⋂n−1⋃
i=1

[bi,ai+1]

)
< ε.

For i = 1, . . . ,n, we set ui = u(ai, t), vi = u(bi, t), and then āi = ai +(t̄ − t) f ′(ui),
b̄i = bi +(t̄ − t) f ′(vi). We note the identities

(11.13.6)
∫ vi

ui

f ′′(w)η(w)dw = q(ui)− f ′(ui)η(ui)−q(vi)+ f ′(vi)η(vi),

(11.13.7)
∫ ui+1

vi

f ′′(w)η(w)dw = q(vi)− f ′(vi)η(vi)−q(ui+1)+ f ′(ui+1)η(ui+1).

By the mean value theorem,

(11.13.8)
∫ vi

ui

f ′′(w)η(w)dw = η(wi)[ f ′(vi)− f ′(ui)]

=
1

t̄ − t
η(wi)[(b̄i − āi)− (bi −ai)],

for some wi lying between ui and vi. Furthermore, setting w∗
i =

1
2 (vi +ui+1),

(11.13.9) η(w∗
i )[ f

′(ui+1)− f ′(vi)] =
1

t̄ − t
η(w∗

i )[(āi+1 − v̄i)− (ai+1 −vi)].

On account of (11.13.5) and (11.13.3),

(11.13.10)
n−1

∑
i=1

TV[bi,ai+1] f
′(u(·, t))≤ cε.

In particular,

(11.13.11)
n−1

∑
i=1

| f ′(ui+1)− f ′(vi)| ≤ cε.

Furthermore, from the Stieltjes integral



11.13 Entropy Production 421

(11.13.12)
∫ ui+1

vi

f ′′(w)η(w)dw =
∫ ai+1

bi

η(u(·, t))d f ′(u(·, t))

and (11.13.7), (11.13.10) implies

(11.13.13)
n−1

∑
i=1

|q(vi)− f ′(vi)η(vi)−q(ui+1)+ f ′(ui+1)η(ui+1)| ≤ cε.

We now combine (11.13.8), (11.13.9), (11.13.11) and (11.13.13) to get

(11.13.14) |
n

∑
i=1
η(wi)(b̄i − āi)+

n−1

∑
i=1

η(w∗
i )(āi+1)− b̄i)

−
n

∑
i=1
η(wi)(bi −ai)−

n−1

∑
i=1

η(w∗
i )(ai+1 −bi)

+(t̄ − t)[q(ub)− f ′(ub)η(ub)−q(ua)+ f ′(ua)η(ua)| ≤ cε,

where c does not depend on the chosen partition of the interval [a,b] or on ε . As
the partition of [a,b] gets finer, the first two sums on the left-hand side of (11.13.14)
converge to the integral of η(u(·, t̄)) over [ā, b̄] while the next two sums converge to
the integral of η(u(·, t)) over [a,b]. Since ε is arbitrarily small, we arrive at (11.13.4).
This completes the proof.

Next we fix some τ ∈ (0,s) and consider the coordinate change (x, t) �→ (z, t)
defined by

(11.13.15) z = x− (t − τ) f ′(u(x,τ)).

By virtue of Lemma 11.13.2 and Corollary 11.13.3, the above transformation is a
bilipschitz homeomorphism with inverse

(11.13.16) x = z+(t − τ) f ′(u(z,τ)).

Notice that in the new coordinate system characteristics reduce to z = constant and u
becomes a function of z alone: u(x(z, t), t) = û(z). Thus it is natural to interpret (x, t)
and (z, t), respectively, as “Eulerian” and “Lagrangian” representations of the flow
generated by (11.13.1).

Proof of Theorem 11.13.1. We set

(11.13.17) θ(z, t) = η(û(z))∂zx(z, t),

(11.13.18) p(z) = q(û(z))− f ′(û(z))η(û(z)),

and notice that (11.13.4) implies
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(11.13.19)
∫ β

α
[θ(z, t̄)−θ(z, t)]dz+(t̄ − t)[p(β )− p(α)] = 0,

for all −∞ < α < β < ∞ and 0 < t < t̄ < s. Thus p is Lipschitz on (−∞,∞) and

(11.13.20)
θ(z, t̄)−θ(z, t)

t̄ − t
+

d
dz

p(z) = 0

holds for almost all z, as well as in the sense of distributions, for any 0 < t < t̄ < s. It
then follows that

(11.13.21) ∂tθ(z, t)+∂z p(z) = 0,

in the sense of distributions on (−∞,∞)× (0,s).
Fix any C∞ test function φ(x, t) with compact support on (−∞,∞)× (0,s) and

set ψ(z, t) = φ(x(z, t), t). Thus, ψ is a Lipschitz function with compact support on
(−∞,∞)×(0,s) and derivatives ∂zψ = ∂xφ∂zx, ∂tψ = ∂tφ+∂xφ∂t x. Considering that
∂t x = f ′(u) and upon recalling (11.13.17) and (11.13.18),

(11.13.22) θ∂tψ+ p∂zψ = ∂zx[η(u)∂tφ +q(u)∂xφ ].

Therefore, by (11.13.21) and since ∂xz = [∂zx]−1,

(11.13.23)
∫ s

0

∫ ∞

−∞
[η(u)∂tφ +q(u)∂xφ ]dxdt =

∫ s

0

∫ ∞

−∞
[θ∂tψ+ p∂zψ]dzdt = 0,

which establishes (11.13.2). This completes the proof.

11.14 Notes

There is voluminous literature on the scalar conservation law in one space dimension,
especially the genuinely nonlinear case, beginning with the seminal paper of Hopf
[1], on the Burgers equation, already cited in earlier chapters.

In the 1950’s, the qualitative theory was developed by the Russian school, headed
by Oleinik [1,2,4], based on the vanishing viscosity approach as well as on the Lax-
Friedrichs finite difference scheme (Lax [1]). It is in that context that Theorem 11.2.2
was originally established. The reader may find an exposition in the text by Smoller
[3]. The culmination of that approach was the development of the theory of scalar
conservation laws in several space dimensions, discussed in Chapter VI.

In a different direction, Lax [2] discovered the explicit representation (11.4.10)
for solutions to the Cauchy problem and employed it to establish the existence of in-
variants (Theorem 11.4.2), the development of N-waves under initial data of compact
support (Theorem 11.6.1), and the formation of sawtooth profiles under periodic ini-
tial data (Theorem 11.7.3). One may thus base the entire theory of the homogeneous,
genuinely nonlinear scalar conservation law on Lax’s formula. Oleinik [1], derives a
generalization of the above formula that applies to inhomogeneous, genuinely non-
linear scalar conservation laws. As noted in Section 11.4, these formulas actually
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express properties of the Hamilton-Jacobi equation (see Lions [1]) obtained by in-
tegration of the conservation law, and thus cannot be extended to (even) genuinely
nonlinear balance laws, or to conservation laws that are not genuinely nonlinear. By
contrast, the method of generalized characteristics, employed here, applies (though
not with equal ease) to all scalar balance laws, regardless of whether they are homo-
geneous and genuinely nonlinear.

The treatment of the homogeneous, genuinely nonlinear scalar conservation law
in this chapter follows Dafermos [7], which discusses the more general situation
where fuu ≥ 0, and one-sided limits u(x±, t) exist for all x ∈ (−∞,∞) and almost all
t ∈ (0,∞), even though u(·, t) may not be a function of bounded variation. However,
many of the results reported here had been established, by different means, before
the theory of generalized characteristics emerged.

Theorem 11.3.5 is due to Ambrosio and De Lellis [2]. For an alternative proof
that also applies to the case of genuinely nonlinear systems of hyperbolic conserva-
tion laws, see Bianchini [10], Bianchini and Yu [1], and Bianchini and Caravenna
[1]. On the other hand, using the method of generalized characteristics, Robyr [1]
establishes the SBV property of solutions to, not necessarily genuinely nonlinear,
scalar balance laws.

Generic piecewise regularity of solutions (a weaker version of Theorem 11.3.10)
was originally established by Schaeffer [1].

For other manifestations of the regularizing effects of genuine nonlinearity, see
Golse [1] and Golse and Perthame [1].

The optimal convergence rate to N-waves is established by Yong Jung Kim [2].
The interesting, metastable status of N-waves for the Burgers equation with viscosity
is demonstrated in Kim and Tzavaras [1]. Asymptotics in terms of the Wasserstein
metric is discussed by Carrillo, DiFrancesco and Lattanzio [1,2].

The property that the lap number of solutions of conservation laws (8.6.2) with
viscosity is nonincreasing with time was discovered independently by Nickel [1]
and Matano [1]. The L1 contraction property for piecewise smooth solutions in one
space dimension was noted by Quinn [1]. The functional (11.8.11), in alternative,
albeit completely equivalent, form was designed by Tai-Ping Liu and Tong Yang [3],
who employ it to establish Theorem 11.8.3, for piecewise smooth solutions. For an
alternative derivation, see Goatin and LeFloch [1]. For more general functionals, see
Hongxia Liu and Tong Yang [1], and Jiang and Yang [1].

The treatment of genuinely nonlinear, homogeneous or inhomogeneous, scalar
balance laws, in Sections 11.10 and 11.11, follows the approach of Dafermos [8].
In particular, Section 11.10 improves on an earlier result of Lyberopoulos [1], while
the example discussed in Section 11.11 was originally published in this book.The
effects of inhomogeneity and source terms on the large-time behavior of solutions
are also discussed, by the method of generalized characteristics, in Dafermos [17,33],
Lyberopoulos [2], Fan and Hale [1,2], Härterich [1], Ehrt and Härterich [1], Mascia
and Sinestrari [1], and Fan, Jin and Teng [1]. Problems of this type are also treated
by different methods in Tai-Ping Liu [23], Dias and LeFloch [1], and Sinestrari [1].

The presentation, in Section 11.12, of properties of solutions to scalar conserva-
tion laws with non convex flux has been abridged from Dafermos [13].
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For the case of scalar conservation laws in one spatial dimension, Bianchini and
Marconi [1], and De Lellis and Rivière [1] sharpen the results on the structure of
solutions outlined in Section 6.8, showing that L∞ solutions are continuous, except
possibly on a rectifiable set of Hausdorff dimension one, on which entropy produc-
tion is concentrated. The discussion, in Section11.13, of continuous solutions follows
Dafermos [26]. It should be noted that even though solutions that are merely contin-
uous are rarely encountered in conservation laws, they naturally arise in the setting
of a class of balance laws with regularizing source. Interesting representatives are
the Hunter-Saxton equation and the Camassa-Holm equation. For treatment of these
equations in the spirit of the techniques expounded in this chapter, see Dafermos
[31], and Bressan, Chen and Zhang [2]. For recent, sophisticated treatment of con-
tinuous solutions to balance laws with nonconvex flux, see Alberti, Bianchini and
Caravenna [1].

So much is known about the scalar conservation and balance law in one space
dimension that it would be hopeless to attempt to provide comprehensive coverage.
What follows is just a sample of relevant results.

For a probabilistic interpretation of generalized characteristics, see Rezakhanlou
[1]. For an interesting application of the method of generalized characteristics in
elastostatics, under incompressibility and inextensibility constraints, see Choksi [1].
Further applications are found in Dafermos [26], and Shearer and Dafermos [1].

An explicit representation of admissible solutions on the quarter-plane, analo-
gous to Lax’s formula for the upper half-plane, is presented in LeFloch [1], and
LeFloch and Nédélec [1]. An analog of Lax’s formula has also been derived for the
special systems with coinciding shock and rarefaction wave curves; see Benzoni-
Gavage [1].

The analog of (11.2.1) holds for scalar conservation laws (6.1.1), in several space
variables, if gα(u) = f (u)vα , where v is a constant vector (Hoff [1]).

For a contraction property in a transport distance, see Esselborn, Gigli and Otto
[1].

For a Chapman-Enskog type regularization of the scalar conservation law, see
Schochet and Tadmor [1]. Another regularization that has attracted considerable at-
tention is performed by coupling the scalar conservation law with an elliptic equa-
tion, which results in a model system for the so-called radiating gas equations. See
Serre [20], and Lattanzio and Marcati [3].

A kinetic formulation, different from the one discussed in Section 6.7, is pre-
sented in Brenier and Corrias [1]. See also Vasseur [2].

Panov [1] and, independently, De Lellis, Otto and Westickenberg [2] show that
the entropy inequality for just one uniformly convex entropy suffices for singling out
the unique admissible weak solution in L∞.

Regularity of solutions in Besov spaces is established in Lucier [2]. For the rate
of convergence of numerical schemes see e.g. Nessyahu and Tadmor [1] and Osher
and Tadmor [1].

The connection of the scalar conservation law with the system of “pressureless
gas” (7.1.14) and the related model of “sticky particles” is investigated in E, Rykov
and Sinai [1], Brenier and Grenier [1], Bouchut and James [1], and Tonon [1]. The
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interesting theory of the pressureless gas is developed in Wang and Ding [1], Wang,
Huang and Ding [1], Huang and Wang [1], Li and Warnecke [1], Ding and Huang [1],
Huang [2], and Sever [9,10,11,12]. The theory of generalized characteristics plays a
useful role in a number of these papers.

Homogenization effects under random periodic forcing are demonstrated in E
[2,3], E and Serre [1], E, Khanin, Mazel and Sinai [1], and Amadori [2].

For stochastic effects, see Holden and Risebro [1], Avelaneda and E [1], Bertoin
[1], Jong Uhm Kim [1], Menon and Pego [1], and Chen, Ding and Karlsen [1].

For boundary value problems and boundary control problems associated with the
scalar conservation law, see Andreianov and Sbihi [1,2], and Ancona and Marson
[1,2].

The case where the flux is discontinuous is discussed in Lyons [1], Risebro [2],
Klingenberg and Risebro [1], Klausen and Risebro [1], Garavello, Natalini, Piccoli
and Terracina [1], Chen, Even and Klingenberg [1], Diehl [1], Carillo [1], Adimurthi
and Gowda [1], Adimurthi, Dutta, Ghoshal and Gowda [1], Adimurthi, Mishra and
Gowda [1,2,3], Ostrov [2], Coclite and Risebro [1], Andreianov, Karlsen and Risebro
[2], Holden, Karlsen and Mitrovic [1], and Crasta, De Cicco and de Philippis [1].

As we saw in Section 11.12, when f has inflection points the structure of solu-
tions is considerably more intricate, as a result of the formation of contact discontinu-
ities, which become sources of signals propagating into the future. The general struc-
ture of solutions has been investigated by Bianchini and Yu [2,3]. See also Dafermos
[13], Jenssen and Sinestrari [1], Marson [1], Ballou [1,2], Guckenheimer [1], Chev-
erry [4], Tang, Wang and Zhao [1], Jinghua Wang [1], Kim and Lee [1], Kim and
Kim [1], and Ha and Kim [1]. The large-time behavior is investigated in Dafermos
[1,11], Greenberg and Tong [1], Conlon [1], Kuo Shung Cheng [1,2,3], Weinberger
[1], Sinestrari [2], Yong Jung Kim [3,4], and Baiti and Jenssen [1]. In particular, for a
proof that f ′(u(·, t)) is of locally bounded variation on (−∞,∞), even when the intial
data are merely bounded, see Kuo Shung Cheng [3].

In the special case f (u) = um, the properties of solutions may be studied effec-
tively with the help of the underlying self-similarity transformation; see Bénilan and
Crandall [1], and Liu and Pierre [1]. This last paper also considers initial data that
are merely measures. For developments in that direction, see Vasseur [6], and Chas-
seigne [1]. The limit behavior as m → ∞ is discussed in Xiangsheng Xu [1].

For the case of the balance law, the regularizing effect of the source, the time-
asymptotic convergence of solutions to a traveling wave, and the relaxation limit of
solutions have been established by Mascia [1,2,3], and Mascia and Terracina [1]. See
also Isaacson and Temple [5].

Nonhomogeneous scalar conservation laws or balance laws may be reformulated
and treated as resonant systems of two conservation laws or balance laws; see Isaac-
son and Temple [5], and Amadori, Gosse and Guerra [2].

For other, relevant developments, see Glass [2], Hayes and Shearer [2], Tadmor
and Tang [1], Colombo and Goatin [1], Holden, Priuli and Risebro [1], Adimurthi,
Dutta, Ghoshal and Gowda [2,3,4], Andreianov and Seguin [1], Benzoni-Gavage
[7], Coclite and Coclite [1,2], Ancona, Glass and Nguyen [1], Bourdarias, Gisclon



426 XI Scalar Conservation Laws in One Space Dimension

and Junca [4], Colombo, Mercier and Rosini [1], Colombo and Rossi [1], Corli and
Rohde [1], Bianchini and Modena [1], and Bank and Ben-Artzi [1].



XII

Genuinely Nonlinear Systems

of Two Conservation Laws

The theory of solutions of genuinely nonlinear, strictly hyperbolic systems of two
conservation laws will be developed in this chapter at a level of precision comparable
to that for genuinely nonlinear scalar conservation laws, expounded in Chapter XI.
This will be achieved by exploiting the presence of coordinate systems of Riemann
invariants and the induced rich family of entropy-entropy flux pairs. The principal
tools in the investigation will be generalized characteristics and entropy estimates.

The analysis will reveal a close similarity in the structure of solutions of scalar
conservation laws and pairs of conservation laws. Thus, as in the scalar case, jump
discontinuities are generally generated by the collision of shocks and/or the focusing
of compression waves, and are then resolved into wave fans approximated locally by
the solution of associated Riemann problems.

The total variation of the trace of solutions along space-like curves is controlled
by the total variation of the initial data, and spreading of rarefaction waves affects
total variation, as in the scalar case.

The dissipative mechanisms encountered in the scalar case are at work here as
well, and have similar effects on the large-time behavior of solutions. Entropy dissi-
pation induces O(t−1/2) decay of solutions with initial data in L1(−∞,∞). When the
initial data have compact support, the two characteristic families asymptotically de-
couple; the characteristics spread and form a single N-wave profile for each family.
Finally, as in the scalar case, confinement of characteristics under periodic initial data
induces O(t−1) decay in the total variation per period and formation of sawtoothed
profiles, one for each characteristic family.

12.1 Notation and Assumptions

We consider a genuinely nonlinear, strictly hyperbolic system of two conservation
laws,

(12.1.1) ∂tU(x, t)+∂xF(U(x, t)) = 0,
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on some disk O centered at the origin. The eigenvalues of DF (characteristic speeds)
will here be denoted by λ and μ , with λ (U)< 0 < μ(U) for U ∈ O , and the associ-
ated eigenvectors will be denoted by R and S.

The system is endowed with a coordinate system (z,w) of Riemann invariants,
vanishing at the origin U = 0, and normalized according to (7.3.8):

(12.1.2) DzR = 1, DzS = 0, DwR = 0, DwS = 1.

The condition of genuine nonlinearity is now expressed by (7.5.4), which here reads

(12.1.3) λz < 0, μw > 0.

The direction in the inequalities (12.1.3) has been selected so that z increases across
admissible weak 1-shocks while w decreases across admissible weak 2-shocks.

For definiteness, we will consider systems with the property that the interaction
of any two shocks of the same characteristic family produces a shock of the same
family and a rarefaction wave of the opposite family. Note that this condition is here
expressed by

(12.1.4) S�D2zS > 0, R�D2wR > 0.

Indeed, in conjunction with (8.2.24), (12.1.3) and Theorem 8.3.1, the inequalities
(12.1.4) imply that z increases across admissible weak 2-shocks while w decreases
across admissible weak 1-shocks. Therefore, the admissible shock and rarefaction
wave curves emanating from the state (z̄, w̄) have the shape depicted in Fig. 12.1.1.
Consequently, as seen in Fig. 12.1.2(a), a 2-shock that joins the state (z�,w�), on the
left, with the state (zm,wm), on the right, interacts with a 2-shock that joins (zm,wm),
on the left, with the state (zr,wr), on the right, to produce a 1-rarefaction wave,
joining (z�,w�), on the left, with a state (z0,w�), on the right, and a 2-shock joining
(z0,w�), on the left, with (zr,wr), on the right, as depicted in Fig. 12.1.2(b). Similarly,
the interaction of two 1-shocks produces a 1-shock and a 2-rarefaction wave.

(z, w)--

w

z

Fig. 12.1.1
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Fig. 12.1.2 (a,b)

Also for definiteness, we assume

(12.1.5) λw < 0, μz > 0,

or equivalently, by virtue of (7.3.14) and (7.4.15),

(12.1.6) R�D2zS > 0, S�D2wR > 0.

The prototypical example is the system (7.1.11) of isentropic thermoelasticity,
which satisfies all three assumptions (12.1.3), (12.1.4) and (12.1.6), with Riemann
invariants (7.3.2), provided σ ′′(u) < 0, i.e., the elastic medium is a soft spring or a
gas. When the medium is a hard spring, i.e., σ ′′(u) > 0, the sign of the Riemann
invariants in (7.3.2) has to be reversed.

12.2 Entropy-Entropy Flux Pairs

and the Hodograph Transformation

As explained in Section 7.4, our system is endowed with a rich family of entropy-
entropy flux pairs (η ,q), which may be determined as functions of the Riemann
invariants (z,w) by solving the system (7.4.12), namely

(12.2.1) qz = ληz , qw = μηw .

The integrability condition (7.4.13) now takes the form

(12.2.2) ηzw +
λw

λ −μ
ηz +

μz

μ−λ ηw = 0.

The entropy η(z,w) will be a convex function of the original state variable U
when the inequalities (7.4.16) hold, that is,
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(12.2.3)

⎧⎨⎩ηzz +(R�D2zR)ηz +(R�D2wR)ηw ≥ 0

ηww +(S�D2zS)ηz +(S�D2wS)ηw ≥ 0 .

In the course of our investigation, we shall face the need to construct entropy-
entropy flux pairs with prescribed specifications, by solving (12.2.1) or (12.2.2)
under assigned side conditions. To verify that the constructed entropy satisfies the
condition (12.2.3), for convexity, it usually becomes necessary to estimate the sec-
ond derivatives ηzz and ηww in terms of the first derivatives ηz and ηw . For that
purpose, one may employ the equations obtained by differentiating (12.2.2) with re-
spect to z and w:

(12.2.4)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ηzzw +

λw

λ −μ
ηzz =

(μ−λ )λzw +λzλw −2λwμz

(λ −μ)2 ηz +
(λ −μ)μzz −λzμz +2μ2

z

(λ −μ)2 ηw

ηwwz+
μz

μ−λ ηww=
(μ−λ )λww−λwμw+2λ 2

w

(μ−λ )2 ηz+
(λ−μ)μzw+μzμw−2λwμz

(μ−λ )2 ηw .

As an illustration, we consider the important family of Lax entropy-entropy flux
pairs

(12.2.5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η(z,w) = ekz

[
φ(z,w)+

1
k
χ(z,w)+O

(
1
k2

)]
,

q(z,w) = ekzλ (z,w)
[
ψ(z,w)+

1
k
θ(z,w)+O

(
1
k2

)]
,

(12.2.6)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η(z,w) = ekw

[
α(z,w)+

1
k
β (z,w)+O

(
1
k2

)]
,

q(z,w) = ekwμ(z,w)
[
γ(z,w)+

1
k
δ (z,w)+O

(
1
k2

)]
,

where k is a parameter. These are designed to vary stiffly with one of the two Rie-
mann invariants so as to be employed for decoupling the two characteristic families.
To construct them, one substitutes η and q from (12.2.5) or (12.2.6) into the system
(12.2.1), thus deriving recurrence relations for the coefficients, and then shows that
the remainder is O(k−2). The recurrence relations for the coefficients of the family
(12.2.5), read as follows:

(12.2.7) ψ = φ ,

(12.2.8) λθ +(λψ)z = λχ+λφz ,
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(12.2.9) (λψ)w = μφw .

Combining (12.2.7) with (12.2.9) yields

(12.2.10) (μ−λ )φw = λwφ ,

which may be satisfied by selecting

(12.2.11) φ(z,w) = exp
∫ w

0

λw(z,ω)
μ(z,ω)−λ (z,ω)dω.

In particular, this φ is positive, uniformly bounded away from zero on compact
sets. Hence, for k sufficiently large, the inequalities (12.2.3) will hold, the second
one by virtue of (12.1.4). Consequently, for k large the Lax entropy is a convex
function of U .

Important implications of (12.2.7) and (12.2.8) are the estimates

(12.2.12) q−λη =
1
k

ekz
[
−λzφ +O

(
1
k

)]
,

(12.2.13) q− (λ + ε)η =−ekz
[
εφ +O

(
1
k

)]
,

whose usefulness will become clear later.
There is a curious formal analogy between maps (z,w) �→ (η ,q), which carry

pairs of Riemann invariants into entropy-entropy flux pairs, and hodograph transfor-
mations (z,w) �→ (x, t), constructed by the following procedure: Suppose that z(x, t)
and w(x, t) are the Riemann invariants of a C1 solution of (12.1.1), on some domain
D of the x-t plane. In the vicinity of any point of D where the Jacobian determi-
nant J = zxwt −wxzt does not vanish, the map (x, t) �→ (z,w) admits a C1 inverse
(z,w) �→ (x, t); with partial derivatives xz = J−1wt , tz =−J−1wx , xw =−J−1zt , and
tw = J−1zx . Since zt +λ zx = 0 and wt +μwx = 0 on D , we deduce J = (λ −μ)zxwx
and

(12.2.14) xz = μtz , xw = λ tw ,

which should be compared and contrasted to (12.2.1). Elimination of x between the
two equations in (12.2.14) yields

(12.2.15) tzw +
μw

μ−λ tz +
λz

λ −μ
tw = 0,

namely the analog of (12.2.2)1. One may thus construct (classical) solutions of the
nonlinear system (12.1.1) of two conservation laws by solving the linear system
(12.2.14), or equivalently the linear second order hyperbolic equation (12.2.15). Nu-
merous important special solutions of the system of isentropic gas dynamics, and
other systems of two conservation laws arising in mathematical physics, have been
derived through that process.

1 In the system (7.1.11), (12.2.2) and (12.2.15) coincide, as λ =−μ .
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12.3 Local Structure of Solutions

Throughout this chapter, U will denote a function of locally bounded variation, de-
fined on (−∞,∞)× [0,∞) and taking values in a disk of small radius, centered at the
origin, which is a weak solution of (12.1.1) satisfying the Lax E-condition, in the
sense described in Section 10.1. In particular,

(12.3.1) ∂tη(U(x, t))+∂xq(U(x, t))≤ 0

will hold, in the sense of measures, for any entropy-entropy flux pair (η ,q), with η
convex.

The notion of generalized characteristic, developed in Chapter X, will play a
pivotal role in the discussion.

12.3.1 Definition. A Lipschitz curve, with graph A embedded in the upper half-
plane, is called space-like relative to U when every point (x̄, t̄)∈A has the following
property: The set {(x, t) : 0 ≤ t < t̄ , ζ (t)< x < ξ (t)} of points confined between the
graphs of the maximal backward 2-characteristic ζ (·) and the minimal backward
1-characteristic ξ (·), emanating from (x̄, t̄), has empty intersection with A .

Clearly, any generalized characteristic, of either family, associated with U , is
space-like relative to U . Similarly, all time lines, t = constant, are space-like.

The solution U will be conveniently monitored through its induced Riemann
invariant coordinates (z,w). In Section 12.5, it is shown that the total variation of
the trace of z and w along space-like curves is controlled by the total variation of
their initial data. In anticipation of that result, we shall be assuming henceforth that,
for any space-like curve t = t∗(x), z(x±, t∗(x)) and w(x±, t∗(x)) are functions of
bounded variation, with total variation bounded by a positive constant θ . Since the
oscillation of the solution is small and all arguments will be local, we may assume
without further loss of generality that θ is small.

In order to describe the local structure of the solution, we associate with the
generic point (x̄, t̄) of the upper half-plane eight, not necessarily distinct, curves (see
Fig. 12.3.1) determined as follows:

For t < t̄ : ξ−(·) and ξ+(·) are the minimal and the maximal backward 1-
characteristics emanating from (x̄, t̄); similarly, ζ−(·) and ζ+(·) are the minimal and
the maximal backward 2-characteristics emanating from (x̄, t̄).

For t > t̄ : φ+(·) is the maximal forward 1-characteristic and ψ−(·) is the minimal
forward 2-characteristic issuing from (x̄, t̄). To determine the remaining two curves
φ−(·) and ψ+(·), we consider the minimal backward 1-characteristic ξ (·) and the
maximal backward 2-characteristic ζ (·) emanating from the generic point (x, t) and
locate the points ξ (t̄) and ζ (t̄) where these characteristics are intercepted by the t̄-
time line. Then φ−(t) is determined by the property that ξ (t̄) < x̄ when x < φ−(t)
and ξ (t̄) ≥ x̄ when x > φ−(t). Similarly, ψ+(t) is characterized by the property that
ζ (t̄)≤ x̄ when x < ψ+(t) and ζ (t̄)> x̄ when x > ψ+(t). In particular, φ−(t)≤ φ+(t)
and if φ−(t) < x < φ+(t) then ξ (t̄) = x̄. Similarly, we infer that ψ−(t) ≤ ψ+(t) and
ψ−(t)< x < ψ+(t) implies ζ (t̄) = x̄.
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ψ

ξ+

= ψ+
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–

--

ξ–
ζ+

ζ–

φ–

φ+

(x, t )
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E

S

Fig. 12.3.1

We fix τ > t̄ and let ξτ(·) denote the minimal backward 1-characteristic ema-
nating from the point (φ−(τ),τ). We also consider any sequence {xm} converging
from above to φ−(τ) and let ξm(·) denote the minimal backward 1-characteristic
emanating from (xm,τ). Then the sequence {ξm(·)}, or some subsequence thereof,
will converge to some backward 1-characteristic ξ̂τ(·) emanating from (φ−(τ),τ).
Moreover, for any t̄ ≤ t ≤ τ , it is ξτ(t) ≤ φ−(t) ≤ ξ̂τ(t). In particular, this implies
that φ−(·) is a Lipschitz continuous space-like curve, with slope in the range of λ .
Similarly, ψ+(·) is a Lipschitz continuous space-like curve, with slope in the range
of μ .

Referring again to Fig. 12.3.1, we see that the aforementioned curves border
regions:

(12.3.2) SW = {(x, t) : x < x̄, ζ−1
− (x)< t < φ−1

− (x)},

(12.3.3) SE = {(x, t) : x > x̄, ξ−1
+ (x)< t < ψ−1

+ (x)},

(12.3.4) SN = {(x, t) : t > t̄, φ+(t)< x < ψ−(t)},

(12.3.5) SS = {(x, t) : t < t̄, ζ+(t)< x < ξ−(t)}.

12.3.2 Definition. The solution is called locally regular at the point (x̄, t̄) of the upper
half-plane when the following hold:

(a) As (x, t) tends to (x̄, t̄) through any one of the regions SW ,SE ,SN , or SS ,
(z(x±, t), w(x±, t)) tend to respective limits (zW , wW ),(zE , wE),(zN , wN), or
(zS, wS), where, in particular, it is zW =z(x̄−, t̄), wW =w(x̄−, t̄), zE = z(x̄+, t̄),
wE = w(x̄+, t̄).
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(b)1 If p�(·) and pr(·) are any two backward 1-characteristics emanating from (x̄, t̄),
with ξ−(t)≤ p�(t)< pr(t)≤ ξ+(t), for t < t̄, then

(12.3.6)1 zS = lim
t↑t̄

z(ξ−(t)±, t)≤ lim
t↑t̄

z(p�(t)−, t)≤ lim
t↑t̄

z(p�(t)+, t)

≤ lim
t↑t̄

z(pr(t)−, t)≤ lim
t↑t̄

z(pr(t)+, t)≤ lim
t↑t̄

z(ξ+(t)±, t) = zE ,

(12.3.7)1 wS = lim
t↑t̄

w(ξ−(t)±, t)≥ lim
t↑t̄

w(p�(t)−, t)≥ lim
t↑t̄

w(p�(t)+, t)

≥ lim
t↑t̄

w(pr(t)−, t)≥ lim
t↑t̄

w(pr(t)+, t)≥ lim
t↑t̄

w(ξ+(t)±, t)=wE .

(b)2 If q�(·) and qr(·) are any two backward 2-characteristics emanating from (x̄, t̄),
with ζ−(t)≤ q�(t)< qr(t)≤ ζ+(t), for t < t̄, then

(12.3.6)2 wW = lim
t↑t̄

w(ζ−(t)±, t)≥ lim
t↑t̄

w(q�(t)−, t)≥ lim
t↑t̄

w(q�(t)+, t)

≥ lim
t↑t̄

w(qr(t)−, t)≥ lim
t↑t̄

w(qr(t)+, t)≥ lim
t↑t̄

w(ζ+(t)±, t)=wS ,

(12.3.7)2 zW = lim
t↑t̄

z(ζ−(t)±, t)≤ lim
t↑t̄

z(q�(t)−, t)≤ lim
t↑t̄

z(q�(t)+, t)

≤ lim
t↑t̄

z(qr(t)−, t)≤ lim
t↑t̄

z(qr(t)+, t)≤ lim
t↑t̄

z(ζ+(t)±, t) = zS .

(c)1 If φ−(t) = φ+(t), for t̄ < t < t̄ + s, then zW ≤ zN , wW ≥ wN . On the other hand,
if φ−(t) < φ+(t), for t̄ < t < t̄ + s, then wW = wN and as (x, t) tends to (x̄, t̄)
through the region {(x, t) : t > t̄, φ−(t) < x < φ+(t)},w(x±, t) tends to wW .
Furthermore, if p�(·) and pr(·) are any two forward 1-characteristics issuing
from (x̄, t̄), with φ−(t)≤ p�(t)≤ pr(t)≤ φ+(t), for t̄ < t < t̄ + s, then

(12.3.8)1 zW = lim
t↓t̄

z(φ−(t)±, t)≥ lim
t↓t̄

z(p�(t)−, t) = lim
t↓t̄

z(p�(t)+, t)

≥ lim
t↓t̄

z(pr(t)−, t) = lim
t↓t̄

z(pr(t)+, t)≥ lim
t↓t̄

z(φ+(t)±, t) = zN .

(c)2 If ψ−(t) = ψ+(t), for t̄ < t < t̄ + s, then wN ≥ wE , zN ≤ zE . On the other hand,
if ψ−(t) < ψ+(t), for t̄ < t < t̄ + s, then zN = zE and as (x, t) tends to (x̄, t̄)
through the region {(x, t) : t > t̄, ψ−(t) < x < ψ+(t)},z(x±, t) tends to zE .
Furthermore, if q�(·) and qr(·) are any two forward 2-characteristics issuing
from (x̄, t̄), with ψ−(t)≤ q�(t)≤ qr(t)≤ ψ+(t), for t̄ < t < t̄ + s, then

(12.3.8)2 wN = lim
t↓t̄

w(ψ−(t)±, t)≤ lim
t↓t̄

w(q�(t)−, t) = lim
t↓t̄

w(q�(t)+, t)

≤ lim
t↓t̄

w(qr(t)−, t)= lim
t↓t̄

w(qr(t)+, t)≤ lim
t↓t̄

w(ψ+(t)±, t)=wE .
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The motivation for the above definition lies in

12.3.3 Theorem. For θ sufficiently small, the solution is locally regular at any point
of the upper half-plane.

The proof will be provided in the next section. However, the following remarks
are in order here. Definition 12.3.2 is motivated by experience with piecewise smooth
solutions. Indeed, at points of local regularity, incoming waves of the two character-
istic families collide to generate a jump discontinuity, which is then resolved into an
outgoing wave fan. Statements (b)1 and (b)2 regulate the incoming waves, allowing
for any combination of admissible shocks and focusing compression waves. State-
ments (c)1 and (c)2 characterize the outgoing wave fan. In particular, (c)1 implies that
the state (zW ,wW ), on the left, may be joined with the state (zN ,wN), on the right, by a
1-rarefaction wave or admissible 1-shock; while (c)2 implies that the state (zN ,wN),
on the left, may be joined with the state (zE ,wE), on the right, by a 2-rarefaction
wave or admissible 2-shock. Thus, the outgoing wave fan is locally approximated
by the solution of the Riemann problem with end-states (z(x̄−, t̄),w(x̄−, t̄)) and
(z(x̄+, t̄),w(x̄+, t̄)).

A simple corollary of Theorem 12.3.3 is that φ−(·) is a 1-characteristic while
ψ+(·) is a 2-characteristic.

Definition 12.3.2 and Theorem 12.3.3 apply even to points on the initial line,
t̄ = 0, after the irrelevant parts of the statements, pertaining to t < t̄, are discarded.
It should be noted, however, that there is an important difference between t̄ = 0
and t̄ > 0. In the former case, (z(x̄±,0),w(x̄±,0)) are unrestricted, being induced
arbitrarily by the initial data, and hence the outgoing wave fan may comprise any
combination of shocks and rarefaction waves. By contrast, when t̄ > 0, statements
(b)1 and (b)2 in Definition 12.3.2 induce the restrictions zW ≤ zE and wW ≥wE . This,
combined with statements (c)1 and (c)2 , rules out the possibility that both outgoing
waves may be rarefactions.

12.4 Propagation of Riemann Invariants

Along Extremal Backward Characteristics

The theory of the genuinely nonlinear scalar conservation law, expounded in Chapter
XI, owes its simplicity to the observation that extremal backward generalized char-
acteristics are essentially classical characteristics, namely straight lines along which
the solution stays constant. It is thus natural to investigate whether solutions U of sys-
tems (12.1.1) exhibit similar behavior. When U is Lipschitz continuous, the Riemann
invariants z and w stay constant along 1-characteristics and 2-characteristics, respec-
tively, by virtue of Theorem 7.3.4. One should not expect, however, that this will hold
for weak solutions, because Riemann invariants generally jump across shocks of both
characteristic families. In the context of piecewise smooth solutions, Theorem 8.2.3
implies that, under the current normalization conditions, the trace of z (or w) along
shock-free 1-characteristics (or 2-characteristics) is a nonincreasing step function.
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The jumps of z (or w) occur at the points where the characteristic crosses a shock of
the opposite family, and are of cubic order in the strength of the crossed shock. It is
remarkable that this property essentially carries over to general weak solutions:

12.4.1 Theorem. Let ξ (·) be the minimal (or maximal) backward 1-characteristic
(or 2-characteristic) emanating from any fixed point (x̄, t̄) of the upper half-plane.
Set

(12.4.1) z̄(t) = z(ξ (t)−, t), w̄(t) = w(ξ (t)+, t), 0 ≤ t ≤ t̄.

Then z̄(·) (or w̄(·)) is a nonincreasing saltus function whose variation is concentrated
in the set of points of jump discontinuity of w̄(·) (or z̄(·)). Furthermore, if τ ∈ (0, t̄)
is any point of jump discontinuity of z̄(·) (or w̄(·)), then

(12.4.2)1 z̄(τ−)− z̄(τ+)≤ a[w̄(τ+)− w̄(τ)]3,

or

(12.4.2)2 w̄(τ−)− w̄(τ+)≤ a[z̄(τ+)− z̄(τ)]3,

where a is a positive constant depending solely on F .

The proof of the above proposition will be intermingled with the proof of The-
orem 12.3.3, on local regularity of the solution, and will be partitioned into several
steps. The assumption that the trace of (z,w) along space-like curves has bounded
variation will be employed only for special space-like curves, namely, generalized
characteristics and time lines, t =constant.

12.4.2 Lemma. When ξ (·) is the minimal (or maximal) backward 1-characteristic
(or 2-characteristic) emanating from (x̄, t̄), z̄(·) (or w̄(·)) is nonincreasing on [0, t̄].

Proof. The two cases are quite similar, so it will suffice to discuss the first one,
namely where ξ (·) is a 1-characteristic. Then, by virtue of Theorem 10.3.2, ξ (·) is
shock-free and hence

(12.4.3) ξ̇ (t) = λ (U(ξ (t)±, t)), a.e. on [0, t̄].

We fix numbers τ and s, with 0 ≤ τ < s ≤ t̄. For ε positive and small, we let ξε(·)
denote the minimal Filippov solution of the ordinary differential equation

(12.4.4)
dx
dt

= λ (U(x, t))+ ε,

on [τ,s], with initial condition ξε(s) = ξ (s)− ε . Applying (12.1.1), as equality of
measures, to arcs of the graph of ξε(·) and using Theorem 1.7.8, we deduce
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(12.4.5)

F(U(ξε(t)+, t))−F(U(ξε(t)−, t))− ξ̇ε(t)[U(ξε(t)+, t)−U(ξε(t)−, t)] = 0,

a.e. on [τ,s]. Therefore, ξε(·) propagates with speed λ (U(ξε(t)±, t))+ ε , at points
of approximate continuity, or with 1-shock speed, at points of approximate jump
discontinuity. In particular, λ (U(ξε(t)+, t)) ≤ λ (U(ξε(t)−, t)), almost everywhere
on [τ,s], and so, by the definition of Filippov solutions of (12.4.4),

(12.4.6) ξ̇ε(t)≥ λ (U(ξε(t)+, t))+ ε, a.e. on [τ,s].

For any entropy-entropy flux pair (η ,q), with η convex, integrating (12.3.1) over
the region {(x, t) : τ < t < s, ξε(t)< x < ξ (t)} and applying Green’s theorem yields

(12.4.7)
∫ ξ (s)

ξε (s)
η(U(x,s))dx−

∫ ξ (τ)

ξε (τ)
η(U(x,τ))dx

≤−
∫ s

τ
{q(U(ξ (t)−, t))− ξ̇ (t)η(U(ξ (t)−, t))}dt

+
∫ s

τ
{q(U(ξε(t)+, t))− ξ̇ε(t)η(U(ξε(t)+, t))}dt.

In particular, we write (12.4.7) for the Lax entropy-entropy flux pair (12.2.5). For
k large, the right-hand side of (12.4.7) is nonpositive, by virtue of (12.4.3), (12.4.6),
(12.2.12), (12.1.3) and (12.2.13). Hence

(12.4.8)
∫ ξ (s)

ξε (s)
η(z(x,s),w(x,s))dx ≤

∫ ξ (τ)

ξε (τ)
η(z(x,τ),w(x,τ))dx.

We raise (12.4.8) to the power 1/k and then let k → ∞ . This yields

(12.4.9) ess sup(ξε (s),ξ (s)) z(·,s)≤ ess sup(ξε (τ),ξ (τ)) z(·,τ).
Finally, we let ε ↓ 0. By standard theory of Filippov solutions, the family {ξε(·)}
contains a sequence that converges, uniformly on [τ,s], to some Filippov solution
ξ0(·) of the equation dx/dt = λ (U(x, t)), with initial condition ξ0(s) = ξ (s). But
then ξ0(·) is a backward 1-characteristic emanating from the point (ξ (s),s). More-
over, ξ0(t)≤ ξ (t), for τ ≤ t ≤ s. Since ξ (·) is minimal, ξ0(·) must coincide with ξ (·)
on [τ,s]. Thus (12.4.9) implies z̄(s)≤ z̄(τ) and so z̄(·) is nonincreasing on [τ,s]. The
proof is complete.

12.4.3 Lemma. Let ξ (·) be the minimal (or maximal) backward 1-characteristic (or
2-characteristic) emanating from (x̄, t̄). Then, for any τ ∈ (0, t̄],

(12.4.10)1 z(ξ (τ)−,τ)≤ z̄(τ−)≤ z(ξ (τ)+,τ),

or

(12.4.10)2 w(ξ (τ)−,τ)≥ w̄(τ−)≥ w(ξ (τ)+,τ).
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In particular,

(12.4.11) z(x−, t)≤ z(x+, t), w(x−, t)≥ w(x+, t), −∞ < x < ∞ , 0 < t < ∞ .

This will be established in conjunction with

12.4.4 Lemma. Let ξ (·) be the minimal (or maximal) backward 1-characteristic (or
2-characteristic) emanating from (x̄, t̄). For any 0 < τ < s ≤ t̄,

(12.4.12)1 z(ξ (τ)+,τ)− z(ξ (s)+,s)≤ b osc[τ,s]w̄(·)TV[τ,s]w̄(·),

or

(12.4.12)2 w(ξ (τ)−,τ)−w(ξ (s)−,s)≤ b osc[τ,s]z̄(·)TV[τ,s]z̄(·),

where b is a positive constant depending on F . Furthermore, if w̄(τ+) > w̄(τ) (or
z̄(τ+)> z̄(τ)), then (12.4.2)1 (or (12.4.2)2) holds.

Proof. It suffices to discuss the case where ξ (·) is a 1-characteristic. Consider any
convex entropy η with associated entropy flux q. We fix ε positive and small and
integrate (12.3.1) over the region {(x, t) : τ < t < s, ξ (t)< x < ξ (t)+ε}. Notice that
both curves x = ξ (t) and x = ξ (t)+ ε have slope λ (z̄(t), w̄(t)), almost everywhere
on (τ,s). Therefore, Green’s theorem yields

(12.4.13)
∫ ξ (s)+ε

ξ (s)
η(z(x,s),w(x,s))dx−

∫ ξ (τ)+ε

ξ (τ)
η(z(x,τ),w(x,τ))dx

≤−
∫ s

τ
H(z(ξ (t)+ ε+, t),w(ξ (t)+ ε+, t), z̄(t), w̄(t))dt,

under the notation

(12.4.14) H(z,w, z̄, w̄) = q(z,w)−q(z̄, w̄)−λ (z̄, w̄)[η(z,w)−η(z̄, w̄)].

One easily verifies, with the help of (12.2.1), that

(12.4.15) Hz(z,w, z̄, w̄) = [λ (z,w)−λ (z̄, w̄)]ηz(z,w),

(12.4.16) Hw(z,w, z̄, w̄) = [μ(z,w)−λ (z̄, w̄)]ηw(z,w),

(12.4.17) Hzz(z,w, z̄, w̄) = λz(z,w)ηz(z,w)+ [λ (z,w)−λ (z̄, w̄)]ηzz(z,w),

(12.4.18) Hzw(z,w, z̄, w̄) = λw(z,w)ηz(z,w)+ [λ (z,w)−λ (z̄, w̄)]ηzw(z,w),

(12.4.19) Hww(z,w, z̄, w̄) = μw(z,w)ηw(z,w)+ [μ(z,w)−λ (z̄, w̄)]ηww(z,w).



12.4 Propagation of Riemann Invariants 439

Let us introduce the notation z0 = z(ξ (τ)+,τ),w0 = w(ξ (τ)+,τ) = w̄(τ),
z1 = z(ξ (s)+,s),w1 = w(ξ (s)+,s) = w̄(s) and set δ = osc[τ,s]w̄(·). We then apply
(12.4.13) for the entropy η constructed by solving the Goursat problem for (12.2.2),
with data

(12.4.20)

⎧⎨⎩η(z,w0) =−(z− z0)+β (z− z0)
2 ,

η(z0,w) =−3βδ (w−w0)+β (w−w0)
2 ,

where β is a positive constant, sufficiently large for the following to hold on a small
neighborhood of the point (z0,w0):

(12.4.21) η is a convex function of U,

(12.4.22) η(z,w) is a convex function of (z,w),

(12.4.23) H(z,w, z̄, w̄) is a convex function of (z,w).

It is possible to satisfy the above requirements when |z − z0|, |w − w0| and
δ are sufficiently small. In particular, (12.4.21) will hold by virtue of (12.2.3),
(12.1.4), (12.4.20), (12.2.2) and (12.2.4). Similarly, (12.4.22) follows from (12.4.20),
(12.2.2) and (12.2.4). Finally, (12.4.23) is verified by combining (12.4.17), (12.4.18),
(12.4.19), (12.4.20), (12.2.2) and (12.2.4).

By virtue of (12.4.23), (12.4.15) and (12.4.16),

(12.4.24) H(z,w, z̄, w̄)≥ [μ(z̄, w̄)−λ (z̄, w̄)]ηw(z̄, w̄)[w− w̄].

One may estimate ηw(z̄(t), w̄(t)) by integrating (12.2.2), as an ordinary differ-
ential equation for ηw , along the line w = w̄(t), starting out from the initial value
ηw(z0, w̄(t)) at z = z0 . Because |w̄(t)−w0| ≤ δ , one easily deduces from (12.4.20)
that −5βδ ≤ ηw(z0, w̄(t)) ≤ −βδ < 0. Since λw < 0 and ηz < 0, (12.2.2) then
implies ηw(z, w̄(t)) < 0, for z ≤ z0 . In anticipation of (12.4.10)1, we now assume
z0 ≥ z̄(τ), which we already know will apply for almost all choices of τ in (0,s),
namely when z(ξ (τ)−,τ) = z(ξ (τ)+,τ). By Lemma 12.4.2, z̄(t) ≤ z̄(τ) and so
ηw(z̄(t), w̄(t))< 0, for τ ≤ t ≤ s.

For t ∈ [τ,s], let ζt(·) denote the maximal backward 2-characteristic emanat-
ing from the point (ξ (t) + ε, t) (Fig. 12.4.1). We also draw the maximal forward
2-characteristic ψ(·), issuing from the point (ξ (τ),τ), which collides with the curve
x = ξ (t)+ ε at time r, where 0 < r− τ < c0ε .

For t ∈ (r,s), the graph of ζt(·) intersects the graph of ξ (·) at time σt . By Lemma
12.4.2,

(12.4.25)
w(ξ (t)+ ε+, t) = w(ζt(t)+, t)≤ w(ζt(σt)+,σt) = w(ξ (σt)+,σt) = w̄(σt).



440 XII Genuinely Nonlinear Systems of Two Conservation Laws

Fig. 12.4.1

Since ηw(z̄(t), w̄(t))< 0, (12.4.24) and (12.4.25) together imply

(12.4.26) H(z(ξ (t)+ ε+, t),w(ξ (t)+ ε+, t), z̄(t), w̄(t))

≥ [μ(z̄(t), w̄(t))−λ (z̄(t), w̄(t))]ηw(z̄(t), w̄(t))[w̄(σt)− w̄(t)].

Because the two characteristic speeds λ and μ are strictly separated, 0 < t−σt < c1ε
and so (12.4.26) yields

(12.4.27) −
∫ s

r
H(z(ξ (t)+ ε+, t),w(ξ (t)+ ε+, t), z̄(t), w̄(t))dt

≤ c2ε sup(τ,s)|ηw(z̄(·), w̄(·))|NV(τ,s)w̄(·),
with NV denoting negative (i.e., decreasing) variation.

Next, we restrict t to the interval (τ,r). Then, ζt(·) is intercepted by the τ-time
line at ζt(τ) ∈ [ξ (τ),ξ (τ)+ ε). By virtue of Lemma 12.4.2,

(12.4.28) w(ξ (t)+ ε+, t) = w(ζt(t)+, t)≤ w(ζt(τ)+,τ) = w0 +o(1) , as ε ↓ 0.

On the other hand, upon setting z+ = z̄(τ+), w+ = w̄(τ+), we readily observe that
z̄(t) = z+ + o(1), w̄(t) = w+ + o(1), as ε ↓ 0. Therefore, combining (12.4.24) with
(12.4.28) yields

(12.4.29) −
∫ r

τ
H(z(ξ (t)+ ε+, t),w(ξ (t)+ ε+, t), z̄(t), w̄(t))dt

≤−[μ(z+,w+)−λ (z+,w+)]ηw(z+,w+)[w0 −w+](r− τ)+o(ε).
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We now multiply (12.4.13) by 1/ε and then let ε ↓ 0. Using (12.4.27) and
(12.4.28), and recalling that 0 < r− τ < c0ε , we deduce

(12.4.30) η(z1,w1)−η(z0,w0)≤ c3 sup(τ,s)|ηw(z̄(·), w̄(·))|NV[τ,s)w̄(·).

In particular, s is the limit of an increasing sequence of τ with the property
z(ξ (τ)−,τ) = z(ξ (τ)+,τ), for which (12.4.30) is valid. This in turn implies that
η(z1,w1) ≤ η(z̄(s−), w̄(s−)). Now applying (12.4.25) for t = s, and letting ε ↓ 0,
yields w1 ≤ w̄(s−). Also, ηw < 0, ηz < 0. Hence, z̄(s−) ≤ z1. By Lemma 12.4.2,
z̄(s) ≤ z̄(s−) and so z(ξ (s)−,s) = z̄(s) ≤ z̄(s−) ≤ z1 = z(ξ (s)+,s). Since s is arbi-
trary, we may write these inequalities for s = τ and this verifies (12.4.10)1 . Lemma
12.4.3 has now been proved. Furthermore, z0 ≥ z̄(τ) has been established and hence
(12.4.30) is valid for all τ and s with 0 < τ < s ≤ t̄.

From (12.4.22) and (12.4.20) it follows

(12.4.31) η(z1,w1)−η(z0,w0)≥ z0 − z1 −3βδ (w1 −w0).

Combining (12.4.30) with (12.4.31),

(12.4.32) z0 − z1 ≤ 3βδ (w1 −w0)+ c3 sup(τ,s)|ηw(z̄(·), w̄(·))|NV[τ,s)w̄(·).

To establish (12.4.12)1 for general τ and s, it would suffice to verify it just for
τ and s with s− τ so small that TV[τ,s]w̄(·) < 2δ . For such τ and s, (12.4.32) gives
the preliminary estimate z0 − z1 ≤ c4δ , and in fact z0 − z̄(t) ≤ c4δ , for all t ∈ (τ,s).
But then, since |ηw(z0, w̄(t))| ≤ 5βδ , (12.2.2) implies sup(τ,s) |ηw(z̄(·), w̄(·))| ≤ c5δ .
Inserting this estimate into (12.4.32), we arrive at (12.4.12)1 , with b = 3β + c3c5 .

Finally, we assume w̄(τ+)> w̄(τ), say w+−w0 = δ0 > 0, and proceed to verify
(12.4.2)1 . Keeping τ fixed, we choose s−τ so small that TV[τ,s]w̄(·)< 2δ0 and hence
δ < 2δ0 . We need to improve the estimate (12.4.29), and thus we restrict t to the
interval [τ,r].

On account of (12.4.23), (12.4.15) and (12.4.16),

(12.4.33) H(z(ξ (t)+ ε+, t),w(ξ (t)+ ε+, t), z̄(t), w̄(t))≥ H(z+,w0, z̄(t), w̄(t))

−[λ (z+,w0)−λ (z̄(t), w̄(t))][z(ξ (t)+ ε+, t)− z+]

−3βδ [μ(z+,w0)−λ (z̄(t), w̄(t))][w(ξ (t)+ ε+, t)−w0].

We have already seen that, as ε ↓ 0, z̄(t) = z++o(1), w̄(t) =w++o(1). In particular,
for ε small, λ (z+,w0)−λ (z̄(t), w̄(t))> 0, by virtue of (12.1.5). Furthermore, if ξ̂ (·)
denotes the minimal backward 1-characteristic emanating from any point (x, t) with
ξ (t)< x < ξ (t)+2ε , by Lemma 12.4.2, it is z(x−, t)≤ z(ξ̂ (τ)−,τ) = z0 +o(1), as
ε ↓ 0. On the other hand, (12.4.12)1, with s ↓ τ , implies z0 − z+ ≤ bδ 2

0 . Therefore, as
ε ↓ 0, z(ξ (t)+ ε+, t)≤ z++bδ 2

0 +o(1). Finally, we recall (12.4.28). Collecting the
above, we deduce from (12.4.33):
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(12.4.34) H(z(ξ (t)+ ε+, t),w(ξ (t)+ ε+, t), z̄(t), w̄(t))

≥ H(z+,w0,z+,w+)− c6δ 3
0 +o(1), as ε ↓ 0.

To estimate the right-hand side of (12.4.34), let us visualize q as a function
of (z,η). By the chain rule and (12.2.1), we deduce qη = μ, qηη = μw/ηw . For
w ∈ [w0,w+] , qηη < 0. Hence

(12.4.35) H(z+,w0,z+,w+)≥ [μ(z+,w0)−λ (z+,w+)][η(z+,w0)−η(z+,w+)].

The next step is to show

(12.4.36)
r− τ
ε

≥ 1
μ(z0,w+)−λ (z+,w+)

+o(1), as ε ↓ 0.

To see this, let us begin with

(12.4.37) ε = ψ(r)−ξ (r) =
∫ r

τ
[ψ̇(t)− ξ̇ (t)]dt

≤
∫ r

τ
[μ(z(ψ(t)−, t),w(ψ(t)−, t))−λ (z̄(t), w̄(t))]dt.

As shown above, z(ψ(t)−, t) ≤ z0 + o(1), as ε ↓ 0. On the other hand, the maximal
backward 2-characteristic ζ (·), emanating from a point (x, t) with ξ (t) < x < ψ(t),
will intersect the graph of ξ (·) at time σ ∈ (τ,r] and hence, by Lemma 12.4.2,
w(x+, t) ≤ w̄(σ). In particular, w(ψ(t)−, t) ≤ w+ + o(1), as ε ↓ 0. Since μz > 0
and μw > 0, (12.4.37) implies ε ≤ (r − τ)[μ(z0,w+)− λ (z+,w+)+ o(1)] whence
(12.4.36) immediately follows.

Once again we multiply (12.4.13) by 1/ε , let ε ↓ 0 and then also let s ↓ τ . Com-
bining (12.4.27), (12.4.34), (12.4.35) and (12.4.36), we conclude:

(12.4.38)

η(z+,w0)−η(z0,w0)≤ μ(z0,w+)−μ(z+,w0)

μ(z0,w+)−λ (z+,w+)
[η(z+,w0)−η(z+,w+)]+ c7δ 3

0 .

By virtue of (12.4.20), η(z+,w0)− η(z0,w0) ≥ z0 − z+ . The right-hand side of
(12.4.38) is bounded by aδ 3

0 , because ηw = O(δ0). Therefore, z0 − z+ ≤ aδ 3
0 . Now

z̄(τ−) ≤ z0, on account of (12.4.10)1 . Hence z̄(τ−)− z̄(τ+) ≤ aδ 3
0 , which estab-

lishes (12.4.2)1 .

Since total variation is additive, we deduce immediately

12.4.5 Corollary. In (12.4.12)1 (or (12.4.12)2), osc[τ,s]w̄(·) (or osc[τ,s]z̄(·)) may be
replaced by the local oscillation of w̄(·) (or z̄(·)) in the interval [τ,s], which is mea-
sured by the maximum jump of w̄(·) (or z̄(·)) in [τ,s]. In particular, z̄(·) (or w̄(·)) is a
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saltus function whose variation is concentrated in the set of points of jump disconti-
nuity of w̄(·) (or z̄(·)).

We have thus verified all the assertions of Theorem 12.4.1, except that (12.4.2)
has been established under the extraneous assumption w̄(τ) < w̄(τ+). By Lemma
12.4.3, w̄(τ) = w(ξ (τ)+,τ) ≤ w(ξ (τ)−,τ). On the other hand, when (ξ (τ),τ) is a
point of local regularity of the solution, Condition (c)1 of Definition 12.3.2 implies
w̄(τ+) = w(ξ (τ)−,τ). Hence, by establishing Theorem 12.3.3, we will justify, in
particular, the assumption w̄(τ)< w̄(τ+).

We thus turn to the proof of Theorem 12.3.3. Our main tool will be the estimate
(12.4.12). In what follows, δ will denote an upper bound of the oscillation of z and w
on the upper half-plane. We fix any point (x̄, t̄) of the upper half-plane and construct
the curves ξ±(·), ζ±(·), φ±(·) and ψ±(·), as described in Section 12.3 and sketched
in Fig. 12.3.1. The first step is to verify the part of Condition (a) of Definition 12.3.2
pertaining to the “western” sector SW .

12.4.6 Lemma. For θ sufficiently small, as (x, t) tends to (x̄, t̄) through the region
SW , defined by (12.3.2), (z(x±, t),w(x±, t)) converge to (zW ,wW ), where we set
zW = z(x̄−, t̄), wW = w(x̄−, t̄).

Proof. We shall construct a sequence x0 < x1 < x2 < · · · < x̄ such that, for every
m = 0,1,2, · · · ,

(12.4.39) oscSW∩{x>xm}z ≤ (3bθ)mδ , oscSW∩{x>xm}w ≤ (3bθ)mδ ,

where b is the constant appearing in (12.4.12). Clearly, (12.4.39) will readily imply
the assertion of the proposition, provided 3bθ < 1.

For m = 0, (12.4.39) is satisfied with x0 = −∞. Arguing by induction, let us
assume x0 < x1 < · · ·< xk−1 < x̄ have already been fixed so that (12.4.39) holds for
m = 0, · · · ,k− 1. We proceed to determine xk . We fix t̂ ∈ (0, t̄) with t̄ − t̂ so small
that ζ−(t̂)> xk−1 and the oscillation of z(ζ−(τ)±,τ) over the interval [t̂, t̄) does not
exceed 1

3 (3bθ)kδ . Next we locate x̂ ∈ (xk−1,ζ−(t̂)) with ζ−(t̂)− x̂ so small that the
oscillation of w(y−, t̂) over the interval (x̂,ζ−(t̂)] is similarly bounded by 1

3 (3bθ)kδ .
By the construction of φ−(·), the minimal backward 1-characteristic ξ (·) ema-

nating from any point (x, t) in SW ∩{x > xk} stays to the left of the graph of φ−(·).
At the same time, as (x, t) tends to (x̄, t̄) through SW , the maximal backward 2-
characteristic ζ (·) emanating from it will tend to some backward 2-characteristic
emanating from (x̄, t̄), which necessarily lies to the right of the minimal character-
istic ζ−(·) or coincides with ζ−(·). It follows that when x̄− xk is sufficiently small,
ξ (·) will have to cross the graph of ζ−(·) at some time t∗ ∈ (t̂, t̄), while ζ (·) must
intersect either the graph of ζ−(·) at some time t̃ ∈ (t̂, t̄) or the t̂-time line at some
x̃ ∈ (x̂,ζ−(t̂)].

By virtue of Lemmas 12.4.2 and 12.4.3,

(12.4.40) z(x−, t)≤ z(ξ (t∗)−, t∗) = z(ζ−(t∗)−, t∗)≤ z(ζ−(t∗)+, t∗).



444 XII Genuinely Nonlinear Systems of Two Conservation Laws

On account of (12.4.39), for m = k− 1, and the construction of t̂, the oscillation of
w(ξ (τ)+,τ) over the interval [t∗, t] does not exceed (3bθ)k−1δ + 1

3 (3bθ)kδ , which
in turn is majorized by 2(3bθ)k−1δ . Then (12.4.12)1 yields

(12.4.41) z(x+, t)≥ z(ξ (t∗)+, t∗)−2bθ(3bθ)k−1δ = z(ζ−(t∗)+, t∗)− 2
3
(3bθ)kδ .

Recalling that the oscillation of z(ζ−(τ)+,τ) over [t̂, t̄) is bounded by 1
3 (3bθ)kδ ,

(12.4.40) and (12.4.41) together imply the bound (12.4.39) on the oscillation of z,
for m = k.

The argument for w is similar: Assume, for example, that ξ (·) intersects the t̂-
time line, rather than the graph of ζ−(·). By virtue of Lemmas 12.4.2 and 12.4.3,

(12.4.42) w(x+, t)≤ w(ζ (t̂)+, t̂) = w(x̃+, t̂)≤ w(x̃−, t̂).

The oscillation of z(ζ (τ)−,τ) over the interval [t̂, t] does not exceed (3bθ)k−1δ , on
account of (12.4.39), for m = k−1. Then (12.4.12)2 implies

(12.4.43) w(x−, t)≥ w(ζ (t̂)−, t̂)−bθ(3bθ)k−1δ = w(x̃−, t̂)− 1
3
(3bθ)kδ .

The bound (12.4.39) on the oscillation of w, for m = k, now easily follows from
(12.4.42), (12.4.43) and the construction of t̂ and x̂. The proof is complete.

The part of Condition (a) of Definition 12.3.2 pertaining to the “eastern” sector
SE is validated by a completely symmetrical argument. The next step is to check the
part of Condition (a) that pertains to the “southern” sector SS .

12.4.7 Lemma. For θ sufficiently small, as (x, t) tends to (x̄, t̄) through the region
SS , defined by (12.3.5), (z(x±, t),w(x±, t)) tend to a constant state (zS,wS).

Proof. As in the proof of Lemma 12.4.6, the aim is to find t0 < t1 < · · ·< t̄ such that

(12.4.44) oscSS∩{t>tm}z ≤ (4bθ)mδ , oscSS∩{t>tm}w ≤ (4bθ)mδ ,

for m = 0,1,2, · · · . For m = 0, (12.4.44) is satisfied with t0 = 0. Arguing by induc-
tion, we assume t0 < t1 < · · · < tk−1 < t̄ have already been fixed so that (12.4.44)
holds for m = 0, · · · ,k − 1, and proceed to locate tk . We fix t̂ ∈ (tk−1, t̄) with t̄ − t̂
sufficiently small that the oscillation of z(ζ+(τ)−,τ), w(ζ+(τ)+,τ),z(ξ−(τ)−,τ),
w(ξ−(τ)+,τ) over the interval [t̂, t̄) does not exceed 1

4 (4bθ)kδ . Next we locate x̂ and
x̃ in the interval (ζ+(t̂),ξ−(t̂)) with x̂− ζ+(t̂) and ξ−(t̂)− x̃ so small that the oscil-
lation of z(y−, t̂) over the interval (x̃,ξ−(t̂)] and the oscillation of w(y+, t̂) over the
interval [ζ+(t̂), x̂) do not exceed 1

4 (4bθ)kδ .
Since ξ−(·) is the minimal backward 1-characteristic and ζ+(·) is the maximal

backward 2-characteristic emanating from (x̄, t̄), we can find tk ∈ (t̂, t̄) with t̄ − tk
so small that the following holds for any (x, t) in SS ∩ {t > tk}: (a) the minimal
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backward 1-characteristic ξ (·) emanating from (x, t) must intersect either the t̂-time
line at x′ ∈ (x̃,ξ−(t̂)] or the graph of ξ−(·) at time t ′ ∈ (t̂, t̄); and (b) the maximal
backward 2-characteristic ζ (·) emanating from (x, t) must intersect either the t̂-time
line at x∗ ∈ [ζ+(t̂), x̂) or the graph of ζ+(·) at some time t∗ ∈ (t̂, t̄). One then repeats
the argument employed in the proof of Lemma 12.4.6 to verify that (12.4.44) is
indeed satisfied for m = k, with tk determined as above. The proof is complete.

To conclude the validation of Condition (a) of Definition 12.3.2, it remains to
check the part pertaining to the “northern” sector SN .

12.4.8 Lemma. For θ sufficiently small, as (x, t) tends to (x̄, t̄) through the region
SN , defined by (12.3.4), (z(x±, t),w(x±, t)) tend to a constant state (zN ,wN).

Proof. For definiteness, we treat the typical configuration depicted in Fig. 12.3.1,
where ψ− ≡ ψ+ , so that ψ−(·) is a 2-shock of generally positive strength at t = t̄,
while φ−(t) < φ+(t), for t > t̄, in which case, as we shall see in Lemma 12.4.10, it
is lim

t↓t̄
z(φ+(t)−, t) = lim

t↓t̄
z(φ+(t)+, t) and lim

t↓t̄
w(φ+(t)−, t) = lim

t↓t̄
w(φ−(t)+, t). Only

slight modifications in the argument are needed for the case of alternative feasible
configurations.

The aim is to find t0 > t1 > · · ·> t̄ such that

(12.4.45) oscSN∩{t<tm}z ≤ a(abθ)mδ , oscSN∩{t<tm}w ≤ 3(abθ)mδ ,

for m = 0,1,2, · · · , where a ≥ 1 is a constant, independent of m and θ , to be specified
below. Clearly, (12.4.45) is satisfied for m = 0, with t0 = ∞ . Arguing by induction,
we assume t0 > t1 > · · · > tk−1 > t̄ have already been fixed so that (12.4.45) holds
for m = 0, · · · ,k−1, and proceed to determine tk .

We select tk ∈ (t̄, tk−1) with tk − t̄ so small that the oscillation of z(φ+(τ)−,τ)
over the interval (t̄, tk) does not exceed a(abθ)k−1δ , the oscillation of w(φ+(τ)−,τ)
over (t̄, tk) is bounded by (abθ)kδ , and the oscillation of U(ψ−(τ)−,τ) over (t̄, tk)
is majorized by (abθ)2kδ 2.

The bound (12.4.45) on the oscillation of w, for m = k, will be established by the
procedure employed in the proof of Lemmas 12.4.6 and 12.4.7. We thus fix any (x, t)
in SN ∩{t < tk} and consider the maximal backward 2-characteristic ζ (·) emanating
from it, which intersects the graph of φ+(·) at some time t̃ ∈ (t̄, tk). By virtue of
Lemmas 12.4.2 and 12.4.3:

(12.4.46) w(x+, t)≤ w(ζ (t̃)+, t̃) = w(φ+(t̃)+, t̃)≤ w(φ+(t̃)−, t̃).

On account of (12.4.45), for m = k − 1, and the construction of tk , the oscillation
of z(ζ (τ)−,τ) over the interval [t̃, t] does not exceed 2a(abθ)k−1δ . Then (12.4.12)2
implies

(12.4.47) w(x−, t)≥ w(ζ (t̃)−, t̃)−2(abθ)kδ = w(φ+(t̃)−, t̃)−2(abθ)kδ .

The inequalities (12.4.46), (12.4.47), coupled with the condition that the oscilla-
tion of w(φ+(τ)−,τ) over (t̄, tk) is majorized by (abθ)kδ , readily yield the bound
(12.4.45) on the oscillation of w, for m = k.
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To derive the corresponding bound on the oscillation of z requires an entirely
different argument. Let us define Ū = lim

t↓t̄
U(ψ−(t)−, t), with induced values (z̄, w̄)

for the Riemann invariants, and then set Δz = z− z̄, Δw = w− w̄. On SN ∩{t < tk},
as shown above,

(12.4.48) |Δw| ≤ 3(abθ)kδ .

We construct the minimal backward 1-characteristic ξ (·), emanating from any
point (y, t) of approximate continuity in SN ∩{t < tk}, which is intercepted by the
graph of ψ−(·) at time t∗ ∈ (t̄, tk). Then z(y, t) ≤ z(ξ (t∗)−, t∗) = z(ψ−(t∗)−, t∗), by
Lemma 12.4.2, and this in conjunction with the selection of tk yields

(12.4.49) Δz(y, t)≤ c1(abθ)2kδ 2 ,

for some constant c1 independent of k and θ .
We now fix any point of approximate continuity (x, t) in SN ∩{t < tk}. We con-

sider, as above, the minimal backward 1-characteristic ξ (·) emanating from (x, t),
which is intercepted by the graph of ψ−(·) at time t∗ ∈ (t̄, tk), and integrate the con-
servation law (12.1.1) over the region {(y,τ) : t∗ < τ < t, ξ (τ) < y < ψ−(τ)}. By
Green’s theorem,

(12.4.50)
∫ ψ−(t)

x
[U(y, t)−Ū ]dy

+
∫ t

t∗
{F(U(ψ−(τ)−,τ))−F(Ū)− ψ̇−(τ)[U(ψ−(τ)−,τ)−Ū ]}dτ

−
∫ t

t∗
{F(U(ξ (τ)+,τ))−F(Ū)−λ (U(ξ (τ)+,τ))[U(ξ (τ)+,τ)−Ū ]}dτ = 0.

Applying repeatedly (7.3.12), we obtain, for U =U(z,w),

(12.4.51) U = Ū +ΔzR(Ū)+ΔwS(Ū)+O(Δz2 +Δw2),

(12.4.52) F(U)−F(Ū)−λ (U)[U −Ū ] = Δw[μ(Ū)−λ (Ū)]S(Ū)

−1
2
Δz2λz(Ū)R(Ū)−ΔzΔwλz(Ū)S(Ū)+O(Δw2 + |Δz|3).

We also note that the oscillation of w(ξ (τ)+,τ) over the interval (t∗, t] is bounded
by 3(abθ)kδ and so, on account of (12.4.12)1 and Lemma 12.4.3, we have

(12.4.53) 0 ≤ Δz(ξ (τ)+,τ)−Δz(x, t)≤ 3bθ(abθ)kδ ≤ 3(abθ)kδ ,

for any τ ∈ (t∗, t).
We substitute from (12.4.51) and (12.4.52) into (12.4.50) and then multiply the

resulting equation, from the left, by Dz(Ū). By using (12.1.2), (12.4.49), (12.4.48),
(12.1.3), (12.4.53), and the properties of tk , we end up with
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(12.4.54) Δz2(x, t)≤ c(abθ)2kδ 2,

where c is a constant independent of (x, t), k and θ . Consequently, upon selecting
a = max{1,2

√
c}, we arrive at the desired bound (12.4.45) on the oscillation of z,

for m = k. This completes the proof.

To establish Condition (b) of Definition 12.3.2, we demonstrate

12.4.9 Lemma. Let p�(·) and pr(·) be any backward 1-characteristics emanating
from (x̄, t̄), with p�(t)< pr(t), for t < t̄. If θ is sufficiently small, then

(12.4.55) lim
t↑t̄

z(p�(t)+, t)≤ lim
t↑t̄

z(pr(t)−, t),

(12.4.56) lim
t↑t̄

w(p�(t)+, t)≥ lim
t↑t̄

w(pr(t)−, t).

Proof. Consider any sequence {(xn, tn)} with tn ↑ t̄, as n→∞ , and xn in (p�(tn), pr(tn))
so close to pr(tn) that lim

n→∞
[w(xn+, tn)−w(pr(tn)−, tn)] = 0. Let ζn(·) denote the max-

imal backward 2-characteristic emanating from (xn, tn), which intersects the graph
of p�(·) at time t∗n . Then w(xn+, tn) ≤ w(ζn(t∗n )+, t∗n ) = w(p�(t∗n )+, t∗n ), by Lemma
12.4.2. Since t∗n ↑ t̄, as n → ∞ , this establishes (12.4.56).

To verify (12.4.55), we begin with another sequence {(xn, tn)}, with tn ↑ t̄, as
n → ∞ , and xn ∈ (p�(tn), pr(tn)) such that lim

n→∞
[z(xn−, tn)−z(p�(tn)+, tn)]= 0. We

construct the minimal backward 1-characteristics ξn(·) and ξ ∗n (·), emanating from
the points (xn, tn) and (pr(tn), tn), respectively. Because of minimality, we now have
ξn(t) ≤ ξ ∗n (t) ≤ pr(t), for t ≤ tn . As n → ∞ , {ξn(·)} and {ξ ∗n (·)} will converge,
uniformly, to shock-free minimal 1-separatrices (in the sense of Definition 10.3.3)
χ(·) and χ∗(·), emanating from (x̄, t̄), such that χ(t) ≤ χ∗(t) ≤ pr(t), for t ≤ t̄. In
particular, χ̇(t̄−)≥ χ̇∗(t̄−) and so

(12.4.57) lim
t↑t̄
λ (z(χ(t)±, t),w(χ(t)±, t))≥ lim

t↑t̄
λ (z(χ∗(t)±, t),w(χ∗(t)±, t)).

Applying (12.4.56) with χ(·) and χ∗(·) in the roles of p�(·) and pr(·) yields

(12.4.58) lim
t↑t̄

w(χ(t)+, t)≥ lim
t↑t̄

w(χ∗(t)−, t).

Since λz < 0 and λw < 0, (12.4.57) and (12.4.58) together imply

(12.4.59) lim
t↑t̄

z(χ(t)±, t)≤ lim
t↑t̄

z(χ∗(t)±, t).

By virtue of Lemma 12.4.2, z(ξn(t)−, t) and z(ξ ∗n (t)−, t) are nonincreasing functions
on [0, tn] and so

(12.4.60) lim
t↑t̄

z(χ(t)±, t)≥ lim
t↑t̄

z(p�(t)+, t),
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(12.4.61) lim
t↑t̄

z(χ∗(t)±, t)≥ lim
t↑t̄

z(pr(t)−, t).

Thus, to complete the proof of (12.4.55), one has to show

(12.4.62) lim
t↑t̄

z(χ∗(t)±, t) = lim
t↑t̄

z(pr(t)−, t).

Since (12.4.62) is trivially true when χ∗ ≡ pr , we take up the case χ∗(t)< pr(t),
for t < t̄. We set S = {(x, t) : 0≤ t < t̄ , χ∗(t)< x< pr(t)}. We shall verify (12.4.62)
by constructing t0 < t1 < · · ·< t̄ such that

(12.4.63) oscS∩{t>tm}z ≤ (3bθ)mδ , oscS∩{t>tm}w ≤ (3bθ)mδ ,

for m = 0,1,2, · · · .
For m = 0, (12.4.63) is satisfied with t0 = 0. Arguing by induction, we as-

sume t0 < t1 < · · · < tk−1 < t̄ have already been fixed so that (12.4.63) holds for
m = 0, · · · ,k−1, and proceed to determine tk . We fix t̂ ∈ (tk−1, t̄) with t̄ − t̂ so small
that the oscillation of z(χ∗(τ)±,τ) and w(χ∗(τ)−,τ) over the interval [t̂, t̄) does not
exceed 1

3 (3bθ)kδ . Next we locate x̂ ∈ (χ∗(t̂), pr(t̂)) with x̂− χ∗(t̂) so small that the
oscillation of z(y+, t̂) over the interval [χ∗(t̂), x̂) is similarly bounded by 1

3 (3bθ)kδ .
By the construction of χ∗(·), if we fix tk ∈ (t̂, t̄) with t̄ − tk sufficiently small,

then the minimal backward 1-characteristic ξ (·), emanating from any point (x, t) in
S ∩{t > tk}, will intersect either the graph of χ∗(·) at some time t∗ ∈ (t̂, t̄) or the
t̂-time line at some x∗ ∈ (χ∗(t̂), x̂); while the maximal backward 2-characteristic ζ (·),
emanating from (x, t), will intersect the graph of χ∗(·) at some time t̃ ∈ (t̂, t̄).

Assume, for definiteness, that ξ (·) intersects the t̂-time line. By virtue of Lemmas
12.4.2 and 12.4.3,

(12.4.64) z(x−, t)≤ z(ξ (t̂)−, t̂) = z(x∗−, t̂)≤ z(x∗+, t̂).

On account of (12.4.63), for m = k−1, the oscillation of w(ξ (τ)+,τ) over the inter-
val [t̂, t] does not exceed (3bθ)k−1δ . It then follows from (12.4.12)1

(12.4.65) z(x+, t)≥ z(ξ (t̂)+, t̂)−bθ(3bθ)k−1δ = z(x∗+, t̂)− 1
3
(3bθ)kδ .

Recalling that the oscillation of z(y+, t̂) over [χ∗(t̂), x̂) and the oscillation of
z(χ∗(τ)+,τ) over [t̂, t̄) are bounded by 1

3 (3bθ)kδ , (12.4.64) and (12.4.65) together
imply the bound (12.4.63) on the oscillation of z, for m = k.

The argument for w is similar: On the one hand, Lemmas 12.4.2 and 12.4.3 give

(12.4.66) w(x+, t)≤ w(ζ (t̃)+, t̃) = w(χ∗(t̃)+, t̃)≤ w(χ∗(t̃)−, t̃).

On the other hand, considering that the oscillation of z(ζ (τ)−,τ) over the in-
terval [t̃, t] is bounded by (3bθ)k−1δ + 1

3 (3bθ)kδ , which in turn is smaller than
2(3bθ)k−1δ , (12.4.12)2 yields

(12.4.67) w(x−, t)≥ w(ζ (t̃)−, t̃)−2bθ(3bθ)k−1δ = w(χ∗(t̃)−, t̃)− 2
3
(3bθ)kδ .
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Since the oscillation of w(χ∗(τ)−,τ) over [t̂, t̄) does not exceed 1
3 (3bθ)kδ , the in-

equalities (12.4.66) and (12.4.67) together imply the bound (12.4.63) on the oscilla-
tion of w, for m = k. The proof of the proposition is now complete.

In particular, one may apply Lemma 12.4.9 with ξ (·) and/or ξ ∗(·) in the role
of p�(·) or pr(·), so that, by virtue of Lemma 12.4.3, the inequalities (12.3.6)1 and
(12.3.7)1 follow from (12.4.55) and (12.4.56). We have thus verified condition (b)1
of Definition 12.3.2. Condition (b)2 may be validated by a completely symmetrical
argument.

It remains to check Condition (c) of Definition 12.3.2. It will suffice to verify
(c)1 , because then (c)2 will readily follow by a similar argument. In the shock case,
φ− ≡ φ+ , the required inequalities zW ≤ zN and wW ≥ wN are immediate corollaries
of Lemma 12.4.3. Thus, one need consider only the rarefaction wave case.

12.4.10 Lemma. Let φ−(t) < φ+(t), for t > t̄. For θ sufficiently small, as (x, t)
tends to (x̄, t̄) in the region W = {(x, t) : t > t̄, φ−(t) < x < φ+(t)} , w(x±, t) tend
to wW . Furthermore, (12.3.8)1 holds for any 1-characteristics p�(·) and pr(·), with
φ−(t)≤ p�(t)≤ pr(t)≤ φ+(t), for t > t̄.

Proof. Consider points (x, t) that tend to (x̄, t̄) through W . The maximal backward
2-characteristic ζ (·) emanating from (x, t) is intercepted by the t̄-time line at ζ (t̄),
which tends from below to x̄. It then readily follows on account of Lemma 12.4.2 that
limsupw(x±, t)≤ wW . To verify the assertion of the proposition, one needs to show
that liminfw(x±, t) = wW . The plan is to argue by contradiction, and so we make
the hypothesis liminfw(x±, t) = wW −β , with β > 0.

We fix t̂ > t̄ with t̂ − t̄ so small that

(12.4.68) wW −2β < w(x±, t)≤ wW +β , t̄ < t < t̂ , φ−(t)< x < φ+(t)

and, in addition, the oscillation of the functions z(φ−(t)±, t) and w(φ−(t)±, t) over
the interval (t̄, t̂) does not exceed 1

2β .
We consider the maximal backward 2-characteristic ζ (·) emanating from any

point (x̃, t̃), with t̄ < t̃ < t̂, φ−(t̃)< x < φ+(t̃), and intersecting the graph of φ−(·) at
time t∗ ∈ (t̄, t̂). We demonstrate that when θ is sufficiently small, independent of β ,
then

(12.4.69) w(ζ (t)−, t)−w(x̃−, t̃)≤ β
4
, t∗ < t < t̃.

Indeed, if (12.4.69) were false, one may find t1 , t2 , with t∗ < t1 < t2 ≤ t̃ and t2 − t1
arbitrarily small, such that

(12.4.70) |z(ζ (t1)±, t1)− z(ζ (t2)±, t2)|> β
4bθ

.

In particular, if ξ1(·) and ξ2(·) denote the minimal backward 1-characteristics that
emanate from the points (ζ (t1), t1) and (ζ (t2), t2) and thus necessarily pass through
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the point (x̄, t̄), t1 and t2 may be fixed so close that

(12.4.71)

0 ≤
∫ t1

0
λ (z(ξ2(t)−, t),w(ξ2(t)−, t))dt −

∫ t1

0
λ (z(ξ1(t)−, t),w(ξ1(t)−, t))dt ≤ β t0 .

By virtue of (12.4.68), |w(ξ2(t)−, t)−w(ξ1(t)−, t)|< 3β , for all t in (t̄, t1). Also, on
account of Lemma 12.4.2, (12.4.12)1 and (12.4.68), we have

(12.4.72)

⎧⎨⎩ z(ζ (t1)−, t1)≤ z(ξ1(t)−, t) = z(ξ1(t)+, t)≤ z(ζ (t1)+, t1)+3βbθ ,

z(ζ (t2)−, t2)≤ z(ξ2(t)−, t) = z(ξ2(t)+, t)≤ z(ζ (t2)+, t2)+3βbθ ,

for almost all t in (t̄, t1). It is now clear that, for θ sufficiently small, (12.4.72) ren-
ders the inequalities (12.4.70) and (12.4.71) incompatible. This provides the desired
contradiction that verifies (12.4.69).

By Lemma 12.4.6, and the construction of t̂,

(12.4.73) lim
t↓t̄

z(φ−(t)−, t) = zW , lim
t↓t̄

w(φ−(t)−, t) = wW ,

(12.4.74) |z(φ−(t∗)−, t∗)− zW | ≤ β
2
, |w(φ−(t∗)−, t∗)−wW | ≤ β

2
.

The next step is to establish an estimate

(12.4.75) |z(φ−(t∗)−, t∗)− lim
t↓t∗

z(ζ (t)−, t)| ≤ aβ ,

for some constant a independent of θ and β . Let

(12.4.76) lim
t↓t̄

z(φ−(t)+, t) = zW + γ,

with γ ≥ 0. We fix t3 ∈ (t∗, t̂) and x3 ∈ (φ−(t3),φ+(t3)), with x3 − φ−(t3) so small
that

(12.4.77) |z(x3±, t3)− zW − γ| ≤ β .

By also choosing t3 − t∗ small, the minimal backward 1-characteristic ξ (·), emanat-
ing from the point (x3, t3), will intersect the graph of ζ (·) at time t4 , arbitrarily close
to t∗. By Lemma 12.4.2, z(ζ (t4)−, t4)≥ z(x3−, t3). On the other hand, by (12.4.68),
Lemma 12.4.4 implies z(ζ (t4)+, t4)≤ z(x3+, t3)+3bθβ . Hence, for θ so small that
6bθ ≤ 1, we have |zW +γ− lim

t↓t∗
z(ζ (t)−, t)| ≤ 3

2β . In conjunction with (12.4.74), this
yields

(12.4.78) |z(φ−(t∗)−, t∗)− lim
t↓t∗

z(ζ (t)−, t)| ≤ 2β + γ.

Thus, to verify (12.4.75), one has to show γ ≤ cβ .
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The characteristic ξ (·) lies to the right of φ−(·) and passes through the point (x̄, t̄),
so φ̇−(t̄+) ≤ ξ̇ (t̄+). On account of (12.4.73), (12.4.76), (8.2.1), (8.2.2), (7.3.12),
(8.2.3), and (12.1.2), we conclude

(12.4.79) φ̇−(t̄+) = λ (zW ,wW )+ 1
2λz(zW ,wW )γ+O(γ2).

To estimate ξ̇ (t̄+) = lim
t↓t̄
λ (z(ξ (t)−, t),w(ξ (t)−, t)), we recall that λz < 0, λw < 0,

z(ξ (t)−, t)≥ z(x3−, t3)≥ zW + γ−β , w(ξ (t)−, t)≥ wW −2β , and so

(12.4.80)

ξ̇ (t̄+)≤ λ (zW + γ−β ,wW −2β ) = λ (zW ,wW )+λz(zW ,wW )γ+O(β + γ2).

Therefore, γ = O(β ) and (12.4.75) follows from (12.4.78).
By virtue of Lemma 12.4.4, (12.4.75) yields

(12.4.81) w(φ−(t∗)−, t∗)− lim
t↓t∗

w(ζ (t)−, t)≤ abθβ .

Hence, if θ ≤ (8ab)−1, then (12.4.69), (12.4.81) and (12.4.74) together imply that
wW −w(x̃−, t̃) ≤ 7

8β , for all (x̃, t̃) in W ∩{t < t̂}. This provides the desired contra-
diction to the hypothesis liminfw(x±, t) = wW −β , with β > 0, thus verifying the
assertion that w(x±, t) tend to wW , as (x, t) tends to (x̄, t̄) through W .

We now focus attention on φ+(·). We already have lim
t↓t̄

w(φ+(t)−, t) = wW ,

lim
t↓t̄

z(φ+(t)+, t) = zN , lim
t↓t̄

w(φ+(t)+, t) = wN . We set z0 = lim
t↓t̄

z(φ+(t)−, t). Then

λ (z0,wW ) ≥ φ̇+(t̄+) ≥ λ (zN ,wN). The aim is to show that φ̇+(t̄+) = λ (z0,wW ) so
as to infer zN = z0 , wN = wW . We consider the minimal backward 1-characteristic
ξ (·) emanating from the point (φ+(t5), t5), where t5 − t̄ is very small. The assertion
zN = z0 , wN =wW is obviously true when ξ ≡ φ+ , so let us assume that ξ (t)< φ+(t)
for t ∈ (t̄, t5). Then |w(ξ (t)+, t)−wW | is very small on (t̄, t5). Moreover, by Lemma
12.4.4, the oscillation of z(ξ (t)+, t) over the interval (t̄, t5) is very small, so this
function takes values near z0 . Hence, t5 − t̄ sufficiently small renders ξ̇ (t̄+) arbitrar-
ily close to λ (z0,wW ). Since ξ̇ (t̄+)≤ φ̇+(t̄+), we conclude that φ̇+(t̄+)≥ λ (z0,wW )
and thus necessarily φ̇+(t̄+) = λ (z0,wW ).

Consider now any forward 1-characteristic χ(·) issuing from (x̄, t̄), such that
φ−(t) ≤ χ(t) ≤ φ+(t), for t > t̄. Since lim

t↓t̄
w(χ(t)−, t) and lim

t↓t̄
w(χ(t)+, t) take the

same value, namely wW , lim
t↓t̄

z(χ(t)−, t) and lim
t↓t̄

z(χ(t)+, t) must also take the same

value, say zχ . In particular, χ̇(t̄+) = λ (zχ ,wW ). Therefore, if p�(·) and pr(·) are
any 1-characteristics with φ−(t)≤ p�(t)≤ pr(t)≤ φ+(t), for t > t̄, then the inequal-
ities φ̇−(t̄+)≤ ṗ�(t̄+)≤ ṗr(t̄+)≤ φ̇+(t̄+), ordering the speeds of propagation at t̄,
together with λz < 0, imply (12.3.8)1 . The proof is complete.

We have now completed the proof of Theorem 12.3.3, on local regularity, as
well as of Theorem 12.4.1, on the laws of propagation of Riemann invariants along
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extremal backward characteristics. These will serve as the principal tools for deriving
a priori estimates leading to a description of the long-time behavior of solutions.

Henceforth, our solutions will be normalized on (−∞,∞)× (0,∞) by defining
(z(x, t),w(x, t)) = (zS,wS), namely the “southern” limit at (x, t). The trace of the solu-
tion on any space-like curve is then defined as the restriction of the normalized (z,w)
to this curve. In particular, this renders the trace of (z,w) along the minimal back-
ward 1-characteristic and the maximal backward 2-characteristic, emanating from
any point (x̄, t̄), continuous from the left on (0, t̄].

12.5 Bounds on Solutions

We consider a solution, normalized as above, bounded by

(12.5.1) |z(x, t)|+ |w(x, t)|< 2δ , −∞ < x < ∞ , 0 < t < ∞ ,

where δ is a small positive constant. It is convenient to regard the initial data as
multi-valued functions, allowing (z(x,0),w(x,0)) to take as values any state in the
range of the solution of the Riemann problem with end-states (z(x±,0),w(x±,0)).
The supremum and total variation are measured for the selection that maximizes
these quantities. We then assume

(12.5.2) sup(−∞,∞) |z(·,0)|+ sup(−∞,∞)|w(·,0)| ≤ δ ,

(12.5.3) TV(−∞,∞)z(·,0)+TV(−∞,∞)w(·,0)< aδ−1 ,

where a is a small constant, to be fixed later, independently of δ . Thus, there is a
tradeoff, allowing for arbitrarily large total variation at the expense of keeping the
oscillation sufficiently small. The aim is to establish bounds on the solution. In what
follows, c will stand for a generic constant that depends solely on F . The principal
result is

12.5.1 Theorem. Consider any space-like curve t = t∗(x), x� ≤ x ≤ xr , in the upper
half-plane, along which the trace of (z,w) is denoted by (z∗,w∗). Then

(12.5.4)1
TV[x�,xr ]z

∗(·)≤ TV[ξ�(0),ξr(0)]z(·,0)+ cδ 2{TV[ζ�(0),ξr(0)]z(·,0)+TV[ζ�(0),ξr(0)]w(·,0)},
(12.5.4)2
TV[x�,xr ]w

∗(·)≤TV[ζ�(0),ζr(0)]w(·,0)+cδ 2{TV[ζ�(0),ξr(0)]z(·,0)+TV[ζ�(0),ξr(0)]w(·,0)},
where ξ�(·), ξr(·) are the minimal backward 1-characteristics and ζ�(·), ζr(·) are
the maximal backward 2-characteristics emanating from the endpoints (x�, t�) and
(xr, tr) of the graph of t∗(·).

Since generalized characteristics are space-like curves, one may combine the
above proposition with Theorem 12.4.1 and the assumptions (12.5.1), (12.5.3) to
deduce the following corollary:
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12.5.2 Theorem. For any point (x, t) of the upper half-plane:

(12.5.5)1 sup(−∞,∞) z(·,0)≥ z(x, t)≥ inf(−∞,∞) z(·,0)− caδ ,

(12.5.5)2 sup(−∞,∞) w(·,0)≥ w(x, t)≥ inf(−∞,∞) w(·,0)− caδ .

Thus, on account of our assumption (12.5.2) and by selecting a sufficiently small,
we ensure a posteriori that the solution will satisfy (12.5.1).

The task of proving Theorem 12.5.1 is quite laborious and will require exten-
sive preparation. In the course of the proof we shall verify that certain quantities
measuring the total amount of wave interaction are also bounded.

Consider a 1-shock joining the state (z−,w−), on the left, with the state (z+,w+),
on the right. The jumps Δz = z+ − z− and Δw = w+ −w− are related through an
equation

(12.5.6)1 Δw = f (Δz;z−,w−)

resulting from the reparametrization of the 1-shock curve emanating from the state
(z−,w−). In particular, f and its first two derivatives with respect to Δz vanish at
Δz = 0 and hence f as well as ∂ f/∂ z− and ∂ f/∂w− are O(Δz3) as Δz → 0.

Similarly, the jumps Δw = w+−w− and Δz = z+− z− of the Riemann invariants
across a 2-shock joining the state (z−,w−), on the left, with the state (z+,w+), on
the right, are related through an equation

(12.5.6)2 Δz = g(Δw;z+,w+)

resulting from the reparametrization of the backward 2-shock curve (see Section
9.3) that emanates from the state (z+,w+). Furthermore, g together with ∂g/∂ z+
and ∂g/∂w+ are O(Δw3) as Δw → 0.

For convenience, points of the upper half-plane will be labeled by single cap-
ital letters I, J, etc. With any point I = (x̄, t̄) we associate the special charac-
teristics φ I±,ψ I±,ξ I±,ζ I± emanating from it, as discussed in Section 12.3 and de-
picted in Fig. 12.3.1, and identify the limits (zI

W ,wI
W ),(zI

E ,w
I
E),(z

I
N ,w

I
N),(z

I
S,w

I
S) as

I is approached through the sectors S I
W ,S I

E ,S
I

N ,S I
S . From I emanate minimal

1-separatrices pI± and maximal 2-separatrices qI± constructed as follows: pI− (or qI
+)

is simply the minimal (or maximal) backward 1-characteristic ξ I− (or 2-characteristic
ζ I
+) emanating from I; while pI

+ (or qI−) is the limit of a sequence of minimal (or
maximal) backward 1-characteristics ξn (or 2-characteristics ζn) emanating from
points (xn, tn) in S I

E (or S I
W ), where (xn, tn) → (x̄, t̄), as n → ∞ . We introduce the

notation

(12.5.7)1 FI = {(x, t) : 0 ≤ t < t̄, pI
−(t)≤ x ≤ pI

+(t)},

(12.5.7)2 GI = {(x, t) : 0 ≤ t < t̄, qI
−(t)≤ x ≤ qI

+(t)}.
By virtue of Theorems 12.3.3 and 12.4.1,
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(12.5.8)1 lim
t↑t̄

z(pI
−(t), t) = zI

S , lim
t↑t̄

z(pI
+(t), t) = zI

E ,

(12.5.8)2 lim
t↑t̄

w(qI
−(t), t) = wI

W , lim
t↑t̄

w(qI
+(t), t) = wI

S .

The cumulative strength of 1-waves and 2-waves, incoming at I, is respectively
measured by

(12.5.9) ΔzI = zI
E − zI

S , ΔwI = wI
S −wI

W .

If the incoming 1-waves alone were allowed to interact, they would produce an out-
going 1-shock with w-amplitude

(12.5.10)1 ΔwI
∗ = f (ΔzI ;zI

S,w
I
S),

together with an outgoing 2-rarefaction wave. Consequently, |ΔwI∗| exceeds the cu-
mulative w-strength |wI

E − wI
S| of incoming 1-waves. Similarly, the interaction of

incoming 2-waves alone would produce an outgoing 2-shock with z-amplitude

(12.5.10)2 ΔzI
∗ = g(ΔwI ;zI

S,w
I
S),

exceeding their cumulative z-strength zI
S − zI

W . Note that if zI
S = zI

W , wI
S = wI

W then
ΔwI∗ = wI

N −wI
W , while if zI

S = zI
E , wI

S = wI
E then ΔzI∗ = zI

E − zI
N .

We visualize the upper half-plane as a partially ordered set under the relation
induced by the rule I < J whenever J is confined between the graphs of the minimal
1-separatrices pI− and pI

+ emanating from I. In particular, when J lies strictly to the
right of the graph of pI− then I lies on the graph of the 1-characteristic φ J− emanating
from J. Thus I < J implies that I always lies on the graph of a forward 1-characteristic
issuing from J, that is either φ J− or pI− . This special characteristic will be denoted by
χJ− .

We consider 1-characteristic trees M consisting of a finite set of points of the
upper half-plane, called nodes, with the following properties: M contains a unique
minimal node I0 , namely the root of the tree. Furthermore, if J and K are any two
nodes, then the point I of confluence of the forward 1-characteristics χJ− and χK− ,
which pass through the root I0 , is also a node of M . In general, M will contain
several maximal nodes (Fig. 12.5.1).

Every node J �= I0 is consecutive to some node I, namely, its strict greatest lower
bound relative to M . The set of nodes that are consecutive to a node I is denoted
by CI . When J is consecutive to I, the pair (I,J) is called a link. A finite sequence
{I0, I1, · · · , Im} of nodes such that I j+1 is consecutive to I j , for j = 0, · · · ,m−1, which
connects the root I0 with some maximal node Im , constitutes a chain of M .

If (I,J) is a link of M , so that I = (χJ−(t̄), t̄), we set

(12.5.11)1 zIJ
± = lim

t↑t̄
z(χJ

−(t)±, t), wIJ
± = lim

t↑t̄
w(χJ

−(t)±, t),
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Fig. 12.5.1

(12.5.12)1 ΔzIJ = zIJ
+ − zIJ

− , ΔwIJ = wIJ
+ −wIJ

− .

In particular,

(12.5.13)1 ΔwIJ = f (ΔzIJ ;zIJ
− ,w

IJ
− ).

With (I,J) we associate minimal 1-separatrices pIJ± , emanating from I, constructed
as follows: pIJ− is the t ↑ t̄ limit of the family ξt of minimal backward 1-characteristics
emanating from the point (χJ−(t), t); while pIJ

+ is the limit of a sequence of minimal
backward 1-characteristics ξn emanating from points (xn, tn) such that, as n → ∞ , we
have tn ↑ t̄, xn − χJ−(tn) ↓ 0 and z(xn−, tn) → zIJ

+ , w(xn−, tn) → wIJ
+ . Notice that the

graphs of pIJ± are confined between the graph of pI− and the graph of pI
+ ; see Fig.

12.5.1. In turn, the graphs of pJ± , as well as the graphs of pK± , for any K > J, are
confined between the graph of pIJ− and the graph of pIJ

+ . Furthermore,

(12.5.14)1 lim
t↑t̄

z(pIJ
− (t), t) = zIJ

− , lim
t↑t̄

z(pIJ
+(t), t) = zIJ

+ .

Indeed, the first of the above two equations has already been established in the con-
text of the proof of Lemma 12.4.9 (under different notation; see (12.4.62)); while the
second may be verified by a similar argument.

We now set

(12.5.15)1 P1(M ) =− ∑
I∈M

[ΔwI
∗ − ∑

J∈CI

ΔwIJ ] ,

(12.5.16)1 Q1(M ) = ∑
I∈M

∑
J∈CI

|ΔwIJ −ΔwJ
∗| .
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By virtue of (12.3.7)1 ,

(12.5.17)1 ∑
J∈CI

ΔwIJ ≥ wI
E −wI

S ≥ ΔwI
∗ ,

so that both P1 and Q1 are nonnegative.
With subsets F of the upper half-plane, we associate functionals

(12.5.18)1 P1(F ) = supJ ∑
M∈J

P1(M ),

(12.5.19)1 Q1(F ) = supJ ∑
M∈J

Q1(M ),

where J denotes any (finite) collection of 1-characteristic trees M contained in F ,
which are disjoint, in the sense that the roots of any pair of them are non-comparable.
One may view P1(F ) as a measure of the amount of 1-wave interactions inside F ,
and Q1(F ) as a measure of the strengthening of 1-shocks induced by interaction
with 2-waves.

We introduce corresponding notions for the 2-characteristic family: I < J when-
ever J is confined between the graphs of the maximal 2-separatrices qI− and qI

+

emanating from I. In that case, I lies on the graph of a forward 2-characteristic χJ
+ is-

suing from J, namely either ψJ
+ or qI

+ . One may then construct 2-characteristic trees
N , with nodes, root, links and chains defined as above. In the place of (12.5.11)1 ,
(12.5.12)1 and (12.5.13)1 , we now have

(12.5.11)2 zIJ
± = lim

t↑t̄
z(χJ

+(t)±, t), wIJ
± = lim

t↑t̄
w(χJ

+(t)±, t),

(12.5.12)2 ΔzIJ = zIJ
+ − zIJ

− , ΔwIJ = wIJ
+ −wIJ

− ,

(12.5.13)2 ΔzIJ = g(ΔwIJ ;zIJ
+ ,w

IJ
+).

With links (I,J) we associate maximal 2-separatrices qIJ± , emanating from I, in anal-
ogy to pIJ± . The graphs of qIJ± are confined between the graphs of qI− and qI

+ . On the
other hand, the graphs of qJ± are confined between the graphs of qIJ− and qIJ

+ . In the
place of (12.5.14)1 ,

(12.5.14)2 lim
t↑t̄

w(qIJ
− (t), t) = wIJ

− , lim
t↑t̄

w(qIJ
+(t), t) = wIJ

+ .

Analogs of (12.5.15)1 and (12.5.16)1 are also defined:

(12.5.15)2 P2(N ) = ∑
I∈N

[ΔzI
∗ − ∑

J∈CI

ΔzIJ ] ,
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(12.5.16)2 Q2(N ) = ∑
I∈N

∑
J∈CI

|ΔzIJ −ΔzJ
∗| ,

which are nonnegative since

(12.5.17)2 ∑
J∈CI

ΔzIJ ≤ zI
S − zI

W ≤ ΔzI
∗ .

This induces functionals analogous to P1 and Q1:

(12.5.18)2 P2(F ) = supJ ∑
N ∈J

P2(N ),

(12.5.19)2 Q2(F ) = supJ ∑
N ∈J

Q2(N ).

12.5.3 Lemma. Let F1, · · · ,Fm be a collection of subsets of a set F contained in
the upper half-plane. Suppose that for any I ∈ Fi and J ∈ F j that are comparable,
say I < J, the arc of the characteristic χJ− (or χJ

+) which connects J to I is contained
in F . Then

(12.5.20)1

m

∑
i=1

{P1(Fi)+Q1(Fi)} ≤ k{P1(F )+Q1(F )},

or

(12.5.20)2

m

∑
i=1

{P2(Fi)+Q2(Fi)} ≤ k{P2(F )+Q2(F )},

where k is the smallest positive integer with the property that any k+1 of F1, · · · ,Fm
have empty intersection.

Proof. It will suffice to verify (12.5.20)1 . With each i = 1, · · · ,m, we associate a
family Ji of disjoint 1-characteristic trees M contained in Fi . Clearly, by adjoining
if necessary additional nodes contained in F , one may extend the collection of the
Ji into a single family J of disjoint trees contained in F . The contribution of the
additional nodes may only increase the value of P1 and Q1 . Therefore,

(12.5.21)
m

∑
i=1

∑
M∈Ji

{P1(M )+Q1(M )} ≤ k ∑
M∈J

{P1(M )+Q1(M )},

where the factor k appears on the right-hand side because the same node or link may
be counted up to k times on the left-hand side. Recalling (12.5.18)1 and (12.5.19)1 ,
we arrive at (12.5.20)1 . The proof is complete.

12.5.4 Lemma. Consider a space-like curve t = t̄(x), x̂ ≤ x ≤ x̃, in the upper half-
plane. The trace of (z,w) along t̄ is denoted by (z̄, w̄). Let p̂(·) and p̃(·) (or q̂(·)
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and q̃(·)) be minimal (or maximal) 1-separatrices (or 2-separatrices) emanating
from the left endpoint (x̂, t̂) and the right endpoint (x̃, t̃) of the graph of t̄. The trace
of z (or w) along p̂ and p̃ (or q̂ and q̃) is denoted by ẑ and z̃ (or ŵ and w̃). Let F (or
G ) stand for the region bordered by the graphs of p̂, p̃ (or q̂, q̃), t̄ and the x-axis. Then

(12.5.22)1

|z̃(t̃−)− ẑ(t̂−)| ≤ |z̃(0+)− ẑ(0+)|+ cδ 2TV[x̂,x̃]w̄(·)+P2(F )+Q2(F ),

or

(12.5.22)2

|w̃(t̃−)− ŵ(t̂−)| ≤ |w̃(0+)− ŵ(0+)|+ cδ 2TV[x̂,x̃]z̄(·)+P1(G )+Q1(G ).

Proof. It will suffice to verify (12.5.22)1 . We write

(12.5.23) z̃(t̃−)− ẑ(t̂−) = [z̃(0+)− ẑ(0+)]+ [z̃(t̃−)− z̃(0+)]− [ẑ(t̂−)− ẑ(0+)].

By virtue of Theorem 12.4.1,

(12.5.24)

⎧⎨⎩ ẑ(t̂−)− ẑ(0+) = ∑[ẑ(τ+)− ẑ(τ−)],

z̃(t̃−)− z̃(0+) = ∑[z̃(τ+)− z̃(τ−)],

where the summations run over the countable set of jump discontinuities of ẑ(·) and
z̃(·).

On account of Theorem 12.3.3, if z̄(·) is the trace of z along any minimal 1-
separatrix which passes through some point K = (x,τ), then

(12.5.25) zK
S − zK

W ≤ z̄(τ−)− z̄(τ+)≤ ΔzK
∗ .

Starting out from points K of jump discontinuity of ẑ(·) on the graph of p̂, we
construct the characteristic ψK− until it intersects the graph of either p̃ or t̄. This
generates families of disjoint 2-characteristic trees N , with maximal nodes, say
K1 = (x1,τ1), · · · ,Km = (xm,τm), lying on the graph of p̂, and root K0 = (x0,τ0) lying
on the graph of either p̃ or t̄. In the former case, on account of (12.5.25), (12.5.15)2
and (12.5.16)2 ,

(12.5.26) |z̃(τ0+)− z̃(τ0−)−
m

∑
�=1

[ẑ(τ�+)− ẑ(τ�−)]| ≤ P2(N )+Q2(N ).

On the other hand, if K0 lies on the graph of t̄,

(12.5.27) ∑
J∈CK0

ΔzK0J ≤ zK0
S − zK0

W ≤ cδ 2|wK0
S −wK0

W |,

and so
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(12.5.28) |−
m

∑
�=1

[ẑ(τ�+)− ẑ(τ�−)]| ≤ cδ 2|wK0
S −wK0

W |+P2(N )+Q2(N ).

Suppose that on the graph of p̃ there still remain points K0 of jump discontinuity
of z̃(·) which cannot be realized as roots of trees with maximal nodes on the graph
of p̂. We then adjoin (trivial) 2-characteristic trees N that contain a single node,
namely such a K0 = (x0,τ0), in which case

(12.5.29) |z̃(τ0+)− z̃(τ0−)| ≤ P2(N )+Q2(N ).

Recalling (12.5.23) and tallying the jump discontinuities of z̄1(·) and z̄2(·), as
indicated in (12.5.24), according to (12.5.26), (12.5.28) or (12.5.29), we arrive at
(12.5.22)1 . The proof is complete.

12.5.5 Lemma. Under the assumptions of Theorem 12.5.1,

(12.5.30)1

TV[x�,xr ]z
∗(·)≤ TV[ξ�(0),ξr(0)]z(·,0)+ cδ 2TV[x�,xr ]w

∗(·)+2{P2(F )+Q2(F )},

(12.5.30)2

TV[x�,xr ]w
∗(·)≤ TV[ζ�(0),ζr(0)]w(·,0)+ cδ 2TV[x�,xr ]z

∗(·)+2{P1(G )+Q1(G )},

where F denotes the region bordered by the graphs of ξ� , ξr , t∗, and the x-axis,
while G stands for the region bordered by the graphs of ζ� , ζr , t∗, and the x-axis.

Proof. It will suffice to establish (12.5.30)1 . We have to estimate

(12.5.31) TV[x�,xr ]z
∗(·) = sup

m

∑
i=1

|zLi
S − zLi−1

S |,

where the supremum is taken over all finite sequences {L0, · · · ,Lm} of points along
t∗ (Fig. 12.5.2).

We construct the minimal backward 1-characteristics ξi emanating from the point
Li = (xi, ti), i = 0, · · · ,m, and let zi(·) denote the trace of z along ξi(·). We apply
Lemma 12.5.4 with t̄ the arc of t∗ with endpoints Li−1 and Li ; x̂ = xi−1 ; x̃ = xi ;
p̂ = ξi−1 ; p̃ = ξi ; and F = Fi , namely the region bordered by the graphs of
ξi−1 , ξi , t∗, and the x-axis. The estimate (12.5.22)1 then yields

(12.5.32)

|zLi
S − zLi−1

S | ≤ |zi(0+)− zi−1(0+)|+ cδ 2TV[xi−1,xi]w
∗(·)+P2(Fi)+Q2(Fi).

Combining (12.5.31), (12.5.32) and Lemma 12.5.3, we arrive at (12.5.30)1. The
proof is complete.
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12.5.6 Lemma. Let M (or N ) be a 1-characteristic (or 2-characteristic) tree rooted
at I0 . Then

(12.5.33)1

P1(M )+Q1(M )≤ cδ 2(1+VM ){TV
[p

I0− (0),p
I0
+ (0)]

z(·,0)+P2(FI0)+Q2(FI0)},

or

(12.5.33)2

P2(N )+Q2(N )≤ cδ 2(1+WN ){TV
[q

I0− (0),q
I0
+ (0)]

w(·,0)+P1(GI0)+Q1(GI0)},

where VM (or WN ) denotes the maximum of

(12.5.34)1

m−1

∑
i=0

{|zIiIi+1− − zIi+1
S |+ |wIiIi+1− −wIi+1

S |}

or

(12.5.34)2

m−1

∑
i=0

{|zIiIi+1
+ − zIi+1

S |+ |wIiIi+1
+ −wIi+1

S |}

over all chains {I0, · · · , Im} of M (or N ).

Proof. It will suffice to validate (12.5.33)1 , the other case being completely analo-
gous. By virtue of (12.5.15)1 and (12.5.16)1 ,

(12.5.35) P1(M )≤− ∑
I∈M

[ΔwI
∗ − ∑

J∈CI

ΔwJ
∗]+Q1(M )

= ∑
maximal

nodes

ΔwK
∗ −ΔwI0∗ +Q1(M ).
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Since ΔwK∗ ≤ 0, to establish (12.5.33)1 it is sufficient to show

(12.5.36) −ΔwI0∗ ≤ cδ 2{TV
[p

I0− (0),p
I0
+ (0)]

z(·,0)+P2(FI0)+Q2(FI0)},

(12.5.37) Q1(M )≤ cδ 2(1+VM ){TV
[p

I0− (0),p
I0
+ (0)]

z(·,0)+P2(FI0)+Q2(FI0)}.

To demonstrate (12.5.36), we first employ (12.5.10)1 to get

(12.5.38) −ΔwI0∗ =− f (ΔzI0 ;zI0
S ,w

I0
S )≤ cδ 2ΔzI0 ,

and then, to estimate ΔzI0 , we apply Lemma 12.5.4, with (x̂, t̂) = (x̃, t̃) = I0 , p̂ = pI0−
and p̃ = pI0

+ .
We now turn to the proof of (12.5.37), recalling the definition (12.5.16)1 of

Q1(M ). For any nodes I ∈ M and J ∈ CI , we use (12.5.10)1 and (12.5.13)1 to
get

(12.5.39) ΔwIJ −ΔwJ
∗ = f (ΔzIJ ;zIJ

− ,w
IJ
− )− f (ΔzIJ ;zJ

S,w
J
S)

+ f (ΔzIJ ;zJ
S,w

J
S)− f (ΔzJ ;zJ

S,w
J
S).

On account of the properties of the function f ,

(12.5.40) | f (ΔzIJ ;zIJ
− ,w

IJ
− )− f (ΔzIJ ;zJ

S,w
J
S)| ≤ cδ 2ΔzIJ{|zIJ

− − zJ
S|+ |wIJ

− −wJ
S|},

(12.5.41) | f (ΔzIJ ;zJ
S,w

J
S)− f (ΔzJ ;zJ

S,w
J
S)| ≤ cδ 2|ΔzIJ −ΔzJ |.

Thus, to verify (12.5.37) we have to show

(12.5.42) ∑
I∈M

∑
J∈CI

ΔzIJ{|zIJ
− − zJ

S|+ |wIJ
− −wJ

S|}

≤VM {ΔzI0 + ∑
I∈M

∑
J∈CI

|ΔzIJ −ΔzJ |} ,

(12.5.43)

∑
I∈M

∑
J∈CI

|ΔzIJ −ΔzJ | ≤ c{TV
[p

I0− (0),p
I0
+ (0)]

z(·,0)+P2(FI0)+Q2(FI0)}.

We tackle (12.5.42) first. We perform the summation starting out from the maxi-
mal nodes and moving down towards the root of M . For L ∈ M , we let ML denote
the subtree of M which is rooted at L and contains all I ∈ M with L < I. For some
K ∈ M , assume

(12.5.44)
∑

I∈ML

∑
J∈CI

ΔzIJ{|zIJ
− − zJ

S|+ |wIJ
− −wJ

S|} ≤VML{ΔzL + ∑
I∈ML

∑
J∈CI

|ΔzIJ −ΔzJ |}
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holds for every L ∈ CK . Since ΔzL ≤ ΔzKL + |ΔzKL −ΔzL| and

(12.5.45) ∑
L∈CK

ΔzKL ≤ ΔzK ,

(12.5.44) implies

(12.5.46) ∑
I∈MK

∑
J∈CI

ΔzIJ{|zIJ
− − zJ

S|+ |wIJ
− −wJ

S|}

≤ ∑
L∈CK

ΔzKL{|zKL
− − zL

S |+ |wKL
− −wL

S |+VML}

+ ∑
L∈CK

VML{|ΔzKL −ΔzL|+ ∑
I∈ML

∑
J∈CI

|ΔzIJ −ΔzJ |}

≤VMK{ΔzK + ∑
I∈MK

∑
J∈CI

|ΔzIJ −ΔzJ |}.

Thus, proceeding step by step, we arrive at (12.5.42).
It remains to show (12.5.43). We note that

(12.5.47) ΔzIJ −ΔzJ = [zIJ
+ − zJ

E ]+ [zJ
S − zIJ

− ].

We bound the right-hand side by applying Lemma 12.5.4 twice: First with (x̂, t̂) = J,
(x̃, t̃) = I, p̂ = pJ

+ , p̃ = pIJ
+ , and then with (x̂, t̂) = I, (x̃, t̃) = J, p̂ = pIJ− ,

p̃ = pJ− . In either case, the arc of χ−
J joining I to J serves as t̄. We combine the

derivation of (12.5.22)1 for the two cases: The characteristic φK− issuing from any
point K on the graph of pJ

+ is always intercepted by the graph of pIJ
+ ; never by the

graph of χ−
J . On the other hand, φK− issuing from points K on the graph of pIJ− and

crossing the graph of χ−
J may be prolonged until they intersect the graph of pIJ

+ .
Consequently, the contribution of the common t̄ drops out and we are left with the
estimate

(12.5.48)

|ΔzIJ −ΔzJ | ≤ TV[pIJ− (0),pJ−(0)]
z(·,0)+TV[pJ

+(0),p
IJ
+(0)]z(·,0)+P2(FIJ)+Q2(FIJ),

with FIJ defined through

(12.5.49) FIJ = {(x, t) : 0 ≤ t < tI , pIJ
− (t)≤ x ≤ pIJ

+}∩FC
J .

When (I,J) and (K,L) are any two distinct links (possibly with I = K), the inter-
vals (pIJ− (0), pJ−(0)), (pJ

+(0), pIJ
+(0)), (pKL− (0), pL−(0)) and (pL

+(0), pKL
+ (0)) are pair-

wise disjoint; likewise, the interiors of the sets FIJ and FKL are disjoint. Therefore,
by virtue of Lemma 12.5.3, tallying (12.5.48) over J ∈CI and then over I ∈M yields
(12.5.43). The proof is complete.

12.5.7 Lemma. Under the assumptions of Theorem 12.5.1, if H denotes the region
bordered by the graphs of ζ� , ξr , t∗, and the x-axis, then
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(12.5.50) P1(H )+Q1(H )+P2(H )+Q2(H )

≤ cδ 2{TV[ζ�(0),ξr(0)]z(·,0)+TV[ζ�(0),ξr(0)]w(·,0)}.
Proof. Consider any family J of disjoint 1-characteristic trees M contained in H .
If I and J are the roots of any two trees in J ,(pI−(0), pI

+(0)) and (pJ−(0), pJ
+(0)) are

disjoint intervals contained in (ζ�(0),ξ�(0)); also FI and FJ are subsets of H with
disjoint interiors. Consequently, by combining Lemmas 12.5.3 and 12.5.6 we deduce

(12.5.51)1

P1(H )+Q1(H )≤ cδ 2(1+VH ){TV[ζ�(0),ξr(0)]z(·,0)+P2(H )+Q2(H )},
where VH denotes the supremum of the total variation of the trace of (z,w) over all
1-characteristics with graph contained in H .

Similarly,

(12.5.51)2

P2(H )+Q2(H )≤ cδ 2(1+WH ){TV[ζ�(0),ξr(0)]w(·,0)+P1(H )+Q1(H )},
where WH stands for the supremum of the total variation of the trace of (z,w) over
all 1-characteristics with graph contained in H .

The constants in (12.5.30)1 and (12.5.30)2 do not depend on the particular t∗, so
long as H remains fixed. In particular, we may apply these estimates taking as t∗
any 1-characteristic or 2-characteristic, contained in H . Therefore,

(12.5.52)1 (1− cδ 2)VH ≤ TV[ζ�(0),ξr(0)]z(·,0)+TV[ζ�(0),ξr(0)]w(·,0)
+2{P1(H )+Q1(H )+P2(H )+Q2(H )},

(12.5.52)2 (1− cδ 2)WH ≤ TV[ζ�(0),ξr(0)]z(·,0)+TV[ζ�(0),ξr(0)]w(·,0)
+2{P1(H )+Q1(H )+P2(H )+Q2(H )}.

Combining (12.5.51)1 , (12.5.51)2 , (12.5.52)1 , (12.5.52)2 and recalling (12.5.3),
we deduce (12.5.50), provided δ is sufficiently small. This completes the proof.

We now combine Lemmas 12.5.5 and 12.5.7. Since F and G are subsets of
H , (12.5.30)1 , (12.5.30)2 and (12.5.50) together imply (12.5.4)1 and (12.5.4)2 . The
assertion of Theorem 12.5.1 has thus been established.

In addition to serving as a stepping stone in the proof of Theorem 12.5.1, Lemma
12.5.7 reveals that the amount of self-interaction of waves of the first and second
characteristic family, measured by P1 and P2 , respectively, as well as the amount
of mutual interaction of waves of opposite families, measured by Q1 and Q2 , are
bounded and controlled by the total variation of the initial data.

In our derivation of (12.5.4), the initial data were regarded as multi-valued and
their total variation was evaluated for the “most unfavorable” selection of allowable
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values. According to this convention, the set of values of z(x,0) is either confined
between z(x−,0) and z(x+,0) or else it lies within c|w(x+,0)−w(x−,0)|3 distance
from z(x+,0); and an analogous property holds for w(x,0). Consequently, (12.5.4)
will still hold, with readjusted constant c, when (z(·,0),w(·,0)) are renormalized to
be single-valued, for example continuous from the right at ξr(0) and at ζr(0) and
continuous from the left at any other point.

12.6 Spreading of Rarefaction Waves

In Section 11.2 we saw that the spreading of rarefaction waves induces one-sided
Lipschitz conditions on solutions of genuinely nonlinear scalar conservation laws.
Here we shall encounter a similar effect in the context of our system (12.1.1) of two
conservation laws. We shall see that the spreading of 1- (or 2-) rarefaction waves acts
to reduce the falling (or rising) slope of the corresponding Riemann invariant z (or
w). Because of intervening wave interactions, this mechanism is no longer capable
of sustaining one-sided Lipschitz conditions, as in the scalar case; it still manages,
however, to keep the total variation of solutions bounded, independently of the initial
data.

Let us consider again the solution (z,w) discussed in the previous section, with
small oscillation (12.5.1). The principal result is

12.6.1 Theorem. For any −∞ < x < y < ∞ and t > 0,

(12.6.1) TV[x,y]z(·, t)+TV[x,y]w(·, t)≤ b
y− x

t
+βδ ,

where b and β are constants that may depend on F but are independent of the initial
data.

The proof of the above theorem will be partitioned into several steps. The no-
tation introduced in Section 12.5 will be used here freely. In particular, as before, c
will stand for a generic constant that may depend on F but is independent of δ .

12.6.2 Lemma. Fix t̄ > 0 and pick any −∞ < x� < xr < ∞ , with xr − x� small com-
pared to t̄. Construct the minimal (or maximal) backward 1-(or 2-) characteristics
ξ�(·), ξr(·) (or ζ�(·), ζr(·)) emanating from (x�, t̄), (xr, t̄), and let F (or G ) denote
the region bordered by the graphs of ξ� , ξr (or ζ� , ζr) and the time lines t = t̄ and
t = t̄/2. Then

(12.6.2)1 z(x�, t̄)− z(xr, t̄)≤ ĉexp(c̄δV̄ )
xr − x�

t̄
+P2(F )+Q2(F ),

or

(12.6.2)2 w(xr, t̄)−w(x�, t̄)≤ ĉexp(c̄δV̄ )
xr − x�

t̄
+P1(G )+Q1(G ),
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where V̄ denotes the total variation of the trace of w (or z) along ξ�(·) (or ζr(·)) over
the interval [ 1

2 t̄, t̄].

Proof. It will suffice to show (12.6.2)1 . Let (z�(·),w�(·)) and (zr(·),wr(·)) denote the
trace of (z,w) along ξ�(·) and ξr(·), respectively.

We consider the infimum μ̃ and the supremum μ̄ of the characteristic speed
μ(z,w) over the range of the solution. The straight lines with slope μ̃ and μ̄ em-
anating from the point (ξr(t), t), t ∈ [ 1

2 t̄, t̄], are intercepted by ξ�(·) at time f (t) and
g(t), respectively. Both functions f and g are Lipschitz with slope 1+O(δ ), and

(12.6.3) 0 ≤ g(t)− f (t)≤ c1δ [ξr(t)−ξ�( f (t))].

The map that carries (ξr(t), t) to (ξ�( f (t)), f (t)) induces a pairing of points of
the graphs of ξ� and ξr . From

(12.6.4) ξr(t)−ξ�( f (t)) = μ̃[t − f (t)],

we obtain

(12.6.5) ḟ (t) = 1− 1

μ̃− ξ̇�( f (t))
[ξ̇r(t)− ξ̇�( f (t))],

(12.6.6)
d
dt
[ξr(t)−ξ�( f (t))] =

μ̃
μ̃− ξ̇�( f (t))

[ξ̇r(t)− ξ̇�( f (t))],

almost everywhere on [ 1
2 t̄, t̄]. In order to bound the right-hand side of (12.6.6) from

below, we begin with

(12.6.7) ξ̇r(t)− ξ̇�( f (t)) = λ (zr(t),wr(t))−λ (z�( f (t)),w�( f (t)))

= λ̄z[zr(t)− z�( f (t))]+ λ̄w[wr(t)−w�( f (t))].

By virtue of Theorem 12.4.1,

(12.6.8) zr(t)− z�( f (t))≤ z(xr, t̄)− z(x�, t̄)−∑[zr(τ+)− zr(τ−)],

where the summation runs over the set of jump points of zr(·) inside the interval
(t, t̄). As in the proof of Lemma 12.5.4, with each one of these jump points τ one
may associate the trivial 2-characteristic tree N which consists of the single node
(ξr(τ),τ) so as to deduce

(12.6.9) −∑[zr(τ+)− zr(τ−)]≤ P2(F )+Q2(F ).

For t ∈ [ 1
2 t̄, t̄], we construct the maximal backward 2-characteristic emanating

from (ξr(t), t), which is intercepted by ξ�(·) at time h(t); f (t) ≤ h(t) ≤ g(t). On
account of Theorem 12.4.1, w�(h(t))≥ wr(t) and so

(12.6.10) wr(t)−w�( f (t))≤ w�(h(t))−w�( f (t))≤V ( f (t))−V (g(t)),
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where V (τ) measures the total variation of w�(·) over the interval [τ, t̄).
We now integrate (12.6.6) over the interval (s, t̄). Recalling that λ̄z < 0 , λ̄w < 0,

upon combining (12.6.7), (12.6.8), (12.6.9) and (12.6.10), we deduce

(12.6.11) ξr(s)−ξ�( f (s))≤ ξr(t̄)−ξ�( f (t̄))

+ c−1
2 (t̄ − s)[z(xr, t̄)− z(x�, t̄)+P2(F )+Q2(F )]

+ c3

∫ t̄

s
[V ( f (t))−V (g(t))]dt.

By interchanging the order of integration,

(12.6.12)
∫ t̄

s
[V ( f (t))−V (g(t))]dt =−

∫ t̄

s

∫ g(t)

f (t)
dV (τ)dt

≤−
∫ f (t̄)

f (s)
[ f−1(τ)−g−1(τ)]dV (τ)−

∫ g(t̄)

f (t̄)
[t̄ −g−1(τ)]dV (τ)

=−
∫ t̄

s
[t −g−1( f (t))]dV ( f (t))−

∫ g(t̄)

f (t̄)
[t̄ −g−1(τ)]dV (τ).

On account of (12.6.3),

(12.6.13) t −g−1( f (t))≤ c4δ [ξr(t)−ξ�( f (t))],
t̄
2
≤ t ≤ t̄,

(12.6.14) t̄ −g−1(τ)≤ c4δ [ξr(t̄)−ξ�( f (t̄))], f (t̄)≤ τ ≤ g(t̄),

and hence (12.6.11) yields

(12.6.15) ξr(s)−ξ�( f (s))≤ exp(c3c4δV̄ )[ξr(t̄)−ξ�( f (t̄))]

+ c−1
2 (t̄ − s)[z(xr, t̄)− z(x�, t̄)+P2(F )+Q2(F )]

− c3c4δ
∫ t̄

s
[ξr(t)−ξ�( f (t))]dV ( f (t)),

for any s ∈ [ 3
4 t̄, t̄]. Integrating the above, Gronwall-type, inequality, we obtain

(12.6.16) ξr(s)−ξ�( f (s))≤ exp(2c3c4δV̄ )[ξr(t̄)−ξ�( f (t̄))]

+c−1
2 [

∫ t̄

s
exp{c3c4δ [V ( f (s))−V ( f (τ))]}dτ][z(xr, t̄)− z(x�, t̄)+P2(F )+Q2(F )].

We apply (12.6.16) for s = 3
4 t̄. The left-hand side of (12.6.16) is nonnegative. Also,

ξr(t̄)−ξ�( f (t̄))≤ c5(xr − x�). Therefore, (12.6.16) implies (12.6.2)1 with constants
c̄ = 2c3c4 , ĉ = 4c2c5 . The proof is complete.
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In what follows, we shall be operating under the assumption that the constants V̄
appearing in (12.6.2)1 and (12.6.2)2 satisfy

(12.6.17) c̄δV̄ ≤ log 2.

This will certainly be the case, by virtue of Theorem 12.5.1, when the initial data sat-
isfy (12.5.3) with a sufficiently small. Furthermore, because of the finite domain of
dependence property, (12.6.17) shall hold for t̄ sufficiently small, even when the ini-
tial data have only locally bounded variation and satisfy (12.5.2) with δ sufficiently
small. It will be shown below that (12.6.17) actually holds for any t̄ > 0, provided
only that the initial data have sufficiently small oscillation, i.e., δ is small.

12.6.3 Lemma. For any −∞ < x̄ < ȳ < ∞ and t̄ > 0,

(12.6.18) NV[x̄,ȳ]z(·, t̄)+PV[x̄,ȳ]w(·, t̄)≤ 4ĉ
ȳ− x̄

t̄

+ cδ 2
{

TV[x̄− 1
2 μ̄ t̄,ȳ− 1

2 λ̄ t̄]z
(
· , t̄

2

)
+TV[x̄− 1

2 μ̄ t̄,ȳ− 1
2 λ̄ t̄]w

(
· , t̄

2

)}
,

(12.6.19) TV[x̄,ȳ]z(·, t̄)+TV[x̄,ȳ]w(·, t̄)≤ 8ĉ
ȳ− x̄

t̄
+8δ

+ cδ 2
{

TV[x̄− 1
2 μ̄ t̄,ȳ− 1

2 λ̄ t̄]z
(
· , t̄

2

)
+TV[x̄− 1

2 μ̄ t̄,ȳ− 1
2 λ̄ t̄]w

(
· , t̄

2

)}
,

where λ̄ is the infimum of λ (z,w) and μ̄ is the supremum of μ(z,w) over the range
of the solution.

Proof. By combining (12.6.2)1 , (12.6.2)2 , (12.6.17), and Lemma 12.5.3, we imme-
diately infer

(12.6.20)

NV[x̄,ȳ]z(·, t̄)+PV[x̄,ȳ]w(·, t̄)≤ 4ĉ
ȳ− x̄

t̄
+2[P1(H )+Q1(H )+P2(H )+Q2(H )],

where H denotes the region bordered by the graph of the minimal backward
1-characteristic ξ (·) emanating from (ȳ, t̄), the graph of the maximal backward
2-characteristic ζ (·) emanating from (x̄, t̄), and the time lines t = t̄ and t = t̄/2.

We estimate P1(H ) + Q1(H ) + P2(H ) + Q2(H ) by applying Lemma
12.5.7, with the time origin shifted from t = 0 to t = t̄/2. This yields (12.6.18).

Since total variation is the sum of negative variation and positive variation, while
the difference of negative variation and positive variation is majorized by the oscil-
lation, (12.6.18) together with (12.5.1) yield (12.6.19). The proof is complete.

Proof of Theorem 12.6.1. In order to establish (12.6.1), we first write (12.6.19) with
t̄ = t, x̄ = x and ȳ = y. To estimate the right-hand side of the resulting inequality, we
reapply (12.6.19), for t̄ = 1

2 t, x̄ = x− 1
2 μ̄t and ȳ = y− 1

2 λ̄ t. This yields
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(12.6.21) TV[x− 1
2 μ̄t,y− 1

2 λ̄ t]z
(
· , t

2

)
+TV[x− 1

2 μ̄t,y− 1
2 λ̄ t]w

(
· , t

2

)

≤ 16ĉ
y− x

t
+8ĉ(μ̄− λ̄ )+8δ

+ cδ 2
{

TV[x− 3
4 μ̄t,y− 3

4 λ̄ t]z
(
· , t

4

)
+TV[x− 3

4 μ̄t,y− 3
4 λ̄ t]w

(
· , t

4

)}
.

Similarly, in order to estimate the right-hand side of (12.6.21), we apply (12.6.19)
with t̄ = 1

4 t, x̄ = x− 3
4 μ̄t and ȳ = y− 3

4 λ̄ t. We thus obtain

(12.6.22) TV[x− 3
4 μ̄t,y− 3

4 λ̄ t]z
(
· , t

4

)
+TV[x− 3

4 μ̄t,y− 3
4 λ̄ t]w

(
· , t

4

)

≤ 32ĉ
y− x

t
+24ĉ(μ̄− λ̄ )+8δ

+ cδ 2
{

TV[x− 7
8 μ̄t,y− 7

8 λ̄ t]z
(
· , t

8

)
+TV[x− 7

8 μ̄t,y− 7
8 λ̄ t]w

(
· , t

8

)}
.

Continuing on and passing to the limit, we arrive at (12.6.1) with

(12.6.23) b =
8ĉ

1−2cδ 2 , β =
8

1− cδ 2 +
8cĉδ (μ̄− λ̄ )

(1− cδ 2)(1−2cδ 2)
.

The above derivations hinge on the assumption that (12.6.17) holds; hence, in
order to complete the proof, we now have to verify this condition. Recalling the
definition of V̄ in Lemma 12.6.2 and applying Theorem 12.5.1, with time origin
shifted from 0 to 1

2 t, we deduce

(12.6.24) V̄ ≤ csup
x̄
{TV[x̄− 1

2 μ̄t,x̄− 1
2 λ̄ t]z(· ,

t
2
)+TV[x̄− 1

2 μ̄t,x̄− 1
2 λ̄ t]w(· ,

t
2
)}.

We estimate the right-hand side of (12.6.24) by means of (12.6.1), which yields

(12.6.25) V̄ ≤ cb(μ̄− λ̄ )+ cβδ ,

so that (12.6.17) is indeed satisfied, provided δ is sufficiently small. The proof is
complete.

We now show that initial data of sufficiently small oscillation, but arbitrarily large
total variation, induce the L∞ bound (12.5.1), which has been assumed throughout
this section.

12.6.4 Theorem. There is a positive constant γ , depending solely on F , such that
solutions generated by initial data with small oscillation

(12.6.26) |z(x,0)|+ |w(x,0)|< γδ 2, −∞ < x < ∞ ,

but unrestricted total variation, satisfy (12.5.1).
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Proof. Assuming (12.6.26) holds, with γ sufficiently small, we will demonstrate that
−δ < z(x, t)< δ and −δ < w(x, t)< δ on the upper half-plane. Arguing by contra-
diction, suppose any one of the above four inequalities is violated at some point, say
for example z(x̄, t̄)≥ δ .

We determine ȳ through 8ĉ(ȳ− x̄) = δ t̄, where ĉ is the constant appearing in
(12.6.2)1 , and apply (12.6.18). The first term on the right-hand side of (12.6.18) is
here bounded by 1

4δ ; the second term is bounded by c̃δ 2, on account of (12.6.1).
Consequently, for δ sufficiently small, the negative (decreasing) variation of z(·, t̄)
over the interval [x̄, ȳ] does not exceed 1

2δ . It follows that z(x, t̄)≥ 1
2δ , for all x∈ [x̄, ȳ].

In particular,

(12.6.27)
∫ ȳ

x̄
[|z(x, t̄)|+ |w(x, t̄)|]dx ≥ (ȳ− x̄)

δ
2
=

1
16ĉ

δ 2t̄.

We now appeal to the L1 estimate (12.8.3), which will be established in Section
12.8, Lemma 12.8.2, and combine it with (12.6.26) to deduce

(12.6.28)
∫ ȳ

x̄
[|z(x, t̄)|+ |w(x, t̄|]dx ≤ 4[(ȳ− x̄)+2ct̄]γδ 2 = γ[

δ
2ĉ

+8c]δ 2t̄.

It is clear that, for γ sufficiently small, (12.6.27) is inconsistent with (12.6.28), and
this provides the desired contradiction. The proof is complete.

In conjunction with the compactness properties of BV functions, recounted in
Section 1.7, the estimate (12.6.1) indicates that, starting out with solutions with ini-
tial data of locally bounded variation, one may construct, via completion, BVloc so-
lutions under initial data that are merely in L∞, with sufficiently small oscillation.
Thus, the solution operator of genuinely nonlinear systems of two conservation laws
regularizes the initial data by the mechanism already encountered in the context of
the genuinely nonlinear scalar conservation law (Theorem 11.2.2).

12.7 Regularity of Solutions

The information collected thus far paints the following picture for the regularity of
solutions:

12.7.1 Theorem. Let U(x, t) be an admissible BV solution of the genuinely nonlin-
ear system (12.1.1) of two conservation laws, with the properties recounted in the
previous sections. Then

(a) Any point (x̄, t̄) of approximate continuity is a point of continuity of U .
(b) Any point (x̄, t̄) of approximate jump discontinuity is a point of (classical) jump

discontinuity of U .
(c) Any irregular point (x̄, t̄) is the focus of a centered compression wave of either,

or both, characteristic families, and/or a point of interaction of shocks of the
same or opposite characteristic families.

(d) The set of irregular points is (at most) countable.
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Proof. Assertions (a), (b) and (c) are corollaries of Theorem 12.3.3. In particular,
(x̄, t̄) is a point of approximate continuity if and only if (zW ,wW ) = (zE ,wE), in
which case all four limits (zW ,wW ), (zE ,wE), (zN ,wN) and (zS,wS) coincide. When
(zW ,wW ) �= (zE ,wE), then (x̄, t̄) is a point of approximate jump discontinuity in the
1-shock set if (zW ,wW ) = (zS,wS), (zE ,wE) = (zN ,wN); or a point of approximate
jump discontinuity in the 2-shock set if (zW ,wW ) = (zN ,wN), (zE ,wE) = (zS,wS);
and an irregular point in all other cases.

To verify assertion (d), assume the irregular point I = (x̄, t̄) is a node of some
1-characteristic tree M or a 2-characteristic tree N . If I is the focusing point of a
centered 1-compression wave and/or point of interaction of 1-shocks, then, by virtue
of (12.5.15)1 , I will register a positive contribution to P1(M ). Similarly, if I is
the focusing point of a centered 2-compression wave and/or point of interaction of
2-shocks, then, on account of (12.5.15)2 , I will register a positive contribution to
P2(N ). Finally, suppose I is a point of interaction of a 1-shock with a 2-shock. We
adjoin to M an additional node K lying on the graph of χ I− very close to I. Then
|ΔwKI −ΔwI∗|> 0 and so, by (12.5.16)1 , we get a positive contribution to Q1(M ).
Since the total amount of wave interaction is bounded, by virtue of Lemma 12.5.7,
we conclude that the set of irregular points is necessarily (at most) countable. This
completes the proof.

An analog of Theorem 11.3.5 is also in force here:

12.7.2 Theorem. Assume the set C of points of continuity of the solution U has
nonempty interior C 0. Then U is locally Lipschitz continuous on C 0.

Proof. We verify that z is locally Lipschitz continuous on C 0. Assume (x̄, t̄) ∈ C 0

and C contains a rectangle {(x, t) : |x − x̄| < kp, |t − t̄| < p}, with p > 0 and k
large compared to |λ | and μ . By shifting the axes, we may assume, without loss of
generality, that t̄ = p. We fix ȳ > x̄, where ȳ− x̄ is small compared to p, and apply
(12.6.2)1 , with x� = x̄, xr = ȳ. Since the solution is continuous in the rectangle, both
P2(F ) and Q2(F ) vanish and so, recalling (12.6.17),

(12.7.1) z(x̄, t̄)− z(ȳ, t̄)≤ 2ĉ
p
(ȳ− x̄).

The functions (ẑ, ŵ)(x, t) = (z,w)(x̄+ ȳ− x,2p− t) are Riemann invariants of
another solution Û which is continuous, and thereby admissible, on the rectangle
{(x, t) : |x− ȳ|< kp, |t − t̄|< p}. Applying (12.7.1) to ẑ yields

(12.7.2) z(ȳ, t̄)− z(x̄, t̄) = ẑ(x̄, t̄)− ẑ(ȳ, t̄)≤ 2ĉ
p
(ȳ− x̄).

We now fix s̄ > t̄, with s̄ − t̄ small compared to p. We construct the mini-
mal backward 1-characteristic ξ emanating from (x̄, s̄), which is intercepted by the
t̄-time line at the point ȳ = ξ (t̄), where 0 < ȳ− x̄ ≤ −λ̄ (s̄− t̄). By Theorem 12.4.1,
z(x̄, s̄) = z(ȳ, t̄) and so, by virtue of (12.7.1) and (12.7.2),
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(12.7.3) |z(x̄, s̄)− z(x̄, t̄)| ≤ 2ĉ
p
(ȳ− x̄)≤−2λ̄ ĉ

p
(s̄− t̄).

Thus z is Lipschitz.
A similar argument shows that w is also Lipschitz in C 0. This completes the

proof.

12.8 Initial Data in L1

Recall that, by virtue of Theorem 11.5.2, initial data in L1 induce decay of solu-
tions of genuinely nonlinear scalar conservation laws, as t → ∞ , at the rate O(t−

1
2 ).

The aim here is to establish an analogous property for solutions of genuinely
nonlinear systems of two conservation laws. Accordingly, we consider a solution
(z(x, t),w(x, t)) of small oscillation (12.5.1), with initial values of unrestricted total
variation lying in L1(−∞,∞):

(12.8.1) L =
∫ ∞

−∞
[|z(x,0)|+ |w(x,0)|]dx < ∞ .

The principal result is

12.8.1 Theorem. As t → ∞ ,

(12.8.2) (z(x, t),w(x, t)) = O(t−
1
2 ),

uniformly in x on (−∞,∞).

The proof will be partitioned into several steps.

12.8.2 Lemma. For any t̄ ∈ [0,∞), and −∞ < x̄ < ȳ < ∞ ,

(12.8.3)
∫ ȳ

x̄
[|z(x, t̄)|+ |w(x, t̄)|]dx ≤ 4

∫ ȳ+ct̄

x̄−ct̄
[|z(x,0)|+ |w(x,0)|]dx.

In particular, (z(·, t̄),w(·, t̄)) are in L1(−∞,∞).

Proof. We construct a Lipschitz continuous entropy η by solving the Goursat prob-
lem for (12.2.2) with prescribed data

(12.8.4)

⎧⎨⎩η(z,0) = |z|+αz2, −∞ < z < ∞ ,

η(0,w) = |w|+αz2, −∞ < w < ∞ ,

where α is a positive constant. From (12.2.3) it follows that, for α sufficiently large,
η is a convex function of U on some neighborhood of the origin containing the range
of the solution.
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Combining (12.2.2) and (12.8.4), one easily deduces, for δ small,

(12.8.5)
1
2
(|z|+ |w|)≤ η(z,w)≤ 2(|z|+ |w|), −2δ < z < 2δ , −2δ < w < 2δ .

Furthermore, if q is the entropy flux associated with η , normalized by
q(0,0) = 0, (12.2.1) and (12.8.5) imply

(12.8.6) |q(z,w)| ≤ cη(z,w), −2δ < z < 2δ , −2δ < w < 2δ .

We now fix t̄ > 0, −∞ < x̄ < ȳ < ∞ and integrate (12.3.1), for the entropy-
entropy flux pair (η ,q) constructed above, over the trapezoidal region defined by
{(x, t) : 0 < t < t̄, x̄− c(t̄ − t)< x < ȳ+ c(t̄ − t)}. Upon using (12.8.6), this yields

(12.8.7)
∫ ȳ

x̄
η(z(x, t̄),w(x, t̄))dx ≤

∫ ȳ+ct̄

x̄−ct̄
η(z(x,0),w(x,0))dx.

By virtue of (12.8.5), (12.8.7) implies (12.8.3). The proof is complete.

12.8.3 Lemma. Let (z̄(·), w̄(·)) denote the trace of (z,w) along the minimal (or maxi-
mal) backward 1-(or 2-) characteristic ξ (·) (or ζ (·)) emanating from any point (ȳ, t̄)
of the upper half-plane. Then

(12.8.8)1

∫ t̄

0
[z̄2(t)+ |w̄(t)|]dt ≤ c̃L,

or

(12.8.8)2

∫ t̄

0
[|z̄(t)|+ w̄2(t)]dt ≤ c̃L.

Proof. It will suffice to verify (12.8.8)1 . Suppose η is any Lipschitz continuous
convex entropy associated with entropy flux q, normalized so that η(0,0) = 0,
q(0,0) = 0. We fix x̄ < ȳ and integrate the inequality (12.3.1) over the region
{(x, t) : 0 < t < t̄, x̄ < x < ξ (t)} to get

(12.8.9)
∫ ȳ

x̄
η(z(x, t̄),w(x, t̄))dx−

∫ ξ (0)

x̄
η(z(x,0),w(x,0))dx

+
∫ t̄

0
G(z̄(t), w̄(t))dt −

∫ t̄

0
q(z(x̄+, t),w(x̄+, t))dt ≤ 0,

where G is defined by

(12.8.10) G(z,w) = q(z,w)−λ (z,w)η(z,w).
We seek an entropy-entropy flux pair that renders G(z,w) positive definite on

(−2δ ,2δ )× (−2δ ,2δ ). On account of (12.2.1),

(12.8.11) Gz =−λzη ,
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(12.8.12) Gw = [(μ−λ )η ]w −μwη ,

which indicate that G decays fast, at least quadratically, as z → 0, but it may decay
more slowly, even linearly, as w → 0.

We construct an entropy η by solving the Goursat problem for (12.2.2) with data

(12.8.13)

⎧⎨⎩η(z,0) = 2z+αz2, −∞ < z < ∞ ,

η(0,w) = |w|+αw2, −∞ < w < ∞ .

For α sufficiently large, it follows from (12.2.3) that η is a convex function of
U on some neighborhood of the origin containing the range of the solution. From
(12.8.12), (12.2.2) and (12.8.13) we deduce

(12.8.14) G(0,w) = [μ(0,0)−λ (0,0)]|w|+O(w2),

(12.8.15) η(z,w) = 2z+ |w|+O(z2 +w2),

for (z,w) near the origin. Combining (12.8.14) with (12.8.11) and (12.8.15), we con-
clude

(12.8.16) G(z,w) = [μ(0,0)−λ (0,0)]|w|−λz(0,0)z2 +O(w2 + |zw|+ |z|3).

We now return to (12.8.9). On account of Lemma 12.8.2, (z(·, t),w(·, t)) are in
L1(−∞,∞), for all t ∈ [0, t̄], and hence

(12.8.17) liminf
x̄→−∞

|
∫ t̄

0
q(z(x̄+, t),w(x̄+, t))dt|= 0.

Therefore, (12.8.9), (12.8.17), (12.8.15), (12.8.3) and (12.8.1) together imply

(12.8.18)
∫ t̄

0
G(z̄(t), w̄(t))dt ≤ 12L,

provided (12.5.1) holds, with δ sufficiently small. The assertion (12.8.8)1 now fol-
lows easily from (12.8.18), (12.8.16) and (12.1.3). This completes the proof.

Lemma 12.8.3 indicates that along minimal backward 1-characteristics z is
O(t−

1
2 ) and w is O(t−1), while along maximal backward 2-characteristics z is O(t−1)

and w is O(t−
1
2 ). In fact, recalling that z̄(·) and w̄(·) are nonincreasing along minimal

and maximal backward 1- and 2-characteristics, respectively, we infer directly from
(12.8.8)1 and (12.8.8)2 that the positive parts of z(x, t) and w(x, t) are O(t−

1
2 ), as

t → ∞ . The proof of Theorem 12.8.1 will now be completed by establishing O(t−
1
2 )

decay on both sides:
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12.8.4 Lemma. For δ sufficiently small,

(12.8.19)1 z2(x, t)≤ 8c̃L
t

,

(12.8.19)2 w2(x, t)≤ 8c̃L
t

,

hold, for all −∞ < x < ∞ , 0 < t < ∞ , where c̃ is the constant in (12.8.8)1 and
(12.8.8)2 .

Proof. Arguing by contradiction, suppose the assertion is false and let t̄ > 0 be the
greatest lower bound of the set of points t on which (12.8.19)1 and/or (12.8.19)2 is
violated for some x. According to Theorem 12.3.3, the continuation of the solution
beyond t̄ is initiated by solving Riemann problems along the t̄-time line. Conse-
quently, since (12.8.19)1 and/or (12.8.19)2 fail for t > t̄, one can find ȳ ∈ (−∞,∞)
such that

(12.8.20)1 z2(ȳ, t̄)>
4c̃L

t̄
,

and/or

(12.8.20)2 w2(ȳ, t̄)>
4c̃L

t̄
.

For definiteness, assume (12.8.20)1 holds.
Let (z̄(·), w̄(·)) denote the trace of (z,w) along the minimal backward 1-characte-

ristic ξ (·) emanating from (ȳ, t̄). By applying Theorem 12.5.1, with the time origin
shifted from t = 0 to t = t̄/2, we deduce

(12.8.21) TV[ 1
2 t̄,t̄]w̄(·)≤ ĉ{TV[ȳ− 1

2 μ̄ t̄,ȳ− 1
2 λ̄ t̄] z(· ,

t̄
2
)+TV[ȳ− 1

2 μ̄ t̄,ȳ− 1
2 λ̄ t̄] w(· ,

t̄
2
)},

where λ̄ stands for the infimum of λ (z,w) and μ̄ denotes the supremum of μ(z,w)
over the range of the solution. We estimate the right-hand side of (12.8.21) with the
help of Theorem 12.6.1, thus obtaining

(12.8.22) TV[ 1
2 t̄,t̄]w̄(·)≤ ĉ[b(μ̄− λ̄ )+βδ ].

By hypothesis,

(12.8.23) w̄2(t)≤ 16c̃L
t̄

,
t̄
2
≤ t < t̄.

We also have |z̄(t)| ≤ 2δ . Therefore, by applying (12.4.2)1 we deduce

(12.8.24) z̄2(t̄−)− z̄2(t)≤ c̄δ
4c̃L

t̄
,

with c̄ = 64aĉ[b(μ̄− λ̄ )+βδ ].
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Since z̄(t̄−) = z(ȳ, t̄), combining (12.8.20)1 with (12.8.24) yields

(12.8.25) z̄2(t)≥ 4c̃L
t̄

(1− c̄δ ),
t̄
2
≤ t < t̄.

From (12.8.25),

(12.8.26)
∫ t̄

t̄
2

z̄2(t)dt ≥ 2c̃L(1− c̄δ ),

which provides the desired contradiction to (12.8.8)1 , when δ is sufficiently small.
The proof is complete.

12.9 Initial Data with Compact Support

Here we consider the large-time behavior of solutions, with small oscillation (12.5.1),
to our genuinely nonlinear system (12.1.1) of two conservation laws under initial data
(z(x,0),w(x,0)) that vanish outside a bounded interval [−�,�]. We already know,
from Section 12.8, that (z(x, t),w(x, t)) = O(t−

1
2 ). The aim is to examine the asymp-

totics in finer scale, establishing the analog of Theorem 11.6.1 on the genuinely
nonlinear scalar conservation law.

12.9.1 Theorem. Employing the notation introduced in Section 12.3, consider the
special forward characteristics φ−(·),ψ−(·) issuing from (−�,0) and φ+(·),ψ+(·)
issuing from (�,0). Then

(a) For t large, φ− , ψ− , φ+ and ψ+ propagate according to

(12.9.1)1 φ−(t) = λ (0,0)t − (p−t)
1
2 +O(1),

(12.9.1)2 ψ+(t) = μ(0,0)t +(q+t)
1
2 +O(1),

(12.9.2)1 φ+(t) = λ (0,0)t +(p+t)
1
2 +O

(
t

1
4
)
,

(12.9.2)2 ψ−(t) = μ(0,0)t − (q−t)
1
2 +O

(
t

1
4
)
,

where p− , p+ , q− and q+ are nonnegative constants.

(b) For t > 0 and either x < φ−(t) or x > ψ+(t),

(12.9.3) z(x, t) = 0, w(x, t) = 0.

(c) For t large,

(12.9.4) TV[φ−(t),ψ+(t)] z(·, t)+TV[φ−(t),ψ+(t)] w(·, t) = O
(

t−
1
2

)
.
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(d) For t large and φ−(t)< x < φ+(t),

(12.9.5)1 λ (z(x, t),0) =
x
t
+O

(
1
t

)
,

while for ψ−(t)< x < ψ+(t),

(12.9.5)2 μ(0,w(x, t)) =
x
t
+O

(
1
t

)
.

(e) For t large and x > φ+(t), if p+ > 0 then

(12.9.6)1 0 ≤−z(x, t)≤ c[x−λ (0,0)t]− 3
2 ,

while for x < ψ−(t), if q− > 0 then

(12.9.6)2 0 ≤−w(x, t)≤ c[μ(0,0)t − x]−
3
2 .

According to the above proposition, as t → ∞ the two characteristic families
decouple and each one develops an N-wave profile, of width O(t

1
2 ) and strength

O(t−
1
2 ), which propagates into the rest state at characteristic speed. When one of

p− , p+ (or q− , q+) vanishes, the 1- (or 2-) N-wave is one-sided, of triangular profile.
If both p− , p+ (or q− ,q+) vanish, the 1- (or 2-) N-wave is absent altogether. In the
wake of the N-waves, the solution decays at the rate O(t−

3
4 ), so long as p+ > 0 and

q− > 0. In cones properly contained in the wake, the decay is even faster, O(t−
3
2 ).

Statement (b) of Theorem 12.9.1 is an immediate corollary of Theorem 12.5.1.
The remaining assertions will be established in several steps.

12.9.2 Lemma. As t → ∞, the total variation decays according to (12.9.4).

Proof. We fix t large and construct the maximal forward 1-characteristic χ−(·) issu-
ing from (ψ+(t

1
2 ), t

1
2 ) and the minimal forward 2-characteristic χ+(·) issuing from

(φ−(t
1
2 ), t

1
2 ).

In order to estimate the total variation over the interval (χ−(t),χ+(t)), we ap-
ply Theorem 12.5.1, shifting the time origin from 0 to t

1
2 . The minimal backward

1-characteristics as well as the maximal backward 2-characteristics emanating from
points (x, t) with χ−(t) < x < χ+(t) are intercepted by the t

1
2 -time line outside the

support of the solution. Furthermore, the oscillation of (z,w) along the t
1
2 -time line

is O(t−
1
4 ) so that in (12.5.4)1 and (12.5.4)2 one may take δ = O(t−

1
4 ). Therefore,

(12.9.7) TV(χ−(t),χ+(t)) z(·, t)+TV(χ−(t),χ+(t)) w(·, t) = O(t−
1
2 ).



12.9 Initial Data with Compact Support 477

In order to estimate the total variation over the intervals [φ−(t),χ−(t)] and
[χ+(t),ψ+(t)], we apply Theorem 12.6.1, shifting the time origin from 0 to 1

2 t. The
oscillation of (z,w) along the 1

2 t-time line is O(t−
1
2 ) so that in (12.6.1) we may take

δ = O(t−
1
2 ). Since χ−(t)−φ−(t) and ψ+(t)−χ+(t) are O(t

1
2 ),

(12.9.8)

⎧⎪⎨⎪⎩
TV[φ−(t),χ−(t)] z(·, t)+TV[φ−(t),χ−(t)] w(·, t) = O(t−

1
2 ),

TV[χ+(t),ψ+(t)] z(·, t)+TV[χ+(t),ψ+(t)] w(·, t) = O(t−
1
2 ).

Combining (12.9.7) with (12.9.8), we arrive at (12.9.4). This completes the proof.

12.9.3 Lemma. Let λ̄ be any fixed strict upper bound of λ (z,w) and μ̄ any fixed
strict lower bound of μ(z,w), over the range of the solution. Then, for t large and
x > λ̄ t,

(12.9.9)1 z(x, t) = O
(
t−

3
2
)
,

while for x < μ̄t,

(12.9.9)2 w(x, t) = O
(
t−

3
2
)
.

Proof. We fix t large and x > λ̄ t. Since λ̄ is a strict upper bound of λ (z,w), the
minimal backward 1-characteristic ξ (·) emanating from (x, t) will be intercepted by
the graph of ψ+ at time t1 ≥ κt, where κ is a positive constant depending solely
on λ̄ . If (z̄(·), w̄(·)) denotes the trace of (z,w) along ξ (·), then the oscillation of
w̄(·) over [t1, t] is O(t−

1
2 ). Applying Theorem 12.5.1, with time origin shifted to t1 ,

and using Lemma 12.9.2, we deduce that the total variation of w̄(·) over [t1, t] is
likewise O(t−

1
2 ). It then follows from Theorem 12.4.1 that z̄(t−) = O(t−

3
2 ). Since

z(x, t) = z̄(t−), we arrive at (12.9.9)1 .
In a similar fashion, one establishes (12.9.9)2 , for x < μ̄t. The proof is complete.

12.9.4 Lemma. Assertion (d) of Theorem 12.9.1 holds.

Proof. By the construction of φ− and φ+ , the minimal backward 1-charac-
teristic ξ (·) emanating from any point (x, t) with φ−(t) < x < φ+(t) will be inter-
cepted by the x-axis on the interval [−�,�]. Therefore, if (z̄(·), w̄(·)) denotes the trace
of (z,w) along ξ (·),

(12.9.10) x =
∫ t

1
λ (z̄(τ), w̄(τ))dτ+ξ (1)

= tλ (z(x, t),0)+
∫ t

1
{λ̄z[z̄(τ)− z̄(t−)]+ λ̄ww̄(τ)}dτ+O(1).

On account of Lemma 12.9.3, w̄(τ) = O(τ−
3
2 ). Applying Theorem 12.5.1, with

time origin shifted to τ , and using Lemma 12.9.2, we deduce that the total variation
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of w̄(·) over [τ, t] is O(τ−
1
2 ). It then follows from Theorem 12.4.1 that z̄(τ)− z̄(t−)

is O(τ−
7
2 ). In particular, the integral on the right-hand side of (12.9.10) is O(1) and

this establishes (12.9.5)1 .
A similar argument shows (12.9.5)2 . The proof is complete.

12.9.5 Lemma. For t large, φ−(t) and ψ+(t) satisfy (12.9.1)1 and (12.9.1)2 .

Proof. For t large, φ−(t) joins the state (z(φ−(t)−, t),w(φ−(t)−, t)) = (0,0), on the
left, to the state (z(φ−(t)+, t),w(φ−(t)+, t)), on the right, where w(φ−(t)+, t) is
O(t−

3
2 ), while z(φ−(t)+, t) satisfies (12.9.5)1 for x = φ−(t). The jump across φ−(t)

is O(t−
1
2 ). Consequently, by use of (8.1.9) we infer

(12.9.11) φ̇−(t) =
1
2
λ (0,0)+

1
2t
φ−(t)+O

(
1
t

)
,

almost everywhere.
We set φ−(t) = λ (0,0)t − v(t). By the admissibility condition φ̇−(t) ≤ λ (0,0),

we deduce that v̇(t)≥ 0. Substituting into (12.9.11) yields

(12.9.12) v̇(t) =
1
2t

v(t)+O
(

1
t

)
.

If v(t) = O(1), as t → ∞ , we obtain (12.9.1)1 with p− = 0. On the other hand, if
v(t) ↑ ∞ , as t → ∞ , then (12.9.12) implies v(t) = (p−t)

1
2 +O(1), which establishes

(12.9.1)1 with p− > 0.
One validates (12.9.1)2 by a similar argument. The proof is complete.

12.9.6 Lemma. For t large, φ+(t) and ψ−(t) satisfy (12.9.2)1 and (12.9.2)2 . Fur-
thermore, Assertion (e) of Theorem 12.9.1 holds.

Proof. For t large, φ+(t) joins the state (z(φ+(t)−, t),w(φ+(t)−, t)), on the left, to the
state (z(φ+(t)+, t),w(φ+(t)+, t)), on the right, where both w(φ+(t)±, t) are O(t−

3
2 ),

while z(φ+(t)−, t) satisfies (12.9.5)1 for x= φ+(t). The jump across φ+(t) is O(t−
1
2 ).

Hence, by use of (8.1.9) we obtain

(12.9.13) φ̇+(t) =
1
2
λ (z(φ+(t)+, t),0)+

1
2t
φ+(t)+O

(
1
t

)
.

Since φ+ is maximal, minimal backward 1-characteristics ζ (·) emanating from
points (x, t) with x > φ+(t) stay strictly to the right of φ+(·) on [0, t] and are thus
intercepted by the x-axis at ζ (0) > �. By virtue of Theorem 12.4.1, it follows that
z(φ+(t)+, t)≤ 0 and so λ (z(φ+(t)+, t),0)≥ λ (0,0).

We now set φ+(t)= λ (0,0)t+v(t),λ (z(φ+(t)+, t),0)= λ (0,0)+g(t). As shown
above, g(t) ≥ 0. Furthermore, notice that the shock admissibility condition, namely
φ̇+(t) ≥ λ (z(φ+(t)+, t),w(φ+(t)+, t)) implies v̇(t) ≥ g(t)+O(t−

3
2 ). When v(t) is
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bounded, as t → ∞ , we obtain (12.9.2)1 , with p+ = 0, corresponding to the case
of one-sided N-wave. This case is delicate and will not be discussed here, so let us
assume v(t)→ ∞ , as t → ∞ .

Substituting φ+(t) into (12.9.13), we obtain

(12.9.14) v̇(t) =
1
2t

v(t)+
1
2

g(t)+O(
1
t
).

Since g(t)≥ 0, (12.9.14) yields v(t)≥ αt
1
2 , with α > 0. On the other hand, we know

that v(t) = O(t
1
2 ) and so (12.9.14) implies

(12.9.15)
v̇
v
≥ 1

2t
+βg(t)t−

1
2 +O(t−

3
2 ).

It is clear that (12.9.15) induces a contradiction to v(t) = O(t
1
2 ) unless

(12.9.16)
∫ ∞

1
g(τ)τ−

1
2 dτ < ∞ .

We now demonstrate that, in consequence of (12.9.16), there is T > 0 with the
property that

(12.9.17) inf{τ 1
2 g(τ) :

t
2
≤ τ ≤ t}< α

2
, for all t > T.

Indeed, if this assertion is false, we can find a sequence {tm}, with tm+1 ≥ 2tm , for
m = 1,2, · · · , along which (12.9.17) is violated. But then

(12.9.18)
∫ ∞

1
g(τ)τ−

1
2 dτ ≥ 1

2α∑
m

∫ tm

1
2 tm

dt
t
= ∞ ,

in contradiction to (12.9.16).
Let us fix (x, t), with t > T and x> φ+(t). The minimal backward 1-characteristic

ζ (·) emanating from (x, t) stays strictly to the right of φ+(·). We locate t̄ ∈ [ 1
2 t, t] such

that

(12.9.19) λ (z(φ+(t̄)+, t̄),0)−λ (0,0) = g(t̄)< 1
4α t̄−

1
2

and consider the minimal backward 1-characteristic ξ (·) emanating from a point
(x̄, t̄), where x̄ lies between φ+(t̄) and ζ (t̄) and is so close to φ+(t̄) that

(12.9.20) λ (z(x̄, t̄),0)−λ (0,0)< 1
4α t̄−

1
2 .

Let (z̄(·), w̄(·)) denote the trace of (z,w) along ξ (·). By virtue of Theorem 12.4.1,
z̄(·) is a nonincreasing function on (0, t̄) so that z̄(τ)≤ z̄(t̄−) = z(x̄, t̄). Consequently,
on account of (12.9.20),
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(12.9.21) ξ̇ (τ) = λ (z̄(τ), w̄(τ))≤ λ (z(x̄, t̄), w̄(τ))

≤ λ (0,0)+ 1
2α t̄−

1
2 + c̄|w̄(τ)|.

The integral of |w̄(·)| over [0, t̄] is O(1), by virtue of Lemma 12.8.3. Moreover,

(12.9.22) ξ (t̄) = x̄ > φ+(t̄)≥ λ (0,0)t̄ +α t̄
1
2 .

Therefore, integrating (12.9.21) over [0, t̄] yields

(12.9.23) ξ (0)≥ 1
2α t̄

1
2 +O(1)≥

√
2

4 αt
1
2 +O(1).

Since ζ (·) stays to the right of ξ (·), (12.9.23) implies, in particular, that the graph of
ζ (·) will intersect the graph of ψ+(·) at time t̂ = O(t

1
2 ).

Let (ẑ(·), ŵ(·)) denote the trace of (z,w) along ζ (·). The oscillation of ŵ(·) over
[t̂, t) is O(t−

1
4 ). Furthermore, on account of Theorem 12.5.1, with time origin shifted

to t̂, and Lemma 12.9.2, we deduce that the total variation of ŵ(·) over [t̂, t) is also
O(t−

1
4 ). It then follows from Theorem 12.4.1 that ẑ(t−) = O(t−

3
4 ).

By virtue of the above result, (12.9.21) now implies

(12.9.24) ξ̇ (τ)≤ λ (0,0)+O(t−
3
4 )+ c̄|w̄(τ)|,

which, upon integrating over [0, t], yields

(12.9.25) ξ (0)≥ x−λ (0,0)t +O(t
1
4 )≥ 1

2 [x−λ (0,0)t] .

Thus, t̂ ≥ c′[x− λ (0,0)t]. But then the oscillation and total variation of ŵ(·) over
[t̂, t] is bounded by ĉ[x−λ (0,0)t]− 1

2 , in which case (12.9.6)1 follows from Theorem
12.4.1.

Finally, we return to (12.9.14). Since z(φ+(t)+, t) is O(t−
3
4 ), we deduce that

g(t) = O(t−
3
4 ), and this in turn yields v(t) = (p+t)

1
2 +O(t

1
4 ), with p+ > 0. We have

thus verified (12.9.2)1 .
A similar argument establishes (12.9.6)2 , for x < ψ−(t), and validates (12.9.2)2 .

This completes the proof of Lemma 12.9.6 and thereby the proof of Theorem 12.9.1.

It is now easy to determine the large-time asymptotics of the solution U(x, t) in
L1(−∞,∞). Starting out from the (finite) Taylor expansion

(12.9.26) U(z,w) = zR(0,0)+wS(0,0)+O(z2 +w2),

and using Theorem 12.9.1, we conclude
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12.9.7 Theorem. Assume p+ > 0 and q− > 0. Then, as t → ∞,

(12.9.27)

‖U(x, t)−M(x, t; p−, p+)R(0,0)−N(x, t;q−,q+)S(0,0)‖L1(−∞,∞) = O(t−
1
4 ),

where M and N denote the N-wave profiles:

(12.9.28)1

M(x, t; p−, p+) =

⎧⎪⎪⎨⎪⎪⎩
x−λ (0,0)t
λz(0,0)t

, f or − (p−t)
1
2 ≤ x−λ (0,0)t ≤ (p+t)

1
2

0 otherwise,

(12.9.28)2

N(x, t;q−,q+) =

⎧⎪⎪⎨⎪⎪⎩
x−μ(0,0)t
μw(0,0)t

, f or − (q−t)
1
2 ≤ x−μ(0,0)t ≤ (q+t)

1
2

0 otherwise.

12.10 Periodic Solutions

The study of genuinely nonlinear hyperbolic systems (12.1.1) of two conservation
laws will be completed with a discussion of the large-time behavior of solutions with
small oscillation that are periodic,

(12.10.1) U(x+ �, t) =U(x, t), −∞ < x < ∞ , t > 0,

and have zero mean2:

(12.10.2)
∫ y+�

y
U(x, t)dx = 0, −∞ < y < ∞ , t > 0.

The confinement of waves resulting from periodicity induces active interactions
and cancellation. As a result, the total variation per period decays at the rate O(t−1):

12.10.1 Theorem. For any x ∈ (∞,∞), and t > 0,

(12.10.3) TV[x,x+�] z(·, t)+TV[x,x+�] w(·, t)≤
b�
t
.

Proof. Apply (12.6.1) with y = x+ n� ; then divide by n and let n → ∞ . This com-
pletes the proof.

2 If the Cauchy problem has unique solution, initial data that are periodic with zero mean
necessarily generate solutions with the same property.
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We now resolve the asymptotics at the scale O(t−1). The mechanism encoun-
tered in Section 11.7, in the context of genuinely nonlinear scalar conservation laws,
namely the confinement of the intercepts of extremal backward characteristics in in-
tervals of the x-axis of period length, is here in force as well and generates similar,
serrated asymptotic profiles. The nodes of the profiles are again tracked by divides,
in the sense of Definition 10.3.3.

12.10.2 Theorem. The upper half-plane is partitioned by minimal (or maximal) 1-
(or 2-) divides along which z (or w) decays rapidly to zero, O(t−2), as t → ∞ . Let
χ−(·) and χ+(·) be any two adjacent 1- (or 2-) divides, with χ−(t) < χ+(t). Then
χ+(t)− χ−(t) approaches a constant at the rate O(t−1), as t → ∞ . Furthermore,
between χ− and χ+ lies a 1- (or 2-) characteristic ψ such that, as t → ∞ ,

(12.10.4) ψ(t) = 1
2 [χ−(t)+χ+(t)]+o(1),

(12.10.5)1 λz(0,0)z(x, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x−χ−(t)

t
+o

(
1
t

)
, χ−(t)< x < ψ(t),

x−χ+(t)
t

+o
(

1
t

)
, ψ(t) < x < χ+(t),

or

(12.10.5)2 μw(0,0)w(x, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x−χ−(t)

t
+o

(
1
t

)
, χ−(t)< x < ψ(t),

x−χ+(t)
t

+o
(

1
t

)
, ψ(t) < x < χ+(t).

The first step towards proving the above proposition is to investigate the large-
time behavior of divides:

12.10.3 Lemma. Along minimal (or maximal) 1- (or 2-) divides, z (or w) decays at
the rate O(t−2), as t → ∞ . Furthermore, if χ−(·) and χ+(·) are any two minimal (or
maximal) 1- (or 2-) divides, then, as t → ∞ ,

(12.10.6) χ+(t)−χ−(t) = h∞ +O
(

1
t

)
,

(12.10.7)1

∫ χ+(t)

χ−(t)
z(x, t)dx = O

(
1
t2

)
,

or

(12.10.7)2

∫ χ+(t)

χ−(t)
w(x, t)dx = O

(
1
t2

)
.



12.10 Periodic Solutions 483

Proof. Assume χ(·) is a minimal 1-divide, say the limit of a sequence {ξn(·)} of
minimal backward 1-characteristics emanating from points {(xn, tn)}, with tn → ∞ ,
as n → ∞ . Let (zn(·),wn(·)) denote the trace of (z,w) along ξn(·). Applying Theorem
12.5.1, with time origin shifted to τ , and using Theorem 12.10.1, we deduce that the
total variation of wn(·) over any interval [τ,τ + 1] ⊂ [0, tn] is O(τ−1), uniformly in
n. Therefore, by virtue of Theorem 12.4.1, zn(·) is a nonincreasing function on [0, tn]
whose oscillation over [τ,τ + 1] is O(τ−3), uniformly in n. It follows that the trace
z̄(·) of z along χ(·) is likewise a nonincreasing function with O(τ−3) oscillation over
[τ,τ + 1]. By tallying the oscillation of z̄(·) over intervals of unit length, from t to
infinity, we verify the assertion z̄(t) = O(t−2).

A similar argument shows that the trace w̄(·) of w along maximal 2-divides is
likewise O(t−2), as t → ∞ .

Let χ−(·) and χ+(·) be minimal 1-divides with h(t) = χ+(t)− χ−(t) ≥ 0, for
0 ≤ t < ∞. Note that, because of periodicity, h(0) < k�, for some integer k, implies
h(t) ≤ k�, 0 ≤ t < ∞. Letting (z−(·),w−(·)) and (z+(·),w+(·)) denote the trace of
(z,w) along χ−(·) and χ+(·), respectively, we have

(12.10.8) ḣ(τ) = λ (z+(τ),w+(τ))−λ (z−(τ),w−(τ)),

for almost all τ in [0,∞).
The maximal backward 2-characteristic ζτ(·) emanating from the point

(χ+(τ),τ) is intercepted by the graph of χ−(·) at time τ − f (τ). If (ẑ(·), ŵ(·)) de-
notes the trace of (z,w) along ζτ(·), Theorems 12.5.1 and 12.10.1 together imply that
the total variation of ẑ(·) over the interval [τ− f (τ),τ] is O(τ−1), as τ → ∞ . It then
follows from Theorem 12.4.1 that the oscillation of ŵ(·) over [τ− f (τ),τ] is O(τ−3).
Hence

(12.10.9) w+(τ) = w−(τ− f (τ))+O(τ−3).

Since z±(τ) = O(τ−2), (12.10.8) yields

(12.10.10) ḣ(τ) = λ (0,w−(τ− f (τ)))−λ (0,w−(τ))+O(
1
τ2 ).

From ḣ(τ) = O(τ−1) and ζ̇τ = μ(0,0)+O(τ−1), we infer that the oscillation of
f (·) over the interval [τ,τ+1] is O(τ−1). The total variation of w−(·) over [τ,τ+1]
is likewise O(τ−1). Then, for any t < t ′ < ∞,

(12.10.11) |
∫ t ′

t
{λ (0,w−(τ− f (τ)))−λ (0,w−(τ))}dτ| ≤ c

t
.

Upon combining (12.10.10) with (12.10.11), one arrives at (12.10.6).
Let U−(·) and U+(·) denote the trace of U along χ−(·) and χ+(·), respectively.

Integration of (12.1.1) over {(x,τ) : t < τ < ∞ , χ−(τ)< x < χ+(τ)} yields the equa-
tion 12.9
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(12.10.12)
∫ χ+(t)

χ−(t)
U(x, t)dx

=
∫ ∞

t
{F(U+(τ))−λ (U+(τ))U+(τ)−F(U−(τ))+λ (U−(τ))U−(τ)}dτ.

We multiply (12.10.12), from the left, by the row vector Dz(0). On account of
(7.3.12), Uz = R and Uw = S so that, using (12.1.2), we deduce

(12.10.13) Dz(0)U = z+O(z2 +w2),

(12.10.14) Dz(0)[F(U)−λ (U)U ] = Dz(0)F(0)+aw2 +O(z2 + |zw|+ |w|3),
where the constant a is the value of 1

2 (λ − μ)S�D2zS at U = 0. Upon combining
z±(τ) = O(τ−2), w±(τ) = O(τ−1) and (12.10.9), we conclude

(12.10.15)
∫ χ+(t)

χ−(t)
z(x, t)dx = a

∫ ∞

t
[w2

−(τ− f (τ))−w2
−(τ)]dτ+O

(
1
t2

)
.

As explained above, over the interval [τ,τ + 1] the oscillation of f (·) is O(τ−1)
and the total variation of w2−(·) is O(τ−2). Then, the integral on the right-hand side
of (12.10.15) is O(t−2), as t → ∞ , which establishes (12.10.7)1 .

When χ−(·) and χ+(·) are maximal 2-divides, a similar argument verifies
(12.10.6) and (12.10.7)2 . The proof is complete.

The remaining assertions of Theorem 12.10.2 will be established through the
following

12.10.4 Lemma. Consider any two adjacent minimal (or maximal) 1- (or 2-) divides
χ−(·),χ+(·), with χ−(t)< χ+(t), 0 ≤ t < ∞ . The special forward 1- (or 2-) charac-
teristic φ−(·) (or ψ+(·)), in the notation of Section 12.3, issuing from any fixed point
(x̄,0), where χ−(0) < x̄ < χ+(0), is denoted by ψ(·). Then ψ(·) satisfies (12.10.4).
Furthermore, (12.10.5)1 (or (12.10.5)2) holds.

Proof. It will suffice to discuss the case where χ− and χ+ are 1-divides. We consider
minimal backward 1-characteristics ξ (·) emanating from points (x, t), with t > 0 and
χ−(t)< x < χ+(t). Their graphs are trapped between the graphs of χ− and χ+ . The
intercepts ξ (0) of such ξ , by the x-axis, cannot accumulate to any x̂ in the open
interval (χ−(0),χ+(0)), because in that case a minimal 1-divide would issue from
the point (x̂,0), contrary to our assumption that χ− and χ+ are adjacent. Therefore,
by the construction of ψ(·) we infer that, as t → ∞ , ξ (τ) → χ−(τ), when x is in
(χ−(t),ψ(t)], or ξ (τ) → χ+(τ), when x is in (ψ(t),χ+(t)], the convergence being
uniform on compact subsets of [0,∞).

Let us now fix ξ (·) that emanates from some point (x, t), with χ−(t)< x ≤ ψ(t),
and set h(τ) = ξ (τ)−χ−(τ), 0 ≤ τ ≤ t. Then, for almost all τ ∈ [0, t] we have

(12.10.16) ḣ(τ) = λ (z̄(τ), w̄(τ))−λ (z−(τ),w−(τ)),
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where (z̄(·), w̄(·)) denotes the trace of (z,w) along ξ (·), while (z−(·),w−(·)) stands
for the trace of (z,w) along χ−(·).

By virtue of Theorems 12.5.1 and 12.10.1, the total variation of w̄(·) on any
interval [s,s+ 1] ⊂ [0, t] is O(s−1). It then follows from Theorem 12.4.1 that the
oscillation of z̄(·) over [s,s+1] is O(s−3) and hence

(12.10.17) z̄(τ) = z(x, t)+O
(

1
τ2

)
.

Furthermore, by Lemma 12.10.3, z−(τ) = O(τ−2). Also, z(x, t) = O(t−1) so, a for-
tiori, z(x, t) = O(τ−1). On account of these observations, (12.10.16) yields

(12.10.18) ḣ(τ) = λz(0,0)z(x, t)+λ (0, w̄(τ))−λ (0,w−(τ))+O
(

1
τ2

)
.

For any fixed τ >> 0, we consider the maximal backward 2-characteristic ζτ(·)
emanating from the point (ξ (τ),τ), which is intercepted by the graph of χ−(·) at time
τ− f (τ). If (ẑ(·), ŵ(·)) denotes the trace of (z,w) along ζτ(·), Theorems 12.5.1 and
12.10.1 together imply that the total variation of ẑ(·) over the interval [τ − f (τ),τ]
is O(τ−1). It then follows from Theorem 12.4.1 that the oscillation of ŵ(·) over
[τ− f (τ),τ] is O(τ−3). Hence

(12.10.19) w̄(τ) = w−(τ− f (τ))+O
(

1
τ3

)
,

and so (12.10.18) implies

(12.10.20) ḣ(τ) = λz(0,0)z(x, t)+λ (0,w−(τ− f (τ)))−λ (0,w−(τ))+O
(

1
τ2

)
.

As in the proof of Lemma 12.10.3, on any interval [τ,τ+1]⊂ [0, t] the oscillation
of f (·) is O(τ−1) and the total variation of w−(·) is also O(τ−1). Therefore, upon
integrating (12.10.20) over the interval [s, t], 0 < s < t, we deduce

(12.10.21) x−χ−(t)−λz(0,0)z(x, t)t = ξ (s)−χ−(s)+O
(

1
s

)
+ sO

(
1
t

)
.

With reference to the right-hand side of (12.10.21), given ε > 0, we first fix s so
large that O(s−1) is less than 1

3ε . With s thus fixed, we determine t̂ such that, for
t ≥ t̂, sO(t−1) does not exceed 1

3ε , while at the same time ξ (s)−χ−(s)< 1
3ε , for all

x ∈ (χ−(t),ψ(t)]. It is sufficient to check this last condition for t = t̂, x = ψ(t̂). We
have thus verified that the left-hand side of (12.10.21) is o(1), as t → ∞ , uniformly
in x on (χ−(t),ψ(t)), which verifies the upper half of (12.10.5)1 . The lower half of
(12.10.5)1 is established by a similar argument. This completes the proof.
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12.11 Notes

There is voluminous literature addressing various aspects of the theory of genuinely
nonlinear systems of two conservation laws. The approach in this chapter, via the
theory of generalized characteristics, was initiated by the author. Many of these re-
sults, occasionally under slightly stricter assumptions, were derived earlier in the
framework of solutions constructed by the random choice method, which will be
presented in Chapter XIII. The seminal contribution in that direction is Glimm and
Lax [1], who introduced and employed the notions of “approximate characteristic”
and “approximate conservation law”. Approximate characteristics, namely concate-
nations of classical characteristics and shocks, are intimately related to generalized
characteristics, in the sense of the present work. However, there is a fundamental
distinction between the two approaches, in that Glimm and Lax follow approximate
characteristics as they propagate forward in time, whereas here we view generalized
characteristics retrospectively.

The Lax entropies, discussed in Section 12.2, were first introduced in Lax [4].
The hodograph transformation was discovered by Riemann [1]. For detailed discus-
sions and applications to aerodynamics, see Courant and Friedrichs [1], and von
Mises [1]. For applications to other areas of mathematical physics, see D. Fusco [1].

A somewhat stronger version of Theorem 12.3.3 was established by DiPerna [3],
for solutions constructed by the random choice method. Theorem 12.4.1 improves a
proposition in Dafermos [19].

Theorems 12.5.1, 12.6.1 and 12.6.4 were originally established in Glimm and
Lax [1], for solutions constructed by the random choice method. The treatment here
employs and refines methodology developed by Dafermos and Geng [1,2], for special
systems, and Trivisa [1], for general systems, albeit when solutions are “countably
regular.” Trivisa [2] extends these results to genuine nonlinear systems of n conser-
vation laws endowed with a coordinate system of Riemann invariants.

Tsikkou [1,2] treats by the same method the special system (4.1.11) of isen-
tropic elasticity. She approximates σ(u) by piecewise linear functions and conducts
a thorough examination of the resulting pattern of characteristics, thus deriving sharp
bounds on the total variation. She also shows that when σ ′(u) contains jump discon-
tinuities the total variation of solutions may blow up in finite time.

The results of Section 12.7 were established earlier by DiPerna [3], for solutions
constructed by the random choice method.

For solutions with initial data in L1, Temple [5] derives decay at the rate
O(1/

√
log t). The O(t−

1
2 ) decay rate established in Theorem 12.8.1, which is taken

from Dafermos [19], is sharp. Similarly, Lemma 12.8.2 improves an earlier result of
Temple [8]. L1 stability has now been established for general systems; see Chapter
XIV.

The mechanism that generates N-wave profiles was understood quite early,
through formal asymptotics (see Courant and Friedrichs [1]), even though a rigor-
ous proof was lacking (Lax [2]). In a series of papers by DiPerna [4,6] and Tai-Ping
Liu [8,9,22], decay to N-waves of solutions with initial data of compact support,
constructed by the random choice method, was established at progressively sharper
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rates, not only for genuinely nonlinear systems of two conservation laws but even for
systems of n conservation laws with characteristic families that are either genuinely
nonlinear or linearly degenerate. For an alternative approach, which decouples the
characteristic fields by a change of variable, see Ayad and Heibig [1,2]. The de-
cay rates recorded in Theorem 12.9.1 are sharp. When the initial data do not have
compact support but instead approach distinct limits UL and UR , as x → ±∞ , then
the solution U converges, as t → ∞ , to the solution of the Riemann problem with ini-
tial data (9.1.12); see Tai-Ping Liu [6] and compare with the scalar case discussed in
Section 11.5. Relatively little is known for systems that are not genuinely nonlinear;
see Zumbrun [1,2].

Theorem 12.10.1 is due to Glimm and Lax [1], while Theorem 12.10.2 is taken
from Dafermos [21]. For the stability of periodic solutions to the system of relativis-
tic isentropic gas flow, see Calvo, Colombo and Frid [1]. Decay of solutions with
periodic initial data may be peculiar to systems of two conservation laws. Indeed, the
work of R. Young [3,4] and Temple and Young [3,4] indicates that, for the system of
nonisentropic gas dynamics, solutions with periodic initial data remain bounded but
do not necessarily decay. On the other hand, recent work of Qu and Xin [1] shows
that the lifespan of such solutions is very long. On the other hand, systems that are, or
may be transformed into, linearly degenerate, typically admit smooth time-periodic
solutions. For an example, see M. Shearer [7].

For applications of the theory of characteristics to investigating uniqueness, reg-
ularity and large-time behavior of solutions of special systems with coinciding shock
and rarefaction wave curves (Temple [3]), see Serre [7,11], Dafermos and Geng [1,2],
Heibig [2], Heibig and Sahel [1], and Ostrov [1]. BV solutions for such systems have
been constructed by the Godunov difference scheme (LeVeque and Temple [1]) as
well as by the method of vanishing viscosity (Serre [1,11]). For blowing up in L∞ of
solutions to initial-boundary value problems, see Bourdarias, Gisclon and Junca [2].

There is extensive literature on systems of two conservation laws treated through
the Glimm-Lax approach.For an extension of the Lax-Glimm theory to genuinely
nonlinear systems of two conservation laws under fewer restrictions on the shock and
rarefaction wave curves, see Bianchini, Colombo and Monti [1,2]. For an example
of a system with inhomogeneous flux, see Frid, Risebro and Sande [1].
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The Random Choice Method

This chapter introduces the celebrated random choice method, which has provided
the earliest, but still very effective, scheme for constructing globally defined, admis-
sible BV solutions to the Cauchy problem for strictly hyperbolic systems of conser-
vation laws, under initial data with small total variation. The solution is obtained as
the limit of a sequence of approximate solutions that do not smear shocks. Solutions
to the Riemann problem, discussed at length in Chapter IX, serve as building blocks
for constructing the approximate solutions to the Cauchy problem. Striving to pre-
serve the sharpness of shocks may be in conflict with the requirement of consistency
of the algorithm. The “randomness” feature of the method is employed in order to
strike the delicate balance of safeguarding consistency without smearing the sharp-
ness of propagating shock fronts. At the cost of delineating the global wave pattern,
the device of wave tracing, which will be discussed here only briefly, renders the
algorithm deterministic.

A detailed presentation of the random choice method will be given for systems
with characteristic families that are either genuinely nonlinear or linearly degenerate.
The case of more general systems, which involves substantial technical complication,
will be touched on rather briefly here.

In Chapter XVI we shall see how the algorithm may be adapted for handling
systems of balance laws, with inhomogeneities and source terms.

13.1 The Construction Scheme

We consider the initial value problem for a strictly hyperbolic system of conservation
laws, defined on a ball O centered at the origin:

(13.1.1)

⎧⎨⎩ ∂tU(x, t)+∂xF(U(x, t)) = 0, −∞ < x < ∞ , 0 ≤ t < ∞ ,

U(x,0) =U0(x), −∞ < x < ∞ .

The initial data U0 are functions of bounded variation on (−∞,∞). The ultimate goal
is to establish the following
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13.1.1 Theorem. There are positive constants δ0 and δ1 such that if

(13.1.2) sup(−∞,∞)|U0(·)|< δ0 ,

(13.1.3) TV(−∞,∞)U0(·)< δ1 ,

then there exists a solution U of (13.1.1), which is a function of locally bounded
variation on (−∞,∞)× [0,∞), taking values in O . This solution satisfies the entropy
admissibility criterion for any entropy-entropy flux pair (η ,q) of the system, with
η(U) convex. Furthermore, for each fixed t ∈ [0,∞), U(·, t) is a function of bounded
variation on (−∞,∞) and

(13.1.4) sup(−∞,∞)|U(·, t)| ≤ c0 sup(−∞,∞)|U0(·)|, 0 ≤ t < ∞ ,

(13.1.5) TV(−∞,∞)U(·, t)≤ c1TV(−∞,∞)U0(·), 0 ≤ t < ∞ ,

(13.1.6)
∫ ∞

−∞
|U(x, t)−U(x,τ)|dx ≤ c2|t − τ|TV(−∞,∞)U0(·), 0 ≤ τ < t < ∞ ,

where c0,c1 and c2 are constants depending solely on F . When the system is en-
dowed with a coordinate system of Riemann invariants, δ1 in (13.1.3) may be fixed
arbitrarily large, so long as

(13.1.7) (sup(−∞,∞)|U0(·)|)(TV(−∞,∞)U0(·))< δ2 ,

with δ2 sufficiently small, depending on δ1 .

The proof of the above proposition is quite lengthy and shall occupy the entire
chapter. Even though the assertion holds at the level of generality stated above, cer-
tain steps in the proof (Sections 13.3, 13.4, 13.5 and 13.6) will be carried out under
the simplifying assumption that each characteristic family of the system is either gen-
uinely nonlinear (7.6.13) or linearly degenerate (7.5.2). The case of general systems
will be touched on in Sections 13.7 and 13.8.

The solution U will be attained as the h ↓ 0 limit of a family of approximate
solutions Uh constructed by the following process.

We fix a spatial mesh-length h, which will serve as parameter, and an associated
temporal mesh-length λ−1h, where λ is a fixed upper bound of the characteristic
speeds |λi(U)|, for U ∈ O and i = 1, · · · ,n. Setting xr = rh , r = 0,±1,±2, · · · and
ts = sλ−1h , s = 0,1,2, · · · , we build the staggered grid of mesh-points (xr, ts), with
s = 0,1,2, · · · , and r+ s even.

Assuming now Uh has been defined on {(x, t) : −∞ < x < ∞ , 0 ≤ t < ts}, we
determine Uh(·, ts) as a step function that is constant on intervals defined by neigh-
boring mesh-points along the line t = ts ,

(13.1.8) Uh(x, ts) =Ur
s , xr−1 < x < xr+1 , r+ s odd,



13.1 The Construction Scheme 491

and approximates the function Uh(·, ts−). The major issue of selecting judiciously
the constant states Ur

s will be addressed in Section 13.2.
Next we determine Uh on the strip {(x, t) : −∞ < x < ∞ , ts ≤ t < ts+1} as a

solution of our system, namely,

(13.1.9) ∂tUh(x, t)+∂xF(Uh(x, t)) = 0, −∞ < x < ∞ , ts ≤ t < ts+1 ,

under the initial condition (13.1.8), along the line t = ts . Notice that the solution of
(13.1.9), (13.1.8) consists of centered wave fans emanating from the mesh-points ly-
ing on the ts-time line (Fig. 13.1.1). The wave fan centered at the mesh point (xr, ts),
r+ s even, is constructed by solving the Riemann problem for our system, with left
state Ur−1

s and right state Ur+1
s . We employ admissible solutions, with shocks satis-

fying the viscous shock admissibility condition (cf. Chapter IX). The resulting outgo-
ing waves from neighboring mesh-points do not interact on the time interval [ts, ts+1),
because of our selection of the ratio λ of spatial and temporal mesh-lengths.

x

t

sU U
r+1

s

r–1

(x r, t )s

(–4h, 0) (–2h, 0) (0, 0) (2h, 0) (4h, 0)

Fig. 13.1.1

To initiate the algorithm, at s = 0, we employ the initial data:

(13.1.10) Uh(x,0−) =U0(x), −∞ < x < ∞ .

The construction of Uh may proceed for as long as one can solve the resulting
Riemann problems. As we saw in Chapter IX, this can be performed, in general, so
long as the jumps |Ur+1

s −Ur−1
s | stay sufficiently small.

After considerable preparation, we shall demonstrate, in Sections 13.5 and 13.6,
that the Uh satisfy estimates

(13.1.11) sup(−∞,∞)|Uh(·, t)| ≤ c0 sup(−∞,∞)|U0(·)|, 0 ≤ t < ∞ ,

(13.1.12) TV(−∞,∞)Uh(·, t)≤ c1TV(−∞,∞)U0(·), 0 ≤ t < ∞ ,
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(13.1.13)∫ ∞

−∞
|Uh(x, t)−Uh(x,τ)|dx ≤ c2(|t − τ|+h)TV(−∞,∞)U0(·), 0 ≤ τ < t < ∞ .

In particular, (13.1.11) guarantees that when (13.1.2) holds with δ0 sufficiently small,
Uh may be constructed on the entire upper half-plane.

13.2 Compactness and Consistency

Deferring the proof of (13.1.11), (13.1.12) and (13.1.13) to Sections 13.5 and 13.6,
here we shall take these stability estimates for granted and will examine their im-
plications. By virtue of (13.1.12), Helly’s theorem and the Cantor diagonal process,
there is a sequence {hm}, with hm → 0 as m → ∞ , such that {Uhm(·,τ)} is Cauchy
in L1

loc(−∞,∞), for each positive rational number τ . Since the rationals are dense
in [0,∞), (13.1.13) implies that {Uhm(·, t)} must be Cauchy in L1

loc(−∞,∞), for any
t ≥ 0. Thus

(13.2.1) Uhm(x, t)→U(x, t), as m → ∞ , in L1
loc((−∞,∞)× [0,∞)),

where, for each fixed t ∈ [0,∞),U(·, t) is a function of bounded variation on (−∞,∞),
which satisfies (13.1.4), (13.1.5) and (13.1.6). In particular, U is in BVloc .

We now turn to the question of consistency of the algorithm, investigating
whether U is a solution of the initial value problem (13.1.1). By its construction,
Uh satisfies the system inside each strip {(x, t) : −∞ < x < ∞, ts ≤ t < ts+1}. Con-
sequently, the errors are induced by the jumps of Uh across the dividing time lines
t = ts . To estimate the cumulative effect of these errors, we fix any C∞ test function
φ , with compact support on (−∞,∞)× [0,∞), we apply the measure (13.1.9) to φ
on the rectangle {(x, t) : xr−1 < x < xr+1 , ts ≤ t < ts+1 , r+ s odd} and sum over all
such rectangles in the upper half-plane. After an integration by parts, and upon using
(13.1.8) and (13.1.10), we obtain

(13.2.2)
∫ ∞

0

∫ ∞

−∞
[∂tφUh +∂xφF(Uh)]dxdt +

∫ ∞

−∞
φ(x,0)U0(x)dx

=
∞

∑
s=0

∑
r+s odd

∫ xr+1

xr−1

φ(x, ts)[Uh(x, ts−)−Ur
s ]dx.

Therefore, U will be a weak solution of (13.1.1), i.e., the algorithm will be consistent,
if Ur

s approximates the function Uh(·, ts−), over the interval (xr−1 , xr+1), in such a
manner that the right-hand side of (13.2.2) tends to zero, as h ↓ 0.

One may attain consistency via the Lax-Friedrichs scheme:

(13.2.3) Ur
s =

1
2h

∫ xr+1

xr−1

Uh(x, ts−)dx, r+ s odd.

Indeed, with that choice, each integral on the right-hand side of (13.2.2) is ma-
jorized by h2 max |∂xφ |osc(xr−1,xr+1)Uh(·, ts−). The sum of these integrals over r is
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then majorized by h2 max |∂xφ |TV(−∞,∞)Uh(·, ts−), which, in turn, is bounded by
c1δ1h2 max |∂xφ |, on account of (13.1.12) and (13.1.3). The summation over s, within
the support of φ , involves O(h−1) terms, and so finally the right-hand side of (13.2.2)
is O(h), as h ↓ 0.

Even though it passes the test of consistency, the Lax-Friedrichs scheme stum-
bles on the issue of stability: it is at present unknown whether estimates (13.1.12)
and (13.1.13) hold within its framework.1 One of the drawbacks of this scheme is
that it smears, through averaging, the shocks of the exact solution. This feature may
be vividly illustrated in the context of the Riemann problem for the linear, scalar
conservation law,

(13.2.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tu(x, t)+aλ∂xu(x, t) = 0, −∞ < x < ∞ , 0 ≤ t < ∞ ,

u(x,0) =

⎧⎨⎩ 0, −∞ < x < 0

1, 0 < x < ∞ ,

where a is a constant in (−1,1) (recall that λ denotes the ratio of the spatial and
temporal mesh-lengths). The solution of (13.2.4) comprises, of course, the constant
states u = 0, on the left, and u = 1, on the right, joined by the shock x = aλ t. The first
four steps of the construction of the approximate solution uh according to the Lax-
Friedrichs scheme are depicted in Fig. 13.2.1. The smearing of the shock is clearly
visible.

In order to prevent the smearing of shocks, we try a different policy for evaluating
the Ur

s . We start out with some sequence℘= {a0,a1,a2, · · ·}, where as ∈ (−1,1),
we set yr

s = xr + ash, and build, on the upper half-plane, another staggered grid of
points (yr

s, ts), with s = 0,1,2, · · · and r + s odd. We employ (yr
s, ts) as a sampling

point for the interval (xr−1 , xr+1), on the ts-time line, by selecting

(13.2.5) Ur
s = lim

t↑ts
Uh(yr

s−, t), r+ s odd.

To test this approach, we consider again the Riemann problem (13.2.4). The first
few steps of the construction of the approximate solution Uh are depicted in Fig.
13.2.2. We observe that according to the rule (13.2.5), as one passes from t = ts
to t = ts+1 , the shock is preserved but its location is shifted by h, to the left when
as > a, or to the right when as < a. Consequently, in the limit h ↓ 0 the shock will
be thrown off course, unless the number m− of indices s ≤ m with as < a and the
number m+ of indices s ≤ m with as > a are related through m− −m+ ∼ am, as
m → ∞ . Combining this with m−+m+ = m, we conclude that uh will converge to
the solution of (13.2.4) if and only if m−/m → 1

2 (1+ a) and m+/m → 1
2 (1− a),

as m → ∞ . For consistency of the algorithm, it will be necessary that the above

1 In fact, it has been demonstrated, in the context of the closely related Godunov scheme, that
selecting λ to be an irrational number, but very close to a rational, induces resonance gen-
erating spurious oscillations in the approximate solutions, which drives the total variation
to infinity.
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condition hold for arbitrary a ∈ (−1,1). Clearly, this will be the case only when
the sequence℘ is equidistributed on the interval (−1,1), that is, for any subinterval
I ⊂ (−1,1) of length μ(I):

(13.2.6) lim
m→∞

2
m
[number of indices s ≤ m with as ∈ I] = μ(I),

uniformly with respect to I.
Later on, in Section 13.8, we shall see that the algorithm based on (13.2.5), with

any sequence ℘ which is equidistributed in (−1,1), is indeed consistent, for the
general initial value problem (13.1.1); but this may be established only by paying
the price of tracking the global wave pattern. The objective here is to demonstrate
a slightly weaker result, whose proof however relies solely on the stability estimate
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(13.1.5). Roughly, it will be shown that if one picks the sequence℘ at random, then
the resulting algorithm will be consistent, with probability one. It is from this feature
that the method derives its name: random choice.

We realize℘ as a point in the Cartesian product space A = ∏∞
s=0(−1,1). Each

factor (−1,1) is regarded as a probability space, under Lebesgue measure rescaled
by a factor 1/2, and this induces a probability measure ν on A as well. In connection
with our earlier discussions on consistency, it may be shown (references in Section
13.10) that almost all sequences ℘∈ A are equidistributed in (−1,1). The main
result is

13.2.1 Theorem. There is a null subset N of A with the property that the algorithm
induced by any sequence℘∈A \N is consistent. That is, when the Ur

s are evaluated
through (13.2.5), with yr

s = xr + ash, then the limit U in (13.2.1) is a solution of the
initial value problem (13.1.1).

Proof. The right-hand side of (13.2.2) is completely determined by the spatial mesh-
length h, the sequence℘and the test function φ , so it shall be denoted by e(℘;φ ,h).
By virtue of (13.2.5),

(13.2.7) e(℘;φ ,h) =
∞

∑
s=0

es(℘;φ ,h),

where

(13.2.8) es(℘;φ ,h) = ∑
r+s odd

∫ xr+1

xr−1

φ(x, ts)[Uh(x, ts−)−Uh(yr
s, ts−)]dx.

The integral on the right-hand side of (13.2.8) is bounded from above by
2hmax |φ |osc(xr−1,xr+1)Uh(·, ts−) and hence es(℘;φ ,h) is in turn majorized by
2hmax |φ |TV(−∞,∞)Uh(·, ts−). By (13.1.12) and (13.1.3), we conclude

(13.2.9) |es(℘;φ ,h)| ≤ 2c1δ1hmax |φ |, s = 0,1,2, · · · .
In the summation (13.2.7), the number of nonzero terms, lying inside the sup-

port of φ , is O(h−1), and so the most one may generally extract from (13.2.9) is
e(℘;φ ,h) = O(1), as h ↓ 0. This again indicates that one should not expect consis-
tency for an arbitrary sequence℘. The success of the random choice method stems
from the fact that, as h ↓ 0, the average of es(℘;φ ,h) decays to zero faster than
es(℘;φ ,h) itself. Indeed,

(13.2.10)
∫ 1

−1

∫ xr+1

xr−1

φ(x, ts)[Uh(x, ts−)−Uh(yr
s, ts−)]dxdas

=
1
h

∫ xr+1

xr−1

∫ xr+1

xr−1

φ(x, ts)[Uh(x, ts−)−Uh(y, ts−)]dxdy

is majorized by 2h2 max |∂xφ |osc(xr−1xr+1)Uh(·, ts−). The sum over r of these inte-
grals is then majorized by 2h2 max |∂xφ |TV(−∞,∞)Uh(·, ts−). Recalling (13.1.12) and
(13.1.3), we finally conclude
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(13.2.11) |
∫ 1

−1
es(℘;φ ,h)das| ≤ 2c1δ1h2 max |∂xφ |, s = 0,1,2, · · · .

Next we demonstrate that, for 0 ≤ s < σ < ∞ , es(℘;φ ,h) and eσ (℘;φ ,h) are
“weakly correlated” in that their inner product in A decays to zero very rapidly,
O(h3), as h ↓ 0. In the first place, es(℘;φ ,h) depends on℘ solely through the first
s+1 components (a0, · · · ,as) and, similarly, eσ (℘;φ ,h) depends on℘only through
(a0, · · · ,aσ ). Hence, upon using (13.2.9) and (13.2.11),

(13.2.12) |
∫

A
es(℘;φ ,h)eσ (℘;φ ,h)dν(℘)|

= |2−σ−1
∫ 1

−1
· · ·

∫ 1

−1
es(

∫ 1

−1
eσdaσ )da0 · · ·daσ−1|

≤ 2c2
1δ

2
1 h3 max |φ |max |∂xφ |.

By virtue of (13.2.7),

(13.2.13) |e|2 =
∞

∑
s=0

|es|2 +2
∞

∑
s=0

∞

∑
σ=s+1

eseσ .

Since φ has compact support, on the right-hand side of (13.2.13) the first summation
contains O(h−1) nonzero terms and the second summation contains O(h−2) nonzero
terms. Consequently, on account of (13.2.9) and (13.2.12),

(13.2.14)
∫

A
|e(℘;φ ,h)|2dν(℘) = O(h), as h ↓ 0.

Thus there exists a null subset Nφ of A such that e(℘;φ ,hm) → 0, as m → ∞ , for
any℘∈ A \Nφ . If {φk} is any countable set of test functions, which is C1-dense in
the set of all test functions with compact support in (−∞,∞)× [0,∞), the null subset
N =

⋃
k
Nφk of A will obviously satisfy the assertion of the theorem. The proof is

complete.

To conclude this section, we discuss the admissibility of the constructed solution.

13.2.2 Theorem. Assume the system is endowed with an entropy-entropy flux pair
(η ,q), where η(U) is convex in O . Then there is a null subset N of A with the
following property: When the Ur

s are evaluated via (13.2.5), with yr
s = xr +ash, then

for any℘∈ A \N , the limit U in (13.2.1) is a solution of (13.1.1) which satisfies
the entropy admissibility criterion.

Proof. Inside each strip {(x, t) : −∞ < x < ∞ , ts ≤ t < ts+1},Uh is a solution of
(13.1.9), with shocks that satisfy the viscous shock admissibility condition and
thereby also the entropy shock admissibility criterion, relative to the entropy-entropy
flux pair (η ,q) (cf. Theorem 8.6.2). Therefore, we have
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(13.2.15) ∂tη(Uh(x, t))+∂xq(Uh(x, t))≤ 0, −∞ < x < ∞ , ts ≤ t < ts+1 ,

in the sense of measures.
Consider any nonnegative C∞ test function φ with compact support on

(−∞,∞)× [0,∞). We apply the measure (13.2.15) to the function φ on the rectangle
{(x, t) : xr−1 < x < xr+1 , ts ≤ t < ts+1 , r+ s odd} and sum over all such rectangles
in the upper half-plane. After an integration by parts, and upon using (13.1.8) and
(13.1.10), this yields

(13.2.16)
∫ ∞

0

∫ ∞

−∞
[∂tφ η(Uh)+∂xφ q(Uh)]dxdt +

∫ ∞

−∞
φ(x,0)η(U0(x))dx

≥
∞

∑
s=0

∑
r+s odd

∫ xr+1

xr−1

φ(x, ts)[η(Uh(x, ts−))−η(Ur
s )]dx.

Retracing the steps of the proof of Theorem 13.2.1, we deduce that there is a null
subset Nφ of A with the property that, when ℘∈ A \Nφ , the right-hand side of
(13.2.16) tends to zero, along the sequence {hm}, as m → ∞ . Consequently, the limit
U in (13.2.1) satisfies the inequality

(13.2.17)
∫ ∞

0

∫ ∞

−∞
[∂tφ η(U)+∂xφ q(U)]dxdt +

∫ ∞

−∞
φ(x,0)η(U0(x))dx ≥ 0.

We now consider any countable set {φk} of nonnegative test functions that is C1-
dense in the set of all nonnegative test functions with compact support in the upper
half-plane (−∞,∞)× [0,∞), and define N =

⋃
k
Nφk . It is clear that if one selects

any ℘∈ A \N , then (13.2.17) will hold for all nonnegative test functions φ and
hence U will satisfy the entropy admissibility condition. This completes the proof.

In the absence of entropy-entropy flux pairs, or whenever the entropy admis-
sibility criterion is not sufficiently selective to rule out all spurious solutions (cf.
Chapter VIII), the question of admissibility of solutions constructed by the random
choice method is subtle. It is plausible that the requisite shock admissibility con-
ditions will hold at points of approximate jump discontinuity of the solution U ,
so long as they are satisfied by the shocks of the approximate solutions Uh . Prov-
ing this, however, requires a more refined treatment of the limit process that yields
U from Uh which may be attained by the method of wave partitioning outlined in
Section 13.8.
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13.3 Wave Interactions in Genuinely Nonlinear Systems

We now embark on the long journey that will eventually lead to the stability esti-
mates (13.1.11), (13.1.12) and (13.1.13). The first step is to estimate local changes
in the total variation of the approximate solutions Uh . For simplicity, we limit the
discussion to systems with characteristic families that are either genuinely nonlin-
ear (7.6.13) or linearly degenerate (7.5.2). The general case is considerably more
complicated and will be discussed briefly in Section 13.7.

According to the construction scheme, a portion of the wave fan emanating from
the mesh-point (xr−1, ts−1),r+ s even, combines with a portion of the wave fan em-
anating from the mesh-point (xr+1, ts−1) to produce the wave fan that emanates from
the mesh-point (xr, ts). This is conveniently illustrated by enclosing the mesh-point
(xr, ts) in a diamond-shaped region Δ r

s with vertices at the four surrounding sampling
points, (yr−1

s , ts), (yr
s−1, ts−1), (yr+1

s , ts) and (yr
s+1, ts+1); see Fig. 13.3.1.
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A wave fan emanating from (xr−1, ts−1) and joining the state Ur−1
s , on the left,

with the state Ur
s−1 , on the right, enters Δ r

s through its “southwestern” edge. It may
be represented, as explained in Sections 9.3 and 9.9, by the n-tuple α = (α1, · · · ,αn)
of its wave amplitudes. A second wave fan, emanating from (xr+1, ts−1), joining the
state Ur

s−1 , on the left, with the state Ur+1
s , on the right, and similarly represented by

the n-tuple β = (β1, · · · ,βn) of its wave amplitudes, enters Δ r
s through its “southeast-

ern” edge.
The output from Δ r

s consists of the full wave fan that emanates from (xr, ts),
joins the state Ur−1

s , on the left, with the state Ur+1
s , on the right, and is represented

by the n-tuple ε = (ε1, · · · ,εn) of its wave amplitudes. A portion β ′ = (β ′
1, · · · ,β ′

n)
of ε exits through the “northwestern” edge of Δ r

s and enters the diamond Δ r−1
s+1 ,

while the balance α ′ = (α ′
1, · · · ,α ′

n) exits through the “northeastern” edge of Δ r
s and

enters the diamond Δ r+1
s+1 . Clearly, εi = α ′

i +β ′
i , i = 1 , · · · ,n. As explained in Section

9.4, for genuinely nonlinear characteristic families, a positive amplitude indicates a
rarefaction wave and a negative amplitude indicates a compressive shock. Needless
to say, a zero amplitude indicates that the wave of that family is missing from the
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wave fan in question. In particular, we identify j = 1, · · · ,n such that α ′
i = 0 for

i = 1, · · · , j−1 and β ′
i = 0 for i = j+1, · · · ,n. Both α ′

j and β ′
j may be nonzero, but

then both must be positive, associated with rarefaction waves.
If the incoming wave fans α and β were allowed to propagate freely, beyond

the ts-time line, the resulting wave interactions would generate a very intricate wave
pattern. Nevertheless, following the discussion in Section 9.9, it should be expected
that as t → ∞ this wave pattern will reduce to a centered wave fan which is none
other than ε . Thus the essence of our construction scheme is that it replaces actual,
complex, wave patterns by their time-asymptotic, simpler, forms. In that connection,
the role of “random choice” is to arrange the relative position of the wave fans in
such a manner that “on the average” the law of “mass” conservation holds.

According to the terminology of Section 9.9, the wave fan ε shall be regarded as
the result of the interaction of the wave fan α , on the left, with the wave fan β , on
the right. It is convenient to realize ε,α and β as n-vectors normed by the �n

1 norm,
in which case Theorem 9.9.1 yields the estimate

(13.3.1) |ε− (α+β )| ≤ [c3 + c4(|α|+ |β |)]D(Δ r
s ),

with c3 and c4 depending solely on F . In particular, c3 = 0 when the system is en-
dowed with a coordinate system of Riemann invariants. Here the symbol D(Δ r

s ) is
being used, in the place of D(α,β ) in Section 9.9, to denote the amount of wave
interaction in the diamond Δ r

s , namely,

(13.3.2) D(Δ r
s ) = ∑

app
|αk||β j|.

The summation runs over all pairs of approaching waves, i.e., over all (k, j) such that
either k > j, or k = j and at least one of α j , β j is negative, corresponding to a shock.

Formula (13.3.1) will serve as the vehicle for estimating how the total variation
and the supremum of the approximate solutions Uh change with time, as a result of
wave interactions. It will suffice for establishing the desired stability estimates and
thereby the convergence of the algorithm and the existence of solutions to the Cauchy
problem. However, in order to study finer properties of the solution it is necessary to
look more closely at wave interactions, with an eye to potential cancellations.

By (13.3.1), when αi and βi have the same sign, the total strength |α ′
i |+ |β ′

i | of
i-waves leaving the diamond Δ r

s is nearly equal to the total strength |αi|+ |βi| of en-
tering i-waves. However, when αi and βi have opposite signs, cancellation of i-waves
takes place. To account for this phenomenon, which greatly affects the behavior of
solutions, certain notions will now be introduced.

The amount of i-wave cancellation in the diamond Δ r
s is conveniently measured

by the quantity

(13.3.3) Ci(Δ r
s ) =

1
2 (|αi|+ |βi|− |αi +βi|).

In order to account separately for shocks and rarefaction waves, we rewrite (13.3.1)
in the form
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(13.3.4) ε±i = α±
i +β±

i −Ci(Δ r
s )+ [c3O(1)+O(τ)]D(Δ r

s ),

where the superscript plus or minus denotes positive or negative part of the ampli-
tude, and τ is the oscillation of Uh .

Upon summing (13.3.4) over any collection of diamonds, whose union forms a
domain Λ in the upper half-plane, we end up with equations

(13.3.5) L±
i (Λ) = E±

i (Λ)−Ci(Λ)+ [c3O(1)+O(τ)]D(Λ),

where E−
i (or E+

i ) denotes the total amount of i-shock (or i-rarefaction wave) that
enters Λ , L−

i (or L+
i ) denotes the total amount of i-shock (or i-rarefaction wave) that

leaves Λ , Ci(Λ) is the amount of i-wave cancellation inside Λ , and D(Λ) is the
amount of wave interaction inside Λ . The equations (13.3.5) express the balance of
i-waves relative to Λ and, accordingly, are called approximate conservation laws for
i-shocks (with minus sign) or i-rarefaction waves (with plus sign).

The total amount of wave cancellation in the diamond Δ r
s is naturally measured

by

(13.3.6) C (Δ r
s ) =

n

∑
i=1

Ci(Δ r
s ).

Notice that (13.3.1) implies

(13.3.7) |α ′|+ |β ′|= |ε| ≤ |α|+ |β |−2C (Δ r
s )+ [c3 + c4(|α|+ |β |)]D(Δ r

s ).

13.4 The Glimm Functional for Genuinely Nonlinear Systems

The aim here is to establish bounds on the total variation of approximate solutions
Uh along certain curves. We are still operating under the assumption that each char-
acteristic family is either genuinely nonlinear (7.6.13) or linearly degenerate (7.5.2).

A mesh curve, associated with Uh , is a polygonal graph with vertices that form
a finite sequence of sample points (yr1

s1 , ts1), · · · ,(yrm
sm , tsm), where r�+1 = r� + 1 and

s�+1 = s�−1 or s�+1 = s�+1 (Fig. 13.4.1). Thus the edges of any mesh curve I are
also edges of diamond-shaped regions considered in the previous section. Any wave
entering into a diamond through an edge shared with the mesh curve I is said to be
crossing I.

A mesh curve J is called an immediate successor of the mesh curve I when J\I
is the upper (i.e., “northwestern” and “northeastern”) boundary of some diamond,
say Δ r

s , and I\J is the lower (i.e., “southwestern” and “southeastern”) boundary of
Δ r

s . Thus J has the same vertices as I, save for one, (yr
s−1, ts−1), which is replaced

by (yr
s+1, ts+1). This induces a natural partial ordering in the family of mesh curves:

J is a successor of I, denoted I < J, whenever there is a finite sequence, namely
I = I0 , I1, · · · , Im = J, of mesh curves such that I� is an immediate successor of I�−1 ,
for �= 1, · · · ,m.
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With mesh curves I we associate the functionals

(13.4.1) S (I) = max |ξ |,

(13.4.2) L (I) = ∑ |ξ |,

where both the maximum and the summation are taken over the amplitudes ξ of all
waves that are crossing I. Clearly, S (I) measures the oscillation and L (I) measures
the total variation of Uh along the curve I. We shall estimate the supremum and total
variation of Uh by monitoring how S and L change as one passes from I to its
successors.

Assume J is an immediate successor of I, as depicted in Fig. 13.4.1. Wave fans
α = (α1, · · · ,αn) and β = (β1, · · · ,βn) enter the diamond Δ r

s through its “southwest-
ern” and “southeastern” edge, respectively, and interact to generate, as discussed in
Section 13.3, the wave fan ε = (ε1, · · · ,εn), which exits Δ r

s through its “northwest-
ern” and “northeastern” edge. By virtue of (13.3.1) we deduce

(13.4.3) S (J)≤ S (I)+ [c3 + c4S (I)]D(Δ r
s ),

(13.4.4) L (J)≤ L (I)+ [c3 + c4S (I)]D(Δ r
s ),

where c3 and c4 are the constants that appear also in (13.3.1). In particular, when the
system is endowed with a coordinate system of Riemann invariants, c3 = 0. Clearly,
S and L may increase as one passes from I to J, and thus (13.4.3), (13.4.4) alone
are insufficient to render the desired bounds (13.1.11), (13.1.12).

What saves the day is the realization that L may increase only as a result of in-
teraction among approaching waves, which, after crossing paths, separate and move
away from each other, never to meet again. Consequently, the potential for future
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interactions is embodied in the initial arrangement of waves and may thus be an-
ticipated and estimated in advance. To formalize the above heuristic arguments, we
shall associate with mesh curves I a functional Q (I) which measures the potential
for future interactions of waves that are crossing I.

An i-wave and a j-wave, crossing the mesh curve I, are said to be approaching
if (a) i > j and the i-wave is crossing on the left of the j-wave; or (b) i < j and the
i-wave is crossing on the right of the j-wave; or (c) i = j, the i-characteristic family
is genuinely nonlinear and at least one of the waves is a shock. The reader should
note the analogy with the notion of approaching waves in two interacting wave fans,
introduced in Section 9.9. After this preparation, we set

(13.4.5) Q(I) = ∑
app

|ζ ||ξ |,

where the summation runs over all pairs of approaching waves that are crossing I
and ζ , ξ are their amplitudes. Clearly,

(13.4.6) Q(I)≤ 1
2 [L (I)]2.

The change in the potential of future wave interactions as one passes from the
mesh curve I to its immediate successor J, depicted in Fig. 13.4.1, is controlled by
the estimate

(13.4.7) Q(J)−Q(I)≤ {[c3 + c4S (I)]L (I)−1}D(Δ r
s ),

where c3 and c4 are the same constants appearing in (13.4.3) and (13.4.4).
To verify (13.4.7), we shall distinguish between peripheral waves, which are

crossing both I and J on the left of (yr−1
s , ts) or on the right of (yr+1

s , ts), and principal
waves, that is, constituents of the wave fans α,β or ε , which enter or exit Δ r

s by
crossing I or J between (yr−1

s , ts) and (yr+1
s , ts).

We first observe that pairs of principal waves from the incoming wave fans α and
β interact to contribute the amount D(Δ r

s ) to Q(I). By contrast, no pair of principal
waves from the outgoing wave fan ε is approaching so as to make a contribution to
Q(J).

Next we note that pairs of peripheral waves contribute equally to Q(I) and to
Q(J); hence their net contribution to Q(J)−Q(I) is nil.

It remains to discuss the pairing of peripheral with principal waves. Let us exam-
ine the contributions to Q(I) and to Q(J) from the pairing of some fixed peripheral
i-wave, of amplitude ζ , with the j-waves of α, β and ε . One must distinguish the fol-
lowing cases: (i) j > i and the peripheral i-wave is crossing I on the left of (yr−1

s , ts);
(ii) j < i and the peripheral i-wave is crossing I on the right of (yr+1

s , ts); (iii) j = i and
the i-characteristic family is linearly degenerate; (iv) j > i and the peripheral i-wave
is crossing I on the right of (yr+1

s , ts); (v) j < i and the peripheral i-wave is crossing
I on the left of (yr−1

s , ts); (vi) j = i, the i-characteristic family is genuinely nonlin-
ear, and the peripheral wave is an i-shock, ζ < 0; and (vii) j = i, the i-characteristic
family is genuinely nonlinear, and the peripheral wave is an i-rarefaction, ζ > 0.
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In cases (i), (ii) and (iii), the peripheral i-wave is not approaching any of the
j-waves of α, β , ε ; hence the contribution to both Q(I) and Q(J) is nil. By contrast,
in cases (iv), (v) and (vi), the peripheral i-wave is approaching all three of the j-
waves of α, β , ε; thus the contribution to Q(I) and Q(J) is |ζ |(|α j|+ |β j|) and
|ζ ||ε j|, respectively.

In the remaining case (vii), depending on the signs of αi , βi and εi , the peripheral
i-wave may be approaching all, some, or none of the i-waves of α, β and ε ; the
contribution to Q(I) and Q(J) is ζ (α−

i + β−
i ) and ζε−i , respectively, where the

superscript “minus” denotes “negative part.”
From the above and (13.3.1), the total contribution to Q(J)−Q(I) from the pair-

ing of any peripheral wave of amplitude ζ with all principal waves cannot exceed the
amount |ζ |[c3 +c4S (I)]D(Δ r

s ). Therefore we conclude that the overall contribution
to Q(J)−Q(I) from such interactions is bounded by [c3 + c4S (I)]L (I)D(Δ r

s ).
This establishes (13.4.7).

The key consequence of (13.4.7) is that when L (I) is sufficiently small the po-
tential Q for future wave interactions will decrease as one passes from the mesh
curve I to its immediate successor J. We shall exploit this property to compensate
for the possibility that S and L may be increasing, to the extent allowed by (13.4.3)
and (13.4.4). For that purpose, we associate with mesh curves I the Glimm functional

(13.4.8) G (I) = L (I)+2κQ(I),

where κ is some fixed upper bound of c3 + c4S (I), independent of I and h. Even
though G majorizes L , it is actually equivalent to L on account of (13.4.6).

13.4.1 Theorem. Let I be a mesh curve with 2κL (I)≤ 1. Then, for any mesh curve
J that is a successor of I,

(13.4.9) G (J)≤ G (I),

(13.4.10) L (J)≤ 2L (I).

Furthermore, the amount of wave interaction and the amount of wave cancellation
in the diamonds confined between the curves I and J are bounded:

(13.4.11) ∑D(Δ r
s )≤ [L (I)]2,

(13.4.12) ∑C (Δ r
s )≤ L (I).

Proof. Assume first that J is the immediate successor of I depicted in Fig. 13.4.1.
Upon combining (13.4.8) with (13.4.4) and (13.4.7), we deduce

(13.4.13) G (J)≤ G (I)+κ[2κL (I)−1]D(Δ r
s ).

Since 2κL (I) ≤ 1, (13.4.13) yields (13.4.9). Furthermore, by virtue of (13.4.8),
(13.4.6) and 2κL (I)≤ 1, we obtain
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(13.4.14) G (I)≤ 2L (I).

Assume now that J is any successor of I. Iterating the above argument, we es-
tablish (13.4.9) for that case as well. Since L (J) ≤ G (J), (13.4.10) follows from
(13.4.9) and (13.4.14). Summing (13.4.7) over all diamonds confined between the
curves I and J and using (13.4.10), we obtain

(13.4.15) 1
2 ∑D(Δ r

s )≤ Q(I)−Q(J),

which yields (13.4.11), by virtue of (13.4.6).
We sum (13.3.7) over all the diamonds confined between the curves I and J, to

get

(13.4.16) 2∑C (Δ r
s )≤ L (I)−L (J)+κ∑D(Δ r

s ).

Combining (13.4.16) with (13.4.10) and (13.4.11) we arrive at (13.4.12). This com-
pletes the proof.

The above theorem is of fundamental importance. In particular, the estimates
(13.4.9) and (13.4.10) provide the desired bounds on the total variation, while
(13.4.11) and (13.4.12) embody the dissipative effects of nonlinearity and have sig-
nificant implications for regularity and large-time behavior of solutions.

The assumption 2κL (I) ≤ 1 in the above theorem means that L (I) itself
should be sufficiently small, for general systems. However, in systems endowed
with a coordinate system of Riemann invariants, where c3 = 0, it would suffice that
(supUh)L (I) be sufficiently small. For this special class of systems, supUh will be
estimated with the help of

13.4.2 Theorem. Assume that the system is endowed with a coordinate system
of Riemann invariants. Let I be a mesh curve with 2κL (I)≤ 1. Then, for any mesh
curve J that is a successor of I,

(13.4.17) S (J)≤ exp[c4L (I)2]S (I).

Proof. Assume first that J is the immediate successor of I depicted in Fig. 13.4.1.
Since c3 = 0, (13.4.3) yields

(13.4.18) S (J)≤ [1+ c4D(Δ r
s )]S (I).

Iterating the above argument, we deduce that if J is any successor of I, then

(13.4.19) S (J)≤ ∏[1+ c4D(Δ r
s )]S (I),

where the product runs over all the diamonds confined between the curves I and J.
Combining (13.4.19) with (13.4.11), we arrive at (13.4.17). This completes the proof.

For systems endowed with a coordinate system of Riemann invariants, it is expe-
dient to measure wave strength by the jump of the corresponding Riemann invariant
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across the wave. In particular, for systems with coinciding shock and rarefaction
wave curves (see Section 8.2), this policy renders L itself nonincreasing, as one
passes from a mesh curve to its successor, and thus allows us to estimate the total
variation of the solution without any restriction on the size of the total variation of the
initial data. There is another, very special, class of systems of two conservation laws
in which a suitable measurement of wave strength yields a nonincreasing L , and
thereby existence of solutions to the Cauchy problem under initial data with large
total variation. An interesting representative of that class is the system

(13.4.20)

⎧⎨⎩
∂tu−∂xv = 0

∂tv+∂x(u−1) = 0,

namely the special case of (7.1.11) with σ(u) = −u−1. In particular, this system
governs the isothermal flow of an ideal gas, in Lagrangian coordinates.

13.5 Bounds on the Total Variation

for Genuinely Nonlinear Systems

Here we prove the estimates (13.1.12) and (13.1.13), always operating under the
assumption that the oscillation of Uh is bounded, uniformly in h. The vehicle will be
the following corollary of Theorem 13.4.1:

13.5.1 Theorem. Fix 0 ≤ τ < t < ∞ and −∞ < a < b < ∞ . Assume that κ times the
total variation of Uh(·, t) over the interval [a−λ (t − τ)− 6h , b+λ (t − τ)+ 6h] is
sufficiently small.2 Then

(13.5.1) TV[a,b]Uh(·, t)≤ c1TV[a−λ (t−τ)−6h, b+λ (t−τ)+6h]Uh(·,τ),

where c1 depends solely on F . Furthermore, if x is a point of continuity of both
Uh(·,τ) and Uh(·, t), and κ times the total variation of Uh(·, t) over the interval
[x−λ (t − τ)−6h , x+λ (t − τ)+6h] is sufficiently small, then

(13.5.2) |Uh(x, t)−Uh(x,τ)| ≤ c5TV[x−λ (t−τ)−6h, x+λ (t−τ)+6h]Uh(·,τ),

where c5 depends solely on F .

Proof. First we determine nonnegative integers σ and s such that tσ ≤ τ < tσ+1 and
ts ≤ t < ts+1 . Next we identify integers r1 and r2 such that yr1+1

s+1 < a ≤ yr1+3
s+1 and

yr2−3
s+1 ≤ b < yr2−1

s+1 . We then set r3 = r1 − (s−σ) and r4 = r2 +(s−σ).
We now construct two mesh curves I and J, as depicted in Fig. 13.5.1, by the

following procedure: I originates at the sampling point (yr3
σ , tσ ) and zig-zags between

tσ and tσ+1 until it reaches the sampling point (yr4
σ , tσ ), where it terminates. J also

2 As before, λ here denotes the ratio of spatial and temporal mesh-lengths.
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originates at (yr3
σ , tσ ), takes s− σ steps to the “northeast,” reaching the sampling

point (yr1
s , ts), then zig-zags between ts and ts+1 until it arrives at the sampling point

(yr2
s , ts), and finally takes s−σ steps to the “southeast” terminating at (yr4

σ , tσ ).
Clearly,

(13.5.3) TV[a,b]Uh(·, t)≤ c6L (J).

It is easy to see that yr3
σ ≥ a−λ (t − τ)−6h and yr4

σ ≤ b+λ (t − τ)+6h. Therefore,

(13.5.4) L (I)≤ c7TV[a−λ (t−τ)−6h,b+λ (t−τ)+6h]Uh(·,τ).

Also, J is a successor of I and hence, if 2κL (I) ≤ 1, Theorem 13.4.1 implies
L (J) ≤ 2L (I). Combining this with (13.5.3) and (13.5.4), we arrive at (13.5.1),
with c1 = 2c6c7 .

Given x, we repeat the above construction of I and J with a = b = x. We can
identify a point (y′,τ ′) on I with Uh(y′,τ ′) = Uh(x,τ) as well as a point (x′, t ′) on J
with Uh(x′, t ′) =Uh(x, t). Hence

(13.5.5) |Uh(x, t)−Uh(x,τ)| ≤ c8[L (I)+L (J)]≤ 3c8L (I).

From (13.5.5) and (13.5.4), with a= b= x, we deduce (13.5.2) with c5 = 3c7c8 . This
completes the proof.

Applying (13.5.1) for τ = 0, a → −∞ , b → ∞ , and taking into account that
TV(−∞,∞)Uh(·,0) ≤ TV(−∞,∞)U0(·), we verify (13.1.12).

Finally, we integrate (13.5.2) over (−∞,∞), apply Fubini’s theorem, and use
(13.1.12) to get
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(13.5.6)∫ ∞

−∞
|Uh(x, t)−Uh(x,τ)|dx ≤ c5

∫ ∞

−∞
TV[x−λ (t−τ)−6h, x+λ (t−τ)+6h]Uh(·,τ)dx

= 2c5[λ (t − τ)+6h]TV(−∞,∞)Uh(·,τ)
≤ 2c1c5[λ (t − τ)+6h]TV(−∞,∞)U0(·),

which establishes (13.1.13).

13.6 Bounds on the Supremum for Genuinely Nonlinear Systems

One may readily obtain a bound on the L∞ norm of Uh from (13.5.2), with τ = 0:

(13.6.1) sup(−∞,∞)|Uh(·, t)| ≤ sup(−∞,∞)|U0(·)|+ c5TV(−∞,∞)U0(·).

This estimate is not as strong as the asserted (13.1.11), because, in addition to the
supremum, it involves the total variation of the initial data. Even so, combining
(13.6.1) with the estimates (13.1.12) and (13.1.13), established in Section 13.5, al-
lows us to invoke the results of Section 13.2 and thus infer the existence of a solution
U to the initial value problem (13.1.1), which is the limit of a sequence of approx-
imate solutions; cf. (13.2.1). Clearly, U satisfies (13.1.5) and (13.1.6), by virtue of
(13.1.12) and (13.1.13). We have thus verified all the assertions of Theorem 13.1.1,
save (13.1.4). This estimate is of interest, as a statement of stability. Furthermore, it
plays a useful role in the special situations where one can handle initial data with
large total variation, but still needs small oscillation for solving the Riemann prob-
lems and for applying the wave interaction estimates. It is thus important to establish
the estimate (13.1.11), which yields (13.1.4).

We first note that for systems endowed with a coordinate system of Riemann
invariants, (13.1.11) is an immediate corollary of Theorem 13.4.2 and thus δ1 in
(13.1.3) need not be small, so long as δ2 in (13.1.7) is. The proof in this case is
so simple because terms of quadratic order are missing in the interaction estimate
(13.3.1), i.e., c3 = 0. By contrast, in systems devoid of this special structure, the in-
teraction terms of quadratic order complicate the situation. The proof of (13.1.11)
hinges on the special form of the quadratic terms, which, as seen in (9.9.13), involve
the Lie brackets of the eigenvectors of DF . The analysis is too laborious to be repro-
duced here in its entirety, so only an outline of the main ideas shall be presented. The
reader may find the details in the references cited in Section 13.9.

The general strategy of the proof is motivated by the ideas expounded in Section
13.4, which culminated in the proof of Theorems 13.4.1 and 13.4.2. Two functionals,
R and P , will be associated with mesh curves I, where R(I) measures the oscil-
lation of Uh over I while P(I) provides an estimate on how the oscillation may be
affected by future wave interactions. For measuring the oscillation with accuracy,
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it becomes necessary to account for the mutual cancellation of shocks and rarefac-
tion waves of the same characteristic family. We thus have to tally amplitudes, rather
than strengths of waves. Accordingly, with any (finite) sequence of, say, M waves
with amplitudes ξ = (ξ1, . . . ,ξM), we associate the number

(13.6.2) |ξ |=
n

∑
j=1

| ∑
j−waves

ξL|,

where the second summation runs over the indices L = 1, · · · ,M for which the L-th
wave in the sequence is a j-wave. We then define

(13.6.3) R(I) = sup |ξ |,

where the supremum is taken over all sequences of waves crossing I that are consec-
utive, in the sense that any two of them occupying consecutive places in the sequence
are separated by a constant state of Uh. After a little reflection, one sees that, as long
as L (I) is sufficiently small, R(I) measures the oscillation of Uh over I.

As one passes from I to its successors, the value of R changes for two reasons:
First, as waves travel at different speeds, crossings occur and wave sequences are re-
ordered (notice, however, that the relative order of waves of the same characteristic
family is necessarily preserved). Secondly, the amplitude of waves changes in result
of wave interactions, as indicated in (9.9.13). It turns out that the effect of wave inter-
actions of third or higher order in wave strength may be estimated grossly, as in the
proof of Theorem 13.4.2. However, the effect of wave interactions of quadratic order
in wave strength is more significant and thus must be estimated with higher preci-
sion. This may be accomplished in an effective manner by realizing the quadratic
terms in (9.9.13) as new virtual waves which should be accounted for, along with the
actual waves.

The aforementioned functional P , which will help us estimate the effect of fu-
ture wave interactions, is constructed by the following procedure. With any sequence
of consecutive waves crossing the mesh curve I, one associates a family of sequences
of waves, which are regarded as its “descendents”. A descendent sequence of waves
is derived from its “parental” one by the following two operations: (a) Admissible
reorderings of the waves in the parental sequence j, e.g., a k-wave occupying the
K-th place and an �-wave occupying the L-th place in the parental sequence, ex-
change places if k > � and K < L. (b) Insertion of any virtual waves that may be
generated from interactions of waves in the parental sequence. The precise construc-
tion of descendent sequences entails a major technical endeavor, which shall not be
undertaken here, but can be found in the references cited in Section 13.10. For any
mesh curve I, we set

(13.6.4) P(I) = sup |ξ |,

where the supremum is now taken over the union of the descendent families of all
sequences of consecutive waves that are crossing I.

As long as the total variation is small, P is actually equivalent to R:
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(13.6.5) R(I)≤ P(I)≤ [1+ c9L (I)]R(I).

The idea of the proof of (13.6.5) is as follows. Recall that the principal difference
between L (I) and R(I) is that in the former we tally the (positive) strengths of
crossing waves while in the latter we sum the (signed) amplitudes of crossing waves,
thus allowing for cancellation between waves in the same characteristic family but
of opposite signs (i.e., shocks and rarefaction waves). Consider the interaction of a
single j-wave, with amplitude ζ , with a number of k-waves. Since waves in the same
characteristic family preserve their relative order, the interactions of the k-waves
with the j-wave will occur consecutively and so the resulting virtual waves will also
appear in the same order. Furthermore, whenever the amplitudes of the k-waves al-
ternate in sign, then so do the corresponding Lie bracket terms. Consequently, the
virtual waves undergo the same cancellation as their parent waves and thus the con-
tribution to P(I) by the interaction of the j-wave with the k-waves will be of the
order O(1)|ζ |S (I). Thus the total contribution to P(I) from such interactions will
be O(1)L (I)S (I), whence (13.6.5) follows. The detailed proof is quite lengthy and
may be found in the references.

The next step is to show that if J is the immediate successor of the mesh curve I
depicted in Fig. 13.4.1, then

(13.6.6) P(J)≤ P(I)+ c10R(I)D(Δ r
s ).

The idea of the proof is as follows. Sequences of waves crossing J are reorderings of
sequences that cross I, with the waves that enter the diamond Δ r

s through its “south-
western” and “southeastern” edges exchanging their relative positions as they exit
Δ r

s . Furthermore, as one passes from I to J the virtual waves produced by the inter-
action of the waves that enter Δ r

s are converted into actual waves, embodied in the
waves that exit Δ r

s . Again, the detailed proof is quite lengthy and should be sought
in the references.

By virtue of (13.6.5), we may substitute P(I) for R(I) on the right-hand side of
(13.6.6), without violating the inequality. Therefore, upon iterating the argument, we
conclude that if J is any successor of I, then

(13.6.7) P(J)≤ ∏[1+ c10D(Δ r
s )]P(I),

where the product runs over all the diamonds Δ r
s confined between the curves I and

J.
We now assume 4κL (I)≤ 1 and appeal to Theorem 13.4.1. Combining (13.6.7),

(13.4.11) and (13.6.5) yields

(13.6.8) R(J)≤ exp[c9L (I)+ c10L (I)2]R(I),

whence the desired estimate (13.1.11) readily follows.

13.7 General Systems

In this section we discuss briefly how to obtain bounds on the total variation of
approximate solutions Uh along mesh curves, for systems with characteristic fami-
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lies that are merely piecewise genuinely nonlinear. These bounds will be derived by
the procedure used in Section 13.4 for genuinely nonlinear systems, except that the
functional measuring the potential for future wave interactions shall be modified, as
wave interactions are here governed by Theorem 9.9.2 (rather than 9.9.1). Thus, if
we consider the diamond Δ r

s , with incoming wave fans α and β , entering through
the “southwest” and the “southeast” edge, respectively, and outgoing wave fan ε ,
(9.9.14) yields

(13.7.1) |ε− (α+β )| ≤ c11D(Δ r
s ),

where

(13.7.2) D(Δ r
s ) = ∑θ |γ||δ |.

Recall that the above summation runs over all pairs of elementary i-waves, with am-
plitude γ , and j-waves, with amplitude δ , entering Δ r

s through its “southwestern” and
“southeastern” edge, respectively. The weighting factor θ is determined as follows:
θ = 0 if i < j; θ = 1 if either i > j or i = j and γδ < 0; finally, θ is given by (9.9.16)
if i = j and γδ > 0.

As in Section 13.4, with any mesh curve I we associate the functional L (I),
defined by (13.4.2). Assuming J is the immediate successor of I depicted in Fig.
13.4.1, (13.7.1) yields

(13.7.3) L (J)≤ L (I)+ c11D(Δ r
s ).

The increase in L allowed by (13.7.3) will be offset by the decrease in a func-
tional Q, which monitors the potential for future wave interactions and is here de-
fined by

(13.7.4) Q(I) = ∑θ |ζ ||ξ |.
The above summation runs over all pairs of elementary i-waves and j-waves, with
respective amplitudes ζ and ξ , that are crossing the mesh curve I. When the i-wave
is crossing I on the left of the j-wave, then θ = 0 if i < j and θ = 1 if i > j. When
i = j and ζξ < 0, then θ = 1. Finally, if i = j and ζξ > 0, then θ is determined by
(9.9.16); and in particular by (9.9.16)1 when the wave on the left is an i-shock with
speed σL and the wave on the right is an i-shock with speed σR ; or by (9.9.16)2 when
the wave on the left is an i-shock with speed σL , while the wave on the right is an
i-rarefaction, joining UR with Vi(τR;UR); or by (9.9.16)3 when the wave on the left is
an i-rarefaction, joining UL with Vi(τL;UL), while the wave on the right is an i-shock
with speed σR ; or by (9.9.16)4 when the wave on the left is a rarefaction, joining
UL with Vi(τL;UL), and the wave on the right is also a rarefaction, joining UR with
Vi(τR;UR).

The aim is to demonstrate the analog of (13.4.7), namely that if J is the immediate
successor of I depicted in Fig. 13.4.1, then

(13.7.5) Q(J)−Q(I)≤ [c12L (I)−1]D(Δ r
s ).
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Once (13.7.5) is established, one considers, as in Section 13.4, the Glimm functional
G , defined by (13.4.8), and shows that if κ is selected sufficiently large and L (I)
is small, then G (J) ≤ G (I). This in turn yields the desired estimates (13.1.12) and
(13.1.13), by the arguments employed in Section 13.5.

To verify (13.7.5), let us retrace the steps in the proof of (13.4.7), making the
necessary adjustments. We shall use again the terms “peripheral” and “principal”
waves, to distinguish the elementary waves that are crossing both I and J from those
that enter or exit Δ r

s , thus crossing only I or only J.
To begin with, the interaction among principal waves of the two incoming wave

fans α and β contributes the amount D(Δ r
s ) to Q(I). By contrast, pairs of principal

waves from the outgoing wave fan ε make no contribution to Q(J).
The next observation is that pairs of peripheral waves contribute equally to Q(I)

and Q(J); hence their net contribution to Q(J)−Q(I) is nil.
It remains to examine the pairing of peripheral waves with principal waves. Let

us estimate the contribution to Q(I) and to Q(J) from the pairing of some fixed
peripheral i-wave, of amplitude ζ , with the elementary j-waves of α, β and ε . As in
the genuinely nonlinear situation, we must consider a number of cases: (i) j > i and
the peripheral i-wave is crossing I on the left of (yr−1

s , ts); (ii) j < i and the peripheral
i-wave is crossing I on the right of (yr+1

s , ts); (iii) j > i and the peripheral i-wave is
crossing I on the right of (yr+1

s , ts); (iv) j < i and the peripheral i-wave is crossing I
on the left of (yr−1

s , ts); (v) j = i, αiβi > 0 and ζ (αi +βi) < 0; (vi) j = i, αiβi < 0
and ζ (αi +βi)< 0; (vii) j = i, αiβi > 0 and ζ (αi +βi)> 0; and (viii) j = i, αiβi < 0
and ζ (αi +βi)> 0.

In cases (i) and (iii), the contribution to both Q(I) and Q(J) is obviously nil. By
contrast, in cases (iii) and (iv), the contribution to Q(I) and Q(J) is |ζ |(|α j|+ |β j|)
and |ζ ||ε j|, respectively.

In case (v), the contribution to Q(I) is |ζ |(|αi|+ |βi|). The contribution to Q(J)
depends on the sign of ζεi , but under any circumstance may not exceed the amount
|ζ ||εi|. Similarly, in case (vi) the contribution to Q(I) is at least |ζ |max{|αi|, |βi|},
while the contribution to Q(J) is at most |ζ ||εi|.

From the above and (13.7.1) it follows that the total contribution to Q(J)−Q(I)
from the pairing of the peripheral i-wave with all the principal waves that fall under
one of cases (i) through (vi) cannot exceed the amount c11|ζ |D(Δ r

s ).
The remaining cases (vii) and (viii) require a more delicate treatment. In fact, it

is at this point that the difference between genuinely nonlinear systems and general
systems comes to the fore. For orientation, let us examine the special, albeit repre-
sentative, situation considered in the proof of Theorem 9.9.2: The incoming wave
fans α and β consist of a single i-shock each, with respective amplitudes γ and δ
and respective speeds σL and σR , σR ≤ σL . The i-th wave fan of the outgoing wave
fan ε also consists of a single i-shock, with amplitude εi and speed σ . For definite-
ness, it will be further assumed that the peripheral i-wave is likewise an i-shock, with
amplitude ζ and speed σ0 < σR , which is crossing I on the right of (yr+1

s , ts). In ac-
cordance with case (vii), above, let γ,δ ,εi and ζ be all positive. Then the contribution
to Q(J)−Q(I) is
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(13.7.6) ζ{(σ −σ0)
+εi − (σL −σ0)

+γ− (σR −σ0)
+δ},

which is O(1)ζθγδ , by virtue of (9.9.30) and (9.9.31). The proof in the general case,
where α and β are arbitrary incoming wave fans, requires lengthy and technical
analysis, but follows the same pattern, with (9.9.14) and (9.9.33) playing the role of
(9.9.30) and (9.9.31); see the references cited in Section 13.9. The final conclusion
is that the total contribution to Q(J)−Q(I) from the pairing of any peripheral wave
of amplitude ζ with all the principal waves cannot exceed an amount c12|ζ |D(Δ r

s ).
Therefore, the overall contribution to Q(J)−Q(I) from such interactions is bounded
by c12L (I)D(Δ r

s ). This establishes (13.7.5) and thereby the bounds on the total
variation of Uh.

In the literature cited in Section 13.9, it is shown that the above estimates may
even be extended to the more general class of strictly hyperbolic systems of conserva-
tion laws that can be approximated “uniformly” by systems with piecewise genuinely
nonlinear characteristic families. This broader class encompasses, for example, the
system (7.1.11) of isentropic elastodynamics, for arbitrary smooth, strictly increasing
stress-strain curve.

13.8 Wave Tracing

The aim here is to track the waves of approximate solutions Uh and monitor the
evolution of their strength and speed of propagation. This is not an easy task, as
wave interactions may induce the fusion or demise of colliding waves of the same
characteristic family, while giving birth to new waves of other characteristic families.

For orientation, let us consider wave interactions in a diamond for the simple
case of the Burgers equation ∂tu+ 1

2∂xu2 = 0, (4.2.1). The wave interaction estimate
(13.3.1) now reduces to ε = α+β .

In one typical situation, shocks with (negative) amplitudes α and β , and respec-
tive speeds σL and σR , enter the diamond through its “southwestern” and “south-
eastern” edge, respectively, and fuse into a single shock of amplitude ε = α+β and
speed σ . It is instructive to regard the outgoing shock as a composite of two “vir-
tual waves”, with respective amplitudes α and β , so that the two incoming shocks
continue on beyond the collision, with the same amplitude but altered speeds. Since
σε = σLα+σRβ , we easily deduce

(13.8.1) |σ −σL||α|= |σ −σR||β |= 1
2αβ .

Recall that αβ represents the amount of wave interaction in the diamond.
In the dual situation, rarefaction waves with (positive) amplitudes α and β enter

the diamond through its “southwestern” and “southeastern” edge, respectively, and
combine into a single rarefaction with amplitude ε = α + β , which in turn splits
into new rarefactions with amplitudes α ′ and β ′, exiting the diamond through its
“northwestern” and “northeastern” edge, respectively. Assuming, for instance, that
α ′ < α , we visualize the left incoming wave as a composite of two rarefactions, with
respective amplitudes α ′ and α −α ′, and the right outgoing wave as a composite
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of two rarefactions, with respective amplitudes α −α ′ and β . This way, all three
incoming waves continue beyond the interaction with unchanged amplitudes, albeit
with altered speeds.

Still another case arises when a shock of (negative) amplitude α and speed σL
enters the diamond through its “southwestern” edge and interacts with a rarefaction
of (positive) amplitude β entering through the “southeastern” edge. Assuming, for
instance, that |α|> |β |, the outgoing wave will be a shock with amplitude ε = α+β
and speed σ . As before, we shall regard the incoming shock as a composite of two
“virtual waves”, with respective amplitudes α +β and −β . Then, as a result of the
interaction, the second incoming virtual wave and the incoming rarefaction cancel
each other out, while the first virtual wave continues on with unchanged amplitude,
but with altered speed. A simple calculation shows that the change in speed is

(13.8.2) |σ −σL|= 1
2β .

Notice that β represents the amount of wave cancellation in the diamond.
The waves exiting the above diamond will get involved in future collisions, in

the context of which they may have to be partitioned further into finer virtual waves.
These partitions should be then carried backwards in time and applied retroactively
to every ancestor of the wave in question. The end result of this laborious process
is that, in any specified time zone, each wave is partitioned into a number of virtual
waves which fall into one of the following two categories: those that survive all col-
lisions, within the specified time interval, and those that are eventually extinguished
by cancellation.

The situation is similar for systems of hyperbolic conservation laws, except that
now one should bear in mind that collisions of any two waves generally give birth
to new waves of every characteristic family. In a strictly hyperbolic system with
piecewise genuinely nonlinear or linearly degenerate characteristic families, waves
are partitioned into virtual waves by the following procedure.

A partitioning of an i-shock joining the state U− , on the left, with the state U+ ,
on the right, is performed by some sequence of states U− = U0,U1, · · · ,Uν = U+ ,
such that, for μ = 1, · · · ,ν , Uμ lies on the i-shock curve emanating from U− , and
λi(Uμ)≤ λi(Uμ−1). Even though Uμ−1 and Uμ are not generally joined by a shock,
we regard the pair (Uμ−1,Uμ) as a virtual wave, with amplitude V μ

i = Uμ −Uμ−1

and speed λμi , equal to the speed of the shock (U−,U+).
A partitioning of an i-rarefaction wave joining the state U− , on the left, with the

state U+ , on the right, is similarly performed by a finite sequence of states, namely
U− =U0,U1, · · · ,Uν =U+ , such that, for μ = 1, · · · ,ν , Uμ lies on the i-rarefaction
curve emanating from U− and λi(Uμ) > λi(Uμ−1). Even though Uμ−1 and Uμ can
now be joined by an actual i-rarefaction wave, (Uμ−1,Uμ) will
still be regarded as a virtual wave with amplitude V μ

i = Uμ −Uμ−1 and speed
λμi = λi(Uμ−1).

A partitioning of a general i-wave, joining a state U− , on the left, with a state U+ ,
on the right, by a finite sequence of i-shocks and i-rarefaction waves, is performed
by combining, in an obvious way, the pure shock with the pure rarefaction case,
described above.
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By a laborious construction, found in the references cited in Section 13.9, the
waves of the approximate solution Uh , over a specified time zoneΛ which is defined
by {(x, t) :−∞< x<∞ , s1λ−1h≤ t ≤ s2λ−1h}, can be partitioned into virtual waves
belonging to one of the following three classes:
I. Waves that enter Λ at t = s1λ−1h with positive strength, survive over the time
interval [s1λ−1h,s2λ−1h], and exit Λ at t = s2λ−1h with positive strength.
II. Waves that enter Λ at t = s1λ−1h with positive strength, but are extinguished
inside Λ by mutual cancellations.
III. Waves that are generated inside Λ , through wave interactions.

If W denotes the typical virtual wave in any one of the above three classes, the
objective is to estimate its maximum strength, denoted by |W |, the total variation
of its amplitude, denoted by [W ], and the total variation of its speed, denoted by
[σ(W )], over its life span inside Λ . The seeds for such estimations lie in the simple
estimates (13.8.1) and (13.8.2), obtained in the scalar case, in conjunction with the
wave interaction estimates derived in earlier sections.

For systems with genuinely nonlinear characteristic families, the requisite esti-
mates read

(13.8.3) ∑
W ∈I

{[W ]+ |W |[σ(W )]}= O(1)D(Λ),

(13.8.4) ∑
W ∈II

{[W ]+ |W |}= O(1)C (Λ)+O(1)D(Λ),

(13.8.5) ∑
W ∈III

{[W ]+ |W |}= O(1)D(Λ),

where D(Λ) and C (Λ) denote the total amount of wave interaction and wave can-
cellation inside Λ , namely

(13.8.6) D(Λ) = ∑D(Δ r
s ), C (Λ) = ∑C (Δ r

s ),

with the summation running over all diamonds Δ r
s contained inΛ , and D(Δ r

s ), C (Δ r
s )

defined by (13.3.2), (13.3.6).
For systems with characteristic families that are merely piecewise genuinely non-

linear, the analogs of the estimates (13.8.3), (13.8.4) and (13.8.5) are considerably
more complicated. The difference stems from the fact that the amount of wave in-
teraction D(Δ r

s ) is of quadratic order, (13.3.2), in the genuinely nonlinear case, but
merely of cubic order, (13.7.2), in the general case. Details are given in the references
cited in Section 13.9.

It is now possible to establish the following proposition, which improves
Theorem 13.2.1 by removing the “randomness” hypothesis in the selection of the
sequence℘:

13.8.1 Theorem. The algorithm induced by any sequence℘= {a0,a1, · · ·}, which is
equidistributed on the interval (−1,1) in the sense of (13.2.6), is consistent.
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In the proof, which may be found in the references cited in Section 13.10, one
expresses the right-hand side of (13.2.2) in terms of the virtual waves that partition
Uh and proceeds to show that it tends to zero, as h ↓ 0, whenever the sequence℘ is
equidistributed. This happens for the following reason. Recall that in Section 13.2
we did verify the consistency of the algorithm, for any equidistributed sequence℘,
in the context of the linear conservation law ∂tu + aλ∂xu = 0, by employing the
property that every wave propagates with constant amplitude and at constant speed.
The partitioning of waves performed above demonstrates that even nonlinear systems
have this property, albeit in an approximate sense, and this makes it possible to extend
the argument for consistency to that case as well.

Though somewhat cumbersome to use, wave partitioning is an effective tool for
obtaining precise information on local structure, large-time behavior, and other qual-
itative properties of solutions; and in particular it is indispensable for deriving prop-
erties that hinge on the global wave pattern.

13.9 Notes

The random choice method was developed in the fundamental paper of Glimm [1]. It
is in that work that the ideas of consistency (Section 13.2), wave interactions (Section
13.3), and the Glimm functional (Section 13.4) were originally introduced, and The-
orem 13.1.1 was first established, for genuinely nonlinear systems. As we shall see
in the following chapter, it is Glimm-type functionals that provide the key estimates
for compactness in other solution approximation schemes as well. Furthermore, the
Glimm functional can be defined, and profitably employed, even in the context of
general BV solutions; see Section 14.11.

The construction of solutions with large variation for the special system (13.4.20)
of isothermal gas dynamics is due to Nishida [1]. It is based on identifying a time-
decreasing functional of Riemann invariants, inducing bounds on the variation of
solutions. Related constructions of solutions with large, or at least moderately large,
initial data are found in Bakhvarov [1], DiPerna [1,2], Nishida and Smoller [1], Cai
Zhong Li [1], Luskin and Temple [1], Serre [11], Ying and Wang [1], Amadori and
Guerra [2], Asakura and Corli [1], and Holden, Risebro and Sande [1]. On the other
hand, Chen and Jenssen [1] show that the class of systems endowed with such struc-
ture is meager.

The implications of wave cancellation, introduced in Section 13.3, on the ex-
istence and long time behavior of solutions were first demonstrated in the seminal
memoir by Glimm and Lax [1], already cited in Section 12.11. It is that work that
revealed the effectiveness of the random choice method and played a decisive role in
its dissemination.

The derivation of bounds on the supremum, outlined in Section 13.6, is taken
from the thesis of R. Young [1], where the reader may find the technical details. In
fact, this work introduces a new length scale for the Cauchy problem, which, under
special circumstances, may be used in order to relax the requirement of small total
variation on the initial data, for certain systems of more than two conservation laws.
In that direction, see Temple [7], Temple and Young [1,2], and Cheverry [3]. Local
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or global solutions under initial data with large total variation are also constructed by
Alber [1] and Schochet [3,4].

The Glimm functional was adapted to systems that are not genuinely nonlin-
ear by Tai-Ping Liu [15], who was first to realize the important role played by the
incidence angle between approaching waves of the same characteristic family. The
outline presented here, in Section 13.7, follows the more recent work by Iguchi and
LeFloch [1], and Tai-Ping Liu and Tong Yang [6].

The method of wave partitioning is developed in Tai-Ping Liu [7], for genuinely
nonlinear systems, and in Tai-Ping Liu [15], where it is used for establishing the
deterministic consistency of the algorithm for equidistributed sequences (Theorem
13.8.1). Furhermore, following the work of DiPerna [3] on genuinely nonlinear sys-
tems of two conservation laws, referenced in Section 12.11, Tai-Ping Liu [15] derives
the local structure of solutions to general systems with characteristic families that are
either genuinely nonlinear or linearly degenerate, constructed by the Glimm scheme.
For a parallel treatment of the local structure of solutions constructed via the alter-
native, front tracking, algorithm, see Section 14.11.

For early work on the rate of convergence of the random choice scheme, see Hoff
and Smoller [1], Tong Yang [3], Ye and Lin [1], and Hua and Yang [1]. For “well
equidistributed” sequences, the sharper rate o(h1/2| logh|) of convergence in L1 was
established by Bressan and Marson [3], for genuinely nonlinear systems.

The more recent work by Hua, Jiang and Yang [1], Hua and Yang [2], Ancona
and Marson [8,9], Bianchini and Modena [1,2,3], Modena and Bianchini [1], and
Modena [1], based on “quadratic Glimm functionals”, provides a very powerful tool
for probing the rate of convergence of the scheme and the local structure of resulting
solutions.

Still another Glimm functional, proposed by Caravenna [1], which is based on
maximal entropy production, is effective, at least for scalar conservation laws.

As t → ∞ , solutions of (13.1.1) approach the solution of the Riemann prob-
lem with data (9.1.12), where UL = U0(−∞) and UR = U0(+∞); cf. Tai-Ping Liu
[9,11,15]. For a more recent exposition see Tai-Ping Liu [28], and Tai-Ping Liu and
Tong Yang [6].

There is voluminous literature on extensions and applications of the random
choice method. For systems of mixed type, see Pego and Serre [1], LeFloch [3],
and Corli and Sablé-Tougeron [3]. For initial-boundary value problems, cf. Tai-Ping
Liu [11], Luskin and Temple [1], Nishida and Smoller [2], Dubroca and Gallice
[1], Sablé-Tougeron [1], and Frid [1]. For solutions involving strong shocks, see
Sablé-Tougeron [2], Corli and Sablé-Tougeron [1,2], Asakura [1], Corli [2], and
Schochet [3,4]. For periodic solutions, see Frid [4], and Frid and Perepelitsa [1].
For applications to gas dynamics, see Tai-Ping Liu [4,5,12,16,17], Temple [1], and
Tong Yang [2]. For the effects of vacuum in gas dynamics, see Liu and Smoller
[1], and Long-Wei Lin [1,2]. For applications to the theory of relativity, see Barnes,
LeFloch, Schmidt and Stewart [1]. For systems that are not in conservation form, see
LeFloch [2], and LeFloch and Liu [1]. Weak Lp stability is established by Temple [6].
Additional references are found in the books by Smoller [3], Serre [11], and LeFloch
[5].



XIV

The Front Tracking Method

and Standard Riemann Semigroups

A method is described in this chapter for constructing solutions of the initial value
problem for hyperbolic systems of conservation laws by tracking the waves and mon-
itoring their interactions as they collide. Interactions between shocks are easily re-
solved by solving Riemann problems; this is not the case, however, with interactions
involving rarefaction waves. The random choice method, expounded in Chapter XIII,
side-steps this difficulty by stopping the clock before the onset of wave collisions
and reapproximating the solution by step functions. In contrast, the front tracking
approach circumvents the obstacle by disposing of rarefaction waves altogether and
resolving all Riemann problems in terms of shocks only. Such solutions generally
violate the admissibility criteria. Nevertheless, considering the close local proxim-
ity between shock and rarefaction wave curves in state space, any rarefaction wave
may be approximated arbitrarily close by fans of (inadmissible) shocks of very small
strength. The expectation is that in the limit, as this approximation becomes finer,
one recovers admissible solutions.

The implementation of the front tracking algorithm, with proof that it converges,
will be presented here, first for scalar conservation laws and then in the context of
genuinely nonlinear strictly hyperbolic systems of conservation laws of any size.

By a contraction argument with respect to a suitably weighted L1 distance, it will
be demonstrated that solutions of genuinely nonlinear systems, constructed by the
front tracking method, may be realized as orbits of the Standard Riemann Semigroup,
which is defined on the set of functions with small total variation and is Lipschitz
continuous in L1. It will further be shown that any BV solution that satisfies reason-
able stability conditions is also identifiable with the orbit of the Standard Riemann
Semigroup issuing from its initial data. This establishes, in particular, uniqueness for
the initial value problem within a broad class of BV solutions, including those con-
structed by the random choice method, as well as those whose trace along space-like
curves has bounded variation, encountered in earlier chapters.

The chapter will close with a discussion of the structural stability of the wave
pattern under perturbations of the initial data.
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14.1 Front Tracking for Scalar Conservation Laws

This section discusses the construction of the admissible solution to the initial value
problem for scalar conservation laws by a front tracking scheme that aims at elim-
inating rarefaction waves. The building blocks will be composite waves consisting
of constant states, admissible “compressive” shocks, and inadmissible “rarefaction”
shocks of small strength.

The admissible solution of the Riemann problem for the scalar conservation law
∂tu+∂x f (u) = 0, with C1 flux f , was constructed in Section 9.5: the left end-state ul
and the right end-state ur are joined by the wave fan

(14.1.1) u(x, t) = [g′]−1
(x

t

)
,

where g is the convex envelope of f over [ul ,ur], when ul < ur, or the concave enve-
lope of f over [ur,ul ], when ul > ur . Intervals on which g′ is constant yield shocks,
while intervals over which g′ is strictly monotone generate rarefaction waves. The
same construction applies even when f is merely Lipschitz, except that now, in ad-
dition to shocks and rarefaction waves, the ensuing composite wave may contain in-
termediate constant states, namely, the jump points of g′. In particular, when f , and
thereby g, are piecewise linear, the composite wave does not contain any rarefaction
waves but consists of shocks and constant states only (Fig. 14.1.1).
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Fig. 14.1.1

We now consider the Cauchy problem

(14.1.2)

⎧⎨⎩ ∂tu(x, t)+∂x f (u(x, t)) = 0, −∞ < x < ∞ , 0 ≤ t < ∞ ,

u(x,0) = u0(x), −∞ < x < ∞ ,

for a scalar conservation law, where the flux f is Lipschitz continuous on (−∞,∞)
and the initial datum u0 takes values in a bounded interval [−M,M] and has bounded
total variation over (−∞,∞).
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To solve (14.1.2), one first approximates the flux f by a sequence { fm} of piece-
wise linear functions, such that the graph of fm is a polygonal line inscribed in the
graph of f , with vertices at the points ( k

m , f ( k
m )),k ∈ Z. Next, one realizes the initial

datum u0 as the a.e. limit of a sequence {u0m} of step functions, where u0m takes
values in the set Um = { k

m : k ∈ Z, |k| ≤ mM}, and its total variation does not exceed
the total variation of u0 over (−∞,∞). Finally, one solves the initial value problem

(14.1.3)

⎧⎨⎩ ∂tu(x, t)+∂x fm(u(x, t)) = 0, −∞ < x < ∞ , 0 ≤ t < ∞ ,

u(x,0) = u0m(x), −∞ < x < ∞ ,

for m = 1,2, · · · . The aim is to show that the admissible solution um of (14.1.3) is a
piecewise constant function, taking values in Um , which is constructed by solving a
finite number of Riemann problems for the conservation law (14.1.3)1 ; and that the
sequence {um} converges to the admissible solution u of (14.1.2).

The construction of um is initiated by solving the Riemann problems that resolve
the jump discontinuities of u0m into shocks and constant states in Um . In turn, wave
interactions induced by shock collisions are similarly resolved, in the order in which
they occur, into shocks and constant states in Um , resulting from the solution of
Riemann problems. It should be noted that the admissible solution of the Riemann
problem for (14.1.3)1 , with end-states in Um , is also a solution of (14.1.2)1 , albeit
not necessarily an admissible one, because in that context some of the jump disconti-
nuities may be rarefaction shocks. Thus, in addition to being the admissible solution
of (14.1.3), um is a (generally inadmissible) solution of (14.1.2)1 .

We demonstrate that the number of shock collisions that may be encountered in
the implementation of the above algorithm is a priori bounded, and hence um is con-
structed on the entire upper half-plane in finite steps. The reason is that each shock
interaction simplifies the wave pattern by lowering either the number of shocks,
measured by the number jm(t) of points of jump discontinuity of the step function
um(·, t), or the number of “oscillations,” counted by the lap number �m(t) of um(·, t),
which is defined as follows.

For the case of a step function v(·) on (−∞,∞), the lap number � is set equal
to 0 when v(·) is monotone, while when v(·) is nonmonotone it is defined as the
largest positive integer such that there exist �+ 2 points −∞ < x0 < · · · < x�+1 < ∞
of continuity of v(·), with [v(xi+1)−v(xi)][v(xi)−v(xi−1)]< 0 , i = 1, · · · , �.

Clearly, both jm(t) and �m(t) stay constant along the open time intervals be-
tween consecutive shock collisions; they may change only across t = 0 and as
shocks collide. When k shocks, joining (left, right) states (u0,u1), · · · ,(uk−1,uk), col-
lide at one point, the ensuing interaction is called monotone if the finite sequence
{u0,u1, · · · ,uk} is monotone. Such an interaction produces a single shock joining
the state u0 , on the left, with the state uk , on the right. In particular, monotone in-
teractions leave �m(t) unchanged, while lowering the value of jm(t) by at least one.
In contrast, across nonmonotone interactions �m(t) decreases by at least one, while
the value of jm(t) may change in either direction, but in any case it cannot in-
crease by more than sm − 1, sm being the number of jump points of f ′m over the
interval (−M,M); thus sm − 1 < 2Mm. It follows that the integer-valued function
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pm(t) = jm(t)+ sm�m(t) stays constant along the open time intervals between con-
secutive shock collisions, while decreasing by at least one across any monotone
or nonmonotone shock collision. Across the axis t = 0, we have �m(0+) = �m(0)
and jm(0+) ≤ (sm +1) jm(0). Therefore, (sm +1)[ jm(0)+ �m(0)] provides an upper
bound for the total number of shock collisions involved in the construction of um .

As a function of t, the total variation of um(·, t) over (−∞,∞) stays constant
along time intervals between consecutive shock collisions; it does not change across
monotone shock collisions; and it decreases across nonmonotone shock collisions.
Hence,

(14.1.4) TV(−∞,∞)um(·, t)≤ TV(−∞,∞)um0(·)≤ TV(−∞,∞)u0(·), 0 ≤ t < ∞ .

Since the speed of any shock of um cannot exceed the Lipschitz constant c of f over
[−M,M], (14.1.4) implies

(14.1.5)
∫ ∞

−∞
|um(x, t)−um(x,τ)|dx ≤ c|t − τ|TV(−∞,∞)u0(·), 0 ≤ τ < t < ∞ .

By virtue of (14.1.4), Helly’s theorem, and the Cantor diagonal process, one finds a
subsequence {umk} such that {umk(·, t)} is convergent in L1

loc(−∞,∞), for any ratio-
nal t ∈ [0,∞). Then, (14.1.5) implies that {umk(·, t)} is Cauchy in L1

loc(−∞,∞) for all
t ∈ [0,∞), and hence {umk} converges in L1

loc to some function u of locally bounded
variation on (−∞,∞)× [0,∞).

As discussed in Chapter VI, since um is the admissible solution of (14.1.3),

(14.1.6)
∫ ∞

0

∫ ∞

−∞
[∂tψη(um)+∂xψqm(um)]dxdt +

∫ ∞

−∞
ψ(x,0)η(u0m(x))dx ≥ 0,

for any convex entropy η , with associated entropy flux qm =
∫
η ′d fm , and all non-

negative Lipschitz test functions ψ on (−∞,∞)× [0,∞), with compact support. As
m → ∞,{u0m} converges, a.e. on (−∞,∞), to u0 , and {qm} converges, uniformly on
[−M,M], to the function q =

∫
η ′d f , namely, the entropy flux associated with the

entropy η in the conservation law (14.1.2)1 . Upon passing to the limit in (14.1.6),
along the subsequence {mk}, we deduce

(14.1.7)
∫ ∞

0

∫ ∞

−∞
[∂tψη(u)+∂xψq(u)]dxdt +

∫ ∞

−∞
ψ(x,0)η(u0(x))dx ≥ 0,

which in turn implies that u is the admissible solution of (14.1.2). By uniqueness, we
infer that the entire sequence {um} converges to u.

14.2 Front Tracking for Genuinely Nonlinear

Systems of Conservation Laws

Consider a system of conservation laws, in canonical form
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(14.2.1) ∂tU +∂xF(U) = 0,

which is strictly hyperbolic (7.2.8), and each characteristic family is either genuinely
nonlinear (7.6.13) or linearly degenerate (7.5.2). The object of this section is to intro-
duce a front tracking algorithm that solves the initial value problem (13.1.1), under
initial data U0 with small total variation, and provides, in particular, an alternative
proof of the existence Theorem 13.1.1.

The instrument of the algorithm will be special Riemann solvers, which will be
employed to resolve jump discontinuities into centered wave fans composed of jump
discontinuities and constant states, approximating the admissible solution of the Rie-
mann problem. In implementing the algorithm, the initial data are approximated by
step functions whose jump discontinuities are then resolved into wave fans. Interac-
tions induced by the collision of jump discontinuities are in turn resolved, in the order
in which they occur, into similar wave fans. It will suffice to consider the generic sit-
uation, in which no more than two jump discontinuities may collide simultaneously.
The expectation is that such a construction will produce an approximate solution of
the initial value problem in the class of piecewise constant functions.

The first item on the agenda is how to design suitable Riemann solvers. The
experience with the scalar conservation law, in Section 14.1, suggests that one should
synthesize the centered wave fans by a combination of constant states, admissible
shocks, and inadmissible rarefaction shocks with small strength.

In an admissible i-shock, the right state U+ lies on the i-th shock curve through
the left state U− , that is, in the notation of Section 9.3, U+ = Φi(τ;U−), with τ < 0
when the i-th characteristic family is genuinely nonlinear (compressive shock) or
with τ <

> 0 when the i-th characteristic family is linearly degenerate (contact discon-
tinuity). The amplitude is τ , the strength is measured by |τ|, and the speed s is set by
the Rankine-Hugoniot jump condition (8.1.2).

Instead of actual rarefaction shocks, it is more convenient to employ “rarefac-
tion fronts,” namely jump discontinuities that join states lying on a rarefaction wave
curve and propagate with characteristic speed. Thus, in an i-rarefaction front (which
may arise only when the i-th characteristic family is genuinely nonlinear) the right
state U+ lies on the i-th rarefaction wave curve through the left state U− , i.e.,
U+ = Φi(τ;U−), with τ > 0. Both amplitude and strength are measured by τ , and
the speed is set equal to λi(U+). Clearly, these fronts violate not only the entropy
admissibility criterion but even the Rankine-Hugoniot jump condition, albeit only
slightly when their strength is small.

Centered rarefaction waves may be approximated by composite waves consisting
of constant states and rarefaction fronts with strength not exceeding some prescribed
magnitude δ > 0. Consider some i-rarefaction wave, centered, for definiteness, at the
origin, which joins the state U− , on the left, with the state U+ , on the right. Thus,
U+ lies on the i-rarefaction curve through U− , say U+ =Φi(τ;U−), for some τ > 0.
If ν is the smallest integer that is larger than τ/δ , we set U0 =U− ,Uν =U+ , define
Uμ = Φi(μδ ;U−), μ = 1, · · · ,ν − 1, and approximate the rarefaction wave, inside
the sector λi(U−)< x

t < λi(U+), by the wave fan
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(14.2.2) U(x, t) =Uμ , λi(Uμ−1)<
x
t
< λi(Uμ), μ = 1, · · · ,ν .

We are thus naturally lead to an Approximate Riemann Solver, which resolves
the jump discontinuity between a state Ul , on the left, and Ur , on the right, into a
wave fan composed of constant states, admissible shocks, and rarefaction fronts, by
the following procedure: The starting point is the admissible solution of the Riemann
problem, consisting of n+ 1 constant states Ul = U0 ,U1 , · · · ,Un = Ur , where Ui−1
is joined to Ui by an admissible i-shock or an i-rarefaction wave. To pass to the
approximation, the domain and values of the constant states, and thereby all shocks,
are retained, whereas, as described above, any rarefaction wave is replaced, within
its sector, by a fan of constant states and rarefaction fronts of the same family, with
strength not exceeding δ (Fig. 14.2.1).

Ul

U

U

Ur

Ui

U

0

i–1

x

ν
1

Fig. 14.2.1

Our earlier success with the scalar case may raise expectations that a front track-
ing algorithm, in which all shock interactions are resolved via the above approximate,
though relatively accurate, Riemann solver, will produce an approximate solution of
our system, converging to an admissible solution of the initial value problem, as the
allowable strength δ of rarefaction fronts shrinks to zero. Unfortunately, such an
approach would generally fail, for the following reason: by contrast to the case for
scalar conservation laws, wave interactions in systems tend to increase the complex-
ity of the wave pattern so that collisions become progressively more frequent and the
algorithm may grind to a halt in finite time. As a remedy, in order to prevent the pro-
liferation of waves, only shocks and rarefaction fronts of substantial strength shall be
tracked with relative accuracy. The rest shall not be totally disregarded but shall be
treated with less accuracy: they will be lumped together to form jump discontinuities,
dubbed “pseudoshocks,” which propagate with artificial, supersonic speed.

A pseudoshock is allowed to join arbitrary states U− and U+ . Its strength is mea-
sured by |U+−U−| and its assigned speed is a fixed upper bound λn+1 of λn(U), for
U in the range of the solution. Clearly, pseudoshocks are more serious violators of
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the Rankine-Hugoniot jump condition than rarefaction fronts, and may thus wreak
havoc on the approximate solution, unless their combined strength is kept very small.

To streamline the exposition, i-rarefaction fronts and i-shocks (compression or
contact discontinuities) together will be dubbed i-fronts. Fronts and pseudoshocks
will be collectively called waves. Thus an i-front will be an i-wave and a pseudoshock
will be termed (n+1)-wave. As in earlier chapters, the amplitudes of waves will be
denoted by Greek letters α,β ,γ, . . . with corresponding strengths |α|, |β |, |γ|, · · · .

Under circumstances to be specified below, the jump discontinuity generated by
the collision of two waves shall be resolved via a Simplified Riemann Solver, which
allows fronts to pass through the point of interaction without affecting their strength,
while introducing an outgoing pseudoshock in order to bridge the resulting mismatch
in the states. The following cases may arise.
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Uq
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Φ

Φ
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i
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Fig. 14.2.2

Suppose that, for i < j, a j-front, joining the states Ul and Um , collides with
an i-front, joining the states Um and Ur ; see Fig. 14.2.2. Thus Um = Φ j(τl ;Ul) and
Ur = Φi(τr;Um). To implement the Simplified Riemann Solver, one determines the
states Up = Φi(τr;Ul) and Uq = Φ j(τl ;Up). Then, the outgoing wave fan will be
composed of the i-front, joining the states Ul and Up , the j-front, joining the states
Up and Uq , plus the pseudoshock that joins Uq with Ur .

Suppose next that an i-front, joining the states Ul and Um , collides with another
i-front, joining the states Um and Ur (no such collision may occur unless at least one
of these fronts is a compressive shock); see Fig. 14.2.3.

Thus Um = Φi(τl ;Ul) and Ur = Φi(τr;Um). If Uq = Φi(τl + τr;Ul), the outgoing
wave fan will be composed of the i-front, joining the states Ul and Uq , plus the
pseudoshock that joins Uq with Ur .

Finally, suppose a pseudoshock, joining the states Ul and Um , collides with an
i-front, joining the states Um and Ur ; see Fig. 14.2.4. Hence, Ur = Φi(τm;Um). We
determine Uq = Φi(τm;Ul). The outgoing wave fan will be composed of the i-front,
joining the states Ul and Uq , plus the pseudoshock that joins Uq with Ur .
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In implementing the front tracking algorithm, one fixes, at the outset, the super-
sonic speed λn+1 of pseudoshocks, sets the delimiter δ for the strength of rarefaction
fronts, and also specifies a third parameter σ > 0, which rules how jump discontinu-
ities are to be resolved:

• Jump discontinuities resulting from the collision of two fronts, with respective
amplitudes α and β , must be resolved via the Approximate Riemann Solver if
|α||β |> σ , or via the Simplified Riemann Solver if |α||β | ≤ σ .

• Jump discontinuities resulting from the collision of a pseudoshock with any front
must be resolved via the Simplified Riemann Solver.

• Jump discontinuities of the step function approximating the initial data are to be
resolved via the Approximate Riemann Solver.
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14.3 The Global Wave Pattern

Starting out from some fixed initial step function, the front tracking algorithm de-
scribed in the previous section will produce a piecewise constant function U on a
maximal time interval [0,T ). In principle, T may turn out to be finite, if the number
of collisions grows without bound as t ↑ T , so the task is to show that this will not
happen.

To understand the structure of U , one has to untangle the complex wave pattern.
Towards that end, waves must be tracked not just between consecutive collisions
but globally, from birth to extinction or in perpetuity. The waves are granted global
identity through the following convention: an i-wave involved in a collision does not
necessarily terminate there, but generally continues on as the outgoing i-wave from
that point of wave interaction. Any ambiguities that may arise in applying the above
rule will be addressed and resolved below.

Pseudoshocks are generated by the collision of two fronts, resolved via the Sim-
plified Riemann Solver, as depicted in Figs. 14.2.2 or 14.2.3. On the other hand,
i-fronts may be generated either at t = 0, from the resolution of some jump discon-
tinuity of the initial step function, or at t > 0, by the collision of a j-front with a
k-front, where j �= i �= k, that is resolved via the Approximate Riemann Solver.

Every wave carries throughout its life span a number μ , identifying its generation
order, that is the maximum number of collisions predating its birth. Thus, fronts
originating at t = 0 are assigned generation order μ = 0. Any other new wave, which
is necessarily generated by the collision of two waves, with respective generation
orders say μ1 and μ2 , is assigned generation order μ = max{μ1,μ2}+1.

As postulated above, waves retain their generation order as they traverse points
of interaction. Ambiguity may arise when, in a collision of an i-rarefaction front
with a j-front, resolved via the Approximate Riemann Solver, the outgoing i-wave
fan contains two i-rarefaction fronts. In that case, the stronger of these fronts, with
strength δ , is designated as the prolongation of the incoming i-front, while the other
i-front, with strength < δ , is regarded as a new front and is assigned a higher gen-
eration order, in accordance with the standard rule. Ambiguity may also arise when
two fronts of the same family collide, since the outgoing wave fan may include (at
most) one front of that family. In that situation, the convention is that the front with
the lower generation order is designated the survivor, while the other one is termi-
nated. In case both fronts are of the same generation order, either one, arbitrarily,
may be designated as the survivor. Of course, both fronts may be terminated upon
colliding, as depicted in Fig. 14.2.3, in the (nongeneric) case where one of them is a
compression shock, the other is a rarefaction front of the same characteristic family,
and both have the same strength. Pseudoshocks may also be extinguished in finite
time by colliding with a front, as depicted in Fig. 14.2.4, in the (nongeneric) case
Uq =Ur .

We now introduce the following notions, which will establish a connection with
the approach pursued in Chapters X-XII.

For i = 1, · · · ,n, an i-characteristic associated with U is a Lipschitz, polygonal
line x= ξ (t) which traverses constant states, say Ū , at classical i-characteristic speed,
ξ̇ = λi(Ū), but upon impinging on an i-front, or a generation point thereof, it adheres



526 XIV The Front Tracking Method and Standard Riemann Semigroups

to that front, following it throughout its lifespan. Thus, in particular, any i-front is an
i-characteristic. By analogy, (n+1)-characteristics are defined as straight lines with
slope λn+1 . Thus, pseudoshocks are (n+1)-characteristics.

Consider now an oriented Lipschitz curve with graph C , which divides the upper
half-plane into its “positive” and “negative” side. We say C is nonresonant if the
set {1, · · · ,n,n+ 1} can be partitioned into three, pairwise disjoint, possibly empty,
subsets N− , N0 and N+ , with the following properties: each of the subsets N− and
N+ consists of up to n+1 consecutive integers, while N0 may contain at most one
member. For i ∈ N− (or i ∈ N+), any i-characteristic impinging on C crosses from
the positive to the negative (or from the negative to the positive) side. On the other
hand, if i ∈ N0 , any i-characteristic impinging upon C , from either its positive or its
negative side, is absorbed by C , i.e., C itself is an i-characteristic.

Noteworthy examples of nonresonant curves include:

(a) Any i-characteristic, in particular any i-wave, in which case the partition is
N− = {1, · · · , i−1} , N0 = {i} and N+ = {i+1, · · · ,n+1}.

(b) Any space-like curve. Assuming λ1(U) < 0 < λn+1 , these may be represented
by Lipschitz functions t = t̂(x), such that 1/λ1 < dt̂/dx < 1/λn+1 , a.e. In that
case, N+ = {1, · · · ,n+1} while both N− and N0 are empty.

The relevance of the above will become clear in the next section.

14.4 Approximate Solutions

The following definition collects all the requirements on a piecewise constant func-
tion, of the type produced by the front tracking algorithm, so as to qualify as a rea-
sonable approximation to the solution of our Cauchy problem:

14.4.1 Definition. For δ > 0, a δ -approximate solution of the hyperbolic sys-
tem of conservation laws (14.2.1) is a piecewise constant function U , defined on
(−∞,∞)× [0,∞) and satisfying the following conditions: The domains of the con-
stant states are bordered by jump discontinuities, called waves, each propagating
with constant speed along a straight line segment x = y(t). Any wave may originate
either at a point of the x-axis, t = 0, or at a point of collision of other waves, and gen-
erally terminates upon colliding with another wave, unless no such collision occurs
in which case it propagates all the way to infinity. Only two incoming waves may
collide simultaneously, but any (finite) number of outgoing waves may originate at a
point of collision. There is a finite number of points of collision, waves and constant
states. The waves are of three types:

(a) Shocks. An (approximate) i-shock x = y(t) borders constant states U− , on the
left, and U+ , on the right, which can be joined by an admissible i-shock, i.e.,
U+ = Wi(τ;U−), with τ < 0 when the i-characteristic family is genuinely non-
linear, or τ <

> 0 when the i-characteristic family is linearly degenerate, and prop-
agates approximately at the shock speed s = si(τ;U−):
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(14.4.1) |ẏ(·)− s| ≤ δ .

(b) Rarefaction Fronts. An (approximate) i-rarefaction front x = y(t) borders con-
stant states U− , on the left, and U+ , on the right, which can be joined by an
i-rarefaction wave with strength ≤ δ , i.e., U+ = Vi(τ;U−), with 0 < τ ≤ δ , and
propagates approximately at characteristic speed:

(14.4.2) |ẏ(·)−λi(U+)| ≤ δ .

(c) Pseudoshocks. A pseudoshock x = y(t) may border arbitrary states U− and U+

and propagates at the specified supersonic speed:

(14.4.3) ẏ(·) = λn+1 .

The combined strength of pseudoshocks does not exceed δ :

(14.4.4) ∑ |U(y(t)+, t)−U(y(t)−, t)| ≤ δ , 0 < t < ∞ ,

where for each t the summation runs over all pseudoshocks x = y(·) which cross the
t-time line.

If, in addition, the step function U(·,0) approximates the initial data U0 in L1,
within distance δ ,

(14.4.5)
∫ ∞

−∞
|U(x,0)−U0(x)|dx ≤ δ ,

then U is called a δ -approximate solution of the Cauchy problem (13.1.1).
The extra latitude afforded by the above definition in allowing the speed of (ap-

proximate) shocks and rarefaction fronts to (slightly) deviate from their more accu-
rate values granted by the front tracking algorithm provides some flexibility which
may be put to good use for ensuring that no more than two fronts may collide simul-
taneously.

The effectiveness of front tracking will be demonstrated through the following

14.4.2 Theorem. Assume U0 ∈ BV (−∞,∞), with TV(−∞,∞)U0(·) ≤ a << 1. Fix
any small positive δ , and approximate U0 by some step function U0δ such that
TV(−∞,∞)U0δ (·) ≤ TV(−∞,∞)U0(·) and ‖U0δ (·)−U0(·)‖L1(−∞,∞) ≤ δ . Then the front
tracking algorithm with initial data U0δ , fixed supersonic speed λn+1 for pseu-
doshocks, delimiter δ for the strength of rarefaction fronts, and sufficiently small
parameter σ (depending on δ and on the number of jump points of U0δ ) generates
a δ -approximate solution Uδ of the initial value problem (13.1.1). Any sequence of
δ ’s converging to zero contains a subsequence {δk} such that {Uδk

} converges, a.e.
on (−∞,∞)× [0,∞), to a BV solution U of (13.1.1), which satisfies the entropy ad-
missibility condition for any convex entropy-entropy flux pair (η ,q) of the system
(14.2.1), together with the estimates (13.1.5) and (13.1.6). Furthermore, the trace of
U on any Lipschitz graph on the upper half-plane that is nonresonant relative to all
Uδ has bounded variation.
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The above proposition reestablishes the assertions of Theorem 13.1.1. The prop-
erty that the trace of U along nonresonant curves has bounded variation establishes
a connection with the class of solutions discussed in Chapter XII.

The demonstration of Theorem 14.4.2 is quite lengthy and will be presented, in
installments, in the next three sections. However, the following road map may prove
useful at this juncture.

As already noted in Section 14.3, once the step function U0δ has been designated,
the front tracking algorithm will produce Uδ , at least on a time interval [0,T ), which
as we shall see later is [0,∞). We shall be assuming throughout that the range of Uδ
is contained in a ball of small radius in state space, a condition that must be verified
a posteriori. The constants c1,c2, · · · ,κ, · · · , which will appear in the course of the
proof, all depend solely on bounds of F and its derivatives in that ball.

The first step will be to establish an estimate

(14.4.6) TV(−∞,∞)Uδ (·, t)≤ c1TV(−∞,∞)U0(·), 0 ≤ t < T,

on the total variation, together with a bound on the total amount of wave interaction.
On account of the construction of Uδ , (14.4.6) will immediately imply

(14.4.7)
∫ ∞

−∞
|Uδ (x, t)−Uδ (x,τ)|dx ≤ c2|t − τ|TV(−∞,∞)U0(·), 0 ≤ τ < t < T,

with c2 = cc1 , where c is any upper bound of the wave speeds; for instance c is
the maximum of λn+1 and − infλ1(U). The usefulness of these estimates is twofold:
first, they will assist in the task of verifying that Uδ meets the requirements set by
Definition 14.4.1; secondly, they will induce compactness that makes it possible to
pass to the δ ↓ 0 limit.

In verifying that Uδ is a δ -approximate solution, the requirements (14.4.1),
(14.4.2) and (14.4.3), on the speed of shocks, rarefaction fronts and pseudosho-
cks, are patently met, because of the specifications of the construction. Moreover,
the selection of the delimiter entails that the strengths of rarefaction fronts will be
bounded by δ . The remaining requirements, namely that the combined strength of
pseudoshocks is also bounded by δ , as in (14.4.4), and that the number of collisions
is finite, will be established by insightful analysis of the wave pattern. In particular,
this will furnish the warranty that Uδ is generated, in finite steps, on the entire upper
half-plane, i.e., T = ∞ .

The final step in the proof will complete the construction of the solution to
(13.1.1) by passing to the δ ↓ 0 limit in Uδ , via a compactness argument relying
on the estimates (14.4.6) and (14.4.7).

14.5 Bounds on the Total Variation

As in Section 13.4, TV(−∞,∞)Uδ (·, t) will be measured through

(14.5.1) L(t) = ∑ |γ|,
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namely by the sum of the strengths of all jump discontinuities that cross the
t-time line. Clearly, L(·) stays constant along time intervals between consecutive
collisions of fronts and changes only across points of wave interaction. To estimate
these changes, we have to investigate the various types of collisions.

Suppose a j-front of amplitude α collides with an i-front of amplitude β . When
|α||β | ≥ σ , so that the resulting jump discontinuity is resolved, via the Approximate
Riemann Solver, into a full wave fan ε = (ε1, · · · ,εn), then, by virtue of Theorem
9.9.11,

(14.5.2) |ε j −α|+ |εi −β |+ ∑
k �=i, j

|εk|= O(1)|α||β |,

if i < j, or

(14.5.3) |εi −α−β |+∑
k �=i

|εk|= O(1)|α||β |,

if i = j. On the other hand, when |α||β | < σ , in which case the resulting jump
discontinuity is resolved via the Simplified Riemann Solver as shown in Fig. 14.2.2
or Fig. 14.2.3, the amplitude of the colliding fronts is conserved. The strength of the
generated outgoing pseudoshock is easily estimated from the wave diagrams in state
space:

(14.5.4) |UR −UQ|= O(1)|α||β |.
Consider next the case depicted in Fig. 14.2.4, where a pseudoshock collides

with an i-front of amplitude β . Since the amplitude of the i-front is conserved across
the collision, analysis of the wave diagram in state space, Fig. 14.2.4, yields that
the strength of the outgoing pseudoshock is related to the strength of the incoming
pseudoshock by

(14.5.5) |UR −UQ|= |UM −UL|+O(1)|β ||UM −UL|.
Let I denote the set of t ∈ (0,T ) where collisions occur. We let Δ denote the

“jump” operator from t− to t+ , for t ∈ I. In light of the analysis of wave interactions,
above, we infer

(14.5.6) ΔL(t)≤ κ|α||β |, t ∈ I,

where |α| and |β | are the strengths of the waves that collide at t.
Our strategy for keeping TV(−∞,∞)Uδ (·, t) under control is to show that any in-

crease of L(·) allowed by (14.5.6) is offset by the simultaneous decrease in the
amount of potential wave interaction.

A j-wave and an i-wave, with the former crossing the t-time line to the left of
the latter, are called approaching when either i < j, or i = j and at least one of these
waves is a compression shock.

1 If the outgoing k-wave is a fan of k-rarefaction fronts, εk denotes the cumulative amplitude
and |εk| stands for the cumulative strength of these fronts.
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The potential for wave interaction at t ∈ (0,T )\I will be measured by

(14.5.7) Q(t) = ∑ |ζ ||ξ |, t ∈ (0,T )\I,

where the summation runs over all pairs of approaching waves, with strengths, say,
|ζ | and |ξ |, which cross the t-time line. In particular,

(14.5.8) Q(t)≤ 1
2 L(t)2 , t ∈ (0,T )\I.

Clearly, Q(·) stays constant along time intervals between consecutive collisions. On
the other hand, at any t ∈ I where waves with strength |α| and |β | collide, our analysis
of wave interactions implies

(14.5.9) ΔQ(t)≤−|α||β |+κ|α||β |L(t−), t ∈ I.

In analogy to the Glimm functional (13.4.8), we set

(14.5.10) G(t) = L(t)+2κQ(t), t ∈ (0,T )\I.

Combining (14.5.10) with (14.5.6) and (14.5.9) yields

(14.5.11) ΔG(t)≤ κ[2κG(t−)−1]|α||β |, t ∈ (0,T )\I.

Assume the total variation of the initial data is so small that 4κL(0+)≤ 1. Then, on
account of (14.5.10) and (14.5.8), G(0+) ≤ 2L(0+) ≤ (2κ)−1. This together with
(14.5.11) and a simple induction argument yields ΔG(t)≤ 0, t ∈ I, i.e., G(·) is non-
increasing. Hence

(14.5.12) L(t)≤ G(t)≤ G(0+)≤ 2L(0+), t ∈ (0,T )\I,

which establishes the desired estimate (14.4.6).
Next we estimate the total amount of wave interaction. Since κL(t−) ≤ 1

2 ,
(14.5.9) yields

(14.5.13) ΔQ(t)≤− 1
2 |α||β |, t ∈ I.

By summing (14.5.13) over all t ∈ I, and upon using (14.5.8),

(14.5.14) ∑ |α||β | ≤ L(0+)2 ,

where the summation runs over the set of collisions in (−∞,∞)× (0,T ).
Let us now consider any Lipschitz graph C in (−∞,∞)× [0,T ) that is nonres-

onant relative to Uδ , as defined in Section 14.3. The aim is to estimate the total
variation of the trace of Uδ on C , measured by the sum LC = ∑ |γ| of the strengths
of all waves that impinge on C .

Let J stand for the set of t ∈ (0,T ) where some wave impinges on C . For t in
(0,T )\(I⋃J) we set

(14.5.15) M(t) = ∑−|γ|+∑+ |γ|+∑0 |γ|,
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where the summation Σ− (or Σ+) runs over the i-waves, with i ∈ N− (or N+), that
cross the t-time line on the positive (or negative) side of C ; while Σ0 runs over all
i-waves, with i ∈ N0, that cross the t-time line on either side of C . Clearly,

(14.5.16) ΔM(t) =−|γ|, t ∈ J\I,

(14.5.17) ΔM(t)≤ κ|α||β |, t ∈ I\J,

(14.5.18) ΔM(t)≤−|γ|+κ|α||β |, t ∈ I ∩ J,

where |α| and |β | are the strengths of the waves colliding at t ∈ I and |γ| is the
strength of the wave that impinges on C at t ∈ J. Summing the above inequalities
over all t ∈ I

⋃
J and using (14.5.14) together with 4κL(0+)≤ 1, we conclude

(14.5.19) LC ≤ M(0+)+κ∑ |α||β | ≤ 2L(0+).

Another important implication of the boundedness of the amount of wave inter-
action is that the total number of collisions is finite and bounded, independently of T .
Indeed, recall that the Approximate Riemann Solver is employed to resolve collisions
only when the product of the strengths of the two incoming fronts exceeds σ . By
virtue of (14.5.14), the number of such collisions is bounded by L(0+)2/σ . Fronts
are generated exclusively by the application of the Approximate Riemann Solver to
resolve jump discontinuities of U0δ or collisions of fronts. Therefore, the number
of fronts is bounded. Any two fronts may collide at most once in their lifetime, so
the number of collisions between fronts is also bounded. Since all pseudoshocks are
generated by collisions of fronts, the number of pseudoshocks is likewise bounded.
But then, even the number of collisions between fronts and pseudoshocks must be
bounded. To summarize, the total number of collisions is finite, bounded solely in
terms of δ ,σ , and the number of jump points of U0δ . Consequently, the front track-
ing algorithm generates Uδ , in finite steps, on the entire upper half-plane. In partic-
ular, the estimates (14.4.6) and (14.4.7) will hold for 0 ≤ t < ∞ and 0 ≤ τ < t < ∞ ,
respectively.

14.6 Bounds on the Combined Strength of Pseudoshocks

The final task for verifying that Uδ is a δ -approximate solution of (14.2.1) is to estab-
lish requirement (14.4.4). The notion of generation order was introduced in Section
14.3. Waves of high generation order are produced after a large number of collisions
and so it should be expected that their strength is small. Indeed, the first step in our
argument is to show that the combined strength of all waves, and thus in particular
of all pseudoshocks, of sufficiently high generation order is arbitrarily small. To that
end, one refines the analysis of Section 14.5 by sorting out and monitoring the waves
separately according to their generation order.
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We know by now that the total number of collisions is bounded, and hence the
generation order of all waves lies in a finite range, 0 ≤ μ ≤ ν . Note, however, that
the magnitude of ν depends penultimately on δ , and should be expected to grow
without bounds as δ ↓ 0. For μ = 0,1, · · · ,ν and t ∈ [0,∞)\I, we let Lμ(t) denote
the sum of the strengths of all waves with generation order ≥ μ that cross the t-time
line; and Qμ(t) stand for the sum of the products of the strengths of all couples of
approaching waves that cross the t-time line and have generation order μ1,μ2 with
max{μ1,μ2} ≥ μ . Thus, in particular, L0(t) = L(t) and Q0(t) = Q(t). Finally, we
identify the set Iμ of times t ∈ I in which a wave of generation order μ collides with
a wave of generation order ≤ μ .

Collisions between waves of generation order ≤ μ − 2 cannot affect waves of
generation order ≥ μ , and so

(14.6.1) ΔLμ(t) = 0, t ∈ I0 ∪·· ·∪ Iμ−2 .

Any change in Lμ(·) at t ∈ I must be induced by the collision of two waves,
of which at least one is of generation order ≥ μ − 1. These colliding waves, with
strengths say |α| and |β |, are contributing |α||β | to Qμ−1(t−) but nothing to
Qμ−1(t+). As in Section 14.5, the resulting drop in Qμ−1(·) can be used to offset
the potential increment of Lμ(·), which is bounded by κ|α||β |:
(14.6.2) ΔLμ(t)+2κΔQμ−1(t)≤ 0, t ∈ Iμ−1 ∪·· ·∪ Iν .

By similar arguments one verifies the inequalities

(14.6.3) ΔQμ(t)+2κΔQ(t)Lμ(t−)≤ 0, t ∈ I0 ∪·· ·∪ Iμ−2 ,

(14.6.4) ΔQμ(t)+2κΔQμ−1(t)L(t−)≤ 0, t ∈ Iμ−1 ,

(14.6.5) ΔQμ(t)≤ 0, t ∈ Iμ ∪·· ·∪ Iν ,

which govern the change of Qμ(·) across collisions of various orders.
A superscript + or − will be employed below to indicate “positive” or “negative”

part: w+ = max{w,0},w− = max{−w,0}. The aim is to monitor the quantities

(14.6.6) L̂μ = sup
t

Lμ(t), Q̂μ = ∑
t∈I

[ΔQμ(t)]+ ,

for μ = 1, · · · ,ν , and show

(14.6.7) L̂μ ≤ 2−μc3a , Q̂μ ≤ 2−μ+3c2
3a2 ,

where a is the bound on TV(−∞,∞)U0(·).
From (14.6.1), (14.6.2) and the “initial condition” Lμ(0+) = 0, μ = 1, · · · ,ν , it

follows that

(14.6.8) L̂μ ≤ 2κ∑
t∈I

[ΔQμ−1(t)]− , μ = 1, · · · ,ν .
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Next we focus on (14.6.3), (14.6.4) and (14.6.5), with Qμ(0+) = 0, as “ initial
condition”. Recalling (14.5.8), (14.5.12) and using

(14.6.9) ∑
t∈I

[ΔQ(t)]− = Q(0+)−Q(∞)≤ 1
2 L(0+)2 ,

we deduce

(14.6.10) Q̂μ ≤ κL(0+)2L̂μ +4κL(0+)∑
t∈I

[ΔQμ−1(t)]−, μ = 1, · · · ,ν .

We combine (14.6.8) with (14.6.10). Assuming the total variation of the initial
data is so small that 10κL(0+)≤ 1, we deduce

(14.6.11) Q̂μ ≤ 1
2 ∑

t∈I
[ΔQμ−1(t)]− , μ = 1, · · · ,ν .

In particular, for μ = 1 and on account of (14.6.9), we infer Q̂1 ≤ 1
4 L(0+)2.

We finally notice that, for μ = 1, · · · ,ν , since Qμ(0+) = 0,

(14.6.12) ∑
t∈I

[ΔQμ(t)]− = ∑
t∈I

[ΔQμ(t)]+−Qμ(∞)≤ Q̂μ .

Therefore, (14.6.11) yields Q̂μ ≤ 1
2 Q̂μ−1, μ = 2, · · · ,ν , which in turn implies that

Q̂μ ≤ 2−μ−1L(0+)2. This together with (14.6.9) and (14.6.10) yields the estimate
L̂μ ≤ 2−μ−2L(0+). We have thus established (14.6.7).

It is now clear that one can fix μ0 sufficiently large so that the combined
strength of all waves of generation order ≥ μ0 , which is majorized by L̂μ0 , does not
exceed 1

2δ .
In order to estimate the combined strength of pseudoshocks of generation order

< μ0 , the first step is to estimate their number. For μ = 0, · · · ,ν , let Kμ denote
the number of waves of generation order ≤ μ . A crude upper bound for Kμ may
be derived by the following argument. The number of outgoing waves produced by
resolving a jump discontinuity, via either of the two Riemann solvers, is bounded by
a number b/δ . Thus, K0 ≤ b

δ N, where N is the number of jump points of U0δ . Since
any two waves may collide at most once in their lifetime, the number of collisions
that may generate waves of generation order μ is bounded by 1

2 K2
μ−1 . Therefore,

(14.6.13) Kμ ≤ Kμ−1 +
b

2δ
K2
μ−1 ≤

b
δ

K2
μ−1 ,

whence one readily deduces

(14.6.14) Kμ ≤ (
b
δ
)2μ+1

N2μ .

Next we estimate the strength of individual pseudoshocks. Any pseudoshock
is generated by the collision of two fronts, with strengths |α| and |β | such that
|α||β | ≤ σ , which is thus resolved via the Simplified Riemann Solver, as depicted
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in Figs. 14.2.2 and 14.2.3. It then follows from the corresponding interaction esti-
mate (14.5.4) that the strength of any pseudoshock at birth does not exceed c4σ . On
account of (14.5.5), the collision of a pseudoshock with a front of strength |β |, as
depicted in Fig. 14.2.4, may increase its strength at most by a factor 1+κ|β |. Con-
sequently, the strength of a pseudoshock may ultimately grow at most by the factor
∏(1+κ|γ|), where the product runs over all fronts with which the pseudoshock col-
lides during its life span. Since pseudoshocks are nonresonant, the estimate (14.5.19)
here applies and implies ∑ |γ| ≤ 2L(0+). Assuming 4κL(0+)≤ 1, we thus conclude
that the strength of each pseudoshock, at any time, does not exceed 3c4σ .

It is now clear that by employing the upper bound for Kμ0−1 provided by
(14.6.14), and upon selecting σ sufficiently small, one guarantees that the combined
strength of pseudoshocks of generation order < μ0 is bounded by 1

2δ . In conjunction
with our earlier estimate on the total strength of pseudoshocks of generation order
≥ μ0 , this establishes (14.4.4).

14.7 Compactness and Consistency

In this section, the proof of Theorem 14.4.2 will be completed by passing to the
δ ↓ 0 limit. Here we will just be assuming that {Uδ} is any family of δ -approximate
solutions, in the sense of Definition 14.4.1, with δ positive and small, that satisfy
estimates (14.4.6) and (14.4.7). Thus, we shall not require the special features of the
particular δ -approximate solutions constructed via the front tracking algorithm, for
instance that shocks propagate with the correct shock speed.

Let us fix any test function φ , with compact support in (−∞,∞)× [0,T ). By
applying Green’s theorem,

(14.7.1)
∫ ∞

0

∫ ∞

−∞
[∂tφUδ +∂xφF(Uδ )]dxdt +

∫ ∞

−∞
φ(x,0)Uδ (x,0)dx

=−
∫ ∞

0
∑φ(y(t), t){F(Uδ (y(t)+, t))−F(Uδ (y(t)−, t))

− ẏ(t)[Uδ (y(t)+, t)−Uδ (y(t)−, t)]}dt,

where for each t the summation runs over all jump discontinuities x = y(·) that cross
the t-time line.

When the jump discontinuity x = y(·) is an (approximate) shock, then by virtue
of (14.4.1),

(14.7.2) |F(Uδ (y(t)+, t))−F(Uδ (y(t)−, t))− ẏ(t)[Uδ (y(t)+, t)−Uδ |y(t)−, t)]|

≤ δ |Uδ (y(t)+, t)−Uδ (y(t)−, t)|.
Similarly, when x = y(·) is an (approximate) rarefaction front, with strength ≤ δ ,
then on account of the proximity between shock and rarefaction wave curves, and
(14.4.2),
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(14.7.3) |F(Uδ (y(t)+, t))−F(Uδ (y(t)−, t))− ẏ(t)[Uδ (y(t)+, t)−Uδ (y(t)−, t)]|

≤ c5δ |Uδ (y(t)+, t)−Uδ (y(t)−, t)|.
Finally, when x = y(·) is a pseudoshock,

(14.7.4) |F(Uδ (y(t)+, t))−F(Uδ (y(t)−, t))| ≤ c6|Uδ (y(t)+, t)−Uδ (y(t)−, t)|.

By combining (14.7.2), (14.7.3), (14.7.4) with (14.4.6) and (14.4.4), we deduce
that, for any fixed test function φ , the right-hand side of (14.7.1) is bounded by
Cφ [TV(−∞,∞)U0(·)+1]δ and thus tends to zero as δ ↓ 0.

By virtue of (14.4.6), (14.4.7) and Theorem 1.7.3, any sequence of δ ’s converg-
ing to zero contains a subsequence {δk} such that {Uδk

} converges a.e. to some U in
BVloc . Passing to the limit in (14.7.1) along the sequence {δk}, and using (14.4.5),
we conclude that U is indeed a weak solution of (13.1.1).

By passing to the δ ↓ 0 limit in (14.4.6) and (14.4.7), one verifies that U satisfies
(13.1.5) and (13.1.6). Furthermore, if C is any Lipschitz graph that is nonresonant
relative to Uδ , for all δ , then, as shown in Section 14.5, the trace of Uδ on C has
bounded variation, uniformly in δ , and thus by passing to the δ ↓ 0 limit, we deduce
that the trace of U on C will have the same property.

To conclude the proof, assume (η ,q) is an entropy-entropy flux pair for the sys-
tem (14.2.1), with η(U) convex. Let φ be any nonnegative test function, with com-
pact support in (−∞,∞)× [0,T ). By Green’s theorem,

(14.7.5)
∫ ∞

0

∫ ∞

−∞
[∂tφη(Uδ )+∂xφq(Uδ )]dxdt +

∫ ∞

−∞
φ(x,0)η(Uδ (x,0))dx

=−
∫ ∞

0
∑φ(y(t), t){q(Uδ (y(t)+, t))−q(Uδ (y(t)−, t))

−ẏ(t)[η(Uδ (y(t)+, t))−η(Uδ (y(t)−, t))]}dt,

where, as in (14.7.1), for each t the summation runs over all jump discontinuities
x = y(·) that cross the t-time line.

When x = y(·) is an (approximate) shock, the entropy inequality (8.5.1) together
with (14.4.1) imply

(14.7.6)

q(Uδ (y(t)+, t))−q(Uδ (y(t)−, t))− ẏ(t)[η(Uδ (y(t)+, t))−η(Uδ (y(t)−, t))]

≤ c7δ |Uδ (y(t)+, t)−Uδ (y(t)−, t)|.
When x = y(·) is an (approximate) rarefaction front, with strength ≤ δ , Theorem

8.5.1 together with (14.4.2) yield

(14.7.7)

|q(Uδ (y(t)+, t))−q(Uδ (y(t)−, t))− ẏ(t)[η(Uδ (y(t)+, t))−η(Uδ (y(t)−, t))]|

≤ c8δ |Uδ (y(t)+, t)−Uδ (y(t)−, t)|.
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Finally, when x = y(·) is a pseudoshock,

(14.7.8)

|q(Uδ (y(t)+, t))−q(Uδ (y(t)−, t))− ẏ(t)[η(Uδ (y(t)+, t)−η(Uδ (y(t)−, t))]|

≤ c9|Uδ (y(t)+, t)−Uδ (y(t)−, t)|.
By combining (14.7.6), (14.7.7), (14.7.8) with (14.4.6) and (14.4.4), we deduce

that, for fixed test function φ , the right-hand side of (14.7.5) is bounded from be-
low by −Cφ [TV(−∞,∞)U0(·) + 1]δ . Therefore, passing to the limit along the {δk}
sequence, we conclude that the solution U satisfies the inequality (13.2.17), which
expresses the entropy admissibility condition. The proof of Theorem 14.4.2 is now
complete.

14.8 Continuous Dependence on Initial Data

The remainder of this chapter will address the issue of uniqueness and stability of
solutions to the initial value problem (13.1.1). The existence proofs via Theorems
13.1.1 an 14.4.2, which rely on compactness arguments, offer no clue to that ques-
tion. We will approach the subject via the approximate solutions generated by the
front tracking algorithm. By monitoring the time evolution of a certain functional, we
will demonstrate that δ -approximate solutions depend continuously on their initial
data, modulo corrections of order δ . This will induce stability for solutions obtained
by passing to the δ ↓ 0 limit.

Our earlier experiences with the scalar conservation law strongly suggest that
the L1 topology should provide the proper setting for continuous dependence. How-
ever, the L1 distance shall not be measured via the standard L1 metric but through a
functional ρ , specially designed for the task at hand.

Let us consider two δ -approximate solutions U and Ū of (14.2.1). Fixing any
point (x, t) of continuity for both U and Ū , we shall measure the distance between
the vectors U(x, t) and Ū(x, t) in the special curvilinear coordinate system whose co-
ordinate curves are the shock curves, with both the admissible and the nonadmissible
branches retained. To that end, the vector Ū(x, t)−U(x, t) is represented by curvilin-
ear “coordinates” p1(x, t), · · · , pn(x, t), obtained by means of the following process:
One envisages a “virtual” jump discontinuity with left state U(x, t) and right state
Ū(x, t), and resolves it into a wave fan composed of n + 1 constant states joined
exclusively by (admissible or nonadmissible) virtual shocks. For |U(x, t)− Ū(x, t)|
sufficiently small, this resolution is unique and can be achieved, via the implicit
function theorem, by retracing the steps of the admissible solution to the Riemann
problem, in Section 9.3, with the wave fan curves Φi here replaced by the shock
curves Wi . We denote the amplitude of the resulting virtual i-shock by pi(x, t) and its
speed by si(x, t). The distance between U(x, t) and Ū(x, t) will now be measured by
the suitably weighted sum ∑gi(x, t)|pi(x, t)| of the strengths of the n virtual shocks,
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and accordingly the distance between the two approximate solutions at time t will be
measured through the functional

(14.8.1) ρ(U(·, t),Ū(·, t)) =
n

∑
i=1

∫ ∞

−∞
gi(x, t)|pi(x, t)|dx.

We proceed to introduce suitable weights gi . Let I and Ī denote the sets of col-
lision times for U and Ū , and consider the corresponding potentials for wave in-
teraction Q(t) and Q̄(t), defined through (14.5.7), for t ∈ (0,∞)\I and t ∈ (0,∞)\Ī,
respectively. For t ∈ (0,∞)\(I⋃ Ī) and any point of continuity x of both U(·, t) and
Ū(·, t), we define

(14.8.2) gi(x, t) = 1+κ[Q(t)+ Q̄(t)]+νAi(x, t),

where κ and ν are sufficiently large positive constants, to be fixed later, and

(14.8.3) Ai(x, t) = ∑−|γ|+∑−|γ|+∑+|γ|+∑+|γ|+∑0 |γ|+ ∑̄0|γ|.
In (14.8.3), Σ− (or Σ̄−) sums the strengths of all j-fronts of U (or Ū), for those
j = i+1, · · · ,n, that cross the t-time line to the left of the point x; Σ+ (or Σ̄+) sums
the strengths of all j-fronts of U (or Ū), for j = 1, · · · , i− 1, which cross the t-time
line to the right of the point x; Σ0 (or Σ̄0) sums the strengths of all i-fronts of U (or
Ū) that cross the t-time line to the left (or right) of the point x, when pi(x, t)< 0, or
to the right (or left) of the point x, when pi(x, t) > 0. Thus, one may justifiably say
that Ai(x, t) represents the total strength of the fronts of U and Ū that cross the t-time
line and approach the virtual i-shock at (x, t).

Once κ and ν have been fixed, the total variation of the initial data shall be re-
stricted to be so small that 1

2 ≤ gi(x, t)≤ 2. Then, ρ(U(·, t),Ū(·, t)) will be equivalent
to the L1 distance of U(·, t) and Ū(·, t):
(14.8.4) 1

C‖U(·, t)−Ū(·, t)‖L1(−∞,∞) ≤ ρ(U(·, t),Ū(·, t))

≤C‖U(·, t)−Ū(·, t)‖L1(−∞,∞).

It is easily seen that in the scalar case, n = 1, the functional ρ introduced by
(14.8.1) is closely related to the functional ρ , defined by (11.8.11), when the latter is
restricted to step functions.

The aim is to show that ρ(U(·, t),Ū(·, t)) is nonincreasing, modulo corrections
of order δ :

(14.8.5) ρ(U(·, t),Ū(·, t))−ρ(U(·,τ),Ū(·,τ))≤ ωδ (t − τ), 0 < τ < t < ∞ .

Notice that across points of I or Ī, Q(t) or Q̄(t) decreases by an amount approxi-
mately equal to the product of the strengths of the two colliding waves, while Ai(x, t)
may increase at most by a quantity of the same order of magnitude. Therefore, upon
fixing κ/ν sufficiently large, ρ(U(·, t),Ū(·, t)) will be decreasing across points of I
or Ī. Between consecutive points of I

⋃
I, ρ(U(·, t),Ū(·, t)) is continuously differen-

tiable; hence to establish (14.8.5) it will suffice to show
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(14.8.6)
d
dt
ρ(U(·, t),Ū(·, t))≤ ωδ .

From (14.8.1),

(14.8.7)
d
dt
ρ(U(·, t),Ū(·, t)) = ∑

y

n

∑
i=1

{g−i |p−i |−g+i |p+i |}ẏ,

where ∑y runs over all waves x = y(·) of U and Ū that cross the t-time line, and
ẏ, g±i and p±i stand for ẏ(t), gi(y(t)±, t) and pi(y(t)±, t). By adding and subtracting,
appropriately, the speed s±i = si(y(t)±, t) of the virtual i-shocks, one may recast
(14.8.7) in the form

(14.8.8)
d
dt
ρ(U(·, t),Ū(·, t)) = ∑

y

n

∑
i=1

Ei(y(·), t),

where

(14.8.9) Ei(y(·), t) = g+i (s
+
i − ẏ)|p+i |−g−i (s

−
i − ẏ)|p−i |

= (g+i −g−i )(s
+
i − ẏ)|p−i |+g−i (s

+
i − s−i )|p−i |+g+i (s

+
i − ẏ)(|p+i |− |p−i |).

Suppose first x = y(·) is a pseudoshock, say of U . Then g+i = g−i and (14.8.9)
yields

(14.8.10)
n

∑
i=1

Ei(y(·), t)≤ c10|U(y(t)+, t)−U(y(t)−, t)|.

Thus, by virtue of (14.4.4), the portion of the sum on the right-hand side of (14.8.8)
that runs over all pseudoshocks of U is bounded by c10δ . Of course, this applies
equally to the portion of the sum that runs over all pseudoshocks of Ū .

We now turn to the case x = y(·) is a j-front of U or Ū , with amplitude γ . To
complete the proof of (14.8.6), one has to show that

(14.8.11)
n

∑
i=1

Ei(y(·), t)≤ c11δ |γ|.

What follows is a road map to the proof of (14.8.11), which will expose the main
ideas and, in particular, will explain why the weight function gi(x, t) was designed
according to (14.8.2). The detailed proof, which is quite laborious, is found in the
references cited in Section 14.13.

Let us first examine the three terms on the right-hand side of (14.8.9), for i �= j.
By virtue of (14.8.2), g+i −g−i equals ν |γ| when j > i, or −ν |γ| when j < i. In either
case, the first term

(14.8.12) (g+i −g−i )(s
+
i − ẏ)|p−i | ∼=−ν |λi −λ j||p−i ||γ|

is strongly negative and the idea is that this dominates the other two terms, rendering
the desired inequality (14.8.6). Indeed, the second term is majorized by c12|p−i ||γ|,
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which is clearly dominated by (14.8.12), when ν is sufficiently large. One esti-
mates the remaining term by the following argument. The amplitudes (p−1 , · · · , p−n )
or (p+1 , · · · , p+n ) of the virtual shocks result respectively from the resolution of the
jump discontinuity between U− and Ū− or U+ and Ū+, where U± = U(y(t)±, t)
and Ū± = Ū(y(t)±, t).

Assuming, for definiteness, that x = y(·) is a front of U , we have Ū− = Ū+, while
the states U− and U+ are connected, in state space, by a j-wave curve. Consequently,
to leading order, p+j ∼= p−j − γ while, for any k �= j, p+k ∼= p−k . Indeed, a study of the
wave curves easily yields the estimate

(14.8.13) |p+j − p−j +γ|+∑
k �= j

|p+k − p−k |=O(1)[δ+ |p−j |(|p−j |+ |γ|)+∑
k �= j

|p−k |]|γ| ,

which in turn implies

(14.8.14) Ei(y(·), t)≤−aν |p−i ||γ|+ c12[δ + |p−j |(|p−j |+ |γ|)+ ∑
k �= j

|p−k |]|γ|,

with a > 0.
For i = j, the estimation of Ei(y(·), t) is more delicate, as the j-front may res-

onate with the virtual i-shock. The same difficulty naturally arises, and has to be
addressed, even for the scalar conservation law. In fact, the scalar case has already
been treated, in Section 11.8, albeit under a different guise. For the system, one has
to examine separately a number of cases, depending on whether x = y(·) is a shock
or a rarefaction front, in conjunction with the signs of p−j and p+j . The resulting
estimates, which vary slightly from case to case but are essentially equivalent, are
derived in the references. For example, when either x = y(·) is a j-rarefaction front
and 0 < p−j < p+j or x = y(·) is a j-shock and p+j < p−j < 0,

(14.8.15)
E j(y(·), t)≤−bν |p−j ||γ|(|p−j |+ |γ|)+ c13[δ + |p−j |(|p−j |+ |γ|)+ ∑

k �= j
|p−k |]|γ|,

where b > 0.
We now sum the inequalities (14.8.14), for i �= j, together with the inequality

(14.8.15). Upon selecting ν sufficiently large to offset the possibly positive terms,
we arrive at (14.8.11). As noted earlier, this implies (14.8.6), which in turn yields
(14.8.5). Recalling (14.8.4), we conclude

(14.8.16) ‖U(·, t)−Ū(·, t)‖L1(−∞,∞) ≤C2‖U(·,0)−Ū(·,0)‖L1(−∞,∞) +Cωδ t,

which establishes that δ -approximate solutions depend continuously on their initial
data, modulo δ . The implications for actual solutions, obtained as δ ↓ 0, will be
discussed in the following section.
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14.9 The Standard Riemann Semigroup

As a corollary of the stability properties of approximate solutions, established in the
previous section, it will be shown here that any solution to our system constructed
as the δ ↓ 0 limit of some sequence of δ -approximate solutions is uniquely deter-
mined by its initial data and may be identified with a trajectory of an L1-Lipschitz
semigroup, defined on a closed subset of L1(−∞,∞).

The first step in our investigation is to locate the domain of the semigroup. This
must be a set that is positively invariant for solutions. Motivated by the analysis in
Section 14.5, with any step function W (·), of compact support and small total varia-
tion over (−∞,∞), we associate a number H(W (·)) determined by the following pro-
cedure. The jump discontinuities of W (·) are resolved into fans of admissible shocks
and rarefaction waves, by solving classical Riemann problems. Before any wave col-
lisions may occur, one measures the total strength L and the potential for wave in-
teraction Q of these outgoing waves and then sets H(W (·)) = L+2κQ, where κ is a
sufficiently large positive constant. Suppose a δ -approximate solution U , with initial
data W , is constructed by the front tracking algorithm of Section 14.2. By the rules of
the construction, all jump discontinuities of W will be resolved via the Approximate
Riemann Solver and so, for any δ > 0, H(W (·)) will coincide with the initial value
G(0+) of the Glimm-type function G(t) defined through (14.5.10). At a later time, as
the Simplified Riemann Solver comes into play, G(t) and H(U(·, t)) may part from
each other. In particular, by contrast to G(t), H(U(·, t)) will not necessarily be nonin-
creasing with t. Nevertheless, when κ is sufficiently large, H(U(·, t))≤ H(U(·, t−))
and H(U(·, t+)) ≤ H(U(·, t−)). Hence H(U(·, t)) ≤ H(W (·)) for any t ≥ 0 and
so all sets of step functions {W (·) : H(W (·)) < r} are positively invariant for δ -
approximate solutions constructed by the front tracking algorithm. Following this
preparation, we define the set that will serve as the domain of the semigroup by

(14.9.1) D = cl{step functions W (·) with compact support : H(W (·))< r},

where cl denotes closure in L1(−∞,∞). By virtue of Theorem 1.7.3, the members of
D are functions of bounded variation over (−∞,∞), with total variation bounded by
cr. The main result is

14.9.1 Theorem. For r sufficiently small, there is a family of maps St : D → D , for
t ∈ [0,∞), with the following properties.

(a) L1-Lipschitz continuity on D × [0,∞): For any W, W̄ in D and t,τ in [0,∞),

(14.9.2) ‖StW (·)−SτW̄ (·)‖L1(−∞,∞) ≤ κ{‖W (·)−W̄ (·)‖L1(−∞,∞) + |t − τ|}.

(b) {St : t ∈ [0,∞)} has the semigroup property, namely

(14.9.3) S0 = identity,
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(14.9.4) St+τ = StSτ , t,τ ∈ [0,∞).

(c) If U is any solution of (13.1.1), with initial data U0 ∈ D , which is the δ ↓ 0 limit
of some sequence of δ -approximate solutions, then

(14.9.5) U(·, t) = StU0(·), t ∈ [0,∞).

Proof. Let U and Ū be two solutions of (13.1.1), with initial data U0 and Ū0 , which
are δ ↓ 0 limits of sequences of δ -approximate solutions {Uδn} and {Ūδ̄n

}, respec-
tively. No assumption is made that these approximate solutions have necessarily been
constructed by the front tracking algorithm. So long as the total variation is suffi-
ciently small to meet the requirements of Section 14.8, we may apply (14.8.16) to
get

(14.9.6) ‖Uδn(·, t)−Ūδ̄n
(·, t)‖L1(−∞,∞)

≤C2‖Uδn(·,0)−Ūδ̄n
(·,0)‖L1(−∞,∞) +Cωmax{δn, δ̄n}t.

Passing to the limit, n → ∞ , we deduce

(14.9.7) ‖U(·, t)−Ū(·, t)‖L1(−∞,∞) ≤C2‖U0(·)−Ū0(·)‖L1(−∞,∞).

When r is sufficiently small, Theorem 14.4.2 asserts that for any U0 ∈ D one
can generate solutions U of (13.1.1) as limits of sequences {Uδn} of δ -approximate
solutions constructed by the front tracking algorithm. Moreover, the initial values
of Uδ may be selected so that H(Uδ (·,0)) < r, in which case, as noted above,
H(Uδ (·, t)) < r and thereby U(·, t) ∈ D , for any t ∈ [0,∞). By virtue of (14.9.7),
all these solutions must coincide so that U is uniquely defined. In fact, (14.9.7) fur-
ther implies that U must even coincide with any solution, with initial value U0 , that
is derived as the δ ↓ 0 limit of any sequence of δ -approximate solutions, regardless
of whether they were constructed by the front tracking algorithm.

Once U has thus been identified, we define St through (14.9.5). The Lips-
chitz continuity property (14.9.2) follows by combining (14.9.7) with (13.1.6),
and (14.9.3) is obvious. To verify (14.9.4), it suffices to notice that for any fixed
τ > 0, U(·,τ+ ·) is a solution of (13.1.1), with initial data U(·,τ), which is derived
as the δ ↓ 0 limit of δ -approximate solutions and thus, by uniqueness, must coincide
with StU(·,τ). The proof is complete.

The term Standard Riemann Semigroup is commonly used for St , as a reminder
that its building block is the solution of the Riemann problem. The question of
whether this semigroup also encompasses solutions derived via alternative methods
will be addressed in the next section.

14.10 Uniqueness of Solutions

Uniqueness for the Cauchy problem (13.1.1) shall be established here by demon-
strating that any solution in a reasonable function class can be identified with the
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trajectory of the Standard Riemann Semigroup that emanates from the initial data.
As shown in Section 14.9, this is indeed the case for solutions constructed by front
tracking.

For fair comparison one should, at the outset, limit the investigation to solutions
U for which U(·, t) resides in the domain D of the Standard Riemann Semigroup,
defined through (14.9.1). As noted earlier, this implies, in particular, that U(·, t) has
bounded variation over (−∞,∞):

(14.10.1) TV(−∞,∞)U(·, t)≤ cr.

It then follows from Theorem 4.3.1 that t �→U(·, t) is L1-Lipschitz,

(14.10.2)
∫ ∞

−∞
|U(x, t)−U(x,τ)|dx ≤ c′r|t − τ|, 0 ≤ τ < t < ∞ ,

and U is in BVloc on (−∞,∞)× [0,∞). Hence, as pointed out in Section 10.1, there
is N ⊂ [0,∞), of measure zero, such that any (x, t) with t �∈ N and U(x−, t) =
U(x+, t) is a point of approximate continuity of U while any (x, t) with t �∈ N and
U(x−, t) �= U(x+, t) is a point of approximate jump discontinuity of U , with one-
sided approximate limits U± = U(x±, t) and associated shock speeds determined
through the Rankine-Hugoniot jump condition (8.1.2).

It is presently unknown whether uniqueness prevails within the above class of
solutions. Accordingly, one should endow solutions with additional structure. Here
we will experiment with the

14.10.1 Tame Oscillation Condition: There are positive constants λ and β such that

(14.10.3) |U(x±, t +h)−U(x±, t)| ≤ β TV(x−λh,x+λh)U(·, t),
for all x ∈ (−∞,∞), t ∈ [0,∞) and any h > 0.

Clearly, solutions constructed by either the random choice method or the front
tracking algorithm satisfy this condition, and so also do the solutions to systems of
two conservation laws considered in Chapter XII.

The Tame Oscillation Condition induces uniqueness:

14.10.2 Theorem. Any BV solution U of the Cauchy problem (13.1.1), with U(·, t)
in D for all t ∈ [0,∞), that satisfies the Lax E-condition, at any point of approximate
jump discontinuity, together with the Tame Oscillation Condition (14.10.3), coincides
with the trajectory of the Standard Riemann Semigroup St , emanating from the initial
data:

(14.10.4) U(·, t) = StU0(·), t ∈ [0,∞).

In particular, U is uniquely determined by its initial data.

Proof. The demonstration will be quite lengthy. The first step is to show that at every
τ �∈ N , U(·, t) is tangential to the trajectory of St emanating from U(·,τ):
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(14.10.5) limsup
h↓0

1
h
‖U(·,τ+h)−ShU(·,τ)‖L1(−∞,∞) = 0.

Then we shall verify that (14.10.5), in turn, implies (14.10.4).
Fixing τ �∈ N , we will establish (14.10.5) by the following procedure. For any

fixed bounded interval [a,b] and ε > 0, arbitrarily small, we will construct some
function U∗ on a rectangle [a,b]× [τ,τ+δ ] such that

(14.10.6) limsup
h↓0

1
h
‖U(·,τ+h)−U∗(·,h)‖L1(a,b) ≤ c14rε,

(14.10.7) limsup
h↓0

1
h
‖ShU(·,τ)−U∗(·,h)‖L1(a,b) ≤ c14rε.

Naturally, such a U∗ will provide a local approximation to the solution of (13.1.1)
with initial data U0(·) = U(·,τ), and will be constructed accordingly by patching
together local approximate solutions of two types, one fit for points of strong jump
discontinuity, the other suitable for regions with small local oscillation.

We begin by fixing λ which is larger than the absolute value of all characteristic
speeds and also sufficiently large for the Tame Oscillation Condition (14.10.3) to
apply.

With any point (y,τ) of jump discontinuity for U , with limits U± =U(y±,τ) and
shock speed s, we associate the sector K = {(x,σ) : σ > 0, |x−y| ≤ λσ}, on which
we consider the solution U � =U �

(y,τ) defined by

(14.10.8) U �(x,σ) =

⎧⎨⎩U− , for x < y+ sσ

U+ , for x > y+ sσ .

We prove that

(14.10.9) lim
h↓0

1
h

∫ y+λh

y−λh
|U(x,τ+h)−U �(x,h)|dx = 0.

Indeed, for 0 ≤ σ ≤ h, let us set

(14.10.10) φh(σ) =
1
h

∫ y+λh

y−λh
|U(x,τ+σ)−U �(x,σ)|dx.

Suppose φh(h) > 0. Since σ �→ U(·,τ + σ)−U �(·,σ) is L1-Lipschitz, with con-
stant γ , we infer that, for h << 1, φh(h) < 2γ and φh(σ) ≥ 1

2φh(h), for any σ with
h−σ ≤ h

2γ φh(h). Then

(14.10.11)

1
h2

∫ h

0

∫ y+λh

y−λh
|U(x,τ+σ)−U �(x,σ)|dxdσ =

1
h

∫ h

0
φh(σ)dσ ≥ 1

4γ
φ 2

h (h).
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As h ↓ 0, the left-hand side of (14.10.11) tends to zero, by virtue of Theorem 1.7.4,
and this verifies (14.10.9).

Next we fix any interval (ζ ,ξ ), with midpoint say z. On the triangular domain
T = {(x,σ) : σ > 0, ζ +λσ < x < ξ −λσ}, we construct the solution U � =U �

(z,τ)
of the linear Cauchy problem

(14.10.12) ∂tU �+A�∂xU � = 0,

(14.10.13) U �(x,0) =U(x,τ),

where A� is the constant matrix DF(U(z,τ)). The aim is to establish the estimate

(14.10.14)
∫ ξ−λh

ζ+λh
|U(x,τ+h)−U �(x,h)|dx

≤ c15[TV(ζ ,ξ )U(·,τ)]
∫ h

0
TV(ζ+λσ ,ξ−λσ)U(·,τ+σ)dσ .

Integrating (14.10.12) along characteristic directions and using (14.10.13) yields

(14.10.15) L�
iU

�(x,h) = L�
iU(x−λ �

i h,τ), i = 1, · · · ,n,
where L�

i = Li(U(z,τ)) is a left eigenvector of A� associated with the eigenvalue
λ �

i = λi(U(z,τ)). For fixed i, we may assume without loss of generality that λ �
i = 0,

since we may change variables x �→ x−λ �
i t, F(U) �→ F(U)−λ �

i U . In that case, since
U satisfies (14.2.1) in the sense of distributions,

(14.10.16)
∫ ξ−λh

ζ+λh
φ(x)L�

i [U(x,τ+h)−U �(x,h)]dx

=
∫ ξ−λh

ζ+λh
φ(x)L�

i [U(x,τ+h)−U(x,τ)]dx

=
∫ h

0

∫ ξ−λh

ζ+λh
∂xφ(x)L�

i F(U(x,τ+σ))dxdσ ,

for any test function φ ∈C∞
0 (ζ +λh,ξ −λh). Taking the supremum over all such φ ,

with |φ(x)| ≤ 1, yields

(14.10.17)∫ ξ−λh

ζ+λh
|L�

i [U(x,τ+h)−U �(x,h)]|dx ≤
∫ h

0
TV(ζ+λh,ξ−λh)L

�
i F(U(·,τ+σ))dσ .

Given ζ + λh < x < y < ξ − λh, let us set, for brevity, V = U(x,τ + σ) and
W =U(y,τ+σ). Recalling the notation (8.1.4), one may write
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(14.10.18)

F(V )−F(W ) = A(V,W )(V −W ) = A�(V −W )+ [A(V,W )−A�](V −W ).

We now note that L�
i A

� = 0. Furthermore, A(V,W )−A� is bounded in terms of the
oscillation of U inside the triangle T , which is in turn bounded in terms of the
total variation of U(·,τ) over (ζ ,ξ ), by virtue of the Tame Oscillation Condition
(14.10.3). Therefore, (14.10.17) yields the estimate

(14.10.19)
∫ ξ−λh

ζ+λh
|L�

i [U(x,τ+h)−U �(x,h)]|dx

≤ c16[TV(ζ ,ξ )U(·,τ)]
∫ h

0
TV(ζ+λσ ,ξ−λσ)U(·,τ+σ)dσ .

Since (14.10.19) holds for i = 1, · · · ,n, (14.10.14) readily follows.
We have now laid the groundwork for synthesizing a function U∗ that satisfies

(14.10.6). We begin by identifying a finite collection of open intervals (ζ j , ξ j), for
j = 1, · · · ,J, with the following properties:

(i) [a,b]⊂
J⋃

j=1

[ζ j , ξ j].

(ii) The intersection of any three of these intervals is empty.

(iii) TV(ζ j ,ξ j)U(·,τ)< ε , for j = 1, · · · ,J.

With each (ζ j , ξ j), we associate, as above, the triangle T j and the approximate solu-
tion U �

(z j ,τ)
relative to the midpoint z j . We also consider [a,b]\⋃J

j=1(ζ j , ξ j), which
is a finite set {y1, · · · ,yK} containing the points where strong shocks cross the τ-time
line between a and b. With each yk we associate the sector Kk and the corresponding
approximate solution U �

(yk,τ)
(see Fig. 14.10.1). We then set

z yj k
ζ ξ

jj
a b

k

j

Fig. 14.10.1
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(14.10.20) U∗(x,h) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
U �
(yk,τ)

(x,h), for (x,h) ∈ Kk\
k−1⋃
�=1

K�

U �
(z j ,τ)

(x,h), for (x,h) ∈ T j\
j−1⋃
�=1

T� .

Clearly, for h sufficiently small, U∗(·,h) is defined for all x ∈ [a,b] and

(14.10.21)
∫ b

a
|U(x,τ+h)−U∗(x,h)|dx

≤
K

∑
k=1

∫ yk+λh

yk−λh
|U(x,τ+h)−U �

(yk,τ)
(x,h)|dx

+
J

∑
j=1

∫ ξ j−λh

ζ j+λh
|U(x,τ+h)−U �

(z j ,τ)(x,h)|dx.

Upon combining (14.10.21), (14.10.9), (14.10.14), and (14.10.1), we arrive at
(14.10.6), with c14 = 2cc15 .

We now note that St−τU(·,τ) defines, for t ≥ τ , another solution of (14.2.1)
which has the same properties, complies with the same bounds, and has identical
restriction to t = τ with U . Therefore, this solution must equally satisfy the analog of
(14.10.6), namely (14.10.7). Finally, (14.10.6) and (14.10.7) together yield (14.10.5).

It remains to show that (14.10.5) implies (14.10.4). To that end, we fix t > 0
and any, arbitrarily small, ε > 0. By virtue of (14.10.5) and the Vitali covering the-
orem, there is a finite collection of pairwise disjoint closed subintervals [τk ,τk +hk],
k = 1, · · · ,K, of [0, t], with 0 ≤ τ1 < · · ·< τK < t, such that τk �∈ N and

(14.10.22) 0 ≤ t −
K

∑
k=1

hk < ε,

(14.10.23) ‖U(·,τk +hk)−ShkU(·,τk)‖L1(−∞,∞) < εhk , k = 1, · · · ,K.

By the triangle inequality,

(14.10.24) ‖U(·, t)−StU0(·)‖L1(−∞,∞)

≤
K

∑
k=0

‖St−τk+1U(·,τk+1)−St−τk−hkU(·,τk +hk)‖L1(−∞,∞)

+
K

∑
k=1

‖St−τk−hkU(·,τk +hk)−St−τkU(·,τk)‖L1(−∞,∞).

In the first summation on the right-hand side of (14.10.24), τ0+h0 is to be interpreted
as 0, and τK+1 is to be interpreted as t. The general term in this summation is bounded
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by κ(1+ c′r)(τk+1 − τk − hk), on account of (14.9.2) and (14.10.2). Hence the first
sum is bounded by κ(1+ c′r)ε , because of (14.10.22). Turning now to the second
summation, since St−τk = St−τk−hk Shk ,

(14.10.25) ‖St−τk−hkU(·,τk +hk)−St−τkU(·,τk)‖L1(−∞,∞) ≤ κεhk ,

by virtue of (14.9.2) and (14.10.23). Therefore, the second sum is bounded by κtε .
Thus the right-hand side of (14.10.24) can be made arbitrarily small and this estab-
lishes (14.10.4). The proof is complete.

14.11 Continuous Glimm Functionals,

Spreading of Rarefaction Waves,

and Structure of Solutions

In earlier chapters we studied in great detail the structure of BV solutions for scalar
conservation laws as well as for systems of two conservation laws. The front track-
ing method, by its simplicity and explicitness, provides an appropriate vehicle for ex-
tending the investigation to genuinely nonlinear systems of arbitrary size. The aim of
the study is to determine what features of piecewise constant solutions are inherited
by the BV solutions that are generated via the limit process. In addition to providing a
fairly detailed picture of local structure and regularity, this approach exposes various
stability characteristics of solutions and elucidates the issue of structural stability of
the wave pattern. A sample of results will be stated below, without proofs. The reader
may find a detailed exposition in the literature cited in Section 14.13.

The first step towards developing a qualitative theory is to realize within the
framework of BV solutions the key functionals that measure total wave strength and
wave interaction potential, which were introduced earlier in the context of piecewise
constant approximate solutions generated by front tracking. This will be effected by
the following procedure.

Let V be a function of bounded variation on (−∞,∞) taking values in Rn , and
normalized by V (x) = 1

2 [V (x−)+V (x+)]. The distributional derivative ∂xV induces
a signed vector-valued measure μ on (−∞,∞), with continuous part μc and atomic
part μa. We represent μ by means of its “projections” μi , i = 1, . . . ,n, on the charac-
teristic directions, defined as follows.

The continuous part μc
i of μi is the Radon measure defined through

(14.11.1)
∞∫

−∞

ϕ(x)dμc
i (x) =

∞∫
−∞

ϕ(x)Li(V (x))dμc(x),

for all continuous functions ϕ with compact support on (−∞,∞).
The atomic part μa

i of μi is concentrated on the countable set of points of jump
discontinuity of V . If x is such a point, we set μa

i (x) = εi , where εi is the ampli-
tude of the i-wave in the wave fan that solves the Riemann problem (9.1.12) with
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UL =V (x−), UR =V (x+). We have εi = Li(V (x))
[
UR −UL

]
+ O(1)|UR −UL|2 .

Therefore, the measure μi = μc
i +μa

i can be characterized through

(14.11.2)
∞∫

−∞

ϕ(x)dμi(x) =
∞∫

−∞

ϕ(x)L̃i(x)dμ(x),

where L̃i(x) = Li(V (x))+O(1)|V (x+)−V (x−)|.
We introduce the positive part μ+

i and the negative part μ−
i of the measure μi , so

that μi = μ+
i −μ−

i , |μi|= μ+
i +μ−

i ; and we define the functionals

(14.11.3) L [V ] =
n

∑
i=1

|μi|(R),

(14.11.4)

Q[V ] = ∑
i< j

(|μ j|× |μi|)({(x,y) : x < y})+ ∑
i∈GN

(μ−
i ×|μi|)({(x,y) : x �= y}),

(14.11.5) G [V ] = L [V ]+2κQ[V ],

where GN denotes the collection of genuinely nonlinear characteristic families of
(14.2.1) and κ is a positive constant to be specified below. These functionals enjoy
the following useful semicontinuity property:

14.11.1 Lemma. For κ > 0, sufficiently large, and r > 0, sufficiently small, the func-
tionals Q and G are lower semicontinuous on the set

(14.11.6) D = {V ∈ L1(R;Rn) : G [V ]≤ r},

equipped with the topology of L1.

It should be noted that even though L [V ] is equivalent to the total variation of
V (·), L is not necessarily lower semicontinuous on D , and that G may fail to be
lower semicontinuous if r in (14.11.6) is large.

When U is the solution of a Cauchy problem for (14.2.1), constructed by the
front tracking algorithm, we identify its restriction U(·, t), to some fixed time t, with
the function V (·), above. In that case, the measure μi encodes the i-waves cross-
ing the t-time line, and in particular μ+

i represents the i-rarefaction waves while
μ−

i represents the i-compression waves, including the i-shocks. Accordingly, this μi
shall be dubbed the i-wave measure at time t. Moreover, L [U(·, t)] and Q[U(·, t)]
respectively measure the total strength and interaction potential of all waves cross-
ing the t-time line. In the particular situation where U(·, t) is piecewise constant on
(−∞,∞), L [U(·, t)], Q[U(·, t)] and G [U(·, t)] reduce to L(t), Q(t) and G(t) defined
by (14.5.1), (14.5.7) and (14.5.10).
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One may derive qualitative properties of solutions U by first identifying them
in the context of piecewise constant approximate solutions generated by the front
tracking algorithm and then passing to the limit, taking advantage of the lower semi-
continuity property of Q and G asserted by Lemma 14.11.1. In that direction, the
following proposition establishes the spreading of rarefaction waves, extending to
genuinely nonlinear systems of n conservation laws what has already been demon-
strated for scalar conservation laws and for systems of two conservation laws, in
Sections 11.2 and 12.6.

14.11.2 Theorem. With each genuinely nonlinear i-th characteristic family of the
system (14.2.1) are associated positive numbers c and C with the following prop-
erty. Let U be the solution of the Cauchy problem for (14.2.1), with initial data U0 ,
constructed by the front tracking algorithm. Fix any t > 0 and consider the i-wave
measure μi at time t. Then

(14.11.7) μ+
i (a,b)≤ c

b−a
t

+C{Q[U0(·)]−Q[U(·, t)]}

holds for any interval (a,b)⊂ (−∞,∞).

In the proof, one employs the notion of generalized characteristics, introduced
in Chapter X, in order to establish the corresponding estimate in the context of the
piecewise constant approximate solutions that generate U , and then passes to the
limit.

The next proposition describes the local structure of BV solutions. It should be
compared to Theorem 12.3.3, for systems of two conservation laws.

14.11.3 Theorem. Let U be the solution of a Cauchy problem for (14.2.1), con-
structed through the front tracking algorithm. Fix any point (x̄, t̄) on the open upper
half-plane and consider the rescaled function

(14.11.8) Uα(x, t) =U(x̄+αx, t̄ +αt), α > 0.

Then, for any t ∈ (−∞,∞), as α ↓ 0, Uα(·, t) converges in L1
loc to Ū(·, t), where Ū

is a self-similar solution of (14.2.1). On the upper half-plane, t ≥ 0, Ū coincides
with the admissible solution of the Riemann problem (9.1.1),(9.1.12), with end-states
UL = U(x̄−, t̄), UR = U(x̄+, t̄). On the lower half-plane, t < 0, Ū contains only
admissible shocks and/or centered compression waves. Furthermore, as α ↓ 0, the
i-wave measures μ±

i for Uα(·, t) converge, in the weak topology of measures, to the
corresponding i-wave measures μ̄±

i for U(·, t̄).

The final proposition of this section provides a description of the global wave pat-
tern, showing that admissible BV solutions are more regular than general BV func-
tions. This should also be compared with the corresponding properties of solutions
to scalar conservation laws and to systems of two conservation laws expounded in
Sections 11.3 and 12.7.
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14.11.4 Theorem. Let U be the solution to a Cauchy problem for (14.2.1), con-
structed through the front tracking algorithm. Then the upper half-plane is parti-
tioned into the union C ∪J ∪I of three subsets with the following properties:

(a) Any (x̄, t̄) ∈ C is a point of continuity of U .
(b) I is (at most) countable.
(c) J is the countable union of Lipschitz arcs {(x, t) : t ∈ (am,bm), x = ym(t)},

for m = 1,2, . . . . When x̄ = ym(t̄) and (x̄, t̄) �∈ I , then (x̄, t̄) is a point of con-
tinuity of U relative to {(x, t) : t ∈ (am,bm), x < ym(t)} and also relative to
{(x, t) : t ∈ (am,bm), x > ym(t)}, with distinct corresponding limits U− and U+ .
Furthermore, ym(·) is differentiable at t̄, with derivative s = ẏm(t̄), and U− ,U+

and s satisfy the Rankine-Hugoniot jump condition (8.1.2).

The proof of the above two theorems again proceeds by examining the structure
of piecewise constant approximate solutions that generate U , in terms of their wave
measures, and then passing to the limit.

14.12 Stability of Strong Waves

The example of blowing up of solutions exhibited in Section 9.10 demonstrates the
futility of seeking a global existence theorem for solutions to the Cauchy problem
in the general class of systems considered in this chapter, under arbitrary initial data
with large total variation. This raises the issue of identifying the special class of sys-
tems for which solutions with large initial data exist, and the hope that the systems
of importance in continuum physics will turn out to be members. The first test for
admission to membership in the above class should be that particular solutions con-
taining waves of large amplitude, which may be explicitly known, are stable under
small perturbations of their initial values. This has been achieved for the case of self-
similar solutions to genuinely nonlinear systems, with strong shocks and/or strong
rarefaction waves:

14.12.1 Theorem. Consider the strictly hyperbolic system of conservation laws
(14.2.1) with characteristic families that are either genuinely nonlinear or linearly
degenerate. Assume Ū(x, t) =V (x/t) is a self-similar solution, with strong compres-
sive shocks, contact discontinuities and/or rarefaction waves, that satisfies an appro-
priate stability condition. For δ > 0, define

(14.12.1)

Dδ = {W ∈C(R;Rn) : ‖W (ϕ(·))−V (·)‖L∞(−∞,∞) +TV(−∞,∞)[W (ϕ(·))−V (·)]< δ ,

f or someincreasingC1(R) f unctionϕ.}
Then there exists a closed set D in L1

loc(R;Rn), containing Dδ for δ sufficiently
small, together with a family of maps St : D → D , t ∈ [0,∞), having the following
properties.
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(a) L1-Lipschitz continuity on D × [0,∞): For any W, W̄ in D and t,τ in [0,∞),

(14.12.2) ‖StW (·)−SτW (·)‖L1(−∞,∞) ≤ κ
{‖W (·)−W̄ (·)‖L1(−∞,∞) + |t − τ|}.

(b) {St : t ∈ [0,∞)} has the semigroup property, namely

(14.12.3) S0 = identity,

(14.12.4) St+τ = StSτ , t,τ ∈ [0,∞).

(c) For any U0 ∈D , U(·, t) = StU0(·) is an admissible solution of the system (14.2.1)
with initial value U0 .

In establishing the above proposition, a major issue is the formulation of the ap-
propriate stability condition on the self-similar solution V . Such a condition must
ensure (a) that each elementary wave in the wave fan V , whether compressive shock,
contact discontinuity or rarefaction, is individually stable; and (b) that the collision
of weak waves with the strong waves of V does not generate resonance that may lead
to the breakdown of solutions exhibited in Section 9.10. Alternative, albeit equiv-
alent, versions of stability conditions are recorded in the literature cited in Section
14.13, motivated either from analysis of wave interactions or through linearization
of (14.2.1) about V (x/t). Unfortunately, the statement of these conditions is compli-
cated, technical and opaque.

To get a taste, let us consider the relatively simple special case where the
wave fan V (·) comprises m+ 1 constant states V0, . . . ,Vm connected by m compres-
sive shocks belonging to characteristic families i1 < · · · < im and propagating with
speeds s1 < · · · < sm . Each one of these shocks will be individually stable provided
that the conditions (8.3.5) and (8.3.6), introduced in Section 8.3, hold, namely, for
�= 1, · · · ,m,

(14.12.5) λi
�−1 (V�−1)< s� < λi�(V�−1),

(14.12.6) λi�(V�)< s� < λi�+1(V�),

(14.12.7) det[R1(V�−1), . . . ,Ri�−1(V�−1),V�−V�−1,Ri�+1(V�), . . . ,Rn(V�)] �= 0.

In addition, one has to ensure that the collision of the above strong shocks with
any weak waves produces outgoing weak waves whose weighted strength does
not exceed the weighted strength of the incoming weak waves. Suppose that the
strong i�-shock is hit from the left by weak k-waves, k = i�, . . . ,n with amplitude
αk and speed μk ∼ λk(V�−1), and from the right by weak k-waves, k = 1, . . . , i� ,
with amplitude βk and speed νk ∼ λk(V�). These collisions will produce an outgo-
ing strong i�-shock together with outgoing weak j-waves, j �= i� , with amplitude ε j
and speed ζ j ∼ λ j(V�−1), for j = 1, . . . , i�−1, and ξ j ∼ λ j(V�) for j = i�+1, · · · ,n.
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Clearly, the μk ,νk ,ε j ,ζ j and ξ j are all smooth functions of the n + 1 variables
(β1, . . . ,βi� ,αi� , . . . ,αn). The wave stability condition will be satisfied if there ex-
ist positive weights ω�

j , �= 0, . . . ,m, j = 1, . . . ,n, so that, for any �= 1, . . . ,m,

(14.12.8)

i�−1

∑
j=1

ω�−1
j

∣∣∣∣ ∂
∂αk

[
ε j(ζ j − s�)

ν j − s�

]∣∣∣∣+ n

∑
j=i�+1

ω�
j

∣∣∣∣ ∂
∂αk

[
ε j(ξ j − s�)

μ j − s�

]∣∣∣∣< ω�
k , k = i�, . . . ,n,

(14.12.9)

i�−1

∑
j=1

ω�−1
j

∣∣∣∣ ∂
∂βk

[
ε j(ζ j − s�)

ν j − s�

]∣∣∣∣+ n

∑
j=i�+1

ω�
j

∣∣∣∣ ∂
∂βk

[
ε j(ξ j − s�)

μ j − s�

]∣∣∣∣< ω�−1
k , k = 1, . . . , i� ,

where all partial derivatives are evaluated at βi = 0, for i = 1, . . . , i� and αi = 0, for
i = i�, . . . ,n.

To summarize, for wave fans V containing only compressive shocks, Theorem
14.12.1 applies, provided that (14.12.5), (14.12.6), (14.12.7), (14.12.8) and (14.12.9)
are satisfied. The proof employs the methodology developed in earlier sections of
this chapter and is quite technical. For more general wave fans V , which may also
contain contact discontinuities and/or rarefactions, Theorem 14.12.1 holds under as-
sumptions that are similar to, but more complicated than, (14.2.8) and (14.2.9). The
hope is that these conditions shall be automatically satisfied for the systems arising
in continuum physics. Indeed, it has been shown that the wave stability conditions
hold identically for the wave fans of the isentropic elasticity system (7.1.11), in the
genuinely nonlinear case σ ′′(u) �= 0. On the other hand, for the system of nonisen-
tropic gas dynamics, for an ideal gas (2.5.20), with adiabatic exponent γ , the wave
stability conditions are verified only in the range 1.056 < γ < 8.757.

14.13 Notes

Detailed, systematic presentation of most of the topics discussed in this chapter can
be found in the texts by Bressan [9], and Holden and Risebro [5], as well as in the
survey article by Bressan [12].

The front tracking method for scalar conservation laws was introduced by Dafer-
mos [2] and is developed in Hedstrom [1], Holden, Holden and Høegh-Krohn [1],
Holden and Holden [1], Holden and Risebro [1], Risebro and Tveito [2], Gimse and
Risebro [1], Gimse [1], and Pan and Lin [1]. It has been employed, especially by the
Norwegian School, as a computational tool. In fact, a similar approach had already
been used for computations in the 1960’s, by L.M. Barker [1]. For a detailed expo-

for scalar conservation laws, based on the front tracking approach, see Karlsen and
Risebro [1].

sition, with applications, see Holden and Risebro [5]. For a proof of the equivalence
between viscosity solutions for the Hamilton-Jacobi equation and admissible solutions
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The front tracking method was extended to genuinely nonlinear systems of two
conservation laws by DiPerna [5] and then to genuinely nonlinear systems of any
size, independently, by Bressan [2] and Risebro [1]. In Bressan’s algorithm, the Ap-
proximate Riemann Solver employs pseudoshocks, while in Risebro’s approach all
new waves are attached to one of the two main fronts involved in the interaction.
Yet another possibility, proposed by Schochet [6], is to eliminate pseudoshocks alto-
gether, by assigning to them infinite speed, with the sacrifice of finite speed of prop-
agation in the algorithm. The presentation here, in Sections 14.2-14.7, follows the
approach of Bressan and employs a technical simplification due to Baiti and Jenssen
[2]. For a detailed treatment, see Bressan [9,12]. The notion of nonresonant curve is
introduced here for the first time.

For early applications to special systems see Alber [2], Long-Wei Lin [1], Rise-
bro and Tveito [1], and Wendroff [2].

Ancona and Marson [3,6] have extended the front tracking method, first to sys-
tems that are merely piecewise genuinely nonlinear and then to general strictly hy-
perbolic systems. A crucial role in the latter case is played by Bianchini’s [6] solution
of the Riemann problem; see Sections 9.12 and 15.9. For an alternative construction
in the same spirit, see Glass and LeFloch [1].

The Standard Riemann Semigroup was originally constructed by means of a very
technical procedure, based on linearization, in Bressan [1,3,5], for special systems,
Bressan and Colombo [1], for genuinely nonlinear systems of two conservation
laws, and finally in Bressan, Crasta and Piccoli [1], for systems of n conserva-
tion laws, with characteristic families that are either genuinely nonlinear or lin-
early degenerate. For systems with coinciding shock and rarefaction wave curves,
the semigroup is defined for data with arbitrarily large total variation and may even
be extended to the class of data that are merely in L∞; see Baiti and Bressan [1],
Bressan and Goatin [2], Bianchini [2,3], and Colombo and Corli [2]. Similarly, for
the system of isothermal gas dynamics Colombo and Risebro [1] construct the semi-
group for data with arbitrarily large total variation. This approach was extended,
by Ancona and Marson [4,5], to systems of two conservation laws that are merely
piecewise genuinely nonlinear. The presentation in Sections 14.8-14.9 follows the al-
ternative, simpler approach of Bressan, Liu and Yang [1], in which the basic estimate
is derived by means of the functional ρ introduced by Tai-Ping Liu and Tong Yang
[2,3,4,5]. A detailed discussion is found in Bressan [7,9,12]. See also Bressan [8,10].
An alternative method, of Haar-Holmgren type, for proving continuous dependence
of solutions in L1 was devised, at about the same time, by Hu and LeFloch [1]. It has
been extended to general, not necessarily genuinely nonlinear, systems by LeFloch
[7]. See also Goatin and LeFloch [1,2]. Furthermore, in the context of the Euler equa-
tions, Goatin and LeFloch [3] discuss L1 continuous dependence for solutions with
large total variation. Finally, L1 stability has been established, by Tai-Ping Liu and
Tong Yang [5], even via the Glimm scheme. It should be noted that, in contrast to the
scalar case, there is no standard L1-contractive metric for systems (Temple [4]). The
rate of decrease in the distance between two solutions (recall Theorem 11.8.3 for the
scalar case) is estimated by Goatin and LeFloch [2]; see the presentation in the book
by LeFloch [5].
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Bianchini and Colombo [1] show that solutions to the Cauchy problem depend
continuously on the flux function. For recent developments in that direction see
Chen, Christoforou and Zhang [1,2]. The issue of “shift differentiability” of the flow
generated by conservation laws, which is relevant to stability considerations, is dis-
cussed in Bressan and Guerra [1], and Bianchini [1].

Uniqueness under the Tame Oscillation Condition was established by Bressan
and Goatin [1], improving an earlier theorem by Bressan and LeFloch [1], which
required a Tame Variation Condition. Uniqueness also prevails when the Tame Os-
cillation Condition is replaced by the assumption that the trace of solutions along
space-like curves has bounded variation; see Bressan and Lewicka [1]. The impetus
for the above research was provided by Bressan [4], which established the unique
limit of the Glimm scheme. For an alternative approach, based on Haar’s method,
see Hu and LeFloch [1]. Uniqueness is also discussed in Oleinik [3], Tai-Ping Liu
[3], DiPerna [5], Dafermos and Geng [2], Heibig [1], LeFloch and Xin [1], Chen and
Frid [7], and Chen, Frid and Li [1].

A detailed treatment of the topics outlined in Section 14.11 is found in Bressan
[9]. Continuous Glimm functionals were first introduced by Schatzman [1], in the
context of piecewise Lipschitz solutions. The extension of the notion to BV solutions,
for genuinely nonlinear systems, and the proof of the lower semicontinuity property
(Lemma 14.11.1) are due to Bressan and Colombo [2], and Baiti and Bressan [2].
Further extension, to systems that are not genuinely nonlinear, was made by LeFloch
and Trivisa [1]. See also Bianchini [5].

As already noted in Sections 11.12 and 12.11, the decay of positive waves at the
rate O(1/t) was first discussed, for convex scalar conservation laws and genuinely
nonlinear systems of two conservation laws, by Oleinik [2] and Glimm and Lax [1],
respectively. The version presented here, Theorem 14.11.2, for genuinely nonlinear
systems of n conservation laws is taken from Bressan and Colombo [3] and Bressan
[9]. A sharp decay estimate is found in Bressan and Yang [2]. See also Bressan and
Coclite [1], and Bressan and Goatin [2], for special systems. An analogous property
for piecewise genuinely nonlinear systems, originally demonstrated by Tai-Ping Liu
[15], has been reestablished, by use of continuous Glimm functionals, in LeFloch and
Trivisa [1]. For implications on uniqueness, see Bressan and Goatin [1] and Goatin
[1].

The local structure of BV solutions was first described by DiPerna [3], for gen-
uinely nonlinear systems, and by Tai-Ping Liu [15], for piecewise genuinely non-
linear systems. The approach outlined here, culminating in Theorems 14.11.3 and
14.11.4, is due to Bressan and LeFloch [2]; see Bressan [9], for a detailed treatment.
For systems that are merely piecewise genuinely nonlinear, see Bianchini and Yu [2].

For the SBV property of solutions, see Biancini [10], Bianchini and Caravenna
[1], and Bianchini and Yu [1].

For early work on solutions that are small perturbations of a given, self-similar
wave fan, with large shocks and/or rarefaction waves, see Chern [1], and Asakura
[1,2], for the case of a single shock, Schochet [4], who established local existence
for genuinely nonlinear systems of arbitrary size, and by Bressan and Colombo [2],
who first demonstrated stability (i.e., continuous dependence in L1) for genuinely
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nonlinear systems of two conservation laws. See also Bressan and Marson [2]. The
combined treatment of existence and stability, for genuinely nonlinear systems of
arbitrary size, outlined in Section 14.12, is based on the work of Lewicka and Trivisa
[1], and Lewicka [2,3,4,5,6]. Solutions to a number of particular problems of this
type, formulated as Goursat problems on the positive quadrant, are found in Shao
[1,2,3,4,5,6].

As shown in Bressan, Chen and Zhang [1], the front tracking algorithm applied
to the p-system under initial data with large total variation may produce approximate
solutions with variation that blows up in finite time. It is not clear at the present time
whether this manifests breaking of the solution itself or just indicates inadequacy of
the front tracking algorithm to handle “large” data.

A great deal of experience has been amassed on the random choice scheme and
the front tracking algorithm, for constructing solutions, as well as on the linearization
technique, the Liu-Yang functional and Haar’s method, for establishing uniqueness
and L1 stability. Accordingly, the above methods have been adapted and have been
employed, interchangeably or in combination, in the study of Cauchy problems for
(inhomogeneous) systems of balance laws (Amadori and Guerra [1,2,3], Amadori,
Gosse and Guerra [1], Crasta and Piccoli [1], Karlsen, Risebro and Towers [1],
Colombo and Corli [4], Colombo and Guerra [1,2]), as well as initial-boundary value
problems for systems of conservation laws (Amadori [1], Amadori and Colombo
[1,2], Donadello and Marson [1]); also for nonclassical solutions, with shocks sat-
isfying admissibility conditions dictated by some kinetic relation, possibly even for
systems not in conservation form (Crasta and LeFloch [1], Baiti, LeFloch and Piccoli
[1,2], Amadori, Baiti, LeFloch and Piccoli [1], Laforest and LeFloch [1], Colombo
and Corli [1,3], Baiti [1]); for certain Cauchy problems with large data (Holden,
Risebro and Sande [2], Risebro and Weber [1], Sever [14], Amadori and Corli [1],
Asakura and Corli [2]); and finally for problems in control theory (Ancona and Mar-
son [1], Bressan and Coclite [1], Ancona and Coclite [1], Ancona and Goatin [1],
and Glass [1,3]). For recent developments, see Caravenna and Spinolo [1,2].

Estimates of the rate of convergence of the front tracking algorithm have been
derived by Lucier [1], in the scalar case, and by Bressan [9], for systems.
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Construction of BV Solutions

by the Vanishing Viscosity Method

Admissible BV solutions to the Cauchy problem for general strictly hyperbolic sys-
tems of conservation laws, under initial data with small total variation, will be con-
structed by the vanishing viscosity method. It will be shown that these solutions may
be realized as trajectories of an L1-Lipschitz semigroup, which reduces to the stan-
dard Riemann semigroup, introduced in Chapter XIV, when the system is genuinely
nonlinear.

15.1 The Main Result

Consider the Cauchy problem

(15.1.1) ∂tU(x, t)+∂xF(U(x, t)) = 0, −∞ < x < ∞ , 0 < t < ∞ ,

(15.1.2) U(x,0) =U0(x), −∞ < x < ∞ ,

for a system of conservation laws that is strictly hyperbolic in a ball O in Rn , centered
at a certain state U∗, and initial data U0 of bounded variation on (−∞,∞) such that
U0(−∞) =U∗.

The aim is to construct BV solutions to (15.1.1), (15.1.2) as the μ ↓ 0 limit of
solutions to the parabolic system

(15.1.3) ∂tU(x, t)+∂xF(U(x, t)) = μ∂ 2
x U(x, t), −∞ < x < ∞ , 0 < t < ∞ ,

under the same initial condition (15.1.2). This will be accomplished through the fol-
lowing:

15.1.1 Theorem. There is δ > 0 such that if

(15.1.4) TV(−∞,∞)U0(·)< δ ,

then the following hold, for some positive constants a and b:
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(a) For any μ > 0 there exists a classical solution Uμ to (15.1.3), (15.1.2) and

(15.1.5) TV(−∞,∞)Uμ(·, t)≤ aTV(−∞,∞)U0(·), t ∈ (0,∞),

(15.1.6)
‖Uμ(·, t)−Uμ(·,τ)‖L1(−∞,∞) ≤ b

(|t − τ|+ |√μt −√
μτ|), τ, t ∈ (0,∞).

(b) If Ūμ denotes the solution of (15.1.3) with initial value Ū0 such that
TV(−∞,∞)Ū0(·)< δ , Ū0(−∞) =U∗ and U0 −Ū0 is in L1(−∞,∞), then

(15.1.7) ‖Uμ(·, t)−Ūμ(·, t)‖L1(−∞,∞) ≤ a‖U0(·)−Ū0(·)‖L1(−∞,∞) , t ∈ (0,∞).

(c) As μ ↓ 0, {Uμ} converges in L1
loc to a BV solution U of (15.1.1), (15.1.2) which

inherits the stability properties (15.1.5), (15.1.6) and (15.1.7), namely

(15.1.8) TV(−∞,∞)U(·, t)≤ aTV(−∞,∞)U0(·), t ∈ (0,∞),

(15.1.9) ‖U(·, t)−U(·,τ)‖L1(−∞,∞) ≤ b |t − τ|, τ, t ∈ (0,∞),

(15.1.10) ‖U(·, t)−Ū(·, t)‖L1(−∞,∞) ≤ a‖U0(·)−Ū0(·)‖L1(−∞,∞), t ∈ (0,∞).

The shocks of the solution U satisfy the viscosity shock admissibility criterion,
and thereby all implied admissibility conditions, as described in Chapter VIII. When
all characteristic families of (15.1.1) are either genuinely nonlinear or linearly de-
generate, U coincides with the solution of (15.1.1), (15.1.2) constructed by the ran-
dom choice method of Chapter XIII or by the front tracking algorithm of Chapter
XIV.

The proof of the above proposition, which combines diverse ideas and tech-
niques, will occupy the remainder of this chapter. For orientation, Section 15.2 will
provide a road map.

It should be noted that the derivation of the estimates (15.1.5), (15.1.6) and
(15.1.7) does not depend in an essential manner on the assumption that (15.1.3) is in
conservative form but applies equally well to more general systems

(15.1.11) ∂tU(x, t)+A(U(x, t))∂xU(x, t) = μ∂ 2
x U(x, t), x ∈ (−∞,∞), t ∈ (0,∞),

provided only that A(U) has real distinct eigenvalues. The μ ↓ 0 limit U of the family
{Uμ} of solutions of (15.1.11), (15.1.2) may be interpreted as a “weak” solution of

(15.1.12) ∂tU +A(U)∂xU = 0,

even though it does not necessarily satisfy this system in the sense of distributions.
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15.2 Road Map to the Proof of Theorem 15.1.1

Henceforth we employ the notation A(U) = DF(U), with eigenvalues λi(U) and
right and left eigenvectors Ri(U) and Li(U) normalized by |Ri(U)| = 1 and (7.2.3).
In particular, we set A(U∗) = A∗ , λi(U∗) = λ ∗

i , Ri(U∗) = R∗
i and Li(U∗) = L∗

i .
The first step is to eliminate the small parameter μ from (15.1.3) by rescaling

the coordinates, (x, t) �→ (μx,μt). Indeed, if Uμ is a solution of the Cauchy problem
(15.1.3), (15.1.2), then U(x, t) =Uμ(μx,μt) satisfies

(15.2.1)

∂tU(x, t)+A(U(x, t))∂xU(x, t) = ∂ 2
x U(x, t), −∞ < x < ∞ , 0 < t < ∞ ,

with initial conditions

(15.2.2) U(x,0) =U0μ(x) =U0(μx), −∞ < x < ∞ .

As TV(−∞,∞)U0μ(·) = TV(−∞,∞)U0(·), TV(−∞,∞)Uμ(·, t) = TV(−∞,∞)U(·,μ−1t), it
will suffice to estimate the total variation of solutions U of (15.2.1), in which the
viscosity coefficient has been scaled to value one. The key estimate is

(15.2.3) TV(−∞,∞)U(·, t) = ‖∂xU(·, t)‖L1(−∞,∞) < δ0 ,

for t ∈ (0,∞), where δ0 is some small positive number.
The above bound results from the synergy between the parabolic and the hyper-

bolic structure of (15.2.1), in the following way:

(a) There are positive constants α and κ such that when TV(−∞,∞)U0(·) < 1
2κδ0

the diffusion induces (15.2.3) for t in some interval (0, t̄] of length t̄ = (ακδ0)
−2.

Moreover, when (15.2.3) holds on a longer time interval (0,T ), with T > t̄, then

(15.2.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
‖∂ 2

x U(·, t)‖L1(−∞,∞) < 2αδ 2
0 ,

‖∂ 3
x U(·, t)‖L1(−∞,∞) < 5α2δ 3

0 ,

‖∂ 3
x U(·, t)‖L∞(−∞,∞) < 16α3δ 4

0 ,

for any t ∈ [t̄,T ). This will be established in Section 15.3.

(b) For t > t̄, the hyperbolic structure of (15.2.1) takes charge and induces
(15.2.3) for t in any, bounded or unbounded, time interval [t̄,T ) on which (15.2.4)
holds. Thus (b) in conjunction with (a) establish (15.2.3) for all t ∈ (0,∞).

The assertion in part (b) is verified in several steps. Section 15.4 explains how
one employs the superposition of n (viscous) traveling waves of (15.2.1) that best
fits the profile of the solution U in the vicinity of any point (x, t) in the domain
(−∞,∞)× (t̄,∞) so as to express ∂xU and ∂tU in a system of local coordinates
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(15.2.5) ∂xU =
n

∑
j=1

w jS j , ∂tU =
n

∑
j=1
ω jS j ,

with components w j and ω j that satisfy scalar parabolic equations of the form

(15.2.6)

⎧⎨⎩ ∂tw j +∂x(σ jw j)−∂ 2
x w j = ϕ j

∂tω j +∂x(σ jω j)−∂ 2
x ω j = ψ j .

The next step, carried out in Sections 15.5, 15.6 and 15.7, is to demonstrate that
when (15.2.3) is satisfied on a time interval (0,T ), with T > t̄, and at the same time

(15.2.7)
T∫

t̄

∞∫
−∞

(|ϕ j(x, t)|+ |φ j(x, t)|)dxdt < δ0 , j = 1, · · · ,n,

then the sharper bound

(15.2.8)
T∫

t̄

∞∫
−∞

(|ϕ j(x, t)|+ |ψ j(x, t)|)dxdt < cδ 2
0 , j = 1, · · · ,n,

holds, for some c independent of T .
The final ingredient is the standard estimate

(15.2.9)
∞∫

−∞

|w j(x, t)|dx ≤
∞∫

−∞

|w j(x, t̄)|dx+
t∫

t̄

∞∫
−∞

|ϕ j(x,τ)|dxdτ,

for solutions of (15.2.6) and t > t̄.
One may now establish that when δ0 is sufficiently small, (15.2.3) holds for any

t ∈ (0,∞), by means of the following argument. Assume TV(−∞,∞)U0(·) < 1
4κδ0 .

Then, by (a) above, ‖∂xU(·, t)‖L1(−∞,∞) <
1
2δ0 , for any t ∈ (0, t̄]. Suppose now that

(15.2.3) holds on a bounded interval [t̄, T̄ ) but is violated at t = T̄ . For cδ0 < 1,
as T increases from t̄ to T̄ , the left-hand side of (15.2.7) cannot assume the value
δ0 unless it has already assumed the value cδ 2

0 < δ0 at an earlier time T . However,
this would be incompatible with the assertion, above, that (15.2.7) implies (15.2.8).
Hence (15.2.7), and thereby (15.2.8), must hold for all t ∈ [t̄, T̄ ). By applying (15.2.9)
for t = T̄ and using (15.2.5), we infer that ‖∂xU(·, T̄ )‖L1(−∞,∞) <

1
2δ0 +c1δ 2

0 , which
is smaller than δ0 when 2c1δ0 < 1. We have thus arrived at a contradiction to the
hypothesis that (15.2.3) is violated at t = T̄ .

The stability estimates (15.1.5), (15.1.6) and (15.1.7) will be derived in Section
15.8, with the help of (15.2.3). Clearly, once these estimates have been established,
one may pass to the limit along sequences {μk}, with μk → 0 as k → ∞ , and obtain
solutions U of (15.1.1), (15.1.2) possessing the stability properties (15.1.8), (15.1.9)
and (15.1.10). It will then be shown that any solution U = limk→∞ Uμk satisfies the
Tame Oscillation Condition 14.10.1. In turn, by virtue of Theorem 14.10.2, this will
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imply that when all characteristic families are either genuinely nonlinear or linearly
degenerate, then U must coincide with the unique solution constructed by the random
choice method. Thus, for such systems, the entire family {Uμ} must converge to the
same solution U , as μ ↓ 0.

For systems with general characteristic families, the issue of uniqueness has been
settled in the literature cited in Section 15.9, by the following procedure.

As a first step, it is shown that, for special initial data (9.1.12), the entire family
{Uμ} converges to the solution V (x, t;UL,UR) of the Riemann Problem constructed
by use of the wave curves identified in Section 9.8.

Next one demonstrates that any solution U = limk→∞ Uμk of (15.1.1), (15.1.2) is
properly approximated, in the vicinity of every fixed point (x̄, t̄) of the upper half-
plane, by either of the following:
(a) the solution V (x− x̄, t − t̄;UL,UR) of the Riemann problem for (15.1.1), with
end-states UL =U(x̄−, t̄),UR =U(x̄+, t̄), in the sense that for any β > 0,

(15.2.10) lim
h↓0

1
h

x̄+βh∫
x̄−βh

|U(x, t̄ +h)−V (x− x̄,h;UL,UR)|dx = 0;

(b) the solution W (x− x̄, t − t̄) of the Cauchy problem for the linearized system

(15.2.11)

⎧⎨⎩ ∂tW (x, t)+A(U(x̄, t̄))∂xW (x, t) = 0

W (x,0) =U(x− x̄, t̄),

in the sense that there exist positive constants c and β such that, for any y < x̄ < z,

(15.2.12) limsup
h↓0

z−βh∫
y+βh

|U(x, t̄ +h)−W (x− x̄,h)|dx ≤ c[TV(y,z)U(·, t̄)]2 .

It turns out that the above two conditions, (15.2.10) and (15.2.12), uniquely iden-
tify the solution and thus the entire family {Uμ} must converge to U , as μ ↓ 0.

15.3 The Effects of Diffusion

As noted in Section 15.2, the role of viscosity will be to sustain (15.2.3) on some
interval (0, t̄], of length t̄ = O(δ−2

0 ), while at the same time reducing the size of
the L1 norms of spatial derivatives of higher order, as indicated in (15.2.4). Both
objectives are met by virtue of

15.3.1 Lemma. Let U be the solution of (15.2.1), (15.2.2). There are positive con-
stants α and κ such that if (15.2.3) holds, for any fixed positive small δ0 , on the
interval (0, t̄] of length t̄ = (ακδ0)

−2, then
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(15.3.1) ‖∂ 2
x U(·, t)‖L1(−∞,∞) <

2δ0

κ
√

t
, t ∈ (0, t̄],

(15.3.2) ‖∂ 3
x U(·, t)‖L1(−∞,∞) <

5δ0

κ2t
, t ∈ (0, t̄],

(15.3.3) ‖∂ 3
x U(·, t)‖L∞(−∞,∞) <

16δ0

κ3t
√

t
, t ∈ (0, t̄].

Moreover, when (15.2.3) is satisfied on a longer interval (0,T ), t̄ < T ≤ ∞ , then
(15.2.4) will hold for any t ∈ [t̄,T ). Finally,

(15.3.4) TV(−∞,∞)U0(·)< 1
2κδ0

implies (15.2.3) for all t ∈ (0, t̄].

Sketch of Proof. We rewrite (15.2.1) in the form

(15.3.5) ∂tU +A∗∂xU −∂ 2
x U = [A∗ −A(U)]∂xU.

The (n× n matrix-valued) Green kernel G(x, t) of the linear parabolic operator on
the left-hand side of (15.3.5) can be written in closed form as follows. Multiplying
(15.3.5), from the left, by L∗

i , decouples the left-hand side of this system into scalar
equations with operator ∂t +λ ∗

i ∂x −∂ 2
x , whose Green function reads

(15.3.6) gi(x, t) =
1

2
√
πt

exp
[
− (x−λ ∗

i t)2

4t

]
.

Therefore,

(15.3.7) G(x, t) =
n

∑
i=1

gi(x, t)R∗
i L∗

i .

A simple calculation yields

(15.3.8) ‖G(·, t)‖L1(−∞,∞) ≤
1
κ
, ‖∂xG(·, t)‖L1(−∞,∞) ≤

1
κ
√

t
,

for some constant κ .
It will suffice to establish the desired estimates under the additional assumption

U0 ∈C∞, because the general case will then follow by completion.
Differentiating (15.3.5) with respect to x and applying Duhamel’s principle to the

resulting equation yields

(15.3.9) ∂xU(·, t) = G(·, t)∗∂xU0(·)+
t∫

0

G(·, t − τ)∗P(·,τ)dτ,
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where
(15.3.10)

P(x,τ) = [A∗ −A(U(x,τ))]∂ 2
x U(x, t)−∂xU�(x,τ)DA(U(x,τ))∂xU(x,τ)

and ∗ denotes convolution on (−∞,∞) with respect to the x-variable.
Since ‖U −U∗‖L∞ ≤ ‖∂xU‖L1 and ‖∂xU‖L∞ ≤ ‖∂ 2

x U‖L1 ,

(15.3.11) ‖P(·,τ)‖L1(−∞,∞) ≤ β‖∂xU(·,τ)‖L1(−∞,∞)‖∂ 2
x U(·,τ)‖L1(−∞,∞) ,

where β depends solely on sup |D2F(U)|, for U ∈ O .
We now assume (15.2.3) holds on an interval [0, t̄] of length t̄ = (ακδ0)

−2, with
α > 2πβκ−2, and proceed to verify (15.3.1) on (0, t̄]. Differentiating (15.3.9) with
respect to x,

(15.3.12) ∂ 2
x U(·, t) = ∂xG(·, t)∗∂xU0(·)+

t∫
0

∂xG(·, t − τ)∗P(·,τ)dτ.

Together with (15.3.8), (15.3.11) and (15.2.3), this implies

(15.3.13) ‖∂ 2
x U(·, t)‖L1(−∞,∞) ≤

δ0

κ
√

t
+
βδ0

κ

t∫
0

1√
t − τ ‖∂

2
x U(·,τ)‖L1(−∞,∞)dτ.

Suppose (15.3.1) is false, and let t be the earliest time in (0, t̄] where it fails. Then
(15.3.13) yields

(15.3.14)

2δ0

κ
√

t
≤ δ0

κ
√

t
+

2βδ 2
0

κ2

t∫
0

1√
τ(t − τ)dτ =

δ0

κ
√

t
+

2πβδ 2
0

κ2 <
δ0

κ
√

t
+

δ0

κ
√

t̄
,

which is in contradiction to t ≤ t̄.
The estimates (15.3.2) and (15.3.3) are established by similar arguments. The

reader may find the details in the references cited in Section 15.9.
Because of (15.3.1), (15.3.2) and (15.3.3), (15.2.4) holds at t = t̄ = (ακδ0)

−2 .
When (15.2.3) is satisfied on a longer interval (0,T ), t̄ < T ≤ ∞, then (15.2.4) will
hold for any t ∈ [t̄,T ), because the time origin may be shifted to the point t − t̄.

Finally, assume (15.3.4) and suppose (15.3.1) holds on some time interval (0, t̂).
Then, for any t ∈ (0, t̂], (15.3.9), (15.3.8) and (15.3.11) together imply

(15.3.15) ‖∂xU(·, t)‖L1(−∞,∞) ≤
δ0

2
+

2βδ0

κ2

t∫
0

1√
τ
‖∂xU(·,τ)‖L1(−∞,∞)dτ.

By Gronwall’s lemma,
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(15.3.16) ‖∂xU(·, t)‖L1(−∞,∞) ≤
δ0

2
exp

[
4βδ0

√
t

κ2

]
, t ∈ [0, t̂].

Consequently, both (15.3.1) and (15.2.3) will be satisfied on an interval (0, t̄] with
t̄ = (ακδ0)

−2, provided that α is sufficiently small, but independent of δ0 . The proof
is complete.

15.4 Decomposition into Viscous Traveling Waves

In Section 7.8 we saw that by expressing solutions as the superposition (7.8.1) of
simple waves, the hyperbolic system (15.1.1) reduces to the system (7.8.6) of weakly
coupled scalar equations. Here it is shown that the analog for the parabolic system
(15.2.1) is the decomposition (15.2.5) of solutions into a sum of viscous traveling
waves.

A viscous wave traveling with speed s is a solution U of (15.2.1) in the special
form U(x, t) = V (x − st). The function V must satisfy the second-order ordinary
differential equation

(15.4.1) V̈ = [A(V )− sI]V̇ ,

which may be recast as the first order system

(15.4.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V̇ =W

Ẇ = [A(V )− sI]W

ṡ = 0.

Clearly there exists a (2n + 1)-parameter family of viscous traveling waves,
parametrized by their speed and the initial values of V and W . However, the only
ones that may serve our present purposes are those for which |W | is bounded and
small on R and s is close to one of the characteristic speeds λ ∗

j . These will be dubbed
viscous j-waves.

For the system

(15.4.3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V̇ =W

Ẇ = [A∗ −λ ∗
j I]W

ṡ = 0,

resulting from linearizing (15.4.2) about (V =U∗ ,W = 0, s= λ ∗
j ), orbits of solutions

with W bounded span the (n+2)-dimensional hyperplane

(15.4.4) P j =
{
(V,W,s) : V ∈ Rn, W = wR∗

j , w ∈ R, s ∈ R
}
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embedded in R2n+1 . It then follows from the center manifold theorem that the or-
bits of viscous j-waves span a smooth (n+2)-dimensional manifold M j embedded
in R2n+1, which is tangent to P j at the point (U∗,0,λ ∗

j ). Furthermore, this center
manifold may be parametrized locally by (V,w,s), V ∈ Rn, w ∈ R, s ∈ R, as

(15.4.5) M j =
{
(V,W,s) : |V −U∗|< ε,W = wS j(V,w,s), |w|< ε, |s−λ ∗

j |< ε
}
,

where S j is a smooth unit vector field such that S j(U∗,0,λ ∗
j ) = R∗

j .
We proceed to show that along trajectories of (15.4.2) on the invariant manifold

M j , w satisfies a differential equation. To begin with, since |S j|= 1,

(15.4.6) S�j S j = 1, S�j Ṡ j = 0, S�j S̈ j =−Ṡ�j Ṡ j .

As W = wS j satisfies (15.4.2)2 ,

(15.4.7) ẇS j +wṠ j = w[A− sI]S j .

Multiplying (15.4.7), from the left, by S�j and using (15.4.6) yields

(15.4.8) ẇ = (σ j − s)w,

where

(15.4.9) σ j(V,w,s) = S�j (V,w,s)A(V )S j(V,w,s).

Combining (15.4.8) with (15.4.7) and using (15.4.2)1 ,

(15.4.10) [A−σ jI]S j = Ṡ j = DS jV̇ + ẇ∂wS j = w[DS jS j +(σ j − s)∂wS j].

Letting w → 0 in (15.4.10), we conclude that

(15.4.11) σ j(V,0,s) = λ j(V ), S j(V,0,s) = R j(V ).

Differentiating (15.4.8),

(15.4.12) ẅ = (σ jw).− sẇ.

To summarize, when U is a viscous j-wave, so that U(x, t) = V (x− st) with s
near λ ∗

j , then

(15.4.13)

⎧⎨⎩ ∂xU = w jS j(U,w j,s j)

∂tU = ω jS j(U,w j,s j),

where s j(x, t) = s, w j(x, t) = w(x − st), ω j(x, t) = −s j(x, t)w j(x, t). Notice that
(15.4.2) and (15.4.13) together imply

(15.4.14) ∂ 2
x U = w j[A(U)− s jI]S j(U,w j,s j).
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Furthermore, by virtue of (15.4.12),

(15.4.15)

⎧⎨⎩ ∂tw j +∂x(σ jw j)−∂ 2
x w j = 0

∂tω j +∂x(σ jω j)−∂ 2
x ω j = 0.

We now consider any solution U of (15.2.1) and visualize it as a superpo-
sition of viscous waves, as follows. For any point (x, t) of the upper half-plane
we seek numbers w j = w j(x, t), ω j = ω j(x, t), and s j = s j(x, t), j = 1, · · · ,n, with
|w j|< ε, |ω j|< ε, |s j −λ ∗

j |< ε , and such that

(15.4.16)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂xU =

n

∑
j=1

w jS j(U,w j,s j)

∂tU =
n

∑
j=1
ω jS j(U,w j,s j).

In fact, assuming |∂xU |, |∂tU | are sufficiently small and for any fixed s j ∈ Bε(λ ∗
j ),

(15.4.11) and the implicit function theorem together imply the existence of unique
w j , ω j for which (15.4.16) holds. Recalling (15.4.13), we infer that the j-th terms in
the above summations are first order approximations of a viscous j-wave. Next we
investigate whether it is possible to achieve a tighter fit by selecting judiciously the
s j. Combining (15.4.16) with (15.2.1) yields

(15.4.17) ∂ 2
x U =

n

∑
j=1

w j

[
A(U)+

ω j

w j
I
]

S j(U,w j,s j).

Comparing (15.4.17) with (15.4.14) we deduce that second-order fit would be at-
tained by selecting s j = −ω j/w j . The difficulty is that this may conflict with the
requirement |s j −λ ∗

j |< ε . As a compromise, we employ

(15.4.18) s j = λ ∗
j −θ

(
λ ∗

j +
ω j

w j

)
,

where θ is a smooth “cutoff” function such that

(15.4.19) θ(r) =

⎧⎪⎨⎪⎩
r if |r| ≤ δ1

|θ ′(r)| ≤ 1, |θ ′′(r)| ≤ 4
δ1

,

0 if |r|> 3δ1

for some small positive constant δ1 . Thus, s j = −ω j/w j whenever −ω j/w j takes
values near λ ∗

j . On the other hand, when −ω j/w j is far from λ ∗
j , s j is chosen con-

stant, equal to λ ∗
j .

After laborious analysis, which relies on the properties of the functions S j
and is found in the literature cited in Section 15.9, one shows that as long as
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|U −U∗|, |∂xU |, |∂ 2
x U |, and thereby also |∂tU |, are sufficiently small, for each (x, t)

there exists a unique set of (w j,ω j), j = 1, · · · ,n, which satisfies (15.4.16) together
with (15.4.18). Moreover, the functions (w j(x, t),ω j(x, t)), j = 1, · · · ,n, are C1,1

smooth. Furthermore, with reference to the setting and notation of Lemma 15.3.1,
when (15.2.3) is satisfied on an interval (0,T ), with t̄ < T ≤∞, in which case (15.2.4)
hold for any t ∈ [t̄,T ), then

(15.4.20)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n

∑
j=1

{‖w j(·, t)‖L1(−∞,∞) +‖ω j(·, t)‖L1(−∞,∞)

}
= O(δ0),

n

∑
j=1

{‖w j(·, t)‖L∞(−∞,∞) +‖ω j(·, t)‖L∞(−∞,∞)

}
= O(δ 2

0 ),

n

∑
j=1

{‖∂xw j(·, t)‖L1(−∞,∞) +‖∂xω j(·, t)‖L1(−∞,∞)

}
= O(δ 2

0 ),

n

∑
j=1

{‖∂xw j(·, t)‖L∞(−∞,∞) +‖∂xω j(·, t)‖L∞(−∞,∞)

}
= O(δ 3

0 ),

uniformly on [t̄,T ).
As we saw above, when U is just a viscous j-wave, w j and ω j satisfy (15.4.15).

For general solutions U , we have, instead, Equations (15.2.6), with source terms ϕ j
and ψ j . The expectation is that the approximation of U by viscous waves will be
sufficiently tight to render ϕ j and ψ j “small”.

After a lengthy and laborious calculation, which is found in the references cited
in Section 15.9, one shows that

(15.4.21)
(ϕ j,ψ j) = O(1)∑

i�=k

(|wiwk|+ |ωiωk|+ |wiωk|+ |wi∂xwk|+ |wi∂xωk|+ |ωi∂xwk|
)

+ O(1)∑
i
|ωi∂xwi −wi∂xωi|

+ O(1)∑
i

∣∣∣∣wi∂x

(
ωi

wi

)∣∣∣∣2χ{|λ ∗
i +ωi/wi|<3δ1}

+ O(1)∑
i

(|∂xwi|+ |∂xωi|
)|ωi + siwi|.

The four terms on the right-hand side of (15.4.21) estimate the “deviation” of
(15.2.6) from the single viscous j-wave case (15.4.15), arising for the following rea-
sons:
(a) The first term accounts for transversal wave interactions: viscous waves belong-
ing to distinct characteristic families, and thus propagating with distinct speeds, in-
teract and make a contribution of quadratic order to ϕ j and ψ j .
(b) The second and third terms account for interactions of waves from the same
characteristic family: the viscous i-waves approximating the profile U(·, t) at two
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different points, say x and y, are propagating with distinct speeds si(x, t) and si(y, t)
and may thus interact. The key factor in the estimate is ∂xsi which monitors the rate
of change of si .
(c) The fourth term accounts for the “error” committed by selecting si through
(15.4.18) instead of −ωi/wi , as would have been the case for a viscous i-wave. In-
deed, notice that this term vanishes whenever si =−ωi/wi .

In the following three sections we will estimate the right-hand side of (15.4.21).
The aim is to verify the assertion made in Section 15.2, namely that if (15.2.3) holds
on (0,T ), then (15.2.7) implies (15.2.8).

15.5 Transversal Wave Interactions

The aim here is to estimate the first term on the right-hand side of (15.4.21), which
accounts for the interaction between viscous waves of distinct families. Under the
assumption that (15.2.3) holds for t ∈ (0,T ), which in turn yields (15.4.20) for
t ∈ [t̄,T ), it will be shown that (15.2.7) implies

(15.5.1)
T∫

t̄

∞∫
−∞

∑
i�=k

(|wiwk|+ |ωiωk|+ |wiωk|+ |wi∂xwk|+ |wi∂xωk|+ |ωi∂xwk|
)
dxdt = O(δ 2

0 ).

Towards that goal we shall compare the solutions of two parabolic equations

(15.5.2)

⎧⎨⎩ ∂tu�(x, t)+∂x
[
σ �(x, t)u�(x, t)

]−∂ 2
x u�(x, t) = p�(x, t)

∂tu�(x, t)+∂x
[
σ �(x, t)u�(x, t)

]−∂ 2
x u�(x, t) = p�(x, t)

with strictly separated drifts:

(15.5.3) infσ �− supσ � ≥ r > 0.

15.5.1 Lemma. If
(
u�,u�

)
are solutions of (15.5.2) on (−∞,∞)× [0,T ),

(15.5.4)
T∫

0

∞∫
−∞

∣∣u�(x, t)∣∣∣∣u�(x, t)∣∣dxdt

≤ 1
r

{ ∞∫
−∞

|u�(x,0)|dx+
T∫

0

∞∫
−∞

|p�(x, t)|dxdt
}{ ∞∫

−∞

|u�(x,0)|dx+
T∫

0

∞∫
−∞

|p�(x, t)|dxdt
}
.

Proof. We consider first the homogeneous case, p� = p� = 0. We introduce the inter-
action potential
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(15.5.5) q(v�,v�) =
∞∫

−∞

∞∫
−∞

k(x− y)|v�(x)||v�(y)|dxdy,

for any pair of functions v� and v� in L1(−∞,∞), where

(15.5.6) k(z) =

⎧⎨⎩ r−1 if z ≥ 0

r−1 exp
(

1
2 rz

)
if z < 0.

Notice that rk′ −2k′′ is the Dirac mass at the origin. We now have

(15.5.7)
d
dt

q
(
u�(·, t),u�(·, t))= d

dt

∞∫
−∞

∞∫
−∞

k(x− y) |u�(x, t)| |u�(y, t)|dxdy

=

∞∫
−∞

∞∫
−∞

k(x− y)
{[
∂ 2

x u�−∂x
(
σ �u�

)]
sgnu�

}
(x, t) |u�(y, t)|dxdy

+

∞∫
−∞

∞∫
−∞

k(x− y)
{[
∂ 2

x u�−∂x
(
σ �u�

)]
sgnu�

}
(y, t) |u�(x, t)|dxdy

=

∞∫
−∞

∞∫
−∞

k′(x− y)
[
σ �(x, t)−σ �(y, t)

] |u�(x, t)| |u�(y, t)|dxdy

+

∞∫
−∞

∞∫
−∞

2k′′(x− y) |u�(x, t)| |u�(y, t)|dxdy

≤−
∞∫

−∞

∞∫
−∞

(rk′ −2k′′)(x− y) |u�(x, t)| |u�(y, t)|dxdy

≤−
∞∫

−∞

|u�(x, t)| |u�(x, t)|dx.

Integrating (15.5.7) over (0,T ) and recalling (15.5.5) and (15.5.6), we deduce

(15.5.8)
T∫

0

∞∫
−∞

|u�(x, t)| |u�(x, t)|dxdt ≤ 1
r

∞∫
−∞

|u�(x,0)|dx
∞∫

−∞

|u�(x,0)|dx,

namely (15.5.4) for the special case p� = p� = 0. In particular, if Γ �(x, t;y,τ) and
Γ �(x, t;y,τ) denote the Green functions for the (homogeneous form of the) equations
(15.5.2),

(15.5.9)
T∫

max{τ,τ ′}

∞∫
−∞

Γ �(x, t;y,τ)Γ �(x, t;y′,τ ′)dxdt ≤ 1
r
,
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for any couple of initial points (y,τ) and (y′,τ ′).
The solutions of (15.5.2) may now be written as

(15.5.10)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u�(x, t) =
∞∫

−∞

Γ �(x, t;y,0)u�(y,0)dy+
t∫

0

∞∫
−∞

Γ �(x, t;y,τ)p�(y,τ)dydτ

u�(x, t) =
∞∫

−∞

Γ �(x, t;y,0)u�(y,0)dy+
t∫

0

∞∫
−∞

Γ �(x, t;y,τ)p�(y,τ)dydτ.

Combining (15.5.9) with (15.5.10), we arrive at (15.5.4). The proof is complete.

15.5.2 Lemma. Assume that

(15.5.11)
T∫

0

∞∫
−∞

|p�(x, t)|dxdt ≤ δ0 ,

T∫
0

∞∫
−∞

|p�(x, t)|dxdt ≤ δ0 ,

(15.5.12) ‖σ �(·, t)‖L∞(−∞,∞) ≤ cδ0 , ‖∂xσ �(·, t)‖L∞(−∞,∞) ≤ cδ0 .

Let u�,u� be solutions of (15.5.2) such that

(15.5.13) ‖u�(·, t)‖L1(−∞,∞) ≤ δ0 , ‖u�(·, t)‖L1(−∞,∞) ≤ δ0 ,

(15.5.14) ‖∂xu�(·, t)‖L1(−∞,∞) ≤ cδ 2
0 , ‖u�(·, t)‖L∞(−∞,∞) ≤ cδ 2

0 ,

for all t ∈ [0,T ). Then

(15.5.15)
T∫

0

∞∫
−∞

|∂xu�(x, t)| |u�(x, t)|dxdt = O(δ 2
0 ).

Proof. The left-hand side of (15.5.15) is bounded by

(15.5.16) J (T ) = sup
T−τ∫
0

∞∫
−∞

|∂xu�(x, t)u�(x+ y, t + τ)|dxdt,

where the supremum is taken over all (y,τ) ∈ (−∞,∞)× [0,T ).
On account of (15.5.14),

(15.5.17) sup
1∫

0

∞∫
−∞

|∂xu�(x, t)u�(x+ y, t + τ)|dxdt ≤ c2δ 4
0 .
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For t > 1, we write ∂xu� in the form

(15.5.18) ∂xu�(x, t) =
∞∫

−∞

∂xg(z,1)u�(x− z, t −1)dz

+

1∫
0

∞∫
−∞

∂xg(z,s) [p�−∂x(σ �u�)](x− z, t − s)dzds,

where g(x, t) = (4πt)−
1
2 exp[−x2/4t] is the standard heat kernel. Hence

(15.5.19)
T−τ∫
1

∞∫
−∞

|∂xu�(x, t)u�(x+ y, t + τ)|dxdt

≤
T−τ∫
1

∞∫
−∞

∞∫
−∞

|∂xg(z,1)u�(x− z, t −1)u�(x+ y, t + τ)|dzdxdt

+

T−τ∫
1

∞∫
−∞

1∫
0

∞∫
−∞

‖∂xσ �‖L∞ |∂xg(z,s)u�(x− z, t − s)u�(x+ y, t + τ)|dzdsdxdt

+

T−τ∫
1

∞∫
−∞

1∫
0

∞∫
−∞

‖σ �‖L∞ |∂xg(z,s)∂xu�(x− z, t − s)u�(x+ y, t + τ)|dzdsdxdt

+

T−τ∫
1

∞∫
−∞

t∫
t−1

∞∫
−∞

|∂xg(x− z, t − s)p�(z,s)u�(x+ y, t + τ)|dzdsdxdt.

Upon combining (15.5.16), (15.5.17), (15.5.19), (15.5.4), (15.5.11), (15.5.12),
(15.5.13), and (15.5.14), one obtains

(15.5.20) J (T )≤ c2δ 4
0 +

4δ 2
0√
πr

+
8cδ 3

0√
πr

+
2cδ0√
π

J (T )+
2cδ 3

0√
π

.

For δ0 sufficiently small, (15.5.20) yields J (T ) = O(δ 2
0 ) and thence (15.5.15). This

completes the proof.

We have now laid the groundwork for establishing (15.5.1). Recalling (15.2.6),
we apply Lemma 15.5.1 with u� = wi , σ � = σi , p� = ϕi , u� = wk , σ � = σk , and
p� = ϕk , shifting the origin from t = 0 to t = t̄. Using (15.2.7) and (15.4.22), we de-
duce that the integral of |wiwk| over (−∞,∞)×(t̄,T ) is O(δ 2

0 ). The integrals of |wiωk|
and |ωiωk| are treated by the same argument. To estimate the integral of |wi∂xwk|,
we apply Lemma 15.5.2 with u� = wk , σ � = σk , p� = ϕk , u� = wi , σ � = σi , and
p� = ϕi . In order to meet the requirement (15.5.12)1 , we perform the change of vari-
able x �→ x−λ ∗

k t so that the drift coefficient σk is replaced by σk−λ ∗
k which is O(δ0).

The integrals of the remaining terms |wi∂xωk| and |ωi∂kwk| are handled by the same
method.
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15.6 Interaction of Waves of the Same Family

This section provides estimates for the second and third terms on the right-hand
side of (15.4.21), which are induced by the interaction of viscous waves of the same
family. The aim is to show that when (15.2.7) and (15.4.20) hold, for t ∈ [t̄,T ), then

(15.6.1)
T∫

t̄

∞∫
−∞

|ωi∂xwi −wi∂xωi|dxdt = O(δ 2
0 ),

(15.6.2)
T∫

t̄

∞∫
−∞

∣∣∣∣wi∂x

(
ωi

wi

)∣∣∣∣2χ{|λ ∗
i +ωi/wi|<3δ1}dxdt = O(δ 3

0 ).

This objective will be attained by monitoring the time evolution of two functionals
of the solutions with very interesting geometric interpretation.

We consider solutions (w,ω) of the equations

(15.6.3)

⎧⎨⎩ ∂tw(x, t)+∂x[σ(x, t)w(x, t)]−∂ 2
x w(x, t) = ϕ(x, t)

∂tω(x, t)+∂x[σ(x, t)ω(x, t)]−∂ 2
x ω(x, t) = ψ(x, t),

on [t̄,T ), where ϕ,ψ and σ are given, smooth functions, with ϕ(·, t) and ψ(·, t) in
L1(−∞,∞). Hence w(·, t) and ω(·, t) will also lie in L1(−∞,∞), so that one may
define the functionals

(15.6.4) L (t) =
∞∫

−∞

[w2(x, t)+ω2(x, t)]1/2dx,

(15.6.5) A (t) =
1
2

∞∫
−∞

∫
x<y

|w(x, t)ω(y, t)−ω(x, t)w(y, t)|dxdy.

We introduce the vector field

(15.6.6) Z(x, t) =
( x∫
−∞

w(y, t)dy ,

x∫
−∞

ω(y, t)dy
)
.

For fixed t ∈ [t̄,T ), Z(·, t) defines a curve on R2 , parametrized by x, and thus Z
represents a moving curve on R2 . We will use a prime to denote differentiation with
respect to the parameter x along this curve, ′ = ∂x . Notice that L (t) is the length of
the curve at time t. Furthermore,

(15.6.7)
1
2

∞∫
−∞

Z(y, t)∧Z′(y, t)dy =
1
2

∞∫
−∞

∫
x<y

Z′(x, t)∧Z′(y, t)dxdy
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yields the sum of the areas of the regions enclosed by the curve Z(·, t), each multi-
plied by the corresponding winding number. Thus A (t) provides an upper bound for
the area of the convex hull of Z(·, t).

By virtue of (15.6.3),

(15.6.8) ∂tZ(x, t)+σ(x, t)∂xZ(x, t)−∂ 2
x Z(x, t) =Φ(x, t),

where

(15.6.9) Φ(x, t) =
( x∫
−∞

ϕ(y, t)dy ,

x∫
−∞

ψ(y, t)dy
)
.

The plan is to show that the rate of growth of L (t) and A (t) is controlled by
‖ϕ(·, t)‖L1(−∞,∞) and ‖ψ(·, t)‖L1(−∞,∞) , and, in particular, that these functionals are
nonincreasing when ϕ and ψ vanish identically.

15.6.1 Lemma.

(15.6.10)
d
dt

A (t)≤−
∞∫

−∞

∣∣ω(x, t)∂xw(x, t)−w(x, t)∂xω(x, t)
∣∣dx

+‖w(·, t)‖L1(−∞,∞)‖ψ(·, t)‖L1(−∞,∞) +‖ω(·, t)‖L1(−∞,∞)‖ϕ(·, t)‖L1(−∞,∞).

Z(y–1,t)

Z(y3,t) Z(y1,t)

Z(y2,t)

N(x)

Z(x,t)

∂x Z(x,t)

Fig. 15.6.1

Proof. Let us fix t ∈ [t̄,T ) and consider the curve Z(·, t) in R2; see Fig. 15.6.1. With
any x ∈ (−∞,∞) we associate the unit vector N(x) in R2 that is perpendicular to the
tangent vector Z′(x, t) and is oriented by

(15.6.11) Z′(x, t)∧N(x) = |Z′(x, t)|.
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In particular, for any W ∈ R2,

(15.6.12) Z′(x, t)∧W = |Z′(x, t)|[N(x) ·W ].

We now compute

(15.6.13)

d
dt

A (t)=
1
2

∞∫
−∞

∫
x<y

sgn[Z′(x, t)∧Z′(y, t)]
[
∂tZ′(x, t)∧Z′(y, t)+Z′(x, t)∧∂tZ′(y, t)

]
dxdy

=
1
2

∞∫
−∞

∞∫
−∞

sgn
[
Z′(x, t) ∧Z′(y, t)

][
Z′(x, t)∧∂tZ′(y, t)

]
dydx

=
1
2

∞∫
−∞

∞∫
−∞

|Z′(x, t)|sgn∂yz(y,x, t)∂t∂yz(y,x, t)dydx

=
1
2

∞∫
−∞

|Z′(x, t)|∂tTV(−∞,∞)z(·,x, t)dx,

where we are using the notation

(15.6.14) z(y,x, t) = N(x) ·Z(y, t).

Since N(x) ·Z′(x, t) = 0, x is a critical point of z(·,x, t). Assume, for simplicity, there
is

a finite number of critical points y−p < · · · < y−1 < y0 = x < y1 < · · · < yq , and
none of them is degenerate. As minima and maxima alternate,

(15.6.15) sgn∂ 2
y z(yr,x, t) = (−1)rsgn∂ 2

y z(x,x, t).

A simple calculation yields

(15.6.16) ∂t TV(−∞,∞)z(·,x, t) =−2 ∑
−p≤r≤q

sgn∂ 2
y z(yr,x, t)∂t z(yr,x, t).

We substitute into (15.6.16) ∂t z = N · ∂tZ, with ∂tZ taken from (15.6.8). Since
∂yz(yr,x, t) = 0, and by virtue of (15.6.15),

(15.6.17) ∂t TV(−∞,∞)z(·,x, t)

=−2 ∑
−p≤r≤q

|∂ 2
y z(yr,x, t)|−2sgn∂ 2

y z(x,x, t) ∑
−p≤r≤q

(−1)r[N(x) ·Φ(yr, t)].

Furthermore,
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(15.6.18) ∑
−p≤r≤q

|∂ 2
y z(yr,x, t)| ≥ |∂ 2

y z(y0,x, t)|= |N(x) ·Z′′(x, t)|,

(15.6.19)
∣∣∣∣ ∑
−p≤r≤q

(−1)r[N(x) ·Φ(yr, t)]
∣∣∣∣≤ ∞∫

−∞

|N(x) ·Φ ′(y, t)|dy.

By combining (15.6.13) with (15.6.17), (15.6.18), (15.6.19), (15.6.14) and (15.6.12)
we conclude that

(15.6.20)
d
dt

A (t)≤−
∞∫

−∞

Z′(x, t)∧Z′′(x, t)|dx+
∞∫

−∞

∞∫
−∞

|Z′(x, t)∧Φ ′(y, t)|dydx.

Since Z′ = (w,ω) andΦ ′ = (ϕ,ψ), (15.6.20) yields (15.6.10). The proof is complete.

15.6.2 Lemma. Under the assumption w2 +ω2 �= 0,

(15.6.21)
d
dt

L (t)≤− 1
(1+9δ 2

1 )
3/2

∞∫
−∞

|w(x, t)|
∣∣∣∣∂x

(
ω(x, t)
w(x, t)

)∣∣∣∣2χ{|ω/w|<3δ1}dx

+‖ϕ(·, t)‖L1(−∞,∞) +‖ψ(·, t)‖L1(−∞,∞) .

Proof. Since w2 +ω2 �= 0,

(15.6.22)
d
dt

L (t) =
∞∫

−∞

w∂tw+ω∂tw
(w2 +ω2)1/2 dx.

We substitute ∂tw and ∂tω from (15.6.3) into (15.6.22). Upon using the elementary
identities

(15.6.23)
w∂x(σw)+ω∂x(σω)

(w2 +ω2)1/2 = ∂x[σ(w2 +ω2)1/2],

(15.6.24)
w∂ 2

x w+ω∂ 2
x ω

(w2 +ω2)1/2 = ∂ 2
x (w

2 +ω2)
1
2 −

|w|
∣∣∣∣∂x

(
ω
w

)∣∣∣∣2[
1+

(
ω
w

)2]3/2 ,

we deduce

(15.6.25)
d
dt

L (t) =−
∞∫

−∞

|w|
∣∣∣∣∂x

(
ω
w

)∣∣∣∣2[
1+

(
ω
w

)2]3/2 dx+
∞∫

−∞

wϕ+ωψ
(w2 +ω2)1/2 dx,
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which easily yields (15.6.21). This completes the proof.

In order to show (15.6.1), we integrate (15.6.10) over [t̄,T ) to get the estimate

(15.6.26)
T∫

t̄

∞∫
−∞

|ω(x, t)∂xw(x, t)−w(x, t)∂xω(x, t)|dxdt ≤ A (t̄)

+ sup
[t̄,T )

(
‖w(·, t)‖L1(−∞,∞) +‖ω(·, t)‖L1(−∞,∞)

) T∫
t̄

∞∫
−∞

(|ϕ(x, t)|+ |ψ(x, t)|)dxdt.

Recalling (15.2.6), we apply (15.6.26) for w = wi , ω = ωi , ϕ = ϕi , ψ = ψi and
σ = σi . In that case, the right-hand side of (15.6.26) is O(δ 2

0 ), by virtue of (15.2.7)
and (15.4.23).

To verify (15.6.2), we integrate (15.6.21) over [t̄,T ), choosing δ1 ≤ 1
3 . We thus

obtain

(15.6.27)
T∫

t̄

∞∫
−∞

|w(x, t)|
∣∣∣∣∂x

(
ω(x, t)
w(x, t)

)∣∣∣∣2χ{|ω/w|<3δ1}dxdt

≤ 4L (t̄)+4
T∫

t̄

∞∫
−∞

(|ϕ(x, t)|+ |ψ(x, t)|)dxdt.

We now apply this inequality for w = wi , ω = ωi , ϕ = ϕi , ψ = ψi and σ = σi , after
performing the change of variable x �→ x−λ ∗

i t, which renders λ ∗
i = 0. In that case

the right-hand side of (15.6.27) is O(δ0), on account of (15.2.7) and (15.4.23). Hence

(15.6.28)
T∫

t̄

∞∫
−∞

|wi|
∣∣∣∂x

(ωi

wi

)∣∣∣2χ{|λ ∗
i +ωi/wi|<3δ1}dxdt = O(δ0).

Since ‖wi‖L∞ = O(δ 2
0 ), (15.6.2) follows directly from (15.6.28).

15.7 Energy Estimates

Here we estimate the last term on the right-hand side of (15.4.21), which stems from
our fixing the speed si according to (15.4.18). The aim is to show that

(15.7.1)
T∫

t̄

∞∫
−∞

(|∂xwi|+ |∂xωi|)|ωi + siwi|dxdt = O(δ 2
0 ).

The proof, which relies on energy estimates, is technical and does not provide as
much insight as the discussion in the previous two sections. Consequently, only an
outline will be given here. The reader may find the details in the references cited in
Section 15.9.



15.7 Energy Estimates 577

Since one may perform the change of variable x �→ x− λ ∗
i t, we may assume,

without loss of generality, that λ ∗
i = 0 and hence σi = O(δ0).

In addition to θ , defined by (15.4.19), we will employ the “cutoff” functions

(15.7.2) η(r) =

⎧⎪⎪⎨⎪⎪⎩
0 if |r| ≤ 3

5δ1

|η ′(r)| ≤ 20
δ1

, |η ′′(r)| ≤ 100
δ 2

1
,

1 if |r| ≥ 4
5δ1

and η̄(r) = η(|r| − 1
5δ1). We write ηi = η(ωi/wi), and η̄i = η̄(ωi/wi). We also

choose δ0 << δ1 << 1.

15.7.1 Lemma. When |ωi/wi| ≥ 3
5δ1 ,

(15.7.3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|wi| ≤ 5

2δ1
|∂xwi|+O(δ0)∑

j �=i
|w j|

|ωi| ≤ 2|∂xwi|+O(δ0)∑
j �=i

|w j|,

while when |ωi/wi| ≤ δ1 ,

(15.7.4) |∂xwi| ≤ 2δ1|wi|+O(δ0)∑
j �=i

|w j|.

Sketch of Proof. We substitute ∂xU and ∂tU from (15.4.18) into (15.2.1) to get

(15.7.5)
n

∑
j=1
ω jS j +

n

∑
j=1

w jAS j =
n

∑
j=1
∂xw jS j +

n

∑
j=1

w j∂xS j .

Multiplying, from the left, by S�i , recalling that S�i Si = 1, S�i ∂xSi = 0, and using
(15.4.9) yields

(15.7.6) ωi −σiwi −∂xwi = ∑
j �=i

{
[∂xw j −ω j]S�i S j +w jS�i ∂xS j −w jS�i AS j

}
= O(δ0)∑

j �=i
(|w j|+ |∂xw j −ω j|).

Assertions (15.7.3) and (15.7.4) follow from careful analysis of the above equation.
This completes the proof.

Since |ωi + siwi| vanishes when |ωi/wi| ≤ δ1 and is otherwise bounded by |ωi|,
we have

(15.7.7) |ωi + siwi| ≤ |η̄iωi| ≤ η̄i

[
2|∂xwi|+O(δ0)∑

j �=i
|w j|

]
.
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Therefore,

(15.7.8) (|∂xwi|+ |∂xωi|)|ωi + siwi|
≤ 2η̄i|∂xwi|2 +2η̄i|∂xwi||∂xωi|+∑

j �=i
(|w j∂xwi|+ |w j∂xωi|)

≤ 3ηi|∂xwi|2 + η̄i|∂xωi|2 +∑
j �=i

(|w j∂xwi|+ |w j∂xωi|).

As shown in Section 15.5, the integral over (−∞,∞)× (t̄,T ) of the third term
on the right-hand side of (15.7.8) is O(δ 2

0 ). Thus, in order to verify (15.7.1) it will
suffice to show

(15.7.9)
T∫

t̄

∞∫
−∞

ηi|∂xwi|2dxdt = O(δ 2
0 ),

(15.7.10)
T∫

t̄

∞∫
−∞

η̄i|∂xωi|2dxdt = O(δ 2
0 ).

The first step towards establishing (15.7.9) is to multiply (15.2.6)1 by 2ηiwi ,
integrate the resulting equation over (−∞,∞), and integrate by parts. This yields

(15.7.11)
∞∫

−∞

{
∂t(ηiw2

i )+∂x(ηiσi)w2
i − (∂tηi +2σi∂xηi −∂ 2

x ηi)w2
i

+ 2ηi(∂xwi)
2 +4(∂xηi)wi∂xwi

}
dx =

∞∫
−∞

2ηiwiϕidx.

Hence

(15.7.12) 2
∞∫

−∞

ηi|∂xwi|2dx =− d
dt

∞∫
−∞

ηiw2
i dx+

∞∫
−∞

(∂tηi +2σi∂xηi −∂ 2
x ηi)w2

i dx

+2
∞∫

−∞

ηiσiwi∂xwidx−4
∞∫

−∞

(∂xηi)wi∂xwidx+2
∞∫

−∞

ηiwiϕidx.

We proceed to estimate the right-hand side of the above equation.
Recalling the definition of ηi and using (15.2.6), we obtain, after a short calcula-

tion,

(15.7.13) (∂tηi +2σi∂xηi −∂ 2
x ηi)w2

i

= η ′
i (ψiwi −ϕiωi)+2η ′

i wi(∂xwi)∂x(ωi/wi)−η ′′
i w2

i [∂x(ωi/wi)]
2 .
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Furthermore, using (15.7.3)1 and since σi = O(δ0)<< δ1 ,

(15.7.14)
∣∣∣∣2 ∞∫

−∞

ηiσiwi∂xwidx
∣∣∣∣≤ ∞∫

−∞

ηi|∂xwi|2dx+O(δ0)

∞∫
−∞

∑
j �=i

|w j∂xwi|dx.

On the range where η ′
i �= 0, we have |ωi/wi| < δ1 and hence (15.7.4) applies.

One then obtains

(15.7.15) |(∂xηi)wi∂xwi|= |η ′
i wi(∂xwi)∂x(ωi/wi)|

≤ O(1)|wi∂xωi −ωi∂xwi|+O(δ0)∑
j �=i

(|w j∂xwi|+ |w j∂xωi|).

We now combine (15.7.12) with (15.7.13), (15.7.14), (15.7.15) and integrate the
resulting inequality over (t̄,T ). This yields an estimate of the form

(15.7.16)
T∫

t̄

∞∫
−∞

ηi|∂xwi|2dxdt ≤
∞∫

−∞

(ηiw2
i )(x, t̄)dx

+O(1)
T∫

t̄

∞∫
−∞

(|wiψi|+ |wiϕi|+ |ωiϕi|)dxdt

+O(1)
T∫

t̄

∞∫
−∞

|wi∂xωi −ωi∂xwi|dxdt

+O(δ0)

T∫
t̄

∞∫
−∞

∑
j �=i

(|w j∂xwi|+ |w j∂xωi|)dxdt

+ O(1)
T∫

t̄

∫
|ωi/wi|<δ1

|wi∂x(ωi/wi)|2dxdt.

By virtue of (15.4.20), (15.2.7), (15.5.1), (15.6.1) and (15.6.2), we conclude that the
right-hand side of (15.7.16) is O(δ 2

0 ), which verifies (15.7.9).
The estimate (15.7.10) is established by a similar procedure. For the details the

reader should consult the references in Section 15.9.

15.8 Stability Estimates

This section provides a sketch of the proof of the stability estimates (15.1.5), (15.1.6)
and (15.1.7).

On account of the rescaling U(x, t) = Uμ(μx,μt), the estimates (15.1.6) and
(15.1.7), for solutions of (15.1.3), (15.1.2), are respectively equivalent to
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(15.8.1) ‖U(·, t)−U(·,τ)‖L1(−∞,∞) ≤ b(|t − τ|+ |√t −√
τ|), τ, t ∈ [0,∞),

(15.8.2) ‖U(·, t)−Ū(·, t)‖L1(−∞,∞) ≤ a‖U0μ(·)−Ū0μ(·)‖L1(−∞,∞) , t ∈ (0,∞),

for solutions of (15.2.1), (15.2.2).
The estimate (15.8.1) is obtained by integrating over (τ, t) the inequality

(15.8.3) ‖∂tU(·, t)‖L1(−∞,∞) ≤ b
(

1+
1

2
√

t

)
, t ∈ (0,∞),

which follows from (15.2.1), by virtue of (15.2.3), (15.3.1) and (15.2.4).
The estimate (15.8.2) is established by means of the following homotopy argu-

ment. We have

(15.8.4) U(x, t)−Ū(x, t) =
1∫

0

d
dξ

Uξ (x, t)dξ ,

where Uξ denotes the solution of (15.2.1) with initial data ξŪ0μ +(1−ξ )U0μ . The
“tangent” vector

(15.8.5) Wξ (x, t) =
d

dξ
Uξ (x, t)

is the solution of the linearized equation

(15.8.6) ∂tWξ (x, t)+∂x
[
A(Uξ (x, t))Wξ (x, t)

]
= ∂ 2

x Wξ (x, t),

with initial value

(15.8.7) Wξ (·,0) = Ū0μ(·)−U0μ(·).
Equation (15.8.6) bears a close resemblance to the equation satisfied by the

derivative ∂xU of solutions to (15.2.1), and may thus be treated by the meth-
ods employed in earlier sections. The analysis, which is found in the references
cited in Section 15.9, shows that, as ‖∂xUξ (·, t)‖L2(−∞,∞) < δ0 on (0,∞), there ex-
ists a constant a > 1 such that, for any δ > 0, ‖Wξ (·,0)‖L1(−∞,∞) < δ/a implies
‖Wξ (·, t)‖L1(−∞,∞) < δ , for all t ∈ (0,∞). Since (15.8.6) is linear, the above assertion
is equivalent to

(15.8.8) ‖Wξ (·, t)‖L1(−∞,∞) ≤ a‖Wξ (·,0)‖L1(−∞,∞) , 0 < t < ∞.

Upon combining (15.8.8) with (15.8.4), (15.8.5) and (15.8.7), we arrive at (15.8.2),
thus establishing (15.1.7).

The remaining estimate (15.1.5) is an immediate corollary of (15.1.7). Indeed,
we apply (15.1.7) for the two solutions Uμ(x, t) and Ūμ(x, t) = Uμ(x+ h, t), with
corresponding initial values U0(x) and Ū0(x) =U0(x+h), we multiply the resulting
inequality by h−1 and then let h → 0, which yields (15.1.5).
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Solutions of (15.1.1) constructed by the vanishing viscosity method have the
finite speed of propagation property. Indeed, by use of the properties of the Green
function it can be shown that when U0 and Ū0 coincide inside an interval (y,z), in
which case U0μ(x) = Ū0μ(x) for x ∈ (y/μ,z/μ), then the corresponding solutions U
and Ū of (15.2.1), (15.2.2) satisfy

(15.8.9)

|U(x, t)−Ū(x, t)| ≤ c‖U0(·)−Ū0(·)‖L∞(−∞,∞)

{
exp

(
νt − x+

y
μ

)
+ exp

(
νt + x− z

μ

)}
for some positive constants c,ν and all (x, t) in (−∞,∞)× (0,∞). Upon rescaling,
(x, t) �→ (x/μ, t/μ), so as to return to Uμ , Ūμ , we conclude that the two solutions
U = limk→∞ Uμk and Ū = limk→∞ Ūμk of (15.1.1), with initial values U0 and Ū0 ,
must coincide for all (x, t) with x ∈ (y+νt,z−νt).

It follows from the above that in the place of (15.1.10) and (15.1.8) we have the
more precise estimates

(15.8.10)
z∫

y

|U(x, t)−Ū(x, t)|dx ≤ a
z+νt∫

y−νt

|U0(x)−Ū0(x)|dx,

(15.8.11) TV(y,z)U(·, t)≤ aTV(y−νt,z+νt)U0(·),
for any −∞ ≤ y < z ≤ ∞ .

We next demonstrate that the finite speed of propagation property in conjunction
with the stability estimate (15.1.8) imply that any solution U of (15.1.1), (15.1.2)
constructed by the vanishing viscosity method satisfies the Tame Oscillation Con-
dition 14.10.1. In turn, by virtue of Theorem 14.10.2, this will imply that, when all
characteristic families are either genuinely nonlinear or linearly degenerate, then U
must coincide with the unique solution constructed by the random choice method.

Because solutions of (15.1.1) are preserved under spatial and temporal transla-
tions, it will suffice to verify (14.10.3) at the origin, x = 0, t = 0. We fix λ > ν and
consider the solution Ū of (15.1.1) with initial data

(15.8.12) Ū0(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U0(−λh+) −∞ < x ≤−λh

U0(x) −λh < x < λh

U0(λh−) λh < x < ∞ .

Then we have TV(−∞,∞)Ū0(·) = TV(−λh,λh)U0(·), Ū(0±,h) = U(0±,h) and
Ū(∞,h) =U0(λh−). Therefore, on account of (15.1.8),

(15.8.13) |U(0±,h)−U0(0±)| ≤ |Ū(0±,h)−Ū(∞,h)|+ |U0(λh−)−U0(0±)|
≤ (a+1)TV(−λh,λh)U0(·),

which establishes (14.10.3).
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15.9 Notes

The construction of BV solutions by the vanishing viscosity method had been a cen-
tral open problem of long standing in the theory of hyperbolic systems of conserva-
tion laws. It has finally been solved, in a spectacular way, by Bianchini and Bressan
[5]. The presentation in this section abridges that fundamental paper. An informative
survey of the theory is found in Bressan [14]. The ground had been prepared by the
preliminary papers, Bianchini and Bressan [1,2,3,4]. For the rate of convergence, see
Bressan and Yang [1]. The method has now been extended to cover initial-boundary
value problems for hyperbolic conservation laws (Bianchini and Spinolo [1], Spinolo
[1]). The principal underlying ideas of this approach have been fruitfully employed
for constructing solutions to the Riemann Problem (Bianchini [6]), and for establish-
ing convergence of semidiscrete upwind schemes for hyperbolic conservation laws
(Bianchini [7,8], Bressan, Baiti and Jenssen [1]), of Godunov’s method, for special
systems (Bressan and Jenssen [1], Bressan, Jenssen and Baiti [1]), and of the lin-
ear Jin-Xin relaxation scheme (Bianchini [9]). See also Bianchini [4] and Bressan
and Shen [1]. At the same time, resonance phenomena have also been detected in
Godunov’s scheme and the Lax-Friedrichs scheme that may drive the total varia-
tion of approximate solutions to infinity; see Bressan and Jenssen [1], Baiti, Bressan
and Jenssen [1], and Bressan, Jenssen and Baiti [1]. A multitude of additional ap-
plications are to be expected in the near future. It should also be emphasized that
these techniques apply to general quasilinear strictly hyperbolic systems, regardless
of whether they are in conservation form. Of course, in the nonconservative case the
constructed “solutions” do not necessarily satisfy the equations in the sense of dis-
tributions but should be interpreted in the context of the theory of nonconservative
shocks by LeFloch et al., outlined in Section 8.7.

The first steps towards understanding how viscous shocks form and interact, and
how the viscous approximation converges, have been taken in Bressan and Donadello
[1,2], Shen and Park [1], and Shen and Xu [1].

The rate of convergence, in L1, of solutions of (15.1.3) to solutions of (15.1.1), as
the viscosity coefficient μ tends to zero, is discussed in Bressan, Huang, Wang and
Yang [1].

There is extensive literature on alternative aspects of the vanishing viscosity ap-
proach. We have already seen, in Chapter VI, how this method applies to scalar
conservation laws, in the L∞ or BV setting. In Chapter XVI we shall encounter appli-
cations to certain systems of conservation laws, in the Lp setting. Yet another direc-
tion is to investigate how solutions of the system with viscosity approximate given,
piecewise smooth solutions of the hyperbolic system; see, for instance Goodman and
Xin [1], Lin and Yang [1], Hoff and Liu [1], Serre [14], Rousset [4], Shih-Hsien Yu
[1], Tang, Teng and Xin [1], and Jiang, Ni and Sun [1]. One may pursue the same
objective in the context of relaxation schemes; see Lattanzio and Serre [1], and Li
and Pan [1].

A major open problem is whether the method still applies when the identity
matrix, on the right-hand side of (15.1.3), is replaced by a more general viscosity
matrix. In particular, it is not known whether one may realize BV solutions to the
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(one-dimensional) Euler equations for isentropic gas flow as solutions to the Navier-
Stokes equations with vanishingly small coefficient of (physical) viscosity.

In the vanishing viscosity approach, the approximate solutions Uμ carry informa-
tion on the viscous shock profiles, which is especially valuable, when one employs
genuine physical viscosity, but it is lost in the limit μ → 0. This loss of information
also occurs when solutions are constructed by a vanishing capillarity or relaxation
method, or even by the approach outlined in Section 8.7, in which the shock profile
itself determines the notion of weak solution. As a remedy, LeFloch [6] suggests
attaching the information on internal shock structure to the solution U of the hy-
perbolic system, by means of the following interesting device. Instead of tracking
U(x, t) as an evolving discontinuous function of x, one should realize it as a moving
continuous curve (ξ (s, t),V (s, t)), where ξ (·, t) is a smooth nondecreasing function
of the parameter s, having the following properties:

(a) ξ (±∞, t) =±∞ ;

(b) ξ (·, t) is invertible on the set of points x of continuity of U(·, t), and the inverse
satisfies V (ξ−1 (x, t), t) =U(x, t);

(c) If x is a point of discontinuity of U(·, t), then ξ (s, t) = x for s on some closed
interval, say [s−,s+], with V (s±, t) =U(x±, t) and V (·, t) on (s−,s+) tracing the
profile of the discontinuity that joins U(x−, t) to U(x+, t).

The discontinuity profile will be a shock profile, when (x, t) is a point of approximate
jump discontinuity of U , or a full wave fan profile, when (x, t) belongs to the set of
irregular points. The above idea is conceptually pleasing and will likely find technical
applications as well. In that direction, see Glass and LeFloch [1].



XVI

BV Solutions for Systems of Balance Laws

The aim here is to discuss the existence and long time behavior of BV solutions
to the Cauchy problem for (possibly inhomogeneous) strictly hyperbolic systems of
balance laws. Thus, this chapter may be viewed as the counterpart of Section 5.5,
where the same issues are addressed in the context of classical solutions. For the
reasons presented in the preceding chapters, the investigation shall be confined to
systems in a single spatial dimension and initial data of small total variation; how-
ever, modulo these limitations, the analogy to the results of Section 5.5 goes quite
far. Thus, the existence of local solutions will be established under moderate restric-
tions on the flux and on the source, while global existence will hinge on the presence
of damping. As in Section 5.5, damping shall be induced by a dissipative source
incurring nonnegative entropy production.

A strongly dissipative source that would yield global solutions, without any as-
sistance, is rarely encountered in the applications. In the common situation, where
the source is merely partially dissipative, the existence of global solutions results
from the synergy between flux and source, encoded in the Kawashima condition.

The solution may be constructed through any one of the three methods for solving
systems of conservation laws, presented in the preceding chapters, namely, random
choice, front tracking or vanishing viscosity, in conjunction with operator splitting,
so as to account for the effects of the source and/or inhomogeneity. Random choice
will be the method of choice here.

The construction of classical solutions, in Section 5.5, is in the realm of L2-type
Sobolev spaces, and the estimates induced by a convex entropy are well suited for
that purpose. By contrast, the BV theory, here, requires L1-type bounds. For systems
of two balance laws, which are endowed with a rich family of entropies, L1 estimates
may be derived by constructing convex entropies with a conical singularity at the
equilibrium state. For general systems, in which all available entropy functions are
smooth at the equilibrium state, L1 estimates will be derived from L2 bounds, by
exploiting the finite domain of dependence property of hyperbolic systems.
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16.1 The Cauchy Problem

We consider a generally inhomogeneous, strictly hyperbolic system of balance laws

(16.1.1) ∂tU(x, t)+∂xF(U(x, t),x, t)+P(U(x, t),x, t) = 0.

The flux F and source P are Lipschitz functions defined on O × (−∞,∞)× [0,∞)
and taking values in Rn. Furthermore, the Jacobian matrix DF(U,x, t) is Lipschitz
and possesses real distinct eigenvalues λ1(U,x, t)< · · ·< λn(U,x, t) that are strictly
separated, uniformly in (x, t).

We assign initial conditions

(16.1.2) U(x,0) =U0(x), −∞ < x < ∞ ,

and seek the solution to the Cauchy problem.
The effects of inhomogeneity and the source term will be accounted for via an

operator splitting algorithm, which marches in time steps. At each step, the approx-
imate solution to the inhomogeneous balance law is obtained by concatenating ap-
proximate solutions of ordinary differential equations in the form ∂xF(Ū ,x, t̄) = 0,
∂tU + P(Ū , x̄, t) = 0 and homogeneous conservation laws ∂tU + ∂xF(U, x̄, t̄) = 0.
This general scheme allows for a number of variations. To begin with, one may han-
dle the homogeneous conservation laws part by any one of the methods developed
in the previous three chapters, namely, random choice, front tracking or vanishing
viscosity. Here we opt for the random choice method. Moreover, as we shall see,
the specifics of the algorithm may have to be adapted to suit particular features of
the system. In its simplest, generic form, the operator splitting algorithm proceeds as
follows.

As in Section 13.2, we start out with a random sequence℘= {a0,a1, . . .}, with
as ∈ (−1,1). We fix the spatial mesh-length h, with associated time mesh-length
τ = λ−1h, and build the staggered grids of mesh-points (xr, ts), for r+ s even, and
sampling points (yr

s, ts), yr
s = xr +ash, for r+ s odd.

Assuming Uh is already known on {(x, t) : −∞ < x < ∞ , 0 ≤ t < ts}, we define
Ur

s , for r+ s odd, by means of (13.2.5), and then set

(16.1.3) Ûr
s =Ur

s − τP(Ur
s ,xr, ts).

Next we determine V r
s and W r

s , for r+ s odd, as solutions to the equation

(16.1.4) F(W r
s ,xr+1, ts) = F(Ûr

s ,xr, ts) = F(V r
s ,xr−1, ts).

To make (16.1.4) solvable, one may have to change coordinates (x, t) �→ (y, t), with
y = y(x, t), so as to eliminate any zero characteristic speeds. Finally, we define Uh
on {(x, t) : xr−1 ≤ x < xr+1 , ts ≤ t < ts+1}, for r+ s even, as the restriction to this
rectangle of the solution to the Riemann problem

(16.1.5) ∂tUh(x, t)+∂xF(Uh(x, t),xr, ts) = 0, t ≥ ts ,
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(16.1.6) Uh(x, ts) =

⎧⎨⎩W r−1
s , x < xr

V r+1
s , x > xr .

The algorithm is initiated, at s = 0, by (13.1.10).
Inhomogeneity and the source term may amplify the total variation of approxi-

mate solutions, driving it beyond the range of currently available analytical tools. In
order to keep the effect of inhomogeneity under control, we impose the following
restrictions on the functions F and P: for any U ∈ O, x ∈ (−∞,∞) and t ∈ [0,∞)1,

(16.1.7) |DFx(U,x, t)| ≤ ω, |DFt(U,x, t)| ≤ ω,

(16.1.8) |DFx(U,x, t)| ≤ f (x), |Px(U,x, t)| ≤ f (x),

where f (x) is a W 1,1(−∞,∞) function such that

(16.1.9)
∞∫

−∞

f (x)dx ≤ ω,

and ω is a nonnegative number. Under these conditions, the Cauchy problem admits
at least local BV solutions:

16.1.1 Theorem. For sufficiently small positive numbers ω and δ , there exists time
T = T (ω,δ ), with T (ω,δ ) → ∞ as (ω,δ ) → 0, such that when (16.1.7), (16.1.8),
(16.1.9) hold and

(16.1.10) TV(−∞,∞)U0(·) = δ ,

then there exists an admissible BV solution U of (16.1.1), (16.1.2) on the time interval
[0,T ). For each fixed t ∈ [0,T ), U(·, t) is a function of bounded variation on (−∞,∞)
and

(16.1.11) TV(−∞,∞)U(·, t)≤ c1(δ +ω)eρt ,

for some positive constants c1 and ρ .

The proof of the above proposition, which rests on a fairly straightforward,
though tedious, adaptation of the analysis in Chapter XIII that culminated in the
proof of Theorem 13.1.1, can be found in the references cited in Section 16.7. Ac-
tually, in Section 16.4, the reader will find a detailed application of the operator
splitting method, involving a variant of this algorithm, specially adapted to a particu-
lar form of systems (16.1.1). The exponential growth in the total variation is induced
by both inhomogeneity and the source term, and the exponent ρ is O(ω+ γ), where

1 Throughout this chapter, n-vectors shall be regarded, and normed, as elements of �1
n , and

n×n matrices shall be regarded, and normed, as linear operators on �1
n .
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γ = sup |DP|. Of course, the solution cannot break down as long as TV(−∞,∞)Uh(·, t)
stays small.

Our next task is to identify classes of systems for which the Cauchy problem ad-
mits global BV solutions. The simplest mechanism that would keep the total variation
small is rapid decay of the inhomogeneity and the source term as t → ∞ . Suppose
that we replace the assumptions (16.1.7) and (16.1.8) by

(16.1.12) |DFx(U,x, t)| ≤ ωg(t), |DFt(U,x, t)| ≤ ωg(t),

(16.1.13) |P(U,x, t)| ≤ ωg(t), |DP(U,x, t)| ≤ ωg(t),

(16.1.14) |DFx(U,x, t)| ≤ f (x)g(t), |Px(U,x, t)| ≤ f (x)g(t),

for all U ∈ O, x ∈ (−∞,∞), t ∈ [0,∞), where f (x) and ω are as above, while g(t) is
a bounded function in L1(0,∞). Then a simple corollary of Theorem 16.1.1, and in
particular of the estimate (16.1.11), is the following

(16.1.15) TV(−∞,∞)U(·, t)≤ c1(δ +ω).

A considerably subtler mechanism that induces global existence to the Cauchy
problem is the rapid decay of the inhomogeneity and the source term as |x| → ∞ , in
conjunction with nonzero characteristic speeds. Indeed, when all the characteristic
speeds are bounded away from zero, one should expect that as t increases the bulk
of the wave moves far away from the origin and eventually enters, and stays, in
the region where inhomogeneity and the source term have negligible influence. To
verify this conjecture requires delineating the global wave pattern and tracking the
bulk of the wave. This may be effected only by the method of wave tracing, outlined
in Section 13.8. A representative result in that direction is the following proposition,
which is established in the references cited in Section 16.7.

16.1.3 Theorem. Consider the strictly hyperbolic system of balance laws

(16.1.16) ∂tU(x, t)+∂xF(U(x, t))+P(U(x, t),x) = 0,

with nonzero characteristic speeds, and characteristic families that are either gen-
uinely nonlinear or linearly degenerate. Assume that for any U in O and x in
(−∞,∞),

(16.1.17) |P(U,x)| ≤ f (x), |DP(U,x)| ≤ f (x),

16.1.2 Theorem. For sufficiently small positive numbers ω and δ , when (16.1.12),
(16.1.13), (16.1.14), (16.1.9) and (16.1.10) hold, then there exists a global admissi-
ble BV solution U of (16.1.1), (16.1.2). For each t ∈ [0,∞), U(·, t) is a function of
bounded variation on (−∞,∞) and
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where f (x) satisfies (16.1.9) with ω sufficiently small. If the initial data U0 have
bounded variation, (16.1.10) with δ sufficiently small, then there exists a global ad-
missible BV solution U of (16.1.16), (16.1.2). For each fixed t ∈ [0,∞), U(·, t) is a
function of bounded variation on (−∞,∞) and

(16.1.18) TV(−∞,∞)U(·, t)≤ c1 (δ +ω).

A typical application of the above proposition is to the system (7.1.24) that gov-
erns the isentropic flow of a gas through a duct of varying cross section a(x). We
rewrite (7.1.24) in the form (16.1.16):

(16.1.19)

⎧⎨⎩ ∂tv+∂x(ρv)+a−1(x)a′(x)ρv = 0

∂t(ρv)+∂x[ρv2 + p(ρ)]+a−1(x)a′(x)ρv2 = 0.

Clearly, in order to meet the requirement (16.1.17) of Theorem 16.1.3, one needs to
assume that a(x) has sufficiently small total variation on (−∞,∞).

Still another factor that may induce global existence to the Cauchy problem is
the presence of a dissipative source. This will be the object of investigation in the
remainder of this chapter.

16.2 Strong Dissipation

We here begin the investigation of systems of balance laws with dissipative source.
It turns out that dissipation may secure global existence of BV solutions, with initial
values of small total variation, even in the presence of inhomogeneity. However, in
order to keep the analysis as simple as possible, we shall consider throughout only
homogeneous hyperbolic systems of balance laws

(16.2.1) ∂tU(x, t)+∂xF(U(x, t))+P(U(x, t)) = 0.

We assume the origin U = 0 is contained in the domain O and P(0) = 0, so that
U ≡ 0 is an equilibrium solution.

Since the analysis is in BV space, we have to impose on P conditions that would
render it dissipative in L1. In order to identify the proper assumptions, we substitute
U = R(0)V , where R(U) is the n× n matrix with column vectors a set of linearly
independent right eigenvectors R1(U), · · · ,Rn(U) of DF(U), and linearize (16.2.1)
about 0. This yields the system

(16.2.2) ∂tVi(x, t)+λi(0)∂xVi(x, t)+
n

∑
j=1

Ai jVj(x, t) = 0, i = 1, · · · ,n,

with
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(16.2.3) A = L(0)DP(0)R(0),

where L(U) denotes the n× n matrix whose row vectors L1(U), · · · ,Ln(U) are the
left eigenvectors of DF(U) normalized by L(U)R(U) = I. We multiply (16.2.2) by
sgnVi(x, t), integrate with respect to x over (−∞,∞), and sum over i = 1, · · · ,n, to
deduce that when A is column-diagonally dominant, namely

(16.2.4) Aii −∑
j �=i

|A ji| ≥ μ > 0, i = 1, · · · ,n,

then, as t → ∞ , solutions of (16.2.2) decay exponentially to zero in L1(−∞,∞).
It should be noted that whether the diagonal dominance property (16.2.4) holds

may depend on the particular matrix R(U) of right eigenvectors employed in the
construction of A. Indeed, choosing the equivalent matrix R̂(U) = R(U)K of eigen-
vectors, where K is some positive diagonal matrix, would replace A with the matrix
Â = K−1AK ; and diagonal dominance is not generally preserved under such similar-
ity transformations. Given a matrix A, it is possible to find a positive diagonal matrix
K that renders K−1AK column diagonally dominant if and only if all eigenvalues
of the matrix Ã, with entries Ãii = Aii , i = 1, · · · ,n and Ãi j = −|Ai j|, for i �= j, have
positive real part (references in Section 16.7). In particular, this class of A encom-
passes positive triangular matrices as well as row-diagonally dominant matrices (by
Geršgorin’s theorem).

For any τ > 0, multiplying the linear system (I+τA)X =Y , from the left, by the
row vector sgn X�, yields

(16.2.5) |(I + τA)−1| ≤ (1+μτ)−1.

As we shall see, it is this property that induces existence of global solutions to the
Cauchy problem for (16.2.1).

16.2.1 Theorem. Consider the homogeneous, strictly hyperbolic system of balance
laws (16.2.1), with characteristic families that are either genuinely nonlinear or lin-
early degenerate. Let 0 be an equilibrium state, P(0) = 0. Assume that for some
selection of eigenvectors of DF(0), the matrix A, defined by (16.2.3), is column-
diagonally dominant (16.2.4). Given initial data U0 of bounded variation, (16.1.10)

BV solution U of (16.2.1), (16.1.2). For each fixed t ∈ [0,∞), U(·, t) is a function
of bounded variation on (−∞,∞) and

(16.2.6) TV(−∞,∞)U(·, t)≤ c1δ e−νt ,

where c1 and ν are positive constants.

Sketch of Proof. A detailed, technical proof of a stronger result, along the same
lines, will be presented in the following sections of this chapter. Nevertheless, we
provide here an outline of the proof of Theorem 16.2.1 so as to communicate to the
reader, in relatively simple terms, how operator splitting works and the role played
by the diagonal dominance assumption on the matrix A.

with δ sufficiently small, and U0(x)→ 0 as x →−∞ , there exists a global admissible
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We construct the solution U by means of the scheme outlined in Section 16.1.
The proof of consistency follows closely the argument used in the proof of Theorem
13.1.1 and need not be repeated here. It will suffice to establish a bound for the total
variation TV(−∞,∞)Uh(·, t) of the approximate solution Uh that will yield in the limit
h ↓ 0 the asserted estimate (16.2.6).

As in Section 13.3, for r + s even we consider the diamond Δ r
s with vertices

(yr−1
s , ts),(yr

s−1, ts−1),(yr+1
s , ts) and (yr

s+1, ts+1), depicted in Fig. 13.3.1. The aim is to
estimate the strength of the outgoing wave fan ε , emanating from (xr, tr), in terms of
the strengths of the incoming wave fans α and β , which emanate from (xr−1, ts−1)
and (xr+1, ts−1).

Since our system is homogeneous, (16.1.4) yields V r
s = Ûr

s = W r
s . According to

the prescription of the algorithm,

(16.2.7) Ω(α;Ur−1
s ) = Ûr

s−1 ,

(16.2.8) Ω(β ;Ûr
s−1) =Ur+1

s ,

(16.2.9) Ω(ε;Ûr−1
s ) = Ûr+1

s ,

where Ω is the wave fan function, defined by (9.3.4).
Let us consider the wave fan ε̃ that would have resulted from the interaction of

α and β in the absence of a source term, i.e.,

(16.2.10) Ω(ε̃;Ur−1
s ) =Ω(β ;Ω(α;Ur−1

s )) =Ur+1
s .

By virtue of Theorem 9.9.1,

(16.2.11) ε̃ = α+β +O(1)D(Δ r
s ),

where the wave interaction term D(Δ r
s ) is defined by (13.3.2).

We proceed to relate ε to ε̃ . SinceΩ(0;U) =U , for any U ∈O , (16.2.9) together
with (16.1.3) and P(0) = 0 yield

(16.2.12) Ω(ε;Ur−1
s ) =Ur+1

s − τ[P(Ur+1
s )−P(Ur−1

s )]+o(1)h|ε|,
where o(1) denotes a quantity that becomes arbitrarily small when sup |Uh| is suffi-
ciently small. By virtue of (9.3.8),

(16.2.13) Ω(ε;Ur−1
s )−Ω(ε̃;Ur−1

s ) = R̃(ε− ε̃),
where R̃ is some matrix close to the matrix R(0) of right eigenvectors of DF(0). Fur-
thermore, on account of (16.1.3),

(16.2.14) P(Ur+1
s )−P(Ur−1

s ) = H[Ûr+1
s −Ûr−1

s ]+ τH[P(Ur+1
s )−P(Ur−1

s )],
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where H is some matrix close to DP(0). Finally, by (9.3.8) and (16.2.9),

(16.2.15) Ûr+1
s −Ûr−1

s =Ω(ε;Ûr−1
s )−Ω(0;Ûr−1

s ) = R̂ε,

where R̂ is some matrix close to R(0). We now combine (16.2.10), (16.2.12),
(16.2.13), (16.2.14) and (16.2.15) to get

(16.2.16) ε̃ = [I + τÃ]ε+o(1)h|ε|,

where

(16.2.17) Ã = R̃−1[I − τH]−1HR̂

is close to the matrix A, defined by (16.2.3).
On account of (16.2.11), (16.2.16) and (16.2.5), we conclude that, for as long as

sup |Uh| stays sufficiently small,

(16.2.18) |ε| ≤ (1−3ντ)(|α|+ |β |)+ cD(Δ r
s ),

with ν = μ/4 > 0.
From (16.2.11), (16.2.16) and (16.2.18), we also deduce

(16.2.19) |ε− (α+β )| ≤ ch(|α|+ |β |)+ cD(Δ r
s ).

As in Section 13.4, we consider mesh curves I and associate with them the func-
tionals L (I), Q(I) and G (I), defined by (13.4.2), (13.4.5) and (13.4.8). Assuming J
is the immediate successor to I, depicted in Fig. 13.4.1, we may retrace the analysis
in Section 13.4, using (16.2.18) to get

(16.2.20) L (J)≤ L (I)−3ντ(|α|+ |β |)+ cD(Δ r
s ),

in the place of (13.4.4), and then using (16.2.19) to get

(16.2.21) Q(J)−Q(I)≤ chL (I)(|α|+ |β |)+ [cL (I)−1]D(Δ r
s ),

in the place of (13.4.7). Thus, for κ sufficiently large and L (I) sufficiently small,

(16.2.22) G (J)≤ G (I)−2ντ(|α|+ |β |).

Next, for fixed s = 0,1,2, . . . , we consider the mesh curve Js with vertices all
the sampling points (yr−1

s , ts) and (yr
s+1, ts+1) with r + s even. Then assuming that

sup |Uh| is so small that G (Js−1)≤ 2L (Js−1), (16.2.22) yields

(16.2.23) G (Js)≤ (1−ντ)G (Js−1).

Thus, for any ts < t < ts+1 ,

(16.2.24) TV(−∞,∞)Uh(·, t)≤ (1−ντ)sG (J0),
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where the total variation is measured by L (Js).
Since Uh(x, t) → 0 as x → −∞ , the right-hand side of (16.2.24) also bounds

sup(−∞,∞)|Uh(·, t)|.
On the right-hand side of (16.2.24), G (J0) is bounded by cTV(−∞,∞)U0(·). There-

fore, letting h ↓ 0, (16.2.24) yields (16.2.6). The proof is complete.

Sources inducing diagonally dominant matrices A have the same standing as the
dissipative definite sources encountered in Section 5.5: they readily yield global ex-
istence and exponential decay of solutions to the Cauchy problem, but they are rarely
encountered in the systems arising in physical applications. In the following sections
we shall see how one may establish global existence for a broader class of sources,
akin to dissipative semidefinite sources in Section 5.5.

16.3 Redistribution of Damping

Since diagonal dominance (16.2.4) of the matrix A is too restrictive for the intended
applications, we seek here alternative assumptions that would still induce existence
of BV solutions, in the large, to the Cauchy problem (16.2.1), (16.1.2).

For ω > 0, we let Cω denote the class of initial data U0 with the property that any
admissible BV solution U of (16.2.1), (16.1.2) must satisfy

(16.3.1)
∫ ∞

−∞
|U(x, t)|dx ≤ ω,

on any time interval it may exist. The aim is to show that admissible BV solutions to
(16.2.1), with initial values in Cω , exist in the large, provided that the entries along
the principal diagonal of the matrix A are positive:

(16.3.2) Aii > 0, i = 1, . . . ,n.

As we shall see in Sections 16.5 and 16.6, (16.3.2) is a typical property of systems
modeling relaxation phenomena. Furthermore, in such systems, the class Cω is suf-
ficiently rich to encompass initial data of interest, near the equilibrium state.

16.3.1 Theorem. Consider the homogeneous, strictly hyperbolic system of balance
laws (16.2.1), with characteristic families that are either genuinely nonlinear or lin-
early degenerate. Let 0 be an equilibrium state, P(0) = 0, and assume that the entries
Aii of the matrix A, defined by (16.2.3), are positive (16.3.2). Then there are positive
numbers ω0 and δ0 such that for any initial data U0 that belong to Cω , with ω <ω0 ,
and satisfy (16.1.10), with δ < δ0 , the Cauchy problem (16.2.1), (16.1.2) possesses
an admissible BV solution U on (−∞,∞)× [0,∞), with the property

(16.3.3) TV(−∞,∞)U(·, t)≤ c0ω+ c1δe−νt , 0 ≤ t < ∞ ,

for positive constants c0 , c1 and ν , independent of U0 . Furthermore, if
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(16.3.4)
∫ ∞

−∞
|U(x, t)|dx → 0, as t → ∞ ,

then

(16.3.5) TV(−∞,∞)U(·, t)→ 0, as t → ∞ .

We lay down here the road map for the proof of the above theorem, while the
technical details are deferred to Section 16.4.

In the system governing relaxation phenomena, the diagonal dominance condi-
tion (16.2.4) on A fails to hold, even though the source is dissipative, because the
damping action is unevenly distributed among the equations of the system. This de-
ficiency will be remedied here by redistributing the damping, on a more equitable
basis, through a change of state vector, as follows.

Assuming U is an admissible BV solution of (16.2.1), (16.1.2), defined on a strip
(−∞,∞)× [0,T ) and U(·, t) is integrable on (−∞,∞), for all t ∈ [0,T ), we introduce
the functions

(16.3.6) Φ(x, t) =
∫ x

−∞
NU(y, t)dy,

(16.3.7) Z(x, t) =
∫ x

−∞
NP(U(y, t))dy,

where N is a n×n matrix to be specified below. We note that Φ is Lipschitz with

(16.3.8) ∂xΦ(x, t) = NU(x, t), ∂tΦ(x, t) =−NF(U(x, t))−Z(x, t).

We now replace U by the new state vector

(16.3.9) Û =U −Φ

and rewrite (16.2.1) as a system for Û , namely

(16.3.10) ∂tÛ(x, t)+∂xF̂(Û(x, t),Φ(x, t))+ P̂(Û(x, t),Φ(x, t),Z(x, t)) = 0,

where

(16.3.11) F̂(Û ,Φ) = F(Û +Φ)−F(Φ),

(16.3.12) P̂(Û ,Φ ,Z) = P(Û +Φ)−NF(Û +Φ)+DF(Φ)N[Û +Φ ]−Z.

The motivation for switching from the relatively simple (16.2.1) to the cumber-
some (16.3.10), which is not even a closed system, is that if one presumes that Φ
and Z are somehow known, and regards (16.3.10) as an inhomogeneous system of
balance laws for Û , then, in the place of (16.2.3), one gets the matrix Â with entries
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(16.3.13) Âi j = L j(0)DP̂(0,0,0)R j(0) = Ai j +[λi(0)−λ j(0)]Δi j ,

where Δ = L(0)NR(0). This presents the opportunity of making Â diagonally dom-
inant by properly selecting the matrix N. In particular, the choice N = R(0)ΔL(0),
with Δii = 0, for i = 1, . . . ,n and

(16.3.14)

renders a diagonal Â, with Âii = Aii , for i = 1, . . . ,n, and Âi j = 0, for i �= j. In that
case, when (16.3.2) holds, Â is diagonally dominant.

The above considerations suggest the following procedure for proving Theorem
16.3.1. Starting out with U0 that lies in Cω and satisfies (16.1.10), for ω and δ suf-
ficiently small, Theorem 16.1.1 guarantees the existence of a local admissible BV
solution U to the Cauchy problem (16.2.1), (16.1.2), on some time interval [0,T ). In
fact it is known (references in Section 16.7) that, similar to the cases of systems of
conservation laws discussed in Section 14.9, homogeneous systems of balance laws
in the form (16.2.1) generate standard Riemann semigroups, inducing uniqueness of
the solution U .

From the solution U one may determine Φ and Z on (−∞,∞)× [0,T ), through
(16.3.6) and (16.3.7), and then construct Û by solving the Cauchy problem for
(16.3.10) under initial conditions Û(x,0) = Û0(x),

(16.3.15) Û0(x) =U0(x)−
∫ x

−∞
NU0(y)dy, −∞ < x < ∞ .

Finally, one may recover U as Û +Φ . The gain is that the dissipative action on
the source P̂, manifested in the diagonal dominance of Â, will emerge through the
reconstruction of U from Û , inducing the estimate (16.3.3) on the variation, with
constants c0 , c1 and μ independent of T . The details of the derivation of (16.3.3),
via the above process, will be presented in the next section 16.4.

Armed with the estimate (16.3.3), we may immediately extend the solution U to
the entire upper half-plane (−∞,∞)× [0,∞). Furthermore, in the presence of (16.3.3),
(16.3.4) implies (16.3.5). To see this, assuming (16.3.4) holds, we fix any ε > 0, set
ω̄ = ε/2c0 and identify t̄ > 0 such that ‖U(·, t)‖L1 < ω̄ for t ∈ [t̄,∞). Then we have
U(·, t̄) ∈ Cω̄ . Moreover, by virtue of (16.3.3), TV(−∞,∞)U(·, t̄)< c0ω+c1δ . Next we
apply (16.3.3), after shifting the origin of time from 0 to t̄, which yields

(16.3.16) TV(−∞,∞)U(·, t)≤ c0ω̄+ c1(c0ω+ c1δ )e−ν(t−t̄), t̄ ≤ t < ∞ .

It is now clear that there is tε > t̄ such that TV(−∞,∞)U(·, t)< ε , for all t ≥ tε .

16.4 Bounds on the Variation

Following the procedure outlined in Section 16.3, we complete here the proof of
Theorem 16.3.1 by establishing the estimate (16.3.3).

Δi j =
Ai j

λi(0)−λ j(0)
, for i �= j,
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For fixed initial data U0 that lie in Cω and satisfy (16.1.10), with ω and δ small,
we let U denote the (local) admissible BV solution to (16.2.1), (16.1.2), defined on
some strip (−∞,∞)× [0,T ). The aim is to derive bounds for the function

(16.4.1) X(t) = TV(−∞,∞)U(·, t), 0 ≤ t < T.

The solution U induces, through (16.3.6) and (16.3.7), Φ and Z as functions of
(x, t) on (−∞,∞)× [0,T ), so that one may regard F̂ and P̂, defined by (16.3.11) and
(16.3.12), as given functions of the variables (Û ,x, t). The plan is to (re)construct
Û on (−∞,∞)× [0,T ) as solution to the inhomogeneous system of balance laws
(16.3.10), with initial data Û0 , defined by (16.3.15).

The construction of Û will be effected by means of the random choice method,
in conjunction with operator splitting. Our system is in the form (16.1.1) but it has
special structure as inhomogeneity enters implicitly through the functions Φ and Z.
Furthermore, for fixed Û , the functions F̂ and P̂ are merely Lipschitz. These special
features will force us to employ a cumbersome variation of the generic algorithm
outlined in Section 16.1.

As in Section 16.1, we assume, without loss of generality, that none of the char-
acteristic speeds may vanish, we fix a random sequence P = {a0,a1, . . .}, with
as ∈ (−1,1), set the spatial mesh-length h and the temporal mesh-length τ = λ−1h,
and identify the staggered grids of mesh-points (xr, ts), with xr = rh, ts = sτ , for r+s
even, and sampling points (yr

s, ts), with yr
s = xr +ash, for r+ s odd.

The approximate solution Ûh will be determined sequentially on the strips

(16.4.2) Ss = {(x, t) : −∞ < x < ∞ , ts ≤ t < ts+1}, s = 0,1, . . . ,s∗,

where s∗ is the largest integer with (s∗+1)τ ≤ T .
The algorithm is initiated by setting Ûh(x,0) = Û0(x), for −∞ < x < ∞ .

Assuming now that Ûh has been determined on
s−1⋃
k=0

Sk , we extend its domain to

Ss by the following procedure.
For r = 0,±1,±2, . . . and s = 0,1, . . . ,s∗, we define

(16.4.3) Φ r
s =Φ(xr, ts), Zr

s = Z(xr, ts)

and then set, for r+ s odd,

(16.4.4) Ûr
s = Ûh(yr

s, ts−), Ur
s = Ûr

s +Φ
r
s ,

(16.4.5) Qr
s = DF(Ur

s )
−1DF(Φ r

s ),

(16.4.6) P̂r
s = P̂(Ûr

s ,Φ
r
s ,Z

r
s ),

(16.4.7)

⎧⎨⎩V r
s =Ur

s +Qr
s[Φ r−1

s −Φ r
s ]− τP̂r

s

W r
s =Ur

s +Qr
s[Φ r+1

s −Φ r
s ]− τP̂r

s ,
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(16.4.8)

⎧⎨⎩ V̂ r
s =V r

s −Φ r−1
s

Ŵ r
s =W r

s −Φ r+1
s .

Next, for r = 0,±1,±2, . . . and s = 0,1, . . . ,s∗, with r+ s even, we define Ûh on
the rectangle

(16.4.9) Rr
s = {(x, t) : xr−1 < x < xr+1, ts ≤ t < ts+1}

by

(16.4.10) Ûh(x, t) = Ũ(x− xr, t − ts)−Φ r
s ,

where Ũ is the solution to the Riemann problem

(16.4.11) ∂tŨ +∂xF(Ũ) = 0,

(16.4.12)

To see the motivation for the above construction, first notice that by virtue of
(16.4.8), (16.4.10), (16.4.11) and (16.4.12), Ûh satisfies the equation

(16.4.13) ∂tÛh +∂xF̂(Ûh,Φ r
s ) = 0,

on the rectangle Rr
s , together with the initial condition

(16.4.14) Ûh(x, ts) =

⎧⎨⎩Ŵ r−1
s , xr−1 < x < xr

V̂ r+1
s , xr < x < xr+1 ,

along the base of Rr
s . Thus, (16.4.13) is the homogeneous system of conservation

laws resulting from (16.3.10) by dropping the source term P̂ and freezing Φ in F̂ at
its valueΦ r

s at the mesh-point (xr, ts). On the other hand, by the construction (16.4.7),
(16.4.8) of V̂ r+1

s and Ŵ r−1
s , (16.4.14) accounts for the effect of the source and also

of the inhomogeneity induced by Φ and Z (operator splitting).
As in Chapter XIII, our task here is to establish compactness and consistency

of the algorithm. Compactness will be demonstrated by bounding the total variation
of the approximate solutions Ûh(·, t), uniformly in t and h. We will be operating
under the precondition that ω and the variation of Ûh(·, t) are bounded by a small
positive constant ρ . This shall be verified a posteriori, upon proving (16.3.3), with ω
and δ sufficiently small. In order to avoid proliferation of symbols, we shall employ
throughout c as a generic positive constant, independent of ω,δ ,ρ,T and h.

It is clear that the total variation of Ûh(·, t) takes the same value for any t in the
interval (ts , ts+1), s = 0,1, . . . ,s∗:

Ũ(x,0) =

⎧⎨⎩W r−1
s , −∞ < x < 0

V r+1
s , 0 < x < ∞ .
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(16.4.15) TV(−∞,∞)Ûh(·, t) = X̂s , ts < t < ts+1 .

Furthermore,

(16.4.16) X̂s = Js +Ks , s = 0,1, . . . ,s∗,

where Js is the part of the variation generated by the jumps of Ûh across xr , for r+ s
odd, and Ks is the part of the variation generated by the wave fans emanating from
the mesh-points (xr, ts), for r+ s even.

Across x = xr , with r+ s odd, Ûh jumps from V̂ r
s to Ŵ r

s , and the jump is deter-
mined by (16.4.7) and (16.4.8):

(16.4.17) Ŵ r
s −V̂ r

s = [Qr
s − I][Φ r+1

s −Φ r−1
s ].

Since U0 ∈ Cω , U satisfies (16.3.1), for t ∈ [0,T ), whence

(16.4.18) TV(−∞,∞)Φ(·, t)≤ cω, TV(−∞,∞)Z(·, t)≤ cω, 0 ≤ t < T.

Therefore, recalling also (16.4.5),

(16.4.19) Js = ∑
r+s odd

|Ŵ r
s −V̂ r

s | ≤ cρω, s = 0,1, . . . ,s∗.

The next step is to estimate Ks , and this will require certain preparation. When a
state W , on the left, and a state V , on the right, are joined by an admissible wave fan
γ = (γ1, . . . ,γn), then

(16.4.20) V =Ω(γ ;W ), W =Θ(γ ;V ), γ = G(W,V ),

where Ω is the wave fan function, defined by (9.3.4),Θ(γ ; ·) is the inverse function
of Ω(γ ; ·), for fixed γ , and G(W, ·) is the inverse function of Ω(· ;W ), for fixed W .
(Equivalently, G(· ,V ) is the inverse function ofΘ(· ;V ), for fixed V ). These functions
are defined on some neighborhood of the origin in Rn ×Rn and satisfy

(16.4.21) Ω(0;W ) =W, Θ(0;V ) =V, G(W,W ) = 0,

(16.4.22) ΩW (0;W ) = I, ΘV (0;V ) = I,

(16.4.23) Ωγ(0;W ) = R(W ), Θγ(0;V ) =−R(V ),

(16.4.24) GW (W,W ) =−L(W ), GV (V,V ) = L(V ),

for all W and V in the domain. In the place of G it is more convenient to work with
the function

(16.4.25) H(W,Y ) = G(W,W +Y ),
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for which we have

(16.4.26) H(W,0) = 0,

(16.4.27) HW (W,0) = 0, HY (W,0) = L(W ).

As in Chapter XIII, Ks will be measured by the sum of the strengths of the el-
ementary waves that are crossing the t-time line, for any fix t ∈ (ts , ts+1). These
waves emanate from the mesh-points (xr, ts), with r + s even. We will estimate Ks
inductively, by relating it to Ks−1 .

We fix a mesh-point (xr, ts) and consider the familiar diamond-shaped region Δ r
s ,

with vertices at the four surrounding sampling points (yr−1
s , ts),(yr

s−1, ts−1),(yr+1
s , ts)

and (yr
s+1, ts+1), referring to Fig. 13.3.1, in Chapter XIII. The wave fan ε emanating

from (xr, ts) contributes |ε| to Ks . On the other hand, a part α (possibly all or none)
of the wave fan emanating from (xr−1, ts−1) enters Δ r

s through its “southwestern”
edge and a part β (possibly all or none) of the wave fan emanating for (xr+1, ts−1)
enters Δ r

s through its “southeastern” edge, contributing |α|+ |β | to Ks−1 .
By virtue of the construction of Ûh together with (16.4.20) and (16.4.25),

(16.4.28) Ur−1
s =Θ(α ;V s

r−1)+Φ
r−1
s −Φ r−1

s−1 ,

(16.4.29) Ur+1
s =Ω(β ;W r

s−1)+Φ
r+1
s −Φ r+1

s−1 ,

(16.4.30) ε = G(W r−1
s ,V r+1

s ) = H(W r−1
s ,V r+1

s −W r−1
s ).

We now define

(16.4.31) Ũr−1
s =Θ(α ;Ur

s−1),

(16.4.32) Ũr+1
s =Ω(β ;Ur

s−1),

(16.4.33) ε̃ = G(Ũr−1
s ,Ũr+1

s ) = H(Ũr−1
s ,Ũr+1

s −Ũr−1
s ).

By virtue of (13.3.1),

(16.4.34) |ε̃−α+β | ≤ cD(Δ r
s ),

where D(Δ r
s ) is given by (13.3.2).

The next step is to estimate ε− ε̃ . From (16.4.30) and (16.4.33),

(16.4.35) ε− ε̃ = H̄W [W r−1
s −Ũr−1

s ]+ H̄Y [Ur+1
s −W r−1

s −Ũr+1
s +Ũr−1

s ]

where
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(16.4.36) H̄W =
∫ 1

0
HW (ξW r−1

s +(1−ξ )Ũr−1
m , Ũr+1

s −Ũr−1
s )dξ ,

(16.4.37) H̄Y =
∫ 1

0
HY (W r−1

s , ξ (V r+1
s −W r−1

s )+(1−ξ )(Ũr+1
s −Ũr−1

s ))dξ .

Combining (16.4.7), (16.4.28), (16.4.29), (16.4.31) and (16.4.32),

(16.4.38) W r−1
s −Ũr−1

s = Θ̄V{Qr
s−1[Φ

r−1
s−1 −Φ r

s−1]− τPr
s−1}

+Φ r−1
s −Φ r−1

s−1 +Qr−1
s [Φ r

s −Φ r−1
s ]− τPr−1

s ,

(16.4.39) V r+1
s −Ũr+1

s = Ω̄W{Qr
s−1[Φ

r+1
s−1 −Φ r

s−1]− τPr
s−1}

+Φ r+1
s −Φ r+1

s−1 +Qr+1
s [Φ r

s −Φ r+1
s ]− τPr+1

s ,

where

(16.4.40) Θ̄V =
∫ 1

0
ΘV (α ;ξV r

s−1 +(1−ξ )Ur
s−1)dξ ,

(16.4.41) Ω̄W =
∫ 1

0
ΩW (β ;ξW r

s−1 +(1−ξ )Ur
s−1)dξ .

By virtue of (14.6.36), (16.4.27), (16.4.31), (16.4.21) and (16.4.32), we infer that
|H̄W | ≤ c(|α|+ |β |). Furthermore, (16.4.38), (16.4.3), (16.3.8), (16.4.6) and (16.3.12)
yield |W r−1

s −Ũr−1
s | ≤ cρh. Therefore, we can bound the first term on the right-hand

side of (16.4.35) as follows:

(16.4.42) |H̄W [W r−1
s −Ũr−1

s ]| ≤ cρ(|α|+ |β |)h.
The second term on the right-hand side of (16.4.35) requires more delicate treat-

ment. From (16.4.38) and (16.4.39), we deduce

(16.4.43) W r−1
s −Ũr−1

s −V r+1
s +Ũr+1

s

= τ[Pr+1
s −Pr−1

s ]

+[Qr
s−1 − I][Φ r+1

s −Φ r+1
s−1 −Φ r−1

s +Φ r−1
s−1 ]

+[Θ̄V − I]{Qr
m−1[Φ

r−1
s−1 −Φ r

s−1]− τPr
s−1}

−[Ω̄W − I]{Qr
m−1[Φ

r+1
s−1 −Φ r

s−1]− τPr
s−1}

+[Qr−1
s −Qr

s−1][Φ
r
s −Φ r−1

s ]

−[Qr+1
s −Qr

s−1][Φ
r
s −Φ r+1

s ].

Recalling (16.4.6) and (16.3.12),
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(16.4.44) Pr+1
s −Pr−1

s = ¯̂PÛ [Û
r+1
s −Ûr−1

s ]+ ¯̂PΦ [Φ r+1
s −Φ r−1

s ]− [Zr+1
s −Zr−1

s ],

where

(16.4.45) ¯̂PÛ =
∫ 1

0
P̂Û (ξÛr+1

s +(1−ξ )Ûr−1
s ,Φ r+1

s ,0)dξ ,

(16.4.46) ¯̂PΦ =
∫ 1

0
P̂Φ(Ûr−1

s , ξΦ r+1
s +(1−ξ )Φ r−1

s ,0)dξ .

Furthermore, combining (16.4.4), (16.4.28), (16.4.29), (16.4.21), (16.4.7) and after
a short calculation, we obtain

(16.4.47) Ûr+1
s −Ûr−1

s = Ω̄γβ −Θ̄γα+[Qr
s−1 − I][Φ r+1

s−1 −Φ r−1
s−1 ],

where

(16.4.48) Ω̄γ =
∫ 1

0
Ωγ(ξβ ;W r

s−1)dξ , Θ̄γ =
∫ 1

0
Θγ(ξα ;V r

s−1)dξ .

Continuing with the estimation of the remaining terms on the right-hand side of
(16.4.43), we employ (16.4.22), (16.4.40) and (16.4.41) to get

(16.4.49) |Θ̄V − I| ≤ c|α|, |Ω̄W − I| ≤ c|β |.

Moreover, using (16.4.5), (16.4.3), (16.4.28), (16.4.7), (16.4.6), (16.3.12) and (16.3.8),

(16.4.50) |Qr−1
s −Qr

s−1| ≤ c|α|+ cρh, |Qr+1
s −Qr

s−1| ≤ c|β |+ cρh.

We now combine (16.4.34), (16.4.35), (16.4.42), (16.4.43), (16.4.44), (16.4.47),
(16.4.49) and (16.4.50) to conclude

(16.4.51) |ε−α−β | ≤ cρ(|α|+ |β |)h+ cD(Δ r
s )

+c{|Φ r+1
s −Φ r

s |+ |Φ r
s −Φ r−1

s |+ |Zr+1
s −Zr−1

s |}h

+cρ|Φ r+1
s −Φ r+1

s−1 −Φ r−1
s +Φ r−1

s−1 |,

(16.4.52) |ε| ≤ |I + τH̄Y
¯̂PÛΘ̄γ ||α|+ |I − τH̄Y

¯̂PÛ Ω̄γ ||β |

+cρ(|α|+ |β |)h+ cD(Δ r
s )

+c{|Φ r+1
s −Φ r

s |+ |Φ r
s −Φ r−1

s |+ |Zr+1
s −Zr−1

s |}h

+cρ|Φ r+1
s −Φ r+1

s−1 −Φ r−1
s +Φ r−1

s−1 |.
For ρ sufficiently small, by virtue of (16.4.37), (16.4.27), (16.4.48), (16.4.23)

and (16.4.45), H̄Y is close to L(0), Ω̄γ is close to R(0), Θ̄γ is close to −R(0) and
¯̂PŪ is close to P̂Û (0,0,0). Therefore, both −H̄Y

¯̂PÛΘ̄γ and H̄Y
¯̂PÛ Ω̄γ are close to the
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matrix Â defined by (16.3.13). In particular, these matrices are column diagonally
dominant, so that

(16.4.53) |I + τH̄γ
¯̂PÛΘ̄γ | ≤ 1−4ντ, |I − τH̄Y

¯̂PÛ Ω̄γ | ≤ 1−4ντ,

for some ν > 0. Thus, when ρ is sufficiently small, (16.4.52) yields the estimate

(16.4.54) |ε| ≤ (1−3ντ)(|α|+ |β |)+ cD(Δ r
s )

+c{|Φ r+1
s −Φ r

s |+ |Φ r
s −Φ r−1

s |+ |Zr+1
s −Zr−1

s |}h

+cρ|Φ r+1
s −Φ r+1

s−1 −Φ r−1
s +Φ r−1

s−1 |.
Holding s fixed, we sum the inequality (16.4.54) over all r with r+ s even. Re-

ferring back to (16.4.16), we notice that the sum of the |ε| terms yields Ks , while the
sum of the |α|+ |β | terms gives Ks−1 . The sums of |Φ r+1

s −Φ r
s |, |Φ r

s −Φ r−1
s | and

|Zr+1
s −Zr−1

s | are all bounded by cω , on account of (16.4.3) and (16.4.18). Finally,
combining (16.4.3) with (16.4.8),

(16.4.55) Φ r+1
s −Φ r+1

s−1 −Φ r−1
s +Φ r−1

s−1

=−
∫ ts

ts−1

N[F(U(xr+1, t))−F(U(xr−1, t))]dt −
∫ ts

ts−1

[Z(xr+1, t)−Z(xr−1, t)]dt,

whence, by virtue of (16.4.1) and (16.4.18),

(16.4.56) ∑
r+s even

|Φ r+1
s −Φ r+1

s−1 −Φ r−1
s +Φ r−1

s−1 | ≤ c(ω+Xs)τ,

with

(16.4.57) Xs =
1
τ

∫ ts

ts−1

X(t)dt.

We thus have

(16.4.58) Ks ≤ (1−3ντ)Ks−1 + cωτ+ cρXsτ+ cΞs ,

where

(16.4.59) Ξs = ∑
r+s even

D(Δ r
s ).

In order to estimate the term Ξs , we employ the procedure used in Section 13.4.
We introduce the Glimm functional

(16.4.60) Γs = Ks +κMs ,

where κ is a positive number to be fixed below and

(16.4.61) Ms = ∑ |γi||θ j|,
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with summation running over all pairs (γi,θ j) of approaching elementary waves em-
anating from mesh-points (xr, ts), with r+ s even.

Clearly, Ks ≤ Γs ≤ (1+ cρ)Ks . Furthermore,

(16.4.62) Ms ≤ Ms−1 +(Ks +Ks−1)Es −Ξs ,

where Es denotes the sum of |ε−α−β | associated with the Δ r
s for r+ s even. Upon

summing the inequalities (16.4.51) over all r with r+ s even, we deduce

(16.4.63) Es ≤ cρKs−1τ+ cωτ+ cρXs .

Hence, in view of (16.4.60), (16.4.58), (16.4.62) and (16.4.63), we conclude that
for κ large and ρ small,

(16.4.64) Γs ≤ (1−2ντ)Γs−1 + cωτ+ cρXsτ+ cΞs .

By iterating (16.4.64), for s = 1,2, . . . , we obtain

(16.4.65) Γs ≤ (1−2ντ)sΓ0 + cω+ cρτ
s

∑
k=1

(1−2ντ)s−kXk .

Recalling (16.4.15), (16.4.16), (16.4.19) and (16.3.15), we conclude

(16.4.66) X̂s ≤ c(1−2ντ)sδ + cω+ cρτ
s

∑
k=1

(1−2ντ)s−kXk .

Thus, for any t ∈ [0,T ), the total variation of Ûh(·, t) is bounded, uniformly in h.
As in Chapter XIII, in order to establish the compactness of the family {Ûh} of

approximate solutions, we also need equicontinuity in the t-direction. To that end,
let us fix � > 1. For any ζ and ξ in [ts , ts+1), with ζ < ξ :

(16.4.67)
∫ �

−�
|Ûh(x,ξ )−Ûh(x,ζ )|dx ≤ cX̂s(ξ −ζ )≤ cρτ.

Recalling (16.4.10), (16.4.9) and (16.4.12),

(16.4.68)
∫ �

−�
|Ûh(x, ts)−Ûh(x, ts−)|dx

≤ ∑
∫ xr+1

xr−1

|Ûh(yr
s, ts−)−Ûh(x, ts−)|dx

+∑h|Qr
s − I||Φ r+1

s +Φ r−1
s −2Φ r

s |+∑2hτ|Pr
s |+O(h),

where the summations run over all r with (|r|+1)h < � and r+ s odd. On the right-
hand side of (16.4.68), the first sum is bounded by 2hX̂s−1 , the second sum is ma-
jorised by cρhω and the last sum is bounded by cρ�τ . Therefore, upon combining
(16.4.67) with (16.4.68), we infer that, for any 0 ≤ ζ < ξ < T ,
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(16.4.69)
∫ �

−�
|Ûh(x,ξ )−Ûh(x,ζ )|dx ≤ c�(|ξ −ζ |+h).

We have thus established the required compactness of the family {Ûh} for ex-
tracting a sequence {Ûhm}, with hm → 0 as m → ∞ , that converges to a BV function
Û , for each t ∈ [0,∞) and almost all x in (−∞,∞). We now demonstrate that Û is a
solution to (16.3.10), with initial values Û0 given by (16.3.15).

We fix any smooth test function ψ , with compact support on (−∞,∞)× [0,T ).
We multiply (16.4.13) by ψ , integrate over the rectangles Rr

s , identified by (16.4.9),
integrate by parts and sum over r and s with r+ s even. This yields

(16.4.70)
s∗

∑
s=0

∑
r+s even

∫ ts+1

ts

∫ xr+1

xr−1

[∂tψ Ûh +∂xψ F̂(Ûh,Φ r
s )]dxdt

+
s∗

∑
s=0

∑
r+s odd

[
∫ ts+1

ts
ψ(xr, t)dt][F̂(Ŵ r

s ,Φ
r+1
s )− F̂(V̂ r

s ,Φ
r−1
s )]

+
s∗

∑
s=0

∫ ∞

−∞
ψ(x, ts)[Ûh(x, ts)−Ûh(x, ts−)]dx+

∫ ∞

−∞
ψ(x,0)Û0(x)dx = 0.

We examine the behavior of each term on the left-hand side of the above equation
as h → 0 along the sequence {hm}. The first term converges to

(16.4.71)
∫ T

0

∫ ∞

−∞
[∂tψ Û +∂xψ F̂(Û ,Φ)]dxdt.

The second term is O(h), because, on account of (16.4.7) and (16.4.8),

(16.4.72) F̂(Ŵ r
s ,Φ

r+1
s )− F̂(V̂ r

s ,Φ
r−1
s ) = O(h2).

For the third term, we use (16.4.14), (16.4.8), (16.4.7) and (16.4.4) to get

(16.4.73)
∫ ∞

−∞
ψ(x, ts)[Ûh(x, ts)−Ûh(x, ts−)]dx

= ∑
r+s odd

∫ xr+1

xr−1

ψ(x, ts)[Ûh(yr
s, ts−)−Ûh(x, ts−)]dx

+ ∑
r+s odd

hψ(xr, ts)[Qr
s − I][Φ r+1

s +Φ r−1
s −2Φ r

s ]

+ ∑
r+s odd

{
∫ xr

xr−1

[ψ(x, ts)−ψ(xr, ts)]dx}[Qr
s − I][Φ r−1

s −Φ r
s ]

+ ∑
r+s odd

{
∫ xr+1

xr

[ψ(x, ts)−ψ(xr, ts)]dx}[Qr
s − I][Φ r+1

s −Φ r
s ]

− ∑
r+s odd

τ{
∫ xr+1

xr−1

ψ(x, ts)dx}P̂r
s .
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We next estimate each term on the right-hand side of the above equation, with an eye
to determining their contribution to Equation (16.4.70). The second term is bounded
by cρh2X(s), while both the third and the fourth terms are bounded by cρh2ω . Thus
the contribution of the above three terms to (16.4.70) is O(h). By contrast, the first
term on the right-hand side of (16.4.73) is bounded by chX̂s−1 , so it may seemingly
contribute O(1) to (16.4.70). However, almost surely, the contribution of this term is
o(1), the reason being that, as discussed in Chapter XIII, the sampling points (yr

s, ts)
were picked at random. As regards the last term in (16.4.73), we have

(16.4.74)∣∣∣∣τ ∫ xr+1

xr−1

ψ(x, ts)P̂r
s dx−

∫ ts

ts−1

∫ xr+1

xr−1

ψ(x, t)P̂(Ûh(x, t),Φ(x, t),Z(x, t))dxdt
∣∣∣∣

≤ ch2(ur
s−1 +h),

where ur
s−1 denotes the oscillation of Ûh over the rectangle Rr

s−1 . Notice that by the
construction of Ûh , its oscillation over Rr

s−1 is bounded by the variation of Ûh(·, ts−)
over the interval (xr−1 , xr+1) and hence the sum of ur

s−1 over all r with r+ s odd is
bounded by X̂s−1 . Thus the contribution to (16.4.70) of the last term in (16.4.73) is

(16.4.75) −
∫ T

0

∫ ∞

−∞
ψ P̂(Ûh,Φ ,Z)dxdt +O(h).

We now combine all of the above and pass to the h → 0 limit in (16.4.70) to get

(16.4.76)
∫ T

0

∫ ∞

−∞
[∂tψ Û +∂xψ F̂(Û ,Φ)−ψ P̂(Û ,Φ ,Z)]dxdt

+
∫ ∞

−∞
ψ(x,0)Û0(x)dx = 0,

which verifies that Û is a solution to (16.3.10) with initial value Û0 .
Upon setting

(16.4.77) X̂(t) = TV(−∞,∞)Û(·, t), 0 ≤ t < T,

(16.4.66) yields the estimate

(16.4.78) X̂(t)≤ cδe−2νt + cω+ cρ
∫ t

0
e−2ν(t−ξ )X(ξ )dξ .

In what follows, we shall be taking for granted that the Cauchy problem for
(16.3.10) admits a unique admissible BV solution. Proving this would require the
extension of the analysis presented in Section 14.10 from homogeneous systems
of conservation laws to non homogeneous systems of balance laws – an arduous
task that should not involve major new insights. On the basis of the presumption of
uniqueness, since U −Φ is a solution of (16.3.10) with initial value Û0 defined by
(16.3.15), we conclude that Û = U −Φ and in particular X(t) ≤ X̂(t)+ cω . There-
fore, (16.4.78) gives
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(16.4.79) X(t)≤ cδe−2νt + cω+ cρ
∫ t

0
e−2ν(t−ξ )X(ξ )dξ .

We set

(16.4.80) Y (t) =
∫ t

0
e2νξX(ξ )dξ ,

in which case (16.4.79) yields the differential inequality

(16.4.81) Ẏ (t)≤ cρY (t)+ cδ + cωe2νt .

We fix ρ so small that the coefficient cρ multiplying Y (t) is smaller than ν . Then,
integrating (16.4.81) and substituting back into (16.4.79) yields

(16.4.82) X(t)≤ cω+ cδe−νt , 0 ≤ t ≤ T,

which establishes the estimate (16.3.3) and completes the proof of Theorem 16.3.1.

16.5 L1 Stability Via Entropy with Conical Singularity at the

Origin

One may apply Theorem 16.3.1 only for initial data in Cω , having the property of
generating solutions that satisfy (16.3.1). The aim of the present and the next section
of this chapter is to demonstrate that, when the source is dissipative, the class Cω is
quite rich, encompassing the initial data of interest, in the vicinity of the equilibrium
state.

We assume that the system (16.2.1) is endowed with an entropy-entropy flux pair
(η ,q), where η(U) is convex, so that admissible solutions U must satisfy the entropy
inequality

(16.5.1) ∂tη(U(x, t))+∂xq(U(x, t))+Dη(U(x, t))P(U(x, t))≤ 0.

As in Section 5.5, we call the source P dissipative, relative to η , if the entropy
production is nonnegative:

(16.5.2) Dη(U)P(U)≥ 0, U ∈ O.

The most direct way for achieving our goal is by seeking a convex entropy η
that exhibits a conical singularity, β−1/2|U | ≤ η(U) ≤ β 1/2|U |, for U near the ori-
gin, and renders the source dissipative (16.5.2). Indeed, in that case, by virtue of
(16.5.1), Cω must contain all initial data U0 with ‖U0‖L1 ≤ ω/β . We now show how
an entropy function with the above specifications may be constructed for the system
(5.5.52), which has been playing in the literature the role of the paradigm for systems
modeling relaxation phenomena, under the subcharacteristic condition (5.5.54). We
assume here that (5.5.54) holds in strict inequality form.



16.5 L1 Stability Via Entropy with Conical Singularity at the Origin 607

We assume f (0) = 0 so that the origin is an equilibrium state. The characteristic
speeds are λ =−a(u) and μ = a(u), with associated eigenvectors

(16.5.3) R =
1

2a

(
1
−a

)
, S =

1
2a

(
1
a

)
.

Then, from (16.2.3),

(16.5.4) A =
1

2a

⎛⎝ a+ f ′ −a+ f ′

−a− f ′ a− f ′

⎞⎠ ,

evaluated at u = 0. Because of the subcharacteristic condition, the main diagonal
entries of A are positive, so that (16.3.2) is satisfied. However, since det A = 0, the
strict diagonal dominance condition (16.2.4) fails to hold for any choice of eigenvec-
tors and hence Theorem 16.2.1 does not apply. With an eye towards using Theorem
16.3.1 in the place of Theorem 16.2.1, we seek a convex entropy η(u,v), defined on
some neighborhood of the origin, that exhibits a conical singularity,

(16.5.5) β−1/2(|u|+ |v|)≤ η(u,v)≤ β 1/2(|u|+ |v|) ,
and incurs nonnegative production:

(16.5.6) ηv(u,v)[v− f (u)]≥ 0.

Following the discussion in Section 12.2, we will determine the entropy as a function
η(z,w) of the Riemann invariants

(16.5.7) z =
∫ u

0
a(s)ds−v , w =

∫ u

0
a(s)ds+v.

Equation (12.2.2) here reduces to

(16.5.8) ηzw(z,w)+κ(z,w)[ηz(z,w)+ηw(z,w)] = 0,

where κ stands for (2a)−2a′ expressed as a function of (z,w). Furthermore, (12.2.3),
stating that η(u,v) is convex, here take the form

(16.5.9) ηzz −ηzw ≥ 0, ηww −ηzw ≥ 0.

The local equilibrium curve v = f (u) turns into w = g(z) with slope

(16.5.10) gz =
a+ f ′

a− f ′
,

which is positive by virtue of the subcharacteristic condition. The entropy η(z,w)
with the requisite properties will be constructed on a rectangle

(16.5.11) R = {(z,w) : −r < z < r , g(−r)< w < g(r)} ,
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for some r > 0 to be specified below.
Let us fix a smooth function φ(z) on (−∞,∞), with φ(0) = 0,φz(0) = 0, and

|φz(z)| ≤ 3, φzz(z) ≥ 0, for all z ∈ (−∞,∞). In what follows, the order of magnitude
symbol O shall be understood to hold uniformly for all φ with the above specifica-
tions, so in particular will not depend on the size of φzz . We then construct η(z,w)
on R as the solution of (16.5.8) with Cauchy data

(16.5.12) η(z,g(z)) = φ(z), −r < z < r,

(16.5.13) ηw(z,g(z))−ηz(z,g(z)) = 0, −r < z < r,

along the space-like equilibrium curve w = g(z).
After lengthy but elementary estimations on (16.5.8) and (12.2.4), which are

found in the references cited in Section 16.7, one deduces

(16.5.14) η(z,w) =
1

1+gz(z)
φ(z)+

gz(g−1(w))
1+gz(g−1(w))

φ(g−1(w))+O(z2 +w2),

(16.5.15) ηz(z,g(z)) = ηw(z,g(z)) =
φz(z)

1+gz(z)
= O(1),

(16.5.16) χ(z,w)ηzz(z,w) =
φzz(z)

1+gz(z)
+O(1),

(16.5.17) χ∗(z,w)ηww(z,w) =
φzz(g−1(w))

gz(g−1(w))[1+gz(g−1(w))]
+O(1),

where χ(z,w) and χ∗(z,w) are integrating factors:

(16.5.18) χ(z,w) = exp
∫ w

g(z)
κ(z,ξ )dξ , χ∗(z,w) = exp

∫ z

g−1(w)
κ(ζ ,w)dζ .

We take φ(z) = ψ(z) + γz2, where ψ(0) = 0,ψz(0) = 0, and |ψz(z)| ≤ 1,
ψzz(z) ≥ 0 for all z ∈ (−∞,∞). The positive constant γ is fixed sufficiently large,
and the constant r is fixed proportionally small, so that γr < 1, in order to secure that
|φz(z)| ≤ 3 and (16.5.7) all hold for (z,w) ∈ R. Then η(u,v) will be convex. More-
over, by the chain rule, ηv = ηw −ηz and ηvv = η +ηww − 2ηzw so that (16.5.13)
and (16.5.9) together imply (16.5.6).

At this point, holding r and γ fixed as above, we consider a sequence of ψ(z) that
converges to the Lipschitz function |z|. The sequence of associated entropies will
then converge to some Lipschitz function η on R, which is an entropy for (5.5.52),
that is convex as a function of (u,v) and satisfies (16.5.6). Furthermore, by virtue of
(16.5.14),
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(16.5.19)

η(z,w) =
1

1+gz(z)
|z|+ gz(g−1(w))

1+gz(g−1(w))
|g−1(w)|+O(z2 +w2)+ γO(z2 +w2).

As a final step, holding γ fixed as above, we impose, if necessary, a further reduction
on the size of r so that the terms with linear growth in (16.5.19) dominate the terms
of quadratic order, in which case η satisfies (16.5.5) as well.

Since the constructed η satisfies (16.5.5) and (16.5.6), the entropy inequality
(16.5.1) implies that Cω for the system (5.5.52) contains all initial data

(16.5.20)
∫ ∞

−∞
{|u0(x)|+ |v0(x)|}dx = σ ,

with σ ≤ β−1ω. Therefore, when the initial data satisfy (16.5.20) as well as

(16.5.21) TV(−∞,∞)u0(·)+TV(−∞,∞)v0(·) = δ ,

with σ and δ sufficiently small, Theorem 16.3.1 establishes the existence of a BV
solution, in the large.

A construction of an entropy with the above specifications – and in particular
with a conical singularity at the origin – seems feasible only for systems endowed
with a rich family of entropies, most notably for systems of just two balance laws.
For systems of larger size, with a limited collection of entropies, one must use an
alternative approach, which will be developed in the next section.

16.6 L1 Stability when the Source is Partially Dissipative

The aim here is to demonstrate that the assumptions, and thereby also the conclu-
sions, of Theorem 16.3.1 apply to systems modeling relaxation phenomena. Thus
this section is the counterpart of Section 5.5, with BV weak solutions in the role of
classical solutions.

As in Section 5.5, we assume that our system (16.2.1) is endowed with a smooth
entropy-entropy flux pair (η ,q), where η is convex and has been normalized by
η(0) = 0, Dη(0) = 0. Thus any admissible BV solution will satisfy the entropy in-
equality (16.5.1). We assume, further, that the source P is dissipative semidefinite
relative to η , in the terminology introduced in Section 5.5, namely

(16.6.1) Dη(U)P(U)≥ a|P(U)|2, U ∈ O,

with a > 0. Thus the entropy inequality readily yields bounds on the spatial integral
of |U |2 and the space-time integral of |P(U)|2.

Since we shall need bounds on the space-time integral of |U |2, we must invoke
the synergy between flux and source manifested in the Kawashima condition, intro-
duced in Section 5.5,

(16.6.2) DP(0)Ri(0) �= 0, i = 1, . . . ,n,
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which guarantees that the system resulting by linearizing (16.2.1) about the equi-
librium state 0 does not admit solutions in the form u(x−λi(0)t)Ri(0), manifesting
undamped propagating fronts.

We demonstrate that in the presence of (16.6.1) the Kawashima condition is
equivalent to the assumption (16.3.2) of Theorem 16.3.1. On account of (16.6.1),
the function

(16.6.3) θ(U) = Dη(U)P(U)−a|P(U)|2

is minimized at U = 0, and hence the Hessian matrix

(16.6.4) D2θ(0) = D2η(0)DP(0)+DP(0)�D2η(0)−2aDP(0)�DP(0)

is positive semidefinite. Multiplying, from the left, (7.4.2) by R�
i yields

(16.6.5) R�
i D2ηDF = λiR�

i D2η ,

which shows that R�
i D2η is collinear to Li , and in particular

(16.6.6) R�
i D2η = (R�

i D2ηRi)Li .

We now multiply (16.6.4), from the left by R�
i (0) and from the right by Ri(0). Using

that D2θ(0) is positive semidefinite, together with (16.6.5) at U = 0, we conclude

(16.6.7) [R�
i (0)D

2η(0)Ri(0)]Aii ≥ a|DP(0)Ri(0)|2,
which verifies that (16.6.2) implies (16.3.2). On the other hand, it is easily seen from
(16.2.2) that Aii �= 0, for i = 1, . . . ,n, implies the Kawashima condition.

The next task is to identify and expose the component of the state vector that is
directly affected by damping. Let us assume that the kernel of DP(0) has dimension
k,1 ≤ k < n. Thus, DP(0) = S−1Γ S, where S is a nonsingular n×n matrix and Γ is
an n×n matrix in the form

(16.6.8) Γ =

[
0 0
0 C

]
,

with C a nonsingular �× � matrix, � = n− k. Passing from U to a new state vector
Û = SU , with projections V and W on Rk and R�, reduces (16.2.1) to a system

(16.6.9)

⎧⎨⎩ ∂tV +∂xG(V,W )+X(V,W ) = 0

∂tW +∂xH(V,W )+CW +Y (V,W ) = 0,

where X ,Y and their first derivatives vanish at the origin. We may thus assume, with-
out loss of generality, that our system (16.2.1) has the form (16.6.9). In what follows,
we shall be using either form, (16.2.1) or (16.6.9), as is convenient.

As already noted in Section 5.5, the systems encountered in the applications,
modeling relaxation phenomena, generally result from combining conservation laws
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with balance laws and thus assume the form (16.6.9) with X ≡ 0. In that case, it is
easy to see that the entropy inequality (16.6.1) requires Y (V,0) = 0 and so (16.6.9)
may be written in the more compact form

(16.6.10)

⎧⎨⎩ ∂tV +∂xG(V,W ) = 0

∂tW +∂xH(V,W )+C(V,W )W = 0.

The spatial mean of the component V of solutions to (16.6.10) is time-invariant,
and this simplifies the analysis considerably. Accordingly, we shall discuss below, in
detail, the special case of systems (16.2.1) in the form (16.6.10), returning briefly to
the general case (16.6.9) at the conclusion of this section.

With the entropy η as function of (V,W ), positive semidefiniteness of the Hessian
matrix (16.6.4) holds if and only if the k× � matrix ηVW (0,0) vanishes and the �× �
matrix ηWW (0,0)C(0,0) is positive definite. Furthermore, the Kawashima condition
(16.6.2) is satisfied when, for i = 1, . . . ,n, the projection of Ri(0) on R� does not
vanish.

We have seen already that the above conditions imply (16.3.2). With an eye to
the remaining assumptions of Theorem 16.3.1, we proceed to identify the class Cω of
initial data that generate solutions with the property (16.3.1). This will be achieved
through the following

16.6.1 Theorem. Assume the system (16.2.1) is in the form (16.6.10), the source
is dissipative semidefinite, relative to the entropy η , and the Kawashima condi-
tion holds. Let U = (V,W ) be an admissible BV solution, with initial values
U0 = (V0,W0), defined on a strip (−∞,∞)× [0,T ) and taking values in a ball Bρ
of small radius ρ , centered at the origin. Suppose that U0 decays, as |x| → ∞ , suffi-
ciently fast to render the integral

(16.6.11)
∫ ∞

−∞
(1+ x2)|U0(x)|2dx = σ2

finite. Furthermore, let

(16.6.12)
∫ ∞

−∞
V0(x)dx = 0.

Then there is σ0 > 0, independent of T , such that, for σ < σ0 ,

(16.6.13)
∫ ∞

−∞
|U(x, t)|dx ≤ bσ , 0 ≤ t < T,

with b independent of T . Furthermore, if T = ∞ ,

(16.6.14)
∫ ∞

−∞
|U(x, t)|dx → 0, as t → ∞ .
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It is this theorem that guarantees that Cω contains all initial data U0 satisfying
(16.6.2) and (16.6.11) for σ ≤ ω/b. The proof will be the culmination of a priori
estimates to be established below. As in Section 16.4, in order to avoid the prolifera-
tion of symbols, we will employ throughout c as a generic positive constant that may
depend on bounds of F,P and their derivatives on some fixed neighborhood of the
origin, containing Bρ , but is independent of ρ,σ and T .

A useful tool will be the “potential” function

(16.6.15) Ψ(x, t) =
∫ x

−∞
V (y, t)dy.

Clearly,Ψ is Lipschitz, with derivatives

(16.6.16) ∂xΨ =V, ∂tΨ =−G(V,W ).

The role of the assumption (16.6.12) is to secure that the initial valueΨ0(x) ofΨ
satisfiesΨ0(±∞) = 0. Then, integrating by parts,

(16.6.17)
∫ ∞

−∞
|Ψ0(x)|2dx =

∫ 0

−∞

∣∣∣∣∫ x

−∞
V0(y)dy

∣∣∣∣2 dx+
∫ ∞

0

∣∣∣∣∫ x

∞
V0(y)dy

∣∣∣∣2 dx

=−2
∫ 0

−∞
xV�

0 (x)Ψ0(x)dx−2
∫ ∞

0
xV�

0 (x)Ψ0(x)dx

≤ 2
∫ ∞

−∞
x2|V0(y)|2dx+

1
2

∫ ∞

−∞
|Ψ0(x)|2dx,

so that, by virtue of (16.6.11),

(16.6.18)
∫ ∞

−∞
|Ψ0(x)|2dx ≤ 4σ2.

The following proposition provides the first hint that the spatial L2 norm of the
solution decays as time tends to infinity.

16.6.2 Lemma. Under the assumptions of Theorem 16.6.1, there is a constant ω̄
independent of T , such that if

(16.6.19)

then

(16.6.20)
∫ T

0

∫ ∞

−∞
|U(x, t)|2dxdt ≤ cσ2.

Proof. By virtue of (16.6.1), integration of the entropy inequality (16.5.1) over
(−∞,∞)× [0,T ) readily yields that

∫ ∫ |W |2dxdt is bounded by cσ2. However, show-
ing that this will also be the case for the complementary component V will require

|Ψ(x, t)|< ω̄, −∞ < x < ∞ , 0 ≤ t < T,
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considerable effort, as it rests on the synergy between the partially dissipative source
and the flux, encoded in the Kawashima condition.

We introduce the following notations:

(16.6.21) B = GV (0,0), J = GW (0,0), E = HV (0,0), D = HW (0,0),

(16.6.22) K = ηVV (0,0), M = ηWW (0,0),

(16.6.23) Q = [ηWW (0,0)C(0,0)]−1.

The k× k matrix K and the �× � matrix M are symmetric and positive definite. Fur-
thermore, since D2η(U)DF(U) is symmetric and ηVW (0,0) = 0,

(16.6.24) (KB)� = KB, (MD)� = MD, (ME)� = KJ.

Finally, the �× � matrix Q is positive definite.
If N is any eigenvector of the matrix B, then EN �= 0, since EN = 0 would imply

that R =

(
N
0

)
is an eigenvector of DF(0) with DP(0)R = 0, in contradiction to the

Kawashima condition. It may then be shown (reference in Section 16.7) that there
exists a k×k matrix Ω such that ΩK is skew-symmetric and ΩKB is positive on the
kernel of ME.

We now define the following functions:

(16.6.25) Θ(V,W,Ψ) =Ψ�KΨ −2Ψ�KJQMW −κΨ�ΩKV + γη(V,W ),

(16.6.26)
Ξ(V,W,Ψ) =Ψ�KBΨ −2Ψ�KJQMH(V,W )−κΨ�ΩKG(V,W )+ γq(V,W ),

(16.6.27) Π(V,W,Ψ) = 2Ψ�KG(V,W )−2Ψ�KBV −2G�(V,W )KJQMW

+2V�KJQMH(V,W )−2Ψ�KJQMC(V,W )W −κG�(V,W )ΩKV

+κV�ΩKG(V,W )+ γηW (V,W )C(V,W )W,

where κ and γ are positive constants to be fixed below.
A lengthy but straightforward calculation, using (16.6.10), (16.6.16) and (16.5.1)

yields

(16.6.28) ∂tΘ(V,W,Ψ)+∂xΞ(V,W,Ψ)+Π(V,W,Ψ)≤ 0.

We perform a (finite) Taylor expansion ofΠ(V,W,Ψ) about the origin. Using the
symmetry relations (16.6.24) and recalling that |U |< ρ and |Ψ |< ω̄ , we obtain

(16.6.29) Π =V�ΛV +V�ΓW +W�ΔW +O(ρ+ ω̄)(|V |2 + |W |2),
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where

(16.6.30) Λ = 2(ME)�QME +2κΩKB,

(16.6.31) Δ =−2J�KJQM+ γQ−1,

(16.6.32) Γ =−2KBJQM+2KJQMD+2κΩKJ.

The crucial observation is that the second term on the right-hand side of (16.6.30)
is positive on the kernel of ME and the first term is positive on the complementary
space, whence, for κ sufficiently small, Λ is positive definite. We may thus fix ρ
and ω̄ sufficiently small and γ sufficiently large so both Θ and Π become positive
definite at the origin. Then, integrating (16.6.28) over (−∞,∞)× [0,T ) and using
(16.6.11) and (16.6.18), we arrive at (16.6.20). This completes the proof.

16.6.3 Lemma. Under the assumptions of Theorem 16.6.1 and so long as (16.6.19)
holds,

(16.6.33) t
∫ ∞

−∞
|U(x, t)|2dx ≤ cσ2, 0 ≤ t < T.

Furthermore, if T = ∞ ,

(16.6.34) t
∫ ∞

−∞
|U(x, t)|2dx → 0, as t → ∞ .

Proof. On account of (16.5.1), (16.5.2),

(16.6.35) ∂t [tη(U)]+∂x[tq(U)]≤ η(U).

Integrating the above inequality over (−∞,∞)× [0, t], t ∈ [0,T ), and using (16.6.20),
we arrive at (16.6.33).

Suppose now T = ∞ and fix any ε > 0. By virtue of (16.6.20), there exists τ > 0
such that

(16.6.36) τ
∫ ∞

−∞
η(U(x,τ))dx <

ε
2
,

(16.6.37)
∫ ∞

τ

∫ ∞

−∞
η(U(x, t))dxdt <

ε
2
.

For any t ∈ (τ,∞), integrating (16.6.35) over (−∞,∞)× [τ, t] yields

(16.6.38) t
∫ ∞

−∞
η(U(x, t))dx < ε,
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whence (16.6.34) follows. This completes the proof.

Proof of Theorem 16.6.1. Suppose that (16.6.19) holds. We identify λ > 0 such that

(16.6.39) |q(U)| ≤ λη(U)

holds for all U in a neighborhood of the origin containing Bρ .
On account of (16.6.33) and Schwarz’s inequality,

(16.6.40)
∫ 2λ t

−2λ t
|U(x, t)|dx ≤

{
4λ t

∫ 2λ t

−2λ t
|U(x, t)|2dx

}1/2

≤ cσ ,

for any t ∈ [0,T ). Furthermore, if T = ∞ , (16.6.40) and (16.6.34) imply

(16.6.41)
∫ 2λ t

−2λ t
|U(x, t)|dx → 0, as t → ∞ .

We now proceed to estimate the integral of |U(x, t)| over the interval (2λ t,∞).
For k = 1,2, . . . , we integrate the entropy inequality (16.5.1) over the trapezoid with
vertices (2kλ t, t), (2k+1λ t, t), ((2k − 1)λ t,0) and ((2k+1 + 1)λ t,0). On account of
(16.6.39) this yields

(16.6.42)
∫ 2k+1λ t

2kλ t
|U(x, t)|2dx ≤ β

∫ (2k+1+1)λ t

(2k−1)λ t
|U0(x)|2dx.

Therefore,

(16.6.43)
∫ 2k+1λ t

2kλ t
(x2 +1)|U(x, t)|2dx ≤ β (4k+1λ 2t2 +1)

∫ (2k+1+1)λ t

(2k−1)λ t
|U0(x)|2dx

≤ 16β
∫ (2k+1+1)λ t

(2k−1)λ t
(x2 +1)|U0(x)|2dx.

Summing the above inequalities over k = 1,2, . . . , we deduce

(16.6.44)
∫ ∞

2λ t
(x2 +1)|U(x, t)|2dx ≤ 32β

∫ ∞

λ t
(x2 +1)|U0(x)|2dx ≤ cσ2.

Finally, by Schwarz’s inequality,

(16.6.45)∫ ∞

2λ t
|U(x, t)|dx ≤

[∫ ∞

2λ t
(x2 +1)−1dx

] 1
2
[∫ ∞

2λ t
(x2 +1)|U0(x)|2dx

] 1
2
≤ cσ(λ t+1)−

1
2 .

A similar bound is obtained for the integral of |U(x, t)| over (−∞,−2λ t). These
bounds together with (16.6.40) and (16.6.41) establish (16.6.13), for some b, and
(16.6.14), albeit subject to (16.6.19). In order to show that this restriction is su-
perfluous, we first note that, upon increasin g, if necessary, the size of b, (16.6.13)
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holds at t = 0, independently of (16.6.19). We thus set σ0 = ω̄/b and fix σ < σ0 .
Since |Ψ(x, t)| ≤ ‖V (·, t)‖L1 , we deduce that when (16.6.13) is satisfied for some
t ∈ [0,T ), (16.6.19) must hold on (−∞,∞)× [t + ε), by virtue of (16.6.16). A sim-
ple continuation argument then establishes that, for any σ < σ0 , (16.6.19) holds on
(−∞,∞)× [0,T ). This completes the proof.

We may now combine Theorems 16.3.1 and 16.6.1, arriving at the following
existence theorem:

16.6.4 Theorem. Consider a system (16.2.1) of balance laws in the form (16.6.10),
with genuinely nonlinear or linearly degenerate characteristic fields, endowed with a
convex entropy η . Assume that the source is dissipative semidefinite (16.6.1), relative
to η , and the Kawashima condition (16.6.2) holds. Then there are positive constants
δ0,σ0,c0,c1,ν and b so that the Cauchy problem under initial data U0 = (V0,W0),
with

(16.6.46)
∫ ∞

−∞
(1+ x2)|U0(x)|2dx = σ2 < σ2

0 ,

(16.6.47) TV(−∞,∞)U0(·) = δ < δ0 ,

(16.6.48)
∫ ∞

−∞
V0(x)dx = 0,

possesses an admissible BV solution U on (−∞,∞)× [0,∞) and

(16.6.49)
∫ ∞

−∞
|U(x, t)|dx ≤ bσ , 0 ≤ t < ∞ ,

(16.6.50) TV(−∞,∞)U(·, t)≤ c0σ + c1δe−νt , 0 ≤ t < ∞ ,

(16.6.51)
∫ ∞

−∞
|U(x, t)|dx → 0, as t → ∞ ,

(16.6.52) TV(−∞,∞)U(·, t)→ 0, as t → ∞ .

For illustration, we consider again the system (5.5.52), discussed in Section 16.5.
In order to treat it in the context of the present section, we need a convex entropy η
that renders the source dissipative semidefinite:

(16.6.53) ηv(u,v)[v− f (u)]≥ a
μ
|v− f (u)|2,

with a > 0.
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Following the procedure in Section 16.5, we will construct an entropy with the
above specifications, as a function η(z,w) of the Riemann invariants (16.5.7) defined
on the rectangle (16.5.11), by solving the Cauchy problem for the equation (16.5.8)
under Cauchy data (16.5.12), (16.5.13). However, here we employ any convex func-
tion ϕ , with ϕ(0) = 0,ϕz(0) = 0 and ϕzz(0) = 1. We perform similar estimations as
in Section 16.5, getting

(16.6.54) η(z,w) = O(r2),

(16.6.55) ηz(z,w) = O(r), ηw(z,w) = O(r), ηzw(z,w) = O(r),

(16.6.56) ηzz(z,w) =
1

1+gz(z)
+O(r),

(16.6.57) ηww(z,w) =
1

gz(g−1(w))[1+gz(g−1(w))]
+O(r),

where now the order symbol O is tied to the assumption ϕzz(0) = 1.
Thus, for r small, η satisfies the convexity condition (16.5.9). Furthermore, since

ηv = ηw − ηz and ηvv = ηzz + ηww − 2ηzw , we deduce that ηv(u, f (u)) = 0 and
ηvv(u,v)≥ a/μ , so that (16.6.53) is indeed satisfied.

Given functions u0 and v0 on (−∞,∞), such that

(16.6.58)
∫ ∞

−∞
(1+ x2)[u2

0(x)+v2
0(x)]dx = σ2,

(16.6.59) TV(−∞,∞)u0(·)+TV(−∞,∞)v0(·) = δ ,

(16.6.60)
∫ ∞

−∞
u0(x)dx = 0,

with σ and δ sufficiently small, Theorem 16.6.4 implies that the Cauchy problem for
the system (5.5.52), with initial data (u0,v0), possesses an admissible BV solution
(u,v), in the large, and

(16.6.61)
∫ ∞

−∞
[|u(x, t)|+ |v(x, t)|]dx → 0, as t → ∞ ,

(16.6.62) TV(−∞,∞)u(·, t)+TV(−∞,∞)v(·, t)→ 0, as t → ∞ .

Comparing the above with the treatment of the system (5.5.52) in Section 16.5,
one notes that the assumption (16.6.58) is more restrictive than (16.5.20) and that
the condition (16.6.60) imposed here was not needed there. On the other hand, in
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contrast to the approach of Section 16.5, the present treatment also delivers the long
time behavior of solutions.

As a matter of fact, the question of existence and long time behavior of BV so-
lutions to the more general class of systems (16.6.9), with nonzero X , or even to the
restricted class (16.6.10) without the condition (16.6.12), is still open. It is clear that
U , or at least its V -component, will not generally decay to zero in L1(−∞,∞), as
t → ∞ . The following, particular, result provides a first indication of what should be
expected under such circumstances.

We consider the Cauchy problem for the simple system

(16.6.63)

⎧⎨⎩ ∂tu−∂xv+αv2 = 0

∂tv+∂x p(u)+v = 0,

as a model for systems in the class (16.6.9), where p′(u) < 0, and α is a constant,
positive, negative or zero. The following analog to Theorem 16.6.4 holds:

16.6.5 Theorem. Assume (u0,v0) are given functions on (−∞,∞) satisfying (16.6.58)
and (16.6.59), with σ and δ sufficiently small. Then there exists an admissible BV
solution (u,v) of the system (16.6.63) on (−∞,∞)× [0,∞), with initial data (u0,v0).
Furthermore,

(16.6.64)
∫ ∞

−∞
[|u(x, t)−θ(x, t)|+ |v(x, t)|]dx ≤ bσ(t +1)−

1
4 , 0 ≤ t < ∞ ,

(16.6.65)
TV(−∞,∞)u(·, t)+TV(−∞,∞)v(·, t)≤ c0σ(t +1)−

1
4 + c1δe−νt , 0 ≤ t < ∞ ,

where c0,c1,ν and b are positive constants, independent of the initial data, and θ is
the solution

(16.6.66) θ(x, t) = M(4πt)−
1
2 exp

(
−x2

4t

)
to the heat equation, with M some constant depending on (u0,v0).

Sketch of proof. For simplicity, we discuss only the special case α = 0, so that
(16.6.63) is still in the form (16.6.10). However, we no longer impose (16.6.60),
assuming instead

(16.6.67)
∫ ∞

−∞
u0(x)dx = M.

We merely sketch the proof. The details, together with the treatment of the general
case α �= 0, are found in the literature cited in Section 16.7.

The objective is to demonstrate that, for any 0 < t < ∞ ,

(16.6.68)
∫ ∞

−∞
[|u(x, t)− û(x, t)|+ |v(x, t)− v̂(x, t)|]dx ≤ cσ(t +1)−

1
4 ,
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where (û, v̂) is the solution to the system

(16.6.69)

⎧⎨⎩ ∂t û−∂xv̂ = 0

v̂ =−∂x p(û),

with the same initial values (u0,v0) as (u,v). Thus û satisfies the porous media equa-
tion

(16.6.70) ∂t û+∂ 2
x p(û) = 0.

By means of lengthy but straightforward analysis, involving elementary “energy”
estimates, it is possible to establish bounds for the solution û of (16.6.70) and thereby
for v̂, including the following:

(16.6.71)
∫ ∞

0

∫ ∞

−∞
v̂2(x, t)dxdt ≤ cσ2,

(16.6.72)
∫ ∞

0

∫ ∞

−∞
(x2 + t +1)[∂t û(x, t)]2dxdt ≤ cσ2,

(16.6.73)
∫ ∞

0

∫ ∞

−∞
(x2 + t +1)2[∂t v̂(x, t)]2dxdt ≤ cσ2,

(16.6.74)
∫ ∞

−∞
|û(x, t)−θ(x, t)|dx ≤ cσ(t +1)−

1
4 ,

(16.6.75)
∫ ∞

−∞
|v̂(x, t)|dx ≤ cσ(t +1)−

1
2 ,

where θ is defined by (16.6.66). Thus proving (16.6.68) will establish the assertion
(16.6.64). The asserted decay (16.6.65) in the variation will then follow from Theo-
rem 16.3.1.

With an eye to verifying (16.6.68), we set w = u− û and z = v− v̂, noting that
(w,z) satisfies the system

(16.6.76)

⎧⎨⎩ ∂tw−∂xz = 0

∂t z+∂x p̂(w, û)+ z+∂t v̂ = 0,

with zero initial data. In (16.6.76), p̂ stands for the “relative pressure” defined by

(16.6.77) p̂(w, û) = p(w+ û)− p(û).

The admissibility of solutions to (16.6.76) is encoded in the “relative entropy”
inequality
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(16.6.78) ∂t

[
ψ̂(w, û)+

1
2

z2
]
+∂x[p̂(w, û)z]+ z2 ≤−[p̂(w, û)− p′(û)w]∂t û− z∂t v̂,

where ψ̂ denotes the “relative internal energy” defined by

(16.6.79) ψ̂(w, û) =−
∫ w+û

û
p(ξ )dξ + p(û)w.

A priori bounds on (w,z) will be derived by combining (16.6.78) with the balance
law

(16.6.80) ∂t

[
1
2
Φ2 +(z+ v̂)Φ

]
+∂x[p̂(w, û)Φ ]− p̂(w, û)w = z2 + zv̂,

where Φ is the “potential function”

(16.6.81) Φ(x, t) =
∫ x

−∞
w(y, t)dy.

Terms with the “good sign” appearing in (16.6.78) and (16.6.80) include ψ̂(w, û), z2,
Φ2 and − p̂(w, û)w. It is easy to see that, when σ is sufficiently small, the terms of
indefinite sign may be balanced, with the help of (16.6.71), (16.6.72) and (16.6.73),
against the terms with the good sign, yielding bounds

(16.6.82)
∫ ∞

−∞
[w2(x, t)+ z2(x, t)]dx ≤ cσ2,

(16.6.83)
∫ ∞

0

∫ ∞

−∞
[w2(x, t)+ z2(x, t)]dxdt ≤ cσ2.

To get the next round of estimates, we multiply (16.6.78), first by t and then by
x2, which yields

(16.6.84) ∂t

[
t[ψ̂(w, û)+

1
2

z2]

]
+∂x[t p̂(w, û)z]+ tz2

≤ ψ̂(w, û)+
1
2

z2 − t[p̂(w, û)− p′(û)w]∂t û− tz∂t v̂,

(16.6.85) ∂t

[
x2[ψ̂(w, û)+

1
2

z2]

]
+∂x[x2 p̂(w, û)z]+ x2z2

≤ 2xp̂(w, û)z− x2[p̂(w, û)− p′(û)w]∂t û− x2z∂t v̂.

With the help of (16.6.82) and (16.6.83), together with (16.6.71), (16.6.72) and
(16.6.73), one may balance the terms of indefinite sign in (16.6.84) and (16.6.85)
against the terms tψ̂, x2ψ̂, tz2 and x2z2, with the good sign, to obtain the estimate

(16.6.86)
∫ ∞

−∞
(x2 + t +1)[w2(x, t)+ z2(x, t)]dx ≤ cσ2.

Finally, we apply Schwarz’s inequality to (16.6.86) to get
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(16.6.87)
[∫ ∞

−∞
[|w(x, t)|+ |z(x, t)|]dx

]2

≤ 2
∫ ∞

−∞
(x2 + t +1)−1dx

∫ ∞

−∞
(x2 + t +1)[w2(x, t)+ z2(x, t)]dx

≤ cσ2(t +1)−
1
2 ,

whence we obtain (16.6.68). This completes the sketch of the proof.

In the long time behavior of solutions to the Cauchy problem for the class of
systems of balance laws considered in this chapter, with initial data decaying as
|x| → ∞ , the damping action of the source is moderated by wave dispersion. By
contrast, the dissipative effect of the source becomes absolutely dominant when the
waves are confined as in the case of spatially periodic solutions. An illustration is
provided by the following proposition, whose proof is found in the literature cited in
Section 16.7.

16.6.6 Theorem. Consider a system (16.2.1) of balance laws in the form (16.6.10)
with genuinely nonlinear or linearly degenerate characteristic fields, endowed with a
convex entropy η . Assume that the source is dissipative semidefinite (16.6.1), relative
to η , and the Kawashima condition (16.6.2) holds. Then there are positive constants
δ0,c0,c1 and ν so that the Cauchy problem with initial data U0 , where

(16.6.88) U0(x+2) =U0(x), −∞ < x < ∞ ,

(16.6.89) |U0(x)|< δ < δ0 , −∞ < x < ∞ ,

(16.6.90) TV[−1,1]U0(·) = δ < δ0 ,

possesses an admissible BV solution U on (−∞,∞)× [0,∞), which is 2-periodic and
satisfies

(16.6.91)

(16.6.92) TV[−1,1]U(·, t)≤ c1δe−νt , 0 ≤ t < ∞ .

In particular, under the subcharacteristic condition (5.5.54) in strict inequality
form, the system (5.5.52) meets the conditions of Theorem 16.6.6, and thereby pos-
sesses spatially periodic BV solutions that decay exponentially as time tends to in-
finity.

The existence of spatially periodic BV solutions to genuinely nonlinear systems
of two conservation laws was established in Chapter XII; however it is doubtful that
this extends to systems of conservation laws of larger size. We see here that in the
presence of a dissipative source these difficulties disappear.

|U(x, t)| ≤ c0δe−νt , −1 ≤ x < 1, 0 ≤ t < ∞ ,
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16.7 Notes

Local and global solutions to the Cauchy problem for systems of balance laws were
constructed, under the assumptions of Theorems 16.1.1 and 16.2.1, by the random
choice method, in Dafermos and Hsiao [1], then through the front tracking algorithm,
in Amadori and Guerra [1,3], and finally via the vanishing viscosity approach, in
Christoforou [1]. In particular, Amadori and Guerra [1,3] establish the uniqueness of
solutions and recast the diagonal dominance condition (16.2.4) in a form that does
not depend on a particular choice of eigenvectors of DF . Uniqueness via vanishing
viscosity is discussed in Christoforou [2].

For the rate of convergence of the vanishing viscosity approximation, see Christo-
forou and Trivisa [2]. The rate of decay of positive waves is established in Goatin and
Gosse [1], and Christoforou and Trivisa [1,3]. The vanishing viscosity approach to
systems with memory is pursued in Christoforou [3] and Chen and Christoforou [1].
For initial-boundary value problems, see Colombo and Guerra [3].

For a detailed proof of a proposition akin to Theorem 16.1.2, via operator split-
ting, see Christoforou [5]. Alternatively, instead of employing operator splitting, one
may adapt the Glimm scheme to inhomogeneous systems of balance laws by solving
at each step a generalized Riemann problem (see Section 9.11). In that connection,
see Hong and LeFloch [1], Chou, Hong and Su [1], and Su, Hong and Chou [1].

The radially symmetric form (7.1.29) of the Euler equations, possibly with damp-
ing, combustion, self generated gravitational force, or other manifestations of the
Euler-Poisson equations, provide interesting examples of inhomogeneous systems
of balance laws. A variety of related problems have been studied by Gui-Qiang Chen
[6], Chen and Glimm [1,2], Gui-Qiang Chen and Tiang-Hong Li [1], Hsiao, Luo
and Yang [1], Tong Yang [1], Wang and Wang [2,3], Chen and Wagner [1], Tsuge
[1,2,3,4,5,6], and Ha, Huang, and Lien [1]. In the majority of the above works, one
has to exclude the origin from the domain of solutions in order to avoid the singular
behavior of the system at r = 0. See Section 18.9.

Redistribution of damping was introduced in Dafermos [23,25,34]. In particular,
the details of the derivation of the L1 estimate for the system (5.5.52), expounded
in Section 16.5, are found in Dafermos [25]. The derivation of L1 bounds in Section
16.6, which is taken from Dafermos [36, 43], makes essential use of a Liapunov func-
tional invented by Ruggeri and Serre [1]. The detailed proof of Theorem 16.6.5 is in
Dafermos [41]. Theorem 16.6.6, on periodic solutions, is from Dafermos [42,44].
Applications of redistribution of damping to systems of balance laws with memory,
arising in viscoelasticity and heat conduction, are found in Dafermos [38,39,40]. For
a survey see Dafermos [45].

Theorem 16.1.3 is taken from Tai-Ping Liu [14]. Amadori, Gosse and Guerra [1],
and Seung-Yeal Ha [1] improve this result by establishing L1 stability. The effects of
resonance between the waves and the source term may be seen in Tai-Ping Liu [18],
Cai Zhong Li and Tai-Ping Liu [1], Pego [4], Isaacson and Temple [4], Klingenberg
and Risebro [2], Ha and Yang [1], Lien [1], Lan and Lin [1], Asakura [3], Hong and
Temple [1] and Hong [1].



XVII

Compensated Compactness

Approximate solutions to hyperbolic systems of conservation laws may be generated
in a variety of ways: by the method of vanishing viscosity, through difference ap-
proximations, by relaxation schemes, etc. The topic for discussion in this chapter is
whether solutions may be constructed as limits of sequences of approximate solu-
tions that are bounded only in some Lp space. Since the systems are nonlinear, the
difficulty lies in that the construction schemes are generally consistent only when
the sequence of approximating solutions converges strongly, whereas the assumed
Lp bounds guarantee only weak convergence: Approximate solutions may develop
high-frequency oscillations of finite amplitude which play havoc with consistency.
The aim is to demonstrate that entropy inequalities may save the day by quenching
rapid oscillations, thus enforcing strong convergence of the approximating solutions.
Some indication of this effect was alluded to in Section 1.9.

The principal tools in the investigation will be the notion of Young measure and
the functional analytic method of compensated compactness. The former naturally
induces the very general class of measure-valued solutions and the latter is employed
to verify that nonlinearity reduces measure-valued solutions to traditional ones. As
it relies heavily on entropy dissipation, the approach appears to be applicable mainly
to systems endowed with a rich family of entropy-entropy flux pairs, most notably
the scalar conservation law and systems of just two conservation laws. Despite this
limitation, the approach is quite fruitful, not only because of the abundance of im-
portant systems with such structure, but also because it provides valuable insight into
the stabilizing role of entropy dissipation as well as into the “conflicted” stabilizing-
destabilizing behavior of nonlinearity. Different manifestations of these factors were
already encountered in earlier chapters.

Out of a host of known applications of the method, only the simplest shall be pre-
sented here, pertaining to the scalar conservation law, genuinely nonlinear systems
of two conservation laws, and the system of isentropic elasticity and gas dynamics.

© Springer-Verlag Berlin Heidelberg 2016
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Grundlehren der mathematischen Wissenschaften 325,
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17.1 The Young Measure

The stumbling block for establishing consistency of construction schemes that gen-
erate weakly convergent sequences of approximate solutions lies in that it is not
generally permissible to pass weak limits under nonlinear functions. Suppose Ω is
an open subset of Rm and {Uk} is a sequence in L∞(Ω ;Rn) which converges in L∞

weak∗ to some limit Ū . If g is any continuous real-valued function on Rn, the se-
quence {g(Uk)} will contain subsequences that converge in L∞ weak∗, say to ḡ, but
in general ḡ �= g(Ū). It turns out that the limit behavior of such sequences, for all
continuous g, is encoded in a family {νX : X ∈ Ω} of probability measures on Rn,
which is constructed by the following procedure.

Let M(Rn) denote the space of bounded Radon measures on Rn, which is iso-
metrically isomorphic to the dual of the space C(Rn) of bounded continuous func-
tions. With k = 1,2, · · · and any X ∈ Ω , we associate the Dirac mass δUk(X) in
M(Rn), centered at the point Uk(X), and realize the family {δUk(X) : X ∈ Ω} as
an element νk of the space L∞

w(Ω ;M(Rn)), which is isometrically isomorphic to
the dual of L1(Ω ;C(Rn)). By virtue of standard weak compactness and separabil-
ity theorems, there is a subsequence {ν j} of {νk} which converges weakly∗ to some
ν ∈ L∞

w(Ω ;M(Rn)). Thus, ν = {νX : X ∈Ω} and, as j → ∞ ,

(17.1.1)∫
Ω
ψ(X ,Uj(X))dX =

∫
Ω
< δUj(X),ψ(X , ·)> dX →

∫
Ω
< νX ,ψ(X , ·)> dX ,

for any ψ ∈C(Ω×Rn). The supports of the δUj(X) are uniformly bounded and hence
the νX must have compact support. Furthermore, since the δUj(X) are probability
measures, so are the νX . In particular, applying (17.1.1) for ψ(X ,U) = φ(X)g(U),
where φ ∈C(Ω) and g ∈C(Rn), we arrive at the following

17.1.1 Theorem. Let Ω be an open subset of Rm. Then any bounded sequence {Uk}
in L∞(Ω ;Rn) contains a subsequence {Uj}, and a measurable family {νX : X ∈Ω}
of probability measures with compact support, such that, for any g ∈C(Rn),

(17.1.2) g(Uj)⇀ ḡ, as j → ∞ ,

in L∞ weak∗, where

(17.1.3) ḡ(X) =< νX ,g >=
∫
Rn

g(U)dνX (U).

The collection {νX : X ∈Ω} constitutes the family of Young measures associated
with the subsequence {Uj}. To gain some insight, let us consider the ball Br(X)
in Ω , with center at some X ∈ Ω , radius r and measure |Br|. On account of our
construction of νX , it is easy to see that

(17.1.4) νX = lim
r↓0

lim
j↑∞

1
|Br|

∫
Br(X)

δUj(Y )dY, a.e. on Ω ,
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where the limits are to be understood in the weak∗ sense. Notice that the averaged
integral on the right-hand side of (17.1.4) may be interpreted as the probability dis-
tribution of the values of Uj(Y ) as Y is selected uniformly at random from Br(X).
Thus, according to (16.1.4), νX represents the limiting probability distribution of the
values of Uj near X .

Certain applications require more general versions of Theorem 17.1.1. Young
measures νX are defined even when the sequence {Uk} is merely bounded in some
Lp(Ω ;Rn), with 1 < p < ∞ . If Ω is bounded, the νX are still probability measures
and (17.1.2), (17.1.3) hold for all continuous functions g which satisfy a growth
condition |g(U)| ≤ c(1+ |U |q), for some 0 < q < p. In that case, convergence in
(17.1.2) is weakly in Lr(Ω), for 1 < r < p/q. By contrast, when Ω is unbounded,
the νX may have mass less than one, because in the process of constructing them, as
one passes to the j → ∞ limit, part of the mass may leak out at infinity.

17.2 Compensated Compactness and the div-curl Lemma

The theory of compensated compactness strives to classify bounded (weakly com-
pact) sets in Lp space endowed with additional structure that falls short of (strong)
compactness but still manages to render certain nonlinear functions weakly continu-
ous. This is nicely illustrated by means of the following proposition, the celebrated
div-curl lemma, which commands a surprisingly broad gamut of applications.

17.2.1 Theorem. Given an open subset Ω of Rm, let {G j} and {Hj} be sequences of
vector fields in L2(Ω ;Rm) converging weakly to respective limits Ḡ and H̄, as j →∞ .
Assume both {divG j} and {curlHj} lie in compact subsets of W−1,2(Ω). Then

(17.2.1) G j ·Hj → Ḡ · H̄, as j → ∞ ,

in the sense of distributions.

Proof. It will suffice to establish (17.2.1) for Ω bounded. Moreover, on account of
G j · H̄ → Ḡ · H̄, we may assume, without loss of generality, that H̄ = 0.

Let Φ j ∈W 1,2
0 (Ω ;Rm)∩W 2,2

loc (Ω ;Rm) denote the solution of the boundary value
problem ΔΦ j = Hj in Ω , Φ j = 0 on ∂Ω . Then {Φ j} converges to zero weakly in
W 2,2

loc , and hence {divΦ j} converges to zero weakly in W 1,2
loc . On the other hand, since

Δ(curlΦ j) = curlHj , {curlΦ j} converges to zero strongly in W 1,2
loc .

We now set

By virtue of (17.1.2) and (17.1.3), the subsequence {Uj} converges, in L∞ weak∗,
to the mean Ū =< νX ,U > of the Young measures. The limit ḡ of {g(Uj)} will
satisfy ḡ = g(Ū), for all g ∈C(Rn), if and only if νX reduces to the Dirac mass δŪ(X)

centered at Ū(X). In that case, {|Uj|} will converge to |Ū |, which implies that {Uj}
will converge to Ū strongly in Lp

loc(Ω), for any 1 ≤ p < ∞ , and some subsequence of
{Uj} will converge to Ū a.e. on Ω . Hence, to establish strong convergence of {Uj},
one needs to verify that the support of the Young measure is confined to a point.
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(17.2.2) Vj = Hj −grad divΦ j

and observe that, for α = 1, . . . ,m,

(17.2.3) Vjα =
m

∑
β=1

∂β (∂βΦ jα −∂αΦ jβ ),

so that {Vj} converges to zero strongly in L2
loc .

With the help of (17.2.2), we obtain

(17.2.4) G j ·Hj = G j ·Vj +div[(divΦ j)G j]− (divΦ j)(divG j).

Each term on the right-hand side of (17.2.4) tends to zero, in the sense of distribu-
tions, as j → ∞ , and this establishes (17.2.1). The proof is complete.

In the applications, the following technical result is often helpful for verifying
the hypotheses of Theorem 17.2.1.

17.2.2 Lemma. Let Ω be an open subset of Rm and {φ j} a bounded sequence in
W−1,p(Ω), for some p > 2. Furthermore, let φ j = χ j +ψ j , where {χ j} lies in a
compact set of W−1,2(Ω), while {ψ j} lies in a bounded set of the space of measures
M(Ω). Then {φ j} lies in a compact set of W−1,2(Ω).

Proof. Consider the (unique) functions g j and h j in W 1,2
0 (Ω) which solve the equa-

tions

(17.2.5) Δg j = χ j , Δh j = ψ j .

By standard elliptic theory, {g j} lies in a compact set of W 1,2
0 (Ω) while {h j} lies in a

compact set of W 1,q
0 (Ω), for 1 < q < m

m−1 . Since φ j = Δ(g j +h j),{φ j} is contained
in a compact set of W−1,q(Ω). But {φ j} is bounded in W−1,p(Ω), with p > 2, hence,
by interpolation between W−1,q and W−1,p, it follows that {φ j} lies in a compact set
of W−1,2(Ω). The proof is complete.

17.3 Measure-Valued Solutions for Systems of Conservation Laws

and Compensated Compactness

Consider a system of conservation laws,

(17.3.1) ∂tU +∂xF(U) = 0 ,

and suppose {Uk} is a sequence of approximate solutions in an open subset Ω of R2,
namely

(17.3.2) ∂tUk +∂xF(Uk)→ 0 , as k → ∞ ,
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in the sense of distributions on Ω . For example, {Uk} may have been derived via the
vanishing viscosity approach, that is Uk = Uμk , with μk ↓ 0 as k → ∞ , where Uμ is
the solution of the parabolic system

(17.3.3) ∂tU +∂xF(U) = μ∂ 2
x U.

When {Uk} lies in a bounded set of L∞(Ω ;Rn), following the discussion in Sec-
tion 16.1, one may extract a subsequence {Uj}, associated with a family of Young
probability measures {νx,t : (x, t) ∈Ω} such that h(Uj)⇀< ν ,h >, as j → ∞ , in L∞

weak∗, for any continuous h. In particular, on account of (17.3.2),

(17.3.4)

One may thus interpret νx,t as a new type of weak solution for (17.3.1):

17.3.1 Definition. A measure-valued solution for the system of conservation laws
(17.3.1), in an open subset Ω of R2, is a measurable family {νx,t : (x, t) ∈ Ω} of
probability measures that satisfies (17.3.4) in the sense of distributions on Ω .

Clearly, any traditional weak solution U ∈ L∞(Ω ;Rn) of (17.3.1) may be identi-
fied with the measure-valued solution νx,t = δU(x,t) . However, the class of measure-
valued solutions is definitely broader than the class of traditional solutions. For
instance, if U and V are any two traditional solutions of (17.3.1) in L∞(Ω ;Rn), then
for any fixed α ∈ (0,1),

(17.3.5) νx,t = αδU(x,t) + (1−α)δV (x,t)

defines a nontraditional, measure-valued solution.
At first glance, the notion of measure-valued solution may appear too broad to

be relevant. However, abandoning the premise that solutions should assign at each
point (x, t) a specific value to the state vector provides the means for describing
effectively a class of physical phenomena, such as phase transitions, where at the
macroscopic level a mixture of phases may occupy the same point in space-time.
We shall not develop these ideas here, but rather regard measure-valued solutions as
stepping stones towards constructing traditional solutions.

The notion of admissibility naturally extends from traditional to measure-valued
solutions. The measure-valued solution νx,t on Ω is said to satisfy the entropy ad-
missibility condition, relative to the entropy-entropy flux pair (η ,q) of (17.3.1), if

(17.3.6)

in the sense of distributions on Ω .
Returning to our earlier example, suppose νx,t is generated through a sequence

{Uμ j} of solutions to the parabolic system (17.3.3). If (η ,q) is any entropy-entropy
flux pair for (17.3.1), multiplying (17.3.3) by Dη(Uμ) and using (7.4.1) yields the
identity

∂t < νx,t ,U >+∂x < νx,t , F(U)>= 0 .

∂t < νx,t , η(U)>+∂x < νx,t , q(U)>≤ 0,
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(17.3.7) ∂tη(Uμ)+∂xq(Uμ) = μ∂ 2
x η(Uμ)−μ∂xU�

μ D2η(Uμ)∂xUμ .

In particular, when η is convex the last term on the right-hand side of (17.3.7) is
nonpositive. We thus conclude that any measure-valued solution νx,t of (17.3.1), con-
structed by the vanishing viscosity approach relative to (17.3.3), satisfies the entropy
admissibility condition (17.3.6), for any entropy-entropy flux pair (η ,q) with η con-
vex.

Lest it be thought that admissibility suffices to reduce measure-valued solutions
to traditional ones, it should be noted that when two traditional solutions U and V
satisfy the entropy admissibility condition for an entropy-entropy flux pair (η ,q),
then so does also the nontraditional measure-valued solution νx,t defined by (17.3.5).
On the other hand, admissibility may be an agent for uniqueness and stability in the
framework of measure-valued solutions as well. In that direction, it has been shown
(references in Section 17.9) that any measure-valued solution νx,t of a scalar conser-
vation law, on the upper half-plane, that satisfies the entropy admissibility condition
for all convex entropy-entropy flux pairs, and whose initial values are Dirac masses,
νx,0 = δu0(x) for some u0 ∈ L∞(−∞,∞), necessarily reduces to a traditional solution,
i.e., νx,t = δu(x,t) , where u is the unique admissible solution of the conservation law
with initial data u(x,0) = u0(x). In particular, this implies that for scalar conservation
laws any measure-valued solution constructed by the vanishing viscosity approach,
with traditional initial data, reduces to a traditional solution.

Returning to the system (17.3.1), a program will be outlined for verifying
that the measure-valued solution that is induced by the family of Young measures
{νx,t : (x, t) ∈Ω} associated with a sequence {Uj} of approximate solutions reduces
to a traditional solution. This program will then be implemented for special systems.
As already noted in Section 1.9, when (17.3.1) is hyperbolic, approximate solutions
may develop sustained rapid oscillations, which prevent strong convergence of the
sequence {Uj}. Thus, our enterprise is destined to fail, unless the approximate solu-
tions somehow embody a mechanism that quenches oscillations. From the standpoint
of the theory of compensated compactness, such a mechanism is manifested in the
condition

(17.3.8) ∂tη(Uj)+∂xq(Uj)⊂ compact set in W−1,2
loc (Ω),

for any entropy-entropy flux pair (η ,q) of (17.3.1).
To see the implications of (16.3.8), consider any two entropy-entropy flux pairs

(η1,q1) and (η2,q2). As j → ∞ , the sequences {η1(Uj)}, {η2(Uj)}, {q1(Uj)} and
{q2(Uj)} converge, respectively, to η̄1=<ν ,η1>, η̄2=<ν ,η2>, q̄1=<ν ,q1 > and
q̄2=<ν ,q2 > , where for brevity we set νx,t = ν . By (17.3.8), both div(q2(Uj) , η2(Uj))

and curl(η1(Uj),−q1(Uj)) lie in compact sets of W−1,2
loc (Ω). Hence, on account of

Theorem 17.2.1,

(17.3.9) η1(Uj)q2(Uj)−η2(Uj)q1(Uj)⇀ η̄1q̄2 − η̄2q̄1 , as j → ∞ ,

in L∞(Ω) weak∗, or equivalently

(17.3.10) < ν ,η1 >< ν ,q2 >−< ν ,η2 >< ν ,q1 >=< ν ,η1q2 −η2q1 > .
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The plan is to use (17.3.10), for strategically selected entropy-entropy flux pairs,
in order to demonstrate that the support of the Young measure ν is confined to a sin-
gle point. Clearly, such a program may have a fair chance for success only when there
is flexibility to construct entropy-entropy flux pairs with prescribed specifications.
For all practical purposes, this requirement limits the applicability of the method to
scalar conservation laws, systems of two conservation laws, and the special class of
systems of more than two conservation laws that are endowed with a rich family
of entropies (see Section 7.4). On the other hand, the method offers considerable
flexibility in regard to construction scheme, as it requires only that the approximate
solutions satisfy (17.3.8).

For illustration, let us verify (17.3.8) under the assumption that the system
(17.3.1) is endowed with a uniformly convex entropy, Ω is the upper half-plane, and
the sequence {Uj} of approximate solutions is generated by the vanishing viscosity
approach, Uj = Uμ j , where Uμ is the solution of (17.3.3) on the upper half-plane,
with initial data

(17.3.11) U(x,0) =U0μ(x), −∞ < x < ∞ ,

lying in a bounded set of L∞(−∞,∞)∩L2(−∞,∞).
Let η be a uniformly convex entropy, so that D2η(U) is positive definite. We can

assume 0 ≤ η(U) ≤ c|U |2, since otherwise we simply substitute η by the entropy
η∗(U) = η(U)− η(0)−Dη(0)U . Upon integrating (17.3.7) over the upper half-
plane, we obtain the estimate

(17.3.12) μ
∫ ∞

0

∫ ∞

−∞
|∂xUμ(x, t)|2dxdt ≤ a,

where a is independent of μ .
Consider now any, not necessarily convex, entropy-entropy flux pair (η ,q), and

fix some open bounded subset Ω of the upper half-plane. Let us examine (17.3.7).
The left-hand side is bounded in W−1,p(Ω), for any 1 ≤ p < ∞ . The right-hand side
is the sum of two terms: By virtue of (17.3.12), the first term tends to zero, as μ ↓ 0,
in W−1,2(Ω), and thus lies in a compact set of W−1,2(Ω). The second term lies in
a bounded set of M(Ω), again on account of (17.3.12). Therefore, (17.3.8) follows
from Lemma 17.2.2.

17.4 Scalar Conservation Laws

Here we shall see how the program outlined in the previous section may be realized
in the case of the scalar conversation law

(17.4.1) ∂tu+∂x f (u) = 0.

17.4.1 Theorem. Let Ω be an open subset of R2 and {uk(x, t)} a bounded sequence
in L∞(Ω) with
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(17.4.2) ∂tη(uk)+∂xq(uk)⊂ compact set in W−1,2
loc (Ω),

for any entropy-entropy flux pair of (17.4.1). Then there is a subsequence {u j} such
that

(17.4.3) u j ⇀ ū, f (u j)⇀ f (ū), as j → ∞ ,

in L∞ weak∗. Furthermore, if the set of u with f ′′(u) �= 0 is dense in R, then {u j}
converges almost everywhere to ū on Ω .

Proof. By applying Theorem 17.1.1, we extract the subsequence {u j} and the associ-
ated family of Young measures ν = νx,t so that h(u j)⇀< ν ,h > , for any continuous
function h. Thus, u j ⇀ ū =< ν ,u > and f (u j) ⇀< ν , f > . We thus have to show
that < ν , f >= f (ū), and that ν reduces to the Dirac mass when there is no interval
on which f ′(u) is constant.

We employ (17.3.10) for the particular entropy-entropy flux pairs (u, f (u)) and
( f (u),g(u)), where

(17.4.4) g(u) =
∫ u

0
[ f ′(v)]2dv,

to get

(17.4.5) < ν ,u >< ν ,g >−< ν , f >< ν , f >=< ν ,ug− f 2 > .

From Schwarz’s inequality,

(17.4.6) [ f (u)− f (ū)]2 ≤ (u− ū)[g(u)−g(ū)],

we deduce

(17.4.7)

Upon using (16.4.5), (16.4.7) reduces to

(17.4.8) [< ν , f >− f (ū)]2 ≤ 0,

whence < ν , f >= f (ū). In particular, the left-hand side of (17.4.7) will vanish.
Hence, (17.4.6) must hold as an equality for u in the support of ν . However,
Schwarz’s inequality (17.4.6) may hold as equality only if f ′ is constant on the inter-
val with endpoints ū and u. When no such interval exists, the support of ν collapses
to a single point and ν reduces to the Dirac mass δū . The proof is complete.

As indicated in the previous section, one may generate a sequence {uk} that
satisfies the assumptions of Theorem 17.4.1 by the method of vanishing viscosity,
setting uk = uμk , μk → 0 as k → ∞ , where uμ is the solution of

(17.4.9) ∂tu+∂x f (u) = μ∂ 2
x u,

< ν , [ f (u)− f (ū)]2 − (u− ū)[g(u)−g(ū)]>≤ 0.
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on the upper half-plane, with initial data

(17.4.10) u(x,0) = u0μ(x), −∞ < x < ∞ ,

that are uniformly bounded in L∞(−∞,∞)∩ L2(−∞,∞). Indeed, the resulting {uk}
will be bounded in L∞, since ‖uμ‖L∞ ≤ ‖u0μ‖L∞ by the maximum principle. More-
over, (17.4.2) will hold for all entropy-entropy flux pairs (η ,q), by the general argu-
ment of Section 17.3, which applies here, in particular, because (17.4.1) possesses
the uniformly convex entropy u2. Finally, μ∂ 2

x uμ → 0, as μ ↓ 0, in the sense of dis-
tributions. We thus arrive at the following

17.4.2 Theorem. Suppose u0μ ⇀ u0 , as μ ↓ 0, in L∞(−∞,∞) weak∗. Then there is
a sequence {μ j}, μ j → 0 as j → ∞ , such that the sequence {uμ j} of solutions of
(17.4.9), (17.4.10) converges in L∞ weak∗ to some function ū, which is a solution of
(16.4.1), on the upper half-plane, with initial value ū(x,0) = u0(x) on (−∞,∞). Fur-
thermore, if the set of u with f ′′(u) �= 0 is dense in R, then {uμ j}, or a subsequence
thereof, converges almost everywhere to ū on the upper half-plane.

17.5 A Relaxation Scheme for Scalar Conservation Laws

The aim here is to pass to the limit, as μ ↓ 0, in the system (5.2.18), with the help of
the theory of compensated compactness. Such an exercise may serve a dual purpose:
for the case one is interested in (5.2.18) itself, as a model for some physical process, it
will demonstrate relaxation to local equilibrium governed by the scalar conservation
law (17.4.1); as a byproduct, it will establish that solutions to the Cauchy problem
for (17.4.1) exist, and will suggest a method for computing them. For the latter pur-
pose, it shall be advantageous to make the non-relaxed system (5.2.18) as simple as
possible, namely semilinear,

(17.5.1)

⎧⎨⎩
∂tu(x, t)+∂xv(x, t) = 0

∂tv(x, t)+a2∂xu(x, t)+ 1
μ [v(x, t)− f (u(x, t))] = 0,

where a is some positive constant. In order to simplify the analysis, we shall deal
here with this semilinear system. At this point it may be helpful for the reader to
review the introduction to relaxation theory presented in Section 5.2.

We assume f ′ is bounded and select a sufficiently large so that the strict subchar-
acteristic condition (recall (5.2.29))

(17.5.2) −a+δ < f ′(u)< a−δ , u ∈ (−∞,∞),

holds, for some δ > 0. We normalize v by postulating f (0) = 0.
Entropy-entropy flux pairs (η(u,v),q(u,v)) for (17.5.1) satisfy the linear hyper-

bolic system
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(17.5.3)

⎧⎨⎩qu(u,v)−a2ηv(u,v) = 0

qv(u,v)−ηu(u,v) = 0,

with general solution

(17.5.4)

⎧⎨⎩η(u,v) = r(au+v)+ s(au−v)

q(u,v) = ar(au+v)−as(au−v).

The subcharacteristic condition (17.5.2) implies that the curve v = f (u) is
nowhere characteristic for the system (17.5.3), and hence, given any entropy-entropy
flux pair (η̂(u), q̂(u)) for the scalar conservation law (17.4.1), one may construct an
entropy-entropy flux pair (η(u,v),q(u,v)) for (17.5.1) with Cauchy data

(17.5.5) η(u, f (u)) = η̂(u), q(u, f (u)) = q̂(u), u ∈ (−∞,∞).

Differentiating (17.5.5) with respect to u and using that q̂′(u) = η̂ ′(u) f ′(u), together
with (17.5.3) and (17.5.2), we deduce that ηv(u, f (u)) = 0. This, in turn, combined
with (17.5.5) and (17.5.4), yields

(17.5.6) r′(au+ f (u)) = s′(au− f (u)) =
1
2a
η̂ ′(u),

whence one determines r and s on R, and thereby η and q on R2 . In particular, η̂ ′′ ≥ 0
on R implies r′′ ≥ 0, s′′ ≥ 0 on R, and hence ηvv ≥ 0 on R2 . Since ηv(u, f (u)) = 0,
we then conclude that the dissipativeness condition (5.2.4) holds:

(17.5.7) ηv(u,v)[v− f (u)]≥ 0, (u,v) ∈ R2 .

Under the stronger hypothesis η̂ ′′(u)≥ β > 0, u ∈ R, (17.5.7) becomes stricter:

(17.5.8) ηv(u,v)[v− f (u)]≥ γ|v− f (u)|2 , (u,v) ∈ R2 ,

with γ > 0.
We have now laid the groundwork for establishing the existence of solutions to

the Cauchy problem for (17.5.1) and for passing to the limit, as μ ↓ 0.

17.5.1 Theorem. Under the subcharacteristic condition (17.5.2), the Cauchy prob-
lem for the system (17.5.1), with initial data

(17.5.9) (u(x,0),v(x,0)) = (u0μ(x),v0μ(x)), −∞ < x < ∞ ,

in L∞(−∞,∞)∩ L2(−∞,∞), possesses a bounded (weak) solution (uμ ,vμ) on the
upper half-plane. Furthermore,

(17.5.10)
1
μ

∫ ∞

0

∫ ∞

−∞
[vμ − f (uμ)]2dxdt ≤ b

∫ ∞

−∞
[u2

0μ(x)+v2
0μ(x)]dx,
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where b is independent of μ .

Proof. Since (17.5.1) is semilinear hyperbolic, a local solution (uμ ,vμ) exists and
may be continued for as long as it remains bounded in L∞. Furthermore, if (η ,q) is
any entropy-entropy flux pair,

(17.5.11) ∂tη(uμ ,vμ)+∂xq(uμ ,vμ)+
1
μ
ηv(uμ ,vμ)[vμ − f (uμ)] = 0.

We construct the entropy-entropy flux pair (ηm,qm), induced by (17.5.5), with
η̂(u) = |u|m , m = 2,3, . . ., and normalized by ηm(0,0) = 0, qm(0,0) = 0. Notice
that, necessarily, the first derivatives of ηm also vanish at the origin. We integrate
(17.5.11) over (−∞,∞)× [0, t] and use (17.5.7) to get

(17.5.12)
∫ ∞

−∞
ηm(uμ(x, t),vμ(x, t))dx ≤

∫ ∞

−∞
ηm(u0μ(x),v0μ(x))dx.

By (17.5.6) and (17.5.2), it follows easily that (ĉ|w|)m ≤ rm(w) ≤ (Ĉ|w|)m and
(ĉ|w|)m ≤ sm(w)≤ (Ĉ|w|)m, whence

(17.5.13) cm(|u|m + |v|m)≤ ηm(u,v)≤Cm(|u|m + |v|m), (u,v) ∈ R2.

Therefore, raising (17.5.12) to the power 1
m and letting m → ∞ we conclude

that ‖uμ(· , t)‖L∞(−∞,∞) and ‖vμ(· , t)‖L∞(−∞,∞) are bounded in terms of
‖u0μ(·)‖L∞(−∞,∞) and ‖v0μ(·)‖L∞(−∞,∞), uniformly in t and μ . Thus the solution
(uμ ,vμ) exists on the entire upper half-plane.

Next we write (17.5.11) for the entropy-entropy flux pair (η2,q2), and integrate it
over (−∞,∞)× [0,∞). For this case, the stronger dissipativeness inequality (17.5.8)
applies and thus we deduce (17.5.10). The proof is complete.

17.5.2 Theorem. Consider the family {(uμ ,vμ)} of solutions of the Cauchy problem
(17.5.1), (17.5.9), where {(u0μ ,v0μ)} is bounded in L∞(−∞,∞)∩ L2(−∞,∞) and
u0μ → u0 , as μ ↓ 0, in L∞ weak∗ . Then there is a sequence {μ j}, with μ j ↓ 0 as
j → ∞ , such that {(uμ j ,vμ j)} converges, in L∞ weak∗ , to (ū, f (ū)), where ū is a
solution of (17.4.1), on the upper half-plane, with initial value ū(x,0) = u0(x) on
(−∞,∞). Furthermore, if the set of u with f ′′(u) �= 0 is dense in R, then {(uμ j ,vμ j)}
converges to (ū, f (ū)), almost everywhere on the upper half-plane.

Proof. By Theorem 17.5.1, {(uμ ,vμ)} is contained in a bounded set of the space
L∞((−∞,∞)× [0,∞)).

We fix any entropy-entropy flux pair (η̂ , q̂) for (17.4.1), consider the entropy-
entropy flux pair (η ,q) for (17.5.1) generated by solving the Cauchy problem
(17.5.3), (17.5.5), and use (17.5.11) to write

(17.5.14) ∂t η̂(uμ)+∂xq̂(uμ)

= ∂t [η(uμ , f (uμ))−η(uμ ,vμ)]+∂x[q(uμ , f (uμ))−q(uμ ,vμ)]

− 1
μ
ηv(uμ ,vμ)[vμ − f (uμ)].
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By virtue of (17.5.10), both η(uμ , f (uμ))−η(uμ ,vμ) and q(uμ , f (uμ))−q(uμ ,vμ)
tend to zero in L2 , as μ ↓ 0. Therefore, the first two terms on the right-hand side of
(17.5.14) tend to zero in W−1,2, as μ ↓ 0. On the other hand, the third term lies in a
bounded set of L1 , again on account of (17.5.10), recalling that ηv(u, f (u)) = 0.

We now fix any sequence {μk}, with μk ↓ 0 as k → ∞ , and set (uk,vk) =
(uμk ,vμk). In virtue of the above, Lemma 17.2.2 implies that (17.4.2) holds for any
entropy-entropy flux pair (η̂ , q̂) of (17.4.1), where Ω is the upper half-plane. Theo-
rem 17.4.1 then yields (17.4.3), for some subsequence {u j}. In turn, (17.4.3) together
with (17.5.10) imply v j → f (ū), in L∞ weak∗ . In particular, ū is a solution of (17.4.1),
with initial values u0 , because of (17.5.1)1 .

When the set of u with f ′′(u) �= 0 is dense in R, {u j} converges to ū almost every-
where, on account of Theorem 17.4.1. It then follows from (17.5.10) that, likewise,
{v j} converges to f (ū) almost everywhere. The proof is complete.

By combining (17.5.11), (17.5.7), (17.5.10) and (17.5.5), we infer that, at least in
the case where {u j} converges almost everywhere, the limit ū will satisfy the entropy
admissibility condition, for any entropy-entropy flux pair (η̂ , q̂), with η̂ convex.

Notice that Theorem 17.5.2 places no restriction on the initial values v0μ of vμ ,
save for the requirement that they be bounded. In particular, v0μ may lie far apart
from its local equilibrium value f (u0μ). In that situation vk must develop a boundary
layer across t = 0.

The reader should be warned that compensated compactness is not the most effi-
cient method for handling the simple system (17.5.1). Indeed, it has been shown (ref-
erences in Section 17.9) that if (u,v) and (ū, v̄) are any pair of solutions of (17.5.1),
with corresponding initial values (u0,v0) and (ū0, v̄0), then

(17.5.15)
�∫

−�

{|u(x, t)− ū(x, t)|+ |v(x, t)− v̄(x, t)|}dx

≤ (1+a)2

a

�+at∫
−�−at

{|u0(x)− ū0(x)|+ |v0(x)− v̄0(x)|}dx

holds, for any � > 0 and t > 0. Armed with this estimate, one may easily establish
compactness in L1 as well as in BV , and then pass to the μ ↓ 0 relaxation limit.
Nevertheless, at the time of this writing, compensated compactness is the only ap-
proach that works for the nonlinear system (5.2.18), because no analog to the esti-
mate (17.5.15) is currently known for that case.

17.6 Genuinely Nonlinear Systems of Two Conservation Laws

The program outlined in Section 17.3 will here be implemented for genuinely non-
linear systems (17.3.1) of two conservation laws. In particular, our system will be
endowed with a coordinate system of Riemann invariants (z,w), normalized as in
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(12.1.2), and the condition of genuine nonlinearity will be expressed by (12.1.3),
namely λz < 0 and μw > 0. Moreover, the system will be equipped with a rich family
of entropy-entropy flux pairs, including the Lax pairs constructed in Section 12.2,
which will play a pivotal role in the analysis.

We show that the entropy conditions, in conjunction with genuine nonlinearity,
quench rapid oscillations:

17.6.1 Theorem. Let Ω be an open subset of R2 and {Uk(x, t)} a bounded sequence
in L∞(Ω ;R2) with

(17.6.1) ∂tη(Uk)+∂xq(Uk)⊂ compact set in W−1,2
loc (Ω),

for any entropy-entropy flux pair (η ,q) of (16.3.1). Then there is a subsequence {Uj}
which converges almost everywhere on Ω .

Proof. By applying Theorem 17.1.1, we extract a subsequence {Uj} and identify the
associated family of Young measures νx,t . We have to show that, for almost all (x, t),
the support of νx,t is confined to a single point and so this measure reduces to the
Dirac mass. It will be expedient to monitor the Young measure on the plane of the
Riemann invariants (z,w), rather than in the original state space.

We thus let ν denote the Young measure at any fixed point (x, t) ∈ Ω , relative
to the (z,w) variables, and consider the smallest rectangle R = [z−,z+]× [w−,w+]
that contains the support of ν . We need to show z− = z+ and w− = w+. Arguing by
contradiction, assume z− < z+.

We consider the Lax entropy-entropy flux pairs (12.2.5), which will be here la-
beled (ηk,qk), so as to display explicitly the dependence on the parameter k. We shall
use the ηk as weights for redistributing the mass of ν , reallocating it near the bound-
ary of R. To that end, with each large positive integer k we associate probability
measures ν±k on R, defined through their action on continuous functions h(z,w):

(17.6.2) < ν±k ,h >=
< ν ,hη±k >

< ν ,η±k >
.

Because of the factor ekz in the definition of ηk , the measure ν−k (or ν+k ) is con-
centrated near the left (or right) side of R. As k → ∞ , the sequences {ν−k } and
{ν+k }, or subsequences thereof, will converge, weakly∗ in the space of measures, to
probability measures ν− and ν+, which are respectively supported by the left edge
[z−]× [w−,w+] and the right edge [z+]× [w−,w+] of R.

We apply (17.3.10) for any fixed entropy-entropy flux pair (η ,q) and the Lax
pairs (η±k,q±k) to get

(17.6.3) < ν ,q >−< ν ,q±k >

< ν ,η±k >
< ν ,η >=

< ν ,η±kq−ηq±k >

< ν ,η±k >
.

From (12.2.5) and (12.2.7) we infer

(17.6.4) q±k = [λ +O(
1
k
)]η±k .
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Therefore, letting k → ∞ in (17.6.3) yields

(17.6.5) < ν ,q >−< ν±,λ >< ν ,η >=< ν±,q−λη > .

Next, we apply (16.3.10) for the Lax pairs (η−k,q−k) and (ηk,qk), thus obtaining

(17.6.6)
< ν ,qk >

< ν ,ηk >
− < ν ,q−k >

< ν ,η−k >
=

< ν ,η−kqk −ηkq−k >

< ν ,η−k >< ν ,ηk >
.

By (17.6.4), the left-hand side of (17.6.6) tends to < ν+,λ >−< ν−,λ > , as k→∞ .
On the other hand, the right-hand side tends to zero, because the numerator is O(k−1)
while, for k large,

(17.6.7) < ν ,η±k > ≥ cexp[± k
2 (z

−+ z+)].

Hence,

(17.6.8) < ν−,λ >=< ν+,λ > .

Combining (17.6.5) with (17.6.8),

(17.6.9) < ν−,q−λη >=< ν+,q−λη > .

We apply (17.6.9) for (η ,q) = (ηk,qk). On account of (12.2.12), for k large,

(17.6.10)

⎧⎪⎪⎨⎪⎪⎩
< ν−,qk −ληk > ≤ C

1
k

exp(kz−)

< ν+,qk −ληk > ≥ c
1
k

exp(kz+),

which yields the desired contradiction to z− < z+. Similarly one shows w− = w+, so
that R collapses to a single point. The proof is complete.

The stumbling block in employing the above theorem for constructing solutions
to our system (17.3.1) is that, at the time of this writing, it has not been established
that sequences of approximate solutions produced by any of the available schemes
are bounded in L∞. Thus, boundedness has to be imposed as an extraneous (and an-
noying) assumption. On the other hand, once boundedness is taken for granted, it is
not difficult to verify the other requirement of Theorem 17.6.1, namely (17.6.1). In
particular, when the sequence of Uk is generated via the vanishing viscosity approach,
as solutions of the parabolic system (17.3.3), condition (17.6.1) follows directly from
the discussion in Section 17.3, because genuinely nonlinear systems of two conser-
vation laws are always endowed with uniformly convex entropies. For example, as
shown in Section 12.2, under the normalization condition (12.1.4), the Lax entropy
ηk is convex, for k sufficiently large. We thus have

17.6.2 Theorem. For μ > 0, let Uμ denote the solution on the upper half-plane of the
genuinely nonlinear parabolic system of two conservation laws (17.3.3) with initial
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data (17.3.11), where U0μ ⇀U0 in L∞(−∞,∞) weak∗, as μ ↓ 0. Suppose the family
{Uμ} lies in a bounded subset of L∞. Then, there is a sequence {μ j}, μ j → 0 as
j → ∞ , such that {Uμ j} converges, almost everywhere on the upper half-plane, to a
solution Ū of (17.3.1) with initial value Ū(x,0) =U0(x) , −∞ < x < ∞ .

One obtains entirely analogous results for sequences of approximate solutions gen-
erated by a class of one-step difference schemes with a three-point domain of depen-
dence:

(17.6.11)

U(x, t +Δ t)−U(x, t) =
α
2

G(U(x, t),U(x+Δx, t))− α
2

G(U(x−Δx, t),U(x, t)),

where α = Δ t/Δx is the ratio of mesh-lengths and G, possibly depending on α , is a
function that satisfies the consistency condition G(U,U) = F(U). The class includes
the Lax-Friedrichs scheme, with

(17.6.12) G(V,W ) =
1
2
[F(V )+F(W )]+

1
α
(V −W ),

and also the Godunov scheme, where G(V,W ) denotes the state in the wake of the
solution to the Riemann problem for (17.3.1), with left state V and right state W .
The condition of uniform boundedness on L∞ of the approximate solutions has to be
extraneously imposed in these cases as well.

17.7 The System of Isentropic Elasticity

The assertion of Theorem 17.6.1 is obviously false when the system (17.3.1) is linear.
On the other hand, genuine nonlinearity is far too strong a restriction: it may be
allowed to fail along a finite collection of curves in state space, so long as these
curves intersect transversely the level curves of the Riemann invariants. This will
be demonstrated here in the context of the system (7.1.11) of conservation laws of
one-dimensional, isentropic thermoelasticity,

(17.7.1)

⎧⎨⎩ ∂tu−∂xv = 0

∂tv−∂xσ(u) = 0,

under the assumption σ ′′(u) �= 0 for u �= 0, but σ ′′(0) = 0, so that genuine nonlin-
earity fails along the line u = 0 in state space. Nevertheless, the analog of Theorem
17.6.1 still holds:

17.7.1 Theorem. Let Ω be an open subset of R2 and {(uk,vk)} a bounded sequence
in L∞(Ω ;R2) with

(17.7.2) ∂tη(uk,vk)+∂xq(uk,vk)⊂ compact set in W−1,2
loc (Ω),
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for any entropy-entropy flux pair (η ,q) of (17.7.1). Then there is a subsequence
{(u j,v j)} which converges almost everywhere on Ω .

Proof. As in the proof of Theorem 17.6.1, we extract a subsequence {(u j,v j)} and
identify the associated family of Young measures νx,t . We fix (x, t) inΩ and monitor
the Young measure ν at (x, t) relative to the Riemann invariants

(17.7.3) z =
∫ u

0
[σ ′(ω)]

1
2 dω+v, w =−

∫ u

0
[σ ′(ω)]

1
2 dω+v.

We need to show that the smallest rectangle R = [z−,z+]× [w−,w+] that contains
the support of ν collapses to a single point.

By retracing the steps in the proof of Theorem 17.6.1 that do not depend on
the genuine nonlinearity of the system, we rederive (17.6.9). The remainder of the
argument will depend on the relative positions of R and the straight line z = w along
which genuine nonlinearity fails.

Suppose first the line z = w does not intersect the right edge of R, that is,
z+ �∈ [w−,w+]. In that case, (17.6.10) are still in force, yielding z− = z+. Hence
R collapses to [z+]× [w−,w+], which, according to our assumption, lies entirely in
the genuinely nonlinear region, and so by the familiar argument w− = w+, verifying
the assertion of the theorem. Similar arguments apply when the line z = w misses
any one of the other three edges of R.

It thus remains to examine the case where the line z = w intersects all four edges
of R, i.e., z− = w− and z+ = w+. Even in that situation, by virtue of (12.2.12),
qk −ληk does not change sign along [z−]× [w−+ ε,w+] and [z+]× [w−,w+− ε], so
the familiar argument still goes through, showing z− = z+, unless the measures ν−
and ν+ are respectively concentrated in the vertices (z−,w−) and (z+,w+). When
that happens, (17.6.9) reduces to

(17.7.4) q(z−,w−)−λ (z−,w−)η(z−,w−) = q(z+,w+)−λ (z+,w+)η(z+,w+).

In particular, let us apply (17.7.4) for the trivial entropy-entropy flux pair (u,−v). At
the “southwestern” vertex, u− = 0 and v− = z− = w−, while at the “northeastern”
vertex, u+ = 0 and v+ = z+ = w+. Hence, (17.7.4) yields z− = z+ = w− = w+. The
proof is complete.

Smoothness of σ(u) cannot be generally relaxed as examples indicate that the
assertion of the above proposition may break down when σ ′′(u) is discontinuous at
u = 0.

In particular, Theorem 17.7.1 applies when the elastic medium responds like a
“hard spring,” that is, σ is concave at u < 0 and convex at u > 0:

(17.7.5) uσ ′′(u)> 0, u �= 0.

For that case, it is possible to establish L∞ bounds on the approximate solutions
constructed by the vanishing viscosity method, namely, as solutions to a Cauchy
problem
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(17.7.6)

⎧⎨⎩ ∂tu−∂xv = μ∂ 2
x u

∂tv−∂xσ(u) = μ∂ 2
x v,

(17.7.7) (u(x,0),v(x,0)) = (u0μ(x),v0μ(x)), −∞ < x < ∞ .

17.7.2 Theorem. Under the assumption (17.7.5), for any M > 0, the set UM , defined
by

(17.7.8) UM = {(u,v) : −M ≤ z(u,v)≤ M, −M ≤ w(u,v)≤ M},
where z and w are the Riemann invariants (17.7.3) of (17.7.1), is a (positively) in-
variant region for solutions of (17.7.6), (17.7.7).

Proof. The standard proof is based on the maximum principle. An alternative proof
will be presented here, which relies on entropies and thus is closer to the spirit of
the hyperbolic theory. It has the advantage of requiring less regularity for solutions
of (17.7.6). Moreover, it readily extends to any other approximation scheme, which,
like (17.7.6), is dissipative under convex entropies of (17.7.1).

For the system (17.7.1), the equations (7.4.1) that determine entropy-entropy flux
pairs (η ,q) reduce to

(17.7.9)

⎧⎨⎩qu(u,v) =−σ ′(u)ηv(u,v)

qv(u,v) =−ηu(u,v).

Notice that (17.7.9) admits the family of solutions

(17.7.10) ηm(u,v) = Ym(u)cosh(mv)−1,

(17.7.11) qm(u,v) =− 1
m

Y ′
m(u)sinh(mv),

where m = 1,2, · · · and Ym is the solution of the ordinary differential equation

(17.7.12) Y ′′
m(u) = m2σ ′(u)Ym(u), −∞ < u < ∞ ,

with initial conditions

(17.7.13) Ym(0) = 1, Y ′
m(0) = 0.

A simple calculation gives

(17.7.14) ηmuuηmvv −η2
muv ≥ m2[m2σ ′Y 2

m −Y ′2
m ] .

Moreover, by virtue of (17.7.12),

(17.7.15) [m2σ ′Y 2
m −Y ′2

m ]′ = m2σ ′′Y 2
m .
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Consequently, (17.7.5) implies that the right-hand side of (17.7.14) is positive
and hence ηm(u,v) is a convex function on R2. Furthermore, ηm(0,0) = 0 and
ηmu(0,0) = ηmv(0,0) = 0, so that ηm(u,v) is positive definite.

Next we examine the asymptotics of ηm(u,v) as m → ∞ . The change of variables
(u,Ym) �→ (ξ ,Xm):

(17.7.16) ξ =
∫ u

0
[σ ′(ω)]

1
2 dω,

(17.7.17) Xm = (σ ′)
1
4 Ym ,

transforms (17.7.12) into

(17.7.18) Ẍm = m2Xm +[ 1
4 (σ

′)−2σ ′′′ − 5
16 (σ

′)−3(σ ′′)2]Xm ,

with asymptotics, derived by the variation of parameters formula,

(17.7.19) Xm(ξ ) =
[
σ ′(0)

1
4 +O

(
1
m

)]
cosh(mξ ),

as m → ∞ , and for ξ confined in any fixed bounded interval.
Upon combining (17.7.10) with (17.7.17), (17.7.19), (17.7.16) and (17.7.3), we

deduce

(17.7.20) lim
m→∞

ηm(u,v)
1
m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp[z(u,v)], if u > 0 , v > 0,

exp[w(u,v)], if u < 0 , v > 0,

exp[−w(u,v)], if u > 0 , v < 0,

exp[−z(u,v)], if u < 0 , v < 0.

We now consider the solution (uμ ,vμ) of (17.7.6), (17.7.7), where (u0μ ,v0μ)
lie in L2(−∞,∞) and take values in the region UM , defined by (17.7.8). We write
(17.3.7), with Uμ = (uμ ,vμ), η = ηm , q = qm , and integrate it over the strip
(−∞,∞)× [0, t], to get

(17.7.21)
∫ ∞

−∞
ηm(uμ(x, t),vμ(x, t))dx ≤

∫ ∞

−∞
ηm(u0μ(x),v0μ(x))dx.

Raising (17.7.21) to the power 1/m, letting m → ∞ and using (17.7.20), we conclude
that (uμ(·, t),vμ(·, t)) takes values in the region UM . The proof is complete.

The above proposition, in conjunction with Theorem 17.7.1, yields an existence
theorem for the system (17.7.1), which is free from extraneous assumptions:

17.7.3 Theorem. Let (uμ ,vμ) be the solution of the initial value problem (17.7.6),
(17.7.7), on the upper half-plane, where (u0μ ,v0μ)⇀ (u0,v0) in L∞(−∞,∞) weak∗.
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Under the condition (17.7.5), there is a sequence {μ j}, μ j → 0 as j → ∞ , such that
{(uμ j ,vμ j)} converges almost everywhere on the upper half-plane to a solution (ū, v̄)
of (17.7.1) with initial values (ū(x,0), v̄(x,0)) = (u0(x),v0(x)), for −∞ < x < ∞ .

The assumption (17.7.5) and the use of the special, artifical viscosity (17.7.6) are
essential in the proof of Theorem 17.7.3, because they appear to be indispensable
for establishing uniform L∞ bounds on approximate solutions. At the same time, it is
interesting to know whether one may construct solutions to (17.7.1) by passing to the
zero viscosity limit in the system (8.6.3) of viscoelasticity, or at least in the model
system

(17.7.22)

⎧⎨⎩
∂tu−∂xv = 0

∂tv−∂xσ(u) = μ∂ 2
x v,

which is close to it.
Even though we do not have uniform L∞ estimates for solutions of (17.7.22), as

this system is not dissipative with respect to all convex entropies of (17.7.1), we still
have a number of estimates of Lp type, the most prominent among them being the
“energy inequality” induced by the physical entropy-entropy flux pair (7.4.10). It is
thus natural to inquire whether the method of compensated compactness is applicable
in conjunction with such estimates. Of course, this would force us to abandon L∞

and consider Young measures in the framework of Lp, a possibility already raised
in Section 17.1. It turns out that this approach is effective for the problem at hand,
albeit at the expense of elaborate analysis, so only the conclusion shall be recorded
here. The proof is found in the references cited in Section 17.9.

17.7.4 Theorem. Consider the system (17.7.22), where (a) σ ′(u) ≥ σ0 > 0, for all
−∞ < u < ∞ ; (b) σ ′′ may vanish at most at one point on (−∞,∞); (c) σ ′(u) grows
like |u|α , as |u| → ∞ , for some α ≥ 0; and (d) σ ′′(u) and σ ′′′(u) grow no faster than
|u|α−1, as |u| → ∞ . Let (uμ ,vμ) be the solution of the Cauchy problem (17.7.22),
(17.7.7), where {(u0μ ,v0μ)} are functions in W 1,2(−∞,∞), which have uniformly
bounded total energy,

(17.7.23)
∫ ∞

−∞
[ 1

2 v2
0μ(x)+ e(u0μ)]dx ≤ a,

have relatively tame oscillations,

(17.7.24) μ
∫ ∞

−∞
[∂v0μ(x)]2dx → 0, as μ → 0,

and converge, u0μ → u0 , v0μ → v0 , as μ → 0, in the sense of distributions. Then
there is a sequence {μ j}, μ j → 0 as j → ∞ , such that {(uμ j ,vμ j)} converges in
Lp

loc , for any 1 < p < 2, to a solution (u,v) of (17.7.1) with initial values (u0,v0) on
(−∞,∞).
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17.8 The System of Isentropic Gas Dynamics

The system (7.1.13) of isentropic gas dynamics, for an ideal gas, in Eulerian co-
ordinates, the first hyperbolic system of conservation laws ever to be derived, has
served over the past two centuries as proving ground for testing the theory. It is thus
fitting to conclude this chapter with the application of the method of compensated
compactness to that system.

It is instructive to monitor the system simultaneously in its original form (7.1.13),
with state variables density ρ and velocity v, as well as in its canonical form

(17.8.1)

⎧⎪⎪⎨⎪⎪⎩
∂tρ+∂xm = 0

∂tm+∂x

[
m2

ρ
+κργ

]
= 0,

with state variables density ρ and momentum m= ρv. The physical range for density
is 0 ≤ ρ < ∞ , while v and m may take any values in (−∞,∞) .

For convenience, we scale the state variables so that κ = (γ − 1)2/4γ , and use
the notation θ = 1

2 (γ − 1), in which case the characteristic speeds (7.2.10) and the
Riemann invariants (7.3.3) assume the form

(17.8.2) λ =−θρθ +v =−θρθ + m
ρ
, μ = θρθ +v = θρθ +

m
ρ
,

(17.8.3) z =−ρθ +v =−ρθ + m
ρ
, w = ρθ +v = ρθ +

m
ρ
.

It is not difficult to construct sequences of approximate solutions taking values
in compact sets of the state space [0,∞)× (−∞,∞). For example, one may follow the
vanishing viscosity approach relative to the system

(17.8.4)

⎧⎪⎪⎨⎪⎪⎩
∂tρ+∂xm = μ∂ 2

x ρ

∂tm+∂x

[
m2

ρ
+κργ

]
= μ∂ 2

x m,

which admits the family of (positively) invariant regions

(17.8.5) UM = {(ρ,m) : ρ ≥ 0, −M ≤ z(ρ,m)≤ w(ρ,m)≤ M}.
Furthermore, solutions (ρμ ,mμ) of (17.8.4) on the upper half-plane, with initial data
that are bounded in L∞(−∞,∞)∩L2(−∞,∞), satisfy

(17.8.6) ∂tη(ρμ ,mμ)+∂xq(ρμ ,mμ)⊂ compact set in W−1,2
loc ,

for any entropy-entropy flux pair (η ,q) of (17.8.1). Approximate solutions with anal-
ogous properties are also constructed by finite difference schemes, such as the Lax-
Friedrichs scheme and the Godunov scheme. They all lead to the following existence
theorem:
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17.8.1 Theorem. For any γ > 1, there exists a bounded solution (ρ,v) of the system
(7.1.13) on the upper half-plane, with assigned initial value

(17.8.7) (ρ(x,0),v(x,0)) = (ρ0(x),v0(x)), −∞ < x < ∞ ,

where (ρ0,v0) are in L∞(−∞,∞) and ρ0(x)≥ 0, for −∞ < x < ∞ . Furthermore, the
solution satisfies the entropy admissibility condition

(17.8.8) ∂tη(ρ,m)+∂xq(ρ,m)≤ 0,

for any entropy-entropy flux pair (η ,q) of (17.8.1), with η(ρ,m) convex.

The proof employs (17.3.10) to establish that the support of the Young measure,
associated with a sequence of approximate solutions, either reduces to a single point
in state space or is confined to the axis ρ = 0 (vacuum state).

As function of (ρ,v), any entropy η of (7.1.13) satisfies the integrability condi-
tion

(17.8.9) ηρρ = θ 2ργ−3ηvv .

The above equation is singular along the axis ρ = 0, and the nature of the singularity
changes as one crosses the threshold γ = 3. Accordingly, different arguments have to
be used for treating the cases γ < 3 and γ > 3.

Of relevance here are the so-called weak entropy-entropy flux pairs, which vanish
at ρ = 0. They admit the representation

(17.8.10)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
η(ρ,v) =

∫ ∞

−∞
χ(ρ,ω−v)g(ω)dω

q(ρ,v) =
∫ ∞

−∞
χ(ρ,ω−v)(θω+(1−θ)v)g(ω)dω,

where

(17.8.11) χ(ρ,v) =

⎧⎨⎩ (ρ2θ −v2)s , if ρ2θ > v2

0, if ρ2θ ≤ v2,

with s = 1
2

3−γ
γ−1 . Thus χ is the fundamental solution of (17.8.9) under initial condi-

tions η(0,v) = 0, ηρ(0,v) = δ0(v).
As already noted in Section 2.5, the classical kinetic theory predicts the value

γ = 1+ 2
n for the adiabatic exponent of a gas with n degrees of freedom. When the

number of degrees of freedom is odd, n = 2�+ 1, the exponent s in (17.8.11) is
the integer �. In this special situation the analysis of weak entropies – and thereby
the reduction of the Young measure – is substantially simplified. However, even in
that simpler case the proof is quite technical and shall be relegated to the references
cited in Section 17.9. Only the degenerate case γ = 3 will be presented here.
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For γ = 3, i.e., θ = 1, (17.8.2) and (17.8.3) yield λ = z and μ = w, in which
case the two characteristic families totally decouple. In particular, (12.2.1) reduce to
qz = zηz , qw =wηw , so that there are entropy-entropy flux pairs (η ,q) which depend
solely on z, for example (2z,z2) and (3z2,2z3).

Suppose now a sequence {(ρμk ,mμk)} of solutions of (17.8.4), with μk → 0 as
k → ∞ , induces a weakly convergent subsequence {(z j,w j)} of Riemann invariants
with associated family νx,t of Young measures. We fix (x, t), set νx,t = ν and apply
(17.3.10) for the two entropy-entropy flux pairs (2z,z2) and (3z2,2z3) to get

(17.8.12) 4 < ν ,z >< ν ,z3 >−3 < ν ,z2 >< ν ,z2 >=< ν ,z4 > .

Next we consider the inequality

(17.8.13) z4 −4z3z̄+6z2z̄2 −4zz̄3 + z̄4 = (z− z̄)4 ≥ 0,

where z̄ =< ν ,z > , and apply the measure ν to it, thus obtaining

(17.8.14) < ν ,z4 >−4 < ν ,z3 >< ν ,z >+6 < ν ,z2 >< ν ,z >2 −3 < ν ,z >4≥ 0.

Combining (17.8.14) with (17.8.12) yields

(17.8.15) −3[< ν ,z2 >−< ν ,z >2]2 ≥ 0,

whence < ν ,z2 >=< ν ,z >2. Therefore, {z j} converges strongly to z̄ =< ν ,z > .
Similarly one shows that {w j} converges strongly to w̄ =< ν ,w > . In particular,

(z̄, w̄) induces a solution (ρ̄, v̄) of (7.1.13) by ρ̄ = 1
2 (w̄− z̄) and v̄ = 1

2 (w̄+ z̄).

From the standpoint of continuum physics, it is more natural to employ phys-
ical, rather than artificial, vanishing viscosity and construct approximate solutions
(ρμ ,mμ) to (17.8.1) through the system

(17.8.16)

⎧⎪⎪⎨⎪⎪⎩
∂tρ+∂xm = 0

∂tm+∂x

[
m2

ρ
+κργ

]
= μ∂ 2

x v,

in the place of (17.8.4). However, this stumbles on the need for L∞ bounds on solu-
tions of (17.8.16), uniformly valid for μ > 0, which are at present unavailable. One
may attempt to use, instead, Lp bounds, but then the task of reducing the Young mea-
sure to a point mass becomes quite laborious. What follows is a simplified version of
a more general result established in that direction. It pertains to initial data (ρ0,m0)
that tend to a state (ρ̄,0), as |x| → ∞ , with ρ̄ > 0.

17.8.2 Theorem. Consider the family {(ρ0μ ,m0μ), μ > 0} of smooth initial data
with the following properties: The density is positive,

(17.8.17) ρ0μ(x)≥ aμ > 0, −∞ < x < ∞ ,
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and its oscillation is controlled by

(17.8.18) μ2
∫ ∞

−∞

[∂xρ0μ(x)]2

ρ3
0μ(x)

dx ≤ N.

The momentum is uniformly bounded,

(17.8.19)
∫ ∞

−∞
|m0μ(x)|dx ≤ P,

and the mechanical energy relative to the state (ρ̄,0) is also uniformly bounded:

(17.8.20)
∫ ∞

−∞

(
κ

γ−1
[ργ0μ(x)− ρ̄γ − γρ̄γ−1(ρ0μ(x)− ρ̄)]+ 1

2

m2
0μ(x)

ρ0μ(x)

)
dx ≤ E.

Finally,

(17.8.21) (ρ0μ ,m0μ)→ (ρ0,m0), as μ → 0,

in the sense of distributions. Then for any μ > 0 there exists a classical solution
(ρμ ,mμ) of the Cauchy problem for (17.8.16) with initial values (ρ0μ ,m0μ). Fur-
thermore, there are sequences {μ j}, with μ j → 0 as j → ∞ , such that {(ρμ j ,mμ j)}
converges a.e. to a solution (ρ,m) of the Cauchy problem for (17.8.1), with initial
data (ρ0,m0). This solution satisfies the entropy admissibility condition.

The lengthy, technical proof of the above proposition, which is found in the ref-
erences cited in Section 17.9, proceeds by first establishing Lp bounds on solutions
(ρμ ,mμ) of (17.8.16) that hold uniformly in μ > 0, and then showing that the in-
duced Young measure reduces to a point mass, so that the μ → 0 weak limit (ρ,m)
of (ρμ ,mμ) is a solution of (17.8.1). In order to convey a taste of the methodology
of the proof, we sketch below the derivation of the central a priori estimates. How-
ever, so as to simplify the presentation, we will establish the estimates under the
extraneous assumptions that ρ̄ = 0 and the total mass of the initial data is finite and
uniformly bounded,

(17.8.22)
∫ ∞

−∞
ρ0μdx ≤ M.

Even though these requirements violate the conditions of the theorem, they do not
affect the essence of the argument, as far as the derivation of the estimates goes.

From the balance laws of mass and mechanical energy, in conjunction with

(17.8.23)
∫ ∞

−∞
ρμ(x, t)dx ≤ M,

(17.8.24)∫ ∞

−∞

(
κ

γ−1
ργμ(x, t)+

1
2

m2
μ(x, t)

ρμ(x, t)

)
dx+μ

∫ t

0

∫ ∞

−∞
[∂xvμ(x,τ)]2dxdτ ≤ E.

(17.8.22) and (17.8.20), follows
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Next we introduce the function

(17.8.25) Φμ(x, t) =
∫ x

−∞
mμ(y, t)dy,

which serves as a potential, noting that, by virtue of (17.8.23), (17.8.24) and Schwarz’s
inequality, we have

(17.8.26) |Φμ(x, t)|2 ≤
∫ ∞

−∞

m2
μ(x, t)

ρμ(x, t)
dx

∫ ∞

−∞
ρμ(x, t)dx ≤ 2EM.

On account of (17.8.16) and (17.8.25),

(17.8.27) ∂t(ρμΦμ)+∂x(mμΦμ) =−κργ+1
μ +μρμ∂xvμ .

Integrating (17.8.27) over (−∞,∞)× (0, t), using (17.8.23), (17.8.24), (17.8.26), and
assuming μ ≤ κ , we conclude

(17.8.28)
∫ t

0

∫ ∞

−∞
ργ+1
μ (x,τ)dxdτ ≤ 2

κ
E +

8
κ

M3 +
μt
κ

M,

which provides the first basic new estimate.
To get the next estimate, we switch to Lagrangian coordinates (ξ , t). To avoid

confusion, partial derivatives with respect to ξ and t in Lagrangian coordinates
will be denoted by subscripts ξ and t, while the symbols ∂x and ∂t are retained
for partial derivatives with respect to x and t in Eulerian coordinates. In particular,
xξ = ρ−1, xt = v, ∂xξ = ρ .

In Lagrangian coordinates, the system (17.8.16) reads

(17.8.29)

⎧⎨⎩
(ρ−1)t −vξ = 0

vt +(κργ)ξ = μ(ρvξ )ξ .

After a straightforward calculation, using (17.8.29)1 ,

(17.8.30) [(∂xρ−1
μ )2]t = [ρ−2

μ (ρμξ )2]t =−2ρ−1
μ ρμξ (ρμvμξ )ξ .

Multiplying (17.8.30) by μ and then substituting the term μ(ρμvμξ )ξ from (17.8.29)2
into the resulting equation, we arrive at

(17.8.31) μ[(∂xρ−1
μ )2]t =−2ρ−1

μ ρμξvμt −2κγργ−2
μ (ρμξ )2

=−2(ρ−1
μ ρμξvμ)t −2(ρμvμvμξ )ξ +2ρμ(vμξ )2 −2κγργ−2

μ (ρμξ )2.

We now integrate (17.8.31), first with respect to ξ over (−∞,∞) and then with
respect to time over (0, t). Finally, we switch back to Eulerian coordinates (x, t). The
end result is the following identity:
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We multiply (17.8.32) by μ and estimate the first and the last term on the right-hand
side as follows:

(17.8.33) −2μ
∫ ∞

−∞
ρ−1
μ (∂xρμ)vμdx ≤ μ2

2

∫ ∞

−∞
ρ−3
μ (∂xρμ)2dx+2

∫ ∞

−∞
ρ−1
μ m2

μdx,

(17.8.34) 2μ
∫ ∞

−∞
ρ−1

0μ (∂xρ0μ)v0μdx ≤ μ2

2

∫ ∞

−∞
ρ−3

0μ (∂xρ0μ)
2dx+2

∫ ∞

−∞
ρ−1

0μ m2
0mdx.

The third term on the right-hand side of (18.7.32) is estimated by (17.8.18), while
the second terms on the right-hand sides of (17.8.32), (17.8.33) and (17.8.34) are all
estimated with the help of (17.8.24). We thus arrive at the desired estimate:

(17.8.35)

μ2
∫ ∞

−∞
ρ−3
μ (x, t)(∂xρμ(x, t))2dx+4μκγ

∫ t

0

∫ ∞

−∞
ργ−3
μ (∂xρμ)2dxdτ ≤ 20E +3N,

which controls the oscillation of the density.
Similar, albeit merely local, estimates apply even when ρ̄ > 0. In order to build

a satisfactory compactness framework, even higher local Lp bounds are needed on ρ
and on v, which can be obtained with the assistance of the weak entropy-entropy flux
pair (17.8.10), for g(ω) = 1

2 |ω|ω . However, the derivation of these estimates hinges
on keeping the density at a distance from zero on a substantial portion of the upper
half-plane, and thus requires ρ̄ > 0.

Armed with the above estimates, it is possible to show that the Young measure
reduces to a point mass. However, the task is technically challenging since the mea-
sure takes values on the phase space {(ρ,m) : 0 < ρ < ∞ ,−∞ < m < ∞}, which is
not compact. The difficulty is resolved by an insightful compactification of the phase
space. The reader may consult the literature cited in Section 17.9.

The use of Lp, rather than L∞, bounds becomes indispensable for a host of one-
dimensional systems in gas dynamics that contain inhomogeneities and/or source
terms with singularities, manifesting geometric effects. An illustrative example is
provided by the system (7.1.29) governing three-dimensional radial isentropic flow
of an ideal gas, which we write here in the form

(17.8.36)

⎧⎪⎪⎨⎪⎪⎩
∂t(r2ρ)+∂r(r2m) = 0

∂t(r2m)+∂r

[
r2
(

m2

ρ
+κργ

)]
= 2κrργ .

(17.8.32) μ
∫ ∞

−∞
ρ−3

μ (∂xρμ)
2dx+2κγ

∫ t

0

∫ ∞

−∞
ργ−3

μ (∂xρμ)
2dxdτ

=−2
∫ ∞

−∞
ρ−1

μ (∂xρμ)vμ dx+2
∫ t

0

∫ ∞

−∞
(∂xvμ)

2dxdτ

+μ
∫ ∞

−∞
ρ−3

0μ (∂xρ0μ)
2dx+2

∫ ∞

−∞
ρ−1

0μ (∂xρ0μ)v0μ dx.
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So long as the flow is obstructed from approaching the origin, for example by a
solid spherical obstacle, the system may be treated via L∞ estimates. However, for
flows defined for all r ≥ 0, density and velocity may become infinite at the origin, so
a treatment through Lp estimates provides the only hope for success. Accordingly,
the following existence theorem has been established for the Cauchy problem on
r ≥ 0, t ≥ 0, in the class of functions that conserve mass,

(17.8.37)
∫ ∞

0
r2ρ(r, t)dr = M , 0 ≤ t < ∞ ,

and have finite energy,

(17.8.38)
∫ ∞

0
r2
[

κ
γ−1

ργ(r, t)+
m2(r, t)
2ρ(r, t)

]
dr ≤ E , 0 ≤ t < ∞ .

17.8.3 Theorem. The Cauchy problem for the system (17.8.36), with 3/2 < γ ≤ 3,
under initial data that have finite mass M and finite energy E, possesses a weak
solution (ρ(r, t),m(r, t)) on [0,∞)× [0,∞), which satisfies (17.8.37) and (17.8.38).

The proof of the above proposition, which is found in the references cited in
Section 17.9, bears close resemblance to the proof of Theorem 17.8.2. In particular,
a central role is played by the estimate

(17.8.39)
∫ t

0

∫ ∞

0
r4ργ+1(r,τ)drdτ ≤ 1

κ

√
2M3E,

namely, the analog of (17.8.28). For a formal derivation of (17.8.39), notice that
(17.8.36)1 implies the existence of a Lipschitz continuous potentialΨ :

(17.8.40) ∂rΨ = r2ρ , ∂tΨ =−r2m.

By combining (17.8.36)2 with (17.8.40), one easily verifies the identity

(17.8.41) ∂t(r2mΨ)+∂r

[
r2
(

m2

ρ
+κργ

)
Ψ
]
= κr4ργ+1 +2κrργΨ .

We normalize Ψ by Ψ(0, t) = 0, in which case (17.8.40) and (17.8.37) imply that
0 ≤Ψ(r, t) ≤ M. Then Schwarz’s inequality, together with (17.8.37) and (17.8.38),
yield

(17.8.42)
[∫ ∞

0
r2mΨdr

]2

≤ M2
∫ ∞

0
r2 m2

ρ
dr

∫ ∞

0
r2ρdr ≤ 2M3E.

Thus, upon integrating (17.8.41) over [0,∞)× [0, t), one arrives at (17.8.39).

17.9 Notes

The method of compensated compactness was introduced by Murat [1] and Tartar
[1,2]. The program of employing the method for constructing solutions to hyperbolic



17.9 Notes 649

The Young measure was introduced in L.C. Young [1]. The presentation here fol-
lows Ball [3], where the reader may find generalizations beyond the L∞ framework,
as well as commentary and references to alternative constructions.

For an introduction to the theory of compensated compactness, see the lecture
notes of Tartar [1,2,3]. The div-curl lemma is due to Murat and Tartar. The proof
presented here is taken from Evans [1]. Lemma 16.2.2 is generally known as Murat’s
lemma (Murat [2]).

The notion of a measure-valued solution was introduced by DiPerna [11]. For
further developments of the theory and applications to the construction of solutions
to systems of conservation laws, including those of mixed type modeling phase tran-
sitions, see Chen and Frid [2], Coquel and LeFloch [1], Demengel and Serre [1], Frid
[3], Poupaud and Rascle [1], Roytburd and Slemrod [1], Schochet [2], and Szepessy
[1].

The scalar conservation law was first treated via the method of compensated
compactness by Tartar [2]. The clever argument employed in the proof of Theorem
17.4.1 was discovered, independently, by Tartar (private communication to the author
in May 1986) and by Chen and Lu [1]. See also Vecchi [1]. This approach has been
extended, by Tadmor, Rascle and Bagnerini [1], to scalar conservation laws in two
space dimensions, for which purpose one needs to employ two entropy-entropy flux
pairs. The scalar conservation law is treated in the Lp framework by Yang, Zhu and
Zhao [2]. For the case where the flux is merely continuous, see Panov [7].

For scalar balance laws with singular source see Schonbek [2], Amadori and
Coclite [1], and Kwon [2].

The Cauchy problem for scalar conservation laws in several spatial dimensions
can also be solved in L∞ by way of measure-valued solutions (DiPerna [11], Szepessy
[2], Panov [2]). An alternative approach, combining a kinetic formulation with ideas
from the theory of compensated compactness, is carried out in Hwang and Tzavaras
[1]. The initial-boundary value problem has been considered by Szepessy [1], and
Ben Moussa and Szepessy [1].

The competition between viscosity and dispersion, in scalar conservation laws, is
investigated by Schonbek [1] in one space dimension, and by Kondo and LeFloch [2],
LeFloch and Natalini [1], and Hwang and Tzavaras [1] in several space dimensions.
The corresponding question for the singular limit of solutions to the Camassa-Holm
shallow water equation is discussed by Coclite and Karlsen [1].

conservation laws was designed by Tartar [2,3], who laid down the fundamental con-
dition (17.3.10) and demonstrated its use in the context of the scalar case. The first
application to systems, due to DiPerna [6], provided the impetus for intensive de-
velopment of these ideas, which has produced a substantial body of research. The
presentation here only scratches the surface. A clear introduction is also found in
the lecture notes of Evans [1], the text by Hörmander [2], the monograph by Malek,
Neças, and Růžička [1], as well as the treatise by M.E. Taylor [2]. For more detailed
and deeper development of the subject the reader is referred to the book by Serre [11]
and the monograph by Yun-guang Lu [1]. An informative presentation of research
trends in the area is provided by the survey article by Gui-Qiang Chen [8].
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Other cases of singular perturbations of the scalar conservation law by differen-
tial operators of order four, which have been treated by the method of compensated
compactness, include the article by Tadmor [3] on vanishing hyperviscosity, and the
paper by Otto and Westdickenberg [1] on the thin film approximation.

The active investigation of relaxation for hyperbolic conservation laws in recent
years has produced voluminous literature, so it would be impossible to include
here an exhaustive list of references. The survey paper by Natalini [3] contains an
extensive bibliography. A number of relevant references have already been recorded
in Sections 5.6 and 6.11. A seminal role in the development of the theory was
played by the work of Tai-Ping Liu [21], motivated by Whitham [2]. The method of
compensated compactness was first employed in this context by Gui-Qiang Chen and

Interesting contributions to relaxation theory also include Coquel and Perthame
[1], Marcati and Natalini [2], Marcati and Rubino [3], Rubino [3], Luo and Xin [1],
and Luo and Yang [3].

The L1-Lipschitz estimate (17.5.15) for the semilinear system (17.5.1), which
leads to a treatment of the relaxation problem in the framework of the space BV ,
is due to Natalini [1]. Existence of BV solutions on the upper half-plane for the
nonlinear system (5.2.18) has been established by Dafermos [25], but BV estimates
independent of μ that would allow passing to the relaxation limit, as μ ↓ 0, are cur-
rently known only for the special case p(u) = −u−1 (Luo, Natalini and Yang [1],
Amadori and Guerra [2]). For other special systems that have been treated in BV , see
Tveito and Winther [2], Gosse [1], and Luo and Natalini [1].

The treatment of the genuinely nonlinear system of two conservation laws, in
Section 17.6, and the system of isentropic elasticity with a single inflection point,
in Section 17.7, follows the pioneering paper of DiPerna [8]. See also Gripenberg
[1] and Chen, Li and Li [1]. Counterexamples to Theorem 17.7.1, when σ ′′(u) is
discontinuous at u = 0, are exhibited in Greenberg [3], and Greenberg and Rascle
[1].

The system of isentropic elasticity was treated in the Lp framework by J.W.
Shearer [1], Peixiong Lin [1] and Serre and Shearer [1]. An alternative, original con-
struction of solutions in L∞ (Demoulini, Stuart and Tzavaras [1], Miroshnikov and
Tzavaras [1,2]) is based on the observation that the system resulting from discretizing

Tai-Ping Liu [1] and by Chen, Levermore and Liu [1], for systems of two conserva-
tion laws whose relaxed form is the scalar conservation law. The particular efficacy
(for theoretical and computational purposes) of the semilinear system (17.5.1) was
first recognized by Jin and Xin [1]. The treatment of that system in Section 17.5 is
an adaptation of the analysis in Chen, Levermore and Liu [1], Lattanzio and Marcati
[1,2], and Coquel and Perthame [1]. See also Yun-guang Lu [4]. For applications to
the model system (7.1.26) for combustion, see Hanouzet, Natalini and Tesei [1]; for
applications to the chromatography equations, see Collet and Rascle [1], and Klin-
genberg and Lu [1]. Furthermore, Lu and Klingenberg [1], Tzavaras [4,5], Gosse and
Tzavaras [1], Serre [15], and Lattanzio and Serre [2] apply the method of compen-
sated compactness to systems of three or four conservation laws whose relaxed form
is a system of two conservation laws.
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the time variable can be solved through a variational principle. The initial-boundary
value problem in L∞ is solved by Heidrich [1].

The theory of invariant regions via the maximum principle is due to Chueh, Con-
ley and Smoller [1] (see also Hoff [2]). A systematic discussion, with several exam-
ples, is found in Serre [11]. The connection between stability of relaxation schemes
and existence of invariant regions is discussed in Serre [15]. The proof of Theorem
17.7.2 is taken from Dafermos [16]. See also Serre [3], and Venttsel’ [1].

The system of isentropic gas dynamics was first treated by the method of com-
pensated compactness in DiPerna [9], for the special values γ = 1+ 2

n , n = 2�+ 1,
of the adiabatic exponent. Subsequently, Gui-Qiang Chen [1] and Ding, Chen and
Luo [1] extended the analysis to any γ within the range (1, 5

3 ]. For a survey, see Gui-
Qiang Chen [2]. The case γ ≥ 3 was solved by Lions, Perthame and Tadmor [1], and
the full range 1 < γ < ∞ , as stated in Theorem 17.8.1, is covered in Lions, Perthame
and Souganidis [1]. The isothermal case, γ = 1, is singular and was treated by Huang
and Wang [2], and LeFloch and Shelukhin [1]. The argument presented here, for
the special case γ = 3, was communicated to the author by Gui-Qiang Chen. Extra
regularity for this special value of γ is shown by Vasseur [1]. The more general, gen-
uinely nonlinear system (7.1.12), for a nonpolytropic gas, was treated by Chen and
LeFloch [2,3] under the assumption that the pressure function p(ρ) and the function
κργ , together with their derivatives, up to fourth order, coincide asymptotically, as
ρ → 0.

The use of physical, in contrast to artificial, viscosity, culminating in Theorem
17.8.2, is more recent and is due to Chen and Perepelitsa [1]. See also Chen and
Perepelitsa [2] on the shallow water equations. These works make essential use of
techniques introduced by LeFloch and Westdickenberg [1] for treating the radially
symmetric case, leading to Theorem 17.8.3. On the same problem, Chen and Pere-
pelitsa [3] address the issue of focusing of waves and show that no mass concentra-
tion forms at the origin, despite the singular behavior of the system at r = 0. (Com-
pare with Section 16.7).

The approach of Serre [2,11] has rendered the method of compensated com-
pactness sufficiently flexible to treat systems of two conservation laws even when
characteristic families are linearly degenerate, strict hyperbolicity fails, etc. Solu-
tions to many interesting systems are constructed by Chen and Wang [1,2], Dehua
Wang [1,2], Chen and Kan [1], Pui-Tak Kan [1], Kan, Santos and Xin [1], Heibig
[2], Yun-guang Lu [1], Marcati and Natalini [2,3], Marcati and Rubino [1,2], Ru-
bino [1,2], Huijiang Zhao [1], Frid and Santos [1,2], and Yun-guang Lu [3]. Since
the analysis relies heavily on the availability of a rich family of entropies, the ap-
plication of the method to systems of more than two conservation laws is presently
limited to special systems in which the shock and rarefaction wave curves coincide
for all but at most two characteristic families (Benzoni-Gavage and Serre [1]) and to
the system of nonisentropic gas dynamics for very special equations of state (Chen
and Dafermos [1], Chen, Li and Li [1], Bereux, Bonnetier and LeFloch [1], and Frid,
Holden and Karlsen [1]).

The compensated compactness method has also been applied successfully to the
system of Euler equations for steady irrotational sonic-subsonic or transonic gas flow.
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In that case the system is degenerate or it changes type; see Morawetz [2,4], Chen,
Dafermos, Slemrod and Wang [1], Chen, Slemrod and Wang [1], Huang and Wang
[1], and Chen, Huang and Wang [1]. As we shall see in Section 18.7, the method
of compensated compactness has also found interesting applications in differential
geometry.

For a variety of systems, the large-time behavior of solutions with initial value
s that are either periodic or L1 perturbations of Riemann data is established in Chen
and Frid [1,3,4,6], by combining scale invariance with compactness. See also Frid
[6], and Frid and Rendón [1]. The method of compensated compactness has been
employed to demonstrate that the large-time behavior of solutions to the Euler equa-
tions with frictional damping is governed by the porous media equation; see Serre
and Xiao [1], Huang and Pan [1,2], Pan and Zhao [1], Luo and Yang [1], and Lat-
tanzio and Rubino [1]. For the large-time behavior of solutions to systems with re-
laxation, see Serre [19].

The kinetic formulation, which was applied effectively in Chapter VI to scalar
conservation laws in several spatial dimensions, has been successfully extended to
certain systems of conservation laws in one space dimension, including the Euler
equations of isentropic gas flow (Berthelin and Bouchut [1,2,3]), as well as to the
system of isentropic elastodynamics (Perthame and Tzavaras [1], Tzavaras [6]). A
detailed discussion and a comprehensive list of references are found in the mono-
graph by Perthame [2]. Refined properties of solutions are derived by combining the
kinetic formulation with techniques from the theory of compensated compactness.
In particular, for strictly hyperbolic systems of two conservation laws, Tzavaras [6]
obtains an explicit formula for the coupling of oscillations between the two charac-
teristic fields.

Valuable insight on the effects of nonlinearity in hyperbolic conservation laws is
gained from the investigation of how the solution operator interacts with highly os-
cillatory initial data, say U0ε(x) =V (x,x/ε), where V (x, ·) is periodic and ε is a small
positive parameter. When the system is linear, the rapid oscillations are transported
along characteristics and their amplitude is not attenuated. On the opposite extreme,
when the system is strictly hyperbolic and genuinely nonlinear, the analysis in Sec-
tions 17.4 and 17.6 indicates that, as ε → 0, the resulting family of solutions Uε(x, t)
contains sequences which converge strongly to solutions with initial value the weak
limit of {U0ε}, that is for t > 0 the solution operator quenches high frequency os-
cillations of the initial data. It is interesting to investigate intermediate situations,
where some characteristic families may be linearly degenerate, strict hyperbolicity
fails, etc. Following the study of many particular examples (cf. Bonnefille [1], Gui-
Qiang Chen [3,4,5], E [1], Heibig [1], Rascle [1], Cheverry, Gues and Métivier [1,2],
Bourdarias, Gisclon and Junca [3], and Serre [5,8]), a coherent theory of propagation
of oscillations seems to be emerging (Serre [11]).

There is a well-developed theory of propagation of oscillations based on the
method of weakly nonlinear geometric optics which derives asymptotic expansions
for solutions of hyperbolic systems under initial data oscillating with high frequency
and small amplitude. Following the pioneering work of Landau [1], Lighthill [1],
and Whitham [1], extensive literature has emerged, of purely formal, semirigorous
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or rigorous nature, dealing with the cases of a single phase, or possibly resonating
multiphases, etc. See, for example, Choquet-Bruhat [1], Hunter and Keller [1,2],
Majda and Rosales [1], Majda, Rosales and Schonbek [1], Pego [4], Hunter [1], Joly,
Métivier and Rauch [1,3], and Cheverry [1]. It is remarkable that the asymptotic ex-
pansions remain valid even after shocks develop in the solution; see DiPerna and
Majda [1], Schochet [5] and Cheverry [2]. A survey is found in Majda [5] and a sys-
tematic presentation is given in Serre [11]. For the scalar conservation law in several
space dimensions the validity of nonlinear geometric optics has been established by
Chen, Junca and Rascle [1]. For a recent treatment of geometric optics for systems of
conservation laws, based on the Standard Riemann Semigroup, discussed in Chapter
XIV, see Chen, Xiang and Zhang [1].



XVIII

Steady and Self-similar Solutions in Multi-Space

Dimensions

As noted earlier in this book, the general theory of nonlinear hyperbolic systems
of conservation laws in several space dimensions is terra incognita. Nevertheless, a
number of important problems in two space dimensions are currently tractable, as
they admit stationary or self-similar solutions, in which case the number of indepen-
dent variables is reduced to two.

The chapter begins with an introduction to the Riemann problem for scalar con-
servation laws in two space dimensions. The resulting equation in the (two) self-
similar variables retains hyperbolicity. The emerging wave pattern is quite intricate
and, depending on the data, may assume any one of 32 distinct configurations, of
which two representative cases will be recorded here.

The next task is to consider stationary or self-similar solutions of the Euler equa-
tions for planar isentropic gas flow. The number of independent variables is again
reduced to two; however, the price to pay is that the resulting system is no longer hy-
perbolic but of mixed elliptic-hyperbolic type. In a transonic flow, the border between
the elliptic and the hyperbolic region is a free boundary that has to be determined as
part of the solution. The recently solved, classical problem of regular shock reflection
by a wedge, for irrotational flow, will be discussed in some detail, as an illustrative
example of this type.

Section 18.7 presents an unexpected connection between the classical problem
in differential geometry of embedding isometrically a two-dimensional Riemannian
manifold into three-dimensional Euclidean space and steady irrotational flow of a
Chaplygin gas.

The chapter closes with a discussion of self-similar solutions in nonlinear elasto-
dynamics, modeling the phenomenon of cavitation.

18.1 Self-Similar Solutions for Multidimensional Scalar

Conservation Laws

We consider a scalar conservation law in two space dimensions,

© Springer-Verlag Berlin Heidelberg 2016
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(18.1.1) ∂tu+∂x f (u)+∂yg(u) = 0,

and seek self-similar solutions u(x,y, t) = v(x/t,y/t). Letting ξ = x/t and ζ = y/t,
v(ξ ,ζ ) satisfies the equation

(18.1.2) −ξvξ + f (v)ξ −ζvζ +g(v)ζ = 0.

The characteristics of (18.1.2), along which v is constant, are determined by the
ordinary differential equation

(18.1.3) [ f ′(v(ξ ,ζ ))−ξ ]dζ − [g′(v(ξ ,ζ ))−ζ ]dξ = 0.

Notice the set of singular points

(18.1.4) B = {(ξ ,ζ ) : ξ = f ′(v), ζ = g′(v)},
parametrized by v. For simplicity, we make the assumption

(18.1.5) f ′′(u)> 0, g′′(u)> 0, [ f ′′(u)/g′′(u)]′ > 0,

in which case B is a strictly increasing, concave curve ζ = ζ (ξ ).
The Rankine-Hugoniot jump condition across a shock curve reads

(18.1.6) [λ (u−,u+)−ξ ]dζ − [μ(u−,u+)−ζ ]dξ = 0,

where

(18.1.7) λ (u−,u+) =
f (u+)− f (u−)

u+−u−
, μ(u−,u+) =

g(u+)−g(u−)
u+−u−

.

Notice that any shock curve joining two fixed states u− and u+ lies on some straight
line emanating from the nodal point ξ = λ (u−,u+), ζ = μ(u−,u+). Under the con-
vention that the normal vector (dζ ,−dξ ) is pointing towards the (+) side of shock
curves, admissible shocks should satisfy Oleinik’s E-condition, namely

(18.1.8) [λ (u−,u0)−λ (u−,u+)]dζ − [μ(u−,u0)−μ(u−,u+)]dξ ≥ 0,

for any u0 between u− and u+ .
The objective is to construct BV solutions of (18.1.2) on R2 that satisfy assigned

boundary conditions at infinity: v(r cosθ ,r sinθ) → h(θ), as r → ∞ . In particular,
a natural extension of the classical Riemann problem to two space dimensions is to
determine a self-similar solution of (18.1.1) with initial values

(18.1.9) u(x,y,0) =

⎧⎪⎪⎨⎪⎪⎩
uNE 0 < x < ∞, 0 < y < ∞
uSE 0 < x < ∞, −∞ < y < 0
uNW −∞ < x < 0, 0 < y < ∞
uSW −∞ < x < 0, −∞ < y < 0,

where uNE , uSE , uNW and uSW are given constants.
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If u = v(x/t,y/t) is the solution of (18.1.1), (18.1.9), then for large ξ (or −ξ ), v
depends solely on ζ and depicts an admissible shock or rarefaction wave that joins
the states uNE and uSE (or uSW and uNW ) and propagates in the y-direction. Similarly,
for large ζ (or −ζ ), v depends solely on ξ and depicts an admissible shock or rar-
efaction wave that joins the states uNW and uNE (or uSW and uSE ) and propagates in
the x-direction. An interesting wave pattern emerges in the region of the ξ -ζ plane
where the above four waves interact. In fact, depending on the relative positions of
uNE , uSE , uNW and uSW on the real axis, there are 32 distinct wave configurations,
which are described and classified in the literature cited in Section 18.7. For illustra-
tion, the two simplest cases will be recorded below.

Assume first uSW < uNW < uSE < uNE . In that case the solution is Lipschitz con-
tinuous on R2, with level curves depicted in Figure 18.1.1. Indeed, the pairs of states
(uNW ,uNE), (uSW ,uSE), (uNE ,uSE) and (uNW ,uSW ) are all connected by rarefaction
waves. The line B of singular points, defined by (18.1.4), marks the border between
these rarefaction waves, and serves as a “roof valley” allowing for Lipschitz contin-
uous transition of the solution across it.

=
NW

=
SE

=
NE

=
SW

B

z

x

Fig. 18.1.1

Assume next uSW > uSE > uNW > uNE . In that case the solution comprises con-
stant states joined by admissible shocks, as depicted in Figure 18.1.2. Indeed, the
pairs of states (uNW ,uNE) and (uNW ,uSW ) are connected by two shocks which col-
lide at the point A = (λ (uNE ,uNW ),μ(uNW ,uSW )); and the pairs of states (uSW ,uSE)
and (uSE ,uNE) are similarly connected by two shocks which collide at the point
B = (λ (uSW ,uSE),μ(uNE ,uSE)). The wave pattern is completed by two shocks join-
ing uNE with uSW . Both emanate from the node O = (λ (uNE ,uSW ),μ(uNE ,uSW ));
one terminates at the point A and the other at the point B.

The remaining cases involve combinations of shocks and rarefaction waves,
which may interact to generate more complex wave patterns. In the absence of condi-
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tions (18.1.5), the wave configuration is even more intricate. See the references cited
in Section 18.8.

It is not to be expected that multi-dimensional Riemann problems will play as
pivotal a role as their one-dimensional counterparts. Nevertheless, they are valuable,
as they provide a graphic illustration of the geometric complexity of solutions of
systems of conservation laws in several space dimensions.

18.2 Steady Planar Isentropic Gas Flow

Turning to systems of conservation laws in two space dimensions, we consider the
steady planar isentropic flow of a gas with equation of state p(ρ), where p′(ρ) > 0
and p′′(ρ)> 0. In Eulerian coordinates, the density and the velocity do not depend on
time. Thus, letting (x,y) denote the spatial variables and (u,v) stand for the velocity
components, the two-dimensional version of the Euler equations (3.3.36), with zero
body force, reduces to

(18.2.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂x(ρu)+∂y(ρv) = 0

∂x(ρu2 + p(ρ))+∂y(ρuv) = 0

∂x(ρuv)+∂y(ρv2 + p(ρ)) = 0.

The sound speed is

(18.2.2) c =
√

p′(ρ) .

Testing hyperbolicity, albeit in the x− rather than in the t− direction, one finds eigen-
values



18.2 Steady Planar Isentropic Gas Flow 659

(18.2.3) λ1,3 =
uv± c

√
u2 +v2 − c2

u2 − c2 , λ2 =
v
u
,

so that the system (18.2.1) is hyperbolic in the supersonic regime, u2 +v2 > c2, and
of composite type in the subsonic regime, u2 +v2 < c2.

The Rankine-Hugoniot jump conditions for a steady shock with slope s = dy/dx
are obtained from (3.3.40) for σ = 0 and ν collinear to (−s,1):

(18.2.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s[[ρu]] = [[ρv]]

s[[ρu2 + p]] = [[ρuv]]

s[[ρuv]] = [[ρv2 + p]].

The family of jump discontinuities associated with the eigenvalue λ2 comprises
the vortex sheets. The velocity is tangential on both sides of a vortex sheet, so that
s = v/u = λ2 , and the density does not jump across. By contrast, gas molecules are
crossing shocks associated with the eigenvalues λ1 and λ3 , entering through what
will be termed as the front side and exiting by the back side. Following standard
practice, we normalize the symbol [[ ]] to denote the jump, front minus back value,
of the enclosed quantity. Under this convention, the entropy admissibility condition
(3.3.41) takes the form

(18.2.5) s
[[

u(ρε+
1
2
ρ(u2 +v2))

]]
≥
[[

v(ρε+
1
2
ρ(u2 +v2))

]]
.

Under the standard assumption of genuine nonlinearity, (18.2.5) is equivalent to the
requirement that the shock be compressible, i.e., [[ρ]]< 0, and also equivalent to the
Lax E-condition, namely that the back value of λ1 (or λ3) is smaller than the slope s
of a 1- (or a 3-) shock, and in turn s is smaller than the front value of λ1 (or λ3).

We now investigate the structure of the admissible branch of the 1- or 3-shock
curve emanating from any specified front state (ρ f ,u f ,v f ). For convenience, we se-
lect coordinate axes in state space so that u f > 0 and v f = 0. Admissible back states
(ρb,ub,vb) must satisfy the Rankine-Hugoniot conditions (18.2.4), namely

(18.2.6)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s(ρ f u f −ρbub) =−ρbvb

s(ρ f u2
f + p(ρ f )−ρbu2

b − p(ρb)) =−ρbubvb

−sρbubvb = p(ρ f )− p(ρb)−ρbv2
b ,

together with the admissibility condition ρ f < ρb . We will parametrize the shock
curves by ρb . Upon setting

(18.2.7) c2
0 =

ρb

ρ f

p(ρb)− p(ρ f )

ρb −ρ f
,

and after a long but straightforward calculation, we derive from (18.2.6):
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(18.2.8) s =± c0(u2
f − c2

0)
− 1

2 ,

(18.2.9) ub = u f − ρb −ρ f

ρb

c2
0

u f
,

(18.2.10) v2
b =

(
ρb −ρ f

ρb

)2

(u2
f − c2

0)
c2

0

u2
f
.

Note that c2
0 > c2

f and c2
0 ↓ c2

f as ρb ↓ ρ f . Hence 1- or 3-shocks may exist only
when u2

f > c2
f , i.e., the front state is supersonic. However, the back state may be

supersonic, sonic or subsonic, and accordingly the shock is termed supersonic, sonic,
or transonic.

The above equations describe the configuration in which the flow upstream is
horizontal, moving from left to right, but upon crossing a 1-shock (or a 3-shock)
with slope s < 0 (or s > 0) it bends downwards, vb < 0, (or upwards, vb > 0) and
moves away from the shock, ub > 0 and vb/ub > s (or vb/ub < s).

(0, 0)

ω
0

(u f .0)

(ub vv)

ω
u

v

(ud ,0)

,

Fig. 18.2.1

Equations (18.2.9) and (18.2.10) define the so-called shock polar of the state
(ρ f ,u f ,0), which is depicted in Figure 18.2.1. Notice that the shock polar is sym-
metric relative to the u-axis, and its lower half is the projection of the 1-shock curve
while its upper half is the projection of the 3-shock curve, on the u-v plane. The angle
ω = arctan (v/u) by which the flow direction is deflected upon crossing the shock
is easily read from the shock polar. In addition to (ρ f ,u f ,0), the 1- and the 3-shock
curves meet, and terminate, at the state (ρd ,ud ,0), identified through the conditions
c0 = u f and ρdud = ρ f u f . At that point s=∞ , so the flow, before and after impinging
on the shock, is directed along the x-axis, perpendicular to the shock.

The squared speed of the shock, determined from (18.2.9) and (18.2.10),
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(18.2.11) u2
b +v2

b = u2
f −

ρ2
b −ρ2

f

ρ2
b

c2
0 ,

turns out to be a decreasing function of ρb . We already know that (ρ f ,u f ,0) is su-
personic, and it is easily seen that (ρd ,ud ,0) is subsonic. Also, c2 = p′(ρb) is an
increasing function of ρb . It follows that there is ρ0 ∈ (ρ f ,ρd) with the following
property: the back state (ρb,ub,vb) of any 1- or 3-shock with front state (ρ f ,u f ,0) is
subsonic when ρb ∈ (ρ0,ρd ], sonic if ρb = ρ0, and supersonic when ρb ∈ (ρ f ,ρ0).

Next we discuss the same issues in the context of steady irrotational isentropic
flow,

(18.2.12) ∂xv−∂yu = 0, u = ∂xφ , v = ∂yφ ,

where φ is the velocity potential. In that case, as explained in Section 3.3.6, it is
common practice to retain the balance of mass equation (18.2.1)1 , namely,

(18.2.13) ∂x(ρu)+∂y(ρv) = 0,

but abandon the balance of momentum equations (18.2.1)2 and (18.2.1)3 , replacing
them by the Bernoulli law (see (3.3.49)):

(18.2.14)
1
2

q2 +h(ρ) = constant, q2 = u2 +v2 = |∇φ |2,

where h = ε + p/ρ is the enthalpy, with derivative h′(ρ) = p′(ρ)/ρ . Note that
(18.2.1)2,3 still hold when density and velocity are Lipschitz and that even when
they fail, in the presence of shocks, (ρu2 + p , ρuv) and (ρuv , ρv2 + p) still consti-
tute entropy-entropy flux pairs that are useful when treating the system by the method
of compensated compactness. This observation also implies that when (18.2.1)2,3 are
abandoned for (18.2.14), momentum is balanced to third order in shock strength and
hence the error may be deemed negligible in the context of flows with weak shocks.

In the presence of a shock with slope dy/dx = s, the jump conditions take the
form

(18.2.15) [[φ ]] = 0,

(18.2.16) s[[ρu]] = [[ρv]],

(18.2.17)
[[

1
2

q2 +h(ρ)
]]

= 0.

Notice that (18.2.12) implies the jump condition

(18.2.18) s[[v]] =−[[u]],

so that the tangential component of the velocity is continuous across the shock. As
already noted in Section 3.3.6, (18.2.18) implies that vortex sheets are incompatible



662 XVIII Steady and Self-similar Solutions in Multi-Space Dimensions

with irrotational flow. However, we still have 1- and 3-shocks, subject to the admis-
sibility condition [[ρ]]< 0.

We now consider, in the setting of irrotational flow, the configuration discussed
earlier, namely admissible 1- and 3-shocks, with back states (ρb,ub,vb) and pre-
scribed front state (ρ f ,u f ,0), where u f > 0. The jump conditions (18.2.18), (18.2.16)
and (18.2.17) now take the form

(18.2.19)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−svb = ub −u f

s(ρ f u f −ρbub) =−ρbvb

1
2 u2

f +h(ρ f ) =
1
2 (u

2
b +v2

b)+h(ρb).

As above, we parametrize the (admissible branch of the) 1- and 3-shock curves
by ρb . Upon setting

(18.2.20) c2
1 = 2[h(ρb)−h(ρ f )],

we obtain from (18.2.19)

(18.2.21) s =± c1

[
ρ2

b −ρ2
f

ρ2
b

u2
f − c2

1

]− 1
2

,

(18.2.22) ub = u f − ρb

ρb +ρ f

c2
1

u f
,

(18.2.23) v2
b =

(
ρb

ρb +ρ f

)2
[
ρ2

b −ρ2
f

ρ2
b

u2
f − c2

1

]
c2

1

u2
f
.

Equations (18.2.22), (18.2.23) determine the shock polar of (ρ f ,u f ,0), for irro-
tational flow. It has similar form to the shock polar for non-irrotational flow, dis-
cussed above, and so it will be depicted here by the same Figure 18.2.1. The state
(ρd ,ud ,0) where the 1- and 3-shock curves meet and terminate is now determined
by c2

1 = (1−ρ2
f /ρ

2
d )u

2
f and ρdud = ρ f u f . At that point s = ∞ , the shock being per-

pendicular to the flow direction. In the place of (17.2.11), we now have

(18.2.24) u2
b +v2

b = u2
f − c2

1

so again there is ρ0 ∈ (ρ f ,ρd) with the property that (ρb,ub,vb) is subsonic when
ρb ∈ (ρ0,ρd ], sonic if ρb = ρ0, and supersonic when ρb ∈ (ρ f ,ρ0).

Applications of the above will be presented in Section 18.4.
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18.3 Self-Similar Planar Irrotational Isentropic Gas Flow

In planar irrotational isentropic flow, the velocity v derives from the velocity potential
φ , by (3.3.48), and the governing equations are the two-dimensional versions of the
continuity equation (3.3.36)1 and the Bernoulli equation (3.3.49). Because of their
scaling properties, these equations admit self-similar solutions in the form

(18.3.1) ρ = ρ(ξ ), v = v(ξ ), φ = tψ(ξ ), ξ =
1
t

x .

Indeed, under this premise, upon letting ∇ denote the gradient operator with respect
to the ξ -variable, (3.3.48), (3.3.36)1 , and (3.3.49), with g = 0, become

(18.3.2) v = ∇ψ,

(18.3.3) −ξ ·∇ρ+∇ · (ρ∇ψ) = 0,

(18.3.4) ψ−ξ ·∇ψ+
1
2
|∇ψ|2 +h(ρ) = h(ρ0).

On any open subset Ω of R2 on which ρ takes a constant value, (18.3.3) reduces
to Δψ = 0. In that case, applying the Laplace operator to (18.3.4) yields |∇v|2 = 0,
i.e., the velocity is also constant. In accordance with earlier usage of the term, such
an Ω will be called a constant state of the flow.

We can write (18.3.3) and (18.3.4) in the more elegant form

(18.3.5) ∇ · (ρ∇χ)+2ρ = 0,

(18.3.6) χ+
1
2
|∇χ|2 +h(ρ) = h(ρ0),

in terms of

(18.3.7) χ(ξ ) = ψ(ξ )− 1
2
|ξ |2,

which is called the pseudopotential. Accordingly,

(18.3.8) ∇χ = v−ξ
is called the pseudovelocity, and the “flow” generated by it is called pseudoflow.

In particular, on a constant state Ω on which the velocity is constant, say v̄, the
pseudovelocity is v̄−ξ and the pseudopotential is

(18.3.9) χ(ξ ) = v̄ ·ξ − 1
2
|ξ |2 + constant.

From (18.3.4), by slightly abusing the notation,
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(18.3.10) ρ = h−1(h(ρ0)−χ− 1
2
|∇χ|2) = ρ(|∇χ|2,χ,ρ0).

We may thus express the sound speed in terms of χ:

(18.3.11) c2 = p′(ρ(|∇χ|2,χ,ρ0)) = c2(|∇χ|2,χ,ρ0).

Substituting ρ from (18.3.10) into (18.3.5), we derive a nonlinear, second-order
equation for χ:

(18.3.12) ∇ · (ρ(|∇χ|2,χ,ρ0)∇χ)+2ρ(|∇χ|2,χ,ρ0) = 0.

Recalling that h′ = c2/ρ , (18.3.12) may be written as

(18.3.13) c2Δχ−
2

∑
i, j=1

χξiχξ jχξiξ j = |∇χ|2 −2c2.

In terms of the (pseudo)-Mach number

(18.3.14) L =
|∇χ|

c
,

the equations (18.3.12), (18.3.13) are elliptic, at points where L < 1, or hyperbolic,
at points where L > 1.

An instructive, geometric method of testing the type of the equation (18.3.12) is
as follows. With any fixed state (ρ,v), we associate on R2 the circle |ξ −v|= c(ρ),
with center v and radius c(ρ), which will be called the sonic circle of (ρ,v). It is
now clear that, given a flow (ρ(ξ ),v(ξ )), (18.3.12) will be elliptic (or hyperbolic)
at a point ξ̄ if and only if ξ̄ lies inside (or outside) the sonic circle of the state
(ρ(ξ̄ ),v(ξ̄ )).

Weak solutions of (18.3.12) are Lipschitz functions χ that satisfy this equation
in the sense of distributions. Shocks are associated with curves across which par-
tial derivatives of χ experience jump discontinuities. Since χ itself is continuous, its
tangential derivatives must also be continuous across shocks and thus the tangential
components of the pseudovelocity and the velocity cannot jump. In particular, the
(pseudo) flow cannot support (pseudo) vortex sheets. By contrast, the normal deriva-
tives of χ , and thereby the normal component of the pseudovelocity and the velocity,
must jump across shocks, in accordance with the Rankine-Hugoniot condition

(18.3.15)
[[
ρ
(|∇χ|2,χ,ρ0

) ∂χ
∂ν

]]
= [[ρ(v−ξ ) ·ν ]] = 0,

where ν is the unit normal to the shock. The Bernoulli equation (18.3.6) dictates the
additional jump condition

(18.3.16)
[[

1
2
|∇χ|2 +h(ρ)

]]
=

[[
1
2
[(v−ξ ) ·ν ]2 +h(ρ)

]]
= 0.
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Thus the jump conditions for self-similar and for steady irrotational flow are identi-
cal, with pseudovelocity u = v−ξ , in the former, playing the role of velocity, in the
latter. In particular, the shock polar is here relevant as well.

It should be noted that the shock speed at the point ξ is ξ · ν . Thus straight-
line shocks propagate with constant speed. In particular, straight-line shocks passing
through the origin are stationary. In that case ξ ·ν = 0 and (18.3.15), (18.3.16) reduce
to the jump conditions (18.2.16), (18.2.17) for steady flow, recorded in Section 17.2.

As in the steady case, the front state of any admissible shock must be pseudosu-
personic, while the back state may be pseudosupersonic, pseudosonic or pseudosub-
sonic, and accordingly the shock is termed supersonic, sonic, or transonic.

The hope is that the modicum of stability induced by the ellipticity of (18.3.13)
in the subsonic regime will prevent the formation of very complex flow patterns
exhibiting finely intermingled subsonic, sonic and supersonic regions. Credence to
this expectation is provided by the following version of the maximum principle for
solutions of (18.3.13), which is proved in the references cited in Section 18.9:

18.3.1 Theorem. Let χ be a smooth solution of (18.3.13), on an open bounded set
Ω , with L ≤ 1 and c ≤ c̄. Then there is δ > 0, depending on Ω , such that either
L2 ≤ 1−δ or else, for any function f ∈C2(Ω), with |∇ f | ≤ δ/c̄ and |∇2 f | ≤ δ/c̄2,
the function L2 + f does not attain its maximum in Ω .

It follows that small perturbations of Ω that retain L ≤ 1 on the boundary also
preserve ellipticity in the interior. Another corollary of Theorem 18.3.1 is that there
are no smooth flows that are sonic on an open set.

Since sonic regions must be “thin”, it is reasonable to conjecture that, in generic
flows, the interface between a subsonic and a supersonic region is a curve. This curve
may be a transonic shock across which density and velocity jump, in accordance with
(18.3.15), (18.3.16). Alternatively, the transition from a subsonic to a supersonic
region may occur continuously, across a sonic curve. In order to gain insight into
the latter situation, we investigate below the simplest setting in which a subsonic
region is interfaced with a supersonic region that is a constant state (ρ̄, v̄). Then, as
noted above, the interface will be an arc of the sonic circle with center at the point
v̄ and radius c̄ = c(ρ̄). Without loss of generality, we assume v̄ = 0, and express the
pseudopotential χ in polar coordinates (r,θ), with ξ1 = r cosθ , ξ2 = r sinθ . In the
supersonic region, r > c̄, we have χ = 1

2 r2. We are interested in the behavior of χ in
the vicinity of the sonic circle, on the subsonic side, r < c̄. The continuity of ρ and
v across the sonic circle implies that both χ and its gradient are continuous on the
sonic circle. The pertinent question is whether the gradient of χ is Lipschitz, or even
smoother, across the interface. For definiteness, we assume that the gas is ideal, with
adiabatic exponent γ > 1 and equations of state normalized by

(18.3.17) p(ρ) =
γ−1
γ

ργ , c2(ρ) = (γ−1)ργ−1. h(ρ) = ργ−1.

In polar coordinates, Equation (18.3.13) takes the form
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(18.3.18) [c2 − (χr − r)2]χrr − 2
r2 (χr − r)χθ χrθ +

1
r2 (c

2 − 1
r2 χ

2
θ )χθθ

+
c2

r
χr +

1
r3 (χr −2r)χ2

θ = 0.

So as to zero in into the transition of χ and its derivatives across the interface, we
introduce in (18.3.18) new variables s = c̄− r and w = χ− 1

2 r2, in the place of r and
χ . In view of the vanishing of w, wθ , wθθ , ws, wsθ and wsθθ at s = 0, comparison of

(18.3.19) [2s− (γ+1)ws]wss −ws = R,

with R = o(s). The reader may find the proof of this ansatz in the references cited
in Section 18.9, together with precise estimates on solutions. Here we shall take
R = o(s) for granted and just sketch the derivation of

(18.3.20) ws =
s

γ+1
+o(s),

which establishes that the transition of (ρ,v) across the sonic circle is Lipschitz, but
not C1, and also secures that the flow is subsonic, for s positive small.

Under the change of variable

(18.3.21) w =
z

γ+1
+

s2

γ+1
,

(18.3.19) yields

(18.3.22) zszss +3zs +2s = o(s),

which may be integrated to give

(18.3.23) z2
s +6z+2s2 = o(s2).

Notice that, for s positive small, z < 0, by (18.3.23), and zs �= 0, by (18.3.22).
Thus zs < 0. The transformation z = − 1

6 (ϖ
2 + 2)s2 reduces (18.3.23) to a sepa-

rable differential equation for ϖ , which readily yields ϖ = 1 + o(1) and thereby
z =− 1

2 s2 +o(s2), zs =−s+o(s), thus establishing (18.3.20).
Upon observing that w = s3/2 is a solution to the linear equation 2swss −ws = 0,

we realize that the nonlinear term wswss in (18.3.19) plays a pivotal role in securing
the Lipschitz continuity of ws at s = 0.

We close this section with the remark that the Euler equations (3.3.36), with
b = 0, also admit self-similar solutions ρ = ρ(ξ ), v = v(ξ ), which satisfy the system

(18.3.24)

⎧⎨⎩−ξ ·∇ρ+∇ · (ρv) = 0

−ξ ·∇(ρv)+∇ · (ρv⊗v)+∇p(ρ) = 0,

the anticipated orders of magnitude of the terms in (18.3.18) leads to the ansatz that,
for s positive small, this equation must reduce to
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or, in terms of the pseudovelocity u = v−ξ ,

(18.3.25)

⎧⎨⎩∇ · (ρu) =−2ρ

∇ · (ρu⊗u)+∇p(ρ) =−3ρu.

Again, the jump conditions for self-similar and for steady non-irrotational flow are
identical, with pseudovelocity, in the former, playing the role of velocity, in the latter.

It is often instructive and helpful to view the configuration of (ρ,v), in the self-
similar ξ -coordinates, as a snapshot of the actual flow, in the x-variables, taken at
t = 1.

We shall encounter applications of the above in the following three sections.

18.4 Supersonic Isentropic Gas Flow Past a Ramp

On the upper half of the x-y plane, consider the isentropic flow of a gas with up-
stream state (ρ f ,u f ,0), u f > 0, impinging on a solid ramp with foot at the origin and
slope tanω (see Figure 18.4.1). Equivalently, one may regard this configuration as
portraying the upper half of the (symmetric with respect to the x-axis) gas flow past
a solid wedge with vertex angle 2ω .

We examine the feasibility of steady flow with the wave pattern depicted in Fig-
ure 18.4.1, namely two constant states (ρ f ,u f ,0) and (ρb,ub,vb) joined by a 3-shock
with slope s > tanω . For that purpose, (ρ f ,u f ,0) need be supersonic, and (ub,vb)
should lie on the shock polar of (ρ f ,u f ,0) and must satisfy the boundary conditions
imposed by the solid ramp, i.e., vb = ub tanω , so that the normal velocity component
vanishes on the ramp. Referring to Figure 18.2.1, we identify the angle ω0 such that
the number of wave configurations satisfying the above specifications is none when
ω > ω0 , one if ω = ω0 , and two when ω < ω0 . In the last case, traditionally, the
shock with the higher strength is referred to as the strong shock and the shock with
the lower strength is called the weak shock. This should not be confused with the
usage of the term “weak” earlier in the book. Indeed, the weak shock, in the present
sense, can be quite strong.

Fig. 18.4.1 Fig. 18.4.2

The situation is exactly the same (albeit for different ω0) in the setting of irrota-
tional flow.
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The question of whether one or both of the strong and the weak shocks are phys-
ically admissible has been vigorously debated over the past sixty years, but has not
yet been settled in a definitive manner. On the basis of experimental and numerical
evidence or stability considerations, there are strong indications that it is the weak
shock solution that is physically admissible. Of course, there are different notions
of stability, and even the strong shock solution meets certain stability criteria. The
reader may find detailed information on these matters in the literature cited in Sec-
tion 18.9. Here, we shall attempt to provide just a taste of the ongoing discussion
by sketching two distinct approaches to the question of stability of the weak shock
solution.

It follows from the presentation in Section 18.2 that the back state (ρb,ub,vb) of
the weak shock solution will be supersonic when ω does not exceed a certain critical
value ωcr ∈ (0,ω0). It is this case that will be studied here.

The first test will be the stability of the supersonic weak shock solution under
perturbation of the geometry of the ramp. Accordingly, we deform the straight ramp
y = x tanω, x ≥ 0, so it becomes the curve y = g(x), x ≥ 0, where g is a C1 function
on [0,∞) such that g(0) = 0, g′(0) = tanω , and g′ has bounded variation on [0,∞) ;
see Figure 18.4.2. Our task is to determine a steady isentropic flow with prescribed
supersonic upstream state (ρ f ,u f ,0), u f > 0, which impinges on the above obstacle.
We assume ω ∈ (0,ωcr), so that when g(x) = x tanω , such a flow is determined by
the supersonic weak shock solution depicted in Figure 18.4.1.

18.4.1 Theorem. There are positive constants ε and a such that when

(18.4.1) TV[0,∞)g
′(·)< ε,

there exists a steady isentropic flow (ρ,u,v) past the ramp, i.e., defined on the domain
{(x,y) : 0 ≤ x < ∞ , g(x)≤ y < ∞}, and having the following structure:

(a) There is a Lipschitz curve y = σ(x) on [0,∞), with σ(0) = 0, σ ′(0+) = s, which
is a supersonic weak shock. The slope σ ′ of σ is a function of bounded variation
on [0,∞) and

(18.4.2) TV[0,∞)σ ′(·)≤ aTV[0,∞)g
′(·).

(18.4.3) v(x,g(x)) = g′(x)u(x,g(x)),

expressing that the velocity component normal to the rigid obstacle vanishes.

(b) On the domain {(x,y) : 0 ≤ x < ∞ , σ(x)< y < ∞}, (ρ,u,v) = (ρ f ,u f ,0).

(c) On the domain {(x,y) : 0 < x < ∞ , g(x)≤ y < σ(x)}, (ρ,u,v) is a BV solution
of (18.2.1), whose trace on the curve y = g(x) satisfies the boundary condition
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The total variation is small, controlled by the total variation of g′:

(18.4.4) TV[g(x),∞)(ρ(x, ·),u(x, ·),v(x, ·))≤ aTV[0,∞)g
′(·) ,

for every x ∈ (0,∞). Finally,

(18.4.5) lim
x→∞

v(x,y)
u(x,y)

= lim
x→∞

g′(x) ,

uniformly for y ∈ [g(x),σ(x)).

The lengthy and technical proof of the above proposition, which is found in the
references cited in Section 18.9, is constructive, employing an adaptation of the ran-
dom choice method to the present setting.

Our next task is to provide evidence that the steady supersonic weak shock solu-
tion is dynamically stable, in the sense that it describes the long-time behavior of an
unsteady flow, on the domain {(x,y) : 0 ≤ x < ∞, x tanω ≤ y < ∞}, with boundary
conditions

(18.4.6) (ρ,u,v)(0,y, t) = (ρ f ,u f ,0), 0 ≤ y < ∞ , 0 < t < ∞ ,

(18.4.7) v(x,x tanω, t) = u(x,x tanω, t) tanω, 0 < x < ∞ , 0 < t < ∞ ,

and initial condition

(18.4.8) (ρ,u,v)(x,y,0) = (ρ f ,u f ,0), 0 ≤ x < ∞ , x tanω < y < ∞ .

We will carry out the construction of a flow with the above specifications in the
realm of potential flow for an ideal gas with adiabatic exponent γ > 1 and equations
of state (18.3.17). The assumptions on the data are that (ρ f ,u f ,0), u f > 0, is a su-
personic state; and ω < ωcr , in which case the back state (ρb,ub,vb), vb/ub = tanω ,
of the weak steady shock with front state (ρ f ,u f ,0) is also supersonic. The desired
outcome will be that, as t → ∞ , this unsteady flow will converge to the steady flow
depicted in Figure 18.4.1.

Because of the geometry of the domain and the invariance of the assigned initial
and boundary data under coordinate stretching, the desired flow will be self-similar,
as discussed in Section 18.3, namely with ρ,u,v and the pseudopotential χ functions
of the two variables ξ = x/t and ζ = y/t. In particular, as explained in Section 18.3,
the steady supersonic shock joining the states (ρ f ,u f ,0) and (ρb,ub,vb) will appear
in the ξ -ζ plane as a straight line passing through the origin.

The corner effect will not be felt immediately at points far from the origin, and
thus in the short term the interaction between initial and boundary conditions on the
ramp will generate a reflected supersonic shock, with slope tanω , joining the front
state (ρ f ,u f ,0) with a state (ρd ,ud ,vd). The equation of this shock is in the form

(18.4.9) ζ = (ξ + �) tanω,
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Fig. 18.4.3

where � is a positive constant to be determined below. By the boundary condition
(18.4.7), the vector (ud ,vd) must be tangential to the shock, vd/ud = tanω . Fur-
thermore, this vector must coincide with the tangential component of (u f ,0), as the
tangential component of velocity is continuous across shocks. Thus

(18.4.10) ud = u f cos2ω, vd = u f sinω cosω,
√

u2
d +v2

d = u f cosω.

To determine the remaining parameters ρd and �, we appeal to the Rankine-Hugoniot
condition (18.3.15), which expresses mass conservation, and here reduces to

(18.4.11) �(ρd −ρ f ) = ρ f u f ,

and to (18.3.16), dictated by Bernoulli’s equation, which yields

(18.4.12) �u f sin2ω = ργ−1
d −ργ−1

f − 1
2

u2
f sin2ω.

Combining (18.4.11) with (18.4.12), we derive the equation

(18.4.13)

(
ργ−1

d −ργ−1
f

)
(ρd −ρ f )

ρd +ρ f
=

1
2

u2
f sin2ω,

which admits a unique solution ρd satisfying the admissibility condition ρd > ρ f .
Finally, � is determined by (18.4.11).

The notion of the sonic circle was introduced in Section 18.3. The sonic circle of
the state (ρb,ub,vb) is centered at the point (ub,vb), which lies on the ramp, and has

radius
√
γ−1ρ

γ−1
2

b . Since (ρb,ub,vb) is supersonic, the origin ξ = ζ = 0 lies outside
this circle, but the steady shock ζ = sξ is intersected by the circle at two points, of
which the one closest to the origin will be denoted by (ξL,ζL). Similarly, the sonic
circle of the state (ρd ,ud ,vd), which is centered at the point (ud ,vd), also lying on

the ramp, and has radius
√
γ−1ρ

γ−1
2

d , intersects the shock ζ = (ξ + �) tanω at two
points, of which the more distant from the origin will be denoted by (ξR,ζR).

18.4.2 Theorem. Under the above assumptions, there exists a piecewise smooth,
self-similar flow (ρ,u,v), with configuration depicted in Figure 18.4.3, having the
following structure:
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(a) It contains a single shock ζ = σ(ξ ), with σ ∈ C1[0,∞). For 0 < ξ < ξL , the
shock is stationary supersonic, σ (ξ ) = sξ , joining (ρ f ,u f ,0) with (ρb,ub,vb);
for ξL < ξ < ξR , the shock is transonic; for ξR < ξ < ∞ , the shock is super-
sonic, σ(ξ ) = (ξ + �) tanω , moving with speed � sinω and joining (ρ f ,u f ,0)
with (ρd ,ud ,vd). On (ξL , ξR), σ is C3 and convex.

(b) The domain ahead of the shock is the constant state (ρ f ,u f ,0).
(c) The domain behind the stationary supersonic part of the shock, lying outside the

sonic circle of (ρb,ub,vb), is the constant state (ρb,ub,vb).
(d) The domain behind the moving supersonic part of the shock, lying outside the

sonic circle of (ρd ,ud ,vd), is the constant state (ρd ,ud ,vd).
(e) In the domain behind the transonic part of the shock, bordered on the left by

the sonic circle of (ρb,ub,vb) and on the right by the sonic circle of (ρd ,ud ,vd),
(ρ,u,v) are smooth functions, with (u,v) derived from a smooth pseudopoten-
tial χ:

(18.4.14) u = χξ +ξ , v = χζ +ζ ,

satisfying the partial differential equation

(18.4.15)

∇ ·
[(

ργ−1
0 −χ− 1

2
|∇χ|2

) 1
γ−1

∇χ

]
+2

(
ργ−1

0 −χ− 1
2
|∇χ|2

) 1
γ−1

= 0,

which is of elliptic type.

The construction of the density and velocity fields in the hyperbolic regime has
been expounded above. It is then easy to determine the pseudopotential χ , with the
help of (18.3.9). The constant is chosen so that χ is continuous across shocks. In
particular, in the domain ahead of the shock,

(18.4.16) χ = u f ξ − 1
2
(ξ 2 +ζ 2).

Then, in the domain behind the stationary part of the shock, outside the sonic circle
of (ρb,ub,vb),

(18.4.17) χ = ubξ +vbζ − 1
2
(ξ 2 +ζ 2).

Finally, in the domain behind the moving supersonic part of the shock, outside the
sonic circle of (ρd ,ud ,vd), by virtue of (18.4.9) and (18.4.10),

(18.4.18) χ = udξ +vdζ − 1
2
(ξ 2 +ζ 2)− 1

2
�u f sin2ω.

What remains to be done is the construction of χ in the elliptic regime, as solution
of the equation (18.4.15) subject to the following boundary conditions. Along the
ramp, ∂χ/∂ν = 0, so that the normal component of the velocity vanishes. Along the
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arcs of the two sonic circles, the values of χ and its first derivatives are prescribed
by the requirement of continuity of the velocity field across these curves. Finally,
the jump conditions (18.3.15) and (18.3.16) must hold across the shock. Solving this
problem is not an easy task. To begin with, the graph of the transonic part of the
shock over the interval (ξL , ξR) is not known in advance, but it is a free boundary
to be determined as part of the solution. Another major difficulty is that ellipticity
degenerates along the arcs of the sonic circles, and at the same time both Dirichlet
and Neuman boundary data are prescribed there. The hard and technical analysis
required in order to overcome these obstacles lies beyond the scope of this book.
The proof of Theorem 18.4.2 is found in the references cited in Section 18.9.

The supersonic region adjacent to the origin shrinks as ω increases, and vanishes
when ω = ωcr , in which case the transonic shock emanates from the foot of the
ramp. This configuration persists even as ω increases beyond ωcr , within the range
[ωcr , ω0). See the references in Section 18.9.

It is clear that the self-similar flow depicted in Figure 18.4.3, when transcribed to
the original variables (x,y, t), tends, as t → ∞ , to the steady flow depicted in Figure
18.4.1.

18.5 Regular Shock Reflection on a Wall

In the realm of two-dimensional potential flow for an ideal gas with equation of state
(18.3.17), we consider here a shock colliding with a wall and undergoing regular
reflection, i.e., the reflected shock emanates from the point of contact of the incident
shock with the wall.

Fig. 18.5.1

We choose coordinates so that the incident shock stays parallel to the y-axis, and
is moving along the x-axis in the direction of increasing x. The rigid wall is repre-
sented by the line y = x tanω , for some angle ω ∈ (0, π2 ]. The incident shock joins
states (ρ f ,u f ,0), on the left, and (ρd ,0,0), on the right, and at t = 0 is located along
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the y-axis. Because of the geometry and the scale invariance of the data, the flow will
be self-similar, as explained in Section 18.3, with ρ,u,v and the pseudopotential χ
functions of the two variables ξ = x/t, ζ = y/t.

We begin with the simplest case of normal reflection, i.e., ω = π/2. In the ab-
sence of the wall, the incident shock would have advanced in the x-direction, and at
time t = 1 would occupy the coordinate line x = �, for some � > 0. Thus, in the ξ -ζ
plane the incident shock would be represented by the stationary line ξ = �.

We can determine �, together with the required relation between ρ f , u f and ud ,
by appealing to the jump conditions (18.3.14) and (18.3.15), which here reduce to

(18.5.1) �(ρ f −ρd) = ρ f u f ,

(18.5.2) �u f = ργ−1
f −ργ−1

d +
1
2

u2
f .

Combining these equations yields

(18.5.3)
(ργ−1

f −ργ−1
d )(ρ f −ρd)

ρ f +ρd
=

1
2

u2
f ,

whence one determines uniquely ρd < ρ f . Then � is obtained from (18.5.1), in terms
of u f and ρ f .

Because of the wall, at t = 0 the incident shock will be reflected as another shock,
which will also stay parallel to the y-axis, but it will be moving along the x-axis in
the direction of decreasing x. In the ξ -ζ plane, this shock will be represented by a
coordinate line ξ = �̄, for some �̄ < 0. The front state of the reflected shock will be
(ρ f ,u f ,0) and the back state (ρb,ub,vb). The normal velocity component on the wall
must vanish, and so ub = 0. Furthermore, the tangential velocity component must be
continuous across the shock, which implies vb = 0. The remaining parameters ρb and
�̄ are determined with the help of the jump conditions (18.3.15) and (18.3.16), which
now take the form

(18.5.4) �̄(ρ f −ρb) = ρ f u f ,

(18.5.5) �̄u f = ργ−1
f −ργ−1

b +
1
2

u2
f .

Combining (18.5.4) and (18.5.5) yields

(18.5.6)
(ργ−1

f −ργ−1
b )(ρ f −ρb)

ρ f +ρb
=

1
2

u2
f ,

which determines uniquely ρb > ρ f . Then �̄ is computed from (18.5.4).
An easy estimation verifies that, for any γ > 1,
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(18.5.7) |�̄|< c(ρb) =
√
γ−1ρ

γ−1
2

b ,

which implies that the shock intersects the sonic circle of the state (ρb,0,0), as de-
picted in Figure 18.5.1. Thus, part of the reflected shock is supersonic and part is
transonic.

We now turn to the case of oblique reflection, i.e., ω < π/2. On the ξ -ζ plane,
the incident shock will make contact with the wall at a point (�,� tanω) and will lie
on the coordinate line ξ = �. One determines �, together with the needed relation
between ρ f , u f and ρd , exactly as above, by employing the jump conditions (18.5.1)
and (18.5.2), then passing to (18.5.3), etc.

Fig. 18.5.2

For regular reflection to occur, it is necessary to fit a shock emanating from the
point (�,� tanω), having slope say tanθ , θ <ω , and joining the front state (ρ f ,u f ,0)
with some back state (ρb,ub,vb), with ρb > ρ f ; see Figure 18.5.2. The required
conditions on the velocity field (ub,vb) are

(18.5.8) vb −ub tanω = 0,

so that the normal velocity on the wall vanishes, and

(18.5.9) ub +vb tanθ = u f ,

in order to meet the requirement that the tangential component of the velocity be
continuous across the shock. The above two equations yield

(18.5.10) ub =
1

1+ tanω tanθ
u f , vb =

tanω
1+ tanω tanθ

u f .

To determine the remaining parameters ρb and θ , we appeal to the jump conditions
(18.3.15) and (18.3.16), which here reduce to

(18.5.11) �(ρb −ρ f ) =
tanθ

tanω− tanθ
ρ f u f +

vb −ub tanθ
tanω− tanθ

ρb ,
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(18.5.12)
1
2

u2
b +

1
2

v2
b − �(ub +vb tanω) = ργ−1

f −ργ−1
b +

1
2

u2
f − �u f .

Substituting ub and vb from (18.5.10) into (18.5.11), (18.5.12), and then eliminating
ρb between the resulting two equations, yields a single equation for the unknown
slope tanθ . As follows from the discussion in Section 18.2, this equation will have a
solution, with tanθ < tanω , so long as ωd ≤ω < π/2, for some ωd ∈ (0, 1

2π) termed
the detachment angle. Two distinct states (ρb,ub,vb) may then be determined from
tanθ with the help of (18.5.10) and (18.5.11), one joined to (ρ f ,u f ,0) by a strong
shock, the other by a weak shock. As noted in Section 18.4, the strong shock is not
observed in experiments, so here we shall retain only the weak shock. In fact, as
ω → π/2, it is the wave pattern generated by the weak shock that converges to the
wave pattern for normal reflection, described above.

For ω near π/2, the resulting wave pattern is depicted in Fig. 18.5.2. We observe
that the sonic circle of the state (ρb,ub,vb), which is centered at the point (ub,vb)
of the wall and has radius c(ρb), intersects the reflected shock, so that this shock
is partly supersonic and partly transonic. However, the contact point (�,� tanω) lies
outside the sonic circle, so that the collision is supersonic. This pattern persists so
long as ωs <ω < π/2, for some ωs ∈ (ωd ,

1
2π), which is termed the sonic angle. For

ω ∈ (ωd ,ωs), (�,� tanω) lies inside the sonic circle so that the reflection is transonic.
Regular reflection is impossible when ω < ωd . Numerical and experimental evi-

dence indicates that under such conditions the point of reflection gets detached from
the wall, albeit it stays connected to it by a complex wave pattern called a Mach
stem. Despite extensive studies of this phenomenon, called Mach reflection, a rig-
orous definitive analytic theory is still lacking. Vortex sheets play an important role
in the structure of Mach stems and thus potential flow does not seem to provide the
proper framework for such a theory.

18.6 Shock Collision with a Ramp

In the realm of two-dimensional potential gas flow for an ideal gas with equations of
state (18.3.17), we will examine here the collision of a shock with a solid ramp. On
the upper half of the x-y plane, the foot of the ramp is located at the origin and its
slope is tanω . The shock is parallel to the y-axis and is moving from left to right. At
time zero, it lies on the y-axis. On its left, x < 0, the gas has constant density ρ f and
constant velocity (u f ,0), with u f > 0. On its right, x > 0, over the ramp, the gas has
constant density ρd , with ρd < ρ f , and is at rest, i.e., ud = vd = 0. Equivalently, one
may regard this configuration as portraying the upper half of the collision of a shock
with a wedge, the vertex angle being 2ω .

We thus seek some potential flow (ρ,u,v), that is defined on the domain
{(x,y) : x < 0, 0 ≤ y < ∞}∪ {(x,y) : x ≥ 0, x tanω ≤ y < ∞}, and admits bound-
ary conditions

(18.6.1) v(x,0, t) = 0, −∞ < x < 0, 0 < t < ∞ ,
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(18.6.2) v(x,x tanω, t) = u(x,x tanω, t) tanω, 0 ≤ x < ∞ , 0 < t < ∞ ,

and the initial condition

(18.6.3) (ρ,u,v)(x,y,0) =

⎧⎨⎩ (ρ f ,u f ,0) −∞ < x < 0, 0 ≤ y < ∞

(ρd ,0,0) 0 ≤ x < ∞ , x tanω ≤ y < ∞ ,

where the states (ρ f ,u f ,0) and (ρd ,0,0), with u f > 0 and ρ f > ρd , are joined by an
admissible shock.

Because of the geometry of the domain and the scale invariance of the data, the
solution to the above problem will be self-similar, so that ρ,u,v, and the pseudopo-
tential χ may be realized as functions of the two variables ξ = x/t and ζ = y/t on
{(ξ ,ζ ) : ξ < 0, 0 ≤ ζ < ∞}∪{(ξ ,ζ ) : ξ ≥ 0, ξ tanω ≤ ζ < ∞}.

Fig. 18.6.1

On the ξ -ζ plane, the incoming shock will make contact with the ramp at a
point (�,� tanω). The solution in the vicinity of that point will not be affected by
the boundary data on the left of the foot of the ramp, i.e., for ξ < 0. Thus, under
the assumption that ω > ωd , where ωd is the detachment angle identified in Section
18.5, the incoming shock will undergo regular reflection at (�,� tanω). In particular,
� and the necessary relation between ρ f , u f and ρd will again be determined through
(18.5.1) and (18.5.3). The reflected shock will emanate from (�,� tanω), will have
slope tanθ , and will join the front state (ρ f ,u f ,0) with a back state (ρb,ub,vb),
determined through (18.5.10), (18.5.11) and (18.5.12).

Let us consider the case ω > ωs , where ωs is the sonic angle identified in
Section 18.5. Then the point (�,� tanω) lies outside the sonic circle of the state
(ρb,ub,vb), which is centered at the point (ub,vb) of the ramp and has radius

c(ρb) =
√
γ−1ρ

γ−1
2

b . Thus, initially the reflected shock will be supersonic and will
retain its constant slope up until it crosses into the above sonic circle. Furthermore,
the domain bordered from the left by the sonic circle, from the top by the reflected
shock, and from the bottom by the ramp will be the constant state (ρb,ub,vb).

The pseudopotential χ on the constant states of the solution will be determined
by (18.3.9), with the constant chosen so as to ensure continuity across shocks. Thus,
on the constant state (ρd ,0,0),
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(18.6.4) χ =−1
2
(ξ 2 +ζ 2),

on the constant state (ρ f ,u f ,0),

(18.6.5) χ = u f (ξ − �)− 1
2
(ξ 2 +ζ 2),

and on the constant state (ρb,ub,vb),

(18.6.6) χ = ubξ +vbζ − 1
2
(ξ 2 +ζ 2)− 1+ tan2ω

1+ tanω tanθ
�u f .

After crossing the sonic circle of (ρb,ub,vb), at a point (ξs ,ζs), the reflected
shock is diffracted, as it is subjected to the influence of the boundary condition
v(ξ ,0) = 0, ξ < 0, which induces it to become concave. It can be shown that if
u f ≤ c(ρ f ), as is the case when the incident shock is relatively weak, the diffracted
shock eventually hits the ξ -axis at a right angle, at a point (ξ0 ,0), with ξ0 < 0,
as depicted in Figure 18.6.1. To verify this shock configuration, and complete the
construction of the flow, one has to determine the pseudopotential χ in the do-
main, marked as Ω in Figure 18.6.1, which is bordered from below by the semi-
axis ξ < 0 and the ramp, and from above by the reflected shock and the sonic circle
of (ρb,ub,vb). This is effected by solving the partial differential equation (18.4.15),
which is elliptic on Ω , under the following boundary conditions. Along the bottom
part of the boundary, ∂χ/∂ν = 0, as required by (18.6.1) and (18.6.2). Along the
arc of the sonic circle, χξ = ud − ξ and χζ = vd − ζ , in order to ensure continu-
ity of the velocity field across this curve. Finally, the jump conditions (18.3.15) and
(18.3.16) must hold across the shock. This problem exhibits the difficulties already
encountered in Section 18.4: first, that the graph of the transonic shock is not known
in advance, since it is a free boundary to be determined as part of the solution, and
second that both Dirichlet and Neuman data are prescribed on the sonic circle, on
which ellipticity degenerates. Overcoming these obstacles requires hard and techni-
cal analysis, which lies beyond the scope of this book and is found in the references
cited in Section 18.9. The conclusions are summarized in the following

18.6.1 Theorem. Under the assumptions ω > ωs and u f ≤ c(ρ f ), there exists
a piecewise smooth, self-similar potential flow (ρ,u,v) with boundary conditions
(18.6.1), (18.6.2) and initial condition (18.6.3). Its configuration, depicted in Figure
18.6.1, exhibits the following features:

(a) The incident shock, joining (ρ f ,u f ,0) with (ρd ,0,0), undergoes regular reflec-
tion at a point (�,� tanω) on the ramp.

(b) The reflected shock ζ = σ(ξ ) emanates from (�,� tanω) and terminates at a
point (ξ0,0) of the ξ -axis. It is supersonic, σ(ξ ) = � tanω +(ξ − �) tanθ , for
ξs < ξ < �, joining (ρ f ,u f ,0) with (ρb,ub,vb); and transonic for ξ0 < ξ < ξs .
Furthermore, σ is C2 at ξs and C∞ on (ξ0,ξs).

(c) The domain ahead of the incident shock is the constant state (ρd ,0,0).
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(d) The domain behind the incident shock but ahead of the reflected shock is the
constant state (ρ f ,u f ,0).

(e) The domain behind the supersonic part of the reflected shock, lying outsie the
sonic circle of (ρb,ub,vb), is the constant state (ρb,ub,vb).

(f) In the domain Ω , behind the transonic part of the reflected shock, bordered on
the right by the sonic circle of (ρb,ub,vb), (ρ,u,v) is C∞, with (u,v) derived
through (18.4.15) from a C∞ pseudopotential χ , which satisfies the elliptic equa-
tion (18.4.16).

(g) (ρ,u,v) is Lipschitz across the arc of the sonic circle of (ρb,ub,vb) that borders
Ω .

The situation where one or both of the assumptions ω > ωs and u f ≤ c(ρ f ) are
violated is discussed in the references cited in Section 18.9. It is shown that when
ω ∈ [ωd ,ωs], but still u f ≤ c(ρ f ), the reflection at the point (�,� tanω) becomes
transonic and one ends up with the same configuration depicted in Figure 18.6.1,
except that now the points (ξs ,ζs) and (�,� tanω) coalesce so that the reflected shock
stays transonic all along its track, and the entire region Ω , now bordered from below
by the semi-axis ξ < 0 and the ramp, and from above by the reflected shock, is
subsonic.

The above description still applies when u f > c(ρ f ), but only as long as ω ex-
ceeds a certain critical angle ωc ∈ [ωd ,

1
2π). As ω approaches the value ωc , the point

(ξ0 ,0) in the Figure 18.6.1 moves closer to the origin (0,0) and merges with it when
ω = ωc , in which case the reflected shock becomes attached to the foot of the ramp.

18.7 Isometric Immersions

Differential geometry is another rich source for systems of balance laws of mixed,
elliptic-hyperbolic type. Here we consider the classical problem of isometric embed-
ding of a two-dimensional Riemannian manifold in R3.

Consider a two-dimensional manifold Ω ⊂ R2 equipped with a smooth Rieman-
nian metric [gi j]. The inverse matrix of [gi j] is denoted by [gkl ] and |g| stands for
det [gi j]. We employ standard notation from differential geometry, including the sum-
mation convention.

The metric induces the Christoffel symbols

(18.7.1) Γ k
i j =

1
2

gkl(∂ jgil +∂ig jl −∂lgi j),

and thence the curvature tensor

(18.7.2) Ri jkl = glm(∂kΓ m
i j −∂ jΓ m

ik +Γ n
i jΓ

m
nk −Γ n

ikΓ
m

n j )

and the Gauss curvature

(18.7.3) κ =
R1212

|g| .
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An immersion r of the manifold in R3 will preserve the first fundamental form
I = gi jdxidx j, i.e.

(18.7.4) ∂ir ·∂ jr = gi j , i, j = 1,2,

if the second fundamental form II = hi jdxidx j satisfies the classical Gauss-Codazzi
equations. For convenience we relabel (x1,x2) as (x,y) and rescale the hi j by

(18.7.5) L =
h11√|g| , M =

h12√|g| , N =
h22√|g| ,

in which case the Gauss-Codazzi equations assume the form

(18.7.6)

⎧⎨⎩ ∂xN −∂yM =−Γ 1
22L+2Γ 1

12M−Γ 1
11N

∂xM−∂yL = Γ 2
22L−2Γ 2

12M+Γ 2
11N,

(18.7.7) LN −M2 = κ.

The immersion is termed regular or singular, depending on whether the asso-
ciated (L,M,N) is a Lipschitz continuous classical solution or a merely bounded
measurable weak solution of the system (18.7.6), (18.7.7). Here we operate in the
realm of singular immersions.

A crucial observation is that the L∞ weak∗ limit of a sequence of weak solu-
tions of (18.7.6), (18.7.7) is itself a weak solution, as follows from the div-curl
lemma (Theorem 17.2.1) upon realizing the left-hand sides of (18.7.6)1 , (18.7.6)2
and (18.7.7), respectively, as div(N,−M), curl(L,M) and (N,−M) · (L,M). This
paves the way for treating the system by the method of compensated compactness.

From the standpoint of the theory of conservation laws, one may realize (18.7.6)
as a system of balance laws that can be closed by prescribing “constitutive equations”

(18.7.8) L = ρv2 + p(ρ), M =−ρuv, N = ρu2 + p(ρ),

in which case (18.7.6) assumes the form

(18.7.9)

⎧⎨⎩ ∂x(ρu2 + p(ρ))+∂y(ρuv) = X

∂x(ρuv)+∂y(ρv2 + p(ρ)) = Y,

where

(18.7.10)

⎧⎨⎩X =−(ρv2 + p)Γ 1
22 −2ρuvΓ 1

12 − (ρu2 + p)Γ 1
11

Y =−(ρv2 + p)Γ 2
22 −2ρuvΓ 2

12 − (ρu2 + p)Γ 2
11 .

for L, M and N, subject to the compatibility constraint (18.7.7). To that end, we select
a state vector (ρ,u,v), together with a monotone function p(ρ), and set
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Thus (18.7.6) reduces to the equations of balance of momentum for the isentropic
steady irrotational planar flow of a gas with equation of state p(ρ). Indeed, (18.7.9)
are akin to (18.2.1)2,3 , with (X ,Y ) playing the role of body force.

For equation of state we select

(18.7.11) p(ρ) =− 1
ρ
,

which represents a gas of Chaplygin type (2.5.23). In order to satisfy (18.7.7), by
virtue of (18.7.8) and (18.7.11),

(18.7.12) −q2 +
1
ρ2 = κ, q2 = u2 +v2.

The enthalpy for a gas with equation of state (18.7.11) is − 1
2ρ2 , whence (18.7.12)

may be regarded as the Bernoulli equation, akin to (18.2.14), albeit with a “body
force” 1

2 gradκ .
To complete the analogy between isometric immersion and gas flow, we derive

the balance laws for mass and vorticity induced by (18.7.9) and (18.7.12). By com-
bining these equations one gets

(18.7.13)

⎧⎨⎩u[∂x(ρu)+∂y(ρv)]−ρv[∂xv−∂yu] = 1
2ρ∂xκ+X

v[∂x(ρu)+∂y(ρv)]+ρu[∂xv−∂yu] = 1
2ρ∂yκ+Y,

whence

(18.7.14) ∂x(ρu)+∂y(ρv) =
ρu
2q2 ∂xκ+

ρv
2q2 ∂yκ+

u
q2 X +

v
q2 Y,

(18.7.15) ∂xv−∂yu =− v
2q2 ∂xκ+

u
2q2 ∂yκ− v

ρq2 X +
u
ρq2 Y,

to be compared with (18.2.1)2 and (18.2.12).
Notice that the transformation (ρ,u,v) �→ (L,M,N) is invertible:

(18.7.16) u2 =−p(N − p), v2 =−p(L− p), M2 = (N − p)(L− p).

Indeed, the third equality in (18.7.16) determines p, and thereby also ρ =−1/p , as
functions of (L,M,N), and subsequently the first two equalities in (18.7.16) express
u and v likewise as functions of (L,M,N).

The squared sonic speed in a gas with equation of state (18.7.11) is c2(ρ)= 1/ρ2,
so that the flow is subsonic where κ > 0 and supersonic where κ < 0. By (18.7.11)
and (18.7.12),

(18.7.17) ρ =
1√

q2 +κ
, p =−

√
q2 +κ .
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In the sequel, we shall be tacitly assuming that ρ and p, as functions of q, have been
substituted into (18.7.9), (18.7.14) and (18.7.15), so these equations now involve just
two unknowns, namely u and v.

In the realm of regular isometric immersions, (18.7.9) is equivalent to (18.7.14),
(18.7.15), and either of these systems may be employed for determining the im-
mersion. However, this is not the case for singular isometric immersions, in which
(18.7.9) still hold, but (18.7.14) and (18.7.15) are not necessarily valid. The above
should be compared and contrasted with the setting, in Section 18.2, for isentropic
steady irrotational planar gas flow, where all of (18.2.1), (18.2.12) and (18.2.14) are
satisfied in smooth flows, whereas, by common practice, (18.2.1)1 , (18.2.12) and
(18.2.14) are retained but (18.2.1)2,3 are abandoned, for flows containing shocks.

The system (18.7.9) – and thus its equivalent system (18.7.14), (18.7.15) – is
elliptic when the flow is subsonic, i.e. κ > 0, hyperbolic when the flow is supersonic,
i.e. κ < 0, and of mixed elliptic-hyperbolic type when the Gauss curvature changes
sign in Ω .

Viewing y as the “time” variable, the task is to establish the existence of an L∞(Ω)
weak solution (u,v) to the Cauchy problem for the hyperbolic system (18.7.9), with
prescribed initial data on the x-axis. To that end, we employ the vanishing viscosity
method, by considering the parabolic system

(18.7.18)

⎧⎨⎩
∂x(ρu2 + p)+∂y(ρuv) = ε∂ 2

y (ρu)+X

∂x(ρuv)+∂y(ρv2 + p) = ε∂ 2
y (ρv)+Y,

with ε a positive parameter that eventually goes to zero. The aim is to show that, un-
der the prescribed initial data, the Cauchy problem for (18.7.18) possesses a classical
solution (uε ,vε) on Ω , which is bounded in L∞(Ω), uniformly for ε > 0. Once this
is achieved, (uε ,vε) generates, through (18.7.7) and (18.7.8), functions (Lε ,Mε ,Nε),
likewise bounded in L∞(Ω), uniformly for ε > 0. One may thus extract a sequence
{εn}, with εn → 0, as n → ∞ , such that {(Lεn ,Mεn ,Nεn)} converges in L∞(Ω) weak∗
to functions (L,M,N) on Ω . By retracing the steps taken earlier for establishing,
with the help of the div-curl lemma, the sequential compactness, in L∞ weak∗, of
solutions to the system (18.7.6), (18.7.7), one readily shows that (L,M,N) satisfies
(18.7.6), (18.7.7) and thereby induces the desired singular isometric immersion of
the manifold into R3. Finally, in order to pursue the analogy between isometric im-
mersion and gas flow to its completion, one derives from (L,M,N), via (18.7.16),
L∞(Ω) functions (u,v) that solve the Cauchy problem for the system (18.7.9).

Clearly, the success of the program outlined above hinges on showing that so-
lutions to the Cauchy problem for the parabolic system (18.7.18) are bounded uni-

Here we focus on the hyperbolic case, assuming henceforth that κ < 0, and
in particular, without essential loss of generality, that κ = −1 (in the general case
where κ is not constant, L, M and N must be renormalized as L/

√−κ , M/
√−κ and

N/
√−κ ).
What follows is a sketchy outline of a program aiming at constructing singular

isometric immersions for the case Ω is {(x,y) : −∞ < x < ∞ , 0 < y < ∞}. The
details are found in the literature cited in Section 18.9.
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formly in ε > 0. It turns out that it is more efficient to address this question in the
context of the equivalent system

(18.7.19) ∂x(ρu)+∂y(ρv) = ε
u
q2 ∂

2
y (ρu)+ ε

v
q2 ∂

2
y (ρv)+

u
q2 X +

v
q2 Y,

(18.7.20) ∂xv−∂yu =−ε v
ρq2 ∂

2
y (ρu)+ ε

u
ρq2 ∂

2
y (ρv)− v

ρq2 X +
u
ρq2 Y,

which is obtained from (18.7.18) by retracing the steps taken above for deriving
(18.7.14) and (18.7.15) from (18.7.9). The construction of solutions that are bounded
uniformly in ε > 0 is achieved by locating a bounded invariant region for the system,
independent of ε , and selecting initial data residing in that region.

The expectation is that invariant regions for the parabolic system (18.7.19),
(18.7.20) will be bordered by level curves of Riemann invariants of the parent hyper-
bolic system (18.7.14), (18.7.15). After a lengthy calculation, in polar coordinates
u = qcosθ , v = qsinθ , one shows that

(18.7.21) z = θ − arccos(
1
q
), w = θ + arccos(

1
q
)

are Riemann invariants of (18.7.14), (18.7.15). In particular,

(18.7.22)

⎧⎨⎩ucosz+vsinz = 1

ucosw+vsinw = 1,

which imply that the level curves of both z and w are straight lines on the u-v plane,
so that prospective invariant regions for the system (18.7.19), (18.7.20) should be
diamond-shaped. Indeed, a technical construction of invariant regions with the above
specifications is carried out in the references cited in Section 18.9, under certain
assumptions on the metric [gi j], which apply, for instance, to the catenoid.

18.8 Cavitation in Elastodynamics

This section serves a dual purpose: it demonstrates that unbounded weak solutions
to hyperbolic systems of balance laws may exhibit a different kind of nonuniqueness
than what was encountered in earlier chapters of this book; and also shows that the
pathology attributable to the presence of vacuum is not peculiar to gas dynamics, as
it extends to elastodynamics of solids.

We consider the Cauchy problem for the system (3.3.19) of isentropic thermoe-
lasticity, in the absence of body force, b = 0, with initial data

(18.8.1) F(x,0) = λ I, v(x,0) = 0, x ∈ R3,
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where λ is a positive constant. It admits the steady solution F(x, t) = λ I, v(x, t) = 0,
for x ∈ R3, t ≥ 0, associated with the placement χ(x, t) = λx of the elastic body.
Furthermore, Theorem 5.3.3 asserts that when the Piola-Kirchhoff stress S derives,
via (3.3.20), from a rank-one convex internal energy function ε , the above solution is
unique within the class of weak solutions with small local oscillation that satisfy the
entropy inequality (3.3.21). However, as we shall see here, if the restriction that weak
solutions must be L∞ functions is lifted, there exist additional solutions satisfying the
entropy inequality.

We consider the case where the elastic medium is an isotropic solid. The new
solutions to the Cauchy problem will be induced by self-similar motions in the form

(18.8.2) χ(x, t) =
φ(s)

s
x, s =

|x|
t

,

where φ is a Lipschitz function on [0,∞), which is smooth on the intervals [0,σ) and
(σ ,∞), for some σ > 0, and

(18.8.3) φ(s)> 0, φ̇(s)> 0, φ̈(s)> 0, 0 < s < σ ,

(18.8.4) φ̇(σ−) = μ < λ ,

(18.8.5) φ(s) = λ s, σ ≤ s < ∞ .

Thus, in the Lagrangian realization of χ , the body remains in a rest state in the
region |x| > σt, which is bordered by a precursor spherical shock with radius σt
growing linearly in time. Behind the shock, in the region 0 < |x| < σt, the material
undergoes a smooth deformation. However, along the line x = 0 there is a singularity
analogous to the delta shock encountered in Section 9.6. In the Eulerian realization of
χ , the singular line represents a spherical cavity, which opens at the origin at t = 0,
and expands as its radius φ(0)t grows linearly in time. We require that the cavity
emerge spontaneously and be self-equilibrated, so that the free boundary of the body
is stress-free: the radial component of the Cauchy stress vanishes on it.

The deformation gradient field and the velocity field generated by the motion
(18.8.2) are

(18.8.6) F =
φ(s)

s
I −

[
φ(s)

s
− φ̇(s)

]
1
|x|2 xx�,

(18.8.7) v =

[
φ(s)

s
− φ̇(s)

]
1
t

x.

The aim is to construct φ such that (18.8.6), (18.8.7) provide a solution to (3.3.19),
(18.8.1).

We first note that (F,v) satisfies (3.3.19)1 , in the sense of distributions. Indeed,
(3.3.19)1 holds pointwise for 0 < |x| < σt and for σt < |x| < ∞ . Furthermore, the
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jump condition (3.3.22)1 across the surface |x| = σt is satisfied as a direct conse-
quence of the continuity of χ . Finally, the term 1/s, which is singular at x = 0, does
not cause any problem, since it is locally integrable.

We now turn to the equation (3.3.19)2 , which expresses the balance of momen-
tum. As discussed in Section 2.5, the internal energy ε , at constant entropy, for any
isotropic thermoelastic solid is a symmetric function

(18.8.8) ε =Φ(λ1,λ2,λ3)

of the eigenvalues of the right stretch tensor U , defined by (2.1.7). Here F is positive
symmetric, so that U = F and

(18.8.9) λ1 = φ̇(s), λ2 =
φ(s)

s
, λ3 =

φ(s)
s

.

For convenience, we employ the notation Φi ,Φi j , . . . for the functions ∂Φ/∂λi ,
∂ 2Φ/∂λi∂λ j , etc. Furthermore, we denote by Φ̂ , Φ̂i , Φ̂i j the functions of s resulting
from taking the composition of Φ ,Φi ,Φi j with (18.8.9).

From (3.3.20) and (18.8.8), after a lengthy calculation,

(18.8.10) S = Φ̂1(s)
[

1
|x|2 xx�

]
+ Φ̂2(s)

[
I − 1

|x|2 xx�
]
.

Then (3.3.19)2 will hold in the sense of distributions so long as it is satisfied point-
wise for 0 < |x| < σt and the jump condition (3.3.22)2 holds across the surface
|x|= σt. By virtue of (18.8.7) and (18.8.10), these conditions here reduce to

(18.8.11)
1
2
[
Φ̂11(s)− s2]sφ̈(s) = Φ̂2(s)− Φ̂1(s)+

[
φ(s)

s
− φ̇(s)

]
Φ̂12(s),

for 0 < s < σ , and

(18.8.12) σ2 =
Φ1(λ ,λ ,λ )−Φ1(μ,λ ,λ )

λ −μ
.

We will construct φ with the above specifications under the assumption

(18.8.13) Φ(λ1,λ2,λ3) =
3

∑
i=1

g(λi)+h(λ1λ2λ3),

with g and h smooth functions on (0,∞) satisfying

(18.8.14) g′′(p)> 0, g′′′(p)< 0, 0 < p < ∞ ,

(18.8.15) h′′(b)> 0, h′′′(b)< 0, 0 < b < ∞ ,

(18.8.16) lim
p→∞

g′(p)
p

= γ ≥ 0,
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(18.8.17) h′(b)→−∞ , as b → 0+ , h′(b)→ ∞ , as b → ∞ ,

whence it follows

(18.8.18) Φ11(p,q,q)> 0, Φ111(p,q,q)< 0, 0 < p < ∞ , 0 < q < ∞ .

The above conditions are physically reasonable, modeling isotropic elastic solids
with polyconvex strain energy functions exhibiting material softening.

The stretching parameter λ will not be prescribed in advance but shall be deter-
mined in the course of the construction.

We seek a solution to the ordinary differential equation (18.8.11), with initial
conditions

(18.8.19) φ(0) = φ0 , lim
s→0+

φ̇(s)
[
φ(s)

s

]2

= a,

where φ0 is a free positive parameter, while a is fixed in such a way that the ra-
dial component of the Cauchy stress vanishes on the free boundary. A calculation
combining (2.3.6) with (18.8.10) yields that the above requirement is satisfied when
h′(a) = 0.

Elementary, though hard, analysis, recorded in the references cited in Section
18.9, establishes that (18.8.11), (18.8.19) admit a unique solution φ , on a maximal
interval [0, s̄), such that

(18.8.20) φ(s)> 0, φ̇(s)> 0, φ̈(s)> 0,
φ(s)

s
− φ̇(s)> 0, 0 < s < s̄.

Furthermore, there is a unique σ in the interval (0, s̄) such that (18.8.12) holds with
λ = φ(σ)/σ , μ = φ̇(σ). This completes the construction of the motion χ with the
aforementioned specifications.

The analysis also shows that by varying the parameter φ0 one may attain any
value of the stretching parameter λ above a critical value λcr .

We now turn to the admissibility of the constructed solution. By virtue of
(18.8.18), and since μ < λ ,

(18.8.21) Φ11(λ ,λ ,λ )< σ2 <Φ11(μ,λ ,λ ),

which verifies that the shock satisfies the Lax E-condition.
Next, we check the entropy shock admissibility condition (3.3.23), in its equiva-

lent form (3.3.24). A straightforward calculation, using (18.8.6), (18.8.8) and (18.8.10),
yields

(18.8.22) [[ε]]− tr
(

1
2
(S++S−)�[[F ]]

)

=Φ(λ ,λ ,λ )−Φ(μ,λ ,λ )− 1
2
(λ −μ)[Φ1(λ ,λ ,λ )+Φ1(μ,λ ,λ )].
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The right-hand side of the above equation is a function of μ that vanishes, together
with its first derivative, at μ = λ , while its second derivative − 1

2 (λ−μ)Φ111(μ,λ ,λ )
is nonnegative, on account of (18.8.18). We thus conclude that the shock also satisfies
the entropy admissibility condition (3.3.24).

Since both the steady solution and the solution with cavitation satisfy the Lax
E-condition and the entropy condition, the issue of nonuniqueness raised by the
existence of this new solution to the Cauchy problem (3.3.19), (18.8.1) cannot be
resolved by appealing to the standard admissibility criteria. We thus resort to com-
paring the rates of entropy production by these two solutions, in the spirit of the
discussion in Section 9.7.

The relative entropy of the new solution (F,v) with respect to the steady solution
(λ I,0) reads

(18.8.23) H = ε(F)+
1
2
|v|2 − ε(λ I)− tr

(
S(λ I)(F −λ I)�

)
.

Therefore, the relative entropy rate is

(18.8.24) Ḣ (t) =
∫
|x|<σt

∂tH(x, t)dx+σ
∫
|x|=σt

H(x, t)da.

After a straightforward calculation,

(18.8.25) Ḣ (t) =−4πσ3t2{Φ(λ ,λ ,λ )−Φ(μ,λ ,λ )

−1
2
(λ −μ)[Φ1(λ ,λ ,λ )+Φ1(μ,λ ,λ )]},

which is negative (compare with (18.8.22)). Thus the entropy rate criterion favors
the solution with cavitation over the steady solution. Of course, this argument does
not single out a unique solution, because one may generate infinitely many solutions
in which cavities open simultaneously at different points of the body. Thus one may
construct solutions with arbitrarily small entropy rate.

18.9 Notes

Early and more recent contributions to the solution of the Riemann problem for scalar
conservation laws in two space dimensions are found in Guckenheimer [2], Wagner
[1], Lindquist [1], Zhang and Zhang [1], Tong Zhang and Yuxi Zheng [1], Chen,
Li and Tan [1], and Xiaozhou Yang [1]. A detailed treatment, providing a complete
classification of solutions, is contained in the monographs by Chang and Hsiao [3],
Li, Zhang and Yang [1], and Yuxi Zheng [2].

Gas flow past ducts, nozzles or obstacles of various shapes, and its applications
to technology, have been studied for a long time by aerodynamicists, using ana-
lytical, numerical or experimental techniques. Background information, including
the setting of the equations of steady or self-similar planar irrotational gas flow,
recorded here in Sections 18.2, 18.3, and basic bibliography, can be found in any
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of the standard texts on theoretical aerodynamics, such as Courant and Friedrichs
[1], von Mises [1], Hayes and Probstein [1], and Ferrari and Tricomi [1]. A very use-
ful and reliable source is the survey article by Serre [24]. See also the commentary
by Serre [28] on von Neumann [5].

Rigorous analysis in the 1950s originally focused on subsonic irrotational flow,
where the equation satisfied by the pseudopotential is of elliptic type; see Shiffman
[1] and Bers [1]. Morawetz [1,2,3] pioneered research on transonic flow, in which
case the equation is of mixed type, elliptic-hyperbolic, degenerating on the sonic in-
terface. After a hiatus of thirty years of relative inactivity, there has been a revival
of interest in this area, buoyed up by advances in the theory of partial differential
equations of elliptic or hyperbolic type. Tai-Ping Liu [29] provides an interesting
historical account. For the state of the art in this ongoing research program, the
reader should consult the forthcoming monograph by Chen and Feldman [9]. For
an overview and perspectives, see Gui-Qiang Chen [12].

Because of the serious analytical difficulties encountered in treating the general
Euler equations, a substantial part of research is conducted in the simpler setting of ir-
rotational flow, or in the context of simplified systems that retain the salient features
of the actual Euler equations. Examples are the pressure gradient system, derived
from the Euler equations by deleting the nonlinear convective terms1; the pressure-
less Euler equations, in which the convective terms are retained but the pressure is
set equal to zero; and the so-called small disturbance equations, obtained through
heuristic asymptotic arguments. For details and a comprehensive bibliography, see
the book by Yuxi Zheng [2] and the survey article by Gui-Qiang Chen [11]. Another
way of facilitating the analysis is by considering the Chaplygin gas (2.5.23), which
renders the system of the Euler equations linearly degenerate, thus simplifying con-
siderably shock interactions and the wave pattern; see Serre [26,29].

Theorem 18.3.1, commonly referred to as the “ellipticity principle”, is proved in
Elling and Liu [1]. Another interesting maximum principle for the pressure in the
subsonic (elliptic) regime is found in Serre [9].

For a different perspective on the transition from the hyperbolic to the elliptic
regime, see Serre and Freistühler [1].

1 In that case the full system of adiabatic (nonisentropic) gas dynamics (3.3.29) must be
employed, as the isentropic system (3.3.36) becomes trivial.

Theorem 18.4.1 is taken from Chen, Zhang and Zhu [1]. See also Chen, Xiao and
Zhang [1]. Theorem 18.4.2, which provides the solution to the so-called Prandtl’s
problem, is due to Elling and Liu [2], with improvements by Bae, Chen and Feldman
[2]. For related results see Gui-Qiang Chen and Beixiang Fang [1], Gui-Qiang Chen
and Tian-Hong Li [2], Shuxing Chen [2,3,4,6], Shuxing Chen and Beixiang Fang
[1], Shuxing Chen and Dening Li [1,2], Chen, Min and Zhang [1], Chen, Xin and
Yin [1], Lien and Liu [1], Schaeffer [2], Xin and Yin [2], and Yongqian Zhang [1,2].

The definitive, theoretical solution to the classical problem of shock collision
with a ramp, outlined here in Section 18.6, is given in Chen and Feldman [9]. In
particular, this work has confirmed von Neumann’s conjecture that regular reflection
is possible so long as the slope of the ramp exceeds the detachment angle. For pre-
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liminary results in that direction, see Chen and Feldman [4,6] and Bae, Chen and
Feldman [1]. For further discussion in the same setting, see Elling [1,2,3,4], and
Sever [13]. For shock collisions on curved ramps, see Chen, Chen and Feldman [1].
For regular reflection in the simpler setting of the pressure gradient system, the small
disturbance equations or the Chaplygin gas, see Čanić, Keyfitz and Kim [1,2,3], Key-
fitz and Lieberman [1], Jegdić [1], Jegdić, Keyfitz and Čanić [1], Keyfitz [3], Serre
[26], and Yuxi Zheng [3,4].

There is ample numerical and experimental evidence that when the ramp is not
steep enough to support regular reflection the shock will be detached, forming a pat-
tern of Mach reflection; see the book by Ben-Dor [1]. However, a rigorous theoretical
treatment of this phenomenon is still lacking. For issues related to Mach reflection,
see Čanić, Keyfitz and Kim [4], Chen, Wang and Yang [1], Shuxing Chen [8,9], and
Tesdall, Sanders and Keyfitz [1,2].

Transonic flow in nozzles or ducts is considered in Chen, Chen and Feldman
[1], Chen, Chen and Song [1], Chen and Feldman [5,7,8], Gui-Qiang Chen and
Hairong Yuan [1], Shuxing Chen [10], Shuxing Chen and Hairong Yuan [1], Xie
and Xin [1,2,3], Xin and Yin [1,3,4], Bae and Feldman [1], Chen, Deng and Xiang
[1], Tianyou Zhang and Yuxi Zheng [1], Du, Weng and Xin [1], Du, Xie and Xin

Yin [1,2,3,4,5]. Similarly, multidimensional piston problems are discussed by Chen,
Chen, Wang and Wang [1], Shuxing Chen [5], and Chen, Wang and Zhang [1,2].

For diffraction of shocks by corners, see Chen, Deng and Xiang [2].
For global, shock-free solutions, involving rarefaction waves, see Heibig [3], Kim

and Song [1], Jiequan Li [1,2], Kyungwoo Song [1], and Yuxi Zheng [5]. The inter-
action of rarefaction waves is studied in Bang [1], Glimm, Ji, Li, Li, Zhang, Zhang
and Zheng [1], Lei and Zheng [1], Jiequan Li and Yuxi Zheng [1,2], Li, Zhang and
Zheng [1], Li Yang and Zheng [1], Chen and Zheng [1], and Ji and Zheng [1].

The structure of self-similar small L∞ perturbations of a steady supersonic two-
dimensional gas flow is described in Elling and Roberts [1].

Solutions to Riemann problems for various systems in two space dimensions
are constructed in Čanić [1,2], Čanić and Keyfitz [1,2], Chang, Chen and Yang [1],
Schulz-Rinne [1], Shuxing Chen [1], Tan and Zhang [1], Yang and Huang [1], Zhang,
Li and Zhang [1], Tong Zhang and Yuxi Zheng [3], and Yuxi Zheng [6].

Finally, for construction and stability of transonic shocks and vortex sheets, see
Chen and Feldman [1,2,3], Shuxing Chen [7], Chen, Zhang and Zhu [2], Gui-Qiang
Chen and Ya-Guang Wang [1], Chen, Kukreja and Yuan [1,2], Chen, Christoforou
and Jegdić [1], Keyfitz, Tesdall, Payne and Popivanov [1], Mingjie Li and Yuxi Zheng
[1], and Coulombel and Secchi [1,2,3,4].

The curious and interesting connection between the isometric immersion of sur-
faces in R3 and irrotational gas dynamics, discussed in Section 18.7, was conceived
by M. Slemrod and developed in Chen, Slemrod and Wang [2,3,4]. See also Christo-
forou [4], and Christoforou and Slemrod [1].

Cavitation in nonlinear elasticity was originally treated by Ball [2], in the realm
of statics. The extension of the theory to elastodynamics, outlined here in Section
18.8, was pioneered by Pericak-Spector and Spector [1,2] and further developed by

[1], Chunpeng Wang and Zhouping Xin [1], Du, Xin and Yan [1], and Li, Xin and
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Miroshnikov and Tzavaras [3]. Interesting arguments on how to overrule the cavita-
tion instability are presented in Giesselmann and Tzavaras [1].

There is extensive literature on self-similar, radially symmetric solutions for the
Euler equations of gas dynamics; see Courant and Friedrichs [1], Yuxi Zheng [2],
Tong Zhang and Yuxi Zheng [4,5], and Serre [10]. In particular, for solutions mani-
festing cavitation in fluids, see Wang and Li [1], and Baisheng Yan [1].
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4. Involutions des systèmes conservatifs. C. R. Acad. Sci. Paris, Série I, 307 (1988),

891–894.
5. Non linear hyperbolic fields and waves. Lecture Notes in Math. No. 1640 (1996),

1–47. Berlin: Springer.
Boillat, G. and T. Ruggeri
1. Hyperbolic principal subsystems: entropy convexity and subcharacteristic condi-

tions. Arch. Rational Mech. Anal. 137 (1997), 305–320.
Boley, F., Brenier, Y. and G. Loeper
1. Contractive metrics for scalar conservation laws. J. Hyperbolic Differ. Equ. 2

(2005), 91–107.
Bonaschi, G.A., Carillo, J.A., DiFrancesco, M. and M.A. Peletier
1. Equivalence of gradient flows and entropy solutions for singular nonlocal in-

teraction equations in 1D. ESAIM Control Optim. Calc. Var. 21 (2015), 414–
441.

Bonnefille, M.
1. Propagation des oscillations dans deux classes de systèmes hyperboliques (2×2
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Linéaire 16 (2000), 413–472.

Cheverry, C. Guès, O. and G. Métivier
1. Oscillations fortes sur un champ linéairement dégénéré. Ann. Sci. École Norm.
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Norm. Supér. 41 (2008), 85–139.
4. Uniqueness of 2-D compressible vortex sheets. Commun. Pure Appl. Anal (2009),

1439–1450.
Courant, R. and K.O. Friedrichs
1. Supersonic Flow and Shock Waves. New York: Wiley-Interscience, 1948.
Courant, R. and D. Hilbert
1. Methods of Mathematical Physics Vol. II. New York:Wiley-Interscience, 1962.
Coutand, D. and S. Shkoller
1. Well-posedness in smooth function spaces for moving-boundary 1-D compress-

ible Euler equations in physical vacuum. Comm. Pure Appl. Math. 64 (2011),
328–366.

2. Well-posedness in smooth function spaces for the moving-boundary three-dimensional
compressible Euler equations in physical vacuum. Arch. Rational Mech. Anal.
206 (2012), 515–616.

Crandall, M.G.
1. The semigroup approach to first-order quasilinear equations in several space vari-

ables. Israel J. Math. 12 (1972), 108–132.
Crandall, M.G. and T.M. Liggett
1. Generation of semi-groups of nonlinear transformations of general Banach spa-

ces. Amer. J. Math. 93 (1971), 265–298.
Crandall, M.G. and A. Majda
1. The method of fractional steps for conservation laws. Math. Comput. 34 (1980),

285–314.
Crasta, G. and V. De Cicco
1. A chain rule formula in the space BV and applications to conservation laws. SIAM

J. Math. Anal. 43 (2011), 430–456.
Crasta, G., De Cicco, V. and G. De Philippis
1. Kinetic formulation and uniqueness for scalar conservation laws with discontin-

uous flux. Comm. Partial Differential Equations 40 (2015), 694–726.
Crasta, G. and P.G. LeFloch
1. Existence results for a class of nonconservative and nonstrictly hyperbolic sys-

tems. Commun. Pure Appl. Anal. 1 (2002), 513–530.



Bibliography 727

Crasta, G. and B. Piccoli
1. Viscosity solutions and uniqueness for systems of inhomogeneous balance laws.

Discrete Contin. Dyn. Syst. 3 (1997), 477–502.
Crippa, G., Otto, F. and M. Westdickenberg
1. Regularizing effect of nonlinearity in multidimensional scalar conservation laws.

Lect. Notes Unione Mat. Ital. 5 (2008), 77–128.
Crippa, G. and L.V. Spinolo
1. An overview on some results concerning the transport equation and its applica-

tions to conservation laws. Commun Pure Appl. Anal. 9 (2010), 1283–1293.
Dacorogna, B.
1. Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals.

Lecture Notes in Math. No. 922 (1982). Berlin: Springer.
Dafermos, C.M.
1. Asymptotic behavior of solutions of a hyperbolic conservation law. J. Differential

Equations 11 (1972), 416–424.
2. Polygonal approximations of solutions of the initial value problem for a conser-

vation law. J. Math. Anal. Appl. 38 (1972), 33–41.
3. The entropy rate admissibility criterion for solutions of hyperbolic conservation

laws. J. Differential Equations 14 (1973), 202–212.
4. Solution of the Riemann problem for a class of hyperbolic systems of conserva-

tion laws by the viscosity method. Arch. Rational Mech. Anal. 52 (1973), 1–9.
5. Structure of solutions of the Riemann problem for hyperbolic systems of conser-

vation laws. Arch. Rational Mech. Anal. 53 (1974), 203–217.
6. Quasilinear hyperbolic systems that result from conservation laws. Nonlinear

Waves, pp. 82–102, ed. S. Leibovich and A. R. Seebass. Ithaca: Cornell U. Press,
1974.

7. Characteristics in hyperbolic conservation laws. Nonlinear Analysis and Mechan-
ics: Heriot-Watt Symposium, Vol. I, pp. 1–58, ed. R.J. Knops. London: Pitman,
1977.

8. Generalized characteristics and the structure of solutions of hyperbolic conserva-
tion laws. Indiana Univ. Math. J. 26 (1977), 1097–1119.

9. Stability of motions of thermoelastic fluids. J. Thermal Stresses 2 (1979), 127–
134.

10. The second law of thermodynamics and stability. Arch. Rational Mech. Anal. 70

(1979), 167–179.
11. Hyperbolic systems of conservation laws. Systems of Nonlinear Partial Differen-

tial Equations, pp. 25–70, ed. J.M. Ball. Dordrecht: D. Reidel 1983.
12. Global smooth solutions to the initial boundary value problem for the equations of

one-dimensional nonlinear thermoviscoelasticity. SIAM J. Math. Anal. 13 (1982),
397–408.

13. Regularity and large time behavior of solutions of a conservation law without
convexity. Proc. Royal Soc. Edinburgh 99A (1985), 201–239.

14. Quasilinear hyperbolic systems with involutions. Arch. Rational Mech. Anal. 94

(1986), 373–389.



7 Bibliography28

15. Development of singularities in the motion of materials with fading memory.
Arch. Rational Mech. Anal. 91 (1986), 193–205.

16. Estimates for conservation laws with little viscosity. SIAM J. Math. Anal. 18

(1987), 409–421.
17. Trend to steady state in a conservation law with spatial inhomogeneity. Quart.

Appl. Math. 45 (1987), 313–319.
18. Admissible wave fans in nonlinear hyperbolic systems. Arch. Rational Mech.

Anal. 106 (1989), 243–260.
19. Generalized characteristics in hyperbolic systems of conservation laws. Arch. Ra-

tional Mech. Anal. 107 (1989), 127–155.
20. Equivalence of referential and spatial field equations in continuum physics. Notes

Num. Fluid Mech. 43 (1993), 179–183.
21. Large time behavior of solutions of hyperbolic systems of conservation laws with

periodic initial data. J. Differential Equations 121 (1995), 183–202.
22. Stability for systems of conservation laws in several space dimensions. SIAM

J. Math. Anal. 26 (1995), 1403–1414.
23. A system of hyperbolic conservation laws with frictional damping. ZAMP, Spe-

cial Issue, 46 (1995), S294-S307.
24. Entropy and the stability of classical solutions of hyperbolic systems of conser-

vation laws. Lecture Notes in Math. No. 1640 (1996), 48–69. Berlin: Springer.
25. Hyperbolic systems of balance laws with weak dissipation. J. Hyperbolic Differ.

Equ. 3 (2006), 505–527.
26. Continuous solutions for balance laws. Ricerche di Matematica, 55 (2006), 79–

91.
27. Hyperbolic conservation laws with involutions and contingent entropies. Proc.

Symp. Appl. Math. AMS 65 (2007), 193–217.
28. Wave fans are special. Acta Math. Appl. Sinica Ser. B 24 (2008), 369–374.
29. A variational approach to the Riemann problem for hyperbolic conservation laws.

Discrete and Contin. Dyn. Syst. 23 (2009), 185–195.
30. Strong shocks in nonisentropic gas dynamics. Acta Math. Scientia 29 (2009),

973–979.
31. Generalized characteristics and the Hunter-Saxton equation. J. Hyperbolic Differ.

Equ. 8 (2011), 159–168.
32. Maximal dissipation in equations of evolution. J. Differential Equations 252

(2012), 567–587.
33. N-waves in hyperbolic balance laws. J. Hyperbolic Differ. Equ. 9 (2012), 339–

354.
34. Hyperbolic systems of balance laws with weak dissipation II. J. Hyperbolic Dif-

fer. Equ. 10 (2013), 173–179.
35. Long time behavior of periodic solutions to scalar conservation laws in several

space dimensions. SIAM J. Math. Anal. 45 (2013), 2064–2070.
36. BV solutions for hyperbolic systems of balance laws with relaxation. J. Differen-

tial Equations 255 (2013), 2521–2533.
37. Non-convex entropies for conservation laws with involutions. Philos. Trans. R.

Soc. Lond. Ser A 371 (2013), no. 2005, 20120344, 13 pp.



Bibliography 729

38. Redistribution of damping in viscoelasticity. Comm. Partial Differential Equa-
tions 38 (2013), 1274-1286.

39. Heat flow with shocks in media with memory. Indiana Univ. Math. J. 62 (2013),
1443-1456.

40. Asymptotic behavior of BV solutions to the equations of nonlinear viscoelasticity.
Commun. Inf. Syst. 13 (2013), 201-209.

41. BV solutions of hyperbolic balance laws with relaxation in the absence of con-
served quantities. SIAM J. Math. Anal. 46 (2014), 4014–4034.

42. Periodic BV solutions of hyperbolic balance laws with dissipative source. J. Math.
Anal. Appl. 428 (2015), 405-413.

43. Asymptotic behavior of BV solutions to hyperbolic systems of balance laws with
relaxation. J. Hyperbolic Differ. Equ. 12 (2015), 277–292.

44. BV solutions for hyperbolic balance laws with periodic initial data. Bull. Inst.
Math. Acad. Sinica 11 (2016), 131–144.

45. Hyperbolic balance laws with relaxation. Discrete Contin. Dyn. Syst., Ser. A 36

(2016), 4271–4285.
Dafermos, C.M. and R.J. DiPerna
1. The Riemann problem for certain classes of hyperbolic systems of conservation

laws. J. Differential Equations 20 (1976), 90–114.
Dafermos, C.M. and Xiao Geng
1. Generalized characteristics in hyperbolic systems of conservation laws with spe-

cial coupling. Proc. Royal Soc. Edinburgh 116A (1990), 245–278.
2. Generalized characteristics, uniqueness and regularity of solutions in a hyperbolic

system of conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991),
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Paris 101 (1885), 1118–1120; 1229–1232.
2. Sur la propagation du mouvement dans les corps et spécialement dans les gaz
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pp. 28–72, eds. D. Kröner, N. Ohlberger and C. Rohde. Berlin: Springer, 1999.

5. Hyperbolic Systems of Conservation Laws. Basel: Birkhäuser, 2002.
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Málek, J., Nečas, J., Rokyta, M. and M. Růžička
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1. Mémoire sur la théorie du son. J. Ecole Polytechnique, 7 (1808), 319–392.
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333–350.

Rauch, J.
1. BV estimates fail for most quasilinear hyperbolic systems in dimension greater

than one. Comm. Math. Phys. 106 (1986), 481–484.
Rayleigh, Lord (J.W. Strutt)
1. Letter to Stokes, dated June 2, 1877. Mathematical and Physical Papers by

G.G. Stokes, reprinted with a new preface by C.A. Truesdell, Vol. I, pp. ivG–
ivH. New York: Johnson Reprint Co., 1966.

2. The Theory of Sound, Vol. II. London: MacMillan 1878.
3. Note on tidal bores. Proc. Royal Soc. London 81A (1908), 448–449.



786 Bibliography

4. Aerial plane waves of finite amplitude. Proc. Royal Soc. London 84A (1910),
247–284.

Renardy, M., Hrusa, W.J. and J.A. Nohel
1. Mathematical Problems in Viscoelasticity. New York: Wiley, 1987.
Rezakhanlou, F.
1. Microscopic structure of shocks in one-conservation laws. Ann. Inst. H. Poincaré
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15. Relaxation semi-linéaire et cinétique des lois de conservation. Ann. Inst. Henri
Poincaré. 17 (2000), 169–192.



Bibliography 791

16. Systems of conservation laws: A challenge for the XXIst century. Mathematics
Unlimited - 2001 and Beyond, pp. 1061–1080, eds. B. Engquist and W. Schmid.
Berlin: Springer, 2001.
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Růžička, M., 225, 649
Rykov, Yu., 424
Ryzhik, L., 300

S
Sablé-Tougeron, M., 301, 516
Sahel, A., 487
Sahoo, M.R., 355, 358
Saint-Venant, A.J.C., 259
Salas, M., XXI
Sande, H., 487, 515, 555
Sanders, R., 688
Sandstede, B., 301
Santos, M.M., 651
Saxton, K., 173



8 Author Index18

Sbihi, K., 425
Schaeffer, D., 299, 357, 423, 687
Schatzman, M., 554
Schauder, J., XXX, 170
Schecter, S., 299, 356, 357
Schmeiser, C., 173
Schmidt, B.G., 516
Schochet, S., 424, 516, 553, 649, 653
Schonbek, M.E., 649, 653
Schulz-Rinne, C.W., 688
Schulze, S., 299, 357
Secchi, P., 688
Seguin, N., 258, 355, 425
Semenov, Yu., 74
Serre, D., 73, 74, 75, 108, 170–174, 258–

260, 263, 297–301, 35 , 356, 424,
425, 487, 515, 516, 582, 622, 649–
653, 687, 688

Sevennec, B., 259
Sever, M., 74, 260, 354, 355, 425, 555, 688
Shandarin, S.F., 258
Shao, Zhi-Qiang, 555
Shearer, J.W., 650
Shearer, M., 259, 299, 357, 358, 424, 425,

487
Shelkovich, V.M., 355
Shelukhin, V., 651
Shen, Wen, 172, 258, 259, 261, 582
Sheng, Wancheng, 355, 356
Shiffman, M., 687
Shizuta, Y., 172
Shkoller, S., 173
Sideris, T., 108
Šilhavý, M., 24, 49
Silva, J,D., 357
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