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Preface

Parallel CFD 2008, the twentieth in the high-level international series of meetings
featuring different aspect of parallel computing in computational fluid dynamics and
other modern scientific domains was held May 19−22, 2008 in Lyon, France.

The themes of the 2008 meeting included the traditional emphases of this con-
ference, and experiences with contemporary architectures. Around 70 presentations
were included into the conference program in the following sessions:
Parallel Algorithms and solvers
Parallel performances with contemporary architectures
Structured and unstructured grid methods, boundary methods
software framework and components architecture
CFD applications (Bio fluid, environmental problem) Lattice Boltzmann method and
SPH
Optimisation in Aerodynamics

This book presents an up-to-date overview of the state of the art in Parallel Com-
putational Fluid Dynamics from Asia, Europe, and North America. This reviewed
proceedings included about sixty percent of the oral lectures presented at the confer-
ence.

The editors.
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Large Scale Computations in Nuclear Engineering:
CFD for Multiphase Flows and DNS for Turbulent
Flows with/without Magnetic Field

Tomoaki Kunugi1, Shin-ichi Satake2, Yasuo Ose1, Hiroyuki Yoshida3, and
Kazuyuki Takase3

1 Kyoto University, Yoshida, Sakyo, Kyoto 6060-8501, Japan
2 Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
3 Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura 319-1195, Japan
kunugi@nucleng.kyoto-u.ac.jp

Abstract. Large scale computations are being carried out in nuclear engineering fields such
as light water reactors, fast breeder reactors, high temperature gas-cooled reactors and nuclear
fusion reactors. The computational fluid dynamics (CFD) regarding not only the single-phase
flows but also the two-phase flow plays an important role for the developments of advanced
nuclear reactor systems. In this review paper, some examples of large scale computations in
nuclear engineering fields are illustrated by using a parallel visualization.

Key words: Direct numerical simulation; Multiphase flows; Turbulent flows; Paral-
lel visualization; Magnetohydrodynamics; Nuclear reactors; Fusion reactors.

1 Numerical Simulation of Boiling Phenomena

It is important to remove the heat from industrial devices and nuclear reactors with
a high heat flux to insure their safety. In order to enhance the heat transfer, phase
change phenomena such as evaporation and condensation have to be utilized, so that
it is important to understand the mechanism of boiling to design industrial devices.
Although many researchers have experimentally studied the boiling phenomena, it
has not been clarified yet because it consists of a lot of complicated phenomena. As
for pool boiling experiments, Kenning & Yan measured the spatial and temporal vari-
ations of wall temperature in nucleate boiling by using a liquid crystal thermometry.
They pointed out the importance of non-uniform wall temperature distribution and
suggested that the transient heat conduction model proposed by Mikic & Rohsenow
[2] was unrealistic because of the assumption of uniform transient heat conduction.
It is relatively difficult to perform numerical analysis of boiling phenomenon be-
cause it includes the phase change. On the other hands, a critical heat flux (CHF)
is also very important for high heat flux removal. However, the empirical correla-
tion of the CHF is used in most designs. In general, the prediction of CHF is very

D. Tromeur-Dervout (eds.), Parallel Computational Fluid Dynamics 2008,
Lecture Notes in Computational Science and Engineering 74,
DOI: 10.1007/978-3-642-14438-7 1, c© Springer-Verlag Berlin Heidelberg 2010



4 T.Kunugi, S.Satake, Y.Ose, H.Yoshida and K.Takase

difficult because of the complexity of relation between the nucleation boiling and
the bubble departure due to flow convection. Welch [3] carried out the numerical
study on two-dimensional two-phase flow with a phase change model using a finite
volume method combined with a moving grid, however it can be applied only to a
little deformation of gas-liquid interface. Son & Dhir [4] also carried out the two-
dimensional pool boiling simulation using a finite difference method with a moving
grid. Recently, Juric & Tryggvason [5] conducted a film boiling with a front track-
ing method by Unverdi & Tryggvason [6]. They pointed out the importance of the
temporal and spatial temperature distribution of the heating plate: heat conduction in
the slab. The author developed a new volume tracking method, so-called gMARS:
Multi-interface Advection and Reconstruction Solver[7].

This section describes that the MARS is applied to the force convective flow
boiling in the channel with an appropriate phase change model: a model for boiling
and condensation phenomena based on a homogeneous nucleation and a well-known
enthalpy method. This model is good for metal casting problems because of no su-
perheating of liquid. As for the water, it has to be considered the liquid superheat
for nucleate boiling phenomena. The direct numerical simulations with this phase
change model for pool nucleate boiling and forced convective flow boiling have been
performed. The aims of this study are to develop a direct numerical method to simu-
late boiling phenomena and to simulate the three-dimensional pool nucleate boiling
and forced convective flow boiling by the direct numerical simulation (DNS) based
on the MARS combined the enthalpy method considered the liquid superheat as the
phase change model.

1.1 Numerical Simulation based on MARS

Governing equations.

In this section, the direct numerical multiphase flow solver (MARS) is briefly ex-
plained. As for m fluids including the gas and liquid, the spatial distribution of fluids
can be defined as

〈F〉 =∑Fm = 1.0 (1)

The continuity equation of the multiphase flows for m fluids:

∂Fm

∂ t
+∇ · (FmU)−Fm∇U = 0 (2)

The momentum equation with the following CSF (Continuum Surface Force)
model proposed by Brackbill [9] is expressed as:

∂U
∂ t

+∇(UU) = G− 1
〈ρ〉∇P−∇ · τ+

1
〈ρ〉FV (3)

CSF model :
FV = σκn〈ρ〉/ρ̄ (4)
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here, the mean density at interface, ρ̄ = (ρg +ρl)/2, the suffix g denotes vapor and l
for water. κ is curvature of the surface, σ the surface tension coefficient and n is the
normal vector to the surface.

The momentum equation (3) can be solved by means of the well-known projec-
tion method. The Poisson equation for the pressure can be solved by the ILUBCG
method. Finally, the new velocity field can be obtained. Once the velocity field can
be obtained, it can be transported the volume of fluid by the MARS, i.e., a kind of
PLIC (Piecewise Linear Calculation) volume tracking procedure [24] for Eq. (2).
The detail description of the solution procedure is described in the reference [7].

The energy equation is expressed as:

∂
∂ t

〈ρCv〉T +∇ · (〈ρCv〉UT ) = ∇ · (〈λ 〉∇T )−P(∇ ·U)+ Q, (5)

where Cv, T , λ , Q is specific heat, temperature, heat conductivity, heat generation
term, respectively. The second term of the right hand side of the equation (5), the
Clausius-Clapeyron relation is considered as the work done by the phase change.

Phase Change Model.

As mention in the introduction section, nucleate boiling phenomena need to be mod-
eled. One of ideas for this modeling can be considered:

Nucleate boiling model = Nucleation model + Bubble growth model

Nucleation model: This model gives the homogeneous superheat limit of liquid and
the size of nucleus of bubble. A superheat limit Ts is got from the kinetic theory
[8] or the usual cavity model. Typically Ts is around 110◦C in water pool boiling at
an atmospheric pressure. The equilibrium radius re of nucleus corresponding to Ts

can be calculated by Eq. (6) based on the thermodynamics. The F-value of nucleus
corresponding to the ratio of a cell size to a size of nucleus where the shape of
nucleus is assumed to be a sphere is given to a computational cell with greater than
Ts. In this study, Ts is a parameter. Although Ts varies in spatial on the heated surface
from the experiment [1], Ts is assumed to be uniform on the heated surface in the
present study. Therefore, particular nucleation sites are not specified.

re =
2σ

Psat (Tl)exp{vl [Pl −Psat (Tl)]/RTl}−Pl
,(Tl ≥ Ts) (6)

where re is a radius of bubble embryo, σ is an interfacial tension, Tl is a temperature
of liquid, Psat is a pressure corresponding saturation conditions, Pl is a pressure of
liquid, vl is a volume of liquid per unit mass, and R is the ideal gas constant on a per
unit mass basis.

Bubble growth model: Increasing the temperature, liquid water becomes vapor par-
tially if the temperature of liquid is greater than the liquid saturation line (Tl), i.e.,
liquid-gas mixture (two-phase region) and then eventually becomes the superheated
gas phase if the temperature is greater than the gas saturation lime (Tg). This process
can be treated by the enthalpy method.
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Fig. 1. Computational domain for forced convective flow boiling

1.2 Results and Discussions on Forced Convective Flow Boiling

In order to get some insights into the mechanism of three-dimensional forced con-
vective subcooled flow boiling. Figure 1 shows the computational domain that is
a three-dimensional vertical channel and the sidewall is heated with constant heat
flux because of considering the spatial and temporal variations of temperature in the
solid sidewall. The length of flow channel is 60 mm, 6 mm in height and 5 mm in
width. The computational domain is a half channel because of the symmetry. The
heating conditions are as follows: 0.3 mm in length from inlet is adiabatic and fol-
lowing 50 mm by heating of a constant heat flux, 2.4 MW/m2 from the outside of
solid sidewall of 0.6 mm in thickness and the remaining 9.7 mm is also adiabatic.
The inlet mean velocity is 0.5 m/s with a parabolic profile. The no-slip condition at
the sidewall, the slip velocity at the symmetric boundary and constant pressure at
the outlet are imposed as the boundary conditions. The periodic velocity and tem-
perature conditions are applied to the spanwise boundaries. The water pressure is
atmospheric and the degree of water subcooling is 20 K. The solid wall is assumed
to be a stainless steel. The degree of superheat is set to be 50 K. The computational
cell is uniform cubic shape and the size of cell is 100 μm and the number of cells is
36(x) 600(y) 50(z)=1,080,000. Time increment is 5 μsec. The fictitious temperature
difference used in the enthalpy method is ΔT=0.1 K.

Resulting from the forced convective flow boiling computation as shown in Fig.
2, the series of bubble growth are depicted as black spots, and the gray contours show
the temperature distribution at x=0.25 mm every 52.5 msec. From the temperature
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evolution, the thermal boundary layer has been developing during computation and
does not reach to the equilibrium state at the downstream in this computation, so that
it is necessary to carry out much longer computation. The maximum size of bub-
ble is around 1 mm at the present stage. It is interesting that the higher temperature
stagnation region is formed in the middle of the channel and three higher tempera-
ture streaks are observed in the thermal boundary layer. The bubble generated in the
upstream region becomes just like an obstacle and makes a high temperature stagna-
tion or recirculation region behind the nucleated bubbles. Eventually, another bubble
will generate in that stagnation or recirculation region because the degree of liquid
subcooling could be decreased, i.e., it can be saying a “chain generation of boiling
bubbles.”

[°C]
101.0

95.8

90.5

85.3

80.0

Fig. 2. Bubble growth and temperature distribution every 52.5 msec

2 CFD for Two-Phase Flow Behaviors in Nuclear Reactor

Subchannel analysis codes [11]-[13] and system analysis codes [14, 15] are usually
used for the thermal-hydraulic analysis of fuel bundles in nuclear reactors. As for the
former, however, many constitutive equations and empirical correlations based on
experimental results are needed to predict the water-vapor two-phase flow behavior.
If there are no experimental data such as an advanced light-water reactor which has
been studied at the Japan Atomic Energy Agency (JAEA) in Japan and named as
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a reduced moderation water reactor (RMWR), it is very difficult to obtain the pre-
cise predictions [16, 17, 18]. The RMWR core has a remarkably narrow gap spacing
between fuel rods (i.e., around 1 mm) and a triangular tight lattice fuel rod configu-
ration in order to reduce the moderation of the neutron. In such a tight-lattice core,
there is no sufficient information about the effects of the gap spacing and the effect
of the spacer configuration on the two-phase flow characteristics. Therefore, in order
to analyze the water vapor two-phase flow dynamics in the tight-lattice fuel bundle,
a large-scale simulation under the full bundle size condition is necessary. The Earth
Simulator [19] enables that lots of computational memories are required to attain the
two-phase flow simulation for the RMWR core.

In JAEA, numerical investigation on the physical mechanisms of complicated
thermal-hydraulic characteristics and the multiphase flow behavior with phase change
in nuclear reactors has been carried out In this numerical research, some of the au-
thors in JAEA pointed out the improvements of the conventional reactor core ther-
mal design procedures and then proposed a predicting procedure for two-phase flow
characteristics inside the reactor core more directly than the conventional procedures
for the first time in the world by reducing the usage of constitutive and empirical
equations as much as possible [20]. Based on this idea, a new thermal design pro-
cedure for advanced nuclear reactors with the large-scale direct simulation method
(TPFIT: Two-Phase flow simulation code using advanced Interface Tracking) [21]
has been developed at JAEA. Especially, thermal hydraulic analyses of two-phase
flow positively for a fuel bundle simulated by the full size using the Earth Simulator
are performed [22]. This section describes the preliminary results of the large-scale
water-vapor two-phase flow simulation in the tight-lattice fuel bundle of the RMWR
core by the TPFIT code.

2.1 Numerical Simulation of Two-Phase Flow Behavior in 37 RMWR Fuel
Rods

The TPFIT code is based on the CIP method [23] using the modified interface-
tracking method [24]. The surface tension of bubble is calculated using the CSF
[9]. Figure 3 shows the computational geometry consisting of 37 RMWR fuel rods.
The geometry and dimensions simulate the experimental conditions done by JAEA
[25]. Here, the fuel rod outer diameter is 13 mm and the gap spacing between each
rod is 1.3 mm. The casing has a hexagonal cross section and a length of one hexag-
onal side is 51.6 mm. An axial length of the fuel bundle is 1260 mm. The water
flows upward from the bottom of the fuel bundle. A flow area is a region in which
deducted the cross-sectional area of all fuel rods from the hexagonal flow passage.
The spacers are installed into the fuel bundle at the axial positions of 220, 540, 750
and 1030 mm from the bottom. The axial length of each spacer is 20 mm. Inlet con-
ditions of water are as follows: temperature 283◦C, pressure 7.2 MPa, and flow rate
400 kg/m2s. Moreover, boundary conditions are as follows: fluid velocities for x-, y-
and z-directions are zero on every wall (i.e., an inner surface of the hexagonal flow
passage, outer surface of each fuel rod and surface of each spacer); velocity profile at
the inlet of the fuel bundle is set to be uniform. The present simulations were carried
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out under the non-heated isothermal flow condition in order to remove the effect of
heat transfer due to the fuel rods to the fluid. A setup of a mixture condition of water
and vapor at the heating was performed by changing the initial void fraction of water
at the inlet of the analytical domain.
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Fig. 3. Outline of three-dimensional analytical geometry of a tight-lattice fuel bundle

2.2 Results and Discussions

Figure 4 shows an example of the predicted vapor structure around the fuel rods.
Here, the distribution of void fraction within the region from 0.5 to 1 is shown: 0.5
indicates just an interface between the water and vapor and is shown by green; and 1
indicates the non-liquid vapor and is shown by red. Vapor flows from the upstream
to downstream like a streak through the triangular region, and the interaction of the
vapor stream to the circumferential direction is not seen. On the other hand, since
the vapor is disturbed behind a spacer, the influence of turbulence by existence of the
spacer can be predicted.

In order to predict the water-vapor two-phase flow dynamics in the RMWR fuel
bundle and to reflect them to the thermal design of the RMWR core, a large-scale
simulation was performed under a full bundle size condition using the Earth Sim-
ulator. Details of water and vapor distributions around fuel rods and a spacer were
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Fig. 4. Predicted vapor structure around fuel rods; black region indicates the water (void frac-
tion is 0), and light grey region indicates an interface between water and vapor which means
the void fraction is in between 0 and 1.

clarified numerically. A series of the present preliminary results were summarized as
follows: 1) The fuel rod surface is encircled with thin water film; 2) The bridge for-
mation by water film appears in the region where the gap spacing between adjacent
fuel rods is narrow; 3) Vapor flows into the triangular region where the gap spacing
between fuel rods is large; 4) A flow configuration of vapor shows a streak structure
along the triangular region.

3 DNS for Turbulent Flows with/without Magnetic Field

On the other hand, in the gas-cooled reactor and the fast breeder reactors the coolant
is a single-phase flow at mostly turbulent situation. Direct numerical simulations
(DNSs) for turbulent flows have been carried out to investigate the turbulent structure
in the flow passage and around each fuel rod surface at Reynolds number of 78,000
as shown in Fig. 5. A second order finite difference method is applied to the spatial
discretization, the 3rd order Runge-Kutta method and the Crank-Nicolson method
are applied to the time discretization, and the time advancing scheme is the fractional
time step is used for the coupling scheme, so called, Dukowcz-Dvinsky scheme. The
number of used central processing unit is 1,152 and it corresponds to 144 nodes.
The total memory is 2 terabytes and the total number of computational grid is 7,200
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million points [26, 27]. The flow visualization is very important to grasp the entire
picture of the flow behavior, so that a parallel visualization technique is applied in this
case. As for the thermofluid behavior in fusion reactors, the magnetohydrodynamic
(MHD) effect is very important. DNS for turbulent flow in a parallel channel has been
performed as shown in Fig. 7 [28] drawn by the parallel visualization. The turbulent
structure is suppressed by the magnetic field, i.e., Lorentz force: Hartmann numbers
are 0 (non-MHD) and 65 (MHD).

Fig. 5. Second invariant contour surface of velocity tensor of single-phase turbulent flow in a
pipe Re=78,000, 7,200 Mega grids, 2 Tera Bytes

4 Conclusion

The computational fluid dynamics (CFD) regarding not only the single-phase flows
but also the two-phase flow plays an important role for the developments of advanced
nuclear reactor systems. To establish the large-scale simulation procedure with
higher prediction accuracy is very important for the detailed reactor-core thermal-
design in the nuclear engineering. Moreover, the parallel visualization technique is
very useful to understand the detailed flow and heat transfer phenomena.
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Abstract. The solution of large and sparse linear systems is one of the main computational
kernels in CFD applications and is often a very time-consuming task, thus requiring the use of
effective algorithms on high-performance computers. Preconditioned Krylov solvers are the
methods of choice for these systems, but the availability of “good” preconditioners is crucial
to achieve efficiency and robustness. In this paper we discuss some issues concerning the de-
sign and the implementation of scalable algebraic multilevel preconditioners, that have shown
to be able to enhance the performance of Krylov solvers in parallel settings. In this context,
we outline the main objectives and the related design choices of MLD2P4, a package of multi-
level preconditioners based on Schwarz methods and on the smoothed aggregation technique,
that has been developed to provide scalable and easy-to-use preconditioners in the Parallel
Sparse BLAS computing framework. Results concerning the application of various MLD2P4
preconditioners within a large eddy simulation of a turbulent channel flow are discussed.
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1 Introduction

The solution of linear systems is ubiquitous in CFD simulations. For example, the
integration of time-dependent PDEs modelling CFD problems, by using implicit or
semi-implicit methods, leads to linear systems
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Ax = b, (1)

where A is a real n× n matrix, usually large and sparse, whose dimension and en-
tries, conditioning, sparsity pattern and coupling among the variables may change
during the simulation. Furthermore, because of the high computational requirements
of large-scale CFD applications, parallel computers are often used and hence the
matrix A is distributed among multiple processors.

Krylov solvers are the methods of choice for such linear systems, but their effi-
ciency and robustness is strongly dependent on the coupling with suitable precondi-
tioners that are able to provide a good approximation of the matrix A at a reasonable
computational cost. Unfortunately, among the various available preconditioners, no
one can be considered the “absolute winner” and experimentation is generally needed
to select the best one for the problem under investigation. Furthermore, developing
parallel implementations of preconditioners is not trivial, since the effectiveness and
the parallel performance of a preconditioner often do not agree.

Algebraic multilevel preconditioners have received an increasing attention in the
last fifteen years, as testified also by the development of software packages based
on them [13, 21, 22, 27]. These preconditioners, which approximate the matrix A
through a hierarchy of coarse matrices built by using information on A, but not on
the geometry of the problem originating A (e.g. on the discretization grid of a PDE),
are potentially able to automatically adapt to specific requirements of the problem to
be solved [31]. Furthermore, they have shown effectiveness in enhancing the conver-
gence and robustness of Krylov solvers in a variety of applications [25, 24].

In this paper we discuss some issues in the design and develoment of software
implementing parallel algebraic multilevel domain decomposition preconditioners
based on Schwarz methods. We start from a description of such preconditioners, to
identify algorithmic features that are relevant to the development of parallel soft-
ware (Section 2). Then we present MLD2P4, a package providing parallel alge-
braic multilevel preconditioners based on Schwarz domain decomposition methods,
in the context of the Parallel Sparse BLAS (PSBLAS) computing framework for
distributed-memory machines (Section 3). Specifically, we outline the main objec-
tives and the related design choices in the development of this package. Furthermore,
we report on the application of different MLD2P4 multilevel preconditioners, cou-
pled with GMRES, to linear systems arising within a Large Eddy Simulation (LES)
of incompressible turbulent channel flows, and discuss the results obtained in terms
of numerical effectiveness and parallel performance (Sections 4 and 5). We give a
few concluding remarks at the end of the paper (Section 6).

2 Algebraic Multilevel Schwarz Preconditioners

Domain decomposition preconditioners are based on the divide and conquer tech-
nique; from an algebraic point of view, the matrix to be preconditioned is divided
into submatrices, a “local” linear system involving each submatrix is (approximately)
solved, and the local solutions are used to build a preconditioner for the whole origi-
nal matrix. This process often corresponds to dividing a physical domain associated
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to the original matrix into subdomains (e.g. in a PDE discretization), to (approxi-
mately) solving the subproblems corresponding to the subdomains and to building
an approximate solution of the original problem from the local solutions. On paral-
lel computers the number of submatrices usually matches the number of available
processors.

Additive Schwarz (AS) preconditioners are domain decomposition precondition-
ers using overlapping submatrices, i.e. with some common rows, to couple the local
information related to the submatrices (see, e.g., [29]). We assume that the matrix
A in (1) has a symmetric nonzero pattern, which is not too restrictive if the ma-
trix arises from some PDE discretization. By using the adjacency graph of A, we
can define the so-called δ -overlap partitions of the set of vertices (i.e. row indices)
W = {1,2, . . . ,n} [8]. Each set W δ

i of a δ -overlap partition of W identifies a subma-
trix Aδi , corresponding to the rows and columns of A with indices in W δ

i . Let Rδi be
the (restriction) matrix which maps a vector v of length n onto the vector vδi contain-
ing the components of v corresponding to the indices in W δ

i . The matrix Aδi can be
expressed as Aδi = Rδi A(Rδi )T and the classical AS preconditioner is defined by

M−1
AS =

m

∑
i=1

(Rδi )T (Aδi )−1Rδi ,

where m is the number of sets of the δ -overlap partition and Aδi is assumed to be
nonsingular. Its application to a vector v within a Krylov solver requires the follow-
ing basic operations: restriction of v to the subspaces identified by the W δ

i ’s, i.e.
vi = Rδi v; solution of the linear systems Aδi wi = vi; prolongation and sum of the wi’s,
i.e. w = ∑m

i=1(R
δ
i )T wi. The linear systems at the second step are usually solved ap-

proximately, e.g. using incomplete LU (ILU) factorizations. Variants of the classical
AS preconditioners exists; the most commonly used one is the Restricted AS (RAS)
preconditioner, since it is generally more effective in terms of convergence rate and
of parallel performance [9].

From the previous description we see that the AS preconditioners exhibit an in-
trinsic parallelism, which makes them suitable for a scalable implementation, i.e.
such that the time per iteration of the preconditioned solver is kept constant as the
problem size and the number of processors are proportionally scaled. On the other
hand, the convergence rate of iterative solvers coupled with AS preconditioners dete-
riorates as the number of sets W δ

i , and hence of processors, increases [29]. Therefore
such preconditioners do not show algorithmic scalability, i.e. the capability of keep-
ing constant the number of iterations to get a specified accuracy, as the number of
processors grows.

Optimal Schwarz preconditioners, i.e. such that the number of iterations is
bounded independently of the number of the submatrices (and of the size of the grid,
when the matrix comes from a PDE discretization) can be obtained by introducing
a global coupling among the overlapping partitions, through a coarse-space approx-
imation AC of the matrix A. The two-level Schwarz preconditioners are obtained by
combining a basic Schwarz preconditioner with a coarse-level correction based on
AC. In this context, the basic preconditioner is called smoother.
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In a pure algebraic setting, AC is usually built with a Galerkin approach. Given a
set WC of coarse vertices, with size nC, and a suitable nC ×n restriction matrix RC, AC

is defined as AC = RCART
C and the coarse-level correction operator to be combined

with a generic AS preconditioner M1L is obtained as

M−1
C = RT

CA−1
C RC,

where AC is assumed to be nonsingular. The application of M−1
C to a vector v corre-

sponds to the restriction w = RCv, to the solution of the linear system ACy = w and
to the prolongation z = RT

Cy.
The operators MC and M1L may be combined in either an additive or a multi-

plicative framework. In the former case, at each iteration of a Krylov solver, M−1
C

and M−1
1L are independently applied to the relevant vector v and the results are added.

This corresponds to the two-level additive Schwarz preconditioner

M−1
2LA = M−1

C + M−1
1L .

In the multiplicative case, a possible combination consists in applying first M−1
C and

then M−1
1L , as follows: coarse-level correction of v, i.e. w = M−1

C v; computation of the
residual y = v−Aw; smoothing of y and update of w, i.e. z = w+M−1

1L y. These steps
correspond to the following Schwarz preconditioner, that we refer to as two-level
hybrid post-smoothed preconditioner:

M−1
2LH−POST = M−1

1L +
(
I−M−1

1L A
)

M−1
C .

Similarly, the smoother may be applied before the coarse-level correction operator
(two-level hybrid pre-smoothed preconditioner), or both before and after the correc-
tion (two-level hybrid symmetrized preconditioner).

An algebraic approach to the construction of the set of coarse vertices is provided
by the smoothed aggregation [4]. The basic idea is to build WC by suitably grouping
the vertices of W into disjoint subsets (aggregates), and to define the coarse-to-fine
space transfer operator RT

C by applying a suitable smoother to a simple piecewise
constant prolongation operator. The aggregation algorithms are typically sequen-
tial and different parallel versions of them have been developed with the goal of
achieving a tradeoff between scalability and effectiveness [32]. The simplest parallel
aggregation strategy is the decoupled one, in which every processor independently
applies the sequential algorithm to the subset of W assigned to it in the initial data
distribution. This version is embarrassingly parallel, but may produce non-uniform
aggregates near boundary vertices, i.e. near vertices adjacent to vertices in other pro-
cessors, and is strongly dependent on the number of processors and on the initial par-
titioning of the matrix A. Nevertheless, the decoupled aggregation has been shown to
produce good results in practice [32].

Preconditioners that are optimal in the sense defined above do not necessarily
correspond to minimum execution times. For example, when the size of the system
to be preconditioned is very large, the use of many processors, i.e. of many small
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submatrices, may lead to large coarse-level systems, whose exact solution is gen-
erally computationally expensive and deteriorates the implementation scalability of
the basic Schwarz preconditioner. A possible remedy is to solve the coarse level-
system approximately; this is generally less time expensive, but the correction, and
hence the preconditioner, may lose effectiveness. Therefore, it seems natural to use
a recursive approach, in which the coarse-level correction is re-applied starting from
the current coarse-level system. The corresponding preconditioners, called multilevel
preconditioners, can significantly reduce the computational cost of preconditioning
with respect to the two-level case. Additive and hybrid multilevel preconditioners are
obtained as direct extensions of the two-level counterparts; a detailed descrition may
be found in [29, Chapter 3]. In practice, finding a good combination of the number
of levels and of the coarse-level solver is a key point in achieving the effectiveness
of a multilevel preconditioner in a parallel computing setting; the choice of these
two features is generally dependent on the characteristics of the linear system to be
solved and on the characteristics of the parallel computer.

3 The MLD2P4 software package

The MultiLevel Domain Decomposition Parallel Preconditioners Package based on
PSBLAS (MLD2P4) [13] implements multilevel Schwarz preconditioners, that can
be used with Krylov solvers available in the PSBLAS framework [20] for the so-
lution of system (1). Both additive and hybrid multilevel variants are available; the
basic AS preconditioners are obtained by considering just one level. An algebraic ap-
proach, based on the decoupled smoothed aggregation technique, is used to generate
a sequence of coarse-level corrections to any basic AS preconditioner, as explained in
Section 2. Since the choice of the coarse-level solver is important to achieve a trade-
off between optimality and efficiency, different coarse-level solvers are provided,
i.e. sparse distributed and sequential LU solvers, as well as distributed block-Jacobi
ones, with ILU or LU factorizations of the blocks. More details on the various pre-
conditioners implemented in the package can be found in [13].

The package has been written in Fortran 95, to enable immediate interfacing with
Fortran application codes, while following a modern object-based approach through
the exploitation of features such as abstract data type creation, functional overloading
and dynamic memory management. Single and double precision implementations of
MLD2P4 have been developed for both real and complex matrices, all usable through
a single generic interface.

The main “object” in MLD2P4 is the preconditioner data structure, containing
the matrix operators and the parameters defining a multilevel Schwarz precondi-
tioner. According to the object-oriented paradigm, the user does not access this struc-
ture directly, but builds, modifies, applies and destroys it through a set of MLD2P4
routines. The preconditioner data structure has been implemented as a Fortran 95
derived data type; it basically consists of an array of base preconditioners, where a
base preconditioner is again a derived data type, storing the part of the preconditioner
associated to a certain level and the mapping from it to the next coarser level. This
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choice enables to reuse, at each level, the same routines for building and applying
the preconditioner, and to combine them in various ways, to obtain different precon-
ditioners. Furthermore, starting from a description of the preconditioners in terms of
basic sparse linear algebra operators, as outlined in Section 2, the previous routines
have been implemented as combinations of building blocks performing basic sparse
matrix computations (for more details see [6, 12]). The PSBLAS library, which in-
cludes parallel versions of most of the Sparse BLAS computational kernels proposed
in [17] and sparse matrix management functionalities, has been used as software
layer providing the building blocks. The vast majority of data communication op-
erations required by MLD2P4 have been encapsulated into PSBLAS routines; only
very few direct MPI calls occur in the package. The choice of a modular approach,
based on the PSBLAS library, has been driven by objectives such as extensibility,
portability, sequential and parallel performance.

The modular design has naturally led to a layered software architecture, where
three main layers can be identifed. The lower layer consists of the PSBLAS kernels.
The middle one implements the construction of the preconditioners and their applica-
tion within a Krylov solver. It includes the functionalities for building and applying
various types of basic Schwarz preconditioners, for generating coarse matrices from
fine ones and for solving coarse-level linear systems; furthermore, it provides the
routines combining these functionalities into multilevel preconditioners. The middle
layer includes also interfaces to the third-party software packages UMFPACK [14],
SuperLU [15] and SuperLU DIST [16], performing sequential or distributed sparse
LU factorizations and related triangular system solutions, that can be exploited at
different levels of the multilevel preconditioners. The upper layer provides a uniform
and easy-to-use interface to all the preconditioners implemented in MLD2P4. It con-
sists of few black-box routines suitable for users with different levels of expertise;
non-expert users can easily select the default basic and multilevel preconditioners,
while expert ones can choose among various preconditioners, by a proper setting of
different parameters.

A more detailed description of MLD2P4 can be found in [7, 13]; a deep analysis
of the effectiveness and parallel performance of MLD2P4 preconditioners, as well as
a comparison with state-of-the-art multilevel preconditioning software, can be found
in [7, 12].

4 Using MLD2P4 in the LES of turbulent channel flows

MLD2P4 has been used within a Fortran 90 code performing a LES of turbulent
incompressible channel flows, in order to precondition linear systems which are a
main computational kernel in an Approximate Projection Method (APM). We briefly
describe the numerical procedure implemented in the code, to show how MLD2P4
has been exploited; for more details the user is referred to [1].

Incompressible and homothermal turbulent flows can be modelled as initial
boundary-value problems for the Navier-Stokes (N-S) equations. We consider a
non-dimensional weak conservation form of these equations, involving the volume
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average of the velocity field v(x,t) [23]. In the LES approach v(x,t) is decomposed
into two contributions, i.e. v(x,t)= v̄(x,t)+v′(x,t), where v̄ is the resolved (or large-
scale) filtered field and v′ is the non-resolved (or small-scale) field. In particular, the
so-called top-hat filter (with uniform filter width) is equivalent to the volume-average
operator, hence the N-S equations in weak conservation form can be considered as
filtered governing equations [28].

In our application, an approximate differential deconvolution operator, Ax, is ap-
plied to v̄, to recover the frequency content of the velocity field near the grid cutoff
wavenumber, which has been smoothed by the application of the volume-average
operator [2]. The resulting deconvolution-based N-S equations have the following
form:

∫

∂Ω(x)

ṽ ·n dS = s, A−1
x

(
∂ ṽ
∂ t

)
= fconv + fdi f f + fpress + fsgs, (2)

where Ω(x) is a finite volume contained into the region of the flow, ṽ = Ax (v̄),
fconv, fdi f f and fpres are the convective, diffusive and pressure fluxes of the filtered
equations, and fsgs contains the unresolved subgrid-scale terms, that can be modeled
either explicitly or implicitly. We disregard the source term s and adopt an implicit
subgrid-scale modelling, hence fsgs = 0 (see [2] for more details).

The computational domain is discretized by using a structured Cartesian grid.
Uniform grid spacings are used in the stream-wise (x) and span-wise (z) directions,
where the flow is assumed to be homogenous (periodic conditions are imposed on
the related boundaries). A non-uniform grid spacing, refined near the walls, is con-
sidered in the wall-normal direction (y), where no-slip boundary conditions are pre-
scribed. The equations (2) are discretized in space by using a finite volume method,
with flow variables co-located at the centers of the control volumes; a third-order
multidimensional upwind scheme is applied to the fluxes.

A time-splitting technique based on an APM is used to decouple the velocity
from the pressure in the deconvolved momentum equation (see [3] for the details).
According to the Helmholtz-Hodge decomposition theorem, the unknown velocity
field ṽ is evaluated at each time step through a predictor-corrector approach based on
the following formula:

ṽn+1 = v∗ −Δt∇φn+1,

where v∗ is an intermediate velocity field, Δ t is the time step, and φ is a scalar field
such that ∇φ is an O(Δt) approximation of the pressure gradient. In the predictor
stage, v∗ is computed using a second-order Adams-Bashforth/Crank-Nicolson semi-
implicit scheme to the deconvolved momentum equation, where the pressure term
is neglected. The correction stage requires the computation of ∇φ n+1 to obtain a
velocity field ṽ which is divergence-free in a discrete sense. To this aim, φn+1 is
obtained by solving a Poisson equation with non-homogeneous Neumann boundary
conditions, which has a solution, unique up to an additive constant, provided that
a suitable compatibility condition is satisfied. By discretizing this equation (usually
called pressure equation) with a second-order central finite volume scheme, we have
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+
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hyΔy j
= b,

(3)

where φn+1
i, j,k is the (approximated) value of φ n+1 in the center of the (i, j,k)-th control

volume and the right-hand side b depends on the intermediate velocity field, on the
grid spacings and on the time step. The equations (3) are suitably modified near the
boundaries to accomplish the divergence-free velocity constraint.

The pressure equations form a sparse linear system, whose size is the number of
cells of the discretization grid and hence, owing to resolution needs, increases as the
Reynolds number grows. Usual orderings of the grid cells lead to a system matrix, A,
which has a symmetric sparsity pattern, but is unsymmetric in value, because of the
non-uniform grid spacing in the y direction. The linear system is singular but results
to be compatible, since a discrete compatibility condition is ensured according to the
prescribed boundary conditions.

The solution of the pressure system at each time step of the APM-based proce-
dure usually accounts for a large part of the whole simulation time, hence it requires
very efficient solvers. It is easy to verify that R(A)∩N (A) = {0}, where R(A)
and N (A) are the range space and the null space of A; this property, coupled with
the compatibility of the linear system, ensures that in exact arithmetic the GMRES
method computes a solution before a breakdown occurs [5]. In practice, the Restarted
GMRES (RGMRES) method is used, because of the high memory requirements of
GMRES, and the application of an effective preconditioner that reduces the condition
number of the restriction of A to R(A) is crucial to decrease the number of iterations
to achieve a required accuracy in the solution.5

Different MLD2P4 preconditioners, coupled with the RGMRES solver imple-
mented in PSBLAS, have been applied to the discrete pressure equation. Since the
original LES code is sequential and matrix free, this has required the matrix A to be
assembled and distributed among multiple processors. The sparse matrix manage-
ment facilities provided by PSBLAS have been used to perform these operations.
Note that the cost of this pre-processing step is not significant, since A does not
change throughout the simulation and a very large number of time steps is required
to obtain a fully developed flow. Similarly, the time for the construction of any pre-
conditioner can be neglected, since this task must be performed only once, at the
beginning of the simulation.

5 Numerical experiments

The LES code exploiting the MLD2P4 preconditioners has been run to simulate bi-
periodical channel flows with different Reynolds numbers. For the sake of space, we

5 The computed solution has the form x0 + z, where z ∈ K (A,r0) ⊆ R(A) and K (A,r0) is
a Krylov space of suitable dimension associated to A and r0 = b−Ax0.
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report only the results concerning a single test case, focusing on the effectiveness and
the performance of various MLD2P4 proconditioners in the solution of the discrete
pressure system.

For the selected test problem, the domain size is 2πl × 2l × πl, where l is the
channel half-width, and the Reynolds number referred to the shear velocity is Reτ =
1050; a Poiseuille flow, with a random Gaussian perturbation, is assumed as initial
condition. The computational grid has 64 × 96× 128 cells, leading to a pressure
system matrix with dimension 786432 and 5480702 nonzero entries. The time step
Δ t is 10−4, to meet stability requirements.

The experiments have been carried out on a HP XC 6000 Linux cluster with
64 bi-processor nodes, operated by the Naples branch of ICAR-CNR. Each node
comprises an Intel Itanium 2 Madison processor with clock frequency of 1.4 Ghz and
is equipped with 4 GB of RAM; it runs HP Linux for High Performance Computing 3
(kernel 2.4.21). The main interconnection network is Quadrics QsNetII Elan 4, which
has a sustained bandwidth of 900 MB/sec. and a latency of about 5 μsec. for large
messages. The GNU Compiler Collection, v. 4.3, and the HP MPI implementation,
v. 2.01, have been used. MLD2P4 1.0 and PSBLAS 2.3 have been installed on top of
ATLAS 3.6.0 and BLACS 1.1.

The pressure matrix has been distributed among the processors according to a 3D
block decomposition of the computational grid. The restarting parameter of RGM-
RES has been set to 30; to stop the iterations it has been required that the ratio
between the 2-norm of the current and the initial residual is less than 10−7. At each
time step, the solution of the pressure equation computed at the previous time step
has been choosen as starting guess, except at the first time step, where the null vec-
tor has been considered. Multilevel hybrid post-smoothed preconditioners have been
applied, as right preconditioners, using 2, 3 and 4 levels. Different solvers have been
considered at the coarsest level: 4 parallel block-Jacobi sweeps, with ILU(0) or LU
on the blocks, have been applied to the coarsest system, distributed among the pro-
cessors (the corresponding preconditioners are denoted by xLDI and xLDU, respec-
tively, where x is the number of levels); alternatively, the coarsest matrix has been
replicated on all the processors and a sequential LU factorization has been used (the
corresponding preconditioners are denoted by xLRU). All the LU factorizations have
been computed by UMFPACK. RAS has been used as smoother, with overlap 0 and
1 and ILU(0) on each submatrix; RAS has been also applied as preconditioner, for
comparison purposes. Similar results have been obtained for each preconditioner
with both the overlap values; for the sake of space, we show here only the results
concerning the overlap 0.

In Table 1 we report the mean number of RGMRES iterations over the first 10
time steps, on 1, 2, 4, 8, 16, 32 and 64 processors. Although this number of time
steps is very small compared with the the total number of steps to have a fully devel-
oped flow (about 105), it is large enough to investigate the behaviour of RGMRES
with the various preconditioners. No test data are available for 2LRU because the
coarse matrix at level 2 is singular, and therefore the UMFPACK factorization fails;
moreover, on one processor 2LDU is the same as 2LRU, thus it is missing too. The
smallest iteration count is obtained by 3LRU, followed by 4LRU; in both cases, the
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Table 1. Mean number of iterations of preconditioned RGMRES on the pressure equation

Procs 2LDI 2LDU 3LDI 3LDU 3LRU 4LDI 4LDU 4LRU RAS

1 42 — 22 18 18 18 18 18 132
2 44 17 21 18 17 18 18 17 142
4 44 21 22 20 18 21 21 20 151
8 46 24 24 23 18 23 23 21 160

16 45 25 25 23 18 22 22 20 159
32 50 33 26 26 19 26 26 22 177
64 49 34 26 26 19 25 25 20 175
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Fig. 1. Mean execution times (left) and speedup (right) of preconditioned RGMRES on the
pressure equation.

number of iterations is bounded independently of the number of processors. 3LDI,
3LDU, 4LDI and 4LDU are less effective in reducing the iterations; the main reason
is the approximate solution of the corresponding coarsest-level systems through the
block-Jacobi method. The number of iterations is about the same with 3LDU, 4LDI
and 4LDU, while it is slightly larger with 3LDI, according to the lower accuracy
achieved by 3LDI in the solution of its coarsest-level systems (with 4 levels, the lo-
cal submatrices at the coarsest level are very small and almost dense, and the ILU(0)
factorization is practically equivalent to the LU one). For the same accuracy rea-
sons, the two-level preconditioners are the least effective among the multilevel ones.
The data concerning RAS confirm the effectiveness of the coarse-level corrections in
reducing the iterations almost independently of the number of processors.

In Figure 1 we show the mean execution time, in seconds, of RGMRES with
the various preconditioners and the related speedup. The speedup for 2LDU is miss-
ing, because 2LDU does not work on 1 processor (using as reference 2LDU on 2
processors gives a misrepresentation of the performance of 2LDU). We see that the
smallest execution times are obtained with 4LRU, although 3LRU performs better
in terms of iteration count; this is because the small size of the coarsest matrix in
4LRU yields a significant time saving in the solution of the coarsest-level system.
Conversely, the execution times concerning 3LRU are greater than the times of the
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remaining three- and four-level preconditioners, just because of the cost of dealing
with the coarsest matrix. The speedup achieved by 4LRU is satisfactory (in particu-
lar, it is 14.4 on 32 processors and 24.6 on 64), while the speedup of 3LRU confirms
that, for the problem at hand, this preconditioner lacks parallel performance. Using
3LDI, 3LDU, 4LDI and 4LDU leads to close execution times, except on 64 proces-
sors, on which the three-level preconditioners are slightly faster. Accordingly, on 64
processors, 3LDI and 3LDU show a better speedup than their four-level counterparts.
2LDI and 2LDU generally require a larger time than the other multilevel precondi-
tioners; this is in agreement with the larger size of the coarsest matrix and with the
iteration count of these preconditioners. Furthermore, 2LDU is also more costly than
RAS. Finally, RAS achieves the highest speedup values (e.g., 32.0 on 64 processors),
despite an increase in the number of iterations of more than 30% when going from
1 to 64 processors; this confirms that a tradeoff between optimality and parallelism
must be sought after when using Schwarz preconditioners.

6 Conclusions

In this paper we focused on the design and implementation of scalable algebraic
multilevel Schwarz preconditioners, which are recognized as effective tools for ob-
taining efficiency and robustness of Krylov methods in the solution of linear systems
arising in CFD (and other) applications. We described a Fortran 95 package, named
MLD2P4, which provides various versions of the above preconditioners through a
uniform and simple interface, thus giving the user the possibility of making the most
effective choice for his specific problem. Finally, we discussed the application of
different MLD2P4 preconditioners in the solution of linear systems arising in the
numerical simulation of an incompressible turbulent channel flow. The results ob-
tained demonstrate that this application may benefit from the use of MLD2P4 and
show the potential of the package in the development of scalable codes for CFD
simulations.
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Abstract. Efficient choice of the initial guess for the iterative solution of series of systems
is considered. The series of systems are typical for unsteady nonlinear fluid flow problems.
The history of iterative solution at previous time steps is used for computing a better initial
guess. This strategy is applied for two iterative linear system solvers (GCR and GMRES). A
reduced model technique is developed for implicitly discretized nonlinear evolution problems.
The technique computes a better initial guess for the inexact Newton method. The methods
are successfully tested in parallel CFD simulations. The latter approach is suitable for GRID
computing as well.

Key words: Krylov method, Newton method, Proper Orthogonal Decomposition,
client-server architecture, grid computing

1 Introduction

Large systems of equations are solved iteratively. Any iterative technique consists of
three basic procedures: the choice of the initial guess, the computation of the next
iterate, and the stopping criterion. Each procedure influences the efficiency of the
iterative solution in its own way: smart start, fast convergence, and prevention of
oversolving. The fast convergence is conventionally achieved by a combination of
an appropriate Krylov type method and a preconditioning technique. The stopping
criteria have been considered both for nonlinear (sufficient reduction of residual for
inner solves) [5] and linear solves (reliable estimate of true errors) [7, 8, 3].

In this paper we address the choice of the initial guess when a series of systems
produced by time stepping schemes has to be solved [15]. In particular, we con-
sider series of linear systems with the same nonsymmetric matrix and with different
nonsymmetric matrices. For Newton type solvers of nonlinear systems generated by
fully implicit discretizations, we present a new method of the choice of an initial
guess based on the model reduction [14, 15, 16]. The solution of the reduced model
provides more efficient initial guess than the solution from the previous time step. In
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spite of an extra work spent on the solution of the reduced model, the total complex-
ity of each time step decreases considerably, due to the super-linear convergence of
the inexact Newton solver.

The considered methods are parallel since they use basic linear algebra opera-
tions only. Numerical results presented below show actual acceleration in parallel
CFD simulations and demonstrate the applicability of the reduced model method in
GRID computing [16]. The series of systems are generated by time stepping methods
for different formulations of unsteady Navier-Stokes equations.

The paper outline is as follows. In section 2 we consider series of linear sys-
tems with the same matrix generated by the projection method for the unsteady 3D
Navier-Stokes equations. In section 3 we consider series of linear systems with differ-
ent matrices produced by the projection method for the unsteady Low Mach number
equations. In section 4 we present a new algorithm INB-POD for series of nonlin-
ear systems which appear in a fully implicit scheme for the unsteady Navier-Stokes
equations in the streamfunction-vorticity formulation.

2 Linear systems with the same matrix

We consider a series of linear systems appearing in the numerical simulation of un-
steady incompressible fluid flow. The projection scheme for the unsteady Navier-
Stokes equations with Dirichlet boundary condition is based on the pressure
correction. Its idea is to project a predicted velocity field onto the divergence-free
space by solving an elliptic equation for the pressure correction. In discrete form, the
projection reduces to a series of linear systems

Ax = bk (1)

with different right hand sides bk. The standard choice of the initial guess is the zero
vector since the unknown solution x represents a pressure increment.

The matrix A is the product of finite difference discretizations of the divergence
and gradient operators, and is singular and stiff. Symmetry of the matrix depends
on whether the divergence and gradient mesh operators are conjugate with respect to
Euclidian scalar product; in our discretization they are not conjugate due to particular
finite difference stencils and the matrix A is nonsymmetric.

For the iterative scheme we use the Generalized Conjugate Residual (GCR)
method

1. Compute r0 = b−Ax0. Set p0 = r0.
2. For j = 0,1,2, . . . , until convergence Do:

3. αi =
(r j,Ap j)

(Ap j,Ap j)
4. x j+1 = x j +α j p j
5. r j+1 = r j −α jAp j

6. Compute βi j = − (Ar j+1,Api)
(Api,Api)

, for i = 0,1, . . . , j

7. p j+1 = r j+1 +
j
∑

j=0
βi j pi
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8. EndDo

Although GMRES method requires less vectors to be accumulated, in compari-
son to the GCR method, and provides similar convergence rate, the additional data
available in GCR allow us to construct a very good initial guess. Indeed, besides the
Krylov subspace vectors K = {p j}k

j=1 which are AT A-orthogonal, we possess ex-

tra data, vectors {Ap j}k
j=1. Since the projection of b onto the space AK is equal to

k
∑
j=1

(b,Ap j)(Ap j,Ap j)−1Ap j, the projection of the solution x = A−1b onto K is [17]

x̂ =
k

∑
j=1

(b,Ap j)
(Ap j,Ap j)

p j. (2)

This observation implies that the projection of an unknown solution onto the accu-
mulated Krylov subspace may be easily computed (k scalar products). The accumu-
lation of the subspaces K and AK may be continued for several right hand sides,
if the initial guess for each subsequent solve is computed by (2), and x0 is set to x̂.
It is evident that the larger is the subspace K , the better is the approximation x̂ to
x. The accumulation of vectors p j and Ap j is limited by a practical capacity of the
computer memory: as soon as it is exhausted, the data p j and Apj are erased and the
new accumulation process begins. Another restriction for the number of accumulated
vectors is imposed by the expense of computation of k scalar products. It should be
smaller than the cost of the iteration stage.
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Fig. 1. Computational domain in the case of quasi-periodic flow

We illustrate the method on the test case 3D-2Z of quasi-periodic flow described
in details in [13]. The obstacle (thin cylinder) is lifted 1 mm above the plane of sym-
metry of the rectangular channel (Fig.1). The unsymmetry produces quasi-periodic
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flows with vortex separations for Re = 100. The inflow and outflow Dirichlet bound-
ary conditions simulate the Poiseuille flow, the other part of the boundary represents
the no-slip condition. We consider the mesh 80× 72× 72 and 800 time steps with
Δ t = 0.01. The size of system (1) is 3.5 · 105, the stopping criterion is ‖r j‖ < 10−5

which implies 1011-fold reduction of the initial residual for x0 = 0. The system (1) is
solved by the preconditioned GCR method on 16 processors of a COMPAQ cluster
of alpha ev6 processors (667MHz). In Table 1 we show the total number of GCR
iterations, ntot , and the total GCR time t, for different maximal dimensions of the ac-
cumulated Krylov subspace max#K . We observe that the minimal computation time
is achieved for moderate (50-80) dimensions of Krylov subspaces. The reduction of
the total number of iterations for higher values of max#K does not compensate the
increase of the projection (2) expense. We remark that for the fully developed flow
the projection with even max#K = 50 provides 105 −106-fold reduction of the ini-
tial residual due to the trivial initial guess. This results in 4-5 GCR iterations per time
step, in contrast to 11-12 iterations for x0 = 0. However, the actual speed-up is 1.5
due to the overhead of the projection computation.

Table 1. Total number of GCR iterations, the iterative solution time and maximal dimension
of the accumulated Krylov subspace

max#K 0 50 80 125

ntot 10385 5272 4525 4187
t (s) 1668 1108 1107 1217

3 Linear systems with different matrices

In this section we consider a series of linear systems appearing in the numerical sim-
ulation of unsteady compressible fluid flow. The non reactive flow of compressible
fluid with prescribed values of the velocity on the boundary obeys the full system
of Navier-Stokes equations. The low-Mach number approximation [6] reduces it to
a system of two momentum-type equations for velocity and temperature fields and a
constrained divergence equation. The projection scheme generates a series of linear
systems

Akx = bk (3)

with different matrices Ak and different right hand sides bk. The matrix Ak is the prod-
uct of a diagonal matrix with temperature entries and finite difference discretizations
of the divergence and gradient operators, and is singular and stiff. Symmetry of the
matrix depends on whether the divergence and gradient mesh operators are conju-
gate; in our discretization they are not conjugate and, therefore, Ak is nonsymmetric.
The principal feature of the series {Ak} is that the matrices (and their eigenvectors
and eigenvalues) vary slowly with the growth of k since the temperature changes
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slowly at each time step. The standard choice of the initial guess for (3) is the zero
vector since the unknown solution x represents a pressure increment.

Since the matrices Ak are different, their common Krylov subspace cannot be
generated and the advantages of the GCR method may not be used. The proposed
approach is to accumulate the sequence of independent Krylov subspaces and asso-
ciated images of matrices Ak produced by the GMRES method. The Krylov subspace
K consists of mutually orthonormal vectors {v j}m

j=1 such that

AVm = Vm+1Hm+1,m,

where matrix Vm is composed of the vectors v j and Hm+1,m is an upper Hessenberg
matrix containing the projection of Ak onto Vm. The error ek

0 = x0 − x satisfies the
system Akek

0 = Akx0 − bk which may be projected onto K . This projection is used
for the correction of the initial guess x0:

x̂ = x0 −VmĤ−1
m,mĜmV T

m (Akx0 −bk) (4)

where Ĝm is a sequence of Givens rotations such that Ĝ−1
m reduces Hm+1,m to an upper

triangular matrix Ĥm,m. All the operations of the projection (4) are implemented in
the standard realization of the GMRES method.

In the framework of a series (3), the choice of a better initial guess may be stated
as follows. Assume that k − 1 systems have been solved and for the i-th system,
i = k− l, ...,k−1, the following data are accumulated: mi, Vmi , Gmi , Hmi,mi . Then the
initial guess xk

0 for the k-th system is computed by the sequence of projections (4)

xi+1
0 = xi

0 −VmiĤ
−1
mi,mi

ĜmiV
T
mi

(Aixi
0 −bi), i = k− l, ...,k−1 (5)

with xk−l
0 = 0. In contrast to the projection (2), the number of accumulated data

l is restricted not only by the practical capacity of the computer memory, but the
discrepancy between the eigenvectors and eigenvalues of Ak−l and Ak−1.

The method was tested for a model chemical reactor [15]. The projection (4)
with l = 3 reduces the norm of the initial residual (due to the trivial initial guess) by
four orders of magnitude. However, the computed initial guess causes slow down of
the convergence rate. As a result, the computational gain is as much as 15% of the
solution time.

If the matrices in the series (3) are not “close” to each other, the projection (4)
may even increase the initial residual, in comparison with the trivial initial guess.
For example, our numerical evidence shows that the projection (4) is useless for the
series of systems produced by the Newton method (rf. Table 2).

We conclude this section with the remark that the projection (4) may save certain
amount of computations, if the eigendata of matrices of systems (3) are relatively
close to each other, and the number of GMRES iterations and the computer memory
allow to accumulate the projection data. In this respect, we mention a Ritz’s value
based strategy [4, 12] for the choice of appropriate vectors from a series of Krylov
subspaces.
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4 Series of nonlinear systems

Implicit discretizations of unsteady nonlinear problems generate series of nonlinear
systems

Fi(ui) = 0. (6)

The nonlinear system may be solved by the Inexact Newton Backtracking (INB)
method [1, 2, 9] with the finite difference approximation of the Jacobian-vector mul-
tiplication. The INB method offers global convergence properties combined with
potentially fast local convergence. The method has outer (nonlinear) and inner (lin-
ear) iterations. The inner linear solve uses a preconditioner. The effective choice of
the initial guess reduces the number of outer iterations due to the super-linear con-
vergence of the outer iterations.

The basic step of the INM method is the approximate solution of linear system

(Fi)′(uk)sk = −Fi(uk) (7)

with relative reduction of the residual (for trivial initial guess) ηk. The forcing term
ηk is chosen dynamically so that to avoid oversolving the systems (7). Backtracking
is used to update sk in order to globalize the convergence. The iterative solution of (7)
requires only evaluation of (Fi)′(uk) on a vector. This allows to replace (Fi)′(uk)v
by its finite difference approximation, e.g.,

(Fi)′(uk)v =
1
δ

[Fi(uk + δv)−Fi(uk)]. (8)

Hereinafter, the GMRES method restarted after each 30 iterates (GMRES(30))
method is used for the iterative solution of (7). The arithmetical complexity of the
INB method is expressed as the total number of function evaluations nevF and the
total number of preconditioner evaluations nevP (if any); the remaining overheads are
negligible.

We remark that the method (4) of computation of the initial guess for the se-
quence of linear systems (7) is ineffective: the values nevF , nevP do not decrease in
comparison with the trivial initial guess. To illustrate the assertion, we consider the
steady counterpart of the unsteady nonlinear problem discussed in the next section.
The problem is discretized on a square mesh with h = 2−6 and the parameter v is set
to 1. The nonlinear system with 3969 unknowns is solved by the algorithm INB (for
other details we refer to the end of the section). The stopping criterion for the INB
algorithm is ‖F(uk)‖ < 10−7‖F(0)‖. In Table 2 we show the total number of linear
iterations nlit , nevF and nevP for different strategies of choosing the initial guess for
GMRES iterations: the trivial vector corresponding to l = 0 in (5), or l �= 0 in (5)
corresponding to l consequent projections on the l newest Krylov subspaces.

The data of Table 2 indicate that the complexity of the INB algorithm increases
with l growing. The inefficiency of the strategy (5) may be explained by essential
differences in spectral properties of subsequent Jacobian matrices. In contrast, an
appropriate choice of the initial guess for nonlinear iterations reduces considerably
the arithmetical complexity of the method. To this end, we introduce two notions.
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Table 2. Complexity of the algorithm INB for different numbers of Krylov subspaces used in
the projection.

l in (5) 0 1 2

nlit 306 290 363
nevF 344 350 442
nevP 325 329 420

Proper orthogonal decomposition (POD) provides a way to find optimal lower
dimensional approximations of the given series of data. It produces an orthonormal
basis for representing the data series in a certain least squares optimal sense [10, 11].
Combined with the Galerkin projection, the POD is a tool for generation of reduced
models of lower dimension. The reduced models may give a better initial guess for
the Newton solution at the next time step.

The POD gives the solution to the problem: find m-dimensional subspace S ⊂ RN

most close to the given set of n RN-vectors {ui}n
i=1:

S = arg min
S∈RN×m

n

∑
i=1

‖ui −PSui‖2.

Here PS is the orthogonal projection onto S. In order to solve this problem, we define
the correlation matrix R = XXT , X = {u1 . . .un}, and find m eigenvectors of the
problem

Rwj = λ jwj , λ1 ≥ ·· · ≥ λN ≥ 0 (9)

corresponding to m largest eigenvalues λ1 ≥ ·· · ≥ λm. Then

S = span{wj}m
j=1,

n

∑
i=1

‖ui−PSui‖2 =
N

∑
j=m+1

λ j. (10)

The computational cost of finding m largest eigenvalues of symmetric matrix R
is modest. For m ∼ 10, the application of the Arnoldi process requires a few tens of
R-matrix-vector multiplications in order to retrieve the desirable vectors with a good
accuracy. The matrix-vector multiplication is cheap and parallel due to the factored
representation R = XXT . Alternatively, the solution of (9) may be reduced to the
solution of n-dimensional eigenvalue problem

R̃w̃ j = λ̃ jw̃ j, λ̃1 ≥ ·· · ≥ λ̃n ≥ 0

with explicitly calculated matrix R̃ = XT X .
A reduced model is generated on the basis of POD for a sequence of n solutions

of (6) {ui}ib+n−1
i=ib

. The eigenvectors {wj}m
j=1 form the basis of the m-dimensional

subspace and matrix Vm = {w1 . . .wm} ∈ RN×m is the projector onto this subspace.
The reduced model is the Galerkin projection of (6) onto this subspace:

V T
m Fi(Vmûi) = 0, or F̂ i(ûi) = 0, (11)
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where the unknown vector ûi ∈ Rm and F̂ i : Rm → Rm.
The reduced model is the nonlinear equation of very low dimension m. For its

solution, we adopt the same INB algorithm with the finite difference approximation
of the Jacobian-vector multiplication. Being the formal Galerkin projection, each
evaluation of function F̂i(ûi

k) in the kth INB iterate is the sequence of the follow-
ing operations: ui

k = Vmûi
k, f i

k = Fi(ui
k), and f̂ i

k = V T
m f i

k. Therefore, the overhead
is matrix-vector multiplications for Vm and V T

m , i.e., 4Nm flops which is negligible
compared to the evaluation of function F(u). Another important consequence of low
dimensionality of (11) is that the INB algorithm may be applied without any precon-
ditioner.

Coupling POD and reduced model gives a powerful tool for acceleration of the
fully implicit schemes [14, 15]. Let n, the length of data series, be defined, as well as
the desirable accuracy ε for Fi: ‖Fi(ui)‖ ≤ ε . For any time step i = 1, . . . , perform:

ALGORITHM INB-POD
IF i ≤ n, SOLVE Fi(ui) = 0 BY PRECONDITIONED INB

WITH THE INITIAL GUESS ui
0 = ui−1 AND ACCURACY ε

ELSE

1. IF(mod(i,n) = 1):
A) FORM X = {ui−n . . .ui−1};

B) FIND SO MANY LARGEST EIGENVECTORS w j OF R = XXT THAT
N
∑

j=m+1
λ j ≤ ε ;

C) FORM Vm = {w1 . . .wm}
2. SET ûi

0 = V T
m ui−1

3. SOLVE F̂ i(ûi) = 0 BY NON-PRECONDITIONED INB
WITH THE INITIAL GUESS ûi

0 AND ACCURACY ε/10
4. SET ui

0 = Vmûi

5. SOLVE Fi(ui) = 0 BY PRECONDITIONED INB
WITH THE INITIAL GUESS ui

0 AND ACCURACY ε

The reduced model is slightly oversolved, this provides better initial guess ui
0.

The number of eigenvectors is chosen adaptively in the above algorithm: it allows
to form a reduced model that approximates the original model with the desirable
accuracy ε .

The appealing feature of the method is its modularity: computation of the re-
duced model solution is separated from the original solver and is based on its simple
algebraic modification. It makes the INB-POD algorithm easy to implement in codes
with a complex architecture.

We tested the method for the backward Euler approximation of the unsteady
2D Navier-Stokes equations [15]. The classical lid driven cavity problem in the
streamfunction-vorticity formulation was considered. The computational domain
was the unit square, and the Reynolds number was 1000. The velocity of the lid
was periodic, v(t) = 1 + 0.2sin(t/10), and the flow demonstrated the quasiperiodic
behavior. Indeed, in the case of v(t) = 1, the unsteady solution is stabilized within
ts ∼ 150. Therefore, to get a quasi-periodic solution, we need the periodic forcing
term with the period T < ts but comparable with ts, T ∼ ts. If T � ts, the inertia of
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the dynamic system will smear out the amplitude of the oscillations; if T > ts, the
dynamic system will have enough time to adapt to the periodic forcing term and to
demonstrate periodic behavior. The function sin(t/10) has the period T = 20π which
fits perfectly the above restrictions for the quasi-periodicity. It is well known that the
feasible time step Δt for approximation of periodic solutions satisfies 12Δt = T , and
we set Δ t ∼ 5.

In Table 3 we compare the performance of the standard INB implicit solver with
the initial guess equal to the solution at the previous time step ui

0 = ui−1 and the
proposed INP-POD solver on the square mesh with mesh size 2−8.

Table 3. Performance of the algorithms INB and INB-POD for the lid driven cavity problem.

INB INB-POD
time step, i 10 20 30 32 42 52

‖Fi(ui
0)‖ 0.36 0.79 0.09 22e-6 1e-6 2.6e-6

nevF 166 186 189 44+55 45+11 44+19
nevP 160 180 183 0+51 0+ 9 0+16
CPU time 13.4 15.3 16.1 1.2+4.2 1.1+1.1 1.1+1.2

The parameters of the algorithm INB-POD were as follows. The data (solutions)
series are {u20k−10 . . .u20k+9}, k = 1,2, . . . , i.e., n = 20, and the dimension of the re-
duced model is fixed to m = 10. In Table 3 we present the arithmetical complexity of
certain time steps, in terms of nevF , nevP and the CPU time, as well as the quality of
the initial guess ‖Fi(ui

0)‖ due to ui
0 = ui−1 or due to the reduced model, ui

0 = Vmûi.
The first entry of each sum in the Table corresponds to the contribution of the re-
duced model, the second one is due to the original model. The first observation is
that the acceleration is significant, ∼2-6-fold in comparison with the standard algo-
rithm INB. The reason is in much better initial guess for the original model solver
(cf.‖Fi(ui

0)‖). Due to the super-linear convergence of the INB algorithm, this results
in smaller values of nevF , nevP. The price to be paid for this reduction is the cost of the
reduced problem solution. As it was mentioned before, the complexity of function
F̂ evaluation only slightly exceeds that for F , whereas the number of preconditioner
evaluations is zero for the reduced model. Since in the considered application (as
well as in the absolute majority of applications), the complexity of the preconditioner
evaluation dominates over the complexity of the function evaluation, the speed-up is
attributable to the ratio of nevP for the standard algorithm and the accelerated one.
As it is seen from the Table, this ratio depends on the time moment. At the time step
32, the quasi-periodic flow is not yet very well stabilized, and the prediction of the
reduced model is not as good (‖Fi(ui

0)‖ ∼ 10−5) yielding only 2-fold acceleration.
At the time steps 42 and 52, the initial guess due to the reduced model is very good,
(‖Fi(ui

0)‖ ∼ 10−6) and the acceleration is 6-fold.
We note that the solution of the eigenvalue problem may be performed asyn-

chronously with the implicit solution: as soon as Vm is formed, the reduced model
becomes the active substep. Moreover, the POD and the implicit INB solution may
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be performed on different computers: the data to be exchanged are X and V only, and
the communication delay does not block the simulation. The underlying client-server
architecture of the method makes it very appealing in GRID computing applications
[16]. The target architecture is represented by a set of low cost computational re-
sources (clusters) connected via a standard slow Ethernet communication network
with high latency time.

The POD acceleration can be used wherever POD data are available. The asyn-
chronous non-blocking communications between the POD generator and the solver
resource provide computation of the time step without idling. Therefore, a slow net-
work with high latency time is affordable for the proposed technology. Also, the
POD generator task is waiting for data from the solver resource and computing the
POD basis when sufficient data are gathered. For the sake of more efficient use of
the POD generation resource, it may work with other tasks as well. For instance, the
POD generator can be used by several solvers and perform the POD on different sets
of solutions tagged by the generating solver. In addition, the reduced basis may be
used for other postprocessing tasks such as data visualisation or a posteriori error
estimation.

Our GRID experiments involve a computer A (SGI Altix350 with Ithanium 2
processors, 1.3Gb/s network bandwidth) and a computer B (6 nodes Linux cluster
with AMD BiAthlon 1600+ MP processors, 100Mb/s Ethernet internal network).
A latency of 140 μs and a maximum bandwidth of 71Mb/s have been measured
for the communication network between the computers A and B. Figure 2 presents
the elapsed time of the INB solver for the quasi-periodic flow with and without POD
acceleration, on a homogeneous parallel computer and in the GRID architecture con-
text. The Figure shows that the INB-POD algorithm gives quite similar results when
it performs on the GRID context A-B or on the homogeneous computer A. Conse-
quently, the computer B can be used with no penalty on the performance.
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1 Introduction

With respect to wind energy, there is an increasing interest in decentralized, small
systems with a nominal power output of 5-25 kW. This has motivated the resurgence
of interest in Vertical-Axis Wind Turbines (VAWT), that offer several advantages
to the more conventional Horizontal-Axis (HAWT) machines. The VAWT is inher-
ently omnidirectional, and hence obviates the need to provide a yawing mechanism.
Due to their simpler configuration the productions costs and service effort is poten-
tially lower than for HAWT. In one sense, the price paid for structural simplicity is
aerodynamic complexity: VAWT aerodynamics is inherently unsteady, and highly
nonlinear. However, recent development in CFD methods capable of prediction in
detail the unsteady aerodynamics has greatly increased the understanding of VAWT
aerodynamics.

The present paper is organized as follows: In the section a short overview of the
computational model is presented. Subsequently, parameter models used to optimize
VAWT and the CFD model is presented. In order to present most important aero-
dynamic effects, some of the current two dimensional and three dimensional CFD
simulation results are presented together with VAWT parameter model.

2 Computational models

Figure 1 presents a simplified cross-section of the rotor. The rotor consists of two
straight NACA-4418 airfoils which are at both ends connected with the shaft. During
one revolution of the rotor the relative velocity Urel at the airfoil is changing due to
large variations of the angle of attack α , often as much as ±20◦ − 30◦. The blades
are then operated in a stalled condition most of the time. If the rate of variation
of the angle of attack is large enough, a hysteresis effect known as dynamic stall
may occur. Such nonlinear phenomena require that the simulations be carried out
in the time domain.The respective parameters as well as free-stream conditions are
presented in the Table 1.
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Fig. 1. Definition of Coordinate Systems and velocities.

airfoil cord span rotor radius wind velocity
c [m] H [m] R [m] Uw

[m
s

]

NACA 4418 0.5 2 1.73 10 m/s

Table 1. Parameters of the rotor and free stream conditions.

2.1 Aerodynamic parameter model

One of the most successful approaches for predicting VAWT is the Double Multiple
Streamtube (DMST) model [1]. This approach is capable to predict the periodic loads
and average output power of the rotor. The loading in a blade element depends on the
local relative velocity, which is the result of the local wind speed and the rotational
motion. The local wind speed depends on the retardation of the wind speed past the
upwind blade element, which depends in turn on the loading of the downwind blade
element. This interaction is modeled using the DMST approach. Since the focus
of the present paper is on the CFD simulations, details regarding this approach are
omitted here. Crucial input parameters of the model are the aerodynamic coefficients
of the profile which are typically available for static variations of angle of attack
up to about ±20◦ [2]. In present investigation aerodynamic coefficients for Re =
850000 and α =±90◦ are used [3]. Larger variations of angle of attack as well as the
dynamic effects have to be modeled based on empirical ideas, such as the Gormont
model for the hysteresis effect [4]. This parameter model, once validated, allows a
fast analysis of the flow, forces and loads acting on the blades and is therefore the
base for further optimization of the rotor. However, in order to qualify this approach,
a more details analysis of the 2D and 3D flow around the rotor is requires. This may
be obtained using CFD calculations.
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2.2 CFD Analysis

For the two-dimensional CFD analysis, representing the flow in one plane though
the rotor, the commercial package ANSYS CFX is used. The flow is assumed to be
incompressible and fully turbulent. The shear stress transport model is used together
with scalable wall functions. A single processor is sufficient to run these cases with
the overall grid size of about 200 000 cells. In the rectangular stationary domain, a
rotational domain is embedded using the sliding mesh interface. Critical issues with
respect to the setup of the problem are the size of the domain which has to be large
enough in order to avoid interference in particular with the outflow boundaries (see
Figure 2). The spatial resolution along the airfoils has to be reasonably fine. For the

R
R1

ω B

L1 L2

Fig. 2. Domain geometry. L1 = 2B = 30R, R1 = 2R, L2 = 50R.

three dimensional, transient analysis, the DLR TAU code [5] is used. In that code,
a Chimera overlapping grid technique is used for the variable interpolation between
the rotating and the stationary domain. This code solves the compressible RANS
equations with preconditioning to improve the convergence for the present low Mach
number flows. The 3D results presented in the following section are obtained on a
massive parallel system installed at the German Aerospace Center.

3 Results

One of the most important parameters of the VAWT is the solidity σ = Nc/R where
N is number of airfoils. Beside a strong influence on the power coefficient of the
VAWT [6], for σ < 0.5 the DMST model have a poor agreement with experiment.
For the current setup σ = 0.578. One of the measure for efficiency of VAWT is the
power coefficient CP which is usually plotted versus tip speed ratio λ = Uϕ/Uw.
Figure 3 shows quite good agreement of of DMST and CFD results for λ up to the
1.5. However, for large λ , larger deviations are observed. This may be explained with
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the dynamic stall effects [4] which are not included in the current implementation of
the DMST model.
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Fig. 3. Power coefficient of the VAWT CP = P/(ρU3
wHR). 2D-CFD simulations versus DMST

model. For the parameters see table 1.

The dynamic stall effects become obvious in Figure 4 where the moment of
the single airfoil is compared. Underestimated static aerodynamic coefficients in the
DMST model leads to significantly smaller peak moment (maximal angle of attack)
as compared with the CFD simulation. Both results predict significantly smaller mo-
ment in the downstream positions of the rotor because a large part of the wind energy
is exerted in the upstream area.
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Fig. 4. Normalized moment of the single airfoil with respect to the rotor position. λ = 2.5
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One of the aerodynamic effects which is not included in the present DMST model
is the moment of the aerodynamic forces around the aerodynamic center of the air-
foil (pitching moment). Figure 5 shows the overall moment of aerodynamic forces
Mz and the moment of the resulting aerodynamic forces acting on the single airfoil
MzFxy. The pitching moment (Mz−MzFxy) obviously gives negative contribution to
the resulting rotor moment.
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Fig. 5. The effect of the pitching moment,λ = 2.5.

The above presented CFD results are obtained for a simplified 2D configuration
which does not include the rotor shaft. The real configuration contains also and the
parts which connects the airfoils and the shaft what requires full 3D simulation. In
this case, 3D simulations are only possible using parallel computers. For λ = 2.5 the
full 3D model is simulated on the above mentioned cluster using 96 processors. The
model consists of 14.5 million cells and a computational time of about 40 hours is
spent per single rotor revolution.

Figure 6 shows the comparison of 2D and 3D model results where the differ-
ence in the peak moment is remarkable. This is mainly due to the influence of the
finite span and the drag of the rotor connecting parts. Pressure difference contours
presented in Figure 7 illustrate the influence of the finite span. Non-continuous dis-
tribution in spanwise direction results in decreased moment as compared to the 2D
simulation. 3D simulation results shows also that the drag moment of the rotor con-
necting parts is about 15% of the maximal moment.

4 Conclusion

In the present paper the incompressible, time dependant and turbulent flow past a
vertical axis wind turbine (VAWT) was simulated in two and three dimensions. The
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results serve to validate parameter models (such as DMST) which are used to op-
timize such wind turbines. A quite large disagreement between the DMST model
and the two dimensional CFD results is observed. This discrepancy motivates the
improvement to the parameter models in order to take into account e.g. for dy-
namic stall effects, which is suspected to be the predominant cause for uncertainties.
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Additionally, large differences between the two- and three-dimensional CFD simu-
lations are observed. This leads to the conclusion that 2D CFD simulation may not
be sufficient for the aerodynamic analysis of VAWTs due to a large variation of lift
along the airfoil span. Thus, 2D approaches may be very useful in order to demon-
strate the effect of constructional changes of the rotor in a more qualitative way. For
a quantitative analysis of the aerodynamic loads as well as to provide reliable data
for parameter models three dimensional simulations of the time dependant flow field
past the VAWT are indispensable.
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Abstract. A computational tool is developed to be used in the preliminary design
of an air vehicle. This tool parametrically optimizes the airframe shape. In order
to search the entire solution space thoroughly, a genetic algorithm is used. Code
parallelization is utilized to decrease the convergence time of the airframe shape
design of a realistic missile geometry on a Grid infrastructure to further improve the
search quality. In this work, a generic missile geometry is taken as a test case for a
design application. The problem is to maximize the weighted average of lift-to-drag
ratio for given mass and propulsion unit.
Keywords: Design Optimization, Shape Optimization, Genetic Algorithms, Parallel
Computing, Grid Computing.

1 Introduction

Conventional methods that use gradient information have been used many times for
engineering design problems in the past [1, 11, 3]. But, they often fall into difficulty
of handling the high dimensional problems. It is hard to search the entire design space
by these methods, especially if the problem includes disjoint solution sets. Besides,
they require gradient information which is hard to obtain, or nonexistent.

Heuristic methods have become widespread [4, 5, 6, 7]. They can deal with such
stiff problems with high dimensionality and with large number of local solutions,
and are able to avoid unfeasible regions and handle inequality constraints.

In this paper, genetic algorithms are used, because they are well suited for parallel
computing, which is an important property for engineering design problems with
large number of parameters. There has been an increasing tendency in the use of
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parallel genetic algorithms during the last decade [8, 9]. In this study, such a parallel
implementation is realized on a Grid infrastructure.

2 Problem Definition

2.1 The Cruise Flight

The aim is to obtain an airframe geometry that provides the longest flight possible.
Consider the following cruise equations, for γ = 0:

ẋ = V , (1)

ż = 0 , (2)

V̇ = (FD + FT )/m , (3)

V.γ̇ = FL/m−g . (4)

where V and γ are speed and flight path angles, respectively. FT is thrust force, m is
mass, and they are functions of time. FD and FL are the drag and lift forces, respec-
tively, and are calculated as follows:

FD =
1
2
.ρ .V 2.Sre f .CD , (5)

FL =
1
2
.ρ .V 2.Sre f .CL . (6)

Here the drag and lift coefficients CD and CL are functions of Mach number M and
angle of attack α . These coefficients correspond to the trim values; therefore, it is
not necessary to deal with the short term variations. Since angle of attack is arbitrary,
it is chosen so as to satisfy the condition γ̇ = 0. The atmospheric variables density ρ ,
and speed of sound c are found from the standard atmosphere model. The problem
demands that, for a given set of initial and terminal values of V , the final value of
range x f be maximum. Additionally, different configurations are checked for a static
stability requirement that the minimum value of the stability margin should be greater
than a reference value.

2.2 Shape Optimization

In this work, it is assumed that propulsion, warhead and instruments sections are
previously defined. This way, the length and diameter of the body, and the nose
shape are already determined. Thus, the properties related to the body are taken as
constants, and are not considered into optimization process. The configuration is
built with a body with circular cross section and two sets of fins. The first fin set
(wing section), consists of two panels whereas the second set (tail section) consists
of cross-oriented four fins. The following parameters are selected as design variables
on cross-sectional plane of each fin set:
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1. Position of leading edge on the body ll
2. Leading edge sweep angle Λl

3. Root chord length cr

4. Aspect ratio A = b2/2S, S: plan-form area
5. Taper ratio λ = ct/cr

Each plane is of double wedged cross section. It is assumed that thickness-to-chord
ratios are fixed along the half span. The following parameters are selected as design
variables for airfoil geometries, for each set:

1. Thickness-to-chord ratios of upper and lower wedges t/c
2. Cone angles for leading edges of upper and lower wedges γl
3. Cone angles for trailing edges of upper and lower wedges γt

A typical airframe geometry, as well as the design parameters are illustrated in
Figure 1.

lw

ct

cr

cr

tu
ul

tl

ut

ltll

Fin cross section
Fin planform

b/2

Fig. 1. Airframe geometry.

3 Method

3.1 Genetic Algorithms

The genetic algorithms technique is used frequently in non-linear optimization and
constraint satisfaction problems. For a given problem, it maintains a population of
candidate solutions; then it evaluates these solutions and assign objective values as
the fitness values (in maximization). Based on the fitness values of the candidates,
a new generation of candidate solutions is reproduced by means of operators in-
spired from evolutionary biology, such as mutation, selection, and crossover. This
reproduction process favors for the better candidates (principle of the survival of the
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fittest), thus it reduces the probability of appearance of non-fitted solutions in the
new generation.

The process is iterated until solutions converge to an optimum fitness value;
hence it is a simulated evolution process which typically requires a large number
of fitness evaluations.

3.2 Shape Optimization of a Missile

At each step of iteration, the master (i.e., the genetic algorithm’s engine) generates
configuration parameters as the solution set, which are combined to form the individ-
ual. All these values are bounded with both upper and lower limits, which are phys-
ical or geometrical constraints. These design variables are represented by integers
called genes, thus the desired resolution of each parameter must also be specified.

The total set of solution proposals (individuals) is called population, which is
divided into sub-populations. Each sub-population, in the form of a set of configura-
tion parameters, is sent by the master to a separate worker. The sub-population size
is set to the population size divided by the number of workers configured.

Each worker calculates a series of fitness values belonging to a group of indi-
viduals. The fitness value of an individual is the objective value being equal to the
final range covered at the end of the cruise flight Moreover, the violations of static
stability requirement are punished by means of inhibition of breeding, which reduces
useless search space.

In the evaluation, an aerodynamic preliminary-design tool is required. This refers
to the family of industry-standard codes, which combine the linear aerodynamic the-
ory with experimental data, and use component build-up methods to handle whole
configuration through its parts. The simulation needs drag and lift values. The semi-
empirical aerodynamic analysis tool MISSILE DATCOM calculates these coeffi-
cients; and they are supplied in tabular form with respect to several Mach numbers
and angle of attack α values [10].

All the fitness values calculated by workers are transferred back to the master
where the population is updated as the best performances are rewarded with higher
reproductive rates. That is, the master finds the fittest (best) solutions, out of the
ones provided by workers, using the user supplied parameters for mutation, selection,
and crossover genetic operators. The flow of this mentioned process is illustrated in
Figure 2.

3.3 Implementation of Problem on GridAE

In this study, the genetic algorithms technique is implemented on the Grid environ-
ment since the search space is extremely large. This enables to obtain a higher level
of diversification, and it becomes possible to find better solutions within this large so-
lution space by the use of a Grid infrastructure. The method is experienced using the
Grid-based Artificial Evolution framework (GridAE)5 deployed on the South Eastern

5 The development of GridAE is supported by the SEE-GRID project, funded by the Euro-
pean Commission under the contract FP6 RI-002356.
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Fig. 2. Illustration of an overall solution flow where the master acts as the genetic engine and
each worker calculates the fitness values.

European Grid (SEE-GRID) infrastructure [11, 12], which, like the other EGEE-like
Grids, consists of a set of middleware services deployed on a broad collection of
computational and storage resources, plus the services and support structures put in
place to operate them [13]. It is a stable infrastructure, running the gLite Grid mid-
dleware on Scientific Linux Operating System instances [14, 15], for any scientific
research, especially for projects where the time and resources needed for running
the applications are considered impractical when using traditional IT infrastructures.
Currently, it has about 40 sites (clusters) over 13 countries in the region with around
2000 various types of CPUs.

The GridAE framework aims to create a transparent interface for the user which
would distribute the execution of artificial evolution applications (through the genetic
algorithms technique) onto the Grid. Other than using its built-in genetic library, a
user may develop and use his/her own genetic operators. This framework is designed
to fit to EGEE-like Grid infrastructures, currently supporting the gLite middleware.

GridAE employs the master-worker paradigm, where it is theoretically possible
to submit thousands of workers. As messaging is not supported among the sites by
the infrastructure, it reserves and uses some temporary area on the Grid storage el-
ements to simulate a shared memory region for the GridAE tasks to communicate
with each other. Hence, submitting all the tasks to a single site and using a storage
element located nearby obviously increase the evolution performance; however, one
may need to wait for a very long time before that many processors in one site be-
come available. Thus, GridAE makes use of the resource brokers for multi-site Grid
execution of its tasks, where load-balancing is provided implicitly.
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4 Test Case

A shape optimization test case is carried out as an application. Constants of the prob-
lem are specified in Table 1. These constants include, ballistic and inertial parameters
of the generic missile which is handled in this work, body geometry shape parame-
ters, and initial and terminal flight conditions.

The shape optimization process takes the following set of design parameters into
consideration:

1. Design parameters for the wing section – 11 values
2. Design parameters for the tail section – 11 values

Resultant geometry parameters for each planform section are given in Table 2.
In order to give an insight into how the genetic algorithms work, some steps

from the convergence history of a design parameter are given in Figure 3, as an
example. The figures illustrate how the diversity in the population reduces and finally
converges to an optimum value. Each dot in the figures represents an individual for
corresponding AR (aspect ratio of the tail) value. The figure shows four ensembles
belonging to different stages of the iteration. This c uses a 125-member population,
and the final values of the design parameters are presented in Table 2.

In addition, the effects of number of generations and population size on the max-
imum fitness achieved are illustrated in Figure 4. It can be observed that the popu-
lation size is directly proportional to maximum fitness values when the number of
generations is fixed. Thus, it can be claimed that increasing the population size will
result in less number of generations for the parameters to converge their optimum.
Also, the maximum fitness values tend to increase as population evolves as one may
expect. The drops on the graph can be avoided by using improved parameters for the
genetic algorithm or introducing elitism.

Full Mass 2100 kg Body Length 5.0 m Z0 2000 m
Empty Mass 1010 kg Diameter 0.6 m V0 240 m/s
Full Com 3.0 m Exit Diameter 0.4 m zr 2000 m
Empty Com 2.3 m Nose Length 0.8 m Vr 280 m/s
Thrust 40 kN Nose Shape Ogive γr 30 deg
Burnout Time 70 sec αlim 8 deg

Table 1. Constant parameters used in the test case

5 Conclusions

Genetic algorithms prove to be reliable engineering design tools, especially in prob-
lems with a high degree of parameters space. It can safely be used in aeronautical
design applications, in which the number of design variables are high, the sensitivity
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Fig. 3. Selected steps in the convergence history of aspect ratio of the tail (a) Initial, (b) After
30 generations, (c) After 50 generations, (d) After 80 generations

functions are inaccurate or unavailable, and the design space includes discontinues
parts.

More importantly, the genetic algorithm technique is very suitable for paralleliza-
tion. In current technology, this aspect is invaluable and even crucial. Parallel genetic
algorithm applications fit very well to the loosely-coupled nature of the Grid infras-
tructures. This makes it possible to submit genetic algorithm applications onto Grid
environments with many ten thousands of processors. These advantages encourage
the inclusion of the more advanced methods or handling of the more stiff problems
in design.
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Abstract. This work presents a feasibility study for trustable and affordable CFD analysis
of aerodynamic indices of racing sailing yachts. A detailed reconstructed model of a recent
America’s Cup class mainsail and asymmetrical spinnaker under light wind conditions has
been studied using massive parallel RANS modeling on 128 CPUs. A detailed comparison
between computational and experimental data has been performed and discussed, thanks to
wind tunnel tests performed with the same geometry under the same wind conditions. The
computational grid used was of about 37 millions of tetrahedra and the parallel job has been
performed on up to 128 CPUs of a distributed memory Linux cluster using a commercial CFD
code. An in deep analysis of the CPU usage has been performed during the computation by
means of Ganglia and a complete benchmark of the studied case has been done for 64, 48, 32,
16, 8 and 4 CPUs analyzing the advantages offered by two kind of available interconnection
technologies: Ethernet and Infiniband. Besides to this computational benchmark, a sensitivity
analysis of the global aerodynamic force components, the lift and the drag, to different grid
resolution size has been performed. In particular, mesh size across three orders of magnitude
have been investigated: from 0.06 million up to 37 million cells. The computational results
obtained here are in great agreement with the experimental data. In particular, the fully tetra-
hedral meshes allow appreciating the beneficial effect of the increasing of the grid resolution
without changing grid topology: a converging trend to the experimental value is observed. In
conclusion, the present results confirm the validity of RANS modeling as a design tool and
show the advantages and costs of a large tetrahedral mesh for downwind sail design purposes.
Keywords: CFD, Parallel Computing, Benchmarks, Yacht Sail Plans, Downwind Sails, Wind
Tunnel Tests.

1 Introduction

RANS analysis is playing a central role in the recent America’s Cup (AC) races for
both hydrodynamic and aerodynamic design aspects. In the last 30 years computa-
tional analysis capabilities and affordability have grown so much that in the last AC
(2007, Valencia, Spain) all the twelve syndicates had invested a comparable amount
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of money in experimental tests and in computational resources. It is only in last few
years that RANS has become a trustable design tools, in particular in the sail design
field. In fact, in some sailing condition the flow around the sails are largely sepa-
rated and a large computational effort is required to accurately compute the resultant
aerodynamic forces. The aerodynamics of sails can be divided in three branches:
the aerodynamic of upwind sails, reaching sails and running sails. Upwind sails are
adopted when sailing at small apparent wind angle (AWA), typically smaller than
35, where AWA is generally defined as the angle between the yacht course and the
undisturbed wind direction at the 10m reference height above the sea surface. Single
mast yachts, namely sloop, adopt a mainsail and a jib or a genoa, which are light
cambered airfoils designed to work close to the optimum efficiency, i.e. to maximize
the lift/drag ratio. The flow is mainly attached and consequently un-viscous code
has been adopted with success since sixties to predict aerodynamic global coeffi-
cients [1], [2], and in the last decades several RANS applications have shown a good
agreement with wind tunnel tests [3], [4]. Reaching sails are adopted when sailing
at larger AWA, typically from 45 to 160. Sloop modern racing yachts often adopt
the mainsail and the asymmetrical spinnaker, which are more cambered airfoils de-
signed to produce the maximum lift [5], [6]; in fact sailing at 90 AWA the lift force
component is aligned with the course direction. The flow is attached for more of the
half chord of the sail and separation occurs on the trailing edge of the asymmetrical
spinnaker. In particular, the flow field is strongly three dimensional because of the
increasing of the vertical velocity component, the tip and root vortexes are strongly
connected to the trailing edge vortex. Reaching sail aerodynamics requires the ca-
pability to correctly compute the separation edge on the leeward spinnaker surface,
hence un-viscous code are not applicable and Navier-Stokes code might be adopted.
The first RANS analysis has been performed by Hedges in 1993 [7], [8] with lim-
ited computational resources. More recently, in 2007 [9] and 2008 [10] two works
performed with less than 1 million of tetrahedral cells show good agreement with
wind tunnel data: differences between computed and measured force components
are between 11Running sails are adopted at larger AWA and sloop yachts generally
adopt a mainsail and a symmetrical spinnaker. The flow is mostly separated and sails
work as bluff bodies. Separation occurs on the sail perimeters and the drag has to be
maximized [5], [6]. In the AC races, the racing curse is around two marks positioned
along the wind direction, in such a way that half of the race has to be sailed upwind
and half downwind. In the leeward leg, yacht sails at closer AWA to increase the ap-
parent wind component (due to their own speed) in light air, and sails al larger AWA
to reduce the sailed course in stronger breeze. In the recent AC races a wind speed
limitation lead to sail mainly reaching than running and for this reason particular
focus has been placed on asymmetrical spinnakers.

In the present work, an America’s Cup Class, version 5 [11], are studied in a
downwind reaching configuration sailing at 45 AWA with mainsail and asymmetri-
cal spinnaker and a RANS analysis has been performed to investigate the benefits
in the global force computation accuracy with a very large mesh. A 37 millions of
cells mesh has been performed with the commercial codes Gambit and Tgrid by An-
sys Inc., which adopt a bottom-down approach: meshes are generated from lower to
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higher topology, hence from edges to surfaces and than to volumes. Only tetrahedral
cells have been adopted. The computation has been performed with Fluent 6.3.26
(Ansys Inc.) solving the uncompressible Navier-Stokes-equations. In Figure 1 a vi-
sualization of the mathematical model is showed. The herein obtained computational
results on the 37 million-cell mesh have been compared with both computational
(previously obtained on smaller meshes and under the same fluid dynamics con-
ditions) and experimental data acquired in the Politecnico di Milano Twisted Flow
Wind Tunnel. In the following of the paper the experimental set-up is described, then
the computational aspects are highlighted together with the hardware and the inter-
connection technologies used in the parallel run of the numerical simulations, finally
numerical results are discussed and compared with experimental measurements in
terms of aerodynamics indices such as lift and drag global coefficients.

Fig. 1. static pressure coefficient distribution on sails and hull (Cp=(p-p0)/q, where p0 is the
outflow undisturbed reference pressure and q is the inflow undisturbed reference dynamic
pressure). Path lines colored by time show the boom and the mainsail tip vortexes. The yacht
is sailing at 45 of apparent wind angle (i.e. the angle between the hull longitudinal axes and the
incident wind at the reference height of 10m full scale) and is 5 leeward heeled. The America’s
Cup Class (version 5) mainsail and asymmetrical spinnaker for light wind are trimmed to
produce the maximum driving force in the boat direction.

2 Experimental measurements

Experimental test has been performed in the Politecnico di Milano Twisted Flow
Wind Tunnel. It is a closed circuit wind tunnel with two test sections respectively
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designed for civil and aerospace applications. On the left of Figure 1 the wind tun-
nel rendering is presented, airflow is running anti clockwise. On the lower side,
aerospace low turbolence test section is showed. On the upper side, the long civil
boundary layer test section, 36m length, 14m wide and 4m high, where sail plan
tests are performed, which is showed on the right of Figure 2. The 1:12,5 scaled

Fig. 2. left: Politecnico di Milano Twisted Flow Wind Tunnel closed circuit; right: sail plan
test in the boundary layer test section.

model is fitted on a 6-component dynamometer and it is supplied of 7 drums to trim
sails as in real life, operated through a proportional radio control system. Sails are
trimmed to produce the maximum aerodynamic force component in boat direction,
i.e. driving force. Then actual measurements are obtained by sampling the data over
30 seconds at 100Hz. Coefficients are obtained dividing forces with a reference dy-
namic pressure and sail area. Reference wind speed is measured 5m windward at
the reference height corresponding to 10m in full scale. Wind tunnel tests have been
performed with target velocity and twisted profiles according specific situation of an
ACC yacht sailing in Valencia atmospheric boundary layer. More details about wind
tunnel tests can be found in [12].

3 Numerical analysis

The commercial code Fluent (Ansys Inc.) with a segregated solver strategy has been
used to solve the equations of the flow around the sailing boat without considering
time dependence (i.e. steady state), volume forces (i.e. gravity) and density varia-
tions and therefore energy equation hasnt been solved. SIMPLE scheme has been
solved and first discretization order has been adopted. None turbulence model has
been adopted. All the computations were performed on a Linux Cluster equipped
with 74 CPUs AMD Opteron 275 dual-core (2.2 GHz, 2 GB/core) interconnected
with Infiniband 4x (10GB/s) and Gigabit Ethernet. Due to the lack of information for
such kind of models we launched the execution of the computation on 128 CPUs ac-
cording to the maximum degree of parallel processing permitted by the license. The
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overall computation together with all the input and output operations and file writing
took about one week. During the computation we monitored and analyzed the usage
of the CPU using Ganglia (a system able to monitoring and store data concerning the
usage of network and CPU in clusters computers); observing that the usage of the
CPU was sub-optimal, we decide to perform an accurate benchmark in order to find
out the optimal CPU usage. In particular we perform a descending benchmark on 64,
48, 32, 16, 8 and 4 CPUs testing two type of interconnection network, Infiniband and
Ethernet Gigabit, and performing 100 iterations starting from the archived data. The
benchmarking could not be performed on less then 4 CPUs since it was not possible
to allocate in memory the 37 million elements mesh on less then 32GB of memory
and wondering to take advantage of the multi-core architecture. For this reason all
the results concerning the speed-up evaluation and the efficiency are referred to the 4
CPUs test case. In Figure 3 (left) the total wall time is plotted against the number of
the used CPU for the two interconnections considered. In Figure 3 (rigth) the speed-
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Fig. 3. Results on 100 iterations, left: Total wall time; right: speed-up.

up with respect to the 4 CPUs test is plotted against the number of the used CPU for
the two interconnections considered, in Figure 4 the efficiency, again with respect
to the 4 CPUs test case, is plotted against the number of the used CPU for the two
interconnections considered. In order to better appreciate the gain on using a more
performing interconnection and due to the fact that we did not had the possibility to
compute the bench on less then 4 CPUs, in Figure 4 we plot the relative speed-up
computed at a fixed value of used CPU according to:

Relative speed-up = (Infiniband speed-up)/(Ethernet speed-up) (1)

The relative speed-up shows that Infiniband speed-up rise up to about double the
Ethernet speed-up in the case of 128 CPUs. All the benchmark results are consistent
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Fig. 4. Results on 100 iterations, left: efficiency; right: gain on speed-up computed as in equa-
tion (1).

to the fact that for this case the optimal usage of the CPU is obtained with a degree
of parallelism equal to 32, moreover significant advantages are obtainable by means
of a high performing interconnection (Infiniband) using higher number of CPU as
shown in Figure 4 right.

4 Results

The numerical simulations showed a good agreement with the experimental data, the
37M cells mesh shows differences smaller than 3% in both the global aerodynamic
force coefficients lift and drag, defined as following:

CD =
drag

1
2ρV 2S

, CL =
li f t

1
2ρV 2S

(2)

Where drag and li f t are forces along the wind and perpendicular to the wind,
respectively, in the horizontal plane acting on the yacht model above the water-plane
(included hull rigging and sails), ρ air density, V undisturbed incoming reference
wind speed measured at 10m height full-scale, S sail area (sum of the two sail sur-
faces).

The converging criteria is based on the drag and lift coefficients, which are mon-
itored every iteration until the average values become stable. Figure 5 shows the
sensitivity analysis to the mesh dimension: the drag (left) and lift (right) coefficients
divided by the experimental values are plotted for the 37M cells mesh together with
three other meshes of 0.06M, 1M, 6.5M respectively, obtained in previously vali-
dated studies and under the same fluid dynamics conditions. Circle and square marks
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show the average value and the error bars show the standard deviation of the coef-
ficient oscillations. Increasing the mesh size of about three order of magnitude an
increasing accuracy is obtained: the maximum differences between computed lift
and drag with respect to the experimental values is smaller than 8% for the coarser
mesh and becomes smaller than 3% for the finer mesh. By the way, the lift coeffi-
cients trend comes across the experimental values: lift is overestimated with coarser
mesh and underestimated with finer mesh. Increasing mesh size both drag and lift
curve are decreasing monotone. Further researches will be aimed to explore mesh
larger than 100 million-cells, which has not been performed up to now because of
the computational requirements that would be larger than 100GB of memory usage.
Nevertheless the herein discussed work shows that some kind of large scale parallel
approaches to RANS code applications in this filed can be a valid candidate to over-
come these technical limits. The four meshes are fully tetrahedral and with similar
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Fig. 5. numerical/experimental coefficient ratios are plotted versus the overall number of cells.
Circle and squared marks show drag CD (left) and lift CL (right) average values, respectively,
and error bars show the standard deviation of the coefficient signals.

grow rate (the linear dimension ratio between two adjacent cells in the wall-normal
direction), hence they are all topologically similar. The wall adjacent tetrahedron di-
mension, and hence the distance between the tetrahedron centre and the wall (namely
the first cell-centre-height y1) have a dramatic impact onto the resultant overall cells
number. In Figure 6 on the left, the ratio between the first cell-centre-height of each
mesh and the cell-centre-height of the coarser mesh are plotted versus the resultant
overall number of cells. In Figure 6 on the right, the y+ values are plotted versus the
overall number of cells. An horizontal section at 1/3 height of the yacht model from
the water-plane has been considered and the y+ values are referred to the asymmetric
spinnaker leeward edge intersecting the plane.
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Values are collected from the cells placed on the asymmetrical spinnaker at 1/3
height of the yacht model from the water-plane at the last iteration stage. In figure
the maximum, minimum and average y+ values are plotted for each mesh.
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Fig. 6. left: first cell-centre-height of each mesh divided by the first cell-centre-height of the
coarser mesh of 0.06 million cells are plotted versus the overall mesh size; right: maximum,
minimum and average y+ values computed at the last iteration stage and collected from the
cells of the asymmetrical spinnaker at 1/3 height of the yacht model from the water-plane are
plotted versus the overall mesh size.

5 Conclusion

In the present work a detailed study of feasibility of CFD approaches on the study
of aerodynamics indices in racing sailing yachts is discussed. The main purpose of
the study was to understand the usefulness of parallel computational approaches on
the evaluation of several typical aerodynamic indices used to design and test in a
synthetic manner the performance of a racing sailing yacht. In order to reach this
scope a 37 million cells computational model of a ACC-V5 yacht model have been
studied on 128 CPUs at the CILEA computer centre, using the parallel version of
the commercial code Fluent (Ansys, Inc.) and all the typical aerodynamic factors,
such as lift and drag coefficients, as been computed under steady state condition.
Computed coefficients have been compared with experimental measurements per-
formed at the Politecnico di Milano Twisted Flow Wind Tunnel, showing very good
agreement: differences in both lift and drag smaller than 3%. In order to evaluate the
usefulness of such approach (i.e. using a 37 million mesh) with respect to smaller dis-
cretization, we compared the herein obtained results with other pre-computed ones
obtained respectively with a 0.06M, 1M, and 6.5M elements and under the same
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fluid dynamics conditions. An increase in force coefficient computed accuracy has
been observed increasing the mesh size. Finally wondering to understand the better
balancing between number of processors, mesh dimension and CPU usage, we per-
formed a benchmark of 100 iteration of the same computational model using 64, 48,
32, 16, 8 and 4 CPUs and with two king of interconnection technologies. In this sense
the best configuration is obtained using Infiniband interconnection and 32 CPUs. In
conclusion this work show the feasibility of very large parallel CFD processing with
a concrete gain in accuracy that confirm the usefulness of computational approaches
as trustable and affordable tools for design and hypothesis testing today more and
more complementary to the necessary experimental analysis.
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Abstract. An efficient approach to optimization of real-life 3D aerodynamic shapes for mini-
mum drag is presented. The method allows for substitution of fictitious surfaces for those parts
of aircraft which are not subject to modification in the process of design. The approach essen-
tially reduces the geometrical complexity of computational models thus making the optimiza-
tion of complete aerodynamic configurations practically feasible and, eventually, increasing
the accuracy and reliability of optimization. The optimization framework is that of OPTIMAS,
the in-house IAI optimization tool based on Genetic Algorithms and full Navier-Stokes com-
putations. The method is illustrated by example of wing shape optimization for the full config-
uration of generic business jet with close coupled wing-body-nacelle, and vertical/horisontal
tails. The results indicate the applicability of the method to practical aerodynamic design.

1 INTRODUCTION

The objective of reducing the design cycle of an aircraft prompted a major research
and industrial effort into CFD driven optimization methods. Based on this effort,
a certain progress has been achieved in the incorporation of automatic CFD-based
tools into the overall technology of aerodynamic design [1]- [2].

As the technology for high-speed flight had matured, the development of com-
petitive business jets requires the application of advanced design methods able to
substantially reduce the design cycle and to improve the aerodynamic performance
[3]. This leads to the necessity of a greater exploitation of automatic CFD driven
optimization tools in the process of aerodynamic design of business jets.

In particular, a new technology of aerodynamic design, based on CFD driven con-
strained optimization for minimum drag, has been recently developed by the authors
in Israel Aerospace Industries (IAI). This technology makes use of the in-house opti-
mization tool OPTIMAS driven by Genetic Algorithms and accurate drag prediction
(see Ref. [4]-[6]). With this technology, wing shape was optimized separately and
then incorporated into the whole aircraft ([5]) or optimized as an integral part of
wing-body configuration as in Ref. [6].

The applicability of automatic optimizers to more complex aerodynamic con-
figurations such as wing-body-nacelle-pylon combination is generally plagued by
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several reasons. Even if the design is restricted to only lifting surface(s), aerody-
namic accuracy considerations demand to sufficiently resolve at least those parts of
the configuration which directly influence the optimized parts of the aircraft or/and
may change the design conditions such as the total lift.

This poses the following problems. Firstly, sufficiently resolved complex aerody-
namic shapes require the huge computational volume for their optimization making
the full-scale optimization impractical. This problem is not likely to be fully solved in
the near future even with the advent of more powerful computer resources. Secondly,
the optimization of complex shapes requires the use of fine computational grids not
only for the initial configuration but for the whole family of tested geometries. These
grids must be consistent in the following sense. The computational error prompted
by the change in a numerical grid (which is due to the change in a tested shape)
must be negligible compared to the accuracy of CFD computations. The latter repre-
sents a small value of about 0.0001-0.0004 in terms of drag coefficient. The problem
looks intractable where unstructured grids are employed since in this case a change
in shape results in grid restructuring, which frequently leads to significant changes
in the value of drag coefficient. Even with structured grids (used in OPTIMAS), this
still may present a problem especially where important parts of the designed aircraft
are closely coupled and/or include ”dire straits” between them. In this case, a mesh
movement is performed in a very bounded space region which increases the mesh
generated computational error. Body installed nacelle-pylon closely coupled with a
wing gives a realistic example of the above problem.

The existing practice is to reduce the design geometry to a simpler configuration
(e.g. by omitting nacelle) or, alternatively, to drastically reduce the search space.

In this work we show that a simple ”naive” reduction of geometrical complexity
may yield low optimization accuracy (that is, to significantly reduce the potential
gain in aerodynamic performance). It is proposed to overcome the above described
obstacles by replacing a part of optimized aircraft (which by itself is not subject to
modification) by an infinitely thin surface in the way which allows to reproduce the
needed aerodynamic effect.

The method is exemplified by optimizing the wing of a generic business jet with
body installed nacelle, which greatly influences the flow around the wing. In this ex-
ample, the nacelle is replaced by an infinitely thin surface which simulates the needed
blockage effect. The geometrical reduction of this kind allowed for sufficiently rep-
resentative search spaces keeping the overall accuracy to a good level.

The results indicate the applicability of the method to practical aerodynamic de-
sign in engineering environment.

2 OPTIMIZATION METHOD

In this section, we briefly describe the optimization method recently developed by
the authors. Two-dimensional applications of the method may be found in [4], the
optimization of isolated 3D wings was considered in [5], while the optimization of
wing-body configuration was reported in [6].
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The driver of the optimization search is a variant of Genetic Algorithms (GAs).
The main features of the method include a new strategy for efficient handling of
nonlinear constraints in the framework of GAs, scanning of the optimization search
space by a combination of full Navier-Stokes computations with the Reduced Order
Models (ROM) method and multilevel parallelization of the whole computational
framework which efficiently makes use of computational power supplied by mas-
sively parallel processors (MPP).

2.1 Design Space and Search Algorithm

In this work it is assumed that:
1) The geometry is described by the absolute Cartesian coordinate system (x,y,z),

where the axes x, y and z are directed along the streamwise, normal to wing surface
and span directions, respectively;

2) Wing planform is fixed;
3) Wing surface is generated by a linear interpolation (in the span direction)

between sectional 2D airfoils;
4) The number of sectional airfoils Nws is fixed;
5) The wing-body boundary (the wing root airfoil) is not subject to change in the

optimization process;
6) Shape of sectional airfoils is determined by Bezier curves of order N.
In the absolute coordinate system, the location of the above profiles is defined

by the corresponding span positions of the trailing edge on the wing planform, twist
angles {αtw

i } and dihedral values {γdh
i } (relatively to the root section).

Thus the design space includes the coordinates of the Bezier control points and
twist and dihedral values. The dimension ND of the search space is equal to:

ND = (Nws −1) · (2N−3)

and a search string S contains ND floating point variables a j ( j = 1, ...,ND). The string
components are varied within the search domain D. The domain D is determined by
values Min j and Max j , which are the lower and upper bounds of the variable aj.

The optimization tool OPTIMAS uses Genetic Algorithm as its search engine.
Genetic Algorithms became highly popular as optimization methods in the last two
decades. The basic idea behind Genetic Algorithms is to mathematically imitate the
evolution process of nature. They are semi-stochastic optimization methods that are
conveniently presented using the metaphor of natural evolution: a randomly initial-
ized population of individuals (set of points of the search space at hand) evolves
following a crude parody of the Darwinian principle of the survival of the fittest.
The main point is that the probability of survival of new individuals depends on their
fitness: the best are kept with a high probability, the worst are rapidly discarded.

As a basic algorithm, a variant of the floating-point GA is employed [7]. We used
the tournament selection, which enables us to increase the diversity of the parents,
single point crossover operator, the non-uniform mutation and elitism principle.

The constraints handling can be basically outlined as follows (for more detail see
[8]):
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• Instead of the traditional approach where only feasible points may be included in
a path, it is proposed to employ search paths through both feasible and infeasible
points

• With this end in view, the search space is extended by evaluating (in terms of
fitness) the points, which do not satisfy the constraints imposed by the optimiza-
tion problem. A needed extension of an objective function may be implemented
by means of GAs due to their basic property: contrary to classical optimization
methods, GAs are not confined to only smooth extensions.

2.2 Computational Efficiency

Low computational efficiency of GAs is the main obstacle to their practical use where
the evaluation of the cost function is computationally expensive as it happens in the
framework of the full Navier-Stokes model.

To resolve this problem, we use Reduced-Order Models approach, where the so-
lution functionals are approximated by a local data base. The data base is obtained by
solving the full Navier-Stokes equations in a discrete neighbourhood of a basic point
(basic geometry) positioned in the search space. Specifically a mixed linear-quadratic
approximation is employed. One-dimensionally, the one-sided linear approximation
is used in the case of monotonic behaviour of the approximated function, and the
quadratic approximation is used otherwise.

In order to ensure the accuracy and robustness of the method a multidomain
prediction-verification principle is employed. That is, on the prediction stage the
genetic optimum search is concurrently performed on a number of search domains.
As the result each domain produces an optimal point, and the whole set of these
points is verified (through full Navier-Stokes computations) on the verification stage
of the method, and thus the final optimal point is determined.

In order to additionally improve the computational efficiency of the tool, we em-
ploy an embedded multilevel parallelization strategy [9] which includes: Level 1 -
Parallelization of full Navier-Stokes solver; Level 2 - Parallel CFD scanning of the
search space; Level 3 - Parallelization of the GAs optimization process; Level 4 -
Parallel optimal search on multiple search domains and Level 5 - Parallel grid gen-
eration.

2.3 Incorporation of fictitious surfaces

The proposed method of fictitious surfaces consists in replacing certain parts in the
geometrical model of an aircraft by infinitely thin surfaces. It is assumed that the
replaced part of the configuration is not subject to shape modification.

In the present framework, the technical implementation is especially simple.
First, the initial geometry is reduced by excluding the part which is to be simulated
by an infinitely thin surface, and a multi-block structured computational grid for the
reduced configuration is constructed. In the next stage, an appropriate face of an ”air-
block” is chosen and declared to be a fictitious surface. The major requirement to the
choice of the fictitious surface is, in terms of location and size, to simulate (in a very
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approximate way) the major aerodynamic effect caused by the deleted part of the
configuration.

Mathematically, fictitious surfaces are regarded as surfaces of zero thickness, and
the surface boundary condition is implemented on the both sides of them. Since we
solve the viscous Navier-Stokes equations, the no-slip condition is applied in exactly
the same way as for “real surfaces”.

Specifically in this work we replace the nacelle junction by an appropriately cho-
sen 2D surface. The main idea behind such a replacement is to simulate the blockage
effect induced by the flow around and through the nacelle. It appeared that the exact
size and location of the fictitious surface make little effect on the results of optimiza-
tion.

From the other side, the optimization with totally omitted nacelle suffers from
low aerodynamic accuracy (apparently due to the unjustified elimination of the
blockage effect). Which is even worse, the nacelle elimination produces inconsis-
tent aerodynamic results. This means that the problem of low accuracy could not be
solved by simply adjusting the design conditions or improving the resolution of com-
putations. We remind that optimization based on CFD computations for the complete
configuration including the real nacelle junction appeared infeasible due to the huge
expenditure of computer resources.

3 ANALYSIS OF RESULTS

The optimized configuration presents an example of a generic business jet and in-
cludes body, wing with winglets, nacelle-pylon, and vertical and horizontal tails.

As a CFD driver, the IAI in-house full Navier-Stokes code NES was employed.
The code allows for high accuracy lift/drag computations in subsonic and transonic
regime (see [10]-[11]). For the considered business jet configuration, the computa-
tions by the code NES also exhibited good accuracy.

The planview of pressure distribution for the original geometry (full aircraft con-
figuration) and for the wing-body combination without nacelle and tails (at the same
cruise flight conditions) is respectively presented in Fig.1 and Fig.2. The analysis of
these pictures demonstrates that the body and inboard wing pressure contours signif-
icantly differ from one case to another, which is mainly due to the blockage effect
produced by the nacelle.

Two optimization cases were considered. In the first case (labeled
Case GBJNP 1), the geometry was reduced to the combination of wing-body, and
the wing was optimized in the presence of the body only. In the second test case
(Case GBJNP 2) the nacelle influence was modeled by including a fictious surface
in the optimized wing-body geometry. For both optimization cases the design point
was M = 0.80, CL = 0.46. The geometrical constraints were imposed on the max-
imum thickness, leading edge radius and trailing edge angle of the wing sectional
airfoils, which were kept to the original level. The number of sectional airfoils sub-
ject to design was equal to three.
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The first “no-nacelle” optimization Case GBJNP 1 showed a significant gain in
drag (about 9 aerodynamic counts at the design point) in comparison with the original
wing-body configuration. This is illustrated by Fig.3, where lift/drag was computed
for the stand alone wing-body combination without nacelle.

However, for practical design, the success of optimization should be estimated
in terms of drag reduction for the complete business jet configuration (including
nacelle-pylon). Unfortunately the analysis of the complete aircraft, in the presence of
the nacelle (Fig.4), showed that the real gain at the design point falls to nearly zero.
Note that this “naive” optimization nevertheless yields a better off-design lift/drag
behaviour at higher than the design lift and Mach values (see Fig.4 and Fig.5).

We must emphasize that attempts were made to improve the above optimization
by a better adjustment of design conditions (which may be regarded as a ”cheap”
simulation of the nacelle influence) but they did not yield consistent results.

Thus it became clear that the nacelle influence must be simulated in the opti-
mization process in order to increase the gain in the aerodynamic performance. In
principal, the ultimate way to do it is to use as an objective function the total drag
of the complete aircraft geometry. However, a simple estimation shows, that this re-
quires the huge computational resources which makes the optimization infeasible
from practical viewpoint.

In order to overcome this we propose to simulate the blockage effect caused by
nacelle through the incorporation of a fictitious surface into the computational model.
With this end in view, in the second test case Case GBJNP 2, the computational
grid previously used for the wing-body combination, was modified by choosing a
joint face of two computational ”air-blocks” as the fictitious surface. Technically
this means that the transparent block boundary condition (which previously merged
the neighboring blocks, see Ref. [10]) was replaced by the Navier-Stokes no slip
condition. Note that this boundary condition was applied on the both sides of the face
(which belongs to two original computational blocks). Aerodynamically this means
that the face was treated as a fictitious infinitely thin surface. Thus, in the process
of optimization, the actual complete geometry was replaced by the above described
computational model ( Fig.6), and the wing was optimized as an integral part of
this composite computational model. Finally, the optimal shape was analyzed in the
framework of the complete configuration which included the real nacelle junction
and the vertical/horizontal tails.

The optimization yielded a significant gain in drag in terms of the actually op-
timized geometry (wing-body-fictitious-surface). An important point is that, con-
trary to the first (no-nacelle) optimization, the most of gain was retained in terms of
the full aircraft configuration analyzed a posteriori. The total drag of the complete
configuration was reduced by 10 aerodynamic counts at the design conditions. The
corresponding pressure distrubution for the optimized configuration at the design
conditions is given in Fig.7 while for the original shape it was presented in Fig.1.
A more detailed analysis demonstrates that the optimization resulted in a smoother
pressure distribution on the wing upper surface.

The off-design behaviour of the optimized business jet may be assessed from
Fig.8-9, where lift/drag polars at M = 0.80, M = 0.82, and Mach drag rise at
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CL = 0.46 are respectively compared with the original curves. It is clearly seen that
the gain due to optimization increases at higher free-stream lift and Mach values.

It is interesting to compare the difference between the considered optimization
cases in terms of the resulting wing shapes. The corresponding airfoil shapes at
2y/b = 0.10, 2y/b = 0.26 and 2y/b = 1.0 are respectively depicted in Fig.10-12.
As aerodynamically expected, the “nacelle influence” is more significant in the in-
board part of the wing gradually diminishing towards the tip region. At the tip, the
both optimized wing sections are practically identical.

Finally, it appeared that the exact size and location of the fictitious surface make
little effect on the results of optimization. It is important from the practical viewpoint
that, as the analysis showed, the fictitious surface may be determined approximately
with the only requirement to roughly simulate the blockage effect caused by the
nacelle.

4 CONCLUSIONS

Fictitious surface method for reducing the geometrical complexity of full aircraft
configurations has been developed. The method was successfully applied to design
of a complete transonic business jet with close coupled wing-body-nacelle-pylon,
and vertical/horisontal tails. The results indicate good accuracy and robustness of
the method which make it suitable for practical engineering design.
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Fig. 1. Generic business jet. Pressure distri-
bution for full aircraft configuration: original
geometry.
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Fig. 2. Generic business jet. Pressure distri-
bution for wing-body configuration: original
geometry.
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Fig. 6. General view of a generic business jet:
computational model.
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Abstract. The path of dual airfoils in a biplane configuration undergoing a combined, non–
sinusoidal pitching and plunging motion is optimized for maximum thrust and/or propulsive
efficiency. The non–sinusoidal, periodic flapping motion is described using Non-Uniform Ra-
tional B-Splines (NURBS). The Response Surface Methodology (RSM) is employed for the
optimization of NURBS parameters in a parallel computing environment. A gradient based
optimization algorithm, steepest ascent method is started from the optimum point of response
surfaces. Unsteady, low speed laminar flows are also computed in parallel using a Navier-
Stokes solver based on domain decomposition. It is shown that the parallel optimization pro-
cess with RSM suggests a quick and accurate initial guess for a gradient based optimization
algorithm.

1 INTRODUCTION

Flow characteristics of flapping wings are currently investigated experimentally and
numerically to shed some light on the lift, drag and propulsive power considerations
for a MAV flight[1, 2]. It should be noted that in order to maximize the thrust and/or
the propulsive efficiency of a flapping airfoil, its kinematic parameters, such as the
flapping path, the frequency and the amplitude of the flapping motion, need to be
optimized.

In earlier studies, the present authors employed a gradient based optimization
of sinusoidal and non–sinusoidal flapping motion parameters of flapping airfoils[3,
4]. These optimization studies with a limited number of optimization variables
show that the thrust generation and efficiency of flapping airfoils may be increased
significantly. However, the gradient based global optimization process becomes com-
putationally expensive as the number of optimization variables increases in the non–
sinusoidal flapping motion definition with NURBS.

Response surface methodology (RSM) is mainly employed for the construction
of global approximations to a function based on its values computed at various
points[5]. The method may also be employed for the optimization of a function when
the objective function is expensive in terms of computational resources[5, 6].

D. Tromeur-Dervout (eds.), Parallel Computational Fluid Dynamics 2008,
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Fig. 1. Flapping-wing MAV model (Jones and Platzer)

In the present study, the thrust generation of dual airfoils flapping in a biplane
configuration undergoing a combined non–sinusoidal pitching and plunging motion
is optimized using RSM. First, a single airfoil undergoing a non-sinusoidally flapping
motion is considered. RSM for 3 optimization variables is assessed and optimization
data are compared to the gradient based optimization method in terms of the perfor-
mance and the accuracy. Next, the non–sinusoidal flapping motion of dual airfoils
with seven optimizationvariables is considered.

2 Response Surface Methodology, RSM

RSM is based on building approximate models for unknown functional relationships
between input and output data. In this study, the function is the average thrust coef-
ficient, Ct , which is based on the integration of the drag coefficient over a flapping
period. It is a function of flapping parameters, Vi, in a given flight condition and can
be written as

Ct = η(V1,V2,V3, . . .) (1)

The function η(V) is in fact the solution of the Navier-Stokes equations. An approx-
imate response surface, g(V) ∼= η(V) may then be constructed over some V region
[5]. In this study, g(V), is chosen to be a quadratic function of Vi’s:

g(Vi) = a11V 2
1 + 2a12V1V2 + 2a13V1V3 + · · ·+ a22V

2
2 + . . . (2)

The constants, ai j, are evaluated throught a least-square minimization of the error be-
tween the response surface and a certain number of the Navier-Stokes solutions based
on a design of experiment (DoE). In this study, the Box-Behnken[7] DoE method is
employed.

3 Periodic Path defined by NURBS

A smooth curve S based on a general nth degree rational Bezier segment is defined
as follows[9]:
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Fig. 2. Out-of-phase flapping motion of two
airfoils in a biplane configuration
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S(u) = (x(u),y(u)) =
∑n

i=0 WiBi,n(u)Ci

∑n
i=0 WiBi,n(u)

0 ≤ u ≤ 1 (3)

where Bi,n(u) ≡ n!
i!(n−i)! u

i(1− u)n−i are the classical nth degree Bernstein polyno-

mials, and Ci = (xpi,ypi), are called control points with weights, Wi. Note that
S(u = 0) = C0 and S(u = 1) = Cn. A closed curve which describes the upstroke
and the downstroke of a flapping path is then defined by employing a NURBS com-
posed of two 3rd degree rational Bezier segments. The periodic flapping motion is
finally defined by 3 parameters. The first parameter P0 defines the center of the rota-
tion vector on a closed curve. The remaining two points, P1 and P2 are used to define
the x coordinates of the control points, which are C1 = (2P1,−1) and C2 = (2P2,1)
(Figure 3).

The x and y coordinates on the periodic NURBS curve may be obtained as a
function of the parameter u:

x(u) =
2P1u(1−u)2 + 2P2u2(1−u)

2u2−2u + 1
y(u) =

2u−1
2u2 −2u + 1

(4)

A non-sinusoidal periodic function, f , is then defined by y(u). For a given ωt posi-
tion, the Equation 5 is solved for u. Once u is determined, y(u) ≡ f (ωt) is evaluated
using Equation 4.

tan(ωt) = − x(u)
y(u)−P0

(5)

4 Numerical Method

Unsteady, viscous flowfields around flapping airfoils in a biplane configuration are
computed by solving the Navier-Stokes equations on moving and deforming overset
grids. A domain decomposition based parallel computing algorithm is employed.
PVMmessage passing library routines are used in the parallel solution algorithm. The
computed unsteady flowfields are analyzed in terms of time histories of aerodynamic
loads, and unsteady particle traces.
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Fig. 4. Moving and deforming overset grid system

4.1 Flow Solver

The strong conservation-law form of the 2-D, thin-layer, Reynolds averaged Navier-
Stokes equations is solved on each subgrid. The convective fluxes are evaluated using
Osher’s third–order accurate upwind–biased flux difference splitting scheme. The
discretized equations are solved in parallel by an approximately factored, implicit al-
gorithm. The overset grid system (Figure 4) is partitioned into subgrids. The holes in
the background grid are excluded from the computations by an i-blanking algorithm.
The conservative flow variables are interpolated at the intergrid boundaries formed
by the overset grids[10].

4.2 Flapping Motion

The flapping motion of the upper airfoil in plunge, h, and in pitch, α , is defined by:

h(t) = h0 fh(ωt)
α(t) = α0 fα (ωt +φ) (6)

where ho and αo are the plunge and pitch amplitudes, f is a periodic function based
on NURBS, ω is the angular frequency which is given in terms of the reduced fre-
quency, k = ωc

U∞
. φ is the phase shift between plunge and pitching motions. The pitch

axis is located at the mid-chord. The flapping motion of the lower airfoil is in counter-
phase. The average distance between the dual airfoils is set to y0 = 1.4.

The flapping motion of the airfoils are imposed by moving the airfoil grids over
the background grid (Figure 4). The airfoil grids are deformed as they come close to
the symmetry line between the airfoils.

4.3 Optimization based on the Steepest Ascent Method

Optimization based on the Steepest Ascent is also performed for validation. The
gradient vector of the objective function is given by
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∇O(V) =
∂O
∂V1

v1 +
∂O
∂V2

v2 + · · ·

where Vi’s are the optimization variables. The components of the gradient vector are
evaluated numerically by computing an unsteady flow solution for a perturbation of
the optimization variables one at a time.

4.4 Parallel Processing

The parallel solution algorithm is based on the domain decomposition. The moving
and deforming overset grid system is decomposed into its subgrids first, and the
solution on each subgrid is computed in parallel. Intergrid and overlapping boundary
conditions are exchanged among subgrid solutions at each time step of the unsteady
solution. The unsteady flow solutions needed for the RSM and the gradient vector
components, are also carried out in parallel. PVM (version 3.4.5) library routines are
used for inter–process communication. Computations are performed in a cluster of
Linux based computers with dual Xeon and Pentium-D processors.

5 Results and Discussion

A validation study is first performed. The optimization result with RSM is compared
against the gradient based optimization. The path optimization of the flapping airfoils
in a biplane configuration with 8 optimization variables is performed next.

5.1 Validation Study

The optimization of a single airfoil flapping on a non-sinusoidal path is studied
first. The flapping motion is a combination of non-sinusoidal pitching and sinusoidal
plunging. The values for the reduced flapping frequency, k ≡ ωc

U∞
, and the plunge am-

plitude, h0, are fixed at k = 1.0 and h0 = 0.5. The optimization variables are the pitch
amplitude, α0, the phase shift between plunging and pitching, φ , and the NURBS
parameter, P0α (Table 1). The flowfields are computed at Mach number of 0.1 and a
Reynolds number of 104.

Table 4 gives the design points used for constructing the response surface. Design
points are chosen based on Box-Behnken matrix of runs[7]. The P1 and P2 values are
constrained within the range 0.2 to 5.0, and P0 in the range −0.9 to 0.9, in order to
define a proper flapping motion which does not impose excessively large accelera-
tions.

The parallel computations for 13 unsteady flow solutions take about 2 hours of
wall clock time using 40 processors. The cross sections of the constructed response
surface are shown in Figure 5. The same optimization case is also studied using the
steepest ascent method. The initial conditions required for this method are given in
Table 2. The parallel computations, which required 58 unsteady flwo solutions, take
about 20 hours of wall clock time using 15 processors.
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Table 1. Fixed parameters and optimization variables in
validation study

Case k h0 P1α P2α P0h P1h P2h P0α α0 φ
1.0 0.5 1.0 1.0 0.0 1.0 1.0 V V V

Table 2. Initial conditions for steepest ascent method

Case k h0 P1α P2α P0h P1h P2h P0α α0 φ Ct

1.0 0.5 1.0 1.0 0.0 1.0 1.0 0.0 20o 90o 0.09

Table 3. Optimization results for the validation study

Case αo(o) φ(o) P0α Ct

RSM 9.3 90.6 0.03 0.17
Steepest Ascent 9.2 90.7 −0.01 0.15

Table 4. RSM design points for
the validation study

DoE αo(o) φ(o) P0α
1 5.0 30.0 0.0
2 5.0 150.0 0.0
3 35.0 30.0 0.0
4 35.0 150.0 0.0
5 5.0 90.0 −0.9
6 5.0 90.0 0.9
7 35.0 90.0 −0.9
8 35.0 90.0 0.9
9 20.0 30.0 −0.9

10 20.0 30.0 0.9
11 20.0 150.0 −0.9
12 20.0 150.0 0.9
13 20.0 90.0 0.0
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Fig. 5. Response surfaces for the validation case

Table 3 gives the optimization results based on the RSM and the steepest ascent
method. It is observed that while the optimum solution is about the same in both
cases, the number of unsteady flow solutions is significantly smaller in the RSM
than in the steepest ascend method.

5.2 Optimization for Dual Airfoils

Dual airfoils flapping in a biplane configuration is studied next with 8 optimization
variables, namely, the NURBS parameters defining the plunging path, P0h, P1h, P2h,
the NURBS parameters defining the pitching path, P0α , P1α , P2α , the pitching am-
plitude, α0 and the phase shift between plunging and pitching, φ . The values for
the reduced flapping frequency, k ≡ ωc

U∞
, and the plunge amplitude, h0, are fixed at

k = 1.5 and h0 = 0.53.
These values are from an earlier study which optimized the sinusoidal flapping

motion of dual airfoils in biplane[8]. At this study, the maximum thrust is computed
to be Ct = 0.45.

Design of experiment due to Box-Behnken is summarized in Table 5. A total of
113 unsteady flow solutions are computed in about 10 hours of wall clock time using
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Table 5. RSM design points and the computed thrust values

Desing No. P0h P1h P2h P0α P1α P2α α0(o) φ(o) Ct

1 0.0 0.5 0.5 0.0 1.0 1.0 9.0 90.0 0.42
2 0.0 0.5 2.0 0.0 1.0 1.0 9.0 90.0 0.49
... ... ... ... ... ... ... ... ... ...

112 0.0 1.0 1.0 0.0 1.0 1.0 12.0 105.0 0.46
113 0.0 1.0 1.0 0.0 1.0 1.0 9.0 90.0 0.42

Table 6. Optimization results

P0h P1h P2h P0α P1α P2α α(o) φ(o) Ct

RSM −0.30 2.00 2.00 −0.30 1.13 2.00 10.1 90.1 0.89
Navier-Stokes −0.30 2.00 2.00 −0.30 1.13 2.00 10.1 90.1 0.85
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Fig. 9. Optimum sinusoidal flapping motion

64 processors. The response surface has 45 parameters (Eqn. 2). The optimization
results are given in Table 6. The flow solution performed at the optimum conditions
produces a thrust value of Ct = 0.85, which is about 4% off from the RSM prediction.
The optimum sinusoidal and non-sinusoidal flapping motions are given in Figures 6,
8 and 9.
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6 Conclusion

The path optimization of flapping airfoils with 8 optimziation variables is success-
fully performed using RSM in a parallel computing environment. In a validation
stufy it is shown that RSM is highly efficient in comparison to a gradient based
method.
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1 Introduction

Computational Fluid Dynamics (CFD) has become an important tool for aerody-
namics by the improvements of computer performance and CFD algorithm itself.
However, the computational time of CFD continues to increase, while progress of
computer has been made. One of the reasons is considered that application of CFD
has become more complex. For example, CFD is employed to estimate aerodynamics
performance for a complex shaped object such as formula one car (Fig. 1) Concern-
ing complex shape, however, the problem of grid generation still remains. It requires
so much time and labor. To overcome the problem in meshing for complex-shaped
object, we have already proposed an algorithm [3]. The algorithm consists of two
approaches. One is Immersed Boundary method [6], and the other is Building-Cube
Method (BCM) [4]. The basic idea of Immersed Boundary method is applied to cells
in the vicinity of solid boundary, and Cartesian grid method is performed for other
cells. These approaches have several advantages except for solution convergence. In
this paper, Implicit Residual Smoothing (IRS) [2] is proposed for improvements of
solution convergence.

Fig. 1. Formula 1 race car (Honda Racing F1 Team RA106).

D. Tromeur-Dervout (eds.), Parallel Computational Fluid Dynamics 2008,
Lecture Notes in Computational Science and Engineering 74,
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2 Numerical Methods

2.1 Computational Gird of BCM

The computational grid used in this study is based on the Building-Cube Method.
BCM grid generation consists of two steps: the first is to generate ’cube’ of various
sizes to fill the flow field as shown in Fig. 2. The second step is to generate Cartesian
grid in each cube (Fig. 3). Three cells overlap between adjacent cubes to exchange
the flow information at the boundaries.

Fig. 2. Cube boundary around airfoil. Fig. 3. Cartesian mesh around airfoil.

2.2 Flow Simulation

In this study, the non-dimensionalized Navier-Stokes equations governing compress-
ible viscous flow are used for solving flow field. It can be written in the conservative
form as,

∂Qj

∂ t
+
∂Fj

∂x j
− 1

Re
∂Gj

∂x j
= 0 ( j = 1,2,3), (1)

where t, x, and Re are time, the coordinate, and the Reynolds number, respec-
tively. The conservation variables vector Q, the inviscid flux vector F, and viscous
flux vector G are defined by

Qj =

⎡

⎣
ρ
ρui

ρe

⎤

⎦ ,Fj =

⎡

⎣
ρu j

ρuiu j + pδi j

u j(ρe + p)

⎤

⎦ ,Gj =

⎡

⎣
0
τi j

ukτk j +λ (∂T/∂x j)

⎤

⎦ . (2)

Here, ρ , p,e,t, and λ are density, pressure, specific total energy, temperature, and
thermal conductivity of fluid, respectively. ui represents the velocity component of
the flow in the coordinate direction xi . It is noted that subscripts i, j, and k represent
coordinate indices, and Einstein’s summation rule is applied. This set of equations is
closed by the equation of state for perfect gas.
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p = (γ−1)ρ
(

e− 1
2

ujuj

)
. (3)

where γ is the ratio of the specific heats. The components of viscous stress tensor
τi jare given by

τi j = μ
(
∂ui

∂x j
+
∂u j

∂xi

)
− 2

3
μ
∂uk

∂xk
δi j. (4)

whrere δi j is Kronecker’s delta symbol and μ is viscosity coefficient, calcu-
late by Surthrerland’s relationship. For turbulent flow simulation, the viscosity μ
is replaced by eddy viscosity which is evaluated by the Spalart and Allmaras one-
equation model.

Specifications of the flow solver in this study are as follows.

• Discretization : FVM
• Convection term : HLLEW (Riemann’s solver) [5]
• High-resolution scheme : 4th order compact MUSCL TVD [9]
• Time marching scheme : LU-SGS [10]
• Turbulence model (RANS) : Spalart-Allmaras 1eq. model [7]
• Other numerical technique : Preconditioning method for Mach-uniform formulae

[8]

2.3 Parallelization

The flow solver described above is parallelized with Message Passing Interface
(MPI) library. In order to achieve optimal parallel performance, an identical num-
ber of cubes is assigned to each CPU and only information of boundary cells are
exchanged. Figure. 4 shows a overall flow-solution procedure of this flow solver.
According to this figure, only once communication is occurred in each iteration. It
also contributes to obtain good parallel performance.

Fig. 4. Overall flow-solution procedure.

2.4 Validation

To validate of this flow solver, flow simulation around a 2D-airfoil (RAE2822) was
carried out. The computational grid is shown in Fig. 5. The total number of cubes
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is 618 with 16x16 cells in each cube. Therefore total number of computational cells
are about 150,000. The inflow Mach number, Reynolds number and angle of attack
are 0.73, 6.56 million and 2.70 degrees. Detailed flow conditions can be found in the
experiment report by Cook et al. [1]
Figure 6 shows Mach number contour in the flow field. A shockwave is observed at
about 55% chord length from the leading edge on the upper surface of the airfoil.
The computed surface-pressure and skin-friction distributions are compared with ex-
perimental data (Figures 7 and 8). The result of computation shows overall good
agreement with the experiment.

Fig. 5. Computational grid.
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2.5 Implicit Residual Smoothing (IRS)

The governing equations discretized by FVM are solved by LU-SGS scheme. To
improve solution convergence, the IRS is adopted. Ri is defined as,

Ri = Γ−1
[∂F(Qi)
∂x

− 1
Re
∂G(Qi)
∂x

]
. (5)

where, Γ−1 is preconditioning matrix [8]. In this study the explicit residual Riis
modified as,
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R̄i = Ri + εΣ(R̄ j − R̄i). (6)

where R̄iis the smoothed residual, R̄ jis residual of cell j adjoining cells i and ε
is a positive parameter used to control the smoothing. Equation (6) can be solved by
Jacobi iteration described as follows,

R̄m
i =

Ri + εΣ ¯Rm−1
j

1 + εΣ1
. (7)

3 Results and Discussion

To investigate the effect of the IRS on solution convergence, flow simulation around
a 3D airfoil was carried out. Computational conditions are shown in Table 1. The
computational grids used in the investigation are shown in Table 2. The total number
of grids and computational region for all cases is same so that the grid density is
uniform. Figure 9 shows these computational grids.

Table 1. Computational conditions.

Condition Value

Reynolds Number 1.5x106

Mach Number 0.19
Number of Surface Element 4.0x106

Turbulence Model On

Table 2. Specification of computational grid arrangements.

Type Number of cubes Number of cell per cube Total number of cells

A 1 2,097,152(=1283) 2,097,152
B 8(=23) 262,144(=643) 2,097,152
C 64(=43) 32,768(=323) 2,097,152
D 512(=83) 4,096(=163) 2,097,152
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Fig. 9. Computational grids.

• Convergence History of ’single-cube’ and ’multi-cube’ without IRS

Convergence history is shown in Fig. 10. As the number of cubes increases, the
convergence history gets worse with oscillation. One of the reasons is poor infor-
mation transfer at cube interfaces which might have caused duller solution near the
interface. To overcome this problem, the IRS was applied.

• Convergence History of ’single-cube’ with IRS

Convergence history is shown in Fig. 11. The convergence history depends on
the value of ε . The following ’multi-cube’ computations were performed using ε
=1.2 determined by a series of numerical tests.

• Convergence History of ’multi-cube’ with IRS

Convergence history is shown in Fig. 12. The IRS is used on each cube. Regard-
less of the number of cubes, significant improvement for convergence is obtained
by the IRS. Possible reason is that the IRS promotes propagation and attenuation of
residual error across cube interface.

Finally, the IRS is applied to a practical computational grid in which cubes of
heterogeneous size were used to represent complex geometries. In this case cell size
at interface is different which, in general, makes convergence worse. Figure 13 shows
a computational grid. Good solution convergence was obtained as shown in Fig. 14.

• Parallel Efficiency

The computations were performed using NEC SX-8 which is vector parallel com-
puter with 64 GB main memory and 8 processors in each node. The communication
device between nodes is Crossbar. To evaluate parallel efficiency, grid D in Table. 2
was used. Good parallel efficiency was obtained as shown in Fig. 15. Moreover, it is
unaffected even with the IRS.
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Fig. 13. Computational grid for actual prob-
lem.

4 Conclusion

A method was proposed to improve convergence for ’multi-cube’ CFD. The basic
idea behind the present method was to apply the IRS to ’multi-cube’ CFD. Regard-
less of the number of cubes and their sizes, significant improvement for convergence
was obtained without deteriorating parallel efficiency. In the case of heterogeneous
cube arrangement good solution convergence was also confirmed.
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Abstract. The helicopter aerodynamics is simulated in hovering and forwarding flight using
the unsteady Euler equations. As the steady condition, flight test of DLR-F6 and hovering
flight test data of Caradonna & Tung’s rotor blades were used, and as the unsteady condition,
non-lift forwarding flight test data of the rotor blades were used. The parallelized numerical
solver was validated with the two of data above. By using this solver, AH-1G rotor blades to
forwarding flight numerical test were conducted. In the test of forwarding flight, the numerical
trim was applied to decide cyclic pitching angles using the Newton-Raphson method, and the
results were good well match to the experimental data, Especially, the BVI effects were well
simulated in advancing side in comparison with other numerical results. To consider the blade
motion and moving effects, an overset grid technique is applied and for the boundary, Riemann
invariants condition is used for inflow and outflow.
Keywords: Overset Grid, Helicopter Rotor, Hovering Flight, Forward Flight

1 Introduction

A helicopter has unique flying characteristics, that are complex aerodynamic phe-
nomena. Continuous changes of aerodynamic environment and loads give rise to
the significant difficulty of rotorcraft aerodynamics. Strong tip vortices in the rotor
wakes cause the flow-field to became highly unsteady and non-uniform at the rotor
disk. These characteristics increase the calculation time and memory size in numer-
ical analysis. Moreover, in forwarding flight, the periodic motions - pitching and
flapping - of the rotor blades should be considered with aerodynamic stability. This
study is covering the numerical analysis of the rotor blades in hovering and forward-
ing flight using parallelized overset grid with rotor trim. The parallelized overset
grids system uses a static load balancing tied to the flow solver based on the grid size
of a decomposed domain [1]. The solver is based on a cell-centered finite volume
method [2]. The parallelization is based on a domain decomposition; communica-
tion is realized using MPI. The numerical fluxes at cell interface are computed using
the Roe’s flux difference splitting method and the third order MUSCL (Monotone

D. Tromeur-Dervout (eds.), Parallel Computational Fluid Dynamics 2008,
Lecture Notes in Computational Science and Engineering 74,
DOI: 10.1007/978-3-642-14438-7 10, c© Springer-Verlag Berlin Heidelberg 2010
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Upwind Scheme for Conservation Law) scheme. The diagonalized ADI method is
used with second order dual time stepping algorithm for the time integration. First,
the steady condition was tested for verification of the parallelized solver. The DLR-
F6 aircraft configuration was selected for the steady condition. The configuration
was provided in the DPW II and III (Drag Prediction Workshop which has been or-
ganized by AIAA Applied Aerodynamics Technical Committee) and is a twin engine
wide body aircraft which has a wing-body-nacelle-pylon and wing-body-fairing air-
craft. The numerical hovering flight test was conducted using Caradonna & Tung’s
rotor blades that consist of NACA0012 airfoil section and AH-1G rotor blades were
used for the forwarding flight with rotor trim. The rotor trim of cyclic pitch angle
was made to be zero value of the periodic moments of rotor disk direction in reason-
able averaged thrust. And for the iteration method of rotor trim, the Newton-Raphson
method was used [7].

2 Validation of Parallelized Solver

First, for the validation of numerical solver of helicopter aerodynamics, the DLR-F6
aircraft configuration was analyzed in steady condition. The structured grid based
solver KFLOW3D which has been developed at KAIST ASDI Lab is a parallelized
solver. For the high performance parallel computing, 28 Pentium 4 2.13GHz proces-
sors are used [3].

2.1 DLR-F6

Computations are implemented on DLR F6 wing-body configuration in Figure 1. The
DLR F6 wing body configuration model represents a transonic wing-body transport
configuration. The structured grids are provided by the website of Boeing Com-
mercial Airplanes group. In computations, three difference density grids (coarse,
medium, medium fine) are used as shown Table 1. The computational conditions
are M∞ = 0.75, Re∞ = 3× 106 at α = −3.0◦,−2.0◦,−1.5◦,0.0◦,1.0◦,1.5◦. Fully
turbulent boundary layer is assumed in the computations.

Grid points Y+ No. of BL cell Avg. Time (hours)
Coarse 2.1M 1.25 18 6.5
Medium 3.7M 1.0 36 15
fine 13.0M 0.8 36 32

Table 1. Summary of the Grid System

Figure 2 (left) shows the drag polar results using the three grid sets in Table
1. These results are in good agreement with the experimental data, and exhibit the
convergence, with respect to the grid density, of numerical results toward the exper-
imental data.. The lift coefficients with the angle of attack are shown in Figure 2
(right), and the results also show good agreement with experimental data.



Aerodynamic Analysis of Rotor Blades using Overset Grid 103

Fig. 1. DLR-F6 configuration and pressure distribution [3]

Fig. 2. (left) Drag Polar [3] and (right) CL vs. AOA curves [3]

3 Rotor Blades

The helicopter rotor blades were simulated in hovering flight and forwarding flight
using the parallelized solver. To consider motions of rotor blades such as pitching
and flapping, the overset grid technique wasapplied, and due to large grid size and
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computing time, the simulation was parallelized by Intel Core 2 CPU 2.13GHz 20
nodes. The governing equation is 3-D unsteady Euler equations.

3.1 Overset Grids

Caradonna & Tung’s rotor blades were used for the hover flight test [4]. The airfoil
of rotor blades is NACA0012 and the blades have no twist, no taper and 1.143m of
length, and an aspect ratio of 6. The computational grids consist of 5 shown in Figure
2. The H-type grid was generated over rotor blades (41×67×105) and background
grid (89×97×97). For the forward flight tests, two kinds of blades were considered.
In the non-lift forward fight test, the Caradonna & Tung’s rotor blades with an aspect
ratio of 7 was used [5]. AH-1G rotor blades with a linear twist angle of −10◦ were
used in the forward flight with pitching and flapping motion [6]. The computational
grids of AH-1G rotor blades also consist of 5 blocks that are the structured overset
grid as Figure 3. The H-type grid also was generated over rotor blades (65×67×133)
and background grid (89×97×97). The AH-1G rotor blades have an aspect ratio of
9.8. A Linux PC cluster with 20 nodes Intel Core 2 CPU 2.13GHz processors and a
100Mbps Ethernet network were used.

a. 3 bodies with 5 blocs

c. blades tip grid

b. blade grids with 2 bodies

Fig. 3. Overset grid
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Fig. 4. AH-1G Rotor Blades

3.2 Numerical Analysis Method

The solver, KFLOW3D, has been developed for the solution of RANS (Reynolds
Averaged Navier-Stokes Equations). In this study, the governing equations were un-
steady Euler equations for the compressible inviscid flow discretized by a cell cen-
tered finite-volume scheme using a structured grid. The discretization of the inviscid
fluxes has been realized with upwind scheme, 3rd -order MUSCL (Monotone Up-
stream Scheme for Conservation Laws) with minmod limiter using Roe-FDS (Flux
Difference Splitting) with the Harten’s entropy fix function [8][9][10]. The steady
state is reached using the unsteady equations with the diagonalized ADI time integra-
tion scheme. A dual time stepping method is also used to increase the time accuracy
of the scheme [11][12]. Riemann Invariant was applied to the boundary condition for
convergence and stability.

3.3 Overset Grid Technique and Parallel Implementation

The overset grid method can be applied to any complex geometry which can be di-
vided into some sub-grids having their own meshing. The independent grid system
transfers information to each sub-grid using interpolation point by domain connec-
tivity method. In this study, the domain connectivity method was used for modified
overset grid technique for the sake of the robustness and accuracy of flow analy-
sis by arranging interpolation points of overlapped grids away from the boundary
of multi-sub-grid. A structured grid assembly is parallelized by using a static load
balancing tied to the flow solver based on the grid size of a decomposed domain.
The parallel algorithm is modified for a distributed memory system. To parallelize
the grid assembly, message passing programming model based on the MPI library is
implemented using the SPMD (Single Program Multiple Data) paradigm. The paral-
lelized flow solver can be executed in each processor with the static load balancing
by pre-processor.
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4 Rotor Flight Test and Results

4.1 Hovering Flight Test

The collective pitch angle is 8◦ and tip Mach number is 0.439. In this test, the rotor
blades were rotated in 6 revolutions and it takes about 6 hours of wall clock time.
The thrust coefficient is shown in Table 2 and Fig 6 displays the sectional pressure
distribution in hovering flight test case. The results were compared with experimental
data at 0.5, 0.68, 0.8, and 0.96 of span location(r/R). The results of the numerical
computation and experiments are almost same.

Thrust Coefficient (CT)
Experiment 0.00459
Numerical result 0.00473

Table 2. Thrust coefficient in hovering flight

Fig. 5. Pressure coefficient of rotor blades in hover flight

4.2 Non-lift Forwarding Flight Test

The collective pitch angle is 0◦, tip Mach number is 0.8 and advancing ratio is
0.2. These test data were usually used for validation of forward flight by several
researchers. In this test, the rotor blades were fixed at 0◦ collective pitch angle. That
means the pitching and flapping motion were not considered. Also, the rotor blades
were rotated with 6 revolutions and it takes about 6 hours of wall clock time. Figure
5 shows the pressure distribution of upper surface rotor blades in non-lift forward-
ing flight test case. The strong shock was occurred at 90 azimuth angle because tip
Mach number is 0.8 and advancing ratio is 0.2. Figure 6 displays the results that were
compared with experimental data on 30◦,60◦,90◦,120◦,150◦,180◦ azimuth angle at
0.8925 of span location(r/R). The reason why the pressure difference of upper and
lower surface is zero is that the collective pitch angle is zero and there is no pitch and
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flapping motion and the strong shock also is shown at advancing side in Figure 6.
The results of the numerical computation and experiments are almost same as seen
in Figure 6.

Fig. 6. Pressure coefficient of rotor blades in non-lift forward flight

Fig. 7. Pressure coefficient at 0.8925 of span location (r/R)
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4.3 Forwarding Flight Test

The forwarding flight test with pitching and flapping motion was conducted using
AH-1G rotor blades. The rotor trim for pitching angle also was considered in for-
warding test [6]. In this test, the blades have cyclic motions with the pitching and
flapping. The flapping motion is caused by structural deformation such as the aeroe-
lasiticity, and the trim of cyclic pitch angle only was considered. The rotor trim was
conducted to meet zero periodic moments of rotor disk direction in reasonable aver-
aged thrust. For the iteration method of rotor trim, the Newton-Raphson method was
used [7]. The 5 revolutions need to get the proper averaged thrust and 3 revolutions
also need to get the result of trim pitch angle. However, for the convergence of rotor
trim, 3 iterations also need. Therefore, the numerical forward flight test can carry out
after 30 revolutions. It takes about 32 hours of wall clock time.

Table 3 shows the pitching angles after rotor trim and table 4 displays the thrust
coefficients with trim and without trim. Equation of motions of the pitching and
flapping are represented at (1) and (2).

θ (ψ) = θ0 +θ1c cos(ψ)+ θ1s sin(ψ) (1)

β (ψ) = β0 +β1c cos(ψ)+β1s sin(ψ) (2)

Degree θ0 θ1c θ1s β1c β1s

Experiment[5] 6 1.7 -5.5 2.13 -0.15
Numerical result 6.11 1.32 -5.07 2.13 -0.15

Table 3. Pitching and Flapping angle after rotor trim

Thrust Coefficient (CT)
Experiment 0.00464
Numerical result (Trim) 0.00464
Numerical result (No Trim) 0.00448

Table 4. Averaged Thrust Coefficients in forwarding flight

The results were compared with experimental data at 0.6, 0.75, 0.86, and 0.91
of span location(r/R) pictured in Figure 7, and the numerical results with rotor trim
are almost same with experimental computation in Figure 7 and show the weak BVI
effect at 90◦ azimuth angle that is on advancing side.

5 Conclusion

The hover and forward flight aerodynamic analyses were conducted using paral-
lelized overset grid. For the high performance computation, 20 nodes of Intel Core 2
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Fig. 8. Sectional Thrust coefficient as Azimuth angle

2.13GHz processors were used by applying the parallelized overset grid technique.
The rotor trim of cyclic pitch angle also was considered in forward flight. The nu-
merical results with rotor trim are much more similar to experimental data than the
results without rotor trim.
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Abstract. We describe work performed inside the elsA (http://elsa.onera.fr) block-structured
CFD software to analyse and improve parallel computation efficiency. Details of MPI imple-
mentation are discussed. Computational results are given for realistic industrial configurations
(28 106 mesh points) on several massively parallel platforms up to 1024 processors.

1 Introduction

The elsA software is a widely used CFD code developed by Onera, Cerfacs and
other research centers [1]. This software elsA is able to simulate a wide range of
aerodynamic flows occuring in aircraft, turbomachinery or helicopter configurations.
elsA is now an essential component of the design process of major industrial partners
(Airbus, Safran, Eurocopter, MBDA, CEA).

elsA solves the compressible Navier-Stokes equations using a cell-centered, fi-
nite volume, block-structured formulation. Spatial discretization schemes include
second order upwind or centred schemes; the semi-discrete equations are integrated
in time, either by multistage Runge-Kutta schemes with implicit residual smooth-
ing, or by backward Euler integration with implicit operator solved with robust LU
relaxation methods. A very efficient multigrid technique can be selected to further
accelerate convergence.

In order to cope with more and more geometrically complex configurations,
in addition to matching block connectivity, highly flexible advanced techniques of
multiblock structured meshes are available including non conforming block connec-
tivity, hierarchical mesh refinement, and Chimera technique for overlapping meshes.

elsA is mostly written in C++, with intensive numerical computations delegated
to Fortran subroutines. Users interact with the elsA kernel with a Python scripting
interface.
∗ This work is partially funded within the framework of the Airbus FUSIM project.
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elsA has been ported to most high-performance computing platforms, achieving
good CPU efficiency on both scalar multi-processor computers and vector comput-
ers. To run in parallel, elsA uses a standard coarse-grained SPMD approach where
each block is allocated to a processor, and communications between blocks are im-
plemented with the MPI standard library. Several blocks can be allocated to the same
processor. An internal load balancing tool with block splitting capability is available
to allocate automatically blocks to processors.

As any other parallel scientific software, the benefits of parallelism are twofold:

• increase the amount of computer memory available, thus allowing to increase the
number of mesh points;

• reduce the (wall clock) return time between user request and full job output.

Indeed, if there is no strong time constraint to get a job output, the best practice to
optimise the computing platform throughput is to choose the minimum number of
computing nodes providing the required memory. Conversely, if a time constraint
is encountered such as a deadline in the design process, the number of processors
is computed taking into account the estimated single processor cost and the parallel
efficiency.

2 Detailed analysis of elsA parallel performance

Earlier versions of elsA exhibit a marked decrease of parallel efficiency when the
number of processors increases. In the following subsections, the probable causes of
this degradation are identified and corrections are described.

2.1 Load balancing

As the number of processors increases, it is well known that load balancing is harder
to maintain (Amdahl’s law). This is specially difficult to achieve with structured
multiblock code, where the problem of finding the best ”block splitting” can be chal-
lenging, particularly if the number of coarse grid levels has to be maintained. It must
be acknowledged that partitioning an unstructured mesh is inherently simpler, where
several public domain tools are available (Metis, Scotch, Chaco...). We have observed
that many claims of poor parallel scaling are ill-founded and often vanish if care is
exercised to obtain good enough load balancing. Note however that contrary to the
unstructured case, memory constraints are much lower for block-structured splitting,
so there is no need to parallelize the splitting algorithm itself to avoid memory bot-
tlenecks.

A load balancing algorithm is available in elsA, closely following the strategy de-
scribed by A. Ytterström [2] (”greedy” algorithm). Note that block splitting respects
the multigrid constraint.

When block splitting does not occur, the load balancing algorithm is very simple.
Blocks are first ordered by size (number of cells), and dispatched in a “zig-zag” way
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on the NP processors: each of the NP biggest blocks are assigned to a separate pro-
cessor, the NP next blocks are each assigned to a separate processor, in reverse order
of sizes, and so on until no blocks are left. In the test case studied, the following rule
of thumb applies: load balancing degradates rapidly when the number of processors
reaches one tenth of the number of blocks. For a test case of circa 350 blocks, the
load balancing thus achieved degradates rapidly above 32 processors, and for a test
case of circa 1000 blocks, the load balancing thus achieved degradates rapidly above
circa 100 processors. To overcome this degradation, it is necessary to split the largest
blocks, using the automatic splitting capability of elsA internal load balancing tool.

In addition, we have also tested the Metis tool to load balance a limited number
of configurations 4. We have observed that on a large configuration (1037 blocks,
128 processors) only pmetis gives a result; kmetis fails to give a distribution.

2.2 MPI message scheduling

Once the blocks are assigned to processors in a balanced way, one can classically
setup a communication graph. Vertices in this graph are processors. An edge is added
between two vertices for each boundary condition that links two structured blocks,
resulting in a multi-graph.

During each communication phase, every edge of the communication graph gives
rise to one message being passed between the two underlying processors.

One singularity of the elsA software is the use of send/receive/replace strat-
egy for message passing. Specifically, this strategy is used between blocks that
are connected with “coincident” meshes on either side of the interface. An impor-
tant consequence of this is that the global ordering of communications is crucial
to parallel scalability. The send/receive/replace strategy, while saving memory and
buffer management, allows for little hardware data buffering since each MPI call
(MPI_Sendrecv_replace())must wait for all the requested data to be arrived
in order to return.

The first implementation of MPI message exchanges between blocks did not pay
attention to message ordering. Basically, the MPI messages ordering was determined
by the ordering of the topology description in the Python input script.

This bottleneck can be illustrated on a simple four vertices graph as in figure 1.
For the ordering on the left of the figure, communications take place in the following
order:

1. First wave: edge 1, processor P1 and P2,
2. Second wave: edge 2, processor P2 and P3,
3. Third wave: edge 3, processor P3 and P4,
4. Fourth wave: edge 4, processor P4 and P1.

Thus processor P4 must wait for all communications between processors P1 and
P2 and then between processors P2 and P3 to be over before it can start communi-
cating with processor P3.

In the ordering on the right of the figure, communications take place as follows:

4 Metis can not split structured blocks.



114 M. Gazaix, S. Mazet, and M. Montagnac

1. First Wave: edge 1 and 2, processor P1 and P2, processors P3 and P4,
2. Second Wave: edge 3 and 4, processor P2 and P3, processors P4 and P1.

Fig. 1. Different global communication orderings for a simple graph

Each “communication wave” (edges 1 and 2, and edges 3 and 4 in figure 1(b)),
is a set of independent edges of the graph (so-called “matching” in graph theory).

The generalization to bigger graphs is straightforward. Note G0 the whole graph
and put N0 = 0. At step i >= 1, do the following:

• determine a set of Ni independent edges on the communication graph,
• number the edges (communications) in this set from Ni−1 + 1 to Ni−1 + Ni,
• remove processed edges from graph Gi to obtain graph Gi+1

• continue until no edges are left.

As an example of efficiency improvement, the return time for a 128 processor
computation was reduced by a factor of 2 when using the re-scheduling algorithm.

Remarks

Three remarks are in order.
It is known that the problem of finding the optimal set of independent edges is

NP-complete. In the cases presented here, the greedy heuristic gives good results
because of the sizes of the graphs involved (no more than a few hundred processors
at the moment). It is our opinion that sophisticated heuristics would not significantly
improve the graph coverage (number of connected nodes) for graphs of these sizes.

A basic improvement to the greedy heuristic is to order edges according to their
weight. In this case, the weights of edges in one set are close, and every message in
one communication “wave” should take approximately the same amount of time to
travel. The weight of an edge is linked to the amount of communication incurred, i.e.
the size of the interface meshes involved.
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2.3 Test of different implementations of MPI messages

Use of MPI Sendrecv replace()

The original MPI parallel implementation uses point-to-point MPI communication
routine (MPI Sendrecv replace()). As shown in section 2.2, it was necessary
to develop a scheduler to reach high performances.

Concatenation of messages to reduce latency

In the current elsA version, each matching block connectivity is implemented with a
call to MPI Sendrecv replace(). However, since several matching boundaries
may induce communications with the same couple of processors, another implemen-
tation has been tested, using a single buffer for each couple of processors; during the
send stage, the buffer concatenates (gather) all the messages to be exchanged; after
the receive step, the buffer data are scattered to all the individual matching block con-
nectivities. The reduction in the number of exchanged messages may lead to better
efficiency, specially if the communication network used by MPI has a high latency.
Up to now, we have not observed any improvement using message concatenation;
however, the current implementation use unnecessary buffer copy to fill the concate-
nated exchanged buffers, and so is far from optimak; work is in progress to remove
such unnecessary data copy.

Use of MPI Bsend()

In all cases, use of MPI Bsend() lead to strong decrease in parallel efficiency.

Replacing blocking with non-blocking MPI routines

Another idea was to develop a non-blocking communication scheme to get rid of the
scheduler. The other major interest of this approach is to enable the overlapping of
communication and computation. Nevertheless, the latter has not been achieved up
to now.

In the first stage, all processors are told to get ready to receive MPI messages with
a non-blocking receive instruction. The second stage consists in sending messages.
As shown in table 1, no scheduler is needed anymore.

2.4 Influence of block splitting on numerical convergence

Since the implicit stage is done on a block basis, block splitting performed to achieve
a good load balancing may reduce the numerical efficiency of the implicit algorithm.
In practice, we have never observed any significant convergence degradation.
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comm. scheme greedy/sched. greedy/no sched. Metis/sched. Metis/no sched
0 108.47 471.47 85.88 252.50
1 21.62 35.51 29.90 34.37
2 22.06 34.27 30.24 33.02
3 21.67 21.54 29.98 29.91

Table 1. 128 processors, CPU time spent to run one solver iteration on IBM BlueGene/L,
0 : MPI BSend(), 1 : MPI Sendrecv replace(), 2 : MPI Sendrecv replace()
with message concatenation, 3 : MPI ISend() (asynchronous)

3 elsA parallel efficiency

In this section, we present the parallel speedup measured on several parallel plat-
forms, using the same test case.

3.1 Test case description

We have chosen a realistic industrial configuration, typical of civil aircraft config-
urations computed with elsA. It is a 27.8 106 mesh points, with 1037 blocks. The
numerical settings include a multigrid algorithm (3 levels), and Spalart (one equa-
tion) turbulence model. The following plots give the computed parallel speedup, with
the following assumptions:

• Since the total CPU time is dominated by CPU time spent in the time loop, the
initialization phase (Python script interpretation, mesh file reading,...) is not taken
into account.

• Post-processing has been switched off, both during time loop and after loop ter-
mination.

• For large number of processors, the configuration has to be splitted; for example
for 1024 processors, we end up with 1774 blocks. This splitting leads to a small
memory and CPU increase.

3.2 IBM BlueGene/L

The minimum number of processors which allows to run the test case is 64. See
Figure 2.(a).

3.3 BULL Novascale (Itanium Montecito 1.6GHz)

This platform is equipped with an Infiniband network. See Figure 2.(b).

3.4 SGI Altix XE (Xeon Woodcrest 3GHz dual core)

See Figure 2.(c).
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Fig. 2. Parallel Speed-up of the Elsa code on different computing architectures

3.5 HP Cluster (Opteron AMD 2.4 GHz)

See Figure 2.(d).

[1] L. Cambier, J.P. Veuillot, Status of the elsA CFD software for Flow Simulation
and Multidisciplinary Application, AIAA Paper 2008-664, Reno (January 2008).

[2] Anders Ytterström, A Tool for Partitioning Structured Multiblock Meshes for
Parallel Computational Mechanics, International Journal of High Performance
Computing Applications, Vol. 11, No. 4, 336-343 (1997)
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Abstract. For CFD problem with a complicated moving boundary, the unstructured moving-
grid finite-volume method has been proposed and its ability recognized. However, the method
was limited for applications using inviscid compressible flows. In this paper, the method is
developed to apply to three-dimensional Navier-Stokes equations for viscous compressible
flows. We formulate a control volume for prismatic element well adapted to unstructured
mesh. Then, the method is applied to a flow around oscillating ONERA M6 airfoil at high
Reynolds nmber. And the computation is executed in OpenMP parallel environment.

Key Words: Unstructured Grid, Compressible Flow, OpenMP Parallelization

1 Introduction

A numerical simulation of flows around moving complicated bodies is very inter-
esting. To simulate such a flow field in the body-fitted coordinated system, great
skewness of gridline may occur according to the motion of the body. In this case, it
is necessary to consider a geometric conservation law[1] for moving grid. So, if the
geometric conservation law is not satisfied, a numerical result will have error affect-
ing movement of grid. For the issue, we have proposed the unstructured moving-grid
finite-volume method[2]. A characteristic of the method is that it satisfies a conser-
vation of flow parameter on moving grid, so it satisfies a geometric conservation
law on such a moving grid in addition to satisfy a physical conservation law. The
method adopts a control volume in a space-time unified domain on the unstructured
grid system, then it is implicit and is solved iteratively at every time-step. How-
ever, the method was limited for applications using inviscid compressible flows on
unstructured grid system which consist of tetrahedral meshes in three-dimensional
grid system. However, generation of tetrahedral mesh for boundary layer is quite
difficult. In those regions the large gradients occur in the direction normal to the
surface, which requires mesh of very large aspect ratio. Thus, the prismatic mesh
is superior in capturing the directionality of the flowfield over viscous regions. So,
we adapt a hybrid grid system of a prismatic mesh for boundary layer regions and

D. Tromeur-Dervout (eds.), Parallel Computational Fluid Dynamics 2008,
Lecture Notes in Computational Science and Engineering 74,
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tetrahedral mesh for other region. In this paper, there are two objectives. First, in a
three-dimensional viscous flow, we propose the method that physical and geometric
conservation laws are satisfied in moving grid system. Second, A numerical simu-
lation of flow around a body is computed using moving grid method in OpenMP
parallel environment. Then, it is applied to three-dimensional compressible flow in
hybrid unstructured grid system.

2 Hybrid Unstructured Moving-Grid Finite Volume Method

2.1 Governing Equation

The Navier-Stokes equation in three-dimensional coordinate system is written in the
conservation law form as follow:

∂q
∂ t

+
∂E
∂x

+
∂F
∂y

+
∂G
∂ z

=
1

Re∞

(
∂EV

∂x
+
∂FV

∂y
+
∂GV

∂ z

)
(1)

where, q is a vector of conservative variables,E, F and G are inviscid fluxes, EV ,
FV and GV are viscous fluxes.

2.2 Numerical Algorithm

Then, the equation(1) is integrated for control volume of hybrid mesh as shown in
Fig.1. In the case of three-dimensional system, the method is featured treatment
of a control volume on the space-time unified domain (x, y, z, t), which is four-
dimensional system in order that the method satisfies the geometric conservation
laws. The present method is based on a cell-centered finite-volume method, thus we
define flow variables at the center of a cell in unstructured mesh. So the cells are
prism and tetrahedron in three-dimensional (x, y, z, t)-domain. When grid moves, the
control volume becomes a complicated polyhedron in the (x, y, z, t)-domain.
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(a) Tetrahedral element. (b) Prismatic element.

Fig. 1. Control volume

For these control volume, the governing equation is integrated as follow:

∫

Ω

[
∂q
∂ t

+
∂E
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+
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+
∂G
∂ z

− 1
Re∞

(
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∂y
+
∂GV

∂ z

)]
dΩ = 0. (2)

The equation can be written as the equation

∫
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∂ z
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∂
∂ t

)
·
(

E− 1
Re∞

EV ,F− 1
Re∞

FV ,G− 1
Re∞

GV ,q
)]

dΩ = 0. (3)

The equation can be represented using Gauss’s Theorem:

Ns+2

∑
l=1

(qnt +Φ)ldSl = 0 (4)

where

Φ = H−HV , (5)

H = Enx + Fny + Gnz, (6)

HV =
1

Re∞
(EV nx + FV ny + GV nz). (7)

Here S is boundary of control volume surface. nl = (nx,ny,nz,nt)l (l = 1,2, · ·
·,Ns +2 ) is the normal vector of control volume surface, and the length of the vector
equals to the area of the surface. Then Ns is number of boundary, so in the case of
prism Ns = 5. l = 1,2, · · ·,Ns is presented as volume which is generated according to
movement from n to n + 1 time-step. l = Ns + 1,Ns + 2 is presented as cell itself at
n time-step and n + 1 time-step. The volume at n and n + 1 time-step of the control
volume are perpendicular to t-axis, and therefore they have only nt component and
correspond to the areas in the ( x, y, z )-space at time tn+1 and tn, respectively. Thus,
Eq.(4) can be expressed as,
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qn+1(nt)Ns+2 + qn(nt)Ns+1 +
Ns

∑
l=1

[
qn+1/2nt +Φn+1/2

]

l
dSl = 0 (8)

Here, the conservative variable vector and flux vector at n + 1/2-time step are

estimated by the average between n-time and (n+1)-time steps. Thus, qn+ 1
2 andΦn+ 1

2

can be expressed as,

qn+ 1
2 =

1
2
(qn+1 + qn), (9)

Φn+ 1
2 =

1
2
(Φn+1 +Φn). (10)

It is Crank-Nicolson type. However, Calculating flowfield at high Reynolds num-
ber, we use backward Euler type to get stability follow as:

qn+ 1
2 = qn+1, (11)

Φn+ 1
2 = Φn+1. (12)

The flux vectors are evaluated using the Roe flux difference splitting scheme
[3] with MUSCL approach, as well as the Venkatakrishnan limiter [4]. The method
uses the variable at n + 1-time step, and thus the method is completely implicit.
We introduce sub-iteration strategy with a pseudo-time approach [5] to solve the
implicit algorithm. Now by defining that the operating function L(qn+1) as Eq.(13),
the pseudo-time sub-iteration is represented as Eq.(14).

L
(
qn+1,<m+1>

)
=

1
�t(nt)Ns+2

[

qn+1,<m+1>(nt)Ns+2 + qn(nt)Ns+1

+
Ns

∑
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[
(1−θ )

(
qn+1,<m+1>nt +Φn+1,<m+1>

)
+θ (qnnt +Φn)

]
l dSl

]

(13)

∂q
∂τ

= −L
(
qn+1,<m+1>

)
(14)

Here, the equation is Crank-Nicolson type at θ = 1/2, and it is backward Euler
type at θ = 0 Where m is index for iteration, and τ is pseudo-time step. To solve
Eq.(14), we adopted the LU-SGS implicit scheme [6] to advance δτ pseudo-time
step. When m inner iteration is converged, we can get n + 1-time step solution qn+1.

3 Application

3.1 Calculating condition

The hybrid unstructured moving-grid finite-volume method is applied to a flow
around oscillating ONERA M6. The number of prism elements is 865,836 and the
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number of tetrahedron is 935,566, total is 1,801,402. An initial grid ( whole appear-
ance, cut view, around the wing ) are shown as Fig2. The hybrid grid is generated by
Marching step method [7]. Then the grid is moved according to a motion of the wing
by Spling method [8].
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Fig. 2. Computational grid.

The flowfield is computed at Re = 11.7x106, M∞ = 0.84, α = 3.06. Initial con-
dition is steady solution of this case. A computational region is shown as Fig.3. A
Oscillation is defined as an amplitude at a wingtip by Eq.(15). Here, β = 1.875/L.
Then, a maxium amplitude at a wingtip is 0.1L and A Frequency is 60Hz. In this
case, we introduce Spalart-Allmaras one equation model [9] as turbulence model.

y(z,t) = A ·Hsin(ω · t) (15)
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Fig. 3. Computational region.

H = {(sin(βL)− sinh(βL)) · (sin(β z)− sinh(β z))
+ (cos(βL)+ cosh(βL)) · (cos(β z)− cosh(β z))} (16)

3.2 Result

Fig.4 shows the results of the flow field (pressure contours) at t = 0.000, 1.125, 2.375,
3.625, 4.625 and 5.875 respectively. We can see moving shocks on the wing surface.
When the wing travels to upward, the shock generated on center of the wing surface
moves to in front of wing. On the other hand, when the wing travels to downward,
interaction between the shock generated in front of wing surface and generated in
center of the wing generates clearly Lambda shock. This result confirmed that the
method can calculate flow field and is promising to develop a three-dimensional
viscous flow around moving body.

The parallel computation of the hybrid unstructured moving-grid finite-volume
method is carried on for the flow field using OpenMP library on PC. The computer
has two Intel processors ( E6850: Core2 3.0GHz ) and 8GB shared memory. The op-
erating system is Windows Vista 64bit, fortran compiler is Intel Fortran 10.1. Then,
a results of the estimating is shown in Table 1.

There was little number of the samples, however, we cannot get enough speed
up in these environment. It is thought that we should examine a method to adopt
technique such as division of the domain or MPI parallel environment.

Number of elements 1,300,000 1,800,000

Speed up 0.950 0.980

Table 1. Parallel computing performance
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0.26 0.34 0.42 0.5 0.58 0.66 0.74 0.82 0.9 0.98 1.06

Non dimensional time = 0.000000

t = 0.000
0.26 0.34 0.42 0.5 0.58 0.66 0.74 0.82 0.9 0.98 1.06

Non dimensional time = 1.125000

t = 1.125

0.26 0.34 0.42 0.5 0.58 0.66 0.74 0.82 0.9 0.98 1.06

Non dimensional time = 2.375000

t = 2.375
0.26 0.34 0.42 0.5 0.58 0.66 0.74 0.82 0.9 0.98 1.06

Non dimensional time = 3.625000

t = 3.625

0.26 0.34 0.42 0.5 0.58 0.66 0.74 0.82 0.9 0.98 1.06

Non dimensional time = 4.625000

t = 4.625
0.26 0.34 0.42 0.5 0.58 0.66 0.74 0.82 0.9 0.98 1.06

Non dimensional time = 5.875000

t = 5.875

Fig. 4. Pressure contours

4 Conclusions

The unstructured moving-grid finite-volume method was formulated for three-
dimensional viscous flows and developed in tetrahedral-prismatic hybrid grid sys-
tem. Then, the result of a flow around oscillating wing showed applicable to
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three-dimensional moving boundary problem for viscous compressible flows. For
this problem, however, parallel efficiency was not obtained in OpenMP parallel en-
vironment. In future work, the efficiency will be estimated in dividing a domain, with
introduction of MPI.
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Abstract. In this paper, parallel computation of three-dimensional incompressible flows
driven by moving multiple bodies is presented using a new moving embedded zonal grid
method. Moving embedded zonal grid method is the method such that the embedded zonal
grid can move freely in one direction in a main grid which covers the whole of the flow
field. The feature of the method is to satisfy both geometric and physical conservation laws
simultaneously. The method is applied to a flow driven by two cubes moving in the origi-
nally stationary fluid. The computation was performed using multi-core CPUs and the parallel
algorithm has been implemented in the Poisson solver and the performance has been tested.

keyword: Incompressible flow, Moving-Grid Finite-Volume method, OpenMP

1 Introduction

Today, one of the interesting problems in Computational Fluid Dynamics is an un-
steady flow and it is very important to calculate a moving boundary problem. Es-
pecially, in the case that body moves in the fluid is interesting on engineering. For
example, these are a flow by stir, a flow around the turbine, and so on.

When we simulate such flow field, we encounter some problems to be overcome.
One of the problems is on grid system. When the body moves in the flow field, a
conventional single body-fitted grid system is hard to adjust the motion of body. One
of the most popular methods for such a moving boundary problem is an overset grid
method [1] where sub-grid placed around a moving body moves in main-grid. How-
ever the overset grid method does not satisfy conservation law rigorously in general
due to unavoidable interpolation error. From the view point of accurate computation,
the body-fitted single grid system is desirable, but is not difficult for the case that the
body travels long distance in the flow field because of resultant highly skewed grid.

D. Tromeur-Dervout (eds.), Parallel Computational Fluid Dynamics 2008,
Lecture Notes in Computational Science and Engineering 74,
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To overcome this problem, we have proposed a moving embedded-grid method
[2] for two-dimensional space. The method patches a local grid generated around a
body in a stationary ”main grid” and shifts the embedded local grid in any direction
through the main grid with eliminating front-side grids and adding back-side grid
with satisfying both physical and geometric conservation laws. As a flow solver, the
moving-grid finite-volume method [3] is modified and used in the moving embedded-
grid method.

The purpose of this paper is two fold. One is to introduce the moving embed-
ded zonal grid method as the first step in building up the three-dimensional moving
embedded-grid method. In this method, the movement of embedded zonal grid is
limited to one direction. The interactive flow field driven by the movement of the
multiple cubes is demonstrated. The other is to implement a parallel procedure into
present method and to investigate the parallel performance of the present method on
the multi-core and/or parallel environment of the small laboratory.

2 Moving Embedded zonal grid method

2.1 Governing Equations

Governing equations are the continuity equation and the incompressible Navier-
Stokes equations and are written in divergent form as,

∇ ·q = 0 (1)

∂q
∂ t

+
∂E
∂x

+
∂F
∂y

+
∂G
∂ z

= 0 (2)

where, q is velocity vector, E , F and G are flux vectors of x, y and z direction respec-
tively. These flux vectors are composed of advection, pressure and viscous term.

2.2 Moving Grid Finite Volume Method

To assure the geometric conservation laws, we adopt a control volume in the space-
time unified domain (x,y,z,t), which is four-dimensional in the case of three-
dimensional flows. Now, Eq.(2) can be written in divergence form as,

∇̃ · F̃ = 0 (3)

where,

∇̃=
[
∂
∂x

∂
∂y

∂
∂z

∂
∂ t

]T
, F̃ =

[
E F G q

]T
(4)

The present method is based on a cell-centered finite-volume method and, thus, the
flow variables are defined at the center of the cell in the (x,y,z) space. The control
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Fig. 1. Schematic view of control volume in (x,y,z,t) space-time unified domain.

volume becomes a four-dimensional polyhedron in the (x,y,z,t)-domain, as schemat-
ically illustrated in Figure 1.

We apply volume integration to Eq.(2) with respect to the control volume illus-
trated in Figure 1. With use of the Gauss theorem, Eq.(3) can be written in surface
integral form as,

∫

Ω
∇̃ · F̃dΩ =

∮

S
F̃ · ˜̄ndS =

8

∑
l=1

(
F̃ · ñ)l = 0 (5)

Here, ˜̄n is a outward unit vector normal to the surface, S, of the polyhedron con-
trol volume Ω , and, ñl = (nx,ny,nz,nt)l , (l = 1,2,. . . 8) denotes the surface normal
vector of control volume and its length equals to the boundary surface area in four-
dimensional (x,y,z,t) space. The upper and bottom boundary of the control volume
(l = 7 and 8) are perpendicular to t-axis, and, therefore they have only nt component
and its length is corresponding to the volume of the cell in the (x,y,z)-space at time
tn and tn+1 respectively. Thus, Eq.(5) can be expressed as,

qn+1(nt)8 + qn(nt)7 +
6

∑
l=1

(
F̃ n+1/2 · ñ

)

l
= 0 (6)

To solve Eq.(6), we apply the SMAC method[4]. Thus, Eq.(6) can be solved
at three following stages. The equation to be solved at the first stage contains the
unknown variables at n+1-time step in the flux terms. Thus the equation is iteratively
solved using the LU-SGS method[5]. The equation to be solved at the second stage is
the Poisson equation about the pressure correction. This equation is iteratively solved
using the Bi-CGSTAB method[6]. The flux vectors are evaluated using the QUICK
method. While the flux vectors of the pressure and viscous terms are evaluated in the
central-difference-like manner.

2.3 Moving Embedded Zonal Grid Method

The present moving embedded zonal grid method is the method such that the zone
grid in which bodies are included is embedded in the main grid and the embedded
zonal grid moves in one direction freely with adding and/or removing gird plane in
the main grid as illustrated in Figure 2. The front grid plane of the embedded zonal
gird is eliminated from the main grid to avoid grid folding according to decrease of
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the grid spacing due to the movement of the embedded zonal grid, while a grid plane
is added newly between the rear plane of the embedded zonal grid and the main grid
in order to keep the allowable maximum grid spacing. Hence the present method
includes essentially the two inevitable procedures: addition and elimination of grid
plane.

Step 1 Step 2 Step 3

Grid Plane
EliminatingAdding

Grid PlaneZonal Grid
Embedded

Fig. 2. Moving embedded zonal grid method.

The addition of the grid plane is performed as follows. Suppose that the grid
cell I at time step n deforms as well as moves to new position, and separates into
two grid cells I and I′ at time step n + 1, as illustrated in Figure 3(a). This means
that the new grid plane i′ is inserted or added between the grid plane i− 1 and i.
Under this situation, we have to treat two control volume, I and I′, to get solutions
at time step n + 1. For control volume I, the Eq.(6) is applied and no any other
extra procedure is necessary. For newly appearing control volume I ′, we need to
modify Eq.(6) considering that the volume of cell I′ at time n is zero. This means
that (nt)7 = 0 for control volume I′. Thus the finite volume equation for I′ becomes:

qn+1(nt)8I′ +
6

∑
l=1

(
F̃ n+1/2 · ñ

)

l
= 0 (7)

The elimination of the grid plane is accomplished through merging the two re-
lated control volumes. Suppose that the i′-th grid plane is eliminated at (n + 1)-time
step. Then we consider that the i′-th and i-th planes of cells at n-time step are merged
at (n + 1)-time step and only i-th plane of cells remains. In this situation, the con-
trol volume in space-time unified domain, (x,y,z,t), can be illustrated in Figure 3(b).
Thus Eq.(8) replaces Eq.(6).

qn+1(nt)8I + qn(nt)7I + qn(nt)7I′ +
6

∑
l=1

(
F̃ n+1/2 · ñ

)

l
= 0 (8)

In the present method, the addition and elimination of grid plane are performed
simultaneously when the grid spacing at the boundary between the main and embed-
ded grids exceeds a user-specified tolerance.
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Fig. 3. Control volumes for (a) adding grid plane and (b) eliminating grid plane.

3 Numerical results

3.1 Validation 1: Geometric Conservation Laws

At first it is necessary to confirm that the method satisfies the ”Geometric Conser-
vation Law” (GCL condition)[7], which means the method can calculate an uniform
flow on the moving mesh system without any error, when the embedded grid is mov-
ing in main grid with adding and eliminating grid planes. To verify that the method
satisfies the GCL condition, we apply the present method to the uniform flow. After
100,000 time step, the error keeps the order of 10−17, in a word, machine zero, which
means the method satisfies GCL perfectly.

3.2 Validation 2: Computation of Incompressible Flow-Field Driven by
Moving Cube in the Stationary Fluid

In order to check the present method, we have compared two physically equivalent
flow fields. The one is the semi-steady flows driven by the cube with a constant
speed in a stationary flow field, the other is the steady flows around the cube in an
uniform flow. As the calculation condition, the Reynolds number is 40 in the both

(a) (b)

Fig. 4. (a) Moving cube with a constant speed in a stationary flow field. (b) The flows around
the cube in a uniform flow.

cases. Figure 5 shows the vorticity contours. Since two physically equivalent flow
fields are obtained, the reliability of code is confirmed.
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(a) (b)

Fig. 5. Vorticity contours ((a) Using moving embedded zonal grid method, (b) Reference
solution).

3.3 Computation of Incompressible Flow-Field Driven by Moving Twin Cubes
in the Stationary Fluid

As an application of the present method, we simulate a flow-field driven by twin
cubes moving a stationary fluid, as illustrated in Figure 6.

Fig. 6. The flows driven by multiple cubes.

The size of the whole computational domain is Lx = 15.0L, Ly = 10.0L, Lz =
10.0L, where L is the side length of the cube. The initial position of the cubes are
x = 12.5L, y = 4L,6L, and z = 5L. The twin cubes move at constant speed of Ub = 1.0
after the constant acceleration of 0.1 from the stationary condition. The initial sta-
tionary condition of pressure, velocity components in the x,y,z directions are given
by p = 1.0, u = v = w = 0.0. As the calculation condition, the Reynolds number is 40
and time step size is Δt = 0.01. The number of the main grid is 151×101×101 and
the embedded zonal grid is 14×101×101. Figure 7 shows the pressure distribution
on the cubes as well as the vorticity contours at t = 5.0, 10.0 and 15.0.

The pressure in front of the cubes becomes higher as the speed of cube increases.
We can capture the twin vortex which corresponds to Re = 40. The vortex made by
the left body joins the vortex made by the right body at time t = 15. Therefore these
are physically-meaningful flows, and it is confirmed that the moving embedded zonal
grid method is useful for this application.
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(a) t = 5 (b) t = 10 (c) t = 15

Fig. 7. Surface pressure distribution and vorticity contour.

4 Parallel implementation

The second stage of the SMAC method is the Poisson solver for the pressure correc-
tion, where the Bi-CGSTAB method is used in the present method. In spite of the
efficiency of the Bi-CGSTAB method, this Poisson solver still consumers 90 % of
whole of computer time. Thus we have implemented parallelization on this stage.
The Bi-CGSTAB method includes the ILU decomposition. When we parallelize the
ILU decomposition, we have to consider the data dependencies. We have applied the
”Domino method” to the present method. The detail of the present ”Domino method”
is described as fallows.

(i) The calculation region is divided as illustrated in Figure 8(a).
(ii) The calculation region 1 of Figure 8(b) is calculated sequentially.

(iii) The calculation region 2,3 and 4 of Figure 8(c) is calculated in parallel after
calculation of (ii) has finished.

(iv) The calculation region 5,6,7,8,9 and 10 of Figure 8(d) is calculated in parallel
after calculation of (iii).

(v) The calculation region of Figure 8(e)∼(h) are calculated in a similar way.

Thus, the method can avoid the data dependences.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Schematic diagrams of Domino method (3×3×3).

The parallel computation is carried out using OpenMP library on PC for a flow
where two cubes move in the stationary fluid. As the operating system, we adopt
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Fedora core 6, which is a 64bit Linux operating system. The computer has one Intel
Core-two-duo 2.66GHz processors and 4GB shared memory. The Fortran compiler
is Intel Fortran 10.0. The whole of the domain is divided into 64(= 4× 4× 4) sub-
domains.

As a result, the ”Speed up” is 1.19 for the two CPU-core processors. For this case,
the result is miserable and the expected efficiency was not obtained in the present
numerical experiment. One of the reasons might be that the number of processors is
different from the division number in some calculation regions, and the paralleliza-
tion efficiency has been down. With this result, we need further efforts to improve
efficiency.

5 Concluding remarks

In this paper, the moving embedded zonal grid method has been introduced and
applied to the flows driven by moving multiple bodies. As a result, physically-
meaningful flows are obtained, and it is confirmed that the moving embedded zonal
grid method is useful for the simulation of a flow-field driven by multiple bodies
moving a stationary fluid. The second stage of the flow solver, the part of the Pois-
son solver, is parallelized using ”Domino” method, and the expected speed up is not
obtained. Further attempts have been continued for further parallel efficiency in the
laboratory computer environment.
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1 Introduction

Computational Fluid Dynamics (CFD) has been increasingly relied on as an impor-
tant tool for the aerodynamic design. However, mesh generation for 3D complex
geometries is still the most time-consuming task in CFD. Recently, Cartesian grid
methods have become popular because of their advantages of fast, robust, and auto-
matic grid generation. Authors proposed a new approach based on a block-structured
Cartesian grid approach, named Building-Cube Method (BCM, [5]). This method is
aimed for large-scale, high-resolution computations of flows. In the original BCM,
however, the wall boundary is defined by a staircase representation to keep the sim-
plicity of the algorithm. Therefore, to resolve boundary layers, vast amounts of grid
points are required especially for high-Reynolds number flows of practial applica-
tions. In this paper, a new embedded boundary treatment suitable for high-Reynolds
viscous flows on BCM is proposed. The scalability performance on cluster comput-
ers is also investigated with this method.

2 Building-Cube Method

The BCM basically employs a uniformly-spaced Cartesian mesh because of the sim-
plicity in the mesh generation, the numerical algorithm, and the post processing.
A flow field is described as an assemblage of building blocks of cuboids, named
“Cube”, as shown in Fig. 1. The geometrical size of each cube is determined by
adapting to the geometry and the local flow length by the omnitree refinement
method. In each cube, a uniformly-spaced Cartesian mesh is generated as shown
in Fig. 2. All cubes have the same mesh density so that the local computational res-
olution is determined by the cube size. The same mesh density within all cubes also
keeps simple algorithm in the parallel computations.

D. Tromeur-Dervout (eds.), Parallel Computational Fluid Dynamics 2008,
Lecture Notes in Computational Science and Engineering 74,
DOI: 10.1007/978-3-642-14438-7 14, c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Cube boundaries around RAE2822 air-
foil

Fig. 2. Cartesian mesh inside the cube
(256x256 cells)

3 Governing Equations

Non-dimensionalized Navier-Stokes equations governing compressible viscous flows
can be written in the Cartesian coordinates x j( j = 1,2,3) as

∂U
∂ t

+
∂F j

∂x j
− 1

Re

∂G j

∂x j
= 0, (1)

where U = (ρ ,ρu,ρv,ρw,ρe) is the vector of conservative variables, ρ is the density,
u, v, w, are the velocity components in the x1, x2, x3 directions and e the specific total
energy. The vector F(U) and G(U) represent the inviscid and viscous flux vectors
respectively, and Re is the Reynolds number. Spalart and Allmaras’ one equation
model ( [9]) for turbulent flow is used to evaluate eddy viscosity.

Fig. 3. Nodal assignment for boundary conditions
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4 Numerical Method

4.1 Boundary Conditions

The boundary conditions are treated by the embedded boundary approach. This con-
cept was first introduced for performing simulation of flow in a heart as the immersed
boundary method ( [7]). In this approach a body force is introduced at interface cell
i to impose boundary conditions as shown in Fig. 3.
The original Navier-Stokes equations of Eq. (1) can then be written as follows:

∂U
∂ t

= RHSi + Si. (2)

RHSi contains inviscid and viscous fluxes, and is given by

RHSi = −
(
∂F j

∂x j
− 1

Re

∂G j

∂x j

)
. (3)

Body force Si is defined by

Si = −RHSi + RHSIB. (4)

RHSIB is the components of the body force term applying boundary condition, and
is given by

RHSi = −
(
∂F j

∂x j

)

IB

+
1

Re

(
∂G j

∂x j

)

IB

, (5)

where, (∂F j/∂x j)IB and (∂G j/∂x j)IB are the inviscid and viscous fluxes respec-
tively, imposed by the immersed approach. For all interface cells, inviscid and vis-
cous flux term of Eq. (5) is discretized with a gridless method ( [3]). In this approach,
however, gridless method was used as the boundary conditions of Euler computations
on the Cartesian cells. In this work, these gridless approaches are extended to high-
Reynolds number flow simulations with compressible Navier-Stokes equations.
The gridless method requires the notion of a “cloud” and its nodal shape functions.
The spatial derivative of any particular variable f in the jth coordinate direction is
finally written in terms of a derivative shape function as

∂ f
∂x j

= ∑
k∈C(i)

∂φik

∂x j
fik. (6)

Here, C(i) is the set of cloud points for a given point i. Let fik denote the value of
functions f at the midpoint of the edge ik , where k ∈ C(i). The inviscid flux of
RHSIB can then be estimated with the formula of Eq. (6) as

(
∂F j

∂x j

)

IB

= ∑
k∈C(i)

∂φik

∂x j
(F j)ik = ∑

k∈C(i)
Eik. (7)

The flux term E at the midpoint is expressed as
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E =

⎡

⎣
ρU

ρuiU + ∂φ
∂xi

p
U(ρe + p)

⎤

⎦ , (8)

where U is so-called contravariant velocity defined as

U =
∂φ
∂x j

u j. (9)

In the evaluation of the numerical fluxes at the midpoints, the approximate Riemann
solver ( [6]) is used, instead of directly introducing artificial damping terms. With
this approach, no intrinsic measure of length is required and upwinding can be natu-
rally introduced into the body force term for the embedded boundary approach. The
viscous terms of the RHSIB contain the following derivative

∂
∂x

(
μ
∂u
∂x

)
. (10)

The second derivative is estimated using Eq. (6) as

∂
∂x

(
μ
∂u

∂x

)∣∣
∣
∣
i
= ∑

k∈C(i)

∂φik

∂x

(
μ
∂u

∂x

)
. (11)

For practical applications, the Reynolds number may become very large (∼ 107).
In such high-Reynolds number flow, computation only with Cartesian mesh is still
difficult by current computer capacity, since a very fine mesh is required to resolve
viscous sublayers in the boundary regions. In the present work, the embedded method
is extended for using a “Subgrid” to retain near-wall accuracy while reducing the
number of overall Cartesian mesh points. A subgrid consists of new computational
nodes, which is added independently to the Cartesian mesh as shown in Fig. 4. The
inviscid and viscous fluxes of the subgrid are also discretized by using the gridless
approach described above.

4.2 Solution Algorithm

The governing equations are solved based on a cell-centered, finite-volume scheme
on Cartesian mesh. In this discretization, preconditioning system ( [10]) is used in
order to improve the efficiency for solving low Mach number flow problem with
variable or constant density. The numerical flux is computed using an approximate
Rieman solver of Harten-Lax-van Leer-Einfeldt-Wada (HLLEW, [6]). The primitive
variables at the dual cell interfaces are evaluated by MUSCL approach ( [11]) in
order to achieve more than third-order accuracy. The lower/upper symmetric Gauss-
Seidel (LU-SGS, [12]) implicit method is used for the time integration. In order to
keep the second-order accuracy in time, a sub-iteration scheme ( [4]) is employed.
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Fig. 4. Nodal assignment for boundary conditions with Subgrid

4.3 Parallelization

Because of the same mesh density of all cubes, the parallel computation of the
present method is straightforward. It is easily implemented by distributing the cubes
to the CPUs in a sequential manner as shown in Fig. 5. For the parallelization, the
flow solver was modified using the MPI library for parallel computers. The domain
decomposition technique is used for the parallelizing strategy. All cubes should be
partitioned so that the leaf cubes are equally distributed to each processor, since only
the leaf cubes are used for flow computation. In this work, Morton ordering ( [8]),
which is one of the Space-filling curves, was employed for domain decomposition
because of a simple recursive algorithm. It was tested on the Opteron cluster with 64
CPUs. The scalability result of Fig. 6 is for flow computation using about 4 million
Cartesian cells. With 64 CPUs, the speedup was about 54 times of the single CPU
computation.

5 Numerical Results

Flow simulations around the Ahmed body ( [1]) with the 35◦ slant-back configura-
tions were performed. Computational mesh used here is shown in Figs. 7 and 8. The
configurations for the computations have been specifically chosen to match Lien-
hart’s experiment ( [2]). The inflow velocity was 40 [m/s]. This results in a Reynolds
number Re = 2.8 million (based on the body length of 1044 [mm]). For the front part,
the profiles of the mean streamwise velocity on the symmetry plane are compared
with the experimental data in Fig. 9. The flow upstream of the body is properly pro-
duced in the simulation. In Fig. 10 the profiles of the mean streamwise velocity at
the rear body part on the symmetry plane are shown with the experimental results.
The simulation results are in good agreement with experimental data.



142 T. Kamatsuch, T. Fukushige and K. Nakahashi

Fig. 5. Overall flow-solution procedure

Fig. 6. Scalability test on the Opteron com-
puter

Fig. 7. Cube frames in the computational do-
main

Fig. 8. Mesh cells around the body

6 Conclusion

A new embedded boundary treatment suitable for the Buildin-cube method was dis-
cussed for high-Reynolds number flow computations using parallel computers. In
this approach, a body force terms were introduced only at boundary cells to impose
wall boundary conditions. This method was extended for using a subgrid to retain
near-wall accuracy while reducing the number of overall Cartesian cells. Because of
the same mesh density of all cubes, the parallel computation of the present method
was straightforward. All cubes were partitioned so that the leaf cubes were equally
distributed to each processor. It was tested on the Opteron cluster and the scalability
result showed good performance with present approach. The developed method was
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Fig. 9. Mean streamwise velocity profiles at the front body on the symmetry plane

Fig. 10. Mean streamwise velocity profiles at the rear body and near wake on the symmetry
plane

used to compute viscous flow past Ahmed body, and the simulation results were in
good agreement with experimental data.
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In flip-chip packaging technology, the underfill encapsulation is one of the important
processes to obtain a significant improvement in fatigue lifetime for the solder joints
between IC chip and substrate. The advanced design of electronic devices aiming at
the enhancement of the performance involves the increase of the number of solder
bumps, smaller size of the IC chip and smaller gap height between IC chip and sub-
strate. That leads to various problems caused by the flow behavior, such as voids in
underfill and mis-placed IC chip. The numerical analysis is more and more strongly
required for simulating the underfill flow behavior, including the condition of dis-
pensing the underfill material on the substrate. In fact, it is desirable to predict the
filling time, the final fillet shape formed around IC chip and the occurrence of air trap
especially around the solder bump in the underfill process, considering the effect of
contact angle, viscosity and surface tension of the underfill material for increasing
the reliability of flip-chip packaging.

We developed a numerical method for simulating the underfill flow in flip-chip
packaging, especially for designing the optimum condition of solder joint perfor-
mance [6]. The two types of processes are presented for applying the underfill en-
capsulant to the gap between IC chip and substrate. One is conventional capillary
flow type and the other is no-flow type. Both underfilling processes are illustrated in
Fig. 1. In the capillary flow type, multiple processing steps are involved. The solder
joints between IC chip and substrate are formed, which is called solder bump reflow,
and then thermosetting epoxy resin is driven into the cavity by capillary action. Af-
ter the resin is completely filled, the assembly is taken to an oven where the resin
is cured. On the other hand, the no-flow type was invented to reduce the process-
ing steps in the capillary flow type, which provides cost savings. The epoxy resin is
directly dispensed on the substrate and is compressed by pre-heated IC chip. While
the IC chip is mounted on the substrate, the solder joints are formed with curing of
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Fig. 1. The underfilling processes of conventional capillary flow type (left) and no-flow type
(right)

the resin. We need to understand the flow behavior and filling time of underfill ma-
terial for various solder bump patterns; solder bump diameter, bump pitch and gap
height, taking into account the drag force acting on the solder bump. In the under-
fill flow analysis, the governing equations for three-dimensional incompressible flow
are solved by using the finite difference method (FDM) incorporating the pseudo
compressibility approach [7] on a non-uniform Cartesian grid. In the numerical
method, a central difference scheme with artificial dissipation is used for the spa-
tial discretization. The forward Euler explicit method is used as an iterative scheme
in the pseudo time integration method. Our basic concept of numerical approach to
the underfill encapsulation process can be found in [5, 4]. The level set method [8]
is used as an interface capturing algorithm to represent the gas-liquid interface. The
continuum surface force (CSF) model [1] is used for treating the surface tension.
It is assumed that temperature distribution in the underfill material is uniform. The
power-law model is adopted as a constitutive equation for treating the mould flow
behavior of non-Newtonian fluid. The simulations especially in the no-flow type are
carried out by coupling the Navier-Stokes equations and the equations of motion of
IC chip.

For solving such a large scale problem, parallel computation is needed. In [2,
3], an efficient parallel computational algorithm has been studied for analyzing the
compressible flow around a multi-element airfoil and incompressible flow around a
moving circular cylinder using an overset grid method. In the implementation on a
parallel computer, the domain decomposition method is used. The parallel code is
applied to the underfill flow simulation.

In this paper, the model is presented for providing the underfill material, moving
in a dispenser along the circumference of the IC chip.
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Fig. 2. The analytical model for the conventional capillary flow type

Table 1. Density, viscosity and surface tension

density [kg/m3] viscosity [Pa · s] surface tension [N/m]

gas 1.0 1.0×10−5 −
liquid 1.0×102 1.5×10−2 1.0×10−2

1 Numerical Simulation of Capillary Flow Undefill

As one of the analytical models for the conventional capillary flow type, a semi-
spherical liquid as shown in Fig. 2, or a sequence of spherical liquids dispensed on
the substrate near the IC chip is driven by capillary action into the cavity with a gap
height between IC chip and substrate. The solder bump in the gap is modeled as the
rectangular cylinder. In this model, the surface tension is caused by prescribing the
contact angle on the surface of IC chip and substrate. The effect of gravity force
is included. The dimension of die is about 1.0mm × 1.0mm, and the gap height
between IC chip and substrate is about 0.1mm. The array pattern of solder bump is
5× 5. The bump diameter is 0.1mm and the bump pitch is 0.2mm. The number of
grid points is about 37000. In the properties of gas and liquid, the density, viscosity
and surface tension are shown in Table 1.

2 Numerical Results

In the case1, the solder bump between IC chip and substrate is neglected and the
flow front profile and filling time are evaluated by changing the contact angle. The
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. The initial state of dispensing a semi-spherical liquid (a), the histories of propagating
interface with increasing the time (b)-(g) and the final fillet shape (h) in the existence of no
solder bumps (case1)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. The initial state of dispensing a semi-spherical liquid (a), the histories of propagating
interface with increasing the time (b)-(g) and the final fillet shape (h) in the existence of solder
bumps (case2)



150 T. Hashimoto, K. Saito, K. Morinishi and N. Satofuka

(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 5. The initial state of dispensing a sequence of spherical liquids (a), the histories of prop-
agating interface with increasing the time (b)-(f) and the final fillet shape (g) in the existence
of solder bumps (case3)
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filling times of the contact angles of 30◦, 45◦ and 60◦ are about 1.0s, 1.2s and 1.4s,
respectively. The initial state, the histories of the propagating gas-liquid interface
with increasing the time and the final fillet shape obtained for the contact angle 30◦
are shown in Fig. 3. It is observed that as the contact angle becomes larger, the
filling time is longer due to decrease of the flow velocity, and that the final fillet
shapes for the three contact angles are different, depending on the collapse of semi-
spherical liquid and the spread especially in the plus direction of x-axis. It is found
that the effect of capillary action on the flow behavior is one of the most important
factors in predicting the filling time and the final fillet shape. It is also confirmed
that the curve of flow front is a meniscus. For the next cases, the solder bump of
rectangular cylinder between IC chip and substrate is considered, fixing the contact
angle 30◦. In the case2, the histories of the propagating gas-liquid interface with
increasing the time and the final fillet are shown in Fig. 4. The filling time is about
3.5s. The spread of liquid in the plus direction of x-axis is larger than that of case1
due to the increase of flow resistance to the solder bumps. In the case3, the providing
the underfill material, moving a dispenser along the circumference of the IC chip is
modeled using a sequence of spherical liquids at the initial state as shown in Fig.
5(a). The center position and radius of the spherical liquids is determined by the
flow rate of the underfill material at the gate of the dispenser moving at a speed. The
height between center position of the spherical liquids and substrate increases for the
time delay. The histories of the propagating interface with increasing the time and
the final fillet shape are shown in Fig. 5(b)-(f) and (g), respectively. The filling is
about 3.0s and the good final fillet shape is obtained.

3 Conclusions

In the model of providing the underfill material, moving in a dispenser along the
circumference of the IC chip, it is considered that the use of a sequence of spherical
liquids is very effective. In the future work, the numerical results should be confirmed
by comparing with the available experimental data. The parallelization is essential
for treating a large scale problem and reducing the computational time.
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This paper presents a numerically efficient implementation of the Immersed Bound-
ary Method (IBM), originally developed by [7] to simulate fluid/elastic-structure
interactions. The fluid is assumed to be incompressible with uniform density, viscos-
ity, while the immersed boundaries have fixed topologies with a linear elastic behav-
ior. Based on the finite-difference method, a major numerical advantage of the IBM
is the high level of uniformity of mesh and stencil, avoiding the critical interpola-
tion processes of the cut-cell/direct methods. The difficulty of accurately simulating
interaction phenomena involving moving complex geometries can be overcome by
implementing large and parallel IBM computations on fine grids, as described in [1].
While this paper is restricted to a two-dimensional low-Reynolds-number flow, most
of the concepts introduced here should apply to three-dimensional bio-flows. We de-
scribe here the decomposition techniques applied to the IBM, in order to decrease
the computational time, in the context of the parallel Matlab toolbox of [3]. Finally,
we apply the method to a blood-like suspension flow test-case.

1 The Fluid/elastic-structure interaction equations

1.1 The Context

Blood is a suspension flow: its primary purpose is transporting cells. The proportion
of blood volume occupied by red blood cells is normally between forty and fifty
percent. This implies the implementation of multi-scale models, taking into account
these numerous small immersed bodies. However, we restrict ourselves only to a
small-scale domain and present here a parallel simulation of a cavity flow with a sig-
nificant volume of immersed elastic bodies. For simplicity reasons, further necessary
reductions are also made on the fluid, assumed to be Newtonian, incompressible and
inert, while blood is non-Newtonian, slightly compressible and with highly complex
chemical properties.

As discussed by [8], various techniques have been proposed in the literature to
treat moving boundary problems. The IBM, originally developed by C.S. Peskin,
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combines respectively Eulerian and Lagrangian descriptions of flow and moving
elastic boundaries, using discrete Dirac delta functions as integration kernels to
switch from one description to the other. The incompressible Navier-Stokes and elas-
ticity theories can be unified by the same set of equations to get a combined model of
the interaction. There are numerous applications of the IBM in Bio-Engineering or in
more general Computational Fluid Dynamics applications. We give, in the following
subsection, a brief description of the method.

1.2 The Temporal discretization of the IBM

A complete and accurate introduction to the IBM can be found in [7]. We start with
the incompressible Navier-Stokes equations of momentum and mass conservation:

ρ
[
∂V
∂ t

+(V.∇)V
]

= −∇P+μΔV + F (1)

∇.V = 0 (2)

The primitive variables are V and P, respectively the velocity and pressure of the
fluid, which physical parameters are the uniform viscosity μ and the uniform density
ρ . The fluid domain Ω ∈ R

d (d = 2,3) is described by the Cartesian coordinate
vector x. Γ ⊂Ω is the immersed elastic boundary, which curvilinear dimension is m
(m < d). X is the Lagrangian position vector of Γ , expressed in the d-dimensional
Cartesian referential. The Lagrangian vector f is the local elastic force density along
Γ , also expressed in the Cartesian referential. The IBM requires the extrapolation of
the Lagrangian vector f into the Eulerian vector field F , which is then plugged into
Eq. (1). A distribution of Dirac delta functions δ is used for that purpose:

F(x,t) =
∫

Γ
f (s,t)δ (x−X(s,t))ds =

{
f (s,t) if x = X(s,t)
0 otherwise

(3)

The motion of the immersed boundary should match the motion of the neighboring
fluid particles thanks to a no-slip boundary condition. Eq. (4) approximates this latter
condition using the Dirac delta function as an interpolating tool for V , from Ω to Γ :

∂X(s,t)
∂ t

=
∫

Ω
V (x,t)δ (x−X(s,t))dx =

{
V (X(s,t),t) if x = X(s,t)
0 otherwise

(4)

The immersed boundary obeys Hooke’s law of elasticity, i.e., the tension T of the
immersed boundary is a linear function of the strain. For a one-dimensional bound-
ary, we have:

T (s,t) = σ
∣
∣∣
∣
∂X(s,t)
∂ s

∣
∣∣
∣ (5)
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where σ is the boundary elasticity coefficient. The local elastic force density f is
defined as:

f (s,t) =
∂ (T (s,t)τ(s,t))

∂ s
, τ(s,t) =

∂X(s,t)/∂ s
|∂X(s,t)/∂ s| (6)

τ is the unit tangent vector to Γ . Finally, by plugging Eq. (5) into the set of Eqs.(6),
we get:

f (s,t) = σ
∂ 2X(s,t)
∂ s2 (7)

The practical implementation of the IBM of Peskin offers dozens of different possi-
bilities regarding the choice of the temporal scheme, the space discretization, the
discrete approximation of the Dirac function and so on. Overall, there is clearly
a compromise between the stability of the scheme that suffers from sharp sources
terms in the equations, for the pressure to be discontinuous, and accuracy that needs
this numerical feature. We refer to the thesis of the first author [5] and its bibli-
ography for an extensive comparison of possible implementations against standard
benchmark problems.

For the temporal discretization of the fluid equations, we use the following fractional-
step method (H is the convective term):

ρ
[

V ∗ −Vn

Δ t

]
= −∇Pn− 1

2 +
μ
2
Δ
(
3V n −Vn−1)

− ρ
2

[
3H(Vn)−H(V n−1)

]
+

3
2

Fn − 1
2

Fn−1 (8)

ΔΠ =
ρ
Δ t
∇.V ∗ (9)

ρ
[

V n+1 −V∗

Δ t

]
= −∇Π (10)

Pn+ 1
2 = Pn− 1

2 +Π (11)

This is a second-order scheme, with only one system to solve per time step, Eq. (9).
Similarly, the elastic body motion is discretized using the midpoint rule for the time
derivative, the trapezoidal rule and an Adams-Bashforth scheme respectively for the
fluid velocity and the boundary position extrapolated at time step tn+ 1

2 :

Xn+1 −Xn

Δ t
=
∫

Ω

(
V n+1 +V n

2

)
δ
(

x− 3
2

Xn +
1
2

Xn−1
)

dx (12)

Finally, the local elastic force density f n+1 is computed as a function of Xn+1 and
extrapolated onto Ω :

Fn+1 =
∫

Γ
f n+1δ

(
x−Xn+1)ds (13)
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Spatially, we use a staggered grid with second-order discretization. The widths of the
divergence operator and Laplace operator stencils are equal respectively to one space
step and two space steps, leading to less smear out for the numerical approximation
of the pressure front at the immersed boundary location. The discrete Dirac delta
function used in this study is the traditional 2D function δh that has a 4h support (h
being the uniform space step):

δh(x1,x2) =
1
h
φ
(x1

h

) 1
h
φ
(x2

h

)
(14)

with:

φ(r) =

⎧
⎪⎪⎨

⎪⎪⎩

1
8

(
3−2|r|+√1 + 4|r|−4r2

)
if |r| ≤ 1

1
8

(
5−2|r|−√−7 + 12|r|−4r2

)
if 1 < |r| ≤ 2

0 if |r| > 2

(15)

2 The Parallel flow solver

Most of the computational cost of the IBM at each time-step corresponds to the
pressure equation of the projection scheme Eq. (9). In the case of a closed driven
cavity, this is a Poisson equation with homogeneous Neumann boundary conditions.
Consequently, we used the analytic additive Aitken-Schwarz algorithm of [2], which
is an excellent candidate to allow efficient distributed computing with high latency
networks. We also refer to [1] for more details on the method. The Matlab parallel
toolbox used to implement the solver is MatlabMPI, a set of Matlab scripts that
implements a subset of MPI and allow any Matlab program to be run on a parallel
computer. We now describe successively the pressure and IBM solvers.

2.1 The Pressure solver

The rectangular uniform mesh is decomposed into an unidirectional partition of over-
lapping strip domains. The method is a post-process of the standard Schwarz method
with an Aitken-like acceleration of the sequences of interfaces produced with the
block-wise Schwarz relaxation. We use a Fourier expansion to describe the solu-
tion on the interface and initially compute analytically each damping factor for each
wave number. Thus, the Aitken acceleration for each wave number can be performed
independently. The algorithm of this exact solver is summarized as follows:

• step 0: compute analytically each damping factor for each wave number
• step 1: solve the one-dimensional system corresponding to the zeroth Fourier

mode and subtract this mode from the right-hand side (because of the homoge-
neous Neumann boundary conditions)

• step 2: perform one additive Schwarz iterate
• step 3: apply the generalized Aitken acceleration on the interfaces
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– 3.1: compute the expansion of the traces on the artificial interfaces from the
Schwarz iterate

– 3.2: apply the generalized Aitken acceleration separately to each wave coef-
ficient, in order to get the exact solution on the artificial interfaces, expressed
in the Fourier basis

– 3.3: transfer back the interface values into the physical space
• step 4: compute the solution for each subdomain in parallel
• step 5: add the field corresponding to the zeroth Fourier mode

2.2 The IBM solver

The main steps of the parallel flow solver are:

• step 1: exchange interface data (from V n and Pn− 1
2 ) in order to compute locally

V ∗
• step 2: exchange interface data (from V ∗) in order to compute locally the right-

hand side of the pressure equation
• step 3: solve the pressure equation with the Aitken-Schwarz pressure solver de-

scribed above
• step 4: compute V n+1 and Pn+ 1

2

Fig. 1 shows the speedup of the flow solver with respect to the number of processors
and for three different domain sizes with our parallel implementation of the complete
Navier-Stokes code. Performance speedup is based on the reference time provided
by the code running with two subdomains on two processors. This speedup is there-
fore significantly better than what one obtains by comparing our parallel code with
its sequential version. The speedup of the parallel code with two processors com-
pared to the sequential code running on one processor is only 1.56. The overhead in
the sequential code comes partially from the nature of the algorithm itself, which re-
quires two subdomain solves, and partly from the fact that the parallel code has many
more lines of code to be interpreted by Matlab. Another aspect of the parallelization
is that we gain computational time in the decomposition of the operator process: this
time is divided by the square of the number of subdomains since the complexity of
the decomposition is proportional to the bandwidth of the subdomains. While the
speedup obtained in Fig. 1 is not optimal, the MatlabMPI implementation still seems
very attractive and fitted for solving relatively large size problems.

For the boundary treatment, the difficulty is that the discrete Dirac delta function
has a support larger than the overlap. Each moving boundary point has a zone of
influence corresponding to its support, which can be spread across two contiguous
sub-domains, but which should only be taken into account once in the fluid/structure
interaction. For example, in the no-slip boundary condition Eq. (4), we split the sum-
mation operator between the nsub non-overlapping sub-domains {Ωi}1≤i≤nsub :
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Fig. 1. Speedup of the flow solver with respect to the number of processors and for three
different domain sizes

∂X(s,t)
∂ t

=
∫

Ω
V (x,t)δ (x−X(s,t))dx

=
nsub

∑
i=1

∫

Ωi

V (x,t)δ (x−X(s,t))dx (16)

This means that one process needs to know the position the boundary points located
inside but also in the neighborhood of its subdomains Ωi. The width of this neigh-
borhood is depending on the width of the δ support. This is also true for the local
force density extrapolation Eq. (3).

3 The Test-case

The geometry is a square cavity Ω = [0,1]2 in which the upper wall is sliding and
with a fixed cylinder of radius 0.1 and center (0.5,0.75) implemented using the direct
forcing method of [4]. The physical parameters are μ = ρ = 1, σ = 100. The upper
wall velocity is u(x,1) = 40x(1− x). We have included 35 bubbles of radius 0.05,
which represent around 31% of the fluid domain. Initially, the fluid is at rest, then
the moving bodies are pushed between the cylinder and the sliding wall, as shown
on Fig. 2. To prevent the moving bubbles from sticking to the cylinder, which may
happen when the immersed boundary force terms of both kinds overlap, we found
that the fixed boundary force term in the momentum equation should be slightly
spread on, in our case on the nodes neighboring the cylindric obstacle. Contacts
generate numerical perturbations and thus require a minimum level of discratization
accuracy. In order to better visualize the dynamic of the simulation in Fig. 2, we
added a cross inside each bubble, these crosses are not actual elastic boundaries but
visual markers.
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t = 0.025 t = 0.050

t = 0.075 t = 0.100

Fig. 2. Immersed boundaries and contour of the verctical velocity component at different times

4 Conclusion

We presented an efficient implementation of the IBM, based on the Aitken-Schwarz
algorithm. Although strong model reductions have to be made toward blood flow
simulations, it is of particular interest that these techniques, which are relatively
simple to implement, give access to such complex fluid flow problems, taking full
advantage of parallel computers. Regarding our particular test-case, we noted that
the domain partition needs to be strictly non-overlapping for the boundary treatment.
The total number of immersed boundaries being reasonable in the present case, each
process could manage to gather all the Lagrangian boundary data at each time step,
which are the curvilinear position and force density vectors X and s. However, the
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corresponding computational cost would increase significantly with more immersed
boundaries, and would finally strongly penalize the scalability of the solver. In the
future, a simple algorithm will be implemented, in order to minimize the boundary
data required by each processor in the boundary treatment process. We also refer to
[6] for a Fourier representation of the discretized immersed boundary coordinates
vectors, allowing us to use less boundary points, thus gaining efficiency, and to filter
the possible non-physical high-frequency oscillations along the moving boundaries.
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1 Introduction

Natural convection in cavities is a well-known configuration of CFD community. Re-
cently there is increasing interest in numerical study of 3D natural convection at high
Rayleigh number [3, 5, 7, 8] and the corresponding direct numerical simulations of
transitional flow regime are approaching the limiting case of single-processor com-
puting even on a computer of NEC-SX8. Parallel computing is therefore needed for
studying higher Rayleigh number and turbulent flow regime.

Spectral Chebyshev collocation method [1, 2] has been widely used for investi-
gating natural convection in cavities and suits especially the flow regime of separated
boundary layers because of the special distribution of the collocation points (Gauss
points). But it suits less the stretched geometries and the corresponding multi-cellular
flow structures [10]. Even in a square cavity when the instabilities of the vertical
boundary layer move more and more upstream with increasing Rayleigh number,
the distribution of Gauss points is less suitable: for example, a grid transformation
technique has been used for a 2D square cavity at a Rayleigh number of 1010 [6, 9].
In these cases, multi-domain or domain decomposition can be applied in order to
overcome the drawbacks of Gauss points. In the sense of parallel computing, parallel
multi-domain is needed to overcome the drawbacks related to the collocation points.

The present work is thus realized under the two-fold motivations. Natural con-
vection in a cubic differentially heated air-filled cavity is chosen as an example to
illustrate the motivations and numerical results of parallel computing are presented.

2 Basic ideas

Multi-domain is first associated with Schur complement or influence matrix tech-
nique in order to handle the problem on the interfaces between the subdomains. Take

a 1D Helmholtz equation

(
d2

dx2 −λ
)

f = s for example, the initial domain is divided
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into subdomains and both f and its first derivative should be continuous on the inter-
faces. Spectral collocation method leads to a block-structured global matrix which
are coupled through the interface conditions. To take advantage of the block struc-
ture, it is usual to impose Dirichlet conditions (continuous f ) on the interfaces and
forget the condition of continuous d f/dx: different blocks can be solved indepen-
dently on different processors. The condition of continuous d f/dx can be recovered
by using the Schur complement which is constructed and inverted in a preliminary
stage as there exists a linear relationship between the function and its first deriva-
tive on the interfaces. The well-known two iteration procedure is the following: in
the first iteration the independent blocks are solved with guessed interface values to
obtain the guessed subdomain solutions, one calculates on the interfaces the d f/dx
differences of the guessed subdomain solutions and the corrections to the guessed
interface values by using the inverse of Schur complement; in the second iteration
the independent blocks are solved with the corrected interface values and the final
subdomain solutions satisfy the conditions of continuous f and d f/dx on the inter-
faces.

For parallel computing, one independent block is given to one processor and one
processor has either a guessed or a final solution of one subdomain. Communica-
tions between processors are needed to construct Schur complement and calculate
the d f/dx differences on the interfaces: for example, one processor gives the d f/dx
value of the guessed solution on the left interface to its left neighboring processor and
this is a MPI Sendrecv communication. In this way, one processor has either only
one column of the Schur complement or only one value of d f/dx difference (except
for the last one which may have nothing if the model problem is not periodic). Al-
though this is not an interesting case for one 1D problem, it becomes interesting for
a set of 1D problems: the first processor has the first column of all the Schur com-
plements (or all the d f/dx differences on the first interface), the second processor
has the second column of all the Schur complements (or all the d f/dx differences
on the second interface), etc. In this particular situation, an MPI Alltoall communi-
cation will allow each processor to possess a certain number of Schur complements
or the d f/dx differences on all the interfaces for a certain number of 1D problems.
Concerning the interface problems, one processor will invert a certain number of
Schur complements in order to obtain the corrections to the guessed interface values.
Another MPI Alltoall communication will allow each processor to possess the cor-
rections to the guessed values on the right interface. Each processor should give then
the corrections to its right neighboring processor so that the final subdomain solution
can be obtained using the corrected interface values.

It is important to note that for the 1D problems the corresponding Schur comple-
ments are tridiagonal. Therefore in practice the Schur complements are not inverted
directly because the TDMA (Tri-Diagonal Matrix Algorithm) is more suitable and
cost effective.
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Fig. 1. Configuration of a differentially heated cavity. The vertical walls at x = 0 and W are
submitted to a temperature difference ΔT = Th −Tc and other walls are adiabatic.

3 Physical problem and mathematical equations

In order to apply the above ideas, we restricted ourselves to the cases of 1D multi-
domain, i.e. the 3D computational domain is decomposed only in one of the three
spatial directions, and homogeneous condition type on the same boundary.

We consider natural convection in a cubic differentially heated air-filled cav-
ity (Figure 1): no slip condition is applied on the cavity walls, two faced vertical
walls are submitted to a temperature difference ΔT = Th − Tc and other walls are
adiabatic. When using cavity height H (also width and depth) as reference length,
κRa1/2/H as reference velocity and reduced temperature Θ = (T − T0)/(Th − Tc)
where Ra = (gβΔT H3)/(νκ) is Rayleigh number and T0 = (Tc +Tf )/2, the govern-
ing incompressible Navier-Stokes equations under the Boussinesq assumption are
written in dimensionless form as follows:

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0

∂u
∂ t

+V .∇u = −∂ p
∂x

+
Pr

Ra1/2
∇2u

∂v
∂ t

+V .∇v = −∂ p
∂y

+
Pr
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∇2v

∂w
∂ t

+V .∇w = −∂ p
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+
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∂ t

+V .∇Θ =
1

Ra1/2
∇2Θ

(1)
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where (x,y,z) ∈ [0,1]× [0,1]× [0,1], V = (u,v,w), V .∇= u
∂
∂x

+ v
∂
∂y

+w
∂
∂ z

, ∇2 =

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 and Pr = ν/κ is Prandtl number.

4 Numerical schemes and parallel algorithm

Equations (1) are discretized in time by the well-known second-order Euler-backward
Adams-Bashforth scheme. This leads essentially to Helmholtz equations apart from
the velocity-pressure coupling. When using any variant of projection method [4], one
obtains a pseudo-Laplacian operator for pressure and has to solve a pseudo-Poisson
equation (a special Helmholtz equation). In this way, Equations (1) are reduced to
Helmholtz equations after the time discretization. The parallel algorithm is thus il-
lustrated through a model Helmholtz equation.

Given f , one of u, v, w, p and Θ , and (∇2 −λ ) f = s. The domain in one of x,
y and z directions can be divided into subdomains and for convenience x direction
is chosen for illustration. Each subdomain is discretized by spectral methods and
the continuity of f and its first derivative in x is required on the interfaces. Due to
the assumption of homogeneous condition type on the same boundary, all the sub-
doamins have the same continuous and discret operators in both y and z directions.
For the model equation, it is the operators of the second-derivatives modified by the
corresponding boundary conditions. In practice, these discret operators are full ma-
trices and they are diagonalizable and diagonalized when using spectral collocation
methods to solve the model equation. In the eigen-spaces of the discret operators, the

model equation is written as follows:

(
∂ 2

∂x2 −λ +λ j +λk

)
f jk = s jk where λ j and

λk are respectively the eigen-values of the discret operators in y and z direction. One
thus has a set of 1D problems and the basic ideas described above can be applied
to the model equation and to the equations (1). For each variable, instead of a Schur
complement in the physical space, one has a set of small-block Schur complements in
the eigen-spaces: the Schur complement in the physical space is diagonalized in the
eigen-spaces into tridiagonal blocks. The tridiagonal blocks are divided into groups,
distributed each group to one processor through MPI Alltoall communications and
solved by the well-known TDMA.

It is important to note that when spectral collocation methods are used to solve
a 3D Helmholtz equation the resolution method is usually the total diagonalisation.
Diagonalising the Schur complement into blocks in the eigen-spaces is the natural
and convenient way to do it. Although the MPI Alltoall and MPI Sendrecv commu-
nications used to construct and distribute the small-block Schur complements may
be expensive, in the context of time-stepping or time-marching, the construction and
inversion of small-block Schur complements are done only once and they repre-
sent only a preprocessing step before the time loop. In fact, for each variable, one

time-step needs one neighbor-to-neighbor (MPI Sendrecv) communication of
∂ f
∂x
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on the interfaces (in order to obtain the
∂ f
∂x

differences), one MPI Alltoall commu-

nication of
∂ f
∂x

differences on the interfaces, one MPI Alltoall communication of

the corrections of f on the interfaces (after each processor solves the correspond-
ing small-block Schur complement problems) and one final neighbor-to-neighbor
(MPI Sendrecv) communication of the f corrections. As can be seen later, the
present parallel algorithm is very efficient and cost effective.

5 Code behavior and numerical results

A numerical code in F90 has been developed under MPI (Message Passing Inter-
face). In order to understand the parallel performance of the new code, parallel com-
putation with increasing subdomains (or processors) for different spatial resolutions
has been performed on a small cluster of Opteron 250 with Gigabit switch network.
The tests concern natural convection in differentially heated cavities: the domain in
z direction has been decomposed into subdomains, the spatial resolution in x and y
directions is kept the same, i.e. 50× 50 and three spatial resolutions in z direction,
20, 30 and 50, have been tested. The Walltime per processor (subdomain) shown in
Figure 2 remains approximately constant. This behavior is confirmed by computa-
tions performed with more processors on the IBM Power4 and Power4+ of IDRIS:
unfortunately it was not possible to choose the type of nodes and the two types of
nodes used prevented us from providing similar curves as in Figure 2. Nevertheless,
it is to note that different tests performed with 30 and 60 processors showed that the
communication time is less than 15 percent of the total Walltime.
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Fig. 2. Walltime per subdomain (or processor) for different spatial resolution. The domain in
z direction is divided into subdomains.
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The parallel code has also been used for benchmarking: numerical simulations
have been done for a cubic differentially heated cavity at Ra = 106 [5]. The number
of subdomains ranges from 2 to 6 and the spatial direction in which the domain is
decomposed into subdomains is either x or y direction. The benchmark solutions ob-
tained with 3 subdomains (or processors) are listed in Table 1: reasonable agreement
is observed. Figure 3 displays the corresponding isotherms obtained at Ra = 106 with
4 subdomains (or processors).

NP=3 DD=2 DD=1 Reference [5]
Nu0 8.6401 8.6399 8.6407
umax .12634 .12695 .12697
vmax .02544 .02550 .02556
wmax .23412 .23032 .23672

Table 1. Benchmark solutions at Ra = 106 obtained by parallel computations with 3
subdomains (or processors) (NP=3). DD=2 means that the y direction is decomposed and
the corresponding subdomain resolution is 50×20×50. DD=1 means that the x direction is
decomposed and the corresponding subdomain resolution is 20× 50× 50. Nu0 is averaged
Nusselt number on the hot wall (x = 0), umax, vmax and wmax are respectively the maxima of
velocity components.

Fig. 3. Isotherms at Ra = 106. The domain in y direction is divided into 4 subdomains.
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Previous studies [5, 3] showed that the onset of time-dependent flows occurs at
approximately Ra = 3.2× 107 in a cubic differentially heated air-filled cavity. The
instable modes break the reflection symmetry in y direction, their spatial distribution
is mainly located about y = 0.5. Parallel computations have been realized for Ra =
3.5×107 using 4 subdomains (or processors), the decomposed direction is y direction
and a subdomain resolution of 80× 20× 80. As the first two instable modes have
almost the same critical Rayleigh number, symmetry constraining has been applied:
either the 2D centro-symmetry in (x,z) or the full 3D centro-symmetry has been
imposed. Figure 4 depicts the numerical results of x component of vorticity field:
instable structures about y = 0.5 are clearly shown and the results are similar to
those presented in [3]

Fig. 4. Instantaneous x component of vorticity obtained at Ra = 3.5× 106. The front is the
cold wall at x = 1. On the left, the 2D centro-symmetry in (x,z) is imposed while on the right
the full 3D centro-symmetry has been forced.
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6 Summary

A 3D spectral parallel multi-domain code has been developed using Schur comple-
ment for interface problems and validated with known results of natural convection
in a differentially heated cavity in the literature.

It solves the unsteady incompressible Navier-Stokes equations and is based on
parallel algorithm for solving Helmholtz equations. In fact, any time scheme reduces
the N-S equations to Helmholtz equations and any variant of projection method leads
to a pseudo-Poisson equation for pressure (a particular Helmholtz equation).

In order to have efficient parallel algorithm, Schur complement of the interface
problems is not treated in physical space but in the eigen-spaces: it is diagonalized
into small diagonal blocks and this reduces efficiently Walltime related to the inter-
face problems. Tests performed on IBM Power4 and Power4+ show that the com-
munication time remains less than 15 percent of the total Walltime even when 60
processors are used. The developed parallel code has good scalability and will be
used for doing DNS of 3D turbulent natural convection flows in cavities.

Acknowledgement: The present work has been conducted under LIMSI research
project ASP. Computations have been performed at IDRIS under research project
70326.
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In this paper results of unsteady CFD computations of a centrifugal compressor are
presented and compared to steady state solutions. Two cases are examinated, the first
case is a rotor with spiral casing close to the design point. This simulations shows
the unsteady rotor stator interaction. In the second case the same rotor followed by a
vaneless diffuser without spiral casing is simulated at part load. The aim is to show
the unsteady rotating stall effect without disturbance coming from the geometry. A
frequency analysis for both cases is conducted. As expected the blade passing fre-
quency and its multiples are dominating in the calculation with casing. For the rotat-
ing stall typical unsteady vortices are observed. The unsteady pressure fluctuations
are a magnitude higher in comparison to the calculation at design point.

1 Introduction

CFD simulations are today state of the art in the design and optimization process for
turbomachinery applications. Progress in development of numerical techniques and
the increasing computational power make it possible to run 3D Navier Stokes codes
on small workstations. For standard problems in the turbomachinery design process
- like optimization in terms of effciency for the design point - this is sufficient. For a
typical calculation only a part of the impeller e.g. the flow around one or two blades
is modelled, with periodic boundary conditions applied in the circumferential direc-
tion. This approach is valid only for axially symmetric geometries. For this reason it
is not applicable, if a volute is used as a collector for the fluid. A complete analysis
of machine performance is only possible, if the full 360 Rotor coupled with the sta-
tor geometry is considered. In addition to the need of including the whole machine
with rotor and stator domains, transient effects appear in the flow. This is especially
the case for operation in off-design conditions. In such an operational point the flow
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conditions do not match the volute design resulting in an asymmetric pressure dis-
tribution. For this reason the rotating blades are loaded with differing back pressure
during one rotation, resulting in a strongly unsteady flow in the impeller itself. Thus
a more detailed transient analysis for off-design operation is needed, which requires
substantially more computational ressources.
In the past several simplified approaches have been attempted to account for this ef-
fect. Hillewaert has simulated the transient rotor stator interaction with an inviscid
unsteady flow solver [5]. Hagelstein et al. [2] used an unsteady Euler code using
a correction term accounting for viscous effects. Their simulation showed in gen-
eral a good agreement with measurements, but at low mass flow seperation was not
predicted. In the work of Treutz [7] a transient Navier Stokes solver was applied
to simulate the unsteady effects in a water pump. He pointed out the differences
between steady state solutions and time accurate results. In his work the whole char-
acteristic curve was calculated in one simulation via reduction of massflow in time.
Allthough grid dependence was pointed out to be small, the number of grid points is
very low. (160,000 CVs for the whole pump including volute were used). Turunen-
Saaresti [6] also used an unsteady Navier Stokes solver for the calculations. He used
a quite coarse grid neglecting the tip clearance.
For the present paper different approaches for coupling the rotating impeller and the
stationary volute are tested and compared against transient calculations. Computa-
tional time and effort were evaluated, in order to reach accurate solutions econom-
ically. All calculations were performed on the HLRN High performance computer
in Hannover, using the general purpose CFD code ANSYS CFX 10.0 with up to
16 processors in parallel. In the end results are compared with performance mea-
surements obtained for an industrial compressor. Furthermore a transient simulation
of the rotating stall phenomenon was conducted. For this simulation the impeller
without volute was calculated, since stall is a part load problem induced by leading
edge separation. The results show the typical travelling vortices and strong pressure
fluctuations, which may lead to resonance problems.

2 Transient effects in turbomachinery

There are several sources of unsteadiness in turbomachines ranging from turbulent
fluctuations at very small time and length scales up to rotating stall and surge where
the length scales are of the dimension of the machine [3]. The turbulent fluctuations
are usually modelled, since the direct simulation of turbulence is not possible for
high Re number flows. In addition a resolution of turbulence is often not of interest,
but its influence on the mean flow.
For this investigation the unsteady effects resulting from rotor stator interactions are
of main interest. One source of instability is due to the interaction of the rotor wake
with the volute tongue appearing at timescales depending on the number of blades
and the rotational speed. On the other hand a perfect axially symmetric pressure
field cannot be expected. In the volute tongue region a distortion of the pressure
field is usually observed. In addition to that, a volute can only be designed for one



3D time accurate CFD simulations of a centrifugal compressor 175

operational point. If the machine operates in off-design conditions, the pressure dis-
tortion will increase, resulting in a highly unsteady back pressure for the blading.
In part load an additional unsteady phenomenon appears, which is referred to as ro-
tating stall [1]. With decreasing flow rate the inlet velocity triangle changes, result-
ing in separation on the suction side of the blades. This separation leads to a reduced
flow through the stalled channel, influencing the adjacent flow channels. The stall
cells travel through the blading at a fraction of machine rotational speed, introducing
another source of instability. The simulation of this effect is another scope of this
work.
As was shown before, unsteady effects appear at many time and length scales. Near
the design point steady state calculations may be sufficient, but in off-design condi-
tions transient effects cannot be neglected. Apart from accurately predicting the flow
through the compressor, transient results are interesting with respect to Fluid Struc-
ture Interaction [4] or noise prediction. With further development in these fields
unsteady CFD calculations in turbomachines will become more common.

3 Numerical Procedure

For all CFD calculations the finite volume code ANSYS CFX 10.0 was used. The
code solves the Reynolds Averaged Navier Stokes equations, turbulence was mod-
elled using the SST k-ω model. In all simulations transition was neglected. The wall
boundary layers were calculated using scalable wall functions. As the grid resolu-
tion plays an important role, a study of grid convergence was first conducted. For the
blading a block structured grid was generated, using a J-grid topology. This topology
avoids highly skewed elements at the leading edge of the impeller. The smallest an-
gles were of 34 degrees, on blade surfaces a high orthogonality with near 90 angles
was achieved. The blade tip clearance was gridded with an own O-grid topology with
minimum 8 nodes in the gap. The grid contains a stationary inlet domain, one blade
passage of the rotor and a vaneless diffuser (Fig. 1a). The inlet boundary is placed
3 tube diameters upstream from the leading edge, the outlet is placed at 1.6 times
the rotor outlet diameter. Table 1 shows the results obtained for single passage cal-
culations with periodic boundary conditions. These calculations took up to 5 hours
on a standard PC in serial mode.In terms of pressure rise convergence was reached
already for the coarse grid. The isentropic pressure coefficient is defined as

Ψs =
2Δhs

u2
2

(1)

where Δhs is the isentropic change in static enthalpy and u2 is the rotational velocity
at the trailing edge. The maximum y+ is found at a very small amount of cells at the
trailing edge of the rotor blade. As you can see from the computed tip clearance mass
flow, the resolution in the tip gap influences the results. The coarse grid had 8 nodes
in the tip gap whereas 10 respectively 14 nodes were used in the two other cases.
Thus at least 10 nodes are needed to obtain accurate tip clearance flow. Due to the
small differences in pressure rise and the high number of nodes for the full machine,
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the coarse grid was chosen or further calculations.
The full machine model contains 3 domains (Fig. 1b): the inlet domain, the rotor
containing 13 flow channels, and the volute. Due to the complexity of the geome-
try a single structured grid could not be applied at the volute tongue region. Here
separate structured meshes were generated and merged in the flow solver. The rest
of the volute and the cone diffuser were meshed with an own block structured grid.
The total number of nodes was 2.7 million for this case. The computations were
done on the HLRN 1 system in Hannover (Norddeutscher Verbund für Hoch und
Höchstleistungsrechnen). The complex consists of 16 p690 compute servers with 32
processors each. Until now up to 16 processors were used in parallel. MPICH was
applied as parallelization algorithm. The time step was chosen in order to resolve one
revolution with 64 respectively 128 time steps, which corresponds to approximately
5 (10) timesteps per blade passage.

Table 1. Grid convergence

Nr. of nodes max y+ mean y+ Ψs relative tip clearance mass flow [%]
143,000 358 31 1.06 15.9
251,000 115 18.9 1.05 16.9
405,000 45.2 9.1 1.05 16.8

a) b)

Fig. 1. Problem setup a) single passage b) full machine with volute
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4 Results

4.1 Compressor with volute

For coupling stationary and rotating domains 3 methods exist. For steady state sim-
ulations the interface can be modelled either as a mixing plane or as a frozen rotor.
A mixing plane averages the circumferential profiles of all variables and transfers
only the mean values to the stator domain. The frozen rotor interface directly trans-
fers the circumferential profiles. A steady state solution with frozen rotor interfaces
depends on the actual position of the rotor. For this reason several calculations are
usefull in order to obtain mean values. The most accurate approach is to couple the
rotor and the stator in a transient simulation. First of all steady state simulations were
conducted. The operational point was chosen near the design point at measured rota-
tional speed which was about 60 % of the design speed. First a mixing plane interface
was applied. The rotor wakes disappear in the vaneless diffuser due to averaging at
the interface. The pressure coefficient was calculated to 0.99, the measured value
was 1.11. For the frozen rotor interface, only a small change in the pressure rise was
observed. In order to see an influence of the actual rotational position, the blades
were rotated in several steps 25 % of one pitch (27.3 ◦), but the influence is less than
1 % between the different cases (Table 2).
The transient calculation was done using 128 time steps per revolution. The time av-

Table 2. Comparison of simulated results

stage 0◦ 6.9◦ 13.9◦ 20.8◦ transient measurement
Ψs 0.994 1.002 0.999 0.997 1.003 1.05 1.11

eraged pressure coefficient was calculated to 1.05, but no real periodic state could be
found within 5 rotations of the impeller. This may be a result of a separation appear-
ing in the cone diffuser. The deviation of about 10 % for the steady state calculations
is quite high. For a steady state calculation the computational time was about 17 h,
the transient simulation took about 70h for one revolution. Both were done with 8
CPUs in parallel. An analysis of the pressure signal shows a change of the transient
behaviour after 3 revolutions, where a superposition of low frequency fluctuations
is observed. A FFT analysis of the time dependent pressure signal shows, that the
blade passing frequency is dominating, especially near the rotor. Similar low fre-
quency fluctuations can be found at both locations (Fig. 2).

4.2 Compressor without volute

The rotating stall phenomenon was simulated at part load at 65% of mass flow com-
pared to the point with maximum efficiency. In contrast to the results shown before,
the compressor volute was not included in these calculations to avoid disturbance
coming from the asymetric geometry. The fluid domain is a full circle setup of
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Fig. 2. Simulated pressure at two locations, a) variation in time b) FFT transformed signal

the single passage calculation conducted for the convergence study. The operational
point was chosen according to the low limit of the performance curve determined
from steady state single passage calculations. In Fig. 3 one can see the stall cells
displayed as areas with negative streamwise velocity. The stalled regions travel with
a negative rotational velocity through the machine seen from the rotating frame of
reference.
The pressure history shows a noticeable difference when changing from 64 to 128

a) b)

Fig. 3. Travelling rotating stall cells displayed as negative streamwise velocity, a) and b) two
different time steps

time steps per revolution (Fig. 4a). For this reason only the last revolutions with the
smaller time step were analyzed in more detail. We observed strong fluctuations in
pressure, but the signal seems random with no visible periodic behaviour. For this
case the FFT analysis shows, that high amplitude fluctuations at low frequencies are
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Fig. 4. a) Pressure history during rotating stall b) FFT transformed signal

dominating, while the blade frequency is of minor importance (Fig. 4b). This is ex-
pected since rotating stall usually appears at frequencies lower than rotational speed.
In order to obtain an accurate value of the stall frequency, a simulation time of at
least 8 or more revolutions is needed.

5 Summary

As expected, a transient simulation for the rotor with volute gives a better results
compared to steady state simulations in terms of pressure rise. The relatively high
difference in comparison to the measurements may be explained with the apperance
of a large separated area in the outlet diffuser following the volute. This separation
may not be captured correctly with the used turbulence model. The difference be-
tween the 4 frozen rotor positions is neglegible, a stage interface showed nearly the
same result. The computation time for the transient calculation was about 20 times
compared to a single steady state solution, but gives superior results. Such an increase
in effort is usually not nessecary to obtain accurate results near the design point, but
it is important if the transient behaviour is of interest. In case of the rotating stall ef-
fect we were able to simulate the typical behaviour of stalled cells travelling through
the rotor and to determine low frequency high amplitude pressure fluctuations. The
simulation time was too short to determine an accurate value for the stall frequency.
The calculation of transient phenomena like rotating stall requires transient CFD.
Since pressure fluctuates in time, blade vibrations may appear leading to damage of
the blading. CFD is able to calculate the frequencies of pressure fluctuations and their
amplitudes, which enables to identify possible resonance. This is especially true for
off - design conditions were other than the blade passing frequency are dominating
excitation mechanisms.
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1 Introduction

Elliptic partial difference equations like Poisson’s equation are used in many fields of
application. However, the coefficient matrix of the derived algebraic equation is large
and sparse, and so its inversion is expensive. Various iterative methods are used to
solve such a sparse matrix system. Although there have been many studies on solv-
ing the large sparse matrix system [1, 2, 3, 4, 5, 6, 7], there have been few reports on
the implementation and performance of the iterative method with multicolor order-
ing. In this paper, a novel implementation technique to enhance the performance of
the 2-colored SOR method is proposed, which eliminates the recursion for the stan-
dard 7-point stencil on the Cartesian grid in three dimensions. The performance of
the multicolor SOR method is investigated on both a shared memory vector/parallel
computer and a symmetric multiprocessor machine in a distributed memory environ-
ment.

2 Multicolor Ordering with Sorting of Memory Layout

2.1 Issues and Concept of Improvement

A linear system can be solved by various iterative methods such as the Jacobi, SOR,
and conjugate gradient methods. The Jacobi method offers high execution speed and
simple implementation in terms of vectorization and parallelization, but is slow to
converge. Meanwhile, although the SOR method converges faster than the Jacobi
method, its performance is low due to the forward recursion of the iterative pro-
cedure, which disturbs full vectorization of a loop. A hyper-plane or a multicolor
ordering is often introduced to eliminate the recursion of the SOR iteration.
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Lecture Notes in Computational Science and Engineering 74,
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Two colors are sufficient to eliminate the dependency of the recursion for the
7-point stencil, which is generated from the Laplace operator. To take account of the
vectorization and/or the parallelization, the minimum number of colors is preferable,
because both the vector length and granularity of the parallelization increase as the
number of colors decreases. Furthermore, fewer color minimizes the number of times
of synchronization, thus boosting parallel performance.

There is an important performance issue in code implementation. Here, let
us consider the discretized Laplace equation (1) of 7-point stencil on a three-
dimensional Cartesian mesh.

pi, j,k = pi−1, j,k + pi+1, j,k + pi, j−1,k + pi, j+1,k + pi, j,k−1 + pi, j,k+1 (1)

It is common to describe a multicolor SOR code by a stride in a do-loop in List 1,
which yields stride memory access (SMA). However, SMA prevents efficient usage
of cache and vector pipelines. On the other hand, the natural ordering realizes con-
secutive memory access (CMA), and so CMA is expected to offer better performance
than SMA. Therefore, a novel technique that combines the SOR method and CMA
implementation is proposed.

List 1 Pseudo code for 2-colored ordering SOR with stride memory access.

do c=0,1
do k=2,nx-1
do j=2,nx-1
do i=2+mod(k+j+c,2), nx-1, 2

s0= p(i+1,j ,k ) + p(i-1,j ,k ) &
+ p(i ,j+1,k ) + p(i ,j-1,k ) &
+ p(i ,j ,k+1) + p(i ,j ,k-1)

ss=(s0-p(i,j,k))
p(i,j,k)=p(i,j,k)+omg*ss
er = er + ss*ss

end do
end do
end do

end do

Note: Variables nx, c and er represent a dimension size, color and error, respectively. Array p
indicates some potential.

2.2 Implementation of 2-Colored Ordering SOR with Consecutive Memory
Access

The 2-colored ordering as shown in Fig. 1 is well known. First, a computational do-
main of size imax× jmax× kmax is divided by a 2× 2× 2 sub-domain that forms
a unit block in three dimensions. Then, the computational domain is consists of
NI×NJ×NK blocks, where NI = imax/2+1 for index i. Therefore, the dimension
size is limited to an even number in each direction. The shape of the dimension can
be described by P(NI*NJ*NK, 4, 2). The first element in the dimension represents
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the serialized one-dimensional address of the block. The second and third elements
represent the position index inside a block and color, which are indicated in Fig. 1.

Next, the relationship between variables is described for each position in the unit
block. For example, the code of equation (1) can be written by List 2 for variable P(i,
1, 1) in Fig. 1.

OR (1, 2)GR (1, 1)

GR (3, 1)

GR (4, 1)

GR (2, 1)OR (2, 2)

OR (3, 2)

OR (4, 2)

RORG

1 n Nmax

Pos 1 Pos 2 Pos 3 Pos 4 Pos 1 Pos 2 Pos 3 Pos 4

(n, 4, 1)

Array P(NI*NJ*NK, 4, 2)

Fig. 1. 2-colored ordering with consecutive memory access. Indexes in parenthesis in the left
figure are position (Pos = 1, 2, 3, 4) and color (OR = 1, GR = 2), respectively. Index N in the
right figure has four continuous variables corresponding to inside a unit cube in the left figure.

List 2 Pseudo code of CMA for P(i, 1, 1).

do i=ist,ied
s0= p(i , 1, 2) + p(i-1 , 1, 2)*f2 &

+ p(i , 2, 2) + p(i-ni , 2, 2)*f4 &
+ p(i , 3, 2) + p(i-nij, 3, 2)*f6

ss= (s0-p(i,1,1))
p(i,1,1)=p(i,1,1)+omg*ss
er = er + ss*ss

end do

Note: Variables ist and ied represent the start and end address of a block. A neighbor index
beyond the own block is taken from a neighbor block in consideration of periodicity. The load
balance becomes optimal because loop i is parallelized and vectorized simultaneously.

2.3 Performance Evaluation

We consider the Laplace equation ∇2ϕ = 0 on the Cartesian grid system to inves-
tigate the convergence rate and the performance for iterative methods. Details of
problem setting are given in [7]. A norm to determine the convergence is defined by:

√
∑
i, j,k

(∣∣ϕm+1 −ϕm
∣
∣)

i, j,k, (2)
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where m indicates the number of iterations. The computational space is defined by a
unit cube Ω = [0,1]3, which is divided by NX ×NX ×NX , where NX is dimension
size.

3 Results and Discussion

3.1 Performance on a Shared Memory Vector Computer

Table 1 shows measured performance obtained by a hardware performance moni-
tor on one CPU of a Cray Y-MP8/664. The Jacobi method shows high performance
because the consecutive data access can utilize the high bandwidth of a vector com-
puter. Although the natural ordering SOR method is inherently consecutive mem-
ory access, the performance is not high because the recursion interference prevents
the code from vectorizing. When a programmer implements the multicolor SOR by
stride memory access, the memory-bound occurs at runtime even in a vectorized
code.

Therefore, it is important to employ a strategy for the division and sorting of
the variable array such that the processor can access the memory consecutively. The
measured MFLOPS score of multicolor CMA code indicates that it is as fast as the
Jacobi code which can utilize the full bandwidth of the vector computer as shown in
Table 1. It was confirmed that the expected performance was obtained on the vector
computer.

Fig. 2 shows the measured convergence history on the vector machine. In this
test case, the size of dimension NX is 33. It is observed that the convergence rate of
the Jacobi method is the worst among them, and one of the 2-colored SOR-SMA and
the 2-colored SOR-CMA are identical. Therefore, the multicolor SOR method by the
CMA implementation is the best candidate from the aspect of the both performance
and convergence rate.

Table 1. Performance (MFLOPS) on a shared memory vector machine.

Jacobi SOR Multicolor SMA Multicolor CMA

236 60 150 232

Next, the parallel efficiency on a Cray C90, which is a similar vector/parallel ma-
chine, is shown in Fig. 3. The Jacobi method is written by the triple loop of indices
k, j, i. The outer loop k is parallelized and the inner loop i is vectorized. In this case,
according to the number of CPUs, an imbalance of the load may reduce the perfor-
mance. This phenomenon is of particular note when the residue number of outer loop
is small compared to the number of CPUs. For the same reason, the efficiency of the
SMA multicolor SOR method becomes the worst among the methods because of the
inefficient stride memory access. On the other hand, since both the Jacobi and CMA
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Fig. 2. Convergence history for several iterative methods against norm defined by Euation (2).

Fig. 3. Efficiency of thread parallelization on a Cray C90.

code are consecutive memory access, the performance is better than the SMA code.
Especially, the CMA code shows excellent parallel efficiency because the inner loop
of the array for each color is serialized and hence the load balance becomes optimal.
It was found that the CMA multicolor SOR code is as fast as the Jacobi code and
shows excellent parallel efficiency on a shared memory vector computer.

3.2 Performance on a Symmetric Multiprocessor Computer

The proposed CMA implementation of the SOR method on a SMP machine is ex-
amined. The code was parallelized by OpenMP directives. The test environment was
a Xeon 5360 (4 cores x dual CPUs, 3GHz) with Intel compiler 10.1 on a Mac OSX
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10.5.4. The evaluated iterative methods were the Jacobi, the 2-colored SOR-SMA,
and SOR-CMA.

Fig. 4 shows the measured timing for in-cache and out-of-cache sizes and num-
ber of threads for one iteration. It is found that the 2-colored CMA code shows the
best performance among the methods. In terms of parallel efficiency, the CMA code
does not show good parallel performance because the CMA code is already saturated
beyond two threads. However, the execution time of the CMA code is the shortest.

The CMA code have the reason for high performance on the scalar machine. That
is the relationship between the bandwidth and the amount of load/store. In terms
of bandwidth, the number of arrays to be loaded and stored is important for the
performance. The number of loads/stores of the SOR group is two. Meanwhile, the
Jacobi need an additional work array. The CMA also needs an small additional work
array for sorting, but this is trivial. In fact, the feature of fewer amount of load/store
and fast memory access allows high performance. This aspect has a larger influence
for the SMP machine than the shared memory vector machine because of the limited
bandwidth.

Fig. 4. Timing for in-cache size (NX = 33, left) and out-of-cache size (NX = 513) against num-
ber of threads. Vertical and horizontal axes indicate time and number of threads, respectively.
In all cases, the CMA code shows the best performance.

3.3 Performance in a Distributed Memory Parallel Environment

The performance was investigated in a distributed environment. The OpenMPI li-
brary was used for the parallel computation with the domain decomposition method.
The computer resource used was the Quest system in RIKEN, which consists of 1024
nodes (2048 cores) of a Core2Duo cluster (L7400, 1.5GHz, L2 4GB). The intercon-
nect is GbE and 2Gbps for each node. Fig. 5 shows the measured performance for
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Fig. 5. Comparison of performance on Core2Duo cluster. Intel Compiler 10.1, option O3 was
used. The left figure shows the scalability based on elapsed time. The right figure shows the
scalability based on only calculation time. CMA indicates super-linear behavior and the other
methods show good scalability.

the fixed size of 416×416×416. This is a strong scaling test, which is obtained for
the case of one core per node.

Scalability based on measured elapsed time indicates that all methods show good
scalability up to 256 nodes and saturated behavior above 256 nodes. However, re-
garding scalability based on the timing for only the calculation part as shown in the
right panel of Fig. 5, all methods show very good scalability, and CMA in particular
is super-linear. The is because beyond 512 nodes, the computation size for each color
array becomes less than 26×26×26, which fits into cache.

One issue is the communication part. Table 2 shows the communication cost per
iteration. It is found that almost all of the time cost is occupied by communication
over 256 nodes and that the CMA code is faster below 256 nodes. As mentioned
above, beyond 512 nodes, all data are in-cache in CMA code, so the communica-
tion cost becomes relatively large. At present, since the communication part was
implemented by a brute-force method, there is still room for improvement. In this
environment, the measured results reveal that the stencil-based calculation is almost
saturated for this size of problem.

In the CMA implementation, we need to sort the array once depending on the
ordering before and after the iteration. Table 3 indicates the cost of sorting. Three
arrays and one array need to be sorted before and after iteration, respectively. The
timing data showed a relative cost ratio for pre-sorting to post-sorting of almost 3:1.
This sorting cost is equivalent to the cost for one or two iterations.

Table 2. Cost of communication part for one iteration (percent).

Node 2 4 8 16 32 64 128 256 512 1024

Jacobi 1.5 2.7 6.3 8.8 13.3 21.0 29.9 46.1 52.8 72.5
2-colored SMA 1.2 2.5 4.4 7.9 9.0 14.9 24.8 34.7 57.3 68.4
2-colored CMA 2.1 3.4 6.4 9.4 14.0 21.3 40.7 58.2 75.0 84.7
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Table 3. Timing of sorting part in CMA code (sec). The ratio is the sum of pre-sorting and
post-sort time divided by the time for one iteration.

Node 2 4 8 16 32 64 128 256 512

pre-sort 6.96e-1 3.65e-1 1.79e-1 9.08e-2 4.69e-2 2.38e-2 1.78e-2 6.07e-3 3.06e-3
post-sort 2.21e-1 1.13e-1 5.71e-2 2.89e-2 1.47e-2 7.77e-3 9.47e-3 2.04e-3 1.05e-3
Ratio 1.4 1.2 1.2 1.3 1.2 1.3 2.3 1.1 0.7

4 Conclusions

A new implementation of the multicolor SOR was proposed including the variable
sorting to achieve consecutive memory access. Its effect was confirmed on a shared
memory vector/parallel and SMP machines, and it was found that the multicolor
SOR method with consecutive memory access demonstrates excellent performance
on both types of machine. The CMA multicolor SOR method retains almost the
same convergence rate of the original SOR method and its execution speed is much
faster than the original SOR on a vector computer. On the other hand, the parallel
performance on a vector/parallel machine was greatly improved by one-dimensional
serialization of the array, which leads to excellent load balance between cores. On an
SMP machine, the CMA code showed the best performance among the test codes.
In addition, good scalability was confirmed up to 256 nodes using a medium size of
416×416×416 for all tested methods in a distributed memory parallel environment.
Especially, for the strong scaling test case, the CMA code showed super-linear be-
havior for a small number of CPUs compared with the other methods. Thus, if the
size of the problem becomes bigger as the number of CPUs increases, i.e., the weak
scaling case, then scalability seems to be promising.

Acknowledgement

This research was supported by the Research and Development on Next-Generation
Integrated Simulation of Living Matter, which is part of the Development and Use of
the Next-Generation Supercomputer Project of the Ministry of Education, Culture,
Sports, Science and Technology (MEXT).

[1] L.M. Adams and H.F. Jordan. Is sor color-blind? SIAM J. Sci. Stat. Comput.,
7(2):1507–1520, apr 1986.

[2] S. Doi and A. Lichnewsky. Some parallel and vector implementations of pre-
conditioned iterative methods on cary-2. International Journal of high Speed
Computing, 2(2):143–179, 1990.

[3] S. Fujino, M. Mori, and T. Takeuchi. Performance of hyperplane ordering on
vector computers. J. Comp. and Appl. Math., 38:125–136, 1991.

[4] R.J. Leveque and L.N. Trefethen. Fourier analysis of the sor iteration. ICASE
Report 86-63, NASA, 1986.



Multicolor SOR Method with CMA implementation 191

[5] E.L. Poole and J.M. Ortega. Multicolor iccg methods for vector computers.
SIAM J. Numer. Anal., 24(6), 1987.

[6] R.S. Varga. Matrix Iterative Analysis. Springer, second edition, 2000.
[7] M. Yokokawa. Vector-parallel processing of the successive overrelaxation

method. JAERI-M 88-017, Japan Atomic Energy Research Institute, 1988.





Proper Orthogonal Decomposition In Decoupling
Large Dynamical Systems

Toan Pham1, Damien Tromeur-Dervout1
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Abstract. We investigate the proper orthogonal decomposition (POD) as a powerfull tool in
decoupling dynamical systems suitable for parallel computing. POD method is well known to
be useful method for model reduction applied to dynamical system having slow and fast dy-
namics. It is based on snapshot of previous time iterate solutions that allows to generate a low
dimension space for the approximation of the solution.Here we focus on the parallelism po-
tential with decoupling the dynamical system into subsystems spread between processors. The
non local to the processor sub-systems are approximated by POD leading to have a number
of unknowns smaller than the original system on each processor. We provide a mathematical
analysis to obtain a criterion on the error behavior in using POD for decoupling dynamical
systems. Therefore, we use this result to verify when the reduced model is still appropriated
for the system in order to update the basis. Several examples show the efficient gain in term of
computational effort of the present method.
Keywords: POD, reduced-order modelling, dynamical systems, parallel computing.

1 Introduction

Proper orthogonal decomposition (POD) is known as an application of the singu-
lar value decomposition (SVD) to the approximation of general dynamical systems.
Usually, it is used to separate the low and fast dynamics of a dynamical system. In
this paper, we focus on it use to solve large dynamical systems on a parallel system
leading to a robust approach based on a priori criterion to communicate updated data
between processors.

Related works on decoupling large dynamical systems on parallel architecture are
based on extrapolation techniques. In [4], the decoupling is done by extrapolating
components involved on the sub-system but not managed by the current processor.
This technique has been extended to asynchronous adaptative time steps [11]. In
[13] or in [12], some multirate integration formulae are applied for solving large
dynamical systems in parallel. Nevertheless, the major drawbacks of using these
methods based on extrapolation technique are first the only feedback comes from an
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a posteriori error estimate between the extrapolated in time data and the received cor-
responding data from other systems. If the error is to high, the integration must restart
from a previous checking point with changing the extrapolation formulae reducing
the order approximation of the extrapolation or the delay in the data to compute the
extrapolation. Second, for stiff non linear dynamical system that must be solved by
implicit time integration method, only the components managed by the processor are
involved in the Jacobian matrix leading to less influence of the other components of
the system in the computing.
Our approach consists in the decoupling of the system through the model reduction
method that provides an answer to the two drawbacks mentioned above. First, we
can derive an a priori error estimate, to know when the data from other sub systems
must be updated. Second, we still incorporate the influence of the other sub-systems
(extra-systems) in the non linear solve of the current sub-systems (intra-system). In-
deed, extra-systems solved in reduced form are very computational attractive. When
applying model reduction to dynamical systems, the snapshots of previous time steps
are used to compute the POD basis vectors to yield an optimal representation of the
data in sense of optimal least squares approximation. Combined with Galerkin pro-
jection method, we can generate a lower dimensional model of the systems. We ex-
tend this notion of model reduction to decouple the system into smaller subsystems.
Each subsystem is solved separately on parallel computer and a model reduction of
the other subsystem is performed.
Basic error estimation for reduced order models has been proposed in [14] - the
original problem is linearized in the neighborhood of the initial time. Other result
can be found in [9], where bounds for errors resulting from reduced models has
been computed. In [7], we found some results on the influence of perturbations in
the original system on the quality of the approximation given by the reduced model.
Here our goal is to find a criterion to know when we need to update the POD basis
to compute the extra-subsystems with no introducing error in the intra-subsystem.

The plan of this paper is as follows. In section 2 we recall some properties of
the POD, while in section 3.2 we give an analysis of the error on the global system
when subsytems are approximated by POD. Then we derive an a priori estimated to
update the POD basis that appoximated the subsytems. Section 4 gives the decou-
pling algorithm and its parallel implementation. Numerical tests and performances
are summarized in section 5 before the conclusion in section 6.

2 Proper Orthogonal Decomposition and Model reduction

2.1 Singular Value Decomposition

Property 0.1. For any matrix A ∈ C
m×n, there exist two unitary matrices U ∈ C

m×m

and V ∈ C
n×n such as:

UT AV = Σ = diag(σ1, . . . ,σm) (1)

σ1 ≥ ·· · ≥ σm ≥ 0. This decomposition is called the SVD of the matrix A, σi =√
λi(A∗A) are called singular values of A where λi is the ith eigenvalue.
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A can be written as : A = ∑m
i=1σiuiv∗i

Remark 0.1. Given a matrix A ∈ C
n×m, the solution X̂ of

min
X∈Cn×m,rank(X)≤k<rank(A)

‖A−X‖2 = σk+1(A) (2)

is obtained by truncating the SVD to the k first singular modes: X̂ = σ1u1v∗1 +
σ2u2v∗2 + . . .σkukv∗k (c.f [1] or [8]).

2.2 POD in model reduction

POD method is widely used in generating a lower dimensional model for dynamical
systems. We present here a procedure called Garlerkin projection. Once found the
approximating subspace to the data set of the system, we are seeking for the corre-
sponding vector field on the subspace that represents the reduced order model.
Given a system of dimension n:

x(t)′ = f(t,x(t)) (3)

x(t0) = x0 (4)

for t ∈ [t0,t f ], x,x0 ∈ R
n and f : R

n ×R → R
n. Collect the solutions of (3)-(4) at

m time points and form the matrix X = [x(t1), . . . ,x(tm)]. POD consists of finding
the matrix P ∈R

n×n defining the projection onto a subspace S ∈R
n minimizing the

total square distances ‖X−PX‖2. Using eq. (2), the singular decomposition of the
matrix of snapshots X = UΣV T gives a such minimizer as P = UkUT

k ∈ R
n×n where

Uk correspond to the k columns of U associated to singular values σ1 ≥ . . . ≥ σk. Uk

spanes as a natural orthogonal basis the space S . The reduced model to the system
(3) is constructed by projecting onto S the vector field f (s,t) at each point s ∈ S .
If ξ are the subspace coordinates of s, then the reduced model is:

ξ ′(t) = UT
k f(Ukξ (t),t) (5)

where x(t) ≈Ukξ (t), ξ (t) ∈ R
k.

2.3 POD for decoupling systems

In this part we present how POD can be useful in decoupling system for parallel
purpose. Given an ODE system of state variable x(t) = (x1(t),x2(t)):

x(t)′ = f(t,x(t)) =
(

f (t,x1,x2)
g(t,x1,x2)

)
, x(0) = x0 (6)

We take some snapshots of the whole system by solving globally the system. Let say
q steps are taken for initialization:

X = (x1,x2, . . . ,xq) (7)
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from which we extract X =
(

X1

X2

)
=
(

x1,1 . . . x1,q

x2,1 . . . x2,q

)
. The SVD will be computed

separately for each subsystem X1 = U1S1V T
1 and X2 = U2S2V T

2 . Let yi denote the
full variable xi (i = 1,2), and αi (i = 1,2) reduced variables representing the main
part of the full variables xi, i = 2,1. We can separate the original system into two
independent sub-systems:

(S1)
(

y′1
α ′

2

)
=
(

f(t,y1,U2α2)
UT

2 g(t,y1,U2α2)

)
(8)

(S2)
(
α ′

1
y′2

)
=
(

UT
1 f(t,U1α1,y2)
g(t,U1α1,y2)

)
(9)

In the last equations, the systems (S1) respectively (S2) can be solved alone as long
as the reduced variables α2 (resp. α1) is still representing correctly the dynamics of
the other variable y2 (resp. y1) of the current sub-system. If the last condition fails,
we need to update with the new POD computed from the other system. In the next
section, we derive a posteriori criterion to know when the updates of the POD must
occur.

3 Analysis of POD in solving dynamical system

Several studies of the error estimate for a reduced model was introduced. In [7], the
error is estimated by introducing the adjoint forward model and using the statistical
sample estimation method. In [14], an algorithm for computing errors for reduc-
tion methods is presented. This approach consists of linearizing the original problem
around the initial time, and the numerical error estimation is given.
We propose to establish the error formulation for our method. At first we look at
the linear case for the simple model reduction, then the non-linear problems will be
treated. Then this study will be extended for the parallel decoupling algorithm to
validate our approach.

3.1 Analysis of the reduced model

Given an dynamical system as described in (3)-(4) with the reduced model as in (5):

ξ ′(t) = UT AUξ (t) (10)

and consider e(t) = y(t)−Uξ (t). By liearlizing to the 1-st order (see [7]):

e′(t) = (UUT − I) f (t,x(t))+ Jf (t,y(t))e(t)+O(‖e‖2)

where Jf is the Jacobian matrix of the function f .

Remark 0.2. Starting with the initial condition e(0) = 0, the solution vanishes in the
neighborhood of 0. If UUT represents the projection onto the original space, then
e(t) remains bounded as long as Ax(t) belong to the kernel of the projection defined
by P = UUT . This is an important criterion to verify when the reduced model is still
appropriated to the full model.
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3.2 Analysis of POD in decoupling systems

Consider at the system (6). We apply POD method to have two separated systems
(8) and (9) and we are looking for the error estimates of the decoupled solution.
Consider at first the system (8), denote its solution by (ŷ1, ŷ2)T = (y1,U2α2)T . Then
we introduce the error as e1 = ŷ1 − x1 and e2 = ŷ2 − x2 = U2α2 − y2. Linearizing the
right hand side to the first order gives up to:

e′1 = Jf (y1)e1 + Jf (y2)e2 +O(‖x−y‖2)

e′2 = (U2UT
2 − I)g(x1,x2,t)+U2U

T
2 [Jg(y1)e1 + Jg(y2)e2]+O(‖x−y‖2)

where J is the jacobian matrix. We drop remaining terms in last equation to obtain:

e′(t) =Φe(t)+Θ(t) (11)

where e(t) = (e1(t),e2(t))T , Φ =
(

Jf (y1) Jf (y2)
U2UT

2 Jg(y1) U2UT
2 Jg(y2),

)
and Θ (t) =

(
0n1

(U2UT
2 − I)g

)
where 0n1 is a zero vector of length n1.

Remark 0.3. From (11), assumed no error in building the SVD, i.e. e(t0) = 0, and the
error is bounded whenΘ (t) “small enough”. This can be viewed as:

y′2 = g ∈ Ker(U2UT
2 − I) (12)

Indeed, the right hand side of the equation results in an error estimation for the
reduced system and then the decoupled solution (e1 is function of e2). If (U2 −
I )y′2(t) = ε (a “small” vector), then e(t) = εt and if T is finite, the error term re-
mains bounded.

In a technical point of view, as long as we compute the decoupled numerical
solution, one needs to verify that x′2 = g belongs to the kernel of the projection.
Otherwise, if the last condition fails, we need to update the basis.

4 Parallel implementation and algorithm

We decouple the system (6) into two separated sets of states. We propose the algo-
rithm that follows:

Algorithm 1 Parallel algorithm with POD
Initialization of the POD basis from time iterate snapshots
Send the first components of the POD to construct the reduced system
if RECEIVE the new basis then

Update to the reduced sub-system
end if
Run the two models
if Check the orthogonality of yi’s to the projection as in (12) succeed then

Go to the next step
else

Reconstruction of the new basis and go to the next step
end if
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This algorithm is suitable for parallel computer. The point is, once the orthogonal
basis is no longer representative to the system, we can either restart a whole new
basis or incrementally shifting POD basis. The restarting technique just drop the old
POD and recompute the POD from newer data set. In further implementation, we
are considering to explore the technique that allows to reuse the main part of the
POD and shifting only for some newer values c.f. [6] and [10]. Let consider a n
dimensional system. The complexity of an implicit numerical method is mainly due
to function and jacobian evaluations and the complexity of inverting the mass matrix
within Newton (or Newton-liked) iterations.

The main advantage of decoupled POD technique is in the fact that the decoupled
system lies on a reduced dimensional space. Even if the gain in function evaluations
are the same in both cases ( f (x) and U ′ f (Uξ ) have the same complexity), but the
reduced order equation takes advantage in jacobian evaluation: since the reduced sys-
tem is n1,n2 dimensional(n1+n2 < n), thus all numerical Jacobian evaluations of the

required for Newton iteration is greatly reduced (by 0
(

n2
1+n2

2
n2

)
factor). Beside, one

of the most advantage of decoupled method results from solving the linear system.
The method requires also the evaluation of the POD basis. As in [5], let say

our data required for constructing the POD lie in R
n×m(n � m- by construction we

chose only a “small” step number compared to the dimension of the system), then
we can obtain the POD with the cost of 6mn2 + 20n3-which is relatively small since
we choose m in general much smaller than n. Therefore, on parallel computers, com-
puting the POD can be done by separated processor.

5 Numerical tests

All the SVD are applied for q steps, the SVD is truncated to the first k singular
values. In general, the n−k last singular values are dropped since they represent noise
modes. k is taken such that:σl < 1 ·e−6∑m

i=1σi, ∀l > k. Once subsystem received the
orthonormal basis, its goes for the next r steps, and send those q for the other to
reevaluate the SVD. Then we define a cycle i as q SVD steps, r steps for independent
solvers. And we loop for p cycles to the end of the simulation.

We apply our decoupled POD method for splitting the ODE system into sub-
systems. Via MPI interface, the new basis is communicated for each subsystems by
sending messages. We measure the the performance of our new method by compar-
ing it with a single solver execution. The quality of the decoupled solution is also
considered.

Diurnal Kinetic Advection-Diffusion problem

The problem consists of a pair of kinetics-advection-diffusion partial differential
equations. The PDE can be written as:

∂ci

∂ t
= Kh

∂ 2ci

∂x2 +V
∂ci

∂x
+
∂
∂y

Kv(y)
∂ci

∂y
+ Ri(c1,c2,t) (i = 1,2) (13)
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Fig. 1. Reference solution in time at some sample points: BL bottom left, MD: middle, TR:
top right on the space grid

Table 1. Compare a multi-subsystems version vs single solver version: e(tend) =
‖u−y‖2/‖y‖2

N procs Single 2 3
system S S1 S2 S1 S2 S3

Size 800 420 420 307 307 306
Fevals 2651 3957 5455 4102 6175 6281
LUs 771 1152 1336 1053 1627 1614

Elapsed Times (s) 667.51 200.5 200.5 31.41 31.46 31.45
e(tend) 0.0 1.05 ·10−2 1.81 ·10−2

where t ∈ [0,7.26 ·104] and

R1(c1,c2,t) = −q1c1c3 −q2c1c2 + 2q3(t)c3 + q4(t)c2, (14)

R2(c1,c2,t) = q1c1c3 −q2c1c2 −q4(t)c2 (15)

0 ≤ x ≤ 20, 30 ≤ y ≤ 50 (in km).The various constants and parameters are: Kh =
4.0 ·10−6,V = 10−3, Kv = 10−8exp(y/5), q1 = 1.63 ·10−16, q2 = 4.66 ·10−16, c3 =
3.7 ·1016 and

qi(t) =
{

exp(−ai/sinωt), for sinωt > 0
0, for sinωt ≤ 0

}
(i = 3,4)
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Fig. 2. Relative error in time compared to the reference solution at individual sample points:
2-solver and 3-solver solution compared to the reference solution

where ω = π/43200, a3 = 22.62, a4 = 7.601. Homogeneous Neumann boundary
conditions are imposed on each boundary. We discretize spatially with standard finite
difference on a 20×20 mesh, giving and ODE system of size 800.

For a constant step size version, we use q = 30 time steps for constructing the
POD. We exchange the basis every r = 90 time steps. The time step is constant at
10 (s). The solver used is based on GEARs method, c.f. [2] for more detail on the
CVODE solver.

The solution at some sample points are ploted in the figure 1 and the relative
error can be showed in the figure 2. The individual relative error compared to the
reference solution is not larger than 2%.

The numerical properties of our solver are reported in the table 1. Some statistics
as Size of the systems, number of function evaluations (Fevals), number of LU de-
composition (LUs) done for solving linear system, elapsed time and the norm of the
error at the end of the simulation.

Our method results in high performance code (great speed up according to the
higher number of proccessors).

Beside, we do not ommit here that since we use the DENSE linear solver, the LU
decomposition is therefore applied for dense full matrix. And the reduced models
have drastic advantage to make it reduced LU decomposition compared to the full
model. That explain the high speed up obtained in this case. In general, we expect to
have a little lower performance when using sparse (or band) solver.
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6 Conclusions and future work

Our first implementation of the method show a promising method for decoupling
dynamical systems. The method works well with stiff problem and has significant
performance. Especially for large dynamical systems provided from CFD and other
field of applications (c.f. [3]), reduced order method can drastically have reasonable
approximated solutions with lower cost.

We analysed the method and established its error formulation, that allows to have
an a priori estimate on the validity of the POD basis to represent for a sub-system the
influence of the other sub-systems.

We are currently considering the new approach of shifting the POD for better
performance, as well as optimizing function and jacobian evaluation for the reduced
system.
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1 Introduction

Grids provide an incredible amount of resources spread geographically to scientists
and researchers, but the poor performance of the interconnection network is often a
limiting factor for most parallel applications based on partial differential equations
where intensive communications are required. Furthermore, the evolution towards
multicore architecture has further exacerbated the problem and a strong endeavor is
emerging from the scientific community to effectively exploit parallelism at an un-
precedented scale. Indeed, standard softwares and algorithms need to be rethought
and redesigned to be able to benefit from the power that new generations of multicore
processors offer (hundreds of thousands of nodes). The Aitken-Additive Schwarz
Waveform Relaxation (AASWR) for parabolic problems [9] is the analogue of the
Aitken-like acceleration method of the Additive Schwarz algorithm (AS) for elliptic
problems [1]. We have generalized the original algorithm of [9] to a grid-efficient
Parallel AASWR version (PAASWR). The first results were successfully presented
at PARCFD’07 [7] on a single cluster computing. The Parallel Non Blocking Win-
dowed approach was selected to be the most efficient in solving a million of un-
knowns. The main contribution of the paper is to present the performance analysis of
the method in grid computing environment. The fundamental concept of the AASWR
method is to postprocess the sequence of interfaces generated by the domain decom-
position solver. Many researchers have studied the optimization of the transmission
conditions for domain decomposition techniques using other approaches - see for ex-
ample [6, 2, 4, 10, 3] and their references. Ideally a numerical solver should satisfy
load balancing, scalability, robustness and fault tolerance to face the grid challenge.
We will show how the PAASWR method for parabolic problems is able to achieve
those features. The paper is organized as follows. Section 2 recalls the fundamental
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steps of the three dimensional space and time PAASWR algorithm. Section 3 de-
scribes the parallel implementation on the grid. Section 4 presents a comparison of
the experimental results performed on a single parallel machine and on distributed
grid computing. Finally, section 5 summarizes the study and defines the future work
plan.

2 The PAASWR Algorithm

2.1 Definition of the Problem and its Discretization

The problem definition is the following Initial Boundary Value Problem (IBVP):

∂u
∂ t

= L[u] + f (x,y,z,t),(x,y,z,t) ∈Ω = (0,1)3 × (0,T ) (1)

u(x,y,z,0) = uo(x,y,z), (2)

completed by Dirichlet boundary conditions. L is a separable second order linear
elliptic operator. We assume that the problem is well posed and has a unique solution.
The domain Ω = (0,1)3 is decomposed into q overlapping strips Ωi = (Xi

l ,X
i
r)×

(0,1)2, i = 1..q with X2
l < X1

r < X3
l < X2

r , ...,Xq
l < Xr

q−1. We write the discretized
problem as follows

Un+1 −Un

dt
= Dxx[Un+1] + Dyy[Un+1]+ Dzz[Un+1] (3)

+ f (X ,Y,Z,tn+1), n = 0, . . . ,M−1,

with appropriate boundary conditions corresponding. To simplify the presentation,
let us deal with homogeneous Dirichlet boundary conditions. We introduce the fol-
lowing expansion for the discrete solution using the sine base functions:

Un(X ,Y,Z,t) = ∑
My
j=1∑

Mz
k=1Λ

n
j,k(X ,t) sin( jy) sin(kz) , (4)

uo(X ,Y,Z) = ∑
My
j=1∑

Mz
k=1λ j,k(X)sin( jy) sin(kz) (5)

and f (X ,Y,Z,tn) =∑
My
j=1∑

Mz
k=1 f n

j,k(X ,tn). (6)

My and Mz are the number of modes in the y and z direction. Then, by plugging into
the discrete solution from (4-6) to (3), we end up with the following independent one
dimensional My ×Mz problems based on the Helmotz operator:

Λn+1
j,k −Λn

j,k

dt
= Dxx[Λn+1

j,k ] − (μ j + μk)Λn+1
j,k + f j,k(X ,tn+1), (7)

n = 0, . . . ,M−1,

Λ0
j,k = λ j,k(X). (8)
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μ j and μk are respectively the eigenvalues of Dyy and Dzz. This algorithm gener-
ates a sequence of vectors W n = (Λn

2,l ,Λ
n
1,r,Λ

n
3,l,Λ

n
2,r, . . . ,Λ

n
q,l) corresponding to the

boundary values on the set

S = (X2
l ,X1

r ,X3
l ,X2

r , . . . ,Xq
l ,Xq−1

r )× (t1, ...,tM)

of the Λ j,k for each iterate n. The trace transfer operator is decomposed into My×Mz

independent trace transfer operators as well and is defined as follows:

W n
j,k −W∞

j,k → W n+1
j,k −W∞

j,k.

Let Pj,k be the matrix of this linear operator. Pj,k has a bloc diagonal structure and can
be computed prior to the PAASWR and once for all. In the next section, we describe
the general algorithm.

2.2 General Algorithm

The general PAASWR algorithm can then be summarized in three steps:

1. Compute the 1st iterate of ASWR for the 3D parabolic problem (1).
2. Expand the trace of the solution in the eigenvectors basis and solve the linear

problem component wise (Aitken-like acceleration)

(Id −Pj,k)W∞
j,k = W 1

j,k −Pj,k W 0
j,k, (9)

∀ j ∈ {1, . . . ,My}, ∀k ∈ {1, . . . ,Mz}.

Assemble the boundary conditions W∞ = ∑
My
j=1∑

Mz
k=1 W∞

j,k sin( jy) sin(kz).
3. Compute the 2nd iterate using the exact boundary value W∞.

The computation of each subdomain in the first and third steps can be processed by
any linear solvers of choice (Multigrid, Krylov, etc.). In the application, we use a
combination of Fourier transform and LU decomposition. More details on the above
steps and their proof can be found in [9]. In the following section, we will discuss
the parallel implementation for the grid.

3 Parallel Implementation extended to the Grid

3.1 The Concept of Subdomain Solver and Interface Solver

From the different steps explained in section 2.2, we determine two process groups:
the Subdomain Solver (SS) processes and the Interface Solver (IS) processes. The
SS processes work on the parallel computation of the solution of the IBVP in each
subdomain Ωi × (0,T), i = 1 . . .q with q the number of subdomains (Step 1 and 3
in 2.2) The IS processes execute the Aitken-like acceleration and solve the inter-
face problem (Step 2 in 2.2). Not only are they part of the main computation, they
also checkpoint indirectly the application. Compared to [5] with the spare process
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concept, we do not add any overheads since it is part of the PAASWR algorithm to
save in main memory the interface subdomain solutions. This algorithm is, therefore,
called naturally fault tolerant. Figure 1 draws this framework. We have one dimen-
sional processor topology implemented in each process group. There are no local
neighborhood communications within the groups. The communications are only es-
tablished between the SS and the IS groups. We do not need as many IS processes
as SS processes since the main time-consuming task (the subdomain computation) is
performed by the SS processes. In the next section, we describe a new Parallel Non

Fig. 1. SS / IS Group Configuration.

Fig. 2. The Parallel Non Blocking Win-
dowed Approach.

Blocking Windowed Version revisited for the grid which are built upon this structure
of groups.

3.2 The Parallel Non Blocking Windowed Version revisited

The Parallel Non Blocking Windowed approach was introduced in [7]. Its goal was
to allocate more IS processes to handle first the simultaneous communications and
second, to parallelize the interface problem resolution. Besides the parallelization in
space coming from the domain decomposition in the SS group, this version appends
a second level of parallelization in the IS group for the interface problem resolution.
That was possible thanks to the nature of the interface problem. Indeed, all eigen-
vector components are given by the solution of a set of My ×Mz parabolic problems
completely decoupled. One can then distribute straightaway these problems on a
set of IS processes, for example, by allocating to each one My/nsp×Mz problems,
nsp being the number of IS processes. Figure 2 presents the new framework. This
method is very efficient and benefits the best from the SS / IS concept. It is also
very challenging to set it up, since many ongoing communications have to be cau-
tiously managed. Figure 3 highlights the critical sections where communications are
involved. For simplicity’s sake, we did not represent all the communication chan-
nels between the two process groups. For instance, in Figure 3(a), the SS process 0
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distributes equally its subdomain interface to all IS processes. This operation cor-
responds actually to the collective communication MPI SCATTER function where
the current SS process and all the processes from the IS group are involved. The
same communication scheme is repeated for each SS process. Collective operations
are blocking and may dramatically slow down overall performance on a parallel
machine, let alone on a grid. Therefore, we have instead developed our own non
blocking communication schemes which offer more opportunities to overlap com-
munication by computation. Conversely, in Figure 3(b), the IS process 0 sends back
the new computed interface solutions to all SS processes. This operation corresponds
in fact to the collective communication MPI GATHER function. The same commu-
nication scheme is repeated for each IS process. Again, for performance purposes
we did not take this direction and preferred instead to implement it in a non blocking
manner. Further, the TW size (Mopt) must be estimated empirically to get optimal

(a) Stage 2: the pseudo MPI SCATT ER. (b) Stage 4: the pseudo MPI GAT HER.

Fig. 3. Communication Patterns.

performance. Indeed, we need to find a balance between the space data size and the
number of time steps per TW to better minimize the idle process time between the
SS and IS groups. Another methodology would be to build a statistical model with
some parameters (number of mesh points in each direction and number of time steps
per TW) to theoretically determine the Mopt. A similar approach for load balancing
has been implemented in [8]. In the next section, we present a comparison of the
experimental results performed on a single parallel machine and on distributed grid
computing.

4 Performance Results on Distributed Environment

The first tests have been performed on a single parallel system to select the best ap-
proach to be used later for the grid. At the same time, we determined empirically the
ideal Mopt to reduce the waiting time. Each SS process is in charge of solving one
subdomain and the ratio of SS / IS processes is 2 : 1. On a single parallel machine, the
Parallel Non Blocking Windowed approach appeared to be the most efficient method
and was capable of solving 1003 unknown problems with 25 time steps in 4.56 sec-
onds with a window size of 3. The network performance may not be affected by
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dealing with sendings and receivings of small messages so often (each 3 time steps).
The network of the parallel system seems to handle frequent and small messages
(TW=3) better than occasional and large messages (TW=6). Then, we experiment
with the selected Parallel Non Blocking Windowed algorithm on the grid and see
whether a TW size of three time steps is also applicable for distributed comput-
ing environments. We are distributing the whole domain among three heterogeneous
sites: the Itanium 2 cluster (1.3GHz) Atlantis in Houston (U.S.A.), the Xeon EM64T
cluster (3.2GHz) Cacau in Stuttgart (Germany) and the Itanium 2 cluster (1.6GHz)
Cluster150 in Moscow (Russia). The application runs for 25 or 26 time steps de-
pending on the TW size. Table 1 presents the data repartition on each host per sub-
domain that satisfies load balancing. Three different global sizes are presented: small
(90× 72× 72), medium (120× 72× 72), and large (170× 72× 72). Cacau obtains
the largest data allocation and seems to be the fastest machine. To lower the commu-

Mopt 3 4 5 6 N y N z

Cacau small 32 33 32 33 72 72
Cluster150 small 30 28 29 27 72 72

Atlantis small 28 29 29 30 72 72

Cacau medium 46 47 47 49 72 72
Cluster150 medium 44 41 42 38 72 72

Atlantis medium 40 42 41 43 72 72

Cacau large 60 62 62 65 72 72
Cluster150 large 59 54 55 50 72 72

Atlantis large 51 54 53 55 72 72

Table 1. Local Subdomain Grid Sizes in X space direction.

nication overhead between remote sites due to the slow network interconnect, a filter
has been implemented to only send half of the modes in each direction (Y and Z) of
the interface solutions, sufficient to still keep the spectral approximation better than
the finite difference approximation. Therefore, from table 1, the actual total number
of modes in the two directions sent is 36×36. We could actually even decrease the
ratio of SS / IS processes since the interface problems solved by the IS processes are
now smaller. Figures 4(a), 4(b) and 4(c) represent the execution time in seconds with
the different data grid sizes depending on the TW size. We show the overall perfor-
mance when dis/enabling communications between the SS and IS groups. One can
notice that the higher the TW size, the lower the communication time and thus, the
better the execution time. It takes 16.3 seconds to solve 24 subdomains on the grid
with a total number of 7 million unknowns and 25 time steps. Figure 4(d) presents
the scalability with the optimal TW size of 6 time steps. The elapsed time stays
roughly identical when doubling the number of SS processes and keeping the same
local subdomain size.
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(a) Performance with 6 subdomains.
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(b) Performance with 12 subdomains.
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Fig. 4. PAASWR Execution Time in Seconds.

5 Conclusion

In this paper, we have described how PAASWR can achieve load balancing, scal-
ability, robustness and fault tolerance under grid environments. The Parallel Non
Blocking Windowed methodology is the most efficient compared to the other ap-
proaches. Indeed, the identification of five successive stages in the general algorithm
permits applying a pipelining strategy and therefore, takes advantage of the SS / IS
process concept. Also, the parallelization of the interface problem resolution makes
PAASWR scalable as the number of subdomains increases. Furthermore, PAASWR
is naturally fault tolerant, and in case of failures can restart the computation from the
interface solutions located in the IS process main memory. The application will then
terminate as if no failures occurred.
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1 Introduction

The generalized Schwarz alternating method (GSAM) was introduced by [4]. Its
purely linear convergence in the case of linear operators suggests that the conver-
gent sequence of trace solutions at the artificial interfaces can be accelerated by
the well known process of Aitken convergence acceleration. This is the basis of the
Aitken-Schwarz method proposed by [1]. In [3] authors extend the Aitken accelera-
tion method to nonuniform meshes, by developing a new original method to compute
the Non Uniform Discrete Fourier Transform (NUDFT) based on the function values
at the nonuniform points. Nevertheless, the acceleration used was based on the mesh,
as it requires an orthogonal basis related to this mesh to decompose the iterated so-
lution at the artificial interfaces. In this paper, we develop a technique that have the
same benefits as the Fourier transform: an orthogonal basis to represent the iterated
solution and a decrease of the coefficient of the solution related to this basis. This
technique creates a robust framework for the adaptive acceleration of the Schwarz
method, by using an approximation of the error operator at artificial interfaces based
on a posteriori estimate of the modes behavior.

The structure of this paper is as follows. Section 2 introduces the pure linear
convergence of the GSAM. Then section 3 extends the Aitken acceleration of the
convergence technique to the vectorial case with the help of Singular Value Decom-
position (SVD). Then the robustness of the method has been validated on Darcy flow
problem containing permeability coefficients with considerable contrast in 4.

2 Aitken-Schwarz Method for Linear Operators

Consider Ω = Ω1 ∪Ω2 where Ωi, i = {1,2} are two overlapping subdomains. Let
Γi = (∂Ωi\∂Ω)∩Ωmod(i+1,2), i = {1,2} the artificial interfaces of the DDM. The
Generalized Schwarz Additive Method algorithm [4] to solve the linear problem
L(x)u(x) = f (x),∀x ∈ Ω , u(x) = g(x),∀x∂Ω writes:

D. Tromeur-Dervout (eds.), Parallel Computational Fluid Dynamics 2008,
Lecture Notes in Computational Science and Engineering 74,
DOI: 10.1007/978-3-642-14438-7 22, c© Springer-Verlag Berlin Heidelberg 2010
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Algorithm 2 General Schwarz Alternating method
Require: Λi’s some operators, λi’s constants
1: Starting n = 0 and arbitrary conditions u0

2 compatible with boundary conditions on Γ2

2: while (||u2n+1
1|Γ1

−u2n−1
1|Γ1

|Γ1||∞ > ε) do
3: Solve

L(x)u2n+1
1 (x) = f (x), ∀x ∈Ω1, (1)

u2n+1
1 (x) = g(x), ∀x ∈ ∂Ω1\Γ1, (2)

Λ1u2n+1
1 + λ1

∂u2n+1
1 (x)
∂n1

=Λ1u2n
2 +λ1

∂u2n
2 (x)
∂n1

, ∀x ∈ Γ1. (3)

4: Solve

L(x)u2n+2
2 (x) = f (x), ∀x ∈Ω2, (4)

u2n+2
2 (x) = g(x), ∀x ∈ ∂Ω2\Γ2, (5)

Λ2u2n+2
2 + λ2

∂u2n+2
2 (x)
∂n2

=Λ2u2n+1
1 +λ2

∂u2n+1
1 (x)
∂n2

, ∀x ∈ Γ2. (6)

5: end while

For example (Λ1 = I,λ1 = 0,Λ2 = 0,λ2 = 1) gives the Schwarz Neumann-
Dirichlet Algorithm. In [4] it is shown that if λ1 = 1 and Λ1 is the Dirichlet to Neu-
mann mapping operator (DtN) at Γ1 associated to the homogeneous PDE in Ω2 with
homogeneous boundary condition on ∂Ω2∩∂Ω then GSAM converges in two steps.
Let beΩ =Ω1∪Ω2, Ω12 =Ω1∩Ω2, Ωii =Ωi\Ω12. Then en

i = u−un
i inΩi satisfies

:

(Λ1 +λ1S1)R1e2n+1
1 = (Λ1 −λ1S11)R22P2R∗

2R2e2n
2 (7)

(Λ2 +λ2S2)R2e2n+2
2 = (Λ2 −λ2S22)R11P1R∗

1R1e2n+1
1 (8)

with the projection Pi : H1(Ωi) → H1(Ωii), Si (respectively Sii) the DtN mapping
operator in Γi associated to the problem in Ωi (respectively Γmod(i,2)+1 associated to

the problem in Ωii), the trace operators Ri : H1(Ωi) → H1/2(Γi), and Rii : H1(Ωii) →
H1/2(Γmod(i,2)+1) R∗

i to be the left inverse operator of Ri, i.e.,such that R∗
i : R∗

i Ri = I,

∀g ∈ H1/2(Γi), L(x)R∗
i g = 0,R∗

i g = g onΓi,R∗
i g = 0 on ∂Ωi\Γi. Equations (7) and (8)

can be written as:
(

R1e2n+1
1

R2e2n+2
2

)
=
(

P1P2 0
0 P2P1

)(
R1e2n−1

1
R2e2n

2

)
de f
= P

(
R1e2n−1

1
R2e2n

2

)
(9)

withPi = (Λi +λiSi)−1(Λi −λiSii)Rj jPjR
∗
j (10)

Intensive works in the domain decomposition community try to approximate the
Steklov-Poincaré operators λiSii by the operator Λi see for example [4]. The idea
of the Aitken-Schwarz methodology is to try to build exactly or approximately the
operator P (or P2P1) instead of λiSii. We have then more flexibility to approximate
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the operator P and we can derive it explicitly for some separable problem on simple
geometries for which the matrix P is diagonal and the acceleration can be applied
on each component [2]. Then the solution at artificial interface is obtained by the
Aitken formula: R1u∞ = (I−P)−1(R1u3 −PR1u1). The discretizing of the operators
does not change the nature of the pure linear convergence of the GSAM.

3 The Aitken acceleration for a sequence of vectors

This section focus on the Aitken acceleration to a sequence of vectors that extends
quite naturally the scalar case with the help of the SVD. Let us define first the exten-
sion of the pure linear convergence for the vectorial case:

Definition 0.1. A sequence of vectors (ui)i∈N defined on R
n converges purely linearly

towards a limit u∞ if: ui+1−ui = P(ui−ui−1), ∀i > 1, where P is a R
n×n non singular

matrix independent of i.

Let the relaxed Jacobi G be the iterative method to solve a linear system Au = b whith
u,b ∈ R

n and A ∈ R
n×n is decomposed in A = D−E −F where D is the main diag-

onal , −E (resp. −F) the strict lower (resp. upper) triangular part of A. ui+1 = G (ui)
writes ui+1 = ωD−1(b + (E + F)ui)) + (1−ω)ui for ω ∈]0,2[. Consequently the
error satisfies ui+1 − u∞ = (I −ωD−1A)(ui − u∞) and thus P = (I −ωD−1A) in-
dependently of i. Then Aitken acceleration gives: u∞ = (I − P)−1(u1 −Pu0) with
(I − P)−1 = 1

ω A−1D, and (u1 − Pu0) = (u1 − (I −ωD−1A)u0) = ωD−1b. Conse-
quently the Aitken acceleration technique consists to solve the problem directly. The
interest to apply this acceleration will not be obvious if we cannot save some com-
puting in the building of P and (I −P)−1. The following algorithm of the vectorial
Aitken acceleration based on the sequence of vectors written in their original canon-
ical basis of R

n named physical space writes:

Algorithm 3 Vectorial Aitken acceleration in the physical space
Require: G : R

n → R
n an iterative method having a pure linear convergence

Require: (ui)1≤i≤n+1, n+1 successive iterates of G starting from an arbitrary initial guess
u0

1: Form Ei = ui+1 −ui, 0 ≤ i ≤ n
2: if

[
En−1, . . . ,E0

]
is invertible then

3: P =
[
En, . . . ,E1

][
En−1, . . . ,E0

]−1

4: u∞ = (In −P)−1(un+1 −Pun)
5: end if

This algorithm is limited to a sequence of small size vectors because it needs
n+1 of iterates related to the vector size n. The main difficulty is to invert the matrix[
En−1, . . . ,E0

]
which can be closed to singular. The objective is then to save as mush

computing as possible with the SVD.
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3.1 The Singular Value Decomposition

A SVD of a real n×m (n > m) matrix A is the factorization A = UΣV
∗, where U =

[U1, . . . ,Um] is an n×m matrix with orthonormal columns, Σ is an m×m nonnegative
diagonal matrix with Σii = σi, 1 ≤ i ≤ m and the m ×m matrix V = [V1, . . . ,Vm]
is orthogonal. The left U and right V singular vectors are the eigenvectors of AA∗
and A∗A respectively. It readily follows that Avi = σiui, 1 ≤ i ≤ m. Assume that the
σi,1 ≤ i ≤ m are ordered in decreasing order and there exits r such that σr > 0 while
σr + 1 = 0. Then A can be decomposed in a dyadic decomposition:

A = σ1U1V ∗
1 +σ2U2V ∗

2 + . . .+σrUrV
∗
r . (11)

This means that SVD produces an orthonormal basis for representing the data series
in a certain least squares optimal sense as follows:

Theorem 0.1. X∗ = σ1U1V ∗
1 +σ2U2V ∗

2 + . . .+σkUkV ∗
k is a non unique minimizer of

the problem minX ,rankX=k ||A−X ||2 reaching the value σk+1(A).

Consider the matrix A,B∈R
n, the Fan inequalities write σr+s+1(A+B)≤ σr+1(A)+

σs+1(B) with r,s ≥ 0, r + s+1 ≤ n. Considering the perturbation matrix E such that
||E|| = O(ε), then |σi(A + E)−σi(A)| ≤ σ1(E) = ||E||2, ∀i. This good properties
allow us to search the acceleration of the convergence of the sequence of vectors in
the basis linked to its SVD.

Proposition 0.1. Let (ui)1≤i≤m m successive iterates satisfying the pure linear con-
vergence property: ui − u∞ = P(ui−1 − u∞) . Then there exists an orthogonal basis
U =

[
U1,U2, . . . ,Um

]
of a subset of R

n such that ui = ∑m
k=1α i

kU
k,∀i ∈ {1, ...,m}

with a decrease of α i
k with respect to k. Moreover, (α∞1 , . . . ,α∞m )t de f

= U
∗u∞, the limit

of the sequence of vectors in the space generated by U satistfies:

(α j+1
1 −α∞1 , . . . ,α j+1

m −α∞m)t = P̂(α j
1 −α∞1 , . . . ,α j

m −α∞m)t , j = 1, . . . ,m. (12)

where P̂
de f
= U

∗PU.

proof: by the theorem 0.1 there exist a SVD decomposition of
[
u1, . . . ,um

]
= UΣV

and we can identify α i
k as σkV ∗

ik. The orthonormal property of V associated to the
decrease of σk with increasing k lead to a decrease of α i

k with respect to k. Taking
the pure linear convergence of ui in the matrix form, and applying U

∗ leads to:

U
∗(ui −u∞) = U

∗PUU
∗(ui−1 −u∞) (13)

(α i
1 −α∞1 , . . . ,α i

m −α∞m)t = P̂(α i−1
1 −α∞1 , . . . ,α j

m −α∞m)t (14)

We can then derive the following algorithm:

Proposition 0.2. Algorithm 4 converges to the limit u∞.
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Algorithm 4 Vectorial Aitken acceleration in the SVD space with inverting
Require: G : R

n → R
n an iterative method having a pure linear convergence

Require: (ui)1≤i≤m+2, m+2 successive iterates of G starting from an arbitrary initial guess
u0

1: Form the SVD decomposition of Y =
[
um+2, . . . ,u1

]
= USV′

2: set l the index such that l = max1≤i≤m+1 {S(i, i) > tol}, {ex.:tol = 10−12.}
3: set Ŷ1:l,1:l+2 = S1:l,1:lVt

1:l,m−l:m+2

4: set Ê1:l,1:l+1 = Ŷ1:l,2:l+2 − Ŷ1:l,1:l+1

5: if Ê1:l,1:l is invertible then
6: P̂ = Ê1:l,2:l+1 Ê−1

1:l,1:l

7: ŷ∞1:l,1 = (Il − P̂)−1 (Ŷ1:l,l+1 − P̂ Ŷ1:l,l) {Aitken Formula}
8: u∞ = U:,1:l ŷ∞1:l,1
9: end if

Proof: as the sequence of vector ui converges to a limit u∞ then we can write Ξ =[
u1, . . . ,um

]
= [u∞, . . . ,u∞]+E where E is a n×m matrix with decreasing coefficients

with respect to the columns. The SVD of Ξ∞ = [u∞, . . . ,u∞] leads to have U1 = u∞

and σi(Ξ∞) = 0, i ≥ 2. The fan inequalities lead to have σi(Ξ)≤ σ1(E) = ||E||2, i ≥
2. Consequently, the algorithm 4 decreases the number of non zero singular values
at each loop iterate.

In Algorithm 4 the building of P needs the inversion of the matrix Ê−1
1:l,1:l which

can contain very small singular values even if we selected those greater than a toler-
ance. A more robust algorithm can be obtained without inverting Ê−1

1:l,1:l . It consists
on building P with applying the iterative method G to the selected columns of U that
appears in Algorithm 4. Then P̂ = U

∗
1:n,1:lG (U1:n,1:l).

Two main parallel techniques to compute the SVD have been proposed [5] [6].
One consists in two phases: the first phase transforms the matrix in a bidiagonal ma-
trix and then the second phase computes the singular values of this bidiagonal matrix
based on a rank one modification.A quasi optimal implementation of a parallel di-
vide and conquer algorithm using cyclic reduction was performed in [5]. The second
approach consists in using the Jacobi method which is based on transformation with
Given’s rotations to compute the eigenvalues of a symmetric matrix. In [6] authors
obtained comparable computational efficiency to the bidiagonalisation approach with
more accuracy. Bidiagonal Divide and Conquer (BDC) algorithm computes all the
singular values of a N ×N matrix in O(N2) time and all the singular values and sin-
gular vectors in O(N3) time. By using the fast multipole method in [7], BDC can be
accelerated to compute all the singular values in O(Nlog2N) time and all the singular
values and singular vectors in O(N2).

4 Numerical results on Darcy equation

The 2D Darcy equation writes: ∇.(K(x,y)∇u) = f , onΩ , u = 0, on ∂Ω
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Fig. 1. Schwarz DDM accelerated by the Aitken SVD procedure: (left) random distribution of
K along the interfaces , (right) the convergence of the Aitken-Schwarz

In the case of 2D medium, the computational domain is a regular grid on which
a random hydraulic conductivity field K is generated. K follows a stationary log-
normal probability distribution Y = ln(K), which is defined by a mean mY and a

covariance function CY (x,y) = σY exp(−[( x
λx

)2 +( y
λy

)2]
1
2 ) where σY is the variance

of the log hydraulic conductivity and λx and λy) are the directional correlation length
scales in each direction. The porous medium is assumed to be isotropic. To generate
the random hydraulic field, a spectral simulation based on the FFT method is used .
For sake of simplicity, we take the same value λ for λx and λy.

The σ and λ parameters have an impact on the stiffness of the linear system to be
solved. The range of σ2 is usually from 2 to 6 and the λ goes from 2 to 10. σ plays
on the amplitude of the permeability K, for σ2 = 4 the K varies in mean from 10−7.28

to 107.68. λ represents the length scale for the change of K, smaller is λ greater is
the probability that the K vary strongly from cell to cell.

The domain is discretized by a regular grid of stepsizes (hx,hy) and the operator
is discretized by second order finite differences leading to a five points stencil where
corresponding coefficients in the matrix are taken as the harmonic mean of perme-
ability in the neighboring cells. The diagonal term is thus the negative sum of the
four other terms.

We apply the Aitken-Schwarz method with overlapping GSAM algorithm with
λ1 = λ2 = 0 and Λ1 = Λ2 = I on the domain Ω = [0,1]2 split in Ω1 and Ω2. The
overlap is chosen to as 5hx in order to have a small convergence. The solution is set
to be 16∗ y∗ (y−1)∗x∗ (x−1)∗exp(−40∗ ((x−1/2)2+(y−1/2)2)). The number
of points in each direction is nx = 200 and ny = 100 Figure 1 left part gives the
random distribution of the permeability K on the domain with λ = 5 and σ2 = 4.
As it can be seen, the permeability fluctuates strongly along the two interfaces. The
permeability varies from 10−7.28to107.68. Figure 1 right shows the convergence of the
Aitken-Schwarz with the acceleration based on the SVD. We computed 30 Schwarz
iterations to generate the SVD of the iterated solution trace on Γ1. Then only 16
modes of this SVD are used in the acceleration process for the first acceleration.
Based on this information we perform only 16 iterations for the second acceleration.
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For the second acceleration, only four modes are needed and then the solution enter
in the numerical noise area. The size of the vectors in the sequence is reduced due to
the Schwarz domain decomposition, compared to the entire domain. Figure 2 gives
the convergence of the Aitken Schwarz with the SVD applied recursively on the
sequence of 10, 20, 30, and 40 iterates of Schwarz. The λ = 5 and σ2 = 5, the number
of discretizing points on the interface is set to ny = 1000, the number of points nx

in each subdomain is set to 50. The overlap is again 5hx cells. Consequently the
Schwarz overlap is greater leading to a better convergence rate of the algorithm. The
Aitken Schwarz exhibits quite good convergence even with a limit set of singular
vectors; The convergence is reached in nearly the same amount of global Schwarz
iterates for the 4 cases. The Algorithm 4 was used.

5 Conclusions

We present the Aitken-Schwarz methodology which is linked to the pure linear con-
vergence of the Schwarz method when applied to linear operators. In case of a prob-
lem with separable operators, we can find some basis linked to the operator or to the
mesh in order to expand the solution in this basis. Then the scalar Aitken accelera-
tion can be applied to each mode. Morerover, when the operator is no more separable
and/or the mesh is no more regular, the decoupling of modes of the solution is no
more available. We then propose to accelerate the sequence of vectors generated by
Schwarz with the Aitken acceleration in a matrix form. For this we proceed to the
SVD decomposition of the sequence of vectors which has the property to generate
an orthogonal set of vectors and a dyadic decomposition of the sequence of vectors
in this basis. We obtain then a method for the acceleration that is mesh independent
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and for which we have an a posteriori estimate based on the singular values. We pro-
pose two algorithms to compute the acceleration, and show their efficiency on Jacobi
method and also on Darcy problem with high contrasts in permeability. Large scale
computations on Darcy equation with this technique are under development. We are
also looking to develop parallel SVD decomposition to only compute the basis asso-
ciated to the largest singular values.
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Abstract. Direct numerical simulation (DNS) of incompressible flows is an essential tool for
improving the understanding of the physics of turbulence and for the development of better
turbulence models. The Poisson equation, the main bottleneck from a parallel point of view,
usually also limits its applicability for complex geometries. In this context, efficient and scal-
able Poisson solvers on fully-3D geometries are of high interest.

In our previous work, a scalable algorithm for Poisson equation was proposed. It per-
formed well on both small clusters with poor network performance and supercomputers using
efficiently up to a thousand of CPUs. This algorithm named Krylov-Schur-Fourier Decom-
position (KSFD) can be used for problems in parallelepipedic 3D domains with structured
meshes and obstacles can be placed inside the flow. However, since a FFT decomposition
is applied in one direction, mesh is restricted to be uniform and obstacles to be 2D shapes
extruded along this direction.

The present work is devoted to extend the previous KSFD algorithm to eliminate these
limitations. The extension is based on a two-level Multigrid (MG) method that uses KSFD as
a solver for second level. The algorithm is applied for a DNS of a turbulent flow in a channel
with wall-mounted cube. Illustrative results at Reτ = 590 (based on the cube height and the
bulk velocity Reh = 7235) are shown.

Keywords: parallel 3D Poisson solver; Schur complement method; FFT; Multigrid;
Preconditioned Conjugate Gradient; Wall-mounted cube; DNS;

1 Introduction

Direct numerical simulation (DNS) has become an important area of contemporary
fluid dynamics, because its interest for improving the understanding of the physics
of turbulence and because it is an essential tool for the development of better turbu-
lence models. In this context, high resolution DNS results at of relatively complex
geometries and configurations are of extreme importance for further progress. The
main idea behind this is to assess the validity of turbulence models in more realis-
tic configurations, understand their limitations and finally improve them. Therefore,
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this is really a crucial issue since turbulence modelling ultimately becomes an essen-
tial tool for engineering applications. In this context, the availability of efficient and
scalable Poisson solvers for fully-3D geometries is of extreme importance.

For simplicity, we restrict ourselves to parallelepipedic geometries. In such con-
figurations, the complexity of DNS increases dramatically with the number of arbi-
trarily meshed directions. This is mainly due to the fact that the discrete Laplacian
operator cannot be analytically diagonalized in such directions. Consequently, most
of the DNS simulations have been restricted to flows with at least one homogeneous
direction. In this context, efficient and scalable Poisson solvers applicable to solve
fully-3D flows are of high interest. Immersed boundary (IB) methods has become an
alternative to circumvent the Poisson solver problem. However, IB methods suffer
strong grid limitations and can introduce significant non-physical effects.

In the previous version of our DNS code (see [4] and [1]) the Poisson solver
was based on combination of FFT and Conjugate Gradient (CG) method (see [2], for
instance) preconditioned with a direct Schur Decomposition (DSD) method (see [3],
for example). The Fourier decomposition is used to uncouple the original 3D Pois-
son equation into a set of independent 2D planes. Then, each 2D problem in solved
using a CG method preconditioned by a DSD algorithm. To do that, each plane is
decomposed into blocks and each of them in solved with the DSD solver. However,
the use of the FFT has the following restrictions:

• Mesh must be uniform in the direction where FFT is applied.
• Obstacles geometry is restricted to be extruded-2D through such direction.

In what follows such geometry will be denoted as limited-3D geometry as it is
an extrusion of a 2D geometry with a constant mesh step. Therefore, the number of
arbitrarily meshed directions can not be more than two.

The main goal of the present work has been to extend the KSFD solver to be
able to solve fully-3D cases with non-uniform mesh in all three spatial directions
(that allows to resolve all boundary layers) and arbitrary obstacles. The fairly good
scalability of the original method should be preserved with a reasonable efficiency.
Finally most promising results were obtained when combining a two-level Multigrid
(MG) with the KSFD method.

2 Governing equations and numerical method for DNS

The non-dimensional incompressible Navier-Stokes equations in a parallelepipedic
domain Ω = (0,Lx)× (0,Ly)× (0,Lz) ⊂ R

3 in primitive variables are considered

∂u
∂ t

+(u ·∇)u =
1

Re
Δu−∇p ; ∇ ·u = 0 (1)

where Re is the non-dimensional Reynolds number.
Equations (1) are discretized on a staggered grid in space by symmetry-preserving

schemes by [7]. For the temporal discretization, a fully explicit dynamic second-
order one-leg scheme is used for both convective and diffusive terms. Finally, to



Poisson solver for DNS of complex turbulent flows 221

solve the pressure-velocity coupling a classical fractional step projection method is
used. Further details about the time-integration method can be found in [6, 5].

3 On the extension of the KSFD algorithm for fully-3D problems

In this work, we investigate the feasibility of using the limited-3D solver, i.e KSFD
solver, as an approximation of the fully-3D case. Initially, two different strategies
have been explored:

• CG-KSFD: to use KSFD solver as preconditioner for a Krylov CG method.
• MG-KSFD: a two-level Multigrid (MG) approach using KSFD as a second-level

solver. Then, a CG with a local band-LU preconditioner is used as smoother.

Original fully-3D system to be solved and limited-3D system are respectively de-
noted

A3Dx3D = b3D (2a)

Ax = b (2b)

where A3D and A are both symmetric positive definite matrices. Both algorithms are
briefly outlined in the next subsections. CG-KSFD approach is not considered further
since it was substantially outperformed by MG-KSFD.

3.1 CG-KSFD approach:

Algorithm on i-th iteration:

1. Call to preconditioner: M(A,z3D
i ,r3D

i )
2. Using z3D

i obtain new x3D
i+1 by means of CG algorithm inner operations.

where r3D
i is the residual of (2a) on i-th iteration and A is matrix of the limited-

3D system (2b).

Algorithm of preconditioner M(A,z3D
i ,r3D

i ):

1. Transfer r3D
i by means of operator Q to limited-3D mesh: ri = Qr3D

i .
2. Solve Azi = ri using KSFD algorithm.
3. Transfer zi by means of operator P back to fully-3D case: z3D

i = Pzi

The choice of operators P and Q will be further considered.
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3.2 MG-KSFD approach:

A two-level MG method is proposed. Second-level of MG becomes a limited-
3D case that is then solved using the KSFD algorithm.

Algorithm on i-th iteration:

1. Smoother: Obtain approximate solution x3D
i of (2a) using CG with local precon-

ditioner. It does not demand any data exchange.
2. Calculate residual r3D

i of system (2a).
3. Transform residual to second MG level ri = Qr3D

i
4. Solve error equation Azi = ri on second level using KSFD algorithm.
5. Transform error from the limited-3D second level to fully-3D: z3D

i = Pzi

6. Correct x3D
i+1 = x3D

i + z3D
i

Here matrices Q and P represent restriction and prolongation operators.
The idea behind of the MG-KSFD method is the following: KSFD algorithm solving
limited-3D case efficiently eliminates low-frequencies of error and smoother pro-
vides fast convergence on higher frequencies.

4 Solution of the second MG level

Solution of the second MG level is provided by KSFD solver (see [4] and [1]). For
the sake of simplicity, we have kept the number of nodes on the second MG level
equal to the first level. In this way, no additional data numeration and allocation is
required. Two different remapping approaches have been tested:

• A first-order conservative interpolation. Conservative interpolation preserves the
integral of the quantity:

N

∑
i=1
Ωixi =

N

∑
i=1
Ω̃ix̃i (3)

whereΩi and Ω̃i are control volumes of first and second level respectively, xi and
x̃i are values from the first and second level. This conservative inter-level transfer
provides stability of the iterative process.

• No remapping. As the numbers of nodes are equal, vectors are taken without
transformations (Q and P are identity matrixes)

Preliminary tests performed using first-order conservative interpolation (3)
showed stable convergence but no substantial gain compared with second (no remap-
ping) approach was observed. Higher-order accurate interpolation remapping
schemes may improve the convergence. However, the main goal of the current work
has been to demonstrate the robustness of the MG-KSFG algorithm without pretend-
ing to achieve the optimal performance yet. Hence, further research on more accurate
restriction/prolongator operators remain as an interesting area for future research.
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5 Motivation: DNS of a wall-mounted cube

Flow around a wall-mounted cube in a channel flow has been chosen as a first demon-
strative DNS application for the MG-KSFD solver. Despite the simple geometry of
the flow around parallelepipedic 3D bluff obstacles several aspects strongly limit
their DNS simulations:

• Region around obstacle demands higher resolution. Thus, arbitrary meshing is
desirable in order to achieve the resolution requirements without wasting a huge
amount of computational resources in order regions.

• Additionally, the presence of a 3D bluff obstacle itself does not allow to apply
directly an FFT-based method (unless some IB approach is used).

In the last two decades this configuration has been experimental and numerically
studied. Results showed that this flow is mainly characterized by the appearance of
a horseshoe-type vortex at the upstream face, an arc-shaped vortex in the wake of
the cube, flow separation at the top and side faces of the cube and vortex shedding.
However, most of the numerical studies have been performed using RANS and LES
modelling techniques while accurate DNS simulations are quite scarce and limited
to very low Reynolds number (the reader is referred to the review by [8] and the
references therein). Moreover, since this flow configuration is used for benchmarking
purposes to validate turbulence models and numerical methods the availability of
DNS results at relatively high Reynolds numbers is of extreme importance.

h

17h

3h

6h

7h

X

Y

Z

u

Y X

Z

X

Fig. 1. Geometry of the wall-mounted cube in a channel.

The geometry of the wall-mounted cube in a channel is displayed in figure 1. The
computational domain is 17h× 6h× 3h in the streamwise, spanwise and normal to
the channel wall directions where h is the cube height. The upstream face of the cube
is located at 7h from the inlet. For the sake of clarity1 the following analytical profile
has been prescribed at the inlet

1 Influence of inflow boundary conditions have been studied. Transient fully-developed chan-
nel flow, channel flow averaged profile and analytic profile (4) have been considered. It was

found that for cube locations far enough from the inlet (
>∼ 5h, for the range of Reτ -number



224 A. Gorobets et al.

U+ = U/uτ = min
(
y+,k lny+ + B

)
(4a)

V+ = W+ = 0 (4b)

where y+ = (y/H)Reτ , uτ = Reτν/H, k = 0.25 and B = 5.0. H is the channel half-
height (in our case H = 1.5h). Convective boundary conditions are in imposed at
the outflow. Global mass conservation is forced through a minor2 correction of the
outflow conditions. Non-slip boundary conditions are imposed at the channel and at
the obstacle surfaces. Periodic boundary conditions are imposed at the y-direction.
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Fig. 2. Scalability test: number of MG iterations with mesh growth

6 Convergence and parallel performance tests

Several scalability tests up to 200 CPUs have been performed to estimate perfor-
mance of the MG-KSFD algorithm for the DNS described in the previous section3.
Averaged number of iterations for meshes varying from 2×105 to 1.2×107 nodes is
displayed in figure 2. Reτ -number was initially set to 425 for these tests. The solver
has following configuration is the following:

• Residual tolerance for MG solver is set to 10−5.

studied) no significant differents are observed. Therefore, since the analytical profile is the
simplest and easiest-to-reproduce we adopted this inlet boundary conditions.

2 In practice, several orders of magnitude lower than velocity values.
3 Total number of nodes has been distributed according to spatial resolution requirements for

the selected DNS problem. The criteria used here is the same used by [5]. Further details
about the mesh spacing functions and geometry are beyond the scope of the present work.
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Fig. 3. Surface mounted cube in a channel flow at Reτ = 590 (based on the cube height and
the bulk velocity Reh = 7235). Pressure iso-surfaces with streamlines.

• Smoother consists on 15 preconditioned CG iterations. Jacobi (diagonal scaling)
is used as preconditioner.

• Restriction/prolongation operators are identity matrix (no remapping).
• Residual tolerance for second MG level is set to 10−2.

We observe that the number of MG iterations is increased about 4.5 times while
the number of nodes is increased by a factor of 60. However, it must be noted that
there are several parameters that can be tuned, in particular the number of smoother
iterations, in order to improve the overall performance. For instance, preliminary
DNS series for Reτ = 590 (based on the cube height and the bulk velocity Reh =
7235) the number of MG iterations for a mesh of 24×106 nodes was around 6 ∼ 7
after further solver tuning (number of smoother iterations equal to 25). A illustrative
snapshot of this DNS simulation in displayed in figure 3.

7 Conclusions and future research

A scalable algorithm for solving the Poisson equation arising from fully-3D prob-
lems has been proposed and tested. It is based on a two-level MG using KSFD as a
second-level solver. Preliminary scalability tests show that the MG-KSFD algorithm
performs good enough to carry out DNS simulations on meshes up to about 30 ∼ 40
millions of nodes using second-order discretization. The algorithm have been suc-
cessfully applied for a DNS of a turbulent flow in a channel with a wall-mounted
cube at Reτ = 590. Further research on more accurate restriction/prolongator oper-
ators and the influence of solver parameters remain as interesting areas for future
research.
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Abstract. In this paper a parallel direct Poisson solver for DNS simulation of turbulent flows
statistically homogeneous in one spatial direction is presented. It is based on a Fourier diago-
nalization and a Schur decomposition on the spanwise and streamwise directions respectively.
Numerical experiments carried out in order to test the robustness and efficiency of the algo-
rithm are presented. This solver is being used for a DNS of a turbulent flow around a circular
cylinder at Re = 1×104, the size of the required mesh is about 104 M elements and the dis-
crete Poisson equation derived is solved in less than one second of CPU time using 720 CPUs
of Marenostrum supercomputer.

Keywords: parallel Poisson solver, Schur decomposition, FFT, DNS, unstructured
meshes.

1 Introduction

Direct Numerical Simulation (DNS) of turbulent flows are rarely used for ’real ap-
plications’. This is because the size of the required mesh and the time step are pro-
portional to Re9/4 and Re1/2 respectively. However, DNS are of high interest for the
study of the physics of turbulent flows because the numerical results are obtained
without modelling any term of the Navier-Stokes equations. Besides, DNS has be-
come very important for the improvement and validation of new turbulence models.

In the numerical algorithm used for DNS, the resolution of a Poisson equation,
which arises from the incompressibility constraint and has to be solved at least once
at each time step, is usually the main bottleneck in terms of RAM memory and CPU
time requirements. In this context, efficient and scalable algorithms for the solution
of the Poisson equation are of high interest.

A parallel Schur-Fourier Decomposition algorithm for the solution of discrete
Poisson equation on extruded unstructured meshes is proposed in the present work.
This method has been used before to carry out DNS for a differentially heated cavity
at high Rayleigh numbers using Cartesian grids [5]. The goal of the present work is
to extend it to unstructured meshes.

D. Tromeur-Dervout (eds.), Parallel Computational Fluid Dynamics 2008,
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2 Numerical method for DNS

2.1 Spatial discretization of Navier-Stokes equations

In this paper, turbulent flows that are statistically homogeneous in one spatial direc-
tion are considered. These flows can be handled very well using periodic boundary
conditions in that direction. The absence of boundary layers, together with the ho-
mogeneity of the flow, yields to use extruded unstructured meshes with uniform step
on the spanwise direction. The advantage of unstructured type, compared with body-
fitted structured or Cartesian grids with cut cells, is that any computational domain
can be easily dealt with. On the other hand, the refinement around internal bodies is
local and does not generate unnecessary cells in other parts of the domain. However,
from a computational point of view, the lack of structure yields to a more complex
data management.

The finite volume discretization of the Navier-Stokes and continuity equations in
an arbitrary mesh can be written as

ρΩ
duc

dt
+C(uc)uc +Duc +ΩGpc = 0c (1)

Muc = 0c (2)

where uc ∈ R
3n and pc ∈ R

n are the velocity vectors and pressure, respectively. The
matrix Ω∈R

3n×3n is a diagonal matrix of velocity cell control volumes. The matrices
C(uc), D ∈ R

3n×3n are the convective and diffusive operators, respectively. And fi-
nally, G∈ R

3n×n represents the discrete gradient operator, and the matrix M∈ R
n×3n

is the divergence operator.
The conservative nature of the Navier-Stokes equations is intimately tied with

the symmetries of their differential operators. In this paper a symmetry-preserving
discretization of the differential operators is used. This means that the discrete op-
erators conserve the symmetry properties of its continuous counterparts. For further
details about the symmetry-preserving discretization, the reader is referred to [6].

2.2 Time integration

The temporal discretization is carried out using a central difference scheme for the
time derivative term, a fully explicit second-order one-leg scheme for R(uc) :=
−C(uc)uc −Duc ( [6]), and a first-order backward Euler scheme for the pressure-
gradient term. Incompressibility constraint is treated implicitly. Thus, the fully-
discretized Navier-Stokes equations are obtained:

Mun+1
c = 0 (3)

(β + 1/2)un+1
c −2βun

c +(β −1/2)un−1
c

Δt
= R

(
(1 +β )un

c −βun−1
c

)−Gc pn+1
c (4)
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where the parameter β is computed each time-step to adapt the linear stability do-
main of the time-integration scheme to the instantaneous flow conditions in order to
use the maximum Δt possible. For further details about the time-integration method,
the reader is referred to [5].

To solve the velocity-pressure coupling, a classical fractional step projection is
used. In this method, a discrete Poisson equation has to be solved at each time step.
The matrix of this system L := MΩ−1

c M∗ remains constant if the mesh does not
change.

3 Poisson solver

As a result of the discretization, the Poisson equation obtained is:

Lx = b (5)

where L ∈ R
n×n is a Laplacian operator, symmetric and positive definite. The pe-

riodicity and uniformity of the mesh on the spanwise direction allow to solve the
Poisson equation by means of a Fourier diagonalization method. As a result of this,
the problem is decoupled into a set of 2D systems reducing dramatically the RAM
memory requirements and the arithmetical complexity of the algorithm.

The 2D systems are solved by means of a Schur Complement based decomposi-
tion method. In general, this method can be very fast compared with an iterative
solver but some disadvantages are the RAM memory requirements and the pre-
processing time. However, on this particular case the systems considered are 2D, and
the memory resources are still reasonable with very large problems (see section 4).
On the other hand, the pre-process is carried out only once (L is constant). Typically,
for DNS applications the number of time steps is 105 ∼ 106, thus the computational
cost (per time-step) of the pre-processing stage can be neglected.

The parallelization is done in two directions, on the spanwise direction divid-
ing the set of frequencies, and on the streamwise direction by means of the Schur
Complement based decomposition method.

3.1 Fourier diagonalization

When the mesh is uniform and periodic in one direction, the 1D restrictions of the
Poisson equation in that direction are circulant matrices. On the other hand, the 2D
restrictions of the Poisson equation are the same for all the planes. With this con-
ditions, a Fourier diagonalization method can be used and the initial system is de-
composed into a set of 2D mutually independent systems. The idea is that the system
has a diagonal block structure in a spectral space. Thus the block associated to each
frequency can be solved independently from the others. An important point of these
methods is that the change of basis from the physical space to the spectral space and
vice versa, can be accomplished with an FFT algorithm that has O(nlogn).

The linear system associated to each frequency is of the form
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(L2D + Di)x̃i = b̃i i ∈ {1, ...,nper} (6)

where L2D ∈ R
n2D×n2D is the 2D restriction of the Poisson equation replacing the

diagonal elements by zeros. Di ∈ R
n2D×n2D are the diagonal matrices given by the

spanwise eigenvalues. And x̃i, b̃i ∈ C
n2D are the components of the i’th frequency,

in the spectral space, of the vectors x and b. As the matrix of system 6 is real, the
imaginary and real parts of x̃i are solved simultaneously by means of a matricial
system.

Regarding the parallelization, the set of 2D systems is partitioned and each sub-
set solved by a group of processors. The parallel solver used for the 2D systems
is described in the next section. To apply the FFT to the spanwise sub-vectors it is
necessary to have the values of all of their components. As a consequence, if the
set of frequencies is partitioned, before applying FFT it is necessary to perform an
all to all communication between processors in the same spanwise line. This is the
main limitation for the parallelization in this direction.

3.2 Schur Complement Decomposition

After Fourier diagonalization is carried out, a set of independent 2D systems of equa-
tions is obtained. These systems are of the form

Ax = b (7)

where A ∈ R
n2D×n2D is symmetric and positive definite.

The main idea of Schur complement methods is to decompose the initial system
of equations into a number of internal systems and one interface system. This de-
composition verifies that the unknowns of different internal systems are not directly
coupled but indirectly by the interface. As a consequence, the internal equations are
separated from the distributed system and solved by each processor independently.

As a first step of the Schur Complement algorithm, a set of independent subsets of
unknowns is evaluated D := {U1, ...,Up}, this means that two unknowns of different
subsets are not directly coupled by the system (7). The elements of these subsets
are here named internal unknowns. If D was a partition of the total unknowns set
Y , the system would be diagonalisable by blocks. However, in general, this is not
possible and it is necessary a subset of unknowns, named interface unknowns S ,
that decouples the different inner subsets.

There are different options to select the internal and interface subsets. One option
is to determine the interface as the local unknowns that are coupled with unknowns
of other processors. This option is convenient because S can be determined locally
by each processor, but its size (|S |) is not minimal.

In this paper, in order to reduce the complexity of the interface system, its size
is minimised. To determine S , firstly a partition {Y1,...,Yp} of Y is accomplished
using METIS software, [3]. Then, if two unknowns of different processors are cou-
pled, only the unknown of the processor with higher rang is fixed as interface, the
other is maintained as internal. After this process, each processor has a subset of
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interface and internal unknowns (Yi = Si �Ui), and the internal sets are mutually
uncoupled. However, the sizes of S1,...,Sp can be very different. Thus, it has been
developed an algorithm to balance their load. In the main step of this algorithm, an
unknown k ∈ Si is moved to the internal set Ui and, at the same time, the unknowns
of other processors coupled with k are moved to the interface. For further details the
reader is referred to [1].

Therefore, if the unknowns are labelled with the order U1,...,Up,S1,...,Sp the
system matrix has the following block structure:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

AU1 0 · · · 0 FU1

0 AU2 · · · 0 FU2
...

...
0 0 · · · AUp FUp

EU1 EU2 · · · EUp AS

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xU1

xU2
...

xUp

xS

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

bU1

bU2
...

bUp

bS

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(8)

where AUi are the linear dependences between unknowns in Ui. AS the linear de-
pendences in S . Fi ∈ Ui ×S the linear dependences between internal and interface
unknowns and EUi = FT

Ui
. Gaussian elimination is applied to (8) and the Schur Com-

plement matrix is derived:

C = AS −
p

∑
i=1

EUiA
−1
Ui

FUi (9)

In the solution stage the internal systems are solved twice: firstly to obtain the
new r.h.s. for the interface system b

′
S = bS −∑p

i=1 EUi A
−1
Ui

bUi , and secondly, after

the Schur complement system CxS = b
′
S is solved, to obtain the internal unknowns

AUi xUi = bUi −FUixS .
The different algorithms based on a Schur decomposition depend on the solvers

used for the interface and internal systems. In this paper a sparse LU factorization,
[2], is used for the internal systems. On the other hand, a complete explicit evaluation
of the inverse of the Schur Complement matrix is performed. The two methods are
direct solvers, thus the solver derived from its composition is also direct. In general,
for a system of dimension m, the explicit evaluation of the inverse is cumbersome in
terms of RAM memory requirements O(m2). In addition, in terms of CPU time, is
very costly as the system has to be solved m times to get the inverse matrix. However,
when the systems decomposed are two-dimensional, the size of S is much smaller
than m, consequently these inconvenients are not important. Once the inverse of AS

is evaluated the parallelization is straightforward.
After Fourier diagonalization, the matrices of all the independent 2D systems

have the same sparcity pattern (see section 3.1), this implies that the communication
topologies are the same. This situation is taken into account and the communications
episodes of all the 2D solvers are done together. This procedure is specially beneficial
in networks that have a high latency.
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4 Numerical Experiments and DNS applications

The discretization method and the Poisson solver described were used to carry out a
DNS of a flow past a circular cylinder at a Reynolds number of 3900. The domain
considered was a rectangular box of dimensions [−4D,20D], [−4D,4D], [0,πD] with
a circular cylinder of diameter D centered in (0,0,0). At the inflow (u,v,w) = (1,0,0)
was prescribed. Periodic boundary conditions in the spanwise direction were fixed
and, for the rest of the boundaries, pressure based conditions were used (outflow
boundaries). The validation was carried out comparing with experimental data from
[4]. The mesh used for the discretization was a 6M element mesh partitioned into 46
CPU. After this validation a DNS of this flow at Re = 1×104 is being studied. The
mesh used for the discretization has 104 M elements, and it is composed by 96 planes
of 1.08M nodes each one. In the figure (1) a snapshot of the vorticity isosurfaces of
periodic component is shown.

Fig. 1. Snapshot of the vorticity isosurfaces of periodic component for flow past circular cylin-
der at Re = 1×104.

The figure 2 shows the results of the parallel performance tests for the Poisson
solver. All these tests have been carried out in Marenostrum supercomputer. At the
moment when the results were obtained, it was basicly composed of 10240 IBM
Power PC 970MP processors at 2.3GHz interconnected with a Myrinet network.

In the left part of figure 2, a strong scalability test for the Direct Schur comple-
ment method is shown. The mesh considered is the 2D mesh used for the cylinder at
Re = 1× 104. The results show that the speed up is ideal until 40 CPU. The degra-
dation of the speedup is caused by the growth of the interface with the number of
CPU.

In the right part of figure 2, the weak scalability of the parallelization in the span-
wise direction is considered. The first point in the graphic is the CPU time required
for the solution of the Poisson equation discretized in a mesh of 16 planes with 1.08M
nodes each one (17.3M elements). The number of CPUs used is 120, and the time
spend is 0.36 seconds. To solve this system no parallelization in the spanwise direc-
tion is carried out. The second point in the figure corresponds to a mesh of 32 planes
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Fig. 2. Left: Strong speedup for direct Schur solver on a 1.08M mesh. Right: Scalability in
spanwise direction, constant load per CPU is 1.4×105 unknowns.

(two blocks of 16 planes) parallelized with 240 CPUs. The successive points in the
figure were obtained adding two blocks of 16 planes and 240 CPUs, to the mesh
and the set of processors respectively. For example, the 4th point corresponds to a
system of 104M unknowns, 720 CPUs, and the CPU time required to solve it was
0.95 seconds.The main reason of the speedup degradation is the all to all commu-
nication necessary to transport data from physical to spectral space and vice versa.
It can be observed that up to 720 processors the scalability is good, the CPU time
grows approximately 50% slower than the problem size. Nevertheless for more than
6 blocks the degradation grows faster.

5 Concluding remarks

A Poisson solver together with the basic ideas of the non-structured discretization of
Navier-Stokes equations, for DNS simulation of flows statistically homogeneous in
one spatial direction, are presented in this paper. This solver is based on a Fourier
diagonalization and a Schur decomposition on the spanwise and streamwise direc-
tions respectively. It is being used for the simulation of flow past circular cylinder at
Re = 1× 104. The numerical experiments, carried out with the discretization mesh,
show an ideal strong scalability up to 40 CPUs of the streamwise parallelization. A
good performance of the weak scalability on the spanwise direction up to 720 CPU
is observed. However, the main benefit of this solver is that it can be very fast. For
example, the resolution of the Poisson equation discretized in a 104M element mesh
used for DNS of cylinder at Re = 1×104, takes 0.95 seconds of CPU time with 720
CPUs of Marenostrum supercomputer.
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Abstract. This paper is devoted to the computation of compressible multiphase flows involv-
ing phase transition. The compressible model is the system of Euler, without viscosity. Our
aim is to simulate such a system, and for that, it is mandatory to understand well the Riemann
problem with such an equation of state. We then propose a 2nd order numerical scheme, which
is validated and proved to be accurate on one dimensional cases. Last, a 2D version of the code
is proposed.

Introduction

In this paper, we are interested in the simulation of phase transition in compressible
flows. The model is the inviscid compressible Euler system

⎧
⎨

⎩

∂tρ + div(ρu)=0
∂t(ρu)+ div(ρu⊗u+ PI)=0
∂t(ρE)+ div((ρE + P)u)=0

where ρ is the density, u the velocity, P the pressure. E is the total energy

E =
|u|2

2
+ ε

where ε is the specific internal energy. To close the system, an equation of state
is necessary, that links the different thermodynamic parameters, for example ε =
ε(P,ρ).

The simulation of phase transition is difficult for (at least) two reasons

1. We hope that the system is hyperbolic (this is true provided

(
∂P
∂ρ

)

s
is positive).

Numerical approximation of hyperbolic systems is difficult, because of the non
uniqueness of the weak solution.
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2. The very model of equation of state for modelling phase transition is still an open
question. The most widely spread model is the van-der-Waals model of [7]. In
this case, system is not hyperbolic in the whole phase space, so that higher order
terms are required for recovering the well-posedness of the Cauchy problem. In
this paper, we are interested in a different model for which no regularization is
needed.

This paper is organized as follows: in Section 1, we briefly record the model we
use. In Section 2, we explain how to solve the Riemann problem with such a model
of equation of state. Then in Section 3, we give a second order numerical scheme
for simulating phase transition. In Section 4, we validate the scheme and give a two
dimensions test.

1 Thermodynamic model

We denote by a subscript l all that refers to the liquid, and by a subscript g all that is
linked to the gas. A subscript i will be used when the equation holds for both of the
phases. We suppose that each of the phase has its own equation of state. The total
specific energy ε , specific entropy s, and specific volume τ (τ = 1/ρ) are equal to

ε=ylεl +(1− yl)εg

s=ylsl +(1− yl)sg

τ=ylτl +(1− yl)τg

(1)

where yl is the mass fraction of the liquid. In order to reduce the number of un-
knowns, we choose the most stable mixture state, which is the one that optimizes the
total entropy with fixed total specific volume and energy. As proved in [6], the most
stable state is

• either a pure liquid or a pure gas,
• or a mixture of both of the phases, with equality of pressure, temperature and

energy.

To simplify, we suppose from now on that both of the phases are described by a
perfect gas equation of state:

εi(Pi,τi) =
Piτi

Γi

where Γi is the Grüneisen constant. As explained in [6], this model is not able to
account well for physics, but it nevertheless has the same mathematical characteris-
tics as the realistic one. Moreover, all the computations can be led explicitly. All the
details can be found in [6]. If we denote by

α = exp(1)

(
ΓΓ2

2

ΓΓ1
1

) 1
Γ1 −Γ2

,

by τi = Γi/α , and if we suppose that Γl < Γg then the situation is as follows.
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• for τ < τl , the most stable state is the liquid,
• for τ > τg, the most stable state is the gas,
• for τl < τ < τg, the most stable state is a mixture at thermodynamic equilibrium;

it follows the equation of state ε = P/α .

We note that the equation of state is continuous on τ = τi, but it has two differents
derivative on the left and on the right. This means that the sound velocity is discon-
tinuous. This will induce problems in solving the Riemann problem, and this is the
issue of the next section.

2 Solution of the Riemann problem

Solving the Riemann problem is mandatory for building a numerical scheme based
on a Godunov’ method. The solution is well known when the equation of state has
a continuous derivative, and when the isentropes are convex, see [2]. Solving the
Riemann problem for the Euler equations relies on computing the simple waves (see
[2]) for the waves u± c, and then intersecting them in the (P,u) plane. Note that the
computation of the velocity never deals with any problem, it is computed with the
Riemann invariants or the Rankine-Hugoniot relations depending on the regularity
of the wave. That is why we concentrate on the computation of the thermodynamic
parameters along the wave curves.

As we said in the previous section, the derivatives of the equation of state are not
continuous along τ = τi. Problems might occur when the wave curves cross τ = τi,
which will be called in the following “phase transition”. We then have to use the
Liu criterion (see [4]) and other references ( [8]) to build the wave curves. In the
following, we detail how to compute them, depending on the thermodynamic state
of the initial point.

2.1 The initial point is a gas

If a gaseous state undergoes an undercompressive wave, it begins by an isentrope,
which means that τ increases. Therefore, it never meets any curve τ = τi, so that no
phase transition occurs.

If a gaseous state undergoes a compressive wave, it begins by a shock, so that
the line τ = τg might be crossed. This is typically the situation described in [4]: the
shock may be split into two shocks: a first one that leads to a saturated liquid (i.e.
with τ = τl), followed by another shock.

2.2 The initial point is a mixture

If a mixture point undergoes a rarefaction wave, it may cross the line τ = τg. On
this point, the characteristics of the left and right states are crossing, so that the wave
curve cannot be composed only of an isentrope. Following [8], the rarefaction wave
is a composite wave, which can be composed of
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Shock
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(a) (b)

Fig. 1. (a): The thermodynamic plane is divided into three zones in which either a pure phase
(liquid or gas) is stable, or a mixture is stable. On the lines τ = τi, the equation of state is
continuous, but cannot be differentiated. (b): A wave curve in the thermodynamic plane (τ ,P)
is a decreasing curve. Under the initial state, the wave curve is an isentrope, whereas above,
the wave curve is a shock.

• a mixture isentrope,
• or a mixture isentrope, followed by an undercompressive discontinuity
• or a mixture isentrope, followed by an undercompressive discontinuity, followed

by a gaseous isentrope,
• or an undercompressive discontinuity
• or an undercompressive discontinuity, followed by a gaseous isentrope.

If a mixture point undergoes a shock, the wave curve may cross the line τ = τl .
Nevertheless, as the Hugoniot curve remains convex, the shock cannot be split (see
[4]).

2.3 The initial point is a liquid

If a liquid point undergoes a shock, τ decreases, so that it does not cross any curve
τ = τi. Therefore, no phase transition occurs.

If a liquid point undergoes a rarefaction wave, it may cross the line τ = τl . On
this point, characteristics do not cross, so that the wave curve can be continued by a
mixture rarefaction wave, which may be a composite wave, as seen in the previous
subsection.
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3 Numerical scheme

3.1 Numerical scheme

Simulation of multiphase flows is a difficult task; the most advanced algorithms rely
on the level set method, see [5]. Nevertheless, this algorithm is not conservative, and
therefore is not accurate for capturing shocks.

Another way to simulate multiphase flows if the Volume Of Fluid (VOF) method.
It nevertheless deals with many geometrical problems, and is also not very developed
in the compressible framework.

Moreover, these two algorithms are well suited for the simulation of material
interfaces, in which the interface moves at the velocity u, whereas in the phase tran-
sition context, they move at a sonic or subsonic velocity.

The numerical scheme we use is based on [3]. Nevertheless, in this last reference,
the way to deal with mixture was left unclear. One of the problems in simulation of
multiphase flows is that the strong disparities in the nonlinearity of the equation
of state induces pressure oscillations, see [1]. In the phase transition context, the
nonlinearity of the equation of state strongly changes from one to the other phase,
but also from one phase to the mixture zone. That is why we use a three phase
algorithm, for which the mixture at thermodynamic equilibrium is considered as a
third phase.

3.2 Second order extension

The second order accuracy is achieved by a MUSCL-Hancock strategy: first, the
variables are interpolated and then limited in each cell. This limitation is done with
a Van Albada limiter, and also takes into account the thermodynamic stability of the
states. More precisely,

• either the color function α is such that 0 < α < 1, and then the color function is
interpolated, the phase thermodynamic parameters and velocity are not interpo-
lated.

• or the color function α is equal to 0 or 1, and the phase thermodynamic parame-
ters and velocity are interpolated.

Then a time predictor-corrector scheme is used, with a special integration formula
for dealing with nonconservative terms.

4 Numerical results

All the computations are made with Γl = 0.9 and Γg = 0.2. With this choice of
Grüneisen coefficients, the limit of saturation of the phases are equal to ρl = 0.566
and ρg = 2.544. We first validate the code with Riemann problems in dimension 1.
We then give a 2 dimensional test.
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4.1 Validation test 1: split rarefaction wave

In the first test, the left state is composed of a mixture at thermodynamic equilibrium.
Its density is equal to 1, and its pressure is equal to 5× 105 Pa. The right state is
composed of a gas, with density 0.1 and pressure 105 Pa. In the two sides, the velocity
is equal to 0. Results obtained are shown on Figure 2, and perfectly match with the
analytical solution. The pressure ratio is such that it will induce a rarefaction wave
in the mixture zone, which will be split because of the phase transition.
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Fig. 2. Comparison of the numerical solution obtained and the analytical one for a split rar-
efaction wave for density, pressure and velocity. The last figure is a zoom on the split rarefac-
tion wave.

4.2 Validation test 2: Liu solution of a split shock

In this test, the left state is a liquid, with velocity 100m.s−1, and the right state is
a gas, with velocity −100m.s−1. This induces a liquefaction shock, that is split, see
[4]. Results and comment are on Figure 3.
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Fig. 3. Comparison of the numerical solution obtained and the analytical one for a shock
splitting, for density, pressure and velocity. The last figure is a zoom on the split shock, in
which we compare the first and second order computed solutions.

4.3 2 dimensional test

In this test, we consider a metastable phase transition. For details on the modelling
and the way to solve the Riemann problem, see [6]. Results and comments are shown
on Figure 4.

5 Conclusion

In this article, a numerical scheme for simulating phase transition was developed
and validated. Originality of this method relies on that it is fully variational; its finite
volume formulation gives a good potentiality for being extended to higher order with
the Discontinuous Galerkin method, which is a compact method; the time integration
is led explicitly. Therefore it has a strong potentiality for being easily used on parallel
environment.
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is shown with arrows, and the bubble is represented with an iso of the volume fraction. At the
beginning, a bubble of liquid is inside a gas (a). The liquid is metastable, which induces a
phase transition front, and sonic waves: a shock is emitted inside (b), then focus in the center
of the bubble (c). Last, the bubble disappears (d), and behaves as a single phase problem
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Abstract. This paper considers the application of Lattice Boltzmann Method (LBM)
to non-Newtonian flow in micro-fluidic devices. To set ideas, we first consider
the pressure driven gaseous slip flow with small rarefaction through a long micro-
channel and formulate the problem in LB framework. The non-Newtonian fluids are
characterized by the non-linear stress-strain constitutive models formulated by Cas-
son, Carreau & Yasuda, Herschel, and Cross, and the well known power law model.
The formulation of the LBM for slip flow of non-Newtonian flow is presented. For
planar constant area micro-channel for power law fluid, it is possible to obtain an ana-
lytical solution for both no-slip and slip flow. For other non-Newtonian fluid models,
LBM results are compared with the numerical solutions obtained by using the com-
mercial software FLUENT. The LBM results agree well with the analytical solutions
and the numerical solutions. Small differences in the results are noticed using the
different models characterizing the non-Newtonian flow.
Keywords: Lattice Boltzmann Method, Non-Newtonian Fluid Flows

1 Introduction

Historically originating from the seminal work of Frisch, Hasslacher, and Pomeau
[1] in 1986 on lattice gas automata (LGA), the lattice Boltzmann method (LBM)
has recently developed into an alternative and very promising numerical scheme for
simulating fluid flows [2]. The lattice Boltzmann algorithms are simple, fast and very
suitable for parallel computing. It is also easy to incorporate complicated boundary
conditions for computing flows on complex geometries. The algorithms have been
successfully applied to compute flows modeled by the incompressible Navier-Stokes
equations including reactive and multiphase flows. Attempts have also been made to
include the turbulence models in LBM.

Unlike the conventional numerical methods which directly discretize the con-
tinuum equations of fluid dynamics on a finite-difference, finite-volume or finite-
element mesh, the LBM derives its basis from the kinetic theory which models the
microscopic behavior of gases. The fundamental idea behind LBM is to construct the
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simplified kinetic models that capture the essential physics of microscopic behavior
so that the macroscopic flow properties (calculated from the microscopic quantities)
obey the desired continuum equations of fluid dynamics. Thus LBM is based on the
particle dynamics governed by a simplified model of the Boltzmann equation, the
simplification is usually to the nonlinear collision integral. In 1992, a major sim-
plification to the original LBM was achieved by Chen et al. [3] and Qian et al. [4]
by employing a single relaxation time approximation due to Bhatnagar, Gross and
Krook (BGK) to the collision operator in the lattice Boltzmann equation. In this lat-
tice BGK (LBGK) model, one solves the evolution equations of the distribution func-
tions of fictitious fluid particles colliding and moving synchronously on a symmetric
lattice. The symmetric lattice space is a result of the discretization of the particle ve-
locity space and the condition for synchronous motions. That is, the discretizations
of time and particle phase space are coherently coupled together. This makes the
evolution of lattice Boltzmann equation very simple; it consists of only two steps:
collision and advection. Furthermore, the advection operator in phase space (veloc-
ity space) is linear in contrast to the nonlinear convection terms in the macroscopic
continuum equations of fluid dynamics. Thus, this simple linear advection operator
in LBM combined with the simplified BGK collision operator results in the recovery
of nonlinear macroscopic convection. It has been shown by Qian et al. [4] among
others, using multiple scale expansion that the local equilibrium particle distribution
function obtained from the BGK-Boltzmann equation can recover the Navier-Stokes
equations and the incompressible Navier-Stokes equations can be obtained in the
nearly incompressible limit of LBGK method.

Thus, there are three essential ingredients in the development of a lattice Boltz-
mann method for a single physics or multi-physics fluid flow problem which are
needed to be completely specified: (1) a discrete lattice on which the fluid particles
reside, (2) a set of discrete velocities ei to represent particle advection from one node
of the lattice to its nearest neighbor, and (3) a set of rules for the redistribution of
particles on a node to mimic collision processes in the fluid, which are provided by
the distribution functions fi of these particles; the evolution of distribution functions
in time (for a discrete time step Δ t ) is obtained by solving the LBGK equation.
The LBGK equation for fi requires the knowledge of the equilibrium distribution

function f (0)
i . The discrete velocities ei are determined so that the macroscopic den-

sity and momentum satisfy the constraints ρ = ∑i fi and ρu = ∑i fiei respectively,
where u is the macroscopic-averaged fluid velocity. Therefore, the determination of
appropriate equilibrium particle distribution function for a given fluid flow problem
is essential for solving the problem by LBM.

Accurate treatment of boundary conditions (B.C.) is very important in any nu-
merical scheme. In LBM, the standard treatment of no-slip boundary condition at a
solid wall is bounce back boundary condition which is second-order accurate on a
flat wall. On a curved wall, the bounce back B.C. becomes first-order accurate and
most treatments proposed in the literature for increasing the accuracy to secondorder
require that the particle distribution function be handled with given macroscopic
quantities. For slip flow on the wall, the specular B.C. is normally employed. For
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slip flow in microgeometries, the correct formulation of slip boundary conditions
is very important for obtaining accurate results with both the conventional finite-
volume continuum solvers and the LBGK solvers. For flows in continuum-transition
regime at moderate Knudsen numbers, the correct treatment of temperature-jump and
slip-velocity boundary conditions becomes even more important for accurate calcu-
lation of the flow field. The correct formulation of slip boundary conditions remains
a major research issue in all flow solvers. Beginning with the formulation of Maxwell
and Smoulchowski [5], significant advances have been made in recent years to im-
prove on their seminal work. For isothermal LBGK solvers, the earliest paper of Niu,
Doolan and Chen [6] employed the modified bounce-back type boundary condition
by assuming slip velocity known from the data. Lim et al. [7] successfully employed
the specular B.C. at low Knudsen numbers. Tang, Tao and He [8] have recommended
the combined bounce-back and specular B.C. Several researchers have proposed ki-
netic B.C. to account for the particles and solid surface interactions in a more realistic
manner to include the diffuse-scattering [9]. In this paper, we consider the applica-
tion of LBM to flow in micro-fluidic devices, which requires special consideration
because of the variation in Knudsen number as the fluid moves along these devices
driven by pressure or acceleration. We first consider the pressure driven gaseous slip
flow with small rarefaction through a long micro-channel and formulate the problem
in LB framework. We follow the approach by Lim et al. [7]. The accuracy of the
LB solution is checked by comparing it with analytical solution with slip boundary
condition and the numerical solutions of Navier-Stokes and augmented Burnett equa-
tions without and with slip boundary condition. For planar microchannel flow, this
work has been reported earlier by Agarwal [10]. Here we report the results for slip
flow in a lid-driven microcavity. Next, we consider the flow of non-Newtonian fluids
characterized by the non-linear stress-strain constitutive models formulated by Cas-
son, Carreau & Yasuda, Herschel, and Cross, and the well known power law model.
All these models are described in the various books [11, 12]. The LB formulation for
non- Newtonian flow is described. It is similar to the approach described in papers by
Gabbanelli et al. [13] and Ashrafizaadeh and Bakhshaei [14] for no-slip flow. For slip
flow calculations described in this paper, the approach of Lim et al. [7] is included
in the formulation. For planar constant area micro-channel for power law fluid, it is
possible to obtain an analytical solution for both no-slip and slip-flow. For other non-
Newtonian fluid models, LBM results are compared with the numerical solutions ob-
tained by using the commercial software FLUENT. The LBM results agree well with
the analytical solutions and the numerical solutions. Small differences in the results
are noticed using different models characterizing the non- Newtonian flow.

2 Brief review of basic theory of laticce Boltzmann method

We briefly describe here the basic equations for the simplest and most widely used
form of LBM, known as the Lattice-BGK (LBGK) method. For simplicity, we con-
sider a square lattice in 2D, as shown in Figure 1, with unit spacing on which each
node has eight nearest neighbors connected by eight links. Particles can only reside
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on the nodes and move to their nearest neighbors along the links in unit time. There
are two types of moving particles: the particles that move along the axis with speed
|ei| = 1, i = 1,2,3,4 and the particles that move along the diagonals with speed
|ei| =

√
2, i = 5,6,7,8. Also, there are rest particles with speed zero at each node.

The occupation of these three types of particles is described by the single particle
distribution function fi where the subscript i indicates the velocity direction. The
distribution function fi is the probability of finding a particle i at node x at time t
with velocity ei. We assume that the particle distribution function fi evolves in time
according to the LBGK equation:

fi(x + eiΔ t,t +Δ t) = fi(x,t)+ΩiΔt, whereΩi = −1
τ
[ fi(x,t)− f − i(0)(x,t)], (1)

which is a discretized form of the discrete BGK equation

∂ fi

∂ t
+ ei.∇ fi = −1

τ
[ fi − f − i(0)]. (2)

In equations (1) and (2), f 0
i is the equilibrium particle distribution function and τ is

the single relaxation time which controls the rate of approach to equilibrium. The hy-
drodynamic equilibrium particle distribution function (derived from the Maxwellian)
is given by:

f (0)
i = ρwi[1 +

u.ei

c2
S

+
uu.(ei.ei − c2

SI)
2c4

S

] (3)

where ρ is the fluid density, u is the flow speed, I is the identity tensor, and cS is the
lattice sound speed defined by the condition:

c2
SI =∑

i

wieiei. (4)

In equation (4), wi are a set of directional weights normalized to unity. These weights
are given as w0 = 4/9,w1 = w2 = w3 = w4 = 1/9,andw5 = w6 = w7 = w8 = 1/36.
The local equilibria obey the following conservation relations:

ρ =∑
i

fi,ρu =∑
i

fiei, and∑
i

fieiei = ρ [uu + c2
SI] (5)

In the limit of long wavelengths, where a particles mean free-path sets the scale; the
fluid density and velocity satisfy the Navier-Stokes equations for a quasi-
incompressible fluid. The macroscopic fluids equations can be derived using the
Chapman-Enskog expansion as:

∂ρ
∂ t

+∇.(ρu) = 0, (6)

∂ρu
∂ t

+∇.(ρuu) = −∇P+∇.[μ(∇u)S +λ (∇.u)I]. (7)
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Fig. 1. Nine-Speed Square Lattice.

where P is the fluid pressure, (∇u)S is the symmeterized strain tensor, μ is the dy-
namic viscosity, and λ is the bulk viscosity. According to the definition of the pres-
sure P, the LBGK fluid obeys an ideal equation of state. Using the standard linear
transport theory, with careful handling of the artifacts the lattice introduces, the dy-
namic and bulk viscosity coefficients become :

μ = c2
S(τ−

Δt
2

)ρ , andλ = (1−2c2
S)ρ[1− Δt

2
] (8)

In equation (7), P = ρ .c2
S . The derivation of LBGK equation (1) assumes that the

particles velocities are much smaller than the sound speed and the flow is isothermal,
thus the flow field is quasi- incompressible. For computing the LBGK solution, a uni-
form lattice with equally spaced points is created with square cells. The relaxation
time t is calculated from equation (8). The flow field is initialized by assuming a dis-
tribution of density and velocity field. The initial values of the distribution function

(as equilibrium distribution function f (0)
i at t = 0) are then determined on the lattice

from equations (5). The updating of the particle distribution functions fi at subse-
quent time steps is done as described in equation (1). The procedure is repeated until
the convergence of the distribution function is obtained. The macroscopic variables
are then calculated from equations (5). In equations (1) (5), i represents summation
over all lattice points.

3 Non-newtonian fluid models

In literature [11, 12], a number of constitutive models have been proposed to describe
the behavior of shear-thinning and shear-thickening non-Newtonian fluids. These
models are briefly described below. Let T = ρ[uu + c2

S] = ∑i fieiei,Tν = μ(S)S,S =

( ∂ui
∂x j

+ ∂u j
∂xi

), and γ̇ =
√

1
2 S : S then in LB method for non-Newtonian fluid, we employ

the following relations:

S =
1

2τc2
S

Tν , orS =
1

2τc2
S
∑

i
( fi − f (0)

i )eiei (9)
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The relaxation time is given by:

τ− τ∞
τ0 − τ∞ =

μ− μ∞
μ0 − μ∞ = F(γ̇(τ)) (10)

The various non-Newtonian models employed in the study are Power law model,
Casson model, Carreau- Yasuda model, Cross model and Hershel-Bulkley model
[11, 12]. The details of these models are not described here but are given in [11, 12].

4 Results

4.1 Newtonian and Non-Newtonian Flow in a Microcavity

These computations were performed to validate the LB method for non-Newtonian
fluids. Numerical solutions in a lid-driven square cavity were computed for New-
tonian (n =1.0) and shear thinning Power law fluid (n = 0.5) using both the LBGK
method and FLUENT. Identical solutions were obtained on the same uniform grid.
Figures 2 and 3 show the solutions for normalized u- velocity along the y-axis at the
center of the cavity and normalized v-velocity along the x-axis at the center of the
cavity. These graphs show the difference between the Newtonian and non-Newtonian
solutions as the Reynolds number increases.

4.2 No-Slip and Slip Flow of Non-Newtonian Fluids in a Microchannel

Figure 4 shows the LB solutions for various non-Newtonian fluid models. LB solu-
tions compare well with the analytical solutions for power law fluid and with FLU-
ENT solutions for other non-Newtonian models. Figure 5 shows the LB solutions for
a power law fluid which are in excellent agreement with the analytical solutions. In
these calculations, Pin/Pout = 2.28; Umax is the maximum velocity at the centerline
of the channel at the exit.

Figures 6, 7 and 8 show the LB solutions for slip flow of a non-Newtonian fluid
in a microchannel using the power law shear-thickening model, power law shear
thinning model and Carreau-Yasuda shear-thinning model respectively. It should be
noted that these solutions are in excellent agreement with the FLUENT solutions.
The flow conditions are Pin/Pout = 2.28, Knin = 0.088, Knout = 0.2; Ubar is the
average velocity.

5 Parallelization

The parallelization of the LB code is straightforward. Computations were performed
on a 126processor SGI Origin 2000 parallel supercomputer. In the calculations, only
16 processors were used. SGI Origin 2000 is a cache-coherent non-uniform access
multiprocessor architecture. The memory is physically distributed among the nodes
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Fig. 4. Velocity profiles at the exit of the microchannel with no slip boundary condition.

but is globally accessible to all processors through interconnection network. The dis-
tribution of memory among processors ensures that memory latency is achieved. Par-
allelization was achieved by MPI. For the 512x512 grid calculation, 95.2% speedup
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efficiency was achieved on 16 processors. On coarser girds, the speedup efficiency
ranged between 91 to 93%.

6 Conclusions

A Lattice-Boltzmann method has been developed for computing Non-Newtonian slip
flow of shearthinning and shear-thickening fluids in microgeometries. The method
has been validated by comparing the LB solutions with analytical solutions (where
available) and the numerical solutions of the Navier-Stokes equations using FLU-
ENT.
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The Lattice Boltzmann method is employed to simulate binary droplet collisions.
The Shan-Chen multiphase model, improved in the equation of state and in the incor-
poration of the body force, is integrated into the Multiple Relaxation Time scheme.
Qualitative comparisons with the experiments show very good agreement.

1 Introduction

Droplet collisions are encountered in natural phenomena and in many industrial pro-
cesses like spray applications. The parameters characterizing this phenomenon are
the densities and viscosities of liquid and gaseous phases, respectively ρl , ρg, μl

and μg, the surface tension σ , the droplets radii R1 and R2, their relative speed U
and finally their displacement in the direction normal to U . These quantities are
reported in Fig. 1. The whole process is therefore described by five nondimen-
sional quantities, namely the Weber and Reynolds numbers, respectively given by
We = ρLU2(R1 + R2)/σ and Re = ρLU(R1 + R2)/μL, the size and viscosity ratios,
and finally the impact factor B = χ/(R1 +R2). Experimental studies like [10, 1, 12]

Fig. 1. Physical and geometrical parameters characterizing binary droplet collision.
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allowed the identification of five possible collisional regimes: adopting the notation
of [12], it is possible to observe “coalescence” (Regime I), “bouncing” (II), “coa-
lescence with major deformation” (III), “head-on separation” (IV) and “off-centre
separation” (V). These regimes can be identified by transition curves on B −We
plane. Coalescence occurs when, at very small We, the gas is pushed out of the gap
between the approaching droplets till the thickness of this gap is reduced to the or-
der of molecular interactions. If the minimum thickness is higher than this value, the
droplets will bounce. Regime III occurs at intermediate We, when the initial kinetic
energy is sufficient only to cause extensive deformation to the coalesced droplet . At
high We number it is possible to observe Regimes IV or V,depending on B. The co-
alesced droplet can experience either disruption, that produces again two droplets,or
fragmentation, producing catastrophic break-up into many small droplets.
Droplet collisions represent a challenging case for numerical simulations, because of
the necessity of following the evolution of variable interfaces. As pointed out in [12],
the amount of gas absorbed in the liquid surface layer during the collision is negli-
gible, so mass conservation represents another issue for a numerical scheme. Two-
and three-dimensional simulations were presented for instance in [7, 8], employing
respectively the volume of fluid (VOF) and the front-tracking schemes ; in [9], re-
markable agreement with the experiments of [12] by using the level-set method is
observed. All these methods require some artificial technique for interface tracking
discretizing the Navier-Stokes equation.
The Lattice Boltzmann method (LB) [3] is attracting more and more attention in
multiphase flow simulations. Its kinetic nature allows the incorporation of interface
models without suffering from the limitations in terms of length and time scales typ-
ical of Molecular Dynamics simulations. Besides, the method is simple to code and
highly parallelizable, and does not present nonlinear convective terms like in classi-
cal CFD schemes.
In this study, the LB method is adopted to simulate binary droplet collisions at dif-
ferent We and B values. The goal is to reproduce the five possible collision regimes.
To do that, the Shan-Chen (SC) [15] multiphase model improved by the inclusion of
more effective equations of state (EOS) [18] and by the “Exact Difference Method”
(EDM) [6] is used. To deal with low-viscosity flows, this model is integrated in the
framework of a Multiple-Relaxation-Time scheme [4].

2 The Lattice Boltzmann Method for single and multiphase flows

The Boltzmann equation is the fundamental equation of kinetic theory. It expresses
the rate of change of the “single particle probability distribution function” (PDF),
which represents the probability of finding, at time t, a particle in position x with
speed ξ , because of particle streaming and collisions. The LB equation can be ob-
tained by discretizing the phase space of the Boltzmann equation over a lattice de-
fined by a set of b finite speeds ei [5]:
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fi (x+ eiΔ t,t +Δ t)− fi (x,t) = −Λi j

(
f j (x,t)− f eq

j (x,t)
)

, i, j = 0, ..,b−1 (1)

The left hand side of (1) represents the streaming operator, while the right hand
side represents the collision operator, which preserves mass and momentum and is
completely local, making LB particularly suited for massively parallel computations.
The collision matrix Λ is diagonal, with all its elements equal to the collision fre-
quency 1/τ: (1) is thus called single-relaxation-time LB (SRT-LB). The collision
relaxes the fi to its equilibrium value f eq

i , which depends on local macroscopic den-
sity and speed [17]. By means of a Chapman-Enskog expansion, the incompressible
NS equation is recovered, in the limit of low Mach number. To achieve that, the
lattice and the f eq

i must be carefully chosen [3]. Density, momentum and energy
are obtained as discrete momenta of the feq, while pressure and kinematic viscosity
are respectively given by p = ρc2

sδi j and ν = 2τ−1
6 cΔx . The constant cs = Δx

Δt

√
3 is

termed “lattice speed of sound”. Pressure is therefore obtained by an ideal gas equa-
tion of state (EOS).
To model non-ideal gas effects, the SC model introduces a forcing term derived as
discrete gradient of an interparticle potential, ψ(ρ), termed “effective mass”:

F(x,t) = −c2
sψ

k−1

∑
j=0

Gbwkψ (x+ eiΔt)ei. (2)

The discrete gradient can be computed employing different numbers k of nodes
and corresponding weights wk [14]. In the original SC formulation, ψ = ρ0(1−
ρ/ρ0). The general form of the EOS associated with the SC model is p = ρc2

s +
1
2 Gbc2

sψ2.
The role of temperature is played by the “coupling constant” Gb. It is possible to

show that this EOS exhibits a region of the P− ρ curve at temperatures below the
critical value (represented by a critical value of Gb) in which each pressure corre-
sponds to three different densities, one for the liquid phase, one for the gas phase and
the last in the region in which ∂ p/∂ρ < 0 : the existence of this unphysical region
allows to maintain self-generated sharp interfaces.
The force modelled by (2) modifies the local equilibrium velocity in f eq

i depend-
ing on τ according to Ueq = U + Fτ/ρ . This method is first order accurate in ΔU.
A more effective way of including body forces in LB is the “Effective Difference
Method” (EDM) presented in [6]: it consists in adding at right hand side of (1), the
term Δ f eq

i =
(

f eq
i (U+ΔU,t)− f eq

i (U,t)
)
, where ΔU = FΔ t/ρ .

The SC model as described so far cannot handle density ratios over O(10). To
address this limitation, the form of ψ proposed in [18] is adopted: this form can be
used to incorporate any EOS (van der Waals, Peng-Robinson or others) into the LB
scheme.

The SRT-LBM is very simple, but is known to fail when dealing with low viscos-
ity flows. The Multiple-Relaxation-Times LB (MRT-LB) [4] overcomes this limita-
tion by performing the collision not in fi space as done so far, but in a moment space
mi determined by a linear transformation driven by the matrix T. See [4] for more
details. The MRT-LB equation integrated by the EDM scheme reads as:



260 Ernesto Monaco, Kai H. Luo and Gunther Brenner

fi (x+ eiΔ t,t +Δ t)− fi (x,t) = −T−1
i j S jkΔmk +Δ f eq

i , (3)

In (3) the matrix S = T−1ΛT is diagonal and its elements are the relaxation fre-
quencies of the different hydrodynamic moments, while Δmk = mk −meq

k . Streaming
and boundary conditions are performed in fi space as before. The strategy proposed
in [4] is adopted to code (3) with limited increase of computational cost.

3 Results

In the rest of the paper the D3Q19 model is used; the relaxation times are equal to 1
except s9 = s11 = s13− s16 = 1/τ [4]. The EOS used to computeψ is the Carnahan-
Starling [2]:

p∗ = ρRT
1−bρ/4 +(bρ/4)2 − (bρ/4)3

(1−bρ/4)3 −aρ2, (4)

with a = 1,b = 4 and R = 1.Finally, in (2), the discrete gradient operator has 6th
order isotropy [14]
To illustrate the capabilities of the scheme described above, two preliminary tests
have been conducted. The first test consists in comparing the coexistence curve
obtained by numerical simulations the theoretical curve predicted by the Maxwell
equal-area construction. The result is shown in Fig. 2, from which it is possible to
see an excellent agreement. The maximum density ratio achieved was about 1340,
as [18]. The second test consists in taking one spherical droplet in a fully periodi-
cal domain and in evaluating the minimum viscosity and the maximum density ratio
achievable. The grid is 100× 100× 100 and the initial radius is 30Δx. At density
ratio of 100 the minimum viscosity achieved was 1/500.

In the following, LB simulations of binary droplet collisions are presented and
qualitatively compared with corresponding cases of [12]. In all cases the density
ratio is 100 and the droplets radii are 40Δx. Fig. 3 corresponds to case a in [12],
(Re = 14.8,We = 0.2 and B = 0.2, Regime I). The grid is 141× 121× 121. The
coalesced drop takes a cylindrical shape, then tends to reach a spherical configuration
to minimize surface energy.

Regime III is illustrated in Fig. 4 (a-b), corresponding respectively to cases f
(Re = 210.8,We = 32.8 and B = 0.08) and k (Re = 327.7,We = 70.8 and B = 0.25).
The expected different behavior under different B is clearly reproduced. In the first
case, the tangential component of the impact inertia is almost zero, and a thin disk
is initially formed, that later contracts and forms a cylinder and then a dumbell,
without any rupture of the film. In the second case, the higher tangential component
of the impact inertia is expected to cause an extensive rotational motion, and that is
precisely what the simulation shows. In both cases the grid is 251× 141× 141 and
the simulation took about 4 hours on 16 processors.



Multiple Relaxation Time Lattice Boltzmann simulation of binary droplet collisions 261

Fig. 2. Comparison between coexistence curve obtained from simulation and theoretical one
relative to the CS-EOS.

Fig. 3. Simulation of case a from [12]. The nondimensional time is computed as t∗ = tU/2R

Fig. 5 is concerned with case g (Regime IV) (Re = 228,We = 37.2 and B = 0.01):
the evolution is similar to case f previosly seen, but this time initial kinetic energy is
enough to overtcome the surface tension force and split the coalesced drop. Again,
good agreement is found with the experiments.
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(a) Case f

(b) Case k

Fig. 4. Simulations of cases relative to Regime III from [12]. The nondimensional time is
t∗ = tU/2R

A further increase of B causes a reduction of the contact region: if We is high
enough, like in case m (Re = 302.8,We = 60.1 and B = 0.55), Regime V is ob-
served: the LB simulation in Fig. 6 clearly reproduces the formation of a thin neck
linking two main globes and its subsequent rupture by means of the “end-pinching”
mechanism, producing three droplets.
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Fig. 5. Simulation of case g from [12]. The nondimensional time is t∗ = tU/2R

Fig. 6. Simulation of case m from [12]. The nondimensional time is t∗ = tU/2R

4 Discussion and Conclusions

The LB formulation described in this study allows stable simulations of all the col-
lision regimes except bouncing (not observed) at an higher density ratio than what
reported in other similar works [16, 13, 11]. Besides, the SC model does not require
two different sets of PDFs like the models employed in the aforementioned works.
Density ratios similar to the experiments have been reached for static droplet tests,
but collisions at high We are often unstable, due to the high spurious currents at in-
terfaces. Their reduction, together with comparisons with analytical models, will be
the subject of future study.
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Abstract

Smoothed Particle Hydrodynamics is a gridless numerical method that can be used
to simulate highly complex flows with one or more free surfaces. In the context
of engineering applications, very few 3-D simulations have been carried out due
to prohibitive computational cost since the number of particles required in 3-D is
usually too large to be handled by a single processor. In this work, an improved
version of a parallel 3-D SPH code, Spartacus-3D, is presented. Modifications to the
code, which include a localisation of all the previously global arrays combined with
a switch from global communications to local ones where possible, lead to a more
efficient parallel code and allow for a substantial increase in the number of particles
in a simulation.

1 Introduction

The Smoothed Particle Hydrodynamics (SPH) method has been successfully applied
in fluid mechanics to simulate strongly distorted free surface flows in situations
where classical Eulerian Computational Fluid Dynamics (CFD) approaches would
fail because of grid steepness [2] [3] [4]. However, 3-D SPH simulations remain
costly as a large number of particles are necessary in order to accurately simulate
such flows and because of the nature of classical SPH, which requires a homoge-
neous initial particle distribution for incompressible flows. A parallel 3-D SPH code,
namely Spartacus-3D, was developed in 2006 based on the MPI library [5], but most
of the arrays were global. This approach limited the total number of particles that
could be handled and the memory required by processors was largely over-estimated.
Moreover, global communications were compulsary.

D. Tromeur-Dervout (eds.), Parallel Computational Fluid Dynamics 2008,
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The Spartacus-2D code was developed in 1999 at EDF R&D, mainly for modelling
coastal and environmental applications, such as spillways, dam breaking, and break-
ing waves. Based on this 2-D version, a 3-D version was first developed [1] in 2004
and initially parallelised in 2006 [5]. In this paper, details concerning the latest ver-
sion of the code, where the focus has been on array localisation, will be presented.
In Section 2, the methodology is explained and Section 3 introduces the equations in
SPH framework. Section 4 discusses parallelisation and Section 5 highlights the new
results and we conclude with some final remarks Section 6.

2 Methodology

The pseudo-compressible Navier-Stokes equations written in Lagrangian form for
Newtonian fluids and incompressible, laminar flows augmented by the position equa-
tion read:

Du
Dt

= − 1
ρ
∇p +∇ · (ν∇u)+ Fe,

Dρ
Dt

= ρ∇ ·u,
Dr
Dt

= u. (1)

where D·/Dt is a Lagrangian derivative, u the velocity vector, t the time, ρ the den-
sity, p the pressure, ν the kinematic viscosity, and Fe an external force. In addition,
’∇’ and ’∇·’ are the gradient and divergence operators, respectively. This system is
closed by the following equation of state:

p =
ρ0c2

0

γ

[(
ρ
ρ0

)γ
−1

]
(2)

where ρ0 is the reference density, c0 a numerical speed of sound, and γ a constant
coefficient. Equations 1 are discretised explicitly in time (first order) and the SPH
approach is used to perform the spatial discretisation.

3 Equations in SPH framework

The SPH continuity equation and momentum equation are given by:

Dρa

Dt
= ρa∑

b

mb

ρb
uab ·∇awab, (3)

Dua

Dt
= −∑

b

mb
pa + pb

ρaρb
∇awab + 16∑

b

ν
ρa +ρb

uab · rab

r2
ab

∇awab + Fe
a, (4)

where the subscripts a and b, respectively, represent the particle which the operators
are calculated for, and its neighbours contained in the kernel compact support, uab =
ua −ub, wab = wh(rab), rab = |rab| = |ra − rb|. wh is the kernel as a function of the
smoothing length, ∇awab is the gradient of the kernel with respect to a, m is the
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particle mass, and Fe
a is an external force applied to particle a. Note that the pressure

gradient expression selected here is anti-symmetric with respect to the subscripts a
and b and the viscous term is symmetric. This allows a reduction in computational
cost because, when calculating the SPH operators, b’s contribution can always be
deduced from a’s.

4 Parallelisation

Equations 3 and 4 show that SPH operators are expressed as differences or sums of
contribution from particles a and b, with a sum on b. Due to the particle motion and
the fact that neighbouring particles (neighbouring particles of particle a are particles
which belong to the compact support, whose centre is the position of a) at a given
time step might not be neighbouring particles at the next time step, the search for
particles b has to be performed at each temporal iteration. The CPU time would nor-
mally scale as N3 (in 3-D) where N denotes the total number of particles, if the search
for neighbours would be carried out over the whole set of particles. Since spline ker-
nels have a compact support, each particle a is only linked to its closest neighbours
b for which rab < ht , where ht is the kernel compact support size. A coarse Cartesian
grid made of homogeneous cubic cells embeds the physical domain to speed-up the
search for the links.

Profiling the serial version of Spartacus-3D shows that the search for particle a’s
links is the most expensive part of a temporal iteration, consuming up to 60% of
the CPU time. When running in parallel, another section that takes a lot of time is
the rebuilding of the list of particles by re-indexing them at each temporal iteration,
which is done in order to minimise the communications between processors in the
equation resolution stage. Some problems identified in the previous parallel version
of the code came from the declaration of gobal arrays for the main variables (veloc-
ity, density, pressure, viscosity,...) and from the global communications required to
build SPH operators. The way to circumvent most of these problems is described in
the following, with a special focus on the attempt to use arrays whose size varies per
processor, depending on the number of particles of a given processor augmented by
the number of particles located on other processsors, which play a role in building
the SPH operators.

In the new parallel version of Spartacus-3D, four main steps are carried out per tem-
poral iteration. At the (n + 1)th iteration, for instance it yields:

• Step 1: Generation of the new particle list,

• Step 2: Search for particle links,

• Step 3: Link particle re-indexing,

• Step 4: Resolution of the equations.

Steps 1 to 4 are detailed in the following sections.
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4.1 Step 1. Generation of the new particle list

If the total number of processors is NP the general idea is to approximately assign
N/NP particles a per processor to ensure load-balancing, while reducing the number
of processors containing the neighbours b of the N/NP particles a. In the present
version of the code, there is no weight depending on the computing effort required
per particle, even though different operations are carried out for wall (respectively
dummy) particles and fluid ones.

• The Cartesian grid is generated and the cubes denoted by Ci (i = 1,NC) are
linerarly ordered, where NC is the whole number of cubes. The loop is carried
out over NC. This is parallelised.

• Denoting the number of particles per cube Ci as NPCi, a temporary array
DISPTBi is built from the NPCis as the accumulated number of particles con-
tained in the cubes already listed until cube of index ’i’, i.e. DISPTBi =
∑i

j=1 NPCj . The loop is carried out over NC.
• NP blocks BLOl are built from DISPTBi, with approximately N/NP particles

per block. The loop is over NC.
• The next step consists of detecting which particles (whose index is defined in the

list corresponding to iteration n) located on a given processor PROCk belong to
a given block BLOl as defined in the previous item. At the end of this operation,
each processor has access to the number of its particles located on block BLOl ,
and to the local list of its own particles per block. Both arrays are not complete
as the loop is performed over the particles present on each processor PROCk at
iteration n, and not over the total number of particles N.

• The full local list assembled on the master node is then broadcast to the other
processors. Note that this array is still global in this version of the code.

• The global list is built up from the local list.

4.2 Step 2. Search for particle links

Links between particles a and their neighbouring particles b used in the calculation of
the operators are locally constructed by processors, with the help of the cube struc-
ture. The next step differs from the previous version of the code, in the sense that
arrays containing the main variables are now locally defined rather than globally. For
each particle located on a given processor, the neighbouring particles (which may
not be on the same processor) are gathered in extra arrays, and the rank of those
processors stored. If the first loop of Step 2 goes over particle a located on proces-
sor PROCk as before, the second one goes on the neighbouring cubes of the cube
containing particles a, taking into account the particles not located on the processor
where particle a is.

4.3 Step 3. Link particle re-indexing

After the search for the links, the particle links are re-indexed in order to limit the
communications between processors in the calculation phase. This means that the
array containing the list of neighbouring particles has to be updated.
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4.4 Step 4. Resolution of the equations

The equations are solved explicitly. The operators are built per processor, with loops
going over the list of particles on PROCk at iteration n + 1. The neighbouring par-
ticles, which may not be located on the processor of concern, are collected in an
external array and used to calculate the various operators. As a result, only local
communication is necessary to build these operators.

5 Results

5.1 Description of the Machines

Simulations have been performed on Blue Gene/L, BlueGene/P and IBM AIX sys-
tems. Both single rack Blue Gene systems contain 1,024 chips, with 2 processor
cores per chip in the L system and 4 processor cores per chip in the P system, giv-
ing a total of 2,048 cores and 4,096 cores, respectively. Memory is provided at 512
Mbytes per core in both systems. The basic processor in the L system is the Power
440 running at 700 MHz, whilst the P system uses a processor from Power 450
family running at 850 MHz. The HPCx system uses an IBM eServer 575 nodes for
the compute and IBM eServer 575 nodes for login and disk I/O. Each eServer node
contains 16 1.5 GHz 2Gb memory POWER5 processors. The main HPCx service
provides 160 nodes for compute jobs for users, giving a total of 2,560 processors [6].

5.2 Accuracy

The first test is carried out to validate this laminar parallel version against the analyt-
ical Poiseuille solution. The Reynolds number based on the bulk velocity is equal
to 100. The run is performed on 128 cores of BG/P. Figure 1 (Left) shows that
Spartacus-3D’s output compares well to the analytical solution.

5.3 Performance of the Code

Due to the update of the particle positions at each time step, each iteration consists
of both a new partitioning to ensure load-balancing and the fluid dynamics calcu-
lation itself. For this approach, two types of performance are analyzed showing the
total CPU time per iteration per processor, and the CPU time for the dynamics per
iteration per processor, to be able to compare with any other CFD Eulerian software
dealing with non-moving grids.
The results of the previous parallel version of the code are shown in Fig. 1 (Right)
for 355,000 particles. This was carried out on a cluster of thin nodes, each of them
having 4Gb memory per processor. The code scales well up to 8 processors, but from
16 processors it can be seen that the generalized use of global communications has
an important impact on the performance.
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Fig. 1. Left: Poiseuille flow at Re = 100. Comparison between SPH and the analytical solution.
Right: Speed-up of the previous parallel version of the code.

Fig. 2. Speed-up of the code on BGL without optimisation in the sorting of the links (Left)
and with optimisation there (Right).

Another important factor of the previous test case of 335,000 particles is that it can-
not be run with the former version of the code on the Blue Gene’s (BG’s) because of
insufficient memory per processor. However, the new version, based on using local
communications and a smaller amount of memory per processor, can be ran on the
BG’s and even more particles can be considered. In this work, the case of a 2M par-
ticle channel is simulated.

Table 1 shows the CPU time per iteration in 4 cases.
Two versions of the codes are considered, the former without optimisation of the link
re-indexing (denoted as P for portable) and the latter with this optimisation (denoted
as NPO for non-portable, as the IBM ESSL library is used for that purpose). Figures
3 and 4 show the speed-up of the code from 64 to 1,024 processors (CO mode for
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Fig. 3. Speed-up of the code on BGP without optimisation in the sorting of the links (Left)
and on HPCx with optimisation there (Right).

BGP (P) BGL (P) BGL (NPO) HPCx (NPO)
CPU Time/Iteration 1.2894s 1.6919s 0.9689s 0.5732s

Table 1. CPU Time/Iteration on 1,024 processors on various machine, with a portable (P)
version and a non-portable (NPO) one.

BG/L and SMP mode for BG/P). The scaling is generally good on both BG’s, with
or without optimisation of the link sorting. On the other hand, if the calculation part
scales well on HPCx, almost no gain is observed from 512 to 1,204 processors. It
might be necessary to increase the number of particles, and also to localise the last
global array to increase performance.

Note that the code reaches 6.3% of peak of HPCx system (IBM AIX), which is
in the range for CFD codes (the peak computational speed of the HPCx system is
15.3 Tflops and the test has been carried out on 96 processors).

6 Concluding remarks

This paper showed that the new version of Spartacus-3D for HPC can efficiently
handle very large simulations. This is due to the localisation of most of the arrays,
and the use of local communications instead of global ones, wherever possible. The
performance for such an amount of particles is good in terms of calculation time per
iteration, but relatively poor for the total calculation time per iteration. The reason
is that the particle search is managed through the construction of a global array for
the particle list. As a result, some global communications are still required, which
impacts on the performance. This is an area we aim to look at in the future.
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Abstract. In this paper, we present a global computer science approach to deal with
parallel computations. The proposed approach consists in managing at the same level
either multithreading or distributed strategies, whatever the computation may be. The
integration of the concept is held in a Java framework which proposes both, a pure
object-oriented paradigm and, convenient libraries to deal with threads management
and communications schemes. The approach is illustrated on a domain decomposi-
tion method for a Navier-Stokes flow.
Keywords: Finite elements, object-oriented programming, domain decomposition,
multi-threaded computing, distributed computing.

1 Introduction

In this paper, we present the key ideas of a Java application to a finite element code.
This approach is based on the reusability of code and the portability of application
in the case of parallel application. The key idea of the developments is that the par-
allel algorithms are programmed within the application using a single programming
concept and a single language. In classical approaches, the programming language
(C, C++, Fortran) is associated to additional libraries such as PVM or MPI. Exist-
ing libraries in the Java environment are used here. Thus, the maintenance of the
application is made easier, which is important from an industrial point of view. The
proposed approach offers the advantage of a high level of reusability of the different
parts of the code whatever the computational strategy is. The consequence of it is a
high reliability of the software for domain decomposition methods. This reliability is
obtained through a classical object-oriented paradigm which allows the programmer
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to separate the management of finite elements data, the solution algorithms, the man-
agement of different processes and the communication schemes.

In section 2, we give a state of the art for Java applications in Computational Me-
chanics that most often includes parallel computations. In section 3, we described
two different implementations of an overlapping Schwarz domain decomposition
method within the same finite element code. In section 4, we give a numerical appli-
cation that has been run using the same code on different systems.

2 Java in Computational Mechanics

Until now, most of the developments in Java computational mechanics have been
considered by the computational science community, in general concerned by par-
allel computations. In the domain of numerical computations, Java retained some
attention for its networking capabilities and its Internet easy portability. E.g. in [1], a
trivial application based on a boundary element method has been developed. Similar
developments may be found directly on the Internet, including basic finite element
applications, such as in [2] for an application of fracture mechanics. In the compu-
tational mechanics community, Java is often considered as a simple tool to produce
applications on the Internet and/or to effectuate computation on the network. For ex-
ample, Java kind technologies are often used to couple and manage traditional codes
written in C/C++/Fortran. This permits the developers to use ancient codes or part
of code in coupled applications. A consequence of it is to keep a real computational
efficiency. E.g. in [3], an interactive finite element application based on a coupled
C++/Java is described. Comparative tests with FORTRAN and C are conducted on
small problems using direct solvers based on tensor computations; this aims at illus-
trating the high efficiency computational potential of Java. In [4], the development
of GUIs is put in prominent position on an unstructured mesh generator. In [5], the
Java code CartaBlanca is presented. It is an environment for distributed computa-
tions of complex multiphase flows. Based on a finite volume approach, a solution
scheme based on a Newton-Krylov algorithm is described. The code exhibits good
performances. A similar environment has been developed to simulate electromag-
netisms problems in [6]. Both applications show the high potential of the approach
to design more complex and general computational tools in mechanics for example.
These developments exhibit the networking facilities provided in Java. A large num-
ber of publications shows the interest of Java and its efficiency: direct solution of
linear systems [7], FFT and iterative and direct linear systems solvers on Euler type
flows [8], solution of Navier-Stokes flows [9] and [10]. Again, in all these papers,
multiprocesses’ management and networking capabilities of Java are put forward. In
[8], [9] and [11], performances of Java are tested on simple matrix/vector products.
Compared to C/C++ code, only 20 to 30% of efficiency is lost. More recently, the de-
scription of a finite element code in Java was proposed in [12]. The proposed design
remains rather similar to the existing ones based on classical object-oriented ap-
proaches. Nevertheless, this paper shows that it is possible to develop a global code
based on a pure Java approach. The latter can be applied to design large complex
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applications in computational mechanics taking into account complexity in modern
computational mechanics: multiscale, multiphysics and multiprocesses applications.
Firstly, enhanced and homogeneous data organization schemes to deal with com-
plexity are proposed in Java. Secondly, developing a global application in a uniform
environment including all the libraries needed is somehow an attractive idea for sci-
entists and industrials. It is worth noting that similar approaches exist in C# (e.g. see
[15], [16]). This brief analysis shows that even if performances do not achieve the
one of C/C++/Fortran but get close to a certain extent, Java or similar approaches can
be used in computational mechanics including CFD. These strategies offer the main
advantage to design the simulation tools such a way that the technical strategies and
the numerical algorithms are integrated in a seamless way.

3 Schwarz multiplicative multithreaded and distributed
applications

The Schwarz multiplicative algorithm is described in [11]. In Fig. 1, the same de-
composed domain is shown to be solved in a multi-threaded application or in a dis-
tributed application. Solving both problems is made through the same basic code
for the physics and numerical algorithm. A description of the code goes beyond the
scope of this paper and can be found in [13], [17] and [18]. The description of the
multithreaded application is given in [17]. As shown in Fig. 1, the general structure
of the code organization is the same. In the distributed version, the global Schwarz al-
gorithm is managed through a thread located on the computer 1. The algorithm lies in
two points: the management of the domains located on alternative computers and the
communication schemes between these domains located on various computers. The
global management is held by the way of distributed objects. The Java RMI package
is used for that purpose. It permits the programmer to keep a natural and homoge-
neous organization of classes to deal with the domain decomposition algorithm. The
consequence of it is to keep exactly the same structure as in both algorithms, man-
aging real objects in the one case, and distributed objects in the other case. The later
remains seamless for the programmer. The Schwarz algorithm is given in both cases
as follows (programming details are omitted in the following code):
public void solve( )
{

// . . . INITIALIZING OF THE SOLVER
for(int it = 0; (it < maxIteration) && (! iteration.converged() ); it++)
{

for( int color = 0 ; color < 2 ; color++ )
{

int anteColor = ( color + 1 ) % 2 ;
//**************** solution *****************
// SOLUTION BLOCK OMMITED
//*************** exchanges ****************
// EXCHANGES BLOCK OMMITED
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//*****************************************
}
// FINALIZING THE ITERATIONS
// . . .

}
}
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Fig. 1. Multi-threaded application versus distributed application.

The major differences between both approaches remain the initialization phases in
the different threads (solution, exchanges,. . . ). We give here the example of the
thread creation to solve the physical problem for a given domain:
Thread threadii = new Thread ( new Runnable ()

{
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int number = Ni ;
public void run()
{

domains[number].solveSchwarz () ;
}

} ) ;
The variable called domains[number] represents the domain (numbered number) to
be solved at a given time. In the distributed version, the same piece of code becomes:
Thread threadii = new Thread( new Runnable()

{
public void run() {

try {
((ServerDomain) listOfServerDomain.get(indice0a)).solveSchwarz();

} catch (RemoteException e) { }
}

});
In this piece of code, the equivalent domain is called using the code: listOfServer-
Domain.get(indice0a) but the global scheme remains the same. In the first approach,
the domain is located in the same memory space, as in the second approach, it is
located on a separate computer. The lack of efficiency in communication schemes is
the main drawback of the use of RMI distributed objects. The latter is not a problem
for the management of the global Schwarz algorithm but produces a bottleneck when
exchanging data. This is the reason why communications are programmed using the
Socket Java class which a point to point communication scheme. This scheme is im-
plemented at the level of boundary conditions object where the information provided
by the neighbor domain id needed. Once again, only a local modification is needed
within the global framework. For illustration purposes, both schemes are applied to
a Navier-Stokes flow. For programming details in Java, the reader may refer to [19].

4 Numerical application

To illustrate both approaches, we study a Galerkin Navier-Stokes formulation sta-
bilized by adding least-squares type terms. The equations of the problem and the
formulation are presented in Fig. 2. Linearization of the problem is introduced in a
Newton like scheme in the Schwarz multiplicative scheme. A direct linear system
solver based on a Crout decomposition is used to solve the linear system at each
iteration. Note, the same code is compiled once and run on all systems. The multi-
threaded version of code is run on a SGI Altix 16-processors Itanium2 1.3Ghz, 32
Go of RAM. The distributed version is run on a set of simple cluster of PC linked
by a classical network. The code used for both applications is exactly the same. The
global solution algorithm and the boundary conditions in charge of the communica-
tion scheme are of course not the same. The formulation is applied to the computation
of a flow through a set of cylinders shown in Fig. 3. The domain is a periodic layer
of cylinders. Numerical results are given in Fig. 3. First, the pressure contour on a
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typical cell is plotted. Secondly, the mean velocity computed overall the domain is
given with respect to the gradient of pressure over the cell in the direction of the
main flow. The latter represent the homogenized flow through the cylinders. For low
velocities, the relation between the mean velocity and the gradient of pressure is lin-
ear. From a global point of view this can be assimilated to a Darcy’s flow. But as
far as the mean velocity is increasing the linearity disappears. The advection term
is no more negligible and the global flow cannot be assimilated to Darcy’s flow. It
shows the influence of the advection term on the homogenized flow, that cannot any
more considered as a linear Darcy’s flow. Filtration laws could be established such a
way. The same computation has been held using both approaches. From a practical
point of view, we show that the same code can be run on heterogeneous systems.
As both systems are different, we cannot compare the efficiency of both algorithms.
This goes beyond the scope of our qualitative test. We show here that we can easily
switch from a computer to another one without any problem using exactly the same
code and without compiling it. This feature can be very interesting from an industrial
point of view.

Fig. 2. Navier-Stokes model. Initial-boundary value problem and stabilized finite elements
formulation.

5 Conclusion

In this paper, we have presented two computational approaches based on the same
numerical algorithm, a Schwarz overlapping domain decomposition method. The
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first approach is a multithreaded approach of the algorithm; the second one is a dis-
tributed version of it. In the first one, which is to be run on a share memory system, no
communication between the domains is needed. The second one is based on two dif-
ferent communication schemes. The first one permits a master to manage the global
Schwarz algorithm based on a classical object-oriented approach for distributed ob-
jects. Communications for data exchanges are implemented using classical sockets.
This point to point communication scheme allows us to achieve efficiency. The im-
plementation is held in Java which ensures the code to be run directly on all the
systems. The same code is run for both applications. The advantages of such an ap-
proach are:

1. from a programmer point of view: a single language and a single approach for
all the algorithms which means simplicity and reliability due to the fact that the
finite element core remains identical.

2. From a user point of view: the same code can be used on heterogeneous systems
depending on the availability of different systems.

We advocate that such an approach may simplify a lot the use of complex systems
for single applications. This opens new tracks in the design of code that can be used
in the context of either a shared memory system or a distributed memory system. In
this context, mixing both approaches within a single application, taking advantage of
the heterogeneous computers systems available at a given time is made possible in a
simple way.
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Abstract. The fast multipole method is used in many scientific computing applications such
as astrophysics, fluid dynamics, electrostatics and others. It is capable of greatly accelerating
calculations involving pair-wise interactions, but one impediment to a more widespread use
is the algorithmic complexity and programming effort required to implement this method. We
are developing an open source, parallel implementation of the fast multipole method, to be
made available as a component of the PETSc library. In this process, we also contribute to
the understanding of how the accuracy of the multipole approximation depends on the pa-
rameter choices available to the user. Moreover, the proposed parallelization strategy provides
optimizations for automatic data decomposition and load balancing.

1 INTRODUCTION

The advantages of the fast multipole method (FMM) for accelerating pair-wise in-
teractions or N-body problems are well-known. In theory, one can reduce an O(N2)
calculation to O(N), which has a huge impact in simulations using particle methods.
Considering this impact, it is perhaps surprising that the adoption of the FMM algo-
rithm has not been more widespread. There are two main reasons for its seemingly
slow adoption; first, the scaling of the FMM can really only be achieved for simula-
tions involving very large numbers of particles, say, larger than 103 −−104. So only
those researchers interested in solving large problems will see an advantage with the
method. More importantly, perhaps, is the fact that the FMM requires considerable
extra programming effort, when compared with other algorithms like particle-mesh
methods, or treecodes providing O(N logN) complexity.

One could argue that a similar concern has been experienced in relation to most
advanced algorithms. For example, when faced with a problem resulting in a large
system of algebraic equations to be solved, most scientists would be hard pressed to
have to program a modern iterative solution method, such as a generalized minimum
residual (GMRES) method. Their choice, in the face of programming from scratch,
will most likely be direct Gaussian elimination, or if attempting an iterative method,
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the simplest to implement but slow to converge Jacobi method. Fortunately, there is
no need to make this choice, as we nowadays have available a wealth of libraries
for solving linear systems with a variety of advanced methods. What’s more, there
are available parallel implementations of many librarires, for solving large problems
in a distributed computational resource. One of these tools is the PETSc library for
large-scale scientific computing [1]. This library has been under development for
more than 15 years and offers distributed arrays, and parallel vector and matrix op-
erations, as well as a complete suite of solvers, and much more. We propose that a
parallel implementation of the FMM, provided as a library component in PETSc, is a
welcome contribution to the diverse scientific applications that will benefit from the
acceleration of this algorithm.

In this paper, we present an ongoing project which is developing such a library
component, offering an open source, parallel FMM implementation, which further-
more will be supported and maintained via the PETSc project. In the development
of this software component, we have also investigated the features of the FMM ap-
proximation, to offer a deeper understanding of how the accuracy depends on the
parameters. Moreover, the parallelization strategy involves an optimization approach
for data decomposition among processors and load balancing, that should make this
a very useful library for computational scientists.

This paper is presented as follows, in section §2 we present an overview of the
original FMM [2], in section §3 we present our proposed parallelization strategy,
and in §4 scaling results of the parallel implementation are presented.

2 CHARACTERIZATION OF THE MULTIPOLE
APPROXIMATION

2.1 Overview of the algorithm

The FMM is a fast summation method that accelerates the multiple evaluation of
functions of the form:

f (y j) =
N

∑
i=1

ciK(y j,xi) (1)

where the function f (·) is evaluated at a set of {y j} locations. In a single evaluation
of (1) the sum over a set of sources {(ci,xi)} is carried out, where each source is
characterized by its weight ci and position xi. The relation between the evaluation
and source points is given by the the kernel K, in general, the kernel function is
required to decay monotonically.

In order to accelerate the computations, the FMM uses the idea that the influence
of a cluster of sources can be approximated by an agglomerated quantity, when such
influence is evaluated far enough away from the cluster itself. The method works by
dividing the computational domain into a near-domain and a far-domain:

Near domain: contains all the particles that are near the evaluation point, and is usu-
ally a minor fraction of all the N particles. The influence of the near-domain is
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computed by directly evaluating the pair-wise particle interactions with (1). The
computational cost of directly evaluating the near domain is not dominant as the
near-domain remains small.

Far domain: contains all the particles that are far away from the evaluation point, and
ideally contains most of the N particles of the domain. The evaluation of the far
domain will be sped-up by evaluating the approximated influence of clusters of
particles rather than computing the interaction with every particle of the system.

The approximation of the influence of a cluster is represented as Multipole Ex-
pansions (MEs) and as Local Expansions (LEs); these two different representations
of the cluster are the key ideas behind the FMM. The MEs and LEs are Taylor series
(or other) that converge in different subdomains of space. The center of the series for
an ME is the center of the cluster of source particles, and it only converges outside
the cluster of particles. In the case of an LE, the series is centered near an evaluation
point and converges locally.

The first step of the FMM is to hierarchically subdivide space in order to form
the clusters of particles; this is accomplished by using a tree structure, illustrated in
Figure 1, to represent each subdivision. In a one-dimensional example: level 0 is the
whole domain, which is split in two halves at level 1, and so on up to level l. The
spatial decomposition for higher dimensions follows the same idea but changing the
number of subdivisions. In two dimensions, each domain is divided in four, to obtain
a quadtree, while in three dimensions, domains are split in 8 to obtain an oct-tree.
Independently of the dimension of the problem, we can always make a flat drawing of
the tree as in Fig. 1, with the only difference between dimensions being the number
of branches coming out of each node of the flat tree.

Level 0

Level 1

Level 2

Level 1

Level 2

Level 3

Level 4

Fig. 1. Sketch of a one-dimensional domain (right), divided hierarchically using a binary tree
(left), to illustrate the meaning of levels in a tree and the idea of a final leaf holding a set of
particles at the deepest level.
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Level 2

Local Expansion, LE

To child:

LE to LE

To sibling: ME to LE

Downward Sweep

Create

Multipole Expansion, ME

Translate ME

 to parent

Translate ME

to grand-parent

Upward Sweep

Fig. 2. Illustration of the upward sweep and the downward sweep of the tree. The multipole
expansions (ME) are created at the deepest level, then translated upwards to the center of
the parent cells. The MEs are then translated to a local expansion (LE) for the siblings at all
levels deeper than level 2, and then translated downward to children cells. Finally, the LEs are
created at the deepest levels.

After the space decomposition, the FMM builds the MEs for each node of the tree
in a recursive manner. The MEs are built first at the deepest level, level l, and then
translated to the center of the parent cell, recursively creating the ME of the whole
tree. This is referred to as the upward sweep of the tree. Then, in the downward
sweep the MEs are first translated into LEs for all the boxes in the interaction list.
At each level, the interaction list corresponds to the cells of the same level that are
in the far field for a given cell, this is defined by simple relations between nodes
of the tree structure. Finally, the LEs of upper levels are added up to obtain the
complete far domain influence for each box at the leaf level of the tree. The result
is added to the local influence, calculated directly with Equation (1).These ideas are
better visualized with an illustration, as provided in Figure 2. For more details of the
algorithm, we cite the original reference [2].

3 PARALLELIZATION STRATEGY

In the implementation of the FMM for parallel systems, the contribution of this work
lies on automatically performing load balance, while minimizing the communica-
tions between processes. To automatically perform this task, first the FMM is de-
composed into more basic algorithmic elements, and then we automatically optimize
the distribution of these elements across the available processes, using as criteria the
load balance and minimizing communications.

In our parallel strategy, we use sub-trees of the FMM as the basic algorithmic
element to distribute across processes. In order to partition work among processes,
we cut the tree at a certain level k, dividing it into a root tree and 2dk local trees,
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Level k

Sub-tree

Data decomposition

Sub-tree

Fig. 3. Sketch to illustrate the parallelization strategy. The image depicts the FMM algorithm
as a tree, this tree is then “cut” at a chosen level k, and all the resulting sub-trees are distributed
among the available processes.

as seen in Figure 3. By assigning multiple sub-trees to any given process, we can
achieve both load balance and minimimal communication. A basic requirement of
our approach is that when decomposing the FMM, we produce more sub-trees than
available processes.

To optimally distribute the sub-trees among the processes, we change the prob-
lem of distributing the sub-trees into a graph partitioning problem, that we later par-
tition in as many parts as processes available. First, we assemble a graph whose
vertices are the sub-trees, with edges (i, j) indicating that a cell c in sub-tree j is
in the interaction list of cell c′ in sub-tree i, as seen in Figure 4. Then weights are
assigned to each vertex i, indicating the amount of computational work performed
by the sub-tree i, and to each edge (i, j) indicating the communication cost between
sub-trees i and j.

One of the advantages of using the sub-trees as a basic algorithmic elements, is
that due to its well defined structure, we can rapidly estimate the amount of work and
communication performed by the sub-tree. In order to produce these estimates, the
only information that we require is the depth of the sub-trees and neighbor sub-tree
information.

By using the work and communication estimates, we have a weighted graph
representation of the FMM. The graph is now partitioned, for instance using
ParMetis [3], and the tree information can be distributed to the relevant processes.

Advantages of this approach, over a space-filling curve partitioning for example,
include its simplicity, the reuse of the serial tree data structure, and reuse of existing
partitioning tools. Moreover, purely local data and data communicated from other
processes are handled using the same parallel structure, known as Sieve [4]. The
Sieve framework provides support for parallel, scalable, unstructures data structures,
and the operations defined over them. In our parallel implementation, the use of
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vj

vi

eij

Fig. 4. Sketch that illustrates the graph representation of the sub-trees. The FMM sub-trees are
represented as vertex in the graph, and the communication between sub-trees is represented
by the edges between corresponding vertices. Each vertex has an associated weight vi, that
represents an estimate of the total work performed by the sub-tree. Each edge has an associated
weight ei j , that represents an estimate of the work between sub-trees vi and v j. By finding an
optimal partitioning of the graph into as many section as processes available, we achieve load
balance while minimizing communications. In the figure the graph has been partitioned in
three sections, the boundaries between sections are represented by the dashed lines, and all
the sub-trees that belongs to the same section are assigned to the same process.

Sieve reduces the parallelism to a single operation for neighbor and interaction list
exchange.

4 RESULTS

In this section we present results of the parallel implementation on a multicore ar-
chitecture, a Mac Pro machine, equipped with two quad-core processors and 8GB in
RAM. The implementation is being currently integrated into the open source PETSc
library. In Figure 5, we present experimental results of the timings obtained from
an optimized version of PETSc library using its built-in profiling tools. The experi-
ments were run on a multicore setup with up to four cores working in parallel, while
varying the number of particles in the system. We performed experiments from three
thousand particles up to system with more than two million particles. All the exper-
iments were run for a fixed set of parameters of the FMM algorithm, in all cases
we used parameters that ensure us to achieve high accuracy an performance (FMM
expansion terms p = 17, and FMM tree level l = 8).

In the experimental results, we were able to evaluate a problem with up to two
million particles in under 20 seconds. To put this in context, if we consider a problem
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Fig. 5. Log-log plot of the total execution time of the FMM parallel algorithm for fixed pa-
rameters (expansion terms p = 17, and FMM tree level l = 8) vs. problem size (number of
particles in the system). In the figure, each line represents the total amount of time used by the
parallel FMM to compute the interaction in the system when using 1, 2, 3, and 4 processors.

with one million particles (N = 106), the direct computation of the N2 operations
would be proportional to 1 Tera floating point operations (1012 operations), in order
to compute all the particles interactions of the system. Instead, the FMM algorithm
accelerates the computations and achieve an approximate result with high accuracy
in only 10 Giga floating point operations, meaning 100 times less floating point op-
erations.

5 CONCLUSIONS AND FUTURE WORK

In this paper we have presented the first open source project of a parallel Fast Multi-
pole Method library. As second contribution in this work, we also introduced a new
parallelization strategy for the Fast Multipole Method algorithm that automatically
achieves load balance and minimization of the communication between processes.
The current implementation is capable of solving N-body problems for millions of
unknowns in a multicore machine with good results. We are currently tuning the
library and running experiments on a cluster setup.

With this paper we expect to contribute to widespread the use of fast algorithms
by the scientific community, and the open source characteristic of the FMM library
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is the first step towards this goal. The open source project is currently being incor-
porated into the PETSc library [1] and a first version of the software is going to be
released by October 2008.
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Abstract. We analyze in this paper the parallel performance of a computational mechanics
code, based on a hybrid MPI-OpenMP parallelization. The specific problems considered are
an explicit compressible flow solver and an implicit incompressible flow solver. Their perfor-
mance using a fully MPI approach and a Hybrid approach are compared. The performance
obtained on different architextures are also compared.

1 Introduction

In a previous paper [4],the authors presented the parallel performance of a computa-
tional mechanics code, which parallelization was based on a mesh partitioning tech-
nique using MPI as a communication library. The physical problems treated were
the following: the incompressible Navier-Stokes(NS) equations; the compressible
NS equations; the wave equation. The latter was solved using an implicit monolithic
approach where as the last two problems were solved using an explicit time integra-
tion scheme. This paper presents the developments carried out on the incompressible
and compressible NS equations. In the first set of equations, a projection method
was developed and parallelized. In the second set of equations, OpenMP was im-
plemented in the code. The objective of this work consists in assessing the parallel
performance obtained on these sets of equations, on different architectures.

2 Incompressible flow equations

Given ρ the density of the fluid, μ its viscosity, u and p its velocity and pressure, the
incompressible flow equations are:

ρ ∂u
∂ t +ρ(u ·∇)u−∇ · [2με(u)]+∇p = ρ f inΩ ,

∇ ·u = 0 inΩ .
(1)

∗ This work has been carried out in the framework of the Spanish Project OPTIDIS
(ENE2005-05274). The research of Dr. Houzeaux has been partly done under a Ramon
y Cajal contract with the Spanish Ministerio de Educación y Ciencia.
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where f is a force term. This system must be provided with appropriate initial and
boundary conditions. Time discretization is achieved with the trapezoidal rule with
constant θ and a time step δ t. Space discretization is carried out in the finite element
context together with a variational multiscale approach [2]. Let superindex i denote
the linearization loop counter and n the time loop counter. When unknowns are con-
sidered at current linearization step i+ 1 or time step n + 1, superscript are omitted.
We end up solving the following algebraic system:

[
Auu Aup

Apu App

][
u
p

]
=
[

bu

bp

]
(2)

Matrix App comes from the stabilization of the pressure term (GLS like term), en-
abling the use of equal order interpolation. In a variational multiscale context, this
term comes from the algebraic approximation of the subgrid scale equation [2]. Pi-
cards method is used to linearize the convection term. The direct solution of (2) is
referred to as the monolithic solution of the equations. It is well known that the con-
vergence properties of classical iterative solvers like GMRES is very poor, due to
the coupling of the velocity and pressure. Therefore, another approach is envisaged,
similar to projection methods [5] [3] and extensively described in [1]. It consists
in solving a preconditioned Richardson iteration for the Schur complement of the
pressure. In addition, this iteration is coupled to the linearization loop. The precon-
ditionner is a slightly modified Laplacian matrix, δ tL̃. The modification is necessary
to take into account the Neumann part of the boundaries. In algebraic words, at each
time step n + 1, given an initial u0 and p0, solve for i = 0,1,2... until convergence

Auuui+1 = bu −Auppi, (3)

(App +δ tL̃)pi+1 = bp −Apuui+1 + δ tL̃pi. (4)

This predictor-corrector scheme is similar to classical incremental projection meth-
ods. The differenceis thatweiterate within each time step to obtain the solution ofthe
monolithic scheme. In fact, note that when pi+1 = pi, we recover the monolithic so-
lution. A not strict continuous representation of this scheme is the following system:

ρ
ui+1,n+1−un

θδ t
+ρ(ui,n+1 ·∇)ui+1,n+1 −∇ · [2με(ui+1,n+1)] = ρ f −∇pi,n+1, (5)

δ tΔ pi+1,n+1 = −∇ ·ui+1,n+1 + δ tΔ pi,n+1. (6)

3 Compressible flow equations

Let U be the linear momentum, T the temperature, E the total energy and k the
thermal conductivity. The compressible flow equations in its conservative form are
[7]:

∂tU +∇ · (U ⊗u)∇ · [2με(u)]+∇p = ρg,
∂ρ
∂ t +∇ ·U = 0,
∂E
∂ t +∇ · (uE− k∇T −u ·σ) = ρu ·g.

(7)
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This system is closed with a state equation, typically the ideal gas’one. Additionally,
laws for the viscosity and the thermal conductivity can be used for some particu-
lar regimes or materials. Boundary and initial conditions must be provided. Across
the literature, different sets of unknowns have been proposed to properly solve the
compressible flow equations. The conservative set Φ = (U,ρ ,E) is one of the most
favored due to its properties face to the discretization process. This is the unknowns’
set chosen to run the compressible flow benchmarks below.

After space and time discretization and linearization, we obtain the following
system ⎡

⎣
AUU AUρ AUE

AρU Aρρ AρE

AEU AEρ AEE

⎤

⎦

⎡

⎣Φ

⎤

⎦=

⎡

⎣
bU

bρ
bE

⎤

⎦ (8)

that can be compactly written as:
AΦ = b (9)

where A is the system matrix that can be decomposed in blocks according to the
coupling among the different unknowns. Matrix A structure is heavily dependent
on the unknowns set, the linearization, the stabilization procedure, the shock cap-
turing technique or the time and space discretizations. In this paper, when dealing
with compressible flow we follow an explicit formulation, meaning tha the system is
solved using a preconditioned Richardson equation at each time step as follows:

Un+1 = un + P−1[bU −AUρρn −AUEEn)−AUUUn],
ρn+1 = ρn + P−1[bρ −AρUUn −AρEEn)−Aρρρn],
En+1 = En + P−1[bE −AEUUn −AEρρn)−AEEEn],

(10)

and in compact form,
Φn+1 =Φn + P−1

c Rn (11)

The preconditionner P is taken as

P =
1
δ t

M, (12)

where M is the diagonal mass matrix, computed using a closed integration rule for
which the integration points are located on the nodes. Pc is its extension in compact
notation, considering that each equation can have its own time step.

Additionally, in order to deal with low-Mach regions in an accurate and stable
way, fractional step techniques are used. They are so-called fractional because the
Navier-Stokes equations are solved by seggregating the operators, leading to a solu-
tion scheme of succesive stages. In this paper,we follow the strategy proposed by the
CBS algorithm [6], where the fractional step is taken on the pressure gradient term
in the momentum equation. In compact form, the fractional explicit algorithm here
used is: at each time step solve

Ũ = Un + P−1Rn
U

Φn+1 = Φ̃n + P−1
c R̃n (13)
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where Ũ is the fractional momentum, Rn
U is the space residual of the linear momen-

tum equation with the pressure gradient term seggregated2 and Φ̃n = (Ũ ,ρ ,E).

4 Parallelization strategy

Concerning the MPI communication, the parallelization strategy was already pre-
sented in [4]. As long as the explicit compressible flow solver is concerned, OpenMP
directives were implemented to the loop elements. Criticial sections are only located
at the scatter of the local residual to the global residual.

5 Performance

The speedup for the incompressible flow solver is shownin Figure 1(Left). The data
were obtained on a BlueGene/L and aBlueGene/P.The number of elements is 5M
hexahedra, which is relatively low with respect to the number of CPUs used. On 4000
CPUs the average number of elements per CPU is a bit higher that 1000. However,
the speedup is around 85%.

Fig. 1. Speedup, incompressible flow solver. Comparison BlueGene/L and/P.

Figure 1(Right) shows the speedup obtained with a full MPI approach and an hy-
brid MPI-OpenMP approach. The mesh is composed of 2.6M hexahedra elements.
Both give similar speedup results, with a slightly lower speedup for the hybrid ap-
proach. Note that not all the loops were parallelized in this case.

[1] G. Houzeaux and M. Vazquez, Parallel implementation of an incompressible
Navier-Stokes solver, in preparation.

[2] G. Houzeaux and J. Principe, A variational subgrid scale model for transient
incompressible flows, Int. J. CFD, (2008), In press.

2 Seggregated means that the pressure term is partially considered, multiplied by a incremen-
tal factor ranging from 0 to 1.
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Abstract. Heterogeneous systems are increasingly being used as platforms for
resource-intensive distributed parallel mesh applications. A critical contributors to
the performance of such applications is i) the scheduling of constituent application
tasks ont he system and ii) the mesh partitioning. Since often application submis-
sions from users cannot improve the total turnaround time, the application must
be scheduled automatically by the scheduler using information about its scalabil-
ity characteristics. To obtain the best performance, it is imperative to take into ac-
count both application-specific and dynamic system information in developing i) a
schedule which meets his performance criteria and ii) a mesh partitioning scheme
that takes into account this system heterogeneity. In [1], we have presented a mesh
partitioning scheme, that takes into account the heterogeneity of CPU and networks.
Load balancing mesh partition strategy improves the performance of parallel appli-
cations running in a heterogeneous environment. In this work, we present a new
hierarchical adaptive scheme that allows to optimize the scheduling of N parallel
mesh applications simultaneously on a heterogeneous system. The new scheme con-
sists in selecting the partition size of each application and then partitioning each
application on the allocated heterogeneous ressources. We illustrate our scheduling
approach with a detailed description and results for a distributed 3D CFD application
on a heterogeneous platform.

1 Introduction

Computational fluid dynamics(CFD) applications usually operate on a huge set of
application data associated to unstructured meshes. For this reason CFD problems
represent a significant part of high performance supercomputing applications. Finite
element and finite volume methods use unstructured meshes. We represent the appli-
cation as a weighted undirected graph W = (V (W ),E(W )), which we will call the
workload graph . Each vertex v has a computational weight ω(v), which reflects the
amount of the computation to be done atv. An edge between vertices u and v, denoted

D. Tromeur-Dervout (eds.), Parallel Computational Fluid Dynamics 2008,
Lecture Notes in Computational Science and Engineering 74,
DOI: 10.1007/978-3-642-14438-7 32, c© Springer-Verlag Berlin Heidelberg 2010
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{u,v}, has a computational weight ω({u,v}), which reflects the data dependency be-
tween them. Partitioning applications onto heterogeneous architecture such as a Grid
environment requires a special model architecture that reflects both heterogeneous
resource characteristics and also non homogeneous communication network between
these different resources. The machine architecture can be represented as a weighted
undirected graph A = (V (A),E(A)), which we will call the architecture graph. It
consists in a set of vertices V (A) = {p1, p2, ..., pn}, denoting processors, and a set of
edges E(A) = {{pi,}|pi, p j ∈ P}, representing communication links between pro-
cessors. Each processor p has a processing weight sp, modeling its processing power
per unit of computation. Each link has a link weight vpq, that denotes the communi-
cation bandwidth per unit of communication between processors p and q. In [1] we
have proposed a heterogeneous re-partitioning algorithm, called MeshMigration that
takes into account the architecture characteristics. MeshMigration generates a high
quality partition and provides a load balance on each processor of the heterogeneous
architecture. In this paper, we develop an iterative scheme that performs automati-
cally a heuristic based search for a schedule that minimizes average turnaround time
coupled with the mesh partitioning scheme described in [1]. Figure 1 represents a di-
agram of the coupled multi-mesh partitioning algorithm. This paper is organized as
follows: In section 2, we define formally an iterative scheduling algorithm, followed
by a description of the partitioning problem in section 3. Section 5 discusses the
hierarchical mesh partitioner MeshMigration. Finally in section 6, we will describe
preliminary experimental results for a finite element code executed on the Grid.

Fig. 1. A diagram of the global multi-mesh partitioning approach
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2 The iterative scheduling algorithm

An optimal moldable scheduling strategy would inherently take into account the effi-
ciency, job size and system load without the need to tune parameters. In this section,
we describe an iterative scheme that does so. Our iterative algorithm begins by giv-
ing each job an initial minimal partition of one processor. A conservative schedule
is generated; this schedule is iteratively modified by giving a processor to the most
worthy job, the job that,if given an additional processor,has the greatest decrease in
runtime. If the addition of a processor to the most worthy job decreased the average
response time of the schedule, the addition is accepted, otherwise not.

1. Input List of reserved jobs
2. unmark all jobs and set partition sizes to one
3. While unmarked jobs exist

a) find unmarked candidate job j(see Algorithm 2)
b) add one to partition size of job j
c) create a conservative schedule for all jobs
d) If average turnaround time did not improve

i. mark job j
ii. decrement partition size of candidate job j

iii. create a conservative schedule for all jobs
e) end if

4. end while

Algorithm 1: The iterative scheduling algorithm

Algorithm 1 shows the algorithm for the iterative algorithm. Initially each job is
assigned one node. This allocation results in optimal per job efficiency, but may result
in poor average turn around and system utilization. The next step(lines3to4) searches
for a schedule with an improved average turn around time. Step3-(a) chooses the
job which will benefit the most of receiving an extra processor. This job is a good
candidate to try to increasing its processor allocation. Step 3-(b) to 3-(e) determine if
the increased allocation results in a better schedule. If the increase produces a worse
schedule,the job is marked as a bad choice and the remaining jobs are considered.

1. Input List of reserved jobs
2. set bestImprovement to zero
3. for each unmarked job j in the reserved job list

a) let n be the current node assignment if job j
b) let i be the expected runtime on n processors
c) i be the expected runtime on n+1 processors
d) if (i− i′ > bestImprovement)

i. set best Improvement to i− i′
ii. set best Job to j

e) end if
4. end for
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5. return best Job

Algorithm 2: The unmarked candidate search algorithm

This approach takes all the aspects discussed previously into account: load, scal-
ability, job size, and utilization. If a job is small,the improvement from adding a
processor will be minimal, and thus it will be less likely to receive an increased
allocation. Likewise, if a job scales poorly,it will benefit less from receiving more
processors, and will be less likely to be chosen as the candidate. If the load is low,
wider jobs will result in a better average turnaround time, and wider allocations will
be given. If the load is high, increasing the allocation of poorly scalable jobs will
increase average turnaround time. Finally, the system achieves a good utilization,
as processors will not be wasted unless there is no work to be done or using the
processor reduces the average turnaround time.

We evaluate our iterative algorithm via simulation. The simulation is based
on the workload logs archive of the machine SP2 of th eCornell Theory Cen-
ter(CTC).The CTC workloads are available on the web at http://www.cs.
huji.ac.il/labs/parallel/workload/. We use Downeys model [4] of
the speedup (S(n) = t1/tn) of parallel jobs to derive execution time for a partition
size n. Downeys speedup model uses two parameters: A (the average parallelism)
and σ (an approximation of the coefficient of variance in parallelism). The speedup
of a job j is then given by:

S(n) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

An
A+σ(n−1)/2 σ ≤ 1, 1 ≤ n ≤ A

An
σ(A−1/2)+n(1−σ/2) σ ≤ 1, A ≤ n ≤ 2A−1
A σ ≤ 1, n ≥ 2A−1

nA(σ+1)
σ(n+A−1)+A σ ≥ 1, 1 ≤ n ≤ A + Aσ−σ
A σ ≥ 1, n ≥ A + Aσ−σ

(1)

Figure 2 shows the results comparison between the rigid workload extracted from
the log files of the CTC machine and our moldable scheduling algorithm. In these
experiments, we supposethatjobsscaletothe size of the system(A = system size). Re-
sults show that our algorithm is able to reduce the turn-around time to about half of
that obtained by the user request.

3 Partitioning Problem

We consider a workload graph W (V (W ),E(W ))which represents the application, and
a architecture graph A(V (A),E(A)) which represents the Grid. On a computational
grid, the machine architecture is heterogeneous both for network and processors.
So we consider the characteristics of architecture graph to define the partitions. A
mapping of a workload graph onto a architecture graph can be formally described
by:

m : V (W ) →V (A) (2)

http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/
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Fig. 2. Effective load (EL= (Number of jobs)/Number of processors)

where m(v) = p, if the vertex v of W is assigned to a processor p of A. In order
to evaluate the quality of a mapping,we define two cost models: one for estimating
the computational cost and the other one for the communication cost evaluation. For
each mapping of the workload graph onto the architecture graph we can estimate
the computational cost as follows: If a vertex v is assigned to a processor p, the
computational cost is given by tv

p = ω(v)/sp, that is the ratio of the computational
weight of v per the processing weight of p. Computational cost estimates the time
units required by p to process v. The communication cost is introduced when we
have a data communication transfer between two different nodes in the target graph.
Suppose {u,v} ∈ E(W ) and u ∈ V (W ) is assigned to processor p and v ∈ V (W ) is
assigned to processor q. The data is transferred from the local memory of p to the
local memory of q via message passing. In this case, the communication cost is given
by cu,v

pq = ω({u,v})/vpq, that is the ratio of the communication weight of edge {u,v}
per the link weight between p and q. The communication cost represents the time
units required for data transfer between the vertices u and v. As in [1], we define a
cost function as follows: Φ(W,A,m) := T +C where

• T = (1, ...,tcard(V (A)))t , tp = C(p,m)
sp

the computational time of p, and C(p,m) is
the weight of subgraph assigned to p.

• C = (C(1,m), ...,C(card(V (A)),m)t and C(p,m) = ∑q∈V(A) �=pC({p,q} ,m) the
communication time associated to a processor p with his neighbors.

The definition of the graph partitioning problem is to find a partition (mapping
m) which minimizes the cost functionΦ(W,A,m). Clearly, the problem is extensible
to the classical graph partitioning and task assignment problem, and it is well known
that this problem is NP-complete. In the next section, we describe the iterative algo-
rithm chosen to minimize this cost function and find the efficient partitioning.
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4 Hierarchical partitioning strategy

In order to provide an efficient partitioning in a heterogeneous system as the Grid
environment, we introduce a hierarchical approach. We define two architecture levels
in the target graph: level one is the set of processors, and the second level is the set
of clusters. Then, the partitioning is carried out in two stages:

1. We consider a grid composed by several clusters. We decompose the mesh in
order to assign one partition to each cluster taking into account the bandwidth of
communications layers between these various clusters. The decomposition takes
place via the relationship defined in [1]. We denote N numbers of clusters and
G = {C0, ...,CN−1} the set of clusters. Formally:
Let p and q two processors in the architecture graph, p ∈Ci and q ∈Cj :

⎧
⎨

⎩

ifCi �= Cj

Friendship(p,q) = max(F0|pq −F p
min,F0|pq −Fq

min)
elseFriendship(p,q) = 0.

(3)

2. We denoteΠ = {π0, ...,πN−1}, the set of the sub-domains mapped on G. For ev-
ery partitionπi assigned to the cluster Ci = {p0, ..., pI−1}, where I is the number
of processors of Ci, we re-partitioned πi on the set of processors of Ci: For every
p and q two processors on the architecture graph, p ∈Ci and q ∈Cj:

⎧
⎨

⎩

ifCi = Cj

Friendship(p,q) = max(F0|pq −F p
min,F0|pq −Fq

min)
elseFriendship(p,q) = 0.

(4)

5 Experimentation of a finite element code on the grid

5.1 Pour of a jerrican

This application depicts the flow of a fluid by the neck of a jerrican (see [2] for more
details). At the beginning of the simulation, the fluid is completely in the jerrican
which is reversed; its open neck is directed downwards. The fluid then starts to flow
by the opening neck, while the air is engulfed in the jerrican in the form of bub-
bles. Thus, the cavity empties little by little its initial contents and filled with air,
until the fluid is completely poured. The flow isgoverned by Navier-Stokes equa-
tions and the evolution of the two involved phases (liquid and air) is ensured by the
transport of a Level Set function which enables the capture of theinterface [2]. The
mesh discretizing the domain contains 500,000 nodes and 2,750,000 elements. The
parameters used are as follows: the fluid has a viscosity of 10 Pa.s and a density
of 1000kg/m3, air has a viscosity of 1 Pa.s and a density of 1kg/m3. The boundary
conditions are of sticking type, i.e. a null speed is imposed on all surfaces of the ge-
ometry. Figure 3 represents the interface between the fluid and the air at times t = 0s
and t = 18s. Whereas air bubbles go up in the jerrican (the top cavity), the fluid flows
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in the bottom cavity through the neck of the jerrican. A total of 15 processors, and 3
clusters (NINA,PF and IUSTI) of MecaGrid1 are used to carry out this application.
It chosen to allocate 4 NINA and 5 PF and 6 IUSTI. This choice is justified by the
calculated power of the processors: for both NINA and IUSTI clusters,the power is
approximately 125M f lops/s, and for the PF, it is 44M f lops/s, that is to say 2.5
times lower. On the INRIA site, 2 NINA are replaced by 5 PF. Thus, with 4 NINA,
5 PF and 6 IUSTI, the computing power distributed on the two sites is almost the
same ones. Measurements of following times are raised after 100 time increments,
with homogeneous partitions, than optimized partitions. In Table 1, we use a ILU(1)
preconditioning and a MinRes solver to solve the linearized flow system. The first
observation is that the gain of timeprovided by the optimized partitioning is very im-
portant; the execution time passed from 2 days and 19 hours to one day and 8 hours,
which makes a gain of 53%. Furthermore distributing the workload equitably, the hi-
erarchical partitioning algorithm allows to decrease considerably the very penalizing
inter sites communication while cutting the mesh in a place where there is few nodes.
Finally, the hierarchical partitioning approach saved almost 53% of the computing
time of MecaGrid.

4 PF-5 NINA-6 IUSTI Homogeneous partition optimized partition
Nb procs 15 15
NSAssembling(s) 3680 1904
NSResolution(s) 235504 107899
Alphaassembling(s) 2357 2896
Alpha resolution(s) 258 113
Total(s) 241799 113364

Table 1. run time on Grid with ILU(1) preconditionner

Fig. 3. simulation of jerrican poor: sequences at t=0s (left) and t=18s (right)

1 www-sop.inria.fr/smash/mecagrid
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6 Conclusion

In this paper, we have presented a new adaptive multi-mesh partitioning approach, for
partitioning workloads graph onto heterogeneous architecture graph. This algorithm
runs in parallel and have shown that optimized load balancing strategies improve
the performance of the applications executed on a heterogeneous environment. One
note that the results presented here are associated to just a single mesh application, a
work-in progress consists in applied this approach to multi-mesh applications.
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with interface tracking coupled solution, in Coupled Problems 2005, barcelona,
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1 Introduction

Many world leading high-end computing (HEC) facilities are now offering over 100
Teraflops/s of performance and several initiatives have begun to look forward to
Petascale computing5 (1015 flop/s). Los Alamos National Laboratory and Oak Ridge
National Laboratory (ORNL) already have Petascale systems, which are leading the
current (Nov 2008) TOP500 list [1]. Computing at the Petascale raises a number
of significant challenges for parallel computational fluid dynamics codes. Most sig-
nificantly, further improvements to the performance of individual processors will
be limited and therefore Petascale systems are likely to contain 100,000+ proces-
sors. Thus a critical aspect for utilising high Terascale and Petascale resources is the
scalability of the underlying numerical methods, both with execution time with the
number of processors and scaling of time with problem size. In this paper we analyse
the performance of several CFD codes for a range of datasets on some of the latest
high performance computing architectures. This includes Direct Numerical Simula-
tions (DNS) via the SBLI [2] and SENGA2 [3] codes, and Large Eddy Simulations
(LES) using both STREAMS LES [4] and the general purpose open source CFD
code Code Saturne [5].

2 Parallel CFD codes

We analyse the parallel performance of several parallel CFD codes on the target
high-end computing systems. The codes have been chosen to reflect a range of appli-

5 Petascale assumes 10s of Petaflop/s Peak Performance and 1 Petaflop/s Sustained Perfor-
mance on HEC applications

D. Tromeur-Dervout (eds.), Parallel Computational Fluid Dynamics 2008,
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cations (e.g. turbulence at the shock/boundary layer interaction, combustion) using
both DNS-based and LES-based computational methods. All codes are written in
Fortran with MPI [6] for data transfer between processors. The Code Saturne pack-
age also has modules written in the C programming language and the Python script-
ing language.

2.1 SBLI

Fluid flows encountered in real applications are invariably turbulent. There is, there-
fore, an ever-increasing need to understand turbulence and, more importantly, to be
able to model turbulent flows with improved predictive capabilities. As computing
technology continues to improve, it is becoming more feasible to solve the gov-
erning equations of motion, the Navier-Stokes equations, from first principles. The
direct solution of the equations of motion for a fluid, however, remains a formidable
task and simulations are only possible for flows with small to modest Reynolds num-
bers. Within the UK, the Turbulence Consortium (UKTC) has been at the forefront
of simulating turbulent flows by direct numerical simulation (DNS). UKTC has de-
veloped the parallel code SBLI to solve problems associated with shock/boundary-
layer interaction. SBLI [2] is a compressible DNS code based on finite difference
method using high-order central differencing in space and explicit Runge-Kutta for
time marching. A grid transformation routine enables this code to simulate relatively
complex-geometry flows. The parallel version is under active development and its
parallel performance has been fine-tuned. A set of test cases, some with complex
geometry involving multiple Cartesian-topology blocks, have been specified for its
testing and benchmarking on a range of HPC platforms.

2.2 SENGA2

The SENGA2 [3] code has been developed at The University of Cambridge and
has been designed to facilitate combustion DNS with any desired level of chem-
istry, from single-step Arrhenius mechanisms through all classes of reduced reaction
mechanisms up to fully detailed reaction mechanisms. The Navier-Stokes momen-
tum equations are solved in fully compressible form together with the continuity
equation and a conservation equation for the stagnation internal energy, as well as
any required number of balance equations for species mass fraction. Each component
of the reacting mixture is assumed to obey the equations of state for a semi-perfect
gas. Boundary conditions are specified using an extended form of the Navier-Stokes
Characteristic Boundary Condition formulation, and available boundary conditions
include periodic as well as several types of walls, inflows and outflows. The numer-
ical framework is based on a finite-difference approach for spatial discretisation to-
gether with a Runge-Kutta algorithm for time-stepping. High-order explicit schemes
are preferred due to their speed of execution and ease of parallel implementation,
and a 10th order explicit scheme is standard for interior points. The code is fully par-
allel using domain decomposition over a cubic topology. Current HEC architectures
permit 3D DNS of the turbulent flow fields but with only limited representation of
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the combustion chemistry and a highly simplified representation of the geometry. At
the Petascale it will be possible to move towards more complex configurations that
are much closer to industrial requirements.

2.3 STREAMS-LES

STREAM-LES [4] is a CFD package developed at Imperial College, London, for
Large Eddy Simulations (LES) of incompressible flow. Its numerical framework rests
on a general structured, multi-block, collocated-storage finite volume method with
non-orthogonal mesh capability. The spatial scheme is second-order central and the
time-matching is based on a fractional-step method in which a provisional velocity
field is made divergence-free through the solution of the pressure-Poisson equation.
The code is fully parallelized using MPI through standard domain decomposition
and runs on several high-end computing platforms.

2.4 CODE SATURNE

Code Saturne [5] is an open source general purpose computational fluid dynamics
software package developed by EDF [7]. It is based on a co-located Finite Volume
approach that accepts meshes with any type of cell, including tetrahedral, hexahedral,
prismatic, pyramidal, polyhedral and any type of grid structure, including unstruc-
tured, block structured, hybrid, conforming or with hanging nodes. Its basic capabili-
ties enable the handling of either incompressible or expandable flows with or without
heat transfer and turbulence (mixing length, 2-equation models, v2f, Reynolds stress
models, Large Eddy Simulations etc.). Dedicated modules are available for specific
physics such as radiative heat transfer, combustion (e.g. gas, coal), magneto-hydro
dynamics, compressible flows, two-phase flows (Euler-Lagrange approach with two-
way coupling) with extensions to specific applications (e.g. for atmospheric environ-
ment: code Mercure Saturne).

3 High-End Computing Platforms

3.1 HPCx

HPCx [8] is the UK’s National Capability Computing service, located at the Compu-
tational Science and Engineering Department at STFC Daresbury Laboratory [9] and
comprising of 160 IBM eServer 575 nodes. Each eServer node contains 16 1.5 GHz
POWER5 processors, giving a total of 2560 processors for the system. The total main
memory of 32 GBytes per node is shared between the 16 processors of the node. The
nodes in the HPCx system are connected via IBM’s High Performance Switch. The
current configuration has a sustained Linpack performance of 12.9 Tflop/s.
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3.2 HECToR

HECToR [10] is the UKs latest high-end computing resource, located at the Uni-
versity of Edinburgh and run by the HPCx consortium. It is a Cray XT4 system
comprising 1416 compute blades, each of which has 4 dual-core processor sockets.
This amounts to a total of 11,328 cores, each of which acts as a single CPU. The
processor is an AMD 2.8 GHz Opteron. Each dual-core socket shares 6 GB of mem-
ory, giving a total of 33.2 TB in all. The Linpack performance of the system is 54.6
Tflops/s, positioning the system at number 46 in the current (Nov 2008) TOP500 list.
We have extended the available range of processor counts with runs on the Jaguar6

Cray XT4 at ORNL [11]. Jaguar has quad-core nodes running at 2.1 GHz but is
otherwise similar to the HECToR system.

3.3 BlueGene

STFC Daresbury Laboratory operates single rack Blue Gene/L and Blue Gene/P
systems. Both systems contain 1024 chips, with 2 processor cores per chip in the
L system and 4 processor cores per chip in the P system, giving a total of 2048
cores and 4096 cores respectively. Memory is provided at 512 Mbytes per core in
both systems. The basic processor in the L system is the Power440 running at 700
MHz, whilst the P system uses a processor from the Power450 family running at 850
MHz. Inter-processor communications take place via two different networks: a 3-D
torus for general communications and a tree network for collective communication
operations. The philosophy behind the Blue Gene design is that the speed of the pro-
cessor is traded in favour of very dense packaging and low power consumption. As a
consequence of these features, Blue Gene systems have featured prominently in the
Green500 supercomputer list [12].

4 Performance Results

Performance results are presented in this section for the codes and platforms under
investigation.

4.1 SBLI

The benchmark case for the SBLI code is a simple turbulent channel flow benchmark
run for 100 timesteps using grid sizes of 3603 (360× 360× 360), 4803, 6003 and
10243. The most important communications structure is a halo-exchange between
adjacent computational sub-domains. Providing the problem size is large enough to
give a small surface area to volume ratio for each sub-domain, the communications
costs are small relative to computation and do not constitute a bottleneck and we see

6 This Jaguar system was the older system available to general users in late 2008, not the
Petascale system of the same name from the Nov 2008 TOP500 list.
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almost linear scaling from all systems out to 1024 processors. Performance for the
three smaller grid sizes is shown in Figure 1. In order to be able to compare different
problem sizes the performance is defined as the number of grid points times the
number of timesteps divided by the execution time. Some cache effects are seen up
to around 1000 processors where the smaller grid sizes perform better as the sub-
domains on each processor fit into cache at lower processor counts. However, above
1000 processors we see that, as expected, the scalability is better for larger problem
sizes due to the better compute/communication ratio. This is confirmed by profiling
measurements which show that the time spent in MPI routines reaches 42% for the
smallest grid size on 6144 processors.

Fig. 1. Performance of SBLI on up to 8192 processors of the HECToR Cray XT4 for three
grid sizes.

Parallel performance on jaguar up to 24576 processors, on HECToR up to 8192
and on HPCx on up to 1536 is shown in Figure 2 for the largest problem size of
10243 grid points. Scalability is good right out to 24576 processors with parallel
efficiency of 61% at this point relative to 1024 processors, the smallest practical
configuration for this data size due to memory constraints. HPCx has very similar
per-processor performance to jaguar. HECToR is faster per processor than jaguar by
about 16%, rather less than is expected from the 33% faster clock speed (2.8 GHz vs.
2.1 GHz). There are many factors e.g. dual-core vs. quad-core, memory architecture
and OS, compiler and library version differences which could be responsible for this.
Hardware profiling studies of this code have shown that its performance is highly
dependent on the cache utilization and bandwidth to main memory [13]. This is
confirmed by under-populating the nodes (using only one core per node on HECToR
and only one or two cores per node on jaguar), which shows a speed-up of 33%
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Fig. 2. Performance of SBLI on the HECToR, jaguar and HPCx systems for the 10243 grid
size.

using only half the available cores and 50% when using only one core of the quad-
core nodes.

4.2 STREAMS-LES

The test case is a turbulent channel flow using 2,097,152 grid points calculated for
75000 time steps. The arbitrary performance shown is relative to the time taken to
complete the simulation on 128 processors of BlueGene/P. Parallel efficiency is be-
tween around 76% to around 96% for the three platforms up to 256 processors. How-
ever from 256 to 512 processors the parallel efficiency falls to approximately 45%
(BG/P), 53% (Cray XT4) and 64% (IBM Power5). Currently, further investigation
of the parallel performance of STREAMS-LES is being undertaken, including the
analysis of larger datasets where possible.

4.3 Code Saturne

The parallel performance of Code Saturne on the IBM PWR5, BG/P and BG/L sys-
tems is shown in Figure 4. This test case consists of a LES at Reynolds number based
of the friction velocity of 395 in a channel. The dimension of the box is 6.4×2×3.2
and a 256×256×256 (16M cells) mesh is considered. Periodic boundary conditions
apply in stream-wise and span-wise directions and no-slip conditions in the wall nor-
mal ones. Van Driest damping is used at walls and the flow is driven by a constant
pressure gradient. The parallel scaling properties up to 1024 processors is very good
for all the IBM platforms considered here, with the PWR5-based architecture per-
forming around twice as fast as the BG/P, which in turn is around 40% faster than
the BG/L. Figure 5 shows the parallel performance of Code Saturne on the Hector
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Fig. 3. Performance of STREAMS-LES on high-end systems.

Fig. 4. Performance of Code Saturne for a 16M cell open channel dataset on IBM platforms.

Cray XT4 platform. Here a larger problem involving an unstructured grid and 100
million cells is chosen as the dataset for the parallel performance appraisal. The sim-
ulation represents the flow of around a bundle of tubes in a nuclear reactor, where
the geometry is too complex to be represented by structured gridding. The problem
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Fig. 5. Performance of Code Saturne for a 100M cell ”Mixing Grid” dataset on Hector (Cray
XT4).

represents a very large-scale computational challenge (requiring high-end systems)
as the flow is strongly three dimensional, with secondary vortices existing between
pipes. Two sets of parallel performance results from the Hector machine are shown
in Figure 5: one data series shows how the performance for an individual iteration
scales with processor count, the other data series shows the total time based on a
calculations involving 1000 iterations. It can be seen that the time taken per itera-
tion in the solver stage scales near-linearly up to the maximum processor count of
8192. However the total time is scaling less perfectly as overheads in the partitioning
stage and the I/O stages increase relative to solver time on larger processor counts.
Evidently large-scale simulations that involve many thousands of time-steps and/or
iterations will suffer less from these overheads than simulations involving relatively
few steps in the solver.

4.4 SENGA2

The two datasets, whose performance is examined here, are outlined below.

1. A 4-step calculation, which is an early example of a reduced methane-air mecha-
nism due to Peters and Williams. It uses 4 forward steps (two of them reversible)
and 7 species, and is notoriously stiff. It is there to test the ability of the code
to cope with stiff chemistry. The benchmark calculation is undertaken with each
processor holding 323 grid points. Therefore the global grid size is expanded lin-
early with the number of processors used and is used to assess the weak scaling
properties of the code.
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2. A 1-step calculation is a simple global 1-step generic non-reversible Arrhenius-
type mechanism. It is representative of the previous generation of combustion
DNS, and is inexpensive to run. A volume of 1cm3 of air with periodic boundary
condition is simulated over 10 time steps of 1 ps. Initial conditions are 300K and
atmospheric pressure with an initial turbulent filed. Snapshot data is dumped
every 5 steps (twice over the simulation length).

In common with other Direct Numerical Simulation codes, memory band-
width is expected to be the dominant constraint on performance. Communications
within Senga2 are dominated by halo-exchange between adjacent computational sub-
domains. Providing the problem size is large enough to give a small surface area to
volume ratio for each sub-domain, the communications costs are small relative to
computation and do not constitute a bottleneck. This is exemplified in Figures 6, 7,
and 8, below where both weak scaling and strong scaling properties are very good
on the target platforms. Scaling on the Blue Gene /P is generally good, but overall
speed is around 2.5 times slower than the Cray XT4. However it should be noted
that this performance ratio betters the relative clock speeds (2800/800 MHz) of the
machines’ underlying processors.

Fig. 6. Weak scaling performance of Senga2-4 Step reduced-air methane mechanism 323 grid
points per processor.
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Fig. 7. Strong scaling performance of Senga2-1 Step Arrhenenius-type Mechanism with 5003

global grid points.

Fig. 8. Strong scaling performance of Senga2-1 Step Arrhenius-type Mechanism with 10003

global grid points.

5 Summary

The parallel performance of all four CFD codes analyzed here is encouraging as we
head towards future Petascale computing environments. It is demonstrated that three
of the codes - SBLI, Code Saturne and Senga2 - perform well up to many thousands
of processing cores, with the performance of SBLI improving right out to 12288
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cores on the Jaguar Cray XT4 at Oakridge National Laboratory. All but one of the
tests measured the generally more challenging strong scaling properties of the code
where global problem size is constant for all runs, rather than weak scaling properties
where problem size is scaled up as processor count increases. In practice it is likely
that CFD researchers will be interested in both properties when running leading-edge
calculations. It is becoming clear that new challenges will arise when computing
at the Petascale. In the past much attention has been paid to applying state-of-the-
art parallel algorithms to the solving of the mathematical equations at the heart of
the simulation. For effective use of available computing power when utilizing many
hundreds of thousands of cores code optimizers may now have to attention to new
areas, such as the application of highly effective, load-balanced algorithms for mesh-
partitioning and efficient parallel I/O methods.
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[5] F. Archambeau, N. Méchitoua, and M. Sakiz, Code Saturne: a finite volume
code for the computation of turbulent incompressible flows industrial applica-
tions, Int. J. Finite Volumes, February 2004.

[6] MPI: A Message Passing Interface Standard, Message Passing Interface Forum
1995, http://www.netlib.org/mpi/index.html

[7] EDF Research and Development, http://rd.edf.com/107008i/EDF.fr/Research-
and-Development/softwares/Code-Saturne.html

[8] HPCx -The UK’s World-Class Service for World-Class Research,
www.hpcx.ac.uk

[9] STFC’s Computational Science and Engineering Department, http://www.cse.
scitech.ac.uk/

[10] HECToR UK National Supercomputing Service, http://www.hector.ac.uk
[11] Supercomputing at Oak Ridge National Laboratory, http://computing.ornl.

gov/supercomputing.shtml.
[12] The Green Top 500 List, http://www.green500.org/lists/2007/11/green500.php.



320 A.G. Sunderland & al

[13] Single Node Performance Analysis of Applications on HPCx, M. Bull,
HPCx Technical Report HPCxTR0703 2007, http://www.hpcx.ac.uk/ research/
hpc/technical reports/HPCxTR0703.pdf.

[14] J. Bonelle, Y. Fournier, F. Jusserand, S.Ploix, L. Maas, B. Quach, Numerical
methodology for the study of a fluid flow through a mixing grid, Presentation to
Club Utilisateurs Code Saturne, 2007, http://research.edf.com/fichiers/fckeditor/
File/EDFRD/Code Saturne/ClubU/ 2007/07-mixing grid HPC.pdf.



Scalability Considerations of a Parallel Flow Solver on
Large Computing Systems

Erdal Yilmaz, Resat U. Payli, Hassan U. Akay, Akin Ecer, and Jingxin Liu1

Computational Fluid Dynamics Laboratory, Dept. of Mechanical Engineering, Indiana
University-Purdue University Indianapolis, Indianapolis, Indiana, 46202 USA
http://www.engr.iupui.edu/cfdlab

Abstract. In this paper, we present scalability characteristics of a parallel flow solver on two
large computing systems. The flow solver is based cell-centered finite volume discretizations
along with explicit and implicit time integration methodologies. It has capability to solve
moving body problems using Overset grid approach. Overset option is yet in sequential form.
This solver is compared with another in-house flow solver for the parallel performance on two
large-scale parallel computing platforms up to 2048 number of processors. Parallel timing
performance of the solver was analyzed using the Vampir timing tool for DLR-F6 wing body
configuration with 18 million elements. Timing of the Overset component was tested for a
butterfly valve flow problem in a channel.

Key words: Parallel CFD, Overset Grid, unstructured grid, parallel performance.

1 Introduction

In today’s code development environment with several software and hardware re-
sources at the disposal of the researchers in academic and research institutions, de-
veloping a new Computational Fluid Dynamics (CFD) code may not seem to be as
challenging as in the past couple of decades. However, making it well-performing
on scattered and constantly upgraded computing platforms for variety of problems
would be an art form researchers sometimes feel challenged. It could be an elaborate
process beyond dealing with the nuts and bolts CFD codes and parallel computers.
Ultimate goal would be making the code as scalable as possible for changing sizes
of the computing resources as well as the problem itself.

If not designed at the developing phase, adjustments would be needed to the
parallel codes for better run-time performance. The reason for poor parallel perfor-
mance can be very complex and developers need to understand correct performance
problems. Performance tools can help by monitoring a program’s execution and pro-
ducing data that can be analyzed to locate and understand areas of poor performance.
Several commercial and research tools are available to conduct performance analysis
such as Vampir [1, 2], Pablo[3], Tau[4], and Paradyn [5]. These performance tools
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include libraries to time stamp and record the solver sequential and parallel events.
Most of these tools do not require any changes in sources codes but links with the
solvers at the building phase along with Message Passing Interface libraries. Out-
come can be visualized for CPU time, communication time, message sizes, relative
comparisons, etc. In this paper, we used Vampir tool to extract timing information.

Performance of flow solvers can also vary with the algorithms and mesh data
structures used. For unstructured mesh based finite volume flow solvers, usually two
types of mesh data structure are most popular: cell-center based and cell-vertex (or
node ) based. While cell-center based solvers integrate fluxes on the faces of indi-
vidual cells, node-based solvers integrates the fluxes over the cells connected to in-
dividual nodes. Though numbers of faces are the same in both approaches, the actual
finite volume used in the cell-vertex approach is smaller than the node-based one,
hence better actual spatial resolution. On the other hand, the node-based approach
works with less memory, as it does not need values at cell centers. Usually number
of cells for tetrahedral meshes are five-six times higher than nodes. Besides, face val-
ues calculated from nodes will be more accurate than from cell values. We compared
timing of two different solvers, one with cell-vertex based one with cell-centered, for
this purpose.

Besides the algorithms and physics, mesh capabilities to handle complex prob-
lems such as overset mesh method for moving components makes performance man-
agements even difficult. As the number of moving blocks increases, complexity of
the problem makes parallel computing a challenge. Different than a few solver-
embedded overset capabilities for unstructured grids [6, 7], Dirtlib/Suggar [8, 9]
overset grid package can be considered as a stand alone pluggable package for un-
structured grid solver. However, its parallel performance yet to be evaluated. In this
paper, we will give flavor of our overset capability implemented in our cell-center
based flow solver, however full parallelization using MPI was not demonstrated yet.
In the following two sections, we will present algorithmic details of our parallel
solvers, called PACER3D and SunFlo3D, overset grid methodology employed in
SunFlo3D, parallel performance and timing studies of both solvers, and performance
with the overset version. Finally we will draw our conclusions.

2 Flow Solver

2.1 Features of the Flow Solver

Our flow solver is based on earlier versions of an existing code, USM3D, devel-
oped at NASA [10], an Euler version of which was parallelized and extended to
dynamically deforming meshes at IUPUI [11]. The fluid motion is governed by the
time-dependent Navier-Stokes equations for an ideal gas, which express the conser-
vation of mass, momentum, and energy for a compressible Newtonian fluid in the ab-
sence of external forces. The equations are non-dimensionalized with the freestream
reference values for density and speed of sound. Three-dimensional turbulent flow
equations are solved on unstructured grids. Spatial discretization is accomplished
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by a cell-centered finite-volume formulation using an accurate linear reconstruction
scheme and upwind flux differencing. Inviscid flux quantities are computed across
each cell face using the Roe flux-difference splitting approach, [12] or the Van Leer
flux-vector splitting technique [13]. Spatial discretization is accomplished by a novel
cell reconstruction process, which is based on an analytical formulation for comput-
ing solution gradients within tetrahedral cells. The viscous fluxes are approximated
at centroids of cell faces by linear reconstruction, which provides a continuous repre-
sentation of the solution variables across the cell faces. The viscous computations are
advanced to steady state by the implicit time integration algorithm of reference [14].
The scheme uses the linearized, backward Euler time differencing approach to up-
date the solution at each time step for the set of equations. Convergence to the steady
state solution is accelerated by sacrificing the time accuracy of the scheme, and ad-
vancing the equations at each mesh point in time by the maximum permissible time
step in that region. Closure of the Reynolds stress is provided by the one-equation
Spalart-Allmaras (S-A) turbulence model [15]. The S-A model requires that the dis-
tance of each cell to the nearest wall be provided for the near-wall damping terms for
cells, which are in proximity to ‘viscous’ surfaces. These distances are determined
prior to the code execution for cells in the “viscous” layers and contribute to only a
small portion of the overall overhead.

At IUPUI, we have rewritten the original solver code in Fortran 90 language to
take advantage of dynamic allocations feature for vectors and arrays and convenience
of the efficient structure and syntax of Fortran 90. The flow solver is parallelized us-
ing MPI. Single program multiple data parallelization procedure is employed for
distributed memory architectures. Solution domain is partition into blocks with one-
element overlap interfaces via in-house General Divider program [16]. General Di-
vider program prepares the sending and receiving cells and nodes at the interface
which requires exchanging the flow variables between blocks. At each iteration, cell
flow values at the block interfaces exchange between neighbor blocks before invis-
cid and viscous fluxes are calculated. L2 norm of the residuals are calculated for
each block and using the reduction function of the MPI maximum value of the cal-
culated norm values distributed to all blocks for both implicit and explicit solvers.
For the implicit solver, Gauss Seidel iterative procedure is used to solve a sparse set
of equations. 20 sub-iterations are carried out to complete for one iteration. At the
end of each sub-iteration flow values of the interfaces are exchanged between neigh-
bor blocks. Also, calculated nodal values at the interfaces are exchanges between
neighbor blocks both for implicit and explicit solvers.

2.2 Overset Grid Method

The overset or Chimera grid methodology has been in use as a technique in CFD to
simplify grid generation of complex geometries or to enable relative motion between
geometry components. An overset grid system utilizes a set of grids to discretize the
domain with each component grid generated locally around a portion of the geom-
etry. The grids are allowed to overlap without needing to match point-to-point with
other grids like in a traditional multi-block structured grids system. This ability to
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grid locally greatly simplifies the grid generation process for complex geometries.
In addition, the flexibility of overlapping grids allows the grids to move relative to
each other to accommodate relative motion. The flow solution uses interpolation at
appropriate points to couple the solutions on the different grids. The result is a flex-
ible gridding strategy that allows components of the geometry to be easily added or
moved without global re-gridding. There are two major steps to establish communi-
cations in this overset method: 1) automatic hole cutting, which essentially involves
blanking cells of a grid in regions that overlap with non-flow-domain in the other
grids of an overset grid system and identifying the Chimera boundary cells that lie
along the hole or fringe boundary surfaces as well as interpolation boundary surfaces
and 2) identification of interpolation stencils, which involves searching donor cells
and getting interpolation coefficients for all intergrid boundaries cells.

2.3 Comparison of Two Flow Solvers

The SunFlo3D flow solver is compared against another in-house CFD code, Pacer3D
[17, 18]. Pacer3D is an explicit cell vertex based flow solver based on Euler flow
equations. Therefore, we compared explicit version of the SunFlo3D flow solver with
the Pacer3D flow solver. Table 1 summarizes features of both codes for comparison.

PACER3D SUNFLO3D
(explicit time stepping version)

Finite volume spatial discretization for compressible Euler flow equations
using unstructured tetrahedral mesh

Vertex based Cell-center based
(better spatial resolution than vertex-based

Central differencing with artificial dissipation
of Jameson

Roe’s flux difference splitting

Implicit residual smoothing
Local Time stepping for steady flows

Explicit 3-stage Runge-Kutta time stepping
Enthalpy damping N/A

Table 1. Scheme details of the two flow solvers

3 Numerical Simulations

3.1 Parallel CFD Application

For the parallel performance evaluations we used an external transonic flow over
DLR F6 airplane geometry, which is composed of only wing and body. This test
case has 18 millions of tetrahedral cell elements. Grid is divided into 256, 512, 1024,
and 2048 numbers of partitions using Metis [19].
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Parallel computations have been performed on parallel clusters in Indiana Uni-
versity (BigRed) and San Diego Supercomputing Center (SDSC) for the cases. Those
two platforms have different architectures for internal communications. Clock speed
of BigRed is three times faster than that of SDSC. More details of the parallel clusters
are given in Table 2.

Parallel performances studies on BigRed and BlueGene are summarized in Fig-
ures 1 and 2, for speedups and elapsed times, respectively. Both codes were run at the
same flow conditions as inviscid for fair comparison. SunFlo3D shows linear scal-
ability on both platforms while Pacer3D tips off after 1024 processors in BigRed.
This could be associated with the higher CPU speed of BigRed as it would result
in lower computation/communication ratio as we increase number of processors. On
BlueGene. Pacer3D shows super linear speedup as CPU clock time on this machine
is slower compared to BigRed. In addition to CPU speed, architectures and commu-
nications patters are much different for these two platforms.

BigRed (IBM e1350)
Indiana University

IBM BlueGene/L
San Diego Supercomputing Center

768 JS21 Bladeserver nodes It has 3072 compute an 384 I/O nodes
PowerPC 970MP processors, PowerPC processors
2 x 2.5GHz dual-core 2 x 700MHz
8GB 533MHz DDR2 SDRAM 32KB, 32-byte line, 64 way L1 cache; 16

128-byte lines L2 cache act as prefetch buffer
4MB 35 cycles shared L3 cache

1 x Myricom M3S-PCIXD-2-I (Lanai XP) 3D torus for point-to point message passing;
Global tree for collective message passing

Table 2. Features of the computing platforms

Fig. 1. Speedup of the solvers on two computing platforms
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Fig. 2. Timing comparison of the solvers on two parallel computing platforms

3.2 Timing Analysis by Vampir Tool

We used Vampir tool to analyze timing of different functions in both solvers. Vampir
provides detailed execution times breakdown of individual routines and functions of
the applications. It also provides timing information regarding MPI related activi-
ties in the solvers. Figure 3 shows timing of Pacer3D and SunFlo3D obtained by the
Vampir tool. Pacer3D takes 49 seconds and SunFlo3D takes 113 seconds to complete
100 explicit time steps. MPI related time includes initialization of the parallel envi-
ronment, message send and receive between the processors, reduction and gathering
of the shared parameters, and finalization of the parallel environment. Pacer3D uses
29 seconds for the parallelization related activities while SunFlo3D uses 67 seconds.
Application time includes all the computations including I/O processes. Pacer3D
uses 19 seconds for the application part while SunFlo3D uses 44 seconds. Therefore,
the SunFlo3D solver performs 2.3 times slower than Pacer3D for both computation
and communication.

Table 3 lists breakdown of the timing for both solvers. The SunFlo3D solver
needs to update residuals for all blocks. This puts additional burden in the commu-
nication of the blocks. The update of the residuals takes significant amount of time –
almost 60 percent of total communication time. However, SunFlo3D performs better
for exchange of the flow parameters between the neighbors since it uses cell cen-
ter values while Pacer3D uses nodal values. This is due to the fact that the number
of cells at the overlapping interface would be less than the number of nodes. Flux
calculations for both codes take almost the same time, though each uses different
methodology. However, residual smoothing takes significantly more time in Sun-
Flo3D.
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Fig. 3. Timing for Pacer3D and SunFlo3D flow solvers for 100 time steps obtained by Vampir
tool, respectively

Components Pacer3D SunFlo3D
Communication-1: send and
receive at the interfaces

14 seconds 8 seconds

Communication-2: share
residuals and other common
parameters

N/A 44 seconds

Parallel initialize/finalize Same (14.8 seconds) Same (14.6 seconds)
Flux calculation Central differencing and arti-

ficial dissipation of Jameson
(11 seconds)

Roe’s Flux difference split-
ting(11 seconds)

Residual smoothing Operates on edge of the cell
and nodes (3.4 seconds)

Operates over cells and faces
of the cell. Usually # of cells
is 5-6 folds of # of nodes (19
seconds)

Local time stepping 1. 7 seconds 2.3 seconds
I/O 1.0 seconds 2.2 seconds
Others (main, Runge-Kutta,
pre-proc, etc)

3 seconds 20 seconds

Table 3. Breakdown of timing for Pacer3D and SunFlo3D by Vampir tool

3.3 Performance of the Overset Version

Overset component of our flow solver have been tested for various flow problems
including internal and external flows. Details of our overset research will be given
in a separate study. However, here only a flavor of it will be presented. Test case
we present here is a valve problem based on the geometry and the flow boundary
conditions from experiments of Morrison and Dutton [20]. Steady-state simulations
at various angles of the attack of the valve relative to the flow channel are considered.
Numerical simulations are made for cases including fully opened status (0 degree
valve-position angle), 5-degree position angle, 10-degree valve-position angle and
even near-closed sate of 60-degree position. The valve disk angle of 30-degree is
approximately a mid-way between the wide open and closed valve conditions. When
compared with available experimental data, pressure distributions of the numerical
results on the valve disk surfaces are close to that of the experiment. Valve grid
positions and static pressure comparison for 30 degrees of the valve position are



328 E. Yilmaz, R.U. Payli, H.U. Akay, A. Ecer, and J. Liu

given in Figure 4 and 5, respectively. Timing of the developed overset method is also
tested against an available literature. The solver code was vectorized using compiler
options so that all available processor cores of our computing platform, which is
BigRed cluster of IU, are used. At this time, MPI parallelization is not ready yet.
Therefore, only timing of the serial and vectorized code is compared in Table 4. The
timing cost of the overset component compared to the flow solver part per time step
is found to be 2.7 times, which much better than reported in reference [7], which is
23.2.

Overset grid only Flow Solver Total Time Overset/Solver
Sequential 165.41 19.03 184.44 8.7
Vectorized 41.53 15.30 56.83 2.71
Speedup 3.98 1.24 3.25

Table 4. Timing (in seconds) of the overset and flow solver (one node with 4 cores)

Fig. 4. Valve viscous mesh at 30 degrees and overset mesh at 30 and 60 degrees
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Fig. 5. Pressure contours and comparison with the experiment at 30 degrees of valve position
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4 Conclusions

Detailed parallel performance of two finite volume codes are evaluated using a com-
mercially available parallel performance tool. Both codes were found scalable on two
parallel systems. While the node-based finite volume code has better computation
timing and memory usage and super linear speedup in one of the parallel clusters,
cell-vertex based code demonstrated linear speedup up to 2048 processors. Vampir
performance tool was found very effective to get detailed timing of the events and
components of the code for parallel runs. Overset component of the solver performs
very well on multi cores of a compute node. Parallel MPI implementation of the
overset component is yet to be done.
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Abstract. Present incompressible Navier-Stokes flow solver is developed in the framework of
Building-Cube Method (BCM) which is based on a block-structured, high-density Cartesian
mesh method. In this study, flow simulation around a formula-1 car which consists of 200
million cells was conducted by vector-parallel supercomputer NEC SX-9. For exploiting the
performance of SX-9, the present flow solver was highly optimized for vector and parallel
computation. In this paper, the computational result from the large scale simulation and the
parallel efficiency in using flat-MPI or hybrid-MPI are discussed.

1 Introduction

Today’s supercomputers have a large number of processors in the system. In order
to utilize the large scale parallel computers, one of the authors proposed a block-
structured Cartesian mesh method named Building-Cube Method (BCM). [2] It ba-
sically employs an equally-spaced Cartesian mesh bacause of the simplicities in the
mesh generation, in introducing a spatially higher-order solution algorithm, and in
the post processing. These simplicities of Cartesian mesh for all stages of a flow com-
putation as well as the less memory requirement per cell will become more important
for large scale computations.

One of the issues of the Cartesian mesh, however, is how to fit the mesh spacing
to the local flow scale without introducing algorithm complexities. In the present
method, a flow field is described as an assemblage of building blocks of cuboids,
named ’cube’. Each cube is a sub-domain which has the same number of cells in
it. It is useful for local refinement strategy which is difficult to perform in uniform
Cartesian mesh system.
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In this study, large scale simulations on BCM are demonstrated by using the
latest NEC vector-parallel supercomputer, SX-9, which was installed at the end of
March 2008 at Cyberscience center of Tohoku University. This system consists of 16
nodes of SX-9 and each node includes 16 vector processors. In this paper, the parallel
efficiency of the present BCM solver was investigated from large scale simulation by
using the multi-node system of SX-9.

2 Computational methods

2.1 Building-Cube Method

The BCM is aimed for high-resolution flow computations around real geometries us-
ing high-density mesh. In this method, entire flow field is described as an assemblage
of cuboids as shown in Fig. 1. Each cube is a sub-domain which includes the same
number of equally-spaced Cartesian cells, by which an object is represented with
staircase pattern. In BCM, local flow characteristic can be captured easily by sim-
ple refinement of cubes with keeping practical computational resource. Moreover, it
has advantages about fast and robust mesh generation [6] around complicated ge-
ometries and easy introducing spatially higher-order scheme from the character of
Cartesian mesh method.

Fig. 1. Example of computational mesh around formula-1 car

In the present flow solver, 3D incompressible Navier-Stokes equations (Eq.(1))
are solved by fractional-step method with staggered arrangement. [7, 8, 5]

{
∂u
∂ t +

(
u ·∇)u = −∇p+ 1

Re∇
2u

∇ ·u = 0
(1)

In the fractional-step method, three processes are implemented sequentially at
each time step. In this paper, second order accurate Adams-Bashforth explicit time
integration is implemented in solving the temporal velocity field u∗ in Eq. (2).
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u∗ −un

Δt
= −

(
3
2

An − 1
2

An−1
)

+
(

3
2

Bn − 1
2

Bn−1
)

(2)

Here the convection term A and diffusion term B are discretized by third or-
der upwind finite difference scheme [1] and second order central finite difference
scheme respectively. When larger CFL number is needed like a moving boundary
problem, second order accurate Crank-Nicolson implicit time integration with dual
time stepping method [4] in Eq. (3) is available. In this process, the inner iteration
about fictitious time τ is implemented to keep the second order time accuracy. When
the Eq. (3) was converged by m →∞ ideally, the first term of Eq. (3) is vanished with
Δum → 0. Finally, the original equation is satisfied.

Δum

Δτ
+

un,m −un

Δ t
= −
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2

An,m +
1
2
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)

+
(

1
2

Bn,m +
1
2

Bn
)

(3)

The pressure filed pn+1 is solved by Poisson equation of Eq. (4). In solving in-
compressible Navier-Stokes equations, most of computational cost is paid for the
procedure. Therefore hyper-plane method is used with SOR method to exploit vec-
tor processing of SX-9 by eliminating data dependency. Detail of the technique is
described below.

Moreover pressure perturbation in incompressible flow field should be propa-
gated to far field at once ideally. Then flow information of each cube is exchanged
between adjacent cubes because of the multi-block structure of the BCM compu-
tational mesh. This process is also highly optimized for vector processing by MPI
PUT/GET function of MPI-2.

∇2pn+1 =
1
Δt
∇ ·u∗ (4)

Finally the real velocity field un+1 is solved by the temporal velocity field and
the pressure as shown in Eq. (5).

un+1 −u∗

Δt
= ∇pn+1 (5)

In the present computations, a wall object is expressed by simple staircase pat-
tern. Hence nonslip velocity boundary condition and non pressure gradient boundary
condition along with normal direction are applied to staircase cells directly.

2.2 Vectorization and parallelization

The present code is optimized to exploit the vector-parallel supercomputer NEC SX-
9 shown in Fig. 2.
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Fig. 2. Single node and 16 multi-node system of NEC SX-9

One of techniques for the vectorization is loop fusion. It is used to extend the
length of the vector processing by fusing multiple loops into single loop. In BCM, it
is easy to implement because most of loops of the equally-spaced Cartesian cells in
each cube consist of simple IJK indices.

As mentioned above, the hyper-plane method as shown in Fig. 3 is applied to
SOR method in solving the Poisson equation. Though vector processing is not be
able to be utilized in usual SOR method because of the data dependency, it is elim-
inated by using the hyper-plane method and elements on the same hyper-plane are
calculated at once by the vector processing. As a result, about 99.6 percent vector
ratio is successfully achieved.

Fig. 3. Schematics of hyper-plane and traveling direction in 2D and 3D

The parallelization is implemented by MPI and OpenMP. In this paper, flat-MPI
which consists of only MPI parallelization and hybrid-MPI which consists of MPI
and OpenMP parallelization are investigated. For efficient and fast communication,
MPI PUT/GET functions of MPI-2 are implemented in this study.

In BCM, the load balance can be kept easily if only dividing whole computational
domain into several sub-domains of the same number of cubes. Figure 4 shows an
example of the decomposition into 4 domains. The load balance is kept almost same
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even though the geometrical size of each domain is different and some islands are
created as Fig. 4.

Fig. 4. Example of 4 decomposed domains

3 Results and discussion

3.1 Computational mesh and result

In this chapter, the parallel efficiency of the present flow solver is investigated from
large scale incompressible flow simulation around formula-1 car model [3] by using
SX-9. The computational mesh around the model consists of 5,930 cubes, in which
323 cells are included. The total number of cells is 194,314,240. Minimum mesh
spacing is 7.3× 10−4 based on the overall length of the model which corresponds
to 3.5× 10−3 meter in the real scale. Reynolds number is 2.6 million based on the
overall length.

The computational mesh and results are visualized in Figs. 5 and 6 that are coars-
ened eighth part of the original data to compress the data size. The robustness of the
present flow solver could be confirmed from the stable computation around the com-
plicated geometry.

Fig. 5. Computational domain and surface representation
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Fig. 6. Instantaneous pressure and velocity field

3.2 Parallel efficiency

The speed-up ratio in using 1, 2 and 4 nodes of SX-9 is discussed here. As men-
tioned above, 16 CPU are included in 1 node of SX-9. In this study, flat-MPI and
hybrid-MPI computations were conducted. In the case of flat-MPI, whole computa-
tional domain is decomposed to the same number of domains with the number of PE
(CPU). In the case of hybrid-MPI, on the other hand, whole computational domain is
decomposed to the same number of domains with the number of nodes, and OpenMP
parallel computation is implemented in each node at the same time.

Figure 7 and 8 show the speed-up ratio and communication time in each case of
1, 2 and 4 nodes, respectively. In using single node, hybrid-MPI shows better per-
formance than flat-MPI because the hybrid-MPI computation in single node is just
OpenMP parallel computation without any data exchange. In using several nodes, on
the other hand, flat-MPI shows better performance than hybrid-MPI with the reduc-
tion of communication time as shown in Fig. 8. The flat-MPI parallel computation
is conducted with more sub-domains than hybrid-MPI one. For example, in the case
of 32 parallel computation by 2 nodes, the numbers of sub-domains are 32 and 2 in
flat-MPI and hybrid-MPI respectively. Therefore, the amount of data which is ex-
changed with adjacent cubes in flat-MPI becomes smaller than one in hybrid-MPI.
Now, 130 times speed-up ratio and 99.6 percent parallel ratio are accomplished as
shown in Fig. 9 by using flat-MPI on 16 multi-node system (including 256 CPU) of
SX-9 at Cyberscience center of Tohoku University.

Fig. 7. Speed-up ratio
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Fig. 8. Communication time

Fig. 9. Parallel perfornamce in 16 multi-node system of SX-9

Parallel overhead commonly disturbs the speedup in the highly vectorized com-
putation because the vector processing is implemented so rapidly. However the
present flow solver is achieved good parallel performance with highly vectorized
computation. For more efficient parallel computation, appropriate MPI function and
parallel algorithm that are suitable for MPP should be considered.

4 Conclusions

The parallel performance of the present flow solver was investigated from large scale
incompressible flow simulation on the latest vector-parallel supercomputer NEC SX-
9. The robustness of the present solver was confirmed by the simulation around a
formula-1 car of 200 million cells. By the comparison between flat-MPI and hybrid-
MPI parallel computation, it was confirmed that the speed-up ratio of hybrid-MPI
was greater than one of flat-MPI in the single node computation. On the other hand,
the speed-up ratio of flat-MPI was greater than one of hybrid-MPI in the several
nodes computation. Moreover, the maximum parallel performance was 130 times
speed-up in using 16 multi-node system including 256 CPU with flat-MPI paral-
lel computation. From now, more appropriate MPI function and parallel algorithms
should be considered to handle MPP in near future.
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Abstract. As multi-core computers becoming the main computation force of the
computer network, dynamic load balancing for parallel applications on multi-core
computers needs to be studied. The paper describes a method for extending the dy-
namic load balancing tool to support multi-core computers. The method scales all
cost function information into per CPU core unit and performs dynamic load balanc-
ing in terms of CPU cores. The parallel processes are assigned to each computer (not
each CPU core) assuming that the operating system assigns the parallel processes
equally among all CPU cores. The proposed tool has been successfully tested for
supporting parallel CFD applications.

Keywords: parallel computing, multi-core computer, dynamic load balancing.

1 Introduction

The fast improvement of the computer speed has been partially achieved by increas-
ing CPU clock speed. However, as the computer clock speed reaches Giga Hertz
range, the CPU clock speed is approaching its physical limitation under the current
fabrication technology [1]. The high CPU clock frequency creates a lot of heat dur-
ing operation that results low energy efficiency and causes CPU package and system
design problems. Therefore, the new trend in CPU designs have been emphasized on
the multi-core CPUs each of which is a single integrated circuit that consists several
CPU cores. Multi-core CPUs enable increased productivity, computation power and
powerful energy efficient performance. There are two different types of multi-core
CPUs. The first type has homogeneous CPU cores. Most new PCs with Intel pro-
cessors use two or more CPU cores which are identical and share the same memory.
The second type has heterogeneous CPU cores. An example is IBM cell processor
design which has a master processor core and a set of slave processor cores [2]. The
slave processor cores are different from the master processor core and each slave
processor core has its own local memory space. The computer architecture experts
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envision that computers with multi-core CPU will be the main computation force in
the near future.

How to take the advantage of the multi-core CPUs is an interesting subject. Sev-
eral directions are currently being explored. One direction is to write parallel code
explicitly to assign the process to multi-cores. This approach is required for using
IBM Cell multi-core processors. The second direction is to rely on operating sys-
tems to assign multiple tasks to different CPU cores. The advantage of the second
direction is that the existing software can be easily running on the multi CPU core
computers.

Most existing parallel CFD applications have been developed based on domain
decomposition approach in which the data are segmented into many blocks and the
application code for processing all blocks are the same. These type applications can
be naturally adapted to multi-core computers based on the second direction. Al-
though the operating system can assign parallel processes to multiple CPU cores
of a computer, a load-balancing tool is still needed for assigning parallel processes
to each multi-core computer.

In this paper, we will discuss the expansion of our dynamic load-balancing tool,
DLB [3], to automatically assign parallel CFD processes to networked heterogeneous
computers with multi homogeneous CPU cores. We will start with the information
gathering needed for load balancing, and then describing the algorithm used for the
dynamic load balancing. An experimental example will demonstrate the effective-
ness of the method.

2 Dynamic Load Balancing

The goal of load balancing of a parallel application on networked computers is to
make all parallel processes finish at the shortest time. In most cases (when com-
munication time between parallel processes is low), this goal can be translated as
making all computers busy all the time before the parallel application finishes. In
order to make all computers busy, the speed of the computer, the workload on each
computer, and the amount of new work to be assigned onto each computer need to
be known qualitatively so that the execution time (or cost) of each parallel process
on each computer can be calculated. Then an optimization method can be adopted
to minimize the cost and hence generate the optimal load balancing. This approach
has been successfully used in for load balancing on networked computers with sin-
gle CPU core [4]. Here we extend the same idea for dynamic load balancing of
networked multi-core computers.

The steps for achieving dynamic load balancing include: (1) Find the relative
computation speed of each multi-core computer. (2) Find the extraneous workload
on each computer. (3) Find the workload of every process of a parallel job. (4) Use a
cost function to predict the effective computation time of each parallel process under
a given process distribution. (5) Find a load distribution that minimizes the elapsed
program execution time.
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To find the relative computation speed of each multi-core computer, we run a
small single thread benchmark program at the system start up time on each computer
and measure the

execution CPU time on each computer. Since the benchmark program can be
executed on only one CPU core, the measured time provides the speed information
of only one CPU core. The ratios of the measured CPU times of the benchmark
program on different computers essentially provide the information of the relative
speed of the CPU cores on different computers. This method for obtaining the CPU
core computation speed frees the user from guessing the computer speed for parallel
process distribution.

The computation speed of a multi-tasking computer to a particular user is not
only the CPU speed, but also the number of extraneous processes running on the
computer. Therefore, it is essential to know the extraneous load on the computer be-
fore performing load balancing. To find the extraneous workload on each computer,
operating system tools can be used. For example, ps command in UNIX or PsTools
from Microsoft, can be used to measure the percentage of CPU time used by each
process. However, the number of running process measured by these tools is not us-
able for load balancing. The reason is that the measured load on a computer also
includes the processes of the parallel applications to be dynamically balanced, pro-
cesses of other parallel jobs, and demon processes that do not use much computer
power. We solve this problem by letting each computer remember the parallel pro-
cess running on it. Therefore, by running ps command on UNIX or PsTools program
on Windows, we can find how many single load and how many parallel load are
running on the computer. During load counting, only the jobs that run over 5% of
one CPU core time are counted as the extraneous load. The processes run under 5%
of one CPU core time are usually system demons and other small processes that are
negligible.

Finding the computation required for each process of a parallel job is essential
for the proper load balancing. To release the burden of the user for providing this
information, we developed a profiling library to obtain this information during the
execution of the application code [5]. The library supports MPICH2 [6] and needs to
be linked with the application program.

The profiling library routines are executed during each MPICH2 library access in
each parallel application process and provide the elapsed execution time, the elapsed
communication time, the execution CPU time, and communication topology infor-
mation of all application process. Since all information is measured, it already takes
into account of the effect of the compiler efficiency, the memory sizes on each com-
puter, the cache size, and computer configuration differences.

Once the information of the computer speed, the extraneous computation load,
the workload of user’s parallel processes, and the communication cost between com-
puters are obtained, all these information are scaled to per CPU core basis, such as
CPU execution time per CPU core and extraneous load per CPU core. This approach
essentially treats a multi-core computer as multiple computers for load balancing,
e.g., treat a dual-core computer as two computers. All information are used to con-
struct a cost (time) function for parallel process distribution on networked computers.
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Then the greedy algorithm is used to move the parallel processed among the com-
puters in the network for minimizing the cost (time) of parallel job execution [4].

In order to take the advantage of dynamic load balancing, the parallel applica-
tion must be able to utilize the new load redistribution dynamically suggested by
DLB. In order to let the parallel application know that there is a newly suggested
load distribution, two simple DLB interfacing library functions check balance() and
application stopped() are inserted into the parallel application program (see Figure
1). Before each check pointing (to be done at the end of every N time steps), the
library function check balance() is called to find if load balancer suggested a bet-
ter load distribution. If there is a better load distribution, the parallel program stores
the intermediate information, stops the program and calls the library function appli-
cation stopped(). Once DLB detects that the parallel application program stopped
execution, DLB restarts the parallel application program according to the proposed
new load distribution. If it is not possible to include the DLB interfacing library to
the application program, the application program needs to be stopped and restarted
periodically.

Start

End

load balancing

No load balancing

Call application_stopped()

Call int check_balance()

Check pointing

Computation and

communication

Fig. 1. Inserting profiling library function into application code.

To describe how much computation power is used by the processes on a multi-
core computer, we define CPU usage percentages as follows:

CPU usage percentage =
∑# of processes

i=1 CPUelapsedtimeo f ith bloc

(# of CPU)×Wall clock time
100 (1)

In Equation (1), it was assumed that all the CPUs installed in the computer are
identical, which is the case with the currently developed popular multi-core proces-
sors. Therefore, if only one process utilizes a CPU, the actual CPU usage percentage
of the process is calculated by dividing the processor usage percentage of the process
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by the number of total CPU cores on the CPU. For example, if a process uses forty
seconds of CPU time in an elapsed one hundred second period in a dual core PC,
this process is treated as only uses twenty percent of the total computational power
of this PC.

To evaluate the system utilization of all hardware used for a parallel job, System
Efficiency (SE) is defined as follows

SE = ∑n
i=1 CPi ×CSi

∑n
i=1CSi (2)

where CPi is the CPU utilization percentage of the ith computer and CSi is the
relative CPU speed of ith PC. SE indicates the percentage of the maximum computa-
tional power used by all processes running on the networked multi-core computers.
Notes that SE calculation also gives higher weight for high speed computer in effi-
ciency calculation since faster computer has high CS. CP for each computer can be
dynamically measured during program execution.

3 DLB Implementation

The proposed load balancing method for multi CPU core computers are incorporated
to DLB tool [4]. DLB is a middleware that has three major components, the Dynamic
Load Balancing Agent (DLBA) Job Agent, and System Agent (SA). DLBA is a
user/system program that supports users to optimally distribute the parallel processes
to available computers. Job Agent is responsible to start one parallel job, monitor the
execution health of the job and, providing fault tolerance. SA is a program installed
on every computer that provides the computer load information and communication
speed information. During parallel process dispatching, DLBA requests the com-
puter load and speed information and communication speed information from SA
of each PC and then determines an optimal load distribution based on greedy algo-
rithm. To support multi-core computers, SA is also responsible to communicate with
the operating systems to get the number of CPU core information. This information
is passed to DLBA and be used in the cost function for load distribution optimiza-
tion. Although DLBA does load balancing based on each CPU core, the operating
system does not allow DLBA to submit the job to each CPU core. Therefore, the
DLBA submit the load of all CPU core of a computer to the computer and expect the
operating systems to distribute the job evenly.

4 Experiments

The following experiment demonstrates the effectiveness of the proposed approach.
The application code is a parallel CFD test solver which implements a 3D tran-
sient heat equation on structured grids with forward time central space differentiation
method. The code can be downloaded from http://www.engr.iupui.edu/

http://www.engr.iupui.edu/me/newmerl/cfdl_software.htm
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Fig. 2. The components of DLB.

me/newmerl/cfdl_software.htm. The data grid was divided into twelve
equal sized blocks with 2 blocks in X direction, 2 blocks in Y direction, and 3 blocks
in Z direction. The block size is approximately 8MB (15,625 nodes/block).

The test code was run on four Windows based computers. Two of these com-
puters had two CPU cores, while the other two PCs had only one CPU core. The
execution CPU time of a small benchmark program on each computer during system
start up is listed in Table 1. Even though the benchmark code execution CPU time
for the dual CPU core PC is about the same as the single CPU core PC, only one
CPU core of the dual CPU core computer was used to run the benchmark program.
Therefore, the dual core PCs were approximately two times faster than the single
CPU core PCs.

PC Name
Benchmark Execution
CPU Time (sec)

Number
of CPUs

in-engr-sl11133 8.234375 1
in-engr-sl11132 7.984375 1
In-engr-sl11134 8.465625 2
In-engr-sl11135 8.578125 2

Table 2. PCs used in the experiment

Twelve data blocks were initially distributed evenly on all PCs (3 on each PC).
The execution time for each process is measured by the profiling library. The CPU
usage percentages calculated based on the execution time of all processes are shown
in Table 2. The system efficiency for the initial load distribution is 68.64%. Since the
speeds of the PCs were not identical, this result was expected, which demonstrates
that the PCs with two CPU cores were underutilized.

http://www.engr.iupui.edu/me/newmerl/cfdl_software.htm
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PC Name TotalLoad Blocks
Measured CPU Usage Per-
centage

in-engr-sl11133 3 1 2 3 98.024
in-engr-sl11132 3 4 5 6 98.265
in-engr-sl11134 3 7 8 9 52.127
in-engr-sl11135 3 10 11 12 54.168

Table 4. Experimental results for the initial distribution.

PC Name Total Load Blocks
Measured CPU
Usage percentage

in-engr-sl11133 2 1 2 87.014
in-engr-sl11132 2 3 4 87.352
in-engr-sl11134 4 5 6 7 8 94.914
in-engr-sl11135 4 9 10 11 12 97.299

Table 6. Experimental results of the final distribution

Based on the measured timing data, the DLB tool suggested to move blocks from
the two single CPU core PCs to the dual CPU core PCs in order to balance the load.
In the new block distribution, the computers with two CPU cores had twice the load
of the computers with one CPU core. After the parallel application restarted with
the new process distribution, the experimental results (Table 3) showed that the DLB
tool responded properly for the dual CPU core PCs. The CPU usage percentage of
the PC’s with dual CPU core went up from the 50% range to the middle 90% range
and the efficiency percentage increased by twenty five percent to 93.03%. Figure 3
shows the side by side comparison of CPU usage percentage between initial load
distribution and DLB suggested balanced load distribution. This result demonstrates
that new approach is capable of working in environments which contain multi core
PCs and single processor PCs.

Fig. 3. Comparison of CPU usage percentage between initial load distribution and DLB sug-
gested balanced load distribution.
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5 Conclusion

Multi-CPU core computers will be widely used in the heterogeneous computer net-
work for parallel applications. The proposed method shows that the load balancing
method can use CPU core as a basic unit for parallel process load balancing if the
multi cores are homogeneous on the PC. The CPU usage percentage and system ef-
ficiency definitions described in this paper can be used as a measure of the system
performance. The dynamic load balancing tool was augmented to support multi-core
UNIX based and Microsoft Windows (XP and Vista) based computers. The tool is
successfully tested for supporting a parallel CFD code on multi core computers.
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Abstract. The present work is reporting the experience on different aspects of using super-
computers for CFD applications. Several problems that appear with new supercomputers built
of multi-core nodes are considered. In particular, it is a problem of increased influence of ir-
regular memory access, problems with efficient use of such a big numbers of processors that
are available in present time. A hybrid parallelization using MPI and OpenMP technologies
is also considered to improve efficiency of computations. Results of performance tests where
the hybrid approach outperformed the MPI-only parallelization are shown. Finally, a perfor-
mance comparison of Marenostrum and MVS-50000 supercomputers is presented, illustrative
numerical results on the DNS of turbulent flows are also included.

Keywords: supercomputers; parallel algorithms; multi-core architecture; hybrid par-
allelization

1 Introduction

A further progress in the CFD applications is directly connected with a possibility of
performing giant-size DNS computations in order to show the advantages of compu-
tational experiments together with (and sometimes instead of) physical ones. Another
important goal of such DNS computations is a calibration of semi-empirical turbu-
lence models (RANS, LES and the hybrid RANS/LES models). The only way to
compute such problems is to use high-performance supercomputers which are being
rapidly developed nowadays. Many new machines with Rmax above 100TFlops can
be found in the TOP500 list. Several Petaflop computer systems are being built. But
those new machines bring new problems. Of course, a primary problem is how to use
supercomputers efficiently. An efficient use of even one CPU is not a trivial task with
all this memory cache hierarchy, multithreading, vector operations etc. Each node of
supercomputer may have several multi-core CPUs and this set of cores shares RAM
memory, network channel etc. So an efficient use even of one node which is itself
a shared memory parallel system is not straightforward, especially considering that
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cores can easily be too many for the hardware they installed in (limited RAM mem-
ory bandwidth, etc.). And, finally, there are hundreds and thousands of nodes that
must work together efficiently within a huge DNS or LES computations. Is sounds
like a challenging problem.

The most common CFD approach of parallelization is MPI with geometric par-
allelism for MMP machines with distributed memory. It also works well on SMP
machines with shared memory and can even outperform its inherent OpenMP paral-
lelization. Supercomputer is in fact a hybrid - it is an MMP machine built of SMP
nodes. It used to be no problem when single-processor nodes were replaced with twin
CPU nodes. Then multi-core CPUs came and now the number of cores is becoming
too much for RAM memory bandwidth and size, network channels etc. A general
tendency is that a number of cores per node grows much faster than the memory size
and bandwidth (Imagine a 16-core node with the memory that can work at full speed
only with say 4 cores. If all the 16 processors use the memory intensively the perfor-
mance may go down 4 times). This brings new problems that should be considered.
OpenMP parallelization in addition to MPI should be also taken into account when
developing parallel algorithms. And the requirement of scalability to such a big num-
ber of CPUs is also not easy to be satisfied. This leads to the situation which can be
often seen on supercomputers - mostly they are loaded with plenty of small 10-100
CPU tasks. They are dragged apart into small pieces instead of running full power to
solve really big cases they are designed for.

This work is devoted to investigation of ways to use efficiently the huge power of
supercomputers for CFD applications. It is based on particular examples of several
research codes and DNS for compressible and incompressible flows performed on
different supercomputers.

2 Supercomputers and codes under consideration

Following supercomputers were used for the DNS simulations and efficiency tests
within this work:

1. MVS-50000 (Hewlett-Packard) in Joint SuperComputer Center of Russian
Academy of Science. It has about 450 nodes interconnected with Infiniband net-
work. Each node has 2 quad-core CPUs Intel Xeon 3.0 GHz, 8 cores in total,
that share 4 Gb of RAM memory.

2. MareNostrum (IBM) in Barcelona Supercomputing Center. It has about 2500
nodes interconnected with Myrinet network. Each node has 2 double-core CPUs
IBM Power PC 970MP 2.3 GHz , 4 cores in total, that share 8 Gb of RAM
memory.

The following in-house CFD codes are involved:

1. In-house code NOISEtte [2]. It is designed for solving 2D and 3D CFD and
aeroacoustics problems on compressible flows using unstructured triangular and
tetrahedral meshes and higher-order explicit algorithms [1]. The parallel algo-
rithm is well-scalable due to the explicit time integration.
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2. In-house code WOMBAT [3]. It is designed for 3D CFD problems, in particular
DNS of compressible flows using unstructured meshes. Parallelization is similar
in general to the first code.

3. In-house code KSFD from CTTC lab of Technical University of Catalonia [5].
It is designed for large DNS of incompressible flows. It uses structured meshes,
high-order numerical scheme and is well scalable on parallel systems. It can use
efficiently up to at least a thousand of CPU of supercomputer.

The first code is used in efficiency tests and as a playground for hybrid parallelization
MPI with OpenMP. The second code also implements both the MPI and OpenMP
technologies and is used to evaluate the performance with data reordering for ef-
ficient memory access. The third code is used to compare the performance of two
supercomputers Marenostrum vs. MVS-50000.

3 Efficiency of multi-core nodes

The first test shows the problem of performance loss due to multi-core configuration
of nodes on MVS-50000. It has 8 CPU cores per node and it is not straightforward to
use them all efficiently. The DNS test case was performed with the NOISEtte code
using unstructured tetrahedral mesh of 106 nodes decomposed into 40 subdomains.
This 40-cpu case can run on 5 nodes using all 8 cores of each node. It can also run
on 10 nodes using only 4 cores, on 20 nodes using 2 cores and on 40 nodes using
only 1 core as well.

A wall clock time spent on computation of 100 time steps is measured. The
efficiency shown in figure 1 is simply given by

E = T1/Tp ×100% (1)

where Tp - time for 40 CPU case using P cores per node.
The execution on 40, 20, 10, 5 nodes corresponds respectively to P=1, 2, 4, 8.

T1 - the time for execution on 40 nodes having only one process per node. It is clear
that there is a significant decrease of efficiency when all 8 cores are in use. The
comparison of 4 and 8 processes per node shows 55% performance loss (which is
(T8 −T4)/T4 ×100%).

The same behavior was observed with In-house code KSFD [5], when the
200CPU case with mesh of 27 millions of nodes was executed first having 4 pro-
cesses per node, then 8. A performance loss on 8 cores was 60% comparing with 4
cores per node used. A similar test was executed for WOMBAT code and showed the
same problem but in less scale. The results for all three codes are represented in the
figure 1.

The test with NOISEtte code was repeated with all communications switched
off to ensure that it was not a problem of network operations. The results remained
the same. This leads to the conclusion that 8 cores are too much for RAM memory
bandwidth. When all 8 cores use the memory intensively a significant slowdown
happens. This motivates the use of approaches considered further which allow to
improve efficiency and performance.
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Fig. 1. Efficiency of using cores in 40 CPU case running on 8-core nodes

4 The two-level preprocessing model

Due to computer memory hierarchy an efficiency of parallel implementation of finite-
volume and finite-element methods on unstructured meshes strongly depends on a
numeration of the mesh nodes. An order of numbering of the mesh elements deter-
mines the arrangement of data needed for the calculation of fluxes on the cell faces,
variables gradients, etc. in RAM. The calculations per mesh elements are usually not
of high computational costs, so the efficiency is mainly dependent on the memory
access. A non-optimal data disposition in RAM memory leads to frequent losses in
cache. This results in a significant performance decrease, especially for multi-core
nodes.

To optimize the memory access, a special algorithm of two level mesh prepro-
cessing is implemented in the in-house code WOMBAT. At the first level the mesh is
decomposed into a large number of small micro-subdomains and a coarse graph of
mesh is built. At the second level the coarse graph is decomposed into the required
number of subdomains. This approach has the several advantages:

• Decomposition of mesh at the second level can be done sequentially. The coarse
graph is small enough to be decomposed by single CPU, then each CPU can
combine its fragments
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• Better load balance. The comparison with ParMetis for the decomposition of
2.1 ∗ 108 nodes mesh into 1280 subdomains shows that ParMetis results in load
imbalance 52%, while with 2-level model (1st level decomposition into 20000
fragments) it is only 6%.

• Reordering of the mesh elements by micro-subdomains improves memory ac-
cess. The size of micro-subdomains is chosen small enough to fit its data in cache
minimizing the cache losses and stabilizing the computation time for different
variants of original mesh numeration.

5 Hybrid parallelization based on MPI and OpenMP

The hybrid MPI + OpenMP parallelization becomes more popular due to a fast
growth of the number of cores per node. OpenMP is used for the parallelization
within multi-core nodes. A number of cores grows faster than RAM memory and
network performance hence the use of OpenMP gives several advantages reducing a
number of MPI processes:

• More RAM memory per MPI process. RAM per core becomes too small when
only MPI is used. In case of MVS-50000 it is less than 0.5Gb per each of 8 MPI
processes running on a node.

• Reduction of communications. Without OpenMP multiple MPI processes share
limited network resources of the node which results in a slowdown.

• Load on file system is reduced since less processes use it simultaneously.

One of the problems with OpenMP parallelization is an intersection of the data
the threads work with. Presence of the critical sections and atomic operations lead
to a substantial slowdown. In some cases it can be avoided by a straightforward
replication of output arrays when the threads write to their own arrays and the results
are joined afterwards.

A more universal approach is the further decomposition of subdomain belonging
to the MPI process into smaller blocks. Elements of the mesh are reordered in a way
that all inner elements of the blocks are grouped in memory and a set of interface el-
ements (belonging to more than one block) is separated and also grouped compactly.
OpenMP threads process inner elements of the blocks without intersections and then
one thread processes the interface elements.

6 Performance and illustrative results

Speedup results for the code NOISEtte with the hybrid MPI+OpenMP parallelization
are represented in figure 2. The test is done on MVS-50000 using a small mesh of
only 106 nodes and the higher-order numerical scheme based on the extended space
stencil which requires large data exchange. Apart from the speedup the test shows
the comparison of MPI only (8 MPI processes per node) and MPI+OpenMP (4 MPI
processes with 2 OpenMP threads each). MPI+OpenMP goes as fast as MPI until 640
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CPU but providing twice more memory and at 1280CPU MPI+OpenMP outperforms
MPI on about 20%. Further they both decay.

CPU

S
p

e
e

d
u

p

10
0

10
1

10
2 Linear

1 thread 8 proc.

2 thread 4 proc.

1 thread 4 proc. (half load)

200050010016

32

40

80

160

320

640

256

1280

1000

Fig. 2. Comparison of MPI and MPI+OpenMP parallelization in a speedup test using a small
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Fig. 4. Illustrative DNS snapshots. Turbulence in a resonator chamber, mesh 106 nodes (top);
flow around a car body, mesh 2∗108 (bottom)

Another test was carried out to compare performance of the two supercomput-
ers MVS-50000 and MareNostrum on a relatively small parallel task of 200 MPI
processes (overall performance of supercomputers is available in Top500 list).

In the test the KSFD code [5] was used to perform DNS of incompressible
natural convection turbulent flow in an open cavity. The mesh size is 14∗106 nodes,
the scheme is of the 4-th order of accuracy. The results are represented in figure
3. On MareNostrum the test was performed with 4 parallel processes per node, on
MVS-50000 - with 4 and 8 processes. At the same load with 4 processes per node,
MVS-50000 is found substantially faster, but at its full load with 8 processes per node
MVS-50000 appears only 10% faster than MareNostrum. It also should be noted that
despite MareNostrum is slower, it offers 4 times more memory per core.

Finally, examples of DNS performed with NOISEtte and WOMBAT codes are
shown in figure 4.

Fig. 4 top shows a vortex structure in a resonator mouth. It is a snapshot from the
DNS of acoustic wave absorption in the resonator chamber installed in the impedance
tube. The simulation was performed using the code NOISEtte within a series of nu-
merical experiments with acoustic liners [4].
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The code WOMBAT is now used for the DNS of external subsonic flow around
bodies of complex shapes. Fig. 4 bottom shows streamlines of the flow around a car
body from the illustrative DNS carried out using tetrahedral mesh of 2 ∗ 108 nodes
and up to 3000 CPU.
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Abstract. Recently an in-vitro experimental investigation on axisymmetric models
of stenotic arteries was conducted by Peterson and Plesniak to determine the influ-
ence of three fundamental disturbances on stenotic flows: a geometric perturbation
resulting in asymmetry of stenosis; a skewed mean inlet velocity profile; and flow
downstream of a bend (skewed mean inlet velocity profile plus secondary flow due
to bend). The goal of this paper is to numerically simulate the flow fields in the
experiments of Peterson and Plesniak and compare the computed results with the ex-
perimental data. A commercially available CFD flow solver FLUENT is employed
in the numerical simulations. The stenosis is modeled as an axisymmetric 75% area
reduction occlusion. The actual physiological waveform of the heart is employed
at the inlet in both the simulations and the experiments. Computations are in good
agreement with the experimental data for flow in an axisymmetric stenosis with 75%
area reduction occlusion. Computations for flow in an asymmetric stenosis (due to
small geometric perturbation to axisymmetric configuration) are also in reasonable
agreement with the experimental data.
Keywords: Vascular Stenosis, Pulsatile Blood Flow in Arteries

1 Introduction

Heart and other circulatory system diseases are among the leading causes of death
in the adult population worldwide. Vascular and aortic valve stenoses are diseases
that occur when there is narrowing of a blood vessel or valve due to formation of
plaque. Vascular stenosis is caused by the accumulation of intravascular artheroscle-
rotic plaques that build up along the vessel wall and extend into the vessel interior;
also the impingement of extravascular masses sometimes causes stenosis. Since vas-
cular stenosis occurs inside the vessel, it is not easy to diagnose it clinically since
it cannot be inspected visually. Using invasive pressure drop measurements from
catheters inserted upstream and downstream of the blockage, an estimate of the throat
area of the stenosis can be obtained by performing a simple fluid dynamics analysis.
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Using X-ray contrast angiography, images of severe stenosis can be obtained, but
these images provide little or no information about flow properties such as pressure,
velocity and wall shear stress. Doppler ultrasound techniques can also be used to
measure velocities and waveforms in stenotic vessels and to determine the estimates
of the throat area, however this method also has limitations in providing accurate
predictions of the valve area because of several simplifying assumption involved. In
recent years, the application of Phase Contrast Magnetic Resonance Imaging (PC-
MRI) has become popular in the measurement of velocity field in vascular flows, and
has shown some promise as a tool for diagnosing the vascular disease [1].

It is now well established that several flow related phenomenon play a critical
role in the progression of the vascular disease. These are oscillating and low wall
shear stress, high blood pressure, and flow phenomenon such as recirculating flow
regions and turbulence that may occur after the onset of stenosis. In the 1997 review
paper, Ku [2] has described in detail the fluid dynamics issues related to the flow of
blood in healthy and diseased arteries, including some of the analytical models and
measurement techniques used to diagnose the vascular disease. Berger and Jou [3]
have reviewed the state of the art in analytical and computational techniques in ana-
lyzing the blood flow in stenotic vessels, with emphasis on flow through bifurcations
and junctions including studies of steady and pulsatile flows in two and three dimen-
sions. They also discuss the fluid dynamics related factors that may be responsible
for triggering the buildup of plaque and subsequent formation of stenoses. Young
[4] has also provided a very detailed study of the fluid mechanics of flow through
vascular stenoses for both steady and pulsatile flow. Kim et al. [5] have performed
numerical studies to simulate the local hemodynamics in the human circulatory sys-
tem. In their CFD simulation, they employed non- Newtonian flow models for blood
flow, an analytical model to describe the arterial wall motion due to fluid-wall in-
teractions, a vascular bed model based on lump parameters for outflow boundary
conditions, and a model for auto-regulation to account for systemic circulation in the
entire cardiovascular system.

In a recent paper, Okpara and Agarwal [6] presented the results of simulations
of steady and sinusoidal pulsatile flow in axisymmetric and 3D concentric phantoms
and their comparison with experimental data. The goal of this paper is to extend the
work reported in [6] to compute the pulsatile flows with actual physiological wave-
form of the heart in models of vessels with varying degrees of stenoses (mild to
severe) for different flow rates to analyze and understand the details of the flow field
such as pressure and velocity distributions, wall shear stress etc. The key objective
of the study is to validate the experimental data recently obtained by Peterson and
Plesniak [7] for actual physiological heart waveform for a 75% area reduction occlu-
sion. Peterson and Plesniak recently conducted an experimental study to determine
the influence of three fundamental disturbances on stenotic flows: a geometric pertur-
bation resulting in asymmetry of stenosis; a skewed mean inlet velocity profile; and
flow downstream of a bend (skewed mean inlet velocity profile plus secondary flow
due to bend). The goal of this paper is to numerically simulate the flow fields in the
experiments of Peterson and Plesniak and compare the computed results with the ex-
perimental data. Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations
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in conjunction with several turbulence models are solved using the commercially
available CFD flow solver FLUENT. The stenosis is modeled as an axisymmetric
75% area reduction occlusion. The actual physiological waveform of the heart is
employed at the inlet in both the simulations and the experiments.

2 CFD Fluent solver

FLUENT is a commercially available numerical flow solver package, which is em-
ployed in this paper to compute the flow fields through vascular stenoses. This
CFD software package solves the governing equations of incompressible, Newto-
nian or Non-Newtonian fluid using a finite-volume method. It has several numeri-
cal algorithms for both steady and unsteady flow calculations on structured as well
as unstructured grids. The software also has several zero-, one-, and two-equation
turbulence models. GAMBIT is the pre-processing grid generation software that is
provided with the FLUENT package; it is used to create the geometry as well as to
generate the appropriate structured or unstructured meshes.

To mimic the blood flow, we use a density of 1030 kg/m3 and viscosity of
0.00255 kg/ ms in the calculations assuming the blood to be a Newtonian fluid. In-
let velocity profiles are specified with appropriate User Defined Functions (UDFs)
to mimic the actual physiological waveform of the heart. The flow is assumed to
be laminar and fully developed upstream of the stenosis. An extrapolation bound-
ary condition is applied at the outlet, which assumes zero normal gradients for all
flow variables except pressure. In our calculations we have employed a second-order
upwind solver in FLUENT 6.2.16 for solution of the momentum equations. Pressure-
velocity coupling in incompressible flow is solved using the Pressure-Implicit with
Splitting of Operators (PISO) scheme, and the pressure is computed using the stan-
dard Poisson solver. The reduction in area at the throat of the axisymmetric stenosis
results in Reynolds numbers in the transitional/turbulent flow regimes. Therefore a
turbulence model was employed; the turbulence model was modified to compute
both the

transitional and fully developed turbulent flow. Three different turbulence mod-
els: k− ε , k−ω , and full Reynolds Stress model were tested. The computed results
using the Reynolds stress model compared best with the experimental data. Compu-
tations were performed on a coarse grid and a fine grid to ensure that the solutions
were grid independent.

3 Results

3.1 Pulsatile Flow in Axisymmetric Stenosed Phantoms

In Reference [6], we computed the pulsatile flow in axisymmetric stenosed phantoms
assuming the inlet flow to be sinusoidal. Here we consider the inlet flow to be the
physiological waveform of the heart. The physiologically forcing waveform at the
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inlet of the stenosis was obtained by digitizing the data from a graph from Sean
Petersons thesis [7]. This data was then fit to a curve using a third-order polynomial
spline as shown in Figure 1. The spline was used to acquire a constant time interval.
From the spline, an 8th order Fourier series was fit to the blood flow data to remove
high frequencies. The average radius of an aortic stenosis was assumed to be 0.0064
meters. The density and viscosity of blood were assumed to be 1060 kg/m3 and
0.0035 kg/ms respectively. To match the experimental data (the experiments were
performed in water), the blood flow and period were scaled to water. From this, the
Reynolds number over the waveform was determined to be in the range 28.7 - 1402.7
and the Womersley number was calculated to be 4.64. The density and viscosity of
water were assumed to be 1000 kg/m3 and 0.0001 kg/ms respectively. The period
was scaled to 11.5972 seconds.
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Fig. 1. Spline fit of the digitized data for the physiological waveform of the heart.

A bench mark computational experiment was first performed. A tube of diameter
0.0126 meters and 1.15 meters long was constructed within GAMBIT. The inlet
boundary condition was set to be the scaled flow rate by using a user defined function
within FLUENT. A laminar flow solver in FLUENT was employed and the velocity
profile one meter downstream was recorded. The theoretical solution is well known
Womersley solution which is given as:

u
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In equation (1), Qn are the Fourier coefficients determined before. The computed
velocity (using FLUENT) and the theoretical velocity (given by equation (1)) at var-
ious radial locations z (z = 0 being the centerline) of the tube at different time are
compared in Figure 2; excellent agreement between the two is obtained. It should
be noted that the graphs in Figure 2 also match perfectly with the experimental data
obtained by Sean Peterson [7]. The Womersley solution was used to develop an inlet
boundary condition. A transformation was needed due to a limit of 16 digits double
precision within FLUENT. This Womersley inlet profile was used as a user defined
function at the inlet of a tube with a symmetric stenosis. The uniform inlet region was
5D long, where D is the diameter of the tube. The stenosis was 2D long and the outlet
tube was of uniform diameter 23D long. The equation for the stenosis geometry in
both the experiment and computation is as follows:

S(x) =
D
2

(1− s0(1 + cos( f rac2∗π(x− x0)L))) (2)

The computations inside the 75% area reduction stenotic occlusion were per-
formed using the FLUENT with inlet profile given in Figure 2. The centerline ve-
locities were computed at various points downstream of the stenosis and are shown
below in Figure 3. It should be noted that the computed values in Figure 3 are in
excellent agreement with the experimental data. The three-dimensional plots of ve-
locity profiles at select postions downstream of the stenosis specifically at a distance
2D and 4D from the beginning of the stenosis region are shown in Figure 4. Figure 4
shows the corresponding experimental velocity plots at a distance 2D and 4D down-
stream from the beginning of the stenosis [7]. Figures 4 and 5 are in reasonably good
agreement; there are some small discrepancies in the reattachment region of the flow.
These calculations were performed using the full Reynolds stress model (RSM) of
turbulence.

For this axisymmetric case (Figure 6), pressure plots upstream and downstream
of the stenosis are shown in Figures 6 and 7. Figures show the expected pressure
drop downstream of the stenoses. The peak value of the pressure drop is an impor-
tant measure of the area reduction of the occlusion and is used by the physician in
assessing the severity of the stenosis.

3.2 Pulsatile Flow in Asymmetric Stenosed Phantoms

As mentioned before, Peterson and Plesniak [7] introduce a small geometric pertur-
bation in the stenosed region of axisymmetric stenoses given by equation (2) and
Figure 6. They study the effect of this geometric perturbation on the flow field. In
this section, we simulate this effect. Figure 9 shows the geometry of the asymmetric
stenosed phantom. It can be seen in from this figure that there is asymmetry in the
throat region. It should be noted that the cross-section of the phantom in Figure 9 is
symmetric about the z-axis and is asymmetric about the y-axis. 3D grid employed in
Figure 9 has 76,572 cells and 236,257 faces. Computations are performed with the
second-order accurate URANS solver with RSM in FLUENT. Three-dimensional
simulations are compared at various stream-wise stations downstream of the stenosis
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Fig. 2. Comparison of computed and theoretical Womersley solution for velocity at various
radial locations.

along the symmetric zaxis and asymmetric y- axis of this eccentric stenosis against
the experimental results of Peterson and Plesniak. Figures 10-13 compare the results
of computations with experiments at stream-wise locations 2D and 4D downstream
of the stenosis along both the symmetric z-axis and the asymmetric y-axis. CFD
simulations shown in Figures 10-13 compare reasonably well with the experimental
data although some disagreement exists for the results along the symmetric z-axis.
The simulations overestimate the magnitude of the non-dimensional velocity u/uc;
however, this discrepancy could be attributed to the R.M.S. or variance in the veloc-
ity measurements represented by the yellow and red colors in the experimental data.
However, the three dominant peaks labeled as primary, secondary and tertiary are
clearly present in both the computations and the experiments, and their correspond-
ing locations (at t/T) are in good agreement.

Figures 14 and 15 present a direct comparison between the experimental and
numerical jet centerline velocity in the eccentric stenosis at different locations
downstream. A reasonably good agreement between the experimental and numer-
ical jet centerline velocities can be observed for most locations downstream, es-
pecially the velocities at the primary, secondary and tertiary peaks occurring at
t/T ≈ 0.2,0.35and0.6. Numerical simulations of the jet centerline velocity appear to
have the same overall shape at each location downstream just like in the experimental
results.
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Fig. 3. Computed values of the centerline velocity at various distances downstream of the
beginning of the stenosis given by equation (2).

Fig. 4. 3D plots of computed velocity profiles at (a) 2D and (b) 4D distance downstream from
the beginning of the stenosis given by equation (2).

Overall the computations and the experiments are in acceptable agreement given
the uncertainty in the computations due to turbulence modeling as well as the uncer-
tainty in the measurements.

4 Parallelisation

Computations were performed on a 126-processor SGI Origin 2000 parallel super-
computer. Only 16 processors were used in the calculations because the number of
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Fig. 5. 3D plots of experimental velocity profiles at (a) 2D and (b) 4D distance downstream
from the beginning of the stenosis given by equation (2).

L1 L2

L3

Fig. 6. Axisymmetric stenosis (Equation 2) with specific locations at which pressure was com-
puted.

Fig. 7. Average pressure at location L1 upstream of the stenosis.

grid points (76,572) employed were relatively small. SGI Origin 2000 is a cache-
coherent non-uniform access multiprocessor architecture. The memory is physically
distributed among the nodes but is globally accessible to all processors through in-
terconnection network. The distribution of memory among processors ensures that
memory latency is achieved. Parallelization was achieved by MPI. For 3D calcula-
tions, parallel speedup efficiency of 94.6% was obtained.
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Fig. 8. Average pressure at location L2 downstream of the stenosis.

Fig. 9. Geometry of the stenosed asymmetric phantom [7].

Fig. 10. Experimental (left) and numerical (right) velocity profiles at distance 2D downstream
from the beginning of the stenosis along the symmetric z-axis.

5 Conclusions

Computations were performed for pulsatile flow in an axisymmmetric 75% area re-
duction occlusion with the actual physiological waveform of the heart at the inlet.
Good agreement was obtained with the experimental data of Peterson and Plesniak
[7] for all the details of the flow field. Computations were also performed for an
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Fig. 11. Experimental (left) and numerical (right) velocity profiles at distance 2D downstream
from the beginning of the stenosis along the asymmetric y- axis.

Fig. 12. Experimental (left) and numerical (right) velocity profiles at distance 4D downstream
from the beginning of the stenosis along the symmetric z-axis .

asymmetric stenosis by introducing a small perturbation in the throat region of the
axisymmetric stenosis; again reasonable agreement was obtained with the experi-
ments of Peterson and Plesniak [7]. It is concluded that the small perturbation in the
stenosed geometry does not cause significant change in the velocity downstream and
therefore the pressure drop. The small geometric perturbation is likely to have larger
effect for severely stenosed vessel (e.g. with 90% area reduction) or the geometric
perturbation has to be large enough which will then reduce the area of the throat
significantly.
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Fig. 13. Experimental (left) and numerical (right) velocity profiles at distance 4D downstream
from the beginning of the stenosis along the asymmetric y-axis.

8

6

u C
L 

/ u
C

4

2

0

0 0.2 0.4 0.6
t / T

0.8 1

Eccentric
Baseline

2D
8

7

6

5

4U
C

L/
U

C

3

2

1

0
0.50 0.1 0.2 0.3 0.4
t /T

0.6 0.7 0.8 0.9 1

ECC.Stenosis
Baseline

Fig. 14. Experimental (left) and numerical simulation (right) comparison of the jet centerline
velocity in the eccentric stenosis at 2D downstream; the baseline case is for the axisymmetric
stenosis.

[2] Ku, D.N., Blood Flow in Arteries, Annu. Rev. Fluid Mech., Vol. 29, pp. 399-434,
1997.

[3] Berger, S.A. and Jou, L-D., Flows in Stenotic Vessels, Annu. Rev. Fluid. Mech.,
Vol. 32, pp.347-382, 2000.

[4] Young, D.F., Fluid Mechanics of Arterial Stenoses, J. of Biomed. Eng., Vol. 101,
pp. 157-175, 1979.

[5] Kim, C.S., Kiris, C., Kwak, D., and David, T., Numerical Models of Human
Circulatory System under Altered Gravity: Brain Circulation, AIAA Paper 2004-
1092, 42nd AIAA Aerospace Science Meeting, Reno, NV, 5-8 January 2004.

[6] Okpara, E. and Agarwal, R. K., Numerical Simulation of Steady and Pulsatile
Flow Through Models of Vascular and Aortic Valve Stenoses, AIAA Paper 2007-
4342, AIAA Fluid Dynamics Conference, Miami, FL, 25-28 June 2007.

[7] Peterson, S., On the Effect of Perturbations on Idealized Flow in Model Stenotic
Arteries, Ph.D. Thesis (supervisor: M. Plesniak), Purdue University, December
2006.



368 J.D. Thompson, Ch. F. Pinzn and R.K. Agarwal

0.5

8

6

u C
L 

/ u
C

4

2

0

0 0.2 0.4 0.6
t / T

0.8 1

84D
ECC.Stenosis
Baseline

Eccentric
Baseline

7
6

5

4

U
C

L/
U

C

3
2

1
0

0 0.1 0.2 0.3 0.4
t /T

0.6 0.7 0.8 0.9 1

Fig. 15. Experimental (left) and numerical simulation (right) comparison of the jet centerline
velocity in the eccentric stenosis at 4D downstream; the baseline case is for the axisymmetric
stenosis.



Fluid Flow - Agent Based Hybrid Model for the
Simulation of Virtual Prairies

Marc Garbey1, Cendrine Mony2, and Malek Smaoui1

1 Department of Computer Science, University of Houston, Houston, Texas
garbey@cs.uh.edu, msmaoui@cs.uh.edu

2 UMR CNRS 6553 ECOBIO, University of Rennes 1, Rennes, France
cendrine.mony@univ-rennes1.fr

1 Problem Background

For a long time, natural prairial ecosystems have been considered to be supports for
primary production of agricultural needs. Therefore, research focused on the eval-
uation of prairies’ productivity and the effect of management on their agronomical
values.

Starting from the 50’s, other roles of prairies in ecosystems functioning have
been detected, while prairies were degraded to be converted into croplands (through
erosion, eutrophication, and biodiversity loss) [8]. International policies defined new
goals for prairial ecosystems to serve new ecological functions. They can be used to
face the two major environmental challenges for the following decades which are
(1) the availability of fresh, unpolluted irrigation water, (2) the regulation of carbon
emission.
Consequently, we tend now to create new natural systems, as surrogates of the de-
graded ones, to provide these ecological services. Recent works have demonstrated,
for example, the capacity/capability of natural prairies to provide alternative biofuels
(carbon negative biofuels) [7], or their role in carbon storage [6].

These new systems are elaborated by sowing mixed-species seeds. Then, ques-
tions are raised on the temporal evolution of these plants with different lifestrategies
and constantly interacting with one another. Proposing precise design of these sys-
tems need to take into account all these complex interactions. The urgent need for
short term responses makes it impossible to respond to this sociological demand
through the only classical experimental approach which may necessitate long-term
surveys.

Consequently, our goal is to use computational modelling to achieve realistic
virtual experimentations at a broader scale, a cheapest cost and within a shortest
time. Parallel computing is a key tool because these simulation are still compute-
intensive. Indeed, such a model usually has a very large parameter space and it is
almost impossible to know apriori which properties will emerge from such complex
system.

D. Tromeur-Dervout (eds.), Parallel Computational Fluid Dynamics 2008,
Lecture Notes in Computational Science and Engineering 74,
DOI: 10.1007/978-3-642-14438-7 39, c© Springer-Verlag Berlin Heidelberg 2010
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We introduce in this paper an hybrid model of a prairial system (modelled
through multi-agent IBM), coupled with the environment (modelled through PDEs),
taking into account biological complexity of ecological ecosystems. Such model may
provide an original and efficient tool for testing ecological hypotheses on realistic
complex systems. In the next section we are going to detail our hybrid model.

2 Hybrid Model

Our hybrid model schematic is given in Fig. 1.

Fig. 1. Hybrid model schematic

First, we need to describe the representation and processing of individual clonal
plants. So, we use an individual based model (IBM) [4, 3] which is a set of param-
eterized rules representing the metabolism process (carbohydrate production, ramet
and connection costs of production), the plant architecture (ramification, elongation
processes) and its resource strategy (resource sharing and storage).
The plant is represented by a set of cells or modules. Each module is either a ramet
module or a connection module (c.f. Fig. 2).

At t0, the plant has only one initial ramet module (considered also as a ramet
module). Plant spatial colonization is directly linked with branching and elongating
patterns. We have chosen to work with an hexagonal grid to facilitate the control on
the plant growth. There are only six equivalent directions of potential growth on an
hexagonal grid. The creation of a new cell is made either by elongating an existing
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Fig. 2. Clonal plant model

connection or by branching at an existing ramet node in order to initiate another
connection. Thus, at each time step, the IBM decides either to add a connection
module (elongation), a ramet module (ramification or branching) or no module at
all, according to several factors:

• The order of the branch (primary, secondary, tertiary).
• The length of the branch.
• The available resources.

The placement of the new module is chosen according to whether it is an elonga-
tion process or a branching process. For elongation process, the location of the new
module follows the direction of the branch. For the ramification process, the location
is a random choice between the different possible directions. The simulation is done
on hundred time steps which corresponds roughly to one season. At a given time t1
and before adding a new module, all the ramet modules found on the grid accumulate
biomass by photosynthesis.
All the rules of the model obey parameterized probability distributions. This set of
rules is based on the literature [3, 4], but also on a set of controlled experiments that
we have done. Fig. 3 shows the experimental set up.

Fig. 3. Experiment companion by the image segmentation of the clone

Experiments with various species and environment were run and the structure
of the clone was extracted assisted by image analysis. This type of experiments is
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however very tedious and time consuming. Therefore, we cannot afford to have as
many individual plants as we would prefer. However, our modeling, guided by this
set of experiments, can be used to test scientific hypothesis qualitatively and/or do
reverse engineering to match the observations.

Prairies are made of multiple individual that may belong to different species. In
a second step, we supplement the previous IBM with rules representing the interac-
tion between plants and the competition between species. In fact, we consider this
time a significantly larger surface where we distribute randomly a given number of
initial modules (hundreds to thousands). At each prairie-scale time step, we grow the
plants one by one using the plant-scale time steps. The order followed for growing
the plants is determined randomly at every prairie-scale time step. Additional IBM
rules exclude for example the superposition of ramets of different plants, though con-
nexions can overlap. Fig. 4 is an example of the graphic output of the application for
a prairie with one hundred individuals.

Additionally, the clonal plants feed on soil resources. Then, our hybrid model
describes the coupling between the individual plants growth and ground flow of plant
nutrient. We are interested in analyzing the effect of spatio-temporal variations in
resource distribution on plant growth and space colonization. The modifications of
nitrate concentration in the soil will be taken as an example. Nitrate is a key element
determining plant production. Simulating the complex feedbacks between the soil
(nitrate concentration) and the prairie may play a key role in the understanding of the
impact of a prairie on water purification. The nitrate transport in the soil is simulated
by flow models in porous media in the form of PDEs.

We start with a Darcy Law: u = η∇p, which drives the transport of a chemical
solute:

∂S

∂ t
= εΔS−u.∇S−σδi(C)S, (1)

The last term of the rhs is for the consumption of the solute at each ramet loca-
tion. Inversely, the energy intake per ramet is a function of the local value of the
solute concentration. We have therefore a non linear feedback mechanism between
the prairie dynamic and the transport of solute. The IBM is stochastic and there is no
simple prediction on the outcome of this hybrid model.

Our ongoing research is then to (i) find realistic interactive rules, (ii) analyse
the possibility for constructing approximate models in the limit of large population,
(iii) test the effect of the initial conditions (density of plants, profiles of individuals,
number of different profiles sown) on the nitrate dynamic.

Fig. 4 and 5 show the effect of the non linear coupling between the transport of
Solute in the ground and the virtual prairie after one hundred time steps starting at
t = 0 from a slick of solute. A small fraction of pollutant leaves the field through the
upper half of the right boundary and most of it is absorbed by the plants (red: initial
concentration, dark blue: no nitrates).

More details on this application will be published in a companion paper [5](in
preparation). Now, let’s us discuss the implications in term of computation cost of
the deployment of our numerical experiments.
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Fig. 4. Darcy Flow Fig. 5. Concentration of the Solute

3 Computation Needs for Virtual Prairie

As previously mentioned , the IBM obeys a set of parameterized rules. The dimen-
sion of the parameter space for one individual plant can reach 16 and even more.
This dimension depends on the focus of the ecological study. We need to perform
two tasks:

• Task 1 Get a parameter space response i.e. browse the parameter space with
selected values for each parameter and get the simulation results for these parameter
combinations.

• Task 2 Perform an optimization process using for example a genetic algorithm
or a particle swarm algorithm.

Both steps are necessary and in that order, since the ecologist (end user) does not
know necessarily in advance what emergent properties he is looking for.

Added to that, the IBM is by nature a stochastic algorithm. It relies on random
number generation/selection, thus, one simulation of the plant growth is far from be-
ing significant. We need to repeat this simulation many times and calculate the mean
and the standard deviation of the desired outputs (total biomass accumulated, number
of ramet modules, number of connection modules, length of branch ...) obtained at
each simulation. Actually, part of testing the application was verifying that the mean
and standard deviation on the output values tend to a fixed value as the number of
stochastic simulations increases.
The convergence of this Monte Carlo method is very slow. We decided to simulate
the growth of a plant with 1000 runs for each parameter setting. Nevertheless, a
100x100 grid simulation with enough time steps to represent a little bit less than a
season is still very fast. It takes on an average 45 seconds on an Intel Pentium 1.7GHz
with 1GB of RAM and a Windows XP platform . Although this metric depends enor-
mously on the combination of parameter values input of the model, it proved to be a
good estimation when we run the computations on the volunteered computers using
BOINC [1]. Browsing a parameter space of dimension 16 with only 3 values per
parameter takes about 14 million simulations. These simulations will take around 20
years on a single PC. With a 72-nodes dedicated cluster, it may take more than 3
months.
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A simulation of the growth of a mono-species prairie of 100 plants with 1000
(stochastic) running in a 600x700 grid and during 100 prairie-scale time steps takes
significantly more time. In fact, the application induces significantly more memory
accesses to manage the competition for resources between individual plants. Besides,
since the size of the problem has also increased, it does not fit anymore in a medium
size cache. So, this induces much more swapping between the cache and the main
memory.
Overall, we have a huge number of embarrassingly parallel computation jobs. So,
volunteer computing fits perfectly this situation and with the computing and storage
potential of this resource, we can expect to achieve the computations in a reasonable
time. We are going now to describe this technique.

4 Virtual Prairie with BOINC

Volunteer computing is an arrangement in which people (volunteers) provide com-
puting resources to projects, which use the resources to do distributed computing
and/or storage.

• Volunteers are typically members of the general public who own Internet-
connected PCs. Organizations such as schools and businesses may also volunteer
the use of their computers.

• Projects are typically academic (university-based) and do scientific research.
Several aspects of the project-volunteer relationship are worth noting.

• Volunteers are effectively anonymous; although they may be required to reg-
ister and supply email address or other information, there is no way for a project to
link them to a real-world identity.

• Because of their anonymity, volunteers are not accountable to projects.
BOINC [1] is a middleware for volunteer computing developed by the team of

Dr. David Anderson at the Berkeley Space Science Lab. Nowadays, there are at least
50 volunteer computing projects in different research fields. All the projects are in-
dependently operated, see http://boinc.berkeley.edu/.
BOINC has a server/client architecture. The volunteers install the client on their
computers and decide to volunteer their resources to the projects of their choice. The
client will then download jobs from the different projects, compute them and report
the results back.
The server side hosts a web interface, a data base and a set of functionalities for the
distribution of jobs and aggregation of results. The web interface allows the users to
get information about the science involved in the project, consult the work status of
the project, communicate with each other and with the project administrators via a
message board, consult and edit their accounts and profiles, etc.
To handle the work distribution and aggregation, BOINC uses abstractions which are
mainly “workunits” and “results”. A workunit is a reference to an application and an
input file. A result is a reference to a workunit and an output file. Since the resources
(volunteered computers) are not necessarily reliable, BOINC uses redundant calcula-
tion to ensure the correctness of the results obtained for each workunit. So, for each
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workunit, a predefined number of results are sent to different users and then their
output files are compared and validated if they agree.
A set of daemons running on the server interacting with a data base work together to
ensure all these mechanisms. A feeder is responsible for creating the needed results
for each workunit according to its status. A scheduler is responsible for dispatching
these jobs (results) to the clients [2]. A “validator” is responsible for comparing the
results for every workunit and validating or invalidating them. An “assimilator” is
responsible for the post-processing of the validated results on the fly. These demons
“communicate” with each other by updating the status of the workunits and the re-
sults in the database.

We have used BOINC first to browse the parameter space of the IBM of one in-
dividual plant. We ran 22 106 parameter combinations in a fairly systematic way to
test our model. At this point we have no apriori knowledge on what is the best fitness
function, and we are interested in optimum solution as well as failures of our model.
This campaign of experiments did growth 22 109 individual clonal plants and took 3
weeks with the equivalent of 800 full time individual PCs of our volunteer commu-
nity. The lessons we learned from data mining this large scale numerical experiment,
using clustering technic among other things, are the following. First it seems that
there is no trade-offs between plant traits but there can be some positive correlations.
Second the properties involved in clonal plant fitness depend on the output param-
eter considered, such as biomass, number of ramet modules, total length of stolon
etc... Third, there are several combinations of traits that promote plant performance.
In other words, there is no single strategy but a few different ”optimum” strategies.
Based on these preliminary results, we are now studying the optimum solutions that
emerge from our hybrid complex model of virtual prairies.

5 Conclusion

We have presented here the first green project of BOINC, and shown the potential
of this approach to analyze a multi-scale complex adaptive ecosystem. The social
aspect of volunteer computing certainly contributes to the awareness of the public on
the cyber-world. We have paid particular attention to the design of a web site for this
BOINC project - see http://vcsc.cs.uh.edu/virtual-prairie/- to recruit our volunteers.
The key challenging problem remains however the careful validation of the model.
This is a process that traditionally takes time and manpower indeed, since we depend
on seasons. We are looking therefore at new innovative ways of accumulating more
experimental data.

Thanks: We would like to thank Dr. David Anderson for his advice and support
for the project and Marie Lise Benot for providing data on experimentations describ-
ing spacial plant growth. We would like also to acknowledge CNRS & Cemagref for
partly financing the project.
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This paper describes the parallelization needs required by the TELEMAC system,
a complete hydroinformatics tool developed by EDF R&D. A focus on three codes
part of the TELEMAC system, namely Estel-3D, Telemac-3D and Spartacus-3D, is
achieved. For each code, performance in terms of speed up is presented, as well as
an industrial application.
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1 HPC through the TELEMAC system

The TELEMAC hydroinformatics system has been developed since 1987 at EDF
R&D [1]. It addresses free surface and groundwater flows and is composed of sev-
eral numerical codes based on the finite element technique except Spartacus-3D code
which relies on the SPH formalism. Each code aims at modelling a specific physical
phenomenon. Wave effect as well as sediment transport or water quality can be mod-
elled in the context of hydraulics or environmental flows. In this framework, three
codes of the Telemac system, namely Estel-3D, Telemac-3D and Spartacus-3D have
been selected for HPC due to their respective computational time requirements.

1.1 Historic of HPC in the TELEMAC system

HPC in the TELEMAC system began with the emergence of vector computers, hence
inducing many changes in algorithms. Because of possible backward dependence, an

D. Tromeur-Dervout (eds.), Parallel Computational Fluid Dynamics 2008,
Lecture Notes in Computational Science and Engineering 74,
DOI: 10.1007/978-3-642-14438-7 40, c© Springer-Verlag Berlin Heidelberg 2010



378 R. Issa et al.

elementary vector assembling was not automatically vectorized. Renumbering oper-
ation allowed us to force vectorization by a compiler instruction. This first perfor-
mance development was successfully tested on several vector architectures such as
a Cray YMP and Fujitsu computers with respectively 64 and 1024 vector register
lengths [1]. However, even with improved algorithms, this kind of parallelization
technique suffers from intrinsic limitations. The idea of extracting most parallelism
from the codes has been followed in the development by a first implementation of
algebraic partitioning based on PVM. This release was tested with success on an
ORIGIN 2400 with distributed memory [1]. As MPI became an international stan-
dard, PVM was rapidly replaced by a collection of basic MPI routines.

1.2 TELEMAC, a SPMD hydroinformatics system

According to the Flynn classification, the parallelization technique used for the
TELEMAC system corresponds to the SPMD (Single Program Multiple Data) tech-
nique. For the sake of simplicity and adaptability to the different physics solved in
the system, algebraic parallelization has been preferred to the parallelization based
on domain decomposition methods. In the case of our implicit algorithms, which led
to solve a linear system, specifications for the parallel structures were:

1. Partitioning of the domain and definition of the parallelism structure;
2. Development of a parallel wrapper able to process communications between pro-

cessors and updating values;
3. Transformation of scalar to scalable algorithms such as vector assembling, dot

product

Obviously, the way of partitioning the mesh strongly influences the above mentioned
points. According to our finite element method, partitioning is done without overlap-
ping, edge to edge, meaning that elements belong to a unique sub-domain. Then,
nodes are shared at the interface between sub-domains. 2D (triangles) and 3D (tetra-
hedrons) mesh decomposers are both using METIS decomposer [7] for achieving
load balancing. Partition of prisms is easily performed by extracting from a 2D trian-
gle partition. As this is done as a - scalar - pre-processing, level of parallelism is very
high in the TELEMAC system since MPI runs at the beginning of the simulation.

1.3 Structure of parallelism in the TELEMAC system

A parallel structure is necessary for mapping the message-passing scheme, where
most difficulties lie. As dot product is easily computed by a sequence of a global
sum reduction and division of the interfacial node value by its multiplicity (meaning
the number of sub-domains it belongs to), the number of nodal values has to be
exchanged by point-to-point communication in the case of matrix-vector product.
Point to point communication needs special mapping of interface nodes provided by
a specific parallel mesh structure. So, extra-arrays, storing initial global number of
nodes and mapping of nodes belonging to different sub-domains, are provided when
partitioning.



HPC for hydraulics and industrial environmental flow simulations 379

1.4 Point to point communication and data exchange

At first, blocking point-to-point communications have been implemented for value
updating. This operation is quite complex to achieve but the algorithm, though com-
plex, does not occur any deadlock. The transmission is decomposed into a sequence
of 4 tasks, depending on the rank of the processors, as described in figure 1:

Fig. 1. Point to point communication and data exchange

So, the communication scheme can be summarize as follows:

• Transmission of the data to the higher rank processor;
• Reception by the higher rank processor;
• Transmission of the data to the lower rank processor;
• Reception by the lower rank processor.

Each processor separately performs the operation after its own reception. Since as-
sociative addition is not valid in parallel computing, the summing task may compute
value with a slight difference on digits on nodes belonging to neighbor processors.
This algorithm is being optimized and simplified by using non-blocking communi-
cations.

2 HPC through soil pollution with Estel-3D

2.1 Estel-3D code

Estel-3D is developed within the TELEMAC system and is applied to the safety of
waste nuclear repository projects in France. It solves the following Richards equation
with finite element method:

∂θ
∂ t

= ∇ · krKS
·∇(h + z)+ S (1)
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where h is the pressure head and θ is the saturated moisture content. z denotes the
vertical distance from the soil surface downward and K

S
the saturated hydraulic con-

ductivity. kr is the relative permeability of water to air in the unsaturated regime and
S a volumetric source/sink term. Flow velocities are determined by differentiation
using the hydraulic head, implying that the spatial accuracy is reduced by one or-
der of magnitude. Obviously, accuracy of velocities is crucial for solving advection-
dispersion equation within a safety study. The discretization of the flow domain is
obtained by using tetrahedral finite elements and linear and piecewise shape func-
tions, respectively for pressure head and soil variables such as moisture content or
hydraulic conductivity. Integration in time is performed by a forward Picard finite-
difference scheme. The current parallel implementation based on domain partition
has been developed for distributed-memory parallel computer [4]. It is based on the
technique described in part 1.

2.2 Application of Estel-3D in the vadose zone

The vadose zone is the superficial soil layer with variably moisture located between
land surface and the phreatic zone content. The vadose zone plays an important role
in refilling aquifers. However, safety studies and risk assessment are generally per-
formed only with inclusion of the aquifers although contaminant migration goes from
the top soil through the vadose zone. The relationships kr = kr(h) and θ = θ (h)
strongly depend on the type of porous medium and some experiments are necessary
for calibration. The following test case is taken from [2] and is used to validate the
parallel non-linear scheme. A soil column is composed of homogeneous sand and
parameterized by the following constitutive relationships, where the parameters are
defined in table 1: Although this case is a one-dimensional infiltration, the column

kr(h) = A
A+|h|λ θ (h) = θr + α(θs−θr)

α+|h|β

Soil parameter A α β y θs θr K
S

value 1.17510−6 1.61110−6 3.96 4.74 0.287 0.075 9.4410−3cm/s

Table 1. Constitutive relationships and soil parameters.

size is about 10× 10× 40 cm. The column infiltration problem is chosen such that
pressure at the bottom is −61.5 cm and −20.7 cm at the top. The initial pressure
profile is specified as constant and equal to −61.5 cm. The mesh size is about 11149
nodes and 60245 tetrahedrons, meaning that there is less than 200 nodes along the
depth. This test case ran on a IBM BlueGene/L with 500 Mb memory per cores.
The continuous line of figure 2 (left) represents the solution calculated by a mass-
conservative scheme [3] and Δt = 0.5s while circles represent analytical values taken
from [2]. The speed-up performance, represented on figure 2 (right), is satisfactory
for this number of nodes.
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Fig. 2. Comparisons of analytical and numerical profiles at time T = 360s for the infiltration
column problem: vertical profile of pressure head h in function of depth with different time
step (Left). Estel-3D speed-up.

3 HPC for real environmental applications with Telemac-3D

3.1 Telemac-3D code

Telemac-3D is developed for the modeling of complex 3D free surface flows.
Many physical phenomena can be taken into account such as turbulence, effect
of vertical density resulting from temperature and/or salinity fluctuations, effect of
wind surface, Applications involving transport of chemical and radiological species,
as well as evolution of thermal plumes and/or salinity stratification are achieved
with Telemac-3D. Considering a 3D domain Ω , the following system for a non-
hydrostatic free surface model are solved:

dρu
dt

− ∇ · (μh∇u)− ∂
∂ z

(μz
∂u
∂ z

)+∇(ρgh)+∇π = ρ fu −∇(ρgZF)−∇patm, (2)

dρw
dt

− ∇ · (μh∇w)− ∂
∂ z

(μz
∂w
∂ z

)+
∂π
∂ z

= ρ fw, (3)

∇ · (ρu)− ∂ρw
∂ z

) = 0, (4)

dρSi

dt
− ∇ · (kh∇Si)− ∂

∂ z
(kz
∂Si

∂ z
) = ρ fSi , (5)

ρ = ρ(S1, . . . ,Si, . . .). (6)

On 2D horizontal projected domain ω :

∂ρh

∂ t
+ ∇ · [

∫ ZS

ZF

ρudz] = 0 (7)

where u, w(respectively μhz,μz,kh,kz) are the horizontal and vertical fluid velocity
(resp. total dynamic velocity and scalar viscosities, included eddy turbulent viscosi-
ties), Si scalar variables (as salinity or temperature, ), fu, fw, fSi source terms, g the
gravity, Zs,Zf the z levels of free surface and the bottom, h = Zf −Zs the water col-
umn height, π the dynamic pressure and Patm the atmospheric pressure. The system
is completed with appropriate boundaries and initial conditions.
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3.2 Application to Berre lagoon

Telemac-3D has recently been used to study the impact of fresh water release com-
ing from the Saint-Chamas hydraulic power plant in Berre lake. Since this lake is
connected to the Mediterranean sea through Caronte channel, salinity of the lake is
hence modified due to Saint-Chamas exploitation, inducing ecosystem perturbation.
A measurement campaign, including salinity and temperature, and a programme of
CFD modelling were performed. Velocities and fluxes through the Caronte Channel
have been carefully measured at measurement stations SA1, SA2 and SA3 (see fig-
ure 3) to assess the salt and water exchanges with the Mediterranean Sea. Wind, air
temperature and atmospheric pressure are recorded by a meteorological station. A
Telemac-3D numerical model has been constructed: 12 000 000 prisms are used for
spatial dicretization of the entire 3D domain. For temporal discretization, θ -semi-
implicit scheme is used. Thanks to the large datasets of measurements, the results
could be duly validated and show a very complex hydrodynamics, depending on
tide, density gradients due to salinity and mistral, the dominant local wind (see fig-
ure 4). The speed up performance relative to IBM BlueGene/P when considering 12
million nodes is satisfactory, as displayed on figure 5. 1 hour computing was needed
on 8000 processors IBM BlueGene/P in order to simulate 16 hours of physical time.

Fig. 3. Berre lake (right) and its Telemac-3D modeling (left).

4 HPC for complex environmental flows with Spartacus-3D

4.1 The SPH method

Smoothed Particle Hydrodynamics (SPH) is a meshfree particle method initially de-
veloped for astrophysical applications. Recently adapted to fluid mechanics [5], it
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Fig. 4. Salinity comparisons at measurement stations SA1, SA2 and SA3 (bottom) at 3 water
column locations. Measurements (respectively simulation) correspond to thick lines (resp.
light lines)

has shown its capability to succesfully handle complex flow modeling with free sur-
face, e.g. breaking wave, wave flumes. In the SPH formalism, the fluid is discretized
with a finite number of macroscopic particles which are characterized by a constant
mass ma, a velocity vector ua, a pressure pa, a density ρa and a position vector ra,
which are computed at each time step. The momentum equation relative to particle a
is usually discretized by:
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Fig. 5. Telemac-3D speed-up.

Dua

Dt
= −∑

b

mn(
pa + pb

ρaρb
−8

vT,a + vT,b

ρa +ρb

uab · rab

r2
ab

)∇awh(rab)+ g (8)

where the summation is extended to the closest neighbors b relative to particle a.
In the previous equation, all variables correspond to Reynolds averaged values. uab
denotes the averaged velocity difference between particles a and b, rab the vector ra−
rb and rab its length. The function wh is an interpolating function called kernel, which
is the core of SPH theory and g corresponds to the gravity. Density and pressure are
respectively computed through continuity and state equations and particles are then
displaced at each time step.

4.2 Spartacus-3D code

At EDF R&D, SPH aims at improving the design of coastal protections near power
plants or optimizing geometry of environmental structures such as spillways, fish
passes For this purpose, a 3D SPH code, Spartacus-3D, has been developed since
1999. Since 3D SPH is still an issue, mainly because of heavy CPU time require-
ments, Spartacus-3D has been massively parallelized, with the collaboration of the
French college Ecole Centrale de Lyon [6] and IBM, by using a dynamic particle
decomposition technique preserving the load balance. The Spartacus-3D speed up
performance when considering approximately 2 million particles is satisfactory, as
displayed on figure 6.

4.3 Application to an industrial hydraulic structure

Hydraulic structures are any structures can be used to control the natural flow water.
In this section, two industrial structures are considered: the Goulours dam, devoted
to hold water in a large reservoir (see figure 7) and the current sky-jump spillway
(see figure 7), devoted to evacuate floodwater. A Spartacus-3D model of the entire
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Fig. 6. Spartacus-3D speed-up.

system (involving the real Goulours valley, as well as the dam and the spillway)
has been built at EDF R&D. For this purpose, approximately 1 000 000 particles
were considered. In order to simulate 16 s of physical time, 5 days of computing
were needed by using 1024 IBM BlueGene/L processors. As reveal by figure 8, the
simulated flow is realistic and, from a qualitative point of view, match quite well
observations achieved on an EDF physical model. More quantitative comparisons
will be carried out in 2009.

Fig. 7. Left: picture of an EDF physical model of the Goulours structure; right: real Goulours
dam and spillway.

5 Conclusion

This paper presented the parallelization needs required by the TELEMAC system,
a complete hydroinformatics tool developed by EDF R&D. A focus on three codes
part of the TELEMAC system, namely Estel-3D, Telemac-3D and Spartacus-3D, has



386 R. Issa et al.

At the physical time of 0 s At the physical time of 0.8 s

At the physical time of 4 sAt the physical time of 2.4 s

At the physical time of 16 sAt the physical time of 8 s

a

c

e

b

d

f

Fig. 8. Snapshots of the simulated flow at different physical time.

been achieved. For each code, performance in terms of speed up is satisfactory and
suitable with industrial needs. However, when refining domain discretization, large
amount of data has to be handled and a suitable post-processor is required for data
analysis.
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Abstract. Numerical modelling is an important key for the management and remediation of
groundwater resources. Numerical simulations must be performed on domains of a large size,
at a fine resolution to take into account the scale of geological heterogeneities. Numerical
models are based on probabilistic data and rely on Uncertainty Quantification methods (UQ).
In this stochastic framework, non intrusive methods require to run multiple simulations. Also,
each simulation is governed by multiple parameters and a complete study requires to carry
out analysis for more than 50 sets of parameters. We have identified three levels of distributed
and parallel computing: subdomain decomposition in one simulation, multiple simulations
for UQ methods, multiparametric studies. Our objective is to use the computing and memory
resources of computational grids to deploy these multiple large-scale simulations. We discuss
our implementation of these three levels, using an object-oriented approach. We present some
preliminary results, with a strategy to choose between the first and second level.

1 Introduction

Numerical modelling is an important key for the management and remediation of
groundwater resources. Natural geological formations are highly heterogeneous,
leading to preferential flow paths and stagnant regions. The contaminant migration
is strongly affected by these irregular water velocity distributions. In order to ac-
count for the limited knowledge of the geological characteristics and for the natural
heterogeneity, numerical models are based on probabilistic data and rely on Uncer-
tainty Quantification methods. In this stochastic framework, non intrusive methods
require to run multiple simulations. Also, numerical modelling aims at studying the
impact of various physical parameters, such as the Peclet number. Therefore, each
simulation is governed by multiple parameters and a complete study requires to carry
out analysis for more than 50 sets of parameters. The hydraulic simulations must be
performed on domains of a large size, at the scale of management of the groundwa-
ter resource or at the scale of the homogeneous medium type in terms of geology.
This domain must be discretized at a fine resolution to take into account the scale
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of geological heterogeneities. Characterization of transport laws requires simulating
advection and dispersion on very long times and in turn in very large domains. Our
objective is to use the computing and memory resources of computational grids to
deploy these multiple simulations.

A first level of parallelism is used in each simulation. Indeed, in order to reach
the target of large scale domains, it is necessary to run each simulation on a parallel
computer with enough memory and with enough computing power. A second level of
parallelism comes from Uncertainty Quantification. A third level of parallelism is the
study of different sets of parameters. These multiparametric simulations are clearly
independent and are thus very well-suited to techniques inspired from peer-to-peer.
However, it should be kept in mind that each study is in itself a heavy computation
involving a large number of random simulations, requiring high performance com-
puting for each simulation. Our objective is to use current middleware developed
for grid architectures, in order to make the most of the three levels of parallelism.
Several difficulties arise, ranging from basic software engineering (compatibility of
systems, libraries, compilers) to scheduling issues.

2 Existing work

2.1 Parallel Monte-Carlo

The Monte-Carlo method is heavily used in physical simulations, either to evaluate
integrals or in the framework of stochastic models. In general, a run is composed of
more or less independent simulations, so that a run is embarassingly parallel. The
main difficulty is to generate random numbers correctly. Also, since the flowchart of
a Monte-Carlo run is identical for many applications, it is natural to design a generic
software. For example, the ALPS project (Algorithms and Libraries for Physics Sim-
ulations) is an open source effort aiming at providing high-end simulation codes for
strongly correlated quantum mechanical systems as well as C++ libraries for sim-
plifying the development of such code (http://alps.comp-phys.org/). The ALPS soft-
ware contains a module for parallel Monte-Carlo runs and parallel multiparametric
simulations [14]. It is based on a distributed memory paradigm and uses MPI, with
clusters as target computers. Currently, each simulation is sequential.

2.2 Distributed multiple simulations and grid applications

Multiparametric experiments arise in many application domains, for example in bi-
ology, chemistry and earth science. Computational grids provide interesting power
and memory resources. Many initiatives of grids are built around the world. For
example, DEISA is a grid gathering several supercomputing centers in Europe
(http://www.deisa.org/). Other grids build an infrastructure with several partners to
create an integrated, persistent computational resource. Some examples are Teragrid
in USA (http://www.teragrid.org/about/),EGEE in Europe (http://www.eu-egee.org/)
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and Grid’5000 in France (http://www.grid5000.fr). These infrastructures aim at de-
veloping e-science applications using global resources provided by the grid. For ex-
ample, the GEON web portal (http://www.geongrid.org) provides tools to a network
of partners in earth science, like SINSEIS, a synthetic seismogram computation
toolkit, built as a grid application. Some applications are multiparametric scien-
tific simulations; for example, in earth science, the footprint project (http://www.eu-
footprint.org/) develops tools for pesticide risk assessment and management, based
on Monte-Carlo and multiparametric simulations for dealing with uncertainty [10].
Whereas most grid initiatives use computing resources of research laboratories or
computing centers, another approach rely on Internet to run scientific software on
desktop computers. The platform BOINC [2] is a distributed computing tool which
allows to run computationally expensive projects by using the aggregate power of
desktop computers. The project climateprediction.net [13] uses BOINC to run mil-
lions of simulations of a climate model coupling atmosphere and ocean.

2.3 Middleware on grids

Computational grids are often built as a network of several clusters located in differ-
ent geographical places. Multiple simulations can in principle run on these clusters
by using the grid infrastructure. However, scheduling tools are required to distribute
the simulations and to communicate data between the clusters. Some projects en-
able scientists and engineers to seamlessly run MPI-conforming parallel application
on a Computational Grid, such as a cluster of computers connected through high-
speed networks or even the Internet. For example, MPICH-Madeleine [6] is a free
MPICH-based implementation of the MPI standard, which is a high-level commu-
nication interface designed to provide high performance communications on various
network architectures including clusters of clusters. Another solution is to provide
a tool specifically devoted to distributed computing. Nimrod/G is an example of
such software and has been successfully used with different grids [1]. The Grid’5000
project provides the software Oaregrid [7] and Taktuk [12], which can also help to
deploy parametric simulations. Other approaches are based on a software component
paradigm [8].

3 Our work

We are developing a scientific platform H2OLab for hydrogeology. Our platform is
designed in order to ensure integration of new modules and to facilitate coupling of
existing modules. We use C++ development environments and software engineer-
ing tools. We pay a lot of attention to test generation, non regression issues and
numerical validation. Modularity and genericity are essential for a scientific plat-
form of this size. These requirements are satisfied by a rigorous design inspired from
UML techniques and by an object-oriented approach. We have identified three levels
of distributed and parallel computing. At the simulation level, we choose to define
distributed memory algorithms and to rely on the MPI library for communications
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between processors. These parallel deterministic simulations are operational in the
software H2OLab and we are investigating scalability issues [9]. The intermediate
level is the Uncertainty Quantification non intrusive method, currently Monte-Carlo.
We apply a paragim similar to the software ALPS and have developed a generic
Monte-Carlo module. It differs from ALPS in a number of ways including the use
of Monte-Carlo, random number generation, the physical application, the memory
and CPU intensive simulations and the development tools used. Our objective is to
design a facility for running this run of Monte-Carlo by choosing either a parallel
approach with MPI or a distributed approach with a grid middleware. We use a spe-
cific random number generator in order to guarantee independent simulations. At the
multiparametric level, we choose only the distributed approach as is done in most
projects on computational grids.

3.1 Generic tools in H2OLab

For i = 1..N

Generate new random numbers

Perform simulation

Save simulation results

Save statisticsSatistics (files )

Simulation results (files)

Update statistics with current results

Fig. 1. Monte-Carlo simulations, saving results and collecting statistics.

We have implemented a generic Monte Carlo method where a loop performs N
simulations and computes first and second statistical moments of the results. This
loop contains a checkpoint at every iteration with a restore point. This recovery fa-
cility allows to resume simulations in case of failure or to complete already existing
statistics with new results. The generic loop is depicted in Figure 1. Some opera-
tions are always done by any executable program : reading inputs, creating results
directories, initializing random number generators, launching the simulation, writ-
ing the results, initializing visualization tools, etc. All those operations are factorized
and performed by a Launcher class. This is lot-of-time saving for the user. In order
to be generic to any application, the Launcher and the Monte Carlo modules need a
common interface. We thus developed a Simulation virtual class, which owns all nec-
essary objects to perform a simulation: parameters, results, random number streams.
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Monte_Carlo

Simulation

Porous_Simulation Frac_2D_Simulatioin

-params_mca : ParametersGroup
-rng_vector : RNG_vector
-resuts_stat : Results_Statistics
-nb_simul : int

+prepare_rngs()
+execute()

#params : ParametersGroup
#results : Results
#rng_simul : RNG_simul
#parallel : parallel_tools

+define()

+perform() : virtual int

+perform() : int +perform() : int

+assign_RNG( master_stream : RngStream_a )

+random_properties_index() : virtual

+random_properties_index() +random_properties_index()

1

Fig. 2. The virtual class simulation, and its use for Monte-Carlo with various applications.

Practically, the user only has to override two functions to define the specific random
properties associated to the simulation and to write the very job of the simulation.
The virtual class is depicted in Figure 2.

We have opted for the XML standard language to define a generic structure for
input parameters. The use of this standard has allowed us to easily define an associ-
ated user interface and develop C++ read/write methods thanks to already existing
tools. In our scheme, the parameters are defined by four fields: name, value, default
value and description, and can be organized in groups in a recursive manner. This
structure facilitates the development of non-conflicting C++ packages.

The simulation results are stored in a generic structure (C++ class) which can
contain scalars, vectors and matrices, organized in categories. This class also pro-
vides a method to write the results in files in an appropriate format. Application-
specific results and categories are defined in XML files.

Regarding random number generation, we have to deal with several difficulties:
a simulation has several random properties, a random property can require several
random numbers and this quantity is not fixed in advance, depending on the studied
medium or phenomenon. Moreover, the run must be reproducible for validation and
composed of independent simulations for distributed computing. We have designed
a set of classes, based on the RngStream package [11], to generate random numbers
streams that solve these difficulties. These classes are generic to any application.
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3.2 Deployment on grid architectures

Multiparametric simulations require more than 50 sets of data and generate as many
results. We have developed a tool to automatically generate a multiparametric study:
from a given range of parameter values, the tool generates all corresponding input
data files and an associated batch file to run the complete study. This tool is now
ready to be deployed on a computational grid using an adapted middlware.

Thanks to our generic module and our random number generation, a run of Monte
Carlo contains an embarassingly parallel loop of simulations, which can be readily
distributed on a computational grid. We have currently implemented a parallel ver-
sion using the MPI standard. It can be generalized to a version with an extended MPI
library or to a distributed version with a grid service. Also, the Monte Carlo module
can be extended to any non intrusive UQ method.

Finally, each simulation is memory and CPU intensive. The platform relies on
free software libraries such as parallel sparse solvers which use MPI. Thus we choose
to develop parallel software also with MPI. Each simulation is fully parallel with data
distributed from the beginning to the end.

3.3 Experiments on clusters and conclusion

speed-up

7

6

24 sim

50 sim

100 sim

200 sim

400 sim

5

5 6

4

4

3

3

2

2

1

0
1

Fig. 3. Speed-up versus the number of nodes (2 subdomains per node).

We use the different clusters available thanks to the french grid project Grid’5000.
We have made a thorough performance analysis of our parallel simulations applied
to flow and solute transport in heterogeneous porous media [3, 5]. We have also
done some experiments with parallel simulations applied to flow in Discrete Frac-
ture of Networks [4]. This analysis allows us to find out in advance the number of
processors necessary for a given set of data. Thus we can rely on a static scheduling
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Fig. 4. CPU time versus the number of simulations, with 6 nodes.

of resources for each simulation. For a run of Monte Carlo, we can also define the
number of simulations and use a static scheduling.

Here, we give the results for several experiments combining parallel Monte Carlo
runs of parallel simulations. In a first step, we run parallel Monte-Carlo simulations
of moderate size so that each simulation can run on one node. We use a cluster of
nodes with a Myrinet network where each node is one-core bi-processor, with 2GB
memory. We apply our method to flow and solute transport in heterogeneous porous
media, with a mesh of 1024 times 1024 cells. We have done several measures with
varying parameters of the model with similar results, so we plot here the results with
one set of parameters. In Figure 3, we plot the speed-up in function of the number
of processors. For a small number of nodes, the speed-up is almost linear, as could
be expected since parallel Monte-Carlo does not induce communication. In Figure
4, we plot the CPU time in function of the number of simulations, using 6 nodes
of the same cluster. As could also be expected, we get a stairwise function, due to
the distribution of simulations which is obtained simply by dividing the number of
simulations by the number of processors.

In a second experiment, we use a two-level parallelism. We run the same appli-
cation on a cluster of four nodes and try three configurations, distributing both the
subdomains of one simulation and the Monte-Carlo simulations. Results are given
in Table 3.3. Clearly, Monte-Carlo parallelism is more efficient since subdomain de-
composition involves communications. Therefore, the limiting resource is here the
memory available and the best strategy is to choose the smallest number of subdo-
mains so that each subdomain fits in the memory of one core, defining chunks of pro-
cessors. Then Monte-Carlo simulations are distributed among the different chunks.

These results are preliminary but show clearly that what we get is what we expect.
So we can now adopt the same strategy for larger computational domains with a
larger number of nodes. Also, in a next future, we plan to use middleware available
on grid’5000, in order to run the three levels of distributed computing.
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Number of subdomains CPU time
2 129
4 199
8 299
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Understanding the pathway of toxic air pollutants from their source is essential to
government agencies that are responsible for the public health. CFD remains an ex-
pansive tool to evaluate the flow of toxic air contaminants and requires to deal with
complex geometry, high Reynolds numbers and large temperature gradients. To per-
form such simulations, the compressible Naviers Stokes equations are solved with a
collocated finite volume method on unstructured grid and the computation speed is
improved as a result of parallelism.

The developed computer code is written in an object oriented language (C++)
using a 3D finite element library libMesh ( [5]) associated with PETSc ( [1]) a general
purpose scientific computing library. Parallelization is performed using the domain
decomposition and the parallel linear solvers of PETSc.

In this paper, we propose to evaluate Algebraic Multigrid preconditioning meth-
ods used in the Navier Stokes solver.

1 Description of the numerical method

1.1 Implicit Navier Stokes Solver

A classical implicit finite volume discretization of the compressible Reynolds aver-
aged Navier-Stokes (RANS) equations may be written as :

ρn+1
i −ρn

i + τ ∑
j∈V (i)

ρn+1
i φn+1

i j = 0 (1)
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(ρu)n+1
i − (ρu)n

i + τ ∑
j∈V (i)

φn+1
i j (ρu)n+1

i

= τ ∑
j∈V (i)

Si j p
n+1
i j

ni j + τ ∑
j∈V (i)

Si j∇(νi j(ρu)n+1
i j ) (2)

(ρE)n+1
i − (ρE)n

i + τ ∑
j∈V (i)

(ρH)n+1
i φn+1

i j = 0 (3)

with τ = �t/Vi and V (i) is the set of neighboring cells of the cell i.
The superscripts n and n+1 indicate the old and the new time step, respectively,

�t is the time step, Vi the volume of cell i. ρ , P, u, H and E denote respectively the
density, pressure, velocity, total enthalpy and total energy. ∂Ci ∩∂Cj is the interface
located between the two cells i and j. Si j and ni j are respectively the surface and
normal vector of the face ∂Ci ∩∂Cj .

For the convective fluxes, the cell face velocity φi j =
∫
∂Ci∩∂Cj

ui j.ni jds is classi-
cally calculated using a specific interpolation ( [10]). On the interface, the transported
quantities are interpolated using a first or second order upwind scheme.

Momentum, energy and mass conservation equations are solved implicitly using
a projection method ( [8]). At each non linear iteration (k), a predictor step (*) for
density and momentum is calculated from the density and momentum equations :

ρ∗i −ρn
i + τ ∑

j∈V (i)
ρ∗i φ k

i j = 0 (4)

(ρu)∗i − (ρu)n
i + τ ∑

j∈V (i)
φ k

i j(ρu)∗i = τ ∑
j∈V (i)

Si j p
k
i j

ni j + τ ∑
j∈V (i)

Si j∇(νi j(ρu)∗i j) (5)

After this prediction step, the pressure correction p
′
i (and eventually the temper-

ature correction T
′

i ) is computed from a Laplace equation based on the energy (and
eventually the density equation). Correction equation (8) is obtained by replacing in
equation (3) the total energy and the total enthalpy by expression (6) and (7).

(ρE)n+1 = (ρE)∗ +(ρe)∗pp
′

(6)

(ρH)n+1
i φ n+1

i j = (ρH)∗i φ
∗
i j + h∗i (ρφ)

′
i j (7)

(ρφ)
′
i j is related to the pressure correction p

′
i through the momentum equation

using a SIMPLE algorithm ( [9]).

(ρe)∗p p
′
i + τ ∑

j∈V (i)
h∗i (ρφ)

′
i j = −

(

(ρE)∗i − (ρE)n
i + τ ∑

j∈V (i)
(ρH)∗i φ

∗
i j

)

(8)

At each step of this algorithm, we have to solve several large sparse linear sys-
tems. The key point of the efficiency of this implicit algorithm is to use an efficient
linear solver.
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1.2 Iterative methods for sparse linear systems

Krylov subspace methods are widely used to solve for large and sparse linear
systems. In the present work, the incomplete LU factorisation algorithm and the
Algebraic MultiGrid method (AMG) are used as preconditioners for the GMRES
algorithm. The next section brievly describes the multigrid preconditioner used in
this paper. The reader is refered to the literature for more information (see [11], [2],
[12]).

The central idea of AMG is to remove smooth error not eliminated by relaxation
on coarser grids. This is done by solving the residual equation on coarse a grid,
then interpolating the error back to the finest grid. Significant and important parts of
the AMG algorithm rely on the coarse-grid selection process and the interpolation
operation.

Coarsening schemes

Various coarsening schemes exist and most are based on the coarsening heuristics
proposed by [11]. However when these traditional algorithms are applied to three-
dimensional problems, stencil may grow significantly, leading to computational com-
plexity growth and a loss of scalability. For this reason, the Falgout algorithm ( [4])
is the only tested classical method.

Recently, [12] developed new methods to obtain sparser coarser grids (see fig-
ure 1) that diminish algorithm complexity : The Parallel Modified Independent Set
(PMIS) algorithm and the Hybrid Modified Independant Set (HMIS) algorithm are
compared to the more classical Falgout method.

Interpolation

Interpolation is an important operation affecting the convergence factor of the AMG
algorithm. The Falgout coarsening scheme is used with a classical interpolation
( [11]) : the error of a refine point (F-point) i is done with a subset of the nearest
neighbors of grid point i.

Because of the coarser grids, PMIS and HMIS approach require more accurate
interpolation : we investigate longer range interpolations F-F and F-F1 (see [2]).

2 Description of the tests

2.1 Laplace equation

To select the best precondioning method for our application, scale-up and speed up
tests are performed on a Laplace equation Δφ = 1 with a null Dirichlet boundary
condition φΓ = 0. The computational domain is a unit cubic box with tetrahedra cells.
Speed up tests used 106 cells mesh, scale-up tests investigated different numbers of
degree of freedom per processor (dofs) from 12 500 to 400 000 dofs. AMG methods
described in 1.2 are compared with ILU preconditioning.
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Fig. 1. Coarsening schemes and interpolation

2.2 Flow around a complex industrial site

We are interested in an incompressible isothermal flow around a french factory. The
standard k-epsilon model ( [6]) with wall function ( [7]) was used for assessing tur-
bulent flow. The closure coefficients are obtained from [3] to take into account the
atmospheric boundary layer.

The three dimensional unstructured mesh used in the simulations is displayed in
figure 2 (b) . It contains approximately 5×106 tetrahedra.

(a) Unstructured Cubic Box (b) Details of the industrial site (1.5 × 109

cells)

Fig. 2. Meshes
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3 Results

The results were obtained at the High Performance Computing Center P2CHPD,
Lyon 1 University. The cluster is a mid-range HPC platform. Each node is composed
of 2 inter quad-core processor with a CPU speed of 2.9 GHz and are connected with
an infiniband network.

3.1 Laplace equation

In figure 3 (a) we show the results of parallel scaling tests. These results immediately
highlight the superiority of AMG preconditioning on parallel ILU. Scalability of ILU
is poor due to the increase of the number of iterations with the problem size (tab 1).

It is interesting to observe in Tables 2 that low complexity coarsening scheme
PMIS with F-F1 interpolation is more efficient than the Falgout coarsening scheme
and classical interpolation : complexity is lower and computing time is reduced.
HMIS with F-F or F-F1 interpolation show very similar results and are not shown
here. AMG with PMIS coarsening schemes and F-F1 interpolation give the best re-
sults. Solving time is five hundred times faster than ILU preconditioning on 64 pro-
cessors. The use of classical interpolation with low complexity scheme leads to an
increase of the number of iterations because of sparser grid. Figure 3 (b) displays
the influence of the problem size on scalability : Communication times are important
and cause a loss in scability.

Table 1. Number of iteration with 200 000 dofs / processor

Method / processor 1 2 4 8 16 32
ILU 226 346 368 500 774 955
PMIS - F-F1 13 14 14 14 16 16
Falgout classical 11 11 11 12 13 13

Table 2. Details of AMG Preconditioning methods with 32 procs, 200 000 dofs

Method Grid Complexity Interpolation Complexity nb it
Falgout classical 2.6 18.5 13

PMIS - F-F1 1.42 3.80 16
PMIS - classical 1.42 2.28 37

3.2 Flow around a complex industrial site

As seen in 3.1, coarsening scheme PMIS with interpolation F-F1 give the best re-
sults in term of speed up and computation time for a Laplace equation. This precon-
ditioning method is then evaluated for parallel computation of atmospheric transport
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pollutant. Pollutant plume is displayed in figure 5. Figure 4 shows that speed up is ex-
cellent with the 5×106 cells but is not good with 1×106 cells due to communication
times.
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Fig. 4. Speed up performance of Navier Stokes solver
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Fig. 5. Pollutant plume around buildings (1.5×105 cells)

4 Conclusion

The most challenging aspect of parallelizing a Navier Stokes finite volume solver is
the selection of efficient parallel linear solver. We have presented a comparison of
different preconditioning methods for Krylov subspace iterative methods.

The preconditioning methods are first tested on a Laplace equation. The tests
indicate that AMG preconditioning exhibit better results than ILU preconditioning.
The poor scalability of the ILU preconditioning is due to an increase of iteration
numbers with the problem size. The Falgout coarsening scheme and classical inter-
polation have for 3D problems too high complexity algorithm. 3D problems require
a low complexity coarsening scheme associated with a long range interpolation.
Among the methods tested, PMIS with interpolation F-F1 gives the best results in
term of speed up, scale-up and computing time.

Numerical experiments demonstrated good scalability of PMIS coarsening
scheme and F-F1 interpolation applied to the Navier Stokes solution of flow around
an industrial site. Hence, use of parallel and efficient multigrid preconditioner allows
a fast simulation of pollutant dispersion in industrial sites.

Future research will focus on parallelization of high order schemes for Detached
and Large Eddy Simulations.
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Abstract. Mathematical model of 3D gas flow around reentry vehicle is considered. This
model is based on QGD (Quasy-GasDynamics) equations. Numerical methods for solving of
these equations on tetrahedral meshes are presented. Parallel realization of these methods is
based on MPI and OpenMP technologies. Parallelization is performed using domain decom-
position principle.

1 Introduction

Modeling of the gas flow is very important for construction of any spacecraft and in
particular reentry vehicle. Latest experiments show that protection of space vehicles
designed decades ago is superfluous, and the destructive factors such as temperature
do not reach such high values the protection designed against.

Computer modelling allows to save a lot of money and predict parameters of
gas-dynamic processes which cannot be obtained by ground test facilities. Compu-
tational Fluid Dynamics (CFD) is the best approach for calculation of aerodynamic
heating. The main factors typical for CFD algorithms are: computational complexity,
high amounts of memory required, necessity for carrying out all the calculations in
case of alteration in one of the flow parameters (such as Mach number, altitude, angle
of attack). Therefore using this technique for calculation of the heat flow throughout
space vehicle trajectory becomes difficult and time consuming task. All the men-
tioned factors force the use of high performace parallel systems for modelling hyper-
sonic flows.

In the branch where one kilogram means tens and hundreds thousands dollars
it is very important to calculate all the values precisely. The introduced approach
allows to make more accurate calculations in comparison to well known and widely
used Navier-Stokes equations system. Also improved stability of numerical methods
allows to take into account additional factors such as radiative energy withdrawal
that has not been considered before.

This work presents 3D flow calculation approach around reentry vehicle in Earth
atmosphere using multiprocessor computational clusters. The mathematical model is

D. Tromeur-Dervout (eds.), Parallel Computational Fluid Dynamics 2008,
Lecture Notes in Computational Science and Engineering 74,
DOI: 10.1007/978-3-642-14438-7 43, c© Springer-Verlag Berlin Heidelberg 2010
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introduced and completed with numerical implementation. Parallel algorithm imple-
menting this numerical method is designed.

2 Mathematical Model

QGD (Quasy-GasDynamic) equations ( [4, 7, 5]) and a set of boundary conditions
are used for description of the gas flow. QGD equations are generalize well known
Navier-Stokes system and differ from it in additional dissipative terms with a small
parameter.

This system binds together gasdynamic variables density, velocity, energy. Addi-
tional variables pressure and temperature are calculated according with correspond-
ing gas state equations. QGD system has a form of conservation laws (of mass,
impulse and energy) and in general terms is written as:

∂ρ
∂ t

+ divjm = 0, (1)

∂ (ρu)
∂ t

+ div(jm ⊗u)+∇p = divΠ , (2)

∂
∂ t

[
ρ
(

u2

2
+ ε
)]

+ div

[
jm

(
u2

2
+ ε
)]

= divA−divq. (3)

In present work the computation domain is an area inwards closed piecewise
linear triangulable boundary. There are no other limitations on the form of computa-
tion domain. The geometry of space object is specified as combination of piecewise
linear elements and spline surfaces. Example of computation domain is presented
on Fig. 1(a). Arrows show the direction of gas flow. X ,Y,Z are the axes of carte-
sian space. Boundary conditions representing oncoming flow are held on one side of
computational domain (marked as ABCD on Fig. 1(a)). All other bounds allow the
gas to run freely out of the computational area. Wall boundary condition specified
for the object surface, with no mass flux through the object under consideration. Fig-
ure 1(b) shows the example of real computation domain truncated in according to
the symmetry of problem with boundary conditions marked on the faces (1 - inlet
boundary, 2 - outlet boundary, 3 - planes of symmetry, 4 - surface of the object).

The flow is considered to be quasy-stationary and calculated until establishing.
Parameters of the model problem are shown in Table 1.

3 Numerical Implementation

For numerical solution of QGD equations system (1)–(3) we use tetrahedral mesh
( [2, 1]). Specially designed mesh generator allows to create locally condensing
adaptive meshes in 3D space. This local condensing allows to balance optimal the
calculations precision and computational complexity. The number of nodes in the
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Fig. 1. Computation domain examples

Table 1. Model problem parameters

Background gas temperature T0 (K) 266
Temperature of head shield T1 (K) 2000−3300
Peak shock wave front temperature T2 (K) 12000
Pressure P0 (Pa) 4.3 ·10
Density ρ0 ( kg

m3 ) 5.63 ·10−4

Characteristic size of problem L0 (m) 3.9
Mach number M∞ 12
Reynolds number Re 1000

used meshes is vary from 105 to 2 ·106. Example of tetrahedral mesh is presented on
Fig. 1(b).

Adaptive mesh generator was developed using TetGen ( [8]) library that allows to
tetrahedralize piecewise linear complexes and a set of vertices in 3D space. In accor-
dance with predefined distribution function additional vertices are added to computa-
tion domain for local mesh condesing. This approach allows to generate calculation
meshes satisfying the following parameters:

• minimal number of mesh vertices;
• predefined maximal volume of calculation cell in areas of solution peculiarity

(for example areas of high density);
• necessary mesh condensing for boundary layer modelling;
• maximal volume of mesh tetrahedra;
• maximal relation of circumsphere radius to minimal cell edge length;
• in addition, the maximal volume of adjacent tetrahedral cells can be limited for

each geometry face.
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Applying Control Volume Method explicit numerical scheme was designed
based on the QGD equations. Control volumes are built around each node of mesh
and the union of all such control volumes is equal to the whole computational do-
main (without holes and overlaps). In present work we use barycentric control vol-
umes. Each control volume is an area bounded by faces build on tetrahedra centers
(arithmetic mean of its nodes coordinates), centers of tetrahedra faces and centers of
tetrahedra edges in all tetrahedra adjacent to referred node. Example of tetrahedral
cell is shown on Fig. 2(a) with control volume elements (faces) built around vertices
of this tetrahedra. One complete control volume around a calculation node inside
mesh region is shown on Fig. 2(b).

(a) (b)

Fig. 2. Tetrahedral cell with control volume elements (a) and tetrahedral mesh region with
control volume (b)

The solution of initial boundary problem is calculated by time-explicit finite-
difference scheme. Spatial derivatives are approximated with second order of accu-
racy while time derivatives are approximated with first order.

Stability of numerical method is provided by QGD-additives with a small multi-
plier as parameter. This parameter has the dimension of time and its order is about
free path of the molecule. Thus it can be treated as artificial (or numerical) viscosity.

4 Parallelization

Parallelization of QGD calculations code is done using domain decomposition tech-
nique. The computational domain is divided into subdomains with near to equal
numbers of nodes. The number of subdomains is equal to number of processors.
Number of connections between subdomains (number of shared calculation nodes)
is minimized to achieve low communications overhead. The code uses MPI (Mes-
sage Passing Interface) library and is highly portable being written in C++. Also for
hybrid systems (where one node of distributed memory system actually is a shared
memory parallel system) the OpenMP technology is applied.
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Used parallel systems:

• Smaller cases were run on the cluster in IMAMOD (Institute for Mathematical
Modeling). This consists of 48 CPU cores (Intel Xeon 3.06GHz microproces-
sors). Peak performance is 300 GFlops and peak transfer rate is 1GBit/sec (Eth-
ernet).

• Larger cases were run on the “MVS-100k” cluster in Joint SuperComputer Cen-
ter (JSCC). This consists of 6144 CPU cores (Intel Xeon 5160 3.0Ghz micropro-
cessors). Peak performance is 45 TFlops and peak transfer rate is 1400 Mbyte/sec
(Infiniband DDR).

• The second high performance cluster used for calculations was “SKIF MSU”
(Moscow State University - Research Computing Center). This consists of 5000
CPU cores (Intel Xeon E5472 3.0Ghz microprocessors). Peak performance is 60
TFlop/s and peak transfer rate is 1540 Mbyte/sec (Infiniband DDR).

Efficiency graphs for parallel algorithm for shared memory architecture are pre-
sented on Fig. 3. This code produces one MPI process per each CPU core. For 1
Million grid nodes the effectiveness is 75% at 128 processors and goes below 40%
at 512 processors. For 2 Millions nodes grid configuration the effectiveness is about
76% at 100 processors and falls to 50% at 600 processors.
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Fig. 3. Parallelization efficiency for 106 nodes task, 1 MPI process per core on “SKIF MSU”
(a) and efficiency for 2 ·106 nodes, 1 MPI process per core on “MVS-100k” (b)

Systems like “MVS-100k” and “SKIF MSU” that have several CPU cores on
one computation node allow to realize hybrid parallelization approach and achieve
performance several times higher. In this case we use MPI to distribute tasks among
nodes in cluster while applying OpenMP to distribute computational load among
cores on one node. Thus we eliminate the communications overhead inside this small
group (8 for mentioned systems) of computation cores.

Practically we can use 3-5 times more CPU maintaining the same efficiency and
obtain the final result about 3 times faster. This comparison is illustrated on Fig. 4.
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Fig. 4. Comparison of pure MPI parallelization efficiency with hybrid MPI+OpenMP ap-
proach (“MVS-100k”)

5 Test case

One of the test cases is Apollo project capsule model. The diameter of the capsule is
about 4 meters. Note that total mass of the capsule is 5800kg and the thermal protec-
tion mass is about 850kg. Considering the model is axisymmetric we can truncate it
and calculate only one fourth of the original domain. Another parameters of model
problem are shown in Table 1.

The result of simulation is shown on Fig. 5.

6 Conclusions

This paper is intended to show the evolution of previous work ( [6, 3]).
Calculated gasdynamic variables can be refined on each time step using, for ex-

ample, radiative heat transfer model. In this approach QGD calculations module
passes energy, pressure and temperature fields to RGD (Radiative GasDynamics)
module and receives adjusted energy field back.
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Fig. 5. Temperature distribution (K) around Apollo capsule model at speed 12Ma

Introduced model can be applied to objects with very complicated shape includ-
ing real space vehicles. Improved stability of numerical method allows to take into
account additional factors such as radiation and chemical processes.

Grid generator developed allows to construct adaptive locally condensing tetra-
hedral grids with high number of nodes (up to 109) suitable for parallel computations.
The parallel realization of numerical algorithm allows to take advantage of high per-
fomance computer clusters and obtain results in a reasonable time using very precise
grids. The algorithm is designed for distributed and hybrid memory systems and
based on geometrical parallelism principle. Parallel algorithm shows good efficiency
on different type of parallel systems from low-cost clusters (50-100 CPU cores, with
Ethernet transport) to high perfomance parallel systems (2000-6000 CPU cores con-
nected via Myrinet or Infiniband networks).
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In order to improve the parallel efficiency of incompressible turbulent flow solver
on non-uniform grid, the multigrid technique with the checkerboard SOR method
or the rational Runge-Kutta (RRK) scheme for the elliptic partial differential equa-
tion solver is presented. The 3D test problem and the DNS of 3D turbulent channel
flow with the Reynolds number Reτ = 180 are considered. The results show that the
chackerboard SOR relaxation has the property that the computational time is shorter
but parallel efficiency is lower than the RRK relaxation. Then, it is necessary to im-
prove the parallel performance, but the present approach has the possibility of short
computational time with high parallel efficiency.

1 Introduction

The incompressible flow simulations are usually based on the incompressible Navier-
Stokes equations. In the incompressible Navier-Stokes equations, we have to solve
not only the momentum equations but also the elliptic partial differential equation
(PDE) for the pressure, stream function and so on. The elliptic PDE solvers consume
the large part of total computational time, because we have to obtain the converged
solution of this elliptic PDE at every time step. In order to analyze the turbulent flows,
the large-scale simulations have to be carried out. In these large-scale incompressible
flow simulations, the acceleration of convergence for the elliptic PDE solver is neces-
sary. On the other hand, the wall turbulence is usually simulated on non-uniform grid
in the wall direction in order to ensure the resolution. In this case, the convergence
of elliptic PDE on non-uniform grid becomes slower than the convergence on uni-
form grid. Then, for the incompressible flow simulations, especially the large-scale
simulations, the efficient elliptic PDE solver on non-uniform grid is very important
key technique.

In the parallel computations, the incompressible Navier-Stokes equations, that
is, the momentum equations, can be solved with almost theoretical speedup on the
parallel platform ( [6, 4]). However, the parallel performance of the elliptic PDE

D. Tromeur-Dervout (eds.), Parallel Computational Fluid Dynamics 2008,
Lecture Notes in Computational Science and Engineering 74,
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solver becomes lower than the momentum equations solver. Then, for the practical
large-scale simulations, the elliptic PDE solver of the multigrid method with high
parallel efficiency on the non-uniform grid has high possibility.

In this paper, the multigrid technique with the checkerboard SOR method or the
rational Runge-Kutta (RRK) scheme ( [8]) on non-uniform grid is presented. For the
simple interpolations between grid levels, that is, restriction and prolongation, the el-
liptic PDE is transformed to the computational plane. The present elliptic PDE solver
is applied to the direct numerical simulation (DNS) of 3D turbulent channel flows.
The message passing interface (MPI) library is applied to make the computational
codes. These MPI codes are implemented on personal cluster system with Pentium
D(3.2GHz) processors. The cluster network is constructed by the gigabit ethernet.
The computational MPI codes are compiled by Intel fortran 9.1.

2 Computational Technique

The incompressible Navier-Stokes equations in the Cartesian coordinates can be
written by

∂ui

∂xi
= 0, (1)

∂ui

∂ t
+ u j

∂ui

∂x j
= − ∂ p

∂xi
+ν

∂ 2ui

∂xi∂xi
, (2)

where ui (i = 1,2,3) denotes the velocity, p the pressure and ν the kinematic viscos-
ity.

2.1 Variable Order Method of Lines

The solution procedure of the incompressible Navier-Stokes equations (1) and (2) is
based on the fractional step approach on the collocated grid system. In the fractional
step approach, first, the fractional step velocity u∗i is estimated by

u∗i = un
i +αΔ t

(
−u j

∂ui

∂x j
+ν

∂ 2ui

∂xi∂xi

)n

. (3)

Next, the fractional step velocity at the staggered locations is computed by the inter-
polation. Then, the velocity at next time step un+1

i can be obtained by

un+1
i = u∗i −αΔt

∂ pn+1

∂xi
. (4)

Substituting the velocity at next time step into the discrete continuity equation, the
pressure equation

∂ 2 pn+1

∂xi∂xi
=

1
αΔ t

∂u∗i
xi

∂xi
, (5)
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is obtained. In these relations, α is the parameter determined by the time integration
scheme. The overbar denotes the interpolated value from the collocated location to
the staggered location.

In the method of lines approach, the spatial derivatives are discretized by the
appropriate scheme, so that the partial differential equations (PDEs) in space and
time are reduced to the system of ordinary differential equations (ODEs) in time.
The resulting ODEs are integrated by the Runge-Kutta type time integration scheme.

In the spatial discretization, the convective terms are approximated by the vari-
able order proper convective scheme ( [4]), because of the consistency of the discrete
continuity equation, the conservation property, and the variable order of spatial ac-
curacy. This scheme is the extension of the proper convective scheme ( [2]) to the
variable order. The variable order proper convective scheme can be described by

u j
∂ui

∂x j
|x =

M/2

∑
�=1

c�′u j
x j
δ�′ui

δ�′x j

�′x j

|x, (�′ = 2�−1), (6)

where M denotes the order of spatial accuracy, and the operators in eq.(6) are defined
by

f
�′x j |x =

1
2
( fx j+�′/2 + fx j−�′/2), (7)

u j
x j |x j±�′/2 =

M/2

∑
m=1

cm′

2
[u j|x j±{�′+m′}/2 + u j|x j±{�′−m′}/2], (8)

δ�′ui

δ�′x j
|x j±�′/2 =

±1
�′Δx j

(ui|x j±�′ −ui|x j), (9)

where m′ = 2m−1. In this technique, the arbitrary order of spatial accuracy can be
obtained automatically by changing only one parameter M. The coefficients c�′ and
cm′ are the weighting coefficients andΔx j denotes the grid spacing in the x j direction.

On the other hand, the diffusion terms are discretized by the modified differential
quadrature (MDQ) method ( [7]) as

∂ 2ui

∂xi∂xi
|x =

M/2

∑
m=−M/2

Φm
′′(x)ui|xi+m, (10)

where Φm
′′(x) is the second derivative of the function Φm(x) defined by

Φm(x) =
Π(x)

(x−xi+m)Π ′(xi+m)
, (11)

Π(x) = (x−xi−M/2) · · · (x−xi) · · · (x−xi+M/2). (12)

The coefficients of the variable order proper convective scheme, c�′ , can be computed
automatically by using the MDQ coefficients. Then, the incompressible Navier-
Stokes equations are reduced to the system of ODEs in time. This system of ODEs
is integrated by the Runge-Kutta type scheme.
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2.2 Pressure Equation Solver

The pressure equation, eq.(5), is solved by the checkerboard SOR method and the
variable order multigrid method ( [5]).

In the variable order multigrid method, the unsteady term is added to the pres-
sure equation. Then, the pressure (elliptic) equation is transformed to the parabolic
equation in space and pseudo-time, τ .

∂ pn+1

∂τ
=
∂ 2 pn+1

∂xi∂xi
− 1
αΔ t

∂u∗i
xi

∂xi
. (13)

Equation (13) can be solved by the variable order method of lines. The spatial deriva-
tives are discretized by the aforementioned MDQ method, so that eq.(13) is reduced
to the system of ODEs in pseudo-time,

d
−−→
pn+1

dτ
=
−→
L (

−−→
pn+1). (14)

This system of ODEs in pseudo-time is integrated by the rational Runge-Kutta
(RRK) scheme, because of its wider stability region. Then, the same order of spatial
accuracy as the momentum equations can be specified.

In addition, the multigrid technique, i.e., correction storage algorithm ( [1]), is
incorporated into the method in order to accelerate the convergence. In the multi-
grid method, the checkerboard SOR method and RRK scheme are interpreted as the
relaxation method.

In this paper, the multigrid method on non-uniform grid is considered. We pre-
pare two approaches. One is that the values on coarse and fine grids are interpo-
lated on the corresponding non-uniform grid. Another is that the pressure equation
is transformed to the computational plane, so that the values are interpolated on the
computational plane with uniform grid.

3 Numerical Results

3.1 3D Test Problem

We consider the following 3D test problem.

∂ 2 p
∂xi∂xi

= −3sin(x1)cos(x2)sin(x3). (15)

The periodic boundary condition is imposed in x1(= x) and x3(= z) directions. In
x2(= y) direction, the Neumann boundary condition, ∂ p

∂y = 0, is imposed. The com-
putational domain is set (0,0,0) < (x,y,z) ≤ (2π,π,2π). The convergence criteron
is L2 < 1.0× 10−6, where L2 denotes the L2-residual of eq.(15). The non-uniform
grid defined by
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Figure 1. Multigrid property on non-uniform grid.

y j =
tanh[γ(2 j/N−1)]

tanh(γ)
, (16)

is used in y direction only. The stretching parameter γ is 1.80.
Figure 1 shows the comparison of work unit until convergence. Figure 1(a) is the

result on usual non-uniform grid and (b) denotes the result on computational plane.
The square and circular symbols are the work unit obtained by the checkerboard SOR
and RRK relaxation, respectively. In the checkerboard SOR relaxation, the multigrid
convergence is confirmed in both cases. On the other hand, the RRK relaxation shows
the dependency on number of grid points. Also, the work unit until convergence
obtained by the checkerboard SOR relaxation is less than that obtained by the RRK
relaxation in all cases.

Next, in order to investigate the parallel efficiency, Fig.2 shows the parallel effi-
ciency in this test problem. The parallel efficiency is defined by

E f f iciency =
Tsingle

N ·Tparallel
×100 (%) , (17)

where Tsingle and Tparallel denote the computational time on single processor element
(PE) and on N parallel PEs, respectively. In Fig.2 the present parallel efficiency is
compared with the usual parallel efficiency on non-uniform grid. On 2PEs the high
parallel efficiency in which is larger than 80% can be obtained in the large-scale
computations, that is, 1283 and 2563 grid points. However, the parallel efficiency
becomes lower on 4PEs. In this case, the performance of the RRK relaxation on
computational plane presents the highest efficiency.

3.2 DNS of 3D Turbulent Channel Flow

In order to simulate the 3D turbulent channel flow, the incompressible Navier-Stokes
equations, eq.(1) and eq.(2), are nondimensionalized by the friction velocity uτ(=√
τwall/ρ) and half length of channel h. Table 1 shows the computational conditions.

In the table, the conditions of reference simulation ( [3]) are shown, too. The periodic
boundary conditions in x and z directions and the Neumann boundary condition in y
direction are imposed. In y direction, the non-uniform grid with γ = 1.80 in eq.(16) is
adopted. The DNS of 3D turbulent channel flow with Reτ = 180 is computed on 323,
643, and 1283 grid points. The present results are compared with reference solution
obtained by Moser et al.. Figure 3 shows the comparison of the mean streamwise
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Figure 2. Parallel efficiency of test problem.

Table 1. Compuational conditions for 3D turbulent channel flow.

Present Moser et al.

Grid points 323 643 1283 128×129×128
Region 2πh×2h×πh → 4πh×2h×πh 4πh×2h×1.3πh
Δx+ 35.3 17.7 17.7 17.7
Δy+ 2.47∼21.3 1.17∼10.7 0.57∼5.4 0.16∼4.4
Δ z+ 17.7 8.8 4.4 5.9
Scheme 2nd order FDM spectral method

velocity, turbulent intensity, and iso-surface of high and low speed regions of u′ and
second invariant of velocity gradient tensor. The present DNS results, especially high
resolution results, are in very good agreement with the reference solution. It is clear
that the present instantaneous flow field, Fig.3(c), shows the characteristic features
of turbulent channel flow.

On the parallel efficiency, Table 2 shows the present parallel efficiency with
checkerboard SOR and RRK relaxations on 643 and 1283 grid points. The chacker-
board SOR relaxation has the property that the computational time is shorter but
parallel efficiency is lower than the RRK relaxation. On the contrary, the RRK relax-
ation gives the higher performance. The RRK relaxation, however, consumes large
computational time.

4 Concluding Remarks

In this work, the multigrid technique with the checkerboard SOR method or the RRK
scheme for solving the elliptic PDE, i.e., the pressure equation, is presented, in order
to improve the parallel efficiency of incompressible turbulent flow solver on non-
uniform grid. The 3D test problem with the periodic and the Neumann boundary
conditions and the DNS of 3D turbulent channel flow with the Reynolds number
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Figure 3. Statistical quantities and instantaneous flow field.

Table 2. Parallel efficiency for 3D turbulent channel flow.

Checkerboard SOR RRK

64×64×64 time (sec/step) efficiency (%) time (sec/step) efficiency (%)

single 0.870 - 6.573 -
parallel(2PEs) 0.708 61.47 4.937 66.58
parallel(4PEs) 0.727 29.93 4.482 36.67

128×128×128 time (sec/step) efficiency (%) time (sec/step) efficiency (%)

single 12.678 - 133.594 -
parallel(2PEs) 8.136 77.91 76.205 87.65
parallel(4PEs) 6.794 46.65 59.644 56.00
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Reτ = 180 are considered. The results show that the chackerboard SOR relaxation
has the property that the computational time is shorter but parallel efficiency is lower
than the RRK relaxation. On the contrary, the RRK relaxation gives the higher per-
formance. The RRK relaxation, however, consumes large computational time. Then,
it is necessary to improve the parallel performance, but the present approach has the
possibility of short computational time with high parallel efficiency.
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Turbulent Couette-Poiseuille and Couette flows inside a square duct at bulk Reynolds
number 10,000 are investigated using the Large Eddy Simulations. The mean sec-
ondary flow is observed to be modified by the presence of moving wall where the
symmetric vortex pattern vanishes. Secondary flow near the top corner shows a grad-
ual change of vortex size and position as the moving wall velocity increased. It is
interesting to note that a linear relation exits between the angle and the parameter
r = Ww

WBulk
, and a change in slope occurs at r ∼1.5. Near the moving wall due to the

reduction of the streamwise velocity fluctuation at the moving wall, turbulence struc-
ture gradually moves towards a rod-like axi-symmetric turbulence as r increases. As
the wall velocity increases further for r > 1.5, the rod like structure disappears, and
turbulence reverts to a disk like structure.

1 Introduction

Turbulent Poiseuille, Couette-Poiseuille or Couette flows inside a square or rect-
angular cross-sectional duct are of considerable engineering interest because their
relevance to compact heat exchangers and gas turbine cooling systems. The most
studied problem is the turbulent Poiseuille type flow inside a square duct and is char-
acterized by the existence of secondary flow of Prandtl’s second kind ( [16]) which is
not observed in circular ducts nor in laminar rectangular ducts. The secondary flow
is a mean circulatory motion perpendicular to the streamwise direction driven by
the turbulence. Although weak in magnitude (only a few percent of the streamwise
bulk velocity), secondary flow is very significant with respect to momentum and heat
transfer.

There are investigations directed to explore the influences of the bounding wall
geometry, non-isothermal effect, free surface and system rotation on the secondary
flow pattern within turbulent Poiseuille duct flows ( [20], [15], [2]). The above in-
vestigations have implied that with careful manipulation, the secondary flow is very
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much promising on enhancement of particle transport or heat transfer in different
industrial devices. Also, the turbulence anisotropy in non-circular ducts could be
modified by bounding wall geometry, heating, free surface and system rotation. Pre-
vious studies on turbulent Couette-Poiseuille flows have been conducted on simple
plane channels. [19] found negative production of streamwise turbulence near the
forward moving wall. [8, 4, 5] identified different turbulence statistics and structures
between the stationary and moving wall.

However, little is known about the effect of the moving wall on the secondary
flow structure. [11, 12] found that the secondary flow structure correlates with the
ratio of the speed of the moving wall and duct bulk flow, albeit the ratio was less than
1.17. In the present study, focus is also directed to the influences of the moving wall
on the secondary flow pattern and hence turbulence structure, but at elevated ratio of
moving wall velocity and duct bulk velocity.

2 Governing Equations and Modeling

The governing equations are grid-filtered, incompressible continuity and Navier-
Stokes equations. In the present study, the Smagorinsky model ( [17]) has been used
for the sub-grid stress(SGS).

τs
i j = −(CsΔ)2 1√

2

√
(SklSkl)Si j +

2
3
ρksgsδi j (1)

where Cs = 0.1,Si j = ∂ui
∂x j

+ ∂u j
∂xi

, and Δ = (ΔxΔyΔz)1/3 is the length scale. It can

be seen that in the present study the mesh size is used as the filtering operator. A
Van Driest damping function accounts for the effect of the wall on sub-grid scales is

adopted here and takes the form as, lm = κy[1− exp(− y+

25 )], where y is the distance
to the wall and the length scale is redefined as, Δ = Min[lm,(ΔxΔyΔz)1/3]. Although
other models which employed dynamic procedures on determining the Smagorinsky
constant (Cs) might be more general and rigorous, the Smagorinsky model is com-
putationally cheaper among other eddy viscosity type LES models. Investigations
carried out by [1] on the turbulent Poiseuille flow through a straight and bent square
duct have indicated that, the difference between the predicted turbulence statistics
using dynamic models and Smagorinsky model is negligible.

3 Numerical and parallel Algorithms

A semi-implicit, fractional step method proposed by [7] and the finite volume
method are employed to solve the filtered incompressible Navier-Stokes equations.
Spatial derivatives are approximated using second-order central difference schemes.
The non-linear terms are advanced with the Adams-Bashfoth scheme in time,
whereas the Crank-Nicholson scheme is adopted for the diffusion terms. The dis-
cretized algebraic equations from momentum equations are solved by the precon-
ditioned Conjugate Gradient solver. In each time step a Poisson equation is solved
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to obtain a divergence free velocity field. Because the grid spacing is uniform in the
streamwise direction, together with the adoption of the periodic boundary conditions,
fast Fourier transform (FFT) can be used to reduce the 3-D Poisson equation to un-
coupled 2-D algebraic equations. Here, the fast Fourier transform is performed using
FFTPACK ( [18]). The algebraic equations are solved by the direct solver using LU
decomposition.

As indicated earlier, periodic boundary condition is employed in the streamwise
direction, thus the flow field is driven by the combined effects of the moving wall
(Couette type) and the prescribed pressure gradient (Poiseuille type) in this direction.
It is noted that a constant force is adopted in the momentum equation to represent
the driving pressure gradient. In all the cases considered here the grid size employed
is (128x96x96) in the spanwise, normal, and streamwise direction, respectively.

In the present parallel implementation, the single program multiple data (SPMD)
environment on a distributed memory system using MPI is adopted. The domain
decomposition is done on the last dimension of the three dimensional computation
domain due to the explicit numerical treatment on that direction. The simulation is
conducted on the HP Integrity rx2600 server (192 Nodes) with about 80 percent
efficiency when 48 CPUs are employed. Linear speed-up is not reached in present
parallel implementation mainly due to the global data movement required by the Fast
Fourier Transform in the homogenous direction.

A schematic picture of the flows simulated is shown in Figure 1, where D is
the duct width. We consider fully developed, incompressible turbulent Couette-
Poiseuille flows inside a square duct where the basic flow parameters are summa-
rized in Table 1. Reynolds number based on the bulk velocity (Rebulk) is kept around
10,000 for all cases simulated and the importance of Couette effect in this combined
flow field can be indicated by the ratio r = (Ww/WBulk) and − D

ρW 2
w

∂P
∂ z . Due to the

lack of benchmark data of the flow filed calculated here, the simulation procedures
were first validated by simulating a turbulent Poiseuille flow at a comparable bulk
Reynolds number (case P). The obtained results (see [10]) exhibit reasonable agree-
ment with DNS data from [3]).

4 Results

4.1 Mean secondary flow structure

Mean streamwise velocity distributions from the top wall along the wall bisector, i.e.
x/D=0.5, at different mean Couette strain rates are shown in Figure 1. For cases P
and CP1, the velocity distributions follow closely the 2D channel flow DNS data of
[14] (Reτ : 395) and [6](Reτ : 300). However, at higher Couette velocity due to the
reduction of shear rate, departures from the logarithmic distributions are observed
for cases CP2 - C, which are consistent with the findings of plane Couette-Poiseuille
flow of [8]. It should be noted that for all cases considered logarithmic distributions
prevail at the bottom wall, except in the vicinity of the side wall.
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Fig. 1. Geometry and mean streamwise velocity along the wall-bisector.
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Fig. 2. Streamlines of mean secondary flow; solid lines for counter-clockwise rotation, dashed
lines for clockwise rotation.

Streamlines of mean secondary flow for cases CP1 to C are shown in Fig-
ure 2. The vortex structure is clearly visible, where solid and dashed lines repre-
sent counter-clockwise and clockwise rotation, respectively. The angle formed by
the horizonal x axis and the line joining the two vortex cores might become a good
representation of the relative vortex positions. This angle is calculated and plotted
against the parameter r defined by Ww/Wbulk which can be interpreted as the non-
dimensional moving wall velocity. It is interesting to note that a linear relation exits
between the angle and the parameter r, as shown in Figure 3 and a change in slope
occurs at r ∼1.5.

4.2 Anisotropy invariant map

The anisotropy invariant map (AIM) is introduced here in order to provide more spe-
cific description of the turbulence structures. The invariants of the Reynolds stress
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tensors are defined as II = −(1/2)bi jb ji , III = (1/3)bi jb jkbki and bi j =< u′iu′j >
/ < u′ku′k > −1/3δi j. A cross-plot of −II versus III forms the anisotropy invari-
ant map. All realizable Reynolds stress invariants must lie within the Lumley tri-
angle ( [13]). This region is bounded by three lines, namely two component state,
−II = 3(III +1/27), and two axi-symmetric states, III = ±(−II/3)3/2. For the axi-
symmetric states, [9] described the positive and negative III as disk-like and rod-
like turbulence, respectively. The intersections of the bounding lines represent the
isotropic, one-component and two-component axi-symmetric states of turbulence.

The AIM along the horizontal wall bisector for cases CP1 to CP4 is presented
in Figure 4. Near the stationary wall (y/D ≤ 0.5), turbulence behaviors of different
Couette-Poiseuille flows resemble those of the Poiseuille flow. In particular, the tur-
bulence structure is similar to the plane channel flow, where turbulence approaches
two-component state near the stationary wall due to the highly suppressed wall-
normal velocity fluctuation. It moves toward the one-component state till y+ ∼ 8
( [20]) and then follows the positive III axi-symmetric branch (disk-like turbulence,
[9]) to the isotropic state at the duct center. However, near the moving wall due to
the reduction of the streamwise velocity fluctuation at the moving wall, turbulence
structure gradually moves towards a rod-like axi-symmetric turbulence (negative III)
as r increases. As the wall velocity increases further for r > 1.5, the rod like structure
disappears, and turbulence reverts to the disk like structure, as is shown in Fig. 5.

5 Conclusion

The turbulent Couette-Poiseuille and Couette flows inside a square duct are inves-
tigated by present simulation procedures. Mean secondary flow is observed to be
modified by the presence of moving wall where the symmetric vortex pattern van-
ishes. Secondary flow near the top corner shows a gradual change of vortex size
and position as the moving wall velocity increased. The vortex pair consists of a
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dominate (clock-wise) and relatively smaller (counter-clockwise) vortex. It is inter-
esting to note that a linear relation exits between the angle and the parameter r, and
a change in slope occurs at r ∼1.5. Near the moving wall due to the reduction of the
streamwise velocity fluctuation at the moving wall, turbulence structure gradually
moves towards a rod-like axi-symmetric turbulence (negative III) as r increases. As
the wall velocity increases further for r > 1.5, the rod like structure disappears, and
turbulence reverts to the disk like structure.
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