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Preface

This book presents knowledge gained by the authors along with methods
they developed, over more than 30 years of experience measuring, model-
ing, and mapping environmental space–time fields. That experience embraces
both large (continentwide) spatial domains and small. In part it comes from
their research, working with students as well as coinvestigators. But much
was gained from all sorts of interactions with many individuals who have had
to contend with the challenges these fields present. They include statistical
as well as subject area scientists, in areas as diverse as analytical chemistry,
air sampling, atmospheric science, environmental epidemiology, environmental
risk management, and occupational health among others. We have collabo-
rated and consulted with government scientists as well as policy-makers, in
all, a large group of individuals from whom we have learned a lot and to whom
we are indebted. We hope all in these diverse groups will find something of
value in this book. We believe it will also benefit graduate students, both in
statistics and subject areas who must deal with the analysis of environmental
fields.

In fact we have given a successful statistics graduate course based on it.
The book (and course) reflect our conviction about the need for statistical
scientists to learn about the phenomena they purport to explain. To the extent
feasible, we have covered important nonstatistical issues involved in dealing
with environmental processes. Thus in writing the book we have tried to
strike a balance between important qualitative and quantitative aspects of
the subject. Much of the most technical statistical-mathematical material has
been placed in the starred sections, chapters, and appendices. These could
well be skipped, at least on first reading. In fact the simplest path to that
technical material would be through Chapter 14; it contains a more-or-less
self-contained tutorial on methods developed by the authors. That tutorial
relies on R software that can be downloaded by the interested reader.

When we started analyzing environmental processes, we soon came to
know some of the inadequacies of geostatistical methods. These purely spa-
tial methods had been around for a long time and proven very successful in
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geostatistical application. Thanks to the SIMS group at Stanford they had
even been appropriated in the 1970s for use in analyzing ozone space–time
fields. However, the acid rain fields that were the initial focus of our study
involved multivariate responses with up to a dozen chemical species measured
at a large number of sites over a broad spatial domain. Moreover, it became
clear that while these responses could be transformed to have an approxi-
mately normal distribution, their spatial covariances were far from stationary,
a condition of fundamental importance in classical geostatistics. The failure
of that assumption led Paul Sampson and Peter Guttorp to their discovery
of an elegant route around that assumption (Chapter 6). The need to han-
dle multivariate responses and reflect our considerable uncertainty about the
spatial covariance matrix led us to our hierarchical Bayes theory, the subject
of Chapters 9 and 10. Chapter 9, the simplified version, conveys the basic
elements of our theory.

Chapter 10 presents the fully general (multivariate) theory. It incorporates
enhancements made over time to contend with difficult situations encountered
in applications. The last published extension appeared in 2002. Additional
theory was developed for the book. To avoid excessive technicality, we have
given much of the detail in the Appendices.

The theory in that chapter really provides the “engine” that drives our
model and applications in Chapters 11–13. Chapter 11 uses that engine to
drive a theory for designing networks for monitoring environmental processes,
one of the most difficult challenges facing environmentricians. Other challenges
are seen in Chapter 12 where the important topic of environmental process
extremes is visited. In spite of their immense importance in environmental risk
analysis, this topic has received relatively little emphasis in environmetrics.
In contrast, the topic of Chapter 13, environmental risk, has been heavily
studied. Our contributions to it, in particular, to environmental health risk
analysis appear there.

The novelty of the methods emphasized in this book has necessitated the
development of software for implementation. Sampson and Guttorp developed
theirs for covariance modeling and we have incorporated a version of it in
ours. Although our research group developed the code needed to implement
our multivariate theory, that code has been greatly refined thanks to the
substantial contributions of our colleague and sometime research partner, Rick
White.

Although the book features a lot of our own methods and approaches,
we try to give a reasonably comprehensive review of the many other, often
ingenious approaches that have been developed by others over the years. In all
cases we try to indicate strengths and limitations. An extensive bibliography
should enable interested readers to find out more about the alternatives.

To conclude, we would like to express our deepest appreciation to all who
have helped us gain the knowledge reflected in this book. Our gratitude also
goes to those who helped implement that knowledge and develop the tools
we needed to handle space–time fields. That includes our many co-authors,
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including former students. A special thanks goes to Bill Caselton who first
stimulated the second author’s interest in environmental processes, and to
our long time research compatriots, Peter Guttorp and Paul Sampson for a
long and fruitful collaboration as well as for generously allowing us to use
their software. John Kimmel, Springer’s Executive Editor–Statistics, and sev-
eral anonymous reviewers have provided numerous thoughtful comments and
suggestions that have undoubtedly improved the book’s presentation. The
Copy-Editors, Valerie Greco and Natacha Menar were superb. Part of the
book is based on work done while the second author was on leave at the
University of Bath and later at the Statistical and Applied Mathematical Sci-
ence Institute; both generously provided facilities and support. The Natural
Sciences and Engineering Research Council of Canada (NSERC) has been a
constant source of funding, partially supporting our research developments
described in this book. Finally, we thank our wives, Hilda and Lynne for their
support and patience throughout this book’s long gestation period. Without
that this book would certainly not have been written!

Vancouver, British Columbia Nhu D Le
March 2006 James V Zidek
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Part I: Environmental Processes



1

First Encounters. . .

It isn’t pollution that’s harming the environment. It’s
the impurities in our air and water that are doing it.

Dan Quayle

If you visit American city,
You will find it very pretty.
Just two things of which you must beware:
Don’t drink the water and don’t breathe the air.

Tom Lehrer

This book concerns the “impurities” described by Dan Quayle that worry
Tom Lehrer, the degree to which they are present, and the amount of harm
they are causing.

1.1 Environmental Fields

On a fine summer day Vancouver’s air seems clear and free of pollution. In
contrast, looking east towards Abbotsford, visibility is obscured by a whitish
haze that can sometimes be very thick.

That haze comes in part from Vancouver since the prevailing winds of
summer transport pollution in that direction. However, at any location in
an urban area, the air pollution field is a mix of “primary” and “secondary”
pollutants. Local sources might include such things as automobile exhaust
pipes, industrial chimneys, oil refineries, and grain storage elevators. They
are commonly products of combustion. Examples would include SO2 (sulfur
dioxide) and CO (carbon monoxide). In contrast, secondary pollutants take
time to form in the atmosphere and be transported to a given location, i.e.,
site. They come from complex photochemical processes that take place during
the period of transport. Sunshine and humidity help determine the products.

These processes are not very well understood, making the forecasting of air
pollution difficult. In any case, secondary pollutant fields unlike their primary
cousins tend to be fairly “flat” over large urban areas. The fields also change
over time.

We have introduced space–time fields with the example above because of
its societal importance. Indeed, fields such as this are primary objects of study
in the subject of environmental risk assessment. To quote from the Web page of
the U.S. Environmental Protection Agency (http://www.epa.gov/air/concerns/):
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Breathing air pollution such as ozone (a primary ingredient in ur-
ban smog), particulate matter, carbon monoxide, nitrogen oxides, and
lead can have numerous effects on human health, including respiratory
problems, hospitalization for heart or lung disease, and even prema-
ture death. Some can also have effects on aquatic life, vegetation, and
animals.

Indeed, the relationship between acute and chronic nonmalignant pul-
monary diseases and ambient air pollution is well established. Increases in
the concentration of inhalable particles (airborne particles with a diameter of
no more than 10 micrograms, commonly known as PM10) in the atmosphere
have been associated with acute decrements in lung function and other respi-
ratory adverse effects in children (Pope and Dockery 1992; Pope et al. 1991).
There is evidence that mortality from respiratory and cardiac causes is associ-
ated with particle concentrations (Schwartz and Dockery, 1992). Increases in
concentrations of ambient ozone have been associated with reduced lung func-
tion, increased symptoms, increased emergency room visits and hospitaliza-
tions for respiratory illnesses, and possibly increased mortality. This extensive
literature has been reviewed by Lippman (1993) and Aunan (1996). The evi-
dence for other chronic diseases, except lung cancer, seems far less conclusive,
reflecting the limitations of most studies, particularly the inadequate charac-
terization of air pollution exposure. Good estimates of cumulative exposure
often require concentration levels at too many locations to be feasibly moni-
tored and hence such fields need to be mapped using what little information
is available.

Space–time fields such as that described above are generally viewed as
“random” and described by probabilistic models, paradoxically, a view that
is not inconsistent with physical laws. These laws are not fully understood.
Moreover, although existing knowledge can be brought into the prediction
problem through deterministic models, those models will involve a large num-
ber of constants (parameters) that need to be estimated to a high level of
accuracy. Data of a requisite quality for that purpose may not be available.
Finally, these models will require initial conditions specified to a level of ac-
curacy well beyond the capabilities of science. Thus, although the outcome of
say, the toss of a die is completely determined by deterministic laws of nature,
these laws are of no more help now than they were, at the time of the Romans
at least, for predicting that outcome. Hence, probability models are used for
that purpose instead. [The interested reader should consult the entertaining
book by Stewart (1989) for a discussion of such issues in a broader context.]

The reader may well wonder how the outcome of an experiment such as
tossing a die can be regarded as both determined and random. Moreover, given
that we are tossing that die just once, how can the probability of an “ace”
be 1/6 since according to the repeated sampling school of statistics, finding
it requires that we repeatedly toss the die in precisely the same manner, over



1.1 Environmental Fields 5

and over, while tracking the ratio of times an “ace” appears to the number of
tosses. Good question!

It might be partly answered for the die experiment in that we can at
least conceive of an imaginary experiment of repeated tosses. However, in our
air pollution example, the thought of calculating probabilities by repeated
“tosses” would strain the imagination. We would be even more challenged
to provide a repeated sampling interpretation of probability for a field such
as the concentration of a mineral under the earth’s crust. That concentration
would remain more-or-less constant over time, an important special case of the
space–time model studied in the subject of geostatistics. More is said about
such constant fields in Chapter 7.

A wholly different way of interpreting such probabilities underlies the the-
ory in this book. That interpretation, found in the Bayesian paradigm, takes
probability to represent uncertainty. Briefly, 1/6 would represent our fair odds
of 5:1, that an ace will not occur on the toss of die.

In general, the uncertainty we have about random phenomena such as air
pollution fields can be reduced through the acquisition of new information.
This information can come through measurement and the analysis of the data
the measurements provide. (See Chapter 11.)

However, measurement itself is subject to uncertainty. That uncertainty
derives in part from inevitable error no matter how expensive the instrument.
Some of it could be due to such things as misrecording or misreporting. An
extreme form arises when data are missing altogether. In our air pollution
example, the data can be missing because the motor in a volumetric sampler
that sucks air through a filter breaks down.

A more pervasive error derives from the fact that the measurements may
be mere surrogates for the real thing. For example, the concentration of
SO2 (µg/m3) is measured through its fluorescent excitation by pulsed ul-
traviolet light. Measurement of O3 (ppb) is based on the principle of the
absorption of ultraviolet light by the ozone molecule. Uncertainty now resides
in the exact relationship between the measurements and the thing being mea-
sured. In any case, all such uncertainty can in principle be expressed through
probability models within the Bayesian framework, although finding those
probabilities can involve both conceptual and technical difficulties.

The air pollution example has a number of other features commonly as-
sociated with the monitoring of space–time fields. For one thing, the random
field can readily be transformed to have a joint Gaussian distribution. In fact,
the logarithmic transformation often works for air pollution and there are
substantive reasons for this fact.

The space–time fields seen in practice usually have regional covariates
associated with them that vary with time. Time = t itself may be regarded
as such a covariate and in that case a simple trend line, a + b × t may be
viewed as a fixed component of the responses to be measured. In fact, the
coefficients a and b for this line might depend on site but since a and b will
need to be estimated and the data are not usually too plentiful, a high cost
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can be attached to adding so many parameters into the model. Indeed, the
uncertainty added in this way may outweigh any gains in precision that accrue
from making the model site-specific. The same can be said for other covariates
based on time such as sin(t) and cos(t) which are commonly incorporated into
the model to capture seasonality.

Quite different covariates are associated with meteorology. Temperature,
humidity, as well as the easterly and northerly components of wind are exam-
ples. In the latter case, one might expect to see significant site to site variation
over a region, so ideally these should be included as responses rather than as
covariates to serve as predictors of the space–time fields responses. Indeed,
the wind itself generates a space–time field of independent interest.

That field is the subject of the unpublished study of Nott and Dunsmuir
(1998) about wind patterns over the Sydney Harbor. Their data come from
45 monitoring stations in the Sydney area and the study was undertaken in
preparation for the Sydney Olympics (although the authors do not describe
how their analysis was to be used).

Wind, like most commonly encountered fields, involves multivariate re-
sponses, i.e., responses (measured or not), at each location that are vectors
of random variables. A lot is lost if the coordinate responses are treated sep-
arately, since the opportunity is lost to “borrow” information in one series to
help make inferences about another.

Fields such as those described above have been regularly monitored in
urban areas. Hourly measurements may be reported for some pollutants such
as PM10, Daily measurements are provided for others such as PM2.5, a fraction
of PM10. There may be as many as say a dozen monitoring sites for a typical
urban air basin but some pollutants may be measured at only a subset of
these sites owing to technical limitations of the instruments used.

To fix ideas consider the comparatively simple network of 20 continuous
ambient air quality monitoring stations maintained by the Greater Vancouver
Regional District (GVRD; see the GVRD 1996 Ambient Air Quality An-
nual Report, http://www.gvrd.bc.ca/air/bro/aqanrep.html). Those stations
transmit hourly data to an Air Quality Monitoring System computer data-
base. Local air quality can then be compared against national and provincial
guidelines. [We refer to locations (e.g., building rooftops) of ambient monitor-
ing stations as gauged sites. Numerous other sites are potentially available for
creating other stations. We call them ungauged sites.]

Each of the 20 gauged sites in the GVRD network has seven positions at
which monitors or gauges could be installed, one for each of the seven fields
being measured (e.g., sulphur dioxide SO2 µg/m3). As a purely conceptual
device for explaining our theory we call the positions with monitors gauged
pseudo-sites.

The data collected by the monitoring networks often have data missing for
what might be termed structural reasons. In the example above, sites or quasi-
sites were set up at different times and operated continuously thereafter. We
see an extended analysis of monitoring data collected in just such a situation in
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the next chapter. This situation leads to a monotone data pattern resembling
a staircase. The top of the lowest step corresponds to the most recent start-up.
The tops of the steps above, are for successively earlier starts.

Structurally missing data obtain when not all gauged sites measure the
same suite of responses. In other words, not all the gauged sites have their
gauges at the same quasi-sites and hence they do not collect the same data. In
fact, systematically missing data of this form can emerge because monitoring
networks are a synthesis of smaller networks that were originally designed for
quite different purposes. Zidek et al. (2000) describe an example of such a
network that provides measurements for a multivariate acid deposition field.
That network in southern Ontario consists of the union of three monitoring
networks established at various times for various purposes: (1) OME (Environ-
ment Air Quality Monitoring Network; (2) APIOS (Air Pollution in Ontario
Study); (3) CAPMoN (Canadian Acid and Precipitation Monitoring Network
described by Burnett et al. 1994).

As a brief history, both APIOS and CAPMoN were established with the
initial purpose of monitoring acid precipitation, reflecting concerns of the day
(see Ro et al. 1988 and Sirois and Fricke 1992 for details). In fact, CAPMoN
with just three sites in remote areas began monitoring in 1978. 1983 saw an
increase in its size when it merged with the APN network to serve a second
purpose, that of finding source–receptor relationships. In the merged network
monitoring sites could be found closer to urban areas. A third purpose for the
network was then identified and it came to be used to find the relationship
between air pollution and human health (Burnett et al. 1994; Zidek et al.
1998a,b).

The merged network now monitors hourly levels of nitrogen dioxide (NO2
µg/m3), ozone (O3 ppb), sulphur dioxide (SO2 µg/ m3) and the sulfate ion
(SO4 µg/m3).

New features of importance continually arise and the Bayesian framework
provides the flexibility needed to incorporate those features in a conceptually
straightforward and coherent way. Thus, even among adherents of the repeated
sampling school, the hierarchical Bayesian model has gained ground albeit
disguised as something called the random effects model.

One of these new features arises when the various items in a space–time
field are measured at differing or even misaligned scales. For example, some
could be daily levels while others are hourly. Or some could be at the county
and some at the municipal level even though say the latter were of principal
interest. Fuentes and Smith refer to this feature as a change of support in an
unpublished article entitled “A New Class of Nonstationary Spatial Models.”
That feature has become the subject of active investigation. In fact, Fuentes
and Smith cite Gelfand et al. (2000) as having independently studied this
feature. Much work remains to be done.

Another such feature of considerable practical importance sees both sys-
tematically missing gauges at some of the quasi-sites as well as a staircase
data pattern over time. We know of no altogether satisfactory approach to
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analyzing such data. In fact, it remains very much a research area at the time
this book was written.

To conclude this section we describe two other examples of space–time
fields in different contexts. Again the features and the problems alluded to in
this section are applicable to these examples.

1.1.1 Examples

Example 1.1. Wildcat drilling in Harrison Bay
In this example, the environmental risk is ascribed to oil and gas develop-
ment on the Beaufort Sea continental shelf just off the north coast of Alaska
(Houghton et al. 1984). A specific response of interest was the concentrations
of benthic organisms in the seabed. These “critters” form the lowest rung of
the food chain ladder that eventually rises to the bowhead whale, a part of
the Innuit diet. Thus, their survival was deemed vital but possibly at risk
since, for example, the mud used for drilling operations, containing a number
of trace metals, would be discharged into the sea.

The statistical problem addressed in this context was that of testing the
hypothesis of no change in the mean levels over time of these concentrations
at all sites in the seabed extending east from Point Barrow to the Canadian
border. Moreover, little background data on this field were available, pointing
to the need to sample the seabed before and after exploration at judiciously
selected sites. Thus, the testing problem gave way to a design problem: where
best to monitor the field for the intended purpose. This type of design is
often referred to as the BACI (before-and-after-control-impact) design. The
problem was compounded by the shortage of time before exploration was to
commence, combined by the vastness of the area, the pack ice which could in-
terfere with sampling, the high costs involved, and finally, the unpredictability
of the location of the environmental impact of the drilling mud if any.

The latter depended on such things as the winds and the currents as well as
the ice, all in an uncertain way. The approach proposed by the second author
of this book depended on having experts from Alaska divide the area to be
sampled into homogeneous blocks according to their estimates of the likelihood
of an impact on the mean field if any. This could then be incorporated as a
(prior) distribution in conjunction with a classical F-test of no time–space
interaction, based on the before and after measurements to be taken.

This proved an effective design strategy and led to an extension by Schu-
macher and Zidek (1993). That paper shows among other things, that in
designing such experiments, one should place the sampling points in just the
regions where the likely impact is thought to be highest and lowest (to maxi-
mize the contrast in the interaction being tested). Moreover, the points should
be equally divided. That seems to go against the tendency of experimenters to
place their sampling points in the region of highest likely impact. The reason-
ing: why waste sampling points where there is little possibility of an impact?
A little thought shows this reasoning to be naive, although seductive, since the
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baseline levels against which impact can be measured need to be established
using the quasi-control sites.

Example 1.2. The Rocky Mountain Arsenal
An unusual environmental field that changes little over time these days can be
found at the Rocky Mountain Arsenal (RMA). This example shows the great
importance that can attach to spatial mapping and large scales on which this
sometimes has to be done.

A Web page maintained by the Program Manager RMA (PMRMA) and
the Remediation Venture Office (RVO) of the RMA (http://www.pmrma-
www.army.mil/htdocs/misc/about.html) reveals that the RMA is an 27 square
mile area near Denver, Colorado. Furthermore, the pamphlet,“The Rocky
Mountain Arsenal Story”, published by the Public Affairs Office of Commerce
City, Colorado states that starting in 1942, chemical weapons were manufac-
tured there. After the Second World War, the need for weapons declined and
some of the property was leased to the Shell Chemical Company in the 1950s
whereupon the manufacture of pesticides and herbicides commenced. At the
same time, the production of chemical weapons declined, ending altogether in
1969.

Throughout the site’s active period, wastes were dumped in a natural
basin on the site (see the PMRMA/RVO page cite above). However, those
wastes leaked into the groundwater supply used for irrigating crops, leading
inevitably to crop damage.

Consequently, most of the RMA was placed on the National Priorities
List (NPL) in the 1987–89 period. It then became subject to the Comprehen-
sive Environmental Response, Compensation and Liability Act of the United
States This has led to a cleanup operation under the so-called Superfund
program with the eventual goal of turning this area into a wildlife refuge.

According to an EPA Web page, (http://www.epa.gov/region08/superfund
/sites/rmasitefs.html)

Most of the health risks posed by the site are from: aldrin, dieldrin,
dibromochloro-propane (DBCP), and arsenic. Aldrin is a pesticide
that breaks down to dieldrin. Both chemicals are stored in the body
and affect the central nervous system and liver. DBCP is also a pes-
ticide, but it is not stored in the body. DBCP can affect the testes,
kidneys, liver, respiratory system, central nervous system and blood
cells. Arsenic is a naturally occurring element. It can cause cancer in
humans.

In short, nasty stuff!
The (multivariate) response of interest in this situation would be the vector

of concentrations of these hazardous agents over a variety of media such as
groundwater and soil. However, a statistical question now arises. How much of
the RMA was actually contaminated and in need of cleanup? Since, according
to a Defense Environmental Restoration Program report cited on the EPA’s
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home page (http://www.epa.gov/swerffrr/ffsite/rockymnt.htm), the total cost
of cleanup might come to well over 2 billion U.S. dollars, substantial savings
could be realized by minimizing that estimate. Thus, in the early 1990s the
second author came to serve on a tribunal convened to hear arguments from
stakeholders on various sides of this question, for a variety of estimates that
had been made.

While the details of this hearing are confidential, the dispute involved the
spatial contamination field itself. In particular, soil samples had been taken
at a number of sites and analyzed for the Chemicals of Concern (COC’s) as
they are called. The goal was a map of the area, giving predicted concentra-
tions of these COCs based on the data obtained at the sampling sites. The
cleanup would then be restricted to areas of highest contamination. Finally,
the tribunal and no doubt many other dispute resolution mechanisms, even-
tually led, in 1995 as well as 1996 to the signing of two historic agreements
or Records of Decision as they are called, by the Army, Shell, the Service,
the Colorado Department of Public Health and Environment, and the U.S.
Environmental Protection Agency. These provided a comprehensive plan for
the continuation of the very expensive cleanup of the RMA. We show methods
in later chapters that enable predictions such as this to be made.

Incidentally, mapping the spatial contamination field proved to be com-
plicated by missing data, much of it being BDL (below the detection limit).
These are concentrations so small they “come in under the radar” below the
capacity of the measurement process to measure them to an acceptable de-
gree of accuracy. More appallingly, a lot of the concentrations were also ADL,
much to the detriment of the environment!

We begin with groundwork needed for modeling environmental space–time
fields.

1.2 Modeling Foundations

Random space–time fields represent processes such as those in the examples
above. Space refers generically to any continuous medium, that unlike time,
is undirected. It could refer to the demarcated area of seabed in Example 1.1,
for example, or to a region of the earth’s surface as in Example 1.2. However,
it could also refer to a lake where toxic material concentration might be the
response of interest, or even to a space platform where vibration is of concern.

Subregions of the earth’s surface are commonly two-dimensional domains,
with points indexed by latitude and longitude, or even UTM (Universal Trans-
verse Mercator) coordinates. (The latter, unlike the former, do not suffer the
shortcoming of lines of longitude, that distances between them grow smaller
near the poles.) Alternatively, they can be of higher dimensions then two as
when elevation is included and we have a three-dimensional domain for our
process.
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1.2.1 Space–Time Domains

To describe spatial or more generally space–time processes we need a set of
coordinates, say I, to mark points in that space. In practice, I is taken to be
finite although conceptually it is a continuum. This restriction greatly simpli-
fies the problem from a technical perspective because then the field associated
with it assumes values on a finite-dimensional rather than infinite-dimensional
domain. We also avoid the need to describe small scale dependence, something
that cannot be realistically done because of the complexity of most space –
time processes.

1.2.2 Procedure Performance Paradigms

However, before leaving this issue, we must emphasize for completeness that
one performance paradigm sometimes invoked in geostatistics for assessing
procedures requires this label set to be a continuum. To expand on this point,
recall that all statistical performance paradigms assume hypothetical situa-
tions, “test tracks” as it were, wherein statistical procedures must perform
well to be considered acceptable. The choice of which paradigms to invoke is
pretty much subjective. The repeated sampling paradigm is an example. To
increase their confidence in the quality of a result, some analysts require good
repeated sampling properties even when applying a procedure just once.

The large-sample paradigm is another, usually invoked in conjunction with
the repeated sampling paradigm. Here, not only will sampling be repeated
infinitely often but each sample will be infinitely large. How different from
the situation ordinarily encountered in statistical practice!

Different situations can lead to different implementations of the large-
sample paradigm. For example, time-series analysts suppose they are observ-
ing a curve (called a sample path) at timepoints separated by fixed intervals.
The repeated sampling paradigm here refers to drawing curves such as the one
being observed at random from a population of curves. For any fixed time-
point, say t0, their inferential procedure might, for example, be an estimator
of a population parameter such as the population average, µ = µ(t0), of all
those curves. Such procedures of necessity rely on the measurements from just
the single curve under observation; good repeated sampling properties are re-
quired under an assumption about the curves called ergodicity (that is of no
direct concern here). The large-sample paradigm invoked in this context as-
sumes an infinite sequence of observation times, separated by fixed intervals,
that march out to infinity. The performance of procedures for inference about
the population parameters such as µ can now be assessed by how well they
do with this infinite sequence of observations under the repeated sampling
paradigm above.

Nonparametric regression analysts invoke a different version of this
paradigm. They also suppose they are observing a curve at specified sampling
points, this time in a bounded range of a predictor such as time. However,
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their curve is supposed to be fixed, not random, and their repeated sam-
pling paradigm posits observation errors randomly drawn from a population
of measurement errors. At the same time, the large-sample paradigm assumes
measurements are made at successfully denser collections of sampling points
in the range of the predictor. Thus, measurements are made at successively
finer scales until, in the limit, the infinite number of points is obtained in that
bounded range.

These two implementations of the repeated, large-sample paradigms differ
greatly even when invoked in precisely the same context, observations of a
curve measured at a collection of sampling points. So which would be appro-
priate, if either, for space–time processes? After all, the marker, i, could be
regarded a “predictor” of the value of the field’s response. Yet at the same
time, our process could be considered a time-series where the curve is that
traced out by an random array evolving over time.

In search of an answer, suppose that the field remains constant over time
(or equivalently, that it is observed at a single timepoint). We then find our-
selves in the domain of geostatistics, a much studied subject. There the field,
like the curve of time-series, is considered random. Yet, a large-sample par-
adigm commonly used in this situation is that of nonparametric regression
which assumes an ever more dense sequence of sampling points (Stein, 1999).

The reader could be forgiven for feeling somewhat confused at this point.
Alas, we have no advice to offer. These different, seemingly inconsistent,
choices above reflect two different statistical cultures that have evolved in
different subdisciplines of statistics.

1.2.3 Bayesian Paradigm

In this book, we are not troubled by this issue, since we adopt the Bayesian
paradigm. Thus, in the sequel, unknown or uncertain means random. More-
over, probabilities are subjective. In other words, the probability that an un-
certain object X falls in an event set, A, P (X ∈ A), means, roughly speaking,
fair odds of P (X ∈ A) × 100 to [1 − P (X ∈ A)] × 100 that A occurs.

We assume a fixed index set I (represented by = 1, . . . , I for simplicity),
while automatically acquiring performance indices for procedures that evolve
out of succeeding developments. Incidentally, little attention seems to have
been given to the problem of how big we can make I before reaching the
point of diminishing returns. (We show implications of this choice in Chapter
4.) In practice, we have been guided by practical considerations. For example,
in health impact analysis, the centroids of such things as census subdivisions
seem appropriate since that is the level of aggregation of the health responses
being measured.

Similar considerations pertain to T (represented as 1, . . . , T for simplicity),
the timepoints indexing the field. Again, this could be taken to be a continuum
but is usually taken to be a finite set. Its elements may represent hours,
days, weeks, or even years. It should be emphasized that, unlike space, time
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is directional so cannot be regarded as another spatial coordinate (except
superficially). Moreover, that special quality of time also provides a valuable
structure for probabilistic modeling.

1.2.4 Space–time Fields

Finally, we are led to formulate the random space–time response series (vectors
or matrices) needed for process modeling. In environmental risk assessment we
may need up to three such objects, Xit, Yit, and Zt, t ∈ T , at each location
i ∈ I and each time t ∈ T . The Y-process may be needed to represent
the adverse environmental impact. To fix ideas, Yit may denote the number
of admissions on day t to hospital emergency wards of patients residing in
region i who suffered acute asthma attacks. The X-process can represent
a real or a latent (unmeasured) process, the latter being purely contrived
to facilitate modeling the Y-process. In the example Xit might represent
the ambient concentration of an air pollutant on day t in region i. Finally,
the Z-process may represent covariates that are constant over space for each
timepoint; these covariates represent such things as components of time, trend,
and environmental factors that affect all sites simultaneously. In the example
Zt, t ∈ T might be the average daily temperature for the area under study
on day t. A model for risk assessment might, for example, posit that the
conditional average of Yit given Xit and Zt, i.e., E[Yit | Xit,Zt] is given by
g(Xit,Zt) for a specified function g.

1.3 Wrapup

This chapter has summarized the features of space–time response fields likely
to be encountered in practice. Moreover, we have presented a number of illus-
trative examples of importance in their own right. Through these examples we
have tried to show the great diversity and importance of the problem of map-
ping and measuring space–time fields. Finally, we have laid the foundations
for an approach to modeling environmental space–time processes. We discuss
the modeling of these processes in more detail below in Chapters 5, 9, and 10.
However, modeling requires measurements, to which we turn in Chapter 4.

However, to make the ideas in this chapter more concrete, we describe in
the next, a worked-out application in detail. We also demonstrate the kinds
of analyses that can be done with the methods developed in this book along
with the associated software.
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Case Study

For the first time in the history of the world, every
human being is now subjected to contact with dangerous
chemicals, from the moment of conception until death.

Rachel Carson, Silent Spring, 1962

In this chapter, we illustrate methodology developed in this book by describing
an application involving one of the chemicals Carson refers to above. Specifi-
cally, we describe a study of BC ozone data made by Le et al. (2001, hereafter
LSZ). That illustration shows among other things, how to hindcast (or back-
cast) data from a space–time field. By this we do not mean, the opposite
of forecast. Rather LSZ reconstruct unobserved historical responses through
their relationship with other series that had been observed. Those are ozone
levels from stations that started up at earlier times in the staircase of steps we
described in Section 1.1. But they could have used any other available series
such as that from temperature that might be correlated with the ozone series.

By looking ahead to Chapter 13, we can get a glimpse of the purpose of
hindcasting the data, namely, environmental health impact assessment. To be
more precise, LSZ require the hindcasted field for a case-control study of the
possible relationship between cancer and ozone. Cancer has a long latency
period and over that period the subjects would have moved occasionally from
one locale to another. Their exposures to ozone would therefore have varied
according to the levels prevailing in those different residential areas. However,
not all those areas would have had ozone monitors, especially in the more
distant past, since interest in this gas tends to be of recent vintage. The solu-
tion adopted by LSZ backcasts the missing values in historically unmonitored
regions from observed values in those that were monitored. In this way, the
required exposure could be predicted for the case-control study.

2.1 The Data

The monthly average ozone levels used came from 23 monitoring sites in the
Province of British Columbia. These sites are listed in Figure 2.1. Averages
were calculated from hourly values provided by the BC Ministry of Environ-
ment. To do so, LSZ first discarded days with fewer than 18 hourly reported
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Fig. 2.1: Boxplot of monthly average ozone levels at 23 monitor sites in British
Columbia and their start-up times.

values. Then daily and in turn, monthly averages were computed. That pro-
duced 204 monthly averages beginning with January, 1978 through December,
1994.

LSZ grouped stations with the same starting times beginning in 1978. The
locations of these sites are shown in Figure 2.2.

2.2 Preliminaries

LSZ next transformed the data to achieve a more nearly Gaussian distribution,
finding the logarithm to be suitable for this purpose.

In addition to observed responses, here log-transformed monthly values,
the theory offered in Chapters 9 and 10 also allows covariates to be admitted.
While these covariates may vary with time, they must be constant across
space. (If they did vary across space, they could be included in the response
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Fig. 2.2: Ozone Monitoring Sites (1 - Rocky Point Park; 2 - Eagle Ridge; 3 - Kens-
ington Park; 4 - Confederation Park; 5 - Second Narrows; 6 - Burnaby Mountain).

vector!) LSZ adopt Z = [1, cos(2πt/12), sin(2πt/12)] as the covariate vector.
This means that

Yit = βi0 + βi1 cos(2πt/12) + βi2 sin(2πt/12) + εit,

where (ε1,t, . . . , ε23,t) are residuals, assumed to be independent over time and
follow a Gaussian distribution with mean 0 and variance Σ (see Chapter 5 or
Appendix 15.1 for a definition).

By modeling the shared effects of covariates i.e., trends in this way, LSZ
are able to eliminate both temporal and spatial correlation that might be
considered spurious. In other words, they remove associations over time and
space that could be considered mere artifacts of confounding variables (the
covariates) rather than due to intrinsic relationships. By subtracting the esti-
mated trend from the Y s, the analysis can turn to an analysis of the residuals
and a search for those associations. The trends are added back in at a later
stage as necessary.

The fits of the model to the data shown in Figure 2.3 for a typical site
point to a very strong yearly cycle.

That figure also depicts the partial autocorrelation function (pacf) for
the series of transformed monthly averages. The pacf for lag 2, for exam-
ple, shows the degree of linear correlation of current monthly values with
that of two-months-ago, once the effect of last month has been factored out.
In other words, if the pacf between the current month’s value and its two-
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Fig. 2.3: Trend modeling: Upper: partial autocorrelation function; Middle: residual
plot; Lower: fitted trend and observations.

month-old cousin were large, it could not simply be due to their both having
been strongly associated with the value for one month ago (that has effec-
tively been removed). The results suggest we may for simplicity adopt the
assumption that these monthly values are independent of each other, since
for the Gaussian distribution being uncorrelated means being completely in-
dependent. The analyst will not usually be in such a fortunate position as
this!
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2.3 Space–time Process Modeling

LSZ were now in a position to apply the theory developed in Chapters 9
and 10 of this book, using the trend model specified above. They began by
grouping stations with the same starting time as follows.

Block 1: two sites, start-up time: February 1992
Block 2: two sites, start-up time: May 1990
Block 3: four sites, start-up time: June 1987
Block 4: ten sites, start-up time: July 1986
Block 5: four sites, start-up time: September 1982
Block 6: one site, start-up time: January 1978

Next comes the estimation of special parameters, called hyperparameters.
These parameters, unlike say Σ above, are found not in the distribution that
describes the distribution of the sample values directly, but rather they are
parameters in the prior structure. The latter provides a distribution on the
first-level parameters like Σ and express LSZ’s uncertainty about them. (See
Chapter 3. Recall, that in the Bayesian paradigm, all uncertainty can in prin-
ciple be represented through a probability distribution.) It turns out these
parameters can be estimated from the data. To do so, they used a standard
method called the EM algorithm.

With their hyperparameters estimated, LSZ are able to turn to the de-
velopment of a predictive distribution, i.e., a distribution for the unmeasured
responses of interest.

LSZ require both the interpolation of the field’s values at completely un-
monitored sites as well as hindcasted values at those currently monitored. The
predictive distribution allows for not only the imputation of these unmeasured
values, but as well, the construction of say 95% prediction intervals. Figure
2.4 shows the hindcasted ozone levels and the 95% predictive intervals of the
Burnaby Mountain station. To obtain the prediction intervals, LSZ simulate
realizations of the field from the predictive distribution. They do this with
subroutines available in standard libraries using the matric-t distributions,
characterized in Appendix 15.1, that constitute the predictive distributions.

2.4 Results!

The predictive intervals between January 1978 to September 1982 proved to
be large. That is hardly surprising. Only one block of stations (Block 1) was
in operation. Those between September 1982 to July 1986 turned out to be
smaller since by that time two blocks (Blocks 1+2) were in operation. More
data were now available on which to base hindcasting.

Getting predictive distributions for ungauged sites presents a new obstacle.
Whereas LSZ were able to use the EM algorithm to get estimates of hyperpa-
rameters, specifically the hypercovariance, for hindcasting, now they have to
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Fig. 2.4: Observed monthly average ozone levels in µg/m3 at the Burnaby Mountain
station between July 1986 and December 1994. Hindcasted values (solid) and cor-
responding 95% predictive intervals (dash) between January 1978 and June 1986.
Vertical lines indicate when blocks are formed during this hindcasting period.

find hypercovariances between sites of interest, for which no data have ever
been obtained!

LSZ find a way to do this by means of a method proposed by Sampson
and Guttorp (1992) as described in Chapter 6. Briefly, the Sampson–Guttorp
(SG) method provides a way of estimating spatial covariances for fields, such
as those encountered in air pollution, where the degree of association (corre-
lation) between sizes does not necessarily decline as a function of the distance
between them. In fact, many other environmental factors, depending on the
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context, such as elevation or salinity can have a more significant role to play
in determining that association than distance. The method is something of a
major breakthrough, since spatial prediction had been dominated for so many
years by the methods inherited from geostatistics. There the assumption of
spatial isotropy seems to be tenable even though it can fail dramatically for
space–time fields.

The SG method first finds functions that connect the coordinates of lo-
cations in the geographic plane (G-space), say latitude and longitude, with
locations in an imaginary new, dispersion space (D-space), created so that
association is a decreasing function of distance. The creation of that function
depends on the estimated associations between existing monitoring sites. A
fitted variogram, or equivalently, the correlation function, in the D-space and
the estimated mapping function are then used to obtain spatial correlations
between all locations of interest.

Figure 2.5 shows the results LSZ obtain by using the method. On the
right of that figure, we see the D-space coordinates obtained by applying the
estimated function to a G-space grid. On the left we see a fitted variogram in
the D-space. The results can be used to estimate spatial correlations between
any points in the G-space. One simply identifies the D-space coordinates for
any pair of sites. Then one measures the D-space distance between them.
Finally, one plugs that distance into the fitted variogram to estimate their
spatial correlations.

The construction of the functions that connect D- and G-spaces depends
on a smoothing parameter which determines how much G can be changed in
getting to D. At one extreme, D would be identical to G. At the other, G
could be a grossly distorted version of G. Users can ensure that the G-grid is
not folded in the D-space and hence maintain the spatial interpretability of
the correlations. In other words, the closer the stations are the higher their
correlations.

Figure 2.6 depicts 1994’s predicted monthly average ozone levels (in
µg/m3). Notice the distinct annual cycles. The lowest level seems to have
been in December while the highest comes in June. Predicted concentrations
near the monitoring stations are strongly influenced by those stations and
form the “mountain tops” (respectively, “valley floors”) seen in the figure.
Moving away from monitoring sites we see the surface of predicted concentra-
tions decrease (respectively, increase) towards a regional average.

These trends would be expected and, in fact, they represent a regression
towards the mean effect. That effect is seen even in the simplest linear predic-
tor in ordinary regression analysis. That isn’t to say the true surface trends
down (up, respectively) in that way. It may go down or up in reality. How-
ever, as the information in the data becomes increasingly irrelevant, the model
loses its predictive accuracy and the best prediction increasingly becomes the
sample average concentration in a manner of speaking.

This phenomenon reveals the particular difficulty attached to the spatial
prediction of extreme values in the field, for example, the maximum concen-
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Fig. 2.5: Variogram fits and D-space coordinates with smoothing parameter = 0.3
used in the mapping function.

tration over all locations in the region. That maximum, which might well be of
importance in epidemiological work or regulation, would undoubtedly occur
somewhere other than the gauged stations. Yet, the concentration predictor
in Figure 2.6 would be biased away from this maximum, a tail value, towards
the mean, a more central value

However, the predictive distribution recognizes its own limitations in that
as we move away from a gauged site the 95% prediction interval, or equiva-
lently, its standard deviation, increases. To see this explicitly, turn to Figure
2.7 for June 1994. There we see again the features discussed above for Fig-
ure 2.6, perhaps even more clearly, this time in a contour plot. But this time
LSZ also contour plot, in Figure 2.8, the standard deviations of the predictive
distribution.
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Fig. 2.6: Interpolated monthly average ozone levels (µg/m3) in 1994.

Figure 2.8 reveals what we theorized above about the standard deviations.
In fact as we leave the region and move northwest or southeast we see that
standard deviation increasing quite dramatically. This tells us that the tails
of the predictive distribution grow fatter as we move away from the gauged
sites. What is not known at this time is how well the extreme quantiles predict
extreme values for the field.

With the application, we have tried to introduce the reader to the subject
of mapping space–time fields. We have indicated the importance of such map-
ping in terms of estimating human exposure to pollution fields in the setting
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Fig. 2.7: Contour plot of the interpolated ozone field (µg/m3) in June, 1994. The
dots denote the stations.

of a case-control study for investigating the relationship between cancer and
air pollution. Now in the next chapter, we turn to the subject of uncertainty
that underlies all statistical modeling.

2.5 Wrapup

This chapter shows space–time modeling theory in action. With the help of the
models, much can be accomplished. Unmeasured historical process concentra-
tions can even be inferred for the purpose of assessing environmental risk. In
general, uncertainty about the process can both be reduced and quantified.

Uncertainty underlies all of statistics and science itself. So it deserves spe-
cial consideration and in the next chapter we investigate that elusive com-
modity and get a better understanding of its role in our theory.
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Uncertainty

. . . there are unknowns; there are knowns that we know
we know. We also know there are known unknowns;
that is to say we know there are some things we do not
know. But there are also unknown unknowns—the ones
we don’t know we don’t know. And. . . it is the latter
category that tend to be the difficult ones.

Donald Rumsfeld 2003.

However elusive in its meaning, uncertainty about unknowns seems awfully
important; van Eeden and Zidek (2003) found in the Science Citation Index
about 30,000 articles citing it as a keyword. More importantly for us, it is the
“stuff and trade” of environmental risk analysts who need to communicate it,
manage it, quantify it, reduce it, and interpret it. We devote this chapter to
it, describe a language for it, and present ways of measuring it. This chapter
paves the way for the more focused development that follows.

3.1 Probability: “The Language of Uncertainty”

Bernardo and Smith (1994) describe uncertainty as “incomplete knowledge
in relation to a specified objective.” Frey and Rhodes (1996) say much the
same: “uncertainty arises due to a lack of knowledge regarding an unknown
quantity.” But how should it be quantified? Lindley (2002), citing Laplace,
provides an answer: “Probability is the language of uncertainty.” O’Hagan
(1988) more emphatically asserts that “Uncertainty is probability.”

Within statistics, the Bayesian paradigm, embraced by the above quota-
tions of Lindley as well as O’Hagan and developed below, seems ideal for dis-
cussing uncertainty (and more generally for risk assessment). There, roughly
speaking, uncertainty is equivalent to randomness and the degree of uncer-
tainty about any aspect of the world, past, present, and future, can be ex-
pressed through a probability distribution. That is the paradigm on which
this book is based.

Therefore our discussion focuses on an uncertain, and hence random object
of interest, Y , that could be a matrix, vector, or even real number. It might
even involve unknown parameters in conventional modeling terminology. For
example, Y = I{H} could be the indicator for a hypothesisH—some statement
about the world—that is 1 or 0 according as H is true or false, Then, although
finer taxonomies are available, uncertainty can be dichotomized into either
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aleatory (stochastic) or epistemic (subjective) (Helton 1997). The first obtains
when Y ’s probability distribution is known, the latter, when it is not. In fact,
the latter represents the added uncertainty about Y due to ignorance of Y ’s
distribution. Parameter and model-uncertainty can be considered forms of
epistemic uncertainty.

Generally in this book, Y represents a column vector, partitioned into
Y unmeas and Y meas. The first component represents things that cannot be
measured. Model parameters might be included there. The realizations of a
random environmental field at unmonitored locations might be put there as
well. In contrast, the second component contains Y ’s measurable but as yet
unmeasured attributes. When measured, that component gets replaced by
ymeas, this being a nonrandom realization of its uncertain (random) counter-
part, Y meas. The latter unlike the former has a probability distribution and
is susceptible to repeated measurement in some cases.

3.2 Probability and Uncertainty

How can probability be used to represent an individual’s uncertainty? To
answer this question, we begin with a simple case, explored further in the
next section, where Y is again an indicator variable, say Y = I{X∈A} where
X is another random object, and A a subset of its range of possibilities. Then
uncertainty about Y (andX) can be interpreted as the individual’s willingness
to give odds of P (X ∈ A)/P (X ∈ Ā) : 1 in favor of X being in A, Ā denoting
the complement of A (the event X is not in A). Very large (respectively, small)
odds would represent states of near certainty that X is in A (respectively, X
is not in A). However, 1:1 odds [when P (X ∈ A) = 1/2] represent the state of
greatest possible uncertainty. This interpretation of probability conforms to
its use in ordinary language.

However, representing an individual’s uncertainty by means of a proba-
bility distribution in complex situations proves more challenging (O’Hagan
1998). In every case, eliciting the (joint) probability distribution is always the
goal. Suppose that distribution has a joint probability density function (PDF)
so that

P (Y ∈ C) =
∫

C

f(yunmeas′
, ymeas′

)dyunmeas′
dymeas′

, (3.1)

for every subset B where ′s have been attached in the integrand to emphasize
that the variables appearing there are merely dummy variables of integra-
tion. (The case of discrete random vectors would be handled in an analogous
manner using a probability mass function instead of a PDF and summation
instead of integration.)

The joint density function for Y in Equation (3.1) is commonly found using
the multiplication rule of probability:

f(yunmeas′
, ymeas′

) = f(ymeas′ | yunmeas′
)π(yunmeas′

). (3.2)
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In Equation (3.2) the density π derives from the so-called prior or more
formally, a priori (“before experience”) distribution given by Equation (3.3):

P (Y unmeas ∈ D) =
∫

D

π(yunmeas′
)dyunmeas′

. (3.3)

This distribution is supposed to come purely from the individual’s prior knowl-
edge (and not from the data). In some cases, he will be an “expert” with con-
siderable relevant experience. Then π may be easy to elicit and welldefined. On
the other hand, a novice would be forced to choose a vague prior with π ≈ 1.
In that case, P defined by Equation (3.3), will be unbounded and not a prob-
ability distribution in which case the prior is called improper. Nevertheless,
such distributions can be and are often used in Bayesian analysis (subject to
certain restrictions indicated below). However, very un-Bayesian-like behavior
can then ensue (Dawid et al. 1973), a fact that is generally ignored.

Once Y meas has been measured and ymeas obtained, prior knowledge can
be updated with the new information by means of the celebrated rule of Rev.
Thomas Bayes. The result is the posterior, or more formally, a posteriori (after
experience) distribution given by

P (Y unmeas ∈ D | Y meas = ymeas) =
∫

D

f(ymeas | yunmeas′
) (3.4)

π(yunmeas′
)

× dyunmeas′
/f(ymeas),

where

f(ymeas) =
∫
f(ymeas | yunmeas′

)π(yunmeas′
)dyunmeas′

(3.5)

gives the so-called marginal density of Y meas.
Equation (3.5) embraces an easily discovered, beautiful feature of the

Bayesian approach, that the prior can be sequentially updated in a stepwise
fashion as the measured data arrive, The prior for the next step is just the
posterior from the previous step! Moreover, as long as the posteriors remain
proper, the initial prior could well be improper. The unwary at least, would
see no distinguishable difference between proper and improper.

Equation (3.5) has another distinguished feature, the so-called likelihood
function,

f(ymeas | yunmeas′
), (3.6)

regarded as a function of yunmeas′
. This function, one of Sir Ronald Fisher’s

great contributions to statistical theory (though he was not an adherent of
the Bayesian school), allows the data to attach their measure of relative im-
portance to the various hypothetical possibilities for Y unmeas, yunmeas′

. The
most plausible one would maximize the likelihood. (Where a model parameter
is involved, the result is called a maximum likelihood estimate.)
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Strangely, this measure of relative importance, unlike the prior density
function, does not integrate to 1. Of course, sometimes the prior density is con-
ceptualized as a likelihood function derived from a prior realization of Y meas,
say ymeas

prior . However, in this case, ν is taken to be a pristine prior represent-
ing a state of complete ignorance and the actual prior becomes on applying
Equation (3.5) a purely hypothetical posterior distribution that came out of
an earlier step in the analysis. (Such priors, called conjugate, are often math-
ematically convenient, if not always realistic choices.) Thus, the distinction
made above between likelihood and prior still obtains.

That in turn implies the nonuniqueness of the likelihood. Any positive
multiple would yield the same posterior. More substantively easily constructed
examples show that seemingly different process models for generating ymeas

yield likelihoods that are positive multiples of one another and hence the same
posterior.

Although probability gives us a language in which to discuss uncertainty,
it does not directly quantify it except in simple cases. We turn to that issue
next.

3.3 Uncertainty Versus Information

We commonly speak of “decreasing” (or “increasing”) uncertainty, suggest-
ing the existence of a quantitative ordering. Moreover, we see increasing in-
formation as a way of making that reduction. This section examines these
fundamental things.

To initiate our search for such a quantitative measure of uncertainty, we
return to the example introduced in the previous section where Y = I{X∈A}.
O’Hagan’s definition above seems to point unambiguously in this simple case
to P (X ∈ A) as the appropriate measure for the individual whose uncertainty
is being assessed.

Even though simple, that case allows us to see if additional information
always leads to a decrease in uncertainty. The affirmative answer we might
naively expect stems from our view of uncertainty and information as comple-
mentary cousins—the more of one the less of the other. Indeed, both Shannon
(1948)and Renyi (1961) interpret entropy, defined below, as exactly equal to
the amount of information contained in Y that would be released by measuring
Y exactly.

However, van Eeden and Zidek (2003) show the answer can be negative.
They suppose the individual learns X ∈ B. The new measure of uncertainty
becomes P (X ∈ A | X ∈ B). The result can be near 1/2, representing the
state of complete uncertainty where originally that probability is near 0 (or
1), a state of near certainty about Y . We demonstrate this in the following
example.

Example 3.1. Information increases uncertainty
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Suppose an individual assesses her uncertainty about X as represented by a
uniform probability on [0,1], denoted X ∼ U [0, 1]. In particular, this individ-
ual would be quite certain (90% sure) that X does not lie in A = [0, 2/20].
However, that individual learns that X lies in B = [1/20, 2/20]. Using a
standard formula for conditional probability the individual finds that now
P (X ∈ A | X ∈ C) = 1/2 even though P (X ∈ A) = 1/10 originally. The
individual who was nearly certain X would not lie in A, is now completely
uncertain about that issue.

We would emphasize that in Example 3.1 the individual’s uncertainty
about X was aleatory so the apparent anomaly does not derive from subtleties
associated with epistemic uncertainty. So why did the additional information
increase rather than decrease uncertainty? The answer is that the additional
information contradicted the individual’s prior views about the uncertain X’s
being in [0, 1/10].

Clearly this phenomenon must be quite pervasive although it does not
seem to have been much studied. In any case, the example has two important
general implications: (1) some kinds of information may increase rather than
decrease uncertainty; (2) any satisfactory measure of uncertainty must admit
this phenomenon in similar circumstances.

3.3.1 Variance

So what other measures of uncertainty might be used? Two very common
ones are variance and entropy (van Eeden and Zidek 2003). When Y is a
real-valued random variable, its variance is defined by

V ar(Y ) = E(Y − µy)2, (3.7)

where, in general, for any function h of Y , E[h(Y )] =
∫
h(y′)fY (y′)dy′, fY

denotes the density of Y ’s distribution and µY denotes the expectation of Y ,
E(Y ). σY =

√
V ar(Y ) represents Y ’s standard deviation (SD), an alternative

measure of Y ’s uncertainty that has the advantage of being on the same scale
as Y and hence more easily interpreted than σY . When Y is a vector, the
covariance obtains as the natural extension of the variance:

ΣY = E(Y − µy)(Y − µy)T (3.8)

when Y is a column vector say. Here the expectation E of the random matrix
is computed elementwise. However, since the covariance is a matrix rather
than a numerical measure, its determinant, called the generalized variance, is
sometimes used as an ad hoc measure (see Example 3.2).

The variance or the conceptually equivalent SD has proven popular.
Thus, for example, reporting the standard error (SE) in a reported statis-
tical estimator to indicate uncertainty has become nearly universal in sci-
entific reporting. Moreover, as noted by van Eeden and Zidek (2003), the
United State’s National Institute of Standards and Technology advocates
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use of the standard deviation. To quote from the Institute’s 2001 Web
page (http://physics.nist.gov/cuu/Uncertainty/basic.html) “Each component
of uncertainty, However, evaluated, is represented by an estimated standard
deviation, termed standard uncertainty . . . .”

However, the variance and SD have shortcomings. These include their
nonexistence for some distributions, lack of invariance under scale changes
(suggesting they are not measures of intrinsic uncertainty in Y ), undue sensi-
tivity to the weight in the tails of the distribution, and lack of a natural mul-
tivariate extension. The lack of such an extension proves problematic when Y
is a vector of two independent random coordinates. One might expect their
combined uncertainty to be the sum of their individual uncertainties, but the
variance offers no way of expressing that fact unlike the next contender we
present for the role of uncertainty measure.

3.3.2 Entropy

Harris (1982) suggests another generally accepted measure, the entropy of
Y ’s distribution: H(Y ) = E(− log fY (Y )/mY (Y )) where fY denotes the
probability density of Y (with respect to counting measure in the discrete
case). Here mY , with the same units as fY [i.e., probability × (Y ’s unit
of measurement)−1], plays the role of a reference density against which un-
certainty about Y is to be measured. For simplicity, we take m = 1 (with
appropriate units) as is commonly done (Singh, 1998, p. 3).

The next example demonstrates the computation of an entropy for a dis-
tribution of central importance to this book.

Example 3.2. Gaussian entropy
Assume that Y : p × 1 has a multivariate Gaussian distribution with mean
µY and covariance ΣY , written Y ∼ Np(µY , ΣY ). This means that for every
row vector, a : 1 × p, aY ∼ N(aµY , aΣY a

′). When ΣY has full rank p this
last definition is equivalent to

fY (y′) =
√

2π
−1|ΣY |−1/2exp[−2−1(y′ − µY )TΣ−1

Y (y′ − µY )],

where the superscript T means the transpose of the vector (or more generally,
matrix) to which it is attached. The entropy is

E[− log fY (Y )] = E[
p

2
log

√
2π +

1
2

log |ΣY | +

1
2
(Y − µY )TΣ−1

Y (Y − µY )]

=
p

2
log

√
2π +

1
2

log |ΣY | +
p

2
.

The last step relies on the result,

E[(Y − µY )TΣ−1
Y (Y − µY )] = ETr[Σ−1

Y (Y − µY )(Y − µY )T ] = Tr(Ip) = p,



3.4 Wrapup 33

with Tr denoting the trace operator that just computes the sum of the di-
agonal elements of the matrix upon which it acts. We have used the identity
TrAB = TrBA for all matrices A and B of appropriate dimension.

Example 3.2 demonstrates the close connection between the generalized
variance and entropy, thus endowing the latter with credentials as a measure
of uncertainty, at least when Y has a multivariate Gaussian distribution. How-
ever, we should emphasize that the entropy is a unitless quantity inasmuch as
we have adopted a reference density of mY ≡ 1 (fY units) before setting out
on this calculation.

We can extend the definition of the entropy to the case of conditional
distributions in a natural way. For example, H(Y |A) could be the entropy for
the conditional density f(y′|A) = f(y′)/P (A), y′ ∈ A where P (A) = P (Y ∈
A). More generally, H(Y |X = x) could be used to denote the entropy in the
light of the information contained in the knowledge that X = x. In Chapter
11, we use more elaborate versions of the entropy to help us decide where to
locate new sites for monitoring an environmental space–time process.

The good news: both variance and entropy are flexible enough as to admit
the phenomenon described above, as shown by van Eeden and Zidek (2003).
However, these authors have also shown that even seemingly simple questions
for these measures can prove quite challenging and many remain unanswered.

Example 3.3. Behavior of entropy
Suppose X has a normal distribution with mean µ and SD σ; that is, X ∼
N(µ, σ2). Furthermore, suppose B = [−b, b]. Then it is natural to ask if the
conditional variance of X, V ar(X | X ∈ B), is a monotone increasing function
of b. Naively, one might expect an affirmative answer. However, the results
above would suggest that at least if | µ | were large, the answer should be
negative. The truth remains unknown.

3.4 Wrapup

Example 3.3 demonstrates that implications of using the variance and entropy
as measures of uncertainty remain to be worked out. At the same time, we
know of no realistic alternative candidates for that role.

In the next chapter we begin to address the problem of assessing environ-
mental risk by investigating the processes used to generate the requisite data
through the process of measurement.
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Measurement

Errors using inadequate data are much less than those
using no data at all.

Charles Babbage

With infinite resources, we could eliminate all uncertainty about a random
response field. For one thing, we could measure it completely, without error.
Alternatively, we could build a perfect process model and predict the field,
making measurement redundant. In the end compromise is needed. The goal
is to make the data at least adequate for the task they are asked to do.

In reality, measuring environmental processes, in particular establishing a
network of measurement sites, can be expensive. For example, the U.S. Na-
tional Surface Water Survey was conducted to assess the degree of acidification
of U.S. lakes (see for example, Eilers et al. 1987). That stratified random sam-
ple survey entailed costly visits to lakes, the collection of water samples, and
their analysis in a timely fashion, all with requisite data quality assurance.

Thus a combination of deterministic and stochastic modeling seems a
tempting cheap alternative to making more than just a minimal number of
measurements. Uncertainty about the remaining (unmeasured) responses can
then be reduced by fitting and using the model to predict them.

However, the resulting model would fall short of a complete process model.
Hence its predictions would be subject to both the aleatory and epistemic un-
certainties introduced in Chapter 3, even if that model were valid and perfectly
fitted. In practice, additional uncertainty would derive from imperfectly fitted
model parameters (and incurring uncertainty due to measurement or sampling
error). Moreover, the validity of the model itself would be in doubt. The result
would involve epistemic uncertainty in the terminology of Chapter 3.

The principles determining the optimal trade-off between measurement
and modeling seem to be unknown. Strong adherents of the measurement
school argue against models, deeming them to be subjective and hence biased.
Indeed, modeling is individualistic and depends on such things as context
and an investigator’s background knowledge. The process may even reflect
discipline bias. Thus, an atmospheric scientist might approach the problem
of modeling an air pollution field quite differently than a statistician, for
example. In fact, each may regard the efforts of the other as “naive.” In the
face of such dilemmas, proponents of measurement seem to have a case.
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However, difficulties arise there as well. Measurement also proves to be
highly individualistic. The choice of what to measure, say hourly or daily
averages, may be dictated by such things as the supposed purposes of making
the measurements or the state of an individual’s knowledge about the health
impact of an environmental hazard. Selection of the measuring device also
entails individual choice and such devices may vary widely in their validity (the
degree to which they measure what they are supposed to measure) and their
reliability (the accuracy with which they measure whatever they measure).
More fundamentally, Heisenberg’s uncertainty principle tells us that the act
of measurement may affect the process being measured and hence the outcome
itself.

Fortunately, within the Bayesian paradigm we adopt, the issues raised
above do not pose a problem in principle. That paradigm is founded on a
subjectivist framework and so encompasses both the individualism of mea-
surement as well as that of modeling. We discuss these things in more detail
in the sequel.

This section reviews measurement issues in the sampling of space–time
processes that cannot be ignored. References are given to more comprehensive
and detailed sources of information. The first step in measurement involves
where and when to measure an environmental space–time process. That is the
subject of the next section, given in more detail in Chapter 11.

4.1 Spatial Sampling

Spatial sampling (or more generally environmental sampling) networks moni-
tor space–time fields. Their designs require among other things: (1) measure-
ment methods including associated devices, (2) data handling and quality
management protocols, (3) methods for sample analysis; (4) methods for data
capture as well as storage, and (5) the designation of space–time sampling
points.

Their purposes may be temporary. Example 1.1 gives an example of a
plan for temporarily measuring benthic sediments (biomarkers) using grab-
samplers. Those measurements were made to study the effects of oil explo-
ration in the Beaufort Sea. Another was opportunistic. A network was set
up to take measurements that bracketed the closure of a smelter in the state
of Washington. The inferential goal: an estimate of the difference in regional
pollution levels. Many such networks measure before-and-after concentration
levels in media surrounding a new industrial facility.

4.1.1 Acid Precipitation

However, spatial designs are commonly considered permanent as illustrated
by acid deposition monitoring networks. (We see below that “permanency”
can be illusive!)
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Although commonly referred to as “acid rain,” in fact, acid deposition can
come in the form of snow or even fog. (Dry deposition of the precursors of
acid rain occurs as well and networks measure them.) Complex environmental
processes produce it from gaseous emissions such as sulfites SO2 (smelters
and power plants) and oxides of nitrogen NOx (industry, traffic, and power
stations). Eventually as these gases are transported in the atmosphere they
are converted to sulfuric and nitric acid, H2SO4 and HNO3. In a water solution
(rain), these acids generate hydrogen ions (H+), the more acid molecules the
more hydrogen ions.

Thus the most common measure of the acidity of a liquid is its concentra-
tion of H+ ions or more precisely its “pH” value, the negative logarithm of
that concentration. High acidity means low pH levels and sour tasting water.
According to the United States’s Environmental Protection Agency (EPA)
(see http://www.epa.gov/airmarkets/acidrain/), the most acid rain falling in
the UNITED STATES during 2000 had a pH of about 4.3, above the level of
lemon juice (about 2.0), but below that of pure water (about 7.0).

Acidic deposition is a global environmental hazard due to the long range
atmospheric transport of local emissions, sometimes thousands of kilometers.
These very aggressive acids damage forests, soil, fish, materials, and human
health. Thus networks for monitoring acid deposition (dry and wet) were
established long ago.

In the United States, the Clean Air Status and Trends Network (CAST-
NET) and the National Atmospheric Deposition Program (NADP) were de-
veloped to monitor and measure dry and wet acid deposition, respectively
(http://www.epa.gov/castnet/overview). Their (mainly rural) monitoring sites
help determine the associations between pollution and deposition patterns.
Both NADP and CASTNET yield data relevant to the health of ecosystems
and they provide background pollution levels. Researchers and policy analysts
use these data to investigate: (1) environmental impacts and (2) nonecologi-
cal impacts of air pollution including reduced visibility as well as damage to
materials, especially those of cultural and historical importance.

In the late 1970s, the NADP initiated a cooperative program among vari-
ous agencies to determine geographical patterns and trends in U.S.precipitation
chemistry. Under the impetus of the National Acidic Deposition Assessment
Program (NAPAP) in the 1980s, the size of the monitoring network grew
rapidly to eventually include more than 200 sites positioned as shown in Fig-
ure 4.1 constructed from data on the NADP’s Web site.

Weekly wet deposition samples began to be collected in 1978. Eventually,
the NADP network evolved into the NADP/NTN (National Trends Network).
That network measures: (1) constituents of precipitation chemistry affecting
rainfall acidity and (2) those that may have ecological effects. More precisely,
the NADP Web site provides measurements for concentrations of calcium,
magnesium, potassium, sodium, ammonia, nitrate, chlorine, sulfate, and pH.

As an illustration, Figure 4.2 compares the measured chlorine concentra-
tions in acid deposition for Colorado and Maine. Maine is close to seawater
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Fig. 4.1. Locations of
NADP/NTN acid precip-
itation monitoring sites in
2004.
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Fig. 4.2. Histograms of
the monthly weighted
averages of chlorine con-
centrations measured in
Colorado and Maine from
1995 to 2004.
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wherein salt NACL is dissolved into sodium and chlorine ions. Thus seafoam
can be carried into the atmosphere by winds producing higher chlorine concen-
tration levels. (The respective averages for these two states are 0.069 (mg/l)
and 0.13 (mg/l)).

Acid precipitation travels in both directions across the Canada–United
States border and not surprisingly, southern Ontario has a monitoring net-
work. It began as an acid rain monitoring network in the 1970s. However, it
has changed over time and its history is instructive as it illustrates well how
such networks evolve with changing societal concerns and knowledge bases.

The current network now consists of the conjunction of three monitor-
ing networks established at various times for various purposes: (1) Environ-
ment Air Quality Monitoring Network (OME); (2)Pollution in Ontario Study
(APIOS ); (3) Canadian Acid and Precipitation Monitoring Network (CAP-
MoN) described by Burnett et al. 1994. (Le et al. 1997, extending the work of
Brown et al. 1994a, show how to statistically integrate these three networks.)

Reflecting concerns of the day, both APIOS and CAPMoN were estab-
lished to monitor acid precipitation (see Ro et al. 1988 and Sirois and Fricke
1992 for details). In 1978, CAPMoN (see Sirois and Fricke 1992) began with
just three sites in remote areas, but in 1983 it grew through a merger with
the APN network. The new network came to be used for a second purpose,
tracing source–receptor relationships. To that end, sites could be found closer
to urban areas. More recently, a third purpose for the network has been pro-
claimed, that of discovering relationships between air pollution and human
health (Burnett et al. 1994; Zidek et al. 1998c).

Among other things, the composite network of 37 stations now moni-
tors hourly levels of certain air pollutants including nitrogen dioxide (NO2
µg/m3), ozone (O3 ppb), sulphur dioxide (SO2 µg/m3) and the sulfate ion
(SO4 µg/m3). At some sites only one of the ozone or sulfate monitors had
been installed. No doubt like CASTNET, the NADP/NTN, the Ontario net-
work will continue to evolve as information needs change over time.

4.1.2 The Problem of Design Objectives

The lack of permanency of spatial sampling designs derives from a variety of
factors. Most notably social values change. So does the state of knowledge, a
close cousin of social values. The emphasis we now see on environmental pro-
tection is relatively new. (The EPA was established in the United States just
over 30 years ago.) Those social values have spawned the need for regulation
and control and in turn: (1) research on the nature of these processes and (2)
the need to monitor environmental space–time processes.

With changing values and knowledge comes the adaption of spatial de-
signs. The intensity of monitoring may change. For instance, TEOM monitors
now make hourly measurements of particulate air pollution where just a few
years ago volumetric air samplers generated their readings just once every
few days. The number of spatial sampling sites may need to increase. More
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strikingly the set of responses being measured may change along with the de-
vices and methods used to make those measurements. Urban areas only began
measuring particulate air pollution in the mid 1990s. Yet they do so using the
same spatial sampling sites established as much as 20 to 30 years earlier, to
measure pollutants such as ozone with a very different character.

Thus designers face major challenges. Traditionally, their strategies were
based on carefully articulated measurement objectives as, for example, in the
very elegant mathematical theory of optimal design. There the goal might
be sampling points that maximally reduce the variance of the estimator of
the slope of a line relating a response Y to a design variable X, the latter
constrained to lie in the interval [a, b]. Not surprisingly, the optimal design
would put 1/2 of the observations at a and the remainder at b.

4.1.3 A Probability-Based Design Solution

But what if the designer of a permanent network knows that his original
design will need to change in some as yet unknown way? He may then resort
to probability-based designs such as those used to produce official statistics
by government agencies. These agencies do face similar uncertainties about
the use of their data.

Indeed that is the approach used in the U.S. EPA Environmental Moni-
toring and Assessment Program (EMAP) described next.

Example 4.1. EMAP program
The very ambitious EMAP program began in the United States with the goals
of:

• Advancing the science of ecological monitoring and ecological risk assess-
ment;

• Guiding national monitoring with improved scientific understanding of
ecosystem integrity and dynamics;

• Demonstrating the framework of the Committee on Environmental and
Natural Resources through large regional projects.

EMAP was created to produce indicators of the condition of ecological re-
sources that could be used for monitoring. As well, multitier designs were to
be “investigated” as a way of addressing multiscale data capture and analy-
sis with the possibility of aggregating these data across tiers and natural
resources.

Probability survey designs are used in EMAP for spatial site selection.
These designs require the target population (sampling frame) to be spatially
representative; such things as randomization, spatial balance, stratification,
and equal or unequal weighting are needed.

Starting in 1989, EMAP was based on a global grid comprised of large
hexagons placed on the earth’s surface. These were used to generate a com-
plex hierarchical system of hexagon grids in various size categories within
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which areas were equal. Within each random sample of spatially represented
hexagons, lakes, for example, could then be stratified, perhaps by size if that
seemed appropriate. Then a random sample could be selected within strata
in obvious ways.

However, the probability-based design approach also encounters the chal-
lenges described above. In fact, in Example 4.1 design objectives must still
be specified (http://www.epa.gov/nheerl/arm/#dictionary). Moreover, mod-
eling is implicit in stratification as it requires prior knowledge or data. At
the same time, the approach ignores geographical features such as interlake
distances. Yet ignoring these important features, and failing to exploit spatial
associations, could lead by chance to the collection of redundant information
from two adjacent lakes.

Chapter 11 presents a spatial design approach suggested by Caselton and
Husain (1980). Working originally in hydrology, they later proposed it as a
general approach to spatial sampling (Caselton and Zidek 1984) to circum-
vent the difficulties described above, while taking advantage of the designer’s
knowledge of spatial features. Its pros and cons are studied in that chapter.

4.1.4 Pervasive Principles

We leave this section by recalling important, but often ignored, principles for
spatial sampling.

• Make replicate measurements. At least two measurements should be
made at each space–time sampling point. This enables estimation of local
stochastic variability (sometimes called the nugget effect). That variability,
which may come from measurement error or interlab discrepancies, can
exceed the space–time variability of central concern! The analyst cannot
then draw conclusions with confidence about the latter, in the absence of
estimates of the former. Yet the former cannot be easily estimated without
replicate measurements. In particular, relying on modeling for inference
about the former may add more uncertainty than it eliminates.
Surprisingly often, measurements are not replicated. For example, in the
Lakes Study described above just one observation was taken in each lake.
Yet the cost of taking a second from some other part of the lake would
have been negligible compared to the set-up costs of traveling to the lake.
In another case, replicate grab-samples were taken but then blended before
analysis. The explanation: to ensure that the sample was more “represen-
tative!” Much valuable information was thereby lost.

• Use quasi-controls. Designers commonly overlook the need for sites
(quasi-controls) in spatial subregions unlikely to see extreme values of the
process under study. For example, regulators site monitors where large val-
ues of an air criteria pollutant are expected. This seemingly natural choice
stems from the need to have a good chance of detecting noncompliance
with a prescribed regulatory standard .
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Yet, this approach is short-sighted. Good epidemiological analysis of the
association between criteria pollutant levels and adverse health impacts
needs statistical contrasts in the measurements. Good designs must ensure
that observations are spread evenly over low and high response regions to
maximize the chance of detecting an environmental health risk. And the
point of setting regulatory standards is the minimization of environmental
health risks!

For a more extensive treatment of environmental sampling, see Green’s well-
known book on environmental sampling (Green 1979). We now consider the
actual measurement of the responses associated with a space–time field.

4.2 Sampling Techniques

This section gives examples of the techniques used to measure environmental
processes, to show their scope and complexity as well as the perils an unwary
analyst may face. The methods vary greatly. Moreover, several alternatives
may be available. Although these alternatives may be similar in concept, in
reality, they may measure very different characteristics of a process. Thus,
observations made by one method can differ a lot from another. The choice
is made by balancing their cost against their benefits such as convenience,
reliability and accuracy.

Even after a method has been selected, the results seen by the analyst
may change over time. This change may be due to such things as wear-out or
technological upgrades of the associated devices, variations in data manage-
ment protocols, and changes in the providers of analytical services. Although
these changes should, in principle, be annotated in the database, in practice
they often are not. Thus, changes seen in a measurement series may not come
from the process itself.

4.2.1 Measurement: The Illusion!

Almost always, the methods will not measure the process itself but rather a
surrogate strongly associated with it. The reasons for this vary. Sometimes
direct measurement is just not possible. Doing so may be too expensive, dan-
gerous, or socially unacceptable. Direct measurement, although more accurate
may be too slow. Thus the surrogate may yield timely data at a lower cost
but with a loss in quality.

4.2.2 Air Pollution

We now turn to examples.
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Example 4.2. Air pollution
Many airborne pollutants are thought to be injurious to human health and
therefore their measurement of societal importance. Carbon monoxide (CO), a
product of the incomplete burning of carbon, has been called the “silent killer”
since it is a clear, odorless gas that reduces the blood’s oxygen capacity. That
in turn can lead to a form of asphyxiation. Automobiles are an external source
of CO while gas stoves provide an indoor source. It can be measured by a gas
correlation method. This process is based on CO’s infrared light absorption,
this playing the role of the associated (surrogate) process described above.

Ozone (O3) is a well-known product of atmospheric chemistry, particularly
on warm summer days. It can be continuously monitored by exposing air
samples to ultraviolet (UV) light. The degree of absorption of that light (the
surrogate measure) is proportional to the amount of O3 in the sample.

Oxides of nitrogen (NO and NO2) have been associated with acute health
impacts such as asthma attacks. Moreover, these gases are precursors of acid
rain; through photochemistry they can be converted to NO3 and, in turn, to
nitric acid in wet deposition. Chemoluminescence provides a measure of the
concentration of these oxides. An air sample mixed with internally generated
O3 emits a characteristic light whose intensity is proportional to the concen-
tration. (NO2 requires catalytic conversion to NO before being measured in
this way.)

Sulphur dioxide (SO2) leads to SO3 and in turn to acid (sulphuric) rain
in the same manner as oxides of nitrogen. It is measured by the pulsed fluo-
rescence method. Pulses of UV light cause the SO2 to release a characteristic
light whose intensity is proportional to its concentration.

Finally, small, inhalable, airborne particles have been consistently asso-
ciated with acute health effects, both respiratory and cardiovascular, in the
form of both morbidity (disease) and mortality (death). However, these find-
ings are of rather recent vintage, and consequently, interest in particulates,
new. These particles are classified according their effective aerodynamic di-
ameter, PM10 and PM2.5 referring, respectively, to those less than 10 and 2.5
microns in diameter. Once the concentrations were measured using volumet-
ric samples and filters with long intermeasurement times (days). However, the
more modern continuous fully automated method uses the tapered element os-
cillating microbalance (TEOM) monitor. A controlled volume of air is drawn
into the monitor and travels into the tapered element (mass transducer). That
hollow, ceramic, tapered tube resonates as air is drawn through it. The reso-
nant frequency changes as particles pile up on a filter at the end of the tube.
That frequency (the surrogate measure) gets converted into the particulate
concentration measure.

4.2.3 Acid Precipitation Again

Example 4.3. Acid rain revisited



44 4 Measurement

Example 10.1 describes networks set up to measure acid precipitation. We
now turn to the methods used in those networks.

Acid rain derives from both wet and dry deposition. The former (both rain
and snow) requires two steps. First the precipitation needs to be collected.
This is done in a variety of ways. One method involves a double-sided tipping
bucket. When full, a side spills its contents into a collector and opens the other
side as the collector. The amount of precipitation is measured by the number
of “tips.” The collector must then be emptied at regular intervals, say each
week, cooled to about 5oC, and transported that way to a lab for analysis.
At the lab a large number of chemical species are measured including acidity
(pH) along with the concentrations of nitrate (NO−

3 ) ions, sulfate (SO2−
4 )

ions, sodium (Na+) ions, potassium (K+) ions, calcium (Ca2+) ions, and
magnesium (Mg2+) ions. These measurements are made by such methods as
chromatography and spectrophotometry.

In contrast to wet deposition, dry deposition, though important, has
proven very difficult to measure. In fact, it must be inferred from concen-
trations in the air near ground level combined with measurements of the
processes leading to exchange between the ground layer and the air above.

4.2.4 Toxicology and Biomarkers

In the next example, we turn to environmental toxicology and measurement
through the use of biological organisms

Example 4.4. Water pollution
The pollution of freshwater bodies has long been a concern. (We are ignoring
here their acidification from acid rain, also a serious problem.) Commonly,
water samples are collected in bottles for laboratory analysis. Another method
(used in a variety of other applications as well) involves a biomarker where
the effect on a living organism is used as the surrogate for the response.

A predecessor can be found in the early days of coal mining when the
canary was used as a biomarker of lethal gas in the mine. Another example
from Example 1.1 involves the use of benthic organisms found in the mud of
the seabed. Grab-samplers on ships were used to sample them. These samplers
have jaws or scoops that can grab seabed sediments.

Science Daily (2000) reports that algae were used to measure the degree
of improvement in the quality of the water in a polar lake (Meretta) in the
Arctic (Resolute Bay, Nunavit). The latter had been badly contaminated be-
tween 1949 and 1998 by raw sewage dumped from a Canadian Department
of Transport base. The sewage contained phosphorus that nurtured the algae
which grew in proportion to the amount of phosphorus dumped. By measur-
ing the concentration of the biomarker, the scientists were able to discover
that the lake’s water quality has been improving since the base was closed.

Incidentally, by taking core samples of that lake bed these same scientists
were able to make a retrospective historical analysis of the lake’s condition.
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The deposition rate of diatoms manifest in the core was used as a surrogate
measure of that quality over time.

That describes a few of the ways of measuring environmental fields. How-
ever, experimenters must ensure their data are good enough for their intended
purposes. That brings us to the subject of data quality in the next section.

4.3 Data Quality

The large domains addressed in environmental science lead to a range of
measurement problems. Moreover, the diversity of environmental contexts in
which processes must be sampled has spawned a great variety of measurement
techniques, instruments, strategies, and sampling plans. Ingenuity has been
required in designing and carrying out experiments and in environmental data
analysis.

Of fundamental importance has been the need for data quality assurance.
Measuring devices or sites need to be appropriately located. For example,
pollution monitors should not be sited near heavily used roadways. The mea-
surements taken need to be precise. Equivalently, at each sampling point (in
space and time), enough independent unbiased replicate measurements need
to be taken to compensate for the noise when measurement error is large.

4.3.1 Cost Versus Precision

However, where cost is a binding constraint, that precision needs to be sac-
rificed to ensure a sample that is representative of the space–time field. Sur-
prisingly, the theory developed for the project in Example 1.1 implied that
increasing the number of grab-sampling sites was preferable to adding repli-
cates beyond just two or three at each site. In practice, experimenters face
the technically challenging design problem of formulating appropriate data
quality criteria and making the optimal trade-off between precision and rep-
resentativeness.

A possible compromise meriting more attention than it has received is that
of using a dense set of unbiased, low-cost, temporary measuring devices/sites
to generate preliminary data as a basis on which to construct a permanent
system of high-quality sampling sites. Another would be a set of mobile de-
vices/sites in conjunction with a fixed low-density set of high-quality measur-
ing sites. Each of these alternatives could be used to increase data quality
while managing sampling costs.

4.3.2 Interlaboratory and Measurement Issues

Subject to the considerations above, measuring devices need to be precise,
well calibrated, and well maintained. To the maximum feasible extent, repli-
cate measurements need to be taken to detect any potential drift over time in
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measurement quality (in addition to compensating for any initial deficiency
with measurement quality). Where analytical services (labs, for example) are
used to analyze the samples, several should be employed. Each sample should
be split into subsamples, one to be sent in a timely manner to each of the
service providers. A statistical method must be developed to aggregate their
results. The quality of the work of the competing providers needs to be as-
sessed from time to time with calibration samples.

The problem of interlaboratory discrepancies cannot be emphasized enough.
For unknown reasons, the differences between analytical service providers
tends to be greater than within-service differences in analytical results even
when exactly the same instruments and methods are being used.

The importance of good data cannot be overstated. In particular, it can
eliminate the need for complex modeling designed to compensate for poor
quality. While the latter can sometimes rescue a badly executed experiment,
it only does so by replacing one source of uncertainty (the bad data) with
another (model uncertainty). However, as we show in the ensuing sections,
deficiencies in data quality are inevitable, because of the scale and complexity
of modern environmental risk assessment. Thus, we turn to Section 4.4 and
see that such error can have extremely deleterious impacts in a statistical
study.

4.4 Measurement Error

Measurement error arises from a variety of sources and can be any one of
a variety of types described in this section. (Some of the sources were indi-
cated in Section 4.3.) However, the effects are unpredictable and can be quite
deleterious. Thus experimenters must strive to reduce it and analysts, to be
wary.

The most obvious source of error would be the measuring device itself.
Many techniques described in Section 4.2 use surrogate measures for the true
values. Concern about the accuracy of such techniques is bound to arise since
their calibration is bound to depend on uncontrollable environmental factors
such as outdoor temperature. Surrogates can also be indirect measurements
when actual measurements are not available. For example, in spatial epidemi-
ology, measurements made at the nearest ambient monitor often replace the
true exposure of subjects to air pollution because the latter are unavailable.
The inevitability of such error means it must be embraced in any statistical
method used in any analysis of the resulting data.

Instrument failures provide another source of error. For instance, volu-
metric air samplers can fail or malfunction for periods of time until they are
detected. Moreover, early gauges for measuring the acidity of precipitation
could be contaminated by bird droppings with a resulting measurement bias.

The errors noted in Section 4.3 arising from analytical services are im-
portant. Good quality control programs can help to reduce them but they
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cannot eliminate this source of error so these too must be recognized and
accommodated in the analysis.

In practice, observations of a space–time process constitute either spatial
or temporal aggregates of an underlying process. This can lead to measure-
ment error and difficulty depending on how such data enter the analysis. As an
example of such an aggregate measure, daily precipitation means the cumu-
lative total over the day. For another, grab-sampling devices have a practical
lower limit to their size so a sample of seabed mud must be an aggregate
from around a specified site. As a third, continuous time air pollution mon-
itors cannot accurately measure instantaneous pollution levels; instead they
rely on averaging to reduce the noisiness of instantaneous readouts. The last
example would compromise estimates of human exposure to air pollution for
health risk analysis based on tracking individuals through space and time.

Data such as referred to in Example 1.2 can be censored either because
the true value is below or above detection limits. Special techniques have had
to be developed to handle errors of this kind since they are so common.

4.4.1 A Taxonomy of Types

Missing Data

The most extreme form of measurement error comes in the form of missing
data. Detailed discussions of such data are available. For completeness, we
give a brief account of the topic and suggested remedies.

Some data may be missing at random for reasons in no way associated
with the process being measured. Such data pose little problem except in-
sofar as information is lost. More problematical are data whose absence is
informative though such data are uncommon in our experience. A completely
contrived example would be the failure of a water toxin sampler as a result
of a sudden surge in the level of the substance being measured with loss of
data during and following the surge. More plausibly, the instrument would
continue functioning, the offending responses would merely be censored (as
above) and subsequent data would be captured. Finally, we see data missing
for what might be termed structural reasons: (1) monitoring stations com-
mence operation at different times or (2) different stations measure different
subsets of a suite of environmental hazards.

We next give a taxonomy of the other types of measurement error likely
to be encountered in practice. However, the vigorous and systematic study of
those errors, especially with reference to study design and the development
of mitigation strategies, has only begun rather recently. This may be because
of complacency deriving from “. . . a common perception that the effect of
measurement error is always to attenuate the line” (Carroll et al. 1995 p.
23). This complacency leads to the belief that the evidence against a null
hypothesis is if anything reduced, that measurement error will have attenuated
the slope of regression, thus reducing it towards the null value. In other words,
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a belief that the correct p-value would be even smaller if it were not for the
measurement error.

Recent increasing reliance on nonlinear regression models in spatial epi-
demiology, for example, may have helped kindle interest in the problem. That
reliance can be explained by a combination of computing technology and
methodological advances. The complexity of models may have challenged sim-
plistic views born of simple linear regression models.

Those same advances may also explain why investigators have been willing
to turn to the measurement or errors in variable (EIV) (as it is sometimes
called) problem. Undoubtedly Fuller’s fundamental treatise (Fuller 1987) on
that problem stimulated those advances. It convincingly demonstrated the
truly complex and pernicious character of measurement error. The more recent
surveys of Carroll et al. (1995) and Gustafson (2004) complement and update
Fuller (1987) and show the advances that have been made by the authors and
others since the publication of Fuller’s book.

This section taxonomizes measurement error as it has been characterized
within the sampling school of statistics. Different taxa of error have seen the
development of different methodological tools.

However, that taxonomy is redundant if error is treated within the ambit
of the Bayesian paradigm. Its elements are then subsumed in that all uncertain
quantities, including those measured with error, are treated as random vari-
ables. They can then be incorporated in any analysis through an appropriate
joint distribution.

In spite of the increasing reliance upon Bayesian methods in modern statis-
tical science, much current and recent theory for treating measurement error
has been developed within the framework of the repeated sampling paradigm.
For completeness we therefore describe developments from that perspective
beginning with the taxonomy offered in this section. Moreover, nothing more
explicit needs to be said about measurement error within a Bayesian perspec-
tive.

For continuous exposure variables, measurement error is generally char-
acterized as either of classical or Berkson type, differential or nondifferential,
structural or functional. Errors can also be of mixed type.

Classical and Berkson Types

Classical measurement errors obtain in analytical studies, i.e., studies of in-
dividuals; the exposure measurement W = X + U where X denotes the true
exposure and U independent noise. The Berkson type arises, for example,
when all members of a subregion are assigned a single subregional value W
obtained from an ambient monitor for that region and X =W +U , U repre-
senting an independent deviation ascribable to individual differences. Carroll
et al. (1995) use instead error calibration and regression calibration, respec-
tively, to describe these two classes of error models. These two seemingly
similar models are actually very different in their implications for practice.
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A mixed model arises when W = X + U (classical) while X = Z + V
(Berkson) where Z is an extraneous environmental variable.

Nondifferentiable Error

Nondifferentiable measurement error obtains when the health response Y and
W are independent random variables while the true exposure X is given. In
other words, the measurement has no information about the response other
than that contained in the true exposure itself. In this case, unlike that of
differential error, W serves merely as a surrogate for the true exposure and
nothing more. Carroll et al. (1995) suggest that many situations are best
described by nondifferential models. We believe in particular that they apply
in the study of the acute health effects of environmental exposures as described
in later sections.

Structural Versus Functional

Structural measurement error refers to the case where the true exposure is
random whereas functional means it is treated as fixed (but unknown).

Misclassification

In the technically elementary case of binary exposure variables (0 = low
and 1 = high, say) measurement error is called misclassification. Although
conceptually relevant, the classical–Berkson dichotomy cannot be formally
used. To see this note that E(W |X) cannot equal X (which is 0 or 1 except in
degenerate cases), as it must if the classical model were to obtain. However,
the concepts can be expressed through a reformulation of the measurement
error model in terms of probabilities and conditional probabilities.

4.5 Effects

Little of a general qualitative nature is known about the effects of measure-
ment error although a substantial methodological base for handling errors
exists. By using that base, the implications of error can be assessed in par-
ticular contexts. However, some general results are known and this section
describes them.

In the case of binary exposure variables, Thomas et al. (1993) show for
analytical studies that quantities such as relative risk are attenuated for the
nondifferential misclassification. Greenland (1982) proves analogous results
for matched case-controlled studies. In fact he shows in this case the sur-
prising result that nondifferential misclassification can have more detrimental
effects than in the unmatched case, the size of the detriment growing with the
closeness of the match.
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However, these results reverse in cluster-based i.e., ecological studies.
There populations are partitioned into groups and group attribute measures,
rather than those of individuals, enter the analysis. With nondifferential mis-
classification, estimates of rates (slopes) for individuals based on group-level
analysis will generally be inflated, rather than deflated (attenuated), towards
the null as in the case of the classical error model and simple linear regression.

Thomas et al. (1993) note the complexities introduced by multilevel (dis-
crete) exposure variables that make the effects or ecological estimates quite
unpredictable.

For continuous variables the classical nondifferential measurement error
model leads in simple linear regression to an attenuation towards the null of
the apparent effect of exposure. This does not occur in the case of the Berkson
error model, however, where the apparent effect remains unbiased.

Crossover Designs

The case-crossover design of MacClure (1991) seems useful for the assessment
of acute health effects from exposure, in that the individual serves both as case
(exposure levels at the time of failure) and control (exposure prior to failure).
However, as noted by Navidi (1998) this design can be improved upon when
time trends are present including, as well, exposures after the failure, provided
these are not affected by the failure itself.

In general, ignoring measurement error can lead to myriad problems apart
from the bias resulting from attenuation discussed above. Zidek (1997) demon-
strates in the case of nondifferential structural measurement error that the
curvature of nonlinear regression models can pick up the covariance of the
measurement error’s covariance structure.

4.5.1 Subtleties

Attenuation. . . .or Not?

To see in a simple setting some of the complexities ahead, consider just trivari-
ate response vectors (Y,X,Xg) having a joint multivariate normal distrib-
ution . Assume the commonly used impact model E[Y | X] = exp[βX].
Inference concerns β and (X,Xg) has a bivariate normal distribution. Now
E[Y | Xg] = E[exp[βX] | Xg] if Y and Xg are conditionally independent
given X. Thus E[Y | Xg] = exp[ββXXgXg + β2σX·Xg/2]. As in the linear
case, bias induced by measurement error expresses itself through βXXg . How-
ever, the “curvature” of the model now draws in a measure of how precisely
the surrogate Xg represents X through the residual variance σX·Xg . If the
latter were 0, one could fit the naive model Y = exp bXg and then correct for
bias in the estimator β̂ = b exactly as in the linear case. However, if σX·Xg �= 0
we see competition between the need to inflate b to compensate for bias and
deflate b to compensate for lack of precision. To be precise, if one has a large
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residual variance and fits the Y on Xg model above, the fitted value of β will
be close to 0.

The effect can thus dominate the attenuation that leads to bias. The effect
of the error can therefore not be predicted without detailed analysis; the
coefficient that transfers exposure to health impact can either be inflated or
deflated by the error.

Transfer of Causality

Zidek et al. (1996) describe a more subtle problem that can arise when both
nondifferential structural measurement error and collinearity obtain. The au-
thors assume in a hypothetical situation that a response count has a Poisson
distribution with conditional mean exp(α0 + α1x) where x represents the
“cause” of Y . A second predictor covariate w has been observed but both x
and w are measured with error according to a nondifferential classical model
to yield X and W . It is shown by means of a simulation study that if an
investigator were to fit exp(a0 + a1X + a2W ) when the measurement error in
X is sufficiently large compared to that of W while X and W are sufficiently
strongly correlated, the analysis may well show a1 and a2 to be nonsignicant
and significant respectively. Thus although x represents the causative factor,
that represented byW inherits the role. Causality has thus been “transferred”
through a combination of measurement error and collinearity. (This phenom-
enon is noted for linear regression models by Fuller 1987.)

While hypothetical, the result raises serious concerns for practice. Can any
significant finding from a multivariable environmental health impact study be
due to such a simple collusion among the variables?.

That concern is further reinforced by Fung and Krewski (1999) who extend
and confirm the analysis of Zidek et al. (1996) by considering both Berkson
and classical error models. They also investigate promising methods for miti-
gating the effect of measurement error in this context. We refer the reader to
the comprehensive survey of Carroll et al. (1995) for a more detailed study of
measurement error.

4.6 Wrapup

In this chapter, we have seen how the finiteness of resources means that un-
certainty about an environmental space–time process can never be fully elim-
inated. To be sure, some uncertainty is eliminated by measuring selected vari-
ables in the space–time field. But some will remain since even with the best
data quality management program, measurement error is inevitable. More-
over, all uncertainty about the unmeasured responses will remain. That sug-
gests investing some of the available resources on models that can use the same
measurements to reduce the latter sources of uncertainty. The next Chapter
gives us an overview of the modeling process.
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Modeling

When the only tool you have is a hammer, then every
problem begins to look like a nail.

Abraham Maslow
All models are wrong . . .but some are useful.

George Box
A model, like a novel, may resonate with nature, but it
is not a “real” thing.

Oreskes, Shrader-Frechette, and Belitz (1994)

Much of this book is devoted to modeling. Building on the foundations pre-
sented in Section 1.2, we attempt in this section to put the work that follows
into context by describing some of basic issues and the variety of approaches
that have been taken. However, as the above quotation from Maslow suggests,
our discussion is inevitably be limited by our own experience and predisposi-
tions.

5.1 Why Model?

Modeling can have any of a number of purposes, all seen to some extent in the
analysis of data obtained from the measurement of space–time fields. We now
provide a partial list of purposes on which the work presented in this book
has a bearing.

Data Summary

Models may be used to simply summarize a complex data set. For example,
a large scatterplot of log ozone against daily maximum temperature may
be summarized by fitting a line. The scatterplot can then be summarized
simply by saying that log ozone increases by such and such an amount for a
10oC change in the maximum daily temperature. Similar summaries are very
commonly used in spatial epidemiology where relative risks are described as
the % increase in the incidence of a disease for a unit increase in the level of
a pollutant.

Knowledge Representation

Given the uncertainty that attaches to all measurements, scientists have long
recognized the importance of bringing background knowledge, however crude,
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into an analysis of experimental data. (To this extent at least, all statistical
analysts are Bayesians)] That knowledge can come from physical theory or
related studies. The knowledge may be as crude as saying that the relation-
ship between two variables y and x is quadratic with a positive coefficient in
the quadratic term. However, as we show, the models are often enormously
complicated owing to the huge number of measured and unmeasured items
connected with an environmental process.

Covariate Adjustment

Most studies are observational rather than the randomized controlled exper-
iments that are offered in statistics textbooks for proving causal relations.
That is, the experimenter does not determine the process by which certain
experimental units are treated and others not. Hence apparent associations,
for example, between urban ozone and asthmatic attacks cannot prove the
former causes the latter. The reason: potential confounders. In that example,
both are related to the variable “population size.” Areas with more people will
simultaneously produce more ozone while having higher numbers of asthma
attacks, even without any causal link between the two. Anticipating this kind
of criticism, investigators seek to adjust their analyses for the effects of all the
confounders they can think of (and measure!). To do so, they need a statistical
model.

Hypothesis Testing

Models can express a theory in such a way that its degree of accord with the
data can be evaluated. When that support is small the theory can be rejected.
In fact, a single observation (say a negative value) can sometimes reject a
theory (say one that implies a positive response). Curiously no amount of
confirmation of a theory through data collection can ever prove it!

Prediction

Models are needed to predict or impute responses in space and time that
have not been observed using those that have. In fact, spatial prediction is a
major focus of this book and methods for doing so are shown in the sequel.
In particular, Chapter 2 presents a case study that demonstrates the need to
impute (hindcast) unmeasured historical air pollution concentrations. How-
ever, although our models can be used for temporal forecasting, limitations of
space prevent us from addressing that topic in this book.

Statistical Syntheses

Statistical models can be used to integrate data from a variety of sources. For
example, in Example 10.1 we see systematically missing (sometimes called mis-
aligned) data (Le et al. 1997) where some sites systemically monitor different
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responses than others. A related problem derives from data with misaligned
support (see Cressie 1993). Here we see data being collected at different lev-
els of spatial or temporal resolution. For example, some may be from point
sources while others come from cells in a grid. Some might be at the county
level, others at the city level, and so on. Finally, we have seen a new direction
in modeling emerging in recent years where some (simulated) data are outputs
from physical models while others may come from measurement; yet all could
be considered data, presenting still another situation where models would be
needed for integration.

Impact Assessment

Data from established environmental process monitors will typically give poor
estimates of exposure in environmental risk analysis. To avoid the unpre-
dictable and sometimes pernicious effects of measurement error, exposures
need to be predicted (Carroll et al. 1995), ideally through a predictive distri-
bution that allows uncertainty in the prediction to be represented.

Data Smoothing in Disease Mapping

Things such as disease counts per interval of time can be very noisy partic-
ularly for, small geographical areas. Thus interest focuses not on the counts
themselves but on the more stable, latent propensity of these areas to produce
those counts. It is that propensity which is tied to intrinsic and extrinsic fea-
tures of the area of interest and of concern to environmental risk managers.
Such features might include income, for example, when the issue of concern
is social justice with respective to environmental risks (Waller et al. 1997).
Alternatively, the concern might be the effect of a hazardous waste site.

Analysts long ago recognized the benefits of borrowing strength from
neighboring areas by extracting relevant information in their counts. Models
are needed to help trade off the bias in these neighboring counts to improve
the precision of the estimates of the propensity of real interest.

Estimation of Trends and Gradients

In environmental risk assessment, temporal trends and spatial gradients have
sometimes been of more interest than the levels of the space–time field. For
example, Holland et al. (2003) find:

Significant reductions in SO2 and SO2−
4 emissions under the Clean

Air Act Amendments of 1990 have resulted in unprecedented improve-
ments in SO2 and SO2−

4 concentrations.

Spatial gradients can point to hot-spots and possibly unrecognized environ-
mental hazards. Estimation of the latter, a traditional topic of interest in
spatial statistics, remains one of its current directions.
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However, from a technical point of view finding the required estimates, i.e.,
estimating process derivatives, poses a more challenging problem than that of
merely estimating levels. In particular, models play a fundamental role both
in finding those estimates as well as in assessing their performance.

Optimally Locating New Process Monitors

Generally, the installation of new monitors entails a considerable start-up cost
as well as substantial operating costs. The latter can include the costs of labo-
ratory analysis, for example, in the assessment of hydrocarbon concentrations.
Thus, the agencies responsible for establishing them seek to do so in an op-
timal way. However defined, such optimality has relied heavily on space–time
modeling, another both long-standing and current direction in environmental
risk assessment. In fact, the whole of Chapter 11 is given over to that very
important topic.

5.2 What Makes a Model Good?

In Section 1.2, we describe some general performance criteria that can be used
to assess models and the inferential procedures they imply. Here we present
some more specific desiderata that derive from our practical experience.

Good models. . .
. . . contend with time as well as space. This point seems obvious.

However, purely spatial methods, particularly those deriving from geostatis-
tics, have been used to describe space–time processes.

. . . come with an associated design methodology. As we emphasize
in Chapter 3, measurement and modeling are intrinsically linked. Therefore,
no approach to modeling can be considered successful unless the result can pin-
point where additional measurements should be made. This feature is surely
one of the great features of the geostatistical method called kriging that we
describe in Chapter 7.

. . . have predictive distributions that fully reflect uncertainty. We
emphasized, in Section 5.1, the need to make spatial and temporal predictions.
However, these predictions will be of little value unless they come with realistic
assessments of their own uncertainty. As well, the predictions may be used to
predict exposures for input at the next level of a hierarchical model to assess
impacts as in Chapter 13. For these and other reasons, predictive distributions
rather than just point predictions are required.

. . . contend with nonstationary spatial covariance. As we see in
Chapters 2 and 6, the covariance proves to be a tool of fundamental im-
portance in analyzing space–time fields, even when they do not have a joint
multivariate Gaussian distribution. Yet Chapter 2 also demonstrates the non-
stationarity of spatial covariances. That is, the covariance between the re-
sponses at site pairs is not always determined by the difference between their
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geographic coordinate vectors (latitude and longitude, say). Therefore, good
modeling strategies need to embrace this challenging feature of environmental
processes that arises in practice.

. . . can incorporate multivariate response vectors. Spatial and
temporal methods typically borrow strength by incorporating relevant infor-
mation in the responses of neighboring sample points. However, far greater
strength can be found in other responses at the same sample point when the
latter are highly correlated with any response of interest, as is commonly the
case. Thus, space–time models should be constructed from square one to deal
with multivariate response vectors.

. . . can contend with systematically missing responses and mis-
matched data supports. This property is self-evident. As noted in Section
5.1, both of these technical challenges are met commonly in practice.

. . . can cope with very large data sets. We are moving from the
era of too little data to too much. Satellites generate vast quantities of it,
for example. Analysts then face data storage and computational challenges.
For example, if computing even a sample average takes a lot of time, as can
sometimes be the case, more complex calculations may not even be possible.
Finally, statistical challenges confront the modeler, as well. For example, to be
large, a data set inevitably has to contain data from responses measured on
a space–time grid of very fine resolution. To make full use of those data then
requires that the fine-scale correlation be accurately modeled. That proves
quite difficult, leaving a serious risk of mispecifying it. In turn this can seri-
ously reduce the quality of statistical methods based on the model, leading to
such things as bias and inefficiency. It can also yield unduly short prediction
intervals.

. . . can contend with large spatial and temporal domains. A
feature of environmental science is studies conducted on a very large domain,
such as a big fraction of the Pacific Ocean or Canada’s land surface. (For an
example of a study involving the latter, see Chapter 12.)

Next we survey approaches to modeling space–time processes. None as far
as we know, currently have demonstrated that they satisfy all the desiderata
above, but then, collectively they do create a very high modeling hurdle.

5.3 Approaches to Modeling***

Information technology has rendered very complex modeling technically fea-
sible, in particular, through hierarchical Bayesian models.

Markov Chain Monte Carlo

These models have benefited tremendously from the emergence of a compu-
tational technique called the Markov chain Monte Carlo (MCMC) method.
We do not have space in this book to describe that method and instead refer
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the reader to Gamerman (1997) and Gilks et al. (1995). Briefly, this con-
ceptually simple but ingenious technique allows the computer to repeatedly
sample from the posterior distribution, often taking advantage of the sequence
of layers that define the hierarchy. So, for example, a posterior expectation
of a function of a model parameter, say E[h(θ) | Y meas] is approximated by
(1/n)

∑n
i=1 h(θi) when n is large, where {θ1, . . . , θn} are the parameter values

sampled from the posterior distribution of θ given the data Y meas.
The emergence and development of the MCMC method was stimulated

by the development of high-speed processors, the very thing that makes the
use of Monte Carlo methods feasible in the first place. And that development
over the past ten years has been intense. Although issues still arise in its im-
plementation, by and large it has taken the world of Bayesian statistics by
storm and is now enthusiastically embraced and used, especially in complex
modeling where explicit solutions are not feasible. The speaker in a recent pre-
sentation attended by the second author conceded that he had to simplify his
original model which contained about 500,000 parameters because of compu-
tational difficulties associated with his implementation of MCMC. However,
he beamed, he had managed to rescue his model with a simplification that
brought the parameter total down to a mere 100,000!

Some general cautionary remarks seem in order before advancing to a more
focused discussion of modeling strategies. As noted earlier, model complexity
can make explicit model forms elusive leading to numerical methods such
as MCMC. However, with MCMC methods, inevitable concerns arise about
whether the chain has run long enough to burn in, and long enough to have
converged. That in turn leads to a need for diagnostics with their inevitably
subjective elements. Moreover, a modeling method with heavy computational
requirements works against its enjoying a practical design strategy and use
for modeling over big spatial–temporal domains.

General Issues

Apart from computational issues, we find the challenge of model specification
troubling. How, in fact, would one judge a good model from a poor one in this
context? In principle, this should not be a issue. After all, the Bayesian par-
adigm tells us good models are those that correctly reflect the builder’s prior
knowledge. And even with a paucity of such knowledge, the data will come to
the rescue by adjusting the prior model appropriately. Welcome insurance!

However, complex models with many dimensions and parameters exceed
the mind’s capacity for meaningful prior reasoning. Consequently, vague, even
improper priors may need to be invoked (with the dangers that poses accord-
ing to Dawid et al. 1973). A small amount of data relative to a surfeit of
parameters, offers very little insurance via the updating mechanism. More-
over, the modeler may find it difficult to assess how much of the output comes
from the data and how much from a conjunction of her prior inputs, playing
out through myriad interrelated parameters. It would be hard to be sanguine
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about such issues with a lot of environmental risk at stake, especially if the
analyst has to sign off on the bottom line!

Recall (see Section 1.2) that our interest focuses on at most three space–
time fields, X, Y , and Z (not all of them being present in every application).
Some of the responses (variables) comprising these fields will be measured
and some not. With this notation in mind, we now list a variety of available
approaches that can be taken. Note that the approaches can overlap and more
than one can be used for any given problem. Finally, the list, although not
exhaustive, does include the most common and powerful techniques of which
we are aware.

The listed items vary greatly in their levels of generality, the first two
being very general. We try to include some of their strengths and weaknesses
and regret the inevitable shortcomings of our analyses that derive from a
combination of space limitations as well as our wish to avoid an excess of
technicality.

5.3.1 Modeling with Marginals

The marginal distribution functions of the individual variables are specified
(see Marshall and Olkin 1988, for example). These are then combined through
the use of a copula, a function that joins these univariate distribution func-
tions to form multivariate distribution functions. To be more precise, in the
case of two random responses, say Y1 and Y2, the process would begin by
specifying their marginal distribution functions FY1 and FY2 . Then a cop-
pula, c(·, ·) ∈ [0,∞] would be specified. Finally, the joint distribution function
would be constructed: FY1,Y2(y

′
1, y

′
2) = c(FY1(y

′
1), FY2(y

′
2)). Of course, c would

need to have the properties that ensure the resulting function is truly a joint
distribution function. However, the real challenge lies in specifying the joint
dependencies among the variables through the choice of the copula.

This simple, elegant approach does not seem to have enjoyed much suc-
cess in spatial statistics, although we are not sure why. Perhaps it is because
of the difficulty in specifying the dependencies. Or maybe it is because the
conditional approach described next has so much more intuitive appeal to
modelers.

5.3.2 Modeling by Conditioning

Modeling by conditioning (see Arnold et al. 1999), seems much more common
than by marginalizing. To see the appeal of the approach, consider the simple
identity for a joint probability density function, f(x, y, z) = f(y | y, z)f(y |
z)f(z), that we have expressed in terms of two conditional and one marginal
density functions. Constructing the factors on the right-hand side would usu-
ally be simpler than the one on the left-hand side because of the small number
of random variables associated with each factor. In the case of the conditional
densities, that is because the conditioning variables are treated as fixed. At the
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same time, we generate the necessary dependence relations as a byproduct of
construction. Finally, this representation in terms of conditional distributions
lends itself to the use of the MCMC method.

Since modeling by conditioning is the principal technique used in this book,
we now elaborate on the approach. With the foundations of the Bayesian
paradigm set out in Section 3.2, we aim for conditional predictive probability
densities, conditional on the data (measured values), i.e., f(Y unmeas′ | ymeas)
for any yunmeas′

and ymeas. This conditional density can be represented in
terms of the joint and marginal densities as

f(yunmeas′ | ymeas) =
f(yunmeas′

, ymeas)
f(ymeas)

. (5.1)

In principle, only the numerator of the expression in Equation (5.1) needs to
be found since the denominator can be found from it by virtue of the fact
that the resulting density must integrate to 1.

Example: Health Impact Analysis

However, finding that numerator can be technically challenging because of the
large number of variables involved as indicated in the next example.

Example 5.1. Health impact analysis
Zidek et al. (1998b) present an analysis wherein Y and X denote response
arrays, Y being daily counts of hospital admissions for respiratory morbidity
of residents of each of I = 733 census subdivisions in southern Ontario over
T = 720 summer days over the six years involved in the study, and X, an
array of dimensions 733 × 720× 5 where 5 is the number of air pollutants
involved in the study, O3, NO2, NO3 SO3, and SO4. Just 31 of the 733 rows
are actually measured. Finally, Z is a 720×3 dimensional matrix representing
fixed functions of time, and so does not contribute any random responses to
the probability density in the numerator above. Nevertheless, “(unmeasured,
measured)” contains 733×720 + 733×720× 5 = 3,166,560 X and Y responses.

We turn now to more specialized approaches.

5.3.3 Single Timepoints

The approach is exemplified by the methods developed in geostatistics. That
discipline was developed to enable unmeasured concentrations in a spatial field
of ore to be inferred, using core samples obtained on the surface. Although
one can scarcely imagine a less random field, nevertheless the discipline de-
veloped on the assumption that it was. At the same time, it was regarded as
constant over time so, in effect, the selected sites were sampled at a single
timepoint. Kriging, a method widely attributed to a South African engineer
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named Krige, used a best linear unbiased predictor (BLUP) to impute the un-
measured concentrations at unsampled sites. To compute the BLUP requires
the assumption of a known spatial covariance. Since it is not known, the
method naively substitutes a plug-in estimate based on the sample. Getting
that estimate in turn requires the additional of an isotropic spatial field.

The importance of the method leads to a more detailed discussion in Chap-
ter 7 with variations we also describe. In the 1970s, the ozone field in a region
of California was mapped anew for each timepoint for the period covered by
the analysis. Over time, such fields were routinely kriged as there really was
no competing methodology at the time.

The method has endured because of its many strengths and we now review
these briefly along with its weaknesses.

On the positive side this mature method enjoys a very rich assortment of
extensions, refinements, and software. Its great success no doubt derives from
another positive feature, its extreme simplicity (that translates as flexibility,
adaptability, transparency, implementability, and interpretability). Its opti-
mality, albeit within the restricted class of linear unbiased predictors and
known covariance functions, adds to its appeal. Since analysts apply the
method timepoint by timepoint, no temporal covariance structure needs to
be supplied, making it de facto robust against the misspecification of that
structure. Finally, it comes with a very implementable design method: sim-
ply put the new monitors where the easily computed predictor variance is
greatest.

However, a timepoint by timepoint approach cannot borrow strength by
incorporating relevant information from adjoining timepoints. To compensate
for that serious disadvantage means the method needs a large number of
monitoring sites, an unrealistically large number when dealing with urban
areas, for example, that may have fewer than 10. The method requires an
overly simple spatial covariance model. Moreover, it ignores added uncertainty
that derives from estimating that model. As a result, 95% prediction intervals
may in reality be under 50% (Sun 1998).

5.3.4 Hierarchical Bayesian Modeling

The book’s authors have developed and relied on this modeling approach, the
subject of this subsection, over the past decade and we highlight it in this
book (see Chapters 9 and 10). It relies on transforming the responses so their
joint distribution is roughly Gaussian. Moreover, it takes advantage of the
uniformity over space of parameters in trends and other systematic compo-
nents. The approach also exploits that uniformity in the temporal structure.
The trend and covariance without any specific structure are incorporated in
the first level of the hierarchy with their uncertainty modeled in the second
level.

This very general approach fully admits parameter uncertainty and yields a
predictive distribution for input into impact assessment and into non-Gaussian
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kriging models. Empirical assessments of performance reveal the prediction
intervals to be well calibrated; e.g., 95% intervals really are (approximately)
95%. Moreover, the developed theory allows for misaligned (systematically
missing) data and other structural features in the data. Developed around
the Sampson–Guttorp approach (see Section 6.5.1) for estimating spatial co-
variance fields, it is not susceptible to the limitation of unrealistic stationarity
assumption.

On the other hand, the method is considerably more complex than say,
kriging. It is challenged by the nonseparability of some space–time series;
there prefiltering the temporal structure, which may also remove the intersite
spatial covariances, may be needed. Although the method has been much
refined, elements of the theory have yet to be made fully Bayesian. Work in
that direction is underway as this book is being written. However, the problem
of providing user-friendly software is being solved and Chapter 14 provides a
tutorial on the use of what has been developed.

5.3.5 Dynamic state-space Models

Process parameters do evolve over time. Building on the celebrated Kalman
filter, this powerful tool incorporates that change into the process model itself.
Rather than presenting an abstract description of this approach, we illustrate
it with an example.

Example 5.2. Dynamic linear model
Huerta, et al. (2004) model the hourly sqrt(O3) field over Mexico City data
from 19 monitors in September 1997. For time t and site i they assume the
measurement model

Xit = βy
t + Stαit + Zitγt + εyit.

Here St : 2 × 1 has sines and cosines α, their hourly amplitudes Z, the hourly
temperatures over the city, and εyit, unautocorrelated errors with an isotropic
exponential spatial covariance.

The parameter/process model lets the parameters change dynamically:

βy
t = βy

t + ωy
t .

αit = αit−1 + ωαi
t .

γy
t = γy

t + ωγ
t .

The Z (temperature) model incorporates elevation. The resulting hierarchical
Bayesian model seems to model the short series quite successfully. However,
for longer time periods, adaptations reflecting seasonality would need to be
added, making the total number of parameters even larger.

This modeling approach enables the data to update parameters in a sys-
tematic and coherent way while minimizing the data storage requirements.
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These features give it advantages over sequential model refits. Moreover, it
seems intuitive, flexible, and powerful. As a Bayesian method it admits phys-
ical/prior knowledge. The approach of Chapter 11 could be adapted for use
here, leading to optimal designs that change over time as knowledge about the
process parameters increases. However, we doubt that such adaptable designs
would be of practical value.

On the negative side, these can be very complex models with all the asso-
ciated practical as well as conceptual difficulties described at the beginning of
this section. Moreover, the substantial computation times lead us to wonder
if we could handle a problem with a realistically large number of sites such as
that in Chapter 12 with several hundred.

Finally, although a stationary spatial covariance may be appropriate in
Example 5.2, that would be unrealistic in general, leading to even more prior
modeling complexity, say by invoking the Bayesian approach of Damian et al.
(2001). Also, we would find it hard to decide on the appropriateness of the
assumption, for these hourly data, that temporal covariance components can
be removed while leaving spatial covariance intact. Our experience has shown
that cannot be done (Zidek et al. 2002).

5.3.6 Orthogonal Series

This powerful technique represents the discretized field of interest, say that
associated with Y, as follows; Yit =

∑p
j=1 Ujtφij . Here, Y T

t = (Y1t, . . . , Ypt)
denotes the response vector over all spatial sites at time t ∈ T . The φi : p× 1
are nonrandom orthonormal basis functions; that is, φT

i φj is 0 or 1 accordingly
as i = j or i �= j. This approach, one that keeps getting reused, has a very
long history. To obtain one such expansion, suppose for simplicity the Y s have
zero expectation. Let their spatial covariance matrix Σ = E(YtY

T
t ) for all t.

A well-known spectral decomposition theorem from linear algebra says that
we can find an orthogonal matrix O : p×p (with OTO = OOT = Ip such that
OΣOT = Λ : p× p = diag{λ1, . . . , λp}, the λs being called Σ’s eigenvalues. If
we let Ut = OYt, it readily follows that Ut has covariance matrix Λ, implying
that the coordinates of Ut are uncorrelated. Letting Yt = OTUt and OT =
(OT

1 , . . . , O
T
p ) we obtain the famous Karhunen–Loeve orthogonal expansion

Yit =
∑
Ujtφij , where Ut1 and Ut2 have correlation 1 or 0 accordingly as

t1 = t2 or not. When the assumption of a temporally unchanging covariance
matrix holds and Σ is known, we thereby obtain an elegant regression model
that for each t, represents Yt in terms of the known basis functions by means
of the spatially uncorrelated random effects.

A variety of such representations has been developed. They are typically
applied after systematic effects have been removed from the field and used for
a variety of purposes. We now give examples. The first concerns the regression
approach to design.
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Example: Designs for Monitoring

The next two examples address modeling within a design context.

Example 5.3. Fedorov and Mueller
Fedorov and Mueller (1989) need such a regression model to move their op-
timal, regression–model based design theory into the domain of space–time
processes. They comment that the “. . .most crucial assumption . . . is that
the fluctuation of the observed responses is modeled by the randomness of
the ‘parameters’. . .” that are the Us, in our notation. However, they do not
require the coordinates of Ut be uncorrelated. They estimate that covariance,
when unknown, and plug in the result as if the covariance were known, thereby
underestimating the true uncertainty.

In the next example, we see the expansion used with a more comprehensive
set of goals.

Example 5.4. Mardia and Goodall
Building on Mardia and Goodall (1993), Mardia et al. (1998; hereafter
MGRA) cite the Karhunen–Loeve expansion to justify an expansion of the
systematic component, not the random component, of their space–time model.
However, they induce randomness in the Us of their model by adopting the so-
called autoregressive process of order 1 [AR(1)], state space-model to describe
their evolution:

Ut = PUt−1 +Kηt,

where the η innovations process has a multivariate normal distribution with
mean 0. They call the result the Kriged Kalman Filter. They call the φs the
principal fields.

A number of discussants follow and comment on MGRA. For example,
Angulo(1998) doubts the generality of the U -φ decomposition implied by as-
sumptions underlying the Karhunen–Loeve expansion and argues (in line with
extensions suggested in the 1994 paper) for allowing the φs also to depend on
time. In fact, he goes further and offers an intermediate solution.

Stein(1998) argues that the method of MGRA is “. . . only modestly related
to what would generally be called Kriging.” His argument relies, in particular,
on the fact that to implement their method, MGRA cannot use all the spatial
data as a kriging predictor would.

Finally, Cressie and Wikle(1998) suggest that the method oversmooths.
They go on to describe their own paper (Wikle and Cressie 1999) which they
claim avoids oversmoothing because they admit an additional model compo-
nent Vit that represents time-varying, small-scale process variability that has
spatial but not temporal structure.

However, their paper includes two other novel elements. First, it seeks
to reduce the dimension of the problem by selecting just K < p terms of
the expansion, those corresponding to the biggest λs. This sort of thing will
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seem quite natural to anyone acquainted with principal component analysis.
Second, it includes a kind of spatial–temporal AR(1) model

XK
it =

∑
j

wijX
K
j;t−1,

XK representing, in our notation, the reduced dimension systematic compo-
nent that was modeled by the orthogonal expansion, and wij , weights that
need to be selected.

Dimension reduction represents an important trend in space–time mod-
eling, one that seeks computational efficiency when faced with increasingly
large and complex data structures.

In one other notable application of this decomposition, Craigmile et al. (2003)
use a wavelet decomposition of a space–time process to distinguish trend from
small-scale variation. We do not go into detail about this very technical ar-
ticle, but note that it tackles the extremely important problem of inferring
trend in the presence of long-term memory (where temporal correlations of
very long lags are present). Long memory presents technically tricky issues of
substantive importance since it can induce local patterns that could easily be
mistaken for deterministic trend by the unwary analyst, but which in reality
are merely low-frequency components of the long memory process.

Next we describe applications of orthogonal series decomposition.

Principal Components and Empirical Orthogonal Functions

Important applications of the orthogonal series expansion above are the prin-
cipal component (PC) approach in statistics and the empirical orthogonal
function (EOF) analysis, which has proven very useful in physical sciences.
The two approaches are complementary with each seeking structures that

explain the maximum amount of variation in one of the two dimensions in
a two-dimensional data set. For example, for a space–time process, the EOF
approach identifies structures in the space dimension and the PC approach
finds that in the time dimension. Since these are complementary and have a
1–1 relationship, they are called interchangeably depending on the tradition
of a discipline.

We now describe the idea of empirical orthogonal functions and their re-
lation to the principal components. Suppose W : p × 1 denotes a random
response vector across p geographical sites. Furthermore, let µ = E(W ) and
Σ = E(W − µ)(W − µ)′ denote the population mean and population covari-
ance respectively. As an aside, in physical modeling the word population often
gets replaced by ensemble. Moreover, the ensemble mean is represented by
<< W >> instead of E(W ), the common statistics notation.

The positive definiteness of Σ and the matrix diagonalization theorem
imply that we can find a orthogonal matrix Q such that

D2 ≡ diag{d21, · · · , d2p} = Q′ΣQ



66 5 Modeling

with d1 > · · · > dp > 0 and Q containing orthogonal eigenvectors of Σ. In
other words, U ≡ Q′W ≡ (U1, . . . , Up)′ has covariance matrix ΣU = D2,
making the {Ui} uncorrelated with decreasing variances. The ones with the
largest variances are referred to as the principal components. That is because
trΣ =

∑p
i=1 σ

2
i =

∑p
i=1 d

2
i so that they account for or “explain” a large

fraction of W s total variance. At the same time,

W =

⎛
⎜⎝
W1
...
Wp

⎞
⎟⎠ =

⎛
⎜⎝
Q1 : 1 × p

...
Qp : 1 × p

⎞
⎟⎠U =

⎛
⎜⎝
Q1U

...
QpU

⎞
⎟⎠ . (5.2)

So each of W ’s coordinate responses can be represented in terms of {Ui},
as Wi =

∑p
j=1QijUj . In fact if we drop all but, say two of the principal

components, we get approximately Wi ≈ Qi1U1 +Qi2U2 and so on. This can
mean a major reduction in dimension from p locations to, say two, in the
not unrealistic situations encountered in large-scale physical modeling where
p can be in the 100,000s.

Since Σ is unknown in practice, it has to be estimated from observed
realizationsWt, t = 1, . . . , T , in the obvious way Σ̂ = T−1∑T

t=1(Wt−µ̂)(Wt−
µ̂)′, where µ̂ = T−1∑T

t=1Wt. Applying the diagonalization theorem above to
Σ̂ yields Q̂ with orthogonal eigenvectors as columns. The eigenvectors in Q̂
are called empirical orthogonal functions. The term empirical refers to the
decomposition based on observed data.

Statisticians usually take the {Wt} to be uncorrelated with the same co-
variance and mean. However, in applications they may well be autocorrelated
meaning correlated over time (or space). However, as long as t is moderately
large, the resulting estimate Q̂ will be quite satisfactory. The EOF analysis has
been used widely in physical sciences, particularly in climatology, to identify
efficient representations of data sets.

Two other particular related conditioning approaches for handling a large
number of variables seem worth mentioning for completeness and we turn to
them next.

5.3.7 Computer Graphical Models

This approach at the interface between computer and statistical science, is
called causal modeling or sometimes Bayesian belief modeling . Richardson
and Best (2003) discuss the use of such models in their comprehensive sur-
vey of hierarchical Bayes space–time modeling, specifically within the domain
of environmental health risk analysis. This approach can help contend with
complex environmental processes with a large number of random variables,
including unknown parameters, where writing down a explicit expression for
the joint distribution of measurable and nonmeasurable objects (such as vec-
tors or matrices of parameters) can be impractical. The approach provides a
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powerful graphical approach for organizing the web of dependence relation-
ships among the random variables, thereby facilitating the computation of the
joint distribution through a product of conditional distribution dictated by
the causal model.

We illustrate the approach with a simple example.

Example 5.5. Graphical models
Let (Y unmeas, Y meas) = (T,U, V,W,X, Y, Z) with the relationship among
these variables depicted by the directed acyclical graph (DAG) in Figure 5.1.

Z

Y

X

W

V

U

T

Fig. 5.1. This figure exemplifies a di-
rected acyclical graph involving seven
nodes and six directed edges that de-
fine the causal relationship among the
variables, T,U,V,W,X,Y,Z.

The graph tells us that the joint density can be expressed as

f(t, u, v, w, x, y, z) = f(z|pa(z))f(x|pa(x))
× f(y|pa(y))f(pa(x))f(pa(y)) (5.3)

with the parent sets, pa(z) = {x, y}, pa(x) = {t, u}, pa(y) = {v, w}. The
arrows imply directional dependence, so that given X, Z is independent of T
and u. (In general not all arcs need to be directed, depending on the nature of
the dependence.) Here pa(Y ) = V,W means V and W constitute the parent
set of Y and so on. Acyclical means that we cannot find a sequence of arcs,
including directed arcs that end trace out a path that ends up where it begins.

It can be shown that an equation like (5.3) obtains for arbitrary DAGs,
making the approach broadly applicable. As well, the method has intuitive
appeal. It enables easy input of conditionality relations among the variables,
even for extremely large sets of variables. Moreover, the theory for DAGs
enables the calculation of multivariate densities to be organized in an efficient
way by judicious decomposition of the graph. Software, such as the package
called HUGIN, facilitates these calculations as well as the calculation of all
the appropriate conditional probabilities at the nodes when a variable at one
of the nodes has been observed.

Sometimes graphs, called chain graphs, like that above involve some edges
where the arrows are bi-directional. They arise when neither of the variables
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in a pair of nodes can be said to cause the other but when they are statistically
dependent for reasons other than a link through other nodes in the graph.

Decompositions such as that in Equation (5.3), can be extremely powerful
tools for specifying a joint density when parent sets are not too large. Yet they
have not been much used in modeling environmental space–time fields since
there, the parent sets tend to be huge, involving all the remaining sites! How-
ever, it could prove valuable for modeling the spatial fields themselves, when
causal relations can be identified because of well-defined spatial structures.
Examples might include situations where the sites lie along the direction of a
prevailing wind, or where they lie along a freshwater course.

5.3.8 Markov Random Fields

Another potentially powerful technique for spatial modeling at least, relies on
Markov random field (MRF) models (see Kaiser and Cressie 2000, Lee et al.
2001 and Kaiser et al. 2002, for example). That approach has relied on the
paper of Besag (1974) and the celebrated theorem of Hammersley and Clifford
(1971). In a spatial process context, Besag and Higdon (1999) used this model
to develop a method for analyzing the results of an agricultural field trial.

The spatial nature of this theory leads to the replacement of parent sets
by neighborhoods. The approach here is quite different in character than that
of causal modeling in that the goal is the local specification, for each variable
(e.g., site response at a particular time) of its conditional distribution given
the responses at every point in its neighborhood. Indeed, it is possible to
produce all these conditional probabilities without consideration of the joint
distribution itself. Now the analysis can turn to the question of whether there
exists a joint distribution consistent with that specification.

Whereas the MRF methodology seems to have been an important tool in
image analysis, its worth in modeling environmental space–time fields had not
been convincingly established when this book was being written. In particular,
we have not seen any convincing evidence of its value in spatial prediction. In
any case, the majority of this book is devoted to conditionally log-Gaussian
space–time fields where such methods are not needed. Convincing evidence
will need to come from application to more complex stochastic structures.

The previous discussion notwithstanding, we still need to find ways of
modeling the joint distribution, in particular the conditional components in
its decomposition since no simple direct estimates are typically available. This
is where the powerful device of hierarchical modeling may profitably be used.
In that approach, exemplified subsequently in this book, the required joint
density is found first as a conditional density given some unknown model
parameters, themselves unmeasured items that in the Bayesian framework
have a marginal (prior) distribution. The conditional density can be averaged
with respect to the prior distribution to get the required numerator above.

That conditional density can in turn be represented by an extension of the
result in Equation (5.1). In fact, we obtain precisely the same expression if we
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simply extend “unmeasured” to include the model parameters as well. Now
we can have a truly immense number of items in (unmeasured, measured),
perhaps tens of millions. However, surprisingly, the inclusion of the parameters
can actually simplify things if they are chosen judiciously because the joint
density can be factored into a (large) product of joint densities of a small
number of items.

Example: Birch Tree Distribution

We illustrate a combination of the hierarchical approaches in the following
example.

Example 5.6. Crown die-back in birch trees Based on counts obtained at single
time t, Kaiser and Cressie (2000) develop a spatial distribution for birch trees
suffering from a condition called crown die-back. These counts came from 36
sites i in the northeastern United States. In a hierarchical step, these authors
assume that conditional on the probability of crown die-back Xit, and total
tree counts mit (regarded as fixed and known), the counts Yit are indepen-
dently distributed with a binomial distribution. Modeling then turns to the
joint distribution of the unknown {Xit} taken to be a MRF, the neighborhood
of any site i being all other sites within a 48 km radius. Conditional on its
neighbors, each Xit is supposed to be a beta distribution with parameters
depending on the neighboring Xs. The authors model those parameters in
terms of just three hyperparameters, assumed to be the same for all i and
go on to develop inferential techniques for estimating these hyperparameters.
Although the authors do not consider the problem of predicting Yjt as some
new site j for which a die-back count is not available, they indicate how their
method could be so used. However, empirical analysis would be needed to test
and validate the approach.

The previous example merits further study. First, note that hierarchical
modeling has been effectively used to separate the aleatory uncertainty (that
in the measurement) and epistemic uncertainty (that in the model). The power
of this decomposition would be more fully realized were some of the {Yit}s
found to be missing. Indeed, had the field been measured at successive times
in search of trends, the pattern of missing counts could well have varied. The
hierarchical decomposition would then have disentangled the complexities of
describing the measurement process from those involved in modeling the latent
propensity to die-back.

However, the separation of the two uncertainties might have been fully
achieved by using the negative binomial rather than the positive binomial. The
latter’s variance unlike the former’s, is too small, it being less than its mean. In
practice, counts are susceptible to high levels of error, especially when based on
the dichotomization of a continuous variable as in this case. Misclassification
of experimental units close to the classification boundary inevitably occurs. Of
course, the beta distribution in the example will help the resulting marginal
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distribution of counts to better capture that measurement error but at the
expense of breaking down the hierarchical demarcation between aleatory and
epistemic uncertainty.

We would add that in the context of environmental statistics, counts are
often spatial or temporal aggregates of nonidentically distributed random vari-
ables thereby casting additional doubt on the validity of the binomial mea-
surement model.

Although the method for selecting neighbors may well be appropriate in
the previous Example 5.6, it will not work in general. Spatial separation of
sites i and j does not always predict well the dependence between them. That
dependence may depend much more on latent environmental factors than on
geography and these may not be well predicted by location. Salinity and water
temperature can depend on the trajectories of ocean currents. Air pollution
and acid deposition can be affected by wind directions and site elevation. Local
sources can be an important determinant of environmental hazards; levels at
two sites with similar sources might be more statistically associated with each
other than with sites in between.

Considerations such as those above have led the authors to avoid bas-
ing the dependence between site measurements in a hierarchical model on
geographical proximity. Instead, in the methods emphasized in this book, ar-
bitrary dependence structures are permitted. We have been able to gain that
generally, by concentrating on fields where at least conditional on model pa-
rameters in the first level of a hierarchical model, the responses (possibly after
a suitable transformation) are supposed to have a multivariate Gaussian dis-
tribution. In the next Section 5.4, we describe such fields and their properties.
Chapters 8–10 present Bayesian methods for making spatial predictions for
them.

5.3.9 Latent Variable Methods

Here we use the representation Yit =
∑

j aijtWjt where the Wjts are uncorre-
lated for every t. This approach has been used quite a lot in modeling space–
time fields (see Higdon 1998, Higdon et al. 1999 as well as Fuentes and Raftery
2005 for some recent applications). The variation of Gelfand et al. (2004) uses
the so-called co-regionalization approach, an important idea in geostatistics
(Wackernagel 2003). In fact, that idea is used by Schmidt and Gelfand (2003)
to account for the dependence in a multivariate response vector of pollutants.

The method gives a powerful intuitive representation for finding reason-
able covariance structures. However, unlike the basis functions in orthogonal
expansions, for example, the latent variables themselves may not derive from
physical or mathematical considerations. Instead, and this is one of their ad-
vantages, they may be purely intuitive, conceptual devices. This can make
them difficult to implement and make the results seem personalistic or even
arbitrary.
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5.3.10 Physical–Statistical Models

Environmental processes are generally distributed over very large space–time
domains. That, their complexity, and the amount of data commonly available
from sources such as monitors and satellites make modeling them challenging
from concept to implementation.

Commonly, deterministic models have been used to model those processes.
However, such usage has generated debate at a fundamental level as the quote
from Oreskes et al. (1994) at the beginning of this chapter illustrates.

Moreover, such models may prove unsatisfactory where large domains are
involved. The so-called butterfly effect tells us that tiny perturbations in ini-
tial conditions can propagate into gross changes in model outputs as they
dynamically evolve over time. Thus, forecasting weather more than two or
three days ahead is difficult. In fact, dynamic nonlinear models can be sus-
ceptible to chaotic behavior, small shifts in conditions leading to abrupt and
unpredictable changes in model outputs. Such behavior is the subject of chaos
theory .

Problems associated with deterministic models have made statistics in-
creasingly valuable. An early and somewhat ad hoc use is called data assimi-
lation. Here deterministic model parameters are adjusted to get their outputs
to agree with field measurements.

Outputs from deterministic models can be quite complex and difficult to
interpret. So statistical models can help summarize, understand, and exploit
their outputs. Example 5.7 illustrates such an application.

Example 5.7. Coupled Global Climate Model
Fu (2002) and Fu et al. (2003) are concerned with maximum annual precipi-
tation over many years and more than 300 grid cells covering all of Canada.
Since much of Canada is uninhabited, most precipitation goes unmonitored.
Nevertheless it is of great importance since it tracks climate change and its im-
plications for the nation. So how can the missing precipitation measurements
be inferred?

The answer: It can be simulated by the Coupled Global Coupled Climate
Model (CGCM1). That model with a surface resolution of 3.7o× 3.7o, runs
uncoupled ocean and atmospheric models separately for the time period of
interest. These outputs are adaptively integrated in 14-year blocks. Eventually
a variety of climate response variables such as temperature and rainfall can
be deterministically generated over long time periods and all grid cells. Apart
from simulating data for nonmonitored grid cells, the model can also be used
for scenario analysis to determine the effect in centuries to come of various
levels of greenhouse gas emissions.

Fu and her coinvestigators use a hierarchical Bayes model for the distri-
bution of the logarithm of simulated data. They fit a joint distribution over
the grid cells for the simulated data, treated as random. That adds stochastic
uncertainty to that deterministic output. Moreover, the distribution can an-
swer questions involving a number of grid cells simultaneously. For example,
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they can find the probability that the maximum annual precipitation will fall
below a critical level (drought) in every one of a combination of grid cells
representing an agriculture area. Thus, the model summarizes the simulated
data in a very usable way.

Statistical models can also be used to analyze the outputs of those mod-
els. Fuentes et al. (2003) demonstrate such an analysis. However, unless it is
sensibly done, the comparison of measurements with simulated data will not
be meaningful. Outputs from the latter are typically on the mesoscale rep-
resenting spatial scales of 100–100,000m and temporal scales of 100–10,000s.
In contrast, measurements are made on the microscale. A direct comparison
is as meaningful as comparing as apples and oranges! It is meaningless at an
even deeper level, according to Oreskes et al. (1994), who state:

To claim that a proposition (or model) is verified because empirical
data match a predicted outcome is to commit the fallacy of affirming
the consequent.

Simply replacing deterministic with statistical models also proves unsat-
isfactory. Although the latter admit input and output uncertainty, they lack
the backbone needed for large domains. Hence the idea of merging physical
with statistical models was born. That has led in recent years to the dramatic
convergence now underway, of two very distinct modeling cultures of physical
and statistical modeling.

Broadly speaking, two sorts of deterministic models have been addressed.
The first involves just a few differential space–time model equations. Two ap-
proaches have been suggested for building a superstructure upon them (Wikle
et al. 2001). These are illustrated in the following example, chosen for its sim-
plicity.

Example 5.8. Making deterministic models statistical.
An environmental growth process {X(t), t > 0} at a single site is governed
by the following dynamic equation,

dX(t)
dt

= λX(t), (5.4)

λ being the growth parameter. Equation (5.4) is easily solved with the result
X(t) = λt, if constants are ignored. However, the growth parameter would
generally be uncertain and hence random within a Bayesian framework. Thus
X(t) becomes a stochastic process with a lot of backbone. Equation (5.4)
becomes a stochastic differential equation. So much for the first approach.

The second approach reconstructs the equation using a finite difference
approximation as

X(t+ δ) −X(t)
δ

= λX(t), or

X(t+ δ) = KδX(t), (5.5)
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for some δ > 0 (the smaller, the more accurate) where K = 1 + δλ. To allow
for uncertainty in the approximation error, a random evolution error is added:

X(t+ δ) = KδX(t) + ε(t).

The result is the state equation of a state-space model, i.e., Kalman filter that
governs the dynamic growth in X(t).

Of course, the first approach will commonly not work because the ex-
plicit equation solutions are not available. The second may fail for processes
over large spatial domains because of prohibitively expensive computational
burdens. However, the ensemble Kalman filter has been developed to yield a
practical approximation in such situations (Bengtsson et al. 2003).

The second sort of deterministic model that can be merged with a statisti-
cal one involves a very large number of differential equations, making decon-
struction of the equations impractical. Computers solve the equations, albeit
slowly. Their outputs represent grid cells on the earth’s surface at succes-
sive times. The finer the grid cells, the more burdensome is the computation.
Worse still, in some applications, meteorology, for example, an ensemble of
such models must be used. (Their results must then be amalgamated in some
way.)

The following example is about a chemical transport model (CTM) used to
forecast air pollution levels up to an elevation of several hundred kilometers.
Our context is the troposphere , the approximately 20 km layer of atmosphere
closest to the earth. (The stratosphere lies above it.)

Example 5.9. Multiscale Air Quality Simulation Platform (MAQSIP)
The deterministic MAQSIP model forecasts (among other things) hourly
ozone concentrations at a grid cell resolution of 6 km × 6 km. It relies
on two inputs. The first comes from another model, the NCAR/Penn State
Mesoscale Model (MM5) computer model that provides the required meteoro-
logical inputs. The second inputs estimates of the precursor emissions that get
turned into ozone through photochemical processes in the atmosphere. These
processes along with the transportation of the products are simulated by dif-
ferential equations, solved by difference methods such as the one in Equation
(5.5) although more complex. In fact, numerous linear differential equations
are needed to describe the processes of atmospheric chemistry alone.

How can computer model outputs for grid cells and point measurements
at monitoring stations be meaningfully merged? Fuentes and Raftery (2005)
answer that question with a technique called Bayesian melding. However, it
applies only in a purely spatial context. Time is not allowed!

The key component of this Bayesian method is something called the truth,
a latent process {Z(s) : s ∈ D} over the domain of interest D. The monitors in
that domain yield measurements from another process {Ẑ(s) : s ∈ D} made
at a finite discrete subset of D. The simulated data from the deterministic
model output is again represented by a process {Z̃(s) : s ∈ D} although, in
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fact, only values of a finite collection of grid cells are available. How are the
measurements and simulated data tied together?

The answer: through the truth. Modeling output can be regarded as an
integral of that process, measurements, as noisy observations of it, all within
a Bayesian framework, hence the name, Bayesian melding.

The model:

Ẑ(s) = Z(s) + e(s);
Z(s) = µ(s) + ε(s);
Z̃(s) = a(s) + b(s)Z(s) + δ(s);

Z̃(B) =
1
B

∫
B

a(s)ds+
1
B

∫
B

b(s)Z(s)ds+
1
B

∫
B

δ(s)ds;

e(s) ∼ N(0, σ2
eI) independent of Z(s);

µ(s) = X(s)β;
ε ∼ N(0, Σ(θ));
δ(s) ∼ N(0, σ2

δI) independent of Z(s) and e(s), (5.6)

where s is a vector of a site’s geographic coordinates and B, a grid cell for
which model output has been provided. Thus, the model output process is a
biased noisy variant of the truth.

The truth’s mean function µ(s) is a polynomial in ss coordinates. In other
words, µ(s) = X(s)β, X(s) being a polynomial function of the coordinates of
s.

The arbitrary covariance matrix of the true underlying process Σ(θ) could
well be, for example, a member of the Whittle–Matern class introduced in
Chapter 6. In that case the covariance will have uncertain parameters θ about
which inference is necessary, namely θ = (σ, ρ), where σ is the variance and ρ
is the range.

Notice that in Equation (5.6), the simulated data process is a noisy, multi-
plicatively, and additively biased version of the truth. In general, these biases
may depend on site location. However, taking the multiplicative bias as con-
stant greatly simplifies the model.

This complicated model cannot be implemented without resorting to nu-
merical techniques. Interested readers should consult Fuentes and Raftery
(2005). In particular, integrals are approximated in MCMC runs by averaging
over a sample of integrand values taken at a random subset of sites.

We turn now to a case where more tractable solutions are more readily
available.

5.4 Gaussian Fields

In this section, we describe response fields whose joint distributions possess the
most famous distribution in probability and statistics, named after its creator
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(also commonly referred to as the normal distribution. That distribution, al-
though easily described in the elementary case when responses are real-valued
(see Appendix 15.1), requires more technical apparatus when responses con-
stitute a multidimensional array. We provide that apparatus below.

Multivariate–Normal Distribution

Consider to begin with, a random vector X = (X1, . . . , Xp)T (T denoting
transpose). Define the inner product between a = (a1, . . . , ap)T and X to be
(a,X)v = aT X. Then X has a p-dimensional multivariate Gaussian distribu-
tion, denoted Np(µ, Σ), if for every fixed vector a,

(a,X)v ∼ N [(a, µ)v, (a, Σa)v], (5.7)

where ∼ means is distributed as, µT = (µ1, . . . , µp) and Σ : p × p = (Σij).
This definition implies in particular that:

1. For each i, Xi ∼ N(µi, σii) so that in particular, µi = E(Xi) and σii =
E(Xi − µi)2;

2. σij = E(Xi − µi)(Xj − µj).

We write E(X) = µ and Σ = Cov(X) = E(X−µ)(X−µ)T . Thus, in particu-
lar, Σ is a symmetric matrix so that ΣT = Σ. Hence, (ΣTa, a)v = (Σa, a)v =
(a,Σa)v. More generally,

Cov(U,V)
�
= E(U − EU)(V − EV)T

denotes the covariance between any two random vectors U and V, whatever
be their dimensions where

�
= means defined by.

Matric-Normal Distribution

We get the definition of the matric-Gaussian distribution for a random matrix
X : p × q by extending the one above for random vectors. Here X could
represent, for example, the daily responses corresponding to q chemical species
for each of p = 24 hours. To define it, we need an inner product for matrices,
A and X, namely, (A,X)m

�
= tr AXT where A has the same dimensions as

X and tr denotes the trace operator (the sum of diagonal elements of any
square matrix upon which it operates). Then X ∼ Np×q(µ,Σ) will mean that
for every constant matrix A, Equation (5.7) is satisfied, the inner product
now being that for matrices, (·, ·)m.

Observe that for the inner product defined in the last paragraph, (A,X)m =∑p
i=i

∑q
j=1 aijXij . Curiously we could obtain this last result by vectorizing

both A and X through the operator vec that stacks the rows of the matrix
X into a tall vector of dimension pq × 1 and using the vector inner prod-
uct. While using this common device conveniently turns the problem into an
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analysis of vectors, it destroys the intrinsic structure of the response and can
make certain trivial results extremely difficult to prove.

But what are µ and Σ? The answers follow directly from the definition:
(1) µ is the (unique) p × q matrix satisfying (A, µ)m = E(A,X)m; (2) the
(unique) linear operator mapping the space of p × q matrices into itself sat-
isfying V (A,X)m = (A, ΣA)m for all p × q matrices X. By expressing
these inner products explicitly, we find: (1) µij = E(Xij) for all i and j;
(2) Σ = (Σ(ij),(i′j′)) where the operation of Σ is defined by ΣA = ((ΣA)ij)
where

(ΣA)ij =
p∑

i′=1

q∑
j′=1

Σ(ij),(i′j′)a(i′j′) (5.8)

for all i and j. By vectorizing the matrices we can express Σ as a pq × pg.
We can carry our analysis further by choosing A to be the matrix whose

rows consist of 0s except for the kth element which is ak. Then (A,X)m =
(ak·,Xk·)v, implying Xk· ∼ Nq(µk·, Σk·), where µk· = E(Xk·) and Σk· =
Cov(Xk·). More explicitly, Σk· : q × q = (Σ(kj)(kj′)). In a similar way, we
can show the columns of X have a marginal normal distribution, column
l having the covariance matrix, Σ·l : p × p = (Σ(il)(i′l)). Finally, we find
Cov(Xk·,Xk′·) : q × q = (Σ(kj)(k′j′)) and Cov(X·l,X·l′) : p× p = (Σ(il)(i′l′)).
Thus, Σ provides a very rich description of the covariances among the matrix
of responses, albeit at the cost of a very large number of uncertain parameters.

An important special case obtains when Cov(Xk·,Xk′·) = Λkk′Ω for all k
and k′. This implies a strong form of separability that gives rise to something
referred to as Kronecker structure: Cov(Xkj , Xk′j′) = Λkk′Ωjj′ . From the
previous expression we deduce that Cov(X·l,X·l′) = Ωll′Λ for all l and l′. In
this case the covariance structure is said to have Kronecker structure.

That structure is commonly expressed by writing Σ = Λ ⊗ Ω. Equation
(5.8) implies that in this case Σ’s operation can be described by Σa = Λ a Ω.
It follows immediately that Σ’s inverse operator Σ−1 for which Σ−1Σ = I,
the identity operator, is given by Σ−1 = Λ−1 ⊗ Ω−1. This result would be
difficult to establish by the vectorized matrices approach described above.
[There, we would have Σ = Λ ⊗ Ω = (Λij Ω), a common expression for the
Kronecker product, one that we in fact use in the sequel.]

The transpose ofΣ,ΣT also proves easy to find. The transpose is defined as
the (unique) operator on the space of all p×q matrices for which (ΣTa, a)m =
(a,Σ a)m for all a. It readily follows that ΣT = ΛT ⊗ ΩT = Λ ⊗ Ω, since Λ
and Ω are symmetric. This result in turn implies that Σ is symmetric.

In general, X is a multidimensional array, for example, a 365 × 24 × 5
dimensional array when responses obtain for every one of, say 5 species, for
every one of the 24 hours for every one of the 365 days in a year. However, we
leave it to the reader to consider the development of a definition of a Gaussian
distribution for such response arrays.

In practice, responses typically do not themselves have a joint multivari-
ate Gaussian distribution. However, in many cases their logarithmically trans-
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formed values do (see Ott 1995). We turn in Section 5.5 to this very important
distribution in environmental risk analysis.

5.5 Log Gaussian Processes

In this section, we describe the log Gaussian (normal) random response model
in some detail to emphasize how different it is from the normal. In particular,
its responses are positive, unlike those of the normal and its distribution has
a much heavier right tail.

We say that a positive random variable Y has a log Gaussian or log normal
distribution with mean µ and standard deviation σ and write Y ∼ LN(µ, σ)
if log Y ∼ N(µ, σ). A number of properties of the log Gaussian process are
easily found from those of its Gaussian partner. First

µX = E(X) = E(exp[log X]) = E(expY ). (5.9)

The latter is just the moment generating function M(t) of the normally dis-
tributed Y evaluated at t = 1. Hence µX = exp(µ+ σ2/2).

One point bears emphasis, namely parameters such as means of the normal
and associated log normal, unlike the responses, are not connected in a simple
way. Practitioners do not always recognize this fact. For instance, given data,
x1, . . . , xn from a log Gaussian population, an obvious estimate of µ would
be µ̂ = ȳ, where ȳ =

∑n
i=1 yi and yi = log xi. In other words, µ̂ is the log

of the geometric mean of the xs. However, one cannot simply invert the log
transformation, that is take µ̂naive

X = exp µ̂, to estimate Xs expected value,
in spite of the latter’s obvious appeal. Equation (5.9) makes the naiveté of
this estimator clear and suggests an alternative, namely µ̂X = exp(µ̂+ σ̂2/2)
where σ̂2 is say, the sample variance of the ys. Since µ̂naive

X < µ̂X , the naive
estimate of µX seriously underestimates Xs mean when X is quite uncertain.
This bias could in turn seriously understate an environmental risk associated
with the response X.

To further emphasize the differences between the log normal and normal
distributions, consider Xs variance σ2

X that can readily be found in terms of
µ and σ2. To do so, we need to recognize that E(X2) is just the Gaussian
moment generating function aboveM(t) evaluated at t = 2; that is, E(X2) =
M(2) = exp(2µ+ 2σ2). It follows immediately that σ2

X = (µX)2(expσ2 − 1),
a quantity very different from the square of the antilogarithm of σ unless the
latter is large and µ = 0.

Although simple attributes of the log Gaussian model can be found as
illustrated above, in general, it does not offer anything like the tractability of
the Gaussian model. For example, it is not clear how to develop a multivari-
ate log Gaussian model nor what its properties would be. Hence, in practice,
statistical analysts will (often without much consideration for substantive is-
sues) log transform the measured responses and model the log Gaussian field.
Indeed, we do that in this book.
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However, measurements are recorded and generally understood in their
original scales. In particular, subject area investigators will see the trans-
formed measurements in terms of the knowledge and language of their subject.
Consider, for example, the findings of Zidek et al. (1998c) that show a statis-
tical association between log transformed daily average ozone concentrations
(among other things) and daily counts of adverse health outcomes. In fact,
a unit increase (appropriately defined) in log (ozone) concentrations would
result in a 5% increase in these adverse outcomes. Subject area workers would
need to consider these findings by taking the antilog of that unit increase.
They would read that finding as saying a 100 ∗ (exp −1)% increase in ozone
would lead to a 5% increase in adverse outcomes. Imagine the skepticism with
which the findings expressed this way would be greeted! (As an aside, ana-
lysts will also face technical hurdles in going back to the original measurement
scale when reporting their findings. Fortunately, estimates of marginal means
and variances of the log normal distribution can readily be found using the
formulas above.)

In rebuttal, the statistician might well point out that the scales of mea-
surement are arbitrary. Why not use the log scale in the first place? There
are substantive reasons why the logarithmic transformation makes substan-
tive sense because of the cascade effect in the formation of some secondary
pollutants. Acidity (pH) is measured on a log scale. The Richter scale mea-
sures the logarithm of the amplitude of waves recorded by seismographs. (In
a different context, decibels are measured on a log scale. So are stock indices
typically, even though the latter are nominally in dollars, because of the di-
visibility of money; gains of the whole must be the same as the gains on any
part.) Furthermore, as we have shown by examples in Section 4.2, conceptual
scales such as ppb for ozone are, in reality, transformed measurements of a
surrogate such as UV light absorption. In summary, the appropriate scale for
response measurement is itself a subjective choice and the logarithmic scale
in the case of environmental response fields has much to recommend it.

5.6 Wrapup

That completes our general discussion of modeling with an all too brief survey
of the variety of methods that have been developed. The importance of such
modeling in the assessment and management of environmental risk has led
to a great deal of often ingenious work on this broad topic. However, the
subject is undergoing a tremendous amount of current development, making
it difficult to be completely comprehensive in our treatment. The authors hope
they have covered at least the most important of those approaches. Moreover,
they have tried to give some sense of their strengths and weaknesses. More
can be found in later chapters.
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However, the book now turns to much more specialized topics with an
emphasis on Gaussian fields. Hence, the next chapter introduces the spatial
covariance, a topic of great importance in that context.



Part II: Space–Time Modeling



6

Covariances

Science is nothing but developed perception, interpreted
intent, common sense rounded out and minutely
articulated.

George Santayana

The covariance between any two random variables measures the strength of
their relationship. The covariance structure of a spatial random field indicates
the strength of the relationships between variables representing its levels at
different domain locations. For some, such as those in geological applications,
that structure may well be homogeneous, meaning these relationships are
similar over the entire geographical domain; their strength is similar in all di-
rections. For others, particularly in environmental contexts, that structure can
be highly nonhomogeneous, the strengths of relationships depending strongly
on location and direction.

Since the covariance structure reflects the strengths of relationship be-
tween random variables within the field, it plays an important role in the
spatial prediction problem. However, modeling such structures is not a simple
task because covariances, besides capturing the features of the random fields
such as those mentioned above, must satisfy certain mathematical properties.
The modeling problem proves much more complicated for nonhomogeneous
random fields than homogeneous ones. For the latter, one simple mathematical
expression may adequately capture key features of the covariance field because
of its similarity over locations and directions. On the other hand, simple math-
ematical expressions will usually be inadequate for nonhomogeneous random
fields because of their varying behavior over locations and directions.

The covariance modeling problem can be further complicated by a lack
of data. For example, in geological applications the cost of obtaining a mea-
surement is generally quite substantial, so often only single measurements are
made at a small number of locations scattered over the geographical field.
For environmental applications, data are generally from networks of monitor-
ing stations and although the cost of collecting repeated measurements at any
one station may not be very high, the operational cost for networks with large
numbers of stations is prohibitively expensive. Thus in such applications, re-
peated measurements, sometimes for multiple pollutants, are often available
but only for a limited number of monitoring locations.
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This chapter presents a variety of approaches to modeling spatial covari-
ance structures. First, we discuss basic statistical concepts for characterizing
covariance structures of spatial processes, including definitions of moments
and variograms. The latter are mathematically related to the covariance func-
tion but more convenient for certain purposes in spatial prediction.

Second, we introduce the concept of stationarity that describes charac-
teristics of certain (homogeneous) random fields . As noted above, spatial
covariance modeling for nonhomogeneous fields can be very complicated and
generally impractical or impossible without imposing some sort of restrictions
on the random field. Stationarity allows us to impose specific restrictions at
various levels of a random field model. For example, a random field that is
second-order stationary would have its mean and variance not depend on lo-
cation and hence be much easier to estimate.

We go on to describe characteristics of suitable covariance models for sta-
tionary processes. Suitability criteria are required since covariance models
must meet certain technical conditions such as nonnegative definiteness. Sev-
eral commonly used models are given, notably for processes with isotropic
stationary covariance structure; for these, the correlation between any two
locations in the field depends solely on the distance between them.

Finally, we discuss methods for modeling the spatial covariance of non-
stationary processes. Since their intersite covariances depend on location as
well as direction, any naive estimation procedure would require data from all
locations of interest. The use of such a procedure would usually present the
modeler with an insurmountable challenge since data in such abundance are
almost never available. Hence he must rely on more sophisticated approaches.
Various such approaches have been proposed in recent years. We find that of
Sampson and Guttorp (1992) particularly appealing. They create an imagi-
nary (pseudo) region and map the locations of interest in the geographical
region onto it by using a complicated mathematical function. They constrain
that mapping so that the covariance structure of the random field can be ex-
pressed as a function depending only on the distance between the locations
in the new region. Fuentes (2001) and Higdon et al. (1999) propose methods
primarily based on the need for mathematical tractability and computational
convenience. They represent the random process as a weighted combination
of local processes, each stationary and weighted in accordance with location
and direction. A process with such a representation can have a nonstationary
covariance structure. However, the local processes would usually be virtual or
latent with no physical interpretation.

6.1 Moments and Variograms

6.1.1 Finite-Dimensional Distributions

Let Y denote an environmental random field over a geographical region, for ex-
ample, monthly average levels of ozone concentrations over a city. The random
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field Y is said to have the finite-dimensional cumulative distribution (or CDF)
F if for any finite set of locations in the geographical region, {s1, . . . , sn}, and
any positive integer n,

Fs1,...,sn
(x1, . . . , xn) ≡ P{Y (s1) ≤ x1, . . . , Y (sn) ≤ xn},

where P denotes probability.

Moments

Define the kth-order moment of the random field Y at any location s as

E[Y (s)]k ≡
∫
xkdFs(x)

provided this integral exists, where dFs(x) denotes the differential element
of probability allocated to x by the distribution Fs. (E|Y (s)|k < ∞ ensures
the existence of the kth-order moment and all moments of order less than
k.) For some random fields such as those with Gaussian finite-dimensional
distributions, all moments exist. For others such as those with Cauchy finite-
dimensional distributions, few or even no moments exist.

Expectation

The expectation of a random field Y is defined to be its first-order moment

µ(s) ≡ E[Y (s)]

for any location s (provided it exists). The expectation is generally (but not
always) allowed to depend on s. It is also called the mean or expected value.

Variance and Covariance

The variance of a random field Y is defined as the second-order moment about
the expectation µ(s),

var[Y (s)] ≡ E[Y (s) − µ(s)]2

for any location s (provided it exists). Like the expectation µ(s) the variance
generally depends on s.

An important variant of the second-order moment, the covariance is de-
fined as

C(s1, s2) ≡ E[(Y (s1) − µ(s1))(Y (s2) − µ(s2))]

for any two locations s1 and s2. The covariance is generally allowed to depend
on the locations of the associated variables and its existence is ensured by
that of the variance (Schwarz’s inequality). Note that when s1 = s2 = s, the
covariance becomes the variance, i.e.,
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C(s1, s1) ≡ var[Y (s)].

The expectation and covariance completely determine the distribution of
a Gaussian random field. That is, although these fields possess moments of
all orders, only the first two moments are needed to completely specify the
distribution.

Variogram

The variogram between any two locations, s1 and s2, on the plane supporting
a random field, is defined as the variance of the difference between Y (s1) and
Y (s2),

2γ(s1, s2) ≡ var[Y (s1) − Y (s2)]
= E[(Y (s1) − Y (s2)) − (µ(s1) − µ(s2))]2.

The function γ(s1, s2), called a semi-variogram, is closely related to the
covariance for random fields having special features that we describe be-
low. Matheron (1962) introduced the terms variogram and semi-variogram,
although the concept had been used in earlier scientific publications (Kol-
mogorov 1941, De Wijs 1951, Jowett 1952, and Matern 1960, among others).
More detail can be found in Cressie (1991).

6.2 Stationarity

Stationarity is a concept describing how some random fields Y behave across
the geographical region over which they obtain. For example, the probability
distribution at any specific location is the same for all locations. However, that
property is so strong that few processes will possess it. Thus, several weaker
versions of stationarity have been defined to enable a finer characterization of
the stochastic nature of random fields. We now describe them.

Strict Stationarity

A random field Y is said to be strictly stationary if for any vector h the finite-
dimensional distributions of {Y (s1), . . . , Y (sn)} and {Y (s1+h), . . . , Y (sn+h)}
are identical for an arbitrary n. That is, the random field is invariant under
translation.

Strict stationarity implies that moments of any order, if they exist, will not
depend on location. Thus this condition imposes a very strong requirement
that few random fields will meet, making it of little use in applications. How-
ever, in environmental as well as geostatistical applications weaker versions of
stationarity such as those limited to the first two moments may be sufficient to
provide a foundation for modeling and analysis. In particular, random fields
with Gaussian finite-dimensional distributions are fully characterized by the
first two moments.
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Second-Order Stationarity

A random field is said to be second-order stationary if: (a) the expectation
exists and is not a function of the location, and (b) the covariance exists
and depends only on the vector h separating the two locations. That is, a
second-order stationary random field would have, for all locations s and any
h,

µ(s) = E[Y (s)] = µ
C(s+ h, s) = C(s+ h− s) = C(h).

For h = 0, the covariance becomes the variance that second-order stationarity
implies must equal C(0). That is,

var[Y (s)] = C(s, s) = C(0).

Thus second-order stationarity implies the existence of the variance that does
not depend on the location s.

Remarks

• The C(h) function is sometimes called a covariogram. In the field of time-
series, it is called the autocovariance function.

• When C(0) > 0, the correlogram ρ(h), the correlation between two points
separated by a vector h, is defined as

ρ(h) = C(h)/C(0).

In time-series, it is called the autocorrelation function.

Second-order stationarity implies the variogram, i.e., var[Y (s)−Y (s+h)]
can be written as

var[Y (s) − Y (s+ h)] = var[Y (s)] + var[Y (s+ h)] − 2 cov[Y (s), Y (s+ h)]
= C(0) + C(0) − 2C(h)
= 2[C(0) − C(h)].

The first equality is true for the variance of the difference of any two random
variables while the second is implied by second-order stationarity. Thus the
semi-variogram, a function of only the separating vector h, can be expressed
as

γ(h) = C(0) − C(h).

It is worth noticing that second-order stationarity requires the existence of
the covariance that is also a function depending only on h. This requirement in
turn ensures not only the existence of the variance but also that the variogram,
or equivalently the semi-variogram, depends only on the vector separating the
locations. However, this last property is implied by a slightly weaker property
of a random field known as intrinsic stationarity.
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Specifically, a random field is said to be intrinsically stationary if (a) its
expectation exists and is not a function of location, and (b) for any two
locations separated by a vector h, the variance of the difference [Y (s)−Y (s+
h)] exists and is a function of h,

var[Y (s) − Y (s+ h)] = 2γ(h).

This property of intrinsic stationarity is slightly weaker than its second-
order cousin since it assumes only the existence of the variance of the differ-
ence. That does not imply the variance or covariance exists as required by
second-order stationarity. The reverse is always true as described above.

6.3 Variogram Models for Stationary Processes

In this section, we describe models that can play the role of variograms or
semi-variograms for the second-order stationary processes. Their suitability
derives from their possession of certain mathematical conditions and prop-
erties consistent with those required of the covariance C(h) they induce, as
described in the previous section.

6.3.1 Characteristics of Covariance Functions

Nonnegative and Positive Definiteness

The covariance as defined above must have the following properties:

• C(0) must be greater than or equal to zero since C(0) = V ar[Y (s)] ≥ 0
for any s;

• C(h) = C(−h) for any vector h since the covariance is an even function;
• |C(h)| ≤ C(0) where |.| denotes the absolute value, this inequality being

derived by applying Schwarz’s inequality (Shorack and Wellner 1986).

Furthermore, the covariance matrix for Y (s1), . . . , Y (sn), an n×n matrix
denoted by Σ = (Σij), must also be nonnegative definite where Σij = C(si −
sj) equals the covariance between the responses at the two corresponding
locations. In other words, for any nonzero vector a, the quadratic form aTΣa
must be greater than or equal to 0. Explicitly, the nonnegative definiteness
condition can be written as

aTΣa =
∑

i

∑
j

aiajC(si − sj) ≥ 0

=
∑

i

∑
j

aiajC(hij) ≥ 0,

where ai and aj are elements of a and hij denotes the vector separating si and
sj . The function C(h) satisfying this condition is also said to be nonnegative
definite.
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Hence under second-order stationarity, suitable models for the variogram,
or semi-variogram, defined through γ(h) = C(0) − C(h) in this case, must
allow C to satisfy the above properties, as well as the nonnegative definiteness
condition. In particular they must be nonnegative even functions of h, and
ensure that the nonnegative definiteness condition for the covariance function
is satisfied. Obviously not just any mathematical function would provide a
suitable variogram model. Conditions that do ensure suitability can be found,
for example, in Doob (1953), Journel and Huijbregts (1978), Cressie (1991,
1993), and Wackernagel (2003).

Remarks

• If one restricts the variance to be greater than 0, then the condition on
the quadratic form above will become

∑
i

∑
j aiajC(hij) > 0. Such a C(h)

function is said to be positive definite.
• In environmental and geographical practice, it is often sensible, but not

always necessary, to assume that the covariance decreases as the distance
between the two locations h increases; i.e., γ(h) is an increasing function
of h.

Anisotropy and Isotropy

The covariance C(h) is a function of vector h, specified by its length and
direction. In environmental and geostatistical applications, covariance func-
tions often exhibit different behavior in different directions. Random fields
with such covariances are called anisotropic. On the other hand, when C(h)
depends only on the length of h, denoted by |h|, the field is said to be isotropic.
In that case the strength of association within the field is the same in every
direction. This kind of association has been widely assumed in geostatistical
applications.

In cases where the anisotropic covariance function C(h) can be represented
as an isotropic covariance function f(|h1|) by linearly transforming the vec-
tor h to h1, the anisotropy is called geometric anisotropy. Here the geometric
anisotropy can be reduced to isotropy by a linear transformation of the coor-
dinators of h. More details on geometric anisotropy can be found in Journel
and Huijbregts (1978), Cressie (1991), and Wackernagel (2001, 2003).

6.4 Isotropic Semi-Variogram Models

We now describe various models commonly seen in the literature for an
isotropic variogram 2γ(|h|) . Because of isotropy, we have for simplicity used
|h|, the length of h, as the argument for the semi-variogram function γ(·).

The definition γ(h) = C(0) − C(h) implies γ(0) = 0. However, γ(h) need
not approach 0 as h tends towards zero. That is, the semi-variogram function
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can be discontinuous at the origin. That mysterious discontinuity, called the
nugget effect (Matheron 1962), actually reflects local variability in the random
field. At the other extreme, when the semi-variogram approaches a limiting
value as the separation h tends towards infinity, the limit is called a sill (Jour-
nel and Huijbregts 1978). More discussion on the behavior of semi-variogram
functions can be found in Journel and Huijbregts (1978), Cressie (1991), and
Wackernagel (2003).

All models described here can validly be extended to a domain of at least
three-dimensions unless otherwise stated. In other words, they can be used
even when say depth or elevation are added as coordinates to the location
vector. As well, they all have a common component γ(0) = 0 and so, for
brevity, it is not listed for each model.
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Fig. 6.1. Sketches
of various semi-
variogram models.

Nugget Effect Model

γ(h) ≡ C0 ≥ 0

for |h| > 0. This semi-variogram model, displayed in Figure 6.1, reveals a
constant nugget effect at all distances. Equivalently the spatial correlation is
constant for any distance in the random field.

Exponential Model

γ(h) = C0 + b
(

1 − exp
{

−|h|
a

})
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for |h| > 0, where C0 ≥ 0, b ≥ 0 and a ≥ 0. This semi-variogram model,
displayed in Figure 6.1, increases exponentially as the distance |h| increases,
the sill being C0 + b. Equivalently, the covariance decreases exponentially as
|h| increases. The parameter a determines how sharply the covariance drops
off. When |h| = 3a, the covariance has dropped to about 95% of its maximal
value at the origin. The distance corresponding to such a 95% drop has been
termed the practical range (Journel and Huijbregts 1978; Wackernagel 2003).
This semi-variogram model behaves linearly near the origin.

Gaussian Model

γ(h) = C0 + b
(

1 − exp
{

−|h|2
a

})

for |h| > 0, where C0 ≥ 0, b ≥ 0 and a ≥ 0. The Gaussian semi-variogram
again increases exponentially as |h| increases (see Figure 6.1). This semi-
variogram model has a practical range of

√
3a with a sill of C0+b and behaves

parabolically at the origin (Matheron 1972; Journel and Huijbregts 1978).

Stable Model

γ(h) = C0 + b
(

1 − exp
{

−|h|λ
a

})

for |h| > 0, where C0 ≥ 0, b ≤ 0, and 0 < λ ≤ 2. The Gaussian and the
exponential models are special cases of this class of semi-variogram models,
studied by Schoenberg (1938).

Whittle–Matern Model

γ(h) = C0 + b(1 − (|h|/a)νKν(|h|/a)

for |h| > 0 where C0 ≥ 0, ν > 0 , a ≥ 0, and Kν is a modified Bessel
function of order ν (see Abramowitz and Stegun 1970, for details). This semi-
variogram model with order 1 was originally suggested by Whittle (1954). This
is an intermediate choice between the exponential and the Gaussian ones. For
example, the exponential semi-variogram model is a special case with ν = .5
(Fuentes 2001). This model, subsequently generalized by Matern (1960), has
a sill of C0 + b.

Rational Quadratic Model

γ(h) = C0 + b
{

|h|2
1 + |h|2

}

for |h| > 0 where C0 ≥ 0 and b ≥ 0. Schoenberg (1938) showed this to be a
valid semi-variogram model with a sill of C0 + b, attained as |h| approaches
infinity.



92 6 Covariances

Spherical Model

γ(h) =

{
C0 + b

(
3|h|
2a + |h|3

2a3

)
0 < |h| ≤ a

C0 + b |h| > a

}
,

where C0 ≥ 0, b ≥ 0, and a ≥ 0. This semi-variogram model, studied by
Matheron (1965, 1970), steadily increases from the nugget effect of C0 to
the sill of C0 + b when h ≥ a, as displayed in Figure 6.1. Equivalently, the
correlation steadily decreases from its highest value b near the origin to zero as
the distance increases and reaches the range a. This type of semi-variogram is
widely used in mining applications (Journel and Huijbregts 1978; Wackernagel
2001).

Cauchy Model

γ(h) = C0 + b
(
1 − 1/

[
1 + (|h|/a)2

]λ)
for |h| > 0 where C0 ≥ 0 and λ ≥ 0. This valid semi-variogram (Yaglom 1986),
has a sill of C0 + b and behaves linearly near the origin.

Triangular Model

γ(h) =
{
C0 + b |h|

a 0 ≤ |h| ≤ a,
C0 + b |h| > a

where C0 ≥ 0, b ≥ 0, and a ≥ 0. This semi-variogram model, valid for one-
dimensional space (Yaglom 1986), behaves linearly near the origin.

Hole-Effect Model

γ(h) = C0 + b
[
1 − a sin(|h|/a)

|h|

]

for |h| > 0 where b ≥ 0 and a ≥ 0. This semi-variogram model reveals a
hole effect in that its growth is not monotonic with respect to |h|. This semi-
variogram, also called a wave model, behaves parabolically near the origin.

Linear Model

γ(h) = C0 + b|h|

for |h| > 0 where C0 ≥ 0, and b ≥ 0. Here the semi-variogram increases linearly
from its nugget as the distance |h| increases (see Figure 6.1). Equivalently, the
spatial correlation drops off linearly as the distance increases. The parameter
b determines how fast the correlation drops off, b = 0 corresponding to the
nugget effect model. When b > 0, this semi-variogram is unbounded.
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Power Model

γ(h) = C0 + b|h|λ

for |h| > 0 where C0 ≥ 0, b ≥ 0, and 0 ≤ λ < 2. Yaglom (1957), Whittle
(1962), and Christakos (1984) studied this general model for unbounded semi-
variograms. A specific example with λ = 1.3 and b = .5 is seen in Figure
6.1. Its unbounded character implies possibly negative correlations because
C(h) = C(0) − γ(h) where C(0) is fixed and γ(h) can be arbitrarily large.

De Wijsian Model

γ(h) =
3
2
b log(|h|2 + a)

for |h| > 0 where a ≥ 0 and b ≥ 0 (De Wijs 1951). This semi-variogram be-
haves linearly near the origin. Such logarithmic semi-variogram models have
been extensively studied in the early stages of geostatistical research (e.g.,
Krige 1951, and Matheron 1955, 1962). More discussion can be found in Jour-
nel and Huijbregts (1978).

6.5 Correlation Models for Nonstationary Processes

Spatially stationary processes have been successfully used in geostatistical
applications for several decades dating back to Krige (1951). However, in
some situations the assumption of homogeneous covariance behavior across
the entire domain of the field proves untenable, particularly in environmental
applications (see Escoufier et al. 1984, Chami and Gonzalez 1984, Haas 1990,
Sampson and Guttorp 1992, Brown et al. 1994a, Higdon et al. 1999, Fuentes
2001, Le et al. 2001, and Kibria et al. 2002 among others). Recognizing this
problem, several authors in recent years have developed new approaches for
dealing with nonstationary processes. We sketch these approaches below.

6.5.1 The Sampson–Guttorp Method

Sampson and Guttorp (1992) propose a highly original, nonparametric ap-
proach to estimate the spatial covariance structure for the entire random field
without assuming stationarity. Let’s call it the SG method for short. Briefly,
their method first constructs a smooth mapping function between locations in
the geographic space, where stationarity of the random field is not assumed,
to locations in a (virtual) new space where isotropy is assumed. Sampson and
Guttorp call geographic space G-space, and the new one dispersion space or
D-space. By means of this construction, an isotropic variogram model can then
be fitted using the observed correlations and distances in D-space. The smooth
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mapping function, estimated from the observed correlations between monitor-
ing stations in conjunction with the estimated isotropic variogram model, then
estimates spatial correlations between any two locations of interest.

The action of the SG method can be demonstrated using Figure 6.2 based
on the monthly average levels of multiple pollutants (O3, SO4, NO3) obtained
at seven stations in Southern Ontario where the spatial covariance component
among seven stations is estimated as described in Brown et al.(1994a). The
right panel shows the corresponding D-space coordinates, the result of ap-
plying the mapping function to a rectangular grid in G-space. The left panel
shows the fitted variogram in D-space. The results in the panels can be used
to estimate spatial correlations between any two points in the G-space. This
could be done, for example, by first identifying the corresponding points in
D-space using the grid. Their interdistance in D-space can then be calculated.
Finally, the fitted variogram at that distance can be evaluated. The result: an
estimate of their spatial correlations.

Note that the SG method does not require the units of the D-plane coor-
dinates to be explicitly specified. Furthermore, there is a built-in smoothing
parameter in the mapping function to control the distortion between the G-
and D-spaces. This feature allows users to ensure that the grid is not folded
in the D-space and hence maintain the spatial interpretability of the corre-
lations; that is, locally, the closer the stations are together the higher their
between-response correlations.

To give a more precise description of the method, let f : R2 → R2 be
a 1-1 smooth nonlinear mapping from a G-space (including all locations of
interest in the geographic space) to a D-space. For a location si in G-space,
the corresponding location zi in D-space is obtained as zi = f(si); equivalently
si = f−1(zi) where f−1 denotes the inverse mapping of f .

The variogram of the random field Y between locations si and sj can be
expressed in terms of D-space locations

2γ(si, sj) ≡ var[Y (si) − Y (sj)]
= var[Y (zi) − Y (zj)]
= 2g(|hD

ij |),

where zi and zj are the corresponding locations in D-space, |hD
ij | = |zi − zj | is

the distance in D-space, and g denotes the semi-variogram in D-space. Since
isotropic stationarity on D-space is assumed, the semi-variogram g is just a
function of |hD

ij |. Suitable semi-variogram models such as those described in
the previous section could be used for g. Note that Sampson and Guttorp
refer to the variogram between locations in G-space, 2γ(si, sj), as dispersion
to emphasize that the random field is nonstationary in the G-space.

With this framework, Sampson and Guttorp (1992) propose a two-step
approach for estimating g and f using sample dispersions between locations
s1, . . . , sn in G-space denoted by d2ij . First a multidimensional scaling ap-
proach (Mardia et al. 1979) is used to form a new two-dimensional repre-
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Fig. 6.2: Fitted variogram using D-space interstation distance (left panel) and D-
space coordinates (right panel) with smoothing parameter.

sentation (z1, . . . , zn) of the G-space locations (s1, . . . , sn), the isotropy as-
sumption being appropriate for the new representation. A semi-variogram g
is estimated using the intersite distances between the new locations in D-
space, (z1, . . . , zn). The multidimensional scaling algorithm determines a new
representation of zi so that

δ(dij) ≡ δij ≈ |zi − zj |,

where δ is a monotone function. Solving this relationship yields an estimate
for g since

d2ij ≡ (δ−1(δij))2 ≈ g(|zi − zj |).

The new representation of zi is selected so that the intersite distances in
D-space |hD

ij | minimize the following stress criterion

minδ

⎡
⎣∑

i<j

(δ(dij) − hD
ij)

2∑
i<j(h

D
ij)2

⎤
⎦ ,

that minimum being taken over all monotone functions.
Second, the thin-plate spline approach (Wabba and Wendelberger 1980)

is used to estimate the smooth mapping f between the original locations si
and the new ones zi. Specifically,

f(s) = α0 + α1s
(1) + α2s

(2) +
n∑

i=1

βiui(s),



96 6 Covariances

where ui(s) = |s − si|2log|s − si| and s(j) indicates the jth coordinate of
the location s. The parameters to be fitted are αs and β’s. For the bivariate
problem, Sampson and Guttorp (1992) compute the function f as two thin-
plate splines, f1 and f2 for the two coordinates of zi. A smoothing parameter
is incorporated into this second step, allowing users to choose a desirable level
of smoothness.

For any specified value smoothing parameter λ, the parameters, αs and βs
are chosen to minimize

n∑
i=1

2∑
x=1

(zix − fj(si))2 + λ[J2(f1) + J2(f2)],

where zi1 and zi2 denote the first and second coordinate of zi, while J2 mea-
sures the smoothness of the functions defined as

J2(f) =
∫

R

[(
∂2f

∂x2
1

)2

+ 2
(
∂2f

∂x1∂x2

)2

+
(
∂2f

∂x2
2

)2
]
dx1dx2, j = 1, 2.

This construction ensures that β → 0 when λ→ ∞; that is, in this case, it is
a simple linear mapping. See Sampson and Guttorp (1992) for more details.

With the estimated f̂ and ĝ, the variogram between any two locations s1
and s2 in G-space can be estimated by:

• Obtaining the corresponding locations in D-space through

zj = f(sj) for j = 1, 2;

• Then calculating the D-space distance |hD
12| between z1 and z2;

• And finally, evaluating 2γ(h) = 2ĝ(|hD
12|).

Equivalently the covariance between the locations can be estimated by

C(h) = C(0) − ĝ(|hD
12|),

where C(0) is the variance.

To allow for the nonconstant variance field, the above approach can be first
applied with the correlation matrix and then any estimate of the variance field
can be simply incorporated. The resulting covariance matrix is ensured to be
nonnegative definite through this construction.

The SG method has been successfully used in a wide range of environmen-
tal applications due to its flexibility in modeling nonstationary features (see,
for example, Monestiez et al. 1993, Guttorp et al. 1992, 1993, 1994, Brown
et al. 1994a, Le et al. 1997, 2001, Meiring et al. 1998, Kibria et al. 2002).
Variants of this approach based on the maximum likelihood principle have
been studied by Mardia and Goodall (1993) and Smith (1996). The SG ap-
proach has recently been enhanced by putting it into a Bayesian framework
that accounts for model uncertainty (see Damian et al. 2001 for details).

R codes for this method are currently available online and free of charge.
Instructions for downloading and R tutorials for using the software in real
applications are given in Chapter 14.
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6.5.2 The Higdon, Swall, and Kern Method

Higdon et al. (1999) propose a process convolution approach for constructing
two-dimensional, nonstationary Gaussian processes, thus allowing the spatial
dependence structure to vary as a function of location. Their approach is
developed by first representing a stationary Gaussian process as a moving
average of a Gaussian white noise process with a normal convolution kernel
and second, generalizing the kernel to allow for nonstationarity. This relatively
simple construction results in valid nonstationary Gaussian processes for a
wide range of kernel functions, at least in principle.

Specifically, a process x(s) is said to be a white noise process if∫
A

x(u)du ∼ N(0, b2area(A))

where N(µ, σ2) denotes a Gaussian distribution with mean µ and variance σ2;
here area(A) denotes the area of region A while b is a constant. Let Y (s) be
any stationary Gaussian process at location s over a two-dimensional spatial
domain R2 having a correlogram ρ(h) given by

ρ(h) =
∫

R2
k(s)k(s− h)ds.

The process Y (s) can then be expressed as the convolution of a Gaussian
white noise process x(s) with a kernel k(s) through

Y (s) =
∫

R2
k(s− u)x(u)du.

For instance, if k(s) were the two-dimensional standard normal kernel defined
as

k(s) =
1
2π
exp

{
−1

2
sT s

}

then the process Y (s) would have the usual isotropic Gaussian correlation
function,

ρ(h) = exp{−hTh}.

The above representation can be generalized by using a smoothing kernel,
denoted by ks, which depends on spatial location s. The process resulting
from this process convolution approach defined as

Y (s) =
∫

R2
ks(u)x(u)du,

is a nonstationary Gaussian process with correlation between two locations s
and s1 given by

ρ(s, s1) ∝
∫

R2
ks(u)ks1(u)du.
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This construction would work for any kernel k(s) satisfying

sup
∫

R2
k2

s(u)du <∞.

Higdon et al. (1999) choose a bivariate Gaussian kernel for their applica-
tion:

ks(s) =
1
2π

|Σ|−1/2exp

{
−1

2
sTΣ−1

s s

}
,

where Σs is a function of location s. Since there is a 1-1 mapping from a bivari-
ate Gaussian distribution to its one standard deviation ellipse, Σs is obtained
by varying the ellipses spatially. The two foci of each ellipse at location s are
randomly drawn from two independent Gaussian distributions that in turn
define Σs (see Higdon et al. 1999 for more details). The construction of ks is
motivated mostly by the pragmatic considerations of mathematical tractabil-
ity and computability. Further work is needed to assess the applicability of
the process convolution method.

6.5.3 The Fuentes Method

Fuentes (2001) proposes another approach for constructing nonstationary
processes. Her method assumes that a nonstationary process representing the
random field is a weighted average of local isotropic stationary processes that
are uncorrelated with each other. In particular, the geographical region is
divided into well-defined subregions, each having a local isotropic stationary
process. The local stationary processes, assumed to be independent, have spa-
tial covariance representing locally the spatial structure of the nonstationary
process. With weights appropriately chosen, for example, to be positive, this
construction yields valid nonstationary processes with local isotropic station-
arity and parameters of the local processes allowed to vary across the region.
The parameters are estimated by means of a method based on the spectral
density.

More precisely, Fuentes represents the nonstationary process Y (s) as a
linear combination of local, orthogonal stationary processes Yi(s)

Y (s) =
k∑

i=1

Yi(s)wi(s),

for i = 1, · · · , k, i.e., where cov(Yi(s), Yj(s)) = 0 for i �= 0. The geographical
region is divided into k well-defined subregions S1, . . . , Sk and Yi(s) is a local
isotropic stationary process in a subregion Si. The weights, {wi(s)} come from
a positive kernel function centered at the centroid of Si.

The covariance between any two locations s1 and s2 in the geographical
region can be written as
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Cov(Y (s1), Y (s2)) =
k∑

i=1

wi(s1)wi(s2)cov(Yi(s1), Yi(s2))

=
k∑

i=1

wi(s1)wi(s2)Cθi
(|h|),

where Cθi(|h|), having parameter θi and representing the covariance between
two locations s1 and s2 with respect to the local process Yi(.), is a function
of only the distance |h| due to the isotropic stationarity. Since the parameter
θi could change from subregion to subregion, Cov(Y (s1), Y (s2)) is generally
a function of not only |h| but also the locations of s1 and s2 and hence the
process Y (s) is nonstationary.

For parameter estimation, Fuentes (2001) proposes a spectral density ap-
proach that begins by transforming the covariance functions to their spectral
densities (i.e., the Fourier transforms of the covariance functions). The ap-
proach then estimates the corresponding parameters from the data. The co-
variance can then be obtained by inverting the Fourier transformations with
their estimated parameters. For instance, Fuentes (2001) assumes the local
spatial covariance has the Whittle–Matern isotropic form; i.e.,

Cθi(|h|) = bi(|h|/ai)νiKνi
(|h|/ai),

where θi = (bi, νi, ai) is a vector of parameters with νi ≥ 0 , ai ≥ 0, and Kνi

is a modified Bessel function with order νi (see Abramowitz and Stegun 1970
for details). The corresponding spectral density has the form

fi = g(ai, νi, bi)(a−2
i + |ω|2)(−νi−1),

where ω denotes frequency in the spectral domain and g is a known function
of ai, νi, and bi. The parameters of each local process are then estimated by
fitting the spectral density with its observed periodogram (a nonparametric
estimate of the spectral density). See Fuentes (2001) for more detail.

It is worth noticing that the observed periodogram in each subregion is
obtained by using the measurements in that region, implicitly assuming that
the measurements in the ith subregion are solely from the local process Yi(s).
This implicit assumption presents a conceptual challenge since for any other
locations in the ith subregion, the random field is a weighted average of all
the local processes, Y1, . . . , Yk(s), and hence does not solely depend on Yi(s).

6.6 Wrapup

That completes our tour of spatial covariance structures. We have seen the im-
portant role these structures play in spatial statistics. Moreover, we surveyed
the great variety of models that have been suggested in the case of stationary
fields where intersite correlations depend only on the difference between the
geographical locations of these sites.



100 6 Covariances

However, this last assumption generally proves untenable in modeling en-
vironmental processes over broad geographical domains. We saw ways that
have been proposed to cope with such processes. In particular, the so-called
SG approach enables the theory for the stationary case to be adapted to the
nonstationary one.

Our tour has laid the groundwork for spatial modeling, at least for the case
where the Gaussian distribution is an adequate representation for the distri-
bution of the environmental field’s random response (suitably transformed).
It is to that topic we now turn in the following chapter.



7

Spatial Prediction: Classical Approaches

The only useful function of a statistician is to make
predictions, and thus to provide a basis for action.

William Edwards Deming

Predicting an unmeasured (hence uncertain) response is a central problem
of statistics. In simple linear regression, the prediction problem involves a
response Y and a covariate x thought to be of some assistance in predicting
Y . That x could be time, for example. Or it could be a physical measurement
such as height as a predictor of weight.

Calibration

Along with the predictor Ŷ , a prediction interval (ŶL, ŶU ) is required to in-
dicate the level of confidence that may be placed on Ŷ . To be valid, that
prediction interval must be calibrated in some appropriate sense. In other
words, if a prediction interval is said to be a 95% interval, 95% must be in-
terpretable in some quantitatively meaningful sense. For example, under the
resampling paradigm it might be taken to mean that the interval would con-
tain the observed value of Y , say y “19 times out of 20” if Y were sampled
repeatedly from its distribution conditional on the value, say x = xf at which
the prediction were being made. However, this interpretation would make little
sense when the experiment is to be performed just once.

On the other hand, the Bayesian paradigm offers a valid interpretation in
any case: the interval contains the unmeasured response Y with fair odds 19:20
in the view of the individual making the prediction. Presumably, to be fair
under repeated sampling, 95% of the prediction intervals computed by that
individual would need to include the observed value of Y , y, under repeated
sampling. In other words, he would want his personal prediction interval to
be well calibrated.

Spatial Prediction

Predicting unmeasured responses at locations of interest, using observations
made at sites scattered over the field’s domain, is commonly called spatial
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interpolation or spatial prediction. The need to make such predictions arises
in diverse fields such as mining, geology (geostatistics), environmental health,
engineering, soil science, and hydrology. For example, studies of environmental
health often require estimates of pollution levels at locations where monitoring
data are not available, using observed levels at monitoring stations. These es-
timated concentration levels over spatial fields are needed to assess the health
impacts of environmental pollution. In mining applications, ore concentra-
tion levels at unsampled deposits are needed after observations are made at
selected locations in the geographical region.

Spatial prediction is complicated by the sparseness of the monitoring sites
in the geographical domain of the field. Further complications can arise from
nonhomogeneity in that field. For example, although those in mining applica-
tions are generally homogeneous, the cost of obtaining an observation can be
substantial. Thus, only single measurements are made at a few sites scattered
over the relevant region. In environmental applications, data come from net-
works of widely dispersed monitoring stations. Although the cost of collecting
repeated measurements at any one station may not be high, the operational
cost for networks with large numbers of stations is prohibitively expensive.
Thus, in such applications, repeated measurements for multiple pollutants
are often available for only a small number of monitoring locations. Moreover,
these environmental fields are usually nonhomogeneous.

Kriging

In this chapter, we focus our discussion on classical approaches to spatial in-
terpolation, notably kriging. As with any other form of prediction, prediction
intervals (ellipsoids in the case of multivariate responses) are needed to gauge
the confidence that can be placed on an interpolated value. However, the high
cost of measurements means that typically few observations are available for
predicting the random fields encountered in geostatistics, one of the earliest
domains in which the need for spatial interpolation emerged. Yet, by exploiting
the homogeneity of fields encountered in that domain, Krige, a South African
mining engineer developed, in 1951, a method that was able to use the rela-
tively small amount of data for spatial prediction. That method, formalized
later by Matheron (1962) and now commonly known as kriging, demonstrated
the great power of spatial statistics.

Let us consider a particularly simple setting for the spatial interpolation
problem. There, values of the concentration levels of the random field are
measured at locations s1, . . . , sn to yield Y (si) for all i. The objective is to
estimate the concentration level Y (s0) for the location s0 seen in Figure 7.1.

The kriging interpolator, a weighted linear combination of the observed
values {Y (si)}, has coefficients chosen to make it unbiased and have minimal
prediction error, commonly known as the kriging variance in geostatistics.
The kriging interpolator is hence called the Best Linear Unbiased Predictor
(BLUP). Correspondingly, the kriging variance can be expressed as a specific
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Y(s1)

Y(sn)

Y(s3)

Y(s2)
s0

Fig. 7.1. The spatial
interpolation prob-
lem is to estimate the
concentration Y (s0)
at location s0 given
the observed concen-
trations Y (si).

function of the weights and observations. Thus, application of the method
reduces mainly to estimating the optimal weights.

Those weights turn out to be specific functions of the covariances of the
random field between the locations, s0, s1, . . . , sn. When the covariance struc-
ture of the random field is isotropic, the weights reduce further to functions of
the distances between locations. In fact, they are proportionally inverse to a
monotonic transformation of the distances from s0 to si for i = 1, . . . , n. That
is, observations closer to a location of interest would be given correspondingly
greater weight in the kriging interpolator, an intuitively appealingly charac-
teristic of the method.

Furthermore, isotropy of a covariance field implies that same monotonic
transformation is assumed for any locations of interest in the domain of the
random field. Thus, application of the method becomes quite straightforward
under the assumption of isotropy; the objective simply reduces to identifying
an appropriate monotonic transformation for the intersite distances. Gen-
erally, that transformation would be specified through a mathematical ex-
pression with a number of unknown parameters estimated from the observed
data. The isotropic variogram models described in Chapter 6 are candidates
for the role of such a transformation. Because of its simplicity in applications,
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when the covariance structure is isotropic, use of kriging has been commonly
justified by such an assumption. A particularly important aspect of its im-
plementation has been another assumption, that the estimated weights are
in fact known. Emphatically, they are not! However, this second assumption
makes simple, the calculation of both the optimal kriging interpolator and its
corresponding variance. The method’s derivation does not assume specific dis-
tributions for the random field, giving it a superficially appealing robustness
against misspecification of that distribution. In fact, that robustness is illu-
sory. To be both linear and optimal would essentially require a joint Gaussian
distribution for that field. Anyway, that distribution is assumed in practice
for the derivation of prediction intervals.

Since its invention, the kriging methodology has been the most widely used
approach for spatial interpolation, particularly in geostatistical problems. It
has been so popular and successful that in recent years it has also been adopted
for use in other fields including environmetrics. Several enhancements of the
method have been developed to deal with specific characteristics of particular
applications. Below, we describe the basic mathematical setting for kriging
and some of its enhancements.

This chapter, which addresses fields with only a spatial and no tempo-
ral component, is included for a number of reasons. First, the methods pre-
sented here have played an important historical role in the evolution of spatial
statistics. Moreover, they have played a key role in modeling environmental
processes, as noted in Section 5.3. Indeed in the 1970s, the SIMS Group,
led by Paul Switzer at Stanford, pioneered the use of the geostatistical ap-
proach in that role for air pollution analysis. Finally, the primary (detrend-
ing/prefiltering) strategy could be used to reduce a spatial–temporal field to
an independent sequence of spatial fields, each susceptible to treatment by
the methods offered in this chapter.

7.1 Ordinary Kriging

Suppose the random field Y (.) is intrinsically stationary; that is, for any lo-
cation s

E[Y (s)] = µ
V ar[Y (s) − Y (s+ h)] = 2γ(|h|),

where γ(|h|) is the semi-variogram and a function of the distance |h| separating
two locations. Let Y (s1), . . . , Y (sn) be the random variables representing the
field at locations s1, . . . , sn with realizations y1, . . . , yn. The problem is to
predict the random field at location s0, Y (s0), from the observed data as
displayed in Figure 7.1.

Kriging, a local interpolation method for such spatial interpolation prob-
lems, is a weighted average of levels in the surrounding area. It is an optimal
linear estimator of the form
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Y ∗(s0) =
n∑

i=1

αiY (si), (7.1)

where the weights αi are chosen to make the estimator unbiased and of min-
imal prediction error.

To achieve unbiasedness, the expectation of the kriging estimator must be
identical to the expectation of the random field at location s0. In other words,

E[Y ∗(s0)] = E

[
n∑

i=1

αiY (si)

]

=
n∑

i=1

αiE[Y (si)]

=
n∑

i=1

αiµ.

The last equality derives from the stationarity of the mean. Hence the estima-
tor is unbiased; i.e., E[Y ∗(s0)] = E[Y (s0)], if the weights sum to unity. That
is,

n∑
i=1

αi = 1. (7.2)

Kriging Variance

The prediction error is quantified by the mean-squared prediction error
σ2

s0
≡ E[Y ∗(s0) − Y (s0)]2. In geostatistical terminology, it is called the es-

timation variance or kriging variance. It can be expanded in terms of the
semi-variogram, using the unbiasedness condition (7.2), as

σ2
s0

≡ E [Y ∗(s0) − Y (s0)]
2

= E

[
n∑

i=1

αi(Y (si) − Y (s0))

]2

= E

⎡
⎣ n∑

i=1

n∑
j=1

αiαj(Y (si) − Y (sj))2/2 −
n∑

i=1

αi(Y (si) − Y (s0))2

⎤
⎦

=
n∑

i=1

n∑
j=1

αiαjE[Y (si) − Y (sj)]2/2 −
n∑

i=1

αiE[Y (si) − Y (s0)]2

=
n∑

i=1

n∑
j=1

αiαjγ(|hij |) −
n∑

i=1

αiγ(|hi0|), (7.3)

where γ(|hij |) is the semi-variogram and function of the distance |hij | between
locations si and sj . The last equality comes from the intrinsic stationarity of
the random field.
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Kriging Weights

The mean-squared prediction error given by (7.3) can be minimized by choos-
ing the weight αi appropriately, in conjunction with the unbiasedness con-
dition (7.2). To do so, we can employ an optimization technique commonly
known as the Lagrange multiplier method. With that method, the optimal
weights are found by setting to zero, the partial derivative, with respect to
each αi of the objective function defined as

f(α1, . . . , αn, λ) = σ2
s0

+ 2λ

(
n∑

i=1

αi − 1

)
.

The Lagrange multiplier λ, properly chosen, ensures achievement of the unbi-
asedness condition in the minimization process. The partial derivative ∂f/∂λ
set to zero yields that unbiasedness condition.

Setting the partial derivatives to zero yields a system of n+1 linear equa-
tions to be solved for the n optimal weights α1, . . . , αn. The set of these linear
equations is called the ordinary kriging system (Matheron 1971; Journel and
Huijbregts 1978; Cressie 1991). It can be written as⎧⎨
⎩
∑n

j=1 αjγ(|hij |) + λ = γ(|hi0|) i = 1, . . . , n

∑n
j=1 αj = 1.

(7.4)

The optimal weights, α1, . . . , αn, satisfying the kriging system (7.4) are used
in Equations (7.1) and (7.3) to yield the theoretical kriging estimator and its
corresponding kriging variance, respectively. Hence, given the semi-variogram,
kriging gives a best linear unbiased predictor. Prediction intervals can be
constructed accordingly. For instance, when the random field Y (·) is Gaussian,
the interval

[Y ∗(s0) − 1.96σs0 , Y
∗(s0) + 1.96σs0 ] (7.5)

has a 95% nominal prediction level.

Estimated Optimal Weights

In applications, the semi-variogram is generally unknown. The realizations,
y1, . . . , yn, are used to identify a suitable semi-variogram model and to obtain
the estimated values γ̂(.). Solving the kriging system (7.4) using γ̂(|hij |) yields
the estimated optimal weights, i.e., the α̂s. General solutions for the kriging
systems are given in the next section.

The kriging interpolator for a location s0 and its corresponding estimated
kriging variance are then given by

Ŷ ∗(s0) =
n∑

i=1

α̂iyi (7.6)

σ̂2
s0

=
n∑

i=1

n∑
j=1

α̂iα̂j γ̂(|hij |) −
n∑

i=1

α̂iγ̂(|hi0|). (7.7)
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When the random field follows a Gaussian distribution, the estimated 95%
prediction interval can be obtained from (7.5) by replacing the unknown roots
of the kriging variances by their estimated values, i.e.,

[Ŷ ∗(s0) − 1.96σ̂s0 , Ŷ
∗(s0) + 1.96σ̂s0 ]. (7.8)

Remarks

• Although the ordinary kriging method described above is for spatial pre-
diction of one location at a time, the method can be simply extended for
the simultaneous prediction of multiple locations. The kriging solution in
such a setting is given in the next section.

• When the random field is not Gaussian, the prediction interval given in
(7.5) may not yield the correct 95% nominal level.

• The kriging predictor is an exact interpolator (Journel and Huijbregts
1978). That is, the kriging interpolator coincides with the measurement at
any location where one has been made; the corresponding kriging variance
is then zero at such a location. This can easily be seen by solving the
above kriging system with the weight corresponding to that location set
to 1 while the remaining weights are set to zero.

• The above kriging system is derived without assuming the existence of a
spatial covariance. When that covariance does exist, the kriging variance
σ2

s0
can be expressed as a function of the covariance between locations

C(si, sj) as

σ2
s0

= 2
n∑

i=1

n∑
j=1

αiαjC(si, sj) − 2
n∑

i=1

αiC(si, s0) + var(Y (s0)).

The kriging system resulting from minimizing this function has the same
form as the system (7.4) where γ(|hij |) and γ(|hi0|) are replaced by
C(si, sj) and C(si, s0). One can then derive the theoretical kriging es-
timator and the kriging variance as functions of C(., .).
Hence it is not necessary to assume the stationarity of the spatial co-
variance in the derivation of the kriging estimation method. However, in
practice, it is generally difficult to estimate the spatial covariance which
is nonstationary, particularly in geological applications where the amount
of observed data is limited.

7.2 Universal Kriging

Ordinary kriging as described above is developed to deal with interpolation
problems where the random field has a constant mean. However, in practice,
environmental and geological fields often exhibit nonconstant mean values.
That fact has led to the development of the universal kriging method (Math-
eron 1969) which interpolates random fields whose mean function does depend
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on location through specific structural forms. More precisely, the universal
kriging method assumes that a random field with nonconstant expectation is
a linear combination of two components. The first is deterministic, a func-
tion that depends on location. The second is probabilistic, i.e., second-order
stationarity. Specifically, let Y (s1), . . . , Y (sn) be the random variables repre-
senting the field at locations s1, . . . , sn. Assume

Y (s) = µ(s) + Z(s), (7.9)

where µ(s), a function of location s, is the deterministic component and Z(s)
is a second-order stationary process with a constant mean, assumed to be
zero (without loss of generality). Suppose the drift µ(s) can be represented as
a linear combination of known functions {fl(s), l = 1, . . . , k}, with unknown
coefficients {al},

µ(s) =
k∑

l=1

alfl(s).

Thus, the mean and the covariance of the random field can be expressed as

E[Y (s)] =
k∑

l=1

alfl(s)

E[(Y (s1) − µ(s1))(Y (s2) − µ(s2))] ≡ E[Z(s1)Z(s2)]
= C(s1 − s2).

Universal Kriging Predictor

Like ordinary kriging, universal kriging yields a predictor that is again a
weighted average of the levels in the surrounding region,

Y ∗(s0) =
n∑

i=1

αiY (si), (7.10)

where the weights αi are chosen to make the estimator unbiased with minimal
prediction error.

The unbiasedness condition is achieved by letting E[Y ∗(s0)] = E[Y (s0)],
or

µ(s0) −
n∑

i=1

αiµ(si) = 0.

Equivalently, that condition can be written
k∑

l=1

al(fl(s0) −
n∑

i=1

αifl(si)) = 0.

Since the als are generally nonzero, the universal condition becomes
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fl(s0) =
n∑

i=1

αifl(si) l = 1, . . . , k. (7.11)

The term universal used by Matheron (1969) refers to the unbiasedness of the
kriging estimator when the random field has nonconstant mean.

Universal Kriging Variance

Using the unbiasedness condition (7.11), the kriging variance can be expressed
as

σ2
s0

≡ E[Y ∗(s0) − Y (s0)]2

=
n∑

i=1

n∑
j=1

αiαjC(si, sj) − 2
n∑

i=1

αiC(si, s0)

+ var(Y (s0)) (7.12)

=
n∑

i=1

n∑
j=1

αiαjC(si − sj) − 2
n∑

i=1

αiC(si − s0)

+ var(Y (s0)), (7.13)

where C(si − sj) denotes the covariance between locations si and sj for the
second-order stationary process Z(·). The kriging variance (7.13) can be min-
imized by choosing the weight α appropriately by the Lagrange multiplier
method. The resulting n + k linear equations, called the universal kriging
system, are{∑n

j=1 αjC(si − sj) + λlfl(si) = C(si − s0) i = 1, . . . , n∑n
j=1 αjfl(sj) = fl(s0) l = 1, . . . , k. (7.14)

The optimal weights α1, . . . , αn satisfying the universal kriging system (7.14)
are used in equations (7.10) and (7.13) to yield the theoretical universal krig-
ing estimator and its corresponding kriging variance, respectively. Prediction
intervals can be constructed accordingly. For instance, when the random field
Y (.) is Gaussian, the interval

[Y ∗(s0) − 1.96σs0 , Y
∗(s0) + 1.96σs0 ] (7.15)

has the 95% nominal prediction level.

Universal Kriging Solution

We now present specific solutions for the optimal weights in kriging. Consider
a setting as in (7.9) for universal kriging and more generally, m locations of
interest for spatial prediction. In vector notation, the relationship (7.9) can
be simply expressed as

Y = Xβ + Z
Y0 = X0β + Z0,
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where Y denotes the levels of the random field at the n locations with mea-
surements and Y0, the level at the m locations of interest to be predicted.
Here

Y = (Y (s1), . . . , Y (sn))T

Y0 = (Y (s01), . . . , Y (s0m
))T

Z = (Z(s1), . . . , Z(sn))T

Z0 = (Z(so1), . . . , Z(som
))T

β = (a1, . . . , ak)T

and

X =

⎛
⎜⎝
f1(s1) . . . fk(s1)

...
...

f1(sn) . . . fk(sn)

⎞
⎟⎠

X0 =

⎛
⎜⎝
f1(s01) . . . fk(s01)

...
...

f1(s0m) . . . fk(s0m)

⎞
⎟⎠ .

The random components Z and Z0 have covariance matrices Σyy and
Σ00, respectively, as well as a cross-covariance matrix Σy0. These matrices
are known with elements being the covariance between the corresponding
locations. For example, Σy0 is a matrix with n rows and m columns given by

Σy0 =
{
C(si − s0j

)
}

n×m

for i = 1, . . . , n and j = 1, . . . ,m.
In this setting, the kriging interpolator is defined as

Y ∗
0 = ΘY

where Θ is the m×n matrix of weights. The problem is then to determine the
optimal weights, Θ. Let Λ be the n×m matrix of the Lagrange multipliers.

Universal Kriging System

The universal kriging system, which is an extension of (7.14) to multiple lo-
cations, can be expressed in terms of Θ and Λ as{

ΣyyΘ
T +XΛ = Σy0

ΘX = X0.
(7.16)

Solving the system (7.16) yields

Λ =
(
XTΣ−1

yy X
)−1 (

XTΣ−1
yy Σy0 −X0

)
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and

Θ = (Σ0y −MTXT )Σ−1
yy .

Hence the kriging interpolator and the corresponding kriging variance are

Y ∗(s0) = (Σ0y −MTXT )Σ−1
yy Y

var(Y ∗(s0)) = E(ΘY − Y0)2

= σ00 −Σ0yΣ
−1
yy Σy0 +MT

(
XTΣ−1

yy X
)
M.

Remarks

• For the universal kriging system to have a solution, it is necessary that
the deterministic functions fls be linearly independent; that is, the matrix
having (fl(s1), . . . , fl(sn))T , l = 1, . . . , k as columns, must have full rank.

• The deterministic functions could always be chosen to ensure that the
probabilistic component has mean zero. For example, this can be achieved
by including a function with constant value.

• As with ordinary kriging, it is not necessary to assume stationarity of
the spatial covariance in the derivation of the universal kriging predictor.
However, the stationarity assumption is often made in practice so that the
spatial covariance structure can be estimated using available data.

• Ordinary kriging is a special case that corresponds to the situation where

f1 = 1 and f2 = · · · = fk = 0.

• Several authors have applied kriging to a transformation of the random
field (see, for example, Howarth and Earle 1979 and Verly 1983). The main
idea is to identify a transformation for Y (·) so that the resulting process
is Gaussian and to apply the kriging method to the transformed random
field. This approach is called trans-Gaussian kriging (see Cressie 1991 for
more information).

More detailed discussion of kriging methods can be found, for example, in
Journel and Huijbregts (1978), Cressie (1991), Kitanidis (1997), and Wacker-
nagel (2003).

7.3 Cokriging

In some applications, multiple measurements obtain at each location for dif-
ferent random fields. For example, environmental monitoring stations often
simultaneously measure several air pollutants such as O3 and PM10. In mining
applications, the silver concentration at a location could be observed together
with the lead and zinc concentration levels and other minerals. These multiple
processes may be correlated and so using all observed data may improve the
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prediction for any specific random field. The cokriging method, a generaliza-
tion of the kriging method, has been developed to deal with such multivariate
interpolation problems (Journel and Huijbregts 1978; Cressie 1991).

Let Yk(s), k = 1, . . . ,K, denote the correlated random fields, representing
the concentration levels for K different minerals, assumed to be second-order
stationary. That is, for k, k1, k2 ∈ {1, . . . ,K},

E[Yk(s)] = µk ∀s
E[(Yk1(s1) − µk1)(Yk2(s2) − µk2)] = Ck1k2(s1 − s2),

where Ck1k2(h) denotes the cross-covariance between the k1th and k2th ran-
dom fields. When k1 = k2, the cross-covariance reduces to the usual univariate
covariance. For each random field k, let Yk(s1), . . . , Yk(snk

) be the random
variables representing the kth random field at locations s1 to snk

.

Cokriging Estimator

The cokriging estimator for a specific random field, say k0 ∈ {1, . . . ,K}, at
location s0 is a linear combination of the form

Y ∗
k0

(s0) =
K∑

k=1

nk∑
i=1

αkiYk(si). (7.17)

The weights, αki, are chosen to ensure the estimator is unbiased and has
minimal prediction error.

The unbiasedness condition is achieved by letting E[Y ∗
k0

(s0)] = E[Yk0(s0)],
or

µk0

(
1 −

nk0∑
i=1

αik0

)
−

K∑
k �=k0

µk

nk∑
i=1

αki = 0.

Hence the unbiasedness condition can be written in terms of K constraints{∑nk0
i=1 αik0 = 1 and∑nk

i=1 αki = 0 ∀k �= k0.
The first constraint implies nk0 must be different from zero; that is, the cok-
riging estimator for the k0th random field must depend on at least one random
variable of that field. Hence, in applications, at least one observation from the
random field of interest must be available for this method to work.

Cokriging Variance

The prediction error is quantified by the cokriging variance,

σ2
k0,s0

= E[
K∑

k=1

nk∑
i=1

αkiYk(si) − Yk0(s0)]
2
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expressible as

σ2
k0,s0

= Ck0k0(0) −
K∑

k=1

nk∑
i=1

αkiCk0k(si − s0). (7.18)

The cokriging variance can be minimized subject to the K unbiasedness con-
straints above using the Lagrange multiplier method. The minimization leads
to a system of (

∑K
k=1 nk +K) linear equations to be solved for αs, known as

the cokriging system:⎧⎪⎪⎨
⎪⎪⎩

∑K
k1=1

∑nk

i1=1 αk1i1Ck1k2(si1 − si2) − λk2 = Ck0k2(si2 − s0)
for k2 = 1, . . . ,K, i2 = 1, . . . , nk2∑nk0

i=1 αik0 = 1∑nk

i=1 αki = 0 ∀k �= k0.

(7.19)

The αs satisfying the cokriging system (7.19) are used in Equations (7.17)
and (7.18) to obtain the theoretical cokriging predictor and its corresponding
variance. The prediction interval can be then constructed accordingly. For
instance, when the multivariate random field Y (·) is Gaussian, the interval

[Y ∗
k0

(s0) − 1.96σk0,s0 , Y
∗
k0

(s0) + 1.96σk0,s0 ]

has a 95% nominal prediction level.

Remarks

• The cokriging method described here is quite similar to the ordinary krig-
ing method, except that different univariate random fields must be consid-
ered simultaneously. This is sometimes called ordinary cokriging (Wacker-
nagel 2001) to distinguish it from universal cokriging where the universal
kriging method is similarly extended to deal with multivariate responses
(Cressie 1991).

• Unlike the kriging method, the general formulation of the cokriging system
in terms of the cross semi-variogram, defined as

E[(Yk1(s1) − Yk1(s2))(Yk2(s1) − Yk2(s2))] = 2γk1k2(s1 − s2),

is available only if the cross-covariance is symmetric (Journel and Hui-
jbregts 1978); that is, Ck1k2(h) = Ck2k1(h) for any vector h. In this
case, the cross semi-variogram system is obtained by simply replacing the
Ck1k2(si1 − si2) by −γk1k2(si1 − si2) in (7.19).

7.4 Disjunctive Kriging

The kriging and cokriging methods described above restrict the predictors to
be linear; that is, if we let Y (s1), . . . , Y (sn) be the random variables repre-
senting the field at locations s1, . . . , sn, the co/kriging predictors for Y (s0)
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are linear combinations of the {Y (si)}. The estimators are then optimized by
choosing weights to minimize mean-squared prediction errors. However, such
linear predictors would generally be suboptimal and nonlinear ones more ap-
propriate.

More precisely, it can be shown that the conditional expectation E[Y (s0) |
Y (s1), . . . , Y (sn)] minimizes the mean-squared prediction error E[Y (s0) −
Y ∗(s0)]2 among all possible predictors and hence is optimal. That condi-
tional expectation is, by definition, an orthogonal projection of Y (s0) onto
the vector space spanned by all functions f(Y (s1), . . . , Y (sn)) (see Journel
and Huijbregts 1978 for more details). Technically speaking, these functions
must be measurable but for simplicity, we take that requirement as under-
stood, without repetitively stating it, here and below.

That conditional expectation would generally be nonlinear with only a few
important exceptions. For example, when the random field is Gaussian, the
conditional expectation E[Y (s0) | Y (s1), . . . , Y (sn)] has a linear structure and
coincides with the kriging predictor, making the latter optimal in this special
case.

The disjunctive kriging method (Matheron 1976) produces a more general
than linear predictor that is closer to the conditional expectation E[Y (s0) |
Y (s1), . . . , Y (sn)]. The disjunctive kriging predictor is defined as

Y ∗
DK(s0) =

n∑
i=1

fi(Y (si)), (7.20)

where the fis are specified functions. The {fi} are chosen to make Y ∗
DK(s0) an

orthogonal projection of Y (s0) onto the vector space spanned by {gi(Y (si))}
where the gi are any (measurable) functions; that is,

E

{[
Y (s0) −

n∑
i=1

fi(Y (si))

]
hj(Y (sj))

}
= 0, j = 1, . . . , n (7.21)

for any functions, {hi(Y (si))}.
Journel and Huijbregts (1978) show that the orthogonality condition (7.21)

leads to the following disjunctive kriging system to be solved for {fi},

E [Y (s0) | Y (sj)] =
n∑

i=1

E [fi(Y (si)) | Y (sj)]] , j = 1, . . . , n. (7.22)

The system (7.22) reveals that disjunctive kriging requires knowledge of
the bivariate distributions of {Y (si), Y (s0)} and {Y (si), Y (sj)} for i, j ∈
{1, . . . , n}. In contrast, the best estimator, the conditional expectationE[Y (s0) |
Y (s1), . . . , Y (sn)], would require the knowledge of the (n+1)-dimensional dis-
tribution of {Y (s0), Y (s1), . . . , Y (sn)}.

Although disjunctive kriging reduces complexity, finding solutions of the
system (7.22) would not generally be straightforward. Solutions to (7.22) are
obtainable when the random field Y (s) follows a class of models, called isofac-
torial (Matheron 1976, 1984) with bivariate Gaussian distributions as special
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cases (Cressie 1991). For bivariate Gaussian distributions having marginal
standard normal distributions, the disjunctive kriging estimator can be ex-
pressed in terms of the Kth-order Hermite polynomial expansion (see, for
examples, Beckmann 1973 and Journel and Huijbregts 1978 for more details)

Y ∗
DK(s0) =

n∑
i=1

K∑
k=0

ηk(Y (si))fik,

where ηk is the kth Hermite polynomial defined as

ηk(x) = (k!)−1/2exp

(
x2

2

)
∂k

∂yk

{
exp

(
−x

2

2

)}
.

The (K+1)n unknown parameters {fik} satisfy the corresponding disjunctive
kriging system

n∑
i=1

ρk
ijfik = bkρk

0j , k = 1, . . . ,K, j = 1, . . . , n, (7.23)

where for all i and j, ρij is the correlation between Y (si) and Y (sj), while for
all k, bk is the kth coefficient of the Hermite expansion of Y (s0) given by

bk =
∫ ∞

−∞

x√
2π
∂k

∂yk

{
exp

(
−x

2

2

)}
.

The mean-squared prediction error, i.e., disjunctive kriging variance can be
written as (Journel and Huijbregts 1978)

E[Y (s0) − Y ∗
DK(s0)]2 =

K∑
k=0

bk

(
bk −

n∑
i=1

fikρ
k
0i

)
.

More details concerning disjunctive kriging can be found in Journel and Hui-
jbregts (1978) and Cressie (1991).

Remarks

• The disjunctive kriging method for optimally predicting g(Y (s0)), g being
any function of Y (s0), can be analogously derived. In fact, the resulting
expressions would be very similar. The disjunctive kriging system would
have (7.22) as before, with E[Y (s0) | Y (sj)] replaced by E[g(Y (s0)) |
Y (sj)]. For the bivariate Gaussian case, the system for the parameters
{fik} is the same as (7.23), where bk is the kth coefficient of the Hermite
expansion of g(Y (s0)). Flexibility in choosing g would allow the method
to be used in a wide range of applications where nonlinear estimates are
required. For instance, selecting g(x) = xIx≥xo , where Ix≥xo is an indicator
of whether x ≥ xo, would deal with the optimal prediction of mineral level
above x0 in geological applications.
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• Other nonlinear kriging methods have been studied including indicator
and probability kriging by several authors (see, for example, Journel 1983,
1988, and Bilonick 1988). Basically when the interest is in some trans-
formation of the random field, these methods first transform the random
field and then apply linear kriging methods on the transformed variables.
In principle, the approximation to the conditional expectation by these
methods would be less accurate than disjunctive kriging because the latter
allows for a richer class of transformations. On the other hand, disjunc-
tive kriging solutions are generally difficult to obtain, requiring specific
assumptions on the bivariate distributions. Hence, in practice it is not
clear which if any is superior to the others.

7.5 Wrapup

As discussed above, kriging and its variants produce unbiased predictors that
are also optimal in the sense of minimizing the prediction error for spatial
interpolation problems. Optimal linear predictors generally rely on features
of the random field such as the semi-variogram, that are related to moments
up to second-order. They are completely determined when these moments are
known and specified. However, in applications semi-variograms are unknown
and must be estimated from the data. The interpolators are then obtained by
simply plugging in the estimated semi-variograms, as if these estimates were
known and specified without error. This common practice underestimates the
imprecision of the spatial interpolators since uncertainty associated with the
estimation of the semi-variograms are ignored (Hughes and Lettenmeier 1981;
Kitanidis 1986; Le and Zidek 1992; Handcock and Stein 1993). This defi-
ciency can be serious in commonly encountered situations where data are
in limited supply, for example, in hydrological applications (Kitanidis 1986),
and uncertainty will be large. Prediction intervals derived from interpolation
methodology that fails to incorporate all relevant uncertainty represents un-
warranted confidence in the interpolated values (Sun 1998). This deficiency
can potentially lead to seemingly valid decisions or regulatory actions that are
in fact unjustified (Le and Zidek 1992).

A related shortcoming of kriging stems from its reliance on parametric
(isotropic) models for the semi-variogram. Although such isotropic models
may work for some geological applications, they would generally be unrealis-
tic, particularly for environmental problems. It is worth noticing that when
models are inappropriate, no matter how many additional data are obtained,
nothing in the methodology enables it to update the initial, overly simplis-
tic parametric semi-variogram models (Yakowitz and Szidarovszky 1985). To
partially overcome this deficiency, Haas (1990, 1992) proposes a modification
called moving-window regression residual kriging that applies the (isotropic)
kriging method locally to regions defined by a moving window across the ge-
ographical field. That is, for each location of interest, Haas’s approach first
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identifies a surrounding local region based on a fixed number of available data
points in the area and then obtains the kriging interpolator using the usual
isotropic models for the semi-variogram. The method is later extended to in-
clude temporal components (Haas, 1995) as well as multivariate responses
(Haas 1996). Since isotropy is only required in local regions, the modified
method can generally cope with nonstationary random fields. However, use of
the method entails a trade-off between the number of monitoring sites (obser-
vations) needed for reasonable estimates of the semi-variograms and the size of
the local regions. The larger the number of observations, the more precise are
the estimates but less tenable the isotropy assumption. Furthermore, as with
kriging in general, uncertainty associated with estimating the semi-variogram
cannot be accommodated in calculating such things as prediction intervals, a
fact whose significance increases as the amount of data dwindles.

In recent years, Bayesian approaches have been developed to overcome
these deficiencies. The uncertainty associated with covariance modeling is di-
rectly incorporated through prior distributions, in the derivation of the predic-
tive distribution of concentration levels at several locations of interest. Some
authors have developed Bayesian versions of kriging where uncertainty asso-
ciated with parameter estimation is accounted for, but generally the random
field is still assumed to be isotropic stationary (Kitanidis 1986; Handcock and
Stein 1993; Hjort and Omre 1994; De Oliveira et al. 1997; and Gaudard et al.
1999).

We, on the other hand, have adopted an alternative approach to kriging
where uncertainty about the covariance field, not assumed to be stationary,
is taken into account in the derivation of the predictive distribution (Le and
Zidek 1992). Our integrated framework has since been extended to embrace
multivariate responses with specific kinds of missing data patterns (Brown
et al. 1994a; Le et al. 1997, 2001; and Kibria et al. 2002). The covariance
field is assumed to have one of a rich class of multivariate conjugate priors
(Brown et al. 1994b) with the associated hypercovariance matrix estimated
by the Sampson and Guttorp method (see Chapter 6). We describe Bayesian
approaches in the next chapter.
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Bayesian Kriging

In these matters the only certainty is that nothing is
certain.

Pliny the Elder

Bayesian approaches to spatial interpolation, which tries to capture the un-
certainty referred to by Pliny the Elder, have been developed in recent years
to overcome limitations associated with their classical counterparts, especially
kriging and its variants. Specifically, classical methods lack the ability to in-
corporate model uncertainty, notably that associated with model parameters.
Moreover, they rely on the assumption of an isotropic covariance field that is
often unrealistic in environmental applications.

In general, the flexible Bayesian framework allows model parameters to
be treated as uncertain, that is, “random” in Bayesian parlance. Thus, in
deriving spatial predictive distributions the parameters are endowed with so-
called prior distributions representing the investigator’s personal knowledge
(or beliefs) about the parameters prior to observing the data.

Conjugate prior distributions, ones having the same functional form as the
associated likelihood and indexed by hyperparameters, prove a particularly
convenient choice. By varying their hyperparameters, a wide range of personal
beliefs can be represented. Moreover, their mathematical tractability simplifies
the derivation of the predictive distribution. Finally, although the advent of
Markov chain Monte Carlo (MCMC) methods have made feasible the use on
nonconjugate priors, using them comes with a heavy computational price. The
latter can prove prohibitive in some instances, for example, in the design of
monitoring networks or in the analysis of fields with large spatial domains.
Thus, conjugate priors retain an important role in modeling spatial fields.

The incorporation of prior distributions allows uncertainty associated with
model parameters to be accounted for in a natural way. Whereas classical
methods generate a point prediction (unless supplementary distributional as-
sumptions are tacked on), the Bayesian approach yields the full spatial distri-
bution as an intrinsic outcome. Thus, one gets not only the expectation of the
unmeasured response as a point prediction, but such things as its various quan-
tiles as well. This sort of bonus feature is particularly useful in environmental
health impact studies where adverse health effects can be caused by exposure
levels above certain thresholds or associated with different exposure indices
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such as daily one-hour maximum or eight-hour moving average. Indeed, the
Bayesian framework can handle arbitrarily complex exposure metrics since
their distribution can be simulated from the joint predictive distribution of
unmeasured responses.

Thus, the general solution to the spatial interpolation problem under the
Bayesian paradigm is the joint predictive distribution of the levels of the
random field at the locations of interest, given the data measured at the mon-
itoring sites, p(Y (s) | D). Here Y (s), a vector, represents the concentration
levels of the random field at a vector of locations s in the domain of the field.
At the same time, D represents the data obtained from the monitoring sites.
Assuming the concentration levels follow a joint distribution indexed by a set
of parameters θ, the predictive distribution is given by

p[Y (s) | D] =
∫
p[Y (s), θ | D]dθ

=
∫
p[Y (s) | θ, | D]p[θ | D]dθ.

The last equation reveals the (posterior) predictive distribution to be a
weighted average of the predictions conditional on various θs. The predic-
tive distribution can be decomposed into several components. First, future
responses can be predicted. Or spatial predictions at locations other than
where the gauged stations are situated can be obtained. Finally, unmeasured
historical values based on those that were measured can be predicted. This
latter application is called hindcasting particularly in oceanology for wind
and wave predictions. In all cases, prediction intervals (or ellipsoids) can be
derived. For example, a 95% simultaneous predictive interval (a, b), can be
obtained from the equation p(a < Y [u] < b | D) = .95. Although these predic-
tive intervals can be derived in closed form in some cases, generally numerical
approaches are needed.

Kitanidis (1986) published one of the first articles to use the Bayesian par-
adigm in spatial interpolation. In a hydrological context, the author develops
a theoretical framework for deriving the spatial predictive distribution with
a covariance field assumed to be known up to a scale parameter. Specifically,
assuming a Gaussian field in conjunction with a conjugate prior distribution
for the scale parameter, the author obtains a multivariate Student t distrib-
ution in closed form as the resulting predictive distribution. Kitanidis (1986)
derives the kriging estimator and its corresponding variance as special cases
of the (Bayesian) posterior mean and covariance matrix, thereby creating im-
plicitly the concept of Bayesian kriging. That is, if no prior information on
the parameter is available, then these Bayesian predictors become identical
to kriging predictors. More generally, Bayesian predictors have the advantage
that they can admit partial knowledge about the parameters.

Although a conceptually important development, the Kitanidis approach
lacks applicability due to the strong assumption of a covariance known up to
a scale parameter. Later, Handcock and Stein (1993) take a similar approach



8.1 The Kitanidis Framework*** 121

in an application to topographical data. They advance the Kitanidis theory
by assuming instead, that the covariance field can be represented by a specific
parametric functional form. More specifically, these authors use the isotropic
Whittle–Matern class of functions with unknown parameters to model the
covariance structure. In this framework, numerical integration is required to
obtain the posterior mean and covariance matrix. This development allows
the Bayesian kriging approach to have broader applicability, albeit with the
restriction to stationary Gaussian fields with isotropic spatial correlation.

The Handcock and Stein approach is subsequently extended by De Oliveira
et al. (1997) where the random fields need to be nonlinearly transformed to
have Gaussian finite distributions and uncertainty associated with such trans-
formations taken into account. Gaudard et al. (1999) develop computational
tools for obtaining spatial predictive distributions with arbitrary prior distri-
butions on the model parameters.

8.1 The Kitanidis Framework***

Bayesian kriging theory can be formulated starting from the framework stud-
ied by Kitanidis (1986). Consider a setting similar to that of universal krig-
ing described in Chapter 7, with Y (s1), . . . , Y (sg) being the random vari-
ables representing the field at g locations s1, . . . , sg, having measurements
y(s1), . . . , y(sg). Let Y (so1), . . . , Y (sou

) denote the random fields at u loca-
tions to be predicted.

8.1.1 Model Specification

Assume that for any location s in the field,

Y (s) = µ(s) + Z(s),

where µ(s) is a function of location, s is the deterministic component, and Z(s)
follows a Gaussian distribution with mean zero. Suppose the drift µ(s) can be
represented as a linear combination of known functions {fl(s), l = 1, . . . , k}
with unknown coefficient al,

µ(s) =
k∑

l=1

alfl(s).

In vector notation, the relationship can be expressed as

Y [g] = X [g]β + Z [g] (8.1)
Y [u] = X [u]β + Z [u],

where the superscripts g and u denote the monitored (gauged) sites and un-
monitored (ungauged) sites, respectively, with
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Y [g] = (Y (s1), . . . , Y (sg))T

Y [u] = (Y (so1), . . . , Y (sou))T

Z [g] = (Z(s1), . . . , Z(sg))T

Z [u] = (Z(so1), . . . , Z(sou))T

β = (a1, . . . , ak)T

and

X [g] =

⎛
⎜⎝
f1(s1) . . . fk(s1)

...
...

f1(sg) . . . fk(sg)

⎞
⎟⎠

X [u] =

⎛
⎜⎝
f1(so1) . . . fk(so1)

...
...

f1(sou) . . . fk(sou).

⎞
⎟⎠ .

The random components Z [g] and Z [u] have covariance matrices Qgg and
Quu, respectively, as well as a cross-covariance matrix Qug. These matrices
are assumed to be known up to a scale parameter. That is,

Qgg =
1
θ
Sgg Quu =

1
θ
Suu Qug =

1
θ
Sug, (8.2)

where the S matrices are known and θ is an unknown parameter vector.

8.1.2 Prior Distribution

The parameters β and θ are assumed to have conjugate prior distributions,
namely, the normal and gamma distributions. Specifically,

β | θ ∼ Nk

(
β0, (θF )−1) (8.3)

θ ∼ Gamma
(ν

2
,
νq

2

)
,

where Nk(µ,Σ) denotes the k-variate Gaussian distribution with density

f(x, µ,Σ) ∝ |Σ|−k/2exp

{
1
2
(x− µ)TΣ−1(x− µ)

}

and Gamma(r, λ) denotes the gamma distribution with density

f(x, r, λ) ∝ xr−1 exp {λx} .

The parameters indexing the prior distributions, {F, ν, q}, are the hyperpara-
meters. Here ν, q represent the shape of the prior distribution for θ and F , a
k × k matrix, representing the correlation among elements of β.
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8.1.3 Predictive Distribution

The spatial predictive distribution for Y [u] based on (8.1)–(8.3), given the
observed measurements y[g] ≡ (y(s1), . . . , y(sg))T , the hyperparameters, and
the known S matrices, is a u-variate Student t distribution with ν+ g degrees
of freedom having posterior mean

E
(
Y [u] | y[g]

)
=
(
X [u] − τX [g]

)
H−1Fβ0 + (8.4)(

τ +
(
X [u] − τX [g]

)
H−1

(
X [g]

)T

S−1
gg

)
y[g]

and posterior covariance matrix

V
(
Y [u] | y[g]

)
= l
(
Su|g +

(
X [u] − τX [g]

)
H−1

(
X [u] − τX [g]

)T
)

×

ν + g
ν + g − 2

, (8.5)

where

Su|g = Suu − SugS
−1
gg Sgu

τ = SugS
−1
gg

H = F + E

E =
(
X [g]

)T

S−1
gg X

[g]

l =
νq + ν̂q̂ +

(
b̂− b̃

)
E
(
b̂− b̃

)T

g + ν

b̂ = E−1
(
X [g]

)T

S−1
gg y

[g]

b̃ = (F + E)−1
(
Fβ0 + Eb̂

)
ν̂ = g − k

q̂ =

(
y[g]
)T
S−1

gg y
[g] − b̂TX [g]S−1

gg y
[g]

g − k .

A u-variate Student t distribution with mean µ, covariance matrix gV/(g−2),
and g degrees of freedom, denoted as tu(µ, V, g) has a density function given
by

f(x) ∝ |V |−1/2 [g + (x− µ)TV −1(x− u)
]−(g+u)/2

.

8.1.4 Remarks

1. Through the Bayesian framework, the posterior mean and covariance ma-
trix given in (8.4) and (8.5) take into account prior knowledge associated
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with model parameters expressed via hyperparameters F and ν. The non-
informative prior knowledge corresponds to the limiting case, F = 0 and
ν = 0. In this case, the posterior mean (8.4) reduces to the kriging inter-
polator as presented in Chapter 7. The posterior covariance matrix (8.5)
is then given by the kriging covariance increased by a scale factor g/(g−2)
with θ replaced by 1/l (see Kitanidis 1986 for details). Thus, kriging can
be considered as a special case of this Bayesian estimation framework.

2. Omre (1987) as well as Omre and Halvorsen (1989) take a slightly different
approach where the uncertainty associated with model parameters of the
covariance field is directly accounted for in the derivation of the kriging
variance. The approach is specifically termed Bayesian kriging by Omre
(1987). Hjort and Omre (1994) subsequently show that similar results can
be obtained by starting with Gaussian random fields and then deriving
the corresponding posterior moments.

8.2 The Handcock and Stein Method***

Handcock and Stein (1993) use a similar framework as that developed by Ki-
tanidis (1986) to examine the effect of uncertainty in the covariance function
on the prediction. Unlike the Kitanidis framework where the covariance field
is assumed known (up to a scale parameter), the key feature of the Hand-
cock and Stein approach is that the covariance field can be parametrically
represented by specific functional forms with unknown parameters. These hy-
perparameters can be estimated based on the available data or assumed to
follow specific prior distributions. Their derivation is for one unobserved loca-
tion although it should be easy to extend to multiple locations. The authors
illustrate the approach using a topographical data set.

Specifically, as in the Kitanidis framework and the universal kriging, it is
assumed the random field follows the model specification (8.1). That is,

Y [g] = X [g]β + Z [g]

Y [u] = X [u]β + Z [u],

where the superscripts g and u denote the monitored (gauged) sites and un-
monitored (ungauged) site so, respectively, with

Y [g] = (Y (s1), . . . , Y (sg))T

Y [u] = Y (so)

Z [g] = (Z(s1), . . . , Z(sg))T

Z [u] = (Z(so)

β = (a1, . . . , ak)T
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and

X [g] =

⎛
⎜⎝
f1(s1) . . . fk(s1)

...
...

f1(sg) . . . fk(sg)

⎞
⎟⎠

X [u] =
(
f1(so) . . . fk(so)

)
.

The random components, Z [g] and Z [u], are a zero-mean Gaussian process
with covariance matrix Qgg among the monitored sites and variance at the
un-monitored locations Quu, respectively, as well as a cross-covariance matrix
Qug. The covariance matrix of the combined ungauged and gauged sites can
be written as

Q =
(
Quu Qug

Qgu Qgg

)
.

Handcock and Stein (1993) then use the isotropic Whittle–Matern class,
with unknown parameters, to model the covariance structure as a parametric
function of interdistances between locations. That is, if qij denotes the (i, j)th
element of Q and covariance between locations si and sj , qij can be written
as

qij =
1
θ
Kη(|si − sj |).

Here |si − sj | denotes the distance between the locations and Kη(x) has the
general form

Kη(x) =
1

2η2−1Γ (η2)

(
x

η1

)η2

κη2

(
x

η1

)
(8.6)

where κη2 is a modified Bessel function of order η2 (Abramowitz and Stegun
1970). The two parameters η1 and η2 control the range of correlation and the
smoothness of the random field.

In terms of spatial correlations, denote

Qgg =
1
θ
Sgg Quu =

1
θ
Suu Qug =

1
θ
Sug.

The elements of Ss represent the spatial correlations between the locations;
that is, the (i, j)th element of S is Kη(|si − sj |).

Under the assumption that the prior distribution, pr(β | η, θ), is locally
uniform and θ has a Jeffrey’s invariant prior, Handcock and Stein (1993) show
that the predictive distribution of Y [u] given the observed data at the moni-
tored locations is a Student t distribution for a given value of hyperparameter
η.

The distribution is specified by

Y [u] | Y [g], η ∼ tg−k

(
Ŷ [u],

g

g − k θ̂Vη, ν

)
, (8.7)
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where

Ŷ [u] = τY [g] +
(
X [u] − τX [g]

)
β̂

τ = SugS
−1
gg

β̂ =
((
X [g]

)T

S−1
gg X

[g]
)−1 (

X [g]
)T

S−1
gg Y

[g]

Vη =

(
Su|g +

(
X [u] − τX [g]

)((
X [g]

)T

S−1
gg X

[g]
)−1 (

X [u] − τX [g]
)T
)

Su|g = Suu − SugS
−1
gg Sgu

θ̂ =
(
(Y [g] −X [g]β̂)S−1

gg (Y [g] −X [g]β̂)′
)−1

.

When the hyperparameter η for the Matern covariance function is known,
the predictive distribution (8.7) is completely specified. In the case where η is
unknown, a prior distribution can be imposed. The predictive distribution is
then generally not simplified and numerical methods are required for evalua-
tion. Handcock and Stein (1993) illustrate the method through an application
of topographical data and perform a sensitivity analysis with respect to the
choice of priors. Their results suggest that the approach is reasonably robust.
More details can be found in Handcock and Stein (1993).

Recently the Handcock and Stein approach has been extended to more
general settings by Gaudard et al. (1999). The authors develop a Bayesian
kriging framework for stationary processes that allows for arbitrary prior dis-
tributions and use the recent advents in Markov chain Monte Carlo method-
ologies for analysis. This MCMC-based approach for dealing with stationary
spatial processes is well covered in the recent book by Banerjee et al. (2004)
and is not covered here to due to space availability. The Handcock and Stein
approach has also been extended to deal with non-Gaussian random fields by
De Oliveira et al. (1997) which is described in the next section.

8.3 The Bayesian Transformed Gaussian Approach

In environmental applications, the random fields are often non-Gaussian and it
is hence necessary to transform the variables to satisfy the normality assump-
tion required in the formulation of the Bayesian kriging framework described
above. De Oliveira et al. (1997) extend the Handcock and Stein approach
to incorporate such a transformation into the Bayesian kriging framework to
cope with the non-Gaussian random fields. Their approach, termed Bayesian
Transformed Gaussian (BTG), starts by assuming the transformed response
variable follows a Gaussian distribution, then deriving its predictive distrib-
ution similar to the Hancock and Stein results and ends by converting the
derived predictive distribution to that of the untransformed response vari-
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able. Uncertainty about the transformation can be incorporated in the last
step although numerical methods are required for implementation.

The approach requires the transformation to belong to a parametric fam-
ily of monotone transformations. Thus this approach, unlike trans-Gaussian
kriging (Cressie 1993), avoids the selection of one specific transformation. It
is well-known that using a single transformation may lead to bias in predic-
tion since the selection could be substantially affected by a few influential
data points (see Atkinson and Shepard 1996). The BTG approach takes into
account the uncertainty associated with the transformation operation. The
approach is hence partially robust against model misspecification.

8.3.1 The BTG Model

Denote the random field by

Y [g] = (Y (s1), . . . , Y (sg))T

Y [u] = (Y (so1), . . . , Y (sou))T ,

where the superscripts g and u denote the g monitored sites (s1, . . . , sg) and
the u unmonitored site (so1 , . . . , sou

), respectively.
Let G = {hλ(.) : λ ∈ R} be a parametric family of transformations where

hλ(.) is a monotone transformation for a given λ and the first derivative
g′

λ(x) = (∂/∂x)hλ(x) exists and is continuous. The Box–Cox power transfor-
mation is an example of such families (Box and Cox 1964) defined as

hλ(x) =
{

xλ−1
λ if λ �= 0

log(x) if λ = 0.

Another example is that proposed by Aranda-Ordaz (1981) to transform pro-
portions defined as

hλ(x) =
{

log((1 − x)−λ − 1) − log λ if λ �= 0
log(− log(1 − x)) if λ = 0

for 0 < x < 1.
De Oliveira et al. (1997) assume that the transformed response follows a

Gaussian distribution given by(
hλ(Y [u])
hλ(Y [g])

| β, θ, η, λ
)

∼ Nu+g

((
X [u]β
X [g]β

)
,
1
θ
Sη

)
, (8.8)

where

β = (a1, . . . , ak)T

X [g] =

⎛
⎜⎝
f1(s1) . . . fk(s1)

...
...

f1(sg) . . . fk(sg)

⎞
⎟⎠
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X [u] =

⎛
⎜⎝
f1(so1) . . . fk(so1)

...
...

f1(sou) . . . fk(sou).

⎞
⎟⎠ .

Here Sη denotes the correlation matrix; that is, its elements represent pairwise
correlations between corresponding locations. The spatial correlation between
two locations si and sj is assumed to be isotropic and follow a known function
of the distance between the locations, i.e., Kη(|si − sj |) in (8.6).

8.3.2 Prior Distribution

De Oliveira et al. (1997) caution that the choice of the prior distribution
should be cautiously chosen since the interpretation of β, θ, and η depend
on the specific value of λ. For example, assuming the prior distribution for
these parameters to be independent could lead to nonsensical results since
the location and scale of the transformed response variable and the spatial
correlation are functions of λ (Box and Cox 1964).

Following suggestions by Box and Cox (1964), the authors assume the
prior distribution to be

p(β, θ, η, λ) ∝ p(η)p(λ)

θJ
k/g
λ

, (8.9)

where p(η) and p(λ) are assumed to be continuous and Jλ =
∏g

i=1 |h′
λ(y(si))|

is the Jacobian of the transformation for a given λ.
Another family of prior distributions proposed by Perrichi (1981) could

also be used where

p(β, θ, η, λ) ∝ p(η)p(λ)θk/2−1.

De Oliveira et al. (1997) use these two prior distributions in the data analysis
that yields essentially identical results in spatial prediction.

8.3.3 Predictive Distribution

Under the model (8.8)-(8.9), the predictive distribution for the transformed
response variable at the ungauged locations given the observed data at the
gauged sites and the hyperparameters (λ, η), is a k-variate Student t distrib-
ution (De Oliveira et al. 1997)

hλ(Y [u]) | η, λ, Y [g] ∼ tg−k

(
mλ,η,

g

g − k q̃λ,ηCη, ν

)
, (8.10)

where
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mλ,η = τhλ(Y [g]) +
(
X [u] − τX [g]

)
β̂

τ = SugS
−1
gg

β̂ =
((
X [g]

)T

S−1
gg X

[g]
)−1 (

X [g]
)T

S−1
gg hλ(Y [g])

Cη =

(
Su|g +

(
X [u] − τX [g]

)((
X [g]

)T

S−1
gg X

[g]
)−1 (

X [u] − τX [g]
)T
)

Su|g = Suu − SugS
−1
gg Sgu

q̃λ,η =
(
(Y [g] −X [g]β̂)S−1

gg (Y [g] −X [g]β̂)′
)−1

.

It is easy to see that this predictive distribution is identical to that given in
(8.7) derived by Handcock and Stein (1993) when no transformation is used;
i.e., hλ(x) = x.

For a general transformation, the predictive distribution of the untrans-
formed response variable can be derived using the distribution (8.10) and the
prior distribution of η and λ. Specifically, the predictive distribution can be
expressed as

p(Y [u] | Y [g]) =
∫ ∫

p(Y [u] | λ, η, Y [g])p(λ, η | Y [g])∂λ∂η. (8.11)

Generally the closed form for this predictive distribution is not available since
the integration involved is intractable and has to be done numerically. De
Oliveira et al. (1997) propose a numerical integration algorithm for this eval-
uation which is described next.

8.3.4 Numerical Integration Algorithm

The predictive distribution (8.11) can be rewritten using Bayes’ rules as

p(Y [u] | Y [g]) =
∫ ∫

p(Y [u] | λ, η, Y [g])p(Y [g] | λ, η)p(λ)p(η)∂λ∂η∫ ∫
p(Y [g] | λ, η)p(λ)p(η)∂λ∂η . (8.12)

Assuming the prior distributions p(λ) and p(η) to be proper, De Oliveira et al.
(1997) propose the following Monte Carlo approach to evaluate the expression:

1. Partition the effective range of Y [u] into a set S.
2. Generate m realizations from the prior distributions p(λ) and p(η); that

is,

simulate η1, . . . , ηm ∼iid p(η) and λ1, . . . , λm ∼iid p(λ).

3. For each value of z0 ∈ S, the approximation to p(Y [u] = z0 | Y [g]) is given
by

p̂m(z0) =
m∑

i=1

p(Y [u] = z0 | λi, ηi, Y
[g])w(λi, ηi),
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where

w(λi, ηi) =
p(Y [g] | λi, ηi)∑m
i=1 p(Y [g] | λi, ηi)

.

Here p(Y [u] = z0 | λi, ηi, Y
[g]) is the density of the predictive distribution

(8.10) evaluated at z0 and

p(Y [g] | λi, ηi) = c|Sgg|−1/2|(X [g])′S−1
gg X

[g]|−1/2q̃
−(g−k)/2
λi,ηi

J
1−(k/n)
λi

, (8.13)

where c is the proportionality constant and not relevant in the calculation
of w(λi, ηi).

It can be proved that as m −→ ∞, the approximation p̂m(z0) converges to
p(Y [u] = z0 | Y [g]) (Geweke 1989).

In the case that the prior distributions p(λ) and/or p(η) are improper, a
Markov chain Monte Carlo approach may be used (Tanner 1996). More details
can be found in De Oliveira et al. (1997).

8.4 Remarks

The Bayesian framework for interpolation described above overcomes sev-
eral deficiencies associated with classical kriging. It allows for uncertainty
associated with the parameters to be taken into account in the derivation of
the predictive distribution. It can be used to simultaneously predict random
field values at multiple locations, along with their corresponding error bands.
However, these developments still generally assume the field to be stationary
and/or isotropic. Such assumptions are mostly unrealistic for environmental
factors (Guttorp et al. 1993; Brown et al. 1994a; Le et al. 2001). On the other
hand, the recently proposed integrated framework for Bayesian spatial and
temporal interpolation starting with our work (Le and Zidek 1992) overcomes
this deficiency. In this integrated framework, unlike that of Kitanidis, the
spatial covariance field is left completely unspecified and hence stationarity
is not required. We originally derived our method for a univariate response
(Le and Zidek 1992) but have with coinvestigators subsequently extended it
to multivariate responses with various patterns of missing data (Brown et al.
(1994a); Le and Zidek 1994a; Le et al. 1997, 2001; and Kibria et al. 2002). Em-
pirical comparisons with real data using cross-validation suggests the method
works quite well (Sun et al. 1998). In particular, Sun (1998) demonstrates that
the multivariate Bayesian spatial predictors outperform cokriging, a variant
of kriging in a multivariate setting. The integrated frameworks for various
settings are described in the next chapter.
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Hierarchical Bayesian Kriging

The only relevant thing is uncertainty—the extent of
our own knowledge and ignorance.

Bruno de Finetti

In accord with de Finetti’s comment uncertainty (and ignorance!) abound
in environmental science. So analysis must fully embrace it. The approach
featured in this chapter seeks to do just that in the analysis of environmental
processes.

The kriging approach (Krige 1951, see Chapter 7) has been very successful
in spatial interpolation (or prediction) for geological applications. There ran-
dom fields are quite homogeneous with respect to spatial correlation. That fact
has made success possible in spite of a paucity of data, there being just one
single realization typically available at each of the limited number of locations
due to the substantial cost of making measurements.

However, in environmental application spatial interpolation problems are
quite different. There the random fields are generally quite heterogeneous.
They often change over time adding temporal components to the interpo-
lation problem. Moreover, they are influenced by meteorology, making pre-
diction challenging. Finally concentration levels at each monitored location
are often measured sequentially over time, yielding more data but additional
complexity. Historically due to a lack of practical alternatives, kriging has
been used. However, its success has been limited by the heterogeneity of these
random fields. The assumption of an isotropic covariance structure is simply
not tenable as demonstrated in several applications presented in the literature
(Guttorp et al. 1993; Brown et al. 1994a; Le et al. 1997, 2001; Kibria et al.
2002). This deficiency also presents itself in the Bayesian kriging approaches
described in Chapter 8 since they too rely on that crucial assumption.

In recent years a Bayesian alternative to kriging has been developed for
use in environmental settings where the assumption of isotropy is not realis-
tic. These developments (see Le and Zidek 1992, hereafter LZ), based on an
integrated Bayesian hierarchical framework, overcome deficiencies associated
with kriging and its Bayesian variants.
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Homogeneous Subdomains

A key initial step is the subdivision, if necessary, of the region of interest into
relatively homogeneous subregions. These subdivisions can flow from struc-
tural factors. For example, if a study concerns a number of distinct commu-
nities, community could be the partitioning factor. Alternatively, that factor
could be topographical zone if a region were divided by, say ridges of higher
elevation. Other such factors include meteorological regime and catchment
area. Alternatively partitioning can be done on a statistical basis as in Wu
and Zidek (1992) who cluster a large group of sites (and in turn the region)
on the basis of data they generated in the past.

Ideally the random field should be pretty well described by a common tem-
poral model. For example, at all sites within a subregion the field should have
similar time trends. They should be predicted by a common covariate model,
temperature being an example of a covariate for ozone concentrations over
an urban area. Moreover, after subtracting the common trend and covariate
model, the resulting field of residuals should be approximately second-order
stationary at all sites and be approximately described by a single time-series
model. For example, the residuals at each site could be a zero mean autore-
gressive process of order 1 (AR(1)).

Provided the subregions are not too small, enough data will be available
to accurately estimate the common coefficients in the shared models. In fact
Savage’s principle of precise measurement (see Savage 1971) can be used to
justify doing so even within a Bayesian framework. Prior modeling can thus be
avoided at this stage. Moreover, if the partitioning strategy has been effective,
removal of all the shared components from the original field, as demonstrated
in Chapter 14, will leave a much simpler residual random field to model.
The approach avoids the necessarily high cost of a complex approach such as
dynamic linear modeling described in Section 5.3 (West and Harrison 1999),
with its heavy computational burden.

The subdivisions can be surprisingly large in some cases. For example,
the PM10 field over the Northeastern United States is extremely flat; a single
subdivision will cover a very large area. In his study of acid deposition fields,
Sun’s single subdivision is even larger (Sun 1998).

At the same time, as demonstrated in ensuing developments, the theory
does not need the strategy above to completely achieve its ideal result. For
one thing it has the capacity to admit trend and covariates on a site by site
basis. As well, the flexibility of the multivariate spatial predictor enables us
to avoid modeling short-term (and hence complex) autocorrelation structures,
as might be seen in hourly average concentrations, for example. Anyway we
now assume this preliminary analysis has been completed.

Modeling Trend and Covariance

Specifically our approach assumes, in the first level of the Bayesian hierar-
chy, that the (suitably transformed) random field follows a finite-dimensional
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Gaussian distribution, its mean function depending on an unknown parame-
ter or parameter matrix B. The corresponding covariance field Σ is given no
specific structure. At the second level of the hierarchy, conjugate prior distri-
butions are adopted for the parameters B and Σ. The predictive distribution,
conditional on hyperparameters, is then derived from the prior distribution.
The method turns out to be very general, accommodating such things as
trends and seasonality in the mean function while allowing model misspecifi-
cation to be corrected as data become available. Model uncertainty has been
incorporated in the posterior predictive distribution which is thereby made
robust against model misspecification.

The LZ method can deal with random fields having nonstationarity spa-
tial features since the predictive (posterior) distribution is derived without any
specific structures necessarily required for the hyperparameters. Such features
can be captured in the estimation of the hypercovariance matrix using, for
example, the Sampson and Guttorp method (see Section 6.5.1) for estimat-
ing nonstationary spatial covariance structure as demonstrated in Chapter 2.
Given the hyperparameters, the resulting predictive distribution is a product
of multivariate t-distributions and hence is completely specified (Le and Zidek
1992). The LZ approach has since been extended to multivariate responses.
At each monitoring station, a set of environmental responses is measured, yet
not all stations need to measure the same set. In fact the methodology can
cope with a variety of missing data patterns (Brown et al. 1994a; Le et al.
1997, 2001; Kibria et al. 2002).

Hierarchical Approach

The value of the hierarchical approach embodied in this integrated framework,
unlike that of Kitanidis (1986) among others, lies in its lack of restriction on
the form of the Σ. In particular, the random field need not be stationary.
The covariance structure can be modeled at the second level through the
hyperparameters, i.e., B and Σ. Past and future data will then update these
prior models through Bayes rule to achieve increasingly more realistic versions
of their level-one counterparts B and Σ. In any case, the uncertainty about
the level-one parameters B and Σ is reflected in the predictive distribution
given above. Consequently, prediction intervals will realistically account for
that uncertainty through the heavy-tailed Student-t distributions.

At level two of the hierarchy, parametric models may be specified to ac-
commodate the remaining prior knowledge about the random field under con-
sideration. This will leave some additional (third-stage) hyperparameters un-
specified.

If a strictly Bayesian approach were taken, another distribution would be
added to the hierarchy to represent the uncertainty about these hyperpara-
meters. One such approach would be a robust Bayesian approach such as that
of Pilz (1991).
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Why Empirical Bayes?

Another would be the use of a diffuse prior on the hyperparameters. However,
the latter would also be un-Bayesian and could lead to un-Bayesian charac-
teristics of the posterior distribution (Dawid et al. 1973). But the simplest
option is to estimate the hyperparameters from the marginal distribution of
the data conditional on them—the empirical Bayes solution. For one thing, the
predictive distribution will not be especially sensitive to the choices made of
these hyperparameters (Haitovsky and Zidek 1986). In addition the approach
would allow for the priors to be matching priors in the sense that the poste-
rior predictive intervals would be well calibrated. That is, 95% intervals would
contain the true response about 95% of the time. Meeting that requirement is
absolutely crucial and there seems to be no other way given the complexity of
the models involved. Finally this empirical Bayes solution would help in de-
signing environmental monitoring networks where computational simplicity is
essential.

This chapter offers a mathematical derivation of the integrated framework.
That derivation starts with a relatively simple setting where at each station
in the monitoring network, univariate measurements (for example, for a spe-
cific pollutant) are collected at regular intervals over the same period. A more
general setting that reflects practical problems encountered in environmetrics
is given, specifically where the observed data follow a monotone pattern. This
pattern can arise when data from different monitoring networks have been
combined in a single network to improve the performance of spatial interpola-
tors. The method has also been extended to cope with multivariate responses
where multiple responses are measured at each monitoring station with dif-
ferent starting times of operations. The simple case with only two blocks for
univariate and multivariate responses is presented in this chapter. The nota-
tionally challenging general case, with more than two blocks is described in
the next chapter along with the corresponding parameter estimation methods.

9.1 Univariate Setting

Suppose g locations where levels of a univariate random field are completely
observed over time and a further u locations where prediction is required as in
Figure 9.1 are considered. Let Yt be a p-dimensional (i.e., strung out) random
row vector denoting the random field at time t. The first u coordinates are
those with no data available (ungauged locations) and the remaining g coor-
dinates are those yielding the data (the gauged stations), yt(s1), . . . , yt(sg) for
t = 1, . . . , n. The vector Yt can be partitioned accordingly as Yt ≡ (Y (u)

t , Y
(g)
t ),

where Y (u)
t corresponds to the responses at the u locations without observa-

tions and Y (g)
t corresponds to those at the g monitoring locations.
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Ungauged Sites
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n

Fig. 9.1. Diagram
for the observed data
(o) at monitoring
stations and the un-
observed data (×) at
locations of interest.

9.1.1 Model Specification

Suppose the random variables {Yt}, assumed to be independent over time,
follow a joint Gaussian distribution; i.e.,

Yt | zt, B,Σ
independent∼ Np(ztB,Σ), (9.1)

where Np(µ,Σ) denotes the p-dimensional Gaussian distribution with mean
µ and covariance matrix Σ. Here zt ≡ (zt1, . . . , ztk) denotes a k-dimensional
row vector of covariates and B, a (k×p) matrix of regression coefficients with
p = u+ g,

B =

⎛
⎜⎝
β1,1 · · · βp,1

...
β1,k · · · βp,k

⎞
⎟⎠ ≡

(
B(u) B(g)

)
,

partitioned in accord with the partitioning of Yt. The covariates are allowed
to vary with time but they must be constant across sites. In contrast, the
corresponding regression coefficients may vary over sites.

The covariance matrix Σ is partitioned accordingly as

Σ =
(
Σuu Σug

Σgu Σgg

)
.

Here the matrices Σgg and Σuu denote the covariances of Y (g)
t and Y (u)

t ,
respectively. The matrix Σug represents the corresponding cross-covariance.
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Prior Distribution

Assume B and Σ have conjugate prior distributions (see, for example, Ander-
son 2003, page 272),

B | Bo, Σ, F ∼ Nkp

(
Bo, F

−1 ⊗Σ
)

(9.2)

Σ | Ψ, δ ∼ W−1
p (Ψ, δ), (9.3)

where W−1
p (Ψ, δ) denotes the p-dimensional inverted Wishart distribution

with scale matrix Ψ and m degrees of freedom; it is proper if p < m.
With this prior model, F , Bo, and Ψ are hyperparameter matrices, respec-

tively, of dimensions k × k, k × 1, and p× p.
It is convenient to reparameterizeΣ as (Σgg, Σu|g, τ) whereΣu|g is a (u×u)

matrix denoting the residual covariance of Y (u)
t -residuals after optimal linear

prediction based on Y (g)
t ; it is given by

Σu|g ≡ Σuu −ΣugΣ
−1
gg Σgu.

The (g×g) matrix Σgg is the covariance matrix of Y (g)
t and τ , a (u×g) matrix

representing the slope of the optimal linear predictor of Y (u)
t based on Y (g)

t

given by

τ ≡ ΣugΣ
−1
gg .

This 1–1 transformation is achieved through the well-known Bartlett decom-
position (Bartlett 1933) given in Appendix 15.2.

Using these new parameters, the conjugate prior distribution (9.3) for Σ
can be equivalently presented as

Σgg | Ψ, δ ∼ W−1
g (Ψgg, δ − u) (9.4)

Σu|g | Ψ, δ ∼ W−1
u (Ψu|g, δ)

τ | Σu|g, Ψ ∼ Nug(τo, Σu|g ⊗ Ψ−1
gg ).

Here (Ψgg, Ψu|g, τo) denotes the decomposition of the prior parameter matrix
Ψ analogous to that of Σ; that is, τo = ΨugΨ

−1
gg and Ψu|g = Ψuu −ΨugΨ

−1
gg Ψgu.

Moreover, Σgg is independent of (Σu|g, τ) when the prior distribution is
proper. See, for example, Caselton et al. (1992) for a more detailed derivation.

9.1.2 Predictive Distribution

Let D =
{

(y(g)
1 , z1), . . . , (y

(g)
n , zn)

}
be the observed responses, in other words,

the data. That is, given the covariate zts, the {y(g)
t }s are independent realiza-

tions of

Y
(g)
t | B,Σ, zt ∼ Ng(ztB(g), Σgg) (9.5)

corresponding to the second component of the Yt in model (9.1). That is,
D represents the partially observed data with no observations for the first
u-coordinates.
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We now describe the joint spatial predictive distribution of the random
vector Yf , representing the spatial field at a future time f . That distribution
must be conditional on all the available data D along with the new covariate
vector zf . It is described by (9.1) and given in the next theorem (see Le and
Zidek 1992).

First, define B̂(g) and S as follows.

B̂(g) = A−1C (9.6)

S =
n∑

t=1

(y(g)
t − ztB̂(g))T (y(g)

t − ztB̂(g));

here

C =
n∑

t=1

zT
t y

(g)
t (9.7)

and

A =
n∑

t=1

z′
tzt,

B̂(g) and S being, respectively, the usual least-squares estimates of B(g) and
the residual sum of squares in the regression setting.

Partition the prior matrix Bo in a manner analogous to B, as
(
B

(u)
o , B

(g)
o

)
.

Let the prior distributions of B and (Σgg, Σu|g, τ) be defined as in (9.2) and
(9.3) or equivalently (9.4); tr denotes the r-variate t-distribution as described
in Appendix 15.1.

The predictive distribution can now be stated. However, before doing so,
some additional notation is helpful and it is introduced next.

Degrees of Freedom

First, we need degrees of freedom, l = δ+n−u−g+1 and q = δ−u+1. Here
l represents those of the marginal distribution of the observable responses,
and q, those of the conditional distribution of the unobservable responses
conditional on the observable ones. Both share δ, an integer that comes from
the priors. That integer represents how much hypothetical prior data went
into constructing them. To see this, note that n, the number of independent
sample records, and δ have symmetrical roles in the calculation of l.

Specifying δ is part of the difficult general problem of eliciting meaning-
ful priors in complicated situations, here modeling space–time processes. Al-
though, progress is being made on that front, we have chosen instead to let
the data help with its specification. In any case, l and q must be positive to
ensure that nondegenerate predictive distributions obtain “at the end of the
day.”

Notice that l and q decrease as u increases. This important observation
points anew to the well-known adage, “There is no such thing as a free lunch.”
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This means that with a fixed amount of data, the number of locations at which
unmeasured responses can be predicted is bounded. Although this point seems
completely obvious, it has gone largely unrecognized and generally spatial pre-
dictions have been made seemingly without limit. How has this been possible?

The answer can be found in the prediction intervals. These have usually
been computed as if the prediction were being made at just a single point, i.e.,
as if u = 1. In fact, simultaneous confidence intervals are needed to achieve a
simultaneous coverage probability of, say 95%. (As we show in Section 10.8,
these can be easily found within the ambit of our theory via confidence el-
lipsoids.) These simultaneous intervals increase in width as u increases to the
point where the (simultaneous) predictions will be seen as completely unreli-
able, even though at each point they may be sensible.

So how can this conundrum be resolved? The answer lies in the purpose
to which these predictions are put. If the decision-maker really needs these
predictions to be simultaneously valid, as say when computing some quantity
based on an aggregate of them, then he will only be able to make a small
number of them reliably.

That point must be borne in mind in implementing our theory with a
fitted δ. In fact, we have deliberately included a third-level prior for this
hyperparameter to give the investigator some control over its size. However,
q will always come out to be positive so the naive user can artificially push δ
up by merely picking a bigger u, and seemingly, enjoying that free lunch!

Notice that in l, g of the δ + n degrees of freedom are paid for including
that many gauged sites. This loss results from the growth in model uncertainty
as the number of responses (sites) owing to the increase in the number of
parameters lurking in the distribution model. That uncertainty drains some
of the gains in certainty that accrue from the data, a seemingly natural result.
However, we were greatly surprised by the simplicity and elegance of this little
formula for l that captures the subtle trade-off being made.

The reader might well be surprised that n does not appear in q as it does
in l. Why not? The important answer to this question bears emphasizing
and stems from the nature of the inverted Wishart conjugate prior we have
adopted. It makes that posterior distribution for the unobserved responses
independent of the data! Of course, if we had added another layer of prior
modeling to our hierarchy, this apparent deficiency would have been rectified.
However, our more pragmatic strategy accomplishes the same thing, albeit
implicitly, since we have chosen to estimate the hyperparameters, including δ.
Hence, n does implicitly come into the formula for q and the other elements
of the posterior predictive distribution that rely on the hyperparameters.

Weights

Another in the cast of notational characters that play fundamental roles is
W = (A + F )−1F−1. Recall that Z =

∑n
t=1 z

′
tzt plays the same role as the

famous X ′X matrix in ordinary linear regression. In particular, A−1 would
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determine the covariance of the vector of coefficients in the linear model re-
lating the observations at the monitoring sites to their covariates, if ordinary
least-squares were employed to fit that model.

However, in our Bayesian framework, we must also incorporate the prior
counterpart of the A−1, namely, F−1. That need leads us to the matrix of
weightsW given above. It tells us how much weight, roughly speaking, should
go on the prior mean B(g)

o matrix of coefficients of the linear model for the
gauged, i.e., monitoring, sites. In contrast, the counterpart of W , I − W ,
gives the weights to be put on the least-squares estimate of those coefficients,
namely, B̂(g). In fact, we might anticipate the result below that the poste-
rior mean is a combination of the prior mean matrix and the least-squares
estimated matrix.

That concludes our presentation of basic notation. Now we are ready for
the predictive distribution itself.

Predictive Distribution

The predictive distribution of Yf =
(
Y

(u)′

f , Y
(g)′

f

)
conditional on the covariate

vector zf and prior parameters Bo and (Ψgg, Ψu|g, τo), is

Y
(g)
f | D ∼ tg

(
µ(g),

c

l
Ψ̂gg, l

)
(9.8)

Y
(u)
f | Y (g)

f = y(g)
f , D ∼ tu

(
µ(u),

d

q
Ψu|g, q

)
, (9.9)

where, with the notation discussed above, we have the constants,

c = 1 + z(A+ F )−1zT

d = 1 + zF−1zT + (y(g)
f − zfB(g)

o )Ψ−1
gg (y(g)

f − zfB(g)
o )T

q = δ − u+ 1

and

Ψ̂gg = Ψgg + S + (B̂(g) −B(g)
o )′(A−1 + F−1)−1(B̂(g) −B(g)

o ).

µ(g) = (I −W )B̂(g) +WB(g)
o

µ(u) = zfB(u)
o + τo

(
y
(g)
f − zfB(g)

o

)
. (9.10)

Le and Zidek (1992) derive this result and an alternative proof can be obtained
as a special case of that given in Appendix 15.4.

Here the posterior covariance matrix, Ψ̂gg up to a scale factor, includes
contributions from the prior distribution (Ψgg), the observations (S), and the
model. The posterior means µ(g) and µ(u) include contributions from the prior
distribution and the observations.
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Remarks

• B̂(g), S, C, and A are given in Equations (9.6) and (9.7). Thus, given the
hyperparameters {Bo, F, Ψ, δ}, the predictive distribution is completely
characterized as a product of two Student’s t-distributions. For a specified
time f , where 1 ≤ f ≤ n (i.e., when the measurements are available at
the g gauged stations), the predictive distribution for the ungauged loca-
tions is given by (9.9). The resulting predictive distribution has a heavier
tail than that of the Gaussian distribution, reflecting the incorporation of
the uncertainty associated with the model parameters through the prior
distributions.

• The incorporation of the observed data, the model, and the prior knowl-
edge is demonstrated in the predictive distribution. In particular, the con-
tribution of the data to the predictive distribution can be seen in its pa-
rameters. The mean of the predictive distribution at the gauged sites is a
weighted average of the best linear estimate based on the observed data
and the prior mean. On the other hand, the mean associated with the
ungauged stations is the best linear predictor based on the observed data
and the prior knowledge. The matrix Ψ̂gg reflecting the covariances be-
tween the gauged sites, is the sum of the corresponding prior matrix, the
sample residual sum of squares, and that from the prior model.

• It is important to note that we impose no stationarity restriction on the
form of Σ in deriving the predictive distribution. Hence the covariance
structure of the random field can be incorporated in the modeling of Ψ .
Methods for estimating the hyperparameters {Bo, F, Ψ, δ}, in particular,
for incorporating nonstationarity features in the estimation of Ψ , are given
in Chapter 10.

• The regression model specification (9.1) allows time-varying covariates.
This enables trend and seasonality to be incorporated directly into the
derivation of the predictive distribution; there is no need to remove them
in an ad hoc preliminary analysis. Furthermore, the regression coefficients
are allowed to vary from location to location to account for location-specific
strengths of the trend and seasonality.

• The integrated framework can be modified to incorporate in zt, spatial
modeling coordinates fl(si), i = 1, · · · p, and l = 1, · · ·L, where the fls
are specified functions and si represents the location of station i. These
spatial modeling coordinates are used in the universal kriging approach
described in Section 7.2. Such spatial models may well be important in
applications such as those of geostatistics. These models may also be useful
in some kinds of environmental interpolation which are intrinsically local
in nature. However, they do not seem useful for environmental problems
generally where the measured responses are produced by macroscale space–
time processes. In these situations local coordinates have little explanatory
value (for a discussion, see Wu and Zidek 1992).
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9.2 Missing Data

Missing data present an extreme form of measurement error but one that
inevitably presents itself in any scientific investigation. They go missing for a
variety of reasons. One project involving the authors saw hourly measurements
systematically missing at 2am each day. Further investigation revealed that to
be the time when the measuring device was shut down for recalibration! High
marks for instrument accuracy, but that missing hour proved an obstacle to
the analyst since statistical software commonly requires complete data sets.
What should the analyst do about them?

Various answers can be given and we touch on a few in this section. How-
ever, much has been written on this topic (see Little and Rubin 1987).

Obviously, filling in the missing values with real measurements would be
ideal. But that has never been possible in our experience. If computation time
is not an issue, then hierarchical Bayesian models embracing the Kalman filter
(dynamic linear model) can admit any pattern of missing measurements in a
partially observed space–time process, simply as unknown quantities. The
analysis can proceed without them.

In fact, this approach also provides a predictive distribution for the missing
values that can be used to impute them if necessary, as the mean of that
distribution along with, say 95% prediction intervals. If the latter cannot be
computed due to the intractability of that distribution, multiple imputation
can be used to repeatedly impute those values and hence characterize their
uncertainty. That can be done as part of an MCMC run, for example.

In general this very appealing approach does not work in problems even of
moderate size where perhaps dozens of sites yield hourly measurements over
an entire summer. The computation becomes too demanding even on very
high-speed processors. Therefore, other methods are commonly used to fill
them in. One approach uses the EM algorithm. However, that may not work
because of the analytical difficulties involved. In fact, the technical analysis
can be very involved; some models are just not very tractable.

Ad hoc methods are most commonly used. One of these uses linear spatial
regression. Suppose the measurement at hour t is missing at site i. Assume
data are available at that hour for a nonempty set of other sites S (which
varies with site and time). Now find the times other than t when all those sites
including i had nonmissing measurements. Using those data, fit a regression
model with site i’s response as the predictand. Use the fitted model to predict
the missing value for site i at time t. In fact, that response can be imputed
at random from a normal with mean equal to the fitted value and variance,
the estimated residual regression variance.

Of course, for some (t, i) pairs the data will be missing at all other sites.
In that case it may be possible to fit a time-series model for that site and fill
in the data using that model as the predictor. When all else fails, it may be
necessary to fill in the missing value with an appropriate average of values
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that “neighbor” the missing one in some appropriate sense, again at random
to maintain the variance in the observed values.

Fortunately two commonly seen patterns of missing data can be conve-
niently addressed by the hierarchical Bayes approach developed in this book.
(Some data may have to be selectively imputed to achieve one of them.) The
first pattern, addressed in the next section, is generally called monotone miss-
ing . We refer to this as the staircase pattern. Within the staircase pattern, a
second pattern of missing data may arise in the case of multiple responses.
That pattern, called systemically missing data (Le et al. 1997) arises when
the different responses are measured by design at the difference sites. The re-
sulting data are sometimes referred to as misaligned. For any given step, each
site has a multiplicity of responses, some of which are unmeasured throughout
the time period spanned by that step. We emphasize just the first of these
patterns in this chapter and leave the second to Chapter 10 (Section 10.7).

9.3 Staircase Pattern of Missing Data

In many applications, data from different networks with stations having dif-
ferent operational periods must be combined in spatial prediction. Even in
single networks, stations may be added over time, resulting in their having
different starting times of operation. After appropriately reordering the sta-
tions in this situation, the data matrix will have a staircase structure. That is,
when the data are reassembled in an increasing order of operational periods,
the data matrix appears to be an ascending staircase as displayed in Figure
9.2. Each step of the staircase consists of stations with the same start-time.
The spatial interpolation objective remains as it was, to obtain the predictive
distribution of the random field at locations of interest given the observed
responses (data).

Solutions for spatial–temporal interpolation problems having this staircase
data structure have been derived by Le et al. (2001). As in the simple setting
of no missing data, the authors assume the response vector follows a Gaussian
distribution (perhaps after transformation of the raw data). The novelty of this
work lies in its incorporation of a general conjugate prior distribution for the
covariance matrix, namely a generalized inverted Wishart distribution (GIW).
As its name suggests, this distribution, discovered by Brown et al. (1994b)
generalizes the well-known inverted Wishart distribution. It overcomes one of
the latter’s main limitations, its single degrees of freedom parameter. The in-
verted Wishart works that single parameter pretty hard, making it represent
all the uncertainty associated with a positive random matrix (the covariance
matrix in this case). In contrast, the GIW distribution has a multiplicity of
such parameters to represent that uncertainty. The extension proves useful in
environmental applications; one may have different levels of prior knowledge
about the covariance structures in different geographical subregions. More-
over, for the staircase, the GIW distribution allows the modeler to express
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Fig. 9.2. Diagram
for observed data
(o) at monitoring
stations having a
monotone pattern
and unobserved data
(×) at locations of
interest.

different levels of uncertainty for its steps. That feature accords with common
sense. Less would be known about regions where stations have only recently
been established. Under the Gaussian-generalized inverted Wishart model for
this staircase structure, the resulting predictive distribution is a product of
matric-t distributions (Le et al. 2001). However, the mathematical work in the
general case of several blocks entails a heavy burden of notation that obscures
the main ideas (see Chapter 10). Thus, we present the simpler case of two
blocks where we hope the key ideas are clearer.

9.3.1 Notation

Consider a special case where k = 2 as illustrated in Figure 9.2, i.e., a two-
block setting for the data. Let g1 and g2 denote the numbers of monitoring
stations in Blocks 1 and 2, respectively, with g = g1 + g2. In turn, m1 and m2
are the numbers of missing responses in each of the two blocks.

Denote the response variables at the gauged and ungauged sites by

Y ≡
[
Y [u], Y [g]

]
≡
[
Y [u], Y [g1], Y [g2]

]
,

where:

• Y [u] : n× u denotes the matrix of responses at ungauged sites;
• Y [g] : n× g denotes the matrix of responses at all gauged sites;
• Y [gj ] : n× gj denotes the matrix of responses for the jth block, j = 1, 2.

Partition the responses Y [gj ] into missing and observed components as
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Y =
[
Y [u],

(
Y [gm

1 ]

Y [go
1 ]

)
,

(
Y [gm

2 ]

Y [go
k]

)]
,

where:

• Y [gm
j ] : mj ×gj denotes the matrix of missing responses at the gauged sites

in the jth block, for j = 1, 2;
• Y [go

j ] : (n−mj)×gj denotes the matrix of observed responses at the gauged
sites in the jth block.

In other words, each row of Y represents the observed (o) and unobserved,
i.e., missing (m) responses at a specific time; here the superscript b in [gb

a]
is either o or m accordingly as the responses are observed or missing. At the
same time, the subscript, a = 1, 2, designates the block number.

Suppose l time-varying covariate responses Zt = (Zt1, . . . , Ztl)T obtain
at each timepoint t. Temperature measured at a central site would be an
example. Assume they are constant across all sites. Let

Z =

⎛
⎜⎝
ZT

1
...
ZT

n

⎞
⎟⎠ .

Partition the l× (u+ g) coefficient matrix β corresponding to the l covariates
and covariance matrix Σ of dimension (u + g) × (u + g) over gauged and
ungauged sites as

β = (β[u],β[g]) and Σ =
(
Σ[u,u] Σ[u,g]

Σ[g,u] Σ[g,g]

)
.

The coefficient matrix β[g] corresponding to the gauged sites is further parti-
tioned in conformance with the block structure as

β[g] = (β[g1],β[g2]).

Likewise partition the covariance matrix Σ[g,g] as

Σ[g] =
(
Σ[g1,g1] Σ[g1,g2]

Σ[g2,g1] Σ[g2,g2]

)
.

The following 1–1 transformation (Bartlett 1933) of the matrixΣ simplifies
the derivation.

Σ22 = Σ[g2,g2],

Γ 1 = Σ[g1,g1] −Σ[g1,g2)](Σ[g2,g2])−1Σ[g2,g1],

τ1 = (Σ[g2,g2])−1Σ[(g2,g2),g1].
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9.3.2 Staircase Model Specification

The response matrix Y is assumed to follow a Gaussian-generalized inverted
Wishart model. Specifically, using the notation described above,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Y | β, Σ ∼ N(Zβ, In ⊗Σ),

β | Σ,β0, F ∼ N(β0, F
−1 ⊗Σ),

Σ ∼ GIW (Ψ, δ),

(9.11)

where N(·, ·) denotes the Gaussian distribution, β0 is the l× (g+u) hyperpa-
rameter mean matrix of β, F−1 is an l×l positive definite matrix representing
the variance component of β between its l rows, and Z is the matrix of co-
variates. GIW represents the generalized inverted Wishart distribution with
Ψ being a collection of hyperparameters and δ = (δ0, δ1, δ2)T representing
degrees of freedom, as described in Appendix 15.1.

That is, the above GIW distribution is defined, through the Bartlett de-
composition, in a stepwise fashion starting with⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Σ[g,g] ∼ GIW (Ψ [g], δ[g]),

Γ [u] ∼ IW (Ψ0, δ0),

τ [u] | Γ [u] ∼ N
(
τ00, H0 ⊗ Γ [u]

)
,

(9.12)

where Γ [u] = Σ[u|g] = Σ[u,u] − Σ[u,g](Σ[g,g])−1Σ[g,u]; τ [u] = (Σ[g])−1Σ[gu].
IW denotes the inverted Wishart with hyperparameters (Ψ0, δ0); the matrix
τ00 is the hyperparameter of τ [u]; and the matrixH0 is the variance component
of τu between its rows.

The stepwise definition then continues with Σ[g,g] through the Bartlett
decomposition of Σ[g,g], conformably with the block structure, into a new set
of variables {Σ22, Γ 1, τ1} as described above. The distribution of {Σ22, Γ 1, τ1}
is given as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Σ22 ∼ IW (Ψ2, δ2),

τ1 | Γ 1 ∼ N(τ01, H1 ⊗ Γ 1),

Γ 1 ∼ IW (Ψ1, δ1).

(9.13)

The hyperparameters involved in this two-block Gaussian-GIW model can
be written as

H = {β0, F, Ψ, δ}, (9.14)

where

Ψ = {Ψ0, τ00, H0, Ψ1, H1, τ01, Ψ2},
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and

δ = (δ0, δ1, δ2)T .

The dimensions of Ψ ’s components are as follows.

Ψ0 : u× u, τ00 : g × u, H0 : g × g, Ψk : gk × gk
Ψ1 : g1 × g1, Ψ2 : g2 × g2, τ1 : g2 × g1, H1 : g2 × g2.

9.3.3 The GIW Distribution

1. The GIW distribution, discovered by Brown et al.(1994b), generalizes the
IW distribution by allowing different degrees of freedom for a random
positive definite matrix.

2. The GIW distribution is a conjugate prior for a Gaussian distribution.
This prior is very flexible and quite natural to deal with the staircase
structure of the observed data. For example, different degrees of freedom
for the k blocks can be expressed through the hyperparameter vector δ.

3. The GIW modeling method also allows considerable latitude in selecting
the numbers of blocks in the GIW structure. For example, one could group
all sites that started operation at the same time in one block or one could
select each site as a block in the stair-case structure.

9.3.4 Predictive Distributions

Let Yunob denote the list all the unobserved responses at all locations, i.e.,

Yunob =
{
Y [u], Y [gm

1 ], Y [gm
2 ]
}
.

Furthermore, the list D includes all the data, i.e., measurements made at the
gauged sites:

D =
{
Y [go

1 ], . . . , Y [go
k]
}
.

Here we have used the notation {·} to emphasize that individual components
in the list may have different dimensions since each block can have different
numbers of missing observations mj .

With this notation we are in a position to state precisely a key result. Un-
der the model (9.11), the predictive distribution of the unobserved responses
conditional on the observed data D and the hyperparameter set H is given by

(Yunob | D,H) ∼
(
Y [u] | Y [gm

1 ], Y [gm
2 ], D,H

)(
Y [gm

1 ] | Y [gm
2 ], D,H

)
×
(
Y [gm

2 ] | D,H
)
, (9.15)
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where the three components of the conditional distributions are specified as
follows.(

Y [gm
2 ] | D,H

)
∼ tm2×g2

(
µ

[2]
(u|g), Φ

[2]
(u|g) ⊗ Ψ [2]

(u|g), δ
[2]
(u|g)

)
; (9.16)

(
Y [gm

1 ] | Y [gm
2 ], D,H

)
∼ tm1×g1

(
µ

[1]
(u|g), Φ

[1]
(u|g) ⊗ Ψ [1]

(u|g), δ
[1]
(u|g)

)
; (9.17)

(
Y [u] | Y [gm

1 ], Y [gm
2 ], D,H

)
∼ tn×u

(
µ[u|g], (δ0 − u+ 1)−1Φ[u|g]⊗

Ψ0, δ0 − u+ 1) . (9.18)

Here tmj×gj denotes a matric t-distribution as described in Appendix 15.1
and for j = 1, 2

µ
[j]
(u|g) = µ[j]

(1) +A[j]
12(A

[j]
22)

−1(Y [go
j ] − µ[j]

(2)),

Φ
[j]
(u|g) = δj−gj+1

δj−gj+n−mj+1

[
A

[j]
11 −A[j]

12(A
[j]
22)

−1A
[j]
21

]
,

Ψ
[j]
(u|g) = 1

δj−gj+1

[
Ψj + (Y [go

j ] − µ[j]
(2))

′(A[j]
22)

−1(Y [go
j ] − µ[j]

(2))
]
,

δ
[j]
(u|g) = δj − gj + n−mj + 1.

At the same time,

µ[u|g] = Zβ
[u]
0 + (Y [g] − Zβ

[g]
0 )τ00,

Φ[u|g] = In + ZF−1Z ′ + (Y [g] − Zβ
[g]
0 )ε̃[g]H0(Y [g] − Zβ

[g]
0 )′,

with(
µ

[j]
(1)

µ
[j]
(2)

)
:
(

mj × gj
(n−mj) × gj

)
= Zβ

[gj ]
0 + ε̃[gj+1,...,gk]τ0j ,

(
A

[j]
11 A

[j]
12

A
[j]
21 A

[j]
22

)
:
(

mj ×mj mj × (n−mj)
(n−mj) ×mj (n−mj) × (n−mj)

)

= In + ZF−1Z ′ + ε̃[gj+1,...,gk]Hj(ε̃[gj+1,...,gk])′,

where

ε̃[gj+1,...,gk] =

⎧⎨
⎩
Y [gj+1,...,gk] − Zβ

[gj+1,...,gk]
0 , for j = 1, . . . , k − 1,

0, for j = k.

Le et al. (2001) derive that distribution. An alternative derivation obtains
as a special case of the general derivation given in Appendix 15.4.
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The posterior means, µ[j]
(u|g) for j = 1, 2, that combine contributions from

data and prior knowledge, represent the best linear predictor for the missing
observations at the gauged sites in blocks 1 and 2. Similarly, µ[u|g] represents
the best linear predictors for the contaminant levels at the ungauged sites.
The matrices Φ[j]

(u|g) Ψ
[j]
(u|g) for j = 1, 2, and Φ[u|g] represent the covariance

structure of the predictive distribution. For each block of the gauged stations,
the observed data from stations within the block contribute to the covariance
structure through Ψ [j]

(u|g). Moreover, the data from other blocks contribute

through Φ[j]
(u|g), the usual form of residual covariance. For the ungauged sta-

tions, the observed data at the gauged ones contribute though Φ[u|g].

Remarks

1. Le et al. (2001) refer to (9.16) and (9.17) as hindcasting since they give
the joint predictive distribution of the response variables at the gauged
sites during their ungauged time period. More precisely,

(Yhindcasting | D,H) =
(
Y [gm

1 ] | Y [gm
2 ], D,H

)
×
(
Y [gm

2 ] | D,H
)
.

2. They also refer to (9.18) as spatial interpolation since it is the predictive
distribution of the response variables at the ungauged sites during the
time period under consideration. More precisely

(Yinterpolation | Yhindcasting, D,H) =
(
Y [u] | Y [gm

1 ,...,gm
k ], D,H

)
.

3. The result (9.15) can be used to obtain predictive distributions for fore-
casting. This can be achieved by appropriately choosing Z corresponding
to the first mk components. For example, to forecast the (n+ 1)st month
in the illustrative application in Chapter 2, we let the first component of
Z be [1, cos(2π(n+ 1)/12), sin(2π(n+ 1)/12)]

4. In the case mj = m and δj = δ ∀j (i.e., no staircase), the result (9.15)
reduces to the predictive distribution for the simple univariate setting as
given in (9.8)–(9.9).

9.4 Wrapup

This chapter presents a hierarchical Bayesian framework for environmental
space–time fields . It precedes the general framework in the next chapter. By
presenting a special case, where the burden of notation is modest, the authors
hope the nature of that framework will become clear. Moreover, the material
in the next chapter is just a formalistic extension of the material in Section
9.3.

The one substantive distribution lies in Section 10.6 where we find estima-
tors of the hyperparameters for the general model. Anyway, the next chapter
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completes our general framework, prior to turning to design issues and appli-
cations.



Part III: Design and Risk Assessment
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Multivariate Modeling***

One cannot escape the feeling that these mathematical
formulas have an independent existence and an
intelligence of their own, that they are wiser than we
are, wiser even than their discoverers, that we get more
out of them than was originally put into them.

Heinrich Hertz

Methods for analyzing environmental processes must be able to contend with
multivariate response data. Most networks for monitoring such processes col-
lect measurements for a multiplicity of responses (e.g., pollutants or hours) at
each station to reduce costs, among other things. For example, the spatial–
temporal predictions for Philadelphia by Kibria et al. (2002) concern simulta-
neous measurements of PM2.5 and PM10 at each station in the network. Even
if a single response is of primary concern, the multivariate approach allows
information from the others to be incorporated in inferences about it, with
resulting gains in precision.

Example 10.1. Acid deposition
Section 4.1.1 describes the acid deposition field. A network of nearly 300 sites
monitor its concentrations of nine chemical species yielding a staircase data
pattern since they came online at varying times. Tables 10.1 and 10.2 give
the interresponse correlations for the two sites singled out for study in that
section.

Ca Mg K Na NH4 NO3 Cl SO4 pH
Ca 100 99 96 87 70 62 82 81 59
Mg 99 100 95 89 70 64 84 82 62
K 96 95 100 79 80 59 76 83 46
Na 87 89 79 100 60 64 95 77 58
NH4 70 70 80 60 100 65 66 84 21
NO3 62 64 59 64 65 100 75 73 11
Cl 82 84 76 95 66 75 100 82 47
SO4 81 82 83 77 84 73 82 100 26
pH 59 62 46 58 21 11 47 26 100

Table 10.1. Interresponse corre-
lations ×100 for the nine pollu-
tants measured at a site in Col-
orado as part of the NADP/NTN
acid deposition monitoring pro-
gram.
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Ca Mg K Na NH4 NO3 Cl SO4 pH
Ca 100 59 31 -7 79 64 -10 73 -51
Mg 59 100 23 68 38 38 55 39 -23
K 31 23 100 4 42 12 7 27 -3
Na -7 68 4 100 -24 7 84 -18 7
NH4 79 38 42 -24 100 56 -24 88 -57
NO3 64 38 12 7 56 100 1 61 -81
Cl -10 55 7 84 -24 1 100 -19 14
SO4 73 39 27 -18 88 61 -19 100 -79
pH -51 -23 -3 7 -57 -81 14 -79 100

Table 10.2. Interresponse corre-
lations like those in Table 10.1 but
here for the state of Maine.

These tables reveal some consistently strong associations. Some seem sur-
prising, for instance between NO3 and Ca concentrations in both states. While
that between Na and Na in Maine is expected, why Colorado?

In any case, this example illustrates the importance of the topic of this
chapter, multivariate response models. Coupled with strong associations such
as those above, they enable the species of interest (say NO3) to borrow
strength from another (Ca) in tasks such as spatial prediction and design
(see Chapter 11).

The tables also reveal some interesting association “flips” like Colorado’s
large positive association between Cl and Ca going to negligible in Maine. The
latter demonstrates the possible failure of the Kronecker product covariance
structure assumed below, when dealing with continentwide processes. On that
large scale, analyses of the type described in this chapter need to be done
locally. Fortunately the common availability of large amounts of temporal
data makes that approach very practical.

This chapter extends the preceding one’s integrated framework to admit
multivariate responses and the general k-step staircase pattern of missing
data. Although the developments take us through some very complex notation,
all follows from some simple basic ideas as the Hertz quote above suggests.

Like its univariate cousin, the multivariate extension assumes the random
field’s first hierarchical level has a joint Gaussian distribution. Its mean func-
tion depends on an unknown parameter (matrix) B while the corresponding
covariance matrix Σ has no specific structure. Conjugate prior distributions
are assumed for B and Σ at the hierarchy’s second level, the generalized
inverted Wishart (GIW) (see Appendix 15.1) being a good choice for the lat-
ter in any Gaussian random field such as that assumed here. A Kronecker
structure imposed on the hyperscale matrix sidesteps the estimation of the
otherwise prohibitively large number of parameters. In other words, assume
equality across sites of the hyperscale matrix for the covariance of the multi-
variate response.
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Fig. 10.1. Diagram
for data (o) at moni-
toring stations having
a monotone pattern
and unobserved re-
sponses (×) at loca-
tions of interest. In
this case the response
at each station has
two responses: p1 and
p2.

10.1 General Staircase

Responses are organized in a staircase structure; the steps, each consisting of
sites with the same start-up time, are arranged in increasing order as in Figure
10.1. As in the univariate case the resulting predictive distribution can be
expressed as a product of conditional matric-t distributions. The unobserved
responses in each block conditional on the data and the responses at the higher
block(s) then follow a matric-t distribution.

This chapter presents the derivation of the predictive distribution while
proofs are deferred to Appendix 15.4. The posterior distributions for B and
Σ given the data, along with their posterior expectations are also derived.

Given the hyperparameters, the predictive distributions are completely
determined. As noted in earlier chapters, a strictly Bayesian approach would
entail the addition of another distribution layer to the hierarchy to accom-
modate the uncertainty about these hyperparameters. However, for reasons
given in the introduction of Chapter 9, we opt instead for an empirical Bayes
solution described in detail in Section 10.6. The mathematical derivations are
given later in the chapter. We begin with a glossary of the notation used in
those derivations.

10.1.1 Notation

Let

p = number of responses considered at each station;
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n = number of timepoints (e.g., number of months);
u = number of locations with no monitors (i.e., ungauged sites);
g = number of locations with monitors (i.e., gauged sites).

Staircase Notation

As in the univariate case, the stations are organized into k blocks where the
gj (j = 1, 2, . . . , k) sites in the jth block have the same number of timepoints
mj at which, by design, no measurements are taken. These blocks are num-
bered so that the measurements correspond to a monotone data pattern or a
staircase structure as depicted in Figure 10.1, that is,

m1 ≥ m2 ≥ · · · ≥ mk ≥ 0.

If the responses prior to the first monitor in operation are of interest, then
mk is set to be bigger than 0.

Response Variables

The response variables can accordingly be organized as

Y =
[
Y [u], Y [g]

]
.

Here Y [u] : n× up denotes the unobserved responses at ungauged sites while
Y [g] : n× gp is given by

Y [g] =
[
Y [g1], . . . , Y [gk]

]
=
[(
Y [gm

1 ]

Y [go
1 ]

)
, . . . ,

(
Y [gm

k ]

Y [go
k]

)]
,

the missing (unmeasured) and measured responses at gauged sites. Thus:

• Y [gm
j ] : mj × gjp is the matrix of missing responses at the gj gauged sites

for the mj timepoints;
• Y [go

j ] : (n−mj)×gjp is the matrix of measurements at the gj gauged sites
for timepoint (n−mj) .

That is, each row of the matrix Y represents the multivariate responses, mea-
sured and unmeasured, for all locations at a given time. As in Chapter 9,
here the superscripts m and o denote the missing and observed responses,
respectively, and the subscript indicates a particular block from 1 to k.

Covariates

Suppose l time-varying covariate responses Zt = (Zt1, . . . , Ztl)T are obtained
at each timepoint t and assumed constant across all sites. Let

Z =

⎛
⎜⎝
ZT

1
...
ZT

n

⎞
⎟⎠ .
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Parameter Partitioning

Partition the coefficient matrix β : l × (u + g)p corresponding to the l
covariates in conformance with the block structure as

β = (β[u],β[g1], . . . ,β[gk]).

Likewise, partition the covariance matrix Σ : (u+ g)p× (u+ g)p over gauged
and ungauged sites conformably as

Σ =
(
Σ[u,u] Σ[u,g]

Σ[g,u] Σ[g,g]

)
,

Σ[u,u] : up×up being for the ungauged sites. Further partition the covariance
matrix Σ[g,g] : gp× gp for the gauged site blocks:

Σ[g,g] =

⎛
⎜⎝
Σ[g1,g1] · · · Σ[g1,gk]

... · · ·
...

Σ[gk,g1] · · · Σ[gk,gk]

⎞
⎟⎠ .

As well, for j = 1, . . . , k let

Σ[gj ,...,gk] =

⎛
⎜⎝
Σ[gj ,gj ] · · · Σ[gj ,gk]

... · · ·
...

Σ[gk,gj ] · · · Σ[gk,gk]

⎞
⎟⎠ .

The Bartlett Transformation

Deriving the predictive distribution is facilitated by reparameterizing the ma-
trix Σ through the recursive 1–1 Bartlett transformation for the k blocks
described in Appendix 15.2. Specifically, define new parameters as

Γ [u] = Σ[u,u] −Σ[u,g](Σ[g,g])−1Σ[g,u],

τ [u] = (Σ[g,g])−1Σ[g,u],

Γ k = Σ[gk,gk], and for j = 1, . . . , k − 1

Γ j : gjp× gjp = Σ[gj ,gj ] −Σ[gj ,(gj+1,...,gk)](Σ[gj+1,...,gk])−1Σ[(gj+1,...,gk),gj ],

τj : (gj+1 + · · · + gk)p× gjp = (Σ[gj+1,...,gk])−1Σ[(gj+1,...,gk),gj ],

where

Σ[(gj+1,...,gk),gj ] =

⎛
⎜⎝
Σ[gj+1,gj ]

...
Σ[gk, gj ]

⎞
⎟⎠ ,

for j = 1, . . . , k − 1.
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10.2 Model Specification

Assume the response matrix Y follows the Gaussian and generalized inverted
Wishart model specified by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Y | β, Σ ∼ N(Zβ, In ⊗Σ),

β | Σ,β0,∼ N(β0, F
−1 ⊗Σ),

Σ ∼ GIW (Θ, δ).

(10.1)

Here: N(·, ·) denotes the multivariate Gaussian distribution of appropri-
ate dimension, β0 : l × (g + u)p, the hyperparameter mean matrix of β,
F−1 : l × l > 0, the variance component of β between its l rows, and Z the
matrix of covariates. 1–1 denotes the generalized inverted Wishart distrib-
ution (Appendix 15.1), where {Θ, δ} is a set of model parameters specified
below and ⊗ represents the Kronecker product between two matrices defined
as

Ap×q ⊗Bm×n =

⎡
⎢⎣
a11B · · · a1qB

...
...

ap1B · · · apqB

⎤
⎥⎦

pm×qn

.

The GIW Prior

The GIW prior distribution for Σ in (10.1) is equivalently defined in terms of
(Γ [u], τ [u]) and {(Γ 1, τ1), . . . , (Γ k−1, τk−1), Σk} as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ [u] | Γ [u] ∼ N
(
τ00, H0 ⊗ Γ [u]

)

Γ [u] ∼ IW (Λ0 ⊗Ω, δ0)

τj | Γ j ∼ N(τ0j , Hj ⊗ Γ j), j = 1, . . . , k − 1

Γ j ∼ IW (Λj ⊗Ω, δj), j = 1, . . . , k,

(10.2)

where IW denotes the inverted Wishart distribution.
In this model τ [u] is the slope of the optimal linear predictor of Y [u] based

on Y [g] and Γ [u], the residual covariance of the optimal linear predictor. Sim-
ilar interpretations apply to τj and Γ j , for j = 1, . . . , k − 1.

Let H be the set of the hyperparameters in (10.1)–(10.2); i.e., H =
{Θ, δ, F, β0} where Θ labels the set of hyperparameters:

Θ = {(τ00, H0, Λ0), Ω, (τ01, H1, Λ1), . . . , (τ0,k−1, Hk−1, Λk−1), Λk}
with degrees of freedom parameters δ = (δ0, δ1, . . . , δk). The dimensions of Hj

and Λj are (gj+1 + · · ·+ gk)p× (gj+1 + · · ·+ gk)p and gj × gj , respectively. Ω
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represents the hyperscale matrix between responses assumed to be common
across all stations. The spatial hyperscale matrix itself is represented by the
set of {Λ}s, for j = 1, . . . , k, the spatial hyperscale matrix being readily re-
constituted through the inverse of the Bartlett transformation as described in
Appendix 15.2.

Note that through this specification, the Kronecker structure imposed in
the prior model implies that the covariance field can be considered as two
separable components: Ω denotes the hyperscale matrix between responses
assumed to be common across all sites; Λj and Λ0 represent the conditional
spatial component covariance between the sites within the blocks. The for-
mulation thus reduces the number of parameters in the model and greatly
simplifies their estimation. Furthermore it allows for the separation of the
covariance field’s spatial component and hence facilitates use of the nonpara-
metric spatial covariance interpolator (Sampson and Guttorp 1992) to esti-
mate the spatial hyperscale matrix among all the gauged and ungauged sites.
Section 10.6 gives the details.

10.3 Predictive Distributions

Let D and Yunob denote the data set and unobserved responses, respectively.
That is,

D =
{
Y [go

1 ], . . . , Y [go
k]
}

Yunob =
{
Y [u], Y [gm

1 ], . . . , Y [gm
k ]
}
.

Denote the multivariate responses at stations from the jth to kth blocks and
the corresponding coefficient matrix as

Y [gj ,...,gk] =
[(
Y [gm

j ]

Y [go
j ]

)
, . . . ,

(
Y [gm

k ]

Y [go
k]

)]

and

β[gj ,...,gk] = (β[gj ], . . . ,β[gk]).

Represent the residuals between the responses and the prior means for the
(j + 1)th to kth blocks as

ε̃[gj+1,...,gk] =

⎧⎨
⎩
Y [gj+1,...,gk] − Zβ

[gj+1,...,gk]
0 , for j = 1, . . . , k − 1,

0, for j = k.

For the gauged stations, each block has a best linear predictor based on
its data and the residual covariance matrix under model (10.1). They are
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µ

[j]
(1)

µ
[j]
(2)

)
:
(

mj × gjp
(n−mj) × gjp

)
= Zβ

[gj ]
0 + ε̃[gj+1,...,gk]τ0j ,

(
A

[j]
11 A

[j]
12

A
[j]
21 A

[j]
22

)
:
(

mj ×mj mj × (n−mj)
(n−mj) ×mj (n−mj) × (n−mj)

)

= In + ZF−1Z ′ + ε̃[gj+1,...,gk]Hj(ε̃[gj+1,...,gk])′.

In the same way the best linear predictor for the gauged sites conditional on
the complete responses at all gauged sites ( i.e., from the 1st to kth blocks)
and residual covariance matrix, respectively, can be expressed as

µ[u|g] = Zβ
[u]
0 + (Y [g] − Zβ

[g]
0 )τ00,

Φ[u|g] = In + ZF−1Z ′ + (Y [g] − Zβ
[g]
0 )H0(Y [g] − Zβ

[g]
0 )′.

Predicting Unobserved Responses

Theorem 10.1. Under Model (10.1) the predictive distribution of the unob-
served responses conditional on the data D and the hyperparameter set H is
given by

(Yunob | D,H) ∼
(
Y [u] | Y [gm

1 ,...,gm
k ], D,H

) k−1∏
j=1

(
Y [gm

j ] | Y [gm
j+1,...,gm

k ], D,H
)

×
(
Y [gm

k ] | D,H
)
, (10.3)

where

(
Y [gm

k ] | D,H
)

∼ tmk×gkp

(
µ

[k]
(u|g), Φ

[k]
(u|g) ⊗ Ψ [k]

(u|g), δ
[k]
(u|g)

)
(10.4)

(
Y [gm

j ] | Y [gm
j+1,...,gm

k ], D,H
)

∼ tmj×gjp

(
µ

[j]
(u|g), Φ

[j]
(u|g) ⊗ Ψ [j]

(u|g)δ
[j]
(u|g)

)
(10.5)

(
Y [u] | Y [gm

1 ,...,gm
k ], D,H

)
∼ tn×up

(
µ[u|g],

Φ[u|g] ⊗ Λ0 ⊗Ω
δ∗0

, δ∗0

)
. (10.6)

Here ta×b denotes a matric-t distribution as described in Appendix 15.1 and
for j = 1, . . . , k,
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µ
[j]
(u|g) = µ[j]

(1) +A[j]
12(A

[j]
22)

−1(Y [go
j ] − µ[j]

(2)),

δ∗0 = δ0 − up+ 1

δ
[j]
(u|g) = δj − gjp+ n−mj + 1,

Φ
[j]
(u|g) = δj−gjp+1

δj−gjp+n−mj+1

[
A

[j]
11 −A[j]

12(A
[j]
22)

−1A
[j]
21

]
,

Ψ
[j]
(u|g) = 1

δj−gjp+1

[
Λj ⊗Ω + (Y [go

j ] − µ[j]
(2))

′(A[j]
22)

−1(Y [go
j ] − µ[j]

(2))
]
.

Proof: Given in Appendix 15.4.

To interpret this predictive distribution’s parameters, notice that (Y [go
j ] −

µ
[j]
(2)) is the residual vector obtained from using µ[j]

(2) to predict Y [go
j ], the ob-

served responses at the gauged stations in the jth block. Then µ[j]
(u|g) represents

the best predictor for the unobserved responses at gauged stations in the jth
block based on the observed responses at the same stations as well as those
in the (j + 1)th to kth blocks. The (n − mj) component in the degrees of
freedom δ

[j]
(u|g) reflects the contribution of the observed responses Y [go

j ] in the
prediction.

The contributions of the data are also reflected in the predictive covariance
structure expressed through Φ[j]

(u|g) and Ψ [j]
(u|g). Here the measurements from the

gauged stations in the jth block contribute through Ψ [j]
(u|g) while the responses

at other stations from the (j + 1)th to kth blocks adjust through Φ[j]
(u|g).

Remarks

• When a single response is of interest, it might seem worthwhile to use a
spatial predictor based on univariate theory. That turns out to be naive.
In fact, much predictive strength can be borrowed from the remaining re-
sponses through their correlations with the one of interest. In fact Sun et al.
(1998) compare the accuracy of the purely univariate approach against the
marginalized multivariate approach and find substantial improvements are
possible in their application. For the four air pollutants in that application
they found the following mean-squared error values in a cross-validatory
assessment whose results are shown in Table 10.3. The improvement for
SO4 in particular, is dramatic.

• Brown et al. (1994a) derive the predictive distribution for multivariate
responses using the Gaussian-inverted Wishart distribution. Their deriva-
tion assumes that the data at all stations are complete (i.e., multivariate
response but no staircase pattern). That situation is a special case of this



162 10 Multivariate Modeling***

Pollutant log NO2 log SO4 log O3 log SO2

Multivariate*100 19 14 5 62
Univariate*100 28 127 13 76

Table 10.3: Mean-squared prediction error for a univariate and marginalized multi-
variate Bayesian posterior spatial predictor. The units are 100 × log2 µg m−3.

predictive distribution presented here with mj = m and all δj = δ, an
unknown constant.

• When the mean of Y is assumed to be zero, the above predictive distrib-
ution reduces to that of Kibria et al. (2002).

10.4 Posterior Distributions

In some applications, the model parameters themselves will be of inferential
interest. For example, the model transfer coefficients in β give insight into
the role of the covariates in shaping the joint response surface. The spatial
covariance may reveal the influence of latent factors such as wind speed or
direction. Thus the posterior distributions for β and Σ are of interest and
given here.

Since observation numbers may differ from block to block, the posterior
distributions need to reflect such unbalanced data appropriately. As a direct
result, β’s posterior distribution is a product of distributions; each corresponds
to the regression coefficients in individual blocks. Similarly Σ’s posterior dis-
tribution is a product of distributions conveniently presented through the
recursive Bartlett transformation.

First some notation. Let

Kj : (n−mj) × n = (0, In−mj ),

Z(j) = KjZ,

Y
[gj+1,...,gk]
(j) = KjY

[gj+1,...,gk].

Here Y [gj+1,...,gk]
(j) denotes the matrix of the last (n −mj) responses from all

stations in blocks (j + 1) to k and Z(j), the covariates from time mj + 1 to n.
After removing their prior means, let the observation residuals from times

(mj + 1) to n for all stations in blocks (j + 1) to k be

ε̃
[gj+1,...,gk]
(j) = Y [gj+1,...,gk]

(j) − Z(j)β
[gj+1,...,gk]
0 ;

and after subtracting their prior means, let the residuals of the (n − mj)
observations from stations in the jth block
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ε̃[g
o
j ] = Y [go

j ] − Z(j)β
[gj ]
0 .

Let

β̂
[gj ]

= (ZT
(j)Z(j))−1ZT

(j)Y
[go

j ],

β̂
[gj+1,...,gk]

= (Z(j)Z
T
(j))

−1ZT
(j)Y

[gj+1,...,gk]
(j) .

Here β̂
[gj ]

and β̂
[gj+1,...,gk]

are the usual maximum likelihood estimates for
β[gj ] and β[gj+1,...,gk], respectively, given the observations in the jth block
and the last (n−mj) observations from stations in blocks j + 1 to k.

The corresponding best linear estimates are denoted by

F̃j = Z(j)Z
T
(j) + F,

Wj = F̃−1
j ZT

(j)Z(j)

β̃
[gj ] = Wjβ̂

[gj ]
+ (I −Wj)β

[gj ]
0 ,

β̃
[gj+1,...,gk]

= Wjβ̂
[gj+1,...,gk]

+ (I −Wj)β
[gj+1,...,gk]
0 .

The Posterior

Theorem 10.2. Under the model (10.1), the joint posterior density for β and
Σ given the data D and the hyperparameters H can be presented as

f(β, Σ | D,H) = f(β | Σ,D,H)f(Σ | D,H),

where

(i) f(β | Σ,D,H) = f(β[u] | D,Γ [u], τ [u],H)f(β[gk] | D,Γ k,H)

×
k−1∏
j=0

f(β[gj ] | D,β[gj+1,...,gk], τj , Γ j ,H) (10.7)

with

β[gk] | D,Σkk,H ∼ Nl×gkp

(
β̃

[gk]
, F̃−1

k ⊗ Γ k

)
,

β[gj ] | D,β[gj+1,...,gk], τj , Γ j ,H

∼ Nl×gjp

(
β̃

[gj ] + (β[gj+1,...,gk] − β̃
[gj+1,...,gk]

)τj , F̃−1
j ⊗ Γ j

)
, (10.8)
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and

β[u] | D,β[g1,...,gk], Γ [u], τ [u],H

∼ Nl×up

(
β

[u]
0 + (β[g1,...,gk] − β̃

[g1,...,gk]
)τ [u], F−1

j ⊗ Γ [u]
)
,

(ii) f(Σ | D,H) = f(τ [u] | D,Γ [u],H)f(Γ [u] | D,H)
k−1∏
j=1

f(τj | D,Γ j ,H)

×
k∏

j=1

f(Γ j | D,H) (10.9)

with

τ [u] | Γ [u], D,H ∼ N
(
τ00, H0 ⊗ Γ [u]

)
Γ [u] | D,H ∼ IW (Λ0 ⊗Ω, δ0)

τj | D,Γ j ,H ∼ N
(
τ̃0j , H̃j ⊗ Γ j

)
Γ j | D,H ∼ IW (Ψ̃j , δ̃j).

Here

Ψ̃k = Λk ⊗Ω + (ε̃[g
o
k])T [In−mk

+ Z(k)F
−1ZT

(k)]
−1ε̃[g

o
k]

and for j = 1, . . . , k − 1

Ψ̃j = Λj ⊗Ω + (ε̃[g
o
j ] − ε̃[gj+1,...,gk]

(j) τ0j)T
[
In−mj

+ Z(j)F
−1ZT

(j)

+ (ε̃[gj+1,...,gk]
(j) )THj ε̃

[gj+1,...,gk]
(j)

]−1
(ε̃[g

o
j ] − ε̃[gj+1,...,gk]

(j) τ0j),

H̃−1
j = H−1

j + (ε̃[gj+1,...,gk]
(j) )T [In−mj + Z(j)F

−1ZT
(j)]

−1ε̃
[gj+1,...,gk]
(j) ,

τ̃0j = H̃j

[
H−1

j τ0j + (ε̃[gj+1,...,gk]
(j) )T [In−mj + Z(j)F

−1ZT
(j)]

−1ε̃[g
o
j ]
]
,

δ̃j = δj + n−mj .

Proof: Given in Appendix 15.4.

Note that the posterior distributions corresponding to the ungauged sites
τ [u] and Γ [u] remain the same as the prior distributions. This is a direct result
of the selected parameterization of the parameter space.



10.5 Posterior Expectations 165

10.5 Posterior Expectations

Relevant posterior means can be derived from the above posterior distribu-
tions, (10.7)–(10.9). Some posterior moments are derived below, conditional
on data D and hyperparameter set H. The notation in previous sections is
used here (see also Le et al. 2001).

• The posterior mean of β. The usual conditional argument leads to that
mean:

E(β[gk] | D,H) = β̃
[gk]
,

E(β[gj ] | D,H) = β̃
[gj ] +

[
E(β[gj+1,...,gk] | D,H) − β̃

[gj+1,...,gk]]
τ̃0j ,

where

E(β[gj+1,...,gk] | D,H) = [E(β[gj+1] | D,H), . . . , E(β[gk] | D,H)]

is computed recursively for j = 0, . . . , k − 1.
Notice that E(β[gj ] | D,H) = β̃

gj for j = 1, . . . , k − 1, when the data are
complete, i.e., when D contains no missing blocks.

• The posterior mean of Σ−1 is obtained recursively as follows.

E
[
Σ−1 | D,H

]
=⎛

⎜⎜⎜⎝
δ0(Λ0 ⊗Ω)−1 − δ0(Λ0 ⊗Ω)−1τT

00

−δ0τ00(Λ0 ⊗Ω)−1 δ0τ00(Λ0 ⊗Ω)−1τT
00

+ upH0 + E
[
Σ−1

(11) | D,H
]
⎞
⎟⎟⎟⎠ ,

where for j = 1, . . . , k − 1

E
[
Σ−1

(jj) | D,H
]

=

⎛
⎜⎝
δ̃jΨ̃

−1
j −δ̃jΨ̃−1

j τ̃T
0j

−δ̃j τ̃0jΨ̃
−1
j δ̃j τ̃0jΨ̃

−1
j τ̃T

0j + gjpH̃j + E
[
Σ−1

(j+1,j+1) | D,H
]
⎞
⎟⎠ ,

and

E
[
Σ−1

(kk) | D,H
]

≡ E
[
Γ−1

k

]
= δ̃kΨ̃−1

k .

To obtain these results notice that

Σ−1
(jj) =

⎛
⎝Γ

−1
j −Γ−1

j τ
T
j

−τjΓ−1
j τjΓ

−1
j τ

T
j +Σ−1

(j+1,j+1)

⎞
⎠ , for j = 1, . . . , k − 1,
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and then get the corresponding expectations from the posterior distribu-
tions.

• The posterior expectation of E {log |Γ j| | D,H} for j = 1, . . . , k, de-
pends on the digamma function (the derivative of the Gamma function)
denoted by ψ. Then

E {log |Γ j | | D,H} = −gjp log 2 −
gjp∑
i=1

ψ

(
δ̃j − i+ 1

2

)
+ log |Ψ̃j |.

These results are direct applications of those in Chen (1979).

• The posterior expectation E
{
βΣ−1 | D,H

}
corresponding to the

gauged sites, is obtained by recursion as follows.

E
{
βΣ−1 | D,H

}
= E

{
β[g1,...,gk]Σ−1

(11) | D,H
}
,

E
{

β[gj ,...,gk]Σ−1
(jj) | D,H

}
=
(
δ̃j(β̃

[gj ] − β̃
[gj+1,...,gk]

τ̃0j)Ψ̃−1
j ,

E
{

β[gj+1,...,gk]Σ−1
(j+1,j+1) | D,H

}
− δ̃j(β̃

[gj ] − β̃
[gj+1,...,gk]

τ̃0j)Ψ̃−1
j τ̃T

0j

+ gjpβ̃
[gj+1,...,gk]

H̃j

)
,

and finally

E
{

β[gk]Σ−1
kk | D,H

}
≡ E

{
β[gk]Γ−1

k | D,H
}

= δ̃kβ̃
[gk]
Ψ̃−1

k .

These results are obtained by writing

β[gj ,...,gk]Σ−1
(jj) =

(
(β[gj ] − β[gj+1,...,gk]τj)Γ−1

j ,β
[gj+1,...,gk]Σ−1

(j+1,j+1)

−(β[gj ] − β[gj+1,...,gk]τj)Γ−1
j τ

T
j

)
,

and then taking expectations recursively.

• The posterior expectation βΣ−1βT corresponding to the gauged sites,
is as follows:

E
{

βΣ−1βT | D,H
}

= δ̃kβ̃
[gk]
Ψ̃−1

k β̃
[gk]T

+
∑k−1

j=1 δ̃j

[
β̃

[gj ] − β̃
[gj+1,...,gk]

τ̃0j

]
Ψ̃−1

j

[
β̃

[gj ] − β̃
[gj+1,...,gk]

τ̃0j

]T

+
∑k−1

j=1 gjpβ̃
[gj+1,...,gk]

H̃jβ̃
[gj+1,...,gk]T

+
∑k

j=1 gjpF̃
−1
j .

To obtain this result observe that
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βΣ−1βT = β[gk]Σ−1
kk β[gk]T

+
k−1∑
j=1

(β[gj ] − β[gj+1,...,gk]τj)Γ−1
j (β[gj ] − β[gj+1,...,gk], τj)T .

and then take expectation on both sides of the equation.

10.6 Hyperparameter Estimation

The predictive distributions derived through the integrated framework devel-
oped above are completely characterized by their hyperparameters. However,
these hyperparameters are themselves uncertain, calling in principle for an
additional layer of prior modeling.

However, as noted in the introduction to Chapter 9, they may instead be
estimated. In fact advantages accrue in this context from using an empirical
Bayes approach. Here this means estimating them by maximizing the mar-
ginal likelihood, i.e., the marginal joint density function of all the measured
responses (conditional on those hyperparameters) evaluated at their observed
values. This procedure is referred to as type-II maximum likelihood estimation
(type-II MLE). Besides simplicity, this approach offers the important advan-
tage of helping ensure the predictive distributions are well calibrated: 95%
prediction intervals will cover unmeasured responses about that percentage of
the time.

However, in the formulation of the prediction problem we have imposed no
restriction on the forms of Σ and its hyperparameters. Thus the required joint
marginal depends only on the gauged site hyperparameters associated with
the monitoring stations. They can be estimated by type-II MLE in the first
of a two step procedure. The remainder associated with the ungauged sites
are estimated in the second step by the nonparametric approach in Sampson
and Guttorp (1992) (see Chapter 6). Several papers have used this two-step
procedure (Brown et al. 1994a; Sun et al. 1998; Sun 1998; Le et al. 2001;
Kibria et al. 2002).

Yet even that approach proves challenging due to the large number of
hyperparameters involved, especially in the covariance model. An additional
difficulty arises because our responses here are multivariate. Finally those
difficulties are compounded by the lack of assumed stationarity or isotropy
for the random field.

10.6.1 Two-Step Estimation Procedure

The first step of the Type-II maximum likelihood computes the hyperpara-
meter values that maximize the marginal distribution f(D | Hg) where

D =
{
Y [go

1 ], . . . , Y [go
k]
}

(10.10)
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denotes the data and

Hg = {F,β0, Ω, (τ01, H1, Λ1, δ1), . . . ,
(τ0,k−1, Hk−1, Λk−1, δk−1), (Λk, δk)} , (10.11)

are the hyperparameters of interest. The subscript g indicates that not all the
hyperparameters are involved in this marginal distribution. Although f(D |
Hg) can be written as a product of matric-t distributions as in (10.35), direct
maximization of this marginal density presents a challenge. Using the EM
algorithm helps circumvent it. Recall that while Ω, reflects the covariance
within sites (for example, between responses), the Λs represent the residual
spatial covariance (i.e., between sites).

The second step yields estimates of the remaining hyperparameters Λ0,
τ00, H0, and δ0 representing the spatial covariance between the ungauged sites.
Since the spatial dependence structure can be nonstationary, these remain-
ing hyperparameters are related to those corresponding to the gauged sites
estimated in the first step. This step uses the SG method to extend the spa-
tial covariance estimates when stationarity is not assumed. First compute the
spatial covariance matrix between gauged sites from the estimated residual
spatial covariances (i.e., the estimated Λk) through the Bartlett transforma-
tion (Appendix 15.2). Next extend the spatial covariance matrix to ungauged
sites using the SG method to obtain estimates for the covariance matrix be-
tween the ungauged sites and the cross-covariance. Finally estimate Λ0, τ00,
and H0 to complete the estimation process.

10.6.2 Spatial Covariance Separability

By design the SG method applies to spatial covariance matrices between the
gauged sites, not between responses. That needs an assumption that the over-
all covariance separates into spatial and within-site components. That need
is partially met by the choice of the prior model for the Γ k; it implies the
spatial hypercovariance matrix Λk between stations in the kth block is sep-
arable from the covariance between responses. However, the prior models for
Γ [u], Γ 1, . . . , Γ k−1 specify separation only in terms of the residual hyperco-
variance matrices Λj for j = 1, . . . , k − 1 and Λ[u], not in the unconditional
ones. Thus other conditions are needed to ensure the separability of the co-
variances between and within sites. To find them below we start with the
unconditional covariance matrix for the multivariate responses and derive the
required conditions.

Covariance Matrix
Let Yt be the response vector at time t and zt a vector of covariates. Assume
Yt has the Gaussian-generalized-inverted-Wishart model specified by (10.1)
and (10.2). The variance–covariance matrix of Yt can be written as follows:

V (Yt) = E[V (Yt | β)] + V (E[Yt | β])
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= E(Σ) + E[V (ztβ | Σ)] + V (E[ztβ | Σ])

= (1 + ztF−1z′
t)E(Σ). (10.12)

Note that Σ can be expressed in terms of the hyperparameters through
the Bartlett decomposition as (Γ [u], τ [u]) and
{(Γ 1, τ1), . . . , (Γ k−1, τk−1), Σk} as follows.

Σ =

⎛
⎝Γ [u] + (τ [u])TΣ[g1,···,gk]τ [u] (τ [u])TΣ[g1,···,gk]

Σ[g1,···,gk]τ [u] Σ[g1,···,gk]

⎞
⎠ , (10.13)

where Σ[g1,···,gk] is recursively defined as

Σ[gj ,···,gk] =

⎛
⎝Γ j + τT

j Σ
[gj+1,···,gk]τj τT

j Σ
[gj+1,···,gk]

Σ[gj+1,···,gk]τj Σ[gj+1,···,gk]

⎞
⎠ , (10.14)

and

Σ[gk,gk] = Γ k.

Details can be found in Appendix 15.4.
Hence, E(Σ) can be obtained (componentwise) using the prior distribution

(10.2) and through the relationships given in (10.13) and (10.14). That is,

E[Γ [u]] =
1

δ0 − up− 1
Λ0 ⊗Ω (10.15)

E[(τ [u])TΣ[g1,...,gk]] = τT
00E[Σ[g1,...,gk]] = τT

00η
[1,...,k] (10.16)

E[(τ [u])TΣ[g1,...,gk](τ [u])] = E[E(τ [u])TΣ[g1,...,gk](τ [u]) | τ [u]]

= E[(τ [u])T (EΣ[g1,...,gk])(τ [u])]

= E[(τ [u])T η[1,...,k](τ [u])]

= τT
00η

[1,...,k]τ00 +
tr(η[1,...,k]H0)
δ0 − up− 1

Λ0 ⊗Ω. (10.17)

Similarly the remaining components can be obtained by recursion. More pre-
cisely let

η[j,...,k] = E[Σ[gj ,...,gk]] (10.18)

represent the covariance matrix corresponding to the response from blocks j
to k. Thus for j = 1, . . . , k − 1, η[j,...,k] can be recursively evaluated as
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η[j,...,k] =

⎛
⎝aj(Λj ⊗Ω) + τT

0jη
[j+1,...,k]τ0j τT

0jη
[j+1,...,k]

η[j+1,...,k]τ0j η[j+1,...,k]

⎞
⎠ (10.19)

and

η[k] = Λk ⊗Ω/(δk − gkp− 1) (10.20)

where aj = (1 + tr(η[j+1,...,k]Hj))/(δj − gjp− 1).

Substituting (10.15) to (10.20) in (10.12) yields the covariance matrix

V (Yt) = (1+ztF−1zT
t )

⎛
⎝a0(Λ0 ⊗Ω) + τT

00η
[1,...,k]τ00 τT

00η
[1,...,k]

η[1,...,k]τ00 η[1,...,k],

⎞
⎠(10.21)

where a0 = (1 + tr(η[1,...,k]H0))/(δ0 − up− 1).

Separability Conditions
The spatial covariance V (Yt) can be separated into two components Ψ and Ω
and expressed as Ψ ⊗Ω, if for j = 0, . . . , k − 1,

τ0j = ξ0j ⊗ Ip, (10.22)

where Ψ denotes the spatial covariance component.
The separability conditions [Equation (10.22)] can be derived as follows.

First substitute the separability condition for τ0j [Equation (10.22)] into Equa-
tion (10.19) to get

η[j,...,k] = Ψ [j,...,k] ⊗Ω, j = k − 1, . . . , 1, (10.23)

where

Ψ [j,...,k] =

⎛
⎝ajΛj + ξT0jΨ

[j+1,...,k]ξ0j ξT0jΨ
[j+1,...,k]

Ψ [j+1,...,k]ξ0j Ψ [j+1,...,k]

⎞
⎠ (10.24)

and

Ψ [k] = Λk/(δk − gkp− 1). (10.25)

Then substitute the separability condition for τ00 in (10.22) into the covariance
matrix (10.21) to obtain the desired separability conclusion

V (Yt) = (1 + ztF−1zT
t )Ψ ⊗Ω,

where

Ψ =
(
a0Λ0 + ξT00Ψ

[1,...,k]ξ00 ξT00Ψ
[1,...,k]

Ψ [1,...,k]ξ00 Ψ [1,...,k]

)
. (10.26)

The above separability conditions are used in the estimation of hyperpa-
rameters, those for gauged sites described next.
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10.6.3 Estimating Gauged Site Hyperparameters

The EM algorithm (Dempster et al. 1977; Chen 1979) facilitates the com-
putation of the type-II maximum likelihood estimates for Hg. Le and Zidek
(1994) and Brown et al. (1994a) first employed this approach for application
to environmental problems.

First, additional assumptions are made to further simplify the estimation
problem. Specifically, to reduce the number of hyperparameters to be esti-
mated, assume in accordance with the inverted Wishart distribution, that

Hj = (Λ[j+1,...,k] ⊗Ω)−1, (10.27)

where

Λ[j,...,k] =

⎛
⎝Λj + ξ′0jΛ

[j+1,...,k]ξ0j ξ′0jΛ
[j+1,...,k]

Λ[j+1,...,k]ξ0j Λ[j+1,...,k]

⎞
⎠ (10.28)

and

Λ[k] = Λk.

With this assumption, the EM iterative approach for estimating the hyper-
parameters is described next, starting with the essentials of the EM algorithm.

EM Algorithm

Let U∗,V ∗, and �∗ be random objects such as vectors or matrices
where U∗ is measured to yield data uo while V ∗ cannot be so it repre-
sents missing data. At the same time, �∗ represents a collection of nui-
sance parameters endowed with randomness by the prior distribution.
Finally, given another collection of parameters θ′, the random objects
have a joint conditional probability density function f(u∗, v∗, �∗|θ′)
where f is known. The problem: maximize f(uo, |θ′), or equivalently
when f is strictly positive, ln f(uo, |θ′) with respect to θ′.
The famous EM algorithm relies on a simple but ingenious trick that
uses an identity that is trivial to obtain:

lnf(uo, |θ′) = [ln f(uo, V
∗, �∗|θ′)] + [− ln f(V ∗, �∗|uo, θ

′)]
= Eθold [ln f(uo, V

∗, �∗|θ′)] +
Eθold [− ln f(V ∗, �∗|uo, θ

′)],

where Eθold means take expectations with respect to the conditional
distribution obtained if θ′ were set equal to θold, the “expectation”
step in the EM algorithm.
The trick relies on the celebrated information inequality that implies
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Eθold [− ln f(V ∗, �∗|uo, θ
′)] > Eθold [− ln f(V ∗, �∗|uo, θ

old)]

as long as θ′ �= θold. Thus as long as we choose θold to make

Eθold [ln f(uo, V
∗, �∗|θ′)] > Eθold [ln f(uo, V

∗, �∗|θold)]

the algorithm ensures lnf(uo, |θnew) > lnf(uo, |θold). Of course ide-
ally θnew should be taken to maximize Eθold [− ln f(V ∗, �∗|uo, θ

′)], the
“maximization” step in the EM algorithm.
If we now replace θold by θnew and continue the cycle repeatedly, we
will under very general conditions converge to a point that maximizes
lnf(uo, |θ′). More details can be found in Dempster et al. (1977) and
Wu (1982).

To apply the EM algorithm to our estimation problem, let U∗ and V ∗

together represent the measured and unmeasured components of Y [g] while
�∗ = {β, Σ}. The algorithm would then require at iteration p + 1, in the
E -step, the computation of

Q(Hg | H(p)
g ) = E

(
log[f(Y [g],β, Σ | Hg) | D,H(p)

g

)
= E

[
log f(Y [g] | β, Σ) | D,H(p)

g

]
+

E
[
log f(β, Σ | Hg) | D,H(p)

g

]
(10.29)

given the previous parameter estimates H(p) from iteration p. Then it would
require at the M -step maximization of Q(Hg | H(p)

g ) over Hg to get H(p+1)
g .

Here, the expectation is taken over β and Σ with respect to the posterior
distribution β, Σ | D,H(p)

g .
Notice that E

[
log f(Y [g] | β, Σ) | D,H(p)

g

]
does not depend on Hg. Thus

the algorithm requires only that we compute

Q∗(Hg | H(p)
g ) = E

[
log f(β, Σ | Hg) | D,H(p)

g

]
(10.30)

at the E-step and maximize Q∗ over Hg at the M -step.
With the parameterization introduced above and the prior distributions

specified in (10.1)–(10.2), we have

f(β, Σ | Hg) ∝ f(β | Σ,Hg)
k−1∏
j=1

f(τj | Γ j ,Hg)
k∏

j=1

f(Γ j | Hg)

∝ |F |gp/2|Σ|−1/2etr
{

−1
2
F (β − β0)Σ

−1(β − β0)
T

}

×
k−1∏
j=1

|Γ j |−(gj+1p+···+gkp)/2|Hj |gjp/2

×
k−1∏
j=1

etr
{

−1
2
H−1

j (τj − τ0j)TΓ j(τj − τ0j)
}
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×
k∏

j=1

c(gjp, δj)|Γ j |−(δj+gjp+1)/2|Λj ⊗Ω|δj/2

×
k−1∏
j=1

etr
{

−1
2
Γ−1

j (Λj ⊗Ω)
}
, (10.31)

where

c(p, δ) =

[
2δp/2πp(p+1)/4

p∏
i=1

Γ

(
δ − i+ 1

2

)]−1

.

Simplifying (10.31) yields

f(β, Σ | Hg) ∝ |F |gp/2etr
{

−1
2
F (β − β0)Σ

−1(β − β0)
T

}

×
k−1∏
j=1

|Hj |gjp/2etr
{

−1
2
H−1

j (τj − τ0j)Γ j(τj − τ0j)T

}

× c(gkp, δk)|Γ k|−(δk+gkp+1)/2|Λk ⊗Ω|δk/2

× etr
{

−1
2
Σ−1

k (Λk ⊗Ω)
}

×
k−1∏
j=1

c(gjp, δj)|Γ j |−(l+δj+gjp+···+gkp+1)/2|Λj ⊗Ω|δj/2

×
k−1∏
j=1

etr
{

−1
2
Γ−1

j (Λj ⊗Ω)
}
. (10.32)

The separability condition (10.22) in conjunction with (10.32) impliesQ∗(Hg |
H(p)

g ) given in (10.29) can be expressed as

Q(Hg | H(p)
g ) = CONST +

gp

2
log |F |

− 1
2
tr
{
FE[(β − β0)Σ

−1(β − β0)
T | D,H(p)

g ]
}

+
k−1∑
j=1

tr

{
−1

2
H−1

j E[(τj − ξ0j ⊗ Ip)Γ j(τj − ξ0j ⊗ Ip)T | D,H(p)
g ]
}

+
k∑

j=1

log c(gjp, δj) − l + δk + gkp+ 1
2

E[log |Γ k| | D,H(p)
g ] +

δkp

2
log |Λk|

+
δkgk

2
log |Ω| − 1

2
tr
{

(Λk ⊗Ω)E[Γ−1
k | D,H(p)

g ]
}

+
k−1∑
j=1

l + δj + gjp+ · · · + gkp+ 1
2

E[log |Γ j | | D,H(p)
g ] +

k−1∑
j=1

δjp

2
log |Λj |
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+
k−1∑
j=1

δjgj
2

log |Ω| −
k−1∑
j=1

1
2
tr
{

(Λj ⊗Ω)E[Γ−1
j | D,H(p)

g ]
}
, (10.33)

where CONST denotes a constant not depending on hyperparameters to be
estimated.

The objective function in (10.33) involves the hyperparameters and the
expectations for the unobserved random variables. Maximizing this function
can be done in an iterative two-step procedure: (E-step) evaluating the poste-
rior expectations given the data and the current estimates of hyperparameters
and (M-step) maximizing the resulting objective function. That is, suppose
at the pth iteration, the current estimate is

H(p)
g =

(
β

(p)
0 , F

(p), Ω(p), Λ
(p)
k , δ

(p)
k , [Λ(p)

j , δ
(p)
j , ξ

(p)
0j ], j = 1, . . . , k − 1

)
.

(10.34)

The two steps in the EM algorithm at the (p+ 1)st iteration become

• E-step: Substitute the posterior expectations involved in (10.33) condi-
tional on D and H(p)

g using the results given in Section 10.5.
• M -step: Maximize the resulting Q∗(Hg | H(p)

g ) over Hg to obtain the
updated estimate H(p+1)

g of Hg at step (p + 1). Specific maximization
equations for this M-step are given below.

Maximization Equations:
The new estimate of Hg at the (p+ 1)th iteration is

H(p+1)
g =

(
β

(p+1)
0 , F (p+1), Ω(p+1), Λ

(p+1)
k , δ

(p+1)
k , [Λ(p+1)

j , δ
(p+1)
j , ξ

(p+1)
0j ] ,

j = 1, . . . , k − 1) ,

the quantities that maximize the objective function given below from the E-
step. The following result is useful for the derivation.

Lemma 1: Let D and G be positive definite matrices, the maximum of

f(G) = N log |G| − trG−1D

occurs at G = D/N (Anderson 2003-Lemma 3.2.2).

• By first rearranging

tr
{

(Λj ⊗Ω)E[Γ−1
j | D,H(p)

g ]
}

= trΩC(2)
j

as described in Appendix 15.3 and then applying Lemma 1 toQ∗ in (10.33),
the new estimate of Ω is given by

Ω(p+1) =
k∑

j=1

δ
(p+1)
j gj

⎡
⎣ k∑

j=1

C
(2)
j

⎤
⎦

−1

.
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• Similarly by rearranging

tr
{

(Λj ⊗Ω)E[Γ−1
j | D,H(p)

g ]
}

= trΛjC
(1)
j

as described in Appendix 15.3 and applying Lemma 1 to Q∗ in (10.33),
the new estimates Λ(p+1)

j , for j = 1, . . . , k, satisfy

Λ
(p+1)
j = δ(p+1)

j p(C(1)
j )−1.

• Taking the partial derivative of Q∗ in (10.33) with respect to δj and setting
it to zero yields the following equation for the new estimate δ(p+1)

j ,

− 1
2gjp log 2 − 1

2

∑gjp
i=1 ψ

(
δ
(p+1)
j

−i+1
2

)
− 1

2E[log |Γ j | | D,H(p)
g ]

+ 1
2p log |Λ(p+1)

j | + 1
2gj log |Ω(p+1)| = 0,

where ψ(x) = d[logΓ (x)]/dx denotes the digamma function.

Note: Le et al. (1998) show that in the univariate case (where p = 1),
the degrees of freedoms are not identifiable and propose the use of a prior
gamma distribution for it to bypass the problem. That approach is used
here. In other words the unspecified degrees of freedom, δ1, . . . , δk, are
assumed to have a gamma distribution

π(δ) ∝ (δ1 · · · δk)α−1 exp{−r(δ1 + · · · + δk)}

with specified hyperparameters α and r. Hence, the estimation equation
when p = 1 becomes

− 1
2gjp log 2 − 1

2

∑gjp
i=1 ψ

(
δ
(p+1)
j

−i+1
2

)
− 1

2E[log |Γ j | | D,H(p)
g ]

+ 1
2p log |Λ(p+1)

j | + 1
2gj log |Ω(p+1)| + α−1

δj
− r = 0.

• Maximizing Q∗ in (10.33) with respect to F and β using Lemma 1 yields
the following equations that F (p+1) and β

(p+1)
0 satisfy

F (p+1) = (gp)
(
E[(β − β

(p+1)
0 )Σ−1(β − β

(p+1)
0 )T | D,H(p)]

)−1

β
(p+1)
0 =

(
E[Σ−1 | D,H(p)]

)−1
E[Σ−1βT | D,H(p)].

It is possible to impose additional structures on β0 without much difficulty.
For example, to impose an exchangeable structure between stations but
allowing the coefficients to be different within the multivariate response,
simply express β0 as

β0 = β∗
0R,

where β∗
0 is a (l × p) matrix of coefficients and

Rp×gp = [Ip, · · · , Ip].
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The estimate of β∗
0 is then

(β∗T
0 )(p+1) =

(
RE[Σ−1 | D,H(p)]R′

)−1
RE[Σ−1βT | D,H(p)].

• The new estimate ξ(p+1)
0j (or equivalently τ (p+1)

0j ) is obtained by maximizing
Q∗ in (10.33) with respect to ξ0j . That is, the maximization problem is
equivalent to

max
ξ0j

tr

{
−1

2
H−1

j E[(τj − ξ0j ⊗ Ip)Γ−1
j (τj − ξ0j ⊗ Ip)T | D,H(p)

g ]
}

or max
ξ0j

tr
{
H−1

j (ξ0j ⊗ Ip)E[Γ−1
j τ

T
j | D,H(p)

g ]

−1
2
H−1

j (ξ0j ⊗ Ip)E[Γ−1
j | D,H(p)

g )(ξ0j ⊗ Ip]T
}

or max
ξ0j

tr
{

(ξ0j ⊗ Ip)E[Γ−1
j τ

T
j | D,H(p)

g ]H−1
j

−1
2
(ξ0j ⊗ Ip)E[Γ−1

j | D,H(p)
g )(ξ0j ⊗ Ip]TH−1

j

}
.

The last expression can be written as

maxξ0j

{
vec(ξ0j)vec(D) − 1

2
vec(ξ0j) G vec(ξ0j)

}
,

where G and D are specific functions of H−1
j , E[Γ j | D,H(p)

g ], and

E[Γ jτ
T
j | D,H(p)

g ] as described in Appendix 15.3.

Thus, the optimal choice ξ(p+1)
0j satisfies

vec(ξ(p+1)
0j ) = G−1vec(D).

The estimates for the hyperparameters can be obtained by iterating these
EM steps until the marginal density (10.35) given below converges. When
p = 1, the contribution of the prior distribution for δs needs to be incorporated
in the marginal density for the optimization.

Marginal Distribution f
({
Y [go

1 ], . . . , Y [go
k]
}

| Hg

)
Assume the response matrix Y has the Gaussian-generalized inverted Wishart
model specified by (10.1) and (10.2). Then in the notation of Section 10.2, the
marginal distribution can be written as

f
({
Y [go

1 ], · · · , Y [go
k]
}

| Hg

)
=

k∏
j=1

t(n−mj)×gjp

(
µ[j]

o , Φ
[j]
o ⊗ Ψ [j]

o , δ
[j]
o

)
,

(10.35)

where ta×b denotes a matric-t distribution (see Appendix 15.1) and
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µ[j]
o = µ[j]

(2)

Φ[j]
o = A22

Ψ [j]
o =

1
δj − gjp+ 1

[Λj ⊗Ω]

δ[j]o = δj − gjp+ 1

with(
µ

[j]
(1)

µ
[j]
(2)

)
:
(

mj × gjp
(n−mj) × gjp

)
= Zβ

[gj ]
0 + ε̃[gj+1,...,gk]τ0j ,

(
A

[j]
11 A

[j]
12

A
[j]
21 A

[j]
22

)
:
(

mj ×mj mj × (n−mj)
(n−mj) ×mj (n−mj) × (n−mj)

)

= In + ZF−1ZT + ε̃[gj+1,...,gk]Hj(ε̃[gj+1,...,gk])T .

10.6.4 Estimating Ungauged Site Hyperparameters

Given the Type-II maximum likelihood estimates for hyperparameters asso-
ciated with gauged sites as described above, the hyperparameters Λ0, τ00,
and H0, associated with the ungauged sites can be estimated through the
Sampson–Guttorp method (Sampson and Guttorp 1992). That nonparamet-
ric method extends the spatial hypercovariance associated with the gauged
sites to include that of the ungauged sites. The extension is carried out by

• First estimating the covariance matrix associated with the gauged sites
using the type-II maximum likelihood estimates as described above;

• Then applying the Sampson–Guttorp method to get estimates of the co-
variance matrix associated with the ungauged sites and the corresponding
cross-covariance matrix; these are called SG estimates;

• Finally obtaining estimates for Λ0 and τ00 using the resulting SG estimates
and the Bartlett transformation.

Details are as follows. First write Ψ , the spatial component covariance matrix
for all the sites given in (10.26) as[

M[u,u] M[u,g]

M[g,u] M[g,g]

]
(10.36)

with M[u,u] representing the spatial covariance between the ungauged sites
and M[u,g] corresponding to the cross-covariance. M[g,g] denoting the spatial
covariance between the gauged sites is in fact Ψ [1,...,k] that can be written in
terms of the hyperparameters as given in (10.24) and (10.25).
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As in the case of the gauged sites, assume in accordance with the inverted
Wishart distribution, that H0 =

(
Λ[1,...,k] ⊗Ω

)−1
where Λ[1,...,k] is defined in

(10.28).
Let Λ̂j , τ̂oj , and δ̂j denote the type-II MLE estimated hyperparameters

associated with the gauged sites. M[g,g] can be estimated by substituting Λ̂j ,
τ̂oj , and δ̂j into expressions (10.24) and (10.25), yielding M̂[g,g]. Similarly H0

can be estimated yielding Ĥ0.
The SG method (see Chapter 6) estimates M[u,u] and M[u,g] based on

M̂[g,g], yielding M̃[u,u] and M̃[u,g]. An example of how the SG method works
is demonstrated in Chapter 14 using R codes.

Equating (10.26) with (10.36) yields

M[g,u] = M[g,g]ξ
[u]
0 .

Hence ξ00 can be estimated by

ξ̃00 = (M̂[g, g])−1M̃[g,u].

Thus τ00 = ξ00 ⊗ Ip can be estimated by

τ̃00 = (M̂[g,g])−1M̃[g,u] ⊗ Ip.

Similarly, Λ0 can be estimated by

Λ̃0 =
δ0 − up− 1

1 + tr((Ψ [1,...,k] ⊗Ω)H [u])

(
M̃[u,u] − ξ̃T00M̂[g,g]ξ̃00

)
.

Given the lack of a spatial model for interpolating degrees of freedom over
space, δ0 has to be selected before interpolating the data. Kibria et al. (2002)
propose a couple of potential estimates including

δ̃0 = min(δ̂1, · · · δ̂k) or
δ̂1 + . . .+ δ̂k

k
,

subject to the condition that δ0 ≥ up.
We turn now to a missing data pattern introduced in Section 9.2.

10.7 Systematically Missing Data

To this point we have supposed that for any given step in the staircase all
responses at all the sites there are measured. In practice, each site may have
some responses that are never measured, by design. This happens, for exam-
ple, in composite networks constructed by merging a number of subnetworks
set up for different purposes. The set of species each measures may overlap
but vary over the subnetworks. Thus at each step of the staircase empty ver-
tical columns of missing values stand atop the missing gauges at each site.
The missing measurements are called systematically missing and the data,
misaligned .
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Open Problem The double staircase of missing data presents an
unsolved problem. Within each of the steps in the main staircase,
small secondary staircases are formed because the gauges at the sites
there, for measuring different responses, were installed at different
times.

Dealing with these data requires the concept of the quasi-site. Each exist-
ing monitoring site has purely imaginary positions corresponding to individ-
ual monitors i.e., gauges and so has any geographical location that is not yet
monitored. These imaginary locations are called quasi-sites. With this concept
we can dichotomize all quasi-sites gauged and ungauged. The ungauged ones
include those at unmonitored locations and the missing components at the
monitoring sites. Moreover, the ungauged quasi-sites at the monitoring sites
can be permuted to the bottom of the staircase to join with the unmonitored
sites (and their quasi-sites). As a result the empty vertical columns in the
staircase disappear and we can more or less proceed as we did earlier in this
chapter.

Things are not quite that simple and some technical obstacles must be
overcome (see Le et al. 1997). For simplicity, suppose the data staircase has
just one step. Then Y [g] has empty columns corresponding to the total of h
ungauged quasi-sites, j1, . . . , jh located on monitoring sites that only partially
measure the vector-valued responses. The gauged quasi-sites correspond to the
remaining columns jh+1, . . . , jgp. Let ri, i = 1, . . . , gp be an gp×1-dimensional
vector with ith element 1, the rest 0. Let R1 and R2 be indicator matrices
that mark the missing and present columns: R1 = (rj1 , . . . , rjh

) and R2 =
(rjh+1 , . . . , rjgp

). Finally let R ≡ (R1, R2), an orthogonal matrix.
Observe that Y [g] can be rearranged through permutation as

Y [g] =
[
Y (1)

Y (2)

]
,

where Y (1) ≡ Y [g]R1 and Y (2) ≡ Y [g]R2 consisting of just the missing and
present columns, respectively, for the monitoring sites. To find the distribution
of these new matrices, recall [see Equation (10.1)] that the prepermuted Y
follows the Gaussian-generalized-inverted-Wishart model specified by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Y | β, Σ ∼ N(Zβ, In ⊗Σ),

β | Σ,β0,∼ N(β0, F
−1 ⊗Σ),

Σ ∼ IW (Φ, δ),

Notice that for the purpose of explicating our results we have replaced Σ’s
GIW prior by the simpler IW.

Because, after the permutation, the response vector Y has effectively been
partitioned into three parts, we need to partition β, Σ, βo, and Φ accordingly.
For example, we first partition Σ as
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Σ =
(
Σuu Σug

Σgu Σgg

)
,

where Σuu and Σgg are up×up, gp×gp matrices, respectively. The covariance
matrix R

′
ΣggR corresponding to Y (1) and Y (2), can be further partitioned as

R
′
ΣggR =

(
Σ11 Σ12
Σ21 Σ22

)
≡
(
R

′
1ΣggR1 R

′
1ΣggR2

R
′
2ΣggR1 R

′
2ΣggR2

)
,

where Σ11 and Σ22 are h × h, (gp − h) × (gp − l) matrices, respectively.
Furthermore, let

Ψgg = R′ΦggR =
(
Ψ11 Ψ12
Ψ21 Ψ22

)
=
(
R′

1ΦggR1 R′
1ΦggR2

R′
2ΦggR1 R′

2ΦggR2

)
,

with Ψ11 being h × h and Ψ22 being (gp − h) × (gp − h). Finally, let Ψ1|2 =
Ψ11 − Ψ12Ψ

−1
22 Ψ21, and

(β(1)
0 , β

(2)
0 ) = β[g]

0 R = (β[g]
0 R1, β

[g]
0 R2).

We obtain Bayesian spatial predictors as a special case of the analysis
earlier in this chapter. More specifically, conditional on Y [2] = y[2)] and the
hyperparameters, the predictive distribution of unmeasured responses at the
gauged sites is

Y (1) ∼ tn×h

(
µ

(1)
0 ,

1
δ∗
P(1|2) ⊗ Ψ(1|2), δ∗

)
,

where

µ
(1)
0 = Zβ(1)

0 + (y(2) − Zβ(2)
0 )Ψ−1

22 Ψ21

P(1|2) = In + ZF−1Z ′ + (y(2) − Zβ(2)
0 )Ψ−1

22 (y(2) − Zβ(2)
0 )′

δ∗ = δ − up− h+ 1.

Similarly the predictive distribution at the ungauged locations is

Y [u] ∼ tn×up

(
µ

[u]
0 ,

1
δ∗
P(1|2) ⊗ Φ(u|2), δ∗

)
,

where

µ
[u]
0 = Zβ[u]

0 + (y(2) − Zβ(2)
0 )Ψ−1

22 Ψ21

Φu|2 = Φuu − Φug(R2ΨggR
′
2)

−1Φgu.

The joint conditional predictive distribution of
(
Y [u], Y (1)

)
| Y (2) = y(2) can

be derived in the same way, but details are omitted.
Applying these results to a specific time t yields the important special

case Y [u]
t | Y (2) = y(2) to be a multivariate-t distribution, a special case of a

matric-t distribution:

Y
[u]
t ∼ t1×up

(
Ztβ

[u]
0 + (y(2)t − Ztβ

(2)
0 )Ψ−1

22 R
′
2Φgu,

1
δ∗
Pt|2 ⊗ Φu|2, δ∗

)
,(10.37)
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where

Pt|2 = 1 + ZtF
−1Z ′

t + (y(2)t − Ztβ
(2)
0 )Ψ−1

22 (y(2)t − Ztβ
(2)
0 )′

and Φu|2 is defined above. A similar result can be obtained for Y (1)
t | Y (2) =

y(2).

Remarks

• These results can readily be extended to the case of more than one step
in the staircase but that extension is straightforward.

• Usually interest focuses on the specific case, t = n+1, i.e., the future. How-
ever, in some applications such as that described in Chapter 2 unmeasured
past responses need to be imputed. In such cases, the entire field of missing
measurements may have to be constructed and the uncertainties in doing
so correctly disclosed.

• The hyperparameters can be estimated with the approach discussed earlier
in the chapter. The methods are incorporated in the software that is posted
online as a companion to this book. See Chapter 14 for more details.

We turn in the next section to the problem of characterizing those uncertain-
ties.

10.8 Credibility Ellipsoids

This section covers an important task, the specification of predictive sets that
correctly reflect the uncertainty in a mapped environmental field. Such maps
are usually drawn by spatially predicting the field at a grid of geographical
locations and then applying a contouring program of some kind to those pre-
dictions. How dense should that grid of points be and how uncertain is the
resulting map?

This is an important question since such mapping is so common and often
done for regulation, control, and abatement programs. In such cases, stating
unrealistically small levels of uncertainty can lead to false confidence in the
predictions. That in turn can lead to unfair actions of great severity against
producers of an environmental hazard, at least when the predicted levels are
high. When they are low, they can also lead to bad decisions to ignore negative
impacts on human health and welfare. In short, stating uncertainty accurately
is important.

Commonly, spatial mappers construct their maps one grid point at a time
and calculate, say 95% prediction intervals at the same time, point by point.
There would seem to be no limit to the number of grid points that could be
done in this fashion.

In fact, our spatial predictor allows us to do that by applying the theory
to the special case, up = 1. That is to say, predict unmeasured responses, re-
sponse by response, site by site for all responses and all sites. The multivariate-
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t distribution in (10.37) then reduces to the univariate-t. Moreover, a standard
variance formula for the multivariate-t distribution of Y [u]

t | Y (2) = y(2) yields
the variance of the predictor:

V ar(Y [u]
t | Y (2) = y(2)) = (δ∗ − 2)−1Pt|2Φu|2.

This variance yields a pointwise posterior credibility interval for the predic-
tand at each of the sites in our grid.

As ever, there is “no such thing as a free lunch” and in this case, a cost to
pay for this site by site approach. In fact that approach ignores the multiplic-
ity of the imputations made simultaneously over this (correlated) spatial field.
Overall, the chances are much less than 95% that all the imputed measure-
ments will simultaneously lie within their intervals. Hence the point by point
approach renders a poor characterization of the uncertainty in the mapped
field.

However, our theory yields a much more satisfactory characterization of
that uncertainty. In fact, the multivariate-t predictive distribution such as
that of Y [u]

t | Y (2) = y(2) in (10.37) allows us to derive a simultaneous cred-
ibility region. More precisely for the unmonitored sites, let ŷ[u]

t = Ztβ
[u]
0 +(

y(2) − Zβ(2)
0

)
Ψ−1

22 Ψ21 be the Y [u]
t s predictor in the systematically missing

case above. Then conditional on Y (2) = y(2), the 1 − α level (0 < α < 1)
simultaneous posterior credibility region is

{Y [u]
t : (Y [u]

t − ŷ[u]
t )Φ−1

u|2(Y
[u]
t − ŷ[u]

t )′ < b},

where

b = [up ∗ Pt|2 ∗ F1−α,up,δ∗ ] ∗ (δ∗)−1.

This characterization shows that indeed, the “lunch is not free” and it is
paid in degrees of freedom as u and p increase. That price increases particularly
rapidly since these numbers enter through their product and soon use up
all the prior information expressed through δ, especially if h, the number of
ungauged quasi-sites, is large. Of course, the analyst can artificially inflate δ
to accommodate a large value of u but in doing so must recognize that false
certainty is being injected into the problem.

How well do these credibility ellipsoids represent uncertainty? Sun et al.
(1998) provide an answer to that question through a cross-validatory assess-
ment in the application discussed in Section 13.5. In that application, which
concerned logarithmically transformed daily concentrations of NO2, SO2, O3,
and SO4 over southern Ontario, the authors systematically removed and then
predicted the measurements at each monitoring site, over a 24-week summer
period. The univariate nominal 95% prediction intervals, fitted site by site,
included the removed measurements 90%, 98%, 99%, and 100% of the time,
respectively, quite a deviation from 95%. The authors noted that this may
have been due to fitting a single degrees of freedom parameter for all four pol-
lutants. In fact, NO2 has quite a heavy tail and a smaller δ would have been
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appropriate. The authors ran the same experiment to assess the credibility
ellipsoids for the four air pollutants. The results are in the Table 10.4. On the

Nominal coverage (%) 50 80 90 95 99
Empirical coverage (%) 57 82 90 94 98

Table 10.4: Empirical coverage probabilities for credibility ellipsoids of various nom-
inal levels and four air pollutants.

whole, the credibility ellipsoids seem to be quite well calibrated.

10.9 Wrapup

That completes a very technical chapter that presents a theory for the spa-
tial prediction of multivariate responses among other things. Computer codes
in R for implementing the approach are available free of charge. Download
instructions and an R tutorial on how to fit the models and estimate the
hyperparameters are given in Chapter 14.

All of the formulas have been included in the software and so the details
could be skipped. However, this material is needed by critical readers who
demand an understanding of the models and methods presented there be-
fore being willing to accept their validity. Moreover, it is needed by anyone
contemplating their extension to even more general cases.

The framework set out in Chapters 9 and 10 lays the foundation for a
theory of design that is the subject of the next chapter. Other applications
are seen in Chapters 12 and 13.
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Environmental Network Design

It is often said that experiments must be made without
preconceived ideas. That is impossible. Not only would
it make all experiments barren, but that would be
attempted which could not be done.

Henri Poincaré

If you need statistics, you did the wrong experiment.
Ernest Rutherford

Yet, in contradiction to Rutherford’s famous remark, you need statistics to
do the right experiment! And that is not all. For us, the experimental design
is a network of sites at which gauges, i.e., monitors, are placed to measure
the environmental field of concern. As Poincare’s remark suggests, choosing
those sites requires prior knowledge. Moreover, making that choice optimal,
requires a design objective.

But What’s the Objective?

However, defining that objective can be difficult since usually a number of
reasonable, often conflicting objectives can be discerned. For example, regula-
tors may wish to build a network that detects noncompliance with proclaimed
quality standards. They would prefer to gauge sites near anticipated hot-spots.
In contrast, epidemiologists concerned with the health effect of a perceived
hazard would want to split those sites equally between areas of high risk and
areas of low risk to maximize contrast and the power of their health effects
analyses. Some investigators might be interested in measuring extremes, oth-
ers trends. Each of these can be measured in a variety of different ways, and
those different metrics may well imply different optimal designs. Designing to
monitor a multivariate response field leads to even greater challenges since
now different levels of importance can attach to the different coordinates or
to some index computed from them. Also involved are cost as well as levels of
temporal and spatial aggregation. In combination, these identified goals and
associated factors can lead to myriad possible objectives. Although the mul-
tiattribute decision paradigm has a useful role to play here, clearly the com-
bination of terms in the resulting objective may be very large indeed. (For a
discussion of the multiattribute approach in the context of network design, see
the “sampsn2.pdf” document of PD Sampson, P Guttorp, and DM Holland
at http://www.epa.gov/ttn/amtic/files/ambient/ pm25/workshop/spatial/.
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Specifying that objective may even seem impossible since many of the
future uses of the network simply cannot be foreseen. Zidek et al. (2000) give
an example of a network comprised of several networks established at different
times for different purposes. The original network, established to measure
acidic deposition, tended to be located in rural areas. Later, as the state of
knowledge of environmental risk evolved, air pollution came to dominate acid
as a societal concern and the (by now composite) network tended to be located
in urban areas.

Network Costs Are Large

Yet the high cost of network construction and maintenance leads to persistent
demand for rational designs that, in practice, cannot be ignored. This led to
a solution that seems to embrace the spirit of all the objectives while not
emphasizing any one of them. That solution for network design, which uses
entropy to define an objective function, was proposed by Caselton and Husain
(1980), Caselton and Zidek (1984, hereafter CZ) and again by Shewry and
Wynn (1987), and Sebastiani and Wynn (2000). It has also been embraced
in the work of Bueso et al. (1998, 1999b), Angulo et al. (2000), and Angulo
and Bueso (2001). In fact, the idea of using entropy in experimental design
goes back at least to Lindley (1956). There is a substantial body of work on
optimal design in the Bayesian context although none covers environmental
applications as discussed here; for a review see Verdinelli (1991).

Entropy Approach

The entropy approach to design was implemented by Caselton et al. (1992,
hereafter, CKZ) to obtain a method of ranking stations for possible elimination
from an existing network; refinements were added by Wu and Zidek (1992).
Guttorp et al. (1993) tackled the complementary problem of extending an
existing network. Le and Zidek (1994) extended the approach to a multivariate
setting. Zidek et al. (2000) proposed a method for incorporating costs. Le et
al. (2004) address the design problem for multivariate responses where the
existing monitoring network has stations with different operational periods,
resulting in a monotone (staircase) data pattern.

The basic idea underlying the just cited work is that all data have the
fundamental purpose of reducing uncertainty about some aspect of the world.
As discussed in Chapter 3, the postulates of Bayesian theory imply uncertainty
can be quantified in terms of probability distributions. And the postulates of
entropy theory, in turn, imply that the uncertainty in any distribution is
indexed by its entropy. Ineluctably, an optimal design must minimize residual
entropy after data have been collected.

We develop our entropy approach within a hierarchical Bayes framework
with some estimated components. That framework is natural; designers invari-
ably need prior information. For example, Linthurst and his coinvestigators
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(Linthurst et al., 1986, p. 4) relied on their expectations of low alkalinity to
help select their sample of surface water bodies in the United States. After
all, the real information only comes from the experiment being designed to
produce it! We now turn to a description of the approach, the subject of this
chapter.

Joint Predictive Distribution***

We first need the joint predictive distribution of concentration levels at lo-
cations of interest. The Bayesian hierarchical models described in Chapter 9
and generalized in Chapter 10 provide the distributions we use to demonstrate
the entropy design approach. We derive specific optimal design criteria and
discuss computational and other related design issues. But before any of that,
we review, in the next section, some of the basic approaches that have been
taken to network design.

11.1 Design Strategies

A sampling domain may seem to offer a continuum of possible monitoring
locations (sites). However, in practice only a small discrete set of possibilities
are usually be available due to such things as accessibility. That is the set-up
addressed in this chapter.

Probability or Model-Based?

Generally designs may be probability-based or model-based. The former in-
cludes simple random sampling: sites are sampled at random with equal prob-
ability (usually without replacement). The measured responses, which may
even be a time series of values, would then be (approximately) independent
and their associated inferential theory quite simple. As well, such designs
prove quite robust since nothing is assumed about the population of possible
responses.

However, these designs can also be very inefficient under the simplest of
assumptions about the population. Moreover, sampling sites could end up
adjacent to each other by chance, thereby making one of them redundant
except in exceptional cases. Thus, samplers commonly rely on population
models and sometimes achieve dramatic increases in efficiency under these
models. For example, they may postulate a population that consists of a union
of homogeneous geographical strata. Under that model, only a small number
of sites would need to be selected from each stratum. Because of their appeal,
such designs have been used in a survey of U.S. lakes (Eilers et al. 1987) and
in EMAP (see, for example, http://www.epa.gov/emap).
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While stratification diversifies sampling, adjacent pairs of sites could still
obtain, either within strata or on opposite sites of a common boundary. More-
over, knowledge about environmental fields can well exceed what can be ac-
commodated by the models of probability-based theory. That knowledge can
lead to greater gains in efficiency than achievable through probability-based
designs and hence model-based designs are commonly used in practice to
achieve design optimality.

Regression or Random Field Approach?

Broadly speaking, two distinct approaches have emerged for selecting model-
based (or optimal) designs (Federov and Müller, 1988, 1989), based either on
regression models or random field models. The latter are emphasized in this
chapter. However, the former are reviewed as they has been offered as an
approach to network design. Their advantages and disadvantages in that role
are described.

Regression Model-Based Approach

Regression model (optimal design) theory originally had nothing to do with
monitoring networks. Originating with Smith (1918), it was refined by Elfv-
ing (1952), Keifer (1959), and others (see Silvey 1980, Fedorov and Hackl
1997, and Müller 2001 for reviews). The theory addresses continuous sam-
pling domains, X . However, optimal designs there, ξ, have finite support,
x1, . . . , xm ∈ X with

∑m
i=1 ξ(xi) = 1. In all, n × ξ(xi) (suitably rounded) re-

sponses would then be measured at xi for all i = 1, . . . ,m to obtain y1, . . . , yn.
Underlying the method is a regression model, y(x) = η(x, β) + ε(x) relating
the ys to the selected (and fixed) xs. Another key assumption: the εs are inde-
pendent from one sample point x to another. Optimality was then defined in
terms of the efficiency of estimators of β, thus yielding an objective function
Φ(M(ξ)) to be optimized, where M(ξ) denotes the information matrix and
Φ a positive function that depends on the criterion adopted. For example, in
ordinary linear regression, M(ξ) = σ2[X′X]−1. Φ could be any of a number
of possibilities including Φ(A) = − log |A| (D-optimality) or Φ(A) = Trace(A)
(A-Optimality). An elegant mathematical theory emerged together with nu-
merical algorithms for computing the optimum design approximately.

To illustrate, suppose that conditional on x ∈ [a, b], y(x) = α+ βx+ ε(x)
and the εs are independent of the xs as well as each other. Then to minimize
the variance of the least-squares estimator of β, the optimal design would have
x1 = a, x2 = b while ξ(x1) = ξ(x2) = 1/2.

Regression-based optimal design theory as described above encounters dif-
ficulties in application to network design. There monitors must be located at a
subset of available sites and then simultaneously measure the field of interest
regularly for an indefinite period. For example, every TEOM particulate air
pollution monitor at an urban sampling site yields hourly observations. To



11.1 Design Strategies 189

measure n responses each time would entail gauging n sites, forcing ξ ≡ 1/n.
That in turn would completely determine the design once its support were
specified, making the classical theory of design irrelevant.

Nevertheless, a sustained effort has been made to adapt the regression
model paradigm to encompass network design. Federov and Müller (1989)
cite Gribik et al. (1976) as an early attempt. However, the major push came
later (Fedorov and Müller 1989). The motive may have been a unified optimal
design theory. However, Fedorov and Müller (1989) give a more pragmatic
reason. They argue in their paper that hitherto, only suboptimal designs could
be found, feasible algorithms being limited to adding just one station at a
time, albeit optimally. However, algorithms from the regression model theory
offered promise (and algorithms!) by which genuinely optimal designs could
be computed. (This reason may not be quite as compelling for the maximum
entropy designs proposed in the next section where quick algorithms are now
available for finding the optimum designs, at least for networks of moderate
size.)

To that end, Fedorov and Müller (1988), assume that at time t = 1, . . . , T ,
yt(xi) = η(xi, βt) + εt(xi). Once again, the εs are all independent of each
other. However, the βts are random and autocorrelated. Moreover, η(xi, βt) =
gT (xi)βt for a known vector-valued g. Thus, this ingenious model captures
both temporal and spatial covariance. By the way, the latter is not as restricted
as it might seem at first glance, since the coordinates of g can be eigenfunctions
of the spatial covariance kernel when it is known. That covariance can thus be
approximated well if the dimension of g is sufficiently large. But this comes at
the expense of fixing the variances of these random effects to be eigenvalues
of that kernel. The design objectives embrace the performance of either a
linear predictor of a single βt, say at time t = “now” or of the mean of the
common βt distribution. These objectives would not seem compelling when
the coefficients are merely artifacts of the eigenvector expansion associated
with the covariance kernel rather than quantities of substantive interest such
as the slope of a genuine regression model.

The authors recognize the limitation mentioned above, that in this context
the optimum design must be a subset of the available design set. However,
to bring in the classical theory and associated algorithms, they relax that re-
striction and admit general ξs, albeit subject to a boundedness requirement,
so that established numerical search solutions now obtain. They call this sub-
stitution a “continuous approximation” and solve that problem instead of the
original. The result will not usually be a feasible solution to the original prob-
lem and Fedorov and Müller (1988, 1989) note the challenge of interpreting it,
seen variously as a local density, an indicator of a hot-spot, or a design with
more than one monitor at some sites. Further work in this direction described
in Müller (2001) may help clarify the nature of this approximation. However,
it is unclear about the value of substituting the approximate problem (and big
associated toolbox of computational algorithms) for the hard to solve exact
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discrete design problem (and inevitable feasible to compute approximations),
an issue that seems to need further investigation.

Apart from the problem of interpreting the optimum, issues of a more
technical nature arise. First, suppose a genuine regression model (as opposed
to eigenfunction expansion) is used above so that the objective function is
substantively meaningful. Then the range of spatial covariance kernels will
be restricted unless the εs are allowed to be spatially correlated. That need
is met in the extensions of the above model above described in the reviews
of Fedorov (1996) and Müller (2001). However, the resulting design objective
function “does not have much in common with [the original] besides notation”
in the words of Fedorov (1996, page #524). A new toolbox will have to be
created except in simple cases where an exhaustive search is needed. Back to
square one!

While the regression model above does have substantive appeal, its value is
uncertain. Environmental space–time fields tend to be so complex that their
random response fields are only crudely related to spatial site coordinates.
Moreover, the shape of that field can vary dramatically over time and season.
In other words, finding a meaningful, known vector-valued function g above
would generally be difficult or impossible.

The alternative, the eigenfunction expansion, also presents difficulties ac-
cording to Fedorov (1996), relating to the problem of accurately approximat-
ing the spatial covariance kernel. Complications can arise in particular when
the size of the proposed network is large. Moreover, while the eigenfunctions
are known to exist under very general conditions, it is not clear that actually
finding them in usable form will be possible in problems of realistic size.

To summarize, the regression model approach does offer a very highly
evolved theory for design, along with a substantial toolbox of algorithms for
computing optimal designs, at least approximately. It also offers a broad range
of objective functions which formally embraces that which comes out of the
maximum entropy approach in the Gaussian case we introduce in the next sec-
tion. However, forcing the network design problem into the regression model
mold proves challenging both in terms of interpretation of the resulting optima
as well as satisfying the assumptions underlying that approach.

Link to Geostatistics

Perhaps the strongest link between the regression modeling and random field
approaches can be found in geostatistics. Wackernagel (2003) gives a very
readable recent account of that subject while Myers (2002) addresses space–
time processes from the perspective of geostatistical modeling. Because until
very recently, that subject has concerned itself with spatial fields while we
focus on space–time fields, this approach is not described in detail.

Unlike the regression modeling approach (above) that emphasizes parame-
ter estimation, geostatistics has tended to focus on the prediction of unmea-
sured values in a spatial field that, paradoxically, is regarded as random even
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though it is fixed. Two methods are commonly employed, cokriging and uni-
versal kriging. The first concerns the prediction of an unmeasured coordinate
of the response vector, say y1(x0) using an optimal linear predictor based on
the observed response vectors at all the sampling sites. The coefficients of that
optimal predictor are found by requiring it to be unbiased and to minimize
the mean-square prediction error. They depend on the covariances between
responses and between the sites, covariances that are unrealistically assumed
to be known and later estimated from the data usually without adequately
accounting for the additional uncertainty thereby introduced. In contrast to
the first, the second relies on a regression model precisely of the form given
above, y(x) = gT (x)β + εt(x), where the εs are assumed to have a covariance
structure of known form. However, unlike the regression modeling approach
above, the goal is prediction of the random response (possibly a vector) at
a point where it has not been measured. Moreover, g (that may be a matrix
in the multivariate case) can represent an observable covariate process. Op-
timization again relies on selecting coefficients by minimizing mean-squared
prediction error subject to the requirement of unbiasedness. Designs are com-
monly found iteratively one future site at a time, by choosing the site x0
where the prediction error of the optimum predictor proves to be greatest.
Other approaches to model-based designs have been proposed. For example,
Bueso et al. (1999a), offer one based on stochastic complexity.

That completes the survey of regression-based approaches. The maximum
entropy approach is described in the next section.

11.2 Entropy-Based Designs

Entropy reflects the reduction in uncertainty when a random variable is ob-
served. Thus, in an optimal environmental design context, the objective is to
maximize the uncertainty reduction when selecting a number of stations where
their responses are measured. This idea, first proposed by Caselton and Zidek
(1984), can be formalized. However, before doing that we give an introduction
to entropy. For a more detailed description, see Theil and Fiebig (1984).

11.3 Entropy

Suppose X, a discrete random variable, takes a finite number of possible
outcomes E1, . . . , En with probabilities p1, . . . , pn, respectively. Let φ be a
function defined on the interval (0, 1], φ(pi) representing the uncertainty asso-
ciated with the event X = Ei, for i = 1, . . . , n. Before observing X, we would
expect the reduction in our uncertainty, H(X), to be the weighted average,

H(X) =
n∑

i=1

piφ(pi).
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Now add an additional axiom, that the expected reduction in uncertainty
from jointly observing two independent random variables be the sum of the
reductions from observing each random variable separately, that is

H(X,Y ) = H(X) +H(Y ) wheneverX,Y are independent.

This implies that φ(pi) = − log(pi). Thus, the uncertainty in the discrete
random variable X becomes what is known as its entropy,

H(X) = −
p∑

i=1

pi log(pi).

However, extending that definition to cover continuous random variables Y
proves problematical. Simply taking the limit through a series of progressively
finer discrete approximations does not work. In fact, the outcome would not be
finite. Alternatively, one might suppose entropy could be defined by analogy.
Sums and probabilities could be replaced by integrals and density functions,
respectively. In other words, why not take

H(Y ) = E[− log f(Y )],

where f is the probability density function (PDF) of the continuous random
variable Y ? The answer is that the result would not be invariant under trans-
formations of Y . That is, merely changing the scale of measurement of Y from
Celsius to Fahrenheit, for example, would lead to a different index of our state
of uncertainty, a nonsensical result! That deficiency derives from the fact that
f , unlike p in the discrete case, is not a probability. Instead it is a rate, the
rate of change in probability per unit change in Y .

Jaynes (1963) proposes instead, that

H(Y ) ≡ −E
[
log
f(Y )
h(Y )

]
,

where h is a reference measure representing complete ignorance. Although
defining h unambiguously remains an unresolved issue, the Jaynes entropy
has come to be widely used in the continuous case and, in any case, seems
a good index of uncertainty. After all, it has many natural properties such
as invariance and additivity for independent random responses. In any case,
this is the one we use in our approach to designing environmental networks
in this chapter. In the example below and throughout the chapter, the ref-
erence measure h is chosen to ensure invariance of the entropy under affine
transformations of X.

Example: Entropy of Multivariate t Distribution

Example 11.1. Normal—inverted Wishart
Assume Y , a g-dimensional random vector, has a multivariate t distribution
tg(µ, s−1Ψ, δ). That distribution can be considered to be a marginal distri-
bution deriving from a conjunction of a Gaussian and an inverted Wishart
distribution defined as
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Y | Σ ∼ Ng(µ,Σ);
Σ | Ψ, δ ∼ IW (Ψ, δ)

with s = δ−g+1. Conditional on the hyperparameters Ψ, δ, the joint entropy
H(Y,Σ) can be decomposed in two ways:

H(Y,Σ) = H(Y | Σ) +H(Σ) (11.1)
H(Y,Σ) = H(Σ | Y ) +H(Y ).

The equivalence of the left-hand sides of (11.1) implies

H(Y ) = H(Y | Σ) +H(Σ) −H(Σ | Y ). (11.2)

The components of (11.2) can be computed using the reference measure

h(Y,Σ) = h(Y )h(Σ) = |Σ|−(g+1)/2.

The first component H(Y | Σ) is then

H(Y | Σ) =
1
2
E(log |Σ| | Ψ) +

g

2
(log(2π) + 1)

=
1
2
E(log |Ψ |) +

1
2
E(log |ΣΨ−1|) +

g

2
(log(2π) + 1)

=
1
2
E(log |Ψ |) + c1(g, δ).

The constant, c1(g, δ) for given g and δ, like its cousins below, c2, . . . , c5, plays
no role in our theory and hence is not specified. The last equality obtains since
ΨΣ−1 ∼W (Ig, δ).

Similarly the second component H(Σ) can be expressed as

H(Σ) = E[log f(Σ)/h(Σ)]

=
1
2
δ log |Ψ | − 1

2
δE(log |Σ|) − 1

2
E(trΨΣ−1) + c2(g, δ)

= −1
2
δE(log |ΣΨ−1|) − 1

2
E(trΨΣ−1) + c2(g, δ)

=
1
2
δE(log |Σ−1Ψ |) − 1

2
E(trΨΣ−1) + c2(g, δ)

= c3(g, δ), since again ΨΣ−1 ∼W (Ig, δ).

Similarly, the last component is

H(Σ | Y ) =
1
2
(δ + 1)log|Ψ | − 1

2
(δ + 1)E(log |Ψ + Y Y ′|) + c4(g, δ)

= −1
2
(δ + 1)E(log |1 + Y ′Ψ−1Y |) + c4(g, δ)

= c5(g, δ).

The first equality obtains because Σ has the following posterior distribution
(see Anderson 2003, for example)
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Σ | Y, Ψ, δ ∼ IW (Ψ + Y Y ′, δ + 1).

Furthermore, note that

|Ψ + Y Y ′| = |Ψ |(1 + Y ′Ψ−1Y )

and for Y ∼ tg(µ, s−1Σ, s) the quadratic term Y ′Ψ−1Y has an F distribution
with degrees of freedom depending on g and δ.

Substituting these last results back into (11.2) yields, for the total entropy
of Y ,

H(Y ) =
1
2
log|Ψ | + c(g, δ), (11.3)

where c is a constant depending on g and δ.

11.4 Entropy in Environmental Network Design

As noted earlier, entropy can be an appealing design criterion because it
sidesteps the problem of specifying a particular design objective. Moreover,
that criterion fits well into the Bayesian framework adopted for the spatial–
temporal stochastic models discussed in the book.

To describe the approach more precisely, we associate a random variable
with every site in a spatial random field representing concentration levels,
for example. The variables corresponding to the sites in the discrete random
field may be stacked to obtain a random vector. The random vector field is
observed at g discrete gauged sites at sampling times j = 1, · · · , n, yielding

a g × 1 data vector, X(2)
j =

(
X

(21)
j , · · · , X(2g)

j

)′
at time j. Of interest is a

u × 1 vector, X(1)
n+1 =

(
X

(11)
n+1, . . . , X

(1u)
n+1

)′
, of unmeasured future values at u

ungauged sites at time n + 1. The spatial field is over the domain of u + g
discrete sites. Let Xj denote the gauged and ungauged responses combined
at time j; i.e., X ′

j ≡ (X(1)′

j , X
(2)′

j ).
SupposeXj has the joint probability density function fj for all j. The total

uncertainty about Xj may be expressed by the entropy of its distribution; i.e.,
Hj(Xj) = E[−logfj(Xj)/h(Xj)], where h(·) is a not necessarily integrable
reference density (see Jaynes 1963). Note that the distributions involved in
Hj may be conditional on certain covariate vectors {zj} regarded as fixed.

Given the network’s mission to monitor the environment, we regard the
next value Xn+1 as being of primary interest. However, Xn+1’s probability
density function f(n+1)(·) = f(n+1)(· | θ) depends on a vector of unspeci-
fied model parameters, say θ, so it cannot be used directly in computing its
uncertainty H(Xn+1). Uncertainty about θ could be absorbed by averaging
f(n+1)(· | θ) with respect to θ’s distribution to obtain Xn+1’s marginal distri-
bution and hence its entropy. However, θ is of interest in its own right. For
example, θ may include the (spatial) covariance matrix of Xn+1, Σ, which
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has potential use in spatial interpolation. Therefore it is important in its own
right. Thus we, like Caselton et al. (1992), include reducing the uncertainty
about θ among the network’s objectives. As a result, the total entropy becomes
Hn+1(X, θ) conditional on the data, D

defn
=

{
X

(2)
j , j = 1, . . . , n

}
.

For purposes of optimizing environmental design, partition Xn+1 = (U,G)
into two subvectors, U ≡ X

(rem)′

n+1 representing stations not selected for the

network at time n + 1, and G ≡ X
(sel)′

n+1 those selected. The objective? Find
G, of preset dimension, that maximizes the corresponding entropy.

Fundamental Identity

Towards our achievement of that objective, note that the total a priori un-
certainty H(Xn+1, θ), denoted by TOT and conditional on D, is reduced by
observing Xn+1. Now in terms of the prospective gauged and ungauged sites,
that total can be decomposed as

TOT = PRED +MODEL+MEAS,

where, assuming h(Xn+1, θ) = h1(Xn+1)h2(θ) and h1(Xn+1) = h11(U)h12(G),

PRED = E[− log(f(U | G, θ,D)/h11(U)) | D],
MODEL = E[− log(f(θ | G,D)/h2(θ)) | D],

and

MEAS = E[− log(f(G | D)/h12(G)) | D].

Assuming negligible measurement error, eliminating all uncertainty about
G by observing it would lead to an expected reduction in uncertainty given
byMEAS. Thus, it is optimal to select the gauged stations so as to maximize
MEAS.

Since TOT is fixed, it follows that the same selection of those sites meets
another design objective, that of minimizing PRED +MODEL. The latter
represents the residual uncertainty about the model parameters and the values
of the random field at the ungauged sites, after observing G. Incidentally, it
is easily seen that had H(Xn+1) been decomposed analogously instead of
H(Xn+1, θ), the same optimization criterion, maximization of MEAS, would
have been achieved.

Extension or Reduction?

In practice, the redesign of an environmental network can involve either an
extension or a reduction of an existing one. Bueso et al. (1998) describe well,
these two broad design objectives. Earlier, CKZ considered the problem of
reducing the number of sites in a network that has been providing data for
some time. In this framework, the problem would be to optimally partition
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X
(2)
n+1 so that after appropriately relabeling the coordinates of X(2)

n+1, it can be

written as
(
X(rem)′

, X(sel)′
)

where X(rem) and X(sel) are u1 and g1 dimen-
sional vectors respectively, u1 +g1 = g, corresponding to the sites that will be
ungauged and gauged in the future. Using 48 months of available data, Wu
and Zidek (1992) also implement this approach in an analysis of 81 selected
sites from the NADP/NTN network, an existing network of wet deposition
monitoring stations in the United States.

For extending an environmental network, this framework can be used
by gauging a specified number u2 of sites corresponding to coordinates of
X

(1)
n+1. That is, the new gauged sites are selected by optimal partitioning of

X(1) which, after reordering its coordinates, yields X(1) =
(
X(rem)′

, X(add)′
)

where X(rem)′
is a u1-dimensional vector representing the future ungauged

sites and X(add)′
is a u2-dimensional vector representing the future gauged

sites. The resulting network will consist of the sites corresponding to the co-
ordinates of

(
X(add)′

, X(2)′
)

≡ G, which is of dimension (g + u2).
Next, the criteria for redesigning an environmental network including ex-

tension and reduction are provided. First the simple univariate setting is de-
scribed and then generalization to more complex settings is discussed.

11.5 Entropy Criteria

Consider the simple univariate setting of Chapter 9 where concentration lev-
els are observed at times 1 to n for g locations. Assume no measurements
are available at u other specified locations. To obtain the entropy criterion,
the predictive distribution for all locations at a future time is required. For
completeness, we briefly review that distribution which is derived in Chapter
9. Note that we impose no condition of isotropy in its derivation, thereby
endowing our design criterion with an advantageous feature.

11.6 Predictive Distribution

Let Yt be a p-dimensional (i.e., strung out) random row vector denoting the
random field at time t. The first u coordinates are those with no data available
(ungauged sites) and the remaining g coordinates are those with observed
data (gauged locations), yt(s1), . . . , yt(sg) for t = 1, . . . , n. The vector Yt can
be partitioned as Yt = (Y (u)

t , Y
(g)
t ) corresponding to the locations without

observations (u) and those with measurements (g).
The random variable Yt is assumed to be independent and follow a

Gaussian distribution

Yt | zt, B,Σ
independent∼ Np(ztB,Σ), (11.4)
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where zt ≡ (zt1, . . . , ztk) is a k-dimensional row vector of covariates and B
denotes a (k × p) matrix of regression coefficients with p = u+ g,

B ≡
(
B(u) B(g)

)
,

partitioned in accord with the partitioning of Yt. The covariance matrix Σ is
partitioned accordingly as

Σ =
(
Σuu Σug

Σgu Σgg

)
.

Assume B and Σ follow conjugate prior distribution (c.f. Anderson 2003),

B | Bo, Σ, F ∼ Nkp

(
Bo, F

−1 ⊗Σ
)

(11.5)

Σ | Ψ, δ ∼ W−1
p (Ψ, δ), (11.6)

where Np(µ,Σ) denotes the p-dimensional Gaussian distribution with mean
µ and covariance matrix Σ. W−1

p (Ψ, δ) denotes the p-dimensional inverted
Wishart distribution with scale matrix Ψ and m degrees of freedom.

Let D =
{

(y(g)
1 , z1), . . . , (y

(g)
n , zn)

}
be the data. The spatial predictive

distribution is given below. Before presenting it, we give required nota-
tion. First, we need the least-squares estimator of B(g), namely, B̂(g) =
(
∑n

t=1 ztz
′
t)

−1∑n
t=1 z

T
t y

(g)
t . Second comes the residual sum of squares: S =∑n

t=1(y
(g)
t − ztB̂(g))T (y(g)

t − ztB̂(g)). Third are the weights we need to com-
bine the prior and data-based versions of B(g); they appear in the weights
matrix W = (A+ F )−1F−1 = A−1(F−1 + A−1)−1. Note that the inverses of
A and F represent precision and determine whether the data based or prior
should get the most weight, the latter when W is large, that is, when F−1

is small. Finally, we need a couple of rescaling values that derive from the
covariates and from model fit residuals obtained when using the prior version
of B(g):

c = 1 + z(A+ F )−1zT

d = 1 + zF−1zT +
(
y
(g)
f − zfB(g)

o

)
Ψ−1

gg

(
y
(g)
f − zfB(g)

o

)T

.

With the notation we can state the following result.

The predictive distribution of Yf =
(
Y

(u)′

f , Y
(g)′

f

)
given covariate vec-

tor zf and the prior hyperparameters Bo and (Ψgg, Ψu|g, τo), is

Y
(g)
f | D ∼ tg

(
µ(g),

c

l
Ψ̂gg, l

)
(11.7)

Y
(u)
f | Y (g)

f = y(g)
f , D ∼ tu

(
µ(u),

d

q
Ψu|g, q

)
, (11.8)

where tr denotes the r-variate Student’s t-distribution, l = δ + n−
u− g + 1, q = δ − u+ 1, and



198 11 Environmental Network Design

Ψ̂gg = Ψgg + S + (B̂(g) −B(g)
o )′(A−1 + F−1)−1(B̂(g) −B(g)

o )

µ(g) = (1 −W )B̂(g) +WB(g)
o

µ(u) = zfB(u)
o + τo

(
y
(g)
f − zfB(g)

o

)
.

.

Here Ψgg and Ψu|g represent the hypercovariance matrix between gauged sites
and residual hypercovariance matrix between ungauged sites, respectively.

11.7 Criteria

The total entropy H(Yf ) can be expressed, using the predictive distribution
(11.7)–(11.8), as

H(Yf | D) = H(Y (u)
f | Y (g)

f , D) +H(Y (g)
f | D)

=
1
2

log |Ψu|g| + cu(u, q) +
1
2

log |Ψ̂gg| + cg(g, l), (11.9)

where cu(u, q) and cg(g, l) are constants depending on the degrees of freedom
and the dimensions of the ungauged and gauged sites, respectively. The last
equality is obtained by applying the entropy of the multivariate t distribution
given in (11.3). The resulting decomposition can be used to establish the
entropy criterion by maximizingMEAS as described in Section 11.2. Specific
criteria for redesigning, reducing, and extending a network are given below.

Criterion for Redesign:
The purpose of redesigning a network is to select a new set of locations for
a given dimension (say g1) among the (u + g) locations to maximize the
corresponding entropy. The new locations are selected from both the stations
in the existing network and the new potential sites. Specifically, partition Yf

into two components denoted by (Y (rem)′

f , Y
(sel)′

f ), where Y (sel)
f corresponds

to a set of g1 locations. Partition sel further to selg and selu corresponding to
the gauged and ungauged sites, respectively. The optimal entropy criterion,
using (11.9), becomes

max
selu,selg

[(
1
2
log|Ψu|g| + cu(u, q)

)selu

+
(

1
2
log|Ψ̂gg| + cg(g, l)

)selg
]
.(11.10)

Criterion for Reduction:
We must find the g1 gauged sites we wish to keep from an existing network.
To this end, partition Y [g]

f into two components, (Y [g]
f )(rem)′

, (Y [g]
f )(sel)′

),

(Y [g]
f )(sel) corresponding to a subset of g1 locations. The optimal criterion

becomes
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max
selg

(
1
2

log |Ψ̂gg|
)selg

. (11.11)

Criterion for Extension:
For augmenting the network, we have to find u1 sites, among the u avail-
able, to add to the existing network. Partition Y [u]

f into two components,

(Y [u]
f )(rem)′

, (Y [u]
f )(add)′

), add corresponding to the chosen locations. The add
sites, a vector of dimension u1, are selected to maximize the corresponding
entropy in (11.9). The optimality criterion becomes

max
add

(
1
2

log |Ψu|g|
)add

. (11.12)

The entropy approach has been extended to more complex situations, in-
cluding those with multivariate responses (Le and Zidek 1994), systematically
missing data (where not all stations in the existing network measure the same
set of pollutants Zidek et al. 2000) and staircase patterns of missing data (Le
et al. 2001). These extensions are specifically for augmenting a network and
the Kronecker structure is imposed on the hypercovariance matrix to reduce
the number of parameters that need to be estimated. In all cases, the entropy
criterion is also to maximize log |Λ|add where Λ is the hypercovariance matrix
among the ungauged sites. The entropy approach to design is illustrated in
the example below.

11.8 Incorporating Cost

Discussion so far has been about optimal designs based purely on the reduction
of uncertainty as reflected by entropy. However, in applications, cost is also
an important consideration. Costs accrue from the initial preparation of a site
as well as from its ongoing operations. Hence, the costs may well vary from
site to site. For example, in network redesign, using an existing site avoids
the sometimes substantial preparation costs, depending on such things as the
ease of access and the cost of new equipment.

Furthermore, entropy theory suggests uncertainty reduction will increase
monotonically as the number of selected sites increases. However, the growth
rate will begin to tail off at some point where a marginal gain in entropy will
be seen (Caselton et al. 1992). Meanwhile, the costs will also increase in a
monotone fashion until eventually cost will outweigh benefit. At that point a
practically optimal design will obtain.

Zidek et al. (2000) propose a direct approach to incorporating costs in
a composite objective criterion that requires a cost to entropy conversion
factor. Denote by E(s) the reduction in entropy per period, assumed constant
over time. Let Cop(s) be the cost of operating the network over a single time
period. Then the total cost of running the network for that period is C(s) =
Cop(s) + Cinit(s) where Cinit(s) denotes the per-time-period cost for the
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initial preparation of the network. Define the composite objective function as
O(s) = E(s) −DE × C(s), DE being the cost to entropy conversion factor.
This factor gives the number of entropy units that one would trade for a unit
of cost. In practice, this factor would have to be elicited from those charged
with redesigning the network. When DE = 0 the objective function becomes
the entropy approach described above.

More “Bang for the Buck!”

An appealing alternative, suggested by Dr. Larry Phillips (personal commu-
nication), would simply maximize the “bang for the buck,” i.e., maximize
E(s)/C(s). This approach enjoys the advantage of bypassing the need to spec-
ify DE. However, as an ad hoc method, it lacks the normative credentials of
the multiattribute approach we propose above.

11.9 Computation***

The exact optimal design in Equations (11.10)–(11.12) cannot generally be
found in reasonable time since finding it is an NP-hard problem (Ko et al.
1995). That makes suboptimal designs necessary in problems of large or mod-
erate size. Among the alternatives are exchange algorithms, in particular, the
(DETMAX) procedure of Mitchell (1974a,b) cited by Ko et al.(1995). They
also cite the greedy algorithm of Guttorp et al. (1993). At each step, the latter
adds (or subtracts if the network is being reduced) the station that maximally
improves the design’s objective criterion. Ko et al. (1995) introduce a greedy
plus exchange algorithm. The former starts with the complete set of all sites
K, and first reduces it to the required number by the greedy algorithm. It
then applies an exchange algorithm to the resulting greedy network S. Specif-
ically, while possible, it successively exchanges site pairs i ∈ S and j ∈ K\S
so that the objective function at (S\i) ∪ {j} exceeds its values at S. Finally,
Wu and Zidek (1992) propose the idea of clustering the prospective sites into
suitably small subgroups before applying an exact or inexact algorithm so as
to get suboptimal designs that are optimal, at least within clusters.

Exact Algorithms

Exact algorithms for moderate-sized problems are available. The obvious one,
complete enumeration, is used in this chapter and in Guttorp et al. (1993) in
cases where K is not too large. Ko et al. (1995) offer a more sophisticated
branch-and-bound technique that we now describe. Using their notation, let
F denote a subcollection of sites that must be added to the network, K being
the collection of all sites. They seek to extend F to some S ⊃ F of sites that
are to be added. Finally, if certain sites K\(E ∪ F ) are ineligible, their goal
would entail finding
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ν(Λ0, F, E, s) := max
S:#(S)=s,F⊆S⊆E∪F

|Λ0[S, S]| (11.13)

and the associated S = Soptimal where “#(S)” stands for the number of sites
in S and in general, Λ0[E′, F ′] refers to the submatrix of Λ0 with rows E′

and columns F ′. The algorithm requires a good initial design S∗ obtained by
the greedy algorithm, for example. This design yields as a target to beat, the
initial lower bound LB := |Λ0[S∗, S∗]|. As well, it provides an initial active
subproblems set L = {L} consisting of just one element L := (Λ0, F, E, s) as
well as a global upper bound UB := b(Λ0, F, E, s). For b, Ko et al. (1995) find

b(L) := |Λ0[F, F ]|Πs−f
i=1 λi(Λ0[E·F ]), (11.14)

where Λ0[E·F ] = Λ0[E] − Λ0[E,F ]Λ0[F, F ]−1Λ0[F,E] and the {λi} are the
ordered eigenvalues of its matrix argument in decreasing order, λ1 ≥ · · ·λs−f

with f = #(F ).
At a general step in the execution of the algorithm, the LB would cor-

respond to the best design S∗ obtained to that step. At the same time, L
would have a multiplicity of elements and the required global upper bound
would be UB := maxL∈L b(L). UB > LB suggests that Soptimal has not
been reached and new branches need to be explored in search of the opti-
mum, i.e., new active subproblems need to be added to the L. We do this
by first deleting an active subprogram (Λ0, F

′, E′, s) from L and then select-
ing a branching index i ∈ E′. Four (nondistinct) cases obtain and determine
which subproblems to add. First, one of (i) #(F ′) + #(E′) − 1 > s or (ii)
#(F ′) + #(E′) − 1 = s obtains. If (i), add (Λ0, F

′, E′\i, s) to L and com-
pute b(Λ0, F

′, E′\i, s) (needed to find the new UB). If (ii), S := F ′ ∪ E′\i
is the only feasible solution. If Λ0[S, S] < LB, S supplants the current S∗

and LB moves up to LB := Λ0[S, S]. Next, one of (iii) F ′ + 1 < s or (iv)
F ′ + 1 = s prevails. If (iii), add (Λ0, F

′ ∪ {i}, E′\i, s) to L and compute
b((Λ0, C(Λ0, F

′ ∪ {i}, E′\i, s), s). If (iv), S = F ′ ∪ {i}; the only available fea-
sible solution can supplant the current S∗ and move LB (computed as above)
even higher. Finally, recompute the UB and determine whether the program
has terminated with UB ≤ LB. If not, delete another active subproblem,
create new branches, and carry on as long as possible.

Ko et al. (1995) show their algorithm to be much quicker than complete
enumeration. Jon Lee (personal communication) suggests that problems with
site totals of about 80 can be routinely tackled. No doubt by improving UBs
and methods of selecting the active problems for deletion, further increases in
the algorithm’s domain are possible. Nevertheless, for realistic continentwide
redesign problems having hundreds or even thousands of prospective sites,
exact optimization seems out of the question. Therefore, the finding of Ko et
al. (1995) is encouraging in that the greedy/swap algorithm described above
often produced the exact optimum, where the latter is computable.

The branch-and-bound algorithm can be extended in various ways. Bueso
et al. (1998) extend it to the case where observations are made with error
and the goal is the prediction not only of responses at ungauged sites but



202 11 Environmental Network Design

Chilliwack.Airport

Abbotsford.Downtown

Kensington.Park

Burnaby.South

Rocky.Point.Park

Surrey.East

Kitsilano

Langley

North.Delta

Richmond.South

Mar 1,95

Jul 19,94

Jul 19,94

Jul 19,94

Jul 19,94

Jul 19,94

Jul 19,94

Jan 1,94

Jan 1,94

Jan 1,94

0 50 150 250 350

Fig. 11.1: Boxplot of hourly PM10 levels (µg/m3) at ten monitoring sites in Greater
Vancouver and their start-up times.

those at the gauged sites as well. Lee (1998) extends it to incorporate linear
constraints (e.g., limiting cost). His approach differs from the approach of
Zidek et al. (2000) where cost is also incorporated.

11.10 Case Study

This section illustrates the use of the above entropy design theory by redesign-
ing GVRD’s PM10 network. That network had ten stations measuring hourly
PM10 levels with different start dates, resulting in a staircase data pattern.
Each step of the staircase consists of stations having the same starting time.
Figure 11.1 shows the names of the stations along with their start dates and
the boxplots of the hourly PM10 measurements.
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Add Six New Sites!

Our objective: augment the existing network with an optimal subset of six
stations among 20 potential sites. Locations of the existing stations and po-
tential sites are displayed in Figure 11.2. Since the hour to hour PM10 lev-
els are highly dependent, a 24-dimensional vector representing hourly PM10
measurements for each day obtained from the detrended series is considered.
The staircase pattern and the multivariate responses fit in with the general
Bayesian hierarchical model setting in Chapter 10.

Preliminaries

The trend for the log-transformed hourly PM10 levels is modeled with sea-
sonal components, hourly, and daily effects, and meteorological covariates. We
do not go into detail, but briefly, the seasonal components are captured by
sine and cosine functions for monthly, semi-annual, and annual cycles. Since
the trend model is linear in its coefficients, they like the other coefficients are
fitted by regression analysis. In a similar way, we incorporate meteorological
data, including “visibility index,” “sealevel pressure,” “dewpoint tempera-
ture,” “wind speed,” “rain,” and “relative humidity.”

After removing the trend, we need to filter out day to day autocorrelation.
This we do with the help of a standard (multivariate) autogressive time-series
model of order one, i.e., MAR(1) model. Standard statistical software packages
include routines for fitting such models. After fitting that model we are left
with approximately whitened, i.e., unautocorrelated, residuals.

On to Residuals and Design

Those residuals are multivariate responses having a monotone missing data
pattern. The predictive distribution for the multivariate residuals at all lo-
cations of interest, 10 existing and 20 new potential sites, is a product of
conditional matric-t distributions as given by the results in Chapter 10.

The hyperparameters are estimated using the moment method proposed
by Kibria et al. (2002). Table 11.1 shows the estimated hypercovariance matrix
between gauged stations.

The residual hypercovariance matrix between potential (ungauged) sites
conditional on the existing sites Λ0 is estimated using the Sampson and Gut-
torp (SG) method (Sampson and Guttorp 1992) described in Chapter 6 and
based on the estimated hypercovariance matrix among the gauged sites.

Results!

Figure 11.3 demonstrates the actions of the SG method in this application.
The right panel shows the corresponding D-space coordinates resulting from
applying the mapping function to a biorthogonal grid in G-space. The left
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Fig. 11.2. PM10 Monitoring stations and potential sites.

panel shows the fitted variogram in D-space. The figure shows a good fit
for the variogram model using this mapping function with spline smoothing
parameter of 2. Users specify this built-in map smoothing parameter that
controls the distortion between the G-space and the D-space. This feature
ensures that the grid is not folded in the D-space and hence maintains the
spatial interpretability of the correlations; that is, correlations are reflected
in intersite distances in dispersion space. The deformation on the right panel
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Chilliwack airport 75 46 38 40 34 38 27 40 36 29
Abbotford downtown 46 79 36 46 33 41 29 40 38 31
Kensington Park 38 36 70 55 47 42 38 38 46 34
Burnaby South 40 41 55 77 48 49 43 43 55 43
Rocky Point Park 34 33 47 48 64 39 36 34 41 33
Surrey East 38 41 42 49 39 64 34 45 47 36
Kitsilano 27 29 38 43 36 34 59 30 37 41
Langley 40 40 38 43 34 45 30 64 41 31
North Delta 36 38 46 55 41 47 37 41 72 39
Richmond South 29 31 34 43 33 36 41 31 39 65

Table 11.1: Estimated hypercovariance matrix at existing stations after multiplying
entries by 100.

indicates the nonstationarity of the field. Failure to capture nonstationarity
results in a suboptimal design as illustrated in the analysis below.

The panels in Figure 11.3 can be used to estimate spatial correlations
between any points in the G-space, e.g., by first identifying the points in D-
space using the grid, then measuring the distance in D-space between them,
and finally applying the fitted variogram to the distance to estimate their
spatial correlations. The residual hypercovariance matrix among the ungauged
site conditional on existing stations Λ[u] is estimated accordingly.

The predictive distribution of the responses at ungauged locations follows
a matric t distribution and the entropy criterion is to find an add subset of
six locations that maximizes log |Λ0|add. Applying the entropy criterion yields
the optimal subset of six sites {Sites: 10, 12, 16, 18, 19, 20} among the 20
potential sites, to augment the existing network. The locations of the selected
sites are depicted in Figure 11.4 along with the locations of existing stations
and potential sites, the latter accompanied by their ranking based on their
estimated hypervariances (i.e., the diagonal element of Λ0).

Optimal Design!

The optimum solution seems sensible in that five of the six sites {Sites: 10,
16, 18, 19, 20} have the five largest variances and are generally far away from
existing stations. However, note that the sixth selected site, Site 12, has a
smaller estimated hypervariance than two unselected ones (Sites: 14 and 17).
The trade-off between variance and correlation with nearby stations is demon-
strated here. Site 14 is not selected in spite of its having a large estimated
variance because it is closer to existing stations than Site 12. Furthermore,
Site 14 is located in a region of stronger spatial correlation than that of Site
12, as indicated by the stretching in the region containing Site 12 in Figure
11.3’s right panel. The nonstationarity of this field also plays an important
role in the selection of Site 12 over Site 17. The two sites are roughly the same
distance from existing stations, Site 17 having larger estimated hypervariance;
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Fig. 11.3: Transforming the geographic plane to dispersion space (right panel) and
fitting a variogram to the empirical variogram over dispersion space for Vancouver’s
hourly PM10 field.

however, the spatial correlation is weaker at Site 12 than at Site 17. This fact
can be clearly seen in the right panel of Figure 11.3 where the region con-
taining Site 17 does not show any stretching, in comparison with the region
containing Site 12 showing more stretching and hence less spatial correlation
for the same distance in G-space.

11.11 Pervasive Issues***

We now need to step back a bit and view the design problem from a more
general perspective in order to see some important issues not revealed hitherto.

State-Space Model Framework

To do this, we formulate the problem in terms of a general state-space model,
a very important tool in the space–time process modeling. That model has
three components: (1) the measurement model, (2) the process model, and (3)
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Fig. 11.4: Locations of existing network (point) and potential new sites (number)
with their rank based on estimated variance (in brackets); selected sites are marked
with squares.

the parameter model. Let Xt be the (1 × nt)-dimensional vector of responses
observed at time t. These measured responses are related to (1 × (u + g)q)-
dimensional state vectors St by the measurement model:

Xt = StHt + εt, t = 1, . . . , (n+ 1). (11.15)

This model is a composition of two others. The first is
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Xt = (Yt + ε1t )F
1
t , t = 1, . . . , (n+ 1), (11.16)

where Yt is of dimension 1× (u+g)r while F1
t is a ((u+g)r×nt)-dimensional

design vector of ones and zeros that determines which of the responses is
measured. In fact, F1

t will generally be random, designating the data missing
both at random as well as by design. However, it is assumed that the for-
mer are missing for reasons ancillary to the process of their generation and
measurement. Thus, they can be treated as fixed.

Design Problem

The design problem discussed at the beginning of this section is that of select-
ing F1

n+1. In other words, optimally partition the vector of all measurements
of pollutants and sites that could be taken at time n + 1, into those that are
actually taken and those not. The latter therefore remain uncertain along with
all the parameters and latent variables in the process at that time. Following
the earlier reasoning in this section, the objective is to minimize the residual
uncertainty about all these uncertain quantities by selecting F1

n+1 = F1opt
n+1 so

as to maximize MEAS; that is,

F1opt
n+1 = arg min

F1
n+1

H(Xn+1|Xn), (11.17)

superscripts like n denoting here and in the sequel all items up to and including
those up to that specified time. The resulting design will change dynamically
as n increases since other practical considerations are ignored including cost
in this section.

The second model needed to reach (11.15) is

Yt = StF2
t + ε2t , t = 1, . . . , n,

F2
t relating responses measured and unmeasured to the state-space vectors

St. Generally F 2
t , unlike the design matrices, will involve unknowns. Finally,

the so-called ((u + g)q × nt) output matrix Ht is just the composition of the
((u+g)q×(u+g)r) state transition matrix F2

t with the ((u+g)r×nt) measured
response output matrix F1

t . The measurement error vectors εt = (ε2t + ε1t )F
1
t

resulting from the combination of these two models are assumed to have zero
mean, to have covariance matrix F1′

t ΣF1
t (assumed known for the purposes of

this section), and to be independent of each other as well as other uncertain
elements of the process and measurement models. Note that Σ = Σε2

t
+ Σε1

t

combines the spatial covariance of the responses with measurement noise.

State Evolution Equation

We adopt the following class of process models,

St = St−1θt + νt, t = 1, . . . , (n+ 1) (11.18)
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where the process noise variables νt have zero means covariances Σν and are
independent of each other as well as of the other random process vectors.
Returning to the general case, for the purposes of this section both θ as well
as the covariances Σν and Σ are assumed known. However, a more realistic
approach such as that in the next section would add a parameter model that
specifies prior distributions for these components.

Entropy Approach

Now assume all measurement and state-space processes above have a multi-
variate Gaussian distribution (possibly after an appropriate transformation).
With these assumptions the entropy in Equation (11.17) can be explicitly
evaluated. To that end let

Ŝt = E(St|Xt),

P̂t = Cov(St|Xt) so that,

St|Xt ∼ N(u+g)q(Ŝt, P̂t) (11.19)

for all t = 1, . . . , (n+ 1). We now find the conditional distribution,

Xt+1|Xt ∼ Nnt+1 [E(Xt+1|Xt), Cov(Xt+1|Xt)]

needed to compute the entropy. As a first step we find the conditional distri-
bution St+1|Xt ∼ Npq[E(St+1|Xt), Cov(St+1|Xt)]. First,

E(St+1|Xt) = E(E[St+1|St]|Xt)
= E(Stθ|Xt)

= Ŝtθ. (11.20)

Similarly,

Cov(St+1|Xt) = Cov(E[St+1|St]|Xt)
+ E(Cov[St+1|St]|Xt)

= Cov(E[Stθt|Xt])
+ E(Σν)

= θ′tP̂tθt +Σν . (11.21)

Then

Cov(Xt+1|Xt) = Cov([St+1F2
t+1 + ε2t+1 + ε1t+1]F

1
t+1|Xt)

= H′
t+1Cov(St+1|Xt)Ht+1 + F1′

t+1ΣF1
t+1

= H′
t+1[θ

′
tP̂tθt +Σν ]Ht+1 + F1′

t+1ΣF1
t+1, (11.22)

by Equation (11.21). Finally, from standard theory for the Gaussian distribu-
tion, it follows that the entropy to be maximized, H(Xn+1|Xn), is, apart from
irrelevant constants, the logarithm of the determinant of the (conditional) co-
variance matrix:
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|H′
n+1[θ

′
n+1P̂nθn+1 +Σν ]Hn+1 + F1′

n+1ΣF1
n+1|. (11.23)

The logarithm ensures that the optimal design will remain invariant under re-
scaling; multiplication of the normal density by the Jacobean of the transfor-
mation simply becomes an additive shift. Recalling that Hn+1 = F2

n+1F
1
n+1,

the optimal design matrix is found by finding the maximal nn+1 × nn+1 sub-
determinant, that is, generalized subvariance of the covariance

F2′
n+1[θ

′
n+1P̂nθn+1 +Σν ]F2

n+1 +Σ. (11.24)

The apparent simplicity of the state-space model above disguises the difficulty
of its formulation in specific cases as seen in the following example.

Example: AR(3) Model

Example 11.2. The AR(3) model
Consider the case of Li et al. (1999) where an autoregressive model of order
three obtains at every site j = 1, . . . , (u+ g). The number of response species
is r = 1. There,

Ytj − βjZt = [Y(t−1)j − βjZt−1]ρ1j + [Y(t−2)j − βjZt−2]ρ2j

+ [Y(t−3)j − βjZt−3]ρ3j + ε2tj ,

where r = 1, βj : 1× l is a vector of response-dependent trend coefficients, the
Zt : l× r are ancillary (and hence fixed) covariates with the same value at all
sites j, and ρij : r × r, i = 1, 2, 3 are the autoregressive coefficient matrices.
Equivalently, with an abuse of notation,

Ytj = Y(t−1)jρ1j + Y(t−2)jρ2j + Y(t−3)jρ3j + βjZt + ε2tj , (11.25)

where Zt now stands for Zt −Zt−1ρ1j −Zt−2ρ2j −Zt−3ρ3j . A standard refor-
mulation of this model would have Ytj = StjF2

tj + ε2tj , where

Stj : 1 × (l + 3r) = [βj ,Y(t−1)j ,Y(t−2)j ,Y(t−3)j ]

and

F2
tj : (l + 3r) × r =

⎛
⎜⎜⎝

Zt

ρ1j

ρ2j

ρ3j

⎞
⎟⎟⎠ . (11.26)

However, this dynamic state-space model fails since space and time are
inseparable while the residual independence assumption in Equation (11.18)
proves invalid. That problem is observed by Zidek et al. (2002) who adopt a
different approach, one that does not model fine-scale autocovariance struc-
tures (and, as a bonus, avoids the risk of misspecifying them). Instead, they
adopt the 24-hour site response vector as a basic building block, i.e., day as a
temporal unit. Since r species are responding each hour at each site (r = 1 in
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the specific case under consideration here), that response vector is (24r × 1)-
dimensional. The resulting vector series at each site could then be modeled
by a multivariate AR model (MAR; used below in Section 11.10). Moreover,
in the case of Li et al. (1999), the (24r × 24r)-dimensional autoregression co-
efficient matrices depend little on j so that ρij = ρi for all j proves a tenable
assumption. A MAR of order 1 would yield

Ytj = Y(t−1)jρ1 + βjZt + ε2tj . (11.27)

With an appropriate change in dimensions it can be written

St : 1 × (u+ g)(l + 24r) = [St1, . . . ,Stp];

F2
t =

⎛
⎜⎜⎜⎝

F2
t1 0 · · · 0
0 F2

t2 · · · 0
...

... · · ·
...

0 0 · · · F2
tp

⎞
⎟⎟⎟⎠ .

For the autoregressive model in Equation (11.27), obtain

Stj = S(t−1)jθt + νtj , j = 1, . . . , (u+ g), (11.28)

where

θtj =
(
Il Zt−1 0 0
0 ρ1 I24r 0

)
. (11.29)

The matrices in Equation (11.29) can be combined to determine θt : (u +
g)(l + 24r) × (u+ g)(l + 24r), namely,

θt =

⎛
⎜⎜⎜⎝
θt 0 · · · 0
0 θt · · · 0
...

... · · ·
...

0 0 · · · θt

⎞
⎟⎟⎟⎠ .

Remarks

3.a A generalized subvariance obtained from Equation (11.24) will tend to
be small when either its columns or rows are nearly collinear; i.e., the
associated responses are highly associated. That can occur because of
strong spatial association between sites, as expressed through the intrin-
sic component of variation Σ in that equation. Or it may derive from
strong temporal association as expressed through the remaining terms,
i.e., extrinsic component. In any case, sites will tend to be omitted from
the network, either because they are predictable from other sites in the
present, or from measurements made in the past.
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3.b Typically in applications, data to time n will derive from a permanent set
of monitoring sites and the design goal will be judicious augmentation of
that network. To address this situation, let us represent the (symmetric)
matrix of Equation (11.24) more simply as

Ξ =
(
Ξuu Ξug

Ξgu Ξgg

)
, (11.30)

where Ξgg represents covariance at the permanent sites. Then using a
familiar identity for matrix determinants, the design optimization problem
associated with Equation (11.24) becomes that of adding a fixed number
of sites to the network with maximal generalized sub-variances of Ξu·g =
Ξuu −ΞugΞ

−1
gg Ξgu of appropriate dimension.

3.c Our formulation of the design problem through F 1
t allows us to dynami-

cally expand or contract the monitoring network at each successive time,
the optimal basis for making alterations being expressed in Remark 3.a.
One can conceive of hypothetical cases where dynamically changing net-
works might be desirable. For example, mobile monitors might be used
to track the radiation plume generated by the failure of a nuclear power
generator. Or in military operations, they might be used to follow haz-
ardous agents released in the battlefield. However, such designs would
generally be impractical because of such things as their high operating or
administrative costs.
Through P̂n, the extrinsic component of the design criterion above is a
function of past data. Moreover, that component rather than the intrinsic
component may point to the deletion of sites at time t = n + 1 whose
responses are well predicted from past data including those which they
produced. Their deletion will eliminate the very source of information
that justified their removal in the first place. Thus in time, the quality of
the network insofar as it provides information about nonmonitored sites
(including some of those that were removed from the network), could
degrade.
This suggests a need for a practical compromise and acceptance of a sub-
optimal permanent design after time t = n. That compromise may be
achievable by filtering the data and relying primarily on the intrinsic com-
ponent of covariance.

Example 11.3. Example 11.2 continued
To arrive at an appropriate compromise design criterion, transform the
responses as Y∗

tj = Ytj −Y(t−1)jρ1 = βjZt +ε2tj . Then the design at time
t = n+ 1 will not depend on past measurements as predictors of current
responses. These transforms have an added benefit in that they eliminate
the autoregression matrices from the design criterion, simplifying technical
analysis when they are unknown. However, in practice this would require
that they be well estimated and not subject to much uncertainty.
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3.d Another issue that must be confronted arises from the uncertainty about
parameters such as the θs and the covariances that were assumed known.
The result of incorporating that additional uncertainty makes the condi-
tional distribution of Xn+1|Xn non-Gaussian. In fact, that distribution
will typically not have a tractable form, making a convenient analytical
representation of the entropy impossible. Evaluating that entropy numer-
ically is not a practical option since the combinatorial design optimization
problem is computationally intensive. Finding it is generally very difficult
for realistically large values of u + g. Adding the additional burden of
numerically evaluating the entropy at each iteration can make the burden
prohibitively large.

3.e The measurement noise represented by Σε2
t

could conceivably vary in
magnitude from response to response in extreme cases. In fact, it could
dominate the selection of an optimum design. For this and other reasons,
it might be argued that the optimum design should not be selected such
as that above to include its capacity to reduce uncertainty about measure-
ments that could have but have not been taken. Instead the goal could
be to maximally reduce uncertainty about Yn+1 rather than Xn+1 given
measurements to time n. These objectives would be essentially equal when
measurement noise is negligible. The design objective criterion in that case
would obtain from that in Equation (11.24) after subtracting the measure-
ment noise covariance.

11.12 Wrapup

Other approaches to spatial sampling design have been developed that do not
fit neatly into the design taxonomy used in this chapter. Richard Smith in
his 2004 Hunter lecture describes two approaches that seek to compromise
between the prediction of random fields and the estimation of their model
coefficients. One of these is due to Zhu (2002) who also presents an annealing
optimization algorithm. (See also Zhu and Stein (2005) as well as Zhu and
Stein (2006).) The other is due to Zimmerman (2004). He shows, in particu-
lar, that optimal designs for prediction (with known covariances) and designs
for estimating covariance parameters are antithetical, pointing anew to the
problem posed by a multiple objectives.

In this chapter we have developed a hierarchical Bayesian framework for
redesigning an existing monitoring network, stimulated in part by the multiple
objectives problem. We realistically allow for the possibility of staggered start-
up times for current stations, i.e., staircase data patterns. As well, we take
the lack of a well-defined design objective as a given. That leads us to adopt
the generic objective of minimizing the entropy of the posterior probability
distribution of the quantities of interest. Roughly speaking, the new network
stations would be those with highly unpredictable response vectors, either
because of their lack of dependence on the other stations, or because of their
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high intrinsic variability. Our results indicate that the proposed approach
yields sensible designs that capture the nonstationarity of the spatial field.

A number of practical issues need to be addressed in implementing the
entropy method. First it must be possible to transform and prefilter the data
to validate the distributional assumptions we make. Computation is a major
practical consideration. We deliberately chose a relatively small number of
potential sites in our case study to make complete combinatorial optimization
feasible. But the numerical problem rapidly becomes overwhelming as the
existing network increases in size.

This relates directly to an issue raised in Section 11.2. There it was noted
that the uncertainty about ungauged sites can be reduced not only by bor-
rowing information from current measurements at gauged sites but, to a lesser
extent, from previous such measurements as well, at least when the autocor-
relation in the individual series is sufficiently strong. However, incorporating
that component of the model seems to lead to an intractable entropy calcula-
tion and in turn to the computational problem indicated in the last paragraph.
Further work is needed to address this issue.

Finally, it should be recognized that in practice “good” rather than “opti-
mal” designs are needed and optimal designs such as those in this chapter must
be considered as tentative proposals susceptible to modification depending on
the circumstances prevailing in the context of their implementation. These
optimal designs may well be valuable starting points, however, since they
can be explicated in terms of their axiomatic underpinnings and proposed
changes to these optimal designs can be interpreted in terms of the axioms.
This can provide a degree of confidence and clarity in the typically complex
situation confronting a designer. However, the entropy approach, founded on
a coherent normative theory, should make the resulting designs defensible in
an operational context.

We should emphasize that as a compromise, an entropy optimal design
will not yield optimal designs for specific objectives. In fact, it would be of
limited use when interest lies in monitoring the extreme values of the time-
series of responses at the spatial sites. (The reasons become apparent in the
following chapter.) That interest stems from the fact that risk can often be
the result of environmental space–time processes generating an extreme value
such as a 100-year flood, for example. However, monitoring and modeling
fields of extreme values presents very challenging problems without an entirely
satisfactory solution as this book is being written. We describe some of those
problems in the next chapter.
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Extremes

We have been fortunate so far. But we have seen that
when winds fail to blow, the concentrations of poisonous
clouds over our cities can become perilous.

Lyndon B Johnson,“To Renew a Nation”: Special
address to Congress.

This chapter describes some of the challenges presented by fields of extremes
such as that described by Johnson. No book on environmental processes would
be complete without some discussion of this difficult subject. After all, much
environmental risk, the topic of Chapter 13, derives from extremely large (or
small) values generated by such things as wind, rain, and air pollution. The
latter motivates much of the discussion in this chapter. However, most of the
material applies to environmental space–time fields in general.

Air pollution monitoring seems to have begun as a result of the worryingly
high association between air pollution and human morbidity (or mortality)
established by a great many studies. Regulation and control policies were
instituted in conjunction with these monitoring programs.

Extremes and Air Quality Standards

Consider, for example, the AQS (air quality standards) set for criteria re-
sponses in the United States, specifically PM2.5, i.e., fine airborne particu-
lates. They require that 3 year averages of annual 98th percentiles of daily
means of hourly concentrations must lie below 65 µg m−3 at each of an urban
area’s monitoring network. In fact, this criterion will be exceeded with some
regularity, so it is not as extreme, relatively speaking, as a 1000-year flood
level. But it does lie well above the mean level of the PM2.5 field and it does
exemplify the complexity of the kinds of extreme responses that might be
encountered in practice.

Adequacy of Monitoring Programs?

How well are such extremes actually monitored? Generally resource limita-
tions mean few sites are monitored in most urban areas, just ten sites for
PM10 and only two for PM2.5, for example, in the Greater Vancouver Re-
gional District (GVRD) although it covers a large geographical area. Thus,
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in terms of their intended function of protecting human health by detecting
noncompliance, it is by no means certain these networks have enough moni-
tors.

Incidentally, a low density of monitors does not in itself demonstrate the
inadequacy of those networks. Indeed, if unmeasured extremes are well pre-
dicted by data obtained from monitoring, our uncertainty about the field
would be eliminated or greatly reduced. In fact, our studies of particulate
fields over Philadelphia and London indicate that for those cities, at least, the
entire field can be predicted pretty well from just a few well placed monitors.

However, that is far from true in Seattle and Vancouver, BC (as we show
farther along in this chapter). Moreover, we should not complacently expect
urban networks to be adequate for monitoring extremes. After all, classical
design approaches such as those described in Chapter 11 emphasize inference
about the response field, not its extremes. Similarly, even though the entropy
approach described in that chapter was intended to get around the need to
specify particular design objectives, that approach can lead to unsatisfactory
designs for monitoring extremes (as an analysis later in this chapter shows).

Our discussion of the complex topic of this chapter begins by reviewing
approaches to modeling environmental space–time fields of extremes. We begin
with extreme value theory itself and some difficulties that theory encounters
in processes that may involve hundreds of sites. These deficiencies point to
the need for the alternative approach we describe along with its strengths and
weaknesses.

12.1 Fields of Extremes

Since extremes, rare by definition, are seldom measured, generally acceptable
models are needed instead. The search for them begins with plausible judicious
assumptions that point to a fairly specific process model. The ultimate goal: an
extreme value distribution with just a few parameters that can be estimated
from the available (nonextreme) data. However, the ultimate test of its success
is user acceptance for such things as structural design against extreme winds,
for example. For single-site models, that test has certainly been passed.

12.1.1 Theory of Extremes

This section begins with the classical theory that concerns processes at a single
spatial site.

Single Sites

The systematic study of extreme values began with the seminal paper of Fisher
and Tippett (1928).



12.1 Fields of Extremes 217

The Fisher–Tippett “Trinity”
Assuming X1, X2, . . . , Xn are independently and identically distributed (iid)
random variables with distribution F , they proved the distribution of the
maximum Mn = max{X1, X2, . . . , Xn} converges to exactly one of three dis-
tributions as n→ ∞. More precisely,

P (
Mn − bn
an

≤ x) → H(x), as n → ∞, (12.1)

where an and bn are normalizing constants that keep H(x) from being de-
generate. Their celebrated result tells us H must be one of three types, each
involving a parameter α > 0:

1. (Gumbel):

H(x) = exp{− exp(−x)}, −∞ < x <∞;

2. (Fréchet):

H(x) =
{

0 if x < 0
exp(−x−α) if 0 < x <∞;

3. (Weibull):

H(x) =
{

exp{−(−x)α} if − ∞ < x < 0,
1 if x > 0.

Ensuing Development
Ensuing development produced a very general theory (Gumbel 1958; Lead-
better et al. 1983; Coles 2001; Embrechts et al. 1997). Moreover, the Fisher–
Tippett result assumed the role of a paradigm in that development. Their
three types came to be combined in the Generalized Extreme Value (GEV)
distribution, with cumulative distribution function:

H(x) =

⎧⎪⎨
⎪⎩
exp

[
−
{

1 + ξ
(

(x−µ)
σ

)}−1/ξ
]
, 1 + ξ(x− µ)/σ > 0, ξ �= 0

exp
{

−exp
[
− (x−µ)

σ

]}
ξ = 0.

Alternatives emerged. One of these was the class of peak over threshold
(POT) models that avoid fixed intervals and instead, look at exceedances
over high thresholds. The number of such exceedances comprises the response
of interest and it may be modeled by a nonhomogeneous Poisson process.
Another approach models the response conditional on its exceeding a specified
threshold. Its conditional distribution is the generalized Pareto distribution
(Pickands 1975; Davison and Smith 1990) with right-hand tail,

H(x) = 1 − λ
{

1 +
ξ(x− u)
σ

}−1/ξ

+
, x > u

for parameters λ > 0, σ > 0, and ξ ∈ (−∞,∞). Finally, there is a class
of models developed by hydrologists using the probability weighted moments
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(PWM) approach. However, the latter seems too complex for our purposes
(Katz et al. 2002). More details about these approaches can be found in Smith
(2001) and Fu et al. (2003).

The Adequacy of Models
Turning to more general issues, the use of the extreme value distribution
models will always be questioned when grave risks are involved. An obvious
concern would be the accuracy of any asymptotic approximations, for ex-
ample, in the Fisher–Tippett results. Even Tippett seemed concerned on this
point. Gumbel (1958) quotes him as saying that even n = 1000 is insufficiently
large to guarantee reasonable accuracy when modeling distribution tail areas
smaller than 0.05. In fact, Zidek et al. (1979), citing this and other concerns,
devise an alternative approach for finding structural design criteria (that they
successfully used to produce codes for long-span highway bridges).

Another source of concern stems from the (unrealistic) assumption of in-
dependence in the sequence of process responses. At issue is the robustness of
the limit distributions when the condition fails. That issue arises, for exam-
ple, when extremes are used for detecting a trend in atmospheric temperature.
There we would anticipate underlying trends expressing themselves through
clusters of nonindependent process responses exceeding a threshold or even by
a sequence of such clusters separated by at least a fixed number of consecu-
tive nonexceedances. (Ledford and Tawn 2003 present diagnostic methods for
assessing dependence within or between temporal clusters of extremes.) How
best to handle such autocorrelated series seems uncertain.

Clearly much remains to be done for single-site series. However, our pri-
mary interest lies elsewhere, in the multiplicity of series encountered in study-
ing space–time fields. We go to that topic next.

Multiple Sites

Multivariate extreme value theory has been an important research direction
in recent years (Joe 1994). A natural starting point would be the obvious
extension of Equation (12.1). That idea doesn’t work very well.

Extending Fisher–Tippett
The class of limit distributions in the multivariate case, unlike its univariate
cousin, turns out to be very large, limited only by a property called multivari-
ate regular variation (Smith 2004). Moreover, the coordinate random variables
in this multivariate limit must be asymptotically dependent except when the
variables are actually preasymptotically independent. That property will not
always be desirable. [It means limq→1 Pr{F2(X2) > q|F1(X1) > q} �= 0.] In
fact, empirical evidence suggests responses may well be asymptotically in-
dependent. Bortot et al. (2000) provide some evidence; so does Fu (2002).
In particular, the latter indicates that responses at some pairs of sites can
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be asymptotically dependent (or at least highly correlated) while some are
independent, at least where particulate air pollution fields are concerned.

Bortot et al. (2000) present a model for the case of asymptotic indepen-
dence, while allowing for arbitrarily strong preasymptotic dependence. Coles
and Pauli (2002) extend earlier work to obtain models that embrace both
pairwise dependence and independence.

Finally, Hefferman and Tawn (2004), going after the same objective, of-
fer a promising new approach involving conditional distributions. For the
d-dimensional case, they model the joint distribution of (d − 1) subvectors
assuming the remaining one tends to its upper end-point. Their approach al-
lows some components not to become extreme, while encompassing previous
models when all are. We now turn to alternative approaches.

Smith (2004) describes one he calls a “radically new direction” and ascribes
it to Ledford and Tawn (1996, 1997). Their extension of multivariate extreme
value theory for the two-dimensional case models just the upper tail:

P (min{X1, X2} > x) = L(x)x−1/η and
P (X1 > x1, X2 > x2) = L(x)x−c1

1 x−c2
2 ,

for indices c1, c2, η, and a slowly varying function L. These distributions over-
come the deficiency mentioned above; asymptotic independence is allowed.
However, they are bivariate. Moreover, the bivariate normal (and other) dis-
tributions are excluded, at least when the correlation is strictly less than one,
a serious limitation.

A Different Approach
An entirely different approach starts by taking the marginal distributions to
be members of one of the univariate families discussed above. Then separately,
a multivariate dependence structure is specified (in some cases on a restricted
support above marginal thresholds). Reiss and Thomas (1997) present a num-
ber of such univariate to multivariate approaches.

Distributions obtained this way tend to be very complex as, for example,
that of Coles and Tawn (1996). Although their paper focuses on a univariate
case, the extremes of an areal average of rainfall over a region, they base their
process models on joint distributions of extremes over sites in a region. The
required spatial dependence models form the centerpiece of their extensive
investigation.

That complexity can make simpler approaches such as that of Kharin and
Zwiers (2000) appealing. Their approach, like the former, addresses precipita-
tion extremes. It uses the marginal GEV distribution and incorporates spatial
correlation rather through the distribution of marginal parameters over space.
First, estimate the parameters of the marginal GEV distributions separately.
Regarding these parameter estimates as indexed by their associated spatial
site coordinates makes them a spatial field in their own right. Then predict
that field at a particular site, by averaging all the parameter estimates in a
neighborhood of it.
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Approaches such as the latter can be criticized for the ad hoc way in which
spatial dependence is superimposed through the smoothing of the parameter
estimates from univariate marginals. For example, we see no compelling basis
for selecting one smoothing method over another. Generally, joint distribu-
tions obtained by the methods described above need not yield tractable ex-
pressions for the conditional and marginal distributions needed for simulating
the distributions of complex metrics calculated from these extremes.

In a different direction, Bortot et al. (2000) restrict the support of their
distribution to regions above specified thresholds and allow the margins to be
selected from the class of GPD distributions. The joint dependence structure
is then provided by the Gaussian distribution. They see their approach as
addressing a subtle issue revolving around asymptotic independence of the
extremes of coordinate responses.

Difficulties associated with the use of extreme value theory, in particular,
in dealing with complex metrics and large domains, lead us in the next section
to a different approach to modeling extreme fields.

12.2 Hierarchical Bayesian Model

The complex models surveyed above are applied in cases with just a few co-
ordinate responses (five in the case of Hefferman and Tawn 2004). We need
methods for large numbers of sites such as the 312 seen in Fu et al. (2003).
Furthermore, we believe parameter uncertainty must be reflected in a model’s
specification. That points to the need for a Bayesian approach. Finally, any
successful joint distribution model must embrace the (combinatorial optimiza-
tion) problem of selecting optimal network designs for monitoring extremes.
The work of Fu (2002) and Fu et al. (2003) points to an approach to modeling
space–time extreme processes that solves some of the problems suggested in
the previous section.

That approach links to Bortot et al. (2000) in that our process distribu-
tion, conditional on the spatial covariance model, is a special case of theirs
(with their thresholds set to −∞). More specifically, we use a log-Gaussian
distribution. According to Coles and Tawn (1994), that choice would be in
line with a recommendation of the World Meteorological Organization. How-
ever, they criticize that approach on the grounds that it induces asymptotic
pairwise independence between sites (Reiss and Thomas 1997).

However, our unconditional distribution or process model, differs from that
of Bortot et al. (2000). To get it, we follow the line of development in Chapter
10 and specify a prior distribution on the conditional distribution’s parame-
ters. That leads to a log multivariate-t process distribution model. By varying
the number of degrees of freedom in that process model, we can move between
the log-Gaussian process at one extreme to very heavy-tailed distributions at
the other. We spare the reader the details since the development is a straight-
forward application of our theory and its software implementation is demon-
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strated in Chapter 14. Instead we give an example, one of several we have
explored that suggest the proposed theory may have a practical role to play.
In particular, these examples demonstrate the suitability of the log-matric-t
distribution as an approximation to the joint distribution of an extremes field
in these specific cases.

Although more complex than the log-Gaussian distribution, that distri-
bution has two of the latter’s important advantages: namely, it has condi-
tional distributions in the same family and it has an explicitly computable
entropy. The latter proves of immense value in the combinatorial optimiza-
tion problem faced in environmental design considered in Section 12.4 where
computing times are immense, even without introducing MCMC computation
or numerical integration. (These difficulties will not easily be overcome since
that problem is known to be NP -hard.)

We turn now to our assessment and demonstrate the applicability of the
our approach.

12.2.1 Empirical Assessment

This section describes an analysis reported in Fu (2002) and Fu et al. (2003)
of extremes in the data introduced in Section 11.10, that is, hourly log PM10
concentrations collected at stations in the GVRD, restricted to 1996 to make
computation feasible.

That analysis included the development of a log-multivariate Gaussian-
inverted-Wishart model. Using the approach in Sun et al. (2000), spatial cor-
relation due to shared temporal patterns in the data series were removed by
subtracting a solitary trend model (fitted for all ten stations) from the orig-
inal log-transformed series. That first term of the (additive) trend model is
just the “overall effect” found by averaging the (transformed) data across all
sites and hours. Next comes the “hour effect” term that has 24 values each,
the value for that hour across all sites. The next three terms for “day effect,”
“linear time trend,” and“seasonal effect” are found in a similar way. Finally,
comes the “meteorological effect.” To find the last effect due to meteorology
subtract the sum of the effects just described from the data and regress the
results (residuals) on various meteorological variables (Sun et al. 2000). Last,
autocorrelation was removed to make the resulting series consistent with the
modeling assumption that they are uncorrelated. Finally, for this investiga-
tion, the extreme values are taken to be the weekly maxima of these detrended
whitened residuals.

Standard diagnostic checks suggest the marginal (sitewise) distributions
of the weekly maxima may be approximated by a Gaussian distribution.

To estimate hyperparameters of the prior distribution, an isotropic spatial
correlation structure was adopted and an exponential semivariogram fitted
with the result:

γ(h) =
{

0.2 + 0.1(1 − exp(−h/0.2)), if h > 0
0, if h = 0.
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(As a technical point, F̂−1 = 0, m = 34, and c = 13 were chosen in the
notation of Fu et al. 2003.)

To assess the model as a multivariate distribution, a two-deep cross-
validation was used, two out of ten sites being removed repeatedly at ran-
dom to play the role of the ungauged sites. Their values were then predicted
and it was determined how frequently the predictive distribution’s credibility
intervals actually contained the observed values at the two omitted sites. Of
course, the coverage fractions do vary over the weeks of 1996. In fact, for 50%
credibility intervals individual site coverage fractions ranged from 30 to 75%.
However, on average the observed data lay inside the prediction interval 54%
of the time. At the other extreme, 95% credibility interval coverages ranged
from 80% but most fell in the 95–100% range with an average of 94%. Finally,
coverage for the 80% intervals coverage averaged out to 81%.

Overall, we conclude that the log matric-t distribution provides a reason-
able model for the extremes seen here. This finding (and others like it not
reported here) in turn, suggests the design of networks for monitoring ex-
tremes might well be based on that approximation. However, as we show in
the next section, other issues present themselves in that context.

12.3 Designer Challenges

This section concerns issues that arise in designing networks for monitoring
fields of extremes.

12.3.1 Loss of Spatial Dependence

Any site pair can be asymptotically dependent or independent. If they lay
along the prevailing wind direction they may have very similar extreme values
and thus be asymptotically dependent. Alternatively, they may be asymptot-
ically independent if they lie in directions orthogonal to that path.

Some models may be seen as deficient because they make all site pairs
the former, others because of the latter. In particular, neither type may seem
acceptable when both sorts of asymptotic behavior are seen in the field being
modeled.

Yet in reality only the preasymptotic case ever obtains, making the rele-
vance of asymptotic cases doubtful. Indeed, what may be more important is
a model’s capacity to flexibly admit both types of dependence in the preas-
ymptotic case, as that in Section 12.2 will do.

This section concerns process maxima over successive time periods of
length n; that is, Yi(r+1) = maxk+n−1

j=k Xij for k = 1 + rn, r = 0, . . .,
i = 1, . . . , I, where Xij denotes site i’s response at time j, i = 1, . . . , I, j =
1, . . . , n. In particular, it focuses on Cov(Yi(r+1), Yi′(r+1)) for i �= i′ as r grows
large.
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The covariance may not, in fact, be a good measure of dependence ex-
cept for models deriving from Gaussian distributions. However, the latter are
important, a subclass that potentially offers good approximations to suitably
transformed extreme value distributions.

We now give examples to illustrate the complexity of fields of extremes.
The first concerns the eastern United States.

Example 12.1. Hourly ozone concentrations over the eastern United States
The data for this example come from the AIRS database, maintained by
the United State’s Environmental Protection Agency. The analysis concerns
hourly ozone concentrations over 120 days in the summer of 1997, more specif-
ically, the 16 sites with the lowest fraction of missing hourly values (less than
18 over the 2880 hours). Prior to the analysis, the data were square-root
transformed to make them have a more Gaussian distribution, but no other
processing was done.

Intersite correlations were computed for these 16 sites and hourly concen-
tration maxima over varying time intervals (“spans”). Figure 12.1 depicts the
results for site #1 and each one of the remainder.

Notice the wide range of correlations for the span of 144 hours (6 day
intervals). In part, this derives from their large standard errors. After all,
they are based on merely 20 six-day maxima at each site. However, it also
reflects the great diversity of associations among the sites due to the latent
factors that determine ozone levels.

In descending order, site-pairs (1,8),(1,6), and (1,2) have the three smallest
correlations (0.14, 0.21, and 0.27, respectively) at that span. Both #6 and #8
are well far away from site #1 so those two small correlations at least would
be expected. In contrast, Site #2 is actually quite close by #1. A surprising
result.

At the other extreme, the three largest span 144 correlations, 0.81, 0.66,
and 0.64 come from site pairs (1,14), (1,11), and (1,16), respectively. Once
again we are surprised since although #14 is right next door to #1, both #11
and #16 are quite some distance away. However, the latter two are collinear
with #1. Could this reflect the prevailing wind direction so that these three
sites share the same extremes? Curiosities such as this abound in the study
of extreme fields.

Similarly nonintuitive features obtain in our second example that comes
from Fu (2002) and Chang et al.(2006) and a very different part of North
America.

Example 12.2. Vancouver’s 1996 PM10 field
In this example, we emulate an analysis reported by Chang et al. (2006). The
data are measured hourly ambient log PM10 concentrations recorded at nine
monitoring sites during the 240 week period up to the end of 2001. The site
locations in the Greater Vancouver Regional District (GVRD) are portrayed
in Figure 12.2. In this example, temporal effects were removed so that spatial
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Fig. 12.1: Correlations between site #1 and 15 other sites.

structure alone could be expressed through the maxima computed for the
series over varying time spans. These spans stretched from one hour at one
extreme to 84 days at the other.
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Fig. 12.2: Location of nine PM10 monitoring sites in the Greater Vancouver Regional
District.
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The intersite correlations are depicted in Figure 12.3. Notice how the cor-
relation declines for most site pairs, but persists for a few in agreement with
the previous example.

To examine this phenomenon more closely, we list in Table 12.1 those
correlations for the maxima at the nine sites computed over a very long-time
span of 84 days. The table presents them in increasing order from left to
right and down its rows. A glance at the table shows site pair (3, 6) to be
the winner. That pair’s correlation actually seems to increase as the time
span increases (although this could be a spurious product of sampling error).
However, (8, 9) is a close competitor even though that pair has a shorter
interdistance compared to that of the former pair as shown by Figure 12.2
reveals.

At the other extreme, site #2 seems to be uncorrelated with most of the
other sites 2, 5, 8, 6, 3, 9, and 10. That does not seem surprising. Site #2 is
situated near a major roadway with fairly heavy traffic volumes during rush
hours that can generate relatively large particulate concentrations. Mysteri-
ously, site #2 does have a positive, albeit small, association with site #4.

Roughly speaking, we see evidence of asymptotic dependence in the fol-
lowing pairs: (3, 6); (8, 9). Weaker evidence of such dependence is found for:
(4, 9); (3, 5); (7, 10);(5, 6); (3, 8). However, we know of no substantive evidence
that would lend support for those findings.
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Fig. 12.3: Intersite correlations for the maxima over time spans of between 1 and
2016 hours of log PM10 concentrations. These were obtained from nine monitoring
sites in the Greater Vancouver Regional District between 1996 and 2001.
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(2,7) (7,9) (4,6) (2,5) (2,8) (2,6) (4,5) (2,3)
-0.29 -0.28 -0.22 -0.19 -0.18 -0.17 -0.09 -0.07
(2,9) (2,10) (5,9) (5,10) (9,10) (8,10) (3,10) (6,10)
-0.06 -0.06 -0.03 -0.03 -0.03 0.03 0.04 0.09
(6,10) (3,4) (7,8) (3,7) (5,8) (4,7) (2,4) (6,9)
0.09 0.11 0.14 0.19 0.19 0.20 0.24 0.24
(6,9) (6,7) (3,9) (4,10) (4,8) (5,7) (6,8) (4,9)
0.24 0.26 0.26 0.27 0.28 0.32 0.33 0.38
(3,5) (7,10) (5,6) (3,8) (8,9) (3,6)
0.38 0.38 0.39 0.41 0.57 0.59

Table 12.1: In ascending order by site pair, intersite correlations of successive max-
ima over 2016 hours for detrended, whitened log PM10 concentrations. In all nine
Vancouver sites were studied during a subperiod of 1997–2001.

In any case the results emphasize the need for models, for example, of
Coles and Pauli (2002), that allow flexibility in specifying the between-site
dependence.

This problem of decreasing between-site field dependence has important
implications for prediction and design. In particular, it seems likely that in
some urban areas, a fairly dense grid of monitoring stations will be needed to
ensure that extreme values over the region are reliably detected.

Decline of Dependence

To seek a better understanding of the phenomenon revealed in the last section,
Chang et al. [(2006); hereafter referred to as CFLZ] conducted a simulation
study. Following Fu (2002) and Fu et al. (2003), they adopted a log matric-t
process model.

More precisely, they chose ten aligned monitoring sites, labeled i =
1, . . . , 10, with site responses having mean 0 and variance 1. They varied the
number of measurements n from which the maximum is found in each replicate
while fixing the number of replicates (extreme values) at N = 5000. Using an
algorithm from Kennedy and Gentle (1980, pages 231–232) they sampled the
covariance matrices Σ from an inverted Wishart distribution (see Appendix
14.1), i.e., Σ ∼ IW (Ψ,m) with varying degrees of freedom m and isotropic
(hyper-) covariance kernel Ψ , Ψij = exp[−α|i− j|], i, j = 1, . . . , 10.

That algorithm proceeds as follows: (1) generate Σ ∼ IW (Ψ,m); (2)
generate n random vectors Xk = (Xk1, . . . , Xk,10, k = 1, . . . , n; (3) find
Yi = (Yi1, . . . , Yi,10) where Yij = maxn

k=1Xkj , j = 1, . . . , 10; (4) repeat this
process N times to get replicates of the vector of extremes.

As in the previous subsection, interest focuses on between-site correlations
for extreme values with varying n and degrees of freedom. In general, they
found the between-site correlation declined as the number of degrees of free-
dom of the inverted Wishart increased (making the tails on the resulting t



12.3 Designer Challenges 227

distribution heavier). The same result obtained as n increased. The between-
site correlation tended to decline more as n increased when the number of
degrees of freedom was large rather than small.

The relationship between the between-site correlations for extremes and
that of the original response field was also explored. CFLZ found an empirical
power law characterized this relationship quite well:

Corext = β(Corraw)γ + δ, γ > 0.

Here Corext denotes the between-site correlation for extremes Covraw that
for the original response field. CFLZ fitted their power law for varying n and
degrees of freedom to obtain the results summarized in Table 12.2.

Note that for large values of γ, the “power” in the power law means more
rapidly declining between-site correlations for extremes. That is, the extremes
at any pair of sites tend to have a weaker linear association than when the
power is small. Indeed, when γ = 1 there is no loss of correlation in going
from the original response field to the extremes field.

Thus smaller powers are associated with heavier tails (that is, smaller
degrees of freedom). Since empirical studies have shown that log matric-t
air pollution predictive distributions fit observed fields well, this finding, if
validated by more rigorous analysis, would constitute good news: unmeasured
extremes can be better predicted than if, for example, the field were log-
Gaussian.

Another conclusion suggested by these findings: the power will also decline
with n (the number of data points, for example, hour or days on which repli-
cate extremes are calculated). This finding, if confirmed, would have impli-
cations for developing realistic compromise air quality criteria and designing
the associated monitoring networks.

Finally, note that the range of powers in the power law is greater when
the degrees of freedom is large relative to the range when it is small.

12.3.2 Uncertain Design Objectives

As noted in Chapter 11, model–based design strategies have generally focused
on predicting unobserved values or on estimating parameters of a regression
function. But what if, instead, extremes are of interest, say for regulation or
assessing the benefits of an abatement strategy? More specifically, how well
does the maximum entropy design work?

To answer such questions, performance criteria must be specified. Not
surprisingly the answers turn out to be mixed depending on the choice. That
raises anew the issue of which to use and hence, whether confronting that
choice can be avoided in this context.

Entropy-Based Design

Consider anew the hourly PM10 (µg m−3) concentration field over the Greater
Vancouver Regional District (GVRD). The ten sites in Figure 12.4 monitor
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DF n Power Law

20 24 Corext = 0.89 × Cor2.28
raw + 0.10

100 Corext = 0.94 × Cor2.83
raw + 0.05

500 Corext = 0.93 × Cor2.98
raw + 0.06

30 24 Corext = 0.94 × Cor2.49
raw + 0.05

100 Corext = 0.94 × Cor3.05
raw + 0.06

500 Corext = 0.96 × Cor3.38
raw + 0.03

40 24 Corext = 0.94 × Cor3.04
raw + 0.05

100 Corext = 0.96 × Cor3.06
raw + 0.01

500 Corext = 0.97 × Cor3.85
raw + 0.02

∞ 24 Corext = 0.93 × Cor2.80
raw + 0.07

100 Corext = 0.97 × Cor3.51
raw + 0.02

500 Corext = 0.98 × Cor4.40
raw + 0.01

Table 12.2: Empirical power laws relating intersite correlations for extremes (denoted
Corext) against original responses (Corraw) for varying degrees of freedom (DF).

that field (see Zidek et al. 2002). Note that its stations started operation at
different times (an issue addressed by Le et al. 2001 and Kibria et al. 2002).

Suppose the hypothetical designer seeks to add to the network six sites
from among the 20 candidates in Figure 12.4, these being centered in Census
Tracts (regions with reasonably large populations). Calculation of the entropy
requires the hypercovariance (hereafter called “covariance”) matrix of the pre-
dictive log PM10 (µg m−3) distribution, supposed to have the Kronecker prod-
uct form Λ ⊗ Ω. Here Λ : 30 × 30 represents the spatial covariance between
the 10 + 20 = 30 sites Ω : 24×24 the within-site correlations between hours.
Let

Λ =
(
Λuu Λug

Λgu Λgg

)
.

Here u refers to unmonitored sites (ungauged) and g to monitored (gauged)
sites regardless of when they began operation. Thus, Λuu : 20 × 20 is
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Fig. 12.4: Hourly PM10 (µg m−3) concentration monitoring sites in the Greater
Vancouver Regional District.

the covariance matrix for candidate sites, six to be chosen. Next, Λu·g =
Λuu − ΛugΛ

−1
gg Λgu is the conditional spatial covariance of the ungauged sites

given data from the gauged sites.
All the components of the covariance structure can be estimated (see Kib-

ria et al. 2002). Chapter 14 describes software for doing so. Finally, ignoring
irrelevant terms and factors, the entropy of any proposed 6 + 10 = 16 station
network of gauged sites including the original 10 is the logarithm of the de-
terminant of Λa·g, the 16 × 16 submatrix of the estimated Λu·g corresponding
to that proposed network. Here a denotes the added stations. So the six new
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sites a must be chosen to maximize this determinant and thereby find the
maximum entropy optimal design.

Figure 12.5 shows all the sites with their ranks based on the size of the
(conditional) variances of their predictive distributions. The existing sites are
dots and the potential sites are numbered.

The designer might now wonder which potential site has the (conditional,
log-transformed concentration, predictive) distribution with the largest hy-
pervariance. He finds the answer in the figure: #19. That site lies well outside
the cluster of existing sites so its large conditional hypervariance is not sur-
prising. Thus, it seems a likely candidate for membership in the set of six new
stations to be selected for the network.

Le et al. (2005) confirm that choice- Site #19 does lie in the optimal set of
six new stations. The remaining four of the top six hypervariance-ranked sites
also make it in: #s 10, 16, 18, 20. However, the remaining selected site #12 is a
surprise, coming in ahead of the sixth and seventh ranked sites #14 and #17.
Presumably, the entropy criterion has shrewdly recognized that responses at
the latter will be predictable from those at sites #19 and #20, once these are
added.

Does It Work for Extremes?

We can now ask how well the network of the last section would work for mon-
itoring extremes? The answer depends on how you look at things. A regulator
might view it in terms of her need to enforce compliance with national or local
standards. More specifically, she might prefer that the six new sites, add for
short, be chosen from among the 20 as those most likely to be noncompliant.
As a byproduct, the remainder rem would be more likely than those in the
add subgroup to be compliant.

Suppose the regulator adopts an ad hoc criterion of 50 (ppb) for PM10
concentrations. More formally,

add = arg max
add′

Prob[ max
t=hours,j∈add′

Ytj > 50 (ppb)]. (12.2)

Here Prob means with respect to the joint conditional predictive probabil-
ity for unmonitored responses given those at the gauged sites. That proba-
bility cannot be found explicitly. Hence finding add entails repeatedly sim-
ulating the field of 20 unmeasured values hour by hour over the entire
day. Then for any proposed subset of six sites add′ the fraction of times
maxt=hours,j∈add′ Ytj > 50 (ppb) estimates that probability. By systemati-
cally varying add′ over all possible subsets and selecting the maximum among
these estimated probabilities, add is obtained.

This analysis reveals the advantage of having a predictive distribution over
a mere predictive point estimate. For any proposed regulatory criterion, the
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Fig. 12.5: The numbered locations represent sites that might potentially be gauged
when adding six new monitoring stations. The numbers appearing in brackets in-
dicate their ranking by the size of their conditional predictive hypervariances in
Λu·g.

required probability of noncompliance can be found as above. Indeed, much
more complicated metrics such as the largest eight hour moving average over
the day could have been handled.

However, the choice of a metric is only one of the designer’s issues. Her
approach also requires that she specify the day for which this probability is
calculated, for it, unlike the entropy, depends on the conditional mean. That,
in turn, depends on the values at the gauged sites which change from day
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to day. Hence, this seemingly simple criterion has led the designer to a day-
dependent design. How stable would that optimum design be over days?

To answer that question, suppose she picked February 28, 1999 when Van-
couver’s particulate air pollution levels can be high. Table 12.3 shows in ranked
order the top ten choices of the six add sites based on the entropy criterion.
For each such choice, the table gives the probability defined above that they
will be in noncompliance that day. More to the point their order is reported
there, it being calculated with respect to our noncompliance criterion, among
all the 38,760 candidate subsets of six possible add subsets.

MaxEnt Selected Sites 100*Prob Order
Order
1 10 12 16 18 19 20 45.9 64
2 10 14 16 18 19 20 46.1 55
3 10 12 14 18 19 20 44.6 145
4 8 10 16 18 19 20 45.0 123
5 2 10 16 18 19 20 45.1 109
6 2 10 12 18 19 20 43.6 222
7 8 10 14 18 19 20 43.7 212
6 2 10 14 18 19 20 43.9 200
9 10 16 17 18 19 20 49.5 1
10 1 10 16 18 19 20 45.1 109

Table 12.3: The top ten choices among the 38,760 available, of subsets of six new
sites to be added to Vancouver’s existed set of ten sites gauged to measure PM10 con-
centrations. Here Prob means the probability of noncompliance while Order means
order with respect to the noncompliance probability criterion.

A number of observations can be made about the results in that table with
the help of Figure 12.6. Boxplots show the sitewise distribution of simulated
daily maxima obtained from the predictive response distribution for that day.

• The entropy criterion does reasonably well. Its ninth ranking candidate
turns out to be the best with respect to noncompliance.

• The noncompliance probabilities for the top ten choices by the entropy
criterion are quite similar. However, the importance of these seemingly
small differences should not be minimized in a regulatory environment,
where the financial and other penalties for noncompliance can be large.

• Sites #10, 18, 19, and 20 are always selected in the top ten, because of
their large conditional response variances as manifest in the boxplots of
Figure 12.6. Between-site correlations are essentially ignored, no surprise
in the light of the results of the previous section showing that for extreme
values, between site correlations tend to be small.
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Fig. 12.6: Through boxplots this figure depicts the sitewise distribution of simulated
daily maxima log ozone (log µg m−3) values for February 28, 1999.

• The ninth ranking choice in the table is best by the noncompliance cri-
terion, that choice substituting Site #17 for Site #12, since the former’s
daily ozone maxima tend to be larger while their variances are similar and
large (see Figure 12.6).

However, the entropy criterion does not do so well on other days such
as August 1, 1998, with respect to noncompliance criteria. Figure 12.7, like
Figure 12.6, indicates the distribution of daily log ozone distributions for the
potential new sites. Notice that the level of log ozone at Site #19 is much
lower than it was above, and hence it is not a contender by the noncompliance
criterion. Sites #16 and # 18 have also dropped out. Site #7 looks likely to
be in noncompliance that day.

We see that the optimum noncompliance design is not stable; it can vary
from day to day. This last result implies that any fixed design, no matter how
chosen, would be less than optimal on lots of days.

In any case, the method above for finding that fixed design seems im-
practical since it would require the designer to select and use a specific day.
A possibly preferable alternative would use a weighted average over days of
the criterion probs in Equation (12.2) as the design objective function based
on multicriteria optimization considerations. Equal weights would have some
appeal since the objective function could then be interpreted as the expected
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Fig. 12.7: Boxplots show the sitewise distribution of simulated daily maxima log
ozone (log µg m−3) values for August 1, 1998.

prob based on selecting the day at random. However, this new criterion would
weight equally days when noncompliance was unlikely. Why should such days
be accorded any role in picking the winning design?

The approach we prefer would not be based on the concentrations observed
at the gauged sites at all. Instead, we would take full advantage of the theory
in Kibria et al. (2002) and use the predictive distribution for the gauged as
well as that for the ungauged sites conditional on the values at the gauged
sites (see Figure 12.8).

The simulations represented in Figure 12.8 are obtained in the following steps.

1. For the first day of 1998, generate a random vector from the marginal
predictive distribution for the gauged sites on that day.

2. Conditional on that vector, generate a random vector from the predictive
distribution for ungauged sites.

3. Compute the daily average log ozone concentration for that day at every
site.

4. Repeat steps 1-3 for each day of 1998;
5. At each site find the 99th percentile of daily averages and take its antilog-

arithm.

This figure suggests that if the annual 99th percentile of daily average ozone
levels were used as the compliance metric, stations #5, 7, 8, 9, 12, and 13
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Fig. 12.8: Boxplots show the sitewise distribution of simulated annual 99th per-
centiles of daily average ozone (µg m−3) concentrations.

would be the most likely to noncomply. In any case, in this figure we see
major differences among the potential sites with respect to the distribution
of this metric.

Other Regulatory Criteria

Stepping back a bit, we might suppose that the regulator would like a design
that gives her the greatest chance of detecting a noncompliance event itself
without regard to the specific concentration of the response that is noncompli-
ant. From that perspective she might want to add sites with a high collective
risk of noncompliance. Or she might seek the sites with a minimum risk of
noncomplying and leave these out of the extended network.

To explore these ideas, define three distinct compliance events R, A, andG.
Their associated conditional and marginal probabilities would be estimated
through simulation using our predictive distribution. Once a particular set
of, say six candidate sites among 20 have been selected, these events would
be, respectively, compliance of the remaining sites, of the added sites, and
of the gauged sites. Whether each of these events occurred could then be
determined for any series of simulated responses at both gauged and ungauged
sites, over hours and even days (if a given design criterion’s metric were based
on a multiplicity of days). After sufficiently many replicate simulation runs,
the probabilities for these events, as described below, could be found as the
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relative outcome frequencies. We illustrate these calculations below, albeit
using a computationally simpler model.

Even with this new approach a number of possible design objectives
present themselves. For example, the designer could choose to select the six
add sites to maximize P (Ā|G). Alternatively, she could maximize P (Ā|Ḡ)
where Ā means A is not in compliance. Still a third would be to maximize
P (Ā). Since P (Ā) = P (Ā|G)P (G)+P (Ā|Ḡ)P (Ḡ), we see that the first two are
related to but different from the third. In fact, the third could be interpreted
as a multicriteria optimization problem that combines the objective functions
from the first two.

She could alternatively express the regulators’ goals through minimiza-
tion of P (R|G), P (R|Ḡ), or P (R) = P (R|G)P (G) +P (R̄|Ḡ)P (Ḡ). Still other
credible choices exist, the maximization of P (Ā|G,R), for example. Numerous
other options exist.

However, we do not see what principles she could invoke to compel a choice
of a single criterion for designing a network that best meets the regulator’s
goals of detecting noncompliance, knowing that the different choices yield
different designs. We see this as a major challenge facing the designer of a
network to monitor extremes, one that does not seem to have been very much
explored.

To get a better understanding of this issue Chang et al. [(2006); or CFLZ
for short] did a simulation study resembling the one in Section 12.3.1. To make
their study realistic they used a total of 30 sites with locations depicted in
Figure 12.4. Sites #21–#30 were taken as gauged. Of the remaining sites #1–
#20, six were to be gauged. CFLZ assumed the joint 30-dimensional response
matrix has a multivariate-t distribution with 35 degrees of freedom and they
generated their responses using the algorithm of Kennedy and Gentle (1980,
pages 231-232). All marginal site response distributions had mean zero. The
between-site covariances were those estimated by Le et al. (2001) and used in
Section 12.4. The variances themselves are depicted in Figure 12.9.

Notice that of the nongauged sites #9, #10, #12, #13, #10, and #20 are
the ones having the largest variances, making them obvious candidates for
network membership.

Their study proceeded by generating a large number of replicates of the
30-dimensional response vector representing the values at all the sites, gauged
and ungauged. They found the subset of those vectors for which the ten gauged
sites were compliant, i.e., had a maximum less than a specified threshold (the
compliance event G). Finally, within that subset they looked at all the possible
choices of the subset of add sites among the 20 ungauged sites.

CFLZ considered two possible compliance criteria, denoted A and R. For
the first they estimated, by a relative frequency, the probability (conditional
on G) that the six selected sites would be noncompliant. They then selected
the six sites that maximized that conditional probability. For the second they
looked at the subsets of 14 unselected sites and their estimated (conditional)
probability of noncompliance. Finding the subset of 14 with the minimum
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Fig. 12.9: The ranked site variances based on estimated variances.

conditional probability, they got their complement as the six sites (the add
set) to be added to the network of ten gauged sites. Note that these two
criteria do not yield the same add set.

After experimenting with a variety of options, CFLZ settled on three pos-
sible compliance thresholds for their study, log 2, log 4, and log 7, the first
being the most stringent. Any site exceeding the threshold would be in non-
compliance. G is the event that all of the ten gauged sites are in compliance.
When the threshold is set to log 2, G’s occurrence would be quite informative
and alter appreciably, the probability distribution of the responses at the 20
ungauged sites.

The effect of learning G occurred can be seen in Figures 12.10 and 12.11.
They depict the variances of sites conditional on G for the most and least
stringent thresholds. (We should emphasize that CFLZ did not condition on
the responses actually measured at those gauged sites!) Not only does the
variance of the responses at the ungauged sites change, but so does their
variance order due to the complex interaction of between-site covariances and
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their marginal variances. To interpret them these figures need to be compared
with each other and with Figure 12.9.

First observe that the response variance of Site #20, located at the extreme
southeast corner of Figure 12.4 retains the top variance rank among the 20
ungauged sites in all three figures. Clearly the level of uncertainty about its
response remains unchanged by knowledge that G has occurred.

On the other hand, that knowledge has a substantial impact on Sites #18
and #19; their variance ranking moves close to the top, although below that
of Site #20. We found this result surprising since they, like Site #20, are on
the southern boundary of Figure 12.4 and well away from the “pack.” Why
the knowledge should have increased their uncertainty is a mystery. However,
the result indicates if new sites are added to the network on the basis of
compliance probabilities conditional on G, Sites #18, #19, and #20 will be
very strong candidates.

The other site worth remarking on is Site #9. In that case response un-
certainty has gone down thanks to knowledge that G has occurred. That is
because unlike the other sites, #9 is in the middle of the collection of gauged
sites (that are known to be in compliance given the conditioning event). In
fact, the most stringent threshold moves its variance rank lower than the least
stringent, as intuition would suggest.

In line with the previous observation, note that with the most stringent
threshold log 2 G’s occurrence imposes a substantial constraint on the simu-
lated field, its dispersion. Hence its marginal variances are smaller than for
the least stringent.

The CFLZ study reveals that Sites #18 and #9 must be included in the
optimal group of six no matter what threshold is used (log 2, log 4, log 7) or
which criterion [maximize compliance over subset of six sites, P (A | G) or
minimize noncompliance over subsets of 14 sites, P (R | G)] is used. Only the
other 3 selected sites vary somewhat. In fact, for the most stringent threshold,
both criteria A and G select site #16 as well. However, whereas A chooses
#1 and #10 for the remaining two slots G picks #4 and #17. Whichever
criterion is selected, the conditional probability of the six selected sites being
in compliance is about 0.54 for the most stringent threshold, one that is hard
to meet.

Note: CFLZ used very large-sample sizes in their simulation, and the esti-
mated standard deviation of the simulated estimates of the respective proba-
bilities show them to be significantly different, not just different due to chance.

At the other extreme when the least stringent threshold is used, both
criteria select #9 and #10 to be added. For the sixth and last slot, A picks
#12 while G goes for #14. Now the chance of the added six being compliant
comes in at around 0.95.



12.4 Entropy Designs for Monitoring Extremes 239

5 10 15 20

0.
45

0.
50

0.
55

0.
60

0.
65

Ranking (Lowest to Highest)

Va
ria

nc
e

1

4

3 2
6

15
5

11
16 13 7 17

8
14

9 12

18
10 19

20

Fig. 12.10: The ranked variances of sites for the response distribution, conditional
on the ten gauged sites being in compliance. Here the threshold is log 2.

Generally the results of CFLZ show convincingly that the optimal design
depends on the criterion selected, forcing a designer to select from among
myriad seemingly plausible compliance criteria. However, in this case at least
only small differences are seen in the resulting criterion probabilities among
the top five designs, thus offering some hope that at least at the practical
level, the eventual choice of a winner among the leading contenders will not
be critical. Clearly, more analysis will be required to determine if this hope is
realistic. For the time being, how might she escape from this morass?

Her dilemma makes us reconsider the possibility of using an information-
based (entropy) approach. However, we know from the results in the previous
section that criterion cannot be applied directly to the response field. There-
fore a new approach is needed and one is described in the next section.

12.4 Entropy Designs for Monitoring Extremes

Section 12.3.2 has shown us the desirability of bypassing specific design objec-
tives in favor of a more generic choice such as the entropy. However, Section
12.3.2 has shown the futility of applying the entropy criterion directly to
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Fig. 12.11: The ranked variances of sites for the response distribution, conditional
on the ten gauged sites being in compliance. Here the threshold is log 7.

the response field itself. So in this section we explore its use on the field of
extremes; that is, after all, the posited object of inferential interest in this
chapter.

Various approaches would lead to an entropy-based design criterion. The
most obvious would be use of a multivariate joint distribution for the extremes
field. However, we know of no distribution that would yield the conditional
predictive distribution we need. (See Fu et al. 2003 for a recent review.) An-
other possibility would use a predictive distribution for the response field to
estimate the required conditional probability density functions by a Monte
Carlo approach. That of Kibria et al. (2002), as developed within a design
framework by Le et al. (2005), offers one such possibility. However, that ap-
proach also fails due to the curse of dimensionality; reliably estimating a joint
density function over a high-dimensional domain proves impossible.

In this section we propose a third approach that derives from the frame-
work set out in Section 12.
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12.5 Wrapup

Environmental monitoring criteria have been based on extremes because of
their perceived association with risk. Consequently, networks have been es-
tablished to monitor such things as air pollution and acidic deposition and in
their associated extremes. Surprisingly no attempt seems to have been made
to define explicit technical design objective functions that express societal
concern about the risk associated with extremes. These functions would ac-
commodate and embrace knowledge, concern, risk perceptions, and political
demands.

As a consequence, the specification of such criteria has been left to the
designers. This chapter has pointed to some of the technical challenges they
face. Among other things, we have delineated a large number of seemingly
credible alternatives, all of which are consistent with the goal of detecting
noncompliance and thereby enforcing standards. Yet they yield a variety of
different designs!

This complacency may derive from a belief that the layout of a network
is not critical. That would certainly be true, for example, of designs for mon-
itoring London’s PM10 field since it is quite flat (Zidek et al. 2003). Even a
single station would characterize that field quite well, no matter where it was
placed.

However, such complacency may not be warranted where extremes are
concerned. An important issue presented in this chapter is the diminished
intersite correlations among extremes compared to the response fields from
which they derive. This discovery leads us to wonder how well current mon-
itoring programs work, especially in guarding the susceptible and sensitive,
such as the old and young in urban areas, if indeed extremes are important
determinants of risk. In fact, the near independence of extremes between sites
in certain areas would suggest the need for a dense network of monitors to
adequately protect the associated population. In fact, the high cost of setting
up and maintaining monitors has severely restricted their numbers.

In any case this chapter also offers a practical way of addressing some of
the challenges in design and spatial prediction, in particular the multiplicity
of objectives confronting the designer. That approach is based on an entropy
criterion and the use of a joint matric-t distribution as an approximation to
the actual joint distribution of spatial extremes. However, the support for our
approach is both limited and empirical. More validation and testing would
clearly be desirable.
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Risk Assessment

More than any other time in history, mankind faces
a crossroads. One path leads to despair and utter
hopelessness. The other, to total extinction. Let us pray
we have the wisdom to choose correctly.

Woody Allen

The prospects facing risk managers may not be as bleak as those confronting
Woody Allen. Nevertheless, without proper management, the consequences
can be unnecessarily severe. Such management begins with an assessment of
those risks, the topic of this chapter.

13.1 Environmental Risk Model

London’s fog of 1952 ranks among the most famous space–time processes in
history, even though it lasted only a few days (see Bates and Caton 2002 for
a description). The BBC Web page quotes one observer, Barbara Fewster, on
recalling her 16-mile walk home, in heels, guiding her fianceé’s car:

It was the worst fog that I’d ever encountered. It had a yellow tinge
and a strong, strong smell strongly of sulphur, because it was really
pollution from coal fires that had built up. Even in daylight, it was a
ghastly yellow color.

The ensuing sharp rise in mortality could be attributed to it unambiguously. In
time the public’s interest in environmental risk (ER) grew along with measures
in the United fKingdom to reduce it.

The decades since have seen a sharp rise in societal concern about ER
and demands for its reduction. The United States passed its Clean Air Act in
1970 and created the Environmental Protection Agency (EPA) in 1971. The
NAPAP program (see Example 10.1) was launched in 1980 to:

• Specify the cause and origin of acid deposition.
• Assess the impact on environment, society, and economy caused by acid

deposition.
• Remove or weaken the harmful impacts of acid deposition by the regulation

or elimination of the discharge of original materials, on the basis of the
research results.
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That program produced a lot of statistical work. This may have been due
to the subtlety of the environmental impacts of concern; though small, they
can be pervasive and hence their overall effect enormous. Anyway that work
offered a lot of analysis about such things as gradients and trends on the one
hand, as well as new theory for risk assessment on the other. In particular,
it gave new approaches to modeling space–time fields (Le and Zidek 1992;
Sampson and Guttorp 1992).

Recent years have seen a surge in ER studies, so far beyond the scope of
a single chapter that we limit ourselves to a brief overview. As well this chap-
ter presents methodology for ER assessment (ERA) tailor-made for what is
called longitudinal or time-series analysis, one that minimizes computational
complexity while tying in with predictive exposure distributions (like that in
Chapter 9).

We begin with an overview.

13.2 Environmental Risk

Informally, quantitative risk is sometimes defined as “consequence × prob-
ability” (personal communication, John Lockwood). That definition reflects
the need to average the product of a measure of the loss produced by a risky
outcome and its likelihood.

Though simple in concept, this formula proves difficult to apply. For one
thing, numerical losses are hard to estimate. (How much is the cost of a life?)
Uncertainties about the outcomes of the judicial processes needed to settle
claims add to the challenge. Finally, losses are borne, not by one individ-
ual, but by a group of “stakeholders,” such as insurance companies and the
bereaved.

The probabilities are also hard to specify since by nature, risky outcomes
are rare. They may represent extremes (Chapter 12) and include such things
as a one hundred year flood, an earthquake, or the failure of a nuclear power
plant. Consequently, they generate so little data for estimating those proba-
bilities that lots of uncertainty remains, even when statistical models such as
those in Chapter 12 are used.

ERA, that is, monitoring, data capture, data analysis, interpretation, con-
clusions, and implications, concerns the impacts of an environmental haz-
ard (EH). These impacts can be on living things (see Examples 1.1 and
1.2), the subject of environment health risk. But they can also be on non-
living things such as building materials that are eroded by acid precipita-
tion (see Examples 4.1 and 4.4). Graphically, ERA may be portrayed as
EH −→ exposure −→ dose −→ response −→ impact. This diagram covers
two major components of ERA, namely, environmental exposure assessment
(EAA) and environmental toxicology assessment (ETA) (Bailer et al. 2003).
Very briefly, the former concerns the level of exposure, the latter, the dose–
response, i.e., how much of that exposure will be converted into a response.
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As noted by Bailer et al. (2003):

. . . the definition of impact may not always be obvious.

In fact, the EHs may not even be known (the known unknowns or even un-
known unknowns in Rumsfield’s terminology (Chapter 3). For instance, the
health impacts of particulate air pollution became a concern only in the 1990s
whereas in contrast, the impact of ozone was studied in the 1970s.

EHs include such things airborne particles, gases as well as fumes, conta-
minants of water as well as subsoils, pesticides, metals and solvents as well as
vapors, radiation, and radioactive materials (Sen 2003). Quite a list!

Membership on this list is controversial. Should electromagnetic radiation
be on it? What about cell-phone radiation? Critics still question the presump-
tion that airborne particles cause illhealth. Controversy about membership on
the list has stimulated a whole new field of inquiry called “environmental epi-
demiology,” the concern of much of this chapter because of its close ties to
environmental space–time processes analysis.

The following example illustrates ERA.

Example 13.1. Pollution versus mental development
Budtz-Jørgensen et al. (2003) study the consumption of pilot whale meat
in the Faroe Islands because it exposes the population to methylmercury.
They focus on a 1986-87 birth cohort of 1022 children in a prospective study
of possible adverse effects of prenatal exposure, that being determined from
both umbilical cord blood and maternal hair.

At age 7 (years), 90% of the cohort members were tested in a variety
of ways centering on nervous system function, in particular, by using the
Boston Naming Test (BNT). There each child is presented with a sequence of
drawings of objects and asked to name each one. Those who do not respond
correctly at each stage are given two successively more helpful cues. Finally,
the investigators compute two scores, the totals correct with and without cues.

The study shows a strong association between ethylmercury concentrations
and the scores, especially the cued scores. Specifically, a tenfold increase in
that environmental hazard leads to a predicted drop of 1.6 in that score.

Confounders

Example 13.1 proves instructive. First the study described there like most, is
observational: treatment levels are decided by nature, not the experimenter
through randomization. That means the association can come through one
or more confounders, the latter being in the words of Budtz-Jørgensen et al.
(2003) quoting Miettenin,

an extraneous determinant of the response which has imbalanced dis-
tributions between the categories of the exposure.
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As an example, these authors note that socioeconomic status can generally
be a confounder since a high status tends to imply good health, a low status,
greater exposure to the hazard. Thus the confounder can skew the results in
favor of a positive association by amplifying the exposure contrasts.

Population size can be a confounder in ecological studies that use regional
aggregates, in other words cluster statistics. Populous regions generate both
larger aggregate adverse health counts and higher aggregates of the EH be-
ing studied for its association with those counts. Symbolically, more people
−→ more hazard −→ more bad health. Naive analyses do not adjust for con-
founders and discover totally spurious but often strong associations between
the two.

Ideally studies should be conducted separately within each confounder
category. However, in practice that will almost never be possible, there being
too many confounders (known and unknown) and thus a huge number of
categories created through cross-classification. Instead regression modeling
strategies are used, all identified potential confounders being measured and
included in the model. That way results can be adjusted for them.

However, not all potential confounders are “known unknowns.” Long ago
randomized experiments were proposed to deal with that problem and ensure
that the two populations being compared are identical with respect to all
potential confounders. Yet in practice, randomization is seldom possible.

Longitudinal Studies

To deal with this difficulty an ingenious design was developed to enable within-
cluster comparisons. More precisely, response and hazard levels are tracked
over time within each cluster. An association can claim causality credentials
since within each cluster the confounders, such as aggregate socioeconomic
status, will be relatively stable over time.

The inferential approach associated with such a design, longitudinal data
analysis, is an important tool for environmental epidemiology. In contrast,
the classical approach called cross-sectional data analysis, has lost much of its
popularity.

Risk Analysis

The topic of risk analysis completes our review and includes both ERA as
well as risk management. It entails such things as intervention or abatement,
regulation or control, and penalizing offenders. It may also include the tricky
tasks of risk communication.

How the latter should best be done remains a mystery especially since the
probabilities are small and the consequences ill-defined. Fascinating studies
(Kahneman et al. 1982) have shown how badly experts and nonexperts can be
at reasoning about uncertainty and making decisions involving it. Moreover,
the perception of risk may deviate markedly from reality.
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We illustrate the difficulty with an amusing example included not because
it concerns environmental risk but because its simplicity makes the point so
eloquently.

Example 13.2. Prisoner’s paradox
This famous example, originally phrased as the three prisoners paradox, comes
from an American TV game show involving three unmarked doors. Behind one
is hidden a valuable prize. The contestant selects a door and the show’s host
opens one of the other two, revealing no prize. Should the contestant then
switch his or her guess to the other of the unopened pair of doors as the host
invites him or her to do?

In fact, the contestant should switch.Yet most do not. Moreover, most are
unable to figure out why when told they should have done so to increase their
chances of winning.

13.3 Risk in Postnormal Science

In the latter part of the twentieth century, growing concern about the risks
associated with environmental processes coupled with the technology needed
to address it led to a transformation of normal science into postnormal science
[Funtowicz and Ravetz(undated)]. Stereotypically normal science, driven by
curiosity, the need for reproducibility, and the quest for truth, led to carefully
controlled laboratory experiments. In contrast postnormal science is associ-
ated with complexity such as that seen in environmental processes. More
than just complicated, the latter has great uncertainty and a multitude of
perspectives associated with it. In Funtowicz and Ravetz(undated) we find it
described as follows.

For policy purposes, a very basic property of observed and analyzed
complex systems might be called “feeling the elephant,” after the In-
dian fable of the five blind men trying to guess the object they were
touching by feeling a part of an elephant. Each conceived the object
after his own partial imaging process (the leg indicated a tree, the side
a wall, the trunk a snake, etc.); it is left to an outsider to visualize the
whole elephant.

Such is the situation confronting a crew of environmental scientists analyzing
an environmental process over a very large space–time domain. Uncertainty
abounds while the level of risk is uncertain. Decisions are urgent. Postnormal
science must bridge between the process and the policy-maker. It is driven
by stakeholders with different values, who may see their levels of risk differ-
ently, along with the funding envelopes that increasingly drive the science and
decide the measurements to be taken. Whole new approaches to science are
developing.
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Fig. 13.1. Location of
1221 historical meteoro-
logical monitoring sta-
tions.

The following example concerns one of the processes about which so much
controversy has arisen, global climate change. While limitations of space force
its superficiality, it does illustrate some of the complexity described above.

Example 13.3. Global climate change
This examples concerns the maximum monthly temperatures since 1884 over
the coterminus United States. Historical data on this and other environmental
processes can be found on the U.S. Historical and Climatological Network
(HCN). The data from that source we look at have been adjusted for such
things as the effects of urbanization to reveal, ignoring model uncertainty,
the intrinsic changes in those maxima over that time period. Our focus on
these maxima derives from the argument that extreme values more sensitively
indicate change than, say the mean temperature.

The HCN network involves 1221 individual monitoring stations. Figure
13.1 shows the overall network to be quite dense.

Just ten of those stations were chosen for our purposes, one from each
state that monitored climate since at least 1890. Their locations in Figure
13.2 reveal they are widely distributed.

Turning to the issue of climate change, we plot in Figure 13.3 the time-
series of the annual averages of the monthly maxima for the ten sites in our
investigation. A lot of different pictures emerge from that plot. Some tem-
peratures seem to have been trending upwards, others down. In fact, the two
hottest states among the ten, Texas and Mississippi seem to be trending in
opposite directions. We take a closer look at them in the next two figures.
Someone in Mississippi looking at this plot in 1980 might be forgiven for be-
lieving an ice age was well on its way. In contrast, except for a brief 20-year
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Fig. 13.4: Time-series of annual aver-
ages of monthly maximum tempera-
tures (deg F) for a site in Texas.
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Fig. 13.5: A plot for Mississippi like
that on the left.

period, at any time during the last century, a Texan might have concluded
global warming was well underway.

We now turn to the topic of environmental epidemiology, a particularly
important one in postnormal science.

13.4 Environmental Epidemiology***

Environmental epidemiology concerns the relationship between human health
and environmental hazards. Increasing knowledge and societal concern have
led to a substantial increase in the support for such studies. Moreover, regula-
tory agencies have needed and used the results they report to shape abatement
programs as well as for regulatory and control policies.

However, the health effects involved are generally so subtle that increas-
ingly sophisticated statistical methods have had to be developed. These meth-
ods are needed to detect those effects as well as quantify uncertainties in any
inferences that might be made about them using available data. In practice
policy-makers need accurate estimates of uncertainty to support action when
the negative estimates warrant it. Moreover, such action will be warranted
when large populations are at risk even when the effects are subtle.

Perversely, many departures from the assumptions underlying the methods
used to quantify uncertainty (and risk) tend to produce misleadingly low esti-
mates. Those estimates may then lead policy-makers to be overconfident about
the issue of concern. For example, dependent data yield higher confidence or
credibility regions than independent data. If the latter is assumed, uncertainty
about the associated estimates will be misleadingly small. (Dependent data
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contain less information than uncorrelated data. In the extreme case of perfect
dependence the data actually consist of a single datum!) Consequently recent
years have seen increased emphasis on those departures, diagnostic tools for
detecting them, and ways for getting around them.

This chapter presents an environmental health risk assessment method
for longitudinal data (Zidek et al. 1998a) designed to deal with one of those
departures, namely, measurement error. Such error can have unpredictable
and potentially pernicious effects on the estimates and their associated levels
of uncertainty (Chapter 4).

Measurement Error and Estimating Equations

The method, developed in Duddek et al. (1995) and refined by Zidek et al.
(1998a), extends one of Burnett and Krewski (1994) as well as Lindstrom and
Bates (1990). It addresses that error by imputing exposures at unmonitored
sites using a predictive distribution conditional on the observed levels of the
hazardous substance of concern. In the terminology of Carroll et al. (1995) we
are using regression calibration.

Another feature of the method is its use of the well-known generalized
estimating equations (GEE) approach for fitting a health effect (impacts)
model. Although other methods such as Poisson regression are commonly used
instead, the GEE enjoys robustness against model misspecification (with large
samples) and simplicity. Thus only first and second moments of the predictive
distribution are needed. The resulting computational simplicity enables the
method to handle large problems such as that in Section 13.5.

Data Clusters

The method assumes the data are clustered. A cluster can consist of data from
a single subject such as a time-series of measurements made on him. Alter-
natively, it could be from a group of individuals defined by a characteristic,
such as having a home address in a specified geographical area.

The method assumes random effects represent cluster contributions to the
measured responses. The Bayesian framework provides one justification for
that assumption. Then randomness represents uncertainty about the cluster
parameters. However, non-Bayesians have also embraced this approach, allow-
ing them to assume these cluster effects have a joint distribution, and creating
a soft but powerful link between clusters. In particular, these effects can be
marginalized out across clusters and strength can be borrowed. Thus small,
even insignificant individual cluster effects can attain significance if they point
consistently in the same direction. That provides a powerful tool for ERA.

13.4.1 Impact Assessment***

To make things more precise, suppose a study involvesK clusters and T times.
For a given cluster–time pair i and t, i ∈ I, t ∈ T , Yit denotes a measurable
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response. That response could be the number of hospital admissions for respi-
ratory morbidity, the number of school absences, or the number of organisms
that die. At the same time, X(1)

it represents an associated vector of covariates,
some measured with error and some not. Set Yi = (Yi1, . . . , YiT )T , the vector
of all cluster i responses over time and Y = (Y1, . . . ,YI), the combination of
all cluster responses.

Regression Model

We begin with the regression model

E(Yit | ai,Xit) = ζit = mitζ(aT
i Xit) (13.1)

that links the measurable response to the covariates in cluster i at time t.
The constant mit can account for such things as the population size of cluster
i and slowly varying seasonal patterns in health outcomes, when the study
concerns only acute effects. Notice the simplification imposed, of making ζit
depend on the covariate vector Xit only through the function of one variable
ζ and the linear form aT

i Xit. Much more complicated relationships could be
handled at the cost of model complexity. However, even the simple model
captures many commonly used impact functions such as the one in Section
13.5. For simplicity, divide both sides of Equation (13.1) by mit to get

E(Yit | ai,Xit) = ζ(aT
i Xit), (13.2)

where with an abuse of notation now the new Yit is the old one divided by
mit.

The subtlety of the effects generally makes aT
i Xit small. Thus, if we

let Xo
it represent a vector of baseline values for the coordinates of Xit

(say the “typical” values in cluster i at time t), we might well approxi-
mate ζ with the first two terms in its Taylor expansion. To get that ex-
pansion, let ζ ′(s) = dζ(s)/ds, s ∈ (−∞,∞) denote ζ’s first derivative.
Then approximately, the expected number of adverse outcomes is given by
ζit ≈ ζ(aT

i Xo
it) + ζ ′(aT

i Xo
it)a

T
i (Xit − Xo

it) = ζ(aT
i Xo

it)[1 + Rit(Xit − Xo
it)],

where Rit = [ζ ′(aT
i Xo

it)/ζ(a
T
i Xo

it)]a
T
i . In particular, the jth coordinate of

Rit; i.e., Ritj is called the relative risk of Xitj . If we interpret ζ(aT
i Xo

it) as
the baseline number of expected outcomes at time t (normalized by mit) then
100×Ritj would be the % change in that number as a result of a unit change
in the level of Xitj above its baseline.

Relative risks are standard indices of risk in environmental epidemiology.
Often they are stated not for just a unit change in the environmental hazard
but some other change, for example, 10 µg m−3 in the case of PM10. The
conversion is easy; just multiply by 10 in the latter case. If this were, say
2%, it would represent a seemingly small relative risk of mortality. Yet in a
cluster with a population size of 100, 000 about 2,000 excess deaths would
occur. However subtle, this effect could hardly be called negligible! Of course,
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accurate estimates of the uncertainty in that estimate would be needed to
support regulatory action and intervention.

Finally, note that Xit can be replaced by Xit −Xo
it in the regression model

when acute effects are of concern. (That change was made in the Case Study
reported in Section 13.5.) There it’s the deviation from baseline that would
more likely be associated with abrupt changes in impact levels. As a desirable
byproduct, the degree of collinearity between X’s coordinate responses would
thereby be reduced. After all, much of that problem derives from the cross-
correlation induced by long term trend patterns.

Example 13.4. Logistic model
Let ζ(s) = exp(s)/[1 + exp(s)], the so-called logistic model. Then using the
multiplication rule for differentiation,

ζ ′(s) = exp(s)/[1 + exp(s)] − exp(s)/[1 + exp(s)]2 × exp(s)
= ζ(s)[1 − ζ(s)].

Then

Rit = [1 − ζ(aT
i Xo

it)]a
T
i .

Notice that ζ(s) → 1 as s → ∞. Thus in agreement with intuition the
relative risk tends to zero as aT

i Xo
it → ∞; a small change in a high baseline

level would produce a smaller effect than a similar change in a low level.
Clearly the baseline needs to be selected carefully. Yet that important issue
receives little attention.

This model makes the effect of the baseline’s deflation factor 1− ζ(aT
i Xo

it)
common to all elements of X. This property could be unrealistic in some
situations, a cost of the model’s simplicity. On the other hand, the relative
risk would be monotonically increasing from approximately zero for very small
values of akjX

o
itj , and bounded (if aij > 0), seemingly natural properties.

A much more common regression model, the one we use in Section (13.5),
appears in the next example. It like that in the previous example which ensures
the fitted means are positive (unlike the linear model, say).

Example 13.5. Exponential model
Let ζ(s) = exp(s). Now Rit = aT

k so the effect of hazards inX does not depend
on their size relative to the baseline. Moreover, that risk does not depend on
time. We wonder if these properties are biologically justified. In particular,
would the impact of a unit’s increase in ozone above its springtime baseline
have the same relative risk as in summer say, another issue that has received
little attention in environmental epidemiology. The conclusion implied by this
model, that the risk is unbounded, is not justified. In fact, the model should
only be regarded as an approximation to that in Example (13.4) when aT

i Xit

is small.
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Random Effects

Equation (13.2) involves a vector of regression coefficients ai for cluster i.
As noted above, advantages accrue from taking as random at least some of
the coordinates in that vector. Therefore assume ai = β + bi, {bi} being the
random cluster i effects vector with vector mean zero and covariance matrix D.
(To make a coordinate of ai nonrandom, simply set to zero the variance in D
for the associated coordinate of {bi}. This convention considerably simplifies
the model, bypassing the need to split the linear form aT

i Xit into two pieces,
one fixed and one random as is commonly done.)

The risk assessment of an environmental hazard commonly entails a test
of the hypothesis of no association with the measured health response. More
precisely, for the hazard’s coefficient in the regression model aij that (null)
hypothesis Ho would state either aij = 0 or Var(aij) = 0, accordingly as that
coefficient represents a fixed or random effect.

“Working” Error Covariance

However, the need to borrow strength across clusters requires in addition to
the model in (13.2), one for its covariance. For that model we make the “work-
ing assumption” that the outcome responses are not correlated across time.
That assumption, although unrealistic can be made since the GEE approach
features a robust covariance estimate that overcomes that deficiency (Liang
and Zeger 1986). To express that assumption, let δ be the Dirac delta function.
In other words, δuv = 0 unless u = v when it is 1. Now assume

Cov (Yit1 , Yit2 | ai,Xit1 ,Xit2) = φζit1δt1t2 ,

φ being an unknown real number called the overdispersion parameter.
We may not have observed all elements of the covariate vector Xit. That

is after all the point of our analysis. However, assume we can find with an
approach like that in Chapters 9 and 10,

E (Xit) = zit

Cov (Xit1 ,Xit2) = Git1t2 . (13.3)

Set to 0 elements of the latter for covariates measured without error. Finally
let Git1t2 = 0 when t1 �= t2.

Practical Approximations

Nonlinear models generally prove quite intractable in statistical analysis. In
particular, their parameters cannot be estimated without resorting to numer-
ical algorithms, the subject to which we now turn. These algorithms find
optimal estimates through iterative approximation, each iteration requiring
the local linearization of any nonlinear functions involved. Developing fast ac-
curate algorithms has proven quite challenging. Nonetheless, functions with a
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large number of parameters may defeat the best such algorithms because of
insufficient computer memory or of the existence of excessively many local op-
tima, making the resulting estimates depend critically on the initial estimates
supplied.

We begin with some assumptions needed to ensure the positive definiteness
of the approximate covariance matrix we develop below. Assume ζ is: (1) posi-
tive; (2) three times differentiable; (3) strictly log convex. The latter makes the
second derivative of its logarithm is positive; i.e., ζ ′′(u)/ζ(u)−(ζ ′(u)/ζ(u))2 >
0. This in turn makes 0 ≤ ζ(u) + 2vζ ′(u) + v2ζ ′′(u), for all u and v since this
quadratic cannot then have any real roots when set to zero. In other words
it can never be zero and must therefore always be positive, the positive defi-
niteness condition required below.

Suppose also the mean in Equation (13.3) approximates the unmeasured
Xs reasonably well. Then we can make a Taylor expansion and compute the
expectation of the result, dropping terms of order higher than two. The re-
sulting approximation is denoted ≈ meaning, approximately equal to.

To begin, recall the general identity E[U ] = E[E(U |V )] a result that holds
for any pair of random vectors. Then

E (Yit | ai) = EE[(Yit | Xit,ai] | ai)
= E

(
ζ(aT

i Xit) | ai

)
≈ E

(
ζ(aT

i zit) + ζ ′(aT
i zit)aT

i (Xit − zit)+

ζ ′′(aT
i zit)aT

i (Xit − zit)(Xit − zit)T ai | ai

)
= ζ(aT

i zit) + ζ ′′(aT
i zit)aT

i Gittai.

Using the approximation above, we circumvent the problem created by ζ’s
nonlinearity in X. However, that in a remains. To deal with it we use an idea
of Lindstrom and Bates (1990) and let βoi = β + bo

i , b
o
i representing a current

estimator of cluster i’s random effect. This estimator would presumably be
fairly close to the optimum at least after a number of iterations. This gives a
basis for a further Taylor expansion approximation. The result (with details
omitted):

E (Yit | ai) ≈ ηit(ai) where (13.4)

ηit(ai) = ζ
(
βT

oizit

)
+ Ẑit (ai − βoi)

+
1
2
ζ ′′ (βT

oizit

)
[zT

it (ai − βoi) (ai − βoi)
T zit + βT

oiGittβoi]

Ẑit = ζ ′ (βT
oizit

)
zT

it.

While these approximations take care of the mean, finding a covariance
approximation remains. The next result uses another well-known identity
Cov[U ] = E[Cov(U |V )] + Cov[E(U |V )] for any pair of random vectors for
which the requisite covariances exist. The result:
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Cov (Yit1 , Yit2 | ai) ≈ Λit1t2(ai) where (13.5)
Λit1t2(ai) = δit1t2φE (Yit1 | ai)

+ ζ ′ (aT
i zit1

)
ζ ′ (aT

i zit2

)
aT

i Git1t2ai.

To estimate the fixed effect parameters, we need the corresponding approx-
imations after the random effects have been eliminated by averaging them out
of Equations (13.4) and (13.5). The result:

E (Yit) ≈ µi(βoi);

µi(βoi) = ζ
(
βT

oizit

)
+ Ẑit (β − βoi) +

1
2
ζ ′′ (βT

oizit

)
× {zT

it[D + (β − βoi)] (β − βoi)
T ]zit + βT

oiGittβoi};
Cov (Y1, Y2) ≈ Σ12(αo) where (13.6)

Σit1t2(βoi) = Λit1t2(βoi) + Ẑit1DẐT
it2 .

The regularity conditions ensure the positive definiteness of Λitt andΣit1t2(βoi).
The approximations above can be compactly summarized using vector-

matrix:

E (Yi | ai) ≈ (ηit1(ai), . . . , ηitT(ai))
T

≡ ηi(ai);
Cov (Yi | ai) ≈ diag (Λit1t1(ai), . . . , ΛitT tT

(ai))
≡ Λi(ai);

E (Yi) ≈ (µit1(βoi), . . . , µitT
(βoi))

T

≡ µi(βoi);

Cov (Yi) ≈ Λi(βoi) + ẐiDẐT
i

≡ Σi(βoi);

ẐT
i =

(
ẐT

it1 , . . . , Ẑ
T
itT

)
.

This summary simplifies programming in object-oriented programming lan-
guages such as R that can handle vector and matrix objects.

The Burnett–Krewski Approach

This section presents an adaptation of methods of Burnett and Krewski (1994)
for nonlinear regression. The results yield two kinds of analysis. The first is
cluster-specific (Zeger et al.1988) where β reflects the response’s change at a
typical cluster due to a covariate’s change while the {bi} model response rates
among different clusters. The second is called population average, to which we
turn presently.

To implement the GEE approach we (unrealistically) assume that condi-
tional on the random effects, the {Yit} have joint normal probability density
and use the approximations in the previous section for the required means
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and covariances. That joint distribution (with clusters) is assumed to be sto-
chastically independent) provides a quasi-likelihood for the parameters. We
may combine it with the prior distribution for the random effects to obtain a
quasi-posterior distribution for those parameters conditional on the data and
all parameters/hyperparameters but those in the {bi}:

Πiπ(bi | yi, β, . . .) ∝ Πiexp

{
[yi − ηi(β + bi)]TΛ−1

i [yi − ηi(β + bi)]
2

− bT
i D

−1bi

}
. (13.7)

D has been augmented as necessary to make it nonsingular and exposition
easier.

Their estimates may be found by solving the estimating equations obtained
by setting equal to zero, the derivative (or more properly, column gradient) of
the posterior’s logarithm with respect to the random effects vector. In deriving
those equations, we fix Λi ≡ Λi(ai) at ai = βoi. Additional simplification
obtains from evaluating the gradient of ηit at ai = βoi to get Ẑit (Ẑi the
corresponding vector). Thus for the random effects vector bi we obtain the
estimating equations:

Wi ≡ ẐT
i Λ

−1
i (yi − ηi(β + bi)) − D−1bi = 0. (13.8)

To solve these equations Fisher’s scoring algorithm is used. That first
entails computing a matrix, the row gradient of Wi and taking the expectation
of the result with respect to bi. That matrix is given by:

A = −ẐT
i ΛiẐi −D−1.

The iterative solution of Equation (13.8) proceeds at the next step by finding
b̂∗

i as the solution of

Ab̂∗
i = Ab̂i − Wi.

To put this last equation into a more explicit form uses a matrix identity:

(P +ATRQ)−1 = P−1 − P−1QT (R−1 +QP−1QT )−1QP−1.

Applying that identity gives

b̂∗
i = DẐT

i Σ
−1
i r̃i, (13.9)

where r̃i = yi − ηi(β + b̂i) + Ẑbi, a surprisingly simple result. Recall that
we had augmented D to make it nonsingular. Now reset to zero the affected
elements. This last equation then returns a 0 for each of the fixed effects.

To obtain estimating equations for β we proceed in a similar fashion, this
time with the approximations obtained in the previous section after elimi-
nating the random effects. A uniform prior distribution for β is adopted for
convenience (Zidek et al. 1998b). That is equivalent to finding the maximum
quasi-likelihood estimator, to which we now turn. After taking a logarithm
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and multiplying the result by −2, the quasi-likelihood for β and the hyperpa-
rameters becomes∑

i

log |Σi| + rT
i Σ

−1
i ri, (13.10)

where ri = yi − µi(β + b̂i). On setting to zero this expression’s (column)
gradient with respect to β we get the estimating equation∑

i

X̂T
i Σ

−1
i ri = 0,

X̂T
i : T × I being the matrix obtained by computing µ’s gradient with respect

to β. (Its leading term is just Ẑi.) Again we can appeal to Fisher’s scoring
algorithm and get updated estimate

β∗ = H
∑

i

X̂iΣ
−1
i ri, (13.11)

where H =
∑

i X̂
T
i Σ

−1
i X̂i.

It only remains to estimate D and φ using the quasi-likelihood. The ap-
proach of Laird and Ware (1982) yields the updating equations for this pur-
pose:

D̂∗ = D̂ + D̂

(
I−1
∑

i

ẐT
i Σ

−1
i (rirT

i −Σi)Σ−1
i Ẑi

)
D̂ (13.12)

φ̂∗ = φ̂(IT )−1
∑

i

rT
i Σ

−1
i ri. (13.13)

Now if the {bi} had been observed D could simply be estimated by
I−1∑

i bibT
i . Since they are not, use of the EM algorithm (see Chapter 10) is

suggested. Thus in simplified notation we seekD = arg maxD Eold[log f(y,b)],
where Eold denotes the conditional expectation given Y and the hyperpara-
meter estimates from the previous iteration including D. However, the new D
appears in log f(y,b) only in the prior density for b. Thus

D̂∗ = arg max
D
Eold log f(y,b)

= arg max
D
Eold[log |D| + trD−1

∑
i

bibT
i ]

= Eold[I−1
∑

i

bibT
i ]

= I−1
∑

i

Covold(bi) + Eold[bi]Eold[bi]T

= I−1
∑

i

D̂ − D̂ẐiΣ
−1
i ẐT

i D̂ + b̂ib̂T
i .

The last result gives us Equation (13.12).
The same approach yields for φ̂,
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φ̂∗ = φ̂(IT )−1
∑

i

rT
i Σ

−1
i ri + φ̂(IT )−1

∑
i

(I −Σ−1
i rirT

i )M∗
i ,

where M∗ = I − φ̂Σ−1
i diag{µi1 . . . µiT }. However, the second term in the

last equation has expectation zero, making the first term an unbiased estima-
tor. Thus it is omitted in Equation (13.13) for simplicity. This concludes our
derivation of estimates for the first approach (cluster-specific) and turn in the
next section to the second.

Inference

To make inferences about estimated parameters requires the specification of
their distributions, in particular, standard errors. In practice, asymptotic re-
sults including normality are often used because finite sample results are in-
tractable. Here the GEE approach has much to offer since in particular, its
asymptotic theory circumvents the potential difficulties arising from the use of
unrealistic working covariances. It turns out that as long as the mean function
has been correctly specified a robust covariance estimate called the sandwich
estimate is available.

The idea goes back to Liang and Zeger (1986). The asymptotic robust
covariance estimator for β̂ suggested by Equation (13.11) is given by

Cov(β̂) = H[
∑

i

ẐT
i Σ

−1
i rirT

i Σ
−1
i Ẑi]H. (13.14)

This covariance estimator can be used to construct confidence ellipsoids as
well as to test hypotheses about the β the parameter vector of central interest
in environmental epidemiology.

Population Average Versus Cluster-Specific Models

A second approach to the analysis of longitudinal health effects data (Zidek
et al. 1998a) focuses on the average effect over all clusters, obtained from
marginalizing the cluster-specific model or more precisely its expectation

E (Yit | Xit) = ζ∗
it = ζ∗

it(β,Xit). (13.15)

Now β is the population-average regression parameter where before it was the
regression parameter for a typical cluster. It represents the expected popula-
tion response due to changes in the mean levels of the covariates. Hence Zeger
et al. (1988) call this a population-average model. If the covariates in Xit were
at the population-level, Equation (13.15) would give their hypothetical effect.

These dual roles for β can lead to confusion and point to the kinds of
subtleties that arise when nonlinear models are used (Zidek et al. 1996). Care
must be taken interpreting the results. To emphasize the point, suppose β∗

satisfies ζ∗
it(β

∗,Xit) = ζit = ζit([β + bi]T Xit) with bi = 0. Then it has the
population-level coefficients leading to the same impact in cluster i at time t
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as if i had the regression parameters of a typical cluster. Yet generally β∗ �= β.
In other words, the population average impact of Xit need not be the same
as at a typical cluster (where bi = 0)! Consider the following example.

Example 13.6. Cluster-specific versus population average
Here

ζit = exp(β + bi)Xit,

Xit being one-dimensional. Furthermore bi ∼ N(0, D), D being a scalar vari-
ance. Then

ζ∗
it(β,Xit) = E[exp(β + bi)Xit] = exp(βXit +DX2

it/2),

exp(µt+σ2t2/2) being the moment-generating function for a Gaussian random
variable with mean 0 and standard deviation σ. In contrast, at a typical
cluster defined by bi = 0, ζit = exp(βXit). Thus, β∗ defined above solves
β∗Xit + DX2

it/2 = βXit. In other words, β∗ = β − DXit/2. Thus the fitted
population-level parameter would have to be substantially different (smaller
if the covariate were positive) from the typical cluster parameter if it were to
produce the same results in that cluster at that time.

How different can these two vectors β∗ and β be? Example 13.6 makes clear
that the answer to that question depends on the between-cluster response
variability since we are integrating over bi to get the population-level model.
They can be very different.

In practice, both methods would not be applied in the same context.
Environmental health risk assessors would use the cluster-specific approach
whereas environmental health risk managers would fit a population-level
model.

Cluster-Specific Models in Population Average Analysis

Cluster-specific modeling helps even when interest focuses on the population
(as noted by Burnett and Krewski 1994). In particular it yields a working co-
variance for the population model. To get that model, evaluate the covariance
matrix of the cluster-specific model at bi = 0 for all i. Replacing D by Γ high-
lights the distinction. However, maximizing the quasi-log-likelihood remains
the objective. Expanding ζit[(βT + bi)Xit] around bi = 0 and discarding all
but the leading term yields

E (Yit | Xit) = ζ∗ (β∗T Xit

)
(13.16)

for the population regression function.
This simplification lets us borrow results from the cluster-specific analysis

(13.16) as a random effects model with bi ≡ 0 and hence D = 0. Thus

E[Yit] ≈ νit ≡ µit(β) = ζ(βT zkt) +
1
2
ζ ′′(βT zit)βT Gittβ.
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The equations leading to the working covariance follow.

νi = (νit1 , . . . , νitT
)T ;

si = yi − νi;
Mi =

[
ζ ′ (βT zit1

)
zit1 , . . . , ζ

′ (βT zitT

)
zitT

]T
;

Vit = τνit + [ζ ′ (βT zit

)
]2zT

itGkttzit;
Vi = diag {νkt1 , . . . , νktT

} ;
Wi = Vi +MiΓM

T
i .

Formally, we can represent the responses as

Yit = νit + Mitbi + Uit + εit, (13.17)

where Mit denotes the tth row of Mi while {bi}, {Uit}, and {εit} are mutually
independent and normally distributed with means 0 and variances/covariances
Γ = Cov(bi),

V ar(Uit) = [ζ ′(βT zit)]2βT Gittβ

while V ar(εit) = τνit, respectively.
To maximize the quasi-log-likelihood,

P =
n∑

i=1

(
ln | Wi | +s′

iW
−1
i si

)
, (13.18)

invoke the representation of the responses given in Equation (13.17) and for-
mally appeal to results for the cluster-specific model. The recursive equations
we need for fitting the working covariance matrix are obtained in that way.

13.5 Case Study

The study of Burnett et al. (1994) served as the genesis for Duddek et al.
(1995) and Zidek et al. (1998a) (Section 13.4). That study focuses on daily
hospital admission counts in Ontario due to respiratory problems for the years
1983 through 1988, classified by the hospital of admission. Strong relationships
between these counts and daily concentrations of certain airborne pollutants
were found.

Rationale for the Study

However, for nonlinear models, measurement error (ME) can have quite un-
predictable consequences (Chapter 4). Moreover, Burnett et al. (1994) rely on
ambient monitors, in many cases far away from the hospital catchment areas
involved. Thus some of the significant associations could have been an artifact
of ME. That concern warranted a follow-up study by Duddek et al. (1995),
successively refined in Zidek et al. (1998b) and Le et al. (1999).
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The follow-up studies reanalyzed the data used by Burnett et al. (1994)
and for that purpose developed a new methodology (a forerunner of that in the
previous section) to run in conjunction with a predictive exposure distribution
such as those in Chapters 9 and 10.

Clusters

The follow-up studies classified each hospital admission as being in one of the
733 Census Subdivisions (CSDs) depending on the patient’s place of residence
(cluster;) urban clusters having populations of about 100,000). They used only
daily cluster admission totals for each of the six years in the study. [In fact
only those for May to August were used since Burnett and Krewski (1994)
found the strongest association between pollution and admissions during those
months.] They assessed the average effect of changes in the mean pollution
level over all CSDs using a population-average approach (Section 13.4). [In
contrast, that of Le et al. (1999) was cluster-specific.]

Impact Model

The health impact model needed to adjust for both seasonal variation as
well as day-of-the-week effects, both of which could affect the daily hospital
admissions counts. Given those factors plus the goal of estimating population-
average effects, the expected admission count Yit given the pollution levels Xit

was modeled as

E (Yit | bi,Xit) = ζ(βT Xit)
≡ mitexp

(
βT Xit

)
.

The multiplier (mit) accounts for seasonality (trend), the day-of-the-week ef-
fect, and CSD population size. The first two were estimated prior to fitting
the model (Burnett and Krewski 1994). The 1986 Census provided population
counts that, together with the large quantity of data used in model fitting,
meant the {mit} could be treated as known. As this was a population-level
analysis the conditional covariance of Yit defined in Section 13.4 was

Cov (Yit1 , Yit2 | Xit1 ,Xit2) = δit1t2φζ(β
T Xit).

Air Pollutants

Burnett et al. (1994) study four pollutants SO4(µg m−3), O3 (ppb), SO2 (µg
m−3), and NO2 (µg m−3). However Zidek et al. (1998b) consider only SO4,
and O3. These were of primary concern thanks to the results of Burnett et al.
(1994). More importantly, Duddek et al. (1995) showed SO4 and NO2 to be
much less strongly associated with the admission counts. These analyses also
included maximum daily temperature and average daily humidity as climatic
variables. For computational simplicity pollution variables as well as climate
variables were taken to be uncorrelated in constructing the working covariance
matrix.
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Model Uncertainty Versus Standard Errors

The follow-ups were carried out one summer at a time. That simplified cal-
culation and more importantly enabled an assessment of temporal changes in
impact as well as model uncertainty. Standard errors (SEs) do not measure
the latter, reflecting only parameter estimate uncertainty. Worse still they are
often asymptotic, leaving uncertainty about their legitimacy in finite samples.
Model deficiencies might well be seen in the warp of year to year parameter es-
timates subject to model structural limitations. In other words they may well
make the parameter estimators wobble over cases and times as they attempt
to compensate for the model’s inadequacies.

In contrast small SEs might lead an analyst relying on just a single ag-
gregate analysis to unwarranted complacency. Separating the analysis into six
summers, Duddek et al. (1995) and Zidek et al. (1998b) seek to discover that
wobble and therefore some indication of model reliability, and true parameter
uncertainty.

Of course their approach costs significance, the separate analyses being
based on just 1/6 of the data. However, all is not lost. If they demonstrate
model reliability the separate estimates can be averaged to get an even better
overall estimate. Moreover, since separate data sets are approximately inde-
pendent, its standard error can readily be computed as the square root of the
average of the six squared SEs. While the result will not be quite as efficient
as that which would have been obtained from an aggregate analysis, the inves-
tigators have bought some insurance against the possibility of a misspecified
model.

In fact, initially Duddek et al. (1995) did not incorporate the uncertainty
in the pollutant levels, setting Git equal to zero. Their results are shown in
Table 13.5, giving fitted ozone model coefficients β∗

1 with ozone-lagged 0, 1,
and 2 days. (Earlier studies had shown the irrelevance of longer lags.) Table
13.5 gives the corresponding results for nitrogen dioxide.

Results for Population Averages

Table 13.5 suggests log O3–lag 1 day and log O3–lag 2 days compete for
association with daily admission counts. For all years both are significant save
1987 when only log O3–lag 2 is. Duddek et al. (1995) therefore chose logO3–lag
2 days as their covariate. Overall their results seem stable over time and they
pooled their six estimates (and SEs) to obtain a strongly significant combined
β∗

1 estimate of 0.053 (SE = 0.0082).
Duddek et al. (1995) find logNO2–lag 2 to be a substantially better predic-

tor overall so choose lag 2 in this case as well. However that predictor proved
insignificant in 1983, 1984, and 1987 [even though the combined estimate in
this case 0.039 (SE = 0.0081) was quite significant]. These results lead Dud-
dek et al. (1995) to incorporate uncertainty in the interpolated values of log
O3 to assess the robustness of earlier results against ME. By their two-stage
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analysis the authors aimed to see if the added uncertainty due to error would
significantly affect the findings. In fact the new analysis for the two pollutants
lag-2 days shows no change to two significant digits (see Table 13.5). The ex-
planation lies in the relative lack of uncertainty relative to all other sources
and the low level of pollutant–admissions association (i.e., the fitted model
coefficients). In other words the spatial field is interpolated with sufficient
precision that only bias due to the ME affects the analysis.

Table 13.1: Estimated log ozone transfer coefficients regarding interpolation error as
negligible.

β∗
1 × 1000 (robust SE× 1000 in parentheses)

Lag
Summer 0 1 2
1983 -13 (16) 40 (14) 33 (17)
1984 14 (23) 75 (26) 59 (22)
1985 29 (20) 47 (21) 57 (24)
1986 25 (19) 79 (18) 64 (20)
1987 2 (20) 21 (19) 33 (19)
1988 31 (16) 59 (15) 73 (17)

Table 13.2: Estimated nitrogen dioxide transfer coefficients regarding interpolation
error as negligible.

β∗
1 × 1000 (robust SE× in parentheses)

Lag
Summer 0 1 2
1983 -11 (14) 37 (14) 22 (18)
1984 54 (0.021) 39 (0.018) 31 (19)
1985 2 (22) 41 (20) 70 (21)
1986 -9 (20) 0.004 (18) 61 (18)
1987 40 (21) -32 (19) 2 (20)
1988 7 (20) 48 (19) 47 (22)

Cluster-Specific Results

For simplicity Zidek et al. (1998c) restrict their cluster specific analysis to
just 1988 and the 100 CSDs with the largest average daily hospital admission
counts. Moreover, they consider only the three variables found to be important
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Table 13.3: Estimated lag-2 pollutant transfer coefficients incorporating interpola-
tion error.

β∗
1 × 1000 (robust SE× in parentheses)

Summer O3 NO2

1983 33 (17) 22 (18)
1984 59 (22) 31 (19)
1985 57 (24) 70 (21)
1986 0.064 (20) 61 (18)
1987 33 (19) 2 (20)
1988 0.073 (17) 47 (22)

by Zidek et al. (1998b), log SO4–lag 1 and log O3–lags 2,3. In fact they
concentrate mainly on the first of these, the single largest fraction of airborne
particulate pollution.

They start with just the top 10 CSDs ranked in descending order by their
average 1988 daily hospital admission numbers. Their results appear in Table
13.5, the estimated random effects (i.e., {b̂k}s) for the three pollution variables
as well their typical effects (the β̂s). Their relative risks obtain from adding
the random effects to the typical effects to get β̂ + b̂k.

These random effects vary a lot over these ten subdivisions indicating
substantial variation in impact among them. Thus their inclusion seems im-
portant. Some CSDs seem to be well above the typical effect level for one of
the two log–ozone variables, yet below that for the other. The authors offer
no explanation for this curious inconsistency.

By extending their study to include the rest of the 100 CSDs they find the
typical effects of the logged and lagged pollution impact coefficients drop to
103, 37, and 169 from 123, 39, and 209, respectively, the values in Table 13.5
Nevertheless, their z-scores increase to 2.88, 2.24, and 4.25 from 1.95, 1.43,
and 3.31. That is a direct consequence of having the additional information in
the larger data set and the consequent reduction in the standard errors of 35,
17, and 39 compared with 63, 39, and 63 originally. This change demonstrates
a benefit of the hierarchical Bayes approach.

For a more detailed analysis Le et al. (1999) focus on just log SO4–lag 1.
Their results including typical effects for each group of ten CSDs appear in
Table 13.5. The impact typically drops, going from the top to bottom 10, not
surprising when you consider that the latter has a smaller number of daily
hospital admissions (42 versus 60). More surprising is the greater variability
in the impact coefficients, something Le et al. (1999) are not able to explain.
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Value of Including Random Effects

Le et al. (1999) explore the benefit of including random effects when dealing
with a larger number of clusters, namely, the top 100 CSDs involved in their
case study. More precisely, they compare the fits with and without including
the random effects. It turns out that including them yields a typical effect of
55 (with SE = 17) against 51 (SE = 17) without. Echoing this result they
find the respective quasi-likelihoods to be 7060 and 7045. In this respect, their
results agree with those of Burnett and Krewski (1994), although the latter
investigate ozone rather than sulfate. They had concluded that fitting random
effects was of negligible benefit in terms of model fit at least.

However, Le et al. (1999) argue for including those effects nonetheless. For
one thing, they may point to potential hot-spots. These can be due to unknown
environmental hazards or known ones that have simply not been detected.
Just such spots were seen around the Rocky Mountain Arsenal described in
Example 1.2. Of course apparent hot-spots can be artifacts of chance variation
so confirmation is vital, a topic beyond the scope of this book.

The estimated random effects prove to be far from normally distributed as
their prior distribution assumes. Instead they appear to be bimodal pointing
to CSDs with extremely small sulfate impacts, a finding of some interest
in its own right. Another inconsistency lies in their negative average value,
disagreeing with the zero mean assumption built into the quasi-likelihood.

As another curious feature of the analysis, effects for big Census Subdi-
visions have big random effects. Yet these values decline sharply to values
systematically below zero, the values for the bottom ten Census Subdivisions.

13.6 Wrapup

In this chapter, we presented a practical approach to environmental risk as-
sessment, one that fits well into the hierarchical Bayesian framework that
provides the technical framework for much of the material in this book. More-
over, we illustrated its use with a case study.

However, the extensive field of risk assessment now offers many alternatives
to the approach described above and illustrated again in Chapter 14. One
popular approach uses Poisson regression methods for impact data expressed
as counts in place of the one we use that devolves from a normal quasi-
likelihood function. A good discussion of this and other topics within the
context of longitudinal data analysis can be found in Diggle et al. (1994).

We turn in the next chapter to a tutorial that illustrates software that
implements many of the methods described in this book.
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Census Random Effects × 103

Sub-division Ozone Lag 2 Sulfate Lag 1 Ozone Lag 3
1 18 37 -50
2 16 16 5
3 -34 -16 36
4 29 -4 18
5 57 77 -103
6 -19 -13 3
7 -19 -15 6
8 23 30 -27
9 -12 -38 25
10 32 60 -75

Typical 123 (63) 39 (27) 209 (63)
Effects (SE)

Table 13.4: Random effectsa × 1000 for selected log transformed pollutant concen-
trations for the top ten census-subdivisions in southern Ontario, 1988, ranked by
average daily hospital admission totals.
a Units admissions/CSD/day/unit of explanatory variables (log O3 (µg/m3) and log
SO4 (ppb)).

Random Effects ×103 Typical Effect
×1000 (SE)

Top 10 20 12 -13 1 50 -12 -11 22 24 41 60 (24)
Bottom 10 73 91 -52 -8 -21 40 33 99 109 -36 42 (15)

Table 13.5: Random effectsa × 1000 of log SO4–lag 1 concentrations for the top
and bottom ten southern Ontario Census Subdivisions (among the top 100), 1988,
ranked by average daily admissions.
a Units admissions/CSD/day/unit of log SO4 (µg/m3).
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A Tutorial in R

In this chapter, an example is used to illustrate the spatial interpolation ap-
proach presented in Chapters 9 and 10 using R on a Windows platform. The
example also demonstrates the environmental network extension in Chapter
11. The complete software package is available for downloading free of charge
from http://enviRo.stat.ubc.ca. The package contains relevant R functions
and instructions for implementation, as well as illustrating examples includ-
ing the one presented below.

The data set (data) used in this example consists of hourly O3 concen-
tration levels (ppb) from nine stations (S1–S9) in New York State. Other
information includes month(mm from 4 to 9), day within month (dd from 1
to 31), hour within day (hr from 0 to 23), weekday (wkday from 2–8), sequen-
tial number of week (wk from 1 to 27). Each row of the data set represents
an hourly record starting at April 1, 1995, hour 0, and ending at September
30, 1995 hour 23; i.e., there are 4392 records (24 hours × 183 days). The last
six stations have no missing observations; stations 1, 2, 3 have 2616, 2016, 72
missing hourly observations, respectively, at the starting time.

> data
mm dd hr wkday wk S1 S2 S3 S4 S5 S6 S7 S8 S9
4 1 0 7 1 NA NA NA 22 34 38 30 33 31
4 1 1 7 1 NA NA NA 19 33 37 29 32 35
4 1 2 7 1 NA NA NA 9 34 36 21 27 34
4 1 3 7 1 NA NA NA 8 34 32 15 27 34
4 1 4 7 1 NA NA NA 10 34 26 21 30 33

----- records deleted ------
9 30 19 7 27 34 38 24 11 33 27 13 41 24
9 30 20 7 27 32 31 15 17 27 23 13 38 28
9 30 21 7 27 28 29 14 16 27 16 8 35 21
9 30 22 7 27 27 28 11 20 34 11 8 32 16
9 30 23 7 27 29 25 9 28 37 7 3 29 14

> missing.num = apply(is.na(data[,6:14]),2,sum)
> missing.num
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S1 S2 S3 S4 S5 S6 S7 S8 S9
2616 2016 72 0 0 0 0 0 0

Locations of the stations are given in Figure 14.1 with lat–long coordinates
specified in location.

> round(location,2)
lat long

[1,] 42.64 -73.32
[2,] 42.14 -74.66
[3,] 42.72 -73.58
[4,] 43.30 -75.87
[5,] 42.73 -75.94
[6,] 43.46 -74.67
[7,] 42.68 -73.91
[8,] 43.01 -73.80
[9,] 42.90 -73.40

14.1 Exploratory Analysis of the Data

First load the relevant R functions with the corresponding dll files. From
the download mentioned above, all functions are stored within subdirectories
under one large directory called LZ-Rcodes . Assume that the directory is
copied to the C drive. The current version of the R function is denoted ver0.1
. This should be changed accordingly with newer versions in future updates.

> dyn.load("C:/LZ-Rcodes/SG-method/SG.dll")
> dyn.load("C:/LZ-Rcodes/LZ-design/LZ.design.dll")
> source("C:/LZ-Rcodes/SG-method/SG.ver0.1.r")
> source("C:/LZ-Rcodes/LZ-EM.staircase/LZ-EM.staircase.ver0.1.r")
> source("C:/LZ-Rcodes/LZ-design/LZ.design.ver0.1.r")
> source("C:/LZ-Rcodes/LZ-pred.dist/predict.ver0.1.r")

The square root of O3 levels for each station are plotted in Figure 14.2
indicating stations starting operation at different times (i.e., staircase pattern
of missing data).

The deterministic trend of the 03 levels is examined by fitting a linear
model with hour, weekday, and week as factors for each station separately. The
corresponding design matrix is obtained using the model.matrix() function
and the linear fit is obtained using the lm() function.

> hr = as.factor(data[,3])
> wkday = as.factor(data[,4])
> week = as.factor(data[,5])
> y = sqrt(data[,6:14])
> x = model.matrix(˜ hr + wkday + week,

contrasts=list(hr= "contr.helmert",
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Fig. 14.1: Locations of monitoring stations.

wkday = "contr.helmert", week ="contr.helmert"))
> fit = list()
> for (i in 1:9)

fit[[i]] = lm(y[,i] ˜ x -1, singular.ok =T , na.action=na.omit)

The estimated effects are plotted in Figure 14.3. The results show consis-
tent patterns of hourly and weekday effects for all stations. Except for the
first few weeks in April the weekly effects show little temporal trend.

> par(mfrow=c(2,2))
> plot(fit[[1]]$coef[2:24],ylim=c(-.5,.5),type="n",xlab="Hour",

ylab="Hourly Effects")
> for (i in 1:9) points(fit[[i]]$coef[2:24])
> plot(fit[[1]]$coef[25:30],ylim=c(-.5,.5),type="n",xlab="Weekday",

ylab="Weekday Effects")
> for (i in 1:9) points(fit[[i]]$coef[25:30])
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Fig. 14.2: Observed data at the monitoring stations.

> plot(fit[[1]]$coef[31:56],ylim=c(-.5,.5),type="n",xlab="Week",
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Fig. 14.3: Estimated effects.
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ylab="Weekly Effects")
> for (i in 1:9) points(fit[[i]]$coef[31:56])

The QQ-plots are obtained for the fitted residuals using the qqnorm() com-
mand and displayed in Figure 14.4 which indicates that normality assumption
is reasonable.

Fig. 14.4: QQ-plots for the fitted residuals.

> par(mfrow=c(3,3))
> for (i in 1:9) qqnorm(fit[[i]]$resid)

The temporal autocorrelations are plotted (Figure 14.5) using the acf()
function. The results seem to indicate an AR(2) autocorrelation structure for
each of the stations with a very strong lag-1 correlation of ≥ .9 consistently.

> par(mfrow=c(3,3))
> for (i in 1:9) acf(fit[[i]]$resid,type="partial")

The spatial correlations between the stations are obtained

> lmfit.resid = NULL
> for (i in 1:9) lmfit.resid = cbind(lmfit.resid,c(rep("NA",

missing.num[i]),fit[[i]]$resid))
> lmfit.resid.corr = cor(lmfit.resid,na.method="available")

Similarly the spatial correlations after taking out the AR(2) structure are
computed.
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Fig. 14.5: Partial autocorrelation functions.

> arfit = list()
> for (i in 1:9) arfit[[i]] = ar(fit[[i]]$resid,aic=F,order=2)
> ar.resid = NULL
> for (i in 1:9) ar.resid = cbind(ar.resid,

c(rep("NA",missing.num[i]),arfit[[i]]$resid) )
> ar.resid.corr = cor(ar.resid,use = "pairwise")

The estimated spatial correlations before and after taking the AR(2) struc-
ture are plotted side by side versus the interdistances between the stations in
Figure 14.6. First the lat–long coordinates are transformed to a rectangular
coordinate system through a Lambert projection using the Flamb2() function.
The output of this function includes the new coordinates of the stations as
well as the reference coordinates.

> coords = Flamb2(location)
> coords
$xy:

x y
[1,] 106.949788 -16.94391
[2,] -3.076874 -73.19558
[3,] 21.416492 -55.14407
[4,] -100.584494 57.17452
[5,] -106.787916 -6.51416
[6,] -3.036232 73.19694
[7,] 58.952310 -13.05582
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[8,] 67.267631 24.26941
[9,] 99.811622 11.92334

$latrf1:
[1] 42.40136

$latrf2:
[1] 43.19204

$latref:
[1] 42.7967

$lngref
[1] 74.62735

The intersite distances between the locations are calculated using the
Fdist() function.

> dist = Fdist(coords$xy)
> par(mfrow=c(1,2))
> plot(-.2,0,xlim=c(0,300),ylim=c(-.2,1),xlab="Dist",

ylab="Spatial correlation (detrended sqrtO3)",type="n")
> for (i in 1:8) for (j in (i+1):9)

points(dist[i,j],lmfit.resid.corr[i,j])
> plot(-.2,0,xlim=c(0,300),ylim=c(-.2,1),xlab="Dist",

ylab="Spatial correlation (AR(2) resid)",type="n")
> for (i in 1:8) for (j in (i+1):9)

points(dist[i,j],ar.resid.corr[i,j])

The results show a substantially reduced spatial correlation when an AR(2)
process is taken out. The pre-AR(2) spatial correlations are mostly between
0.4 to 0.6 but the post-AR(2) ones are reduced to around 0.1. This phenom-
enon has been observed and studied by Zidek et al. (2002) who term it a spatial
correlation leakage problem. The authors show that in an AR process with
spatially correlated residuals, removing the AR structure by first fitting the
corresponding coefficients and then subtracting them from the original process
could reduce the spatial correlation substantially. The reduction depends on
the strength of the autocorrelation which is quite strong in this example.

This spatial correlation leakage presents a special challenge for the spatial
interpolation problem. The usual approach where the temporal component is
first taken out then the residuals are interpolated would not work in this case.
Generally speaking there are no observations at the new locations to take
advantage of the strong temporal correlation yet the residuals from monitor-
ing stations are not helpful due to the reduced spatial correlation. Thus an
approach where both temporal and spatial components are modeled simulta-
neously is needed. The Bayesian hierarchical approach presented in Chapters
9 and 10 is an option for this problem as illustrated in the next section.
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Fig. 14.6: Estimated spatial correlations before and after taking out the AR(2)
structure.

14.2 Spatial Predictive Distribution and Parameter
Estimation

Suppose one is interested in interpolating the hourly O3 levels at unobserved
locations for a specific hour of the day. The method described in Chapter 10
can be used where one could consider a multivariate response consisting of the
hourly O3 levels at that hour as well as several preceding hours. The approach
would then allow for the use of consecutive hourly levels at monitoring stations
in the interpolation and thus take advantage of the strong temporal pattern.

In this illustrative example a 4-consecutive hour multivariate response for
each day is considered where the last element is the hour of interest (11AM–
noon) and the preceding 3 hours (8–10AM) are used to capture the temporal
pattern. The choice of 4 hour sis based on the available data (183 days) for the
estimation of the hyperparameters and the independence requirement of the
model for the multivariate response. Here with an AR(2) structure observed,
the 18-hour gap from one daily response to the next day would reduce the
temporal correlation substantially.

The daily four-hour response is then assumed to follow a model speci-
fied by Equations (10.1–10.2). The predictive distribution for the unobserved
locations and times, conditional on the observed data and the hyperparame-
ters, is given by Equations (10.3–10.6). That is, the predictive distribution is
completely characterized given the hyperparameters. Specifically the hyper-
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parameters include those associated with the gauged sites

Hg = {F,β0, Ω, (τ01, H1, Λ1, δ1), . . . ,
(τ0,k−1, Hk−1, Λk−1, δk−1), (Λk, δk)} , (14.1)

and those associated with ungauged sites Λ[u], τ [u]
0 , H

[u], and δ[u]. As described
in Sections 10.6.3 and 10.6.4, the hyperparameters associated with the gauged
sites can be estimated through an EM algorithm approach and those associ-
ated with the new locations (i.e., ungauged sites) can be estimated via the
Sampson–Guttorp method. The R session on how the multivariate response
is constructed and the hyperparameters are estimated is presented next.

14.2.1 Parameter Estimation: Gauged Sites Through the
EM-algorithm

First the data from each station are organized into a 24-hour (0–23) matrix
(183 days × 24) and then these matrices are combined side by side into a
larger matrix “series24hr” (183 days × 216).

> series24hr = NULL
> for (i in 6:14) { x = sqrt(data[,i])

temp = t(matrix(x,nrow=24))
series24hr = cbind(series24hr,temp) }

The multivariate response consisting of 4 consecutive hours from 8AM to
12 noon is extracted and denoted by “hr8.11”:

> n = 4
> tt = c(1:n)
> for (i in 2:9) tt = c(tt,c(1:n)+24*(i-1))
> hr8.11 = series24hr[,tt+2*n]

The month and weekday factors corresponding to the rows are obtained
for trend fitting.

> month = as.factor((matrix(data[,1],byrow=T,ncol=24))[,1] )
> weekday = as.factor((matrix(data[,4],byrow=T,ncol=24))[,1] )

The Hg hyperparameters are estimated by the EM algorithm, described
in Section 10.6.3 Chapter 10, using the staircase.EM() function below. In this
R function call, the covariates “month” and “weekday” are used as categor-
ical factors. The current version assumes an exchangeable structure between
stations for β0 but allows for different coefficients from each element of the
multivariate response (i.e., hours in this case). The default block structure is
based on the staircase of the missing data; i.e., the stations having the same
number of observations are grouped together as a block. In this example the
default option is used and thus there are four blocks associated with the ob-
served data. The first three blocks have 1 station each from S1 to S3 and the
last block have six stations from S4 to S9. Note that data must be ordered in
decreasing number of missing observations for this function.
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> Z =model.matrix(˜month+weekday, contrasts =
list(month= "contr.helmert",weekday = "contr.helmert"))

> emfit.hr8.11 = staircase.EM(hr8.11,p=4,covariate=Z)

The estimated Ω (Omega), Λj (Lambda), δj (Delta), and β0 (Beta0) are
the output of this staircase.EM() function:

> round(emfit.hr8.11$Omega,2)
[,1] [,2] [,3] [,4]

[1,] 0.60 0.41 0.28 0.21
[2,] 0.41 0.44 0.34 0.26
[3,] 0.28 0.34 0.37 0.31
[4,] 0.21 0.26 0.31 0.37

> emfit.hr8.11$Lambda
[[1]]

[,1]
[1,] 5.215931

[[2]]
[,1]

[1,] 14.89936

[[3]]
[,1]

[1,] 31.43736

[[4]]
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 80.998313 19.524571 18.14417 4.874237 9.303233 4.330475
[2,] 19.524571 45.605702 16.97445 8.322499 6.512192 8.185238
[3,] 18.144173 16.974450 68.79851 10.461332 12.383675 12.341112
[4,] 4.874237 8.322499 10.46133 152.889043 22.222718 15.451960
[5,] 9.303233 6.512192 12.38368 22.222718 53.193556 13.383386
[6,] 4.330475 8.185238 12.34111 15.451960 13.383386 44.501323

> emfit.hr8.11$Delta
[[1]]
[1] 23.59728

[[2]]
[1] 22.49019

[[3]]
[1] 30.23065

[[4]]
[1] 76.23103
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> round(emfit.hr8.11$Beta0[,1:4],2)
[,1] [,2] [,3] [,4]

[1,] 5.08 5.19 5.35 5.46
[2,] -0.08 -0.12 -0.13 -0.11
[3,] -0.07 -0.05 -0.02 -0.01
[4,] -0.03 -0.04 -0.01 0.00
[5,] -0.20 -0.18 -0.17 -0.17
[6,] -0.21 -0.19 -0.17 -0.16
[7,] 0.14 0.14 0.17 0.17
[8,] 0.10 0.08 0.07 0.04
[9,] 0.08 0.06 0.05 0.04
[10,] 0.01 0.00 0.00 0.00
[11,] -0.03 -0.02 -0.03 -0.03
[12,] -0.02 -0.02 -0.02 -0.03

Here only estimated β0s corresponding to four different hours at the first
station are displayed. Other stations have the same estimates since an ex-
changeable structure is used across sites. Recall that Ω represents the co-
variances between hours (up to a scale) and the estimated one seems able to
capture the AR structure seen in the exploratory data analysis. Λs represent
the residual covariances between gauged stations within each block (i.e., condi-
tional on observed data in the preceding blocks). The staircase.EM() function
also gives the estimate of the unconditional covariance matrix between all
monitoring stations Ψ (Psi) as given in (10.26).

> round(emfit.hr8.11$Psi[[1]],2)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 0.64 0.21 -0.02 0.08 0.05 0.14 0.13 0.08 0.15
[2,] 0.21 1.78 0.57 0.16 0.28 0.41 0.36 0.17 0.36
[3,] -0.02 0.57 2.09 0.11 0.18 0.23 0.76 0.22 0.29
[4,] 0.08 0.16 0.11 1.58 0.38 0.35 0.10 0.18 0.08
[5,] 0.05 0.28 0.18 0.38 0.89 0.33 0.16 0.13 0.16
[6,] 0.14 0.41 0.23 0.35 0.33 1.34 0.20 0.24 0.24
[7,] 0.13 0.36 0.76 0.10 0.16 0.20 2.98 0.43 0.30
[8,] 0.08 0.17 0.22 0.18 0.13 0.24 0.43 1.04 0.26
[9,] 0.15 0.36 0.29 0.08 0.16 0.24 0.30 0.26 0.87

The estimated (unconditional) spatial correlations between all monitoring
stations are obtained and then displayed in Figure 14.7. The results indicate
that the spatial correlations are much higher than those displayed in Figure
14.6 and so the effect of the correlation leakage problem has been reduced
through this multivariate modeling.

> {\rm Cov} = emfit.hr8.11$Psi[[1]]
> em.corr.hr8.11 = {\rm Cov} / sqrt(matrix(diag(cov),9,9)*

t(matrix(diag(cov),9,9)))
> plot(-.2,0,xlim=c(0,300),ylim=c(-.2,1),xlab="Dist",

ylab="Spatial correlation (Hours 8-11)", type="n")
> for (i in 1:8) for (j in (i+1):9)
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points(dist[i,j],em.corr.hr8.11[i,j])

14.2.2 Parameter Estimation: The Sampson–Guttorp Method

The estimated unconditional spatial covariance matrix Psi” among the moni-
toring stations is now nonparametrically extended to the ungauged locations
of interest using the Sampson–Guttorp method as described in Section 5.3 of
Chapter 10. The estimation procedure provides estimates for Λ[u], τ [u]

0 , and
H [u]. The SG-estimation procedure is currently not fully automated and has
to be done in several sequential steps, denoted by Step, as described below.
The SG method does not assume a constant variance is not required for the
SG method. Hence the approach starts with the estimation of the correlation
and then any estimate of the variance field can be incorporated as seen in
Step 5.
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Fig. 14.7: Spatial correlations based on the hierarchical model.
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• Step 1: The objective of this first step is to identify, with a dispersion
matrix and coordinates of the stations, a new configuration of the original
coordinates (locations in geographical space) where the estimated correla-
tion would follow an isotropic model. The newly configured locations are
in a space called D-space or dispersion space. Sampson and Guttorp (1992)
use the “dispersion” term, instead of the usual “variogram,” to emphasize
that the spatial correlation structure in the geographical space may not
be isotropic.

The Falternate3() function is written for that purpose. This function
uses an alternating iterative algorithm trying to optimally relocate the
stations in D-space using the multidimensional scaling method and then
fitting the variogram. The exponential variogram is used as a default option
for this function. The exponential semi-variogram is defined as

γ(h) = a0 + (2 − a0)(1 − exp(−t0 × h)),
where a0 and t0 are parameters to be estimated and h is the distance be-
tween locations. The other option is the Gaussian semi-variogram defined
as

γ(h) = a0 + (2 − a0)(1 − exp(−t0 × h2)).

In this example, the exponential variogram is used. The function seems to
work better with small distances and so the coordinates are scaled down
by a factor 1/10.

> coords.lamb = coords$xy/10
> disp = 2-2*em.corr.hr8.11
> sg.hr8.11 = Falternate3(disp,coords.lamb,alter.lim=100)

VAR-convergence: TRUE
nlm code = 1
criterion: 0.9104484

MDS-convergence: FALSE
nlm code = 3
criterion: 0.5627452

...... deleted output .....

MDS-convergence: TRUE
nlm code = 2
criterion: 0.1850346

VAR-convergence: TRUE
nlm code = 2
criterion: 0.1850346

There were 50 or more warnings (use
warnings() to see the first 50)

At each iteration, the results indicating the movements of the locations
from the original locations and the fitted variograms are displayed in a
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Fig. 14.8: Movements of stations and the dispersion fit at the last iteration.

graphical window. The iterative procedure converges after 67 iterations.
Here no smoothing is imposed on the fit. Figure 14.8 shows the results
for the last iteration. Note that the warnings seen in the output are only
related to the setplot() function for displaying the results.
The results show a very good fit for the dispersion using the exponen-
tial variogram with the interdistances in D-space. The SG fitted val-
ues are given below where a0 = variogfit$a[1] and variogfit$a[2] =
2 − variogfit$a[1].

> sg.hr8.11
$variogfit
$variogfit$objf
[1] 0.1850346

$variogfit$t0
[1] 0.07678341

$variogfit$a
[1] 1.0124313 0.9875687

$variogfit$fit
[1] 1.617620 1.810046 1.544093 1.825860 1.787610 1.880034
[7] 1.776782 1.679263 1.814506 1.361316 1.676004 1.516186
[13]1.744501 1.566878 1.358375 1.875078 1.680045 1.412109
[19]1.882803 1.821930 1.780427 1.863412 1.672172 1.650873
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[25]1.767989 1.664286 1.652708 1.548914 1.748855 1.382073
[31]1.519645 1.753477 1.618884 1.494055 1.574384 1.476157

$ncoords
[,1] [,2]

[1,] 10.6949788 -1.694391
[2,] -0.3076874 -7.319558
[3,] -10.3063760 -6.151099
[4,] 10.3006164 -24.292021
[5,] 6.0745665 -20.502635
[6,] 4.9124224 -15.007853
[7,] -14.3623410 -11.553414
[8,] -7.9408930 -19.485040
[9,] -3.4463130 -12.557688

• Step 2: The SG method next fits a thin-plate smoothing spline between
the original locations and the D-space locations identified in Step 1. This
step allows the user to view the deformation of the geographical space in
the D-space and to select a suitable value for the smoothing parameter of
the thin-plate spline. This can be achieved by the Ftransdraw() function
as demonstrated below. The function is an interactive one showing the
fitted variogram and the mapping transformation from Step 1 from the
geographical space into D-space.
First a grid of points over the range of stations is created with the Fmgrid()
function. The Ftransdraw() function fits thin-plate splines between the G-
space locations and the D-space location and applies the fitted spline to
G-space grid points. It then draws the corresponding grid points in D-
space allowing the users to interactively choose a suitable value for the
smoothing parameter (“lambda”).

> apply(coords.lamb,2,range)
x y

[1,] -10.67879 -7.319558
[2,] 10.69498 7.319694
> coords.grid = Fmgrid(c(-11,11),c(-7.5,7.5),xn=10,yn=10)
> deform <- Ftransdraw(disp=disp, Gcrds=coords.lamb,MDScrds=

sg.hr8.11$ncoords, gridstr=coords.grid)

Click anywhere on plot to continue (Left button)
VAR-convergence: TRUE
nlm code = 1
criterion: 0.1850346

Enter value for new lambda (Hit return to stop)
1:

The interactive Ftransdraw() function first displays the deformation of
the G-space rectangular grid when no smoothing is imposed (i.e., λ = 0).



286 14 R Tutorial

Typically the D-space image would have some folding as seen in Figure
14.9. Generally speaking a folded D-space is not desirable since it implies
that two locations farther apart could have higher correlation than that
corresponding to those located between them. A smoothing parameter
that smooths out any folds in the D-space would avoid that problem. The
function interactively prompts the user for a new value. Here the value 50
is provided as input to the function.

Enter value for new lambda (Hit return to stop)
1: 50
Read 1 item
Click anywhere on plot to continue (left button)
VAR-convergence:
TRUE
nlm code = 1
criterion: 0.7648719

Enter value for new lambda (Hit return to stop)

The results for choosing “lambda = 50” are displayed in Figure 14.10,
showing a reasonable choice for smoothing. Hitting a return key without
providing a new value for lambda will terminate the function. Notice that
there is a trade-off between the variogram fit and the smoothness of the
deformation. Although this selection is somewhat ad hoc, the general goal
is to find a small value of λ that yields an unfolded transformation.

• Step 3: This step combines the results in Step 1 and the smoothing pa-
rameter identified in Step 2 to create a thin-plate smoothing spline for
mapping coordinates from the geographical space to the D-space. The
sinterp() function fits the thin-plate spline with the selected smoothing
parameter. The estimated coefficients αs andβs for this example are store
in sol, one column for each coordinate.

> Tspline = sinterp( coords.lamb, sg.hr8.11$ncoords, lAM = 50 )
> Tspline$sol

[,1] [,2]
[1,] 1.249889e-02 3.917129e-03
[2,] 1.057970e-03 6.469526e-04
[3,] -4.843946e-03 2.046898e-03
[4,] 1.880209e-03 -2.047277e-04
[5,] -6.478255e-05 -8.801582e-04
[6,] 1.715288e-03 3.824566e-03
[7,] -8.671632e-03 -1.411987e-03
[8,] -4.148977e-03 -5.562235e-03
[9,] 5.769824e-04 -2.376438e-03
[10,] -2.764702e+00 -1.438088e+01
[11,] -4.899633e-01 5.622610e-01
[12,] 2.929522e-01 -8.106002e-01

The bgrid() function evaluates the so-called biorthogonal grid depicting the
contraction and expansion of the thin-plate spline (see Sampson and Gut-
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Fig. 14.9: Variogram fit and deformation with no smoothing.

torp 1992 for more details). Solid lines indicate contraction while dashed
lines indicate expansion. The results in this example are displayed in Figure
14.11 showing the contraction along the Southeast to Northwest direction.

> Tgrid = bgrid(start=c(0,0), xmat=coords.lamb,
coef=Tspline$sol)

> tempplot = setplot(coords.lamb, ax=T)
> text (coords.lamb)
> draw(Tgrid, fs=T)

• Step 4: This step uses the thin-plate spline in Step 3 and the correspond-
ing variogram fitted in Step 1 to estimate the dispersions between the sta-
tions and the new locations of interest. The results are obtained by first
converting the new locations to the Lambert coordinates using the same
reference point as before, then evaluating their corresponding locations in
the D-space using the selected thin-plate spline, and finally calculating the
correlations using the fitted variogram parameters and the interdistances
in the D-space. In this example, a grid with 10 × 10 points covering sta-
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Fig. 14.10: Variogram fit and deformation with lambda = 50.

tions is used, resulting in 100 coordinates. First the coordinates of the new
locations in geographical space are obtained.

> lat10 <- seq(min(location[,1]),max(location[,1]),length=10)
> long10 <- seq(max(abs(location[,2])),

min(abs(location[,2])),length=10)
> llgrid <- cbind(rep(lat10,10),c(outer(rep(1,10),long10)))

The station coordinates are also attached at the end. All locations are
converted to Lambert coordinates using the reference points used earlier.
Note that the Lambert projected coordinates must be scaled by 1/10 as
before to ensure the same unit for distance.

> newcrds <- rbind(llgrid,abs(location))
> z <- coords
> newcrds.lamb <- Flamb2(newcrds,latrf1=z$latrf1,

latrf2= z$latrf2,latref=z$latref,lngref=z$lngref)$xy/10
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Next the estimated correlations between the locations are obtained using
the corrfit() function. The estimated correlations for the first ten locations
are given below.

> corr.fit = corrfit(newcrds.lamb, Tspline, sg.hr8.11, model = 1)
> round(corr.fit$cor[1:10,1:10],2)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1.00 0.44 0.40 0.36 0.32 0.29 0.26 0.24 0.21 0.19
[2,] 0.44 1.00 0.44 0.40 0.36 0.32 0.29 0.26 0.24 0.21
[3,] 0.40 0.44 1.00 0.44 0.40 0.36 0.32 0.29 0.26 0.24
[4,] 0.36 0.40 0.44 1.00 0.44 0.40 0.36 0.32 0.29 0.26
[5,] 0.32 0.36 0.40 0.44 1.00 0.44 0.40 0.36 0.32 0.29
[6,] 0.29 0.32 0.36 0.40 0.44 1.00 0.44 0.40 0.36 0.32
[7,] 0.26 0.29 0.32 0.36 0.40 0.44 1.00 0.44 0.40 0.36
[8,] 0.24 0.26 0.29 0.32 0.36 0.40 0.44 1.00 0.44 0.40
[9,] 0.21 0.24 0.26 0.29 0.32 0.36 0.40 0.44 1.00 0.44
[10,] 0.19 0.21 0.24 0.26 0.29 0.32 0.36 0.40 0.44 1.00

• Step 5: This step estimates variances at all locations and then combines
with the estimated correlation matrix in Step 4 to get an estimated co-
variance matrix.

> psi = emfit.hr8.11$Psi[[1]]
> round(diag(psi),2)
[1] 0.64 1.78 2.09 1.58 0.89 1.34 2.98 1.04 0.87
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In this example, the variance field appears to be heterogeneous. One option
is to use the same thin-plate spline above to get smoothed estimates of site
variances. The variance estimates are then combined with the estimated
correlation matrix to get the covariance matrix estimate (“covfit”).

> Tspline.var = sinterp(coords.lamb,matrix(diag(psi),ncol=1),lam=50)
> varfit = seval(newcrds.lamb,Tspline.var)$y
> temp = matrix(varfit,length(varfit),length(varfit))
> covfit = corr.fit$cor * sqrt(temp * t(temp))

The SG-method for extending the spatial covariance matrix from the gauged
sites to the ungauged ones is now completed.

14.2.3 Parameter Estimation: Ungauged Sites

The SG results are now used to estimate the hyperparameters associated
with the ungauged sites Λ0 ( “Lambda.0”), τ00 ≡ ξ.0 ⊗ Ip (“Xi0.0”), H0
(“H.0”), and δ0 (“Delta.0”). The staircase.hyper.est() function achieves this
objective. It combines the results from the staircase.EM() function (estimating
the hyperparameters at gauged sites) and the SG results (extending the spatial
covariance matrix to ungauged sites) to obtain estimates for hyperparameters
associated with ungauged sites. In this example there are 100 new locations
(u = 100), nine monitoring stations each having 4-dimensional response (p =
4).

> u = 100 # number of new locations
> p = 4 # dimension of the multivariate response
> hyper.est = staircase.hyper.est(emfit= emfit.hr8.11,

covfit=covfit,u =u, p=p)

All hyperparameters associated with the predictive distribution as given in
Equations (10.3)–(10.6) are now estimated and stored in “hyper.est”. Thus,
the predictive distribution for the O3 concentration levels at the new 100
locations, from 8–12AM between April 1, 1995, and September 30, 1995, is
completely characterized. Besides the estimated hyperparameters, the output
from the staircase.hyper.est() function includes all the results from the stair-
case.EM() fit which can be used for generating realizations from the predictive
distribution as demonstrated below.

14.3 Spatial Interpolation

With the availability of the predictive distribution, spatial interpolation can
be obtained relatively easily. Although the predictive distribution is nonstan-
dard, the mean and the covariance matrix can be analytically derived through
conditional reasoning. For other quantiles, the derivation could be tedious and
numerical methods may be required.
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Alternatively, it is relatively simple to generate realizations from the pre-
dictive distribution and spatial interpolation can be easily done using these
simulated samples. The pred.dist.simul() function generates realizations for a
given timepoint (“tpt”). Here a sample of N = 1000 replicates is generated
for all new 100 locations, each with four hours, on September 30, 1995 (i.e.,
tpt = 183).

> simu = pred.dist.simul(hyper.est,tpt = 183, N=1000)
> dim(simu)
[1] 1000 400

The sample mean and variance for hourly O3 can be computed from this
simulated sample. The contours of the mean and variance surfaces are dis-
played in Figures 14.12 and 14.13.

> x = apply(simu,2,mean)
> X11()
> par(mfrow=c(2,2))
> # Plot the contours
> for (i in 1:4) {

tt = i+ 4*c(0:99)
x1 = x[tt]
hr = matrix(x1 ,byrow=T, ncol=10)
contour(-long10,lat10, hr, xlab="Long", ylab="Lat",
main=paste("Mean: Day 183; ", 7+i,"-",8+i,"am"))

}
> # Plot the corresponding variance field
> x = simu
> X11()
> par(mfrow=c(2,2))
> # Plot the contours
> for (i in 1:4) {

tt = i+ 4*c(0:99)
x1 = x[,tt]
x2 = diag(var(x1))
vv = matrix(x2 ,byrow=T, ncol=10)
contour(-long10,lat10, vv, xlab="Long", ylab="Lat",
main=paste("Var: Day 183; ", 7+i,"-",8+i,"am"))

14.4 Monitoring Network Extension

The resulting predictive distribution (Section 14.2) can be used to redesign
an environmental network as described in Chapter 11. In this illustrative ex-
ample, suppose that 36 among the 100 locations used in Section 14.2 are
considered as potential new sites as displayed in Figure 14.14. The objective
is to select an optimal set of 3 locations among these 36 to add to the current
network. This can be achieved as follows.
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First the coordinates of the potential sites are extracted and plotted.

> # Identify potential sites
> # Load mapping library
> library(maps)
> library(mapproj)
> library(mapdata)
>
> par(mfrow=c(1,1))
> map(’state’, region = c(’new york’,’vermont’,’mass’))
> text(c(-74.5,-72.8,-71.8),c(44.5,44.5,42.5),

c("NY","VT","MA"), cex=.7)
> text(location[,2],location[,1], cex=1)
>
> tt = c(3:8)
> potential.site = NULL
> for (i in 2:7) potential.site = c(potential.site, tt + 10*(i-1))
> potential.coord = llgrid[potential.site,]
> points(-potential.coord[,2],potential.coord[,1])

The ldet.eval() function evaluates the log determinants for all combina-
tions of three potential sites as given in the optimality criterion for extension
[Equation (11.12)] maxadd

( 1
2 log |Λ0|

)add
. The function returns the combina-

tion with the largest log determinant.

> # Extracting the subset of Lambda.0
> hyper.cov = hyper.est$Lambda.0[potential.site,potential.site]
> nsel = 3
> sel = ldet.eval( (hyper.cov+ t(hyper.cov))/2,nsel,all =F)
> text(-potential.coord[sel$coord.sel,2],

potential.coord[sel$coord.sel,1], "X")

The selected sites are displayed in Figure 14.14. It should be noticed that
the ldat.eval() function uses the symmetry of the covariance matrix to reduce
computing time and so a symmetric matrix must be provided. This completes
the illustrative example of the software. The instructions used in this example
are available at the Web site mentioned at the beginning of the chapter.
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Fig. 14.12: Contour plots of sample mean.
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Fig. 14.14: Monitoring locations and potential new sites; the three selected sites are
marked by X.
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Appendices

15.1 Probabilistic Distributions

15.1.1 Multivariate and Matrix Normal Distribution

• Multivariate normal distribution: A p-dimensional vector-valued random
variable X is said to have a multivariate normal distribution if its density
has the form

f(X) = (2π)−1/2|Σ|−1/2 {−(X − µ)TΣ−1(X − µ)/2
}

for any vector µ and a positive definite matrix Σ. The distribution is
denoted by X ∼ Np(µ,Σ) with

E(X) = µ
Cov(X) = Σ.

• Matrix normal distribution: A n×m matrix valued random variable X is
called a matrix normal distribution if its density function has the form

f(X) = (2π)
−nm

2 |A|− m
2 |B|− n

2 etr
{

−1
2
[A−1(X − µ)][(X − µ)B−1]′

}
for any n ×m matrix µ and positive definite matrices A and B specified
by

A = (aij)n×n, B = (bij)m×m.

Let

X =

⎛
⎜⎝
x′

1
...
x′

n

⎞
⎟⎠ = (x(1), . . . , x(m)).

The distribution is denoted by X ∼ N(µ,A⊗B). The distribution has the
following properties.
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– E(X) = µ
– var[vec(X)] = A⊗B and var[vec(X ′)] = B ⊗A.
– X ∼ N(µ,A⊗B) if and only if X ′ ∼ N(µ′, B ⊗A).
– cov(xi, xj) = aijB, cov(x(i), x(j)) = bijA.
– For any matrix Cc×n and matrix Dm×d

CXD ∼ N(CµD,CAC ′ ⊗D′BD).
– For any matrix Fm×m

EXFX ′ = µFµ′ +Atr(FB),
and for any matrix Gn×n

EX ′GX = µGµ′ + tr(AG)B.
Thus,
EXB−1X ′ = µB−1µ′ +mA

and
EX ′A−1X = µ′A−1µ+ nB.

15.1.2 Multivariate and Matric-t Distribution

• Multivariate-t distribution: A p-dimensional vector-valued random variable
X is said to have a multivariate-t distribution with ν degrees of freedom,
if its density is of the form

f(X) =
Γ
(

p+ν
2

)√
|A|

Γ (ν/2)
√

2πp
×
[
1 +

1
ν

(X − µ)TA(X − µ)
]−(p+ν)/2

for any vector µ and a positive definite matrix A. The distribution is
denoted by

X ∼ tp(µ,A, ν)

with A called the precision matrix and

E(X) = µ

Cov(X) =
ν

ν − 2
A.

• Matric-t distribution: A n×m matrix-valued random variable X is said
to have a matric-t distribution with δ degrees of freedom, if its density
function has the form

f(X) ∝ |A|− m
2 |B|− n

2 |In + δ−1[A−1(X − µ)][(X − µ)B−1]T |−
δ+n+m−1

2 ,

for positive definite matrices A and B of dimensions n × n and m × m,
respectively, and any n×m matrix µ. The normalizing constant of the
density is given by

K = (δπ2)−(mn/2) Γn+m[(δ + n+m− 1)/2]
Γn[(δ + n− 1)/2]Γm[(δ +m− 1)/2]

,

where
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Γ p(t) = πp(p−1)/4
p∏

i=1

Γ [t− (i− 1)/2] (15.1)

denotes the multivariate gamma function.
The distribution is denoted by X ∼ tn×m(µ, A ⊗ B, δ), and has the
following properties; see Sun (2001) for more details:
– E(X) = µ
– When δ > 2,

var[vec(X)] = δ(δ − 2)−1A⊗B.
and

cov(xi, xj) = δ(δ − 2)−1aijB, cov(x(i), x(j)) = δ(δ − 2)−1bijA.
– X ∼ tn×m(µ, A⊗B, δ), if and only if X ′ ∼ tm×n(µ′, B ⊗A, δ).
– If n = 1 and A = 1, X has an multivariate t-distribution; i.e.,

X ∼ tm(µ, B, δ).
– If m = 1 and B = 1, X has an n-variate t-distribution; i.e.,

X ∼ tn(µ, A, δ).
– If X ∼ tn×m(µ, A⊗B, δ), and Cc×n and Dm×d are of full rank (i.e.,

rank c and d, respectively), then
Y = CXD ∼ tc×d(CµD,CAC ′ ⊗D′BD, δ).

15.1.3 Wishart and Inverted Wishart Distribution

• Wishart distribution: A p × p positive definite matrix S is said to have
a Wishart distribution with m degrees of freedom, if its density is of the
form

f(S) =
[
2mp/2Γ p(m/2)

]−1
|A|−m/2|S|(m−p−1)/2e−tr(A−1S)/2

for any positive definite matrix A where Γ p is the multivariate gamma
function defined by (15.1). The distribution is denoted by S ∼Wp(A,m).

• Inverted Wishart distribution: A p × p positive definite matrix Σ has an
inverted Wishart distribution with δ degrees of freedom if its density func-
tion is of the form

f(Σ) = [2mp/2Γ p(m/2)]−1|Ψ |δ/2|Σ|−(δ+p+1)/2exp{−trΣ−1Ψ/2}

for any positive definite matrix Ψ . The distribution is denoted by Σ ∼
W−1

p (Ψ, δ).

Properties of the Wishart and Inverted Wishart Distribution
– Y ∼W−1

p (Ψ, δ) if and only if Z = Y −1 ∼Wp(Ψ−1, δ).
– If Z ∼ Wp(Σ, δ) then E(Z) = δΣ and E(Z−1) = Σ−1/(δ − p − 1)

provided δ − p− 1 > 0.
– If Y ∼W−1

p (Ψ, δ), then E(Y ) = Ψ/(δ − p− 1) and E(Y −1) = δΨ−1.
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– If Y ∼W−1
p (Ψ, δ), then

E log |Y | = −p log 2 −
p∑

i=1

η

[
1
2
(δ − i+ 1)

]
+ log |Ψ |,

where η is the digamma function; that is, η(x) = d[logΓ (x)]/dx (Chen
1979).

See Anderson (2003) for more details.

15.1.4 Generalized Inverted Wishart Distribution

Let a g × g positive matrix Σ having a k-block structure be written as

Σ =

⎛
⎜⎝
Σ1,1 · · · Σ1,k

... · · ·
...

Σk,1 · · · Σk,k

⎞
⎟⎠ ,

with Σi,j having dimensions gi × gj . That is, g = g1 + · · · + gk.
Denote the submatrix corresponding to the jth to kth blocks as Σ[j,···,k]

where

Σ[j,...,k] =

⎛
⎜⎝
Σj,j . . . Σj,k

... · · ·
...

Σk,j . . . Σk,k

⎞
⎟⎠ .

Let

Σ[j(j+1)] = (Σj,j+1, . . . , Σj,k)

and

Σ[(j+1)j] = (Σj+1,j , · · · , Σk,j).

Let Ψ be a g×g positive definite having the same k-block structure denoted
by {Ψi,j}. Similarly let Ψ [j,···,k] denote the submatrix corresponding to the
jth to kth blocks. Let δ = (δ1, · · · , δk) be k-dimensional positive vectors and
denote δ[j,···,k] = (δj , · · · , δk).
Σ is said to have a generalized inverted Wishart distribution, denoted by

GIW (Ψ, δ), if⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Σ[2,···,k] ∼ GIW (Ψ [2,···,k], δ[2,···,k]),

Γ 1 ∼ IW (Ψ1, δ1),

τ1 | Γ 1 ∼ N (τ01, H1 ⊗ Γ 1) ,

where

Γ 1 = Σ1,1 −Σ[1(2)](Σ[2,···,k])−1Σ[(2)1]

τ1 =
(
Σ[2,···,k]

)−1
Σ[(2)1],

Ψ1 = Ψ1,1 − Ψ [1(2)](Ψ [2,···,k])−1Ψ [(2)1],
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and IW denotes the inverted Wishart distribution with δ1 degrees of freedom
and the hyperparameter matrix Ψ1; the matrix τ01 is the hyperparameter of
τ1; and the matrix H1 is the variance component of τ1 between its rows.

Note that the GIW distribution is defined recursively. At the first step,
the matrix Σ is partitioned into two components: the first block and the 2nd
to kth blocks with distribution specified above. The next step is to partition
the 2nd to kth blocks into two components: the second block and the 3rd to
kth blocks where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Σ[3,···,k] ∼ GIW (Ψ [3,···,k], δ[3,···,k]),

Γ 2 ∼ IW (Ψ2, δ2),

τ2 | Γ 2 ∼ N (τ02, H2 ⊗ Γ 2) ,

with

Γ 2 = Σ2,2 −Σ[2(3)](Σ[3,···,k])−1Σ[(3)2]

τ2 =
(
Σ[3,···,k]

)−1
Σ[(3)2],

Ψ2 = Ψ2,2 − Ψ [2(3)](Ψ [3,···,k])−1Ψ [(3)2].

Similarly at the jth step for j < k, the submatrix Σ[j,...,k] is partitioned into
two components: the jth block and the remaining blocks with⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Σ[j+1,···,k] ∼ GIW (Ψ [j+1,···,k], δ[j+1,···,k],

Γ j ∼ IW (Ψj , δj),

τj | Γ j ∼ N (τ0j , Hj ⊗ Γ j)

with

Γ j = Σj,j −Σ[j(j+1)](Σ[j+1,···,k])−1Σ[(j+1)j]

τj =
(
Σ[j+1,···,k]

)−1
Σ[(j+1)j],

Ψj = Ψj,j − Ψ [j(j+1)](Ψ [j+1,···,k])−1Ψ [(j+1)j].

At the last step,

Γ k ∼ IW (Ψk, δk)

with

Γ k = Σk,k

Ψk = Ψk,k.

See Brown et al. (1994b) for more details.
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15.2 Bartlett Decomposition

15.2.1 Two-Block Decomposition

Let a covariance matrix Σ be represented as

Σ =
(
Σ11 Σ12
Σ21 Σ22

)
.

The matrix Σ could be decomposed as

Σ = T∆TT ,

where

∆ =
(
Σ1|2 0

0 Σ22

)
and T =

(
I τ
0 I

)
,

with

Σ1|2 ≡ Σ11 −Σ12Σ
−1
22 Σ21.

and

τ ≡ Σ12Σ
−1
22 .

Hence

Σ =
(
Σ1|2 + τΣ22τ

T τΣ22
Σ22τ

T Σ22

)
.

This one–to–one transformation is commonly known as the Bartlett decom-
position (Bartlett 1933).

15.2.2 Recursive Bartlett Decomposition for Multiple Blocks

Let a covariance matrix Σ be represented as having k blocks

Σ =

⎛
⎜⎝
Σ1,1 · · · Σ1,k

... · · ·
...

Σk,1 · · · Σk,k

⎞
⎟⎠ ,

with Σi,j having dimensions gi × gj . That is, g = g1 + · · · + gk.
Denote the submatrix corresponding to the jth to kth blocks as Σ[j,···,k]

where

Σ[j,...,k] =

⎛
⎜⎝
Σj,j · · · Σj,k

... · · ·
...

Σk,j · · · Σk,k

⎞
⎟⎠ .

Let

Σ[j(j+1)] = (Σj,j+1, · · · , Σj,k)
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and

Σ[(j+1)j] = (Σj+1,j , · · · , Σk,j).

Applying the Bartlett decomposition for two-blocks above recursively, one
can represent the (sub-)matrix Σ[j,...,k] , for j < k, as

Σ[j,···,k] =

(
Γ j + τT

j Σ
[j+1,···,k]τj τ

T
j Σ

[j+1,···,k]

Σ[j+1,···,k]τj Σ[j+1,···,k]

)
,

Γ j = Σj,j −Σ[j,(j+1)](Σ[j+1,...,k])−1Σ[(j+1),j],

τj = (Σ[j+1,...,k])−1Σ[(j+1),j],

and

Σkk = Σ[k,k].

15.3 Useful Matrix Properties

1. Let Aa×a,Bb×b,C be matrices having elements aij , bij , and cij , respec-
tively, then

tr(A ⊗ B)C = tr(BM), (15.2)

where M is given below. Take a simple setting for example,

A =
[
a11 a12
a21 a22

]
B =

[
b11 b12
b21 b22

]
.

Partition C as

C =
[
C11 C12
C21 C22

]
,

where each Cij is a b× b matrix. Then in this case

tr(A ⊗ B)C = tr[a11BC11 + a12BC21 + a21BC12 + a22BC22]
= tr(BM),

where

M = a11IbC11 + a12IbC21 + a21IbC12 + a12IbC22]

= [a11Ib a12Ib ]
[
C11
C21

]

+[a21Ib a22Ib ]
[
C12
C22

]
= (a1 ⊗ Ib)C[1,] + (a2 ⊗ Ib)C[,2]],
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ai denoting the ith row of A, C[1,], the first column of C and so on.
Similarly a general expression for M can be obtained.
Note that M = (mrc) can be explicitly expressed in terms of individual
elements of A and C where

mrc =
a∑

i=1

a∑
j=1

aijc(c−1)b+j,(r−1)b+i.

2. Let Aa×a,Bb×b,C be matrices having elements aij , bij , and cij respec-
tively; then

tr(A ⊗ B)C = tr(AM̃) (15.3)

when M̃ is given below.
Let a so-called permutation matrix P = PT = P−1 such that P (A ⊗
B)PT = B ⊗ A. In fact, P turns out to have a simple form when expressed
in terms of the so-called basis vectors e1 = (1, 0) and e2 = (0, 1). More
explicitly (with b = 2 in this case),

P =

⎡
⎢⎢⎣

e1 0
0 e1
e2 0
0 e2

⎤
⎥⎥⎦

=
[
Ib ⊗ e1
Ib ⊗ e2

]
.

Thus,

tr(A ⊗ B)C = tr(B ⊗ A)PCP

and adopting the above result yields (with a = 2 in this case)

M̃ = (b1 ⊗ Ia)[PCP][1,] + (b2 ⊗ Ia)[PCP][,2].

This result can be extended in the obvious way to the general case where,
for example,

P =

⎡
⎢⎣

Ib ⊗ e1
...

Ib ⊗ ea

⎤
⎥⎦ .

Note that M̃ = m̃rc can be explicitly expressed in terms of individual
elements of B and C where

m̃rc =
b∑

i=1

b∑
j=1

bijc(j−1)a+c,(i−1)a+r.

3. Let Aqp×hp, Bqp×qp, Chp×hp, and ξh×q be matrices with dimensions given;
then

tr(Ip ⊗ ξ)A = tr {ξD} = vec(ξ)′vec(D) (15.4)
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and

tr(Ip ⊗ ξ)B(Ip ⊗ ξ′)C = vec(ξ)′Gvec(ξ), (15.5)

where D and G are defined below.
Specifically, let

Pp,q =

⎡
⎢⎣
Ip ⊗ eq1

...
Ip ⊗ eq1

⎤
⎥⎦

be a general permutation matrix where eqj denotes the q-dimensional row
vector all of whose elements are 0 save for the jth which is 1. Then for
any matrices, α : k × r and β : l × s,

Pk,l(α⊗ β)PT
r,s = β ⊗ α.

Hence,

tr(ξh×q ⊗ Ip)A = tr[Pp,h(Ip ⊗ ξ)PT
p,qA]

= tr[{(Ip ⊗ ξ)PT
p,qAPp,h}]

= tr{(Ip ⊗ ξ)Ã},

where Ã = PT
p,qAPp,h.

Similarly

tr{(ξ ⊗ Ip)B(Ip ⊗ ξ)C} = tr{(Ip ⊗ ξ)PT
p,qBPp,h(Ip ⊗ ξ′)PT

p,pCPq,h}
= tr{(Ip ⊗ ξ)B̃(Ip ⊗ ξ)C̃},

where B̃ and C̃ have definitions analogous to Ã above.
Partition the matrices involved as

Ã =

⎡
⎢⎣
Ãq×h

11 · · · Ã1p

...
...

...
Ãp1 · · · Ãpp

⎤
⎥⎦

and similarly

B̃ =

⎡
⎢⎣
B̃h×q

11 · · · B̃1p

...
...

...
B̃p1 · · · B̃pp

⎤
⎥⎦ and C̃ =

⎡
⎢⎣
C̃h×h

11 · · · C̃1p

...
...

...
C̃21 · · · C̃pp

⎤
⎥⎦ .

Observe that:

(Ip ⊗ ξ) =

⎡
⎢⎣
ξ . . . 0
...

...
...

0 · · · ξ

⎤
⎥⎦ .

Hence
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tr(Ip ⊗ ξ)A = tr

⎧⎪⎨
⎪⎩
⎡
⎢⎣
ξ . . . 0
...

...
...

0 · · · ξ

⎤
⎥⎦
⎡
⎢⎣
Ãq×h

11 · · · Ã12
...

...
...

Ãp1 · · · Ãpp

⎤
⎥⎦
⎫⎪⎬
⎪⎭

= tr {ξD} ,

where D = Ã11 + · · · + Ãpp. Similarly

(Ip ⊗ ξ)B =

⎡
⎢⎣
ξ . . . 0
...

...
...

0 · · · ξ

⎤
⎥⎦
⎡
⎢⎣
B̃h×q

11 · · · B̃1p

...
...

...
B̃p1 · · · B̃pp

⎤
⎥⎦

=

⎡
⎢⎣
ξB̃11 · · · ξB̃1p

...
...

...
ξB̃p1 · · · ξB̃pp

⎤
⎥⎦ .

As well

(Ip ⊗ ξ′)C =

⎡
⎢⎣
ξ′ . . . 0
...

...
...

0 · · · ξ′

⎤
⎥⎦
⎡
⎢⎣
C̃h×q

11 · · · C̃1p

...
...

...
C̃p1 · · · C̃pp

⎤
⎥⎦

=

⎡
⎢⎣
ξ′C̃h×q

11 · · · ξ′C̃1p

...
...

...
ξ′C̃p1 · · · ξ′C̃pp

⎤
⎥⎦ .

Thus,

tr(Ip ⊗ ξ)B(Ip ⊗ ξ′)C = tr

⎧⎪⎨
⎪⎩
⎡
⎢⎣
ξB̃11 · · · ξB̃1p

...
...

...
ξB̃p1 · · · ξB̃pp

⎤
⎥⎦
⎡
⎢⎣
ξ′C̃h×q

11 · · · ξ′C̃1p

...
...

...
ξ′C̃p1 · · · ξ′C̃pp

⎤
⎥⎦
⎫⎪⎬
⎪⎭

=
p∑

r=1

p∑
s=1

trξB̃rsξ
′C̃sr

=
p∑

r=1

p∑
s=1

trξB̃rs(C̃ ′
srξ)

′.

However, recall that for matrices, U and V with conformable dimensions,

(U, V ) = tr(UV ′) =
∑
UijVij = vec(U)′vec(V ).

Thus

tr(Ip ⊗ ξ)B(Ip ⊗ ξ′)C =
p∑

r=1

p∑
s=1

p∑
k=1

p∑
l=1

(ξB̃rs)kl(C̃ ′
srξ)kl
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=
p∑

r=1

p∑
s=1

h∑
k=1

q∑
l=1

q∑
u=1

h∑
v=1

ξkuB̃rsulC̃rskvξvl

= vec(ξ)′Gvec(ξ),

where using a double index notation, G = (Gku, vl), with Gku, vl =∑
rs B̃rsulC̃srkv and vec(ξ) = (ξku) : hq×1 with double subscripts ordered

in accord with those of G. Similarly tr {ξD} = vec(ξ)′vec(D).

15.4 Proofs for Chapter 10

Lemma 1. Define matrices Y : n × g, β, β0 : l × g, Σ > 0, Ψ > 0 : g × g,
Z : n × l, F > 0 : l × l, and A > 0 : n × n. The Gaussian inverted Wishart
model⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Y | β, Σ ∼ N(Zβ, A⊗Σ)

β | Σ ∼ N(β0, F
−1 ⊗Σ)

Σ ∼ IW (Ψ, δ)

implies the following predictive distribution

Y ∼ tn×g

[
Zβ0, (δ − g + 1)−1(A+ ZF−1ZT ) ⊗ Ψ, δ − g + 1

]
and the posterior distributions

β | Σ, Y ∼ N(W β̂ + (I −W )β0, F̃
−1 ⊗Σ),

Σ | Y ∼ IW (Ψ + (Y − Zβ0)T (A+ ZF−1ZT )−1(Y − Zβ0), δ + n),

where

W = (ZTA−1Z + F )−1ZTZ

β̂ = (ZTA−1Z)−1ZTA−1Y,

F̃ = ZTA−1Z + F.

Proof of Lemma 1. The proof follows arguments of Anderson (2003); see also
Brown (1993).

Note. Using the identity

(A+ ZF−1ZT )−1 = A−1 −A−1Z(F−1 + ZTA−1Z)−1ZTA−1

one can show, on setting (A+ ZF−1ZT )−1 =W

(Y − Zβ0)
T [A+ ZF−1ZT ]−1(Y − Zβ0) =

(Y − Zβ̂0)
TA−1(Y − Zβ̂0) + (β̂ − β0)

TW (β̂ − β0)
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reflecting the contributions from the likelihood and the prior distribution.
To state the next lemma, let Y = (Y [u], Y [g]), Y [u] and Y [g] having n× u

and n× g dimensions, respectively. We adopt the following transformation of
the partitioned covariance matrix Σ of Y :

Σ =
(
Σ11 Σ12
Σ21 Σ22

)
→ (Σ22, τ, Γ )

for matrices Σ11 : u× u, Σ21 : g × u, Σ22 : g × g, and

τ = Σ−1
22 Σ21, Γ = Σ11 −Σ12Σ

−1
22 Σ21.

Lemma 2. Adopt the Gaussian and generalized inverted Wishart model spec-
ified by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y | β, Σ ∼ N(Zβ, A⊗Σ),

β | Σ ∼ N(β0, F
−1 ⊗Σ),

τ | Γ ∼ N (τ0, H ⊗ Γ ) ,

Γ ∼ IW (Ψ1, δ1),

Σ22 ∼ IW (Ψ2, δ2),

(15.6)

where

Z : n× l,

β = (β[u],β[g]) : (l × u, l × g) and

β0 = (β[u]
0 ,β

[g]
0 ) : (l × u, l × g).

Then the predictive distribution of (Y [u] | Y [g]) is

Y [u] | Y [g] ∼ tn×u

(
µ[u|g], Φ[u|g] ⊗ Ψ [u|g], δ1 − u+ 1

)
,

where

µ[u|g] = Zβ
[u]
0 + (Y [g] − Zβ

[g]
0 )τ0,

Φ[u|g] = A+ ZF−1ZT + (Y [g] − Zβ
[g]
0 )H(Y [g] − Zβ

[g]
0 )T ,

Ψ [u|g] = (δ1 − u+ 1)−1Ψ1.

Proof of Lemma 2. (i) Suppose β = 0. Then by standard results for the mul-
tivariate normal distribution, the conditional distribution of (Y [u] | Y [g], Σ),
which does not depend on Σ22, can be expressed as

(Y [u] | Y [g], τ, Γ ) ∼ N(Y [g]τ, In ⊗ Γ ).
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Applying Lemma 1 to this distribution with the prior distributions of τ and
Γ in (15.6) yields

(Y [u] | Y [g]) ∼ tn×u

(
Y [g]τ0, (δ1 − u+ 1)−1(In + Y [g]HY [g]T )

⊗Ψ1, δ1 − u+ 1) . (15.7)

(ii) Now suppose β follows the distribution in (15.6). Notice that

(A+ ZF−1ZT )−1/2(Y − Zβ0) | Σ ∼ N(0, In ⊗Σ).

The lemma follows immediately from the result in (i).

Lemma 3. In the setting of Lemma 2, assume further

Y [g] =

(
Y

[g]
(1)

Y
[g]
(2)

)
,

where the matrix Y [g]
(1) : m× g, m < n, holds the unobserved responses at the

gauged sites. Let(
µ(1)
µ(2)

)
:
(

m× g
(n−m) × g

)
= Zβ

[g]
0 ,

(
A11 A12
A21 A22

)
:
(

m×m m× (n−m)
(n−m) ×m (n−m) × (n−m)

)
= A+ ZF−1ZT ,

µ(u|g) = µ(1) +A12(A22)−1(Y [g]
(2) − µ(2)),

Φ(u|g) =
δ2 − g + 1

δ2 − g + n−m+ 1
[
A11 −A12(A22)−1A21

]
,

Ψ(u|g) =
1

δ2 − g + 1

[
Ψ2 + (Y [g]

(2) − µ(2))T (A22)−1(Y [g]
(2) − µ(2))

]
,

δ(u|g) = δ2 − g + n−m+ 1.

Then the predictive distribution of Y [g]
(1) given data Y [g]

(2) is(
Y

[g]
(1) | Y [g]

(2) ,H
)

∼ tm×g

(
µ(u|g), Φ(u|g) ⊗ Ψ(u|g), δ(u|g)

)
. (15.8)

Proof of Lemma 3. The GIW model (15.6) implies the GIW submodel
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⎪⎪⎪⎪⎩

Y [g] | β[g], Σ22 ∼ N(Zβ[g], A⊗Σ22),

β[g] | Σ22 ∼ N(β[g]
0 , F

−1 ⊗Σ22),

Σ22 ∼ IW (Ψ2, δ2).

Therefore, by Lemma 1

Y [g] ∼ tn×g

[
Zβ

[g]
0 , (δ2 − g + 1)−1(A+ ZF−1ZT ) ⊗ Ψ2, δ2 − g + 1

]
. (15.9)

Conditioning the distribution in (15.9) upon Y [g]
(2) yields the predictive distri-

bution (15.8).

Proof of (9.15)–(9.18) Part (i) of the proof is a straightforward application of
Lemma 3. For part (ii), the distribution is obtained by first applying Lemma 2
to Y [gj ] conditional on Y [gj+1,...,gk] and then applying Lemma 3 to Y [gm

j ] con-
ditional on Y [go

j ] and Y [gj+1,...,gk]. Part (iii) is an immediate result of Lemma 2.

Proof of (10.7) and (10.9) . (i) Model (10.1) implies⎧⎨
⎩

β[gk] | Σkk,β0, F ∼ N(β[k]
0 , F

−1 ⊗Σkk),

Y [go
k] | β[gk], Σkk,H ∼ N(Z(k)β

[gk], In−mk
⊗Σkk),

(15.10)

which gives the posterior distribution of (β[gk] | D,Σkk,H), as in (10.7), by
means of Lemma 1.

Similarly, model (10.1) implies⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

β[gj ] | β[gj+1,...,gk], τj , Γ j ,H ∼ N
(
β

[gj ]
0 + (β[gj+1,...,gk]−

β
[gj+1,...,gk]
0 )τj , F−1 ⊗ Γ j

)
,

Y [go
j ] | Y [gj+1,...,gk]

(j) ,β[gj ,gj+1,...,gk], τj , Γ j ,H ∼ N(Z(j)β
[gj ]+

ε̃
[gj+1,...,gk]
(j) τj , F

−1 ⊗ Γ j),

(15.11)

where

ε̃
[gj+1,...,gk]
(j) = Y [gj+1,...,gk]

(j) − Z(j)β
[gj+1,...,gk]
0 .

Applying Lemma 1 again gives the posterior of (β[gj ] | D,β[gj+1,...,gk], τj , Γ j ,H)
as in (10.7).

(ii) Combining (15.10), (15.11), as well as (10.2) and using the result of
Lemma 1 yields the distribution (10.9)
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Proof of Corollary 1. Taking conditional expectations of the βs given (D,H)
in Theorem 2 yields the result.
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Chemoluminescence, 43
Chlorine, 37, 38
Chromatography, 44
Chronic nonmalignant pulmonary

diseases, 4
Clean Air Act, 55
Clean Air Status and Trends Network

(CASTNET), 37
Climatic variables, 258
Clustering, 50, 130, 196, 214, 242, 247,

248, 250–261
Coal mining, 44
Cokriging, 110, 110, 111, 128, 187

estimator, 110
ordinary, 111
system, 111

Collinearity, 51, 207, 219, 249
Colorado, 9, 10, 37, 38, 149, 150
Complex

data structures, 65
metrics, 216
models, 58, 216

Compliance
criteria, 235
noncompliance, 226, 231, 232
thresholds, 233, 234

Computation, 57, 63, 167, 217
global upper bound, 197
greedy algorithm, 196, 197
integration, 127
Monte Carlo method, 127
NP-hard, 217

Computing technology, 48
Concentration

ambient, 13
predictor, 22

Conditional
approach, 59
covariance, 258
density, 33, 60, 68
distribution, 68, 205, 209, 213, 217
expectation, 112, 113
mean, 51, 227
probabilities, 31, 67, 68, 236
response variances, 228

Conflicting objectives, 181
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Confounding factors, 17, 54, 241, 242
Continuum, 11, 12, 183
Contours, 22, 23
Control policies, 211, 246
Coordinate responses, 6
Coordinates, 138

Lambert, 270
lat–long, 270
Universal Transverse Mercator

(UTM), 10
Copula, 59

joint dependencies, 59
Core samples, 44, 60
Coregionalization, 70
Correlation, see also Covariance

intersite, 222, 223, 228
matrix, 94, 283, 284
structure, 217, 277
within-site, 224

Correlogram, 85, 95
Coupled Global Climate Model

(CGCM1), 71
Covariance

function, 82, 87, 122, 124
kernel, 185, 186, 222
leakage problem, 271, 275
matrix, 190, 193, 204
nonstationary, 82
population, 65
residual, 134, 154–156
separability, 62
separability conditions, 166
spatial, 82, 82, 91, 131, 215, 271, 277
structure, 76, 81, 82, 101, 123
temporal, 65

Covariates, 5, 130, 187, 190, 193
Covariogram, 85
Coverage fractions, 218
Credibility

ellipsoids, 136, 177, 255
intervals, 218

Criteria
pollutant, 41
responses, 211

Cross-correlation, 249
Cross-covariance, 120
Cross-validation, 128
Crown die-back, 69
Currents, 70

Curve, 11, 12

Daily temperature, 13, 53, 258
Data

assimilation, 71
capture, 36, 40, 240
management, 42
misaligned, 62, 140, 174
missing, 139
monotone pattern, 140
quality

assurance, 35, 45
criteria, 45
management, 51

staircase pattern, 7, 141, 144, 151,
152, 195

storage, 36, 57, 62
systematically missing, 140, 174

Day of the week effects, 258
Decibels, 78
Decomposition, 194
Deformation of space, 200, 279–282
Derivatives, 56, 104
Desiderata, 56, 57
Design

criteria, 190, 192, 208, 231
entropy based approach, 187
network, 216, see Monitoring network
objectives, 41, 186, 191, 212, 229,

232, 237
optimal, 184, 185, 209, 210
probability-based approach, 40, 41,

184
problem, 8, 45, 186, 202, 204
regression based approach, 64
set, 185
spatial, 36, 39, 41
strategy, 8, 58
suboptimal, 185, 196
theory, 184, 185

Detection limits, 47
Deterministic model, see Model
Deterministic trend, 65, 266
DETMAX, 196
Detrended series, 199
Deviation from baseline, 249
Devices, 36, 40, 42, 45, 47, 70
Diagnostic tools, 247
Diatoms, 45
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Dieldrin, 9
Digamma function, 171, 294
Discipline bias, 35
Discrete

approximations, 188
case, 188

Disease
counts, 55
mapping, 55

Dispersion space, 200
bold, 91

Distribution
beta, 69
binomial, 69, 70
Fréchet, 213
gamma, 171
generalized Pareto (GPD), 213, 216
Gumbel, 213
inverted Wishart, 134, 193, 293
joint, 59
log matric-t, 217
log normal, 77, 77, 78, 216, 217
marginal, 59, 188
matric t, 19, 237
matric-t, 151, 164, 218, 223, 292
matrix normal, 75
multivariate log normal, 77
multivariate normal, 50, 70, 75, 154,

291, 302
multivariate-t, 232
negative binomial, 69
normal, 33, 50, 75–78, 291, 291, 302
uniform, 31
Weibull, 213

Dose–response, 240
Dry deposition, 44

Earthquake, 240
Ecological

estimates, 50
resources, 40
risk assessment, 40
studies, 50, 242

Ecosystems, 37, 40
Effects of urbanization, 244
Efficiency, 65, 183, 184
Eigenfunctions, 185, 186
Eigenvalues, 63, 185, 197

Eigenvector expansion, 185
Elevation, 10, 21, 62, 70, 88, 130
EM algorithm, 167, 167
EMAP (Environmental Monitoring and

Assessment Program), 40, 183
hexagons, 40

Emergency room visits, 13
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Bayes, 132, 151, 163
orthogonal functions (EOFs), 65

Ensemble, 65
Kalman filter, 73
model, 73

Entropy, 30, 32, 32, 182, 188, 190, 195,
223, 227, 236

conditional, 33
criterion, 192, 194, 195, 201, 237
decomposition, 191, 204
Gaussian case, 32
invariance, 188
residual, 182

Environment Air Quality Monitoring
Network, 7, 39

Environmental
design, 187, 191
epidemiology, 241, 242, 255
factors, 13, 21, 46, 70, 128
fields, 9, 28, 45, 98, 100, 181, 184
hazards, 36, 47, 55, 240, 246, 248
health risk, 42, 66, 100, 117
impact, 8, 13, 37, 240
network, 188, 191, 192
processes, 35, 37, 243
risk analysis, 55
risk assessment, 13, 46, 55, 56, 263
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science, 129
scientists, 243
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toxicology, 240
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(EPA), 9, 37, 39, 239

Environmental risk assessment (ERA),
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Epidemiology, 22, 42, 181
Epistemic, 28, 31, 35, 69, 70
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Errors in variables (EIV), see also
Measurement error

Estimating equations, 253
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Excess deaths, 249
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Expected values, 77, 83
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design, 181, 182
units, 54

Exposures, 46, 50, 117, 118, 247
binary, 49
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true, 48, 49

Extreme, 181, 211, 214–219, 222–224,
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distribution, 215
field, 223, 236
fields, 216–219
monitoring, 212, 216, 218, 226
peak over threshold model, 213
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quantiles, 23
value distribution, 212, 214
value theory, 41, 212, 212, 215, 216,
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Extreme winds, 212
Extrinsic component, 208

Filtering, 5, 43, 199
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Fish, 37
Fisher–Tippett results, 214
Fixed effect parameters, 252
Flexibility, 7, 94, 130, 222
Fluorescent excitation, 5
Fog, 37, 239
Forests, 37

Gamma function, 293
Gas, 8, 15, 43
Gaseous emissions, 37
Generalized

estimating equations (GEE), 247,
250, 252, 255
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variance, 33, 207

generalized
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Geographic plane, 202
Geographical

domain, 81, 100
proximity, 70
space, 21, 91–94, 199, 201, 202, 279,

280
strata, 183

Geological application, 81, 113, 114, 129
Geostatistical application, 84, 87
Geostatistics, 5, 21, 186
Global climate change, 244
Grab samples, 36, 41
Graph

bi-directional edges, 67
chain, 67
directed acyclical, 67
nodes, 67, 68

Greater Vancouver Regional District
(GVRD), 6, 198, 219, 223, 225

Groundwater, 9
Group-level analysis, 50

Harrison Bay, 8
Hazard, 242, 250
Health

acute impacts, 43, 50, 249
impacts, 51, 181, 247, 255, 258
outcomes, 78, 248
responses, 12
risk analysis, 47

Heisenberg’s uncertainty principle, 36
Herbicides, 9
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Bayesian framework, 182, 209
interpolation, see Le and Zidek

method
Bayesian modeling, 7, 57
decomposition, 69
model, 70, 276

Homogeneous fields, 183
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admissions, 257, 258
catchment areas, 257

Hot-spots, 55, 181, 185, 262
Hourly measurements, 39
Human

exposure, 24, 47



336 Subject Index

health, 4, 7, 37, 39, 212, 246
Humidity, 3, 6, 199, 258
Hydrogen ions (H+), 37
Hydrological applications, 114
Hypercovariance, 164, 224

residual, 194, 199, 201
Hyperscale matrix, 150, 155
Hypervariance, 201, 226
Hypothesis, 8, 27, 47, 250

Ice, 8, 246
Image analysis, 68
Impact, 37, 46, 56, 239, 240, 262

assessment, 61
model, 50

Implementation
software, 62, 94, 216, 263, 265

Imputation, 19, 54, 61
Independence, 218, 253, 257, 259
Indoor sources, 43
Inefficiency, 57, 183
Inferential

procedures, 56
techniques, 69
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Information matrix, 184
Infrared light absorption, 43
Inner product, 75
Insurance, 58, 240, 259
Interlaboratory discrepancies, 46
Intermeasurement times, 43
Interpretability, 92
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Intervention, 242
Intrinsic
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relationships, 17
uncertainty, 32

Invariance, 32, 123, 188, 206
Isotropy, 87, 87, 101, 129, 163, 192

Jacobean, 206
Joint distribution, see Distribution
Joint entropy, 189
Joint probability density, 236

Kalman filter, 62, 73
Karhunen–Loeve expansion, 63, 64
Kernel, 95, 96, 185, 222

Knowledge, 27, 117
Kriging

Bayesian, see Bayesian kriging
cokriging, see Cokriging
disjunctive, 112–114
estimator, 103, 105, 112, 118
exact interpolator, 105
indicator, 113
interpolator, 100–102, 104, 105, 108,

109, 114
non-Gaussian models, 62
nonlinear, 113
predictor, 64, 105, 109, 112
probability, 113
system, 104, 105, 107–109, 113
theoretical estimator, 105
trans-Gaussian, 109
universal, 105–109, 111, 119, 122, 187
variance, 100, 103–105, 107, 109, 122

Laboratory analysis, 56
Lagrange multiplier, 104, 107, 111
Lakes, 35, 41, 183
Large-sample paradigm, 11, 12
Latent variable, 70, 204
Latitude, 10, 21, 57, 144
Le–Zidek method, 129, 131
Lead (Pb), 4
Least-squares estimator, 184, 193
Lethal gas, 44
Likelihood function, 29, 30
Linear

constraints, 198
operator, 76
optimal predictor, 100, 104, 134, 154,

187
predictor, 21, 61, 112, 138, 146, 155
regression, 48, 50, 51, 99, 136, 184

Local
density, 185
emissions, 37
optima, 251
specification, 68

Locally isotropic stationary process, 96
Location configuration, 277
Logarithmic

scale, 78
transformation, 5, 78, 199

Logistic model, 249



Subject Index 337

London, 212, 237, 239
Long memory process, 65
Long-term trend patterns, 249
Longitude, 10, 21, 57
Longitudinal data, 242, 247, 263
Low alkalinity, 183
Lung cancer, 4
Lung function, 4

Magnesium (Mg+
2 ), 37, 44

Maine, 37, 38, 150
Mapping, 9, 91, 93, 96
Marginal distribution, 190, 216, see also

Distribution
Marginal probability density, 172
Markov chain Monte Carlo (MCMC),

57, 117, 124, 128
Markov random field, 68, 68, 69
Maximum likelihood estimate, 29

type-II, 163, 174
Mean

ensemble, 65
population, 11, 65

Mean-squared prediction error, 187
Measurable response, 248
Measurement

bias, 46
noise, 209
objectives, 40
process, 69
quality, 46

Measurement error, 12
Berkson type, 48, 50
classical, 48, 51
curvature, 50
effects, 47, 49, 55
errors in variable, 48
misclassfication, 49
model, 48–51
nondifferential, 50, 51
structural, 50, 51
taxa, 48

Measuring devices, 36, 45, 46
Mesoscale, 72
Meteorological data, 199, 244, 245
Meteorology, 6, 217
Metrics, 181, 216
Microns, 43
Mineral, 5, 113

Misaligned
scales, 7
support, 55

Missing data, 139, 199, see also Data
at random, 47
systematically, 7, 54, 57, 62, 195

Mississippi, 244, 246
Mitigation strategies, 47
Mixed model, 49
Model

adequacy, 214
deterministic, 4, 55, 71
dynamic nonlinear, 71
misspecification, 61, 125, 247
nonlinear, 255, 257
parameters, 68, 69, 117, 122, 138, 191
physical–statistical, 71
probability, 4, 5
uncertainty, 94, 117, 244

Moment
first-order, 83
generating function, 77
second-order, 83, 247

Monitoring network, 7, 37, 132, 182, 208
composite, 39
composite objective criterion, 195
continentwide redesign problems, 197
locations, 100, 132
probability-based design, 41

Monitoring sites, 192, 208
Monitoring stations

ambient, 48
gauged sites, 6
locations, 183
pseudo-sites, 6
quasi-sites, 6, 7, 175
ungauged sites, 141, 164, 191, 192,

273
Monotone data pattern, 7, 199
Morbidity, 43, 211

cardiovascular, 4
respiratory, 4, 4, 60, 248

Mortality, 4, 43, 211, 239, 249
Multiattribute approach, 181
Multidimensional scaling, 92, 93
Multilevel, 50
Multiple imputation, 139
Multiplication rule, 28, 249
Multivariate
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extreme value theory, 215
regular variation, 214
responses, 6, 132, 149, 182, 195, 199

National Acid Deposition Program
(NADP), 37, 39, 149, 192

NCAR/Penn State Mesoscale
Model(MM5), 73

Neighborhoods, 68–70, 215
Network augmentation, 195
Network design, 181–186, 195

incorporating costs, 182, 195
Nitrate (NO−

3 ), 37, 44
Nitrogen

dioxide (NO2), 7, 39, 43
oxide (NOx), 4, 43

Noise variables, 205
Noncompliance

criterion, 228
Nonecological impacts, 37
Nonhomogeneous Poisson process, 213
Nonlinear mapping, 92
Nonlinearity, 251
Nonnegative definiteness, 86
Nonparametric approach, 91
Nonsingularity, 253
Nonstationarity, 95, 96, 210
Nuclear power plant, 208, 240
Numerical methods, 184, 185

computation, see Computation
integration, 119, 127, 217

Objective functions, 170, 184, 232
Ocean currents, 70
Odds, 5, 12, 28, 99
Official statistics, 40
Ontario, 7, 39, 60, 92, 257, 262, 263
Optimal design, see Design
Optimal predictor, 187
Organisms, 8, 44, 248
Orthogonal

expansions, 70
matrix, 63

Oscillating microbalance, 43
Oxygen, 43
Ozone (O3), 4, 7, 15, 39, 61, 219, 230,

231

Pacific Ocean, 57
Parameter

estimation, 259
model, 62

Parametric model, 131
Parent sets, 67, 68
Particulate matter (PM), 4, 184, 212,

214, 221, 241, 261
Particulate matter (PM), 39, 40
Pesticides, 9, 241
pH, 37, 44, 78, 149
Philadelphia, 149, 212
Phosphorus, 44
Photochemistry, 3, 43
Plug in estimates, 64
Plug-in estimates, 61
Point Barrow, 8
Point sources, 55
Policy makers, 243, 246
Pollutants, 60, 78, 92, 109, 149

secondary, 3
Pollution

air, 3, 4, 37, 70, 211, 228
benthic organisms, 8, 44
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scale, 78
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sewage, 44
soil, 9, 262
water, 10, 35, 41, 44

Population average, 252, 255, 256, 258,
see Mean

Positive definiteness, 87, 143, 144, 170,
251, 252, 291–294

Posterior distribution, 58, 136, 158, 168,
189, 304

Posterior expectation, 58, 162
Postnormal science, 243
Potassium (K+), 37, 44
Power law, 223
Preasymptotic independence, 214
Precision, 6, 45, 50, 55, 149, 193, 260,

292
Prediction, see also Spatial interpolation

backcasting, 15
error, 100, 103, 104, 110, 187
forecasting, 3, 15, 54, 146
hindcasting, 15, 19, 54, 146
interval, 99, 115, 118, 163
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Predictive distribution, 22, 55, 115,
118, 127, 137, 138, 141, 163

spatial, 193, see also Spatial
interpolation

Predictors, 114, 128, 146
Prefiltering, 62, 210
Principal components, 65
Prior distribution, 117, 126

conjugate, 30, 115, 131, 140, 144
diffuse, 132
improper, 58
locally uniform, 123
uniform, 253
vague, 29

Prior knowledge, 58, 121, 122
Prisoner’s paradox, 243
Probability

conditional density, 167
density, 28, 32, 60, 188, 190
distribution, 19, 27–29, 84, 182, 209
joint density, 68, 69, 163, 236
marginal density, 29, 164, 172
mass function, 28
weighted moments, 213

Process
convolution, 95, 96
model, 30, 35, 62, 202, 204, 212, 215,

216
parameter, 63

Pulsed fluorescence, 43

Quality
control, 46
management, 36, 51

Quantitative risk, 240
Quasi-control, 9, 41
Quasi-likelihood, 253, 254, 256, 257,

262, 263

Radiation plume, 208
Radioactive materials, 241
Rain, 37
Random effects, 63, 250, 251
Random field, 81, 85, 186

discrete, 190
Gaussian, 84, 105, 150
homogeneous, 82
invariant, 84
non-Gaussian, 124

nonhomogeneous, 81
nonstationary, 92, 114
stationary, 84, 86, 163

Random variable, 70, 133, 213, 251
continuous, 188
discrete, 28, 187, 188
independent, 49

Randomization, 40, 241, 242
Randomness, 27, 64, 167, 247
Rates, 45, 50, 188, 195, 252
Reference

density, 32, 190
measure, 188, 189

Regression
calibration, 48, 247
coefficients, 133, 138, 158, 250
function, 256
model, 63, 64, 138, 184–186, 248, 249
nonlinear, 50, 252
Poisson, 247, 263

Regresson
towards the mean, 21

Regulations, 22, 39, 223, 239, 242
Regulators, 41, 181, 226, 231, 232
Regulatory

action, 249
environment, 228
standard, 41, 42

Relative risk, 49, 53, 248, 249, 261
Reliability, 36, 259
Repeated measurements, 4, 5, 7, 11, 12,

28, 41, 45, 48, 99
Residual, 155, 193

plot, 18
spatially correlated, 271
sum of squares, 135, 138, 193
uncertainty, 191, 204
variance, 50, 51
Whitened, 199
whitened, 217

Response
observed, 15, 64, 142, 218
vector, 17, 164, 187, 206

Richter scale, 78
Risk assessment, 13, 27, 40, 46, 55, 56,

247, 250, 263
Rocky Mountain Arsenal, 9, 262

Salt, 39
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Sample variance, 77
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domains, 183, 184
frame, 40
plans, 45
point, 41
points, 8, 11, 40
simple random, 183
sites, 10, 45, 187
stratified random, 35

Sampson and Guttorp method, 20, 62,
91, 173, 273, 276

Scatterplot, 53
School absences, 248
Sea

foam, 39
water, 37

Seabed sediments, 44
Seasonality, 6, 62, 138

patterns, 248
variation, 258

Seattle, 212
Seismographs, 78
Semi-Variogram, see Variogram
Set-up costs, 41
Significance, 6, 51, 115, 247, 257, 259,

260
Simulated realizations, 19
Smelters, 36, 37
Smoothing kernel, 95
Snow, 37
Social justice, 55
Societal concern, 182, 237, 239, 246
Sodium (Na+), 37, 39, 44
Soil, 9, 10, 37, 100
Source–receptor relationships, 7, 39
Space–time

domains, 58, 243
extremes, 216, see also Extreme
fields, 3, 5, 10, 36, 59, 70, 186, 212
grids, 57
modeling, 5, 57, 64
process, 11, 47, 56, 64, 186, 239
responses, 13
stochastic model, 190
variability, 41

Spatial
aggregation, 181

association, 41, 207
contamination, 10
dependence, 215
distribution, 69, 117
epidemiology, 48, 53
field, 60, 81, 100, 186
interpolation, 100, 100, 102, 117, 118,

129, 150, 191, see also Predictive
distribution

interpretability, 21, 92, 200
mapping, 9
sampling, 39–41, 209
statistics, 55, 59, 100
structures, 68

Spatial covariance, see also Covariance
anisotropic, 87
intersite, 62, 82, 221, 222
isotropic, 61, 87, 117, 119

Spectral decomposition theorem, 63
Spectrophotometry, 44
Spline, 93, 279–281, 283, 284
Staircase data pattern, see Data
Stakeholders, 10, 240, 243
State evolution equation, 204
State-space

model, 73, 202, 206
vectors, 204

Stationarity
intrinsic, 85, 86, 103
second-order, 85–87, 106, 110
strictly, 84

Statistical science, 48, 66
Stochastic

complexity, 187
variability, 41

Stratification, 40, 41
Stratosphere, 73
Subdivisions, 60, 130, 261, 262
Sulfate ion (SO4), 39
Sulfur dioxide (SO2), 3, 4, 6, 7, 37, 39
Sulphate ion (SO4), 7, 37, 262
Surface trends, 21
Surface water, 183
Sydney, 6
Systematic component, 64, 65
Systematically missing data, see Data

Target population, 40
Temporal
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aggregates, 47, 70
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methods, 57
resolution, 55
structure, 61, 64
trends, 55

TEOM particulate monitor, 39, 43, 184
Texas, 244, 246
Time–space interaction, 8
Time-series, 11, 12, 85, 130, 183, 199,

247
autoregression, 64

Time-varying covariates, 142, 152
Topographical data, 119, 122, 124
Total entropy, 190, 191
Toxic material, 10
Transition matrix, 204
Trend modeling, 17, 19, 55, 69, 217
Troposphere, 73
Tutorial in R, 266, 273

U.S. Environmental Protection Agency
(EPA), 3

U.S. National Surface Water Survey, 35
U.S.Historical and Climatological

Network (HCN), 244
Ultraviolet, 5, 43, 78
Urban areas, 3, 6, 39, 61, 182, 211, 222

Validity, 35, 36, 70
Variogram, 21, 84, 85, 87–94, 101–104,

111, 114, 115, 200–202, 277–282
isotropic model

Cauchy, 90
De Wijsian, 91
exponential, 249
Gaussian, 77, 89
hole-effect, 90
linear, 90
nugget, 88
power model, 91
rational quadratic, 89
stable, 89
triangular, 90
Whittle–Matern, 89

nugget effect, 90
unbounded, 91

Visibility, 37, 199
Volumetric air samplers, 5, 39, 46

Washington, 36
Wet deposition, 37, 44, 192
Wind, 3, 6, 39, 68, 70, 118, 158, 199,

211, 212, 218, 219
World Meteorological Organization, 216
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