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Preface

The purpose of this collective book is to present selected topics of modern
magnetism research, where the physical phenomena are directly related to
topological properties. As was highlighted by the Nobel Prize in Physics in 2016 for
the work of David J. Thouless, F. Duncan M. Haldane, and J. Michael Kosterlitz,
concepts of topology have provided recently a powerful approach toward under-
standing a wide variety of contemporary condensed matter physics. Toward this
end, combining topology with magnetism has given rise to numerous vibrant new
topics, such as skyrmions and topological insulators. These are not only funda-
mentally interesting, but also are promising for a transformative revolution of
information technology using topological charge as a new state variable.

We organized the book in roughly three parts. The first part focuses on phe-
nomena that are governed by spin textures with non-trivial topology in real space.
Chapter 1 (H.-B. Braun) provides a general overview of real space topological
solitons in magnetic systems. Subsequently, Chap. 2 (A. Thiaville and J. Miltat)
discusses to what extent magnetic domain walls are related to topology of spin
textures and how this influences their dynamics. Related concepts are further
explored in Chap. 3 (C. Behncke, C. F. Adolff, and G. Meier) for a specific type of
topological solitons, namely magnetic vortices, that form in geometrically confined
magnetic structures. Another type of topological soliton, magnetic skyrmions, is
discussed in Chap. 4 (G. Chen), which focuses on skyrmions, a new magnetic state
that can exist in magnetic multilayers where they have been considered as data
carriers for information technologies, and in Chap. 5 (A. Bauer, A. Chacon, M.
Halder, and C. Pfleiderer), which describes non-equilibrium behaviors of skyrmion
lattices in bulk materials with lack of inversion symmetry.

The second part of the book is dedicated to physical phenomena, where the
topology of the electronic band structure results in effective coupling between spin
and charge transport. Toward this end, Chap. 6 (Y. Mokrousov) discusses the
theoretical understanding of anomalous Hall effects, which despite their experi-
mental discovery more than one hundred years ago, just very recently have been
understood as fundamentally connected to the topology in momentum space and the
related Berry phase physics. Chapter 7 (M. Althammer) discusses the closely
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related spin Hall effect and focuses on how this effect can be experimentally
explored via many different measurement approaches. This is followed by Chap. 8
(B. Wan, H.-Z. Lu, and X. Wan) by an introduction to Weyl semimetals, where the
topology generates non-trivial surface and bulk electronic states. Lastly, Chap. 9
(L. Šmejkal and T. Jungwirth) discusses how the new field of antiferromagnetic
spintronics provides interesting connections to topology in particular for Weyl and
Dirac semimetals.

The last part of the book explores how topology may affect dynamics phe-
nomena and excitations in magnetic systems. Chapter 10 (S. Demokritov) provides
a detailed overview of spin waves, or magnons, and how their properties are
influenced by geometric confinement of ferromagnets. This discussion is comple-
mented by Chap. 11 (J. Åkerman), which focuses on localized magnetic excitations
that are driven by spin transfer torques and how their dynamics relates to their
topological properties. Finally, Chap. 12 (J. C. Y. Teo) describes how the antag-
onistic interplay between magnetism and superconductivity can give rise to novel
quasiparticle excitations, Majorana fermions, whose unique topological properties
are envisioned to be beneficial for robust quantum computation development.

Our hope is that the readers will find this a stimulating collection of concepts
with intriguing connections between them. Our aim was to make the presentation
of these concepts accessible to graduate students and researchers new to the field,
while also providing a useful snapshot of the most recent developments that can
serve as a reference for the expert. Through this effort, and together with the rapid
pace of developments in many of the topics discussed in this book, we hope to
contribute to the multitude of new exciting developments in the coming years
resulting from exploiting topological concepts in the vast range of available
magnetism-related materials systems.

Durham, NH, USA Jiadong Zang
Lemont, IL, USA Axel Hoffmann
Paris, France Vincent Cros
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Chapter 1
Solitons in Real Space: Domain Walls,
Vortices, Hedgehogs, and Skyrmions

Hans-Benjamin Braun

Abstract Recent years have seen tremendous progress in the understanding of topo-
logical phenomena in magnetism, in particular at the nanoscale. In this overview, we
consider smooth topological textures such as smoothdomainwalls,meronor vortices,
and most importantly skyrmions. These structures derive their topological stability
from the fact that they cannot be undone without violating the continuity of the
magnetization field, similar to a knot in a rope. Owing to their topological stability,
domain walls and skyrmions are prominent candidates in racetrack-type memories
introduced by Parkin and co-workers. These smooth textures should be contrasted
with singular topological point defects where themagnetization field is forced to van-
ish in a submanifold. Such point defects include Ising domain walls, vortices of easy-
plane spins, and 3D Bloch points, ‘hedgehogs’, or ‘monopoles’. As domain walls,
vortices, and skyrmions including their dynamical versionswill be discussed in detail
in later chapters by Thiaville and Miltat, Behncke and Meier, Chen, Bauer et al., and
Åkerman, we give analytical arguments how domain walls emerge in quasi 1D
nanowires, how magnetization reverses via nucleation, and why skyrmions exist
in thin films. A variational ansatz for skyrmions that is derived from an exact 2π
domain wall profile provides an excellent approximation to numerical and experi-
mental observations in films that include Dzyaloshinskii-Moriya interaction (DMI)
and dipolar interactions. In systems of vanishing DMI, the two helical states of a
skyrmion are degenerate, and switching between the two helicities occurs in a topo-
logically allowed fashion. This mechanism is closely related to domain wall nucle-
ation in nanowires. Finally we show that dynamical skyrmions may be regarded as
2D siblings of domain wall breathers, and can be described by the same variational
ansatz inspired from 2π domain walls as static skyrmions in thin films.
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2 H.-B. Braun

1.1 Overview

Topological objects in magnetism have attracted the attention of physicists since the
early work on domain walls of Bloch and Landau-Lifshitz [1, 2]. With the friendly
assistance of Heisenberg, Bloch gave the first analytical description of a domain
wall in a ferromagnet before Landau and Lifshitz developed a more comprehensive
phenomenological description of ferromagnets including their dynamics. A domain
wall was thus the first example of a remarkable plethora of topological defects that
may be hosted in magnets (cf. Fig. 1.1). They now include defects where the mag-
netization field is forced to vanish, such as vortices of easy-plane spins, hedgehogs
or Bloch points, but also smooth objects that locally resemble domain walls such as

disks tracks

40
 n

m

(a)

(b)

(c) (i)

(c) (ii)

(d)

(e)

(f)

(g)

(h)

Fig. 1.1 Topologically nontrivial smooth textures in the magnetization field and their proposed use
in racetrack-type magnetic memory. a Chiral left-handed and right-handed π Bloch-type domain
walls. b 2π Bloch walls consisting of two π domain walls of equal chirality. c (i) Bloch-type
skyrmions with either left or right-handed chirality. Skyrmions of one given chirality are favoured
by B20 chiral materials such asMnSi [5, 10]. Skyrmions of either chirality exist for dipolar systems.
(c) (ii) Hedgehog skyrmion of given chirality favoured by a surface induced Dzyaloshinskii-Moryia
interaction (DMI). Note that in both (c) (i), (ii) the spin texture upon traversing the skyrmion
corresponds to a 2π Bloch or Néel wall, respectively. Note that this similarity underlines the use of
the analytical ansatz of a 2π domain wall [19] for a skyrmion profile [20]. d Design of a racetrack
memory consisting of domain walls (cf. (a)) that are being pushed through effectively 1D wires as
proposed by Parkin an co-workers [14]. eRacetrackmemory based on skyrmions rather than domain
walls as proposed by Sampaio et al. [21]. f Domain walls in racetrack nanowires as observed in [12].
g Skyrmions in dots (300 nm width) and tracks (200 nm width) observed at room temperature in
a multilayer by Moreau-Luchaire et al. [13]. h Generation of skyrmions in a nanowire constriction
[9]. Panel (d) adapted from [14], panels (e–h) are taken from [9, 12, 13, 21], respectively
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merons (vortices) and skyrmions [3–6]. Initially proposed as nonlinear field config-
urations in baryonic field theories [3, 4], the interest in magnetic skyrmions surged
as a consequence of the observation of a skyrmion lattice in the bulk magnet MnSi
[5], a chiral magnet with a parity breaking Dzyaloshinskii-Moryia interaction (DMI)
[7], a system that has been predicted to support vortex-type lattices [8].

Later chapters in this book include detailed discussion of the fascinating physics
of topological spin textures including experiments on vortices (Chap. 3; Behncke,
Adolff and Meier), domain walls including Bloch lines (Chap. 2; Thiaville and Mil-
tat), skyrmions in bulk magnets (Chap.5; Bauer et al.), DMI and skyrmions in thin
films (Chap.4; Chen), and their purely dynamically stabilized siblings (Chap. 11;
Åkerman).

The absence or presence of domain walls has been found to be pivotal for a
series of technological applications. In the design of hard magnets, the formation
of domain walls is entirely undesired, and this includes the tiny nanoscale elements
that store elementary bits on magnetic hard disk drives. In contrast, the presence of
domain walls is crucial in soft magnets. Being localized objects, their position breaks
translational symmetry which entails the existence of an energyless Goldstone-mode
in the excitation spectrum. Correspondingly, domain walls may usually be easily
moved at lowfields in theOe range or via spin torqueswhich are required to overcome
weak pinning due to imperfections.

This reinforces the observation that it is the existence of the topological defects
per se and not the details about their stabilization that determines most of the physi-
cal behaviour. This translates also into the physics of skyrmions which—once they
exist—display particle-like properties [9], irrespective of the underlying stabilizing
energy terms [10, 11]. For example the emergent magnetic and electric fields arise
entirely due to the topological properties of the skyrmion-like spin textures, cf. the
chapter by Bauer et al. in this volume. In fact, the formation of skyrmions results
from an interplay of the (usually larger) chiral DMI-type interaction and the (usually
smaller) dipolar interaction, which in turn depends on the geometry and length scales
of the nanostructures.

The experimental design of such nanostructures has seen a striking advance during
the past decade. It includes subtle engineering of DMI at interfaces [12, 13], but also
the geometric tailoring of the material into dots, pillars, wires and (ultra-) thin films
with nanoscale dimensions enforcing magnetism in zero, one and two dimensions,
respectively. For example, magnetism in one dimension is essential for concepts
such as the racetrack memory [14]. Indeed, in hindsight it appears surprising that the
theoretical proposal of the onset of effectively 1D behaviour [15] in nanowires and
pillars was initially met with disbelief [16]. This is even more surprising given the
fact that current hard disk media design [17] has evolved to pillar dimensions at the
nanoscale that are just at the predicted dimensional cross-over predicted in [15].

The ability to produce samples of reduced dimensions allows judicious control and
generation of topological defects.With the vision towardsmanipulating domainwalls
in effectively 1Dnanowires, Slonczewski discovered the ability tomovedomainwalls
(cf. Fig. 1.1a, b), with the help of spin torque associated with spin polarized currents
[18]. This enabled the influential proposal of the racetrack memory by Parkin and

http://dx.doi.org/10.1007/978-3-319-97334-0_3
http://dx.doi.org/10.1007/978-3-319-97334-0_2
http://dx.doi.org/10.1007/978-3-319-97334-0_5
http://dx.doi.org/10.1007/978-3-319-97334-0_4
http://dx.doi.org/10.1007/978-3-319-97334-0_11
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co-workers [14], where the domain wall takes the role of an information carrier. This
latter proposal generated significant activity in the manipulation of domain walls in
nanowires including recent observation of record speeds of 750 m/s [12].

Due to their topological stability similar to 2π domain walls (cf. Fig. 1.1b),
skyrmions are thus, alongside domain walls, attractive candidates to serve as infor-
mation carriers in racetrack-type memories (cf. Fig. 1.1c–h). Analogous to domain
walls, they can be transported through nanowires via spin polarized currents [21,
22] which are considerably smaller than those required to displace domain walls. In
contrast to individual π domain walls, skyrmions have the appealing feature that they
leave the magnetization field intact far away from their centre, something which is
only satisfied for pairs of standard π domain walls or 2π domain walls (cf. Fig. 1.1b).

We are thus led to investigate the origin of the extraordinary stability of smooth
textures such as domain walls and skyrmions as well as singular defects such as
vortices and hedgehogs. A unified description of these textures roots in topology,
or homotopy, and the concept of winding number will allow for a universal, yet
simple classification of these textures. It provides an easy argument about stability
of these textures and whether they can easily be transformed into each other. In order
to relate topology with the formalism of micromagnetics it is useful to recall that the
latter implies that the magnetic material is described by a continuous magnetization
field M(r, t) of constant magnitude M0 which is defined in a continuous space
parametrized by r and depends on time t . These conditions are usually satisfied
well below the critical temperature Tc and for magnetization configurations that vary
slowly compared to the spacing of the underlying crystal lattice.

In the context of data storage applications we are interested in magnetization con-
figurations that are particularly stable and hence are robust against transformations.
However, for applications, it also needs to be ensured that information can be writ-
ten onto the storage medium, and hence that such configurations can be created at
manageable fields. It is thus important to know how magnetization configurations
can be transformed into each other. In other words, we would like to have easy
arguments which inform us about the stability and transformability of magnetization
configurations under the above stated tenets of micromagnetics.1

The question whether two magnetization configurations can be continuously
deformed into each other leads us immediately to mathematical homotopy theory
which investigates deformability of functions. Two magnetization configurations
are said to be topologically (homotopically) equivalent to each other if it is pos-
sible to deform them continuously into each other without having to surpass an
infinite energy barrier (or resort to the discreteness of the lattice). Two configura-
tions are topologically inequivalent if such a continuous deformation is not possible
without surpassing an infinite energy barrier (in the bulk of an infinite sample).

1Here we refer to micromagnetics as a formalism based on a continuous magnetization field defined
in continuous space. In recent years it has become common to use the termmicromagnetics to exclu-
sively describe numerical approaches. However, this is too narrow a terminology and potentially
misleading as the formalism as originally set out by Brown [23] was an analytical continuum theory
and did not refer to numerical methods. In contrast, numerical methods involve a discrete mesh
whose scale is usually considerably larger than the physical lattice.
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Mutually deformable configurations form equivalence classes (‘homotopy classes’)
that are sometimes referred to as ‘topological sectors’. Configurations exhibit ‘topo-
logical stability’ if they are topologically nontrivial and cannot be deformed into the
uniform state. Such configurations then belong to a topological sector that is different
from the ‘topologically trivial’ sector corresponding to uniform magnetization.

It is important to note that this classification refers to a highly idealized situation
and in real magnets the topological energy barriers are never infinite for several
reasons [11]: (i) The magnetization field may vanish in certain regions of measure
zero (‘singular defects’), or, what is closely related, the magnetization is actually
defined on a discrete lattice. (ii) experimental systems are necessarily finite and
topological defects may be injected or ejected from the edge of the sample. (iii)
Anisotropies are always finite and hence the restriction of the spins to easy-axis,
easy-plane behaviour is an approximation.

It is convenient to distinguish between singular topological defects where the
magnetization is forced to vanish in a point or along a line or plane, and smooth
topological textures where the magnetization is smooth at all points. Singular topo-
logical defects require that one steps outside the framework of continuous micro-
magnetics. Examples of such singular defects are Ising-type domain walls, vortices
and vortex lines in easy-plane systems, and Bloch points or hedgehogs. In contrast,
smooth topological defects involve an entirely smooth and continuous magnetiza-
tion configuration. Examples are skyrmions, merons, and smooth π and 2π domain
walls. In order to put these structures into common context, we now give a brief syn-
opsis of homotopy which gives criteria for mutual deformability of magnetization
configurations and we closely follow [11] in the next section.

After the introduction to topological concepts and their implication on the sta-
bility of topological spin textures in Sect. 1.2 we shall discuss in Sect. 1.3 the rel-
evant energy terms in nanomagnets of reduced dimensions such as dots, pillars,
wires and films. In Sect. 1.4 we show that exact analytical solutions for the spin-
profile of topological textures such as 2π domain walls [19] can be obtained. This
includes dynamical generalizations such as soliton-soliton breathers corresponding
to a dynamically bound state of two repulsive domain walls of same chirality. It
turns out that this analytical expression [19] is also an excellent approximation for
skyrmions [19, 20], which allows to determine the field dependence of skyrmion
profiles as shown in Sect. 1.4.2. The helicity switching of a skyrmion and its close
relation to soliton-antisoliton nucleation in nanowires is addressed in Sect. 1.4.3.
Finally, we shall discuss dynamical skyrmions in Sect. 1.4.4. Their existence pro-
vides an explicit example that the (dynamical or static) robustness of a skyrmion
state is entirely induced by topology and not by energetic details. A topologically
trivial droplet shows much less stability and tuneability and is thus less suitable for
practical applications such as microwave generators. Interestingly, the dynamical
stabilization of such dynamical skyrmion state is closely related to the stabilization
of the dynamical soliton-soliton breather. As a consequence, a dynamical skyrmion
may even exist when DMI is absent. It only requires the effectively dissipationless
environment underneath a point contact injecting a spin polarized current.
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1.2 Topological Defects—A Brief Synopsis

1.2.1 Homotopy

The experimental ubiquity of topologically nontrivial textures in the magnetization
field is a direct consequence of their defining mathematical aspect: Similar to a knot
in a rope, they cannot be ‘unwound’ easily into the uniform ferromagnetic state. The
stability of these textures is thus directly a consequence of their ‘resistance’ against
deformations. Indeed, the mathematical theory of homotopy is concerned with the
mutual deformability of arbitrary functions which for us turn out to be the magneti-
zation field. Mathematical methods thus help us to decide which magnetic structures
can be continuously deformed into each other without violating the continuity of the
magnetization field. Relaxing the constraint of continuous magnetization fields, this
could happen in singularities, e.g., (Bloch-) points or lines where the magnetization
vanishes.

The concept of homotopy is most easily understood by considering mappings f
from a 1-sphere into the order parameter space X , S1 → X , which we assume to start
and end at the ‘base point’ x0 and which therefore constitute loops. Later we shall
consider the specific cases where X = S0, S1, S2, which correspond to easy-axis,
easy-plane and isotropic spins, respectively. As illustrated in Fig. 1.2a for X = R

2, if
a loop f can be shrunk to point, it is called ‘null-homotopic’,2 or somewhat loosely,
‘topologically trivial’. As shown in Fig. 1.2b, this is not always possible if the space
X is not simply connected, e.g. for X = R

2\{0}. Two ‘loops’ f, g are ‘homotopic’
(or ‘topologically equivalent’), f ∼ g, if they can be continuously deformed into

[f]=[g] [f]=[g] f g[f]=[e] [g]=[e]

f f gf g
x0 x0x0 x0 x0

g
x0

y0
c-1

c
f

c f c-1

(a) (b) (c) (d) (e) (f)

Fig. 1.2 Examples of homotopies. aA loop f is null-homotopic if it can be continuously deformed
into a point as indicated by the sequence of dashed curves. The loop f is then homotopically
equivalent to the identity e, hence the homotopy class of loop f equals that of the identity [ f ] = [e],
or equivalently, f ∼ 0. b If the topological space X is not simply connected as indicated by the
hashed area, e.g., as for R

2\{0}, then there exist loops g which cannot be deformed into the identity,
and thus [g] �= [e]. c Two loops f and g are homotopic if they can be continuously deformed into
each other as indicated by the dashed curves. Correspondingly the homotopy class of loop f equals
that of loop g. d If the topological space X is not simply connected, then there exist loops f, g that
are homotopically inequivalent. e Concatenation f ◦ g of two loops f, g is obtained by traversing
first loop f , then loop g, with f, g as defined in the previous panels. f For an Abelian fundamental
group, there is a trivial isomorphism connecting the fundamental groups with different base points,
i.e. π1(X, x0) ∼= π1(X, y0). Taken with permission from [11]

2If every map from S1 into a space X is null-homotopic, then X is called ‘simply connected’
(e.g., R

2).
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each other, as illustrated in Fig. 1.2c. Such a deformation is not always possible as is
illustrated in Fig. 1.2d for the non-simply connected space X = R

2\{0}.
Since homotopy is an equivalence relation (cf., e.g. [24]), the set of loops in space

X can be divided into disjoint homotopy classes. The equivalence class of a loop f is
usually denoted by [ f ]. In Fig. 1.2c, the loops f and g are homotopically equivalent to
each other, i.e., f ∼ g, and hence their homotopy classes are identical, [ f ] = [g]. A
null-homotopic loop f is denoted by [ f ] = [e], where e denotes the identity, and this
is sometimes also denoted by f ∼ 0. In the magnetic context this would correspond
to a uniformly magnetized state. In Fig. 1.2d, X is not simply connected, and the two
loops f, g are homotopically inequivalent and therefore [ f ] �= [g]. Below we shall
see that a homotopy class [ f ] can be classified by a topological invariant, a so-called
‘winding number’, ‘degree’, or ‘index’ w = deg f . In the simple case of S1 → S1

the winding number states how many time a path wraps around the the unit circle
(cf. Fig. 1.3a).

(a)

(b) (c)

Fig. 1.3 Topologically distinct configurations and associated winding numbers of easy-plane con-
figurations on a circle. Shown are examples of topologically distinct easy-plane spin configurations
on a circle. These configurations correspond to mappings f from a circle S1 onto a circle S1 which
can be classified by the winding number wS1 ≡ deg f , the number of times the circle is wrapped
on itself. Configurations with different winding numbers are topologically inequivalent and cannot
be deformed into each other without breaking the continuity of the magnetization field. a Config-
urations corresponding to winding numbers wS1 = 0, 1,−1, 2 cannot be mutually deformed into
each other as indicated by vertical lines. These configurations respectively correspond to a uniform,
a vortex, an antivortex, and a double vortex state. b Generally, w = deg f is formally given as the
number of preimages xk of an (arbitrary) point P in the target manifold, weighted with the sign of
the mapping. Here an example with wS1 = 1 is shown. c Mappings with winding number wS1 = 1
describe the (topological) stability of a simple vortex configuration of an easy-plane spin. Encircling
the vortex core along the black solid path the spin direction always completes a full rotation by
2π , no matter how small the radius. This case corresponds to the situation shown in panel (a) for
the case wS1 = 1 and hence in an infinite sample the vortex cannot be transformed to the uniform
ferromagnetic state with wS1 = 0.
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Two loops f, g with the same base point x0 can be joined or ‘concatenated’ to
form a new loop, f ◦ g, which has the same base point and which is defined as the
loop that is generated by first traversing loop f and subsequently loop g, a process
that is illustrated in Fig. 1.2e. This operation can be used to define a concatenation
operation on homotopy classes defined via [ f ] ◦ [g] ≡ [ f ◦ g]. With this operation
the set of homotopy classes gains a group structure and forms the homotopy group
(e.g. [24]). For the mapping S1 → X , this group is called the the ‘first homotopy
group’ or ‘fundamental group’ π1(X, x0) of X at x0. Note that this fundamental
groupmayeither beAbelian or non-Abelian.Herewe aremostly interested inAbelian
fundamental groups. However, non-Abelian fundamental groups arise for situations
as simple as for a plane with two points removed, X = R

2\{x1, x2}, and they also
play an important role for biaxial nematics [25].

So far we have considered loops starting and ending at a base point x0. However,
in order to make contact with our main goal, namely the classification of magnetic
topological defects, we are interested in freely sliding contours or unbasedmappings,
e.g. in freely movable circles or spheres whose diameter is continuously shrinking,
cf. Figs. 1.3c and 1.4. This motivates considering the ‘free’ homotopy of unbased
loops, i.e., loops without a fixed base point. Indeed, for Abelian π1(X, x0), which
includes all our cases of interest, onemayconstruct a (path independent) isomorphism
between fundamental groups defined at different base points x0, y0, i.e., π1(X, x0) ∼=
π1(X, y0), cf. Fig. 1.2f. Hence, in the Abelian case, all based fundamental groups
are isomorphic to each other and hence isomorphic to an abstract fundamental group

m=0 m=1 m=2

x x

x

d’=0

d’=0

d’=0d’=1

d’=1d’=3

d=1

d=2

d=3

re
al

 s
pa

ce
di

m
.

spin space dim.

defect dimension

Fig. 1.4 Overview of singular point defects as a function of real space and spin dimensions. The
dimension m of the spin configuration space (‘target space’) is increasing from left to right, while
space dimensions d are increasing from top to bottom. The dimension d ′ of the singular defect is
given by the Kléman-Toulouse [30] relation d ′ = d − m − 1, where d is the space dimension and
Sm the spin configuration space. Crosses indicate absence of singular point defects
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which is denoted by π1(X). More precisely, if π1(X) is Abelian then there is a one
to one correspondence between elements of the fundamental group and classes of
freely homotopic (i.e. unbased) loops.

Thus we arrived at one of themain conclusions: Topological defects (point defects
in 2D, line defects in 3D) are topologically equivalent precisely when they are char-
acterized by the same element of the fundamental group in order parameter space
(in the Abelian case).

In order to classify point defects in 3D we need to consider spheres that surround
the defects rather than loops (cf. Fig. 1.4). We are thus led to consider the mappings,
S2 → X , from a 2-sphere into order parameter space. In close analogy to the case
above, point defectswill then be characterized by freely homotopic classes ofmaps of
a sphere into the order parameter space. If themapping on a sphere on the surrounding
sphere cannot be shrunk to a point, the defect is said to be topologically nontrivial.
Without going into details, a group structure can also be given to the homotopy classes
of spheres into X , which yields the second homotopy group π2(X). Generally, the
homotopy classes of mappings of Sn → X form a group πn(X), the so called nth
homotopy group. All groups πn(X) with n ≥ 2 are Abelian.

1.2.2 Winding Numbers

Now that we have seen that mutually deformable configurations form equivalence
classes, it is useful to identify a quantity that serves as a fingerprint for a given
equivalence class. Such an equivalence class would for example correspond to a
simple translation of a domain wall or a skyrmion, but it may also be more involved
and consist of the two helicity states of a skyrmion (cf. Sect. 1.4.3). Such a fingerprint
is given by the so-called degree of a mapping f , deg f , also known as the winding
number w. Configurations with different winding numbers cannot be continuously
deformed into each other without introducing point defects.

In magnetism, the aligned ferromagnetic state is characterized by a winding num-
ber 0 and is ‘topologically trivial’, while vortex or skyrmion-type configurations have
nonvanishing winding number as we shall see below, and hence are referred to as
being ‘topologically nontrivial’. Thus, the latter configurations cannot continuously
be deformed into the uniform state, which renders them ‘topologically stable’. Of
course, such topological stability implies the existence of smoothmappings, and thus
magnetization configurations that vary slowly with respect to the lattice. In actual
physical situations, these infinite topological energy barriers become finite [11] if (i)
either the magnetization field is allowed to vary at the scale of the lattice, or if (ii)
one takes into account the finiteness of actual easy-axis and easy-plane anisotropies,
which contrastswith the underlying assumption of topological considerations that the
(‘target’) spin configuration space be strictly anm-sphere Sm . For example, it is pos-
sible to unwind 2π domain walls in a 1D chain of easy-plane spins if the anisotropy
is finite. The spin configuration (‘target’) space then changes from easy-plane S1

to spherical S2, and in 1D no strict topological defects can exist since π1(S2) = 0.
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This unwinding of 2π domain walls over the hard-axis is also known as ‘escape via
the third dimension’ and lies at the heart of the instability of 2π domain walls in
large external fields [19].

Formally, the winding numbers deg f provide a bijection of the homotopy classes
into the integers Z, as originally shown by Hopf. Two functions f, g are homotopi-
cally equivalent iff deg f = deg g, and the mapping is topologically trivial when
deg f = 0. In contrast to the previous section where we discussed homotopy at the
example of planar curves, in magnetism we are concerned with the more general
mapping that the magnetization field = m(x) provides. Generally, we consider a
mapping f : M → N , and we are mostly interested in mappings from an m-sphere
to an n-sphere, i.e., M = Sm , and N = Sn . The latter constitutes the configuration
space or ‘target manifold’ N of an individual spin. For example, an isotropic spin has
S2, an easy-plane spin S1, and an Ising spin the 0-sphere as targetmanifold. The ‘base
manifold’ M , is either an m-sphere enclosing a singular topological point defect, or
in the case of a continuous texture such as a skyrmion or a smooth 2π domain wall,
the base manifold is defined by real space R

m with infinity compactified to a point,
since magnetization configurations are assumed to take an identical value at infinity.

For equal dimension of the base and the target manifold, n ≥ 1, the homotopy
group is simply

πn(S
n) ∼= Z, (1.1)

and thus Abelian. Thus each homotopy class of deformable configurations can be
characterized by an integer. This integer is indeed the degree or winding number of
the mapping, and it counts how many times the target manifold is wrapped around
the base manifold under the mapping. Topologically nontrivial configurations char-
acterized by a nonzero winding number exist whenever the dimensions of the sphere
constituting the base manifold and that of the target manifold agree. We note that
the n = 0 case describing Ising spins is a slight exception since then π0(S0) ∼= Z2,
rather than the integers Z.

Before we compute the winding number in the general case, we start with the
simple example of easy-plane spins arranged on a circle as illustrated in Fig. 1.3a,
b, where winding numbers wS1 are those of the mapping f : S1 → S1. Figure1.3a
shows configurations of different winding numbers, separated by vertical bars. From
left are shown, deformed uniform states (wS1 = 0), radial, right-handed (counter-
clockwise, CCW), and left-handed (clockwise, CW) vortices (wS1 = 1), antivortices
(wS1 = −1), and double-vortices (wS1 = 2).

Note that magnetic vortices and antivortices have widely been studied in experi-
ments. Recently, whole networks of vortices and antivortices have been created after
quenching and their mutual interaction has been studied recently [26]. It should be
noted that most of these textures exhibit cores [27, 28], and thus their order param-
eter space is not strictly S1, and therefore these textures should more adequately be
regarded as merons (cf. Sect. 1.2.4).

How can we compute the winding number? We now go into some mathematical
details of its derivation as it appears frequently without derivation in the remainder of
this book, in particular as ‘skyrmion number’ for spherical spins. We continue with
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our simple example of easy spins which define a mapping f : S1 → S1. As shown
in Fig. 1.3b, we now may consider an arbitrary point P ∈ S1 in the image, that is a
particular angle of the easy-plane spin with respect to predefined axis. The degree
of the mapping f is then obtained by summing over all ‘preimages’ xk , defined via
f (xk) = P , each weighted with the sign of the functional determinant, i.e.,

deg f =
∑

xk∈ f −1(P)

sgn D(xk), (1.2)

with the Jacobian, D ≡ det(∂ f i/∂x j ), which is assumed to be nonsingular in xk . It
is clear from the example in Fig. 1.3b that the degree is independent of the choice of
the point P , a fact that can also be shown generally (Brouwer fixed point theorem).

The expression (1.2) may readily be generalized to mappings f : Sn → Sn in
higher dimensions where it is conveniently expressed as deg f = ∫

dnx D(x)δ( f (x)
− P), with x a point in compactified R

n that is isomorphic to Sn . Using an unnor-
malized averaging function μ on the target manifold N , one may also express this as
deg f = ∫

M dmx D(x)μ( f (x))/
∫
N dn y μ(y). The most general and useful expres-

sion for the degree of a mapping or ‘winding number’ is given by [11],

deg f =
∫
M f ∗Ω∫
N Ω

, (1.3)

whereΩ is a differentialn-formdefined on the targetmanifold N and f ∗Ω denotes its
pullback onto the basemanifoldM . Inmagnetism,we are interested inM = N = Sn ,
and Ω is then conveniently chosen as a surface volume form with respect to the
metric induced from R

n+1, i.e., Ω = ∗rdr .3 We now simplify the most general
expression (1.3) for the common cases of easy-plane spins and spherical spins. The
magnetization components are identified with those of themapping f , i.e.,ma = f a .

Easy plane spins—In this case the target space is given by S1, and we may intro-
duce the azimuthal angle φ and writem = (cosφ(x), sin φ(x), 0). In this case (1.3)
reduces to the S1-winding number,

wS1 ≡ deg f = 1

2π

∫
dm1m2 − dm2m1 = 1

2π

∫ L/2

−L/2
dx ∂xφ (1.4)

where x is a parameter along the loop of length L in real space. This ‘loop’ may also
include the case of linear interval provided that the magnetization at the ends of the
interval takes the samevalueφ(−L/2) = φ(L/2) = φ0.Aswe further discuss below,
a 2π domain wall confined to the easy-plane provides an example of a configuration

3Specifically, we have Ω = ∗rdr ≡ 1
n! εi0i1...in x

i0dxi1 ∧ · · · ∧ dxin . This differential n-form sat-
isfies dΩ = ω where ω is the standard volume element on R

n+1. Correspondingly,
∫
N Ω =∫

Bn+1 dΩ = (n + 1)
∫
Bn+1 ω = (n + 1)Vn+1,where in the first stepwemade use of Stokes’ theorem

and Bn+1 denotes the unit ball in R
n+1 with ∂Bn+1 = Sn and Vn+1 its volume.
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with deg f = ±1, with the sign referring to the total chirality of the 2π domain wall
[19], which can be detected in experiment [29].

Spherical spins—In this case, the target space S2 can, e.g., be parametrized as
m = (m1,m2,m3) with the constraint |m| = 1. Here the base manifold M is two-
dimensional and can be parametrized by x1, x2 which may, e.g., refer to spherical
(M = S2), polar or cartesian coordinates (M = R

2). In this case, the general expres-
sion (1.3) for the degree or S2-winding number takes the following form [11],

wS2 ≡ deg f = 1

8π

∫

N
εabc m

admb ∧ dmc = 1

8π

∫

M
εabc m

a∂im
b∂ jm

c dxi ∧ dx j

= 1

4π

∫

M
m · (∂1m × ∂2m) dx1dx2. (1.5)

Here we used a double summation convention in the first two equations and the
notation ∂imb ≡ ∂mb/∂xi . Note that with Cartesian coordinates the last expression
is often referred to as ‘skyrmion number’,w ≡ deg f . If we use the the usual spherical
coordinates for themagnetization unit vector,m = (sin θ cosφ, sin θ sin φ, cos θ), in
order to accommodate the constraint |m| = 1, then the degree (1.5) may be expressed
as

wS2 ≡ deg f = 1

4π

∫

M
sin θ (∂1θ ∂2φ − ∂2θ ∂1φ) dx1dx2. (1.6)

Note that in both (1.6) and the last expression in (1.5) themanifoldM is usually under-
stood to be either the compactified plane R

2, or a 2-sphere. Hence the coordinates
x1, x2 are not necessarily Cartesian, but may be chosen to be arbitrary curvilinear
coordinates in real space such as, e.g., real-space polar coordinates ϑ, ϕ.

In the following sectionswe now return to the general case of arbitrary dimensions
and use the winding number to classify singular topological point defects and smooth
textures. Singular point defects have a vanishing magnetization field at the centre,
and are characterized by the fact that for a spin with configuration space Sn , the
winding number evaluated on an n-sphere Sn wrapping around the defect will be
nonzero. Explicitly, we consider a wrapping 2-sphere for an isotropic spin with
n = 2, a wrapping 1-sphere or circle for an easy-plane spin with n = 1, and a 0-
sphere consisting of two points for an Ising spin (n = 0). Smooth topological textures
such as 2π domain walls and skyrmions have a magnetization field that is smooth
everywhere, but are topologically nontrivial resembling ‘knots’ in the magnetization
field that cannot continuously be transformed to the uniformmagnetization state. We
now consider these two cases in more detail.

1.2.3 Singular Topological Defects

Singular topological defects have a magnetization field that is forced to vanish in a
d ′-dimensional subspace within a d-dimensional sample. These two quantities are
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different as can be seen from the familiar example of a 2D vortex shown in Fig. 1.3c
which corresponds to d ′ = 0 and d = 2, as the vortex core represents a point in a
2D sample. Generally, we may consider wrapping a d ′-dimensional defect with an
r -sphere, Sr , and an overview of all relevant cases is shown in Fig. 1.4. The space
dimension of the sample d, the dimension d ′ of the defect, and the dimension of the
surrounding r -sphere are related as follows [30],

d = d ′ + r + 1. (1.7)

The internal spin space is described by an m-sphere Sm , which includes all cases
of major interest, namely easy-axis (m = 0), easy-plane (m = 1) and isotropic spins
(m = 2). The statement (1.1) about homotopy groups implies that nontrivial map-
pings exist for a mapping of an m-sphere onto a sphere of the same dimension, i.e.,
πm(Sm) = Z, for m ≥ 1. Topological defects may also exist for m = 0, a case that
describes domain walls in easy-axis or Ising magnets, cf. Fig. 1.4 (i). However, this
case is special as there is either a defect or no defect, as two domain walls can be
annihated. This is expressed by π0(S0) = Z2 [31].

Since we are mapping the r -sphere of the surrounding path onto the m-sphere of
internal spin space, the relation (1.1) implies that topological defects may exist when
r = m, or [30],

d = d ′ + m + 1, (1.8)

where d is the space dimension of the sample, d ′ the dimension of the defect (d ′ ≤
d − 1), and Sm the internal spin configuration space. If we consider n-dimensional
(normalized) vector order parameters, then m = n − 1, and d = d ′ + n.

We now discuss the various examples as illustrated in Fig. 1.4: In the left column
it is shown that for an easy-axis or Ising-type spin (m = 0), the defect in accordance
with (1.8) will be a ‘domain wall’ and thus a 2D object in d = 3, a line in d = 2
and a point in d = 1. The middle column illustrates the case of easy-plane spins
(m = 1) that may form a vortex line in d = 3 and the by now familiar example of a
planar vortex in d = 2 with a zero dimensional (d ′ = 0) vortex core. Finally as illus-
trated in Fig. 1.4 (iii), spherical spins in d = 3 with m = 2 may form a ‘hedgehog’,
‘monopole’, or ‘Bloch-point’ point defect (d ′ = 0) in the magnetization field. Note
that the remaining ‘entries’ in the table shown in Fig. 1.4 do not exist as πn(Sm) = 0
for n < m which excludes the existence of topologically nontrivial textures.

1.2.4 Smooth Defects—Skyrmions, Merons and Domain
Walls

Apart from the singular point defects there is a second category of topologically
nontrivial textures where the magnetization field is smooth and finite at all space
points. A smooth defect is characterized by the fact that it cannot be deformed
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continuously to the ferromagnetic state in a sample that extends to infinity. This
resembles a knot tied into a rope that cannot be untied without using the ends or by
cutting the rope.

We consider textures where the magnetization is assumed to tend asymptotically
to a uniform value, i.e.,m∞ = const. as |r| → ∞. The direct space R

d can then be
stereographically projected onto the punctured sphere of dimensionality d with the
missing point corresponding to |r| → ∞ (a so called one-point compactification). If
the configuration space of the order parameter is an m-sphere, Sm , then topological
defects may arise when d = m, due to the relation (1.1). Here we are interested in
dimensions d ≤ 2. In contrast to the singular defect configurations discussed above,
such as Ising domain walls, vortices and hedgehogs, the present configurations are
smooth and do not contain singular points where the order parameterm is forced to
vanish.

Domain walls—A simple example arises when m = d = 1, i.e. when easy-plane
spins are arranged along a 1D chain. This is the situation described by a 1D sine-
Gordon model [32, 33] involving a compact field variable φ(x, t). Due to π1(S1) =
Z, topologically distinct field configurations (for either periodic boundary conditions
or φ fixed at infinity), are then characterized by how many times they wrap around
the easy-plane circle S1 as one proceeds along the sample. The degree or winding
number wS1 = (1/2π)

∫
dx ∂xφ as given by (1.4) then counts the number of times

(including the sign) the field wraps around the unit circle as one traverses the sample
cf. Fig. 1.5. Wrapping around exactly once corresponds to one (topological) soliton
in a bona fide sine-Gordon model [32–35], withw characterizing its winding number
or total ‘chirality’. For example, a single 2π soliton in the sine-Gordon (sG) model
is characterized by wS1 = ±1 as illustrated in Fig. 1.4a, while sG soliton pairs may
then correspond to total winding number |wS1 | = 2 when the two solitons have the
same chirality in which they are referred to as soliton-soliton pairs. In contrast, two
solitons of opposite chirality have winding number zero as they can be continuously
deformed into the uniform ‘vacuum’ state.

Note, however, that for magnetic systems with an easy-axis anisotropy the mag-
netization in a domain wall does not fully wind around the unit circle. In this case,
easy-plane solitons rather connect two anisotropy minima that differ by an angle π ,
cf. Fig. 1.1a. A complete twist around the unit circle (wS1 = ±1) would involve a pair
of magnetic domain walls or π -solitons with the same chirality cf. Fig. 1.1b. Here
chirality is defined as Cx = (1/π)

∫ ∞
−∞ dx ∂x θ with θ the (extended) polar angle

within the easy plane. Therefore soliton pair configurations with two π -solitons of
same chirality have winding number |wS1 | = 1 and are topologically stable with
respect to the easy-plane. Such configurations are therefore termed ‘soliton-soliton’
pairs. In contrast, two solitons of opposite chirality have winding number wS1 = 0,
are therefore homotopically equivalent to the ferromagnetic state and are termed
‘soliton-antisoliton’ pairs. These configurations will be discussed in Sects. 1.4.1.2
and 1.4.1.3. Soliton-antisoliton configurations play the role of energy barriers in
nanopillars or nanowires as used in magnetic storage media, for details we refer to
[11].
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(a) (b)

(c) (d)

(e) (f)

Fig. 1.5 2π domain walls, skyrmions and merons (or vortices) as smooth, nonsingular topological
textures that owe their stability to the homotopy relations πn(Sn) = Z as exemplified by stereo-
graphic projection. a A 2π -domain wall in an easy-plane system wraps once around the unit circle
as one proceeds along the chain. b The uniform ferromagnetic state maps to a single point and hence
represents a topologically trivial state. c A hedgehog skyrmion in a 2D sample. The topological
stability is apparent when the 2D sample is projected to a sphere via stereographic projection while
maintaining the spin direction. A hedgehog skyrmion leads to a hedgehog defect on the sphere. The
topological stability of the skyrmion is a consequence of the relation π2(S2) = Z. d Upon stereo-
graphical projection, a Bloch-type skyrmion results in a hedgehog defect that has been ‘combed’
along the equator. This results from a continuous deformation of the hedgehog structure shown
in (c). Configurations (c) and (d) cannot be deformed into the uniform state shown in (b) without
violating continuity of the magnetization field on the sphere. This illustrates the topological stability
of skyrmions. e A hedgehog-type meron, often also described as a vortex (albeit with nonvanishing
coremagnetization), corresponds to half a skyrmionwhich is evident upon stereographic projection.
f A Bloch-type meron is topologically equivalent to the hedgehog-type meron shown in (d)

In this context it should also be noted that chirality itself is not caused by the
DMI as is sometimes argued in the literature. Chirality may emerge completely
spontaneously. In fact, it has been shown that already at the quantum level chirality
emerges due to solitons undergoing quantum fluctuations in a spin chain, an effect
that was observed via polarized neutron scattering [36]. Note that this emergence of
chirality is spontaneous and related to the double valuedness of a spin-1/2 wavefunc-
tion. It is thus fundamentally different from a chirality that arises due to an explicit
parity breaking DM-type interaction in the Hamiltonian which gives rise to spin
spirals observed in thin films [37, 38] (Fig. 1.6).

Skyrmions—We are now in a position to explain the topological stability of
skyrmions. For d = m = 2, i.e., isotropic spins on a 2D plane, (1.1) predicts
π2(S2) = Z, explaining the existence of (simple) skyrmions with winding num-
ber |wS2 | = 1 (cf. Fig. 1.5). As shown in Fig. 1.5c, stereographic projection (here
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(a) (b) (c) (d)

Fig. 1.6 Experimental detection and modelling of the in-plane components of a spin texture of
a skyrmion. a Skyrmion as part of a skyrmion lattice in the chiral thin film magnet Fe0.5Co0.5Si
[39] as detected with Lorentz transmission electron microscopy (LTEM). b Skyrmion in a sputtered
Pt/Co/MgO nanostructure as observed with photoemission electron microscopy (PEEM) [40]. Here
regions with magnetization components antiparallel to the x-ray beam orientation appear with dark
contrast and regions with magnetization parallel to the beam appear in white as shown in the
simulation (c). d shows the corresponding spin texture with the color bar indicating mz . Note that
LTEM is not sensitive to the out of plane component while PEEM is only weakly sensitive to it
for a beam incident under an oblique angle. Image in (a) and (b)–(d) are taken from [39] and [40],
respectively

with respect to the south pole), yields a hedgehog spin texture on the sphere
which is evidently topologically nontrivial according to our discussion in Sect. 1.2.3.
It cannot be continuously transformed into the ferromagnetic state shown in Fig. 1.5b,
i.e., the hedgehog “cannot be combed into the uniform ferromagnetic state” a state-
ment ascribed to Polyakov. Note that the spin structure remains topologically non-
trivial if the spins rotate tangentially and form a ‘Bloch skyrmion’ (cf. Fig. 1.5c).
It is instructive to explicitly evaluate the winding number (1.6) for a skyrmion-type
structure parametrized by spherical coordinatesm = (sin θ cosφ, sin θ sin φ, cos θ),
with the symmetric ansatz θ(ρ) and φ(ϕ), where ρ, ϕ denote polar coordinates in
the plane. The winding number (1.6) then takes the simple form,

wS2 = q

2
[mz(0) − mz(∞)], (1.9)

where mz = cos θ , and q = wS1 = (1/2π)
∫ 2π
0 dϕ ∂ϕφ is the S1-winding number

along the domain wall delimiting the skyrmion. With φ = ϕ + χ , we obtain for
χ = ±π/2 a chiral Bloch-type skyrmion as shown in Fig. 1.1c (i), while χ = 0, π
describes a Néel or hedgehog skyrmion (cf. Fig. 1.1c (i)). For all these cases we have
q = 1 and thus for all textures shown in Fig. 1.1 we obtain wS2 = −1. The reversed
configuration obtained via the substitution mz �→ 1 − mz yields wS2 = 1. Of course
any texture that arises via a smooth deformation from these symmetric textures will
share their winding number.

Merons—Avortexwith a ‘core’ of out-of-easy planemagnetization is also referred
to as a ‘meron’, in order to distinguish it from its superconducting sibling where the
order parameter vanishes at its centre. Such configurations are described in detail in
the chapter by Behncke and Meier. In contrast to the skyrmion, the magnetization
resembles that of a vortex for largeρ as shown in Fig. 1.3c and thusmz(ρ → ∞) = 0.
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For a symmetric vortex, the azimuthal angle of themagnetization can be parametrized
as φ = qϕ + χ , where q = ±1 is often referred to as the (topological) vorticity,
equalling wS1 in Fig. 1.3a. For a meron the winding number (1.9) then becomes,

wS2 = pq/2, (1.10)

where p ≡ mz(0) = ±1 is often referred to as the ‘polarity’ of the vortex. We thus
see that for a meron |wS2 | = 1/2, which is half that of a skyrmion. This can also be
seen directly from a stereographic projection as shown in Fig. 1.5e, f.

Historically, after Skyrme’s initial work [3, 4], these defects acquired popu-
larity in magnetism thanks to Belavin and Polyakov’s work where topologically
nontrivial solution for isotropic magnets or nonlinear sigma models were explicitly
constructed [41].

1.3 Energy and Magnetization Dynamics at the Nanoscale

We start with a few considerations that are shared by simple nanostructures, namely
dots, nanowires, and thin films. Within the framework of micromagnetics, the mag-
netization dynamics is assumed to obey the so called Landau-Lifshitz-Gilbert (LLG)
equations of motion for the magnetization unit vector m,

∂tm = −γμ0m × Heff + α m × ∂tm. (1.11)

Here γ ≡ ge/(2me) = gμB/� > 0 denotes the gyromagnetic ratio, with e > 0 the
electron charge, g the electron’s g-factor, μB the Bohr magneton, me the electron
mass, and α > 0 denotes a dimensionless damping constant. The first term on the
right hand side describes precession in the effective magnetic field,

μ0Heff = − 1

M0

δE

δm
, (1.12)

where E is the total magnetic energy to be given below. The second term on the r.h.s.
of (1.11) is a damping term, proportional to the damping constant α. It is often more
convenient to rewrite the LLG equations as follows,

1 + α2

γμ0
∂tm = −m × Heff − α m × (m × Heff), (1.13)

which up to the damping dependent renormalization of the precession frequency
resembles the form originally proposed by Landau and Lifshitz. In the absence of
pinning, it is understood that the magnetization satisfies the above free boundary
conditions at the sample surface at all times. Note that in contrast to the Bloch
equations describing magnetic resonance, the LLG equations only lead to transverse
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but not longitudinal relaxation of the magnetization, since all terms on the r.h.s. of
(1.13) conserve the magnitude of the magnetization, i.e., |m| = 1 at all times. This
restriction is relieved by passing on to the so-called Landau-Lifshitz-Bloch equation
[42]. Current induced torques can be added to the r.h.s. of (1.13) [18, 43] as discussed
in the chapter by Thiaville and Miltat.

The total magnetic energy is given by

E =
∫
d3x

{
A(∇m)2 − Ke,crystm

2
z + Kh,crystm

2
x − μ0HM0mz

}
+ Em, (1.14)

where Em denotes the magnetostatic energy. Note that for the moment we neglected
the Dzyaloshinskii-Moriya interaction (DMI) which will be introduced in Sect. 1.3.3
below. Often it is convenient to parametrize the magnetization unit vector as m =
(sin θ cosφ, sin θ sin φ, cos θ). The equations ofmotion (1.13) can then be expressed
as (cf. appendix of [11]),

1 + α2

γμ0
sin θ ∂tφ = −H θ

eff + α
Hφ

eff

sin θ
,

1 + α2

γμ0
∂tθ = Hφ

eff

sin θ
+ αH θ

eff , (1.15)

whereμ0H
η

eff(x) = −(1/M0)(δE/δη(x))with η = φ, θ denoting the spherical com-
ponents of the effective field, and δ/δη(x) being the functional derivativewith respect
to η(x). For the reduced dimensions characteristic of the nanostructures discussed
below, this functional derivative reduces as follows: In quasi 1D situations, it has to
be replaced by δ(E/A )/δη(x) withA the sample cross-section, and for a spatially
uniform magnetization it reduces to the partial derivative ∂(E/V )/∂η.

1.3.1 Nanodots

Even though zero-dimensional magnetic nanodots do not exhibit topological spin
textures, we briefly note how the energy is reduced for such structures whose dimen-
sions L are sufficiently small that they satisfy the inequality,

L < πδm, (1.16)

where δm = 2
√
A/μ0M2

0 is also known as the ‘exchange length’. Except for dimen-
sions L � πδm where nonuniform demagnetizing fields will lead to noticeable
nonuniformmagnetization configurations including ‘configurational anisotropy’ [44,
45], the magnetization will be uniform to high accuracy in the absence of pinning
effects at the sample surface, i.e., vanishing normal derivative. For m = const., the
energy (1.14) can be expressed as,
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E = V
{−Ke,crystm

2
z + Kh,crystm

2
x − μ0HM0mz

} + Em, (1.17)

where V denotes the sample volume. For ellipsoidal samples and coordinates aligned
with the principal axes, the demagnetizing energy is diagonal in the magnetization
components,

Em = μ0V

2

∑

i

Ni M
2
i , Ni = − 1

4π

∂2

∂r2i

∫

V
d3r ′ 1

|r − r′| , (1.18)

where the demagnetizing factors Ni are r-independent for an ellipsoidal sample and
satisfy

∑
i Ni = 1. For a sphere, all Ni = 1/3,whereas for a cylinder extending along

x one has Ny = Nz = 1/2, Nx = 0, while for an infinite disk with normal along z
one has Nz = 1.

The energy of a single domain particle of ellipsoidal shape can be expressed as
(here the long-axis is chosen to be the x-axis),

E = V
{−Ke,effm

2
z + Kh,effm

2
x − μ0HM0mz

}
, (1.19)

where the effective anisotropy constants contain both demagnetizing and crystalline
effects [19],

Ke,eff = Ke,cryst − (μ0/2)M
2
0 (Nz − Ny),

Kh,eff = Kh,cryst + (μ0/2)M
2
0 (Nx − Ny). (1.20)

In particular we find that for a cylindrically shaped particle, the shape anisotropy
effectively induces an easy-axis anisotropy along the particle axis even in the absence
of crystalline anisotropies. Conversely, crystalline anisotropies may override the
shape anisotropy and give rise to a remanent state where the magnetization is tilted
away from the long-axis of a nanowire, an effect that has first been observed for
ultrathin Co slabs [46] where the crystalline anisotropy is induced by strain due to
the substrate.

However, there can be a subtle modification of this argument: If the transverse
length scales are of the order of the exchange length and if the sample has non-
ellipsoidal shape, e.g., a square platelet magnetized in plane, then a ‘configurational
anisotropy’ [44, 45] may arise even though the above argument would predict an
absence of anisotropies in the film plane. The origin of this shape induced anisotropy
lies in the fact that for non-ellipsoidal samples, the demagnetizing field is nonuniform
and induces small nonuniformities in the magnetization distribution.
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1.3.2 Nanowires

Also extended samples with sufficiently small lateral dimensions may exhibit a
reduced dimensionality. In fact, the tremendous progress in sample preparation tech-
niques [46–50] now allows to tailor samples that exhibit zero, one or two-dimensional
behavior respectively. Here we are interested in quasi-one dimensional (1D) struc-
tures, so called ‘nanowires’. Such wires are a fundamental component of prospective
‘racetrack’ memories [51] that exploit the stability of domain walls in nanowires to
encode information. We have seen in the previous Sect. 1.3.1 that for diameters d
such that,

d < 2πδm, (1.21)

the magnetization will be quasi 1D, depending only on the coordinate along the
wire, i.e., m = m(x). If there is an additional easy-axis anisotropy, δm should be
replaced by δ0 = √

A/Ke with Ke = Ke,eff given by (1.20). Such 1D behavior was
first predicted theoretically [19] and is now regularly observed. Since such quasi-1D
ferromagnets of nanoscale dimensions can now artificially be created and constitute
essential components of proposed nanodevices [14, 51–54] we shall review the prop-
erties of 1D solutions of the Landau-Lifshitz equations in more detail. In particular,
we shall see that such a micromagnetic description is in excellent agreement with
magnetization profiles measured via scanning probe microscopy, demonstrating the
success of micromagnetics framework even at nanoscale dimensions. Dynamical
solutions of the Landau-Lifshitz equations include moving domain walls but also
remarkable phenomena such as exotic breathers consisting of mutually repulsive
domain walls of the same chirality [55] as discussed below.

In sufficiently narrow wires with the transverse dimensions satisfying the condi-
tion (1.21) and which we assume to be perpendicularly magnetized (e.g. [12]), the
energy per unit cross-sectional area E = E/A takes the following form [19],

E =
∫ L/2

−L/2
dx

{
A(∂xm)2 + Kh,eff m

2
x − Ke,eff m

2
z − μ0HM0mz

}
, (1.22)

while the magnetization dynamics is given by the Landau-Lifshitz equations (1.13)
with the magnetization unit vector depending only on one space direction and time,
i.e.m = m(x, t). Here, A is the exchange constant, Kh,eff > 0 defines an easy-plane
with mx = 0, while Ke,eff > 0 favors an easy-axis within this plane, and finally, the
last term describes the coupling to an external field H along the easy-axis. As in
the case of a magnetic dot, the anisotropy constants will be effective ones and in
general contain crystalline and shape contributions [15, 56] as defined in (1.20).4

4For a nanowire with effective easy-axis along the wire (x-axis), as is relevant for data storage in
perpendicular hard diskmedia, the field is applied alongwire and the effective anisotropies are given
by −Ke,e f f m2

x + Kh,e f f m2
z with Ke,e f f = Ke,cryst + (μ0/2)M2

0 (Nx − Ny) and correspondingly
for Kh,e f f . The nucleus solution is then obtained via the replacement θ → φ. For a discussion of
effective anisotropies for different sample shapes, cf. [19].



1 Solitons in Real Space: Domain Walls, Vortices, Hedgehogs, and Skyrmions 21

This reduction of the nonlocal dipolar to local anisotropies is valid as long as the
magnetization is varying slowly compared to the sample cross section [15, 56]. In the
closely related context of nucleation in a thin ring this has been verified in [57] and
on the basis of numerical computations it was concluded that the 1D approximation
even applies to rather wide annuli. In the case of slowly varying magnetization
configurations in a thin film this local approximation has been proven rigorously in
[58]. Note that all these results explicitly disprove an objection originally raised by
Aharoni [16], which has first been addressed in [59] and in more detail in [56].

1.3.3 Thin Films

Apart from bulk materials, skyrmions exist in perpendicularly magnetized ultrathin
films with an interfacial DMI. The energy of a film with surface normal along the
z-direction is then given by,

E = t
∫
d2x

{
A(∇m)2 − Ke,eff m

2
z − μ0HM0mz

}
+ EDMI + Em,nonloc + Em,Néel

(1.23)
where t denotes the film thickness. Here we assume an interfacial DMI term given
by

EDMI = D t
∫
d2x (mzdiv m − (m · ∇)mz) . (1.24)

where D > 0 is the constant characterizing the strength of DMI, having dimensions
of energy per area. Em,nonloc denotes the nonlocal part of themagnetostatic interaction
which helps to stabilize a skyrmion in addition to the DMI term as we shall see in
Sect. 1.4.2.Wealso assume that thewall curvature is small such that it remains straight
over distances larger than the film thickness. In this case the magnetostatic energy of
a Néel wall exceeds that of a Bloch wall by an energy Em,Néel and we have assumed
that no crystalline hard-axis anisotropy is present. Local demagnetizing effects are
captured by an effective anisotropy as above, where for a thin film geometry we
have Ke,eff ≡ Ke,cryst − (μ0/2)M2

0 and for a perpendicularly magnetized film it is
required that the effective easy-axis anisotropy satisfies Ke,eff > 0, which implies a
“quality factor” Q ≡ Ke,cryst/(μ0/2)M2

0 > 1 for perpendicular spin orientation.

1.4 Statics and Dynamics of Smooth Spin Textures

After having derived the relevant effective energy densities for nanowires and thin
films, we shall now discuss how they entail topologically nontrivial smooth magneti-
zation textures. Our discussion starts with smooth π domain walls emphasizing their
topological character in the form of ‘chirality’ and ‘charge’, which are related to S1

and S0 winding numbers. We then show how twisted and untwisted pairs of such
domain walls respectively describe 2π domain walls, and nonuniform nucleation of
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magnetization reversal in applied magnetic fields. A dynamical generalization of a
2π domainwall yields a soliton-soliton breatherwhere the repulsive domainwalls are
stabilized entirely due to dynamical effects. Generalizing the 2π domain wall profile
to two spatial dimensions yields a remarkable variational ansatz for a static skyrmion
which excellently describes the field dependence of the skyrmion radius in thin films
[19, 20]. As an example of a transition between topologically equivalent states that
are, however, separated by an energy barrier, we discuss the helicity switching of
skyrmions in DMI-free thin films. In bulk samples we discuss how the end points of
skyrmion lines or their bifurcation involves the existence of singular point defects
such as hedgehogs. This illustrates the role of singular point defects in mediating
changes in winding numbers. The existence of dynamical skyrmions originates in a
precessional stabilization of a skyrmion that even exists in DMI free materials. This
mechanism is closely related to the precessional stabilization of the soliton-soliton
breather. For a discussion of experimental aspects of dynamical skyrmions we refer
to the chapter by J. Åkerman.

1.4.1 2π Bloch Walls and Breathers

We first consider some examples of domain wall configurations in quasi 1D samples
(‘nanowires’) that can be derived in analytically closed form, and demonstrate that
such configurations indeed agree rather well with observed magnetization profiles in
nanowires [60]. In order to find explicit solutions of the Landau-Lifshitz equations it
is convenient to incorporate the constraint |m(x, t)| = 1 by introducing angular fields
viam = (sin θ cosφ, sin θ sin φ, cos θ). As we are interested in static configurations
of minimal energy, we consider configurations that are restricted to the easy-plane,
mx = 0 and the energy per unit area (1.22) then can be expressed as follows,

E = 2Ke

∫ L/2

−L/2
dx

{
1

2
δ20 (∂xθ)2 +U0(θ)

}
, (1.25)

where
U0(θ) = (1/2) sin2 θ − h cos θ, (1.26)

the characteristic length scale is defined as δ0 = √
A/Ke, and the reduced external

field is given by
h = μ0HM0/2Ke. (1.27)

Here we used for simplicity the notation Ke ≡ Ke,eff . The azimuthal angle has been
fixed to the easy-plane value φ = ±π/2. In the following it is convenient to restrict
to the case φ = π/2 and instead let θ (mod 2π ) vary on an extended range from 0 to
2π . This may be mapped back to the standard parametrization with 0 ≤ θ ≤ π , via
θ → 2π − θ, φ → φ + π .
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Static solutions are then obtained from an integration of the Euler-Lagrange equa-
tions δE /δθ = 0, or explicitly

− δ20 ∂2
x θ +U ′

0(θ) = 0. (1.28)

which has the first integral,

(1/2)δ20(∂xθ)2 −U0(θ) = c (1.29)

where c is an integration constant larger than the minimum of −U0. Here we are
interested in spatially localized, ‘solitary’ objects such as domain walls or domain
wall pairs and hencewe choose boundary conditions such that ∂xθ = 0 at x = ±L/2.
In this chapter we take the limit L → ∞ as we are interested in configurations that
exist in arbitrarily long samples.

1.4.1.1 A Single π -Domain Wall

In the absence of an external field, the Euler-Lagrange equation (1.28) is solved by
the the Bloch-wall,5 ‘domain-wall’, or ‘π -soliton’,

θ0(x/δ0) = 2 arctan e−x/δ0 , (1.30)

which interpolates between the domains of ‘up’ and ‘down’ magnetization and is
therefore also referred to as ‘kink’. The Bloch-wall has width δ0 = √

A/Ke and
an energy per area, Es = 4

√
AKe. As stated in the previous section, the azimuthal

angle for all 1D situations is assumed to be fixed to easy-plane value φ = π/2, and θ

(mod 2π ) varies on an extended range. The symmetries of the original energy density
(1.25) imply a fourfold degeneracy of this soliton solution. These soliton solutions
can be written as

θQC(x/δ0) = 2QC arctan eQx/δ0 (1.31)

with soliton ‘chirality’ [61–63], C = ±1, and soliton ‘charge’, Q = ±1, as internal
degrees of freedom.6 The chiral degree of freedom is related to the sense of rotation
of the magnetization as one proceeds along the x-axis, cf. Fig. 1.1a. As evident from
Fig. 1.4a, b, the ‘chirality’ and the ‘charge’ are descendants of the winding numbers
discussed before: The chiral degree of freedom C is twice the easy-plane winding
number of the homotopy group π1(S1), while the charge Q is related to the easy-
axis winding number of π0(S0) ∼= Z2 where the two elements distinguish either
the presence of a π domain wall (or an odd number of them), or the absence of a

5It is amusing to note that Bloch in his paper actually acknowledges Heisenberg for the solution
of the corresponding differential equation, so perhaps it should be more appropriately named the
‘Heisenberg-Bloch’ wall. Also, note that in the sequel we usually do not distinguish between Bloch
and Néel walls for the quasi 1D situation.
6With ∂xθQC = C sech x and cos θQC = − tanh(Qx) we immediately verify that
(1/π)

∫ ∞
−∞dx ∂xθQC = C and [cos θQC (−∞) − cos θQC (∞)]/2 = Q.
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domain wall (or the presence of an even number). Obviously consecutive domain
walls have opposite values of Q such that the first domain wall fixes the charge values
of all others. Note that it is the domain wall position that is exploited in racetrack type
memories. In contrast, the chiral degree of freedommay be used to carry information
and thus could play an important additional role in ‘racetrack’-type domain wall
memory devices [53, 54, 64], cf. Fig. 1.1. Note that the sign of the soliton ‘charge’
Q determines the response of a domain wall towards an applied magnetic field: If an
external field is applied in the ‘up’ direction, i.e. along the positive z-axis, then the
soliton of positive (negative) charge would move in positive (negative) x direction.
Note that the chiral degree of freedom also exists in absence of a parity breaking
Dzyaloshinskii-Moriya interaction, as the configuration θs thenminimizes the energy
(1.22) for both φ = ±π/2. However, note that this chiral degree of freedom does not
exist in a strict Ising type system as discussed above, where static solitons involve
sharp phase boundaries with no internal degree of freedom. Chirality may, however,
emerge due to quantum effects [36].

Charge and (vector) chirality can, respectively, be generalized for arbitrary domain
wall configurations,

Q = −1

2

∫ ∞

−∞
dx ∂xmz, C = 1

π

∫ ∞

−∞
dx m × ∂xm. (1.32)

This definition shall also be useful for the description of out-of easy-plane dynamic
scattering solutions and breathers thatwill be discussed below. For a simpleπ domain
wall (static or moving), we have as expected Q = ±1, while for arbitrary solutions
whose azimuthal angle is x-independent, φ(x, t) = φ(t), we have,

C = ĉ
1

π

∫ ∞

−∞
dx ∂xθ, (1.33)

which points along the unit vector ĉ = (− sin φ, cosφ, 0). For an isolated static
Bloch wall with φ = ±π/2 this reduces to the above definition, namely, C ≡ Cx =
(1/π)

∫
dx ∂xθ = ±1. Solitons of fixed charge Q = 1, but opposite chiralities C =

±1 are shown in Fig. 1.1. For solutions such as a 2π Bloch wall which covers the
singular point θ = π , one should return to (1.32), or use the reparametrization θ →
2π − θ, φ → φ + π .

In DMI free systems domain walls of opposite chirality are energetically degen-
erate. This degeneracy may give rise to a so-called Bloch line. If the domain walls
of opposite chirality are horizontally separated, a vertical Bloch line (VBL) results,
if they are separated vertically, a horizontal Bloch line (HBL) occurs. We refer to
Chap.2 by Thiaville and Miltat for a discussion of many experimental examples of
such structures. It should also be noted that with proper adaptation the charge Q and
chirality C can be used to classify the spin twists inside a domain wall carrying a
Bloch line [63].

An isolated Bloch wall is only stable for a vanishing field. For a nonvanishing
external field, H �= 0, and depending on damping, either oscillatory or steady domain

http://dx.doi.org/10.1007/978-3-319-97334-0_2
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wall motion results as observed in isolated nanowires [12, 53] (cf. Fig. 1.1f. Static
solutions will then consist of pairs of domain walls or solitons. Since the solitons
carry a chiral degree of freedom, two solitons with same chirality can be combined to
form a so-called soliton-soliton (‘ss’) pair, or the two solitons may be arranged with
opposite chirality to form a soliton-antisoliton (‘ss̄’) pair. This terminology reflects
the fact that the former configuration is stable and not easily annihilated, in contrast
to wall pairs with opposite chirality which turn out to be relevant in the context of
thermally induced magnetization reversal [11, 15]. We now discuss each of these
cases separately as they both surprisingly will also turn out to be relevant for helicity
switching and dynamical states of skyrmions, respectively.

1.4.1.2 Soliton-Antisoliton Pairs as Nuclei for Magnetization Reversal

In the presence of an applied magnetic field, the Euler-Lagrange equations (1.28) are
solved by the following profile [15, 19],

θss̄(x) = 2 arctan

(
cosh(x/δss̄)

sinh Rss̄

)
,

= θ0(− x

δss̄
+ Rss̄) + θ0(

x

δss̄
+ Rss̄), (1.34)

for field values smaller than the anisotropy field, i.e., h < 1 and we restrict ourselves
again to the case φ = π/2. The second equation explicitly shows that this configu-
ration consists of two coherently superimposed domain walls of opposite chirality
placed at positions x = ±Rss̄δss̄ , or in other words, that they describe a soliton-
antisoliton pair with winding number zero [19]. Formally this follows immediately
by computing wS1 = (1/2π)

∫ ∞
−∞ ∂xθss̄ = 0 which in turn follows from the chirality

of one soliton, (1/π)
∫ ∞
−∞ ∂xθ0(x) = −1 (cf. footnote 5).

The ‘radius’ Rss̄ and the characteristic width δss̄ are both related to the external
field h via the following relations,

h = sech2Rss̄, δss̄/δ0 = coth Rss̄, (1.35)

where as above, the reduced field is defined by h = μ0HM0/2Ke. For fields
approaching the anisotropy field, h → 1, we have Rss̄ → 0, and thus the two super-
imposed solitons nearly annihilate each other while the length scale δss̄ diverges. For
small fields, the two solitons are far from each other and the structure θss̄(x) describes
a reversed domain of size∼ 2δ0 ln(2/

√
h), which is immersed in the initial state with

the magnetization pointing antiparallel to the field. The energy per area of the the
soliton-antisoliton pair with respect to the metastable state is given by,

Ess̄ = 2Es[tanh Rss̄ − Rss̄ sech
2 Rss̄], (1.36)
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Fig. 1.7 Soliton-antisoliton configuration of an easy-plane magnet with vanishing total wind-
ing number wS1 = 0. Left: Soliton-antisoliton configuration of domain walls of opposite chirality
(1.34). Right: Corresponding energy landscape with spin configuration represented as an elastic
rope (magenta) which illustrates the instability of the soliton-antisoliton thus characterizing it as a
nucleus for magnetization reversal

which is the sumof deformation andZeeman energy.HereEs = 4
√
AKe is the energy

of a single π -domain wall. It is clear that for small Rss̄ , the energy tends to zero since
the two soliton annihilate each other, while for large soliton separation Rss̄ the energy
approaches that of two independent domain walls. Figure1.7 illustrates the magne-
tization configuration of the soliton-antisoliton pair for Rss̄ = 2.2. The right panel
shows a visualization where themagnetization configuration is interpreted as an elas-
tic rope that is laid over the energy surface. From this interpretation it is clear that
this magnetization configuration is unstable and represents the critical nucleus for
magnetization reversal in nanowires. It describes the (spatially nonuniform) energy
barrier for thermally activated switching between the metastable state with the mag-
netization aligned antiparallel to the field and the stable state with magnetization
along the field (cf. see footnote 4).

More formally, it can be shown that the configuration constitutes a saddle point
with exactly one unstable direction [19]. As a critical nucleus, it generalizes the
famous Néel-Brown mechanism for thermally activated magnetization reversal for
uniform nanoparticles to narrow nanowires where the magnetization varies along
the length of the particle. The cross-over between the two mechanisms occurs at
a critical length of 2Lcrit = 2πδ0/

√
1 − h2 if nucleation occurs in the interior of

the particle or at Lcrit if one domain wall is nucleated from the sample end. In the
absence of pinning, reversal proceeds via the uniform Néel-Brown mechanism for
sample lengths smaller than these critical values.

The size dependent cross-over of the switching mechanism has been observed in
Co islands [65]. It is interesting to note that this cross-over is of tantamount impor-
tance for the design of perpendicularly magnetized media for magnetic harddisks
[11, 17].
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U

x θπ 0

h

Fig. 1.8 Soliton-soliton configuration of an easy-planemagnet with total winding numberwS1 = 1.
Left: Soliton-soliton configuration of two domainwalls of same chirality (1.37). Right: Energy land-
scape with spin configuration represented as an elastic rope (magenta) illustrating the (topological)
stability of the 2π domain wall if restricted to the easy-plane

1.4.1.3 2π Bloch Walls

The soliton-soliton pair that extremizes the Euler-Lagrange (1.28) equation in the
presence of an applied field can be expressed as [19],

θss(x) = 2 arctan

(
cosh Rss

sinh(x/δss)

)
,

= θ0(
x

δss
− Rss) + θ0(

x

δss
+ Rss), (1.37)

with the two possible values φ = ±π/2 that define the overall chirality of the domain
wall pair, i.e. wS1 = (1/2π)

∫ ∞
−∞ ∂xθss = ±1. One of these two chiral states can be

favoured by, e.g., interfacial DMI and this effect can for example be observed by spin-
polarized photoemission electron microscopy (SPLEEM) [29] for both Bloch-type
and Néel-type domain walls (Fig. 1.8).

For convenience, the angle θ is assumed here to vary between 0 and 2π , but of
course the configuration may be mapped back to the standard intervals via (θ, φ) �→
(2π − θ, φ + π). The second equation in (1.37) explicitly demonstrates that the
configuration consists of a superposition of two solitons with the same chirality
located at x = ±Rss δss , respectively. The soliton separation Rss and intrinsic width
δss of the soliton-soliton pair depend on the reduced external field via

h = csch2Rss, δss/δ0 = tanh Rss, (1.38)

where cschx ≡ 1/ sinh x .
With increasing field, the two twisted solitons get pushed together as Rss

decreases. Since the field counteracts the mutual exchange repulsion the intrinsic
width decreases with increasing field. The repulsive nature of the soliton-soliton pair
is reflected by the energy,
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Ess = 2Es[coth Rss + Rsscsch
2Rss], (1.39)

which diverges at short distances, while for large intersoliton separation it approaches
the energy 2Es of two independent domain walls. The soliton-soliton pair θss(x) is
thus stabilized by the balance between exchange repulsion of the two twisted domain
walls and the ‘pressure’ exerted by the external field.

Experimentally, such repulsive interaction between soliton-soliton pairs was
indeed observed in nanowires as shown in Fig. 1.10 [60]. Even quantitatively, the
measured profile agrees remarkably well with the predictions of [19], as given in
(1.37), (1.38). In larger samples this effect is more difficult to observe as the dipolar
interaction in general keeps the domain walls too far apart for the mutual exchange
repulsion to become detectable. However, in sufficiently thin films or in nanowires,
the dipolar interaction is sufficiently weak and such structures become observable,
exact criteria are presented in [19].

1.4.1.4 Soliton-Soliton Breathers

With a view on the dynamical skyrmions to be discussed below, it appears conve-
nient to point out that there is a class of remarkable analytical breather solutions of
the dissipationless Landau-Lifshitz equations [54, 55] that is also described by the
ansatz (1.37) but now with time dependent Rss(t) and φss(t) without applied field.
The solutions correspond to two solitons of same chirality, a soliton-soliton (ss) pair
whose relative distance proportional to R(t) periodically oscillates with time while
the azimuthal angle φss(t) undergoes precession with half the period of the breathing
oscillation. These results are illustrated in Fig. 1.9 which shows the time dependence
of the azimuthal angle φss(t) describing nonuniform precession, the breathing oscil-
lation of mz as a function of time and the magnetization profiles at the moments of
closest and farthest separation of the two solitons. For the explicit analytical expres-
sions we refer to [54, 55]. It is interesting to note that this soliton-soliton breather is
closely related to the dynamical skyrmion discussed below (cf. also the contribution
by J. Åkerman in this volume), as it approximately describes the time-dependent
variation of the magnetization profile across a dynamical skyrmion.

1.4.2 Variational Ansatz for Static Skyrmions

It is evident that the thin film energy (1.23) cannot be analytically minimized even
under the assumption of cylindrically symmetric structures and it is therefore impor-
tant to find a good variational ansatz. Such an ansatz is provided by the exact solution
of a 2π domain wall in an external field as given by θss as given in (1.37) and orig-
inally derived in [19]. The success of this profile in describing measured scanning
tunneling microscopy (STM) data for 2π domain walls is shown in Fig. 1.10a, b (cf.
[60]). We are thus motivated to use the following variational profile for a skyrmion,
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θsk(ρ) = θ0(
ρ

δ
− R) + θ0(

ρ

δ
+ R),

φsk(ϕ) = ϕ + ψ, (1.40)

where θ0 describes the profile of aπ domainwall as given by (1.30), withϕ and ρ > 0
as polar coordinates in real space with r = (ρ cosϕ, ρ sin ϕ, 0), and ψ is a constant.
Here δ is a width and R a dimensionless parameter characterizing the “radius” of the
skyrmion. The locus of θ = π/2 occurs at a radius a = δarsinh(cosh(R)).

This parametrization yields a skyrmion with ‘down’ magnetization at the centre,
i.e, θ(ρ = 0) = π , and inserting the ansatz into the expression for the winding num-
ber (1.9) reveals that wS2 = −1 for all values of the variational parameters R, δ. A
skyrmion with w = 1 results upon substituting θsk �→ π − θsk. Note that ψ = 0, π
describe hedgehog skyrmions favoured by surface DMI, while ψ = π/2, 3π/2
describe Bloch skyrmions favoured by either bulkDMI inB20materials or by dipolar
interactions. The variational parameters R, δ may, e.g., be used to fit experimental
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Fig. 1.9 Time evolution of a soliton-soliton (ss) breather in absence of an applied field. The left
panel shows the time evolution of the azimuthal angle φss(t) of the magnetization, while the right
panel shows the evolution ofmz(t). The solid white line indicates the soliton ‘world lines’±Rss(t),
and the arrows indicate the transverse magnetization at the instants of largest separation (i) and
closest approach (ii). Note that the period of the azimuthal oscillation is twice as large as that of
the oscillation of themz-component. Bottom panel shows magnetization profiles at instants (i), (ii).
Adapted from [54]
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data as shown in Fig. 1.10c, d. However, we may also theoretically determine the
parameters δ, R variationally by inserting the ansatz (1.40) into the total energy
(1.23). From subsequent minimization with respect to R and δ we obtain δ = δ0
and in the narrow wall limit, we obtain the following physical skyrmion radius as a
function of the applied magnetic field,

R = (
D + 2

3
Q−1τ − 1

)δ1

h
. (1.41)

Here the reduced DMI constant is given by D = πD/4
√
AKe, the dimensionless

dipolar field strength (or inverse ‘quality factor’) isQ−1 = μ0M2
0/2Ke, the reduced

field is h = μ0M0Hext/2Ke and the reduced film thickness is given by τ = t/δ0 with
δ0 = √

A/Ke and Ke = Ke,eff . The result (1.41) has two important consequences:

(i) It shows that the DMI and the dipolar interaction are in tandem responsible for
the stabilization of a skyrmion in an entirely symmetric way. While the dipolar
interaction is always present in ferromagnets, it is DMI that is usually dominant.
Nonetheless it is important to note that the dipolar interaction can help stabilizing
the skyrmion even for slightly subcritical values of the DMI, i.e., D < 1.
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Fig. 1.10 Description of 2π domain wall and skyrmion profiles by the function θss as given in
(1.37) from [19]. a A Fe nanowire on aW substrate at fixed external field [60]. Superimposed is the
soliton-soliton pair configuration from (1.37). b Observed magnetization profiles as a function of
applied field. The theoretical fits are obtained from the expression (1.37) with the field dependence
given by the analytical expression (1.38) (cf. [19]). c Scanning tunneling microscopy (STM) image
of out of plane components of skyrmions. d Fits for 3D skyrmion profile using the ansatz (1.40)
based on (1.37). e Observed field dependence of skyrmion radius [20]. f Analytical result for the
field dependence of the skyrmion radius with parameters taken from the experiments in [20]. Panels
(a), (b) are taken from [60], panels (c–e) from [20]
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w=-2

w=-1

Fig. 1.11 Branching of a skyrmion line into two skyrmion lines. As this entails a discontinuous
change of the winding number at slices for a given z coordinate (here fromwS2 = −1 towS2 = −2),
such a process can only be accomplished at the expense of a (anti-)hedgehog singular point defect
at the branching point (cf. Fig. 1.4). The hedgehog is characterized by a winding numberwS2 = −1,
cf. text. After Milde et al. [66]

(ii) It explains experimental data very well: For the parameters of [20], where
(2/3)Q−1τ � 0.2, (1.41) yields the result shown in Fig. 1.10e, f, in excellent
agreement with the observations.

1.4.2.1 Creation of Skyrmions via Hedgehogs

So far, we considered smooth topological magnetization textures such as domain
walls and skyrmions per se and did not analyse their possible creation or destruc-
tion. In thin films, skyrmions may be created at sample edges, but also in the inte-
rior of samples in constrictions [9] or under point contacts [67]. In this latter case,
this process involves the change of a winding number which cannot occur by any
smooth deformation of the magnetization. This can only occur by processes that
violate the continuity of the magnetization field and thus lie outside the ‘micromag-
netics’ framework [23]. Topological point defects are obvious candidates for such
processes that can change thewinding number. At the same time this provides uswith
a link between the topological point defects considered in Sect. 1.2.3 and the smooth
topological defects of Sect. 1.2.4. How well is then the skyrmion number conserved
in a real system? In order to approach this issue, Milde et al. [66] analyzed MFM
images and considered the occurrence of skyrmion lines or tubes in a thick film.
Interpreting their MFM data they discovered situations such as the one depicted in
Fig. 1.11. In this case, the winding number wS2 changes abruptly as a function of the
z-coordinate perpendicular to the film surface. This can only occur at the expense of
the formation of a singular point defect, in this case an (anti-)hedgehog. It is defined
via the polar angles of the magnetization, Θ = ϑ , Φ = −ϕ + π , where x1 = ϑ and
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x2 = ϕ denote the polar angles in real space. With this parametrization, the degree
or topological charge (1.6) of the hedgehog shown in Fig. 1.11 is readily evaluated
to be wS2 = −1. This singular point defect forces the (continuous) magnetization
field to go to zero in a continuous description, or in a discrete lattice description, the
defect will be located between grid points.

1.4.3 Helicity Switching of Skyrmions

In systems with parity breaking DMI, the helicity of the skyrmion is fixed by the
sign of the DMI term. However, in centrosymmetric crystals, the two helicity states
of a skyrmion are energetically degenerate. This is for example realised in thin films
of La0.5Ba0.5MnO3 [68] or BaFe12−x−0.05ScxMg0.05O19 (x = 1.8) as studied in [69].
As both helicity states have the same winding (skyrmion) number, they must be
connected via a path of finite energy that involves configurations with the same
winding number. In films of finite thickness larger than the domain wall width,
the energies of Bloch and Néel skyrmions are not energetically degenerate [19]:
The dipolar energy density of a Néel wall configuration exceeds that of a Bloch
configuration by an energy density (μ0/2)M2

r , where Mr is the nonvanishing radial
magnetization component of the Néel skyrmion. For a skyrmion radius R that is
larger than the wall width, R � δ0, the effective energy along the circumference of
the skyrmion is given by [69],

Eeff [φ] = 2t Rδ0

∫ 2π

0
dϕ

{
A

R2
∂ϕφ̃ + μ0

2
M2

0 R sin2 φ̃

}
(1.42)

which is analogous to the energy of a nanowire for h = 0 (cf. (1.25)).We defined φ̃ =
φ − ϕ + π/2 such that left-handed or right-handed Bloch skyrmions respectively
correspond to φ̃ = 0, π , which both have vanishing wall demagnetizing energy. Here
we assumed that the film thickness t is larger than the domain wall width δ0. The
effective energy (1.42) is derived under the assumption that the described azimuthal
variations φ̃(ϕ) have zero winding number,

∮
dϕ ∂ϕφ̃ = 0.

The problem is now formally analogous to that of domain wall nucleation in a
nanowire in absence of an external field. We know that two states with right and
left helicity, i.e., φ̃CCW = 0 and φ̃CW = π , minimize the magnetostatic energy (cf.
Fig. 1.12). They are separated by a nonuniform energy barrier configuration that we
may approximately express as,

φb ≈ −φ0

(
1

λ̃
(ϕ − π

2
)

)
+ φ0

(
1

λ̃
(ϕ − 3π

2
)

)
, (1.43)

where φ0 is defined analogous to θ0, i.e. φ0(s) = 2 arctan e−s . Equation (1.43)
describes the coherent superposition of two π -solitons of opposite chirality at two
azimuthally diametrically opposed positions on the skyrmion (cf. Fig. 1.12), and the
total winding number is vanishing as required (cf. footnote 5). Here the (dimen-
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Fig. 1.12 Thermally activated switching across a barrier between the two helicity states with
clockwise (CW) and counterclockwise (CCW) rotating magnetization within the skyrmion (cf. also
Fig. 1.3). (a) In the absence of DMI, the CW and CCW state are energetically degenerate and
separated by an energy barrier which involves the nucleation two Bloch lines of opposite chirality
(highlighted by black circles) in analogy to the nucleation of soliton-antisoliton pairs in Sect. 1.4.1.2.
(b) Real-space observations of zero-field room-temperature skyrmions and their dynamical helicity
reversals in a (001) BaFe12−x−0.05ScxMg0.05O19 (x = 1.8) thin plate (sample thickness is below 100
nm). Panels (i)–(iv) are snapshots of in situ Lorentz TEM (LTEM) movies while panels (v)–(viii)
are identical images but colour coded with the blue and red dots indicating skyrmions with CW
and CCW helicities. The black arrow highlights the skyrmion whose helicity switches between the
frames. Images are taken at a temperature T = 433 K. Taken from [69] (c) Temperature dependent
telegraph noise due to helicity switching in a centrosymmetric thin film or La0.5Ba0.5MnO3 at
temperatures above the critical temperature TC ≈ 300 K of the thin film. Taken from [68]

sionless) width is given by λ̃ = λ/R, where λ ≡ √
A/(μ0/2)M2 is the ‘Bloch line

thickness’ that determines the width of the transition region between the states of
right and left helicity. Consequently (1.43) requires that λ/R � π . Note that λ plays
a role analogous to the domain wall thickness in the domain wall nucleation problem
described above.

1.4.4 Dynamical Skyrmions

So far we emphasized the topological properties of static skyrmions. It is these
topological properties that govern various physical properties such as for example
the emergent fields as discussed in subsequent chapters in this book by Thiaville
and Miltat (Chap. 2), and Bauer et al. (Chap.5). The energetic details of skyrmion

http://dx.doi.org/10.1007/978-3-319-97334-0_2
http://dx.doi.org/10.1007/978-3-319-97334-0_5
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Fig. 1.13 Simulation of a nanocontact (NC) spin torque oscillator with radius 40nm and a cur-
rent J = 6 · 108A/cm2 showing the nucleation of dynamical skyrmion without DMI and dipolar
interactions from an initial FM state, and its subsequent tuning by spin transfer torque, damping α,
DMI, and dipolar interaction. a Top-view of the spin structure at different times; the black circle
indicates the NC; color bar indicatesmz . b Top-view of the topological density at the same times as
in (a); c Time-trace of the mz-component averaged over the simulation area and time-trace of the
skyrmion number; dashed vertical lines correspond to the snapshots above. For 0 < t < 1 ns, the
system undergoes an initial relaxation from FM state. For 1 ns < t < 3 ns, a dynamical skyrmion
is nucleated under a finite spin transfer torque assisted by the corresponding Oersted field with-
out DMI. For 3 ns < t < 5 ns, the Oe field is artificially turned off and breathing disappears. For
5 ns < t < 7 ns, both current and damping are turned off. For 7 ns < t < 9 ns, a moderate DMI is
added and breathing resumes. For 9 ns < t < 11 ns, we only turn on dipolar interactions (both Oe
and DMI are off) and minor breathing is again observed. For t > 11 ns, the dynamical skyrmion
will dissipate into a uniform ferromagnetic state. From [70]

formation are somewhat less relevant and in fact we have seen in Sect. 1.4.2 that not
only DMI but also dipolar interactions may essentially contribute to the stabilization
of a skyrmion in a thin film.

The notion that it is topology rather than energetics being the defining property
of a skyrmion is emphasized by the remarkable fact that skyrmions can also be
stabilized via a purely dynamical mechanism. This does not require the existence of
DMI and/or dipolar interactions [70]. Such dynamical stabilization exists even when
dipolar interaction and DMI are entirely absent. In this case, the z-component of the
magnetization (along the easy-axis) is conserved, and as a consequence the precessing
skyrmion retains a constant radius. For magnets with arbitrarily weak dipolar and/or
DMI, the magnetization along z is no longer conserved, and the skyrmion shows
breathing while the magnetization at its circumference is continuously precessing.

Such dynamical skyrmions can be created and tuned under a nanocontact as
illustrated in Fig. 1.13. The various time intervals show the nucleation of a dynam-
ical skyrmion, its sustenance, and its subsequent tuning by varying the spin trans-
fer torque, damping, DMI and the dipolar interaction. The medium underneath a
nanocontact is effectively dissipationless. Comparing the time intervals 3 ns < t <

5 ns and 5 ns < t < 7 ns in Fig. 1.13, with and without damping and spin torque
respectively, it is seen that damping can be entirely compensated by the action of a
spin torque.
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(a) t=0.29ns t=1.29ns t=1.36ns (b)

Fig. 1.14 Dynamical skyrmion creation in a point contact and transport of a dynamical skyrmion
through a DMI-free material. a Nucleation of a dynamical skyrmion under a point contact (white
circle) of diameter 30 nm [70]. Initially, a topologically trivial ‘droplet’ is created (t = 0.29) which
exhibits significant distortion of its shape over time.After some delay, a new, topologically nontrivial
dynamical skyrmion is nucleated whose shape remains remarkably circular but with varying radius
over time. Top panel shows themagnetization component perpendicular to the film,while the bottom
panels show the topological density ρtop ∝ m · (∂xm × ∂ym) with blue (red) indicating negative
(positive) values. Note that between t = 1.29 ns and t = 1.36 ns the skyrmion shows appreciable
breathing due to the presence of DMI while the magnetization shows complete precession. It
should be emphasized, however, that the dynamical skyrmion also exists in materials with small
or negligible DMI making it an attractive candidate for the design of robust spin torque oscillators
in non DMI materials. b Current induced motion of a dynamical skyrmion in a nanowire without
DMI. Illustrating the quasiparticle nature of the dynamical skyrmion, it is nucleated and transported
coherently by an in-plane current to a second nanocontact at a distance of 150 nm,where it is trapped
again and restored to its original size. (Images from [70])

Figure1.14 illustrates the importance of the nontrivial topology onto the dynami-
cal behaviour. Panel (a) demonstrates that the initial nontopological droplet (wS2 = 0)
exhibits significant deformation. In contrast, once the texture has transformed into a
skyrmion with |wS2 | = 1, it is remarkably stable. The created dynamical skyrmion
can then be transported through a medium without DMI as shown in Fig. 1.14b.

From Fig. 1.13 it follows that the spin torque effectively generates a lossless
medium under the nanocontact. This is confirmed by the analytical results that are
shown in Fig. 1.15 and whose derivation we now sketch: We study the Landau-
Lifshitz equations in the presence of a nanocontact,

∂tm = −γm × μ0Heff + αm × ∂tm + γ σ(I )Θ(ac − r) m × (m × ẑ). (1.44)

here γ > 0 is the gyromagnetic ratio, μ0Heff = −δE/δM, and σ(I ) = (�I P/2eV )

× (1/2Ke), where V is the magnetic volume under the nanocontact.
We may now use the 2π domain wall ansatz (1.37) for the skyrmion profile,

θ(t) = θ0(r/δ − R(t)) + θ0(r/δ + R(t)),

φ(t) = ψ + ϕ(t), (1.45)

where R(t) is now the time dependent radius of the dynamical skyrmion texture,
(θ(t), φ(t)), and r = rer + ψeψ the position vector in polar coordinates, and ϕ(t)
the relative angle measured with respect to the radial direction. Inserting this into
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no damping - no spin torque damping  & spin torque 

Fig. 1.15 Analytical description of a dynamical skyrmion and dissipationless character of a mag-
netic medium under a nanocontact. Time dependent radius R(t) and azimuthal angle ϕ(t) with
either no damping and no spin torque (left), or damping and spin torque (right) are shown, with
time in units of M0/2γ Ke. The striking similarity illustrates the dissipationless character of the
environment underneath a nanocontact. Top row: Oscillations in the presence of DMI. Bottom row:
Dipolar interactions only

the equation of motion (1.44), assuming R � δ, and after integration we obtain the
following effective equation of motion [70],

Ṙ = F(ϕ, R) − αϕ̇ + σ(I )Θ̃(ac − R),

ϕ̇ = (1/R) + α Ṙ, (1.46)

where Θ̃ denotes a smoothed-out step-function. All energy terms that violate con-
servation of mz , i.e., the component perpendicular to the film plane, namely DMI,
dipolar interaction distinguishing between Néel and Bloch walls, and the Oersted
field contribute to

F(ϕ, R) = −D sin ϕ + λQ−1/2 + (πhOe/R) cosϕ, (1.47)

with the dimensionless parameters given byD = πD/4
√
AKe,Q−1 = μ0M2

0/2Ke,
hOe = (μ0M0/Ke)(Itot/8πδ0) and λ < 1 a numerical parameter depending on film
thickness and λ to 1 for t/δ0 � 1.
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From (1.46) we may infer that a dynamical skyrmion can even exist in the
undamped and undriven case in the absence of DMI when F = 0. We then have
R = const. and ωR = 1 with ω = ϕ̇ and thus the dynamical skyrmion shows uni-
form precession with frequency inversely proportional to constant R. If we include
damping, spin torque and nonvanishing F , the results of integrating (1.46) are shown
in Fig. 1.15. In the top row the results for only D contributing to F is shown, while
the bottom row shows F determined by the dipolar term prop to Q−1. The results
clearly illustrate that the radial oscillation or ‘breathing’ of the dynamical skyrmion
results from the contributions to the function F . In both cases it is clear that the
spin torque compensates the effect of damping such as to reproduce the dissipation-
less and undriven solutions with α = σ(I ) = 0.

Thus the existence of dynamical skyrmions provides striking evidence that it is the
topological feature of spin textures and not energetic details that endow these textures
with extraordinary stability that renders themuseful for applications. In particular, the
stability and the current tuneability of the dynamical skyrmion spin torque oscillators
makes them suitable candidates for microwave applications [70].

1.5 Conclusions

In this introductory chapter we presented an overview of topological textures in
magnetism that will be discussed in more detail later in this book. This will include
Chap.2 on domain walls and Bloch lines by Thiaville andMiltat, Chap. 3 on vortices
(merons) by Behncke, Adolff and Meier, Chap. 5 on skyrmions in bulk magnets by
Bauer et al., Chap. 4 on skyrmions in thin films andmultilayers byChen, andChap.11
on dynamical skyrmions generated by spin torque oscillator by Åkerman. Such tex-
tures have attractedmuch recent interest as their stabilitywith respect to deformations
renders them attractive candidates for prospective memory applications. Moreover,
electrons moving in the background field of such textures experience exotic emer-
gent electromagnetic fields. Here we emphasized a topological perspective, with the
winding number as the essential parameter to characterize topologically nontrivial
textures in the magnetization field. There are two main classes of such textures: On
the one hand we considered topological point defects such as Ising domain walls
in chains, planar vortices with easy-plane spins, and hedgehogs (Bloch points, or
monopoles). On the other hand there are smooth topological textures such as chi-
ral domain walls, 2π domain walls, merons, and most prominently, skyrmions. The
latter are robust against continuous deformations, but may be destroyed or created
either in time or in space via topological point defects such as Bloch points. With-
out doubt, skyrmions are the topological textures that have attracted most attention
during the past few years. This includes the groundbreaking work which involved
early theory [8], neutron scattering experiments in MnSi, a B20 bulk magnet [5],
and thin films with interface DMI [71], and engineered DMI in multilayers stabi-
lizing skyrmions at room temperature [13]. Due to their large mobility, skyrmions
also have been proposed [21] and demonstrated [22] as alternatives to domain walls
in racetrack memory devices [14]/Skyrmions can control the magnon excitations

http://dx.doi.org/10.1007/978-3-319-97334-0_2
http://dx.doi.org/10.1007/978-3-319-97334-0_3
http://dx.doi.org/10.1007/978-3-319-97334-0_5
http://dx.doi.org/10.1007/978-3-319-97334-0_4
http://dx.doi.org/10.1007/978-3-319-97334-0_11
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[72, 73], thus paving the way for intrinsically magnetic dynamic magnonics [74] as
alternative to magnonics controlled by static structural [75] or externally dynamic
potentials [76]. The contributions in this volume are testament to the rapid progress
of this field during the past few years, and the journey to harness topological defects
for information storage and processing purposes has just begun.
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Chapter 2
Topology and Magnetic Domain Walls

André Thiaville and Jacques Miltat

Abstract This chapter presents the various connections between topology andmag-
netic domain walls. To begin with, we expose what topology tells us about magnetic
domain walls, answering questions like: may domain walls be topological defects?,
are there topologically different classes of domain walls? We then turn to dynam-
ics, explaining the profound link between topology and the dynamics of magnetic
textures, domain walls here. Experimental aspects are reviewed in the next sections,
constructed according to material and sample types, with a special role played by
bubble garnet films where a number of fundamental concepts were introduced. The
authors try to provide a unified view of the vast literature on the subject, that spreads
over four decades and different research thematics.

2.1 Introduction: Topology Applied to Magnetic
Domain Walls

The topological theory of defects is a well-established field in condensed matter
physics (see the introduction Chap. 1, by H.B. Braun). The basic inputs for this
theory are the dimensionality and topology of both the order parameter space V
and the physical space. For ferro-magnetism, well below the Curie temperature, the
magnitude of the local magnetization may be assumed to be constant (vs. space
and time). Hence V = Sn−1, the sphere with n − 1 degrees of freedom, n being
the number of components of the magnetic moment vector (Table2.1). The case
n = 1 corresponds to the Ising model, and S0 consists only of 2 points (‘up’ and
‘down’); n = 2 corresponds to the XY-model, S1 being the unit circle in that plane;
finally n = 3 pertains to the Heisenberg model with 3-component spins, S2 being
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Table 2.1 Symbols used in the topological theory of defects

Symbol Meaning Values

d Physical space dimension 1, 2, 3

n Number of magnetization
components

1 (Ising), 2 (XY), 3
(Heisenberg)

d ′ Defect dimensionality 0, 1, 2 (d ′ < d)

r Contour dimensionality 0, 1, 2 (r < d)

the unit sphere in that space. The cases n = 1, 2 have to be taken as limiting cases: a
perfect Ising or XY magnet is not known in nature, so that we should consider only
the n = 3 case. However, when the magnetic anisotropy is very large (easy-axis or
easy-plane), be it crystalline anisotropy or just a demagnetizing effect, then it makes
sense to consider the lower n cases. By the process known as ‘escape in the higher
dimensions’, the topological defects that may appear for n < 3 can be regularized,
meaning that the order parameter is no longer singular at the defect core. What
remains after this process is the topological stability of the regularized texture. This
is the second aspect of the topological analysis of magnetic textures. We explain
below how both aspects apply to magnetic domain wallss.

With respect to the physical space, we restrict ourselves in this chapter to the
topologically trivial euclidian spaces, of dimension d (Table2.1).1 This means that
the samples are either the full R

d , or parts of it when the sample is finite for some
of its d dimensions. Again, we live in and cannot escape from the d = 3 space, but
nevertheless can fabricate samples that are close, down to the atomic size for the finite
dimension, to d = 2 (an atomic monolayer), d = 1 (an atomic chain), and d = 0 (an
atom). In fact, one does not need to go down to the single atom size to reduce d
by one unit, as the magnetic textures cannot vary over the characteristic lengths of
micromagnetics, that are the domainwall width parameter� and the exchange length
� [2], the latter of the order of a few nanometers for ferromagnets. Thus, all values of
the physical space dimension d are experimentally relevant, and will be considered.

2.1.1 Domain Walls as Topological Defects

Topology is based on the assumption of continuity. The micromagnetic theory
[2, 3] describes a magnetization orientation that, without leaving the order parameter
space V , changes continuously with position in the physical space. It is therefore
possible to apply topology to the description of magnetic textures. Within this math-
ematical picture, a defect is a part of the physical space across which the magnetiza-
tion changes discontinuously. It is customary to call d ′ the dimension of the defect:
d ′ = 0 is a point defect, d ′ = 1 is a line defect, and quite generally d ′ = d − 1 is a

1An example of a topologically non-trivial space is the Möbius strip [1].
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(a)

(b2)(b1)

d = 1, n = 1, d’ = 0

d = 1, n = 2, d’ = 0

(d) d = 2, n = 2, d’ = 0

(e2)(e1) d = 2, n = 3, d’ = 0

(c1) d = 2, n = 2, d’ = 1 (c2)

(f)

d = 2, n = 2, d’ = 1

Fig. 2.1 Emblematic cases of topological defects and of their escape in the higher dimensions:
in d = 1 space dimension, the topological defect for n = 1 (a) becomes regular by considering
n = 2, in two topologically different walls (b1), (b2). In d = 2, the 2D analogue (c1) of (b1) can be
converted to the analogue (c2) of (b2), by a punctual n = 2 topological defect (d). The topological
defect (d) for n = 2 can be regularized in n = 3 into an antivortex with up (e1) or down-oriented
(e2) core. Topological defects are drawn in red in this chapter, whereas a green symbol indicates
a regular, but topologically stable texture. For pedagogy, a non-topological linear defect for d = 2
and n = 2, reminiscent of a domain wall in a soft magnetic microstructure, is shown in (f): it can
be removed by continuous rotation of the magnetization

wall defect (Table2.1). A defect is said to be topological when it cannot be removed
by any continuous variation of the order parameter (see Fig. 2.1f for an example of
a non-topological defect). By continuous variations are meant those variations that
do not need to be the same for every position in physical space, but change continu-
ously as a function of position (and respect the boundary conditions if they apply).
Figure2.1 illustrates several typical cases of topological defects, and Table2.1 recalls
the meaning of the various symbols used in this theory.
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To test for the presence of a defect, one draws around it a contour, a generaliza-
tion of the Burgers circuit of dislocation theory [4–6]. Let r be the dimensionality of
this contour (Table2.1). One then gets the obvious relation [4–6] d = d ′ + r + 1: in
d = 3 dimensions, to test for a line defect (d ′ = 1) one draws a loop (r = 1) around
it; to test for a domain wall in any space dimension d, one considers two points
(r = 0). As explained in the introduction Chap.1, by H. B. Braun, the topological
classification of the defects of dimensionality d ′ in a d-dimensional space is given
by the r -th homotopy group of the order parameter space V , denoted by �r (V ).
Indeed, this group is the set of equivalence classes of r -dimensional contours drawn
on V . Algebraic topology is the mathematical framework to ‘compute’ these homo-
topy groups. The unity element of this group describes the so-called topologically
trivial textures, i.e. those that do not contain a topological defect. For the case of n-
component spins (V = Sn−1), the relevant results of algebraic topology are expressed
by �p (Sp) = Z, �p′<p (Sp) = 0, with the special case �0

(
S0

) = Z2, where Z is
the set of signed integers, and Z2 ≡ Z/2 = {0, 1}.2 As the order parameter space
of magnetism is simple, both in structure and number of dimensions, these results
are intuitive: a loop is required to span a circle, and a ball for the sphere. From the
previous expressions of r and n we obtain that, in magnetism, topological defects
exist only for d = d ′ + n [4].

For domain walls, we have per definition d ′ = d − 1, and thus obtain that walls
are topological defects only for n = 1, i.e. Ising spins. This result is obvious: for
Ising spins no moment can be assigned to a domain wall, but for a larger number
of components this is possible (cf. e.g. Fig. 2.1(b) compared to Fig. 2.1(a)). On the
other hand, if we stick to the physically reasonable case n = 3, we see from the above
relation that topological defects can only be obtained at d = 3, in the form of singular
points (d ′ = 0). This defect is the so-called Bloch point [8, 9], the only topological
defect in n = 3 magnetism [5]. Note that, even if domain walls are not topological
defects for n = 3, some domain wall structures inherently contain a Bloch point (see
Sect. 2.4.4). Finally, if we also consider the limiting case of the XY-model (n = 2),
then we have topological defects for d ′ = d − 2: coreless vortex lines for d = 3, and
coreless vortices for d = 2 (e.g. Fig. 2.1(d)), the latter being discussed in more detail
in Chap.3 on vortices, by C. Behnke, Ch.F. Adolff and G. Meier. We shall see in the
experimental sections below that these sub-structures do play a role in the statics and
dynamics of magnetic domain walls.

2.1.2 Domain Walls as Topologically Stable Textures

Topology is not limited to defects, as this whole book shows, and we can apply
topological arguments to other objects or subjects. Here we discuss the topological
stability of continuous textures, more generally the possibility or not to transform
continuously one texture into another. A texture will be termed topologically stable

2Other values of p and p′ are given in mathematical textbooks, e.g. [7] Sect. 2.4.1.

http://dx.doi.org/10.1007/978-3-319-97334-0_1
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if it cannot be continuously erased, i.e. transformed into the ground state texture that
is taken as zero (it is the uniform state in many cases, but not always, consider a
ring for example) [8, 10]. Such a texture is also called a topological soliton [11]: it
can deform under continuous magnetization variations, but its topological character
(equivalence class in the relevant homotopy group) does not change, by definition.
Thus, a topological soliton is a soliton regarding topology, in comparison with soli-
tons in fluid dynamics where the shape is preserved even if the soliton moves.

In the previous section, we showed mathematically that domain walls are topo-
logical defects only for Ising spins. Does it mean that for n > 1 domain walls are
not stable? The answer is obviously no, and this can also be proved by topology. The
important point now is to consider boundary conditions.3 If we fix magnetization at
plus and minus infinity along some direction (call it x) to take different values (as we
could do by a field gradient for example) that are denotedm− andm+, we physically
force a domain wall to exist. If we take any path in physical space from x = −∞
to x = +∞ and plot its image on the order parameter space V , it will have to start
from m− and end at m+ (Fig. 2.2(a)). Such a pinned path cannot be contracted to a
point. Thus, a domain wall has to exist when the magnetization is fixed to different
values at infinity: a domain wall is topologically stable under such conditions. Note
that this says nothing about e.g. the domain wall width, or center position, as such
parameters can be modified by continuous variations of the magnetization texture.

Beyond this obvious remark, we now go one step further and ask the question:
are all domain walls topologically equivalent? For d = 1 this means: keeping its
endpoints mapped onto the order parameter space fixed at m− and m+, can we
continuously deform a path (call it p1) into any other one (call it p2)? By tracing
first path p1 from x = −∞ to +∞ and then back to x = −∞ along p2, one draws a
closed loop on the order parameter space. Thus we are again lead to consider the first
homotopy group �1 (V ). If this group is trivial, the closed loop can be continuously
contracted to a point, so that p1 can be continuously transformed to p2. Therefore
all domain walls are topologically equivalent in this case. As stated above, the first
homotopy group is not trivial for n = 2 only (Fig. 2.2(b–d)). We thus obtain that for
XY spins in d = 1 there is an infinite (countable) number of topologically different
domain walls (see Fig. 2.2(b–d) for three examples). Note that the argument is not
limited to d = 1, as the drawings in Fig. 2.2 may let think: for d = 2, 3 there are an
infinite number of physical space paths that go from x = −∞ to x = +∞, but in the
absence of topological defect as assumed in this section they all have to go through
the same side of S1.4

The transformation between two topologically inequivalent textures, which by
definition cannot occur continuously, occurs discontinuously hence involves a topo-
logical defect. This link between these two aspects of topology applied to magnetic

3The mathematical objects adapted to this case are called relative homotopy groups. See e.g. [7]
for a reference textbook. As the spaces that are considered are easily visualized, we can avoid the
mathematical machinery here.
4If two paths existed that use the two sides of S1, they would form a loop that encloses S1 once, so
that a topological defect of n = 2 would exist, a vortex point in d = 2 or a vortex line in d = 3.
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(a) (b)

n = 3

n = 2
p1

p2

(d)(c)

(c’)

(d’)

Fig. 2.2 Topological stability of domain walls is guaranteed when the magnetization is fixed to
different values m− and m+ at infinity, as shown by the following plots that are drawn in order
parameter space V = Sn−1. (a) For n = 3 all domain walls are topologically equivalent. (b) For
n = 2 they are not, as path p1 cannot be continuously transformed to path p2. Real-space pictures
of paths p1 and p2 are shown in Fig. 2.1(b1, b2). Two other topologically different paths are shown
in (c, d) for n = 2, that can be denoted p1 ∗ (p2)−1 ∗ p1 and p2 ∗ (p1)−1 ∗ p2, respectively (in
these last two figures, for clarity, the path was drawn outside of V = S1 and the drawing of V was
removed). Corresponding real-space structures are shown in (c’) and (d’); they can be seen as three
domain walls of the same rotation sense (also called winding domain walls)

textures is generic [6, 12], as could be guessed by the fact that the same homotopy
group is invoked to describe the classes of equivalent topological solitons and of
topological defects. Thus, to jump (in space or in time) from one topological soliton
to an inequivalent one (trivial or not), a topological defect equivalent to the difference
of classes is required. Indeed, instead of discontinuously flipping all moments within
the wall from one type to the other, it is energetically less costly to start this flipping
at one edge of the sample, thus injecting a topological defect, which then by crossing
the sample performs the domain wall switching (if the sample is infinite, a pair of
opposite topological defects has to be injected, and they travel in opposite directions
to perform the flipping). As an example, the intermediate state between Fig. 2.1(c1)
and Fig. 2.1(c2) is drawn in Fig. 2.1(d): it is a topological defect (for n = 2) called
antivortex.

Figure2.1 starts with a topological defect (a), goes to topologically stable regular
textures (b1, b2) by ‘escape in the second dimension’ (n: 1 → 2) and finally arrives
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at the topological defect involved in the switching between these topologically sta-
ble textures (d), as captured in its motion through an additional space dimension
(d: 1 → 2). It is instructive to perform this cycle once again, from Fig. 2.1(d). This
antivortex wall, upon increasing n to 3 (‘escape in the third dimension’) becomes a
regular texture. The obtained antivortex core can point out of or in the plane of the
drawing (Fig. 2.1(e1, e2)). Are these two antivortex walls topologically different?
As the map on V = S2 shows, this is not the case: just rotate all the points by 180◦
around the domains magnetization axis. More generally, to get the topological sta-
bility of a (anti)vortex wall, or simply of a (anti) vortex in d = 2 and n = 3, we need
additional boundary conditions. These are detailed in Sect. 2.4 for the vortex wall,
and in Sect. 2.1.3 for wall substructures called lines.

2.1.3 Lines as Topologically Stable Textures

Up to now we have neither described nor explored the zoology of magnetic domain
walls. We need to do so to some extent, now. In the simple case of a uniaxial material
with no torque applied to the domains, a domain wall corresponds to a 180◦ rotation
of the magnetic moments. At the center of the domain wall, the magnetic moment
by definition resides in the plane normal to the easy axis. This leaves a large freedom
for the magnetic structure of the domain walls, and the reader is referred to textbooks
for an in-depth description of the various domain wall structures [2]. Historically,
the first known domain wall structure is the Bloch wall, where the volumic magnetic
charge density −Msdivm is zero so as to avoid a magnetostatic energy cost (in an
infinite medium). For thin films of soft materials (with a small in-plane anisotropy so
as to define an easy axis), it was later shown by Néel that, as Bloch walls bear surface
magnetic charges, a magnetization rotation in the other direction is favored, leading
to a globally zero but locally non-zero volumic magnetic charge (see textbooks for
drawings).

Bloch walls of alternating rotation sense were first observed in rings made of
NiFeCo (perminvar, a soft magnetic material) [13], and the lines separating them
shortly after called Bloch lines [14]. In parallel to this study of bulk samples (typical
thickness 100 µm), observations on deeply sub-micrometric permalloy films [15]
revealed complex walls with a two-dimensional structure called cross-ties, inter-
preted as alternating Néel walls separated by ‘circular’ and ‘cross’ lines, also some-
times called Bloch lines and cross-ties, respectively.5

The study of lines developed markedly in the 70s, as part of the research on mag-
netic’bubbles’. Bubble garnets are single crystalline plates or epitaxial films (defect
density as low as 1 cm−2) having a small magnetization (garnets are ferrimagnets)

5Whereas for domain walls a rich taxonomy has developed, with Bloch, Néel, asymmetric Bloch,
asymmetric Néel, cross-tie walls, followed recently by transverse, vortex, asymmetric transverse,
Bloch point walls etc., such is not the case of lines, that are nearly always called Bloch lines.
Feldtkeller [8] proposed a denomination logics for lines, based on which type of wall they display
in their core, but this has not been adopted by the whole community.
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(a) (b)

x
y

z

(d)(c)

x

y

z=h/2

(e) (f)

x

y

z=h

(g)

Fig. 2.3 The two types of lines in a film with perpendicular easy axis, vertical Bloch line (a) and
horizontal Bloch line (b). For the VBL, the spins in the z plane at mid-thickness z = h/2 are shown
in (c), the dashed contour indicating the spins fixed far away from the line. This contour is mapped
in (d) on the unit sphere, showing that the simplest mappings must contain either point E or point F,
corresponding to two topologically distinct VBL configurations with opposite topological numbers.
Similar drawings are made in (e, f) for the plane z = h at the top of the film, where the twisted
structure of the Bloch walls due to the stray field from the domains is apparent. The conventional
denomination of VBLs for bubbles is shown in (g), with the contour orientation drawn on the side
by a blue curved arrow. VBLs with the same sign form winding pairs, with ±2π magnetization
rotation across the pair

with in case of films a perpendicular anisotropy due to the growth process, strong
enough to stabilize a perpendicularmagnetization [9]. Under amoderate field applied
along the easy axis, called bias field, isolated reversed domains become stable. They
are cylindrical with a circular base, and were hence called bubble domains or simply
bubbles. The objective of this research was to develop solid-state ‘bubble memories’
that came to the market, in which a bit is represented by the presence or absence of
a bubble.
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The study of bubble dynamics revealed a large impact of the presence of lines
within their walls. Two types of lines schematically exist, the horizontal Bloch lines
(HBL) and the vertical Bloch lines (VBL), as shown in Fig. 2.3(a, b). Whereas VBLs
are stable in the absence of fields, HBLs only appear in dynamics.

Similarly to domain walls, lines are topologically stable if the magnetization
within the domain wall far away from the line is fixed, the magnetization in the
domains far away from the wall being also fixed. As shown in Fig. 2.3, in such
conditions lines are topologically stable, and exist in variants that are not continuously
accessible from one to the other. For the VBL shown in Fig. 2.3(c, d), analyzed in
the sample midplane, the simplest mappings cover an hemisphere once, and the
topological or winding number (see the introduction chapter, by H. B. Braun, for its
definition) is +1/2 if the mapping contains point E, whereas it is −1/2 if it contains
point F.6 If the analysis plane is located at the film surface, the walls are no longer
Bloch but partly or fully Néel, in response to the stray field from the adjacent domains
[9], see Fig. 2.3(e, f). The two topological numbers then become +1/2 − τ resp.
−1/2 − τ with 0 ≤ τ ≤ 1/2, and the same occurs at the bottom film surface with an
opposite τ . The conventional denomination of VBL by the sign of the magnetization
winding is shown in Fig. 2.3(g). Thewinding is computedwith the convention that the
down-magnetized region forms a closed domain so that, in the drawing, a clockwise
motion means moving along the domain wall from left to right.

The stability ofVBLpairs is a nice illustrationof the topological approach.Assum-
ing first that magnetization in the domains is fixed and that no changes occur within
the sample thickness, a domain wall becomes a segment of R

1. If one moreover
assumes that the domain wall magnetizations are the same, then R

1 can be closed
into the circle S1. On the other hand, the domain wall possible magnetizations, all
orthogonal to the easy axis, also belong to S1. Thus, a wall segment with identical
magnetizations at both ends corresponds to an element of �1

(
S1

) = Z. The zero
element is the uniform wall, or any domain wall structure that can be continuously
transformed to that, like the segment containing the two central VBLs in Fig. 2.3(g),
such a VBL pair being called unwinding. Non-zero elements are walls made of
winding VBL pairs, like the two left or the two right VBLs in Fig. 2.3(g). Lifting
the restriction to consider only the domain wall magnetization does not change the
result, as one is lead to consider mappings of a 2D square to S2 made of circuits that
all start from point A and end at point B, the first and last circuits going through
point C . This is described by the homotopy group �2

(
S2

) = Z, so that the same
result is obtained. Finally, if only continuous changes are considered when moving
across the sample thickness, the restriction to d = 2 is allowed. Note that Fig. 2.3(e)
versus Fig. 2.3(c), extended to the VBL pair case, shows the well-known but not so
simple change across the thickness that takes place for a VBL pair in a sufficiently
thick film.

6This can be figured out simply by remarking that, at the VBL core one has ∂m/∂x along +x
and ∂m/∂y along −z, so that ∂m/∂x × ∂m/∂y is along +y, parallel resp. antiparallel to the local
magnetization for cases E resp. F.
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2.2 Topology and the Theory of Magnetic Domain
Walls Dynamics

We have surveyed the topological characterization of magnetic domain walls, with
cases where domain walls are topological defects and cases where domain walls are
topologically stable in different configurations.We now describe the role of topology
in the dynamics of domain walls and their substructures. This opens the way to an
experimental assessment of topology.

The basic equation for the dynamics of a magnetization texture is the Landau-
Lifchitz-Gilbert (LLG) equation [2, 16, 17]. The local unit magnetization vector
being m (r, t), its time derivative obeys

∂m
∂t

= γ0Heff × m + αm × ∂m
∂t

, (2.1)

where γ0 = μ0g|μB|/� > 0 is the gyromagnetic ratio with g the gyromagnetic factor
(g ≈ 2 for electron spins), α the adimensional Gilbert damping constant, and Heff

is the effective field of micromagnetics. The dynamics implies two torques that
are orthogonal. The first one describes the precession of magnetization around the
effective field. The second leads to a progressive alignment of magnetization with
the effective field (damping of the precessional motion). The effective field derives
from the energy density E of the system considered, according to the functional
derivative 7

Heff = − 1

μ0Ms

δE

δm
, (2.2)

with Ms the spontaneous magnetization at the temperature considered. Beyond the
basic LLG (2.1), where the effective field derives from an energy density so that the
total energy is conserved for zero damping, other torque terms have been added on the
right-hand side (r.h.s.), prominently the spin-transfer torque (STT) (for recent reviews
see [18–21]) and its recent companion the spin-orbit torque (SOT) [22], so as to
describe the direct interaction ofmagnetizationwith electrical currents.We take them
into account by a torque T added on the r.h.s. of (2.1). For example, STT for current
within the magnetic film is described by [23] T = − (u · ∇)m + βm × (u · ∇)m,
where u is a ‘spin-drift’ velocity parallel to the current density vector, and β is the
so-called non-adiabaticity factor. This torque does indeed not derive from an energy
density.

We now briefly recall the physics of domain wall dynamics. The basic model for
the dynamics of magnetic domain walls is the one-dimensional analysis by Schryer
and Walker [24] where two regimes were evidenced. At fields below the so-called

7The functional derivative differs from the partial derivative as soon as E contains terms involving
gradients of m. In the energy differential, the terms involving the gradients of the variation of m
have to be integrated by parts to be transformed into terms involving only the variations ofm. This
integration also produces surface terms, that contribute to the micromagnetic boundary conditions.
See [2] for details.
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Walker field, HW, motion is stationary and the velocity V obeys the relation found
long ago [16] that, in the most general form, reads V = (γ0�T/α) H .8 In this expres-
sion, �T is the wall width parameter as defined from Thiele’s equation (see (2.9)
below). At the Walker field, the velocity is maximum,9 this value being called max-
imum velocity or Walker velocity. Beyond this field, the domain wall structure is no
longer stationary and the velocity generally drops. This phenomenon is known as
Walker breakdown. The vast literature on domain wall dynamics since this seminal
work has revealed, in realistic situations that are not one-dimensional, what form
this breakdown exactly takes and at which field it occurs. The Walker breakdown
marks the beginning of the precessional regime of domain wall motion. At fields
much larger than the Walker field, magnetization precession in the wall results into
a zero average drive of the domain wall, leading to the ‘hard wall’ velocity relation
[25] V = [

γ0�α/
(
1 + α2

)]
H where � is an average domain wall width parame-

ter. As usually α 
 1, velocity is significantly lower in the precessional regime in
comparison to the stationary regime.

2.2.1 The Thiele Equation

The LLG equation, being integro-differential in space (because of the magnetostatic
and exchange interactions, respectively) can be analytically solved in a very limited
number of cases. Thus it is most often solved numerically, several open codes being
available [26–28]. Nevertheless, under some assumptions, much simpler equations
can be derived from it, a very useful one being the Thiele equation [29, 30]. It is
rederived here in a generalized way.

The calculation starts, strangely enough but importantly so, by solving (2.1) in
order to get the effective field. One obtains

Heff = [
m × ∂m

∂t
+ α

∂m
∂t

− m × T
]
/γ0 + λm , (2.3)

where λ is an arbitrary scalar function. Thiele’s assumption consists in looking for
magnetic configurations that are in rigid translation motion. Mathematically, this
means that there exists a magnetization texture m0 (r) that depends only on space,
and a position vector in physical space R(t) that depends only on time t , such that

m (r, t) = m0 [r − R(t)] . (2.4)

From this, the time derivative is immediately

8Note that, in general, velocity is not linear with field as the moving domain wall structure differs
from the rest structure, so that the Thiele domain wall width is not a constant.
9This is not exactly so, though, when �T varies much with field.
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∂m
∂t

= −
∑

j

Vj
∂m0

∂r j
, (2.5)

where we introduced the texture velocity V = dR/dt . The force on the rigid texture
is, by the definitions of the force and of the effective field,

Fi = − dE

dRi
= μ0Ms

∫
Heff · ∂m0

∂Ri
= −μ0Ms

∫
Heff · ∂m0

∂ri
, (2.6)

where E = ∫
E is the total energy of the texture (note that all integrals written in

this chapter are over the d = 3 physical space). Inserting in (2.6) the expression of
the effective field (2.3) with all derivatives of magnetization expressed in the rigidly
displacing structure approximation, one gets after some rearranging

0 = Fext,i + Fgyro,i + Fdissip,i = Fi − μ0Ms

γ0

∫ (
∂m0

∂ri
× m0

)
· T

+μ0Ms

γ0

∑

j

Vj

∫ (
∂m0

∂ri
× ∂m0

∂r j

)
· m0 − α

μ0Ms

γ0

∑

j

Vj

∫ (
∂m0

∂ri
· ∂m0

∂r j

)
.

(2.7)

This equation expresses the balance of three forces. The first force (first two terms
of r.h.s.) expresses the external action on the texture. It generalizes Thiele’s original
expression [29] by including the force from torques T that do not derive from an
energy density.10 Then come the two forces introduced by Thiele, the so-called
gyrotropic force (third term in (2.7); its name reminds one that it derives from the
precession term in LLG), and the dissipative force (fourth term, deriving from the
damping term in LLG).

Before discussing these two forces, we treat the important case of the spin-transfer
torque. It proves very simple [23]: the velocity in the gyrotropic force expression
becomes a relative velocity V − u (a relation first proved by L. Berger [31]), and
for the dissipation force αV is replaced by αV − βu. Thus we are led back to the
standard case, just with relative velocities.

Let us now look more closely at the gyrotropic force. Its expression shows that
the j velocity component contributes to components i �= j of the force, in an anti-
symmetric way. Hence one can write quite generally Fgyro = G × V, G being the
so-called gyrovector, with components

Gi = −μ0Ms

γ0

εi jk

2

∫ (
∂m0

∂r j
× ∂m0

∂rk

)
· m0 , (2.8)

10It may prove more pedagogical to input all external actions in T rather than inHeff ; then F is zero
as the self-energy of the texturem0 should be independent of position (assuming a uniformmedium,
infinitely extended). See Sect. 2.4 for the special case of an infinite extension in one dimension only.
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εi jk being the fully antisymmetric tensor (εxyz = 1, εxzy = −1, εxxz = 0, etc.). This
means that the gyrotropic force is always orthogonal to the texture velocity, like
the Lorentz force acting on a charged particle in a magnetic field. In the case of
a thin film, where only in-plane variations of m occur, the gyrovector has only a
perpendicular component. Apart from the factor (μ0Ms/γ0) h (namely the surfacic
density of angular momentum, h being the sample thickness), this is exactly Ω , 4π
times the skyrmion number defined in the introduction Chap.1, by H. B. Braun.
Thus, we see that textures that cover a non-zero area on the unit sphere (i.e. have
a non-zero vertical gyrovector component) get deflected sideways within the film
plane. If the texture is topological, the value of this unit sphere area is fixed, so
that the gyrovector is a vector that is constant in time. A direct connection between
topology and dynamics of magnetic textures is thus established.

We also need to come back to the dissipative force. In the case of a nanowire
(extended in the x direction, cross-section �), which is more general than assuming
a strictly one-dimensional physics, the forces for steady-state dynamics can only be
along x (thus, a gyrotropic force if it exists has to be balanced by a confinement force
from the nanowire edges). It is then useful to express the dissipation force in terms
of a domain wall width that has been called 11 the Thiele domain wall width �T,
defined as

2

�T
= 1

�

∫ (
∂m
∂x

)2

. (2.9)

Indeed, under a field H collinear to the domains magnetization one finds from
(2.7, 2.9) a domain wall steady-state velocity V obeying the famous relation of
one-dimensional domain wall dynamics [2, 16, 33] V = (γ0�T/α) H . For a discus-
sion of the Thiele domain wall width, that comes from energy dissipation, compared
to the more intuitive geometrical, and imaging domain wall widths, the reader should
consult [34, 35].

The assumption underlying the derivation of the Thiele equation is a rigid dis-
placement of the magnetic texture. A situation where this is physically legitimate
is the case of stationary motion. In such a case, m0 is the moving texture, that may
differ from the structure at rest, as well known for the dynamics of domain walls
[16, 24, 25, 36]. In practice, the Thiele equation is employed in a much wider variety
of situations, with the additional approximation thatm0 is the texture at rest.

In order to describe non-steady state motion, where velocity changes, it has been
proposed to account for the deformability of the texture bywriting [37, 38]m (r, t) =
m0 [r − R(t),V(t)]. This leads to an inertial force in the Thiele equation, with an
expression for the mass that generalizes the early calculation [36] of the Bloch wall
mass. The systematic incorporation of higher derivatives is discussed in [39].

Another generalization recently proposed in the context of magnetic skyrmions
[40] considers local densities for both gyrovector and dissipation, thus allowing for

11This domain wall width is implicitly defined in [30] (Sect. 2.4) when applying the Thiele equation
to the dynamics of a simple domain wall. The explicit definition of the Thiele domain wall width
occured later [32].

http://dx.doi.org/10.1007/978-3-319-97334-0_1
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texture deformation. This approach implements a bridge between the Thiele equation
and the Slonczewski equations described below.

2.2.2 The Canonical Momentum

We start by considering the bubble material case, where this concept was introduced.
A general framework to describe the dynamics of domain walls in films with per-
pendicular magnetization, allowing for arbitrary wall shape and magnetic moment
orientation, is afforded by the Slonczewski equations [9, 25].

They generalize the Walker solution for the dynamics of a Bloch wall [33], and
describe the domain wall dynamics by two variables, the local wall displacement q
along its normal and the local domain wall magnetic moment angle ψ , in the plane
orthogonal to the easy axis (Fig. 2.4). The two variables are function of time at least,
and of positionwithin the domainwall surface in themost general version. At thewall
sub-structures (lines),ψ deviates strongly from the in-plane angle of the plane tangent
to the domain wall, a situation specifically discussed in the next section. To describe
the magnetization everywhere, the assumption is made that the magnetization polar
angle θ [writingm = (sin θ cosφ, sin θ sin φ, cos θ), withφ = ψ at thewall position
θ = π/2, z being the normal to the film] varies with the coordinate normal to the
wall according to the Bloch wall profile, namely θ = 2 arctan exp (x/�)with a fixed
domain wall width parameter� (as soon as the domain wall curvature radii are larger
than a few domain wall widths, there is no conflict in assigning to each position a
unique magnetization, practically even if not mathematically). The LLG equation

Fig. 2.4 Schematic of a general reversed domain. At point P along the domain wall (curvilinear
abscissa s), the tangent to the domain wall is shown (angle ψt ), as well as the orientation of
the domain wall magnetic moment (angle ψ in the absolute frame). The oriented normal to the
domain wall (vector n) is the direction along which the domain wall displacement q is measured.
Reproduced, with permission by Academic Press, from [9]
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then transforms into two coupled (q, ψ) equations, the Slonczewski equations [25]:

δσ

δq
= −2μ0Ms

γ0

(
∂ψ

∂t
+ α

�

∂q

∂t

)
, (2.10)

δσ

δψ
= 2μ0Ms

γ0

(
∂q

∂t
− α�

∂ψ

∂t

)
. (2.11)

The conservative dynamics (obtained by setting α = 0) implies that q and ψ are
conjugated in Hamilton’s sense, the Hamiltonian being σ , the domain wall energy.12

Thus
p = 2 (μ0Ms/γ0) ψ (2.12)

has been called the canonical momentum surface density. It is a linear momentum,
oriented along the normal to the domain wall.

The linearmomentum conservation equation (2.10) directly leads towhat is called
the automotion effect. For a free wall in a uniform medium, energy is independent
of position thus δσ/δq = 0, so that the time variations of angle ψ and position q are
linked. If the wall structure has changed, inducing a change of the domain wall angle
denoted [ψ], the dissipation of the associated momentum change leads to a domain
wall displacement [q] given by

[q] = − (�/α) [ψ] , (2.13)

called automotion. Remarkably, the sign of the automotion depends on the sign of
the change of ψ .

The generalization to a global quantity, for example and obviously at that time for
a bubble domain, led to the canonical momentum concept [41–43]. A vast literature
exists on this subject, with papers entitledForce,momentumand topology of amoving
magnetic domain [43] or, more recently, Topology and dynamics in ferromagnetic
media [44]. The subject is also connected to the question of the spin electromotive
force, discussed later (Sect. 2.4.3).

Going back to the derivation of the Thiele equation, we get from (2.3) and (2.6),
without making the rigid translation assumption so as to allow for transformations
of the texture (the profile of ψ over the domain wall surface, mainly),

Fi = μ0Ms

γ0

∫ (
m × ∂m

∂ri

)
· ∂m

∂t
− α

μ0Ms

γ0

∫
∂m
∂ri

· ∂m
∂t

− μ0Ms

γ0

∫ (
m × ∂m

∂ri

)
· T.

(2.14)
The comparison of the above equation, in the conservative case, to Newton’s second
law leads to write that the global linear momentum Pi conjugated to the global
position Xi of the texture satisfies

12We stick to the historical formulation that refers to the domain wall energy density σ , but in fact it
is the total energy E = ∫

E d3r = ∫
E dqdS = ∫

σdS. Indeed, expressing the effect of an easy axis
field by δσ/δq = 2μ0MsH , which means a position-dependent domain wall energy, is physically
artificial.
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dPi
dt

= μ0Ms

γ0

∫ (
m × ∂m

∂ri

)
· ∂m

∂t
. (2.15)

It is a priori not mathematically guaranteed that this expression defines a momentum
vector P. In the case of bubble domains [41–43], the r.h.s. of (2.15) can be naturally
split into two parts, by separating the time evolution into that due to the bubble
displacement and that due to the evolution of the magnetic structure of the domain
wall (the bubble being assumed to remain circular with constant radius). The first
part exactly gives minus the gyrotropic force −G × V [43], a result that was to be
expected. The second part is the momentum of the domain coming from the domain
wall internal magnetization (ψ) dynamics. Neglecting the width of vertical Bloch
lines and assuming vertical domain walls, this second part of the momentum was
found to be simply Ψx = πh

∑
j ε j y′

j and Ψy = −πh
∑

j ε j x ′
j , using the reduced

momentum Ψi = Pi/ (2μ0Ms/γ0) and with x ′
j , y

′
j and ε j denoting, for the j-th

VBL, its relative x ,y position from the bubble center and its polarity (see drawing in
Fig. 2.6(c)). The appealing character of this zero-width Bloch lines approximation
is that they are shown to concentrate all the domain wall momentum. In addition,
this analysis shows that a global domain momentum P is indeed defined by (2.15),
once the gyrotropic force contribution is extracted. The application of the domain
momentum concept to the experiments on bubbles is described in another section
(Sect. 2.3).

The second case where the canonical momentum of a texture was employed
concerns soft nanostrips (see Sect. 2.4 for an introduction to the peculiarities of such
samples). In a narrow strip, a domain wall can transform, but cannot move in the
transverse (y) direction, so that only the longitudinal component Px of the global
momentum is relevant. Using the same proportionality relation as in (2.12), and
dropping the x-subscripts, one is led to define for a nanostrip a generalized domain
wall magnetic moment angle [45] through

dΨ

dt
= 1

2�

∫ (
m × ∂m

∂x

)
· ∂m

∂t
, (2.16)

where � is the nanostrip cross-section area. For a 1D domain wall with the Bloch
profile [θ(x) = 2 arctan exp ((x − q)/�), φ(x) = ψ], one can check that the angle
Ψ thus defined is identical to the angle ψ of the DW magnetic moment. For more
realistic 2DDWs (TW,ATW,VW; seeSect. 2.4 for definition), it has beennumerically
checked [45] that this indeed defines an angle Ψ that behaves as expected, although
no general mathematical proof could be given. A further generalization of the wall
global position Q according to

dQ

dt
= −�T

2�

∫
∂m
∂t

· ∂m
∂x

(2.17)

leads to recover the linear momentum conservation Slonczewski equation (2.10),
this time for the global domain wall position and angle [45].
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2.3 Experiments with Bloch and Néel Lines

In the previous section, we have proved that topology for n = 3 shouldmanifest itself
by a deflection in the motion of a magnetic texture. But an infinite, straight domain
wall cannot show such a motion. Moreover, a one-dimensional texture covers no
surface on S2 hence has a zero gyrovector. So we need to study cases more complex
than infinitely long and straight one-dimensional domain walls. Finite domains (e.g.
a bubble domain) are one such case, but the largest physical richness appears when
investigating magnetic domain walls that are not one-dimensional, i.e. walls whose
magnetization varies along the domain wall surface, so that they contain lines.

2.3.1 In-Plane Soft Magnetic Films

The quasi-static motion of Bloch lines was observed, under a field parallel to the
domain wall magnetization,13 thereby proving that the domain wall is really subdi-
vided into segments with opposite magnetizations. In one case [47], short field pulses
were applied and a Bloch line mobility measured, the field directly favoring Bloch
line motion. The first stroboscopic analysis of Bloch lines motion was performed
[48] by means of Lorentz electron microscopy. In these experiments, the sole motion
of ‘circular’ lines was observed, whereas the ‘cross’ lines and the wall supporting
them remained immobile. These experiments could be performed only for a hard
axis field so that, again, the field did exert a direct force on lines. Such is the case
also of later studies performed on thin film heads (e.g. [49]). Thus, to the knowledge
of the authors, no topological (gyrotropic) effect in domain wall dynamics could be
evidenced at the time in soft metallic magnetic films with in-plane easy axis.

The resonant motion of a circular line (vortex) at the junction of four 90◦ Néel
walls was first observed in garnet epilayer patterned microstructures with in-plane
easy axes [50]. The vortex orbit necessarily implies the existence of a gyrotropic
force. Soon after, several experiments performed on iron garnet crystal slabs with a
single in-plane easy axis did allow for a direct observation of gyrotropic effects [46],
the application of an easy axis field inducing both wall and line motion. The phase
relation between wall and line motion was consistent with the action of a gyrotropic
force on the line (Fig. 2.5). Joint line and wall motion was also achieved under the
action of a field primarily favoring line motion. The phase relation between moving
adjacent lines along a givenwall was also consistent with the topological expectation.
Finally, the opposite gyrotropic (topological) forces acting on line segments separated
by a Bloch point did allow for the first detection of point singularities [51] and, upon
application of suitable fields, their manipulation and, even, a first estimate of their
mobility [52].

13Soft magnetic films often display a small in-plane uniaxial anisotropy.
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Fig. 2.5 Dynamics of one domain wall containing Bloch lines in a 50 µm thick single crystalline
yttrium iron garnet plate, excited by an easy-axis field pulse and observed by magneto-optics. The
photometric traces (left) show the domainwallmotion (in the x direction, curve 1) and the Bloch line
motion along the domain wall (in the y direction, curve 2). The right picture is a magneto-optical
image of the sample, the domains magnetizations being along ±y, the easy axis. In the domain
wall, Bloch segments of alternate polarities (±z) are seen, with black and white contrasts. The gray
boxes show the areas over which the optical intensity was integrated to produce the traces shown.
Reproduced, with permission by AIP, from [46]

2.3.2 Perpendicular Magnetization Samples: Bubble Garnets

The two types of lines in the domain walls of such samples have been described
in Sect. 2.1.3. Because of the twisted Néel-Bloch-Néel nature of the walls in finite
thickness films, a VBL has a gyrovector density that varies along its length (see
Fig. 2.3(c, e)). For an HBL, the gyrovector is constant along its length, but now
changes according to the vertical position of the line, again because of the domains’
inhomogeneous stray field. Note that the gyrovector of a line is always along the
line.

2.3.2.1 Role of Horizontal Bloch Lines

Experimentally, HBLs were first invoked to explain the complex motion of simple
walls, for example in a bubblewithoutVBLs, under pulse bias fields (dynamic bubble
collapse experiments). A first HBL model was built by Slonczewski [53] under the
assumption of rigid vertical domain walls, that could be analytically solved. From
the Thiele equation we see that for a domain wall moving in the y direction, an HBL
which has a gyrovector oriented in the x direction experiences a gyrotropic force
in the z direction (see Fig. 2.3(b) for axes), hence the prediction of the HBL model
that such lines are nucleated at one sample surface and cross the film, reducing the
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domain wall velocity. This model describes a realization of theWalker breakdown in
a finite-thickness sample, with the inhomogeneous Néel-Bloch-Néel wall structure.
Above the Walker breakdown, it leads to the phenomenon of HBL ‘punch-through’,
where the 2π twist of the HBL is released by its expulsion.

It was then soon realized [54] that the rigid wall assumption was not justified,
again invoking the Thiele equation argument that a moving HBL locally affects the
domain wall dynamics. Time-resolved measurements (by local magneto-optics) of
the dynamics of parallel domain walls submitted to a bias fied pulse [55] required, to
be correctly reproduced, the numerical solution of the full one-dimensional Slon-
czewski equations (unknowns q(z) and ψ(z)). More elaborate measurements in
which a single domain wall was investigated, and using an optical dark-field tech-
nique where light is scattered according to the wall orientation relative to the vertical,
gave an even better agreement with the 1D Slonczewski equations [56]. A proof of
the topological dynamics is that the HBL pushes the domain wall forward when it
travels back to its original surface, as opposed to the initial part of the motion where
the HBL slows down the domain wall, an effect that could also be accounted for by
the increased energy dissipation at the HBL. This is another example of the automo-
tion effect. The domain wall push by a relaxing HBL can also be rationalized by the
canonical momentum concept: in a zero-width HBL model one gets, similarly to the
calculation for VBLs in a bubble, a canonical momentum per unit wall length whose
domain wall normal component reads dPn/dt = (2μ0Ms/γ0)�ψ (zL) dzL/dt , zL
being the HBL vertical position and �ψ (zL) the jump of domain wall magnetiza-
tion angle at this position.

2.3.2.2 Role of Vertical Bloch Lines

Experiments involving VBLs are much more numerous, as VBLs are statically sta-
ble. A first type of experiments investigates the effects of VBL on the statics and
dynamics of bubbles. The best-known effect of the presence of VBLs is the lat-
eral deflection of bubbles, first seen when applying a bias field gradient (Fig. 2.6(a))
[9, 57] (this effect has in fact been the motivation behind Thiele’s equation). A more
elaborate measurement of the effect was later obtained by submitting bubbles to a
bias field gradient whose in-plane direction rotates at MHz frequencies, applying
a rotating radial force to the bubble. Figure2.6(b) shows results obtained with this
technique, where the slopes are determined by S, the bubble winding number.14

These experiments revealed another effect of the presence of VBLs, namely that the
bubbles have an apparent mass that greatly exceeds what would be computed from
the Döring formula [60]. The explanation of this fact was obtained [61] through the
concept of the canonical momentum, as sketched in Fig. 2.6(c): due to the gyrotropic
force the VBLs gather on opposite lateral sides of the moving bubble according to

14By convention for bubbles, the bias field is up so that the bubble core magnetization is down.
Thus topological and winding numbers are in one-to-one correspondence (in fact, they are simply
opposite, as the core is down-magnetized).
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Fig. 2.6 Gyrotropic bubble deflection experiments. (a) Histogram, for randomly chosen bubbles, of
deflection angles from the pulsed gradient field direction (from [57]). (b) Bubbles rotation velocity
versus radial drive (r∇Hz with r the bubble radius), as a function of bubble state given by the
winding number S and the total VBL number P (from [58]). (c) Schematic of a rotating bubble
(adapted from [59]) with R the bubble position vector from the device center, and V its velocity
vector tangent to the bubble center trajectory (arc of circle). As the two VBLs created by a HBL
loop punch-through have opposite polarities, they are deflected to opposite sides of the moving
bubble (+ and − signs on both bubble sides) so that the second part of the bubble momentum is
indeed given by the total VBL number (see Sect. 2.2.2), hence its denomination P in (b). Panel (a)
is reproduced, with permission by AIP, from [53]. Panels (b,c) are reproduced, with permission by
IEEE, from [58, 59], respectively

their sign, and are thus stable so (see Fig. 2.3(g)). The moving bubble therefore has
a canonical momentum, tangent to its trajectory and porportional to the total VBL
number (P in Fig. 2.6b). From the force equation (2.15), a radial force appears on a
rotating bubble, proportional to the angular velocity and the VBLs number, that adds
to the inertial force [61] and can be much larger.

Many other manifestations of the gyrotropic force on bubbles through Bloch lines
exist (see [9] for a survey). These include, keeping the terminology introduced in
each case, (i) the overshoot effect by which bubbles continue to move after the
field gradient pulse has terminated [41, 62]; (ii) the bubble automotion due to a
bias field pulse, with displacement in different directions for bubbles prepared in
different states by an in-plane field [63], also called bias jump when the bubbles
were prepared only by gradient propagation [64] and (iii) the bubble turnaround
effect, a bubble lateral displacement when the sign of the pulsed field gradient is
reversed [65]. All these effects could be explained by (i) the nucleation of VBL pairs
of opposite topological numbers, either statically by an in-plane field or dynamically
[66] through the nucleation and motion of an HBL that ‘punches-through’ at the
other film surface, transforming into two VBLs,15 together with (ii) the gyrotropic

15The twoVBLs indeed have same coremagnetization, namely that of theHBL, samemagnetization
gradient normal to the domain wall and opposite magnetization gradients along the domain wall,
hence opposite vertical gyrovector components.
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Fig. 2.7 Optical observation of Bloch lines in a bubble garnet film, by an anisotropic dark field
technique [67, 68]. Only the domain walls scatter light, through the magneto-optical effect. Around
the position of VBLs and according to their magnetostatic charge, the wall tilts, increasing or
decreasing the scattering of light (+ or − signs on the left of walls; beware that these signs are
unrelated to those of the gyrovectors of the VBLs)

motion of these VBLs, during the bubble preparation phase or during the subsequent
bias field pulse.

A second type of experiments was performed later, within the research effort on
the so-called Bloch line memory [69], a successor of the bubble memory that never
reached the market [70]. In this memory, an information bit is represented by the
presence or absence of a winding VBL pair, i.e. VBLs having the same topological
number. The memory is organized in shift registers, each being the domain wall of
an elongated stripe domain, around which the data are circulated so as to read or
write them at gates. The VBL pair propagation is realized by asymmetric bias field
pulses, in order to have motion only during the sharp leading edge of the pulse.
As all VBLs have the same gyrovector, they all displace in the same direction, so
that this memory relies on the dynamic consequences of topology in magnetism.
The amplification factor from domain wall velocity to VBL (isolated, or in clusters)
has been measured, evidencing a drop with the number of VBLs in the cluster due
to the large domain wall deformations that occur at the cluster [71]. The expected
progressive change of the global gyrovector of a single VBL by control of the vertical
position of a Bloch point along the line, has also been experimentally observed
[72, 73]. These experiments used the static VBL visualization technique based on
light scattering by the domain wall, through the wall local inclination in the vicinity
of the VBL (Fig. 2.7) [67, 68].

The Bloch-line memory is touching topology in another aspect. A winding VBL
pair is indeed a topologically stable structure within a uniform Bloch wall, with a
topological number of ±1. The topological protection is nice for data stability, but at
the same time prevents the writing of data. From the general arguments of Sect. 2.1,
we know that a Bloch point is necessary. Indeed, the simple and efficient scheme
devised to write winding VBL pairs [74]—called Bloch point writing—rests on the
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injection of a Bloch point at the top sample surface, by a local magnetic field created
with a thin conductor placed on the sample top surface.

2.3.2.3 Manifestation of Topological Stability in Experiments

This part is directly inspired by the book on domain walls in bubble materials, by
Malozemoff and Slonczewski [9], Sects. 8D, 9B and 9C.

From the topological analysis, a unichiral bubble is a topologically stable structure,
that cannot disappear in a continuous way. However, it is well known experimentally
that amaximumbias field exists—the so-called collapse field, a fraction of the sample
magnetization—above which the bubble collapses by implosion. The radial force
analysis taking into account magnetostatic stabilization and domain wall surface
indeed predicts that, at this field, the structure energy steadily decreases as radius
decreases [9], so at least down to a radius of the order of the domain wall width. In
such a dynamic process, it is therefore conceivable that, the bubble reaching such a
small sizewith a large energy, aBloch point can be injected that breaks the topological
constraint.

This interpretation is strengthened by the observation of ‘hard bubbles’ [75],
that have significantly larger collapse fields (up to twice the value, typically). The
measureddiameter versus bias field curves of suchbubbles havebeenwell reproduced
by a model [76] where the magnetization in the domain wall has large winding
numbers S, i.e. a large number of winding VBLs is present, so that the domain wall
specific energy increases as the inverse square of the diameter. In such conditions the
implosion of the bubble is prevented, and the collapse occurs only when the VBLs
are so tightly packed that Bloch points are injected, removing them pair by pair as
the bubble diameter decreases.

The enhanced stability of hard bubbles can therefore be taken as a signature of the
reality of the topological stability of winding VBL pairs. This experimental stability
of VBL pairs is the founding principle of the Bloch line memory [77]. To the authors’
knowledge, no systematic study of the VBL pair stability has been conducted (for
example, by applying in-plane compressing fields for various durations at various
temperatures, to a single VBL pair located on a single straight domain wall). Indirect
studies however exist in which hard bubbles were heated-up and their collapse field
tested when going back to room temperature [78].

2.4 Experiments on Nanostrips of In-Plane Soft Materials

With the continuous development of micro- and nanofabrication techniques, fol-
lowing progress in the deposition or growth of thin and ultrathin films, patterned
sub-micrometric magnetic structures came under focus in the 90s. An interesting
structure in this family is the nanostrip of width w, patterned out of a thin film of
thickness h with h 
 w (keeping the term nanowire for the case h ∼ w), the prefix
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nano meaning that w < 1 µm so that h is a few nanometers, whereas the strip length
is extremely long, allowing domain wall propagation in that direction. The typical
exchange length of the material being � = 5 nm, such small thicknesses prevent
magnetization variations across the sample thickness. The interest in such structures
was greatly enhanced by the experimental study of the spin-transfer torque (STT),
as very small sample cross-sections are required for allowing current densities of a
few 1012 A/m2 (note that the total current heats both sample and substrate [79]). A
large majority of these studies was performed on films of the soft alloy (permalloy)
Ni80Fe20 that has vanishing anisotropy and magnetostriction. The latter property is
extremely important, as whatever the deposition conditions, the resulting stress state
of the filmwill not affect itsmagnetic properties (for non-zeromagnetostriction films,
some surprising consequences on magnetic structures are explored in [80, 81]). Low
anisotropy is also important for domain wall propagation, because of the empirical
linear correlation between anisotropy field and coercive field [82].

In such samples, due to the small width, magnetostatics favors magnetization
along the strip axis. This gives rise to an unusual type of domain wall, the charged
wall, not considered in the old domain theory that predates micromagnetics [2]. The
walls are labelled head-to-head (HH) when they bear a positive magnetic charge
(−div(m)), and tail-to-tail (TT) when the charge is negative.16 The basic walls in
nanostrips are thus called transverse (TW), vortex (VW) and, for nanowires, Bloch-
point walls [32, 34, 83].

2.4.1 Topology of Domain Walls in Soft Nanostrips

In this section we expose, in the general context of this chapter and book, the work by
O. Tchernyshyov and collaborators [86–88]. Owing to magnetostatics, magnetiza-
tion is pulled towards the tangent to the strip edges, a phenomenon deeply exploited
in the past to predict and classify the possible magnetic textures in small elements
patterned from soft magnetic films [89]. If this is taken as a mathematical prescrip-
tion one obtains that at the edges the magnetization is Ising (n = 1), either parallel or
antiparallel to the local tangent. From the homotopy result �0

(
S0

) = Z2, quoted in
Sect. 2.1.1, we get that topological defects exist at the edges whatever the wall type,
HH or TT. In reality, the Ising character of edge magnetization is not absolute, espe-
cially for small sample thickness as the demagnetizing field from in-plane variations
of magnetization vanishes at zero thickness. Thus, the next-order description of the
edge magnetization is the same as the first-order description of magnetization in the
sample, namely XY (n = 2). By this ‘escape in the second dimension’, the previous
topological defects Fig. 2.1(a) are regularized into topologically stable domain-wall
configurations, as shown in Fig. 2.1(b1, b2), that have winding numbers of ±1/2.

16It is thus meaningless to try to call these walls Bloch or Néel, as the latter have no volume charge
resp. a dipolar volume charge.
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(a)

(b)

(c) (d)

(e) (f)

Fig. 2.8 Edge defects in a soft nanostrip for different domain walls. (a) schematic of a half-
antivortex (1/2 AV) edge defect, with edge winding number −1/2, as found with the contour
orientation drawn by the blue curved arrow on the side. (b) Same for a half hedgehog vortex
(1/2 HV), with edge winding number +1/2. The virtual defect of the XY model is shown by the red
dot, and the sample bottom edge is drawn by the line. (c–f) MFM images of domain walls in NiFe
nanostrips, 17.5 nm thick [84]; the walls extend over the darker contrasts that correspond, in first
approximation, to the magnetic charge density −divm. (c–d) Asymmetric transverse walls with
opposite asymmetries, bearing two edge defects of opposite winding number, indicated by large
arrows. An oriented circuit around a domain wall, with two edge paths and two crossing paths,
is drawn in (c). (e–f) Vortex walls, for which the two edge defects are half antivortices. The two
vortex walls have opposite circulation and opposite core polarity. Magnetization in each region is
sketched by black arrows. All MFM images taken from [85]
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As shown by Tchernyshyov et al. [86], it is physically instructive to consider these
edge configurations as ‘edge defects’, themanifestation of virtual defects located out-
side the sample, as sketched in Fig. 2.8(a, b). The virtual defects are characterized by a
winding number (Fig. 2.8(a, b)), evaluated similarly to that of VBLs (see Fig. 2.3(g))
by replacing the reference down-magnetized domain by the medium outside the
nanostrip, again in order to orient the travel along the domain wall. Note that in this
escape in the second dimension there is no one-to-one correspondence between the
n = 1 and the n = 2 defects, as drawn in Fig. 2.8(a, b) for the HH case.

To make connection with the general procedure outlined in Sect. 2.1.1, aimed
at finding whether topological defects exist in the sample, we simply consider a
circuit around the sample i.e. made of the two nanostrip edges connected by two
crossing paths (Fig. 2.8(c)). Far enough from any structure, the crossing paths lead
to no magnetization rotation, so that the magnetization rotation upon tracing one
loop is just the sum of the rotations along each edge. As the sample as a whole is
now investigated, the positive sense around the edges is the opposite of that used
to identify the edge defects. We thus reach the conclusion [86] that the sum of the
indices of the internal topological defects and of the edge defects is zero. For example,
in Fig. 2.8(c, d) no topological defect is associated with the asymmetric transverse
walls shown, whereas in Fig. 2.8(e, f) for vortex walls, a vortex with +1 topological
index is present as two −1/2 edge defects exist.

2.4.2 Topological Dynamics of Domain Walls
in Soft Nanostrips

The interest in such structures, initially just for field dynamics [90, 91], greatly
increased with the study of the motion of domain walls by the spin-transfer torque,
as such samples can withstand large current densities. These two means of action are
considered separately below.

2.4.2.1 Field Dynamics

The nanostrips, that confine the domain wall degrees of freedom by both reducing the
nanostrip width and thickness, hence both dimensions of the domain wall surface,
offered a new playground for testing and refining the domain wall dynamics phe-
nomenology. This concerns particularly the value of theWalker field, i.e. the process
that fixes this threshold, and the domain wall dynamics little above the Walker field,
where the differential mobility is predicted to be negative in the one-dimensional
model, a feature anticipated to be removed by domain wall deformations in gen-
eral [25].

As shown in Fig. 2.8, two basic types of domain walls exist in nanostrips, the
transverse wall (TW) and the vortex wall (VW), with different stability regions in
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the nanostrip thickness vs. width plane [83], the TW decaying into a lower sym-
metry asymmetric transverse wall (ATW) at large widths [34]. The edge defects
analysis, performed in the frame of the XY model, shows that the (A)TW contains
no topological defect, whereas the VW contains one vortex with topological index
+1. To understand the dynamics of these walls, it is mandatory to consider the full
structure of these walls in statics and in dynamics, hence to perform the ‘escape in
the third dimension’ where the Heisenberg model now applies, with n = 3. In this
model the vortex becomes a topologically stable structure (using similar boundary
conditions as in Sect. 2.3.2) with a core oriented perpendicular to the sample plane,
either up or down. The vortex covers half of the order parameter sphere, with a sur-
face Ω = 2πp with p the core polarity (see the chapter on vortices, by C. Behnke,
C. Adolff and G. Meier, for more details), so that it has a non-zero gyrovector.

From the Thiele expression, it is expected that the gyrotropic force pushes the vor-
tex off the nanostrip center line—the equilibrium position owing tomagnetostatics—
when the VWmoves, up to finally expelling it, the source of one Walker breakdown
mechanism for aVW. This has been predicted bymicromagnetic simulations [32, 45,
92], and experimentally observed through velocity fluctuations [93, 94], domainwall
resistance oscillations [95], and time-resolved domain wall position measurements
[96]. For a TW, even if there is no topological structure at rest (zero gyrovector),
the Walker breakdown involves the injection of an antivortex at one edge, crossing
the nanostrip width and reversing the TW transverse magnetic moment [97]. In all
these cases, the direction of lateral motion of the vortex or antivortex is dictated
by the gyrovector, hence by the polarity of the core of these structures times the
winding number (+1 for the vortex, −1 for the antivortex). The richness of the post-
breakdown dynamical behavior is beautifully illustrated in the systematic numerical
study of 10-nm thick Ni-Fe nanostrips with different widths [92]. A simple physical
understanding of these processes was developed, relying on the edge defects model
[88] and including some magnetostatics-based energetics, the latter derived from
the successful modeling of vortex dynamics in soft nanodisks (see the chapter on
magnetic vortices, by Behnke, C. Adolff and G. Meier).

The comparison of themeasured dynamics of vortexwalls with the simple (Q, Ψ )

model set up by Schryer and Walker revealed a very good agreement, once the
effective anisotropy energy for the ‘DWmoment angle’ Ψ was found [98]. This was
very surprising at first sight, as the so-called 1D model of Schryer and Walker was
clearly transferable to TWs in narrow nanostrips, but not a priori to themore complex
VWs [32]. However, when considering the canonical momentum concept and its
application to nanostrips, as exposed in Sect. 2.2.2, the surprise diminishes. The
surprise completely disappears when, calculating the generalizedΨ in the composite
singularitymodel of theVW[86], onefinds the simple relationdΨ/dt = (Ω/2)Vy/w
[45, 88] with Ω = 2πp (p the vortex core polarity) being the surface covered on the
sphere. This links the canonical momentum of the VW to the topological index of
the core times the lateral core position, a result that resembles the evaluation of that
momentum for bubble domains.

Another aspect of the topological domain wall dynamics is, similarly to the case
of bubbles described in Sect. 2.3.2, the automotion of domain walls [84]. Starting
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from an ATW nucleated by in-plane field in a bent nanostrip, it was observed that
under transformation into the stable VW structure, the domain wall displaced by
about ±1 µm. Observing by MFM the structures of both initial ATW and final VW,
the injected vortex could be observed (as shown in Fig. 2.8(c–f), note especially the
contrast corresponding to the vortex core polarity) as well as the path it took to reach
the nanostrip center. These characteristics give access to the sign of the released
canonical momentum. This momentum was observed to indeed match with the sign
of the domain wall displacement along the nanostrip, according to (2.13) [84].

Coming back to the topological difference between TW and VW, discussed above
and that would prevent such a transformation, the reader is reminded that this topo-
logical difference rests on the fact that the mappings of the edges on the unit sphere
are fixed, like in Fig. 2.3(c–f). The expulsion of a vortex at one edge, or the fact that
it enters at one edge, breaks this assumption. A more local source of automotion, in
which a BP reverses the vortex core in a VW is also expected, but has not yet been
observed.

2.4.2.2 Current-Induced Dynamics

Topology arguments also apply to the current-driven domain wall motion, here
through the spin-transfer torque (STT). The modified Thiele equation that corre-
sponds to this situation has been recalled in Sect. 2.2.1. In the case of the (A)TW,
the gyrovector is zero.17 The generalized Thiele equation then tells that station-
ary domain wall motion under STT is only possible with a non-adiabatic (β) STT
term, according to the relation V = (β/α) u [23, 99]. For a VW, on the other
hand, the gyrovector is non-zero. Treating the VW as a vortex core that can move
both along and across the nanostrip (a lateral restoring force should be added,
restricting the latter motion), one obtains Vx = u

(
G2 + αβD2

)
/
(
α2G2 + D2

)
and

Vy = u (α − β)GD/
(
α2G2 + D2

)
. Thus, even in the absence of a non-adiabatic

term, a VW moves along the carriers at velocity Vx ≈ u (for small damping α).
The sideways motion of the core is proportional to the gyrovector and difference
α − β: it would be zero if β = α (as proposed in some models), and reverses with
e.g. core polarity as observed by X-ray magnetic microscopy [100]. When the vortex
core reaches the nanostrip edge and is not expelled, gyrotropic motion can no longer
take place and the previous expression where motion is due to the non-adiabatic
term is recovered. A behavior in good agreement with this model was observed in
[101], where the DW structure was resolved by spin-polarized scanning electron
microscopy, after each pulse, correlating the presence of the vortex with the domain
wall displacement. Displacements of VWs accompanied with changes of structure
are shown in Fig. 2.9. They were systematically recorded by the associated change
of sample resistance, through the anisotropic magnetoresistance effect [102], but

17This is not exact, actually, as magnetization tilts slightly out-of-plane close to the half antivortex
and half hedgehog vortex. The surface thus covered on the sphere is, however, not topologically
protected.
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Fig. 2.9 Current-induced displacement of VWs in Ni-Fe nanowires, observed by MFM. (a) Suc-
cessive displacements of two VWs in a w = 100 nm h = 40 nm nanowire with triangular notches
1µm apart (highlighted by vertical lines), under single 14 ns long, 26 mA current pulses, showing a
fewVWcirculation reversals. Reproduced, with permission by AAAS, from [104]. (b) MFM image
of a HH clockwise VW pinned by a triangular notch 100nm deep, in a w = 300 nm h = 10 nm
nanostrip, together with micromagnetic simulation of the structure, shown by a black and white
image of divm and a color image of the in-plane magnetization. (c) Same for an anti-clockwise
VW. Panels (b, c) are reproduced, with permission by APS, from [102]

the topological implications of such changes were not studied. As STT-induced DW
motion was also observed for TWs in the samematerial [103], one has to assume that
the non-adiabatic coefficient is not zero, so that DWmotion by STT is not completely
governed by topology.

Another topology-related effect of STT on domain walls is the observed oscilla-
tory dependence of VW depinning by current pulses of varying duration, linked to
the resonant excitation of the vortex core [98]. For an in-depth discussion of these
matters, the reader is referred to the chapter by C. Behnke, C. Adolff and G. Meier,
that is specifically devoted to vortices.

2.4.3 Topology and the Spin Electromotive Force

Early work by Luc Berger, the pionneer of the spin-transfer torque, led to the predic-
tion that, in a metallic ferromagnet, a dc voltage develops across a domain wall with
precessing magnetization [31]. This can be seen as an inverse effect of STT. At the
local scale [105–108], an electro-motive force (same dimension as an electric field)
is generated, expressed as

Ei = P
�

2e
m ·

(
∂m
∂t

× ∂m
∂ri

)
, (2.18)

where −e is the electron charge andP is a spin polarization, the spin asymmetry of
spin-flip scattering. This equation is very close to the definition of the generalized
domain wall magnetic moment angle (2.16) in a nanostrip containing a domain
wall. The evaluation of the average (over the nanostrip cross-section) voltage drop
Ux across such a domain wall is indeed Ux = P (�/e) dΨ/dt . This relation was
obtained by Berger [31] and called ac ferro-Josephson effect.
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In the above sections, we have seen that the change of the canonical momentum
canbe realized by themotion of topologically non-trivial substructures. Thus, the spin
electromotive force can provide a detection of the motion (and hence the presence)
of topological textures, see the chapter on bulk skyrmions, by A. Bauer et al., for
another illustration of the effect. Note however that the spin electromotive force can
exist even with topologically trivial textures: a TW with precessing domain wall
magnetic moment has also a non-zero dΨ/dt , even if it covers (nearly) no surface
on the unit sphere.

For the specific case of domain walls, one experiment based on the creation and
motion in the precessional regime of vortex walls has evidenced this effect, with
measured dc voltages of the order of 1 µV, as expected [107].

2.4.4 Soft Nanowires, Nanotubes

Starting from a nanostrip where thickness h is much smaller than width w, and
increasing the thickness or reducing the width, one moves smoothly to the nanowire
case. The shape of the cross-section (rectangular with aspect ratio of order unity,
or elliptical) appears to be unimportant, as practically the lateral dimensions are
well above the micromagnetic characteristic lengths so that hypothetical sharp edges
are magnetically rounded. A review of the domain wall structures in nanowires
was recently published [109], comparing to nanostrips and trying to rationalize the
description and denomination of domain walls.

A first finding of this analysis is that TW and VW cannot be distinguished when
the thin film regime is left, as for example a TW seen from the sample side shows
a outcoming magnetization that transforms into a vortex core as thickness grows.
Topologically, this corresponds to the fact that for n = 3 all domain walls are topo-
logically equivalent when there is no defect (Sect. 2.1.2). The apparent paradox with
Sect. 2.4.1, where TWs with no gyrovector (Ω ≈ 0) were clearly separated from
vortex/antivortex walls with non-zero gyrovector (Ω ≈ ±2πp) is easily explained.
First, only the gyrovector component perpendicular to the film plane was referred to,
as nothing can happen across the thickness of thin film of thickness smaller than the
exchange length�. This restriction is lifted in a nanowire, where the other transverse
component (y) of the gyrovector becomes relevant (corresponding to core motions
across the sample thickness). Second, the quoted values of the surface covered on
the sphere are no longer quantized as soon as the restriction of the edge spins to
n = 1 or n = 2 is lifted when thickness increases. Thus, the general picture of the
transverse-vortex wall—the denomination proposed in [109]—is that components
Gz and Gy smoothly change as thickness increases.

The other notable feature of domain walls in nanowires, of sufficiently large
transverse dimensions, is a stable domain wall that contains a Bloch point, that may
be called Bloch point wall [32, 109] although other denominations were previously
proposed [110, 111]. The Bloch point is enforced by the energy gain upon closing the
flux of the domainwall, similarly to the case ofVBLs in sufficiently thick garnet films
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where a Bloch point allows closure of the domains stray field [112]. The Bloch point
wall was recently observed by x-ray photoemission microscopy [113]. A specific
dynamics was predicted for this wall by micromagnetic simulations [110, 114–116]
in which topology plays no role as the integrated gyrovector components are zero,
except at large drive [117].

Nanotubes are also starting to be experimentally investigated. Their domain wall
structures are similar to those of nanowires, with the important change that the Bloch
point disappears. The reader is referred to [117, 118] for additional information on
this subject.

2.5 Conclusion and Outlook

In this chapter, we have first presented the topological approach to classify and
describe the domain wall structures, in various samples and materials. The direct
link between topology and the dynamics of magnetic textures, here domain walls
and their substructures, has been described both theoretically and experimentally. The
statics part did stress out the limits of the topological obstruction to some texture
changes, as the topological defect of magnetism (the Bloch point) does occur in
practice and can even be stable. The dynamics part, however, emphasized the direct
and visible role of topology. Some relation between domain wall structure/topology
and dynamics with transport properties was discussed. Part 2 of this book contains a
more in-depth discussion of such effects, prominently the topological Hall effect.

In closing, we would like to mention that the topological classification does not
describe all the physics of magnetic domain walls, be it statics or dynamics. Recent
work on ultrathin films with structural inversion asymmetry has indeed revealed
that chiral domain wall structures can be stabilized by the Dzyaloshinskii-Moriya
interaction (DMI). Thus, although one can continuously transform aBlochwall into a
Néel wall and then into the opposite chirality Blochwall (in a filmwith perpendicular
magnetization, typically), the energy of all these structures differs because of DMI.
The dynamics of these walls under the spin Hall effect is moreover directly impacted
by the type (Bloch, Néel) and chirality (clockwise, anti-clockwise) of the domain
walls (refer to the chapters on magnetic skyrmions for a discussion of this physics
in that important case). It was not discussed here as topology, at least within the
framework that we have used here, ignores chirality.
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Chapter 3
Magnetic Vortices

Carolin Behncke, Christian F. Adolff and Guido Meier

Abstract Magnetic vortices are topological objects found in magnetic thin films
and microstructures. The study of vortices has attracted much attention for their
fundamental beauty and because vortices could be constituents of non-volatile stor-
age and sensing devices as well as of radiofrequency and neuro-inspired devices.
Many important experimental, theoretical, and simulational contributions have been
made to understand the intricate details of the statics and dynamics of magnetic
vortices. In this chapter we start from first experimental observations and proceed
to the occurence of vortices, their static properties as well as their topology. The
polarization of vortex cores and the circularity of their in-plane magnetization are
introduced. The minimization of micromagnetic energy contributions that lead to an
out-of-plane core region and an in-plane circulation of magnetization are discussed,
along with geometries for confinement and their response in static external magnetic
fields. We analyze stray fields in the vicinity of a vortex, their hysteresis as well as
their thermal stability before we address dynamic properties. The relation between
handedness and sense of gyration are described and the harmonic oscillator model
for small excitations is introduced. Then modifications of the oscillator model for
strong excitations including nonlinearities are mentioned. We proceed to the core
switching process that includes the creation, annihilation, and fusion of vortices and
their topological counterpart the antivortex. Harmonic and pulsed excitations with
fields and currents are discussed as well as the interaction of coupled vortices, where
a vortex can be considered as a building block, for linear chains, vortex molecules
and magnonic vortex crystals. The chapter concludes with current perspectives and
challenges in the field of magnetic vortices.
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3.1 Introduction and Motivation

3.1.1 Occurrence and Evidence

Vortices are fundamental topological objects found in many systems and within a
large span of length scales. They form in stirred fluids and may be observed in
phenomena such as smoke rings and air swirls in the wake of a starting aircraft.
An example for vortices on the kilometer scale are low- or high-pressure areas that
control the dynamics of the weather. Here, the vortex is called typhoon, hurricane
or cyclone depending on the area of appearance and expresses as large scale flows
of air mass around centers of low or high pressure. It is noteworthy that also the
topological counterpart of the vortex, the so-called antivortex is important for the
dynamics of the weather. The structure of these singularities results from the balance
between the pressure-gradient [1] and the Coriolis force [2] and can be quantified by
a vector field where the velocity of the air mass is described by a three-dimensional
vector for every point in space. The air flow’s sense of circulation depends on the
orientation of theCoriolis force and the pressure-gradient force.While the circulation
is counterclockwise for cyclones on the northern hemisphere, it is clockwise on
the southern hemisphere due to the inversion of the direction of the Coriolis force.
Thus, there are four possible combinations of high- and low-pressure areas with
counterclockwise or clockwise circulation that depend on the hemisphere of the earth.
Similar properties can be identified inmagnetic vortices that emerge in ferromagnetic
micro- and nanostructures. Rather than by the air flow, they are characterized by the
orientation of the magnetic moments circulating in-plane around the center position
of the ferromagnetic structure. In their center region themagneticmoments point out-
of-plane, either up or down. This region is called vortex core and the corresponding
state parameter is called polarization and can be compared to low or high pressures in
the center of cyclones. In comparison to vortices in meteorology, magnetic vortices
are twelve orders of magnitude smaller.

Figure3.1 shows the magnetization configuration of a spiral skyrmion in com-
parison with a magnetic vortex. The word skyrmion is used to denote similar math-
ematical objects in different contexts, from elementary particles to liquid crystals,
Bose-Einstein condensates and quantum Hall magnets [3, 4]. Magnetic skyrmions
represent topologically stable chiral spin structures with particle-like properties [5].
Chapters5 and 4 are dedicated to bulk and thin film skyrmions, respectively. The
structure of skyrmions cannot be continuously deformed to a ferromagnetic or other
magnetic state, thus skyrmions are topologically protected [6]. One important dif-
ference to vortices is that all combinations of circularity and polarity are possible
for vortices because they lack symmetry breaking energy contributions, i.e. chiral
interactions, known as Dzyaloshinskii-Moriya interactions [7, 8]. Having this dif-
ference in mind a vortex can be considered half a chiral skyrmion as it is sketched in
Fig. 3.1. This notion can be described more specifically by the winding number that
is introduced later in this chapter.

http://dx.doi.org/10.1007/978-3-319-97334-0_5
http://dx.doi.org/10.1007/978-3-319-97334-0_4
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Fig. 3.1 Schematics of the magnetization configuration of a a spiral skyrmion and b a magnetic
vortex

(c) (d)

(b)

5 µm antivortex

vortex

(a)

Fig. 3.2 a Edge of a large permalloy rectangle observed by Kerr microscopy. The domains align
along the edges. The chain of vortices and antivortices forming a cross-tie wall in the middle is
partially marked. b Schematic of a cross tie domain wall. cMagnetization distribution of a magnetic
vortex core and d an antivortex core. a adapted from [14]. c, d by courtesy of Michael Martens
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Magnetic vortices as singularities in domain walls in thin films have been known
for many decades and have been studied in great detail [9–13]. Chapter2 is dedicated
to the topic of domain walls. Here we will focus on the aspects that are relevant for
magnetic vortices. Different types of domainwalls occur betweenmagnetic domains.
Thewall types differ in their internalmagnetization configuration. Themost common
wall is theBlochwallwhere themagnetization turns in the plane of thewall. In thinner
sampleswhere thefilm thickness approaches thewallwidth,Néelwalls begin to form.
In Néel walls the magnetization turns perpendicular to the wall plane. The transition
occurs to avoid surface charges that are generated by the Bloch wall. The reduction
of energies in the wall can also lead to more complex wall structures. These so-called
cross-tie walls contain magnetic singularities named vortices and antivortices. An
example is shown in Fig. 3.2. This wall type contains Bloch lines at the positions of
the vortices and antivortices andNéel lines in between and can thus be considered as a
mixture of a Bloch and a Néel wall. In thin films the confinement is one-dimensional.
A two-dimensional confinement of the magnetization as in nanowires forces the
magnetic moments of different magnetic domains to point against each other, either
head-to-head or tail-to-tail. The magnetization can rotate as in a Néel wall. These
transverse walls as they are called in nanowires preferentially occur in narrow and
thin wires. In wider nanowires vortex walls are observed. Figure3.3a shows a vortex
wall, where the magnetic moments curl around a singularity in the center. In even
wider wires double vortex walls occur, as exemplarily shown in Fig. 3.3b.

The isolated magnetic vortex and antivortex have been studied intensively more
recently [16–22]. The main strategy to isolate a vortex or an antivortex is to make use
of the shape anisotropy in soft magnetic materials. Here, the demagnetization energy
governs the magnetic state of the nano- or microstructure leading to a stabilization
of a single vortex. Examples of microstructures isolating a vortex and an antivortex
are shown in Fig. 3.4. It turns out that the stabilization of the vortex is rather straight

1 µm500 nm

 (a)  (b)

Fig. 3.3 X-ray magnetic circular dichroism (XMCD) signal (left) and schematic (right) of a vortex
wall (a) and of a double vortex wall (b). Adapted from [15]

http://dx.doi.org/10.1007/978-3-319-97334-0_2
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2 μm

(a) (b)

2 μm

p = +1 p = -1

c = +1
c = -1

(c) p = +1 p = -1(d)

c = +1
c = 0

Fig. 3.4 a Microdisk in the vortex state and b microstructure in the antivortex state. The topology
is overlaid with the corresponding magnetic-force micrograph (upper) and schematic of the mag-
netization state (lower). The microstructures consist of permalloy (Ni80Fe20) and have a thickness
of 59 nm. c All four circularity and polarity states of the magnetic vortex. d Possible polarity states
of a magnetic antivortex with the c-values c = 1 and c = 0. a and b are adapted from [29]

forward in thin microdisks with a diameter of a few micrometers [16], while the
stabilization of an isolated antivortex is more elaborate [20, 21, 23, 24]. For vortices
intentional symmetry breaking can be used to gain control over the circularity as
well as the relation between circularity and polarity [25–28]. Figure3.4a, b present
atomic-force and magnetic-force micrographs of microstructures that contain these
singularities. Figure3.4c depicts all four possible states of the magnetic vortex while
Fig. 3.4d shows the two possible polarity states of a magnetic antivortex for two
experimentally interesting c values.Wewill comeback to these important parameters,
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namely circularity and polarization, in much more detail because they determine a
wealth of static and dynamic properties of magnetic vortices and antivortices1.

3.1.2 Applications

As a further motivation we list a number of possible applications as well as some
current and future directions in the field of magnetic vortices. It has been shown, that
vortices feature an oscillatory motion similar to the one of the classical harmonic
oscillator [30, 31]. In combination with spin polarized currents that are available in
ferromagnetic materials vortices can be applied as spin-torque oscillators [32, 33].
The latter are discussed inmore detail inChapters 10 and11.The four possible combi-
nations of the circulation and the polarization in vortices are energetically degenerate.
In principle they canbe attributed to twobinary units of information (bit)making them
promising candidates for potential storage devices. In the suggested device named
vortex or antivortex random access memory (VRAM or AVRAM) the write and read
processes are implemented by core switching and gyration [34, 35]. Thus, it is very
important to obtain a full understanding of all excitation regimes starting from linear
over nonlinear excitations to the switching process itself that occurs on the picosec-
ond time scale [36]. Even more advanced excitation schemes of the core via inter-
action with spin waves and higher order modes have recently been studied [37]. The
rather time consuming gyrotropic eigenmode at sub-GHz frequencies is avoided and
a fast spin-wave mediated magnetic vortex core reversal in the deep sub-nanosecond
regime can be achieved [38]. The interactionwith spinwaves also enables to usemag-
netic vortex cores as tunable spin-wave emitters [39]. In addition, magnetic vortices
can interact via magnetostatic stray fields [40–42] leading to remarkable properties
in tailored arrangements of magnetic vortices. Such properties can be linked to the
field of magnonics [43, 44] that constitutes research on spin waves which is dis-
cussed in Chapter10. Within this field, magnonic crystals are described as artificial
wave-transmitting lattices that provide an alternating modulation of their magnetic
properties. For magnetic vortices this alternating modulation can be obtained, which
we will discuss in more detail. Magnetic vortices have been observed in structured
ferromagnets of down to 100 × 100 nm2 [45]. Although this cell size is larger than
the bit cells of state-of-the art memories, hard disk drives or solid state drives with
NAND flash sizes of 22 × 22 nm2 [46], for the magnetic vortex these limits could be
overcome by a volumetric strategy. Here, multiple layers would be fabricated onto a
single substrate resulting in closely packed arrangements of vortices. This motivates

1Theword ’vortex’ addresses themagnetization of the ’vortex core’ with its out-of-plane component
at the center pointing either up or downplus the surroundingmagnetization curling in the plane either
clockwise or counter-clockwise. We will try to be as precise as possible to distinguish the ’vortex
core’ from the ’vortex’ as well as from the magnetization of a ’vortex state’ within a microdisk or a
microsquare, where the latter case even includes four domains and four domain walls. For the sake
of readability we will nonetheless sometimes just write vortex to denote one of the three entities,
which should then be clear from the context

http://dx.doi.org/10.1007/978-3-319-97334-0_10
http://dx.doi.org/10.1007/978-3-319-97334-0_11
http://dx.doi.org/10.1007/978-3-319-97334-0_10
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to understand nearest neighbor interactions in the third dimension [47, 48]. An even
more visionary application is investigated in [49], where biofunctionalizedmagnetic-
vortex microdisks are studied for targeted cancer-cell destruction. In this approach
an alternating magnetic field is applied to microdisks that contain vortices, creating
an oscillation, which transmits a mechanical force to the cell. The vortex-mediated
stimulus efficiently compromises the integrity of the cellular membrane and can ini-
tiate the programmed death of cancer cells. Recently the vortex attracted interest as a
building block for a robust sensor application in the automotive industry, where, e.g.,
a modulated magnetic field determines the speed or the velocity of a component such
as a wheel of a car [50]. This magneto-resistive device comprises a magnetic free
layer with a spontaneously generated vortex and a magnetic reference layer having a
non-closed flux magnetization pattern. Finally a very recent demonstration of neuro
inspired vortex spin torque nano-oscillators comprising a magnetic tunnel junction
caught much attention [51, 52]. Here vortices can be used to achieve spoken-digit
recognition with an accuracy similar to that of state-of-the-art neural networks that
open up a path to fast, parallel, on-chip computation based on networks of oscilla-
tors. These examples could go far beyond niche applications and could become mass
products, which would benefit from the outstanding properties of these fundamental
topological objects named magnetic vortices.

3.2 Static Properties

In vortices the winding of themagnetization around the center of the structure defines
the so-called circularity c, while the magnetization direction of the center of the core
is described by the polarization p. When φ is the angle of the local magnetization
vector with respect to the x-axis as shown in Fig. 3.5 and β is the angle of the position
vector r with respect to the local magnetization, the circularity is defined as follows

φ(β) = nβ + φ0 and φ0 = cπ

2
, (3.1)

where the curling of themagnetization is defined by the winding number n and the
orientation of the magnetization pattern is given by the offset angle φ0. For vortices
the winding number is n = +1, and the magnetization curls around the center in a
closed loop, thus for φ = cπ/2 only two values are possible, i.e. c = ±1 and c is
called circularity as it determines the rotation direction of the magnetization. For
the topological counterparts, the antivortices with the winding number n = −1, the
local magnetization curls in the opposite sense around the center, see Fig. 3.5b. The
antivortex is not chiral, thus c can have any value in the interval c ∈ [−2, 2[ and
represents the orientation of the antivortex.

From themathematical definition of the staticmagnetization configurationwenow
turn to the realization of isolated confined vortices and antivortices in soft ferromag-
netic thin film elements. Magnetic vortices emerge in ferromagnetic microstructures.
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(a) (b)

Fig. 3.5 Schematic magnetization pattern of a a vortex with c = +1 (n = +1) and b an antivortex
with c = +1 (n = −1). Shown are the angle β of the position vector r, the angle of the local
magnetization vector φ, and the offset angle φ0. The magnetic flux is not closed for the antivortex,
indicated by the magnetic charges representing magnetic poles. Adapted from [14]

As for all magnetic solids, the magnetic properties of such structures are character-
ized by the magnetic moment per volume, i.e., the magnetization M. The magnetic
induction B of Maxwell’s equations can be calculated from the magnetization and
the external magnetic field H according to

B = μ0(H + M), (3.2)

where μ0 = 4π × 107 Vs/(Am) is the magnetic vacuum permeability. Unlike in
diamagnetic or paramagnetic materials, the magnetic moments of the atoms in a
ferromagnetic material are not independent, but spontaneously align parallel to each
other inside of small regions, the so-called magnetic domains [19]. Ferromagnetic
microstructures enclose a few or only a single domain. The absolute value of the
magnetization inside such a domain MS = |M|, a material specific constant called
saturation magnetization. Permalloy (Ni80Fe20), a widely used soft-magnetic mate-
rial, which due to its low anisotropy simplifies the observation and investigation
of the phenomena discussed in this chapter, has a value of MS = 8.6 × 105 A/m.
Magnetic microstructures can be described in the micromagnetic model [53] that
is based on the treatment of the magnetization as a continuous vector field M(r).
Magnetic vortex states can be present in various magnetic microstructures, including
disks, flat rectangular structures or wires [16, 54, 55]. Vortices are often enclosed
in thin microdisks as depicted in Fig. 3.4a. Examples of microstructures that con-
tain an isolated vortex or antivortex are depicted in Fig. 3.6. In the micromagnetic
model the emergence of the vortex as the magnetic ground state can be motivated by
the minimization of all micromagnetic energies. For soft magnetic microdisks two
micromagnetic energies are dominant in the absence of external magnetic fields. The
exchange energy models the parallel alignment of the magnetic moments in ferro-
magnetic materials. It is increased by local inhomogeneities of the magnetization.
The demagnetization energy describes the interaction of the magnetization with the
stray-field that is generated by the microstructure itself. The stray-fieldHd is a result
of (3.2) and Maxwell’s second equation. According to
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Fig. 3.6 Magnetic force micrographs that show microstructures in the magnetic vortex state (a, b)
and in the magnetic antivortex state (c, d). b is adapted from [42] and c and d from [21]

∇B = μ0∇ · (Hd + M) = 0, (3.3)

sources of the stray field Hd are sinks of the magnetization M. They are also called
magnetic charges. The demagnetization energy is reduced when surface charges are
avoided [56]. It follows that the magnetization aligns parallel to the surface of the
microstructure. This effect is known as shape anisotropy and forces the magnetiza-
tion to lie in the plane of the thin disk and align parallel to the border. In the core
region the curling magnetization would lead to large angles between neighboring
magnetic moments being unfavorable with regard to the exchange energy. Thus, the
magnetization tilts out-of-plane in the core region and the magnetic vortex forms as
the magnetic ground state in the disk. The diameter of the core has been determined
by spin-polarized scanning tunnelingmicroscopy to be only several nanometers [17].
Although the exact value depends on the exchange stiffness and the saturation mag-
netization, i.e. the exchange length as introduced by Kronmüller [56], core diameters
are typically in the nanometer regime and are thusmuch smaller than the surrounding
whirl of in-plane magnetization. Still, the core governs the dynamics of magnetic
vortices as we will see in Sect. 3.3.

When an external magnetic field is applied, a third micromagnetic energy comes
into play, the so-called Zeeman energy. It is minimized by a parallel alignment of the
magnetization to the applied field. For very strong homogeneous and static magnetic
fields the Zeeman energy becomes dominant over all other micromagnetic energies.
Consequently, the magnetization of the whole disk aligns parallel to the field. The
magnetic vortex state is destroyed. For smaller field strengths the vortex state is
still present but the core region is deflected from the center of the disk in order to
enlarge the number of magnetic moments that are aligned parallel to the field [57].
When the static magnetic field is rotated the deflection direction depends on the
curling direction of the magnetization in the disk, i.e., the circularity c of the vortex.
As depicted in Fig. 3.7 a static magnetic field H that points initially in negative x-
direction deflects a clockwise curling vortex (c = −1) in positive y-direction. By
repetition of this consideration for static magnetic fields in three other directions
in Fig. 3.7 we find that the vortex rotates with the rotation direction of the static
external magnetic field. Figure3.7b indicates the different reaction of an antivortex
to the application of a static magnetic field. The antivortex rotates against the rotation
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H

 (a)

(b)

Fig. 3.7 Core deflection as a consequence of the application of a static magnetic field H for a a
magnetic vortex and b a magnetic antivortex

direction of the external field. This has strong implications on the statics anddynamics
of antivortices [18, 20–24, 35, 58–60]. Research on antivortices is very interesting
on its own, but goes beyond the scope of this chapter. Hence, in the remainder of the
chapter we will focus on vortices. As mentioned before, the second state parameter
of the magnetic vortex is the out-of-plane direction of the vortex core in the center of
the disk labeled polarization p. For positive polarization p = +1, the magnetization
of the core points in positive z-direction and for negative polarization p = −1 it
points in negative z-direction. The polarization comes into play when the magnetic
field that deflects the vortices in Fig. 3.7 is switched off instantaneously. We will
discuss these dynamics in Sect. 3.3.

3.2.1 Stray-Fields

An important feature of the vortex state is that it almost perfectly closes the magnetic
flux inside a sample. Thus, in the relaxed state without external fields almost no
stray fields emerge from the structure. For microdisks only in the region of the core
significant stray fields appear outside. This is the reason why in magnetic-force
micrographs as in Fig. 3.6a only in the core region a magnetic contrast is observed. If
an external field is applied the original flux closure is violated and a stray field outside
of the structure appears. Figure3.8 shows micromagnetic simulations of microdisks
and -squareswith a vortex in the center plus the stray fields that surround the structure.
The stray fields outside of the microdisks almost perfectly resemble a dipolar field,
see Fig. 3.8a, b. Microsquares on the other hand typically contain a Landau structure
that comprises besides the vortex also four domains and four 90◦ domain walls. This
leads to additional stray fields above the structure giving rise to the magnetic-force
microscopy signal shown in Fig. 3.6b. In addition also the stray fields on the sides
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Fig. 3.8 Micromagnetic simulation of the stray field of a a disk with an off-centered vortex core
with a circularity of c = +1, b a disk with an off-centered vortex core with c = −1, c a square
in the Landau pattern with a vortex in the center, and d a square with an off-centered vortex core.
Arrows outside the structure represent streamlines of the stray field. The black arrow in the disks
in a and b show the direction of the in-plane average magnetization vector and the black points
indicate the positions of the cores. Arrows inside the squares in c and d indicate the direction of the
magnetization in the domains (c = +1). Figures a and b are adapted from [61] and c and d from
[42]

of the microsquare show a more complicated symmetry as can be seen in Fig. 3.8c.
However, if an external field moves the core in the square as calculated in Fig. 3.8d
the overall shape of the stray field approximates again the field of a magnetic dipole.
Only close to the microstructure, typically up to the distance of a side length, larger
deviations from the dipole field occur. Consequently a microstructure that contains
a magnetic vortex produces a rather small stray field in the relaxed state and an
approximately dipolar field when the core is excited from its center position. This
finding is important for the dynamics of interacting vortices that will be described in
Sect. 3.4.

We now turn to Hall measurements that are capable of detecting the stray fields of
single microstructures that contain a vortex. With this technique the hysteresis of an
isolated magnetic vortex can be measured. Hall micromagnetometry measurements
on permalloy squares are depicted in Fig. 3.9 [62]. It shows a typical Hall hysteresis
curve of a 2 × 2 µm2 square with a thickness of 20 nm. Coming from negative
saturation, the Hall voltage, which corresponds to the stray-field of the microstruc-
ture increases continuously up to an external field of 17mT, where a large steplike
increase occurs. A further continuous increase of the Hall voltage is followed by a
second, smaller steplike increase at 56 mT. In the opposite sweep direction, a similar
magnetization reversal is observed with a large steplike reduction of the Hall voltage
at −10mT and a smaller reduction at −44mT. The steps in the Hall hysteresis curve
are identified as nucleation and annihilation of the vortex inside a Landau pattern.
Repeated measurements show that the external fields required for vortex nucleation
and annihilation are highly reproducible and well-defined within a full width at half
maximum smaller than 0.5mT. Figure3.9b shows a minor loop between external
fields of −38 mT and 44 mT. Prior to the measurement, the sample was first satu-
rated in a strong negative field and then a field of 44 mT was applied. In both sweep
directions of the minor loop, the Hall hysteresis curve is continuous and almost com-
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Fig. 3.9 a Hall hysteresis of
a Permalloy square at
T = 2.4K. The curve
exhibits abrupt changes in
the Hall voltage and thus in
the average stray field
underneath the
microstructure. These steps
correspond to irreversible
changes in the magnetization
as sketched. b Hall signal of
the same microstructure for a
minor loop between −38mT
and +44mT for a Permalloy
square. The dashed curves
represent the full hysteresis.
Reproduced from [62]
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pletely reversible with only a small hysteretic contribution. Branches of the complete
Hall hysteresis curve after the large steplike change of the Hall voltage are perfectly
reproduced by the minor loop, and a continuous transition between the two branches
including almost complete demagnetization of the sample in zero external field can
be observed. Consequently, the minor loop is attributed to the distortion of a Landau
pattern by increasing and reducing the size of the domain parallel to the external
field of varying strength. Accordingly, the large steplike changes of the Hall voltage
in the hysteresis curve represent the nucleation of the vortex and a Landau pattern.
The annihilation of the vortex in external fields close to saturation is indicated by
the small abrupt changes of the Hall voltage. The analysis shows that the magnetiza-
tion reversal of the square is realized by nucleation, deflection, and annihilation of
the vortex. The measurements shown in Fig. 3.9 are recorded at 2.4 K, which is the
reason for the rather large nucleation and switching fields. It is interesting to inves-
tigate the nucleation process as a function of temperature, which has been done in
similar approaches [63, 64]. Especially at elevated temperatures it was found by
Östman et al. that the nucleation of the vortex can vanish and hysteresis free
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remagnetization is observed. Details of this aspect of the magnetization process
of vortices can be found in [64].

3.3 Dynamic Properties

Wenow describe the behavior of amagnetic vortex in case of time-dependent stimuli.
Let us consider a constant magnetic field deflecting the vortex as in Fig. 3.7 that is
switched off instantaneously. The micromagnetic energies change so that in the end
the energeticallymost favorable configuration for the core is to be located in the center
of the disk. This relaxed state is not reached directly but after a damped gyration of
the vortex around the center of the disk [30], which is schematically depicted in
Fig. 3.10. The gyration direction depends on the polarization of the vortex core. It is
clockwise for negative polarization and counterclockwise for positive polarization.
The circularity adds a phase to the gyration. All four possible cases are shown in
Fig. 3.10. The gyration or gyrotropic mode is inherent to magnetic vortices and
follows from the equation of motion, which will be discussed below. The frequency
of the gyration depends onmaterial parameters and the geometry of the disk [65]. For
typical microstructures, e.g. permalloy disks with a radius of 1 µm and a thickness
of 60 nm the resonance frequency of the gyrotropic mode is around 250 MHz. It
is important to reduce the influence of pinning because otherwise the motion of the
vortex core will be goverened by local variations of the potential and not by the
confinement of the microstructure [66, 67]. The gyrotropic mode can be excited in
variousways usingmagnetic fields or electric currents [20, 36, 58, 68].When excited
at resonance the vortex core follows an approximately circular motion around the
center of the disk.

The gyrotropic mode is described in the micromagnetic model by application of
the equation of motion, i.e. the Landau-Lifshitz-Gilbert (LLG) equation, which is a
differential equation for the magnetization M(r) [19, 69–71]

(a) (b)

Fig. 3.10 Relaxation of a magnetic vortex subsequent to a deflection with a magnetic field in x-
direction. a The vortex core performs a damped gyration to its equilibrium position at the center of
the disk. The gyration direction depends on the polarization. A positive polarization p = +1 leads
to a counterclockwise gyration. A negative polarization p = −1 leads to a clockwise gyration. The
circularity determines the initial deflection of the vortex core. b Time dependence of the external
magnetic field that initially deflects the vortex
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dM
dt

= −γ [M × Heff ] + α

MS

[
M × dM

dt

]
, (3.4)

where γ = μ0ge
2me

is the gyromagnetic ratio with the Landé factor g ≈ 2 and the mass
of the electron me, the Gilbert damping constant α, and the effective magnetic field
Heff .

Before we turn to the equation of motion in case of vortices we want to try to
understand the dynamic reaction of amagnetic vortex to an instantaneously switched-
on external magnetic field. Consider the vector-field representation of a vortex core
in Fig. 3.11a for a vortex with p = +1 and c = +1 at time t0. In a gedankenexper-
iment we instantaneously switch on a homogeneous external magnetic field H in
y-direction, see Fig. 3.11. We assume a weakly damped system with α � 1, which
is often justified for soft magnetic materials. With that in mind we neglect the sec-
ond term, i.e. the damping term in the LLG equation and examine the effect of the
precession term. Application of dM

dt ∝ H × M on all vectors at time t0 results in the
next time step t1 in the second vector field representation shown. We repeat this
process recursively another two times yielding the four vector field representations

z

x

y H

p = +1 c = +1 

p = -1 c = +1 

p = +1 c = -1 

p = -1 c = -1 

t0 t1 t2 t3

(a)

(b)

(c)

(d)

Fig. 3.11 Vector field representation of the reaction of a weakly dampedmagnetic vortex to switch-
ing on an external magnetic field in y-direction for the four possible polarity and circularity states.
The initial movement of the magnetic vortex only depends on the handedness c · p. Adapted from
[29]
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depicted in Fig. 3.11a. We observe that the core initially moves in the direction of
the switched-on external magnetic field H, i.e. in y-direction. We will see that this
initial motion is in agreement with the full solution of the equation of motion. In
Fig. 3.11b–d the other three cases for p and c are shown. The initial motion of the
core is determined by the handedness c · p. For c · p = −1 as in Fig. 3.11b, c the
core initially moves in negative y-direction. In Fig. 3.11d the handedness c · p = 1
again yields an initial motion in positive y-direction. The influence of the polarity
alone sets in later when the gyrotropic mode evolves. These are important properties
of vortex dynamics that we deduced here from rather simple considerations.

Using micromagnetic simulations that are based on the numerical solution of the
LLG, the vortex dynamics can be predicted precisely. However, since the demagne-
tization energy leads to a mutual long-range coupling of all discretization cells, the
numerical calculation is very time consuming. Even with the efficient implemen-
tation on graphics processing units [72] a simulation of the first 100 gyrations of
a vortex contained in a standard-geometry disk can last for several days. Although
the micromagnetic model with the LLG is very precise it is in most cases impracti-
cable for the calculations of steady state motions of large arrangements of coupled
magnetic vortices, which will be of importance. The Thiele model is a differential
equation [73] that describes the vortex as a quasiparticle that is confined in a parabolic
potential [31]. It can be deduced from the micromagnetic model and the LLG with
the approximation that the magnetization is only translated but does not alter its
overall form [74]. Thus, the deflection of the vortex core is synonymous with the
deflection of the whole vortex. The task of calculating 100 gyrations of the vortex
core in the Thiele model lasts only some milliseconds on a typical computer. Thus,
the computing time can be reduced by several orders of magnitude with respect to the
micromagnetic simulation. The Thiele model cannot explain polarization switching
processes, which we will discuss in Sect. 3.3.2, because it assumes constant patterns
of magnetization without internal excitation as a first principle. This is a major down-
side of the model when, e.g., collective polarization switching of magnetic vortices
is investigated. In the experiments the switching is induced, when the vortex core
reaches a velocity higher than 250 ms−1 [75]. This can only be understood in the
micromagnetic model. Nevertheless, the Thiele model proofed to be sufficient to
explain many major findings in the field, which is the reason for us to recap some
aspects of this model especially for the case of a magnetic vortex.

3.3.1 Thiele Model for Magnetic Vortices

2Originally the Thiele model was deduced from the LLG equation for the example of
rigid magnetic bubbles in thin films [73] but it can also be adopted for magnetic vor-
tices in thin-film elements [31]. Theminimization of the sum E of themicromagnetic

2Figure3.12 and parts of the text in this subchapter are reproduced from the Dissertation Thesis of
C. F. Adolff [78].
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energies is modeled by a force
F = −∇E (3.5)

that acts on the quasiparticle, i.e. the vortex at the position x = (x, y, z)T . This
approach leads to the Thiele equation

(G2
0 + α2D2

0)ẋ = G × F − αD0F. (3.6)

Here,G = G0ez is the so-called gyrovector, and D0 is the non-vanishing component
of the diagonal dissipation tensor D = diag(D0, D0, 0) [31]. Analytically G0 and
D0 are given by [31, 61]:

D0 = −2παμ0MSh ln R
acore

γ
, G0 = −2πμ0MShp

γ
, (3.7)

where γ is the gyromagnetic ratio and MS is the material specific saturation magneti-
zation. The radius and the height of the disk are denoted as R and h, respectively. The
value of the parameter acore is in the order of magnitude of the diameter of the vortex
core. In the Thiele equation (3.6) two components add to the velocity ẋ of the vortex
core. The first term on the right side describes the nature of the gyrotropic mode
that moves the vortex perpendicular to the driving force F. The second term depends
on the dimensionless Gilbert damping parameter α and forces the vortex core back
to its equilibrium position. It is a good approximation to assume that the magnetic
vortex can only move in the x-y-plane. Thus only in-plane forces are considered
and the z-component of the Thiele equation becomes zero. Then the equation can be
represented in two dimensions:

(G2
0 + α2D2

0)ẋ = G0r̃90F − αD0F. (3.8)

Here x = (x, y)T is the deflection vector of the vortex core with respect to the
center of the disk, r̃90 is a 90◦ rotation matrix in two dimensions, and F = (Fx , Fy)

T

is the two-dimensional driving force. According to (3.5), the driving force F fol-
lows from the total energy E that is deduced from the micromagnetic energies.
For vortices the exchange and demagnetization energy are commonly modeled by a
two-dimensional harmonic potential Eharmonic [31] and a Zeeman term EZeeman takes
external magnetic fields into account [77]. The energy terms are given by

Eharmonic = 1

2
κ(x2 + y2), EZeeman = μ0MSπRhc(Hyx − Hx y), (3.9)

where the total energy E is the sum of the two. Calculations that show the two
cases of vortex dynamics that were qualitatively discussed in the last section are
shown in Fig. 3.12. In Fig. 3.12a the vortex is deflected by a static magnetic field
that is switched off instantaneously, which makes the core freely gyrate back to its
equilibriumposition in the center of the disk.As expected for the positive polarization
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Fig. 3.12 Calculations for a single magnetic vortex in the Thiele model for two different magnetic
field excitations. The temporal shape of the exciting magnetic field in x-direction Hx is depicted in
the insets. The time t is color coded from red (0 ns) to blue (140 ns). Circularity and polarization
are positive in this example. a Trajectory of the vortex core gyrating back to its equilibrium position
with the eigenfrequency of the gyrotropic mode after it has been deflected with a magnetic field in
x-direction that is then switched off instantaneously. b The vortex core is resonantly excited with an
alternating magnetic field near the eigenfrequency of the gyrotropic mode. It performs a transient
motion until it reaches circular trajectories in the stationary case. Adapted from [78]

in the example a counterclockwise gyration is obtained. The positive circularity
causes the starting point of the gyration to be located in the upper part of the disk, in
agreement with the considerations discussed in the context of Fig. 3.10. Figure3.12b
shows how the vortex reaches its stationary gyrotropicmotion, when it is excitedwith
a unidirectional alternating field near the eigenfrequency of the gyrotropic mode. At
the very first instant we expect from the qualitative discussion of the vector-field
representation of the core with positive circularity and polarity a motion along the
direction of the exciting field. In the case calculated in Fig. 3.12b the field points
along the positive x-direction at the beginning and indeed the core moves into this
direction. However, as described in the discusssion of the influence of static fields
a force perpendicular to the field sets in that leads to a counterclockwise gyration
as expected for positive polarization. For the comparison with experiments it is
convenient to use the abbreviations

ω0 = − pG0κ

G2
0 + D2

0α
2
, Γ = − D0ακ

G2
0 + D2

0α
(3.10)

that can both be directly measured. For small damping, the angular frequency of
the gyrotropic motion equals the parameter ω0, while the parameter Γ describes the
damping of the motion. Typical values are ω0

2π = 250 MHz and Γ = 31 · 106 s−1,
which corresponds to a typical ratio Γ

ω0
≈ 2α found in experiments [75].
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3.3.2 Strong Excitation and Switching

So far the description remains within the linear regime, where the restoring forces
are proportional to the deflection of the core. It is a harmonic oscillator model as the
confining potential is parabolic, see (3.9). Such a description is applicable for small
excitations [31]. If the excitation strength is increased the harmonic oscillator model
has to be extended to a nonlinear oscillator model [79]. In this case the confining
potential contains anharmonicities, i.e. deviations from the purely harmonic poten-
tial [79–81]. If vortex cores are excited to gyrate on rather large trajectories the local
magnetization configuration shows deformations that are not present for small ampli-
tudes of excitation. Although this puts the assumption of a rigid object into question
it can be shown that the Thiele model is still applicable using a modified potential.
Figure3.13 shows results from micromagnetic simulations. At the beginning of the
simulation the vortex core is located in the center of the sample at equilibrium, as
illustrated in the lower part of Fig. 3.13a. An alternating excitation leads to a spiral
trajectory until the steady state is reached. A snapshot of a strongly excited core
moving in the steady state at its resonance frequency is depicted above the ground
state in Fig. 3.13a, qualitatively underlining the validity of the assumption of a rigid
particle model. The total energy of the gyration from the onset up to its steady state
is depicted in Fig. 3.13b. At large core displacements the potential becomes steeper
than a parabola and in the corners of the square the potential possesses tailing edges.
Thus, the shape of the potential approaches the shape of the confiningmicrostructure.
It has been shown that this behavior can be modeled analytically with a nonparabolic
isotropic plus a nonparabolic anisotropic contribution to the potential [79].

The influence of the nonparabolic potential on the resonances of vortices in squares
of different sizes are summarized in Fig. 3.14, where micromagnetic simulations
along with results from the nonparabolic Thiele model are depicted. Resonance

(b)(a)

100 nm

x

y

Mz
−50

50 −50

5033

43

y (nm)x (nm)

E t
ot

al  
(e

V)

Fig. 3.13 Vortex in a square element with an edge length l of 200nm and a thickness h of 10nm.
a The excited state with the core displaced by an alternating spin-polarized current of density
1 × 1011 Am−2 and frequency 2.7 × 109 s−1 is depicted above the equilibrium state with the core
in the center. The magnetization component Mx is gray scaled; the component Mz is plotted on the
z-axis. b Potential of vortex gyration. The blue line in a depicts the trajectory, the blue line in b the
total energy of the steady-state motion. Reproduced from [79]
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Fig. 3.14 Resonance curves of gyrating vortices driven by spin-polarized currents in square ele-
mentswith four different geometries (length l and thickness h) as indicated in the insets of a tod. The
maximum core displacement in x-direction versus excitation frequency 
 is shown. Reproduced
from [79]

curves for five current amplitudes in four squares of different edge lengths and
thicknesses are shown. When the excitation strength is increased, the higher order
terms in the potential shift the resonance frequency. For thin samples (h = 10 nm) the
resonance maximum experiences a blue shift, see Fig. 3.14a, c, whereas for thicker
samples (h = 30 nm) the maximum shifts to the red, see Fig. 3.14b, d. For large
excitation amplitudes the resonance curves exhibit gaps that are common features of
nonlinear oscillators and are accompanied by jumps of the phase between gyration
and excitation. The observed foldover, jump resonance phenomena, and frequency
hysteresis behavior are typical for Duffing oscillators, describing the motion of a
damped oscillator with a more complex potential than a harmonic motion, see e.g.
[82].

If the excitation strength is increased even further the assumption of a nonparabolic
potential will not be sufficient to describe the dynamics. If the vortex reaches high
velocities it will switch its polarization. For this process the quasi-particle Thiele
model will not be applicable any longer. Instead the reversal of the core polarization
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(a) (b)

(d) (e)

(f) (g) (h)

(c)

Fig. 3.15 Schematic representation of different steps in switching the vortex core polarization. The
arrows represent the in-plane magnetization components, the color scale represents the out-of-plane
component (orange, up; green, down). A description is given in the text. Modified from [36]

must be understood in terms of nucleation and subsequent annihilation of a vortex-
antivortex pair [36, 83]. The origin of this process was found to be a gyrotropic
field induced by the fast motion of the core [84]. This field tilts the magnetization
next to the core in opposite direction that can be compared to a bow wave that
forms at the bow of a ship when it moves through the water, see Fig. 3.15b. At this
point the magnetic deformation has no topological charge but eventually develops a
vortex-antivortex pair, see Fig. 3.15c–e. The antivortex annihilates with the original
vortex (see Fig. 3.15f, g) under the emission of spin waves and leaves a new single
vortex with reversed polarization, see Fig. 3.15h. The actual reversal process, dis-
regarding the preceding excitation, takes place on short timescales <100 ps [83].
Dynamic vortex core switching was first discovered in the pioneering work of Van
Waeyenberge and coworkers [36].

Switching of the vortex core by dynamical excitations has been investigated exper-
imentally and theoretically [84–94], as has been the switching of an antivortex core
[20, 68]. Dynamic vortex core switching has the disadvantage that there is no well-
defined switching of the core into the desired polarization state. Once the excitation
strength exceeds the critical amplitude for vortex core switching, the vortex will
reverse its polarization repeatedly. This problem can be avoided by using rotating
in-plane fields [37, 90, 91, 93] or rotating spinpolarized currents [20, 95] at low
frequencies, which excite the gyrotropic vortex motion. Since the gyration sense
of the vortex is determined only by the polarization p there is a high asymmetry
in the gyrotropic resonance excited by rotating fields with different rotation senses
[96]. Selective unidirectional switching only occurs when the rotation senses of the
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Fig. 3.16 a Calculated velocities vmax of the vortex core in dependence of the amplitude H0 and
frequency f of the exciting field according to the Thiele model. The hatched region corresponds to
trajectories with velocities above vc = 250 m/s and implies core reversal. b Measured absorption
spectra of the vortices in dependence of the exciting field amplitude. The dotted green line marks
the calculated critical region from a. Reproduced from [75]

exciting field and of the freely gyrating vortex are the same [90, 91]. This type of
switching leads to switching times larger than 1 ns. It has been shown that the vor-
tex polarization can be selectively switched also by applying low rotating in-plane
fields in the multi-GHz frequency range which excite azimuthal spin waves [37, 93].
More recently fast spin-wave mediated vortex core reversal has been found [38],
where rotating spin waves in the GHz range with very short rotating magnetic-field
bursts enable selective switching. Such fast concepts for switching are very attractive
because they pave the way to competitive, i.e. picosecond time scale writing pro-
cesses, e.g. in data storage devices. However, gyrational switching alone provides a
wealth of unexplored phenomena, especially in interacting systems. Therefore and
because of space limitations we have to restrict ourselves to gyrational switching for
the remainder of this chapter.

When reconsidering the Thiele model a convenient criterion for the onset of gyra-
tional core switching is given as a critical velocity vc of the core [96]. The value
of the critical velocity only depends on the exchange stiffness A and the saturation
magnetization MS of the ferromagnet and not on the geometry of the sample. For
permalloy a theoretical critical velocity of vc = 330 m/s is given in agreement with
micromagnetic simulations [96]. Experimentally a slightly lower critical velocity of
vc ≈ 250 m/s was reported [75, 88, 94, 97]. The deformation of the core profile and
the core switching cannot be modeled within the Thiele model because it assumes
a constant magnetization pattern as a first principle. The model will especially fail
when the velocity of the vortex core exceeds the critical value vc and will predict
unphysical trajectories. So these solutions are excluded from the calculations and
identified as possible candidates for core switching. The solution of the equation of
motion (3.8) is displayed as phase diagram in dependence of excitation strength and
frequency in Fig. 3.16a. In the critical regime shown as hatched region the maximum
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velocity exceeds the critical velocity (vmax > vc = 250m/s) and core reversal occurs.
Figure3.16b shows experimental results from high frequency absorption measure-
ments. The measured phase diagram shows the color coded resistance change, i.e.,
the absorbed power driving the magnetization dynamics, in dependence of the exci-
tation frequency f and the excitation amplitude H0 of the unidirectional magnetic
field. For a field strength of H0 < 300 A/m the absorption arises from the resonant
excitation and gyration around 320MHz. In this regime the absorbed power stabilizes
stationary core trajectories against the damping of the gyration. The measured signal
is proportional to the average of the squared core velocity v2 [68]. For increasing
field amplitudes above 300 A/m the frequency range of absorption gets broadened,
spanning a characteristic cone-like region (red colored), that is clearly separated from
the residual area. The marked isoline of Fig. 3.16a that denotes the exceeding of the
critical velocity within the Thiele model can be identified in the measurement as a
characteristic increase of the absorbed power. The reason for the particular power
absorption in this region is the repeated reversal of the core polarization, which can be
seen in direct comparison with Fig. 3.16a. Beside driving the vortex dynamics much
of the systems micromagnetic energy is dissipated as highly damped spin waves
resulting from the annihilation of the cores. Time- and spatially resolved measure-
ments on the same and comparable samples confirm the conclusions [75]. The full
experimental details are discussed in [68, 75].

3.4 From Single Oscillators to Magnonic Vortex Crystals

3.4.1 Vortices as Coupled Harmonic Oscillators

We now consider vortices as harmonic oscillators and apply the rigid vortex
approach [74] as discussed in Sect. 3.3.1. For this chapter, the stray-field and thus the
coupling of magnetic vortices is calculated from magnetic surface charges that arise
from deflected vortices at the sides of the microstructure [40]. As mentioned before
a dipolar field is often a good approximation for the field outside the microstructure,
especially in the far field. The magnetization pattern of the deflected vortex itself
remains constant. Volume charges are absent and top and bottom surface charges are
neglected for now.

Coupled vortices have been investigated in physically separated magnetic
microstructures [40, 42, 61, 99–103] and in physically connected microstructures
[104–106]. In the first case magnetostatic interactions are of importance, whereas
in the second case exchange coupling plays an important role. Additionally, the
synchronization of vortex based spin torque nano-oscillators that are adressed in
Chapters 10 and 11 in more detail, via dipolar or electrical coupling has attracted a
lot of attention recently [107, 108]. A displaced vortex core and its motion in one
disk generates dynamically rotating stray fields that affect the potential energy of
the other disk, in which vortex gyrations can be stimulated resonantly. The gyration

http://dx.doi.org/10.1007/978-3-319-97334-0_10
http://dx.doi.org/10.1007/978-3-319-97334-0_11


3 Magnetic Vortices 97

(a) (b)

(c) (d)

k kint k
tim

e

tim
e

mode 1 mode 2mode 1 mode 2 mode 1 mode 2

m1 m2

Fig. 3.17 Schematics of a two coupled harmonic oscillators and b two coupled magnetic vortices.
The motions of the two systems can be described by a superposition of linearly independent modes.
The two modes feature an in-phase and an out-of-phase motion of the quasiparticles as depicted in
c for the coupled oscillators and in d for the coupled vortices. Reproduced from [98]

in the second structure will inversely affect the first structure and together a beating
behavior is obtained. The relative vortex-core displacements in both disks as well as
the disk-to-disk interdistance modify the interaction strength. These behaviors are
analogous to those of coupled harmonic oscillators such as coupled pendulums or
capacitively-coupled inductor-capacitor resonators [109]. We want to elucidate this
analogy in more detail. It is known that the motions of coupled harmonic oscillators
can be described by the superposition of linearly independent modes. The number
of modes is identical to the number of coupled oscillators. Figure3.17 depicts the
two eigenmodes for a pair of classical oscillators and two coupled vortices. These
modes have been calculated in the absence of damping [98]. In both cases one of the
modes corresponds to an in-phase motion of the two particles and one corresponds
to an out-of-phase motion. The frequency of the mode is determined by the energy
of the interaction, i.e. the stiffness of the coupling spring, or the energy of the stray
field throughout one oscillation period. The stray fields are depicted via dipoles that
approximate the net magnetic moment of the deflected vortices. Here it becomes
vivid that the interaction energy oscillates over time. The excitation of the gyrotropic
mode with external magnetic fields induces the indicated dipoles. These dipoles are
independent of the circularity of the vortex. Thus, the dipole motions, and thereby
the corresponding frequencies do not depend on the circularity. Note that the position
of the vortex core still depends on the circularity. In other words, the inversion of the
sign of the surface charges by changing the circularity of the vortex is canceled out
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(a)

(b)

(c)

Fig. 3.18 a Magnetic force micrograph of a pair of permalloy squares with a center-to-center
distance of D = 2.5µm. A stripline (illustrated in yellow) is deposited on top of the left square (1).
b and c Trajectories of vortex cores after pulse excitation with different polarization configurations
(left core: upper trace, right core: lower trace). b Opposite core polarizations (p1 = −p2), c same
core polarizations (p1 = p2). The dashed red lines are guides to the eye illustrating the beating (b)
and the exponential decrease (c) of the vortex trajectories. Reproduced from [42]

by a phase shift of 180◦ of the excited vortex core motion. This behavior does not
apply for a change of the relative polarities. Since the sense of gyration depends on
the polarity of the vortex cores, the modes change for a coupled system of vortices
with opposite polarities. This leads to different eigenfrequencies and modes. For the
classical harmonic oscillator changing the relative polarities can be compared to a
change of the stiffness constant kint of the coupling spring. Changing the coupling
between the individual oscillators then allows to modify collective modes also in
larger systems, which we will cover in more detail in the next section.

Before that, we discuss measurements on two coupled vortices as shown in
Fig. 3.18a. The magnetization dynamics of pairs of micron-sized permalloy squares
coupled via their stray fields are investigated [42]. The trajectories of the vortex
cores in the Landau-domain patterns of the squares are mapped in real space using
time-resolved scanning transmission x-ray microscopy. After excitation of one of
the vortex cores with a short magnetic-field pulse of 1.8 ns duration, the system
propagates freely and behaves like coupled damped harmonic oscillators. Results
are shown in Fig. 3.18 for opposite and equal core polarization. When considering
the excitation of the right vortex via a rotating in-plane magnetic field produced by
the initially excited left vortex, it can be understood that only a very weak response
of the second vortex core is observed for equal core polarizations as can be seen
in Fig. 3.18c. However, in the case of opposite core polarizations as presented in
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Fig. 3.18b the beating of the gyration amplitude is clearly observed and thus the
coupling is strong. This behavior is fundamental and will play an important role as a
building block for more complex arrangements of vortices, e.g. in one-dimensional
chains or stacks [47, 99, 100, 110, 128], in two-dimensional arrays [28, 61, 111–
113], and in three-dimensional stacked arrays [48].

3.4.2 Self-Organized State Formation

3The coupling in arrangements of magnetic vortices strongly depends on the rel-
ative polarizations of the vortex cores. A mechanism, we call self-organized state
formation, allows to tune the polarization configuration in various kinds of vortex
arrangements by the temporary application of high frequency magnetic fields. This
allows for the manipulation of the properties of large regular arrangements of mag-
netic vortices that will be addressed as magnonic vortex crystals in the following.We
will first introduce the phenomenon of self-organized state formation for rectangular
crystals consisting of 3 × 3 vortices [114, 115]. Subsequently, different aspects of
the self-organized state formation are examined on various types of magnetic vortex
arrangements including large magnonic crystals with many more vortices. The self-
organized state formation builds the basis for the manipulation of crystal properties,
e.g., band-structure engineering or for experiments on benzene-like vortexmolecules
to be discussed later.

Figure3.19 shows a schematic of the experiment. The vortices are excited by a
harmonic field generated by a high frequency current applied to a stripline in copla-
nar waveguide geometry above the 3 × 3 disk array. The disks have a diameter of
2µm and a height of 60nm. The center-to-center distance is 2.25µm. These mea-
surements have been performed at the MAXYMUS beamline at BESSY II in Berlin,
Germany.At first thewhole crystal is strongly excited by an alternating unidirectional
magnetic field that causes all vortices to permanently switch their polarizations, see
Sect. 3.3.2. The field amplitude is then reduced quasi statically (millisecond time
scale) with respect to the periodicity of the vortex gyration (nanosecond time scale).
As depicted in Fig. 3.19c, starting from above the switching threshold, the amplitude
of the harmonic excitation is reduced until switching dies out. In a second step, the
polarizations of the vortices are determined by evaluating the sense of gyration. For
this, a harmonic field of decreased amplitude is applied to non-invasively detect the
created polarization state. Vortices are found to be organized in preferred polarization
states depending on the frequency of the primary excitation.

Complementing micromagnetic simulations help to understand the process of
switching because it cannot be directly observed in the experiment [114]. Those
simulations reveal that the vortex polarizations in an array of disks switch rather
randomly at high amplitudes of a harmonic field that is applied to all magnetic

3Figures 3.19, 3.20 and 3.21 and parts of the text in this subchapter are reproduced from the
Dissertation Thesis of C. F. Adolff [78].
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Fig. 3.19 a Vortex arrays investigated by scanning transmission x-ray microscopy. The magnetic
field H is applied via an alternating current sent through a coplanar waveguide. bX-ray micrograph
with in-plane contrast of three vortex arrays that comprise nine disks each. The magnetization curls
in plane around the center of each disk (thickness 60 nm, diameter 2µm, distance 2.25µm). The
inset shows a line scan of an atomic force micrograph and reveals the topography of the discs. c
Timetrace of the magnetic field excitation used to tune the polarization states. The amplitude of
the unidirectional harmonic excitation is reduced adiabatically until vortex core switching ceases.
Adapted from [78]

vortices in the array.At intermediatefield amplitudes the switching stopswhencertain
stable polarization configurations are reached.The stability of suchpolarization states
can be understood in terms of magnetic vortices as coupled harmonic oscillators as
described above.The coupling strength depends on the distance between themagnetic
nanodisks containing the vortex cores [40, 42, 100, 103]. When the center-to-center
distance D between the disks exceeds twice the diameter D

d > 2, the coupling can
be neglected [45, 61] and random polarization states should emerge independent of
the excitation amplitude. Increased coupling can be obtained by reducing the center-
to-center distance until it equals the disk diameter and the disks start to merge for
D
d ≤ 1). Smaller distances lead to exchange interaction at the intersection of the disks
and will not be regarded here but has, e.g. been studied in [106].

Samples of spatially separated disks with different center-to-center distances are
experimentally investigated [114]. Here we discuss the simpler case of weak cou-
pling where neighbouring disks have a center-to-center distance of 3µm ( Dd = 1.5).
For samples with a center-to-center distance of the disks of 2.25µm ( Dd = 1.125)
stronger dipolar coupling is obtained, which creates a richer spectrum [42, 61].
Figure3.20a summarizes the resulting polarizations states that occur after the adi-
abatic field reduction with different frequencies. For an excitation frequency of
225MHz during the adiabatic reduction of the excitation amplitude the resulting
polarization configuration of the vortex cores is constant along the field direction and
alternates in the perpendicular direction. Columns of the same polarization occur. In
contrast, rows of constant polarization are observed at higher frequencies, i.e., 245
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Fig. 3.20 Self-organized state formation in 3 × 3 crystals with a ratio of the center-to-center dis-
tance D to the disk diameter d of D/d = 1.5. a A variation of the frequency of the adiabatically
reduced field excitation tunes differently ordered polarization states. For 225 MHz columns of
constant polarization occur, and rows of constant polarization emerge at 245 and 255 MHz. No
pattern could reproducibly be tuned at 235 MHz. b Absorption profiles of all 29 = 512 possible
polarization states numerically calculated in the extended Thiele model. The states of rows (blue)
and columns (red) of constant polarization are highlighted. The bottom color scale depicts the most
stable state, i.e., the state with the lowest absorption at a particular frequency. Those states are pre-
dicted to be tuned via self organized state formation. The inset in the upper-left corner schematically
depicts (3.11). The interaction energy (absorption frequency) in a pair of disks varies for different
alignments of the pair and the core polarizations. Adapted from [78]

and 255MHz. When excited inbetween at 235MHz no state could reproducibly be
tuned for repeatedmeasurements on the same crystal. This can be understoodwith the
simplified dipolar stray-field coupling presented in Sect. 3.4.1. A 3 × 3 vortex crystal
may be formed from pairs of horizontally and vertically coupled vortices as building
blocks. In the experiments all disks in the crystal and thus all interacting pairs are
excited with the unidirectional field in y-direction, regardless of the orientation of
the pair (see Fig. 3.20a). This idealized model reveals that for a pair of vortices with
alternating polarizations (p1 p2 = −1) the variation of the absorption peak ωp,alt ,
where the pair can be excited most efficiently, is proportional to the cosine of twice
the angle ϑ between the x-axis and the connecting line of the two disks. Thus, in
the alternating case, a pair that is placed perpendicular to the field direction (ϑ = 0)
can be excited most efficiently at a higher frequency than an identical pair that is
aligned parallel (ϑ = π/2). In the case of homogeneous polarizations (p1 p2 = 1),
the frequency of the most efficient excitation ωp,hom does not depend on the rotation
angle ϑ and lies in between the above two frequencies. This leads to the relation

ωp,alt(ϑ = 0) > ωp,hom > ωp,alt(ϑ = π

2
) (3.11)

that is schematically depicted in the inset of Fig. 3.20b as energy term scheme. The
absorptions for all 29 = 512 polarization states have been calculated numerically
using the Thiele model for interacting vortices [112, 114]. In Fig. 3.20b the emerging
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Fig. 3.21 High-frequency
absorption (FMR)
measurements (a) and
absorptions predicted via
numerical calculations (b).
Adapted from [78]

280200 220 240 260 280200 220 240 260

state formation frequency (MHz)

200

220

240

260

280

ab
so

rp
tio

n 
fre

qu
en

cy
 (M

H
z) exp. calc.

(a) (b)

states are highlighted in red for the column state and in blue for the row state. As
predicted from the analytical approach, the state with rows of constant polarization
can be excited more efficiently at lower frequencies than the state with columns of
constant polarization.

When a state is excited efficiently, the vortices in the crystal reach high velocities.
At a critical velocity of about 250ms−1 [75] the vortices switch their polarizations and
thereby lead to another polarization state in the crystal. Thus, efficiently excitable
states are less stable than states that cannot be excited efficiently at a particular
frequency. One can see in Fig. 3.20b that the emerging states indeed are the least
efficiently excitable states at the corresponding frequencies f1, f2, and f3 of the adi-
abatically reduced field excitation. This can easily be motivated using the relations
presented above. The adiabatic field reduction passes a critical field amplitude where
only one polarization state will not switch. This least excitable state is eventually
adjusted after several switching processes between instable polarization states. The
two states of rows and columns of constant polarizations take turns in being the most
stable states for frequencies below or above a transition frequency ftrans ≈ 235MHz
where they are equally excitable. This explains why no state could reproducibly be
tuned at the frequency f4 = 235MHz that is close to the transition frequency. In
conclusion, the polarization states that emerge after a self-organized state formation
with adiabatic field reduction can be predicted from the comparison of all possi-
ble absorptions in the crystal. Those have been numerically calculated for all 512
polarization states.4

Additional high-frequency absorption measurements are presented in Fig. 3.21.
For these experiments additional samples with up to 60 identical 3 × 3 vortex arrays
are prepared on silicon oxide wafers. The high-frequency absorption measurements
allow to perform more measurements in a shorter time and give insight into the
reproducibility of the state formation in the ensemble of crystals. In Fig. 3.21 the
x-axes represent the state formation frequency fstate used to tune the polarization
states as described above, and the y-axes account for the frequency of the absorption

4Note that only 136 polarization states are non-degenerate with respect to the frequency response
(absorption) due to symmetry reasons.
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spectrum fabs of the emerging polarization patterns. The absorption is represented
by the grey scale, where dark represents strong and light grey weak absorption. One
can see that the absorption profiles vary for different state formation frequencies. It
is straight forward to expect that the absorption signal measured after a specific state
formation stems from crystals that are settled to the most stable polarization state.
Thus, the absorption profile of the state that is least efficiently excitable at the state
formation frequency fstate is expected. Consequently, the expected absorptions can be
calculated in the Thiele model and are depicted along with the absorption measure-
ments in Fig. 3.21b. Due to small variations in the preparation process, especially the
change of substrate, the physical properties of the samples slightly differ from those
determined for the samples used for X-ray microscopy. The theoretical prediction is
calculated under the assumption that the ensemble completely settles in the state that
is most stable at the state formation frequency. By comparing theoretically and exper-
imentally obtained absorption spectra one can see that this approximation is valid,
although the absorption profiles are broadened with respect to the calculations due
to the variations in the ensemble mentioned above. The two absorption frequencies
are attributed to the only two states, i.e., rows and columns of constant polarizations,
that can be tuned for the weakly coupled sample type. The absorption intersect at
around 226MHz. At this frequency the most stable state should change according to
the presented stability criterion, yielding the transition frequency ftrans = 226MHz.
When compared with the absorption measurement in Fig. 3.21a, indeed the form
of the absorption changes at this frequency. The experiments and the calculation
match in detail. This is a strong indication that the above model can also be used
for the overall behavior of ensembles of vortices that exhibit small variations in the
resonance frequency.

Self-organization in magnonic vortex crystals is a reproducible process and it is
valid for larger ensembles of vortices as we will see. The absorption of the ensemble
approximates the absorption of the least-excitable polarization state at the corre-
sponding state formation frequency. This allows further studies to tailor the char-
acteristic properties of magnonic vortex crystals by tuning the polarization state.
It is predicted that the allowed energy bands in such a crystal can be adjusted via
manipulation of the polarization pattern [116]. In the next section self-organized state
formation is applied to adjust polarization states in benzene-like vortex molecules.

3.4.3 Benzene-Like Vortex Molecules

In a ring-like arrangement of six magnetic vortices the gyrational motions fea-
ture normal modes that are similar to the vibrational modes of the actual benzene
molecule [117]. In analogy to the description of a linear chain of harmonic oscil-
lators with periodic boundary conditions these normal modes are plane waves with
wavelengths that are fractions of the circumference of the ring. Different polarization
patterns yield different dispersions of gyrational waves. A convenient and powerful
model to describe the motions of coupled vortices is the Thiele model introduced in
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Sect. 3.3.1. This approach employs surface charges that emerge when the vortex is
deflected from the center of the disk to approximate the coupling mediated by the
stray field [40]. For a number of N coupled vortices the Thiele equation becomes
a 2N -dimensional system of differential equations. This system can be reduced to
an eigenvalue problem [112]. For a ring of vortices the eigenmodes can be deter-
mined by the exclusive use of symmetry considerations in analogy to the benzene
molecule shown in [118]. Figure3.22a depicts a vortex molecule consisting of six
permalloy disks. The stripline on the lower disk excites the gyrotropic mode with
the unidirectional high-frequency magnetic-field generated by an alternating current
sent through the stripline. Assuming that the excitation will lead to approximately
circular motions of the N = 6 vortices the vortex trajectories are given by

ri = aici

(
cos(ωt + ϕi )

pi sin(ωt + ϕi )

)
, i ∈ {0, 1, . . . , N − 1}. (3.12)

Due to the N -fold rotational symmetry and the linearity of the system, there is a
basis of N normal modes, that fulfill this symmetry. For a ring of an even number of
N disks the normal modes ri,k are given by

ri,κ ∈ {ri | ai = aκ , ϕi = ϕi,κ = (κ + pi )iα + φκ}. (3.13)

The integer number κ ∈ [−N/2, . . . , N/2) indexes the normal mode and is anal-
ogous to the wave-number k = 2π/λ in a linear chain of oscillators. The angle
α = 2π/N corresponds to the lattice constant in a linear chain. Since a general vibra-
tion of the ring is given by a linear combination of the normal modes ri = ∑

κ ri,κ ,
the factor aκ describes the contribution of the normal mode ri,κ to the motion. The
relative phases of the normal modes are given by φκ . Figure3.22b depicts the form of
the normal modes for equal circularities and polarizations (ci = 1, pi = −1) of all
vortices. For each point in time the vortex cores are located on geometric roulettes,
i.e., epitrochoids and hypotrochoids. For wave numbers κ with | κ |> 0 the form of
the roulettes stays constant over time and they rotate around the center of the ring,
whilst the vortex cores are always located on the curve. For positive wave numbers
κ > 0 the roulettes rotate in the same direction as the vortices (clockwise). In con-
trast, for negative wave numbers the roulettes rotate anti-clockwise, i.e., against the
gyration direction of the vortices. Thus, the sign of κ denotes the propagation direc-
tion of the waves. For κ = 0 the normal mode ri,0 is called the breathing mode since
the vortices lie on a circle that changes its size over time. At the edge of the Bril-
louin zone κ = ±3 the waves can be understood as propagating in both directions.
Figure3.22c shows experimental results obtained by scanning transmission x-ray
microscopy at the MAXYMUS beamline at BESSY II in Berlin, Germany, when the
homogeneous polarization pattern pi = −1 is present. The steady-state motions of
the vortices are traced for different frequencies around the resonance frequency of
an isolated disk. The gray line in each of the six graphs is a Lorentzian fit through
the black data points that are proportional to the absolute gyration amplitude | aκ |
of one normal mode ri,κ . These data points are obtained by applying a curve fit with
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(a) (b) (c)

Fig. 3.22 Ring-like arrangement of six disks that contain a vortex each. The permalloy disks
are 60nm thick and have a 2 µm diameter, the minimal distance between the disks is 50 nm.
a X-ray micrograph of the vortex molecule with homogeneous core polarizations in all six disks.
The magnetic contrast can be seen in the raw data of one time frame. The vortex cores appear as
black dots. b Pictograms for the form and the propagation direction of the normal modes of the
ring. c Experiments with a homogeneous core polarization pattern in the ring (pi = −1). Each
graph shows the contribution of a normal mode to the overall motions in the molecule for different
excitation frequencies. The data points are obtained by a fit to the trajectories traced via scanning
transmission x-ray microscopy. The solid lines are Lorentzian fit curves. The vertical scale of each
graph ranges from 0 to 34nm/mT. Adapted from [117]

the linear combination of normal modes given by (3.12) and (3.13) to the vortex
trajectories of the six vortices. For each frequency one global curve fit is performed
that comprises the complete motion of the six vortices and thus yields one data point
in each of the six graphs. Each eigenmode has its maximum contribution at different
frequencies that lie on a sinusoidal line (dashed blue). The alternating polarization
pattern is shown in Fig. 3.23a. For this case, the symmetry of the ring changes due
to the alternating polarizations. Here, two modes are degenerate and can be com-
bined which results in standing waves. The combinations of such standing waves are
depicted in Fig. 3.23b. The arrow-pictograms in Fig. 3.23b are identical to those used
in [119] for the motions of the actual benzene molecule and underline the equiva-
lence of the two systems. The standing waves are fitted to the trajectories and yield
the results presented in Fig. 3.23c.

The dispersion relation of the vortex molecule can be obtained from the contri-
bution of the eigenmodes to the motion of the vortices, see dashed blue and dashed
green lines in Figs. 3.22c and 3.23c. Figure3.24 summarizes the determined disper-
sion relations for the homogeneous and the alternating polarization configuration.
The different bandwidths can be understood by a weaker coupling between vortices
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(a) (b) (c)

Fig. 3.23 a Vortex molecule with alternating polarizations. The static contrast is subtracted to
emphasize the magnetic contrast even more prominently. Disks and stripline are colorized. In the
captured movie black vortex cores gyrate clockwise (pi = −1) and white cores counterclockwise
(pi = 1). b Pictograms of the composition of the normal modes to obtain standing waves. c Each
graph shows the contribution of a standing wave to the overall motions in the molecule for different
excitation frequencies. The data points are obtained by a fit to the trajectories traced via scanning
transmission x-ray microscopy. The solid lines are fit curves. The vertical scale is identical to that
in Fig. 3.22c. Adapted from [117]

of equal polarization in comparison to vortices with different polarizations, which
has been discussed in Sect. 3.4.1. For negligible damping, there are sharp resonances
when the eigenfrequency of a normal mode is met. In experiments the damping
allows to excite the system in between those resonances. The normal modes mix in
the way shown in Figs. 3.22c and 3.23c. The datapoints in Fig. 3.24 correspond to
peaks of individual Lorentzian fits.
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Fig. 3.24 Schematic representation of a ring with a equal and b alternating core polarities. c Exper-
imentally determined dispersion relation for equal polarizations (blue) and alternating polarizations
(green). The datapoints correspond to peaks of individual Lorentzian fits as presented in Figs. 3.22c
and 3.23c. Adapted from [117]
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This experiment shows that there are strong similarities between the vibrational
modes of benzene and the gyrational modes of a six-fold ring of magnetic vortices.
The symmetry of both systems determines the motions of the oscillators, i.e., the
carbon atoms or the vortices. It allows to simplify the derivation of the fundamentally
different dispersion relations of the vortex chain with periodic boundary conditions
for the case of equal and alternating core polarizations. The example demonstrates
the strength of self-organized state formation to adjust complex polarization patterns
in interacting systems.

3.4.4 Band Structure Engineering of Magnonic Vortex
Crystals

In the last section, the dispersion relation of a benzene-like vortex molecule was
determined via the direct observation of the eigenmotions of the vortices. Larger peri-
odic arrangements of vortices can be described as artificial crystals as the coupling
between the vortices leads to a collective behavior. In analogy to photonic crystals,
they are called magnonic crystals [43, 120] and feature a group velocity, a density
of states, and a band structure [113, 116]. As for the benzene-like vortex molecule
the band structure of two-dimensional vortex crystals is predicted to strongly depend
on the polarization pattern [80, 116, 121]. Due to the different relative motions, the
coupling between neighboring vortices differs for equal or different relative polariza-
tions of the vortices (see Sect. 3.4.2). Therefore, different polarization patterns yield
different crystal bases. Figure3.25 depicts the patterns of homogeneous polarization
and stripes of equal polarization for a two-dimensional rectangular arrangement of
magnetic vortices. The resulting primitive vectors a1, a2 depend on the polarization
configuration. This yields a single-vortex basis for the homogeneous polarization
pattern depicted in Fig. 3.25a and a double-vortex basis for the striped polarization
pattern depicted in Fig. 3.25b. As the Bravais lattice for the two polarization patterns
are different, the crystal properties of the vortex crystal differ for the two polarization
patterns.

Crystal properties can be determined experimentally by imprinting gyrational
waves into a vortex crystal. Neighboring vortices hereby gyrate with a phase-shift

Fig. 3.25 Primitive vectors
for homogeneous
polarization (a) and
horizontally striped
polarization (b). The white
and black dots represent a
vortex polarization of p = 1
and p = −1, respectively a2

a1

a2

a1

(a) (b)
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Fig. 3.26 a Schematic representation of gyration waves propagating through a two-dimensional
vortex crystal imprinted by a phase-shifted excitation of the first two columns of vortices.bScanning
electron micrograph of a vortex crystal covered by copper striplines. All three striplines are used to
tune the polarization pattern by self-organized state formation. The two thin striplines are used for
band structure measurements. Adapted from [113]

forming waves with different wave lengths. In the sketch of Fig. 3.26a this phase-
shifted gyration is represented by the color scale of the disks. Here, waves with a
wavelengths of λ = 6D, where D is the center-to-center distance of the disks, that
propagate in x-direction are depicted. These gyration waves are imprinted with the
help of the two striplines on the left side of the array.

The polarization patterns can be tuned by self-organized state formation. A high
frequency magnetic field is applied to a large area of magnetic vortices as shown in
Fig. 3.26b and is then reduced adiabatically (see inset of Fig. 3.26b). Depending on
the frequency of the high frequencymagnetic field, different polarization patterns can
be tuned in the crystal. Figure3.27 shows the results for the polarization patterns as
determined by scanning transmission x-ray microscopy. Therefore, the vortices are
excited by a small alternating high frequency field that does not affect the polarization
configuration. The size of the black or white dots in Fig. 3.27 represents the relative
gyration amplitude during this non-invasive excitation. A horizontally striped polar-

   270 MHz 330 MHz

Fig. 3.27 Scanning transmission x-ray microscopy measurements after state formation with a
frequency of 270MHz and 330MHz. The white and black dots correspond to p = 1 and p = −1,
respectively. Their size depicts the relative gyration amplitude. Adapted from [113]
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ization pattern is observed at fstate = 270MHz,while for state formation at 330MHz
large domains of homogeneous polarization emerge.

For the experimental determination of the dispersion relation of the vortex crystal
gyration waves are imprinted into the crystal. Therefore, the collective motions of
the vortices are excited and probed by the first two columns of vortices using the two
thin striplines depicted in Fig. 3.26. Harmonic excitations H1 = (H0 sin(ωt), 0, 0)
and H2 = (H0 sin(ωt + �ϕ), 0, 0) are applied to the first and the second column
of the crystal with different phase relations �ϕ creating waves with different wave
lengths. Here, the boundary condition of the enforced phase relation of the first two
columns allows excitation of collectivemotions with definedwave numbers. The res-
onance frequency of the crystal changes for different phase relations of the harmonic
excitation and can be determined using ferromagnetic resonance spectroscopy. The
power absorption due to the vortex gyration is hereby recorded in dependence of
the excitation frequency. The band structure is obtained by translating each phase
difference of the excitation �ϕ into a wave number k with the help of numerical
calculations based on the Thiele model (Sect. 3.3.1). Figure3.28 shows the disper-
sion relation of a vortex crystal with domains of homogeneous polarization (a) and
horizontally striped polarization (b). The blue and red markers represent the maxima
of the absorption spectra determined by ferromagnetic resonance spectroscopy. The
two polarization patterns, i.e. horizontal stripes and large domains, feature different
frequency offsets ω(k = 0) of their collective motions. By increasing the wave num-
ber k the resonance frequency increases. The variation of the absorption frequency
of the striped pattern in Fig. 3.28b is stronger than for the homogeneous domain
pattern shown in Fig. 3.28a. In other words, the bandwidth of the strongly interacting
striped pattern is larger than the bandwidth of the weakly interacting homogeneous
pattern. The band structure measurements are compared to calculations based on
the Thiele model including damping (lines) and calculations for an infinite crys-
tal without damping (dashed lines) obtained from [116]. Small differences between
experiment and calculations are explained by slight geometrical irregularities of the
microdisks that lead to a decrease in bandwidth of the resonances. Wave numbers
above and below a value of about 0.2π/D and 0.8π/D (gray regions) cannot be
excited experimentally in the crystal. This is presumably caused by waves that are

Fig. 3.28 Band structure
measurements (markers),
calculations based on the
Thiele model including
damping (lines), and
calculations by Shibata
et al. [116] without damping
(dashed lines). a
Homogeneous polarization
pattern. b Horizontally
striped polarization pattern.
Adapted from [113]
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absorbed before being transmitted into the crystal due to low group velocities in the
gap regions. The partial wave number gaps vanish for zero damping. The experi-
mentally determined dispersion relations for domains of homogeneous polarization
and striped polarization show the theoretically expected behavior. The band structure
can be reprogrammed by polarization pattern tuning, taking effect on the frequency
offsets and the bandwidths of the dispersion relations.

3.5 Summary and Outlook

Magnetic vortices as fundamental topological objects possess properties that are gov-
erned by few parameters. For the single object the polarization and the circularity
determine the static, the quasi-static and the dynamic behavior. The gyrotropic mode
is described in the micromagnetic model by application of the Landau-Lifshitz-
Gilbert equation. For small excitations a harmonic oscillator model based on the
Thiele equation describes the vortex dynamics precisely, where the handedness deter-
mines the sense of gyration and its phase. For strong excitations the oscillator model
has to be modified by consideration of nonlinearities. For even stronger excitations
core switching sets in, a process that includes the creation, annihilation, and fusion
of vortices and their topological counterpart the antivortex. If excitations are applied
to multiple vortices interactions play an important role. By application of magnetic
field pulses and harmonic excitations in regular arrangements distinct eigenmodes
with defined frequencies are identified. These eigenmodes crucially depend on the
relative polarizations of the vortices in the arrangements. A polarization manipula-
tion process based on a fundamental stability criterion has been found. When the
absorption of the vortices reaches a certain threshold, the polarization pattern is
destroyed and one remaining stable state is generated. This scheme is called self-
organized state formation and it can be utilized as writing mechanism, although
up to now such a writing process is not competitive with latest storage devices. Still
it allows for restructuring large vortex crystals. Thereby, the dispersion relation of
vortex arrays can be manipulated and determined experimentally for different polar-
ization patterns. Very recently even a tunable geometrical frustration in a spin-ice like
magnonic vortex crystals has been achieved by self-organized state formation [122].
For prospective applications the use of alternative materials as yttrium iron garnet
might be an option [123]. Within the field of magnonic crystals, vortex arrangements
provide an interesting model system that can be manipulated using self-organized
state formation.

In future a volumetric approach by introducing multiple layers will allow for
increased densities of three-dimensional vortex crystals [47, 48, 124]. It is also
interesting to study higher order modes of excitation of interacting vortices with fre-
quencies up to many GHz. The coupling in stacked magnetic thin films yields a non-
reciprocal spin-wave dispersion with direction dependent group velocities. Thereby,
propagating spin waves with wavelengths in the order of hundreds of nanometers
have been imaged [39, 125]. Since the spin waves only occur in layers with oppo-
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site vortex circularities, switching the circularity of one of the disks would tune the
propagation of spin waves. In combination with switching processes based on the
recently discovered spin-orbit torque [126], this effect would facilitate spin wave
based logic devices and radiofrequency detection schemes based on magnetic vor-
tices [127]. It can be stated that magnonic elements are promising candidates for the
next generation of information processing devices. The oscillation of the magnetic
vortex core can generate spinwaves and can therefore serve as spinwave emitter [39].
Additionally it has been shown that it is possible to tune the relative polarization of
vortex stacks with subnanosecondmagnetic field bursts [125]. Suchwriting times are
competitive with state-of-the-art random access memories and vortex stacks could
provide non-volatile storage of information. Generation and control of spin-waves
in stacks of vortices will create new possibilities for information processing devices.
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Chapter 4
Magnetic Skyrmions in Thin Films

Gong Chen

Abstract The microstructure of magnetic materials such as magnetic domains and
domain walls, linking to its basic physical properties, is generally considered as a
result of the interplay between exchange interaction, anisotropy andmagnetic dipolar
interaction.

4.1 Introduction

4.1.1 Magnetic Domain Structures in Thin Films

The microstructure of magnetic materials such as magnetic domains and domain
walls, linking to its basic physical properties, is generally considered as a result of
the interplay between exchange interaction, anisotropy and magnetic dipolar inter-
action [1]. In 1970s, the development of molecular beam epitaxy technique benefited
fundamental studies of semiconductor surfaces and thin films, as well as their prac-
tical applications in fabrications of conventional and novel devices [2]. A magnetic
film is defined as thin, when the thickness of the film is comparable to the width of the
magnetic domain wall. A consequence is that, spins along the direction normal to the
film plane is usually aligned along same direction, in contrast to more complicated
three dimensional spin structures in bulk materials, such as asymmetric Bloch wall
or closure Domains [3]. Therefore spin textures in thin films are usually considered
as two-dimensional spin lattices in this section.

We consider thin films with two basic geometries in the view of anisotropy, i.e. in-
plane magnetized films and out-of-plane magnetized films. We note here, as magne-
tization within domains is generally parallel to the easy axes of magnetic anisotropy,
the rotation of the spin structures within domain walls has richer degree of freedom,
for instance, domain wall type could be Bloch-type or Néel type, and its rotation
sense could be right-handedness or left-handedness.
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Fig. 4.1 a Sketches of Bloch wall and Néel wall in perpendicularly magnetized films, arrows
indicate local magnetization direction. b Sketches of Bloch-type skyrmion (left) and Néel-type
skyrmion (right), where the magnetization rotating from downward at the center of the skyrmion to
upward of the external uniform magnetization at the edge of the skyrmion. Panels a is reproduced
with permission from [14], © 2015 WILEY-VCH. Panels b is reproduced with permission from
[15], courtesy of K. Everschor-Sitte, University of Cologne, Germany

In in-plane magnetized films, domain walls may rotate either towards to out-of-
plane as Bloch wall in thicker films, or within film plane in thinner films depending
on the stray field energy of the wall, which is related to the ratio of film thickness
and the width of domain walls [1].

In perpendicularly magnetized films, domain walls have to rotate towards into
the film plane, where the in-plane component could be parallel/perpendicular to the
boundary direction, forming Bloch-type/Néel-type domain walls (see Fig. 4.1a). The
formation of Bloch walls has been considered to cost less energy due to the stray field
in the past [4]. More recently, chiral Néel domain walls (also called Dzyaloshinskii
domain walls) have been predicted in ultrathin films [5] due to the presence of sig-
nificant interfacial Dzyaloshinskii-Moriya interaction (DMI) [6, 7]. Chiral domain
wall configuration was later directly imaged in Fe/Ni bilayer on Cu (where the dom-
inant DMI likely locates at Fe/Ni interface), [8] and was confirmed in current-driven
dynamics of domain walls [9, 10]. In terms of the domain formation, perpendicu-
larlymagnetized films exhibit fascinating domain patterns, which are known as stripe
phase at zero external magnetic field or bubble phase in the presence of finite perpen-
dicular magnetic field. The formation of those domain patterns have been attributed
to the interplay between long range (dipolar) and short range (exchange) interactions
[11]. In the past, the roles of domain wall spin structures in stripe phase or bubble
phase have not been considered as important in magnetic field driven evolution of
spin structures, in both theoretically [12] and experimentally [13].

In the chapter written by Thiaville and Miltat, toplogy and chirality of magnetic
domain walls in thin films and multilayers are introduced in detail. In Sect. 4.2a
of this chapter, we also briefly introduce how the presence of the DMI can greatly
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enrich the possibilities of stabilizing domain wall configurations, extending common
picture of achiral Bloch walls to chiral Néel walls or even mixed walls in between,
where a combination of chiral Néel walls and bubble domains results in novel spin
texture of the skyrmions. Here magnetic chirality is an additional degree of freedom
in spin configurations that is opening up new directions in the field of spintronics.

4.1.2 Spin Textures of Néel-Type Skyrmions

The interfacial DMI stabilized skyrmions are commonly called hedgehog skyrmions
or Néel-type skyrmions (see Fig. 4.1b), where all spins rotate from the center of mag-
netic skyrmion to its boundary as cycloidal (Néel-type) spin spirals with fixed chi-
rality [16, 17]. This spin configuration dramatically differs from skyrmions observed
in the presence of the bulk DMI [18], where spins within skyrmions rotate as heli-
cal spin spiral (Bloch-type). Such fundamental difference of Néel versus Bloch is
associated with the orientation of the DMI vector in two cases, as discussed in the
following.

The energy term of the interfacial DMI can be written as E � −Di j · (
Si × S j

)
,

where Di j is the vector of the DMI, Si and S j are spins at atomic sites i and j. The
orientation of the DMI vector with respect to the distance vector ri j is determined
by the fact that how the inversion symmetry of atoms breaks in the materials. In case
of the DMI at interface, the broken inversion symmetry along the interface normal
direction results in interfacial DMI [19], where the vector of the DMI usually aligns
within the film plane and points to ri j normal direction [20]. Therefore the rotation
between Si and S j as cycloidal (Néel-type) spin spirals has lowest DMI energy
cost (see Fig. 4.2), and the sign of the DMI vector determines clockwise/counter-
clockwise rotation sense. Moreover, Si × S j in helical (Bloch-type) spin spirals is
always normal to ri j , resulting in zero interfacial DMI energy, as well as achiral
Bloch-type configurations. In contrast, the vector of the DMI in bulk materials is
usually parallel to ri j [21], which favors chiral Bloch-type configurations.

As introduced in the Chap. 2 written by Thiaville and Miltat, the spin config-
uration of a skyrmion gives rise to a topological charge, which can be charac-
terized by a skyrmion winding number w. This number and can be expressed as
w � 1

4π

˜
m · (

∂xm × ∂ym
)
dxdy, which counts how many times the local mag-

netization vector m is wrapped around a unit sphere [23]. A skyrmion with integer
skyrmion winding number (1 or −1), is topologically inequivalent to other spin con-
figurations with different skyrmion winding number such as uniform magnetization
with zero skyrmion winding number. A physical manifestation of such topological
quantization is that the skyrmion configurations are topologically protected from
continuous deforming into other spin configurations with different skyrmion wind-
ing number. This protection associated energy barrier is considered as infinite from
the point of view of topological classification, however, in real magnetic systems,
the energy barrier is expected to be finite due to the approximation of the contin-
uum description for discrete lattices in magnetic materials, the approximation of the
restriction of magnetizations in systems with finite anisotropy, and possibilities of
skyrmions annihilation at sample edges.
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Fig. 4.2 Sketch of the interfacial DMI vector (red arrows) for an atom i (blue circle) surrounded by
four atoms j. Yellow arrows indicate the orientation of local spins. Green arrows correspond to the
direction of the cross-product (S × Sj). Panel a represents a case where the interfacial DMI energy
can be influenced by Néel-type wall (green arrow is parallel to red arrow), Panel b represents a case
where the interfacial DMI energy vanishes for Bloch-type wall (green arrow is perpendicular to red
arrow). Figure is reproduced with permission from [22], © CRC press

4.2 Experimental Realization of Skyrmions in Thin Films

4.2.1 Interfacial Dzyaloshinskii-Moriya Interaction

The interfacial DMI is one of the most important and widely-used mechanisms
to stabilize chiral spin textures in thin film systems. Historically Dzyaloshinskii
proposed that the combination of spin-orbit coupling and low symmetry gives rise
an antisymmetric exchange interaction written as −Di j · (

Si × S j
)
, where Di j is

the vector of the DMI, Si and S j are spins at atomic sites i and j [6]. Then Moriya
introduced a microscopic model to calculate the antisymmetric exchange interaction
in a localized magnetic system [7]. Dzyaloshinskii and Moriya also attributed the
weak ferromagnetism in antiferromagnetic compounds, such as α-Fe2O3, to this
antisymmetric exchange interaction, which was later recognized as Dzyaloshinskii-
Moriya interaction.

Beside possible influences of the DMI in low symmetry materials, Fert and Levy
proposed another mechanism of the DMI that involves both magnetic and non-
magnetic sites [24], where the vector of theDMI points normal to the plane defined by
a triangle of two magnetic atoms and one non-magnetic atom, as shown in Fig. 4.3a.
This picture was further extended to the surface/interface of thin films by Fert (see
Fig. 4.3b) [19]. Later Crépieux and Lacroix discussed systematically the vector con-
figurations of the DMI at surfaces of the simple cubic, body centered cubic and
face-centered cubic structures (see Fig. 4.3c) [20]. For instance, considering a spin
cite Si and its four nearest neighbor spin cites S j on fcc(001) surface, four vectors of
the DMI have same rotation sense as counterclockwise (black arrows in Fig. 4.3c)
or clockwise (not shown), resulting in isotropic chirality in this in-plane symmetric
surface cites. This picture is consistent with real-space observations of skyrmions
with isotropic chirality in system with fcc(001) interface [25] and fcc(111) interface
[26]. It is interesting to note that the vector of the interfacial DMI may also point to
surface normal direction in cases of bcc(111) and fcc(110) surfaces (indicated as D4
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Fig. 4.3 a Sketch of a DMI generated in a triangle configuration composed of two atomic spins and
one atomwith strong spin-orbit coupling.bSketch of aDMI at the interface between a ferromagnetic
layer in gray and a metal in blue with strong spin-orbit coupling. The triangle configuration shown
in panel a is highlighted by the black triangle. c The planer view of the DMI configurations for 9
basic atomic structures, where the orientations of the DMI vectors are indicated by black arrows
when they are parallel to the surface plane. Two additional DMI vectors, D4 in bcc(111) and
D5 fcc(110), are perpendicular to the film plane. Panel a and b are reproduced with permission
from [27] © 2013 Macmillan Publishers Limited. Panel c is reproduced with permission from
[20] © Elsevier

for bcc(111) and D5 for fcc(110) in Fig. 4.3c), which may extend the possibility of
stabilizing non-collinear spin chirality in in-plane rotation geometry.

The presence of the interfacial DMI, was found to have significant influences on
the formation of static spin structures, spin wave propagations as well as the dynam-
ics of domain configuration, which will be introduced in the next section. These
observations of diverse DMIs in different systems further trigger the investigation
towards to the understanding of the sign and the magnitude of the DMI.

Using tight-binding model and ab initio calculations, Kashid et al. have investi-
gated the 3d-5d magnetic/non-magnetic atomic chains, including 3d: Fe, Co and 5d:
Ir, Pt, Au [28], and they found that the hybridization, the bonding between d orbitals
of the magnetic and nonmagnetic sites, the bandwidth and the energy difference
between occupied and unoccupied states of different spin projection determine the
sign and strength of the DMI.

Later Yang et al. have investigated Co/Pt bilayers using first-principles calcula-
tions [29], where the layer dependent DMI coefficient indicates the interfacial DMI
at Co/Pt interface has a dominate contribution from Co spins of the interfacial Co
layer, see Fig. 4.4a. They found that the large DMI from interfacial Co spins extend
very weakly from the interface, and is mainly associated with the SOC energy of
the adjacent Pt layer at the interface. They also found the lack of direct correlation
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Fig. 4.4 a Layer-resolved DMI in three Co monolayers on three Pt monolayers, as obtained from
ab initio calculation [29]. b Strength and sign of the DMI in 3d transition metal monolayers (x axis)
on 5d substrates, as obtained from relativistic first-principles calculation [31]. A positive sign of dij
indicates left-handed chirality. Panel a is reproduced with permission from [29], © 2015 American
Physical Society. Panel b is reproduced with permission from [31], © 2016 American Physical
Society

between DMI and proximity induced magnetism in Pt. Although induced magnetic
moments within heavy metal layer at the interface due to the proximity effect were
proposed as a dominating factor for the emergence of the interfacial DMI [30].

More recently, Belabbes et al. have systematically looked into 3d/5d interfaces
using relativistic first-principles calculations [31], where 3d transition metals includ-
ing V, Cr, Mn, Fe, Co, Ni, and 5d transition metals including W, Re, Os, Ir, Pt, Au
are considered, see the calculated DMI in Fig. 4.4b. They revealed a tendency of
the interfacial DMI that follows the Hund’s first rule. In detail, they found that the
ratio of DMI energy divided by the square of the spin magnetic moment increases
monotonically from V to Mn, and decreases monotonically from Mn to Ni, which
is similar to the dependence of magnetic moment per atom versus the 3d transition
metals. This tendency is attributed to the 3d orbital occupations and their spin-flip
mixing process with 5d states. For instance, according to Hund’s first rule, Mn has
five filled 3d orbitals with all spin up states, and the spin-up/spin-down channels are
entirely occupied/unoccupied, therefore all possible transitions between these states
contribute to the DMI. On the other hand, V and Ni have spin-up/spin-down channels
that are largely unoccupied/occupied, and consequently the transition of 3d electrons
does not contribute to the DMI.

Those theoretical efforts are highly desirable to further understand themechanism
of the interfacial DMI, which may also provide guide principles to optimize choices
of materials towards to nanoscale chiral spin textures at room temperature.

4.2.2 Experimental Observations of Magnetic Skyrmions

In this section, experimental observations of chiral spin textures will be introduced.
Experimentally, stabilizations of magnetic skyrmions generally require the assistant
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of applied magnetic field. At the same time, chiral spin spirals/domain walls in the
absence of the external field are highly relevant, and their observation will be briefly
introduced as well.

The first experimental evidence of the interfacial DMI was reported in single
atomic Mn layer grown on W(110) single crystal, where left-handed cycloidal spin
spirals were observed at low temperature using a spin-polarized scanning tunnel-
ing microscopy (SP-STM), and the 12 nm period of the spin spiral was attributed
to the interplay between the interfacial DMI and exchange interaction [32]. Such
chiral spin spirals, including homogenous chiral spin spirals [33], inhomogeneous
spin spirals [34], conical spin spirals [35], were later observed in other ultrathin
films using SP-STM, where the rich types of the spin spirals were attributed to the
delicate energy balance between the DMI and exchange interaction. For instance,
homogenous (inhomogeneous) spin spiral states are favored when D2

12 > 4J K
(D2

12 < 4J K ), where J is the exchange constant and K is the anisotropy constant,
and conical spin spirals are favored when the higher-order exchange interaction is
involved.

The atomic-scale skyrmion lattices were firstly identified in single atomic Fe
grown on Ir(111) using SP-STM [36], as shown in Fig. 4.5a, where the four-spin
interaction and the large interfacial DMI at Fe/Ir interface were dominating the spin
structure. However, manipulation of individual skyrmion in such skyrmion lattice
with 1 nm period is challenging, and later it was found that the presence of an addi-
tional monolayer Pd layer softens the exchange interaction in the system [37], result-
ing in spin spirals in zero field and skyrmions in 1.5T field with several nanometer
diameter, see Fig. 4.5b [38], which allows thewriting and deleting of single skyrmion
by spin-polarized current (introduced in Sect. 4.4 of this chapter).

In systems mentioned above, the energy of the dipolar interaction was not con-
sidered. However, in thicker film the contribution of dipolar interaction become
more significant and its energy competition against the interfacial DMI may result in
two possible rotation modes, cycloidal spirals favored by the DMI or helical spirals
favored by the dipolar interaction as introduced in Sect. 4.1a. In perpendicularlymag-
netized domains, these two rotation modes affect spin configuration within domain
walls. For instance, in Fe/Ni bilayers grown on Cu(001) substrates, chiral Néel-type
domain walls were observed in relatively thinner Fe/Ni region using spin-polarized
low energy electron microscopy, and the domain wall transition from chiral Néel
walls to achiral Bloch wall can be indeed triggered by tuning the thickness of the
magnetic film [8]. Therefore, it is important to note that this picture also applies to
skyrmions and bubble domains, where the entire spin configuration of the bubble-
like domains could be either skyrmions or topological non-trivial bubble domains
depending on whether the DMI dominates the system.

From the application point of view, realization of skyrmions in atomic thin mag-
netic layers usually requires low temperature or high magnetic field (Fe/Ir is an
exception due to four-spin interaction). Moreover, skyrmions in bulk magnetic com-
pounds with non-centrosymmetric structure are generally observed below or just
around room temperature [18, 39, 40, 41, 42]. On the other hand, the magnetic mul-
tilayers with much higher Curie temperature have additional degree of freedom to
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Fig. 4.5 a Observation of skyrmions lattice in single monolayer of Fe grown on Ir(111) by using
spin-polarized scanning tunneling microscopy. The color wheel indicates the orientation of in-plane
magnetization, and the square unit cell has a side length of 1 nm. b Individual skyrmions observed
a PdFe bilayer on Ir(111) using same technique as panel a. Panels a and b are reproduced with
permission from [16], © 2016 Macmillan Publishers Limited

tailor magnetic properties of the film by choosing interfaces and stacking sequences.
Recently, stabilizations of room temperature skyrmions in thin films are reported by
several groups, which further trigger investigations of current-induced creation and
manipulation of skyrmions in patterned thin films.

Room temperature skyrmions with size ranged from 700 nm to 2 μm were
observed in asymmetric trilayer Ta(5 nm)/CoFeB(1.1 nm)/TaOx(3 nm), see Fig. 4.6d,
where the feature of chiral Néel-type spin configuration is identified by the current-
driven skyrmion propagation [43]. It allows the creation of the skyrmions through
spatially divergent in-plane electric currents in patterned films, which will be intro-
duced in Sect. 4.3. Another example is the patterned Pt(3 nm)/Co(0.5–1 nm)/MgOx
trilayer, where the feature of chiral Néel-wall is observed using photoemission elec-
tron microscopy [44] (Fig. 4.6h).

Experimental exams of spin structures in [Cu/Fe/Ni]n [8] and [Ir/Co/Ni]n [46]
suggest that the asymmetric ternary multilayer stacking allows the enhancement
of the total DMI. Due to the nature of interfacial DMI that flipping the interface
reverses the sign of the DMI, further enhancement of the DMI has been proposed
and demonstrated in [Ir(1 nm)/Co(0.6)/Pt(1)]10 (Fig. 4.6a) [47], where the sign of
the DMI at Co/Pt and Co/Ir are opposite, therefore flipping Co/Ir interface results in
the same sign of the DMI at Ir/Co and Co/Pt, leading to the additive DMI stabilized
skyrmions with small size ranged from 50 to 90 nm, see Fig. 4.6b–c. The other results
show that [Pt(3)/Co(0.9)/Ta(4)]15 and [Pt(4.5)/CoFeB(0.7)/MgO(1.4)]15 multilayers
where the combination of one strong interfacialDMI induced byPt and one veryweak
interfacial DMI induced by Ta or MgO also results in accumulated total DMI [48],
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Fig. 4.6 Room temperature observation of skyrmions in thin films. a Schematic of Pt/Co/Ir trilayer
where the vectors of the interfacial DMI are indicated by blue arrows and spins within Co layer
are indicated by red arrows. b Scanning transmission X-ray microscopy image of an [Ir/Co/Pt]10
multilayer obtained at room temperature in the presence of perpendicular magnetic fields of B�68
mT. Color bar indicates the out-of-plane component of magnetizations. Field of view is 1.5 μm. c
The profile of X-ray magnetic circular dichroism signal (black dots) across an individual skyrmion
(insert) under 58 mT field. Red solid/blue dashed lines indicate ideal/experimental spin profile
of the skyrmion. d Kerr microscopy image of Ta(5 nm)/CoFeB(1.1 nm)/TaOx(3 nm), indicating
the formation of skyrmion bubbles upon passing a current with inhomogeneity due to the geo-
metrical constriction shown on the left. e Schematic of the zero-field stabilization of skyrmions. f
Spin-polarized low-energy electron microscopy image highlighting three-dimensional spin struc-
ture of skyrmions. Color wheel indicates in-plane orientation of magnetization. g Arrows-array
representation of the experimental data in same system, allowing the unambiguous determination
of Néel-type skyrmions. h Photoemission electron microscopy image of a skyrmion in a square
patterned Pt/Co/MgO trilayer, boundary is indicated by the white dashed line. Black/white arrows
indicate the orientation of the in-plane component of spin structures within the skyrmion, highlight
chiral Néel-feature. i Schematic of Pt/Co/Fe/Ir asymmetric multilayer. jMagnetic force microscopy
images of skyrmions obtained in Pt/Co/Fe/Ir multilayers with thickness of Fe(4ML)/Co(4ML). k
Variation of skyrmions size at B ∼ 75mT in [Pt/Co/Fe/Ir]20 system. Panels a-c are reproduced with
permission from [46], ©Macmillan Publishers Limited. Panel d is reproducedwith permission from
[45], © 2016 Macmillan Publishers Limited. Panel e-g are reproduced with permission from [25],
© AIP Publishing LLC. Panel h is reproduced with permission from [44], © Macmillan Publishers
Limited. Panels i-k are reproduced with permission from [49], © Macmillan Publishers Limited
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and this system allows investigations of the current-driven propagation of skyrmions
in nanowires. More recently, efforts of systematic tailoring interfaces allow further
enhancement of the DMI in Ir/Fe/Co/Pt systems, where the DMI at Ir/Fe was thought
to be larger than Ir/Co but with same sign, resulting in sub-50 nm skyrmions at room
temperature (Fig. 4.6i–k) [49], where the signature of skyrmions is supported by the
observation of topological Hall effect within skyrmion phase.

Stabilization of skyrmions generally requires external magnetic field, however,
multilayer stacking provides exciting opportunity for applying virtual magnetic field
through interlayer exchange coupling [50, 51]. This has been demonstrated experi-
mentally in a Fe/Ni bilayer which is exchange-coupled to a Ni layer through a Cu
spacer layer (Fig. 4.6e). By tuning the thickness of the Cu spacer layer, spin structures
in Fe/Ni bilayer evolve from stripe domain, bubble domain to single domain, where
~8.6 monolayer of Cu thickness provides just right amount of virtual magnetic field
to stabilize bubble domains. Using spin-polarized low-energy electron microscopy,
three orthogonal components of magnetization can be imaged with 20 nm lateral
resolution, allowing the unambiguous identification of the bubble domains as chiral
Néel-type skyrmions (Fig. 4.6f, g).

These strategies for stabilizing room temperature skyrmions towards sub-100 nm
size as well as zero field ground state are highly promising for future skyrmion-based
devices. Possible combinations of those strategies including tailoring the DMI, mag-
netic anisotropy, exchange interaction as well as interlayer coupling strength would
be key ingredients to further optimizing the interfacial DMI stabilized skyrmions.

4.2.3 Quantifying the Interfacial DMI

It is fundamentally interesting to understand the DMI at interface. In this section,
experimental techniques that allow the quantification of the interfacial DMI will be
introduced. Briefly, the detection of the DMI can be done through measuring the spin
structures, and spin wave propagations.

The pioneer work of detecting the cycloidal spin spirals using SP-STM [32–36],
as introduced in Sect. 4.2a, allows the precise determination of the period of spin
spirals. It gives rise opportunities to compare this period to theoretical mode based
on density functional theory, therefore the strength of the DMI can be quantified
indirectly through the comparison.

Experimental detections of the DMI were later achieved by measuring the spin
wave propagations where the presence of the DMI breaks the degeneracy of spin
waves. This asymmetric spin wave dispersion relation can be captured by both spin-
polarized electron energy loss spectroscopy (SPEELS) and Brillouin light scattering
(BLS). In SPEELS experiments, the spin waves were excited by a spin-flip scattering
process, and the strength of the DMI vector Di j can be obtained by fitting the depen-
dence of the energy asymmetry as a function of wave-vector transfer [52]. Because
of the short life time (~10 fs) and short attenuation lengths (~1 nm), the measure-
ment of the DMI using SPEELS is limited in the ultrathin films. On the other hand,
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BLS measurements allow the detection of the buried interface in multilayers using a
wave vector resolved BLS in a backscattering geometry [53–57], where microwaves
excited spin waves with long-wavelength have longer lifetime (~ns) and coherence
length (~μm). The picture of how the presence of the DMI shifts the spin-wave dis-
persion curves is given in Fig. 4.7c, where the strength of the DMI can be obtained
by tracking slope of the frequency difference�f(k) plot for two counter-propagating
spin waves at equal but opposite wave vectors: �f(k) � 2γ

πMs
DDMIk, where γ is

gyromagnetic ratio, Ms is the saturation magnetization,k is the spin wave propaga-
tion vector, and DDMI is the interfacial DMI constant. An example of experimentally
obtained �f(k) from the dispersion curves with opposite magnetization (red and
black curves) is shown in Fig. 4.7c.

As introduced in Sect. 4.1, the interplay between the interfacial DMI and dipolar
(stray field) energy may result in either Bloch wall that is dominated by stray field
energy or Néel wall that is dominated by the DMI in perpendicularly magnetized
systems. Tuning film thickness gives rise the access to tailor this interplay, and
the film-thickness dependent domain wall transition from chiral Néel-type to non-
chiral Bloch-type can be used to estimate the strength of the DMI by calculating
stray field energy difference of Bloch and Néel near transition region, where the
stray field energy difference and the DMI are comparable. Using spin-polarized low
energy electron microscopy, one is able to obtain three orthogonal components of
the spin textures so that the domain wall type can be unambiguously determined,
see an example in Fig. 4.7a [8, 25, 46, 58], leading to the quantification of the total
interfacial DMI of the systems.

In a weak perpendicular anisotropy system where domain pattern exhibits stripe
domain, the perpendicular field dependent evolution of stripes has been studied in
the past [59–63], where the contributions of exchange interaction, dipolar interac-
tion, magnetic anisotropy and Zeeman energy were considered. This model later is
extended to systems with significant DMI [48], where the field dependent peri-
odicity of stripe domains was used to obtain domain wall surface energy den-
sity σDW . The strength of the DMI vector |D| then can be derived from equation
σDW � 4

√
AKu,e f f − π |D|, where A is the exchange stiffness, and Ku,e f f is the

effective uniaxial anisotropy constant.
Another experimental effort of quantifying the DMI is based on perpendicularly

magnetized bubble-like domain, where the presence of the DMI fixes the chirality
within the domain boundary. The presence of an in-plane field competes with the
DMI regarding to the spin configuration within the domain boundary, resulting in
asymmetric bubble expansion, which can be used for quantification of the interfacial
DMI [64–66]. In details, the orientation of the asymmetric propagation with respect
to the applied in-plane field can be used to derive the sign of the DMI and the
chirality within the boundary, for instance, the DMI-like field and the in-plane field
could be parallel or antiparallel, which allows propagation with opposite directions.
Moreover, systematic tests of the field-dependent bubble expansion allow one to
locate the minimum velocity of the propagation, where the effective DMI field and
the in-plane field balance each other. The DMI strength can be written as DDM �
μ0Hin−planeMsγdw, where μ0 is the vacuum permeability and γdw is the domain
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Fig. 4.7 a Quantifying the DMI based on a thickness-dependent transition of domain wall
type. Spin-polarized low-energy electron microscopy image of [Co/Ni]3/Pt(111) (left) and
[Co/Ni]9/Pt(111) (right). Out-of-plane component +z/-z of magnetization is indicated by
black/white, and in-plane component within domain walls is indicated by the color wheel as well as
white arrows, highlighting magnetic domain walls as left-handed chiral Néel type and achiral Bloch
type. b Quantifying the DMI based on asymmetric domain wall propagations. Kerr microscopy
Images of Pt/Co/Pt system show circular domain wall expansion driven by an out-of-plane mag-
netic field Hz (3 mT), without an in-plane magnetic field (left) and with an in-plane magnetic field
Hx at 50 mT (right). Grey levels indicate four overlapped sequential images with a time step of
0.4 s. c Quantifying the DMI based on asymmetric spin wave propagation. (upper) Sketch of a
Damon–Eshbach spin wave propagating at the Ni80Fe20/Pt interface with wave vector kM‖− x . All
individual moments precess in the external field H in counterclockwise manner (the blue arrows).
The dashed arrows indicate the spatial chirality of the spin wave along x. The preferred chirality of
the DMI indicated by the purple arrow is identical to the spatial spin wave chirality. (middle) For
kM‖+ x , the spatial chirality of the spin wave is opposite to that favored by the DMI. The individual
moments precess counterclockwise around the external magnetic field H as above, but now kM
points in the opposite direction. (lower) Spin-wave spectra measured by BLS in 1.3 nm Ni80Fe20
film with a 6 nm Pt underlayer with μ0H � ±295 mT. Black circles and red triangles correspond
to measurements carried out for the two opposite magnetizations. d Left, Schematic illustrations of
spin configurations within triangle with magnetization up and down. Right, the preferential nucle-
ation of domains at the edge induce a shift of magnetic hysteresis loops that is linked to the DMI.
Panel a is reproduced with permission from [58], © 2013 Macmillan Publishers Limited. Panel b is
reproduced with permission from [64], © 2013 American Physical Society. Panel c is reproduced
with permission from [53], © 2015 Macmillan Publishers Limited. Panel d is reproduced with
permission from [76], © 2016 American Chemical Society
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wall width which equals to π
√A/Kef f , Keff is the effective perpendicular magnetic

anisotropy,A is the spin-wave exchange stiffness constant. This approach of tuning
the interplay between effective DMI field and external in-plane magnetic field was
also applied to understand the dynamics of chiral spin textures [9, 10, 67–72].

The presence of the DMI may also influence the chirality of tiled spins at the edge
of a film or patterned structure [73–75], which may induce an asymmetric domain
nucleation [64, 65]. This asymmetric property could be lifted by preparing plannar
asymmetric triangle microstructure with a constant in-plane field, where a signifi-
cant shift of the out-of-plane magnetic hysteresis loop is captured by Magneto-optic
Kerr effect [76], see spin structures within triangle and the sketch of quantifying
the DMI from the hysteresis loop in Fig. 4.7d. The shift of the loop is attributed
to the preferential nucleation of domain walls due to the DMI induced magnetiza-
tion titling at the edge, from where both sign and strength of the DMI vector can
be quantified with help of the half-droplet model [65, 77]. Moreover, this approach
is validated in symmetric square microstructures with the absence of the loop shift.
These shape-dependent tests of the DMI, can also be employed by other magnetome-
trymeasurements such as vibration samplemagnetometer (VSM)or superconducting
quantum interference device (SQUID) magnetometer, providing a convenient way
for rapid material screening.

4.2.4 Thin Films with Bulk DMI

Epitaxial growthof noncentrosymmetric compound thinfilms, chieflyB20 structures,
has been desirable for both fundamental research and application, due to the well-
controlled thickness, possibilities of precisely measuring transport properties and
easy implementing patterns for the device fabrication. Intensive efforts have been
made into fabricating and optimizing epitaxial B20 thin films [78–87], where Si(111)
has been chosen as an excellent substrate for the epitaxial growth. The epitaxial
quality of B20 thin films can be examined by X-ray diffraction [85–87], as well
as transmission electron microscopy [86, 87], see an example of a MnSi thin film
on Si(111), Fig. 4.8a. In contrast to the B20 bulk materials where the stabilization
of skyrmions phase requires the external magnetic field [21, 39–41, 88], geometric
constraints along the direction normal to the film plane in B20 thin films have been
proposed as a possible driving force to suppress the helical phase [40, 86, 87, 89],
which is usually the ground state in bulk B20 materials in the absence of the field
[90].

Looking for features of the topological Hall effect in transport measurements [91,
92], has been considered as a strong evidence as the existence of skyrmions [93–96].
Huang et al. [85] and Gallagher et al. [87] indeed observed significant topological
Hall effect not only in similar regions within temperature-magnetic field phase dia-
gram where the skyrmions have been reported in bulk materials, but also in regions
within the phase diagram near zero-field, indicating the extension of the skyrmions
phase down to zero-field region in MnSi and FeGe, respectively. Figure 4.8c shows
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(c)(a) (b)

Fig. 4.8 a Cross-section transmission electron microscopy image of 10 nm MnSi thin film grown
on Si(111) subtract. Scale bar is 2 nm. b Over-focused transmission electron microscopy image of
10 nm MnSi taken at 30 K and 400 mT. The image is filtered by shadowing the background noise
as well as selecting magnetic reflection (highlighted by yellow lines in the inserted FFTs). c The
topological Hall resistivity hysteresis loops for the 36, 65, and 100 nm FeGe films at 5 K. Panels
a and b are reproduced with permission from [86], © 2013 American Physical Society. Panels c is
reproduced with permission from [87], © 2017 American Physical Society

the topological Hall resistivity hysteresis loops for FeGe thin films with different
thicknesses at 5 K [87], where substantial remanent values at zero field demonstrate
robust Skyrmion formation in the absence of magnetic field.

Efforts of using Lorentz transmission electron microscopy have been also made
to directly observe spin textures ofMnSi thin films [86], in which the feature of topo-
logical Hall effect was also identified. With increasing magnetic field, the evolution
from helical phase at zero field to skyrmion phase at 400 mT was observed in MnSi,
see Fig. 4.8b. The skyrmion phases tested in 10 and 50 nm thick films are extended
in a much wider temperature-magnetic field.

4.2.5 Magnetic Imaging Techniques

In this section, magnetic imaging techniques that allow the observation of skyrmions
and their advantage/limitation will be briefly introduced. The techniques include,
but are not limited to, spin-polarized low-energy electron microscopy (SPLEEM),
photoemission electron microscopy (PEEM), scanning electron microscopy with
polarization analysis (SEMPA), Kerr Microscopy, magnetic transmission X-ray
microscopy (TXM), Lorentz transmission electron microscopy (LTEM), Spin polar-
ized scanning tunneling microscopy (SP-STM), magnetic force microscopy (MFM)
and magnetometry with nitrogen-vacancy defects in diamond.

SPLEEM is capable of capturing three dimensional spin structures on the surface
of magnets [14, 97], allowing one to distinguish magnetic chirality for Bloch- or
Néel-type [98, 99]. In SPLEEM measurements, spin-polarized electron beam with
typically a few eV lands normal on the sample surface, and elastic back-scattering
is detected. Magnetic contrast is obtained by comparing the difference between
two images with spin-up and spin down (here the flip between spin-up and spin
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down is triggered by changing the circular polarization of the incident laser onto the
GaAs cathode). The magnetic contrast is proportional to P ·M, where P is the spin-
polarization direction of the incident electrons andM is the magnetization direction.
The orientation of the spin-polarization direction P can be controlled into arbitrary
direction by the combination of magnetic field and electric field, allowing the detec-
tion of three-dimensional spin structures by imaging three orthogonal directions
independently. The energy of the incident electrons is typically ranged from zero
to 30 eV, which is extremely surface sensitive with only a few monolayers probing
depth. Strength of SPLEEM is the capability of imaging magnetic component along
arbitrary direction. Lateral resolution of SPLEEM is typically 10–20 nm, which can
be potentially upgraded down to a few nm with aberration corrector. Samples for
SPLEEM are usually limited to in situ prepared single-crystalline thin films, because
the energy of incident electrons is typically around several eV so that SPLEEM is
extremely surface sensitive. The nature of the imaging mechanism with electrons
also blocks imaging during the presence of external in-plane magnetic field due to
the Lorentz force.

PEEM is powerful tool for imaging magnetic materials with element-sensitivity
[100]. In PEEM measurements, X-ray lands on the surface with 30° grazing angle,
and secondary electrons emitted from the sample surface (dashed black arrows)
are accelerated by a strong electric field between sample and the objective lens
of the microscope. Magnetic image is obtained by taking the difference between
two images with opposite polarization of the X-ray. The mechanism of the magnetic
contrast is based on X-ray magnetic dichroism, where X-ray magnetic circular/linear
dichroism has been applied to study ferromagnetic/antiferromagnetic materials [101,
102]. Magnetic contrast is proportional to the component of magnetization projected
onto the X-ray incident direction, for instance, with 30° grazing angle, X-ray is
more sensitive to the in-plane magnetized component vs out-of-plane, however, in a
system with well-defined anisotropy, one could control the fraction of the contrast
from in-plane magnetized domain by rotating the film within the plane. Strength of
PEEM is element-dependent sensitivity and opportunity to image antiferromagnetic
domains based on X-ray magnetic linear dichroism. Functionality of a PEEM beam
line is related to the availability of circularly/linearly polarized X-ray and energy
range of the incident X-ray (soft X-ray or hard X-ray) at synchrotron. As same as
SPLEEM, imaging samples in the presence of in-plane magnetic field is technically
challenging, where the Lorentz forcemight be balanced by deflectors of the objective
lens in PEEM.

SEMPA is capable of capturing three-dimensional spin structures [103]. In
SEMPA experiments, electron beam with medium energy (10–50 keV) lands on
the sample surface, and secondary electrons probed with high spatial resolution
retain their spin-polarization orientation as they leave the sample surface. The spin
polarization of the emitted secondary electrons carries the information of the local
magnetization orientation can be analyzed by a spin-polarization analyzer, then the
spin structure at the sample surface can be mapped as the electron beam is scanned
point by point through the sample surface. This technique allows one to unambigu-
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Fig. 4.9 Sketch of the imaging mode for variation of magnetic imaging techniques. Red solid
arrows indicate the incident electron beam or X-ray, and dashed black arrows indicate the beam/X-
ray that carries magnetic information. The mechanism of obtaining magnetic contrast is labelled
below each technique

ously magnetic chirality within domain walls [104]. Samples that SEMPA can image
also include three-dimensional objects.

Kerr Microscopy probes magnetic structures without electrons, providing oppor-
tunities to study real-time evolution of domain structures in the presence of magnetic
field [105]. In Kerr Microscopy measurements, a light with linear polarization lands
on the surface, and the plane of the polarization rotates upon reflection from a mag-
netic surface due tomagneto-opticKerr effect [106]. Themagnetic contrast is directly
sensitive to the magnitude and direction of magnetization. The sensitivity axis is par-
allel to the plane of incidence, which can be optically adjusted. Arbitrary magnetic
fields can be applied during an observation so that domain nucleation and magneti-
zation processes can be possibly captured [43]. A Kerr Microscope is essentially a
polarization microscope, where its lateral resolution is limited around 300 nm.

TXM probes magnetic thin films with X-ray in transmission mode without elec-
trons involved [107], giving opportunities formeasurements with element-sensitivity
in the presence of magnetic field. Magnetic contrast is given by x-ray magnetic
dichroism and proportional to the projection of the magnetization onto the photon
propagation direction. Contrast for in-plane component can be obtained by tilting the
sample surface (see dashed lines in Fig. 4.9). The transmission mode is a relatively
more flexible imaging condition, providing opportunities to studymagneticmaterials
grown on 3D structures [108].Magnetic field can be applied during themeasurement,
allowing one to explore field-dependent domain dynamics. Samples that TXM can
probe need to be thin enough so that X-ray beam can partially go through, therefore
samples are usually prepared on membranes such as silicon nitride.
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LTEM probes magnetic thin films with high energy electron beam with trans-
mission mode [109], which has been applied to study Bloch-type chirality in non-
centrosymmetric compounds [18]. The magnetic contrast is given by the Lorentz
force when electrons pass through a sample with magnetization normal to the beam
orientation. Lateral resolution of LTEM is typically several nm, which is worse than
conventional TEM as the objective lens is largely turned down. Note that LTEM
mode does not provide contrast for Néel-type domain walls due to the fact that the
deflected electron beam is shifted along the domain boundary without generating
difference of the beam intensity. Tilting sample ranged with ±30◦ provides contrast
to capture the domain shape from both Néel-type domain walls [110] and skyrmions
[111], but not for chirality within the domain boundary.

SP-STM has been used as a powerful tool to reveal chiral spin textures at atomic
scale in ultrathin films [112]. The magnetic contrast is given by the spin-dependent
tunneling between sample surface and magnetic tip. The spin signal dependents on
the orientation of magnetization on sample surfaces with respect to the orientation
of magnetization on the tip, and three dimensional spin structures can be obtained
using tips with different magnetization directions [34]. The detection using scanning
tip also provides great opportunities to study the current-driven or voltage direction
evolution of spin structures locally. SP-STM requires ultra-clean surface therefore
samples usually need to be prepared in ultra-high vacuum environment.

Scanning nanomagnetometries using magnetic tip (MFM) [49] or nitrogen-
vacancy [113] probe magnetic structure based on stray field from the sample sur-
face. These techniques provide great opportunities to study domain structures in a
very flexible experimental environment such as ex situ measurements without high-
vacuum and in the presence of magnetic field. The magnetic domain wall structure
such as Néel or Bloch-wall can be distinguished by modeling the experimental data
obtained by nitrogen-vacancy tip with decent resolution.

4.3 Experimental Realization of Skyrmions in Artificial
Structures

Magnetic skyrmions in thin films can also be realized in artificial structures. The
idea of fabricating nanodots with a magnetic vortex state on perpendicularly mag-
netized films was proposed and tested by simulation [114]. Magnetic vortices have
been intensively studied in nanostructures, and demonstrated as a robust state with
a suitable aspect ratio, i.e. dot thickness versus diameter [115, 116]. The formation
of skyrmions in these artificial structures is a result of imprinted vortex structure
from nanodots onto the perpendicular magnetized underlayer, through an exchange
coupling at the interface (Fig. 4.10a). Note the spin structures within each vortex
can be viewed as Bloch-type, therefore the Bloch-type skyrmions stabilized by this
strategy is different from the DMI stabilized Néel-type skyrmions in asymmetric
multilayers.



134 G. Chen

(a) (b)
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Fig. 4.10 a Schematic of an artificial skyrmion lattice. Ordered arrays of asymmetric magnetic
nanodots are fabricated on top of a perpendicularly magnetized film. The arrows represent the
orientation of magnetization. b Kerr Microscopy images of Co/[Co/Pt]n multilayer systems with
horizontal (left) and vertical (right) magnetic sensitivity, respectively. The orientation of magneti-
zation is indicated by the color bar. c SEMPA image of Bloch-type skyrmions at remanent state. The
in-planemagnetization direction is highlighted by color, see color wheel at top right. Inset highlights
themagnetization curling direction. The scale bar is 2μm. d PEEM images of the topological-trivial
vortex state in upper row and skyrmion state in lower row) at remanence state, after applying variable
external in-plane fields, indicating that the skyrmion state (N�1) has a stronger annihilation field.
Panel a is reproduced with permission from [114], © 2013 American Physical Society. Panel b is
reproduced with permission from [120], © 2014 American Physical Society. Panel d is reproduced
with permission from [119], © 2014 Macmillan Publishers Limited

In contrast to the homo-chirality favored by the interfacial DMI, the in-plane curl-
ing spin configuration within a vortex could be either clockwise or counter-clockwise
(circularity), and the core of a vortex could point either up or down along out of the
plane (polarity) [114]. Four possible ground states with combination of two possible
circularities and two possible polarities are expected to be energetically degenerate
in a perfect circular shaped vortex. Experimental effects of achieving homo-chiral
spin configuration of artificial skyrmions will be introduced in the following, i.e.,
same polarity and circularity over arrays of nanomagnets with asymmetric shape
[117, 118].

Experimental realization of artificial skyrmions has been demonstrated in sev-
eral systems, including Co dots on perpendicularly magnetized Ni film grown on
Cu(001) [119], Co dots on [Co/Pt]n multilayers [120], as well as Co dots on ion-
irradiated [Co/Pd]n multilayers [121]. The Bloch-type skyrmions are stable with the
size of dots ranged from several hundred nanometers to a few microns. To set homo-
chirality of the skyrmions, in-plane demagnetizing samples to define circularity and
out-of-plane magnetizing samples to define the polarity are applied. For instance,
in Co (dots)/[Co/Pt]n multilayer system [120], the asymmetric Co dots were sat-
urated into an in-plane magnetized single domain state by a magnetic field (≈20
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mT) along the edge-cut (see Fig. 4.10a), and evolved to vortex states without change
of the circularity upon the removal of field. Then the vortex core and surrounding
underlayer area were magnetized along same direction by applying a perpendicular
magnetic field (~+1 T) smaller than the saturation field (~1.3 T). The surrounding
underlayer area was finally aligned antiparallel to the direction of vortex core with
a smaller negative field (−150 mT). The circularity of the final state was imaged
by Kerr microscopy, where the same circularity was observed cross the sample (see
Fig. 4.10b).

In another system of Co dots on [Co/Pd]n multilayers [121], the Co/Pd under-
layer was ion-irradiated to suppress the perpendicular magnetic anisotropy in regions
underneath the Co dots. Then the Co/Pd underlayer was saturated along the posi-
tive out-of-plane direction. Subsequently the Co dots were saturated by an in-plane
field (100 mT) along the edge-cut, and the nucleation of magnetic vortices with
controlled polarity and circularity was triggered by removing the in-plane field fol-
lowed by applying an additional negative out-of-plane field (−100 mT) for setting
the polarity opposite to the surrounding underlayer area. Spin structures of the Co
dots array were taken by SEMPA. Figure 4.10c shows that all asymmetric Co dots in
the array form typical vortex spin structures with a uniform counter-clockwise cir-
cularity, where the orientation of in-plane magnetization is highlighted by the color
wheel, indicating a successful control of the circularity.

For both cases introduced above, direct observation of the vortex core in the buried
layer is technically challenging due to its small size and buried surface. Indirect
detection was demonstrated in Co(dots)/[Co/Pd]n system [121], where three possi-
ble states including skyrmion state, vortex state and mixed state can be controlled
by the polarity-setting procedure introduced above. The difference of perpendic-
ular remanent magnetization can be measured in magnetic hysteresis loop, where
skyrmion/vortex configuration has the smallest/largest magnetization, and mixed
lattice configuration with randomly aligned skyrmion or vortex configuration gives
a curve in between skyrmion and vortex states [121].

The possibility to control the polarity of the vortex core offers an opportunity to
study topological properties of skyrmions. For instance, the skyrmion number N can
be calculated by the core polarity direction with respect to the magnetization direc-
tion of surrounding underlayer. In case of the skyrmion state with the core polarity
opposite to the underlayer magnetization, skyrmion number is N � 1, whereas vor-
tex state with the core parallel to the underlayer has N � 0 [119, 121]. A physical
manifestation of this topological quantization is that a skyrmion state with N � 1,
is topologically protected from transforming continuously into another state with
different N , such as a single domain. This topological effect has been observed in Co
dots on perpendicularly magnetized Ni film [119], during the annihilation of stable
skyrmion and vortex states into a single domain state in the presence of an in-plane
field. It was found that the in-plane annihilation field of the skyrmion state is signif-
icantly greater than that of the vortex state (see Fig. 4.10d), indicating a topological
effect of the magnetic skyrmions during the core annihilation process.

These artificial Bloch-type skyrmions in thin-film nanostructures are stable at
room temperature in the absence of external magnetic field, providing an interesting
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platform to explore topological characters of such skyrmion systems. Indeed, very
active research efforts in this direction have been demonstrated in the stabilization of
skyrmion state [119–121], dynamic properties [122–125], topological characteristics
[119, 125–127], aswell as design of skyrmion based spin-ice system [128]. Inmost of
the early studies of this field, the top nanodots, while playing a key role in stabilizing
the skyrmion state, also hinders the propagation of skyrmions once they are created.
Active efforts are underway, for instance, to achieve planar skyrmions without the
protruding dots [121, 129], towards mobilizing artificial skyrmions. On the other
hand, the vortex state in the nanodots is strongly determined by the aspect ratio of
the dot, therefore further scaling down of the artificial skyrmion size is also possible.

4.4 Creation and Manipulation of Skyrmions Towards
to Application

4.4.1 Creations of Magnetic Skyrmions

As a promising candidate for the memory and logic device, possibilities of manipu-
lating skyrmions such as writing/deleting and driving skyrmions are desired. Several
different strategies of effectively creating skyrmions have been proposed, aiming for
reliable creation of skyrmions in a controlled way. For instance, vertical injection
of spin-polarized current onto a Co/Pt disk allows the creation of single skyrmion
by spin torques in the disk (Fig. 4.11a), where the current threshold of creating
skyrmions is related to the current density, and the magnitude of the DMI [130].

The experimental demonstration of writing/deleting skyrmions was done using
SP-STM in Pd/Fe/Ir(111) system [38], where the presence of the top Pd layer softens
the exchange interaction in Fe/Ir(111) [36], leading to spin spirals and skyrmions
with larger period instead of skyrmions at atomic-scale. This change of skyrmions
size opens up a possibility of manipulating single skyrmion without being trapped
in the skyrmion lattice. Then out-of-plane magnetic field is applied to fine tune the
energy landscape of the system so that creating and deleting skyrmions have similar
energy barrier height. Figure 4.11b shows the demonstration of local writing (upper
row) and deleting (lower row) of single skyrmion, where the change of spin textures
is triggered by injecting spin-polarized current through a STM tip.

More recently, an electric field generated between Fe(trilayer)/Ir(111) sample
and non-magnetic STM tip has been used for generating and removing skyrmions as
well (Fig. 4.11e) [131], where the polarity of the applied bias field determines the
write/deleting process. Moreover, this approach is technically compatible to all elec-
tric read of skyrmion states using non-magnetic STM tip [132]. The latter is achieved
by detecting novel magnetoresistance effect related with non-collinear spin textures
such as skyrmions, where mixing between spin channels for non-collinear spin tex-
tures locally changes their electronic structure, which was theoretically explained by
DFT calculation [133] or tight-binding model [132]. The combination of all electri-
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(a) (c)
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Fig. 4.11 a Top view of Co/Pt disk (top figure) where the area of the vertical spin injection is high-
lighted by dashed black circle. Lower figures show micromagnetic simulations of spin structure
in Co/Pt disk with different current density. bManipulation of individual skyrmion highlighted by
red/blue (diameter 8 nm) in chosen area (black circles), upper/lower row demonstrates write/delete
individual skyrmion in Pd/Fe/Ir(111) at a field of 3.25T. c Snapshots of dynamical spin config-
urations at selected times in creating a skyrmion with applied current j � 3.6 × 1011 A m−2.
In-plane/out-of-plane components of the magnetic moments are represented by arrows/color.
Corresponding time for upper/lower figure is 18.89 × 10−11s/28.60 × 10−11s. d Kerr microscopy
images of Ta/CoFeB/TaOx structure before and after applying a current pulse through structure
constriction (darker gray), indicating creation and propagation of skyrmions (black dots). e Delet-
ing/writing (left/right column) skyrmions by electric field in trilayer Fe on Ir(111). Circles highlight
targeted area for manipulating skyrmions using spin-polarized STM. Brighter area indicates mag-
netic skyrmion where the distorted shape is induced by the strain. Panel a is reproduced with
permission from [130], © 2013 Macmillan Publishers Limited. Panels b and d are reproduced with
permission from [45], © 2016Macmillan Publishers Limited. Panel c is reproducedwith permission
from [134], © 2013 Macmillan Publishers Limited. Panel e is reproduced with permission from
[131], © 2017 Macmillan Publishers Limited
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cal read and write/delete skyrmions provides way to realize skyrmion-based memory
and logic devices.

The creation of skyrmions can also be realized without vertical injection [134].
Figure 4.11c shows a typical notch structure that has been used for domain wall
pinning [27, 135–137]. In those structures, spins near the boundary have large in-
plane tilted components due to DM interaction, which can be viewed as part of a
spin spiral. The spin structure at the notch swells out in the presence of electric flow
due to the spin transfer torque. As the in-plane component pushed further away from
the boundary, spins point opposite direction is formed because of the DMI, which
can be viewed as the core of a skyrmion (Fig. 4.11c, upper panel). This DMI favored
spin twist eventually leads to the formation of a skyrmion (Fig. 4.11c lower panel).
Note that the in-plane component near the boundary is essential for the skyrmion
formation. For instance, skyrmions are no longer created in case where spins aligned
along z-direction near boundary in the presence of a strong perpendicular magnetic
field.

Another approach of creating skyrmions is based on plannar constriction in
Ta(5 nm)/CoFeB(1.1 nm)/TaOx(3 nm) trilayers [43], where inhomogeneous elec-
tric current at the exit of a structure constriction gives rise a multidirectional spin
torque [138], that acts differently on different part of the domain wall and results in
the formation of skyrmion bubbles with micrometer size (Fig. 4.11d). In this case,
an additional magnetic field along out-of-plane is applied to assist the formation of
skyrmions due to the lower energy barrier between skyrmions and regular domain.
Such approach of efficient creation of skyrmions can be easily integrated into a
plannar device [139]. The dynamical creation of sub-100 nm skyrmions has also
been experimental realized in Si substrate/Ta/Co/[Pt/Ir/Co]10/Pt based micrometer-
size track under homogeneous current injection. Those skyrmions can be driven by
spin-orbit torques arising from the adjacent heavy metal layer such as Ta, providing
opportunities to explore the propagation of skyrmions that will be introduced later.

4.4.2 Motion of Skyrmions in Patterned Films

Concept of storing data by magnetic skyrmions in nanostructures replies on pos-
sibilities of moving skyrmions so that data saved in different area can be written
and read without mechanical movement. Several skyrmion-based memory and logic
devices have been proposed in the last few years [27, 140, 141]. Here binary bits
can be encoded by the presence or absence of magnetic skyrmions, and data chains
consisted of skyrmions and uniformed domain share similar concept that has been
proposed in racetrack memory where data chains contain magnetic domains with
opposite magnetization direction.

Applying electric current is one of major approaches to manipulate magnetization
in nanostructure, where spin torques can be exerted either by spin-polarized current
flowing within a ferromagnetic layer, or by spin current injected vertically through
an adjacent heavy metal (spin Hall effect). Current-induced skyrmions motion has
been explored by micromagnetic simulation for both cases [130], where the spin
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Hall effect-spin torque drives skyrmions at faster velocity with same current den-
sity. Moreover, the skyrmion propagation trajectory contains not only a longitudinal
motion that is parallel to the applied current direction, but also a transverse motion
that is triggered by topology associated gyrotropic force [18, 27, 142–147]. The
direction of longitudinal motion of skyrmions depends on the magnetic chirality of
skyrmions (determined by the sign of the interfacial DM interaction) as well as the
sign of the spin Hall angle in the adjacent heavy metal layer, whereas the direction
of transverse motion of skyrmions depends on the sign of the topological charge
carried by the skyrmions, which is determined by the magnetization direction within
the skyrmion core. In a confined structure such as nanowire, skyrmions propagate
towards the edge of the nanostructure, where skyrmions may keep moving along the
edge by an additional repulsive force.

The Thiele equation [148], describing the dynamics ofmagnetic solitons, has been
modified to analytically understand the current-induced motions of rigid skyrmions
[18, 143, 144, 149–151]

G × v − αD · v − 4πB · j � 0

where G � (0, 0,−4π Q) is the gyromagnetic coupling vector, v � (
vx , vy

)
is

the skyrmion velocity along the x and y axis, α is the Gilbert damping coefficient,
D is the dissipative force tensor, the tensor B represents the efficiency of the spin
Hall torque over skyrmions, and j is the electric current density flowing in the heavy
metal. Here the first term is the topological Magnus force [143, 144, 152], which
induces the transverse motion of skyrmions. The second term is the dissipative force
related to the magnetic damping of a moving magnetic skyrmion, and the third term
corresponds to the driving force from the spinHall torque. The Thiele equation yields
skyrmion longitudinal velocity vx � − jαDBxx

(αD)2+Q2 and transverse velocity vy � j QBxx

(αD)2+Q2 ,

from where the skyrmion Hall angle can be derived as arctan
(− Q

αD

)
.

On the other hand, current-driven dynamics of skyrmions have been experimen-
tally investigated in several systems, providing opportunities to explore the role of
defeats which may pin skyrmions in thin film and multilayer systems [153–155].
Figure 4.12a shows experimental observation of skyrmion motion in Pt/Co/Ta and
Pt/CoFeB/MgO nanowire tracks using short current pulses [48]. Strong pinning
effects were found in Pt/Co/Ta nanowire tracks with polycrystalline Co layer due
to local variation of the DMI strength, resulting in reduced skyrmions velocity and
possible annihilation of skyrmions. In contrast, replacing polycrystalline Co layer
to amorphous CoFeB layer leads to significantly reduced pinning effect due to the
absence of grain boundaries in amorphous film. The influence of grainswith variation
of the DMI on the current-driven skyrmion motion was further investigated using
micromagnetic simulations (Fig. 4.12b) [156], highlighting a grain-size dependent
pinning effect. Simulation shows that the depinning current reaches maximum value
and the cancellation of the skyrmion Hall effect at low current when sizes of grains
are comparable to sizes of skyrmions.
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Fig. 4.12 a Upper panel: sketch of a magnetic track (in red) on a Si3N4 membrane (in grey)
with current contacts (in gold) and skyrmions stabilized by an applied magnetic field. Lower panel:
Average skyrmion velocity of Pt/Co/Ta and Pt/CoFeB/MgOversus current density. Different shaped
symbols correspond to different devices. b Simulated grain size dependent mean velocity of the
skyrmions as a function of current density, different grain sizes are indicated by uniform case
(black square), g�60 nm (blue hexagons), 30 nm (gold pentagons), and 15 nm (red diamonds).
The stars indicate the experimental current density. c Kerr microscopy images of pulse current-
driven skyrmion motion at J � 2.8 × 106 Am−2 along +x direction and magnetic field H � 5.2Oe
along –z direction. Lower panel: summary of the skyrmion trajectory in Kerr microscopy images. d
Skyrmion trajectories for one experimental current density 4.2× 1011 Am−2. All skyrmions move
in parallel and synchronously. These skyrmions move reproducibly with identical displacements
for positive and negative pulses. The vertical range of 2 μm corresponds to the width of the wire.
Panel a is reproduced with permission from [48], © 2016 Macmillan Publishers Limited. Panel b is
reproduced with permission from [156], © 2017 American Chemical Society. Panel c is reproduced
with permission from [150], © 2017 Macmillan Publishers Limited. Panel d is reproduced with
permission from [157], © 2017 Macmillan Publishers Limited
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Recently, the transverse motion of current-driven skyrmions, namely skyrmion
Hall effect, has been directly observed using Kerr microscopy [150] as well
as time-resolved X-ray microscopy [157]. The former result shows that the
skyrmion trajectory deviates from the applied current direction about 30° in
Ta(5 nm)/Co20Fe60B20(CoFeB)(1.1 nm)/TaOx(3 nm) trilayer (Fig. 4.12c), and the
skyrmion Hall angle depends on both skyrmions size and velocity. This obser-
vation is attributed to a combination of the topological Magnus force and ran-
dom pinning potentials in their materials. Then the competition between skyrmion
driving force and pinning potentials leads to a current/velocity dependence of the
skyrmion Hall angle. For example, the motion of skyrmions at very low current
density shows a hopping-like behavior with a zero skyrmion Hall angle. Skyrmions
are able to overcome pinning potentials gradually at higher current densities due
to stronger driving forces. This tendency of the skyrmions Hall angle eventually
saturates at a value that agrees well with the theoretical prediction in the absence
of imperfections. The latter result shows the skyrmions Hall angle exceed 30° in
[Pt(3.2 nm)/CoFeB(0.7 nm)/MgO(1.4 nm)]15 multilayers with excellent homogene-
ity and a very low pinning energy landscape that is ideally for pump-probe dynamic
measurements (Fig. 4.12d). The observation is attributed to a combination of internal
excitation of the skyrmions and the field-like spin-orbit torque. Note that fully rigid
skyrmions are expected to have no influence on the skyrmion trajectory by the field-
like torque. However, once the skyrmion is allowed to slightly deform or breathe,
skyrmion Hall effect can be affected more significantly at higher current densities
by field-like torques, which scale linearly with current density.

The skyrmion Hall effect may hold potential for creating novel functionalities in
devices such as topological sorting, because skyrmions with opposite topological
charge follow trajectory with opposite transverse motion. In a nanowire track, the
skyrmion Hall effect may push skyrmions propagate towards the edge of nanowires,
where skyrmions may either bounce back or are annihilated. Several proposals of
suppressing skyrmion Hall effect have been made to balance the topological Magnus
force in two coupled skyrmions with opposite topological charge, where the net topo-
logical charge is zero. This can be realized in antiferromagnetically-coupled trilayers
with skyrmions on two sides [158], or in skyrmions in antiferromagnetic materials
[159]. More recently, zero skyrmion Hall angle has been found in antiskyrmions
(where magnetic chirality is opposite along two in-plane orthogonal directions) at
specific angle of the applied current with respect to the antiskyrmion spin textures
[151], due to anisotropic chiral spin textures within antiskyrmions.

4.5 Outlook

Analog to the approach of controlling domain position by mechanically spinning
magnetic disks in hard disk drives, the position of the domain in race-track memory
is manipulated by means of the electrically-driven domain wall propagation in
magnetic nanowires [160], which is expected to enable mechanical motion free
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non-volatile memory device with higher density and better read/write performance.
The key of the data manipulation is the electric-current driven domain wall prop-
agation, which is a result of spin transfer torque (STT) or spin-orbit torque (SOT)
(see details in the Chap. 7 written by M. Althammer). The STT is attributed to
the transfer of spin angular momentum between spins of conduction electrons and
local spin structures [161, 162]. The threshold current of the STT induced domain
wall motion is significantly high (∼106A/cm2) due to intrinsic pinning effects in
real magnetic systems, and this threshold current can be reduced by four orders of
magnitude in case of skyrmions [87], because of the zero-dimensional nature of
skyrmion that has much less pinning effects influenced by local defects [163]. On
the other hand, the SOT occurs when the spin Hall effect triggers the accumulation
of spins at ferromagnetic layer/heavy metal interfaces [164], and those spins transfer
their spin angular momentum to the adjacent ferromagnetic layer. Together with
the chiral nature of chiral domain walls and skyrmions, the SOT also leads to high
efficient electrical manipulation of chiral domain walls [165] and skyrmions [166].

Owing to the nanoscales spin texture, efficient electrical manipulation, and the
topological properties, skyrmions are considered as a promising candidate for next-
generation non-volatile magneticmemory devices with low-energy consumption and
high-density [27]. Recently, Tremendous progress in the field of thin film based chiral
spin textures has been made [167], since the theoretical proposal of the interfacial
DMI [19, 20] aswell as the experimental observation of the interfacial DMI stabilized
cycloidal spin spirals [32]. In particular, skyrmions at room temperature have been
achieved in multilayer structures [17], which further trigger the research interests
for exploring the design strategies towards to nanometer size skyrmions with high
stability. On the other hand, materials engineered DMI at interfaces beyond choices
of metal/metal interfaces, such as ferromagnet/antiferromagnet interfaces [168], or
ferromagnet/graphene interfaces have been demonstrated [169]. So far, most of the
studies have been focusing on isotropic chirality systems, either in single-crystalline
interfaces with relatively higher symmetries such as fcc(111), or polycrystalline or
amorphous systems. Exploring the configuration of the interfacial DMI vectors at
interfaces with lower symmetry such as bcc(110) and fcc(110) [20] might bring
opportunities for finding novel chiral spin textures such as antiskyrmions in thin film
systems [151, 170], that has been recently observed in bulk DMI system [171].

Current-driven skyrmions motion at velocity exceeding 100 m s−1 [48, 172]
demonstrates potentials for skyrmions based racetrack-type memory applications
[173, 174]. The demand for higher density of data storages, determined by the size of
skyrmions, encourages researchers to tailor magnetic parameters in multilayer stack-
ing for further minimizing sizes of skyrmions after the observation of sub-100 nm
skyrmions [47] and sub-50 nm skyrmions [49]. Exciting opportunities remain in the
field of thin film skyrmions for exploring unusual spin configurations, improving
stabilities as well as dynamics towards to novel physics and potential applications.

Acknowledgements Gong Chen was supported by the NSF (DMR-1610060) and the UC Office
of the President Multicampus Research Programs and Initiatives (MRP-17-454963).



4 Magnetic Skyrmions in Thin Films 143

References

1. A. Hubert, R. Schäfer, Magnetic Domains (Springer, Berlin, 1998)
2. B.A. Joyce, Molecular beam epitaxy. Rep. Prog. Phys. 48, 1637 (1985)
3. A. Hubert, Stray-field-free magnetization configurations. Phys. Status Solidi 32, 519–534

(1969)
4. Y.Z.Wu,C.Won,A. Scholl, A.Doran,H.W.Zhao,X.F. Jin, Z.Q.Qiu,Magnetic stripe domains

in coupled magnetic sandwiches. Phys. Rev. Lett. 93, 117205 (2004)
5. A. Thiaville, S. Rohart, É. Jué, V. Cros, A. Fert, Europhys. Lett. 100, 57002 (2012)
6. I.E. Dzyaloshinskii, Thermodynamic theory of”weak” ferromagnetism in antiferromagnetic

substances. Sov. Phys. JETP 5, 1259–1272 (1957)
7. T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120,

91–98 (1960)
8. G. Chen, J. Zhu, A. Quesada, J. Li, A.T. N’Diaye, Y. Huo, T.P. Ma, Y. Chen, H.Y. Kwon,

C. Won, Z.Q. Qiu, A.K. Schmid, Y.Z. Wu, Novel chiral magnetic domain wall structure in
Fe/Ni/Cu (001) films. Phys. Rev. Lett. 110, 177204 (2013)

9. S. Emori, U. Bauer, S.M. Ahn, E. Martinez, G.S. Beach, Current-driven dynamics of chiral
ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013)

10. K.S. Ryu, L. Thomas, S.H. Yang, S. Parkin, Chiral spin torque at magnetic domain walls.
Nat. Nanotech. 8, 527–533 (2013)

11. K.-O. Ng, D. Vanderbilt, Stability of periodic domain structures in a two-dimensional dipolar
model. Phys. Rev. B 52, 2177 (1995)

12. A.B. Kashuba, V.L. Pokrovsky, Stripe domain structures in a thin ferromagnetic film. Phys.
Rev. B 48, 10335 (1993)

13. N. Saratz, A. Lichtenberger, O. Portmann, U. Ramsperger, A. Vindigni, D. Pescia, Exper-
imental phase diagram of perpendicularly magnetized ultrathin ferromagnetic films. Phys.
Rev. Lett. 104, 077203 (2010)

14. G. Chen, A.K. Schmid, Imaging and tailoring the chirality of domain walls in magnetic films.
Adv. Mater. 27, 5738–5743 (2015)

15. K. Everschor, Current-Induced Dynamics of Chiral Magnetic Structures: Skyrmions, Emer-
gent Electrodynamics and Spin-Transfer Torques (Univ. zu Köln, Thesis, 2012)

16. R. Wiesendanger, Nanoscale magnetic skyrmions in metallic films and multilayers: a new
twist for spintronics. Nat. Rev. Mater. 1, 16044 (2016)

17. A. Fert, N. Reyren, V. Cros, Magnetic skyrmions: advances in physics and potential applica-
tions. Nat. Rev. Mater. 2, 17031 (2017)

18. N. Nagaosa, Y. Tokura, Topological properties and dynamics of magnetic skyrmions. Nat.
Nanotech. 8, 899–911 (2013)

19. A. Fert, Magnetic and transport properties of metallic multilayers. Metallic Multilayers.
59–60, 439–480 (1990)

20. A. Crépieux, C. Lacroix, Dzyaloshinskii-Moriya interactions induced by symmetry breaking
at a surface. J. Magn. Magn. Mater. 182, 341–349 (1998)

21. X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura,
Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010)

22. G. Chen, A.K. Schmid, Y.Wu, Imaging and tailoring chiral spin textures using spin-polarized
electron microscopy, in Skyrmions: Topological Structures, Properties, and Applications.
Chapter 5 (CRC Press, 2016)

23. H.-B.Braun, Topological effects in nanomagnetism: from superparamagnetism to chiral quan-
tum solitons. Adv. Phys. 61, 1–116 (2012)

24. A. Fert, P.M. Levy, Role of anisotropic exchange interactions in determining the properties
of spin-glasses. Phys. Rev. Lett. 44, 1538 (1980)

25. G. Chen, A. Mascaraque, A.T. N’Diaye, A.K. Schmid, Room temperature skyrmion ground
state stabilized through interlayer exchange coupling. Appl. Phys. Lett. 106, 242404 (2015)

26. N. Romming, A. Kubetzka, C. Hanneken, K. von Bergmann, R. Wiesendanger, Field-
dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 177203 (2015)



144 G. Chen

27. A. Fert, V. Cros, J. Sampaio, Skyrmions on the track. Nat. Nanotech. 8, 152–156 (2013)
28. V. Kashid, T. Schena, B. Zimmermann, Y. Mokrousov, S. Blügel, V. Shah, H.G. Salunke,

Dzyaloshinskii-Moriya interaction and chiralmagnetism in 3d-5d zigzag chains: tight-binding
model and ab initio calculations. Phys. Rev. B 90, 054412 (2014)

29. H. Yang, A. Thiaville, S. Rohart, A. Fert, M. Chshiev, Anatomy of Dzyaloshinskii-Moriya
interaction at Co/Pt interfaces. Phys. Rev. Lett. 115, 267210 (2015)

30. K.S. Ryu, S.H. Yang, L. Thomas, S.S. Parkin, Chiral spin torque arising from proximity-
induced magnetization. Nat. Commun. 5, 3910 (2014)

31. A. Belabbes, G. Bihlmayer, F. Bechstedt, S. Blügel, A. Manchon, Hund’s rule-Driven
Dzyaloshinskii-Moriya interaction at 3d-5d interfaces. Phys. Rev. Lett. 117, 247202 (2016)

32. M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O.
Pietzsch, S. Blügel, R. Wiesendanger, Chiral magnetic order at surfaces driven by inversion
asymmetry. Nature 447, 190–193 (2007)

33. P. Ferriani,K. vonBergmann, E.Y.Vedmedenko, S.Heinze,M.Bode,M.Heide,G.Bihlmayer,
S. Blügel, R. Wiesendanger, Atomic-scale spin spiral with a unique rotational sense: Mn
monolayer on W(001). Phys. Rev. Lett. 101, 027201 (2008)

34. S.Meckler, N.Mikuszeit, A. Pressler, E.Y. Vedmedenko, O. Pietzsch, R.Wiesendanger, Real-
space observation of a right-rotating inhomogeneous cycloidal spin spiral by spin-polarized
scanning tunneling microscopy in a triple axes vector magnet. Phys. Rev. Lett. 103, 157201
(2009)

35. Y. Yoshida, S. Schröder, P. Ferriani, D. Serrate, A. Kubetzka, K. von Bergmann, S. Heinze,
R. Wiesendanger, Conical spin-spiral state in an ultrathin film driven by higher-order spin
interactions. Phys. Rev. Lett. 108, 087205 (2012)

36. S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G.
Bihlmayer, S. Blügel, Spontaneous atomic-scale magnetic skyrmion lattice in two dimen-
sions. Nat. Phys. 7, 713–718 (2011)

37. B. Dupe, M. Hoffmann, C. Paillard, S. Heinze, Tailoring magnetic skyrmions in ultra-thin
transition metal films. Nat. Commun. 5, 4030 (2014)

38. N. Romming, C. Hanneken, M. Menzel, J.E. Bickel, B. Wolter, K. von Bergmann, A. Kubet-
zka, R.Wiesendanger,Writing and deleting singlemagnetic skyrmions. Science 341, 636–639
(2013)

39. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni,
Skyrmion Lattice in a Chiral Magnet. Science 323, 915–919 (2009)

40. X.Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W.Z. Zhang, S. Ishiwata, Y. Matsui, Y. Tokura,
Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe.
Nat. Mater. 10, 106–109 (2011)

41. Y. Tokunaga, X.Z. Yu, J.S. White, H.M. Rønnow, D. Morikawa, Y. Taguchi, Y. Tokura, A
new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat.
Commun. 6, 7638 (2015)

42. N. Kanazawa, S. Seki, Y. Tokura, Noncentrosymmetric magnets hosting magnetic skyrmions.
Adv. Mater. 1603227 (2017). https://doi.org/10.1002/adma.201603227

43. W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y.
Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, A. Hoffmann, Blowing magnetic
skyrmion bubbles. Science 349, 283–286 (2015)

44. O. Boulle, J. Vogel, H. Yang, S. Pizzini, D. de Souza Chaves, A. Locatelli, T.O. Mentes,
A. Sala, L.D. Buda-Prejbeanu, O. Klein, M. Belmeguenai, Y. Roussigne, A. Stashkevich,
S.M. Cherif, L. Aballe, M. Foerster, M. Chshiev, S. Auffret, I.M. Miron, G. Gaudin, Room-
temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotech.
11, 449–454 (2016)

45. A. Soumyanarayanan, N. Reyren, A. Fert, C. Panagopoulos, Emergent phenomena induced
by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016)

46. G. Chen, A.T. N’Diaye, Y.Z. Wu, A.K. Schmid, Ternary superlattice boosting interface-
stabilized magnetic chirality. Appl. Phys. Lett. 106, 062402 (2015)

47. C. Moreau-Luchaire, S.C. Mouta, N. Reyren, J. Sampaio, C.A. Vaz, N. Van Horne, K. Bouze-
houane, K. Garcia, C. Deranlot, P. Warnicke, P. Wohlhuter, J.M. George, M. Weigand, J.

https://doi.org/10.1002/adma.201603227


4 Magnetic Skyrmions in Thin Films 145

Raabe, V. Cros, A. Fert, Additive interfacial chiral interaction in multilayers for stabilization
of small individual skyrmions at room temperature. Nat. Nanotech. 11, 444–448 (2016)

48. S. Woo, K. Litzius, B. Kruger, M.Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R.M.
Reeve, M. Weigand, P. Agrawal, I. Lemesh, M.A. Mawass, P. Fischer, M. Kläui, G.S. Beach,
Observation of room-temperature magnetic skyrmions and their current-driven dynamics in
ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016)

49. A. Soumyanarayanan,M. Raju, A.L. Oyarce, A.K.C. Tan,M.-Y. Im,A.P. Petrovic, P. Ho, K.H.
Khoo, M. Tran, C.K. Gan, F. Ernult, C. Panagopoulos. Tunable room temperature magnetic
skyrmions in Ir/Fe/Co/Pt Multilayers. Nat. Mater. 16, 898–904 (2017)

50. Y.Z.Wu,C.Won,A. Scholl, A.Doran,H.W.Zhao,X.F. Jin, Z.Q.Qiu,Magnetic stripe domains
in coupled magnetic sandwiches. Phys. Rev. Lett. 93, 117205 (2004)

51. J. Wu, J. Choi, C. Won, Y.Z. Wu, A. Scholl, A. Doran, C. Hwang, Z.Q. Qiu, Stripe-to-bubble
transition of magnetic domains at the spin reorientation of (Fe/Ni)/Cu/Ni/Cu(001). Phys. Rev.
B 79, 014429 (2009)

52. K. Zakeri, Y. Zhang, J. Prokop, T.H. Chuang, N. Sakr, W.X. Tang, J. Kirschner, Asymmetric
spin-wave dispersion on Fe(110): direct evidence of the Dzyaloshinskii-Moriya interaction.
Phys. Rev. Lett. 104, 137203 (2010)

53. H.T. Nembach, J.M. Shaw, M. Weiler, E. Jué, T.J. Silva, Linear relation between Heisenberg
exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films. Nat. Phys. 11,
825–829 (2015).

54. K. Di, V.L. Zhang, H.S. Lim, S.C. Ng, M.H. Kuok, J. Yu, J. Yoon, X. Qiu, H. Yang, Direct
observation of the Dzyaloshinskii-Moriya interaction in a Pt/Co/Ni film. Phys. Rev. Lett. 114,
047201 (2015)

55. K. Di, V.L. Zhang, H.S. Lim, S.C. Ng, M.H. Kuok, X. Qiu, H. Yang, Asymmetric spin-wave
dispersion due to Dzyaloshinskii-Moriya interaction in an ultrathin Pt/CoFeB film. Appl.
Phys. Lett. 106, 052403 (2015)

56. M. Belmeguenai, J.-P. Adam, Y. Roussigné, S. Eimer, T. Devolder, J.-V. Kim, S.M. Cherif, A.
Stashkevich, A. Thiaville. Interfacial Dzyaloshinskii-Moriya interaction in perpendicularly
magnetized Pt/Co/AlOx ultrathin films measured by Brillouin light spectroscopy. Phys. Rev.
B 91, 180405(R) (2015)

57. A.A. Stashkevich, M. Belmeguenai, Y. Roussigné, S.M. Cherif, M. Kostylev, M. Gabor,
D. Lacour, C. Tiusan, M. Hehn, Experimental study of spin-wave dispersion in Py/Pt film
structures in the presence of an interface Dzyaloshinskii-Moriya interaction. Phys. Rev. B 91,
214409 (2015)

58. G. Chen, T.P. Ma, A.T. N’Diaye, H. Kwon, C. Won, Y.Z. Wu, A.K. Schmid, Tailoring the
chirality of magnetic domain walls by interface engineering. Nat. Commun. 4, 3671 (2013)

59. Y. Yafet, E.M. Gyorgy, Ferromagnetic strip domains in an atomic monolayer. Phys. Rev. B
38, 9145 (1988)

60. A.B. Kashuba, V.L. Pokrovsky, Stripe domain structures in a thin ferromagnetic film. Phys.
Rev. B 48, 10335 (1993)

61. K.-O. Ng, D. Vanderbilt, Stability of periodic domain structures in a two-dimensional dipolar
model. Phys. Rev. B 52, 2177 (1995)

62. Y.Z.Wu,C.Won,A. Scholl, A.Doran,H.W.Zhao,X.F. Jin, Z.Q.Qiu,Magnetic stripe domains
in coupled magnetic sandwiches. Phys. Rev. Lett. 93, 117205 (2004)

63. N. Saratz, A. Lichtenberger, O. Portmann, U. Ramsperger, A. Vindigni, D. Pescia, Exper-
imental phase diagram of perpendicularly magnetized ultrathin ferromagnetic films. Phys.
Rev. Lett. 104, 077203 (2010)

64. S.-G. Je, D.-H. Kim, S.-C. Yoo, B.-C. Min, K.-J. Lee, S.-B. Choe, Asymmetric magnetic
domain-wall motion by the Dzyaloshinskii-Moriya interaction. Phys. Rev. B 88, 214401
(2013)

65. A. Hrabec, N.A. Porter, A. Wells, M.J. Benitez, G. Burnell, S. McVitie, D. McGrouther,
T.A. Moore, C.H. Marrows, Measuring and tailoring the Dzyaloshinskii-Moriya interaction
in perpendicularly magnetized thin films. Phys. Rev. B 90, 0204402(R) (2014)



146 G. Chen

66. S. Pizzini, J. Vogel, S. Rohart, L.D. Buda-Prejbeanu, E. Jué, O. Boulle, I.M. Miron, C.K.
Safeer, S.Auffret,G.Gaudin,A.Thiaville, Chirality-Induced asymmetricmagnetic nucleation
in Pt/Co/AlOx ultrathin microstructures. Phys. Rev. Lett. 113, 047203 (2014)

67. S. Emori, E. Martinez, K.-J. Lee, H.-W. Lee, U. Bauer, S.-M. Ahn, P. Agrawal, D.C. Bono,
G.S.D. Beach, Spin Hall torque magnetometry of Dzyaloshinskii domain walls. Phys. Rev. B
90, 184427 (2014)

68. J.H. Franken, M. Herps, H.J.M. Swagten, B. Koopmans, Tunable chiral spin texture in mag-
netic domain-walls. Sci Rep. 4, 5248 (2014)

69. J. Torrejon, J. Kim, J. Sinha, S. Mitani, M. Hayashi, M. Yamanouchi, H. Ohno, Interface con-
trol of the magnetic chirality in CoFeB/MgO heterostructures with heavy-metal underlayers.
Nat. Commun. 5, 4655 (2014)

70. R. Lavrijsen, D.M.F. Hartmann, A. van den Brink, Y. Yin, B. Barcones, R.A. Duine, M.A.
Verheijen, H.J.M. Swagten, B. Koopmans, Asymmetric magnetic bubble expansion under
in-plane field in Pt/Co/Pt: effect of interface engineering. Phys. Rev. B 91, 104414 (2015)

71. K.-W. Moon, D.-H. Kim, S.-C. Yoo, S.-G. Je, B.S. Chun, W. Kim, B.-C. Min, C. Hwang,
S.-B. Choe, Magnetic bubblecade memory based on chiral domain walls. Sci Rep. 5, 9166
(2015)

72. E. Jué, C.K. Safeer,M.Drouard, A. Lopez, P. Balint, L. Buda-Prejbeanu, O. Boulle, S. Auffret,
A. Schuhl, A. Manchon, I.M. Miron, G. Gaudin. Chiral damping of magnetic domain walls.
Nat. Mater. 15, 272–277 (2016)

73. O. Boulle, S. Rohart, L.D. Buda-Prejbeanu, E. Jué, I.M.Miron, S. Pizzini, J. Vogel, G. Gaudin,
A. Thiaville, Domain wall tilting in the presence of the Dzyaloshinskii-Moriya Interaction in
out-of-plane magnetized magnetic nanotracks. Phys. Rev. Lett. 111, 217203 (2013)

74. S.A. Meynell, M.N. Wilson, H. Fritzsche, A.N. Bogdanov, T.L. Monchesky, Surface twist
instabilities and skyrmion states in chiral ferromagnets. Phys. Rev. B 90, 014406 (2014)

75. M. Cubukcu, J. Sampaio, K. Bouzehouane, D. Apalkov, A.V. Khvalkovskiy, V. Cros, N.
Reyren, Dzyaloshinskii-Moriya anisotropy in nanomagnets with in-plane magnetization.
Phys. Rev. B 93, 020401(R) (2016)

76. D.S. Han, N.H. Kim, J.S. Kim, Y. Yin, J.W. Koo, J. Cho, S. Lee, M. Kläui, H.J. Swagten, B.
Koopmans, C.Y. You, Asymmetric hysteresis for probing Dzyaloshinskii-Moriya interaction.
Nano Lett. 16, 4438–4446 (2016)

77. J. Vogel, J. Moritz, O. Fruchart, Nucleation of magnetisation reversal, from nanoparticles to
bulk materials. C R Phys. 7, 977–987 (2006)

78. E. Magnano, E. Carleschi, A. Nicolaou, T. Pardini, M. Zangrando, F. Parmigiani, Growth
of manganese silicide films by co-deposition of Mn and Si on Si(111): A spectroscopic and
morphological investigation. Surf. Sci. 600, 3932–3937 (2006)

79. S. Higashi, P. Kocán, H. Tochihara, Reactive epitaxial growth of MnSi ultrathin films on
Si(111) by Mn deposition. Phys. Rev. B 79, 205312 (2009)

80. S. Azatyan, O. Utas, N. Denisov, A. Zotov, A. Saranin, Variable termination of MnSi/Si(111)√
3 × √

3 films and its effect on surface properties. Surf. Sci. 605, 289–295 (2011)
81. E. Magnano, F. Bondino, C. Cepek, F. Parmigiani, M.C. Mozzati, Ferromagnetic and ordered

MnSi(111) epitaxial layers. Appl. Phys. Lett. 96, 152503 (2010)
82. E.A.Karhu, S.Kahwaji, T.L.Monchesky,C. Parsons,M.D.Robertson,C.Maunders, Structure

and magnetic properties of MnSi epitaxial thin films. Phys. Rev. B 82, 184417 (2010)
83. E.A. Karhu, U.K. Rößler, A.N. Bogdanov, S. Kahwaji, B.J. Kirby, H. Fritzsche, M.D. Robert-

son, C.F. Majkrzak, T.L. Monchesky, Chiral modulations and reorientation effects in MnSi
thin films. Phys. Rev. B 85, 094429 (2012)

84. M.N. Wilson, E.A. Karhu, A.S. Quigley, U.K. Rößler, A.B. Butenko, A.N. Bogdanov, M.D.
Robertson, T.L. Monchesky, Extended elliptic skyrmion gratings in epitaxial MnSi thin films.
Phys. Rev. B 86, 144420 (2012)

85. S.X. Huang, C.L. Chien, Extended skyrmion phase in epitaxial FeGe (111) thin films. Phys.
Rev. Lett. 108, 267201 (2012)

86. Y.F. Li, N. Kanazawa, X.Z. Yu, A. Tsukazaki,M.Kawasaki,M. Ichikawa, X.F. Jin, F. Kagawa,
Y. Tokura, Robust formation of skyrmions and topological Hall effect anomaly in epitaxial
thin films of MnSi. Phys. Rev. Lett. 110, 117202 (2013)



4 Magnetic Skyrmions in Thin Films 147

87. J.C. Gallagher, K.Y. Meng, J.T. Brangham, H.L. Wang, B.D. Esser, D.W. McComb, F.Y.
Yang, Robust zero-field skyrmion formation in FeGe epitaxial thin films. Phys. Rev. Lett.
118, 027201 (2017)

88. F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W. Münzer, A. Bauer, T. Adams, R.
Georgii, P. Böni, R.A. Duine, K. Everschor, M. Garst, A. Rosch, Spin transfer torques in
MnSi at ultralow current densities. Science 330, 1648–1651 (2010)

89. N. Kanazawa, M. Kubota, A. Tsukazaki, Y. Kozuka, K.S. Takahashi, M. Kawasaki, M.
Ichikawa, F. Kagawa, Y. Tokura, Discretized topological Hall effect emerging from skyrmions
in constricted geometry. Phys. Rev. B 91, 041122 (2015)

90. M. Uchida, Y. Onose, Y. Matsui, Y. Tokura, Real-space observation of helical spin order.
Science 311, 359–361 (2006)

91. J. Ye, Y.B. Kim, A.J. Millis, B.I. Shraiman, P. Majumdar, Z. Tešanović, Berry phase theory of
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Chapter 5
Skyrmion Lattices Far from Equilibrium

Andreas Bauer, Alfonso Chacon, Marco Halder and Christian Pfleiderer

Abstract Magnetic skyrmions are spin whirls with non-trivial topology that are
remarkably robust. We review current research on skyrmion lattices far from equilib-
rium in cubic chiralmagnets obtained under field cooling, providing access to generic
properties of skyrmions in the non-thermal limit as well as concepts of spintronics
applications.

5.1 Introduction and Outline

Proposed in the 1960s as a theoretical model for the description of nucleons as exci-
tations of pion fields [1, 2], the theoretical suggestions of Tony Skyrme have been
adopted in completely different areas of physics [3–7]. In the context of solid-state
magnetism, the expression skyrmion refers to magnetic whirls with non-trivial topol-
ogy as well as a non-linear (solitonic) character [8–19]. Thus, skyrmions may not be
continuously transformed into topologically trivial states, such as a ferromagnetic or
antiferromagnetic spin order, and the creation and destruction of skyrmions requires
a topological winding or unwinding, respectively [20–22]. As a consequence, once
a skyrmion has formed, it turns out to be rather robust—a phenomenon that is also
referred to as topological protection. Regardless whether skyrmions are studied in
magnetic bulk materials, thin-film heterostructures, or monolayers, it is in particu-
lar their non-trivial topology that leads to a set of unique properties attracting great
interest.
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In this article we consider putative similarities of skyrmions with rapidly cooled
liquids, when the liquid state may persist well below the equilibrium freezing tem-
perature. The resulting super-cooled configuration is metastable and the formation
of a crystalline or glassy solid is triggered by tiny perturbations, such as impurities or
mechanical shock. In a similar manner, due to their topological protection, skyrmion
lattices in bulk materials may be super-cooled to temperatures well below the param-
eter regime of their equilibrium state. In contrast to super-cooled liquids, however,
metastable skyrmion lattice configurations turn out to become increasingly robust
with decreasing temperature. In turn, they survive in large parts of themagnetic phase
diagram and, for instance, may be exploited in studies of the generic properties in
the non-thermal limit. Likewise, super-cooled skyrmion phases may foster concepts
for potential application in the context of data storage, spintronics, or microwave
technologies [23–37].

In this chapter, we present a review of current research on skyrmions and skyrmion
lattices far from equilibrium in cubic chiral magnets. We begin in Sect. 5.2 with a
brief summary of the magnetic properties of this class of compounds with a partic-
ular focus on the skyrmion lattice state, followed by an account on consequences
of the non-trivial topology in Sect. 5.2.1. The dependence of the magnetic phase
diagram on the field and temperature history is discussed in Sect. 5.2.2 for the case
of Fe1−xCoxSi. In Sect. 5.3, we present four examples from the recent literature
investigating or exploiting metastable skyrmion lattices in chiral magnets. Namely,
we describe studies on the unwinding processes of the skyrmion lattices by means
of magnetic force microscopy and Lorentz force transmission electron microscopy
on Fe1−xCoxSi (Sect. 5.3.1), the topological Hall effect in MnSi under pressure
(Sect. 5.3.2), the quenching of the skyrmion lattice in MnSi by means of current
pulses (Sect. 5.3.3), and structural phase transitions in the metastable skyrmion lat-
tice of MnSi and Co8Zn8Mn4 (Sect. 5.3.4). The chapter closes with a short summary
in Sect. 5.4.

5.2 Skyrmion Lattices in Cubic Chiral Magnets

Representing the most extensively studied class of materials hosting skyrmions,
the cubic chiral magnets crystallize either in the space group P213, such as MnSi,
Fe1−xCoxSi, FeGe, and Cu2OSeO3, or in space groups P4132 and P4332, such
as Co8Zn8Mn4. Featuring a lack of inversion symmetry as key characteristic, the
magnetic properties of these materials are generically governed by a hierarchy
of energy scales that comprises in decreasing strength (i) exchange interactions,
(ii) Dzyaloshinsky–Moriya interactions as leading-order spin–orbit coupling, and
(iii) higher-order spin–orbit coupling terms also referred to as magnetocrystalline
or cubic anisotropies. As a result, cubic chiral magnets share a generic magnetic
phase diagram as depicted in Fig. 5.1a. Starting from a paramagnetic state at high
temperatures, the helical state forms below the ordering temperature Tc in zero field.
This state is characterized by long-wavelength helices that propagate along one of
the equivalent directions favored by the cubic anisotropies, typically either 〈100〉
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(a) (c) (d) (e)

(f) (g)

(b)

Fig. 5.1 Skyrmion lattices in the cubic chiral magnets. a Typical magnetic phase diagram of the
cubic chiral magnets comprising a paramagnetic and a field-polarized regime as well as the helical,
the conical, and the skyrmion lattice state. b Schematic depiction of a single chiral skyrmion. c
Schematic depiction of the trigonal skyrmion lattice state as it forms in the phase pocket in finite
magnetic fields just below the helimagnetic ordering temperature, Tc. d–g Skyrmion lattice state as
observed in reciprocal and real space by means of small-angle neutron scattering (SANS), resonant
elastic x-ray scattering (REXS), Lorentz force transmission electron microscopy (LTEM), and
magnetic force microscopy (MFM) on different materials. See text for details Data and illustrations
taken from [20, 22, 38–40]

or 〈111〉. With increasing field, the propagation direction of the helical modulation
reorients into the field direction and the spins tilt towards the field, giving rise to the
conical state that resembles the spin-flop phase of conventional antiferromagnets.
Above a critical field Hc2, the system becomes field-polarized.

Perhaps most interesting in the phase diagram, a single pocket of a skyrmion
lattice state is observed at intermediate fields just below Tc. In the following, we
summarize the key characteristics of this spin state, while we refer to review articles
such as [25, 41] or the supplement material of [8] for pedagogical introductions.

The spin configuration of a single chiral magnetic skyrmion is shown in Fig. 5.1b.
In the skyrmion lattice state, these spin whirls form a regular trigonal (also often
referred to as hexagonal) arrangement in the plane perpendicular to the applied field
that may be described in terms of a phase-locked superposition of three helices
and a ferromagnetic magnetization component. Along the field direction, the mag-
netic structure extends in the form of skyrmion tubes, as illustrated in Fig. 5.1c.
The skyrmion lattice was first identified in MnSi by means of small-angle neutron
scattering (SANS) [8], where a sixfold scattering pattern was observed for mag-
netic field parallel to the incident neutron beam, cf. Fig. 5.1d. Measurements for
different field orientations, including arbitrary non-symmetry directions, revealed
that the skyrmion lattice forms rather isotropically and is nearly independent from the
underlying crystal lattice. Consistently, calculations taking into account thermal
Gaussian fluctuations around the mean-field spin configurations established that
the magnetic structure is stabilized by thermal fluctuations rather than by uniax-
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ial anisotropies as predicted earlier [42, 43]. Note, however, that uniaxial pressure
may increase the temperature range of the skyrmion lattice phase pocket [44, 45].

In recent years, neutron scattering studies [38, 46–51] were complemented by
resonant elastic x-ray scattering (REXS) [39, 52, 53]. As shown in Fig. 5.1e, typical
REXSpatterns of the skyrmion lattice are highly reminiscent of the SANSdata, offer-
ing new insights such as element specificity or high lateral resolution. In addition, the
length scale of the skyrmion lattice in chiral magnets makes them ideally suited for
real-space observations using techniques such as Lorentz force transmission elec-
tron microscopy (LTEM) [9, 54–57], magnetic force microscopy (MFM) [20, 40],
or electron holography [58]. Typical pictures of the skyrmion lattice as recorded by
means of LTEM and MFM are shown in Fig. 5.1f and 5.1g, respectively. Both tech-
niques complement each other as the contrast in LTEM arises from the distribution
of the in-plane magnetic moments, while MFM is sensitive to the stray field created
by the out-of-plane components of the magnetization.

For the different materials known to date the characteristic temperature, magnetic
field, and magnetic length scales vary by about two orders of magnitude, ranging
from a few Kelvin to more than room temperature, from a few millitesla to about
a Tesla, and from a few nanometer to several hundred nanometer, respectively [25,
41]. This wide parameter range allows to select compounds for specific fundamental
experiments aswell as putative applications such a tailoredmicrowave devices, offer-
ing in addition the possibility to combine metallic, semiconducting, and insulating
materials [59–62].

As an odd one out, MnGe, though also crystallizing with space group P213 and
hosting Dzyaloshinsky–Moriya interactions, exhibits a distinctly different magnetic
phase diagram dominated by a three-dimensional arrangement of short-wavelength
spin whirls. The origin is presumably rather strong spin–orbit coupling outside
the above-mentioned hierarchy of energy scales [63–66]. Moreover, recently the
class of lacunar spinels generated great scientific interest when a triangular lattice
of skyrmions based on spin cycloids was observed in the multiferroic compound
GaV4S8 [16, 67]. In this material, the formation of the skyrmions is made possi-
ble by a Jahn-Teller distortion, resulting in strong anisotropies and confining the
magnetic textures along certain high-symmetry directions. Very recently skyrmion
lattice order based on spin cycloids was also reported for the tetragonal polar magnet
VOSe2O5 [68]. In addition, thin film systems hosting skyrmions and other forms
of topologically non-trivial spin order are vividly investigated, as elaborated on in
Chap. 4 of this book. Instead of bulk Dzyaloshinsky–Moriya interactions dominating
in volume materials, typically in these systems the non-trivial topology is associated
with interfacial Dzyaloshinsky–Moriya interactions.

5.2.1 Emergent Electrodynamics and Topological Protection

The interplay of skyrmions in chiral magnets with spin currents, causing real-space
Berry phases, may be elegantly described in terms of fictitious magnetic and electric
fields of an emergent electrodynamics. As a simple experimental consequence in

http://dx.doi.org/10.1007/978-3-319-97334-0_4


5 Skyrmion Lattices Far from Equilibrium 155

metallic materials, this explains an additional contribution to the Hall effect in the
skyrmion lattice state, referred to as the topological Hall effect. In fact, the obser-
vation of the topological Hall effect in MnSi provided first experimental evidence
of the topologically non-trivial character of the skyrmion lattice state [69]. This was
followed-up more recently by combined experimental studies and ab initio calcula-
tions, connecting the anomalous and the topological Hall contributions under substi-
tutional doping in Mn1−xFexSi quantitatively with reciprocal-space and real-space
Berry phases, respectively [70]. Here measurements of the topological Hall effect
on the metastable skyrmion lattice in MnSi under pressure, reviewed in Sect. 5.3.2,
provided information on the intrinsic size of the Hall contribution when eliminating
finite-temperature effects. Moreover, as discussed in Sect. 5.3.3, the topological Hall
effect in the skyrmion lattice may also be exploited in order to detect the magnetic
state of the sample in potential spintronics applications. Note that introductions on
the anomalous Hall effect may be found in [71] or Chap.6 of this book.

On a different note, the non-trivial topological character of the skyrmion lattice
in bulk samples of MnSi was also confirmed in terms of the anomalous temperature
and magnetic field dependence of higher-order SANS intensities [38]. However,
while these studies revealed a very weak solitonic (particle-like) character of the
skyrmion lattice in MnSi of order 10−4, LTEM measurements of the dynamical
properties at the fringes of skyrmion lattice domains in Cu2OSeO3 revealed particle-
like characteristics akin those of hard spheres [57].

Further, connected with the momentum transfer exerted by the spin structure on
the spin currents carried by the conduction electrons is a balancing momentum trans-
fer on the skyrmions. In turn, for current densities exceeding defect-related pinning,
the magnetic texture may start to drift due to the effects of spin transfer torques.
Corresponding effects have been studied extensively in nano-scaled materials host-
ing ferromagnetic domain walls [72–78]. However, compared to these systems, the
critical threshold current densities in skyrmion lattices are several orders of magni-
tude smaller, notably of the order ∼106 A/m2 [79–82]. These ultra-low threshold
current densities may be attributed to the combination of very efficient gyromagnetic
coupling with the effects of weak collective pinning, reflecting the rather stiff long-
range order of the skyrmion lattice [38]. As a result of the current induced drift, the
emergent magnetic flux associated with the skyrmions induces an emergent electric
field that may be detected in the form of the putative suppression of the topological
Hall signal [83].

Considering insulatingmaterials, the interplay of the skyrmionswith spin currents
due tomagnonsmay play a dominant role leading, for instance, to a rotational motion
of skyrmion lattice domains [57, 84]. Taken together, the emergent electrodynam-
ics captures a remarkable variety of how skyrmion lattices may be manipulated by
means of external control parameters. This includes, in particular, materials exhibit-
ing strong magnetoelectric coupling, such as Cu2OSeO3 [85–88].

Finally, the emergent magnetic flux associated with each skyrmion is also
expected to be reflected in the mechanisms underlying the creation and destruction
of skyrmions, notably points of vanishing local magnetization referred to as Bloch
points representing emergent magnetic monopoles [20]. However, while these pro-
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cesses have been detected microscopically, the observation of the associated emer-
gent electrodynamics is the subject of ongoing work awaiting clarification. Fur-
ther, as a consequence of its non-trivial topological character, an enhanced stability
of skyrmion lattices as compared to conventional thermodynamic forms of order
may naively be expected. Indeed, the characteristic time scales associated with the
unwinding processes, as explored by experiments in different chiral magnets and
summarized in this chapter, depend sensitively on temperature and may drastically
vary when compared between stoichiometric (clean) and doped (disordered) sys-
tems. In these studies, metastable skyrmion lattices, generated under field-cooling,
prove to be particularly valuable as the topological unwinding slows down such that
the underlying mechanisms may be studied in detail as reviewed in Sect. 5.3.1.

5.2.2 Metastable Skyrmion Lattices Under Field Cooling

Small-angle neutron scattering studies in Fe1−xCoxSi revealed early on that field
cooling this compound through the skyrmion lattice state may result in a metastable
skyrmion lattice at low temperatures, i.e., well below the equilibrium phase pocket
[46]. The thermodynamic ground state at these low temperature and field values is
either the helical or conical state, which, however, is not recovered on time scale
relevant for the experiments of several hours. For the detailed account presented
below, it is instructive to distinguish the following temperature and field histories,
where typical cooling rates are of the order ∼10 K/min. Magnetic field sweeps are
carried out in step mode, while data as a function of temperature are measured while
sweeping the temperature at a rate of typically 0.5 K/min. Wherever possible, we
combine measurements as a function of temperature and field.

• Zero-field cooling (ZFC): The measurements begin at a temperature well above
Tc in zero field. For field sweeps, the sample is cooled to the desired temperature
before data are recorded while increasing the magnetic field to H > Hc2. For
temperature sweeps, the sample is cooled to 2K before the desired magnetic field
value is applied. Subsequently, data are recorded while increasing the sample
temperature.

• High-field cooling (HFC): The measurements start in a high field, H > Hc2, at a
temperature well above Tc. For field sweeps, the sample is cooled to the desired
temperature before data are recorded while decreasing the magnetic field from
H > Hc2 to H < −Hc2. For temperature sweeps, the sample is cooled to 2K
before the magnetic field is reduced to the desired value. Subsequently, data are
recorded while increasing the sample temperature.

• Field cooling (FC): The measurements start at a temperature well above Tc with
the desired field value applied. Subsequently, data are recorded while decreasing
the sample temperature.

• Field cooling through the skyrmion lattice followed by a change of the field at a
fixed temperature (FC±): The measurements start at a temperature well above Tc
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Fig. 5.2 Metastable skyrmion lattice under field cooling in Fe1−xCoxSi (x = 0.5). a–d Magnetic
phase diagram for different cooling histories. We distinguish zero-field cooling (ZFC), high-field
cooling (HFC), field cooling (FC), andfield cooling through the skyrmion lattice state followed by an
increase or decrease of the magnetic field (FC+ and FC−). e–g Small-angle neutron scattering data
after FC+, FC, and FC− showing the pattern characteristic of the skyrmion lattice. (h) Susceptibility
calculated from the measured magnetization, dM/dH , and real part of the ac susceptibility, Reχac,
as a function of field for different temperatures after field cooling through the skyrmion lattice state
(FC+ and FC−). Colored triangles mark the transitions as shown in the magnetic phase diagram in
panel (d). Data have been offset by 5 for clarity Data taken from [89, 90]

with an applied field value that allows to cross the phase pocket of the skyrmion
lattice. Next, the sample is field-cooled to desired temperature before data are
recorded while increasing the magnetic field to H > Hc2 (FC+). Now, the sample
is heated well above Tc, field-cooled a second time, and data are recorded while
decreasing the field to H < −Hc2 (FC−).

In Fig. 5.2a–d the corresponding magnetic phase diagrams as inferred from sus-
ceptibility data are shown [90]. The cooling histories are sketched by the arrows on
the right-hand side. After zero-field cooling, the situation corresponds to the generic
magnetic phase diagram as observed in the cubic chiral magnets. After high-field
cooling, the phase diagram is identical with one exception; no helical state with
multiple macroscopic domains of helices propagating along the easy axes implied
by the cubic anisotropies is recovered, at least on the time scales relevant for the
experiments [89, 91]. This behavior is consistent with other doped compounds, such
as Mn1−xFexSi [92, 93]. It may be attributed to very weak cubic anisotropies in
conjecture with pronounced defect pinning introduced by the substitutional doping.

After field cooling also no helical state is recovered. More importantly, however,
when field cooling through the skyrmion lattice phase pocket, signatures character-
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istic of the skyrmion lattice state can be traced down to lowest temperature in both
SANS [46, 94] and AC susceptibility [89], cf. hatched area in Fig. 5.2c. Presumably
due to the large amount of disorder, the characteristic time scales associated with the
unwinding of the skyrmions are particularly slow in strongly doped systems such as
Fe1−xCoxSi. Consequently, already very moderate cooling rates of the order K/min
allow to pass through the low-temperature boundary of the reversible skyrmion lat-
tice phase pocket fast enough to prevent the unwinding of the skyrmions into the
conical state. At lower temperatures, thermal fluctuation are no longer sufficient to
initiate the unwinding on time scale relevant for typical experiments and the system
retains the skyrmion lattice order, although it is not the thermodynamic ground state.

When using the field-cooled metastable skyrmion lattice as a starting point and
subsequently changing the applied field value (FC+ and FC−), the phase diagram
shown in Fig. 5.2d is obtained. Here, themetastable skyrmion lattice state is observed
across large parts of the phase diagram. At the borders of this regime, the change of
the magnetic field has altered the energy landscape in a way that the characteristic
time scales of the unwinding processes become fast compared to the typical time
scales of the measurements (of the order of seconds).

It is interesting to note that for low temperatures magnetic fields in excess of
Hc2 or an inversion of the field direction are necessary to unwind the skyrmion
lattice. This underscores the remarkable robustness of this state as a result of its
topological protection. In fact, this behavior somehow contrasts the super-cooled
liquids; while the latter become increasingly sensitive with decreasing temperature to
tiny perturbations ultimately triggering solidification, the unwinding of the skyrmion
lattice requires increasingly large changes of the magnetic field when cooled further
below its reversible phase pocket.

Typical small-angle neutron scattering patterns recorded at temperature and field
values that are marked by dark crosses in Fig. 5.2d are shown in Fig. 5.2e–g. For
magnetic field applied along the neutron beam, the characteristic sixfold scattering
pattern of the skyrmion lattice state is observed after field cooling (center). Increas-
ing or decreasing the magnetic field within the regime of the metastable skyrmion
lattice keeps the scattering pattern qualitatively unchanged. Note that data presented
here represent sums over rocking scans around the vertical axis only, making spots
closer to the vertical axis appear more intense. The twelvefold scattering pattern is
due to two independent skyrmion lattice domains aligning along [001] and [11̄0],
respectively [95]. Multiple domains of skyrmion lattice with differing orientation
were also reported in Cu2OSeO3 and MnSi [49, 96, 97].

The magnetic phase diagrams may, in fact, most accurately be inferred from
susceptibility measurements. Typical data as a function of field after field cooling
through the skyrmion lattice are shown in Fig. 5.2h for several temperatures. Here, the
susceptibility calculated from the measured magnetization, dM/dH (gray curves),
and the real part of the AC susceptibility, Reχac (colored curves), are compared. The
dashed vertical line marks the cooling field of +5 mT. Colored triangles indicate the
data points as marked in the magnetic phase diagram in Fig. 5.2d.

At high temperatures just below Tc, at T = 43 K, the susceptibility exhibits the
behavior typical of cubic chiral magnets. In particular, plateaus of reduced suscep-
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tibility symmetrically emerging for positive and negative fields are characteristic of
the reversible pocket of the skyrmion lattice state. Both susceptibilities, dM/dH and
Re χac, track each other with the exception of the border between the conical and the
skyrmion lattice state (±HA1 and ±HA2, brown symbols). In these areas of phase
coexistence slow dynamics and finite dissipation may be attributed to the complex
winding and unwinding processes associated with the formation of the topologically
non-trivial skyrmion lattice state [89, 91, 98–101], cf. Sect. 5.3.1.

Upon field cooling, the minimum associated with the skyrmion lattice persists
around the cooling field, with the susceptibility curve becoming clearly asymmetric
with respect to zero field. When increasing the field after field cooling (FC+), a max-
imum in dM/dH may be attributed to the unwinding of the metastable skyrmion
lattice into the conical state (H∗

A2, red symbols). Below ∼8 K, H∗
A2 exceeds the

transition field of the conical-to-field-polarized transition as determined under dif-
ferent cooling histories (Hc2, green symbols). Consequently, at low temperatures
the skyrmion lattice may unwind directly into a field-polarized spin configuration
instead of into the conical state.

When decreasing the field after field cooling (FC−), at rather high temperatures a
maximum in dM/dH is also attributed to the unwinding of the skyrmion lattice into
the conical state (H∗

A1, purple symbols). Once the helical state is the ground state
at the field value triggering the unwinding, i.e., below 37 K, a plateau characteristic
of the helical state is observed that again is bordered by a maximum in dM/dH in
negative fields (H∗

c1, blueish symbols) that resembles the signature of the helical-
to-conical transition. This contrasts the behavior after high-field cooling where no
helical state is recovered in Fe1−xCoxSi. With decreasing temperature, an additional
maximum labeled H∗

x of yet unknown origin appears between H∗
A1 and H∗

c1. At low
temperatures, below 5 K, no signatures associated with the unwinding processes are
observed well into the regime of negative fields, i.e., once the metastable skyrmion
lattice has formed it may even remain robust under field inversion.

Metastable skyrmion lattices were reported not only in disordered systems, such
as Fe1−xCoxSi or CoxZnyMnz [102, 103], but also in stoichiometric materials, such
as MnSi [104] or Cu2OSeO3 [87]. The characteristic time scales, and therefore the
required cooling rates for the observation ofmetastable skyrmion lattices, are strongly
material dependent. While in disordered systems already moderate cooling rates of
a few Kelvin per minute are sufficient, typically achieved in commercial cryostats,
cleanmaterials either require bespoke experimental setups allowing for rapid cooling
or the application of additional tuning parameters such as pressure or electrical field.
Nevertheless, as highlighted in the next section, metastable skyrmion lattices arising
due to the topological protection of this spin state are a rather general phenomenon
in cubic chiral magnets, providing, on the one hand, insights in fundamental aspects
of this unconventional magnetic state and, on the other hand, progress towards novel
applications.
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5.3 Examples of Skyrmion Lattices Far from Equilibrium

In this section, four sets of studies are reviewed making use of metastable skyrmion
lattices in chiralmagnets, all prepared bymeans of field cooling through the reversible
phase pocket.

5.3.1 Unwinding Processes Studied by MFM and LTEM

When skyrmion lattices transform into topologically trivial states, such as helical
or conical order, complex unwinding mechanisms are involved. The first direct
investigation of such processes in the cubic chiral magnets was carried out on the
skyrmion lattice in Fe1−xCoxSi (x = 0.5) under field cooling using magnetic force
microscopy (MFM) on the surface of a bulk sample [20]. This study showed that
for decreasing field skyrmions vanish by virtue of a coalescence, forming elongated
structures reminiscent of the helical state. Combining the experimental observations
with numerical simulations, this processwas interpreted in termsof singularmagnetic
point defects, also referred to as Bloch points, zipping together neighboring skyrmion
lines. Each defect provides a source or sink of exactly one emergent flux quantum
and may hence be viewed as an emergent magnetic monopole. The investigation of
metastable skyrmion lattice order offered two important experimental advantages.
First, the magnetic contrast is enhanced due to the increase of the magnetic moment
with decreasing temperatures. Second, experiments at low temperatures exclude the
weakening of the topological stability due to thermal fluctuations locally suppress-
ing the modulus of the local magnetization and, in turn, allow to reveal the generic
mechanism of the topological unwinding.

Recently, Lorentz force transmission electronmicroscopy (LTEM) on a small bulk
specimen of Fe1−xCoxSi (10 × 10 × 0.24 µm3, x = 0.5) [22] revealed that two
rather different mechanisms occur under decreasing and increasing magnetic fields.
For decreasing field, as schematically depicted in Fig. 5.3a, the well-established
merging of neighboring skyrmion lines by means of a Bloch point moving towards
the surface of the sample is observed. Shown in Fig. 5.3b–e are typical LTEM pic-
tures and the time dependence of the contrast across the region marked by the white
box, recorded as a function of time at fixed lateral position after field cooling the
skyrmion lattice and subsequently reducing the magnetic field. Note, for instance,
the two merging processes in the time dependence at t ≈ 4 s and t ≈ 7 s.

In contrast, as schematically depicted in Fig. 5.3f, for increasing field single
skyrmion lines pinch off when the skyrmion lattice transforms into a field-polarized
state. Here, lines split up by the formation of a pair of Bloch points, located at the end
of the two resulting skyrmion strings, that subsequently travel towards the opposing
surfaces of the sample. Corresponding LTEM data recorded after field cooling and
subsequently increasing the magnetic field are presented in Fig. 5.3g–j. Note that
due to a lack of in-plane modulation the conical and the field-polarized spin state are
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Fig. 5.3 Unwinding of the skyrmion lattice detected by means of Lorentz force transmission
electron microscopy (LTEM) on Fe1−xCoxSi (x = 0.5). a Schematic depiction of the merging of
neighboring skyrmion lines for decreasing field. b Time evolution of the intensity across three
skyrmions after field cooling the skyrmion lattice and subsequently decreasing the magnetic field
to −2.6 mT. c–e Typical LTEM pictures at fixed times. The white box indicates the area for which
the intensity is shown in panel (b). f Schematic depiction of the pinching off of single skyrmion
lines for increasing field. g Temporal evolution of the intensity across three skyrmions after field
cooling the skyrmion lattice and subsequently increasing the magnetic field to 57 mT. h–j Typical
LTEM pictures at fixed times. The white box indicates the area for which the intensity is shown in
panel (g) Data and illustrations taken from [22]

essentially indistinguishable in LTEM. As a function of time one skyrmion after the
other vanishes. For instance, shown in Fig. 5.3g is the time dependence of the contrast
across the white box marked in the LTEM pictures, the signature of the skyrmion on
the right side suddenly disappears at t ≈ 10 s.

For less than 10% of the decays an intermediate level of intensity is observed
half-way during the decay. An example of such a two-step process is shown at
a lateral position of about 100nm with the intermediate intensity level persisting
between t ≈ 20 s and t ≈ 50 s. This finding suggests that part of the skyrmion line
survives with a length shorter than the thickness of the sample of 240 nm. Most
likely, this metastable state is composed of a Bloch point trapped at a local defect
and a skyrmion string that connects the Bloch point with either the surface or a second
Bloch point inside the sample. An alternative scenario is provided by so-called chiral
bobbers [105]. These objects are predicted to arise when the surface energy of the
sample provides a repulsive potential for the Bloch point, hence slowing down the
motion of the Bloch point just below the surface of the sample. Since the available
data currently do not allow for a definite statement as to the possible existence of
chiral bobbers, further studies will be required in the future.
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Most notably, however, in [22] the metastability of the skyrmion lattice was used
to tune the characteristic time scale of its decay into the time domain accessible by
LTEM, in turn permitting to track the number of skyrmions as a function of time. It
turned out that the time scale depends exponentially on temperaturewith the prefactor
of this Arrhenius law being adjustable by more than 30 orders of magnitude by small
changes of the magnetic field. The associated reduction of the lifetime of skyrmions
with field corresponds to an extreme case of enthalpy–entropy compensation, dras-
tically affecting topological unwinding processes and the topological protection of
the skyrmions.

5.3.2 Topological Hall Effect in MnSi Under Pressure

As introduced in Sect. 5.2.1, a topological Hall effect was first identified in the
reversible skyrmion lattice state of MnSi at ambient pressure, where an additional
contribution of the order of 4 n� cmwas detected [69].Assuming the absence of spin-
flip scattering, the intrinsic size of the topological Hall contributionmay be estimated
by ρ

top
xy = PR0Beff . Here, P is the charge carrier spin polarization, the normal Hall

constant R0 captures non-spin-flip scattering, and the effective emergent magnetic
field Beff is given by the product of the emergent flux quantum that each skyrmion
carries, h/e, and the skyrmion density. ForMnSi, one obtains Beff = −13 T implying
contributions of the order of 50 n� cm [106].

Finite-temperature effects such as spin-flip scattering result, however, in a con-
siderably reduced topological Hall signal in the reversible skyrmion lattice phase
pocket at elevated temperatures just below Tc. Therefore, in order to determine the
intrinsic size of the topological Hall contribution, it proves instrumental to switch off
these finite-temperature effects by generating a metastable skyrmion lattice state at
low temperatures under field cooling. In MnSi, as a very clean system, however, no
metastable skyrmion lattice state is observed when applying typical cooling rates of
the order of K/min accessible with commercial cryostats. Remarkably, the character-
istic time scales of the unwinding may be drastically increased when enhancing tiny
inhomogeneities in the sample, as accomplished in an elegant way by the application
of hydrostatic pressure bymeans of a clamp cell. In order to keep the inhomogeneities
sufficiently small, the pressure medium typically consists of a liquid at ambient that
gradually freezes with decreasing temperature, for instance mixtures of methanol
and ethanol or fluorocarbons such as perfluorohexane and perfluoroheptane. Shown
in Fig. 5.4a–c is the Hall resistivity of MnSi as a function of temperature for moder-
ate hydrostatic pressures and applied fields for which the skyrmion lattice phase is
crossed.

After zero-field cooling (ZFC), the Hall resistivity is dominated by a broad max-
imum around the helimagnetic transition temperature Tc. With increasing pressure,
the transition temperature is suppressedwhile the characteristics of the curves remain
unchanged. For low pressures, the topological Hall effect arising from the reversible
skyrmion lattice phase pocket is visible as a weak shoulder on the low-temperature
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(a) (d) (f)

(e)

(b)
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Fig. 5.4 Metastable skyrmion lattice and topological Hall effect in MnSi under pressure. a, b Tem-
perature dependence of the Hall resistivity ρxy in an applied field crossing the skyrmion lattice state
for different pressures after zero-field cooling (ZFC) and field cooling (FC), respectively. c Differ-
ence of the Hall resistivities after FC and ZFC attributed to the topological Hall effect. d Topological
Hall contribution as determined in field sweeps in the reversible phase pocket (solid symbols) and
after field cooling the skyrmion lattice (open symbols). e Pressure–temperature phase diagram in
zero magnetic field. The helimagnetic regime exhibiting a Fermi-liquid resistivity (blue) and the
extended regime of non-Fermi-liquid resistivity (orange) may be distinguished. Inset: Magnetic
phase diagram at intermediate pressure [106]. f Typical field dependence of the Hall resistivity for
different temperatures below (left column) and above (right column) the critical pressure pc Data
taken from [106–108]

side of the broad maximum. Compared to zero-field cooling, after field cooling
through the skyrmion lattice (FC) the Hall resistivity takes a distinctly higher and
almost constant value at low temperatures. This discrepancy, illustrated in Fig. 5.4c,
is attributed to the topological Hall contribution arising from themetastable skyrmion
lattice as field-cooled to low temperatures.

As summarized in Fig. 5.4d, for the limit of ambient pressure, a contribution
of about 50 n� cm is observed in the metastable skyrmion lattice at low temper-
atures (open symbols), in excellent agreement with the theoretical estimate. With
increasing pressure the contribution decreases slightly (open symbols), tracking the
evolution of the charge carrier spin polarization, which in turn follows the reduced
magnetic moment mred = m(p)/m(p = 0). With increasing pressure and hence
decreasing transition temperature, the topological Hall contribution observed in the
reversible phase pocket of skyrmion lattice order (solid symbols) approaches the
low-temperature limit as finite-temperature effects are suppressed. The excellent
agreement paved the way to a study quantitatively describing the anomalous and the
topological Hall contributions in MnSi, Mn1−xFexSi, and Mn1−xCoxSi in terms of
reciprocal-space and real-space Berry phases, respectively [70].



164 A. Bauer et al.

As indicated in Fig. 5.4e, the magnetic phase diagram in MnSi remains qualita-
tively unchanged for intermediate pressures when the transition temperature is sup-
pressed under the application of hydrostatic pressures. In addition, complex behavior
emerges when static helimagnetic order is fully suppressed at pc = 14.6 kbar [107,
109, 110]. The standard description of the metallic state, notably Fermi liquid (FL)
theory, breaks down, giving rise to a so-called non-Fermi liquid (NFL) regime that
extends over a remarkably large regime in pressure, temperature, and magnetic
field [111, 112]. In this regime, the electrical resistivity exhibits an extended T 3/2

temperature dependence instead of the conventional T 2 dependence. In addition, so-
called partial magnetic order in neutron scattering [113] and a lack of detectable spin
relaxation in muon data [114] suggested the presence of dynamic spin correlations
on a timescale between 10−10 s and 10−11 s. Tracking the topological Hall signal
all the way between ambient pressures to above pc, where it is observed across the
entire parameter range of the NFL regime, cf. Fig. 5.4f, empirically established that
spin correlations of non-trivial topological character drive the breakdown of Fermi
liquid theory [108].

5.3.3 Metastable Lattice in MnSi Under Rapid Cooling

As mentioned above for MnSi, representing a pure material, typically no metastable
skyrmion lattice state is observed under field cooling for the cooling rates accessible
in standard commercial cryostats, i.e., at rates of several Kelvin per minute. To
create a metastable state under these conditions two possibilities exist. First, the
characteristic time scales of the skyrmion decay may be slowed down by introducing
inhomogeneities, as discussed above. Second, the sample may be cooled at a very
high rate using a bespoke experimental setup. The later approach, also referred to
as violent quenching, was implemented by Oike and coworkers as follows [104]. A
sample of MnSi with electrical contacts attached is cooled to low temperature, in
this case 10 K, in a standard cryostat. By applying a short but intense current pulse,
a current density of 3.1 × 106 A/m2 for 100 ms, the sample is heated due to Joule
heating, reaching a quasi-steady state several Kelvin above Tc. After the pulse ends,
the sample is rapidly cooled by the thermal bath provided by the cryostat. Cooling
rates up to 700 K/min are achieved when a rectangular current pulse shape is used,
i.e., at a current ramp rate of 3.1 · 108 A/(m2s). Smaller cooling rates are realized by
ramping down the current at slower rates. The electrical resistivity of the sample is
used as an in-situ thermometer, similar to [83]. Note that the current densities used
in these experiments are also sufficient to induce spin transfer torques in MnSi [79].

If the quench is carried out in an applied magnetic field for which the reversible
pocket of the skyrmion lattice is crossed, the field and temperature history of the
sample corresponds to the situation under field cooling in Fe1−xCoxSi. When the
quench through the skyrmion lattice is followed by an increase or decrease of the
field, the situation corresponds to the protocols FC+ and FC−, respectively. Shown
in Fig. 5.5a is the magnetic phase diagram of MnSi under quenching, inferred from
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(a) (c) (d)

(b) (e)

Fig. 5.5 Metastable skyrmion lattice inMnSi observedunder rapid cooling (quenching).aMagnetic
phase diagram obtained after rapidly cooling through the reversible skyrmion lattice in an applied
field of∼0.2T and subsequently increasing or decreasing themagnetic field. Inset: Electrical current
pulse used to achieve high cooling rates. b Hall resistivity at low temperatures as a function of field
for the thermodynamic ground state (gray curve) and after the skyrmion lattice is metastably cooled
down using a current pulse (purple and red curves). Insets (i) and (ii) show typical small-angle
neutron scattering patterns. c Relaxation time associated with the decay of the skyrmion lattice as
a function of temperature. d Dependence of the Hall resistivity on the cooling rate. Rates in excess
of 100 K/s are necessary to observe the full value. e Hall resistivity at low temperatures and finite
fields as a function of time when repeatedly switching between the conical state and the metastable
skyrmion lattice state by means of appropriate current pulses Data taken from [104, 115]

measurements of the electrical resistivity andHall effect after FC+ andFC−. The inset
shows a typical current pulse and the corresponding estimated sample temperature.

In general, the phase diagram of MnSi under quenching in field is highly remi-
niscent of that observed in Fe1−xCoxSi under field cooling through the skyrmion lat-
tice. The phase boundaries of the metastable (or quenched) skyrmion lattice state are
thereby determined from measurements of the Hall effect as illustrated in Fig. 5.5b.
If not field-cooled through the skyrmion lattice, i.e., under regular conditions, the
Hall resistivity remains mostly featureless while the system undergoes transitions
from the helical to the conical and finally into the field-polarized state as a function
of increasing field. Using the conical state at 0.22T as a starting point and applying a
current pulse as described above, a drastic increase of the Hall resistivity is observed
that is attributed to the topological Hall effect in the quenched skyrmion lattice state.
When the magnetic field is subsequently increased (red curve) or decreased (pur-
ple curve), the Hall signal remains essentially constant until the change of the field
finally triggers the unwinding of the skyrmion lattice state, cf. Sect. 5.3.1. Note that
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the size of the signal is slightly smaller but consistent with the intrinsic topological
Hall contribution discussed in the previous section.

The changeof themagnetic state inducedby the current pulse is also highlightedby
typical small-angle neutron scattering patterns depicted in the insets (i) and (ii) [115].
For magnetic field parallel to the neutron beam, no intensity is observed prior to the
application of the current pulse, consistent with the conical state. Following the
current pulse, a sixfold scattering pattern appears, characteristic of the skyrmion
lattice state.

Compared to the corresponding phase diagram of Fe1−xCoxSi under FC±, three
minor differencesmay be noticed inMnSi. First, themetastable skyrmion lattice state
covers a distinctly smaller portion of the magnetic phase diagram, for instance not
reaching into the field-polarized regime at low temperatures and high field. Second,
a gap is reported between the reversible and the metastable pocket of skyrmion
lattice state (red hatching). Third, in a regime at low temperatures and fields (orange
hatching) a structural transition of the skyrmion lattice was reported as observed in
neutron scattering, cf. Sect. 5.3.4.

The putative gap just below the reversible phase pocket in MnSi originates in
relatively fast characteristic time scales, i.e., at these temperatures the unwinding
occurs on time scales that are fast compared to the time required to carry out the
measurements. As shown in Fig. 5.5c, the relaxation time inferred from exponential
fits to Hall resistivity data as a function of time becomes faster by several orders of
magnitudewith increasing temperature. Values of the order of seconds, readily acces-
sible in the experiments from which the magnetic phase diagram are determined, are
undercut at temperatures well below the reversible phase pocket. In turn, observing
the full topological Hall signal at low temperatures, i.e., that a large volume fraction
of the sample remains in the skyrmion lattice state, requires to pass the regime of fast
unwinding at a sufficiently high rate. As shown in Fig. 5.5d, in the given sample of
MnSi cooling rates in excess of several hundred Kelvin per second were necessary.

The high sensitivity of the characteristic time scales on the sample temperature
permits to switch the magnetic state observed at low temperatures reproducibly by
means of a carefully chosen combination of current pulses. Such a process is illus-
trated in Fig. 5.5e, using the (topological) Hall effect for discriminating between
the metastable skyrmion lattice and the conical state. At low temperature and finite
magnetic field, the sequence starts in the conical state as identified by a low Hall
resistivity. A short and intense current pulse (red shading) heats the sample to tem-
peratures well above Tc, followed by violent field cooling through the reversible
pocket of skyrmion lattice state. As a result of this quench, a high Hall resistivity is
observed, indicating the presence of themetastable skyrmion lattice state. Applying a
longer but less intense current pulse (blue shading), heats the sample to temperatures
just below the reversible phase pocket (red hatching in the phase diagram) thereby
speeding up the characteristic time scale of the skyrmion decay. After the sample has
cooled down, the system is again in the low-Hall-resistivity conical state. It was also
demonstrated that this process may be carried out repeatedly, suggesting feasibility
of data storage concepts that exploit metastable skyrmions, thermally assisted write
mechanisms, and read-out via the topological Hall effect [116].
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5.3.4 Structural Phase Transition in Metastable Lattices

The skyrmion lattices investigated in the reversible part of the phase diagram of cubic
chiral magnets stabilize in a trigonal structure. In principle, further configurations
may also be stabilized, such as square lattices, distorted lattices, or even glassy
textures. As mentioned in the previous section, shown in Fig. 5.6a–c are small-angle
neutron scattering data obtained in MnSi after violently quenching the skyrmion
lattice to low temperatures [115]. Directly after quenching in an applied field of
0.2 T, the typical sixfold scattering pattern is observed in the plane perpendicular
to the field, characteristic of the (metastable) trigonal skyrmion lattice state. When
subsequently decreasing themagnetic field at low temperatures, the sixfold symmetry
becomes less pronounced until a fourfold symmetric pattern with maxima along the
〈110〉 directions emerges. The regime for which such a fourfold pattern is observed
coincides with a tail at the low-field end of the plateau associated with the topological
Hall effect in the field dependence of the Hall resistivity after quenching, cf. below
∼0.1 T in Fig. 5.5b. Note that intensity along the field direction after the quench
indicates the presence of a coexisting conical state. With decreasing field, the latter
transforms into a helical state characterized by intensity maxima along the 〈111〉
axes (not shown).

(a) (d) (f)

(g)

(e)

(b)

(c)

Fig. 5.6 Transition of the structure of the metastable skyrmion lattices in MnSi and Co8Zn8Mn4.
a–c Typical small-angle neutron scattering pattern for applied field along the neutron beam after
quenching the skyrmion lattice. With decreasing field the sixfold pattern transforms into a four-
fold pattern. d, e Schematic depiction of skyrmion lattices with trigonal and square arrangement,
respectively. f Magnetic phase diagram of Co8Zn8Mn4 after zero-field cooling. (f) Magnetic phase
diagram of Co8Zn8Mn4 following a field cooling from the reversible pocket of skyrmion lattice
state. Similar to Fe1−xCoxSi, a metastable skyrmion lattice is observed across large parts of the
phase diagram. In addition, at low temperatures and fields a structural transition of the skyrmion
lattice into a square configuration is reported (orange shading) Data and illustrations taken from
[102, 115]
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Similar behavior was also reported in Co8Zn8Mn4. The CoxZnyMnz series were
the first materials not crystallizing in space group P213 in which the well-known chi-
ral skyrmion lattice state was observed [51]. Instead, these compounds are based on
Co10Zn10, belong to the space group P4132 or P4332, and offer transition tempera-
tures exceeding room temperature. Akin to Fe1−xCoxSi, members of the CoxZnyMnz
series appear to be notoriously prone to structural disorder and, as a result, exhibit a
metastable skyrmion lattice state already at moderate cooling rates [102, 103]. The
corresponding phase diagrams are shown in Fig. 5.6f, g. After zero-field cooling, the
situation is highly reminiscent of other cubic chiral magnets. A pronounced regime
of phase coexistence between the helical and conical state hints at the importance
of disorder in this system. After cooling through the reversible pocket of skyrmion
lattice order, a metastable skyrmion lattice is observed across large parts of the mag-
netic phase diagram. In contrast to Fe1−xCoxSi, however, from small-angle neutron
scattering data a structural transition within the metastable skyrmion lattice state was
reported [102]. Here, at low temperatures and low fields (orange hatching) a fourfold
scattering pattern with maxima along the 〈100〉 directions was interpreted as evi-
dence of a square arrangement of skyrmions. Note, however, that the 〈100〉 axes are
also the easy axes for the helical pitch. Thus, intensity maxima arising from helical
and square lattice skyrmion order may be superimposed and hard to distinguish.

Regardless of any ambiguities, these results suggest that topologically non-trivial
spin textures may form in configurations other than the well-established trigonal
skyrmion lattice, even in the cubic chiral magnets. For instance non-trigonal lat-
tice morphologies or glassy states may be stable, metastable, or fluctuating spin
configurations, leading to yet unexpected physical properties and novel possibili-
ties of manipulating magnetic states. Further, note that also in the helical state of
the cubic chiral magnets topologically non-trivial defects may emerge, in particu-
lar at the boundary to the conical state, providing another rich playground for both
fundamental and application-oriented research [117–119].

5.4 Conclusion and Outlook

In summary, a review of the properties of metastable skyrmion lattice states in cubic
chiral magnets as observed under field-cooling through the reversible phase pocket
at high temperatures has been presented. Although not being the thermodynamic
ground state at the given temperature and field value, metastable skyrmions dis-
play a remarkable robustness due to their topological properties. As a consequence,
these metastable states do not only allow to study fundamental aspects associated
with the creation and destruction of skyrmions or their interplay with electrons.
They promise also novel concepts for spintronic devices that exploit topologically
protected metastable states rather than requiring their formation as a spontaneous
ground state.
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Chapter 6
Anomalous Hall Effect

Yuriy Mokrousov

Abstract The anomalous Hall effect (AHE) is one of the most fundamental, practi-
cally important and for a long timemost enigmatic phenomena exhibited bymagnetic
materials. Here, we briefly outline the relation of the anomalous Hall effect to the
geometric properties of the electronic states as given by the Berry phase. The Berry
phase origins of the AHE lead to its topological manifestations in insulators, which
we review in detail based on key examples. In addition to the intrinsic AHE and its
anisotropy in solids, we draw a deep correlation of this effect with orbital magnetism
and magnetoelectric response, and discuss its emergence in non-collinear magnets.

6.1 Introduction

The anomalous Hall effect (AHE) is one of the oldest and most famous transport
phenomena inmagneticmaterials.Aswas discovered long ago [1, 2], in ferromagnets
the resistivity of the sample in the direction perpendicular to external electric E and
magnetic H field acquires an additional contribution due to the magnetization of the
sample [3, 4]:

ρxy = ρOH + ρAH = R0H + 4πRSM, (6.1)

where R0 is the usual Hall coefficient, RS is the anomalous (spontaneous) Hall
coefficient,ρOH is the ordinaryHall resistivity andρAH (orρxy) is the anomalousHall
resistivity. The revival of interest in the anomalous Hall effect during past ten-twenty
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years can be attributed to several reasons. From practical point of view, utilizing
the AHE for the purposes of modern spintronics enables us with a unique tool for
generating and controlling spin-polarized currents in complex magnetic nanoscale
systems. Besides, nowadays, the AHE is one of the main transport effects which
is used to detect and characterized the magnetic properties in various situations.
On the other hand, deeper understanding of the mechanisms behind the AHE was
absolutely crucial for the advances in the much younger field of spin currents, spin
Hall effect and related phenomena (see also Chap.7). Moreover, recent progress in
understanding the AHE from the point of view of Berry phases, geometrical and
topological structure of the electronic states in infinite crystals eventually led to the
fact that many abstract quantities and objects in this part of quantum physics became
an important part in day-to-day life of a solid state physicist.

The finite anomalous Hall resistivity which roots in spin-orbit coupling (SOC),
or, spin-orbit interaction (SOI), can be observed only in materials with broken
time reversal symmetry, of which the most renowned class constitute ferromagnets.
In ferromagnets, the time reversal symmetry is broken due to the presence of a finite
effective exchange field, which causes an exchange splitting between the bands.
Upon moving in the longitudinal electric field Ex electrons experience scattering
which is responsible for “anomalous” contribution to the transverse velocity. In a
simple picture, due to the spin-orbit coupling, this scattering depends on the spin
of an incoming electron which results in the anomalous velocity of opposite sign
for electrons of opposite spin, see Fig. 6.1. In a non-magnetic material, for which
the number of spin-up and spin-down electrons is the same, this results in a zero
transverse anomalous (charge) conductivity, but leads to the so-called spin Hall
effect and can result in non-zero spin accumulation at the opposite sides of the
sample [5, 6]. In a ferromagnet, due to a finite spin splitting of the electronic bands
the numbers of spin-up and spin-down electrons differ, and the overall transverse
AHE current is not zero.

The first attempts to explain the AHE were made a long time ago. And while the
history of theoretical understanding of the AHE is particularly messy, the consistent
picture of the AHE emerged quite slowly with years. In this manuscript we will
consider the AHE in terms of a very appealing language of semiclassical dynamics
and geometric phases. Semiclassical philosophy and formalism for the anomalous
transport in solids has recently reached a degree of self-consistency and consistency
with other more rigorous quantum mechanically approaches which makes it pos-
sible to use it as a common foundation for various effects, anomalous Hall effect
included. In this chapter, we assume the geometric picture of the AHE, supported
by considerations of the electronic structure in transition-metals, and discuss some
selected aspects of this complex phenomenon. In Sect. 6.2 we introduce basic defi-
nitions related to the Berry curvature of Bloch electrons, and show the emergence of
the AHE in a very simple yet appealing way. Section6.3 is dedicated to the descrip-
tion of general features of the intrinsic AHE in real materials, and contains also
some comments on the extrinsic origins of this effect. Section6.4 is devoted to the
discussion of the magneto-crystalline anisotropy of the AHE, while in Sect. 6.5 we
present a very brief overview of the topological features of the AHE in insulators, i.e.
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Chern numbers, emergence of the quantization of the AHE, its relation to various
topologically non-trivial phases of matter, and relation to other “topological” phe-
nomena such as spin-orbit torque. The final Sect. 6.6 is dedicated to the relation of
the AHE to orbital magnetism, and the relation of the AHE to the real-space features
of the spin distribution in non-collinear magnets. More details about the derivations
and discussions of many of the aspects of the AHE can be found in three beautiful
reviews [7–9].

6.2 Berry Phase and AHE

Within the setup of the Berry phase problem, given that our Hamiltonian smoothly
depends on a general parameter λ, formally, we seek for the solution of the
Schrödinger equation, i ∂ψ(t)

∂t = H(λ(t))ψ(t). Under the assumption of the adi-
abatic evolution, (i.e. assuming that if ψ(t = 0) = |nλ(t = 0〉, where |nλ〉 is a
set of non-degenerate eigenstates of H(λ) with an eigenvalue εn(λ), then dur-
ing the evolution |ψ(t)〉 〈ψ(t)| = |nλ(t)〉 〈nλ(t)|,) one can find that for a peri-
odic evolution λ(t = 0) = λ(t = T ), the solution of the Schödinger equation at
time T can be simply written as: ψ(T ) = e−iαdyn(T ) eiγn |nλ(T )〉. In this expres-
sion, besides the well-known dynamical phase αdyn(T ) = ∫ T

0 εn(τ ) dτ , the so-called

Berry phase γn = ∫ T
0 i〈nλ(τ)|∂τ |nλ(τ)〉 dτ (mod 2π) appears [10, 11]. This gauge-

invariant quantity has played a crucial role in various branches of physics related

(a) (b)

(c)

Fig. 6.1 a In solids the non-trivial geometry of Bloch electrons as manifested in Berry curvature
results in a geometric contribution to the transverse velocity of electrons exposed to an electric
field, which allows for understanding of the intrinsic anomalous Hall effect (AHE) and spin Hall
effect (SHE) in solids in geometric terms. The figure is made by Bernd Zimmermann. b During the
periodic adiabatic evolution in a λ-parameter space along a closed path C, the wavefunction ψ(t)
makes a trajectory in the space of λ × U(1), and acquires a phase at the end of this evolution. Under
the assumption of zero eigen energy on C, the acquired phase is known as the geometric, or, Berry
phase
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to geometrical and topological concepts. The Berry phase can be envisaged as an
Aharonov-Bohm phase that a wavefunction acquires as it propagates along a closed
loop exposed to an effective magnetic field as given by the Berry curvature �n:
γn(C) = ∫

S �n , where S is the surface of our λ-space which the propagation path C
encloses, see Fig. 6.1. The components of the Bery curvature tensor read:

�n
i j (λ) = −2Im〈∂λi n(λ)|∂λ j n(λ)〉 = −2Im

∑

m �=n

〈mλ|∂λi H(λ)|nλ〉〈nλ|∂λ j H(λ)|mλ〉
[εn(λ) − εm(λ)]2 ,

(6.2)
from which it becomes apparent that the large contributions to this quantity come
from the points of near degeneracies in the electronic structure.

In the following we show the close relation of the Berry phase to the AHE. For
electrons in a periodic solid the eigenstates ψnk of the Hamiltonian can be classified
by quantumnumbers (k, n), wherek lies in theBrillouin zone (BZ), and n is a discrete
index numbering the bands. The eigenfunctions can be written in the form ψnk(r) =
eik·runk(r), where unk has the periodicity of the lattice. In terms of the lattice-
periodic eigenstates and k-dependent Hamiltonian H(k) ≡ Hk ≡ e−ik·r · H · eik·r,
also referred to as the Hamiltonian in crystal momentum representation, we are able
to set up everything in terms of an eigenvalue problem of a k-dependent Hamil-
tonian, acting on the same Hilbert space of periodic functions for every k. This is
exactly the setup suitable for studies of the Berry phase effects, if we identify the
parameter λ from general mathematical theory with the Bloch vector k. The corre-
sponding components of the Berry curvature tensor of band n are given by �n

i j (k) =
−2Im〈∂ki unk|∂k j unk〉. The components of the Berry curvature itself are sometimes
written as a vector �n

i (k) := �n
i (k) = (1/2)εlmi�

n
lm(k) = −Im〈∂kunk| × |∂kunk〉.

The driving force behind the dynamics of an electron residing at a certain k-point
and band n could be an external electric or magnetic field as well as dependence
of the Hamiltonian on another parameter, which cause the motion of an electron
along certain orbits in k-space and r-space. The perturbation theory expression for
the k-space Berry curvature, looking at (6.2), can be written as:

�n
i j (k) = −2 Im

∑

m �=n

〈unk|∂ki Hk|umk〉〈umk|∂k j Hk|unk〉
(εnk − εmk)2

. (6.3)

We will also consider a situation, in which, besides the dependence on k, the Hamil-
tonian of the system depends at the same time on another (multi-dimensional) param-
eter λ, that is, H = H(k, λ). Generally speaking, the Berry curvature form in this
extended (λ, k) space has components, which we call �n

kk ≡ �n
k and �n

λλ ≡ �n
λ and

which are expressed in terms of derivatives of uλ
nk with respect to only k or λ, respec-

tively. There is also the component of the Berry curvature, which involves both λ-
and k-derivatives: �n

λk = −2Im〈∂kuλ
nk|∂λuλ

nk〉, and which can be written down in
analogy to (6.3), with the derivative with respect to k j replaced by a derivative by λ.
We call this part of the Berry curvature the mixed Berry curvature. Based on general
symmetry arguments, it is straightforward to show that the Berry curvature ink-space
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obeys the following symmetry properties: (i) in the presence of time-reversal symme-
try, �n(−k) = −�n(k), while (ii) in the presence of the space inversion symmetry,
�n(−k) = �n(k). Thismeans thatwhen both space and time inversion symmetry are
present in a solid, the Berry curvature at each k is identically zero. In materials which
exhibit spontaneous magnetization, such as ferromagnets and antiferromagnets, the
non-trivial Berry curvature is due to breaking of time-inversion symmetry.

When analyzing the velocity of electronic states in a solid, one has to go beyond
the adiabatic approximation for the evoluted wavefunction in order to show that up to
first order in transition frequencies the velocity of an evoluted in time via λ(t) state
reads:

vλ
nk = ∂kε

λ
nk − �n

λk λ̇. (6.4)

In this expression the first term on the right hand side is the group velocity. The
change inλ gives, on the other hand, rise to the so-called anomalous velocity, which is
expressed in terms of themixedBerry curvature�n

λk. Clearly, the anomalous velocity
of a state depends on how fast the parameter λ is changed in time. And while in order
to arrive at it, the consideration of the wavefunction dynamics which goes beyond
the adiabatic approximation was necessary, the end result is manifestly geometric,
giving rise to amagnitude of geometrical and topological effects in condensedmatter.

Our understanding and corresponding acquired ability to describe the intrinsic
anomalous Hall effect (AHE) in solids from the geometrical viewpoint is, perhaps,
one of the most convincing achievements of the topological solid state physics over
the past 50 years [8]. Having realized that the λ-dynamics of Bloch electrons results
in a geometrical contribution to the velocity (6.4), it takes now a couple of lines to
show that the electric field present in a solid can give rise to the Hall current [8].
Assume that without the field the unperturbed Hamiltonian of the system looks
like H(t = 0) = p2

2 + V (r), with corresponding Bloch vectors q and the crystal
momentum representation Hq of the Hamiltonian. Tomodel the effect of the uniform
electric field, we apply a constant in space, but varying in time vector potential
A(t) such that − ∂A(t)

∂t = E. This modifies the corresponding lattice Hamiltonian
as follows: H(t > 0) = 1

2 (p + A(t))2 + V (r). Since the constant in space vector
potential does not break the periodicity of the crystal, it cannot couple the unperturbed
wavefunctions with different values of q and it changes the energy of the states
with an overall constant, which can be ignored. Therefore, once we are looking at
a state labeled with a certain value of q, during the evolution of this state q̇ = 0.
Nevertheless, we can also number our state in terms of the k vector, which is the
“proper” Bloch vector of the Hamiltonian Hk(t > 0): k = q + A(t) = k(t), that
is, the wavefunction at k(t) which solves the Schrödinger equation for H(t), is
identical to the wavefunction which solves the Schrödinger equation for H(t = 0)
but at a wavevector q = k − A(t). From the latter equation, it follows that k̇ = −E.
In order to employ the expression for the velocity of a certain state, we write the
time-dependence of the Hamiltonian as follows: Ht

k = Hk(t), which leads to ∂t H t
k =

∂kHk · ∂tk(t) = −E · ∂kHk. Substituting the latter into the expression for the velocity
(6.4) with t playing the role of λ, and using (6.3) and (6.2), we get:
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ṙ := vnk = ∂kεnk − E × �n(k). (6.5)

This means that the non-zero Berry curvature of Bloch states in reciprocal space
results in a transverse charge current as an electric field is applied to the solid.
Generally, writing down the resulting current as J = σE, the Berry curvature driven
components of the conductivity tensor can be written as:

σi j = 1

(2π)3

∑

n

∫

BZ
�n

i j (k) dk, (6.6)

where the sum over n runs over all occupied states at a given k-point. For two
dimensional insulators, as we shall discuss later, the value of the anomalous Hall
conductivity is quantized. In metals such quantization does not occur—nevertheless,
the integral of the Berry curvature over all occupied states gives the value of the
intrinsic anomalous Hall conductivity. Owing to the presence of degeneracies and
near degeneracies (which serve as the sources of the Berry curvature “field”) in the
vicinity of the Fermi level in metals, the behaviour of the Berry curvature espe-
cially in transition-metals can be very non-trivial, singular and extremely sensitive
to various parameters which determine the electronic structure (for a typical example
see Fig. 6.2). In contrast to insulators, the presence of Fermi surface in metals also
leads to promotion of the Hall current which comes from impurity scattering—this
is the so-called extrinsic AHE. The relation between the magnitudes of the intrinsic
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Fig. 6.2 a Fermi surface of bcc Fe in (010) plane (solid black lines) and the color map of the Berry
curvature of all occupied states −�xy(k) in that plane in atomic units. Taken from [12]. b Band
structures and distribution of the Berry curvature along high-symmetry directions in the Brillouine
zone for the magnetization along the [001] and [110] crystallographic axes in uniaxial L10 ordered
FePd alloy. Here [001] and [100] marks the only non-vanishing component of the Berry curvature
vector along the direction of the magnetization. The spiky irregular structure of the Berry curvature,
very sensitive to the electronic structure around the Fermi energy as modified i.e. by the choice of
the magnetization direction, is prominent in this plot. Taken from [13]
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and extrinsic currents strongly depends on the details of the electronic structure and
disorder [9].

In a situation when the part of the spin-orbit interaction which mixes the spin
character of the Bloch states can be neglected (which is often the case for light
transition-metals), we can decompose the anomalous Hall conductivity into a sum
of contributions coming from spin-up and spin-down bands. The difference between
the two is proportional to the value of the spin Hall conductivity, that is, it is related
to the magnitude of the transverse spin current caused by an electric field. This spin
current manifests, for example, in the accumulation of spin at the boundaries of the
sample, or in a finite torque that the spin current exerts on the magnetization of a
magnet brought in contact with the material in which the spin current is generated.
The non-zero value of such defined spin Hall conductivity in magnetic and non-
magnetic materials of various nature consititutes the essence of the spin Hall effect,
experimentally observed some years ago. The spin Hall effect is discussed in detail
in Chap.7 of this book.

6.3 Intrinsic and Extrinsic AHE

Owing to fact that real impurity potentials in considered materials are normally
unknown, attempts to estimate the magnitude of the extrinsic anomalous Hall con-
ductivity at least qualitatively fail quite often when compared to the data obtained
on real samples, and the computed conductivity values can differ by orders of mag-
nitude depending on the impurity potential taken for the calculation. One of the first
successful estimates for the AHE in a realistic situation was provided by Jungwirth
and co-workers [14, 15], who applied Sundaram-Niu derived expression for the
intrinsic AHC, (6.6), to arrive at the values of the AHC in (III, Mn)V ferromagnetic
semiconductors which were found to be in a very good agreement with experiments.

A remarkably successful ab initio prediction of an intrinsic AHE was made by
Yao et al. for elemental bcc Fe [12]. In this work, the AHC was found to exhibit a
very slow convergence with the number of k-points, which was found to originate in
the appearance of large contributions of both signs to�z(k) occuring over very small
regions in k-space. In Fe, the effect of SOI on the band structure is very small, except
for the case of nearly degenerate states coupled by spin-orbit. Such pairs of states
provide a very large contribution to the Berry curvature when the Fermi energy lies
in the middle of a SOI-driven gap, since the small energy gap between occupied and
unoccupied states gives rise to a small energy denominator in (6.2). For example, this
mechanism explains the large spike in the Berry curvature prominent near H(1,0,0)
point in the direction of P( 12 ,

1
2 ,

1
2 ), see Fig. 6.2. The largest contributions to the

Berry curvature are, however, positioned away from the high-symmetry lines in the
reciprocal space. For instance, as visible in Fig. 6.2 for the (010)-plane in Fe, the
Berry curvature exhibits large peaks appearing on the background of large parts of
the k-space with very small values.

http://dx.doi.org/10.1007/978-3-319-97334-0
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Another example which we consider is the case of L10 FePd, for which the distri-
bution of the Berry curvature along the high-symmetry lines in the Brillouin zone is
shown in Fig. 6.2b. In this figure the singular contributions to theBerry curvature aris-
ing from the band degeneracies in the vicinity of the Fermi level are prominent. From
the distribution of the Berry curvature presented in Fig. 6.2 for Fe and FePd we make
a generally valid conclusion that a large part of the AHC in complex transition-metals
is driven by the interband transitions between the states which are well-separated in
energy. And although such transitions provide a seemingly insignificant contribution
to the Berry curvature, as compared to the monopole-like contributions at special
k-points, they occur over wide regions of the reciprocal space.

In another example, Fang et al. considered the influence of the spin-orbit induced
band degeneracies on the anomalous Hall conductivity in detail on an example of
SrRuO3 [16]. This material exhibits a near degeneracy of the bands along the lines
kx = ky = 0 and kx = ±ky due to symmetry [16]. According to first-principles cal-
culations, this results in a large peak of the Berry curvature �z(k) at the � point
and its enhancement along the kx = ±ky lines in the Brillouin zone. Experimental
measurements as well as ab initio calculations of Fang et al. show that in SrRuO3

the anomalousHall resistivity changes non-monotonouslywith temperature and even
includes a sign change. Such behavior is far beyond the expectation based on the con-
ventional expression in (6.1). The results of the calculations by Fang et al. revealed
another aspect which became a hallmark of the intrinsic AHE: the AHC in this
compound changed drastically as a function of the Fermi energy, exhibiting several
changes in sign on the scale of 300meV. The sharp and spiky structure of this distri-
bution is a natural consequence of the singular behavior of the magnetic monopoles
in reciprocal space.

The great popularity that the calculations and analysis of various intrinsic trans-
verse transport phenomena in metals gained over the past decade is largely based
on the observation that very often the estimates of e.g. intrinsic AHC performed in
analogy to what was discussed above, do not only correctly reproduce the sign of
the AHE as observed experimentally, but also often come close to the magnitude
of the measured effect. For example, reported by Yao calculated value of σxy of
751S/cm was only 25% off the experimental value of 1032S/cm, extracted from
data on iron whiskers at room temperature [20], while for the case of SrRuO3 the
calculated value of AHC of −60S/cm is very close to that obtained in experiment
of −100S/cm. Experimentally, however, distinguishing different contributions from
their scaling behavior with the impurity concentration and temperature does not
present a trivial task [20–23]. In this context ab initio calculations of the AHE are
important since they allow us to access different contributions separately and explic-
itly investigate the effect of disorder, which is pivotal for our ability to understand and
engineer the behavior of the AHE in real materials. However, methods which rely on
the exact knowledge of the disorder potential, which has to be explicitly included in
the ab initio calculation, have a drawback that the calculations of the disorder driven
contributions are much more complex than the calculations of the intrinsic part.

With vanishing disorder, a part of the AHE known as the scattering-independent
AHE reaches a constant value, which is disorder-independent in nature [7, 9, 17].
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Fig. 6.3 a Additive decomposition of the total AHC (σ tot), into intrinsic (σ int), side jump (σ sj), and
intrinsic skew scattering (σ isk) contributions, presented as a function of longitudinal resistivity in
bcc Fe and L10 FePd, [17]. b Angle-resolved side-jump AHC in units of S/cm obtained as a sum of
the contributions from all occupied states to the side-jump AHC as a function of k-ray oringinating
at the �-point in the 3D BZ for fcc Ni [001] and fcc Ni [110], [18]. c Fermi-surface distribution of
the symmetrized skew-scattering AHC (in units of Bohr radius) in dilute alloys of bcc Fe with Cu
impurities and fcc Pt with ferromagnetic Cr impurities [19]

In the clean limit of short-ranged Gaussian disorder this scattering-independent
contribution to AHE can be explicitly identified [9, 17]. It was shown that the
scattering-independent AHE in many cases provides the dominant source of the
AHE in transition-metal ferromagnets which are moderately disordered [18], while
it is also possible to conveniently compute the latter part of the AHE from the elec-
tronic structure of the pure crystals even for multi-band metals [17, 18]. In some
sense, the clean limit scattering-independent AHE is the robust value, around which
the disorder-sensitive contributions arise. Generally, a very attractive alternative
approach to treating the effect of disorder on the AHE and related phenomena on the
ab initio level lies in a combination of the short-ranged Gaussian disorder model with
realistic electronic structure calculations. For example, it can be used to estimate the
role of the intrinsic Berry curvature contribution to the overall scattering-independent
Hall current. Among the discussed above materials the first-principles calculations
show that the AHC in bcc Fe is mainly dominated by the Berry curvature contribu-
tion over a vast range of the disorder strength, while FePd presents a distinguished
example for which the overall value of the AHC is largely determined by scattering-
independent “side-jump” and “intrinsic skew-scattering” contributions, see Fig. 6.3a.
The transparent expressions for the scattering-independent contributions in the clean
limit allow also to investigate the largely unexplored behavior of the extrinsic AHE
with respect to the band topology and electronic structure details, see for exam-
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ple the behavior of the side-jump AHC on the “Fermi sphere” in fcc Ni, shown in
Fig. 6.3b [18].

On the other side, in the limit of vanishing disorder the comparison of the exper-
imental data to the intrinsic and generally scattering-independent values has to be
done with caution owing to the divergence of the so-called skew-scattering contribu-
tion to theAHCwith decreasing the concentration of e.g. impurities in the sample [9].
In contrast to the intrinsic, or, generally, scattering-independent contributions to the
anomalous Hall resistivity which scale as ρ2

xx with diagonal resistivity of the sample,
the resistivity due to the skew-scattering exhibits a linear dependence on ρxx . Since
the skew-scattering contribution to the AHC can be attributed to the asymmetry in
k → k′ and k′ → k scattering at the Fermi surface driven by SOI, it can be readily
captured for example within the first principles Boltzmann formalism [19]. What we
learn from the ab-initio analysis of the skew-scattering AHC in bcc Fe doped with Cu
impurities and fcc Pt doped with magnetic Cr impurities, shown in Fig. 6.3, is that the
skew-scattering in transition-metals exhibits an extremely non-trivial behavior, and
can be determined both by isolated “hot spots” at the Fermi surfaces giving singularly
large contributions (as e.g. is the case for Fe doped with Cu impurities), as well as by
large parts of the Fermi surface providingmuchmoremodest values (as is the case for
Pt doped with Cr impurities). Generally, more advanced techniques based for exam-
ple on the coherent-potential approximation (CPA) are able to estimate the specific
influence of different types of disorder due to intermixing, substitutional disorder,
phonons and magnons on the AHE on equal footing, referring to the more general
Kubo framework for response properties [24, 25], from which all the contributions
to the AHE (including the intrinsic part) follow naturally [9, 17].

To summarize, since recently the estimations of the anomalous Hall conductivity
based on (6.6) became a common approach to study the AHE in electronic structure
theory [26]. The simplicity of the formulation based on the intrinsicmechanism gives
a valuable opportunity to compute the AHE directly from the electronic structure
of pristine materials, accessible from a variety of sophisticated electronic structure
methods, rendering thus direct comparison to experiments. These days, an entire
spectrum of methods commonly applied by the electronic structure community is
used to investigate the AHE without the need for specific details concerning the dis-
order in, e.g., antiferromagnets, non-collinear magnets, oxide, or strongly correlated
materials in bulk, thin films, and heterostructures. In other words, the credibility of
(6.6) heralds the beginning of the ab-initio era in the practical applications of the
AHE, and, generally, intrinsic “transverse” transport phenomena such as spin Hall
effect, spin and anomalous Nernst effects, spin-orbit torque, etc.

6.4 Anisotropic AHE

The crystal field in a solid is anisotropic, which in combination with SOC results in
a strong dependence of the orbital and spin character of the states in a crystal on the
direction of themagnetization or choice of the spin quantization axis (SQA), since the
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matrix elements of the orbital angular momentum operator are themselves strongly
anisotropic. In ferromagnets, the anisotropy of the orbital angular momentum opera-
tor combined with the crystal field splitting leads to a dependence of the band energy
on the magnetization direction which results in the magneto-crystalline anisotropy
energy (MAE)—one of the most fundamental characteristics of magnetic materi-
als. As far as the transport properties of metals are concerned, the aforementioned
magnetocrystalline anisotropy of the electronic structure leads to such fundamental
effects as tunneling anisotropic magnetoresistance [27, 28], anisotropic magnetore-
sistance [29], or ballistic anisotropic magnetoresistance [30]. As in the case of MAE,
these effects can be often readily captured by only considering the modification in
the topology of the bands in the reciprocal space, when the magnetization orienta-
tion is varied [27, 30–32]. This is in contrast to the SHE and AHE, which are very
sensitive to band degeneracies at the Fermi energy [9]. In this case the dependence
of the electronic bands on the magnetization direction (for AHE) or the SQA (for
SHE) is either absent or can often be neglected, and it is the anisotropy of the orbital
and spin resolution of the Bloch states which becomes of major importance, possibly
resulting in a very pronounced anisotropy of the Hall effects [33].

The pronounced anisotropy of the Hall effects and spin-relaxation is an important
tool for tuning the transport characteristics of devices in spintronics. The intrin-
sic magnetocrystalline anisotropy of solids should be properly taken care of when
dealing with polycrystalline samples and especially when treating the effect of mag-
netization dynamics and temperature on the measured transverse current or spin-
polarization [35]. The anisotropy of theAHE inmetals is an experimentally relatively

(a) (b) (c)

Fig. 6.4 a Even if for some high-symmetry directions of the magnetization M in the crystal the
anomalousHall current JH can be perpendicular both to the applied electric fieldE (pointing outside
of the plane of the page) and M (i.e.σ⊥ = 0), when the orientation of the magnetization is changed
to lie along a general direction, not only the magnitude of JH can be changed significantly, but even
its direction can deviate strongly from that determined by M × E (i.e.σ⊥ �= 0), b The anisotropy
of the AHE can be so pronounced that at some angle of M with crystallographic axes the Hall
current can be aligned with M (i.e. σ⊥ �= 0 and σ ‖ = 0), as it is for example the case for L10 CoPt,
for which the angular dependence of the AHC is shown in (c) (θ is counted with respect to the
[001]-axis). Taken from [34]
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well-studied effect, see for example the published data for bcc Fe [36], fcc Ni [37,
38], hcp Gd [39], as well as FeCr2S4 [40], Yb14MnSb11 [41], Y2Fe17−xCox [42] and
R2Fe17 (R = Y, Tb, Gd) [43]. Since the AHC tensor is 2-rank antisymmetric, it can
be also seen as the AHC vector σ , with the components related to the corresponding
components of the anomalous Hall conductivity tensor via σi = 1

2

∑
jk εi jkσ jk (with

Levi-Civita tensor εi jk):
JH = E × σ . (6.7)

The concept of the AHE anisotropy with respect to the direction of the magneti-
zation M in the crystal can be outlined as follows (see Fig. 6.4 for an illustration):
not only the absolute magnitude of σ is dependent on the direction of magnetization,
but also the orientation of σ exhibits a non-trivial dependence on M. When M points
along a high symmetry direction, the anomalous Hall conductivity vector aligns with
M and the Hall current flows orthogonally to it. When M is pointing along a general
direction in the crystal theAHCvector canmisalignwith themagnetization direction,
in which case [35, 38]:

σ (M) = σ ‖(M) + σ⊥(M), (6.8)

where σ ‖(M) and σ⊥(M) are the parallel and perpendicular to M components of the
AHC vector, respectively [35] (see also Fig. 6.4). Microscopically, the origin of the
anisotropy of the AHE is apparent from the Berry curvature expression (6.2), which
is dependent on the magnetization direction via the corresponding dependence of
eigenenergies as well as wavefunctions. It is important to note that while in param-
agnets with inversion symmetry the eigenspectrum does not depend on the SQA, the
wavefunctions in a ferromagnet exhibit a far more complex dependence onM, owing
to the fact of broken time-reversal symmetry. Additionally, in uniaxial crystals, the
velocity matrix elements are also anisotropic and this has to be taken into account.

Phenomenologically, the behavior of the anomalous Hall conductivity tensor
σ (M) with respect to orientation of M can be described based on an expansion
in powers of the direction cosines {αi } of M [3]:

σ i j (M̂) =
∑

p

ai jpαp +
∑

pqr

ai jpqrαpαqαr + · · · , (6.9)

where M̂ is the unit vector along M. Only odd powers are participating in the
expansion above owing to the fact that the AHC is odd under time reversal,
σ (−M) = −σ (M). Additional constraints on the allowed terms in (6.9) are enforced
by the crystal symmetry.Consistentlywith a small but non-vanishingAHCanisotropy
measured in cubic ferromagnets [36–38], the expansion starts onlywith the 3rd-order
term in cubic crystals. On the other hand, in uniaxial ferromagnets already the 1st-
order term in (6.9) is allowed, and the corresponding anisotropy of the anomalous
Hall effect can be very large [35, 39].

Theoretically, the microscopic explanation for a strongly anisotropic AHE in
transition metals was given by Roman et al. [35]. The later work showed that the
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main reason for the observed in agreement to experiment factor-of-four anisotropy
of the intrinsic AHC in uniaxial hcp Co lies in the spiky and irregular behavior of the
Berry curvature in the k-space. If we look at the distribution of the Berry curvature
along the high symmetry lines for a typical uniaxial ferromagnet, such as L10 FePd
(shown in Fig. 6.2), we observe the characteristic peaks in the vicinity of points of
near-degeneracy across the Fermi level (around the M-point or in the middle of the
�Z -path). The anisotropy of the wavefucntions and energies in the vicinity of these
points results in the remarkable anisotropy of the Berry curvature in Fig. 6.2, both
in magnitude (e.g. in the middle of the �Z -path) and sign (e.g. close to M-point).
When integrated over the whole BZ, the anisotropy of the Berry curvature leads to
a factor-of-two reduction in the AHC in FePd as the magnetization is changed from
out-of-plane to in-plane. Overall, in accordance to experiments, the theoretically
predicted small anisotropy of intrinsic AHC in bcc Fe (767S/cm for [001]-direction
of M̂ versus 810S/cm for [110]-direction) is significantly enhanced in uniaxial hcp
Co (477 vs. 100S/cm for [001] and [100] directions, respectively), L10 FePt (818 vs.
409S/cm for [001] and [110] directions, respectively), L10 FePd (135vs. 276S/cm for
[001] and [110] directions respectively), and L10 CoPt (−119 vs. 107S/cm for [001]
and [110] directions respectively) [13]. The latter case of CoPt presents an example
of the so-called anti-ordinary AHE, for which a certain angle of the magnetization
with the crystallographic axes can be found so that the anomalous Hall current in
aligned along the magnetization, in analogy to the planar Hall effect [31]. In CoPt
this is the consequence of the fact that the σ ‖(M) changes sign as M is rotated from
out-of-the-plane into the plane and eventually turns to zero for a certain angle, see
Fig. 6.4c. This implies also the rotation of the Hall current in the opposite sense to
that we would naively assume given an assumption that JH is always perpendicular
to M. On the side of the extrinsic AHE, recently, its pronounced anisotropy has
been also found, both among the scattering-independent contributions [18] (see for
example the anisotropy of the scattering-independent side-jump conductivity in fcc
Ni as the magnetization direction is changed from [001] into [110] axis in Fig. 6.3b),
as well as for the skew-scattering angle [44].

6.5 Quantum Anomalous Hall Effect

What is commonly referred to as the Chern insulator in solid state physics is a two-
dimensional (2D) insulating solid with Hamitonian H(k)whose first Chern number,
determined as an integral of the k-space Berry curvature over the Brillouin zone, is
a non-zero integer. The condition that the Chern number is non-zero means that the
topological properties of our system are non-trivial, and that the wavefunction unk

acquires a “twist” as we cross at least one of the equators of the 2D torus which
represents the Brilloune zone. Chern insulator presents an example of a system for
which the so-called periodic gauge in both k-directions cannot be found simultane-
ously. One of the most remarkable properties of Chern insulators is the quantization
of their transverse Hall conductance according to (6.6):
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σxy =
∑

n

1

2π

∫

BZ

dk �n
z (k) =

∑

n

Cn, (6.10)

whereCn is the first Chern number of the occupied band n. From the point of view of
adiabatic pumping, the quantization of the Hall conductance is due to the quantized
charge which is pumped through the one-dimensional system along x described by
Hamiltonian H(kx , ky) as the parameter ky is varied from one side of the BZ to the
other.

Let us take a look at the mechanisms which can lead to appearance of Chern
insulators. For this purpose we consider first the case of only two bands in k-space.
Neglecting the constant term, which does not change the topological properties and
just shifts the energy, a generic 2D Hamiltonian reads:

H(k) = d(k) · σ , (6.11)

where σ is the vector of Pauli matrices. At each point in k the energetic spectrum is
given by two eigenvalues ε+ and ε− which are given by±|d(k)| = ±d(k). Since the
Berry curvature summed over both bands is always zero, we will consider only the
lowest of the bands, ε−. We also suppose that both bands are separated from each
other by a gap. By comparing the Hamiltonian (6.11) to that of spin- 12 in magnetic
field, it can be shown that the physics of the problem is governed by the Dirac
monopole problem [11]. Indeed, the Berry phase which is accumulated when going

(a) (b)

Fig. 6.5 a For a two-dimensional two-band insulator with the Hamiltonian H(k) = d(k) · σ the
problem of finding the Berry curvature in k-space can be rewritten in terms of finding the winding
number density of the vector field d(k). The whole problem can be mapped via transformation
χ onto that of the spin- 12 Dirac monopole. b A system described by two-dimensional massive
Dirac Hamiltonian as given by (6.13) experiences a topological phase transition as a function of
m, i.e. upon changing the sign of m across the metallic transition point at m = 0, the quantum Hall
conductivity of the system as given by the Chern number changes by +1
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along a closed loop C in k-space can be easily related to that picked up when going
along a loop χ(C) on a unit sphere S2, where χ maps k to the point d/d on S2, see
Fig. 6.5:

χ : k −→ n = d/d, n ∈ S2. (6.12)

The Berry curvature of the problem on S2 is given by a field of the Dirac monopole
with quantized charge at the origin, where the two bands touch each other and ε+ =
ε− [11]. The Berry curvature in the k-space is readily obtained as �xy(k) = − n ·(
∂kx n × ∂ky n

)
/2, which in the physics of skyrmions is referred to as the density of

topological charge. The physics of skyrmions emerging in real-space is discussed in
detail in the first five chapters of this book. The first Chern number obtained as an
integral of the Berry curvature over a compact manifold such as a 2D BZ, has to be
an integer, and in the physics of skyrmions it is referred to the winding number and
topological charge, since it stands for the number of times that the field d(k) winds
around the S2 as k is varied.

The so-called massive Dirac Hamiltonian, which is of great importance for study-
ing topological properties of solids, is given by (dx = kx , dy = ky and dz = m):

H(k) = kxσx + kyσy + mσz . (6.13)

The Berry curvature here can be evaluated analytically in R
2, and it is given by

�xy(k) = m/[2(m2 + k2)3/2], which leads to a half-integer Hall conductance σxy =
sgn(m)/2 owing to the infinite size of the BZ over which the Berry curvature is
integrated.At the pointm = 0 in theHamiltonian (6.13) there is a point of degeneracy
in the spectrum at kx = ky = 0 and the transition between twoChern insulator phases
for m < 0 and m > 0 occurs, see Fig. 6.5. Such situation is rather typical and can
be generalized to the case of a 2D+1 Hamiltonian H(kx , ky, λ) = H(κ), where
κ = (kx , ky, λ) and λ is a certain parameter, such as m in the Dirac model, values of
hoppings in the lattice Hamiltonian, value of the spin-orbit strength, exchange field,
magnetization direction, etc. According to the theorem by Bellisard [46], the change
of the (kx , ky) Chern number when going through a point of degeneracy at a certain
value of κ

∗ (such as (0, 0, 0) in the Dirac model) is given by the so-called Berry
index:

IndxB = 1

2π

∫

S2
�k(κ)dκ, (6.14)

where S2 is an infinitesimally small sphere which encloses κ
∗. Interestingly, the

integer Berry index determines the change in the 2D Hall conductance irrespective
of the compactness of the k-space. E.g. for the massive Dirac Hamitonian (6.13) the
Berry index can be evaluated to be +1 at the point (kx = 0, ky = 0,m = 0). It is
worthy to note here that when the role of the parameter λ is played by the kz Bloch
vector of a 3D Hamiltonian H(kx , ky, kz), such points of degeneracy κ

∗ = k∗ are
called hereWeyl points. If such points happen to be present at the Fermi energy of a
material with no other bands crossing it, such material is called a topological metal,
orWeyl semimetal. The physics of topological metals is an exciting emerging field of
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topological solid state physics. Chapter8 of this book is dedicated to the fascinating
properties of Weyl semimetals.

Historically, Thouless and co-workers [47]were the first to demonstrate thatChern
insulators can arise for periodic 2D solids exposed to an external magnetic field,
whose presence breaks the time-reversal symmetry and induces non-trivial geometry
in the reciprocal space.Obtained in such awayChern insulator canbenamedquantum
Hall insulator, since the quantization of Hall conductance in such Chern insulators
was observed in measurements of the integer quantumHall effect. The quantumHall
insulators are to be distinguished from spontaneous Chern insulators, for which the
Chern insulator state is realized without external fields, and the breaking of time-
reversal symmetry is the intrinsic property of the material due to e.g. formation
of local spin moments. We will refer to spontaneous Chern insulators as quantum
anomalous Hall insulators (QAH insulators), since the quantization of conductance
in QAH insulators is observed by measuring the anomalous Hall effect (AHE) for
which external magnetic field plays a secondary role [9]. The corresponding effect is
called the quantum anomalous Hall effect (QAHE), and its experimental observation
has been recently presented [48].

Although the non-zero Chern number is due to non-trivial distribution of the Berry
curvature in k-space, a fruitful analysis of QAH phases can be achieved in real space
by considering various mechanisms of electron hopping and interactions on a lattice,
and corresponding tight-binding Hamiltonians. The first lattice model for a QAH
insulator was given by Haldane [49]. The Hamiltonian on the honeycomb lattice
within the spinless Haldane model looks very simple:

(a) (b)

Fig. 6.6 a Real-space schematic representation of the Haldane model. b Right: The phase diagram
of the Bi(111) bilayer with respect to the strength of atomic SOC and magnitude of exchange
field B. Numbers denote the Chern number in the quantum anomalous Hall phase, “TI” stands
for the topological insulator phase, while “TRBTI” stands for the time-reversal broken topological
insulator phase. For more details see text and [45]

http://dx.doi.org/10.1007/978-3-319-97334-0
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H = t1
∑

〈i, j〉
c†i c j + t2

∑

〈〈i, j〉〉
e−iσφc†i c j , (6.15)

where the first term corresponds to the hopping between the nearest neighbors, while
the second term corresponds to the hopping between the next-nearest neighbors. The
key feature of theHaldanemodel is that the next-nearest neighbor hopping t2 acquires
a complex phase e−iσφ , where σ = +1 for the hopping on the A-sublattice, while
σ = −1 for the hopping within the B-sublattice. The effect of acquiring a complex
phase during electron hopping can be seen as a result of a fictitious magnetic field
with the vector potential A(r): e−iφ = e−i

∫
drA(r), where the integral is taken along

the shortest path which connects the next-nearest neighbor sites. As the electron
completes a closed path when hopping on the corresponding sublattice (see triangles
in Fig. 6.6), it accumulates a phase which is proportional to the flux of the magnetic
field through the corresponding triangle, in analogy to the Aharonov-Bohm effect.
Since this phase is opposite for electrons of two sublattices, the total field acting on
electrons averages to zero within the unit cell (the Haldane model is often called
a model for a quantum Hall effect with zero magnetic field). Haldane showed by
Fourier transforming the lattice Hamiltonian to the k-space that the Chern number of
thismodel equals+1 for−π < φ < 0, and−1 for 0 < φ < π , see Fig. 6.6. The point
φ = 0 thus gives rise to Weyl points in (k, φ)-space. Conceptually, the suggestion
of his model by Haldane in 1988 stands at the origin of the tremendous advances
in topological condensed matter physics which followed. One of the reasons for this
is that the mechanismwhich gives non-zero Chern number within the Haldanemodel
can be realized in actual materials, with intrinsic spin-orbit interaction (SOI) playing
the role of the source of “fictitious” magnetic field which provides non-trivial band
topology. To briefly demonstrate how this comes about we focus here on one of
the many possible examples considered by now in the literature [50]. Namely, we
consider the pz orbitals on a strongly buckled honeycomb lattice of space-inversion
symmetric (111) bilayer of Bismuth, see Fig. 6.7. The nearest-neighbor tight-binding
multi-orbital lattice Hamiltonian of this system reads:

H =
∑

i j

ti j c
†
i c j +

∑

i

c†i (εi I + Bσz)ci + HSOC, (6.16)

where the first term is the kinetic nearest-neighbor hopping between generally dif-
ferent multiple s and p (and d or f in transition and rare-earth metals) orbitals.
The second term stands for an orbital on-site energy εi and the interaction with
the Zeeman exchange field B directed along the z-axis, with I (σz) as the identity
(Pauli) matrix. The third term in Hamiltonian (6.16) is the on-site SOI Hamiltonian.
Without the presence of B the system has time-reversal symmetry and its bands are
degenerate in spin throughout the whole BZ. We use the exchange field to break
the time-reversal symmetry and induce a non-zero QAH effect. To identify different
origins of the Chern insulator phase, the spin-orbit interaction is further decomposed
into spin-conserving and spin-flip parts:
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(a) (b)

Fig. 6.7 Topological analysis of pz bands in a buckled honeycomb bilayer. A small exchange field
has been applied in all cases, yielding a QAH state in lower right figure. Without an exchange
field, systems in a and b would be in a topological insulator state. Left up and right up figures
correspond to the case with only spin-conserving SOC, and only spin-flip SOC included, while
the full SOC is considered in the lower right figure. Red (blue) stands for the spin-down (spin-up)
states. Dashed horizontal lines indicate the Fermi energy. In the case of isolated bands, numbers
denote the Chern number for each individual band, while for overlapping bands, numbers stand
for the Chern numbers of nonhybridizing spin-up (red) and spin-down (blue) bands. Insets display
the electronic structure of the Dirac point at the Fermi energy, and sketches illustrate different
channels for complex nearest-neighbor hopping [red circles denote pz orbitals, while px,y orbitals
are indicated by blue ellipsoids; black (red) arrows depicts the nearest-neighbor hoppings (SOC
hybridization), respectively]. Lower left: top and side view of the Bi(111) bilayer. For more details
see text and [45]

HSOI = ξ l · s = ξ lzsz + ξ(l+s− + l−s+)/2, (6.17)

where l (s) is the orbital (spin) angular momentum operator, and ξ is the atomic SOI
strength. Since here we choose the direction of the spin-polarization to be aligned
along z direction, the spin conserving part of the SOI, ξ lzsz , couples {px , py} orbitals,
while the spin-flip part of (6.17), ξ(l+s− + l−s+)/2, couples pz and {px , py} orbitals
via a flip of spin and a ±1 change in the orbital quantum number.

We concentrate here only on the case of the pz orbitals present around the Fermi
energy, with other states being pushed away much higher in energy. This case is
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particularly relevant for graphene physics. For the values of the spin-orbit strength
and hopping parameters we choose those of Bi from [45]. First, consider the case
when only spin-conserving SOI is present. On a buckled honeycomb lattice, such as
Bi bilayer or silicine, pz orbitals can hybridize directly with the {px , py} orbitals on
the neighboring site, and complex hoppings within the sublattice can be induced via
the spin-conserving part of SOC which acts between px and py states. As illustrated
with a sketch in Fig. 6.7, in this mechanism the corresponding virtual transitions

read:
∣
∣pAz ↑〉 tNN→ ∣

∣pBx,y ↑〉 ξ lz sz→ ∣
∣pBx,y ↑〉 tNN→ ∣

∣pAz ↑〉
, where tNN indicates the direct hop-

ping between pz and px,y orbitals on the neighboring sites, while superscripts A and
B denote the nearest neighbor atomic sites in sublattice A and B. The SOI here acts
as a magnetic field which is responsible for the generation of phase φ within the
Haldane model. If we consider only one spin, we can indeed show that effective SOI
induced next-nearest-neighbor (NNN) hopping leads to the opening of the gap at the
Fermi energy (of the size�1 in Fig. 6.7a) and the Chern number of the spin-up bands
acquires a value of+1. Since the SOI coefficients are complex conjugate for spin-up
and spin-down electrons, the φ of the complex hoppings for spin-down electrons is
opposite in sign to spin-up electrons and same holds for the Chern numbers. Since the
bands are spin-degenerate with B = 0 (we apply a small exchange field in Fig. 6.7 to
artificially separate bands of opposite spin for visibility), this results in a zero total
Chern number, and the system resides in a topological insulator phase.

On-site spin-flip SOI can give rise to complex next nearest neighbor hopping
too, even if there is no direct hybridization between pz and {px , py} orbitals,

Fig. 6.7b. In this case, the correspondingvirtual transitions are:
∣
∣pAz ↑〉 ξflip→ ∣

∣pAx,y ↓〉 tNN→
∣
∣pBx,y ↓〉 tNN→ ∣

∣pAx,y ↓〉 ξflip→ ∣
∣pAz ↑〉

where ξflip = ξ(l+s− + l−s+)/2, and tNN stands for
the direct hybridization between px,y orbitals on neighboring A and B sites. The
corresponding NNN hopping is again between electrons of the same spin, owing
to two spin-flip processes which take place in between. In analogy to the case with
spin-conserving SOI considered previously, the effective hoppings within A and B
sublattices for fixed spin are of opposite sign and the resulting gap �2 which opens
due to latter virtual transitions is again topologically nontrivial. The resulting non-
zero Chern numbers of the degenerate without B spin-up and spin-down bands are
exactly the same as previously. As in the previous case, the coupling between the
spin-up and spin-down pz bands does not occur, and without an exchange field,
Fig. 6.7b corresponds exactly to the topological insulator phase in graphene [51].

How do we make Chern insulators out of systems above? In principle, if we could
apply a very strong exchange field which would shift the bands of a certain spin
very high up in energy, we would readily obtain a QAH insulator. In real materials
this is however seldomly achievable, since the magnitudes of typical exchange fields
are normally smaller than the typical band width. Thus, the only way would be in
breaking the time-reversal symmetrywith a finite B, and ensuring that a topologically
non-trivial band gap opens at the Fermi energy where bands of opposite spin meet.
For example, we could start with a situation depicted in Fig. 6.7a with a small B,
and add an admixture of the spin-flip SOI to the Hamiltonian. This will open a gap
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at the points where the spin-up and spin-down bands were degenerate, see Fig. 6.7.
In the vicinity of such a point the distribution of spin becomes non-trivial, as we can
see in Fig. 6.7, namely, e.g. at the K-point the spin-distribution of the occupied band
has a skyrmion structure. At this point, we can relate the distribution of spin to the
distribution of vector d(k) and, according to the two-band analysis presented above,
we can explain the fact that the Chern number of the occupied band changes. The spin
distribution of the corresponding conduction band is also a skyrmion, but with an
opposite winding number, which results in the opposite change of the Chern number
of this band. What we have just achieved is the QAH state driven the exchange of the
Chern number between the bands of opposite spin at the points at the Fermi energy
where bands of opposite spin hybridize. Such points are called spin-mixing points.

We remark here, that Hamiltonians of real materials can be very complicated
with many states present at the Fermi energy and various structural, spin-orbit and
magnetic effects taking place. The phase diagrams of such materials as a function of
parameters in the Hamiltonian can be studied from first principles methods. See for
example the phase diagram of Bi(111) bilayer as a function of an exchange field and
SOI strength calculated from ab initio in Fig. 6.6. So far, experimentally, the emer-
gence of the QAHE has been demonstrated notably in Cr- and V-doped (Sb,Bi)2Te3
thin films at very low sub-100mK temperatures [48, 52]. On the other hand the area
of theoretical proposals for systems which would potentially exhibit the QAHE even
at room temperatures, exploiting the complexity of the electronic structure that we
discussed above, is blossoming, and here we can onlymention a few. Historically one
of the first suggestions employed the topologically non-trivial electronic structure
of HgTe quantum wells, which were suggested to turn into the QAH insulator by
magnetic doping [53], and a similar proposal has been made for InAs/GaSb quan-
tum wells [54]. A whole promising class of systems is associated with graphene
and other honeycomb-lattice materials (such as silicene) exposed to an exchange
field and Rashba spin-orbit interaction as in the case of graphene decorated with
transition-metal adatoms [55–57], or graphene magnetized by proximity with e.g.
BiFeO3 [58]. An alternativemechanism formagnetizing the topologically non-trivial
materials is associated with functionalization: e.g. half-I-passivated stanene [59] or
half-H-passivated Bi(111) bilayer [60] establish ferromagnetism due to dangling
bonds, and can lead to the quantized AHC, see Fig. 6.8. While it was shown that
systems which combine strong spin-orbit interaction and strong exchange in heavy
transition-metal insulators such as EuS, CdO/EuO quantum wells, GdN/EuO bilay-
ers, or 5d transition-metal tricholides such as OsCl3, can give rise to QAHE [61–64],
the physics of transition-metal oxides is also promising for the realization of this
effect in, e.g., SrIr/TiO3 [65] or La2MnIrO6 [66].

While we have been discussing the quantized transverse charge conductance in
Chern insulators, more generally, it can be shown that although in case of 2D insu-
lators with time-reversal symmetry the transverse charge conductance has to vanish
identically, the carriers of each spin separately, however, can possess a quantizedHall
conductance of opposite sign. In an applied electric field the carriers of opposite spin
will move in opposite directions, which will lead to the generation of the transverse
spin current. Thus obtained spin conductance is quantized since the conductance
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(a)

(b) (c)

(f)

(g)

(h)

(i)

(j)

Fig. 6.8 a Schematic evolution of two energy bands in the complex phase space of crystal momen-
tum and magnetization direction, where the colors of the bands indicate different kx . If ky is tuned,
the electronic structure displays a monopole, which is correlated with a change in the mixed Chern
number Z. Such crossing points are observed in (b) the model of magnetically doped graphene
with hopping t , and c the functionalized bismuth film. f Crystal structure of the semihydrogenated
Bi(111) bilayer. g Top: First-principles band structure of the system for an out-of-plane magnetiza-
tion, where the region of the topologically non-trivial band gap is highlighted. Bottom: Evolution of
top of valence band (red circles) and bottom of conduction band (blue squares) in the (kx , θ)-space.
Bold integers denote the mixed Chern number Z, and a is the in-plane lattice constant. h–j Energy
dependence of AHC, torkance τyx , and DM spiralization Dyx , respectively, for an out-of-plane
magnetization. For more details see text and [67]

for each spin is quantized, and it is proportional to the difference between the Chern
numbers for each spin. This number is called the spin Chern number, and it is defined
modulo 2. The system which exhibits a spin Chern number of +1 (mod 2) is called a
quantum spin Hall (QSH) insulator, or, equivalently, a 2D topological insulator. In
the definition above we required a clear separation of electronic states into spin-up
and spin-down manifolds, which is naturally present if the spin-mixing part of the
spin-orbit interaction is not considered. And while with full spin-orbit interaction
present in the system the spin is not a good quantum number anymore, the concept
of the spin Chern number can be generalized to this case as well. For 2D insulators
with time-inversion the spin Chern number can be used alternatively to the Z2 index
in order to classify topological phases [68].

The emergence of monopoles in the electronic structure which give rise to large
values of the Berry curvature and quantization of Hall conductance in k-space, can
also have a strong impact on the mixed Berry curvature with respect to a parameter
which is responsible for generation of such points. This closely relates the physics
of the AHE and QAHE to the physics of “topologically-associated” effects. One of
the most prominent examples of a typical parameter which can be used to change
the topology and generate monopoles in the extended space is the magnetization
direction M̂ in a 2D ferromagnet, which we characterize here with a singe angle θ

with respect to e.g. the z-axis. The “topological partner” of the AHE in this case
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which is driven by the mixed component of the Berry curvature tensor �kθ , is the
anti-damping spin-orbit torque (SOT). The effect of SOT provides an efficient means
of magnetization control by electrical currents in systems that combine broken spa-
tial inversion symmetry and spin-orbit interaction [69–71]. These current-induced
torques are believed to play a key role in the practical implementation of various
spintronics concepts, since they were demonstrated to mediate the switching of sin-
gle ferromagnetic layers [72, 73] and antiferromagnets [74] via the exchange of spin
angular momentum between the crystal lattice and the (staggered) collinear mag-
netization. Among the two different contributions to SOTs, the so-called (intrinsic)
anti-damping SOTs are of utter importance owing to the robustness of their prop-
erties with respect to details of disorder [75], in analogy to the intrinsic AHE. The
SOT in relation to topological properties of antiferromagnets is discussed in Chap. 9
of this book.

In a clean sample, the anti-damping SOT T acting on the magnetization in linear
response to the electric field E is mediated by the so-called torkance tensor τ , i.e.,
T = τE [75]. The Berry phase nature of the anti-damping SOT manifests in the
fact that the tensor elements τi j are proportional to the mixed Berry curvature of all
occupied states in the following way:

τi j = 2e

Nk
êi ·

occ∑

kn

[
M̂ × Im〈∂M̂ukn|∂k j ukn〉

]
, (6.18)

where Nk is the number of k-points, e > 0 denotes the elementary positive charge,
and êi denotes the i th Cartesian unit vector. Intimately related to the anti-damping
SOT is the Dzyaloshinskii-Moriya interaction (DMI) [76, 77], crucial for the emer-
gence of chiral domain walls and chiral skyrmions [78–81], which can be quantified
by the so-called spiralization tensor D reflecting the change of the free energy F
due to chiral perturbations ∂ jM̂ according to F = ∑

i j Di j êi · (M̂ × ∂ jM̂) [82]. The
spiralization [82] is obtained as

Di j = êi
NkV

·
occ∑

kn

[
M̂ × Im〈∂M̂ukn|hkn|∂k j ukn〉

]
, (6.19)

where hkn = Hk + εkn − 2εF and V is the unit cell volume. The SOT and DMI
are thus related similarly to the way that the AHC and the orbital magnetization are
connected to each other (see next section). For more details on the role and properties
of the DMI see also chapters one to five.

As discussed previously, the presence of Weyl points, or, as we shall refer to them
to distinguish the considered case, mixed Weyl points, in the electronic structure
of the system in (kx , ky, θ)-space generates a flux of the Berry curvature around
them which is determined by the Berry index, and leads not only to enhanced val-
ues of �k in their proximity, but also results in large values of �kθ , as should be
manifested in large values of SOT and DMI. We refer to a system which exhibits
only isolated mixed Weyl points at the Fermi energy in its electronic structure in

http://dx.doi.org/10.1007/978-3-319-97334-0
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(kx , ky, θ)-space as a mixed Weyl semimetal (MWS) [67]. The Berry index of a
mixedWeyl point can be probed by the change in themixedChern number, defined by
Z = 1/(2π)

∫
�kx θ dθdkx , as ky is varied (see Fig. 6.8), and/or by the change in the

(kx , ky)-Chern number as the angle θ is varied. The latter observation is an indication
that the mixed Weyl state is closely associated with a topological phase transition
between a QAH and trivial insulator state. While the MWS nature of a graphene-
based models has been demonstrated, see also Fig. 6.8, one of the more prominent
MWS examples is semihydrogenated Bi(111) bilayer, which is a Chern insulator
for an out-of-plane magnetization [67]. Analyzing the evolution of the mixed Chern
number Z as a function of ky in Fig. 6.8g for the latter system, we detect two mag-
netic monopoles of opposite charge that emerge at the transition points between the
topologically distinct phases with Z = −1 and Z = 0. Alternatively, these crossing
points and the monopole charges in the composite phase space could be identified
by monitoring the variation of the momentum-space Chern number with magnetiza-
tion direction. These monopoles, acting as sources of the general curvature, occur at
generic points near the valley K for θ = 43◦ (see Fig. 6.8c) and in the vicinity of the
K ′-point for θ = 137◦, respectively. For an out-of-plane magnetization, the complex
nature of the electronic structure in momentum space manifests in the quantization
of C to+1, Fig. 6.8h, which is primarily due to the pronounced positive contributions
near K . Calculations of the energy dependence of the torkance and spiralization in
the system, shown in Fig. 6.8i and j, reveal the extraordinary magnitudes of these
phenomena of the order of 1.1 ea0 for τyx and 50meVa0/uc for Dyx , exceeding the
typical magnitudes of these effects in magnetic metallic materials.

Clearly, the magnetization switching via anti-damping SOTs in mixed Weyl
semimetals can be utilized to induce topological phase transitions from a CI to a
trivial magnetic insulator mediated by the complex interplay between magnetization
direction and momentum-space topology in these systems. In the case of the func-
tionalized Bi film, for instance, the material is a trivial magnetic insulator if M̂ is
oriented parallel to the film plane. Overall, combining an exceptional electric-field
response with a large band gap, the H-functionalized bismuth film serves as a distinct
representative of a class ofMWSmaterials, which lay out extremely promising vistas
in room-temperature applications of magnetoelectric coupling phenomena for low-
dissipation magnetization control (see e.g. [85, 86]). In the example considered here,
the DMI changes over a wide range of values throughout the bulk band gap, implying
that proper electronic-structure engineering enables us to tailor both strength and sign
of the DMI in a given system, for example, by doping or applying strain. Such versa-
tility could be particularly valuable for the stabilization of chiral magnetic structures
such as skyrmions in insulating ferromagnets. In the latter case, very large values
of the anti-damping SOT arising in these systems would open exciting perspectives
in manipulation and dynamical properties of chiral objects associated with minimal
energy consumption by magnetoelectric coupling effects. At the end, we would like
to remark that magnetic monopoles in the composite phase space, which we discuss
here, do not only govern the electric-field response in insulating magnets but are also
relevant in metals, where they appear on the background of metallic bands.
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6.6 AHE and Orbital Magnetism in Non-collinear Magnets

On of the most remarkable features of the AHE is that it emerges even in antiferro-
magnetic materials, i.e., antiferromagnets (AFMs), for which the overall spin mag-
netization, when integrated over the magnetic unit cell, vanishes. In contrast to the
spin Hall effect [87], in collinear AFMs consisting of two identical “ferromagnetic”
spin sublattices which point in opposite directions and are related to each other by a
combined action of the time reversal symmetry and lattice translation, the AHE has
to vanish by symmetry. However, generally speaking, in chiral non-collinear AFMs,
the symmetry does not forbid the emergence of the AHE, and two distinct cases
of its emergence can be distinguished. The first scenario relies on the observation
that although in coplanar non-collinear AFMs the net moment is zero, the lowering
of the symmetries due to non-collinearity in combination with SOC gives rise to a
non-zero Berry curvature distribution in the Brillouin zone [83, 88] (see Fig. 6.9 for
an illustration), with a net non-vanishing value of the AHC, which can be measured
experimentally, as e.g. for Mn3Sn and Mn3Ge [89, 90]. The latter effect can be also
seen as a consequnce of the orbital Aharonov-Bohm effect of conduction electrons
which acquire a non-zero Berry phase as they are hopping within an intricate wave-
function of d-electrons in a non-collinear host [91, 92]. The AHE and its pronounced
anisotropy has be been recently for example analyzed from ab-initio calculations in
Mn3X (X = Ga, Ge, Sn, Rh, Ir, Pt) coplanar antiferromagnets [93].

Within the second scenario for the emergence of the AHE in AFMs the role
of the spin-orbit interaction in giving rise to the Hall current is taken over by the
so-called scalar spin-chirality ξ , which, given three neighboring spins on a lat-
tice (S1, S2 and S3), can be defined according to ξ = S1 · (S1 × S2), and which
does not vanish if the three spins are non-coplanar. Effectively, in a system with
non-zero ξ , an electron hopping on a lattice of non-collinear spins acquires a
non-vanishing spin Berry phase, which can be understood as a consequence of
an Aharonov-Bohm effect of electron spins in a “fictitious” magnetic field origi-
nated in ξ rather than in SOC [94, 95]. In fact, assuming that the angle between
the three neighboring spins is infinitesimally small, we realize that ξ is nothing
else but an infinitesimal solid angle between them, and can thus directly relate
the scalar spin chirality to the magnitude of an “emergent” magnetic field (or,
equivalently, density of topological charge) proportional to M̂ · (∂xM̂ × ∂yM̂) gen-
erated by a two-dimensional xy-texture of the magnetization, such as for exam-
ple a skyrmion. Since the emergent magnetic field in skyrmion lattices gives rise
to the spin-dependent Lorentz force and the so-called topological Hall effect
(THE) [79, 80, 95], the AHE in non-collinear magnets with non-vanishing ξ is often
referred to by the same name, although one has to remember that while for skyrmions
the topological Hall effect is the consequence of the Berry curvature in real space, the
AHE in non-collinear magnets is driven by the Berry curvature in k-space, and the
difference between the two effects should be prominent e.g. in the different scaling
with respect to the scattering rates in the presence of disorder [78]. It seems plausible
that in non-collinear non-coplanar magnets both contributions which originate in the
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emergent field rather than SOC (one stemming from the Lorentz force, i.e. THE,
and the other in the anomalous velocity, i.e. AHE) should co-exist and contribute to
the overall Hall signal (see corresponding discussion of the emergence of transverse
pure spin currents in non-collinear magnets in [96, 97]).

The fingerprints of the scalar chirality-driven orgin of the AHE have been demon-
strated experimentally already for the pyrochlore oxide compounds such as Pr2Ir2O7

or Nd2Mo2O7, e.g. [98–100], where relatively small values of the AHC are typ-
ical. Recent theoretical and experimental proposal suggest a much larger mag-
nitude of the chirality-driven AHE in antiferromagnetic Mn-based metallic com-
pounds [83, 101, 102], see e.g. Fig. 6.10d, or non-collinear structures at surfaces
such as nanoskyrmions [103] or frustrated spin lattices [84, 104]. As was shown the-
oretically for a frustrated 3 × 3 spin lattice emerging in an Fe monolayer deposited
on Ir(001) [84], the lowering of symmetry at a surface makes it difficult to disentan-
gle unambiguously the contributions to the AHE coming from scalar chirality and
spin-orbit interaction, while both conceptually different channels can together give
rise to gigantic values of the surface topological Hall effect, see Fig. 6.9. The scalar
chirality mechanism alone can also lead to the emergence of the quantum anomalous
Hall effect, e.g. it was predicted theoretically that non-collinearity in a layered oxide
K0.5RhO2 leads to the formation of a Chern insulator gap of the size of 0.22eV, for

(a) (c)

(d)
(e)

(b)

Fig. 6.9 The breaking of symmetry in coplanar non-collinear antiferromagnets in combinationwith
SOC gives rise to the non-vanishing AHE and distribution of the Berry curvature in the reciprocal
space, exemplified in (a) for a spin configuration of Mn3Sn (b) considered in [83]. For chiral non-
coplanar AFMs arising also at surfaces, the non-zero scalar spin chirality gives rise to the AHE
prominent even without SOC: compare e.g. the values of the AHC for a 3 × 3 spin lattice of an
Fe monolayer on Ir(001) surface (the real-space distribution of Fe moments is shown on top of the
Brillouin zone in (e)) for the case with and without SOC and as functions of thickness in (c) [84].
The breaking of symmetry necessary for emergence of the Berry curvature in k-space even without
SOC is visible in (d) for the latter system, while adding SOC can influence the details of the Berry
curvature distribution significantly (e)
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which the effect of SOC is not crucial [105]. The rigorous relation between the AHE
and symmetries in antiferromagnets is discussed in detail in chap.9 of this book.

A deep relation between the anomalous Hall effect and the orbital magnetism has
been discovered recently, after it was realized that our understanding of orbital mag-
netism in solids has been poor so far, and an ability to describe it reliably has been
missing. Both spin and orbital magnetization (OM) are accessible separately, e.g.,
by means of magneto-mechanical or magnetic circular dichroismmeasurements, but
the orbital contribution to the magnetization of solids is usually overshadowed by
the spin counterpart, owing to the orbital moment quenching. However, in certain
systems the OM yields an equally important contribution, which can even result in a
spin-orbital compensation of magnetization. Its influence on spin-dependent trans-
port magnetic susceptibility, orbital magnetoelectric response, magnetic anisotropy,
and Dzyaloshinskii-Moriya interaction renders the OM crucial for understanding
basic properties of magnets. A spontaneous OM in ferromagnets is a key manifesta-
tion of the spin-orbit interaction, lifting in part the quenchingmechanism.Addressing
the OM in solids is a subtle point as the position operator r is ill-defined in the basis
of extended Bloch states. Rather recently, a rigorous viewpoint at the OMwas estab-
lished within the so-called modern theory [8, 107], whose main result is that the
OM at zero temperature is expressed as a genuine bulk property evaluated from the
ground-state wave functions:

M = e

2�

∫
[dk] [ mn(k) + (εnk − εF )�n

k

]
, (6.20)

where [dk] stands for ∑occ
n dk/(2π)3, and m(k) = Im〈∂kunk| × [εnk − Hk]|∂kunk〉

is the local wavepacket orbital moment. In a simple picture the contribution of the
AHE to the OM, apparent in the equation above, comes from the circulating anoma-
lous Hall currents which arise at the boundaries of a finite sample in response to
the gradient of the crystal potential which builds up there, and which translates into
the Berry curvature contribution when the thermodynamic limit of increasing the
sample size it taken [8]. The modern theory expression has been applied in practise
only a few times so far, but it seems that the large discrepancy between the OM
evaluated according to (6.20) as compared to more simplstic approaches calls for
our re-evaluation of the orbital physics in structurally, chemically and magnetically
complex magnets [104]. One of the deep consequences of the geometrical nature of
the OM is that, in contrast to the spin, themagnitude of the OM in the vicinity of band
crossings can reach gigantic values, in analogy to the k-space Berry curvature [108],
see for example Fig. 6.10f. This observation has very far-reaching consequences for
the magnitude of effects which are directly associated with the orbital magnetization
at the Fermi surface, which concerns for example the orbital magnetoelectric effect,
as recently discussed in the context of orbital Edelstein effect [109] and gyrotropic
magnetic effect [110].

As far as non-collinear magnets are concerned, (6.20), which quantifies the rela-
tion between the AHE and the OM, hints at a possibility of observing non-vanishing
orbital magnetization in chiral AFMs with vanishing spin magnetization, with OM

http://dx.doi.org/10.1007/978-3-319-97334-0
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(a)

(b)

(c) (e)

(d)
(f)

Fig. 6.10 In a situation of three spins on a surface with non-vanishing scalar spin chirality, the
emergent magnetic field Be breaks the degeneracy between electronic states which realize left-
propagating and right-propagating currents (b), resulting thus in a finite value of the out-of-plane
(z) orbital moment even without SOC, as exemplified e.g. by ab-initio calculations for the mz
component of the orbital moment of a Co atom in a non-collinear Co trimer on Cu(111) (a). a is
taken from [106]. In γ -FexMn1−x alloys which exhibit a 3Q-state (Fig. 6.10e) in a wide range of
concentration x the topological orbital magnetization M[111] emerges upon a distortion along [111]-
axis (quantified by parameter δ), c, accompanied by pronounced AHC, σ[111] Taken from [102],
(d). The characteristic distribution of the topological orbital magnetization in the reciprocal space
is shown in (f)

being rooted in the scalar spin chirality rather than SOC, in analogy to the topological
Hall effect discussed above [94]. The origin of this remarkable phenomenon can be
attributed to the effect of the emergent magnetic field in systems with scalar spin
chirality, which couples to the orbital degree of freedom and breaks the degeneracy
between the states in the electronic structure which carry right and left propagating
currents, thus giving rise to the orbital moment, see Fig. 6.10b. As in the case of the
AHE, the role of the emergent field in giving rise to the OM is undertaken by SOI
in ferromagnets and co-planar antiferromagnets. While the relevance of this effect
for finite non-collinear clusters has been recently confirmed theoretically [106], see
Fig. 6.10a, the OM of infinite solids which originates in the scalar chirality is known
as the topological orbital magnetization (TOM) [84], and its emergence has been
studied in several works.

For prototypical antiferromagnetic γ -FexMn1−x alloys with the so-called 3Q
spin structure, depicted in Fig. 6.10e, the emergence of the orbital magnetization
of the order of 0.1μB per unit cell and large AHE of the order of 1000 S/cm,
shown in Fig. 6.10c, d, arising upon introducing a distortion along the [111]-axis
(quantified by a parameter δ = d ′/d where d and d ′ refer to the distance between
adjacent (111) planes in the undistorted and distorted case, respectively) and tuning
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the concentration x , has been shown in [102]. The values of the OM and AHC in
this family of alloys were solely attributed to the spin-chirality mechanism, while
the effect of SOC was found to be negligible. Since the spin magnetization in the
3Q-state is vanishing, the system thus presents an example of a topological orbital
ferromagnet (TOF), i.e. a compensated AFM, whose macroscopic orbital magneti-
zation is completely determined by the spin topology in real space without reference
to SOI. Theoretical calculations also clearly indicate that both magnitude and sign
of the TOM in TOFs can be controlled efficiently by means of proper electronic-
structure engineering through application of strain and variation of the concentration
in alloys, see Fig. 6.10. The magnitude of the OM in γ -FeMn can be enhanced even
further by considering thin films with noncollinear spin textures. For example, in
another TOF—a Mn monolayer deposited on Cu(111) which exhibits an in-plane
3Q-state in its ground state—the magnitude of TOM reaches as much as 1.5μB ,
being very strongly correlated with the AHE in this system [104]. Another theoreti-
cal study performed for an Fe monolayer on Ir(001) surface indicates that in general,
both SOC and scalar spin chirality can compete for the final value of the OM in low-
dimensional antiferromagnets [84]. On the side of large-scale non-collinear struc-
tures, topological orbital magnetism emerges naturally in chiral skyrmions of various
size [106, 111].

In a wider context, as compared to the spin of electrons, the orbital degrees of
freedom offer higher flexibility regarding their internal structure and the size of
orbital moments, rendering them versatile operational building blocks in the field of
orbitronics. In this respect, TOFs as a new class of materials occupy a special place
since their nontrivial orbital magnetism is a direct consequence of complex spin
arrangement. Thismeans that the properties of TOFs can be directly tuned by altering
the latter spin distribution, e.g., via electric-field-induced spin torques [74] or by
modifying the strength of the spin-spin interactions. The emergence of sizeable TOM
zero-spin-magnetization TOFs opens a path to intriguing physics as orbital moments
couple to external magnetic fields, optical perturbations, and orbital currents. For
example, it is known that the chiral correlation between the spins on a lattice can
display high stability with respect to fluctuations (see e.g. [112]), and one can expect
that the long-range ferromagnetism of TOFs can survive the ordering temperature
of the spin state. In addition, effective spin Hamiltonians used to describe the phase
diagrams of TOFs in an external magnetic field require an amendment by the orbital
Zeeman energy. The latter interaction of TOM with external magnetic fields can be
also utilized to control the chirality of the spin texture owing to the close correlation
between the spin structure and TOM.
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Chapter 7
Spin Hall Effect

Matthias Althammer

Abstract The spin Hall effect is of current interest from a fundamental and a device
application point of view. Most importantly, the spin Hall effect allows to transfer
an electrical charge current into a pure spin current, i.e. a current carrying only
(spin) angular momentum without an accompanying charge current. This property
enables us to gain access to novel spin current related effects by using electrical
generation and/or detection schemes. Within this chapter, we will give an overview
of the multitude of phenomena associated with it, focussing on means to quantify
the spin Hall effect.

7.1 Introduction

While the phenomena of the anomalous Hall effect has been experimentally dis-
covered by Hall [45] in 1881, it took over a century to understand the microscopic
mechanisms leading to this effect [83]. During this time it was found that the anoma-
lous Hall effect is only a special case of a more general effect, that depends on the
spin-orbit interaction in a material. This general effect is called now the spin Hall
effect [34, 50, 51, 105]. The work on the spin Hall effect has lead to the discovery
of many new phenomena, that could not have been imagined previously. Despite the
fact that the spin Hall effect is now known for over a decade, the interest into it has
not decayed, but rather increased in the last years. In the following we will discuss
the most important recent findings in the field of the spin Hall effect.

This chapter is organized in the following way. First, the concept of pure charge
and spin currents is established in Sect. 7.2. As a next step we introduce the spin
Hall effect and the inverse spin Hall effect and discuss how these effects allow to
transform a pure charge current into a pure spin current and vice versa. In Sect. 7.4
various experimental methods to quantify the spin Hall effect are summarized. This
chapter is concluded in Sect. 7.5 with a short summary and an outlook.
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7.2 Charge and Spin Currents

In a conventional electrical conductor charge currents and spin currents originate
from the flow of mobile charge carriers, that posses a charge as well as a spin degree
of freedom. Within the framework of Mott’s two spin channel model, a pure, spin-
unpolarized charge current Jq is represented as the parallel flowof an equal number of
spin-up and spin-down electrons as illustrated in Fig. 7.1a. In contrast, for a pure spin
current spin-up and spin-down electrons flow in opposite directions as illustrated in
Fig. 7.1c, such that the net charge current vanishes, while a finite spin current density
Js is maintained. The combination of Jq and Js is called a spin-polarized charge
current and is realized as the parallel flow of an unequal number of spin-up and spin-
down electrons as illustrated in Fig. 7.1b. Such a situation is most easily obtained
by passing a charge current through a ferromagnetic conductor. It is important to
note that while charge currents can only flow in electrical conductors via mobile
charge carriers, pure spin currents can also be transported in electrical insulators
with magnetic order, where the angular momentum of Js is then carried by excitation
quanta of the magnetic order parameter (magnons).

In general, a current is the directed flowof a transport quantity. For a charge current
the transport quantity is a scalar, which is the electron charge −e (e > 0), such that
one can write the charge current density as jq = −en < v >), where n is the density
of the electrons, v is the velocity operator, and < · · · > denotes the thermodynamic
expectation value for a non-equilibrium state. A spin current density js in an electrical
conductor represents the flow of spin (angular) momentum, which is an axial vector.
This fact is illustrated in Fig. 7.2. For all three cases in Fig. 7.2a, b, c the flow direction
of js is the same, while the orientation of the spin polarization s changes. Thus,
js = �/4 n < v × σ + σ × v > is represented in the weakly relativistic limit as a
second-rank tensor [9, 19, 20], where σ is the vector of Pauli spin matrices and � is
the reduced Planck constant. Throughout the literature two different definitions for
the transport quantity of the spin current can be found, it is either in units of angular

Jq JsJq

Js

(a) (b) (c)

Fig. 7.1 Illustration of a pure charge, spin-polarized charge and pure spin currents.a For an identical
number of spin-up and spin-down electrons moving in the same direction, we obtain a net spin-
unpolarized charge current Jq. b If the number of spin-up and spin-down electrons flowing in the
same directions is unequal, this results in a spin-polarized current, i.e. a flow of a charge current
Jq and spin current Js at the same time. c If there is an identical number of spin-up and spin-down
electrons moving in opposite directions, the net charge current vanishes, while the spin current Js
remains finite
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Js

s
Js

s

Js

s

(a) (b) (c)

Fig. 7.2 Three different orientations ((a), (b), (c)) of the spin polarization vector s for a fixed flow
direction of the spin current

momentum or magnetic moment. Due to the fact that the angular momentum and
magnetic moment of an electron are antiparallel, this introduces a factor of −1
between these two definitions of pure spin currents. Last but not least, it is important
to realize that while charge is a conserved transport quantity, the spin polarization
will be randomized on the length scale of the so-called spin flip length λsf . In this
regard, charge and spin currents are dramatically different. In the following sections,
we limit ourselves to the case of a spin current js flowing in one direction with a
perpendicular spin polarization s, neglecting the second-rank tensor properties of the
pure spin current.

7.3 Spin Hall Effect

The spin Hall effect (SHE) originates from the spin-dependent transverse velocity,
which mobile charge carriers acquire while moving through a material with finite
spin-orbit coupling due to extrinsic scattering effects and intrinsic bandstructure
effects. These spin-dependent transverse velocities have already been discussed in
Chap.6 as the cause for the anomalous Hall effect (AHE). The very same extrinsic
and intrinsic mechanisms that are responsible for the AHE also lead to the SHE. The
SHE thus can be thought of as a more general version of the AHE, which is present
in non-magnetic (i.e. materials without magnetic order) conductors. It is important
to note that within this chapter we interpret the SHE as an effect arising in the
bulk of an material, in contrast to interface effects like Bychkov-Rashba spin-orbit
coupling [70].

The SHEmanifests itself in an electrical conductive, non-magnetic material (NM)
with finite spin-orbit coupling, by the transformation of a pure charge current into a
pure spin current in the transverse direction of the charge current, caused by the spin-
dependent transverse velocity acquired by the electrons. This process is illustrated in
Fig. 7.3a. Due to the spin-dependent nature of these effects, the transverse velocity
and the spin-polarization s of the electrons are always perpendicular to each other,
such that spin-up and spin-down electrons are deflected in opposite directions. As the
same number of spin-up and spin-down electrons are moving in opposite directions,
the net transverse charge current is 0, while a finite spin current js flows in the

http://dx.doi.org/10.1007/978-3-319-97334-0_6
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Jq
JqJs Js

s s

(a) (b)

Fig. 7.3 Schematic of the spin Hall and inverse spin Hall effect. a The spin Hall effect is caused by
spin-dependent scattering effects and transforms a charge current Jq into a transverse spin current
Js with a spin polarization s. b In the inverse spin Hall effect a spin current Js with spin polarization
s is transformed into a transverse charge current Jq

transverse direction. We can describe this spin current generation from a charge
current by:

js = αSH

(
− �

2e

)
jq × s. (7.1)

The spin Hall angle αSH is a material dependent parameter that reflects themagnitude
of the spin-dependent scattering effects. The SHE thus allows to generate a pure spin
current in a material without magnetic order, but finite spin-orbit coupling.

Due to Onsager reciprocity the inverse process, a transformation of a pure spin
current into a charge current due to spin-orbit coupling is also possible and then called
the inverse spin Hall effect (ISHE), as illustrated in Fig. 7.3b.We first consider a pure
spin current, with spin-up and spin-down electrons flowing in opposite directions.
As both the spin direction and direction of movement are opposite, the spin-up and
spin-down electrons are deflected in the same direction, due to the spin-dependent
transverse velocity effects, and create a charge current jq given by:

jq = αSH

(
−2e

�

)
js × s. (7.2)

Due to the vector product in (7.2) a charge current can only be generated via the
ISHE if js and s are non-collinear. However, the ISHE enables the all-electrical
detection of a pure spin current in an electrical conductor with finite αSH [99]. Since
both, SHE and ISHE, rely on spin-orbit coupling, large αSH are expected in heavy
elements. From the experiment, one finds a large spin Hall angle in materials such as
platinum (Pt), tantalum (Ta), tungsten (W), gold (Au), or alloys such as CuBi, with
|αSH| < 0.4 [39, 69, 79, 85, 89, 121].

While a phenomenological description of the SHE has already been put forward
by D’yakonov and Perel’ [34] in 1971, interest into these effects was only sparked 3
decades later, whenHirsch [50] published his theoretical description of this effect and
coined the term spin Hall effect. This ignited a series of publications on the SHE in
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theory and experiment. Two very good review articles that cover all these theoretical
and experimental observations have now been published by Hoffmann [51] and
Sinova et al. [105].

7.4 Experimental Determination of the Spin Hall Angle

Before we discuss the experiments on the SHE (and ISHE), it is beneficial to first
discuss the different steady-state conditions that can occur due to the implied bound-
ary conditions in a sample. As the spin-up and spin-down electrons move in opposite
transverse directions, we only obtain a transverse spin current (Fig. 7.3a). If we
assume that the spins cannot exit the sample on the transverse edges of the sample,
this spin current causes a spin accumulation on the length scale of the spin diffusion
length of the material. In the steady-state, this spin accumulation gives rise to a gra-
dient in the spin-dependent electrochemical potential, which opposes the transverse
spin current generated by the SHE (Fig. 7.4a). In the end, we obtain a steady-state
condition with no net transverse spin current flow, but with a spin accumulation at the
sample edges. Assuming that one could realize a spin current short (as illustrated in
Fig. 7.4b), which connects the two transverse sides of the sample, a finite transverse
spin current flow will be maintained in the steady-state and the SHE will then effec-
tively increase the longitudinal resistivity of the sample. This fact can be exploited
for the detection of the SHE in spin Hall magnetoresistance experiments, as we will
see later in this section.

Despite first theoretical work on the spin Hall effect in the early 1970s [34], it took
several decades until much experimental effort has been put into the investigation
of the spin Hall effect. One major challenge was the vanishing of the net transverse

(a) (b)

Jq

s
Jq

Js

s

Fig. 7.4 a For an open spin circuit boundary condition (i.e. spins cannot exit at the transverse sides
of the sample), we obtain in the steady-state a spin accumulation, which compensates the transverse
spin current flow generated from the SHE. b In the case of a closed spin circuit boundary condition,
the transverse spin current flow is maintained in the steady-state and causes an increase of the
longitudinal resistivity (effective increase of the length of trajectory for the electrons). Adapted
with permission from [1]
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charge current, which made a direct electrical detection via an electric field like in
the case of the AHE [45] impossible. However, over the course of the years, a couple
of pioneering experimental work has been carried out. For example, Chazalviel [16]
used electron spin resonance in non-magnetic semiconductors to detect an AHE-like
signature of the net spin polarization generated by a microwave magnetic field.

After the theoretical publication by Hirsch [50], optical detection schemes were
the first experiments to image the spin accumulation caused by the SHE in semi-
conducting materials. This approach has been pioneered by Kato et al. [60] and
Wunderlich et al. [126] in the direct bandgap semiconductor GaAs. In the exper-
iments by Kato et al. the magneto-optical Kerr effect was used to image the spin
accumulation caused by the SHE in a semiconductor. In the experiment, the prob-
ing linearly polarized laser spot (with a photon energy close to the band gap of the
semiconductor) was stepwise rastered across a strip of unstrained GaAs, while an
electric field was applied to the strip, and the Kerr rotation of the the reflected light
was measured for each step. The obtained Kerr signal is only sizeable at the edges of
the GaAs strip and has opposite sign at the two transverse edges. This is consistent
with our picture of the spin accumulation caused by the SHE (compare Fig. 7.4a).
Wunderlich et al. [126] used a different approach to detect the spin accumulation
caused by the SHE. Here, the circular polarization of light generated by light emit-
ting diodes fabricated at the edges of a GaAs strip were used to detect the spin
accumulation. Both experimental results were the first proof for the existence of the
SHE.

While optical detection schemes allow to image the spin accumulation in semi-
conducting materials, it is rather challenging to carry out such optical experiments
in metals and especially to quantify the spin Hall angle from such experiments. Due
to the fact that spin angular momentum is carried by electrons in electrical conduc-
tors an all-electrical detection technique appears desirable for a quantitative analysis.
The basic experimental concept used for such an electrical detection is based on the
ISHE, since here a charge current is generated by a spin current and the effect is
the Onsager reciprocal of the SHE, such that the determination of the inverse spin
Hall angle directly yields αSH. In such experiments different techniques have been
used to generate a pure spin current: in non-local spin valve experiments and spin
Hall tunneling spectroscopy, a spin-polarized charge current emitted from a ferro-
magnet is used to generate a diffusive spin current. In spin pumping experiments a
microwave excitation of the magnetization in a ferromagnet is used to drive a pure
spin current across the interface into the NM. A different route is to quantify the
amount of spin current generated by the SHE by measuring the spin-transfer torque
imposed onto a ferromagnet by this spin current. For such experiments, spin-transfer
torque induced ferromagnetic resonance or magnetization switching can be used for
a direct measurement of the spin Hall effect. In addition, spin Hall magnetoresistance
can be used to quantify the spin Hall effect. In the following we will describe these
techniques in more detail.
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7.4.1 Non-local Experiments

An important milestone for non-local measurement device concepts was established
by Johnson and Silsbee [57] in 1985, by the experimental generation of a pure spin
current from a spin polarized charge current in lateral nanostructures. In such struc-
tures as illustrated in Fig. 7.5a, a charge current is passed through a ferromagnetic
metal contact (ferromagnet, FM) into a NM, which then generates a spin accumu-
lation in the NM. This spin accumulation will diffusive in all directions within the
NM, while the charge current used for the generation of the spin accumulation is
only flowing in one direction. By geometric design in these lateral structures, one
can then separate the charge current from the pure spin current. First experiments
in this directions, where the detection of the pure spin current was realized via a
second ferromagnetic contact, coined the term non-local spin valves and allowed
to investigate the spin current transport in NMs [36, 53, 54, 63]. Valenzuela and
Tinkham [116] pioneered this approach to quantify the spin Hall effect in lateral
nanostructures. As illustrated in Fig. 7.5a, a spin-polarized charge current from a FM
induces a spin accumulation in the NM. In their experiments an Al2O3 tunneling
barrier was present between the FM and NM, and by applying an external magnetic
field the magnetization of the FMwas aligned along z. The spin accumulation drives
a diffusive pure spin current js along x, with a spin polarization s ‖ z. At the distance
LSH, a perpendicular NM bar (oriented along y) crosses the NM path. This pure spin
current is then transformed into a charge current flowing along y via the ISHE. Due
to open circuit boundary conditions this leads in the end to an electric field EISH

(compensating the transformed charge current), which is then electrically detected
as a voltage Vnl. The measured non-local resistance RSH = Vnl/I , where I is the
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Fig. 7.5 Non-local detection of the ISHE: a Schematic illustration of the non-local detection
scheme. A charge current is driven through a FM/NM contact, which induces a spin accumulation
at the interface. The resulting diffusive spin current js is then transformed into a charge current a
distance LSH away from the FM. bNon-local resistance signal as a function of the external magnetic
field applied perpendicular to the sample plane. The inset shows an electron microscopy image of
the actual device structure. Adapted with permission from [116]



216 M. Althammer

charge current applied to the system is shown in Fig. 7.5b as a function of the applied
external magnetic field. RSH changes its sign upon field inversion, as the direction of
the magnetization of the FM and thus the spin polarization s are inverted, which also
changes the sign of the detected ISHE voltage. Moreover, the signal saturates for
large positive and negative fields and the curvature follows the magnetization orien-
tation obtained from additional non-local spin valve experiments. For a quantitative
extraction of αSH one can then use [108, 116]:

ΔRSH = P

tNMσNM
αSH exp (−LSH/λsf), (7.3)

where P is the spin-polarization of the electrically injected current, tNM and σNM is
the thickness and the conductivity of the NM. For the extraction of αSH it is thus
necessary to vary the separation of the ISHE detector and the FM (LSH) and measure
ΔRSH for each distance, using an exponential fit to the data one can then determine
the spin diffusion length λsf and the spin Hall angle αSH. Valenzuela and Tinkham
(see [116]) obtained αSH = 2 × 10−4 for Al at T = 4.2 K.

As evident from this discussion, it is necessary to determine first λsf to get quan-
titative values for αSH. However, the design of the experiment allows this extraction
of λsf with the very same measurement technique. The choice of materials is limited
to such with a λsf that is larger than the length scales realizable by the lithography
process (i.e. typically λsf > 100 nm). This makes especially studying materials with
a large spinHall angle a challenge, as due to the large spin-orbit interaction λsf is very
likely to be small. A way to circumvent this issue is by utilizing a two step process,
where two NMs (NM1, NM2) are used. First the spin current is injected into NM1,
which has a large λsf and transported in theNM1 to a perpendicular strip ofNM2with
a small λsf , but large αSH for ISHE detection. This approach has been experimentally
realized by Kimura et al. to quantify the spin Hall angle of Pt (NM2) using Cu (NM1)
as the spin current conductor [64]. This approach also no longer requires the external
magnetic field to be oriented along z, because the spin current injected from NM1
into NM2 flows along z such that s has to be oriented along x (Compare Fig. 7.5a)
for maximum conversion efficiency via the ISHE. Thus the external magnetic field is
now applied in-plane along x. In this publication Kimura et al. [64] further showed
that it is possible to detect the spin current generated by the spin Hall effect as a
non-local voltage between the FM and the Cu leads, i.e. exchanging the contacts for
charge current drive and voltage detection. Using both detection schemes the exper-
imental reciprocity of SHE and ISHE has thus been proven. As already discussed,
the usage of two or more NMs in such non-local experiments avoids applying the
external magnetic field in the out-of-plane direction. For a single NM layer, FMswith
a perpendicular magnetic anisotropy (magnetic easy axis along the surface normal)
can be used as shown by Seki et al. [104] to completely avoid the application of an
external magnetic field. Most experiments detect the induced charge current from
the ISHE as an open-circuit voltage in these lateral structures, but it is also possible
to detect the charge current directly, for example via loop structures [87].
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Another important obstacle tomaster in the non-local SHEdetection are additional
voltage contributions originating from unavoidable non-local charge currents. These
non-local charge currents become relevant due to the small dimensions of the sample,
such that the charge current used as a drive also leaks into the non-local voltage
detection. In principle, a careful analysis of Rnl as a function of LSH should allow to
separate the charge current contribution from the pure spin current contribution, as
the relevant length scales should be different. While the charge current scales with
the mean free path of the NM, the ISHE response scales with λsf . This problem is
a major obstacle for the ISHE detection of a SHE generated pure spin current in
double Hall bars, where contributions from the charge current are dominating the
measured non-local voltage signal [75]. Special care should be taken in such non-
local detection schemes to rule out any spurious contribution to the non-local voltage,
when determining αSH.

7.4.2 Spin Pumping

ISHE detection of a pure spin current is also used in the realm of spin pumping
using FM/NM heterostructures. Here, the pure spin current is generated by exciting
the magnetization of a ferromagnet out of equilibrium by microwave irradiation.
Now, to relax back into the ground state, the magnetization has to change its angular
momentum (difference indicated by the small grey arrow in Fig. 7.6a). While in the
FM itself the angular momentum is in the end transferred into the crystal lattice,
in FM/NM heterostructures an additional way of relaxing angular momentum of
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Fig. 7.6 Illustration of the spin pumping process in a FM/NM heterostructure. a Due to an exter-
nal microwave driving field hFMR, the magnetization M precesses around the effective magnetic
field Heff . The two dashed lines indicate the difference in angular momentum between the non-
equilibrium and equilibrium state of the magnetization. b If the FM is interfaced with a NM, excess
angular momentum is transmitted via a spin current js across the interface into the NM. In the NM
the spin current decays over the lengthscale λsf
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the magnetization is the emission of a pure spin current into the adjacent NM (see
Fig. 7.6b). In spin pumping experiments the magnetization is driven out of equilib-
rium by applying a microwave excitation in a ferromagnetic resonance experiment.
Another way of achieving such out-of-equilibrium magnetization states is the appli-
cation of a thermal drive using a temperature gradient [9, 113, 114], which is then
called the Spin Seebeck effect.

In more detail, in the steady-state the excitation via the microwave field and the
relaxation (damping effects) of the magnetization have to balance each other, which
leads to a precessional motion of the magnetization around its thermal equilibrium
state, with a precession cone angle Θ (see Fig. 7.6a). The magnetization dynamics
can be modeled using the Landau-Lifshitz-Gilbert (LLG) equation [80, 118]

dm
dt

= −γμ0 (m × Heff) + α

(
m × dm

dt

)
, (7.4)

with the gyromagnetic ratio γ , the normalised magnetization directionm = M/|M|,
and the so-called Gilbert damping parameter α describing viscous magnetization
damping. The first term on the right hand side of (7.4) describes the precession ofM
around an effective magnetic field Heff , which contains the external magnetic field,
as well as contributions from magnetic anisotropy and demagnetizing fields from
the sample shape. From the LLG equation the ferromagnetic resonance (FMR) con-
dition can be calculated, i.e. the microwave frequency required to obtain a resonant
absorption for a given Heff .

As can be seen from Fig. 7.6b, the excess angular momentum generated by the
coherentmicrowave excitation is transferred across the FM/NMinterface, and relaxes
in the NM. The corresponding pure spin current across the interface is given by [110–
112]

jpump
s = �

4π

{
Re(g↑↓)

[
m × dm

dt

]
− Im(g↑↓)

dm
dt

}
, (7.5)

here, g↑↓ is the spinmixing conductance describing the available spin transport chan-
nels at the interface. As visible from the first term on the right hand side of (7.5), the
spin current generated by spin pumping represents an additional Gilbert-like damp-
ing contribution, which will change the resonance line width of the ferromagnetic
resonance (see also Fig. 7.6). By investigating the dependence of the ferromagentic
resonance line-width as a function the FM thickness g↑↓ can be determined from fre-
quency dependent ferromagnetic resonance experiments. Such experiments showed
that g↑↓ ≈ 1019 m−2 for electrically conducting ferromagnets [2, 28, 121], as well
as badly conducting or fully insulating ferromagnets such as magnetite (Fe3O4) or
yttrium iron garnet (Y3Fe5O12) and related garnets [14, 28, 49, 59, 101, 107]. These
results suggest, that the spin current generated from spin pumping for different mate-
rials is identical, if the precession cone angle Θ is equal. In addition, spin pumping
from insulating FMs is as efficient as spin pumping from electrically conducting
FMs. Moreover, by taking the time average of (7.5) one finds that the pumped spin
current has two contributions: one time independent contribution (DC spin current)
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and one time dependent contribution (AC spin current) [110–112]. In most experi-
ments using electrical detection schemes for the quantification of the spin Hall angle
only the DC spin current component is used.

For the electrical detection of the pure spin current injected into the NM by
spin pumping the ISHE is used (Fig. 7.7a) in so-called electrically detected spin
pumping experiments. The pumped spin current flows along the surface normal of the
heterostructure and the orientation of s is determined by themagnetization orientation
in the FM, with s|| − M in typical ferromagnets [80]. Due to the ISHE (7.2) in the
NM the pumped spin current is transformed into an electrical charge current, flowing
in the NM plane. In the experiment this charge current is either detected directly,
or the electric field, generated by the charge accumulation, is detected as a voltage
signal ΔV in ferromagnetic resonance. As discussed in more detail in [28, 81, 82,
121], the magnitude of the spin pumping spin Hall voltage ΔV is given by

ΔV

L
= 2e

�
αSH

jsηλsd tanh
(

tNM
2λsd

)
σFMtFM + σNMtNM

. (7.6)

Here, σi and ti are the conductivities and layer thicknesses of FM and NM, respec-
tively, and η is the backflow parameter (0 ≤ η ≤ 1) accounting for a possible spin
current backflow into the FM and is defined as [19, 56]:

η =
[
1 + 2Re

(
g↑↓)

σNMλsf
e2

�
coth

(
tNM
λsf

)]−1

. (7.7)

If tNM � λsf then η = 1 and the pumped spin current is completely absorbed in the
NM.

Data from electrically detected spin pumping experiments at room temperature
in a Fe/Pt thin film bilayer are shown in Fig. 7.7b–e [27]. For the experiments the
sample was placed in the antinode of the microwave magnetic field of a commercial
microwave cavity operating at a fixed frequency of 9.3GHz. The FMR signal of the
Fe layer, recorded with the external magnetic field applied as sketched in Fig. 7.7a,
is shown as a solid line in panel (b). The DC voltage VDC shown in Fig. 7.7c exhibits
an identical Lorentzian line shape as the FMR signal and the magnetic field position
coincides with the FMR signal. Upon inversion of the static external magnetic field
orientation the FMR absorption remains unaltered (panel (d)). In contrast, a sign
change is observed for the resonant peak in the VDC signal, as evident from Fig. 7.7c,
e, respectively. The inversion of magnetic field orientation results in an inversion of
s, and thus also an inversion of the ISHE charge current flow direction and provides
an additional consistency check in the experiment [2, 5].

In most experiments, the line shape of VDC is more complex than the simple
Lorentzian line shape expected from the ISHE [81]. Additional contributions to VDC

originate frommicrowave rectification effects [12, 42, 58, 81]. Due to the precession
of the magnetization at FMR conditions also the resistance of the FM varies with the
microwave frequency due to AHE and anisotropic magnetoresistance contributions.
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Fig. 7.7 Electrically detected spin pumping experiments on a Fe/Pt heterostructure. a Electrical
detection scheme for the measurement of the spin current generated by the spin pumping effect.
The spin current across the FM/NM interface is transformed into a charge current in the NM via
the ISHE, which leads to a charge accumulation in the NM. This charge accumulation can then
be detected as a voltage signal in VDC. b Ferromagnetic resonance signal obtained for an external
magnetic field sweep, while (c) shows the simultaneously detected VDC. A maximum in VDC is
detected at the ferromagnetic resonance of the Fe layer. If the magnetic field direction is inverted,
the ferromagnetic resonance signal remains unchanged (d), while the polarity of VDC is inverted
(e). Data taken from [27]

This time-varying resistivity then rectifies microwave-frequency charge currents,
induced in the sample by the microwave irradiation. The resulting lineshape of the
rectification signal is rather complex and careful evaluation of the experimental data
is necessary to separate these contributions from the ISHE signal.

As already discussed, the pumped spin current also contains an AC component
(see (7.5)). While the flow direction of this AC spin current is still along the surface
normal in the FM/NM bilayers (see Fig. 7.6b), the spin polarization s varies with
time and is oriented in the precession plane of the magnetization [56]. In first FMR
experiments analyzing the dynamic coupling between two FM layers separated by
a NM layer indirect evidence for the existence of this AC component has already
been found [122]. A quantitative detection of such AC-spin currents is rather chal-
lenging, but has been achieved by using parametric driving [44] or self-calibrating
techniques [119, 120]. From these first results, it is clear that the AC spin current is
much larger than its DC counterpart. However, the experiments show that open ques-
tions like the frequency dependence of the spin Hall effect and phase correlations
between the spin polarization of the spin current and the charge current generated
by the ISHE need to be answered by future experiments.

As discussed previously, the spin pumping effect leads to an ISHE charge current
flowing in the NM and also increases the FMR line-width. Ando et al. showed that
also the inverse effect exists, i.e. a charge current in the NM influences the FMR line-
width via a spin current generated by the SHE [4]. The experimental setup is identical
to a spin pumping experiment only that in addition a charge current is applied to the
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Fig. 7.8 Spin Hall effect induced magnetization dynamics. a Illustration of the setup for spin Hall
damping enhancement.While the magnetizationM is driven into FMR by amicrowave excitation, a
charge current is driven simultaneously through the NM, where it is transformed into a spin current
flowing across the interface into the FM. As the spin polarization s and the precessingmagnetization
are not collinear an additional torque due to the spin current acts onto M. b Experimental config-
uration for SHE induced spin-transfer torque ferromagnetic resonance. An RF charge current jq is
applied to the FM/NM heterostructure, which is transformed into a spin current js with a spin polar-
ization s. The spin current leads to an oscillating spin-transfer torque acting on the magnetization
M, which leads to a precession of M

NM, while the magnetization is driven into FMR via an external microwave field
(see Fig. 7.8a). The change of the FMR line-width as a function of the applied charge
current is then measured. One should note that the static external magnetic field is
also oriented here perpendicular to the charge current direction. In more detail, the
spin-transfer torque τ STT acting on M due to the spin current, driven by the charge
current in the NM, can be written as [4, 48, 68, 90]:

τSTT = −γ
�

2e
jq

[
ξDL

M2
s

M × (M × s) − ξFL

Ms
(M × s)

]
, (7.8)

where Ms is the saturation magnetization of the FM. τ STT consists of two contribu-
tions, the first term on the right hand side of (7.8) is called the damping-like torque,
with ξDL describing its efficiency, the second term is called the field-like torque, with
the efficiency ξFL. This naming convention originates from the two contributions
in the LLG equation (7.4). The efficiencies (dimensionless parameters) are given
by [90]:

ξDL = αSHRe

[
2g↑↓ tanh

(
tNM
2λsf

)
σNMλsf h

e2
+2g↑↓ coth

(
tNM
λsf

)
]

, (7.9)

ξFL = αSHIm

[
2g↑↓ tanh

(
tNM
2λsf

)
σNMλsf h

e2
+2g↑↓ coth

(
tNM
λsf

)
]

. (7.10)
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Here, h is the Planck constant. One now has to add τ STT to the LLG equation (7.4),
which then leads to a damping/antidamping contribution (neglecting the field-like
torque due to the small imaginary part of the spin mixing conductance) in the mag-
netization configuration given here (see Fig. 7.8a). Indeed, Ando et al. [4] observed a
change in the FMR line-width ΔH depending on the current polarity, if the external
magnetic field is oriented perpendicular to the current direction, while there is no
change in the FMR line-width, when the external magnetic field is oriented parallel
to the current direction. A challenge for a quantitative analysis of the line-width
changes are additional contributions like Joule heating and Oersted fields stemming
from the applied charge current, that need to be included.

The physical concept of these experiments is taken a step further in spin Hall
effect driven nano-oscillators [24, 31–33, 40, 46, 115]. Here, the magnetization in
a FM/NM bilayer is driven by the spin-transfer torque of the spin current generated
from a DC charge current in the NM into auto-oscillations, i.e. a continuous pre-
cessing motion (FMR), leading to an emission of microwave frequency signals. The
occurrence of auto-oscillations requires large current densities in the NM layer, in
lateral structures this is achieved in the experiment by structuring nm sized constric-
tions into the NM layer [32]. As the output power of a single device is rather small,
the main challenge is to phase-lock several of these oscillators to obtain reasonable
output powers, which currently limits the use in applications [8, 93]. It is worth not-
ing that similar effects have been theoretically predicted for antiferromagnets, where
the output frequency of such oscillators would be in the THz regime [17, 21, 29, 62].
An experimental proof of these theoretical conjectures would open up SHE induced
spin currents for also driving dynamics in an antiferromagnet.

7.4.3 Spin-Transfer Torque Induced Ferromagnetic
Resonance

The spin current generated from a charge current via the SHE can also be used to
drive magnetization dynamics in FM/NM bilayers. As evident from (7.8), a spin-
transfer torque is imposed by the spin polarization s of the SHE spin current, which
acts as a driving force onto the magnetization [65, 68, 69, 74, 89, 96, 102].

In spin-transfer torque FMR a RF charge current is applied to the FM/NM bilayer
with the magnetization oriented collinear with the charge current direction. As illus-
trated in Fig. 7.8b the RF charge current is transformed into a spin current via the
SHE. As the spin polarization s and the magnetization M are aligned perpendicular
to each other, this leads to an oscillatory spin-transfer torque acting onM (7.8). If the
external applied magnetic field and the frequency of the RF charge current match the
FMR condition, the magnetization starts to precess. Liu et al. [68] applied this tech-
nique to determine the spin Hall angle of Pt in NiFe/Pt bilayers. To detect the FMR
motion of the magnetization, they measured the rectification voltage Vmix generated
by the homodyne mixing of the time-varying magnetoresistance, due to the precess-
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ing motion of the magnetization, with the RF charge current drive. The lineshape of
Vmix contains both symmetric and antisymmetric Lorentzians for the NiFe/Pt sam-
ple, while the lineshape for the NiFe and NiFe/Cu control samples only contains an
antisymmetric Lorentzian. Initially, it was assumed, that the antisymmetric contri-
bution originates from the RF Oersted field generated by the RF charge current in
the NM. In contrast, the symmetric lineshape is caused by the spin-transfer torque
effect induced by the SHE in the NM. If the sample dimensions, conductivities of the
NM and the FM layer, and the saturation magnetization of the FM are known, this
allows to extract the spin Hall angle αSH directly from such experiments. In the end,
the ratio of the symmetric and antisymmetric Lorentzian amplitude is proportional to
αSH [68]. Liu et al. claim that this method is self-calibrating, as the torque generated
by the SHE can be directly compared to the torque caused by the Oersted field of
the RF charge current. However, it remains debatable whether only the SHE torque
can cause a symmetric line shape or if other contributions like spin galvanic effects,
due to the broken inversion-symmetry, lead to additional spin-transfer torque contri-
butions [39]. Using this method Liu et al. determined αSH for Pt (|αSH,Pt| = 0.076,
[68]), Ta (|αSH,Ta| = 0.12 . . . 0.15, [69]) andβ-phaseW (|αSH,W| = 0.30, [89]) films.

The next logical step was to switch the magnetization direction in the FM via
the spin-transfer torque. First experimental proof of magnetization switching has
been presented by Miron et al. [74, 76] and Liu et al. [69]. A schematic sketch of
the device used by Miron et al. [76] is shown in Fig. 7.9a. Here, a trilayer structure
consisting of a ultrathin 0.6 nm Co layer sandwiched between a 3 nm thin Pt layer
and a 1.6 nm thin AlOx layer was used in the experiment. The Co layer exhibits a
strong perpendicular magnetic anisotropy (easy axis along the surface normal), such
that AHE measurements can be used to monitor the magnetization orientation (see
Fig. 7.9c). In the spin torque switching experiments a charge current is applied to the
Pt strip in x direction. Due to the SHE this causes the injection of a spin current with
the spin polarization along the y direction. In their spin torque switching experiments
the external magnetic field (applied along the z direction) was stepwise swept. At
each field step a positive and negative current pulse (Ip = 2.58 mA) (see Fig. 7.9b)
is applied to the Pt strip and the AHE signal is then recorded. The result of this
procedure is shown in Fig. 7.9d. For negative field values (−300 mT < B < 0 mT),
positive current pulses switch themagnetization into the+z direction, while negative
current pulses switch the magnetization into −z direction. For positive field values
(0 mT < B < 300 mT), the situation is reversed. Initially, Miron et al. assumed that
the switching of the magnetization is caused by a spin accumulation generated by the
inverse spin galvanic effect [22, 37, 71, 77], caused by the broken inversion symmetry
in the trilayer stack. However, further experiments showed that contributions of the
SHE to the spin-transfer torque are not negligible [39]. In the experiments conducted
by Liu et al. [69] a 1 nm Co40Fe40B20 layer was sandwiched between a 4 nm thin
Ta layer and a 1.6 nm thin MgO layer capped with a 1 nm thin Ta layer. AHE
measurements were again used to trace the magnetization direction, at a certain
critical threshold current the magnetization switches its orientation and causes a
change in the sign of the AHE signal. This shows that in such NM/FM bilayers the
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Fig. 7.9 Spin transfer torque switching experiments conducted by Miron et al. [74, 76]. a Illus-
tration of the device used by Miron et al., the ultrathin Co layer is sandwiched between a thin Pt
cross and a AlOx layer, and exhibits a large perpendicular magnetic anisotropy (easy axis along z).
b Applied current pulses as a function of time and corresponding magnetization orientation for the
applied current pulses. c AHE signal obtained for the device using an external magnetic field sweep
(field applied along z), at the coercive field Bc = 300 mT the magnetization orientation is reversed.
d AHE signal obtained in a stepped field sweep, where at each field step a positive (black squares)
and negative (red squares) current pulse is applied to the Pt along the x direction. Adapted with
permission from [74]

magnetization direction of the FM can be influenced by the application of a charge
current.

In these initial experiments on magnetization switching via SHE spin-transfer
torque it was assumed that the reversal of the magnetization direction occurs in a
uniform way. However, recent spatially- and time-resolved experiments show that in
such structures the reversal is caused by domainwall nucleation and propagation [10].
Moreover, it has been shown that the spin torques generated from the SHE can also
increase the domain wall velocities in similar structures as used for magnetization
switching [35, 78, 97, 98]. It is important to emphasize here that the matching of
domain walls with the correct chirality via interfacial Dzyaloshinskii-Moriya inter-
action to the spin-transfer torque via SHE and spin galvanic effects is important
for these high domain wall velocities [61, 109]. However, for further improvement
of such multilayers the role of additional contributions stemming from the broken
inversion symmetry in these structures need to be quantitatively disentangled from
SHE contributions, which is a rather difficult task in the experiment. Nevertheless,
from an application point of view these high domain wall velocities could be used
for racetrack memories [91, 92] and other magnetic memory applications. By fur-
ther optimizing the multilayer structure even higher domain wall velocities have
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been obtained in synthetic antiferromagnet structures [128]. Moreover, due to the
importance of the chiral nature of the domain walls the physics used here is also
applicable to Skyrmionic systems for either moving skyrmions [15, 100, 123] or for
the generation of skyrmions [55].

7.4.4 Spin Hall Tunneling Spectroscopy

Inspired by the work on non-local SHE detection, Liu et al. [67] used the spin-
polarized charge current flowing from a FM through a insulating barrier layer (I)
into a NM to investigate the conversion of the injected spin current by the ISHE.
They coined the term spin Hall effect tunneling spectroscopy for this measurement
scheme.

In more detail, a charge current bias across a NM/I/FM tunnel junction (applied
between contacts 1 and 3 in Fig. 7.10a) leads to a spin-polarized charge current flow-
ing in theNMalong z, with the spin polarization parallel toM (along the x-direction).
The ISHE transforms this spin current into a charge current jq,IHSE flowing along the
−y direction and leads to the generation of an electric field along y (Leading to a
voltage drop between the contacts 3 and 4). Liu et al. applied a differential resistance
technique by applying a DC (IDC) and an AC (d I = 10 µA, with a fixed modulation
frequency of 1 kHz) charge current and detecting the AC voltage dV between con-
tacts 2 and 4 via a Lock-In technique. The results obtained for Ta/MgO/CoFeB are

(a) (b)

Fig. 7.10 a Illustration of the measurement geometry used by Liu et al. [67] for the detection of
the ISHE. A spin-polarized charge current is injected from a FM through an insulating barrier layer
(I) into the NM. The ISHE transforms the injected spin current js into a charge current jq,ISHE,
which can then be detected as an open-circuit voltage. 1, 2, 3, 4 define the contact leads used in the
experiment. ISHE differential resistance signal as a function of the applied magnetic field obtained
for a Ta/MgO/CoFeB (b) trilayer system. For 0◦ the external field points along x, while for 90◦
it is aligned along y. Only if the external magnetic field aligns M along x a hysteretic differential
resistance is observed. Figures and data adapted with permission from [67]
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shown in Fig. 7.10b. When the external magnetic field is swept along the x-direction
(blue squares, 0◦), a hysteresis is observed in the differential resistance dV/d I ,
while no magnetic field dependence is observed when the field is applied along the
y-direction (red circles, 90◦). This observation agrees with the vector product nature
of the ISHE, as only for s ‖ x the charge current will be oriented along−y. Moreover,
upon inversion of the magnetization direction the sign of the differential resistance
is reversed. This confirms the ISHE effect as the origin of the differential resistance,
as the direction of the charge current jq,IHSE should be inverted upon inversion of s.
As a spin-polarized charge current is used for the generation of the spin current in
the NM, similar to non-local experiments, this technique allows to quantify the spin
Hall angle if the spin diffusion length of the NM is known. A unique feature of this
experimental technique is the possibility to investigate the voltage bias dependence
of the ISHE dV /d I by changing the applied IDC. In principle, this should allow
to disentangle the contributions from bulk ISHE in the NM and the spin galvanic
effects (due to broken inversion symmetry) [22, 37, 71, 77] from surface states at
the NM/I interface, as it is expected that both should have characteristically different
bias dependence. However, further experiments are currently required to confirm this
conjecture.

In addition, Liu et al. used the very same device geometry to also investigate
the SHE of the NM. For such experiments a charge current jq is applied along the
−y direction (between contacts 2 and 4, Fig. 7.10a). At the NM/I interface the SHE
generated spin current leads to the generation of a spin accumulation. If M of the
FM is aligned parallel to s, then the spin accumulation can be detected as a voltage
across the tunnel junction between contacts 1 and 3. Similar to the results obtained
in the ISHE configuration, dV /d I shows a hysteretic behaviour for M ‖ s, i.e. for
magnetic fields sweeps along the x direction. While no hysteresis is observed, if
M ⊥ s. Moreover, the sign of dV/d I is inverted when the magnetization direction
is reversed or Ta is exchanged with Pt.

These first proof-of-principle experiments are rather promising and may allow to
investigate for example the influence of the bandstructure on the intrinsic spin Hall
effect. Going a step further, Dankert et al. [30] utilized this measurement technique to
investigate spin-polarized currents flowing on the surface of the topological insulator
Bi2Se3. In addition, theoretical calculations suggest that transverse voltage contribu-
tions can be also present in NM/I/FM heterostructures, where there is no spin-orbit
coupling in the NM [72]. Moreover, in [18] theoretical calculations explore means
to probe the magnon density of states in such tunneling structures.

7.4.5 Spin Hall Magnetoresistance

Last but not least, the spin Hall magnetoresistance (SMR) is also an effect that allows
to investigate and quantify the spin Hall angle from magnetotransport experiments.
As shown in Fig. 7.4a, b, when the transverse boundary conditions are changed from
an open spin circuit to a closed spin circuit, the longitudinal resistance of the NM is
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increased. In spin Hall magnetoresistance the boundary conditions are controlled by
the magnetization direction of a FM in contact with the NM [1, 19, 20, 43, 73, 84,
117].

In the following we assume that the FM is an electrical insulator, which simplifies
the discussion of the physical principles of SMR in FM/NM heterostructures. If a
charge current jq is flowing in the NM a spin current js is generated via the SHE,
flowing along the z-direction towards the FM/NMinterface (Fig. 7.11a).As discussed
previously, in the steady-state this leads to a spin accumulation at the transverse
sides of the sample to compensate the transverse spin current flow. At the FM/NM
interface the spin accumulation due to the SHE has a spin polarization pointing
along y. The spin accumulation at the NM/FM interface interacts with the magnetic
order parameter in FM. This interaction depends on the orientation of M relative to
s [11]. There are two limiting cases that need to be considered. First, if M and s are
collinear an exchange of angular momentum via spin-transfer toque is not possible as
M × s = 0 (Fig. 7.11a, see also (7.8)). However, due to thermal fluctuations of M a
magnon accumulation is generated underneath theNMstrip and diffuses into the FM.
This leads to a small spin current flow across the NM interface. In theoretical models
of the SMR this effect is normally neglected and one assumes that there is no spin
current flow across the interface in this situation, which then corresponds to the open
spin circuit boundary condition [19, 20]. But from very recent non-local, diffusive
magnon transport experiments the existence of this magnon accumulation has been
verified [11, 25, 26, 41, 66, 124, 130, 131]. Second, as illustrated in Fig. 7.11b, if
M ⊥ s spin angular momentum can be transferred over the interface into the FM
(where it is then absorbed by the magnetic order parameter), such that a finite spin
current js flows into the FM and reduces the spin accumulation in the NM at the
interface. The magnitude of js is given by the spin-mixing conductance g↑↓. In this
situation, the closed spin circuit boundary condition is realized and the longitudinal
resistance of the NM layer is increased. One should note, that as only one interface
side of the NM allows the flow of a spin current this is still not representing the ideal
closed spin circuit condition. This ideal condition may be realized by sandwiching
the NM between two FMs [19].
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The open squares are the data points, while the green lines are a simulation using (7.11). Data and
figure adapted with permission from [1]

As evident from this qualitative description, the SMR depends on the orientation
of M relative to the spin polarization s of the spin accumulation in the NM. As
a reference frame we now use the three orthogonal directions, consisting of the
current direction j, the surface normal n, and the transverse direction t = n × j (see
Fig. 7.12a). In this coordinate system s is collinear with t. The longitudinal resistivity
ρlong can thus be written as [19]:

ρlong = ρ0 + ρ1 (1 − m2
t ) , (7.11)

where m t = M/M · t is the projection of the magnetization direction onto t, ρi are
resistivity parameters of the NM. For the SMR ratio ρ1/ρ0 one finds [19]:

ρ1

ρ0
=

α2
SH

(
2λ2

sfρNM
)
(tNM)−1Re

(
g↑↓)

tanh2
(

tNM
2λsf

)

h e−2 + 2λsfρNMRe
(
g↑↓)

coth
(
tNM
λsf

) . (7.12)

Here, ρNM is the resistivity of the NM. The SMR ratio is proportional to α2
SH. Assum-

ing αSH ≈ 0.1, the expected relative resistance change is of the order of 1% for the
SMR effect. Moreover, (7.12) allows to determine |αSH| and λsf of the NM, if the
SMR ismeasured as a function of the NM thickness and the spinmixing conductance
is known [1, 117]. However, the sign of αSH can not be determined due to the scaling
of the SMR with α2

SH.
The unique symmetry of the SMR is reflected in angle dependent magnetore-

sistance (ADMR) measurements [1, 44, 84, 117]. In an ADMR experiment the
external magnetic field is kept at fixed magnitude μ0H , while the orientation of the
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field direction h with respect to the sample is changed. To distinguish the SMR from
other magnetoresistance effects, like the anisotropic magnetoresistance, h is rotated
in three orthogonal rotation planes. In the in-plane (ip) rotation plane, h rotates in
the sample plane (perpendicular to the surface normal, cf. Fig. 7.12a). In the oopj
rotation plane, the external magnetic field is rotated in the plane perpendicular to
the current direction j (Fig. 7.12b). In the oopt rotation plane, h is rotated in the
plane perpendicular to t (Fig. 7.12c). From (7.11) and assuming that the magneti-
zation is always aligned parallel to h one expects that for the SMR only in the ip
and oopj rotation planes a modulation of the longitudinal resistance with the field
orientation should occur, while there should be no modulation in the oopt rotation
plane. The results of ADMRmeasurements conducted on a Pt (3.5 nm)/yttrium iron
garnet (YIG) (20 nm) heterostructure at T = 300 K and an external magnetic field
magnitude μ0H = 1 T from [1] are shown in Fig. 7.12d–f. Indeed, the longitudinal
resistivity exhibits only for the oopj and ip rotation planes an angle-dependence.
The angle-dependence of the SMR is qualitatively different from the one of a poly-
crystalline anisotropic magnetoresistance and allows to unambiguously identify the
SMR as the physical origin of the observed MR [1, 44, 84, 117].

Initial experimental work on the SMR was focused on YIG/NM heterostruc-
tures, where the maximum SMR amplitude obtained up to now was ρ1/ρ0 =
1.3 × 10−3 [1]. Over the last years, the SMR effect was also observed in a vari-
ety of electrically insulating FMs [1, 52, 125], which confirms the universality of the
SMR. Several groups also reported the experimental observation of the SMR inmag-
netically ordered systems that have a non-collinear spin texture, like in a spin-canted
phase of a compensated ferrimagnet [38], in a material with spin spiral ordering [6],
or an canted antiferromagnet [47]. These experiments thus show that not the net
magnetization of a magnetically ordered system is relevant for the SMR, but each
individual magnetic moment at the interface or even the relevant order parameter
of the magnetically ordered system contribute to the SMR. A complete theoretical
description for the SMR in this framework is still missing and could be tough to
realize as magnetic domains may also play a crucial role in determining the mag-
nitude of the SMR effect in such systems. Later experiments showed that the SMR
also persists in metallic ferromagnets [7, 23, 86, 129] and can reach values of up to
ρ1/ρ0 = 3 × 10−2.

7.5 Summary and Outlook

After several decades of effort from theory and experiment, the spin Hall effect and
the inverse spin Hall effect have become important cornerstones in the field of pure
spin current physics. The SHE allows to transform a charge current into a pure spin
current, while the ISHE allows to electrically detect pure spin currents. As can be
seen from this chapter, these concepts have lead to the discovery of entirely new
physical phenomena. An important part that has been left out of this section are
thermal effects, where thermal gradients are used to drive spin currents like in the
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spin Seebeck effect [9, 113, 114]. Moreover, the SHE and ISHE have opened up
novel application concepts ranging from energy harvesting applications, over new
concepts for switching the magnetization direction in magnetic memories, to the
generation of microwave and terahertz radiation [103].

For a deeper understanding of the SHE, a systematic investigation of the scal-
ing of the spin Hall conductivity with the longitudinal charge conductivity, which
spans several orders of magnitude in the conductivity is still missing. But such an
investigation would be required to confirm that SHE and AHE are based on the very
same microscopic mechanisms. One main challenge to accomplish this task is that
interface effects can also be the origin of pure spin currents and it might be difficult
to separate these contributions from the bulk SHE, because the short spin diffusion
length requires already thin samples. The proposed quantum spin Hall effect [13]
has initiated the quickly progressing field of topological insulators. In the future,
these topological insulators might allow to realize dissipation free pure spin cur-
rents flowing in the edge states of such bulk insulators. Moreover, currently the high
frequency limit of the SHE is heavily investigated. Utilizing the ISHE in FM/NM
bilayers, efficient, broadband terahertz emitters have been realized [103]. Currently,
most SHE experiments focus on metallic conductors, thus it might be beneficial to
investigate the SHE in other materials more systematically like oxides [94, 95], anti-
ferromagnets [88, 132–134] or even semiconducting materials [3, 106, 127], where
the SHE was first discovered.

The field of SHE and ISHE physics is still in its early stages such that the underly-
ing microscopic mechanisms in most of the observed phenomena are not completely
understood and further exciting results are to be expected in the future. In the end, the
SHE and ISHEwill remain a very fruitful field for future theoretical and experimental
studies.
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Chapter 8
Weyl Semimetals

Bo Wan, Hai-Zhou Lu and Xiangang Wan

Abstract Currently, the topological behavior in condensed matter system is a hot
topic. As a new class of topological quantummaterial,Weyl semimetals (WSM) have
attracted extensive interest. In this Book chapter, we review the basic concepts of
WSM: the semimetallic states are topologically protected, with corresponding Fermi
arcs surface states. We also summarize the unique transport properties and the recent
progress in this field.

8.1 Introduction

The topological properties of electronic bands in certain condensed-matter system
have received significant attentions since 1980s. One of the most important progress
recently is the discovery of the topological insulator (TI) [1–3]. According to the
momentum-space topology of the bulk band structure, insulators are classified by a
topological invariant that takes different values for TI than for ordinary insulators
[1–3]. Since the topological invariant must change across the interface between a
TI and topologically trivial insulators, TI always has metallic edge or surface states
[1–3]. If the energy gap of the system is not closed, the topological invariant can-
not be changed by any continuous modification of the Hamiltonian describing the
system. Thus the band gap makes the topological ground state insensitive to small
perturbations, and usually people believe the gapless system cannot have interesting
topological features.
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In 2011 [4], a theoretical paper has shown that due to the interplay of electron
correlations and strong spin-orbit interactions of 5d electron, the Fermi surface of
pyrochlore iridates is formed by the crossing points of two non-degenerate linearly
dispersing energy bands. As a result, the low-energy electronic excitation of these
materials can be described by the Weyl equation [5]. Thus these systems have been
coined as Weyl Semimetals (WSM) [4, 6]. Though being metals without a band gap,
WSM still have topological invariants, and broaden the classification of topological
phases of matter beyond insulators. In contrast to TI where only the surface states
are interesting, both bulk and surface states of WSM are topologically non-trivial [4,
6]. Due to the unique bulk Weyl fermion and the surface Fermi Arcs, WSM displays
many unusual physical phenomena, such as negative magnetoresistance, topological
anomalous Hall effect, chiral magnetic effects andmany other novel quantum behav-
iors. Thus due to these unique physical properties and great potential in applications,
recently WSM becomes one of the central research subjects of condensed matter
physics [7, 8]. In this book chapter, we will briefly summarize the progress of WSM.

8.2 Topological Bulk States

The first class of materials being predicted to be WSM was the pyrochlore iridates
[4]. Pyrochlore iridates have the general formula A2Ir2O7, where A = yttrium or
a lanthanide element [4]. Early experiments show that with increasing radius of
the A ion, A2Ir2O 7 change from insulator to metal. For example, Y2Ir2O7 is an
insulator [9] but with increasing the ionic radius at the A–site, the system eventually
becomes metallic for Nd2Ir2O7 [10], while Pr2Ir2O7 shows strong Kondo behavior
[11].Moreover, it has been found that temperaturewill result in an insulator–to–metal
transition associated with abnormal magnetic behavior without structural change
[12].

Both Ir and A atoms are located on a network of corner-sharing tetrahedra, the lat-
tice of pyrochlore iridates is thus highly magnetically geometrical frustration. Below
the transition temperatures pyrochlore iridates exhibit a considerable difference in
the temperature dependence of the magnetization measured under field-cooled con-
ditions (FC) and zero-field-cooled conditions (ZFC) [9]. While, there is no magnetic
hysteresis loop and sharp anomaly in specific heat data [9]. Thus A2Ir2O7 had been
suggested as the spin-glass-like compounds below the transition temperatures [9].
However, a detailed theoretical study reveals that the magnetic state of A2Ir2O7 is a
quite simple non–collinear all-in/all-out configuration (AIAO), where all moments
point to or away from the centers of the tetrahedron [4]. This AIAO state is consistent
with the absence of magnetic hysteresis in experiments [9]. Numerical results also
show that the energy bands near the Fermi level are very sensitive to the orienta-
tion of magnetic moments, meanwhile the total energy difference between different
magnetic configuration is very small [4]. Therefore, one can expect that external
magnetic field may significantly affect the magnetic response and the conductivity
of pyrochlore iridates. Although a conclusive experimental evidence is still lacking
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Fig. 8.1 Evolution of electronic band structure of Y2Ir2O7. a The result from LDA + SOC calcu-
lation, b LSDA + U + SOC result with U = 2.0 eV, c LSDA + U + SOC result with U = 1.5 eV.
For b and c, the magnetic order is AIAO. The Weyl point is located at the general k-point in case
c, and is not visible along any high symmetry lines

due to the poor resolution of neutron scatteringmeasurement for iridium compounds,
there are a lot of works that support the theoretical prediction about AIAO magnetic
configuration [13–15] .

Based on a tight–binding model, Pesin and Balents propose that the non-magnetic
phase of the pyrochlore iridates is a topological Mott insulator, which has gapless
surface spin-only excitations [16]. As shown in Fig. 8.1a, LDA + SOC (local density
approximation plus spin orbit coupling) calculation gives a metallic solution [4].
The low energy 8 bands in Fig. 8.1a are the Jef f = 1/2 states. At the � point (i.e.,
Brillouin zone center), the tight–binding result shows that these bands appear with
degeneracies 4, 2, 2, consequently becomes insulator [16].However, in non–magnetic
LDA + SOC calculations (see Fig. 8.1a), the degeneracies of these bands are 2, 4, 2,
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which is necessarily metallic with 4 levels filled. Thus, one needs either a structural
transition or a magnetic order to result in an insulating phase.

While the magnetic pattern remains AIAO, the electronic properties change with
correlation strength. Considering the effect of Coulomb repulsion, LSDA +U + SOC
(where LSDA means spin polarized local spin density approximation and U is the
electronic correlation of Ir-5d orbits) calculation clearly demonstrate that the elec-
tronic band structure along high-symmetry lines appears to be insulating as shown in
Fig. 8.1b, c. It iswell known that LDA+U method uses aHartree Fock approximation
for electronicCoulomb repulsion, thus the numerical band gap usually decreaseswith
decreasing the parameter U [17]. However, a very strange electronic feature appears
in the band structure. The band gap of Y2Ir2O7 seems to increase with decreasing U
from 2.0 to 1.5 eV as shown in Fig. 8.1.

It is worth to mention that the AIAO magnetic configuration preserves inversion
symmetry. Thus by calculating the band parity, one can explore the evolution of the
electronic band behavior, consequently study the possible novel properties related
with the above mentioned abnormal band structure. The Time Reversal Invariant
Momenta (TRIMs) (TimeReversal InvariantMomenta) are invariant under inversion.
Thus one can label electronic bands by its parity eigenvalues ξ = ±1. For pyrochlore
iridates, TRIMs in the Brillouin zone (BZ) correspond to the � = (0, 0, 0), and
X, Y, Z [= 2π/a(1, 0, 0) and permutations] points and four L points [π/a(1, 1, 1)
and equivalent points]. For the top four occupied bands, the calculated parities at
eight TRIMs are shown (in order of increasing energy) in Table8.1. Regardless all
L points are equivalent by symmetry, the choice of inversion center at an Iridium
site singles out one of them, L ′, and the parities at L ′ and the other three L points
are the opposite of one another. Numerical results show that for the AIAO magnetic
configuration, the parities do no change above U > Uc ∼ 1.8 eV. The calculated
parities (with U = 2 eV) is shown in the top row of Table8.1. It is readily seen that
these parities are the same as for a site-localized picture of this phase, thus can be
adiabatically transformed into an atomic insulator (AI). Smoothly connect to AI, one
can call it as the Mott phase. On the other hand, as shown in Fig. 8.1c the LSDA + U
+ SO calculation with smallerU = 1.5 eV also gives insulating result. It is interesting
to notice that the phase with U less than 1.8 eV is not an extension of the Mott
insulator. There is a change of parities as shown in Table8.1, which indicates a phase
transition has occurred between U = 1.5 and 2.0 eV. Comparing with U = 1.5 case,
forU = 2.0 eV, an unoccupied state and an occupied state with opposite parities have
switched places at the L points. It can be proven that only one of the two phases
adjacent to theU where this parities change happens can be insulating [4]. The large
U phase is smoothly connected to a gapped Mott phase, thus the phase with smaller
U must be the non–insulating one. A detailed k·p analysis about the case of U =
1.5 eV shows that there is a three dimension (3D) electronic band crossing located
around the k-vector (0.52, 0.52, 0.3) 2πa [4]. There are also 23 additional electronic
band crossing points in the BZ. All related by symmetry, the 24 band crossing points
in the whole BZ thus have exactly the same energy. There is no other band crossing
the Fermi level, and the numerical calculation show that the chemical potential is
exactly at the band-crossing energy. Thus the bulk Fermi surface is just a collection
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Table 8.1 Numerical parities of states at Time Reversal Invariant Momenta (TRIMs) for several
electronic phases of the iridates. The calculations are done by LSDA + U + SO scheme with AIAO
magnetic order. Only the top four filled states are shown in order of increasing energy

Phase � X, Y, Z L ′ L (×3)

U = 2.0, AIAO
(Mott)

+ + + + + − − + + − − − − + + +

U = 1.5, AIAO
(Weyl)

+ + + + + − − + + − − + − + + −

of 24 Fermi points. The density of states (DOS) around the Fermi level behave like
DOS(E)∝E2, where E is the energy respect to the Fermi level. The small DOSmakes
it an electrical insulator at zero temperature, which is consistent with experimental
results [9].

Without the time reversal symmetry, the electronic bands forming the touch-
ing point in pyrochlore iridates are non-degenerate. Thus for A2Ir2O7, the effective
Hamiltonian in the vicinity of a crossing point k0 is [4]:

HW =
3∑

i=1

qσi · vi , (8.1)

where σi are the three Pauli matrices and energy is measured from the Fermi level,
q = k − k0 and. The velocity vectors vi are generically non-vanishing and linearly
independent. Thus around the node, system has a cone-like energy dispersion�E =
±

√∑3
i=1(q · vi )2. It is worth to mention that the above equation is closely related to

theWeyl equation in particle physics [5]. Thus, these electronic band crossing points
are referred as Weyl points and the quasiparticles near them are reminiscent of Weyl
fermions [4, 6]. Weyl fermions have a definite right- or left-handed chirality and
by combining in pairs of opposite chirality, a massless Dirac fermion appears [18].
Similarly, one can assign a chirality (or chiral charge) c = ±1 to the Weyl points
defined as c = sign(v1 · v2 × v3). Thus the electronic band touching points related
by inversion symmetry have opposite chirality. As shown in the above equation, the
2 × 2 Pauli matrices appear, thus the Weyl particles are two component fermions.
In contrast to regular four component Dirac fermions, it is not possible to introduce
a mass gap [18]. Thus the Weyl nodes are topologically robust. According to the
theorem of Nielsen and Ninomiya, Weyl points should occur in pairs of opposite
chirality. The only way for these nodes to disappear is if they meet with another
Weyl points with opposite chiral charge.

The stability of Weyl points can been understood in the following discussion: a
very general Hamiltonian for any two non-degenerate bands system is

H =
(

A(k) B(k) + iC(k)
B(k) − iC(k) −A(k)

)
,
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Fig. 8.2 Illustration of surface states arising from bulk Weyl points. For simplicity, only a pair of
Weyl points with opposite chirality are shown. The imaginary cylinder in momentum space has unit
Chern number, due to the Berry monopole at the Weyl point. Hence a surface state must arise, as
shown schematically in the same plot. When the Fermi energy is at the Weyl point, a Fermi arc is
present which connects the surface momenta of the projected bulk Weyl points of opposite chirality

and the eigenvalues are E(k) = ±√
A2(k) + B(k)2 + C(k)2. The existence of a band

touching point requires three equations A(k) = 0, B(k) = 0 and C(k) = 0. The
independent parameters for a 3D system are three (namely kx , ky and kz). This does
not guarantee an electronic band degenerate point, but once such a band degeneracy
has appeared, any small perturbation for the Hamiltonian will only slightly shift the
location of the band crossing point, and one can always adjust kx , ky and kz to satisfy
the three equations [19]. Only when theWeyl points with opposite chirality meet and
annihilate, the system can become an insulator.

It is worth to emphasise that the WSM are rather different from the 3D Dirac
Semimetal (DSM). As just discussed, the Weyl points are topological objects and
robust against any perturbations regardless of symmetry. On the other hand, with
time reverse symmetry and inversion symmetry, the Dirac Semimetal still requires
additional spatial symmetry [20–23] .

8.3 Fermi Arc Surface States

One of the most striking features of WSM is that it has topological Fermi Arc
surface states [4]. As a twofold band degenerate points, the Weyl points behave like
‘magnetic’ monopoles inmomentum space whose charge is given by the chirality. As
a band crossing point, the Weyl point is actually a source of “Berry flux” rather than
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Fig. 8.3 The Fermi arc
surface states from
tight-binding calculations.
The left panel corresponds to
the (110) surface of the
pyrochlore iridate Y2Ir2O7.
The right is (111) surface

(a) (b)

magnetic flux [24]. The Berry connection, a vector potential in momentum space, is
defined by A(k) = ∑N

n=1 i〈unk|∇k|unk〉 where N is the index for occupied bands.
The Berry curvature can be calculated by F = ∇k × A [24].

It is easy to show that the band topology associated with theWeyl point results in a
novel topological states in certain surfaces. Consider a curve in the surface Brillouin
zone girding the projection of the bulk Weyl point, which is traversed counterclock-
wise as one change the parameter η: 0 → 2π ; kη = (kx (η), ky(η)) (see Fig. 8.2). We
show that the energy εη of a surface state at momentum kη crosses E = 0.With η and
kz treated as two momentum, H(η, kz) = H(kη, kz) can be interpreted as the gapped
Hamiltonian of a two dimensional system. The two periodic parameters kz, η consti-
tute a geometry of the surface of a torus inmomentum space. For this two dimensional
band structure, the Chern number is given by the integration: 1

2π

∫ Fdkzdη, which,
similar to magnetic monopole, corresponds to the density of “monopoles” enclosed
within the torus. Chern number can also be obtained by summing the chirality of the
enclosed Weyl nodes. Further considering a unitary net chirality, this indicates one
single Weyl node enclosed within the torus. Such two dimensional subsystem is a
quantum Hall insulator with unit Chern number. Defined on the half space z < 0,
a chiral edge state is expected as the subsystem corresponds to setting the quantum
Hall state on a cylinder. The energy εη spans the band gap of the subsystem as λ

varies. Therefore, this surface state crosses zero energy somewhere on the surface
Brillouin zone kη0 . Such a state could be obtained for every curve enclosing the
Weyl point. Thus, at zero energy, there is a Fermi line, which terminates at the Weyl
points, connecting Weyl points with different chirality in the surface Brillouin zone
(see Fig. 8.2). Clearly, the net chirality of the Weyl points enclosed in the (kz, η)

torus was a pivotal initial condition to determine the number of these states. If Weyl
points with opposite chirality line up along the kz direction, there is a cancellation
and no surface states are expected.

To verify these theoretical considerations, one can construct a tight-bindingmodel
which has features as shown in the electronic structure calculations for Y2Ir2O7 [4].
The bands near the Fermi energy are contributed by the Ir-t2g orbitals, thus only the
Ir-t2g states had been considered in the model. The Iridium atoms form a tetrahedral
network, each pair of nearest neighboring (NN) atoms forms three bonds: one σ–
like bond and two π–like bonds. We denote the hopping integrals for these bond
as t and t ′ respectively. To simulate the appearance of Weyl points, it is essential
to include next–nearest neighbor (NNN) interactions between t2g orbitals which are
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Fig. 8.4 Schematic diagram of predicted phase diagram for pyrochlore iridiates including Mott
insulator, Weyl semimetal, Axion insulator and non-collinear metals in small magnetic fields. The
horizontal axis indicates the strength of interaction among Ir 5d electrons while the vertical axis
corresponds to the external magnetic fields. The external field can trigger a transition out of the
noncollinear AIAO ground state

denoted as t ′′. With the setup parameter system with t = 0.2, t ′ = 0.5t, t ′′ = −0.2t ,
on–site spin–orbit coupling equal to 2.5t and the applied on–site “Zeeman” splitting
of 0.1t between states parallel and antiparallel to the local quantization axis within
all-in/all-out (AIAO) configuration, one can model both the bulk Weyl semimetal
state and its surface state in a straightforward way. Based on this model, one can
calculate the surface states for a slab, leading to surface states for both the front and
back surface. The calculated Fermi arc surface states at (110) and (111) plane are
shown in Fig. 8.3.

Sharply contrast this with the surface states of conventional system, which form a
closed loop in momentum space, the Fermi arcs in WSM terminate at the projected
location of the bulkWeyl points [4]. Thus detecting the Fermi arcs by angle-resolved
photoemission spectroscopy (ARPES) experiments provides a smoking gun for the
presence of the WSM phase.

The basic results for pyrochlore iridates are summarized in the phase diagram
Fig. 8.4 [4]. With increasing U, WSM will change to Mott insulator. On the other
hand, decreasing U results in another topological phase transition and the WSM
becomesAxion insulator, which hasmagneto-electric parameter θ = π [4]. As shown
inFig. 8.4,U value is the key parameter to determine the novel phase in pyrochlore iri-
dates. Based on the constrained random phase approximation calculation, the values
of U have been obtained between 1.4 and 2.4 eV for 5d electron [25]. As mentioned
above, the U is depend on the radii of the ion at A site. Thus, the above topological
phase transition may occur by changing the lanthanide element at A site.
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8.4 Topological Anomalous Quantum Hall Effects

Similar with Dirac Semimetal, WSM also has an anomalous response to a magnetic
field [26]. This can be illustrated by the following 3D two-band model

H	k = [2tx (cos kx − cos k0) + m(2 − cos ky − cos kz)]σx

+2ty sin kyσy + 2tz sin kzσz, (8.2)

where σ is Paulimatrix. Thismodel breaks time-reversal symmetry, and there are two
Weyl points located at 	P = ±(k0, 0, 0). The Hamiltonian H	k with the 	k at a kz-fixed
plane in the bulk BZ can be considered as the Hamiltonian of a two-dimensional
system. If kx 
= ±k0, this 2D system is fully gapped, and has a well-defined Chern
munber Ckx . It is easy to prove that Ckx = 1 if kx ∈ (−k0, k0) and Ckx = 0 when kz
is not between two Weyl points. Consequently, the 2D Hall conductance is

σ 2D
xy (kz) = e2

h
if kz ∈ (−k0, k0)

σ 2D
xy (kz) = 0 if kz /∈ (−k0, k0)

the net Hall conductivity of this 3D system is therefore

σxy =
∫

dkz
2π

σ 2D
xy (kz) = e2k0

πh

For a general case, theHall conductivity is also simply proportional to the distance
between the Weyl points, and is independent of all other material properties [26].

8.5 Magneto-Transport Phenomena in Weyl Semimetal

8.5.1 Effective Model

To illustrate the physics of transport inWSM, the following two-nodeminimalHamil-
tonian [27], which has an identical structure as that for A-phase of 3He superfluids
[28], is introduced

H = A(kxσx + kyσy) + Mkσz, (8.3)

where σ are the Pauli matrices, Mk = M0 − M1(k2x + k2y + k2z ), k = (kx , ky, kz) is
the wave vector and A, M0, M1 are all model parameters. When M0M1 > 1, the up-
and down-bands intersects at k = (0, 0, k±

0 ), where k±
0 = ±√

M0/M1. Under this
condition, the model is in the regime of WSM phase and could be rewritten as
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H = A(kxσx + kyσy) + M(k20 − k2)σz, (8.4)

still A, M , k0 are model parameters. (8.4) has the following energy spectrum

E± = ±
√
M2(k20 − k2)2 + A2(k2x + k2y), (8.5)

where k0 = |k±
0 |. Along the line of kx = ky = 0, the energy dispersion is Ẽ± =

±M
∣∣k20 − k2z

∣∣. In the vicinity of Weyl nodes k = (0, 0, k±
0 ), (8.4) reduces to two

separated local models of chiral Weyl fermions

Hη = Mη · σ,

where η = ± describes the chirality of each Weyl node and Mη = (Ak̃x , Ak̃y,
−η2Mk0k̃z). (k̃x , k̃y, k̃z) denotes the effective wave vector measured from eachWeyl
node. In the next, this model had been use to illustrate full topological properties,
including Berry curvature, Fermi arcs etc.

8.5.2 Topological Properties

The topological aspects of the above model could be revealed from the calculations
of Berry curvature, Chern number and Fermi arcs [4, 24, 29, 30]. The Berry flux
could be calculatedwith the definition given in the previous section. For the two-node
model (8.4), the Berry curvature of the up band can be expressed as

F(k) = A2M

E3+

(
kxkx , kzky,

1

2
(k2z − k20 − k2x − k2y)

)
,

fromwhich one can easily see that there are two singularities at (0, 0, k±
0 ). The chiral-

ity of eachWeyl node can be found through an integral over the Fermi surface enclos-
ing the Weyl node, which yields opposite “charges” ∓sgn(M) at (0, 0, k±

0 ). Such
topological charges could be considered as “magnetic monopole” in the momentum
space.

In the minimal model (8.4), according to the previous sections, the Chern number
is well defined for a given kz with the definition nc(kz) = −(1/2π)

∫∫
dkxdkyF(k) ·

ẑ in the kx -ky plane, and is calculated as [30]

nc(kz) = −1

2

[
sgn[M(k20 − k2z )] + sgn(M)

]
,

which equals −sgn(M) in the interval −k0 < kz < k0 and becomes 0 otherwise.
According to the bulk-boundary correspondence, the non-zero Chern number corre-
sponds to the Fermi arcs as the kz-dependent edge states.
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There are several ways to find the Fermi arc surface states, for example the cal-
culation for a large slab. Here is another avenue through solving (8.4) with an open
boundary. Without loss of generality, assuming the wave functions vanishes at an
open boundary at y = 0, the dispersion of surface states is given by

Esur(kx , kz) = sgn(M)Akx ,

and the corresponding wave function is expressed as

�sur
kx .kz (r) = Cei(kx x+kz z)

[
sgn(M)

1

]
(eκ1 y − eκ2 y),

whereC is a normalization factor andκi = A/2|M | ∓
√

(A/2M)2 − (k20 − k2x − k2z ).
The Fermi arcs could exist in the conditions: (1) κi > 0, and (2) κi = a ∓ ib with
a, b > 0. Note that in both conditions k20 − k2x − k2z > 0, hence, the solution of Fermi
surface states are constrained in the circle k2x − k2z < k20 .

As has been proven, the two-node model provides a generic description for Weyl
semimetals, including the band touching, opposite chirality, monopoles of Berry
curvature, topological charges, and Fermi arcs.

8.5.3 Landau Bands

Magnetoresistance measures the change of the electric resistance of a solid due
to external magnetic field. Under an external magnetic field along z direction, the
energy spectrum is quantized into a set of one-dimensional (1D) Landau bands
dispersing with kz . Adopting the Landau gauge, the vector potential expressed as
A = (−yB, 0, 0), the Landau bands solutions of the minimal model could be solved
analytically with the eigenvalues [27]

Eν(kz) =
{

ω/2 − M0 + M1k2z , for ν = 0,

ω/2 ± √M2
ν + νζ 2, for ν ≥ 1,

whereω = 2M/�2B , ζ = √
2A/�B and themagnetic length �B = √

�/eB. The eigen-
states for ν ≥ 1 are

|ν, kx , kz,+〉 =
[
cos( θ

2 )|ν − 1〉
sin( θ

2 )|ν〉
]

|kx , kz〉, (8.6)

|ν, kx , kz,−〉 =
[
sin( θ

2 )|ν − 1〉
− cos( θ

2 )|ν〉
]

|kx , kz〉, (8.7)

and for ν = 0 is
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|0, kx , kz〉 =
[
0
|0〉

]
|kx , kz〉,

where cos(θ) = Mν/
√
Mν + νζ 2 and the corresponding wave functions are found

as

ψν
kx ,kz (r) = Cν

Lx Lz�B
eikx x eikz ze− ξ2

2 Hν(ξ),

where Cν = 1/
√

ν!2ν
√

π , Lx Lz are the sample size in x- and z- directions, respec-
tively, and ξ = (y − kx�2B)/�B . As the dispersion are not explicit functions of kx , the
number of different kx represents the Landau degeneracy NL = 1/(2π�2B) = eB/h
in a unit area in the x − y plane. These analytical Landau band solutions for the
minimal model in an external magnetic field provide a concrete terrace to study the
magneto-transport properties of WSM.

8.5.4 Magneto-Transport Phenomena

Due to the chiral anomaly, WSM exhibits highly anisotropic negative longitudinal
magnetoresistance [31–37]. This novel magneto-transport phenomenon had been
attributed to the presence of Weyl points and the associated chiral anomaly. Pro-
posed in relativistic field theory [38, 39], chiral anomaly had been used to describe
the current associated with the breaking of a global chiral symmetry, and a chiral
current is defined by the difference between currents with different chiralities (usu-
ally indexed by Left and Right). The first proposal of realizing chiral anomaly in
condensed matter physics was given by Nielsen and Ninomiya [40, 41], where they
used a one-dimensional model in the quantum limit. Based on a two band model,
they revealed that an external electric field would drive electrons to higher levels in
one band and lower in the other. Such process is, in a way, treated as “creation” of
charges with left chirality and “annihilation” of the right ones. Therefore, the chi-
ral current in their model is not-conserved under a external electric field and chiral
anomaly appears in lattice. In WSM, the nodes with linear dispersion always occur
in pairs and carry opposite chiralities. And the nodes serve as monopoles of Berry
curvature in momentum space [28] with the fluxes of Berry curvature flow from one
monopole to the other. Along the direction that connects two monopoles, external
parallel electric and magnetic fields would pump the electrons from one monopole
to the other, which leads to the chiral anomaly (also known as Adler-Bell-Jackiw
anomaly or triangle anomaly).

Study of magnetotransport properties is one of the research focuses in Weyl
semimetals. Explorations of transport experiments on WSM have been performed
in a number of series of materials, including BiSb alloy [42, 43], TaAs-family [44–
48] etc. To further understand the physics of novel magneto-transport properties in
WSM, in the following subsections, we are going to discuss schematic calculations of
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longitudinal magnetoconductivity. Magnetoconductivity can be classified into three
regimes according to the strength of parallel magnetic fields, from the quantum limit
to near zero field. In the strong fields, namely only the lowest Landau band is par-
tially occupied (the quantum limit), the chiral anomaly had been suggested as the
reason of negative magnetoresistance in several previous works. However as shown
in the following, besides the contribution from chiral anomaly, the novel behavior of
magneto-transport in WSM may also comes from many details like Fermi velocity
and scattering mechanisms. While for weak magnetic field, non-trivial Berry cur-
vature and chiral anomaly in WSM may give rise to negative magnetoresistance.
In near zero field regime, an exotic transport known as weak antilocalization effect
would lead to a positive magnetoresistance.

8.5.4.1 Strong Magnetic Fields: The Quantum Limit

Several theoretical works claimed that a negative longitudinal magnetoresistance
(or positive magnetoconductivity) should be observed in magneto-transport experi-
ments on WSM due to the existence of chiral anomaly [31, 33, 49]. However, the
magnetoconductivity is always negative in the strong magnetic fields experiments.
Thus, by fully considering the magnetic dependence of the Fermi velocity, a system-
atic calculation on the conductivity of topological semimetals had been performed
[27]. The results show that high field positive magnetoconductivity may not be a
dramatic signature of chiral anomaly. Along the z direction, the semiclassical Drude
conductivity could be expressed using the formula [50]

σzz = e2�

2πLx L yLz

∑

kx ,kz

(
vz
0

)2
GR

0 G
A
0 ,

where −e is the electron charge, Li is the sample length along i-direction, and vz
0 =

∂E0
kz
/�∂kz is the velocity along z-direction for a state with vector kz in the lowest

Landau band, which could be obtained from the results in the previous section.
GR/A

0 = 1/(EF − E0
kz

± i�/2τ 0) are the retarded/advanced Greens function, with
τ 0 the lifetime of a state in the lowest Landau band with wave vector kx , kz . Using
self-consistent Born approximation for τ 0 and short-range delta scattering potential
U (r) = ∑

i uiδ(r − Ri )with delta correlated 〈U (r)U (r ′)〉 = Vimpδ(r − r ′), where
Vimp is field-independent scattering parameter, one can obtain the following formula
for magnetoconductivity in the quantum limit

σzz = e2

h

(
�v0

F

)2

Vimp
.

If neglecting the field-dependence of Fermi velocity, a B-independent conductivity
was concluded, which is consistent with the previous work in which the velocity is
considered as constant [51]. In an ideal WSM with fixed carrier density, when the
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field dependence of Fermi velocity is included, the magnetoconductivity is always
negative in the electron-doped regime, while positive in the hole-doped case. More-
over themagnetoconductivity is negative andwith linear dependence in B for aWSM
with fixed Fermi energy. Thus positive magnetoconductivity may not be the definite
signature of chiral anomaly.

Another extraordinarywork presented byGoswami et al. [52] shows that the emer-
gence of the axial anomaly in 3D generic metals does not guarantee the existence
of negative longitudinal magnetoresistance through a systematic calculation of the
longitudinal magnetoconductivity in the quantum limit using the Boltzmann equa-
tion, for both short-range neutral and long-range ionic impurity scattering processes.
Specifically, for the case of WSM, they started from a toy model on a tetragonal
lattice

H = 2t⊥,1
[
sin(kxa)σx + sin(kya)σy

] − {2t⊥,2 (8.8)

× [
2 − cos(kxa) − cos(kya)

] + 2tz cos(kzc) − �}σ3,

where a, c are lattice parameters for a and c axis, respectively, and t⊥,i , tz are hopping
terms. For studying theLandau bands inWSM, apply an externalmagnetic field along
z-direction and choose the Landau gauge A = (0, Bx, 0), the Hamiltonian in (8.8)
becomes

H ≈ �v⊥
[−i∂xσx + (ky − eBx/�)σy

]

− [
2tz cos(kzc) − �

]
σz, (8.9)

from which the dispersion of Landau bands can be easily solved

εN =
⎧
⎨

⎩
−2tz cos(kzc) + �, forN = 0,

sgn(α)
[
ε20 + 2N �

2v2⊥
�2B

]1/2
, forN ≥ 1.

After tremendous calculations, they found that at half-filling, the zero-range point
impurities lead to a constant longitudinal magnetoconductivity, whereas the neutral
Gaussian impurities give rise to a B-linear one (when �2B < 2a2). Furthermore, in a
system away from half-filling, zero-range point impurities lead to a cos2(B0/2B),
where B0 is the magnetic field reaching the quantum limit, and the short-range
Gaussian scatterings still give rise to a B-linear one. In their work, it is also stated
that the magnetic field dependence of the Fermi velocity of lowest Landau band and
the transport lifetime should be considered.

Combine these arguments together, one can conclude that the positive magneto-
conductivity in WSM in strong magnetic fields could not be simply the result from
chiral anomaly. More detailed attentions should be taken into account explaining
such novel transport property besides the chiral anomaly.
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8.5.4.2 Weak Magnetic Fields: Negative Magnetoresistance

The nontrivial Berry curvature can couple the velocity of electrons to an external
magnetic field, leading to a correction chiral current linearly proportional to the
field. The correlation of chiral currents further contributes to an extra conductivity
that quadratically grows with increasing magnetic field, which is parallel to applied
electric field. This B2 positive conductivity in weak parallel magnetic fields is rare
in non-ferromagnetic materials, can serve as one of the transport features of topo-
logical semimetals. To further understand the physics of negative magnetoresistance
in weak magnetic field, we give two different demonstrations. The first starts with
semiclassical equation of motion proposed by Niu et al. [30, 53, 54]

ṙ = v + k̇ × F k,

�k̇ = eE + e ṙ × B. (8.10)

The second term in the first equation indicates that electron can acquire an anomalous
velocity correction term that is proportional to the Berry curvatureFk in the presence
of electric field. This anomalous velocity is related to a number of different transport
phenomenons. Iterating ṙ and k̇ gives

ṙ =
(
1 + e

�
B · F k

)−1 [
v + e

�
E × F k + e

�
(F k · v)B

]
,

�k̇ =
(
1 + e

�
B · F k

)−1
[
eE + ev × B + e2

�
(E · B)F k

]
.

In the framework of linear response theory, with small B and E = 0 , the velocity
reduces to

ṙ = v + e

�
(Fk · v)B,

where the second term is the additional velocity term induced by non-trivial Berry
curvature. Since conductivity is defined as a current-current correlation [58], the
linear B-related velocity would give B2 conductivity, or in the parallel fields negative
magnetoresistance.

The other demonstration is more complicated based on solving coupled diffusive
equations, where the coupling is between total and chiral charges. This calculation
is first proposed by Burkov et al. [33, 55]. Introduce a Weyl Hamiltonian

H(k) = vFτ z(ẑ × σ · k) + bσ z + �̂(k),

where �̂(k = �Sτ
x + �D

2 (τ+eikzd + H.c.), σ and τ are Pauli matrices describing
spin and pseudospin degrees of freedom, b is the splitting of spin induced bymagnetic
impurities. This model describes topological insulator and band insulator multilayers
doped with random magnetic impurities, �S and �D are tunneling matrix elements
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between the same or different topological insulator layers. Calculating the diffusion
propagator with the eigenvectors obtained by solving the Hamiltonian, and project
it into the subspace of total-chiral charge, one could have the inverse diffusion prop-
agator

D−1(q,�) =
(−i�τt + Dq2τt −iq�τt

−iq�τt −i�τt + τt/τc + Dq2τt

)
,

where t /c denotes total or chiral charges, τi are the transport time of corresponding
charges scattered by random magnetic impurities, and D is the diffusive constant in
z direction, � is the coupling coefficient between total and chiral charges linearly
proportional to B. We have ignore the detailed expressions for D and � since they
are irrelevant for the physics under consideration. This inverse diffusion propagator
can be transformed into the following coupled diffusive equations

∂nt
∂t

= D
∂2nt
∂z2

+ �
∂nc
∂z

,

∂nc
∂t

= D
∂2nc
∂z2

− nc
τc

+ �
∂nt
∂z

, (8.11)

where nt and nc are densities for total and chiral charges, respectively. τc is the relax-
ation rate of chiral charges, which is the result of chiral anomaly in Weyl semimetal.
Since the total charge is conserved, assuming the total charge density is uniform,
using ∂nt/∂t = −∇ · j t , one could have an expression for the total charge current

jt = −σ0

e

∂μt

∂z
− e2B

2π2
δμc,

where μi are the total and chiral electrochemical potentials and σ0 is the usual zero-
field Drude conductivity. The first term is the usual current response to the gradient of
the electrochemical potential. The second term is the outcome of the chiral anomaly
in Weyl semimetals. Further assume that there is a uniform steady total current
density in the z-direction in the system, the final expression for the longitudinal
magnetoconductivity is

σz z = σ0 + χ(τc)B
2,

where χ(τc) is proportional to τc and inversely to the density of states around Fermi
energy. Since � ∝ B, the second term shows a B2 magnetoconductivity or negative
quadratic filed dependent magnetoresistance induced by chiral anomaly in weak
magnetic fields.
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8.5.4.3 Near Zero Field: Weak Antilocalization

As the magnetic field further decreases approaching near zero, weak antilocaliza-
tion effect, which occurs in disordered metals as a transport phenomena [56], should
be taken into consideration. At low temperatures, the mean free path of electrons
is much shorter than the sample size and phase coherence length, phase coherence
of electrons could be still maintained during scatterings. In this quantum diffusive
regime, a correction to the conductivity arises as a result of the quantum interference
between closed and time-reversed loops that circle regions in which one or more
impurities are present. If the correction of quantum interference is positive, it gives
a weak antilocalization emendation to the conductivity. This correction can be sup-
pressed by applying a magnetic field to break the time reversal symmetry, leading
to a negative magnetoconductivity, or positive magnetoresistivity, as the signature
for the weak antilocalization. The previous work [57] studied the weak localiza-
tion and antilocalization using Feynman diagram techniques, in which disorder and
interaction are treated as perturbations in the linear response theory of the conduc-
tivity. The result shows that the quantum interference gives the main contribution to
the magnetoconductivity. For a single valley of Weyl fermions, the low-temperature
magnetoconductivity is proportional to −√

B, where B is the applied magnetic field
along arbitrary direction. In the presence of weak intervalley scatterings, such mag-
netoconductivity is from the weak antilocalization (WAL) of Weyl fermions. In near
zero magnetic fields, this dependence always overwhelms the positive B2 magneto-
conductivity from chiral anomaly. Moreover, strong intervalley scattering and cor-
relation can lead to a transition from the weak antilocalization to weak localization,
during which magnetoconductivity changes sign from −√

B to
√
B in the strong

limit of intervalley correlation and scattering. The results are in a good agreement
with experiment performed previously [42].

8.6 Materials Realization

Since the discovery of the Fermi arc surface state and the first proposal to realize
WSM in pyrochlore irdates [4], where 24 pairs of Weyl points emerge as the system
undergoes an correlation induced phase transition, the number of proposed magnetic
WSM has increased dramatically. Based on first-principles calculation, ferromag-
netic compound HgCr2Se4 had been proposed as a WSM with a single pair of Weyl
nodes separated in BZ [60]. HgCr2Se4 has quite simple ferromagnetic (FM) mag-
netic configuration and its band structure and magnetic properties are not sensitive
to the choice of on-site Coulomb interaction parameter U. Experiments show that its
Curie temperature Tc is high (around 106–120K), and its saturatedmoment is around
5.64 μB /f.u. [61, 62]. Theoretical work proposes that the Weyl nodes in HgCr2Se4
carry Chern number ±2, and the quantum anomalous Hall effect can be realized
in its quantum-well structure [60]. Motivated by this theoretical proposal, detailed
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transport studies have been performed. Experiment finds that HgCr2Se4 has nearly
full spin-polarized current, which indicates its half-metallicity [63].

A multilayer-heterostructure material, consisting of alternating layers of a 3D
topological insulator and an ordinary insulator, had been predicted as a WSM with
just two Weyl points [64]. Numerical calculations also reveal that spinel osmium
(CaOs2O4 and SrOs2O4) is a ferromagnetic compound and may be aWSM or Axion
insulator depending on the on-site Coulomb correlationU [65]. Hg1−x−yCdxMny Te
in amagnetic field had been suggested as aWSMwith two nodes in an experimentally
reasonable region of the phase diagram [66]. Its Hall conductivity is proportional
to the average Mn ion spin, strongly temperature dependent and shows an unusual
magnetic field angle dependence [66]. Unfortunately, to preserve the properties of the
magnetic WSM, one need a sample which has quite large magnetic domains. Thus
it is a highly challenging problem to experimentally verify the above theoretical
proposal about the magnetic WSM.

As mention above, the topological stability of the Weyl points crucially requires
that the involved bands are non-degenerate. Thus to obtain a WSM one need break
either time reversal symmetry [4] or inversion symmetry [59, 89]. In addition to the
time-reversal symmetry-breaking materials, several inversion symmetry-breaking
compounds have been proposed as WSM. A WSM phase have been found in a
superlattice system formed by HgTe/CdTe multilayer structure [89]. It had been sug-
gested between the normal insulator and the topological insulator phases, a WSM
phase exists for a finite range of the system parameters and exhibits a finite number of
Weyl points with robust band touching at the Fermi level [89]. Theoretical work sug-
gests that trigonal Te and Se undergo insulating-semimetallic-metallic transitions
under pressure, and the semimetallic phase is a WSM with multiple Weyl nodes
near the Fermi level [90]. By studying the problem of phase transitions from three-
dimensional topological to normal insulators without inversion symmetry, a robust
WSM had been suggested in the solid solutions LaBi1−x SbxTe3 and LuBi1−xSbxTe3
for x ≈ 38.5–41.9% and x ≈ 40.5–45.1%, respectively [91]. There are also several
other proposals for realization of WSM. Unfortunately, none of them had been defi-
nitely confirmed to be a WSM.

In 2015, two research groups simultaneously theoretically predicted the existence
of WSM in the noncentrosymmetric and non-magnetic transition-metal monophos-
phides: TaAs, TaP, NbP and NbAs [67, 68]. TaAs crystalizes in a body-centered
tetragonal lattice system, the space group is I41md (C4v). TaAs family compounds
contain two mirror planes, namely, Mx and My [67, 68]. The ZN� plane in BZ pos-
sess mirror symmetry, thus the energy bands within this plane can be classified in
terms of the mirror eigenvalues ±1. The calculations without spin-orbital coupling
show that the two bands that cross along the Z to N line belong to opposite mirror
eigenvalues [67]. Combining with the time reversal symmetry, this band inversion
guarantees a nodal line in the ZN� plane [69]. Considering SOC, the first-principles
calculation shows that the ZN� plane becomes fully gapped [67, 68]. To explore the
possible band crossing at general k point is very important.

For the material with inversion symmetry, the presence of Weyl point can be
justified by parities of occupied bands at all the TRIM [4, 70, 71]. Without inversion
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symmetry, one cannot use the parity criterion for TaAs family compounds. On the
other hand, withmirror planesMx andMy , mirror Chern number (MCN) can directly
reveal whether TaAs hosts Weyl points in the BZ or not [67]. Based on the Wilson-
loop method, the MCNs for the two mirror planes had been calculated, and the
numerical results confirm that Weyl points exist in the TaAs band structure [67].

The exact positions of Weyl points can be determined by calculating the Berry
flux through a closed surface enclosing aWeyl point. The Berry curvature integration
can been done based on a computational scheme proposed by Fukui et al. [72]. One
can define a small cubic region surrounding eachWeyl point. A quantity γ n

Pl ,s
, which

is called the field strength, is defined as [72, 73]:

γ n
Pl ,s = Im log(〈n(kl , s)|n(kl + u1, s)〉〈n(kl + u1, s)|n(kl + u1 + u2, s)〉

〈n(kl + u1 + u2, s)|n(kl + u2, s)〉〈n(kl + u2, s)|n(kl , s)〉)

where kl is a vector at lth mesh point, s = 1–6 denotes the six faces of the cube, u1
and u2 are vectors between nearest mesh points for the two directions of the k vector
on the surface of the cube, Pl is lth smallest closed path passing by the points kl and
its nearest mesh point. In this formula, the Chern number can be obtained through
the summation over a mesh of phases γ n

Pl ,s
:Cn = ∑

Pl ,s
γ n
Pl ,s

. The Bloch wave functions

|n(kl , s)〉 are given from the first–principles calculations.
By employing dense k-mesh on each of the six faces of the small cube, two

nonequivalent Weyl points had been found out [67, 68]. There are 24 Weyl points in
total: 8 Weyl points on the kz = 0 plane, and 16 Weyl points away from the kz = 0
plane. The Weyl points in the kz = 0 plane are about 2 meV above the Fermi energy
and form eight tiny hole pockets, while the others are about 21 meV below the Fermi
level to form 16 electron pockets [67, 68]. Regardless of the quite complicated
patterns for the Fermi surfaces, the Fermi arc structures on both (001) and (100)
surfaces had also been identified theoretically [67, 68]. Unlike previous predictions,
these compound are stoichiometric and does not depend on fine-tuning chemical
composition. Moreover, different with the proposed magnetic WSM which requires
magnetic ordering in sufficiently large domains, TaAs family naturally break the
inversion symmetry. Thus these compounds are ideal for the ARPES measurements.

The theoretical prediction of WSM in TaAs family compounds had been quickly
confirmed by subsequent experiments. Several groups have reported the direct obser-
vation of the bulkWeyl points and the surface Fermi arcs byARPES in TaAs [74–77],
NbAs [78], TaP [79, 80], and NbP [81]. The observations of Fermi arc, the hallmark
of WSM [4], unambiguously confirm the emergence of WSM in these compounds.
As discussed above, according to quantum field theory, the appearance of Weyl
points near the Fermi level will cause novel transport phenomena related to chiral
anomaly. This novel property had also been confirmed by experiments [44, 45]. For
most metals, usually the resistivity increases under an external magnetic field. While
under parallel electric and magnetic fields, TaAs displays a negative magnetoresis-
tance, namely this compound becomesmore conductive as amagnetic field is applied
along the direction of the current for certain ranges of the field strength [44, 45].
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This maybe a signature of the chiral anomaly, and indicates the existence of WSM.
Moreover, Analysis of the Shubnikov de Haas (SdH) oscillations suggests that the
Berry phase accumulated along the cyclotron orbits is π . This again indicates the
existence of Weyl points [44].

Due to the fact that not all Weyl nodes in TaAs are symmetry related, 24 Weyl
nodes are close to but not exactly at the Fermi level. Moreover, there are also trivial
Fermi pockets at the Fermi level in addition to the Weyl nodes [67, 68]. Thus the
linear-B negative magnetoresistance [31, 82], the emergent supersymmetry [83] and
others [84], have not been experimentally observed in TaAs family. Therefore, it is
urgent to search for idealWeyl semimetals with allWeyl nodes exactly residing at the
Fermi level. Based on first-principles calculation, chalcopyrites CuTlSe2, AgTlTe2,
AuTlTe2, and ZnPbAs2 had been predicted as ideal WSM [85]. These compounds
have largely separated Weyl points and uncovered Fermi arcs, consequently are
amenable to experimental detections [85]. HgTe and half-Heusler compounds had
also been suggested as idealWSMunder a broad range of in-plane compressive strain
[86].WithWeyl nodes located exactly at the Fermi level andwithout coexisting trivial
Fermi surfaces, these ideal WSMs provide perfect playground of intriguing Weyl
semimetals and potential applications for low-power and high-speed electronics.

8.7 Type-II Weyl Semimetals

In the above mentioned WSM, refers to type-I WSM, the low energy excitation is
analogs of the relativistic Weyl fermion from high energy physics. Thus these WSM
respect Lorentz symmetry and around the Weyl points their band structure have the
typical conical dispersion as shown in Fig. 8.5. There is also type-II WSM [92], with
also crossing points formed by two non-degenerate linearly dispersing energy bands.
However as shown in Fig. 8.5, the Weyl node in type-II WSM appears at the contact
of electron and hole pockets and exhibits a strongly tilted conical band structure
dispersion with a nonvanishing density of states (DOS) [92, 93]. In contrast, type-
I WSM has a pointlike Fermi surface and a vanishing DOS at Fermi level. Thus
different with type-I WSM, type-II WSM violates Lorentz and has no counterparts
in high energy physics [92, 93].

The first realistic type-II WSM proposed by theorists is WTe2 [92]. WTe2 is
a layered transition metal dichalcogenides material [94]. This compound has an
extremely large positive magnetoresistance (MR) at low temperatures and the MR
remains unsaturated even at extremely high applied magnetic fields of 60T [94]. A
perfect balance between the electron andhole populations [94] andnovel spin textures
at Fermi surface [95] may be the source of these uniqueMR effects. Moreover, under
pressure WTe2 displays dome-shaped superconductivity [96, 97].

The crystal structure of WTe2 is orthorhombic with space group Pmn21 (C7
2v).

Without including SOC, the first-principles calculation reveals that WTe2 has 16
band crossing points, eight of them locate at the kz = 0 plane and the others locate
at at low symmetry points [92]. SOC will eliminate the band crossing points at the
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low symmetry points. As the case of TaAs [67, 68], by computing the integral of the
Berry curvature on a closed surface in k space, eightWeyl points had been confirmed,
and all of them located at the kz = 0 plane [92]. The eight Weyl nodes in WTe2 can
be classified to two types: WP1 and WP2. The WP1 is slightly (0.052 eV) above
the Fermi level, and its coordinate is (0.121, 0.038, 0) (in units of reciprocal lattice
constants). While WP2 is 0.058 eV higher than Fermi energy, and the coordinate
is (0.124, 0.045, 0). The other six Weyl points can been easily obtained by lattice
symmetry [92]. Numerical results show that when the Fermi level is tuned to the
energy of Weyl point, two electron pockets touches two hole pockets at the positions
of the Weyl point. This is sharply in contrast with the Type-I WSM, in which the
Fermi surface is point-like.

Thenature ofWeyl point canbe checkedby considering the followingHamiltonian
[92]

H(k) =
∑

i=x,y,z

ki Ai0 +
∑

i, j=x,y,z,

ki Ai jσ j ,

where k is the wave vector, A is a 3 × 3 coefficient matrix, and 	σ are the Pauli
matrices. The energy spectrum of this Hamiltonian is

ε±(k) =
∑

i=x,y,z

ki Ai0 ±
√ ∑

j=x,y,z

(
∑

i=x,y,z

ki Ai j )2 = T (k) ±U (k).

It is clear that this band structure has a Weyl point at k = 0, and T (k) tilts the
Weyl cone consequently breaks the Lorentz invariance. For type-I Weyl point, T (k)
always less thanU (k), consequently ε±(k) = 0 occurs only at k = 0 point. However,
if T (k) > U (k) at particular region in BZ, the equation of ε±(k) = 0 has solutions
not only at k = 0 but also at certain other k points. Consequently the Fermi surface
becomes open electron and hole pockets, which touches at Weyl point [92]. This
kind of Weyl point had been referred as type-II Weyl point, and the materials with
type-II Weyl point around the Fermi level had been coined as type-II WSM [92].
And the theoretical work suggests that WTe2 is a type-II WSM [92].

It is very known that Fermi surface plays important role in the response to external
fields. Thus type-II WSM give rise to many new properties. In contrast to a type-I
WSM, which exhibits a chiral anomaly for any direction of the magnetic field, the
chiral anomaly appears in a type-II WSM only when the direction of the magnetic
field is within a cone where |T (k)| > |U (k)| [92]. If the field direction is outside this
cone, then the Landau-level spectrum is gapped and has no chiral zero mode [92].

It had been suggested that regardless of the field strength for type-II Weyl node,
there always exists a critical angle between theBfield and the tilt, atwhich theLandau
level spectrum collapses [98]. Moreover, before the collapse, magneto-optical spec-
trum displays interesting properties, including the invariable presence of intraband
peaks, the absence of absorption tails, and the special anisotropic field dependence
[98]. It had also been proposed that type-II WSM possess a modified anomalous
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(b)(a)

Fig. 8.5 A schematic demonstration of dispersion along kx -kz plane in Type-I and Type-II Weyl
semimetals. In both diagrams, the grey planes indicate the position of Fermi energy and the red
dot denotes the Weyl point. a Type-I Weyl semimetal; b Type-II Weyl semimetal and the red lines
correspond to edge of electron pockets (hole pockets are not shown in this diagram)

Hall conductivity [99]: Induced by the strongly tilted conical spectrum in type-II
WSM, the Hall conductivity is not universal and can change sign as a function of the
parameters quantifying the tilts [99].

Moreover, Type-IIWSMdisplay a novel momentum-spaceKlein tunneling [101].
Since electrons and holes in graphene system have different chirality, quantum tun-
nelling in thesematerials becomes highly anisotropic, qualitatively different from the
case of normal, non-relativistic electrons. Thus massless Dirac fermions in graphene
allow a close realization of Klein’s paradox—unimpeded penetration of relativistic
particles through high and wide potential barriers [100]. With both electron and hole
pockets at Fermi surface, type-II WSM exhibits novel magnetic quantum oscilla-
tions [101]. Tunneling between the electron and hole pockets in a magnetic field is
the momentum space counterpart of Klein tunneling at a p-n junction in real space
[101]. This magnetic breakdown happens at a characteristic field strength that van-
ishes when the Fermi level approaches the Weyl point. And depending on connected
or disconnected pairs of Weyl cones, type-II WSM displays qualitatively different
quantum oscillations on the direction of the magnetic field [101].

Owing to its intriguing physical properties like nonsaturating positive magnetore-
sistance and being possibly a type-II WSM, WTe2 attract a lot of research attention.
The magneto-transport of WTe2 had been measured by several groups [102–104].
The notable negative longitudinal magnetoresistance, which may relate with the
chiral anomaly in WSM, had been observed [102–104]. The negative longitudinal
magnetoresistance displays strong planar orientation dependence with the absence
along the tungsten chains [102]. This is consistent with the feature of a type-II WSM
[92]. Moreover, experiment reveals that the negative longitudinal magnetoresistance
in WTe2 can been tuned by gate voltage [102]. This may be attributed to the fact
that Fermi energy pass through the Weyl points [102]. These experimental results
strongly indicate the existence of type-II Weyl point in WTe2.

Due to the existence of multiple pockets in a limited momentum space, the full
electronic structure picture of WTe2 remains controversial [95, 105–107]. Recently,
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by using laser-based ARPES with high energy and momentum resolutions, Wang et
al. explore the electronic structure of WTe2[108]. Their experimental results show
good agreement with the band structure calculations, provide electronic signatures
that are consistent with a type-II Weyl state in WTe2[108]. Unfortunately the Weyl
points lie about 50 meV above the Fermi energy and the distance between a pair of
Weyl points is only about 0.7% of the reciprocal lattice vector length [92], thus for
WTe2 the definite experimental evidence on type-II WSM is still lacking.

Based on first-principes calculation, Td phase MoTe2, which is isostructural to
WTe2, had been proposed as type-II WSM [109, 110]. Numerical results reveal
MoTe2 has four pairs of Weyl points, and these Weyl points is only slightly above
(∼ 6 meV) the Fermi energy [109, 110]. The distance between the predicted Weyl
points is around 4% of the reciprocal lattice in MoTe2. This is six times larger than
that ofWTe2. Due to the largeWeyl point separation, the Fermi arcs surface state can
be easily accessed by ARPES [109, 110]. A series of strain-driven topological phase
transitions in MoTe2 had also been suggested [109, 110]. Theoretical calculation
also reveals that Mo-dopedWTe2 is a type-II WSM [111]. The positions of the Weyl
points and length of the Fermi arc can be adiabatically tuned as a function of Mo
doping. A 2% Mo doping is sufficient to stabilize the WSM phase not only at low
temperatures but also at room temperatures [111] and a moderate doping can induce
long Fermi arc [111]. By pump-probeARPES, the band structure above Fermi energy
had been accessed, and a topological Fermi arc had been directed observed [112]. The
excellent agreement between theoretical simulation and experimental measurement
confirm that these system are indeed type-II WSM [112].

However, the band structures of WTe2 and MoTe2 are very complicated and the
arrangement of Weyl points is sensitive to small changes in the crystal structure,
which, in turn, is sensitive to temperature [92, 113]. Thus it is crucially important
to find the materials with robust separated Weyl nodes. Numerical results predict
that transition metal diphosphides MoP2 andWP2 is type-II WSM [114]. The crystal
structure of these materials is different from the previously reported ditellurides.
With relatively simple band structures, MoP2 and WP2 have four pairs of type-II
Weyl points [114] . Neighboring Weyl points have the same chirality, which makes
the type-II WSM phase robust against small perturbations of the crystalline lattice.
Due to the peculiar arrangement of the Weyl points, the Fermi arcs is quite long,
making them readily accessible in ARPES [114]. Strongly robust type-IIWeyl points
had also been predicted existed at Ta3S2 [115] and TaIrTe4 [116]. The Fermi arc in
Ta3S2 is about twice larger than the measured value in TaAs and 20 times larger than
the predicted value in WTe2 [115], while Fermi arcs of TaIrTe 4 is extend to about
1/3 of the surface BZ [116].

8.8 Outlook

As a new states of matter, WSM have attracted intense research interest, and a lot of
other novel properties had been suggested. In the limit of weak internode scattering,
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WSM exhibit nonlocal transport behaviors [117]. The unusual Fermi arc surface
states ofWSMdisplay nontrivial quantumoscillations signature [118]. BecauseWeyl
fermion quasiparticles are naturally spin-momentum locked and superconductivity
in these materials may exhibit non-Abelian statistics [119–121] , they may also be
exploited to realize new applications, such as in spintronics and quantum computers.
The photoinduced anomalousHall effects [87] and significant photocurrents behavior
[88] had also been proposed.

Weyl fermions were conjectured in the 1920s by the mathematician Hermann
Weyl [5], and played a crucial role in the development of quantum field theory
and the Standard Model but has not yet been observed as a fundamental particle
in Nature. With Weyl fermions as its low-energy quasiparticle excitations, WSM
thus has attracted intense research interest not only at condensed matter system,
but also many other field. The Weyl points had been theoretically predicted and
experimentally observed at photonic crystal [122, 123]. The bulkWeyl magnon with
chiral magnon surface states forming arcs at finite energy had been suggested [124].
Lorentz-violating type-IIWeyl fermions had been proposed at acoustic system [125].
Recently, the so-called new fermion, with [126] or without [127–129] counterparts
in high energy physics, had been discussed.
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Chapter 9
Symmetry and Topology
in Antiferromagnetic Spintronics

Libor Šmejkal and Tomáš Jungwirth

Abstract Antiferromagnetic spintronics focuses on investigating and using anti-
ferromagnets as active elements in spintronics structures. Last decade advances in
relativistic spintronics led to the discovery of the staggered, current-induced field
in antiferromagnets. The corresponding Néel spin-orbit torque allowed for effi-
cient electrical switching of antiferromagnetic moments and, in combination with
electrical readout, for the demonstration of experimental antiferromagnetic mem-
ory devices. In parallel, the anomalous Hall effect was predicted and subsequently
observed in antiferromagnets. A new field of spintronics based on antiferromagnets
has emerged. We will focus here on the introduction into the most significant dis-
coveries which shaped the field together with a more recent spin-off focusing on
combining antiferromagnetic spintronics with topological effects, such as antiferro-
magnetic topological semimetals and insulators, and the interplay of antiferromag-
netism, topology, and superconductivity in heterostructures.
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9.1 Introduction

The phase of matter can be characterized by symmetry and topology [1, 2]. For
certain effects, symmetry provides the basic condition to occur while topology can
add exceptional robustness. A text-book example is the Hall effect enabled by the
broken time-reversal symmetry (T ) in the applied magnetic field. The exact discrete
resistance values in the quantumHall effect (QHE), unperturbed by disorder, are then
a consequence of the topological Landau level form of the electronic structure in a
strong quantizing magnetic field [3]. In this chapter, we show how the fundamental
concepts of symmetry and topology apply to antiferromagnetic spintronics [4].

We start our chapter by briefly illustrating the symmetry and topology principles
on three key functionalities of spintronic memory devices, namely the retention,
reading, and writing of magnetic information [5, 6]. Side by side we compare in this
introductory section how the principles apply when considering the more conven-
tional ferromagnetic and the emerging antiferromagnetic spintronic devices.

Ferromagnetism can (and often does) lower the symmetry of the crystal, depend-
ing on the direction of magnetic moments. For example, a rotation along a certain
crystal axis remains a symmetry operation when moments are aligned with the axis
but the symmetry is broken when the moments are perpendicular to the rotation
axis. It implies that reorientation of ferromagnetic moments can, in the presence
of spin-orbit coupling (SOC), change the electronic structure and by this the total
energy. This is the origin of the magnetocrystalline anisotropy energy (MAE) barrier
that supports the non-volatile storage in spintronic memories [5]. The same sym-
metry principle and corresponding magnetic storage functionality apply equally to
antiferromagnets (AFs) [4]. On top of that, the lack of a net magnetic moment and
suppressed dipolar fields make the storage in AFs less sensitive to magnetic fields
and allow for denser integration of memory bits than in ferromagnets. Apart from
binary storage, AFs naturally host series of different stable multi-domain reconfigu-
rations which is suitable for integrated memory-logic or neuromorphic computation
devices [7–10].

Anisotropic resistance, i.e. the sensitivity of electronic transport to the current
direction, requires broken cubic symmetry. Ferromagnetism where spins align with
a specific crystal axis always breaks cubic symmetry. This implies that ferromagnets
can have the anisotropic resistance. Here typically the leading dependence of the
resistance on current direction is when measured with respect to the magnetization
axis. The effect called (spontaneous) anisotropicmagnetoresistance (AMR) is known
for more than 150 years [12] and provides arguably the most straightforward means
for electrically detecting different directions of ferromagnetic moments. AMR was
used, e.g., in the first generation of magnetoresistive field sensors for hard-disk
read-heads or for electrical readout in the first generation of magnetic random access
memories (MRAMs) [13]. The same symmetry argument applies to the AMR in AFs
where it has been used to demonstrate electrical readout in experimental memory
devices, as shown in Fig. 9.1 [7–9, 14, 15]. On the other hand, AMR in AFs is not
suitable for external magnetic field sensing because of the lack of the net magnetic
moment.
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(a) (b)

Fig. 9.1 Discovery of the manipulation of the antiferromagnetic order via electric currents. a The
crystal structure of the CuMnAs AF with marked non-equilibrium spin polarisations δs generated
by the current J applied along the [010] direction. b The reorientation of the moments is observed
in the microbars of the CuMnAs. The writing current is applied along one of two orthogonal
directions and generates a spin-orbit field which reorients the moments along the perpendicular
direction to the applied current. In the bottom panel, we show the anisotropic magnetoresistance
signal corresponding to the reorientation of the Néel order parameter. Panel (b) adapted from [7,
11]

Another transport effect that can be used to internally detect magnetic moments of
a conductor is the anomalousHall effect (AHE). It can occur in crystalswithmagnetic
space groups whose symmetry allows for the presence of a net magnetic moment.
Remarkably, this symmetry argument holds independently of whether the system
indeed has a ferromagnetic moment or is in a fully compensated antiferromagnetic
state. While the AHE in ferromagnets was discovered more than 100 years ago [17],
its experimental demonstration in AFs, shown in Fig. 9.2, is one of the most recent
developments in spintronics [16, 142, 143].

Unlike time-reversal, the symmetry operation of space-inversion (P) does not
rotate the axialmagneticmoment vectorwhich implies that ferromagnets cannot have
a combinedPT -symmetry. This removes the KramersPT -symmetry protection
of the spin-up/spin-down degeneracy of electronic bands. As a result, electrons mov-
ing in the unequal spin-up and spin-down bands have different resistivities. In ferro-
magnetic bilayers this leads to different resistance states for parallel and antiparallel
alignments of moments in the two layers and the corresponding giant/tunnelling
magnetoresistance (GMR/TMR) effects [5]. These phenomena, that tend be stronger
than the AMR, are used in modern hard disk read-heads and MRAMs.

Different resistivities in spin-up and spin-down transport channels in a ferromag-
net can be also used to filter an unpolarised current passing through the ferromag-
netic layer by suppressing one spin-component of the electrical current. The resulting
spin-polarized current filtered through such a ferromagnetic polarizer can exert a spin
transfer torque (STT) on the adjacent ferromagnetic layer and switch its magnetic
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(a) (b)

Fig. 9.2 Observation of the anomalousHall effect in noncollinearAFs.aThenoncollinearmagnetic
order on the kagome lattice in the Mn3Sn breaks the time reversal symmetry and allows for the net
magnetization in the [100] direction. Although the net moment is almost perfectly compensated,
a strong emergent magnetic field, e.g. Berry curvature b, along the [100] direction generates a
large anomalous Hall effect in the perpendicular, (001), plane. b The measured Hall resistivity ρAF

H
obtained by subtracting the signal from the small net moment and ordinary Hall effect. The panel
(b) adapted from [16]

moment [18]. This reversible electrical writingmethod is used in the latest generation
of MRAMs.

There is no equivalent counterpart of the two-spin-channel GMR/TMR or STT
phenomena in AFs with equal spin-up and spin-down bands. On the other hand,
AFs can have the combined PT -symmetry which opens a possibility of the Dirac
crossing of two doubly-degenerate bands, as shown in Fig. 9.3a [19, 20]. The topo-
logical protection of these Dirac points can be turned on and off by changing other
symmetries of the antiferromagnetic crystal, e.g., via changing the direction of the
antiferromagnetic Néel vector. This could enable very large topological AMR effects
in AFs and remedy the absence of the two-spin-channel GMR/TMR.

In time-reversal symmetric paramagnets, degeneracy of states with opposite spins
and opposite crystal momenta occurs, while the states at a given crystal momentum
can be spin split when the spatial inversion symmetry is broken. As a result, the
crystal can develop a net spin polarization in a non-equilibrium, current-carrying
state. When these spin Hall or Edelstein effects occur at an inversion-asymmetric
interface between a paramagnet and a ferromagnet, or inside a ferromagnetic crystal
that lacks inversion symmetry, they can induce a spin-orbit torque (SOT) in the
ferromagnet [21, 22]. The charge to spin conversion efficiency driving the SOT can
outperform that of the STT and is explored as a prospectwritingmechanism for future
fast MRAMs. A particularly large charge to spin conversion efficiency is expected
to occur in time-reversal symmetric topological insulators (TIs) whose 2D surfaces
host Dirac cones with the spins locked perpendicular to the 2D momenta [23]. The
ultimate charge to spin conversion efficiency would then occur in 1D surface states
of 2D TIs, the so called quantum spin Hall states [24], with opposite electron spins
locked to the opposite crystal momenta at a given 1D edge.
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T T 1
2

T P

(a)
(b)

Fig. 9.3 Concepts of topological antiferromagnetic structures in crystal momentum space. a The
antiferromagnetic effective time reversal symmetryT P combining time reversal and spatial inver-
sion can protect the Dirac semimetal state. The exemplar crystal structure of orthorhombic CuMnAs
is shown in the inset. b The antiferromagnetic effective time reversal symmetry T T 1

2
combining

time reversal and half-unit cell translation can protect the topological insulator. The GdPtBi candi-
date is drawn in the inset

A direct counterpart of the SOT is observed in AFs that break the T symmetry
and the P symmetry but have the combined PT symmetry. In these antiferro-
magnetic crystals, a global electrical current induces a staggered non-equilibrium
spin polarization that is commensurate with the staggered equilibrium Néel order
[25]. The phenomenon was used to demonstrate, in combination with AMR, exper-
imental antiferromagnetic memory devices with electrical writing and readout [7].
Because of the THz-scale antiferromagnetic resonance, compared to the GHz-scale
ferromagnetic resonance, SOT switching in antiferromagnetic memory devices was
demonstrated with writing current pulses as short as 1 ps [11]. Moreover, since it is
again the PT -symmetry that enables the antiferromagnetic SOT, it is potentially
compatible with the large topological AMR [20]. Recently electrical switching of
Mn2 Au was also observed accompanied by a large AMR [28]. The role of thermal
activation [144] and crystal orientation [145] for the SOT was also investigated.

Another class of AFs, with no symmetry counterparts in ferromagnets, has the
combinedT T 1

2
-symmetry, where T 1

2
is the translation by a half of the magnetic unit

cell. This symmetry allows in principle for TIs with spin-momentum locked surface
states, despite the breaking of theT symmetry by themagnetic order, as illustrated in
Fig. 9.3b [26]. Overall, an antiferromagnetic order can occur in 1421 magnetic space
groups out of which only 275 allow also for the ferromagnetic order. Similarly, the
122 magnetic point groups are all compatible with the antiferromagnetic order out
of which only 31 also support ferromagnetic states. This not only underlines why
antiferromagnetism ismore common than ferromagnetism and spans thewhole range
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of materials from insulators to superconductors but also highlights how much is the
symmetry and topology playground enlarged by includingAFs.We are just beginning
to unravel what new spintronics phenomena and functionalities this may offer. In
Sect. 9.2 we give a brief overview of symmetry and topology concepts in condensed
matter systems. In Sect. 9.3 we discuss in more detail antiferromagnetic topological
semimetals, Chern insulators, and TIs. Topological spintronic phenomena in AFs are
reviewed in Sects. 9.4 and 9.5 gives a brief summary of the Chapter.

9.2 Antiferromagnets: Symmetry and Topology

The phases of matter can be classified by Landau symmetry breaking mechanism. In
an AF, Néel vector breaks the rotational symmetry present in the paramagnetic state.
The order parameter is theNéel vector and SOCdetermines the particular direction(s)
of the magnetic moments in crystal, the so-called easy axes, corresponding to the
lowest MAE. While certain AFs tends to be to a very good approximation isotropic
Heisenberg magnets, e.g. Mn2Au AF can have in-plane MAE at the level of 10µeV
per formula unit [27, 28], noncollinear Mn3Sn AF was reported to have MAE of
0.1eV per formula unit [29, 30], and a giant MAE of 10meV per formula unit was
predicted in noncollinear IrMn3 [31].

The discoveries in the 1980s in the theory of superfluid vortices, QHE, or disloca-
tion defects revealed an additional label of the phases different from the symmetry,
based on topology [32]. The phases can be characterized by an integer topological
index which does not change upon continuous transformations of the Hamiltonian
and thus supports the relative robustness of a topological phase. For instance, the
topological invariants in TIs are the Z2 indices, which in simple centrosymmetric
non-magnetic TIs are related to counting the number of parities at time-reversal
invariant crystal momenta [1]. Dirac semimetals (DSMs), such as graphene, are pro-
tected by the vorticity around theDirac point [33]. TheDSMs protected by crystalline
symmetry can be assigned a topological index by subtracting this crystalline sym-
metry eigenvalues of the conduction and valence band along the line in Brillouin
zone (BZ) invariant under this symmetry. Red and blue lines in Fig. 9.3a illustrate
the symmetry eigenvalues with an opposite sign.

We note that TIs and semimetals represent a symmetry protected topological
order [34]. For instance, AF DSMs or TIs require the presence of thePT orT T1/2
symmetry as illustrated in Fig. 9.3a, b.Weyl semimetals (WSM) and Chern insulators
are protected by Chern numbers. WSM can be realized in system with brokenPT
symmetry, while Chern insulators materialize in systems with broken T symmetry
as we explain further. The slices of constant wavevector component kz between two
Weyl points in simple model WSM [35] (with PT symmetry broken by breaking
T symmetry, Fig. 9.4a) can be thought of as Chern insulators, whose examples are
QHE or quantum anomalous Hall effect (QAHE). If we use the Bloch ansatz, the
Chern number of a kz = const. plane reads,
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(a)

(b)

(c) (d)

Fig. 9.4 Topological edge states and transport. a Fermi arcs in Weyl semimetal. b The realization
of quantum Hall effect as seen in quantized transversal resistivity in EuMnBi2 AF [37]. c The edge
states in Chern insulator. d Spin polarised edge states in quantum spin Hall effect. Panel (b) adapted
from [37]

C = 1

2π

∫
dkxdkybz(k), (9.1)

where the Berry curvature has a meaning of an emergent magnetic field b in the
crystal momentum space and quantifies the underlying topology of the wavefunction
[33]:

b(k) = −Im〈∂ku(k)| × |∂ku(k)〉. (9.2)

The topological index of a Weyl point can be defined as a Chern number of a closed
surface surrounding theWeyl point,which can be calculated due to theGauss theorem
as a difference between twoChern numbers along the line connecting theWeyl points:

Q = C (kz,W + δ) − C (kz,W + δ) = 1

2π

∫

δS

d2k n · b(k). (9.3)

Here δS is a small sphere surrounding the Weyl point at kz,W , n is the surface normal
vector, and C is the Chern number of the plane slightly below and above the Weyl
point kz,W ± δ. Thus the Chern number is nonzero along the kz between the twoWeyl
points and zero outside as marked in Fig. 9.4a.
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The Berry curvature acts as a source and sink at the Weyl points as we illus-
trate in Fig. 9.4a and consequently the two Weyl points along kz have Q = +1, and
−1. Topological phases in the crystal momentum space are very often accompa-
nied by quantized or almost quantized and low dissipation transport properties and
nontrivial surface states [1, 36]. In Fig. 9.4b we show the quantized Hall plateaus
in EuMnBi2 AF [37]. The Chern insulator exhibits quantized Hall conductivity:
σxy = e2

h C .On the other hand, quantum spin Hall effect (QSHE) in the 2D TI shows

a quantized spin Hall conductivity σ S
xy = 2 e2

h . In a Chern insulator, chiral edge states
arise (single spin polarized electrons), which are in fact 1DWeyl fermions of a given
chirality [38], as we show in Fig. 9.4c. In 2D TIs, helical edge states are observed
(two counter-propagating perfectly polarized currents with opposite spins) as we
illustrate in Fig. 9.4d. In contrast, a WSM exhibits surface BZ Fermi arcs for the
constant kz in-between Weyl points as we show in Fig. 9.4a. The stacked Fermi arcs
from chiral edge states of QAHE subsystems yield almost quantized Hall conduc-
tivity: σxy = e2

h
δkW
π

, where δkW is the distance between the Weyl points in the BZ.
In Sect. 9.3 we will discuss in detail possible realizations of topological semimetals,
Chern insulators, and TIs in AFs.

9.2.1 Magnetic Symmetry and Spintronics Effects

The potential presence of long-range ordered antiferromagnetic textures and spin-
tronics effects in AFs is determined by magnetic symmetries. Magnetic point groups
(MPGs) [39] are obtained from the ordinary point groups by adding an addi-
tional antiunitary operation T whose application reverses the direction of magnetic
moments. Antiferromagnetic order can be in principle found in all 122 MPGs. The
colorlessMPGs, the so called category I [39] (see an example of aMPG I in Fig. 9.5),
are those which do not contain the operationT at all and there are 32 of them which
is the same number as the number of nonmagnetic classical point groups. The grey
magnetic point groups (category II [39]) contains T as an element of the magnetic
symmetry group. There is also 32 of them obtained from the category I by adding the
T operation. Antiferromagnetic order may appear in this category since the point
groups can be obtained from the magnetic space groups by removing all nontrivial
unit cell translations. Thus antiferromagnetic sublattices connected by a combination
of nontrivial translation T and time reversal fall into this category and we show in
Fig. 9.5 (MPG II) exemplar FeSe AF structure with the T T 1

2
operation. Finally, the

category III black and white MPGs contain T only in a combination with another
point group symmetry (mirror, or rotation). There are 58 of them and we show in
Fig. 9.5 (MPG III) three antiferromagnetic examples (from left): A DSM AF crystal
[20], a WSM AF crystal [40] and a WSM AF crystal with a nonzero AHE [41].

The form of spintronics linear response tensors is obtained by the application of
magnetic symmetries. The Neumann principle states that any physical observable of
a system must exhibit symmetry of the point group of the system [39]. A special role



9 Symmetry and Topology in Antiferromagnetic Spintronics 275

Fig. 9.5 Classical magnetic point groups (MPGs) and exemplar AFs. (I) White MPG example of a
layered AF MnTe. (II) Grey MPG and zig-zag antiferromagnet FeSe. (III) Black and white MPG.
Three different types (from left):PT AF CuMnAs, centrosymmetric AF with 3Q magnetic order
and prohibited anomalous Hall effect (AHE)—IrMn [42] or pyrochlore AF [40], and centrosym-
metric AF with nonzero AHE, Mn3Ge. The three colors represent overlap of the antiferromagnetic
symmetries allowing for Dirac quasiparticles, superconductivity, and AHE

Table 9.1 Spatial inversion and time reversal transformations of tensors

Tensor rank Even (scalar, matrix) Odd (vector, 3rd rank)

Time rever-
sal T

+ − + −

Spatial
inversion P

+(polar) −(axial) +(polar) − (axial) −(polar) +(axial) −(polar) +(axial)

PT + − − + − + + −
Exemplar
tensor

AMR σ AHE
i j σ S

i j b

is played by T andP symmetries which define the basic transformation properties
of tensors as shown in Table9.1. For the conductivity σi j and spin Hall conductivity
σ S
i j analysis, it is sufficient to use the magnetic Laue group [43]. σi j and σ S

i j do not
change sign under spatial inversion and thus this symmetry can be omitted leading
to only 32 magnetic Laue groups to investigate [44]. In contrast, the SOT torkance
tensor τi j changes sign under spatial inversion and thus non-centrosymmetric lattice
sites are required and all 122 MPGs have to be considered [45, 46]. This procedure
leads to the conclusion that in the MPG from category I, and III there are in total 31
MPGs which allow for uncompensated moments, ferrimagnetism, ferromagnetism
and also a nonzero AHE conductivity σ AHE

i j . In Fig. 9.5 (MPG III)—right panel we
show a corresponding example of the non-collinear AF structure of Mn3Ge.
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(a) (b)

Fig. 9.6 The symmetry of spin-orbit fields. a All possible nonequilibrium spin polarization at
noncentrosymmetric positions in crystals can be decomposed into combinations of Rashba, Dres-
selhaus, or Weyl spin texture. b Example of realistic calculation of the spin-orbit fields induced by
electric current in tetragonal CuMnAs. The symmetry of the fields was confirmed in experiment
[7]. Panel (b) adapted from [7]

The torkance tensor is defined by t = τE [47], where t is a torque generated by an
applied electric field E. The Onsager reciprocal for SOT is the inverse SOT obtained
by interchanging the perturbation and response and both effects can be desribed by
the torkance tensor [48]. SOT can be decomposed into part even inmagnetization part
tE and an odd part tO : t = tE + tO . There are 21 non-centrosymmetric point groups
which allow for a global or local current-induced nonequilibrium spin polarisation,
and thus for SOT, in the lowest order that is independent of magnetization [49]. Spin-
orbit fields generating the SOT can be decomposed into a combination of Rashba,
Dresselhaus, and Weyl symmetry as shown in Fig. 9.6a. The AF variants of SOT
can be found in AFs with non-centrosymmetric magnetic sublattices connected by
crystalline symmetries aswe illustrate on the example of the CuMnAsAF in Fig. 9.6b
[7, 20, 25, 28]. Here the dominating SOT is driven by a staggered effective current-
induced field of Rashba symmetry and the magnetic sublattices are connected via
PT symmetry [20]. Wimmer et al. [45] list forms of torkance tensors for all 122
MPGs.

There are also 21 MPGs which contain combined PT symmetry and can
host Dirac quasiparticles as we explain in Sect. 9.3. Other effects can be treated
analogically. For instance, themagneto-opticalKerr effect [50] and anomalousNernst
effect [51, 52] were predicted and observed in non-collinear AFs as well. Also, this
scheme can be applied to the layer-resolved quantities in heterostructures, e.g. the
layer-resolved conductivity [43].

Finally, AF order can coexist with superconductivity as we illustrate in Fig. 9.5
by the grey shaded ellipse and examples are the iron-based superconductors [53].
More complicated magnetic structures such as spin spirals, spin density waves, and
skyrmionsmaynot allow to be described completely in the classicalMPG framework.
Gopalan and Litvin [54] have shown the possibility of new hidden symmetries, an
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example being local roto-inversion. This operation does not rotate the whole crystal
but just a finite subset while unchanging its MPG. The novel magnetic counterpart
symmetries might be also relevant for the complete description of antiferromagnetic
structures.

9.2.2 Electronic Structure and Band Touchings

Antiferromagnetic exchange interactions arise as a result of the complex interplay
among the electrons. Different types of exchange interactions are possible, e.g.,
direct, indirect, superexchange, or itinerant exchange. The electronic structure of
AFs is thus very often complicated and requires the inclusion of correlation and
many particle effects. A realistic insight into the electronic structure and the existence
of the antiferromagnetic phase can be determined by the density functional theory
(DFT). InDFT, the interactingmany-particle problem ismapped onto non-interacting
electrons in an effective Kohn-Sham potential. Hohenberg andKohn have shown that
the ground-state properties of the effective electronic gas are uniquely determined
by the electronic density. The reformulation of the problem as a variational one
tremendously decreases the macroscopic ∼1023 degree of freedom to just 3—the
spatial coordinates of the electronic density. In a magnetic system with a strong
relativistic SOC, the magnetic relativistic “spin-only” (neglected diamagnetic effects
[55]) Kohn-Sham-Dirac Hamiltonian reads [55]:

HKSD = cα · p + βmc2 + V eff(r) − m(r) · Beff(r), (9.4)

where p = −i�∇ is a momentum, V eff and Beff is the spin independent part of the
potential and the exchange-correlation magnetic field, α, β are 4× 4 Dirac matrices,
m is spin density, and the electronic density is obtained from n(r) = ∑

Ψ
†
i (r)Ψi (r)

[55]. The Kohn-Sham potential is not known exactly and has to be approximated,
e.g., by the local density approximation (LDA)or generalized gradient approximation
(GGA) [56]. The set of equations for the electronic wavefunctions and Kohn-Sham
potential is solved iteratively. The procedure yields ground state wavefunctions and
Hamiltonian from which other quantities, e.g., linear response coefficients can be
calculated. For instance in Fig. 9.8b we show electronic bands of the orthorhombic
AF CuMnAs as calculated within GGA [20].

AF systems are often correlated and disordered. Electronic correlations can be
treated within DFT+Hubbard U, or DFT+dynamical mean field theory (DMFT). We
show the generalized band structure of an AF BaFe2As2 calculated by DFT+DMFT
in Fig. 9.7b. The effects of disorder can be captured by the supercell technique [56]
or coherent potential approximation [56] as was demonstrated, for instance, for dis-
ordered Mn2Au AF [28].

Symmetries impose constraints on the electronic spectrum, including the existence
and protection of band touchings. The palette of quasiparticles in solids is more rich
than the three types of high energy physics excitations: Weyl, Dirac and Majorana
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(a) (b)
(c)

Fig. 9.7 Dirac quasiparticles in iron-based AF superconductors. a Realization of QSHE in a mono-
layer of FeSe AF. Angle resolved photoemission spectroscopy data overlayed with ab initio bands
[53]. b Topological quasi-2D Dirac quasiparticles in BaFe2As2 AF. c Single Dirac cone at M point
in FeSe monolayer AF with a stripe order. Panel (a) adapted from [53], panel (b) from [66], and
panel (c) from [78]

fermions [35]. This is because of the more complex crystalline symmetries that are
not present in the high energy vacuum [57, 58]. In the next Section we illustrate how
the effective Hamiltonian arises for Dirac and Weyl quasiparticles in an AF.

9.3 Topological Antiferromagnetic Phases

Topologicalmagnetic phases can be found in heterostructureswith antiferromagnetic
elements as well as in bulk AFs. In Table9.2, we list promising topological AFs
for spintronics together with the status of theoretical predictions and experimental
observations of topological state or spintronics effects.

9.3.1 Low Dimensional Dirac Antiferromagnets
and Superconductors

Introducing magnetism into TIs is known to modify the spin texture of the Dirac
quasiparticles [73]. Magnetism can couple to TIs either by creating the magnetically
doped TI (MTI) [73], or by proximity coupling between the TI and magnetic order in
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Table 9.2 Topological antiferromagnets

AF Phase TN Space group Representative effect

FeSe QSHE [53] P4/nmm Superconductivity

GdPtBi [26, 59,
60]/Weyl [61]

9 [62] F43m Large thermopower,
AHE [62]

SrMnBi2 Dirac metal [63] 290 [63] I4/mmm Angular dependent
magnetoresistance [64]

CaMnBi2 Dirac metal 300 [65] P4/nmm Dirac fermions coupled
to magnetism [65]

EuMnBi2 Dirac metal 22a [37] I4/mmm QHE controlled by
magnetism [37]

BaFe2As2 2D Dirac metal [66] I4/mmm Superconductivity [66]

CuMnAs Dirac semimetal
[19, 20, 67]

∼400 [67] Pnma TopoMIT, TopoAMR
[20]

X2 Ir2 O7 Weyl semimetal
[40, 68]

Fd3m TopoMIT [69], wealth
of topo. phases [40, 70]

Mn3Sn Weyl (semi)metal
[71, 72]

430 [16] P63/mmc AHE controlled by
magnetic field [16]

aItalic font marks theoretical prediction. Normal font marks existing experimental signatures.

heterostructures [74]. AF order was shown to increase the critical temperature of the
adjacentMTIs in theMTI/AFCrSb/MTI heterostructure [75]. Improved performance
of the SOT in terms of larger spinHall angles and lower critical currents was achieved
in the TI/ferrimagnetic CoTb alloys with the AF coupled Co and Tb sublattices [76,
77].

The first TI AF was predicted in systems with combined T T1/2 symmetry [26].
GdPtBi AF was suggested as a possible candidate, as we show in Fig. 9.3b. GdPtBi
was up to date not confirmed as a TI due to the low resolution of data obtained by the
angle resolved photoemission spectroscopy (ARPES) [79]. However, signatures of
the coexistence of a 2D TI (Fig. 9.4c), and a superconducting state in hole-doped and
electron-doped antiferromagnetic monolayers of FeSe were demonstrated [53]. FeSe
belongs to the metallic building block of the iron-based high-TC superconductors.
Remarkably, the combined effects of SOC, substrate strain, and electronic correla-
tions can induce band inversion and QSHE edge states, as we show in Fig. 9.7a [53].
Creating a p-n junction across FeSe and attaching two ferromagnetic electrodes can
generate Majorana zero modes at the interfaces [80]. Majorana states are considered
for a possible use in quantum computing [81] and are addressed in Chap.12 of this
book.

One of the first systems explored for observing Dirac quasiparticles in condensed
matter beyond graphene were the SrMnBi2 type AFs. The electronic structure of
these systems is governed by the quasi-2D square Bi planes. The Bi states create
close to the Fermi level massive Dirac quasiparticles. High mobilities, and Fermi
velocities, and pseudospin structure of wavefunctions are reminiscent of graphene
properties. In contrast to graphene, however, the quasiparticles are highly anisotropic

http://dx.doi.org/10.1007/978-3-319-97334-0_12


280 L. Šmejkal and T. Jungwirth

with anisotropy factor of ∼8 [64]. Several of these types of AFs were reported in
recent years including SrMnBi2 [64], or CaMnBi2 [65]. The systems belong to the
112-type pnictides where the antiferromagnetism and Dirac quasiparticles might
coexist also with superconductivity. Related systems, e.g. YbMnBi2, were inconclu-
sively [38] reported to be either WSM [82, 83] or DSM [84, 85]. Most likely the
collinear AF order cants in, e.g., the (Sr,Yb)MnBi2 alloy [86] where the double band
degeneracy breaks andWeyl points might emerge. Despitemany recent studies, more
accurate and detailed measurements are needed to reveal the detailed nature of Dirac
quasiparticles in these systems. Finally, in the sister compound, EuMnBi2 AF, the
half-integer QHE was reported controllable by the strength of an external magnetic
field, as we showed in Fig. 9.4b. EuMnBi2 contains at very low temperatures two
antiferromagnetic sublattices. The presence of QHE was linked to the confinement
of the massive Dirac quasiparticles by the spin-flop at the Eu AF sites [37].

Recently the high temperature superconducting 122-type pnictide Ba- and
SrFe2As2 AFs showed signatures of topological Dirac quasiparticles in the infrared
spectra in highmagnetic fields. In Fig. 9.7bwe show the state-of-the-art DFT+DMFT
calculation of quasi-2D Dirac cones close to the Fermi level which are consistent
with the observed Landau level spectra and density of states [66]. When the Fermi
states are dominated by Dirac quasiparticles, the topological semimetal is achieved.
Electron filling enforced semimetals with a single Dirac cone were predicted theo-
retically in 2D model AFs [78]. In Fig. 9.7c we show the single Dirac cone at the M
point in the BZ of the monolayer of the FeSe AF with a stripe order. The quasi-low
dimensional systems and heterostructures, however, suffer from fragile magnetism
and low critical temperatures. In two following subsection, we describe possible
room temperature 3D Dirac and Weyl semimetal AFs.

9.3.2 3D Dirac Semimetal Antiferromagnets

Dirac quasiparticles are allowed in doubly-degenerate bands [33] realized in systems
invariant under PT symmetry.

The low energy Hamiltonian might maintain an effective Dirac form [35, 87,
88], corresponding to the Dirac Hamiltonian (9.4) [38, 88, 89]:

HD(k) =
(

�vFk · σ m
m −�vFk · σ

)
. (9.5)

Here vF is the Fermi velocity, k = q − q0 is the crystal momentum measured
from the Dirac point at q0, m is the mass (in units of energy), and σ is the
vector of Pauli matrices. The energy dispersion gives massive Dirac cones,
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(a)

(b)
(c)

(d)

Fig. 9.8 Antiferromagnetic Dirac semimetals, spin-orbit torques, and metal-insulator transition.
a Unit cell of orthorhombic CuMnAs AF with marked PT symmetry center (black sphere) and
nonequilibrium spin polarizations δs for current applied along the [010]. b Band structure of the
CuMnAs AF calculated ab initio without SOC. c The density of states. d Detail of Dirac quasipar-
ticles in CuMnAs as calculated ab initio with SOC switched on. Panel (a) adapted from [90], and
panels (b–d) adapted from [20]

E(k) = ±�vF

√
k2x + k2y + k2z +

(
m

�vF

)2

. (9.6)

The mass term can be removed by the presence of an additional crystalline sym-
metry, and in this caseHD(k) describes the four-fold degenerate band touching [88,
89] of a 3D DSM as we show in Fig. 9.8b on the band dispersion of an antiferro-
magnetic DSM orthorhombic CuMnAs with a high Néel temperature of ∼400K
[67].

The 3D DSM state cannot occur in ferromagnets because T -symmetry breaking
prevents double band degeneracy. However, a topological crystalline 3D DSM was
predicted in an AF, namely in the orthorhombic phase of CuMnAs [19, 20]. The
unit cell of the orthorhombic CuMnAs contains four Mn sublattices that are con-
nected in pairs by the PT symmetry [19, 20] as we show in Fig. 9.8a. Although
individually the P and T symmetries are broken, the preserved combined PT
symmetry ensures the double band degeneracy over the whole BZ. In the calculation
with a switched-off SOC (see Fig. 9.8b), we observe three Dirac points at the Fermi
level along the Γ X , XU , and Z X lines which are part of the nodal line protected
by the PT symmetry. The Dirac quasiparticles are 3D as can be seen from the
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quadratically vanishing DOS at the Fermi level/Dirac point as we show in Fig. 9.8c.
In the presence of SOC and for the Néel order along the [001] axis, the nodal lines
become gapped except for the two Dirac points along the UXU line, as we show in
Fig. 9.8d. The Dirac points are protected by the non-symmorphic screw axis sym-
metry Sz = {

2z|( 12 , 0, 1
2 )

}
[19, 20] and are connected via nontrivial surface states

[19]. The topological invariants and surface states can be linked to the crystalline
symmetry protecting the degeneracy and even in the non-magnetic DSM, the surface
states are in general less stable than in WSM and strongly depend on the crystalline
orientation at the surface termination [87, 91]. The easy axis in orthorhombic CuM-
nAs tends to be along [100] according to ab initio calculation [20], however, we will
discuss in the next section the possibility of reorienting the Néel vector.

The orthorhombicCuMnAsAF is an attractive hydrogen atom formagneticDSMs
induced by band inversion since only a single pair of Dirac points appears near
the Fermi level of the ab initio band structure. However, presumably, the correla-
tion and disorder effects prevented the observation of Dirac quasiparticles in non-
stoihiometric CuMnAs to date [92, 93].

9.3.3 Weyl Semimetal Antiferromagnets

In solids, quite often at least one of the P or T symmetries is broken and thus the
double band degeneracy is lifted. When the two non-degenerate bands are touching
close to the Fermi level a 3D WSM can be formed (Chapter8 is concerned with
WSM in greater detail).

WSM is described by the generalized two-band Weyl Hamiltonian [88, 89]:

HW (k) = ε0 ± �vF
(
q − q0

) · σ , (9.7)

where the first term corresponds to the tilting of theWeyl cone and k = q − q0.
Weyl points always come in pairs with opposite topological charges. Dimen-
sionality is important here. Because the Weyl points are 3D objects in the BZ,
the effective Hamiltonian uses all three Pauli matrices. Thus any small pertur-
bation expressed without loss of generality as a linear combination of these
three Pauli matrices just shifts but not gaps the Weyl point. We illustrate this
on the dispersion around the Weyl points for a perturbation of a form mσz ,

E(k) = ε0 ± �vF

√
k2x + k2y +

(
kz + m

�vF

)2

. (9.8)

http://dx.doi.org/10.1007/978-3-319-97334-0_8
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(a) (b)

Fig. 9.9 Antiferromagnetic Weyl semimetal and surface Fermi arcs. a Ab initio calculation of
Fermi arcs in Mn3Sn AF. b ARPES of Weyl points in Mn3Sn close to the Fermi level overlayed
with ab initio band structure. Panel (a) adapted from [41] and panel (b) from [72]

WSM states can be found in nonmagnetic, ferromagnetic [94, 95] or antiferro-
magnetic solids, where the PT symmetry is broken. A WSM state was observed
in non-centrosymmetric non-magnetic mono-pnictides of the TaAs type [96–98].
TaAs is well described by the DFT single quasiparticle picture. Despite numer-
ous predictions, the true magnetic WSM remained for a long time experimentally
elusive [72]. The reason is that the magnetic system is very often also strongly
correlated, disordered, and the symmetry breaking is provided by the complex col-
lective phenomenon—magnetism. Antiferromagnetic candidates include pyrochlore
irridates [40] like the Eu2Ir2O7 [68], or YbMnBi2 AF which were suggested to be
either the WSM [82, 83] or the DSM [84, 85].

Weyl fermions were proposed also in non-collinear AFs Mn3Ge and Mn3Sn [99,
100] (see Fig. 9.2a) [71]. These AFs are potentially appealing for spintronics due
to the measured large AHE, established magnetic structure, and Néel temperatures
reaching 365–420 K. The structure of Mn3Ge and Mn3Sn crystals is built from
stacked kagome planes along the [001] axis, as we show in the right panel in Fig. 9.5
(MPG III). These AFs have a relatively weak magnetic anisotropy, reaching 0.1meV
per formula unit for Mn3Sn [29, 30] due to the vanishing second and fourth order
MAE of the inverted triangular AF structure on the kagome lattice [101, 102]. The
magnetic order can be thus reoriented by low external magnetic fields. Kuroda et al.
[72] reports reorientation fields of ∼200 Gauss. The net magnetic moment reaches
0.005µB per unit cell [102]. In spite of the weak anisotropy of the inverted chiral
structure, the materials show relatively high stability against thermal fluctuations.
Also, a possibility to influence the in-plane chiral AF magnetic structure by a spin-
filtering effect was reported [103].

Mn3Ge andMn3Snwere predicted to exhibit several different types ofWeyl points
in their metallic bandstructure coexisting with trivial bands close to the Fermi level
[41]. The Weyl points found by tracking the Berry curvature in the BZ are tilted,
thus of the so-called type-II [104] PRL 115, 265304 (2015). The Fermi arc surface
states—the hallmark of a WSM—were predicted by first-principles calculations of
the local density of states (LDOS) aswe show in Fig. 9.9a [71]. The tilting of theWeyl
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points does not influence the Berry curvature, however, the electron and hole pockets
due to the tilting influence the transport effects, particularly they can renormalize
the almost perfectly quantized AHE [105]. Signatures of these band crossings were
reported recently in anARPES study ofMn3SnAF [72], aswe show inFig. 9.9b.Weyl
band crossings were found along MK or M ′K lines depending on the orientation
of the triangular magnetic texture stabilized by an external magnetic field [72]. A
comparison between DFT and ARPES points towards strong electron correlations
in the Mn 3d bands as seen in the strong renormalization of the bands in ARPES in
Fig. 9.9b. In the next Section, we describe in detail the AHE in Mn3Ge and Mn3Sn
and its relation to Weyl points.

9.4 Topological Antiferromagnetic Spintronics Effects

Topological variants of common magnetotransport effects and their novel cousins
can potentially offer large signal to noise ratios important for reading signals in
spintronics nanodevices. Again, we will demonstrate that very often the unique anti-
ferromagnetic symmetries are of vital importance for certain topological spintronics
effects to occur, such as topological AMR or AHE.

9.4.1 Large Magnetoresistance and Chiral Anomaly

Application of a magnetic field perpendicular to the current flow results in a positive
magnetoresistance, defined as

MR = ρ(B) − ρ(0)

ρ(0)
, (9.9)

where ρ(H) is the resistivity in a magnetic field B, as commonly observed in met-
als, semimetals, and semiconductors. However, in a topological semimetal with
Weyl quasiparticles, a negative magnetoresistance might occur, attributed to a chiral
anomaly. In the original proposal for a consensed matter realization of the chiral
anomaly, Nielsen and Ninomiya [106] considered a chiral Weyl linear dispersion of
the zero-th Landau levels. Application of an electric field parallel to the magnetic
field generates an imbalance between the zero Landau levels of opposite chiralities.
This axial current leads to a positive magnetoconductivity [38]:

σ(B) = σ + e4B2

4π4g(EF )
, (9.10)

where g(EF ) is the density of states at the Fermi level. Remarkably, this expression
can be derived both in the quantum limit or in the semi-classical framework without



9 Symmetry and Topology in Antiferromagnetic Spintronics 285

Fig. 9.10 Possible observation of a chiral anomaly in magnetically induced Weyl semimetal and
antiferromagnetic Weyl semimetal. a Cartoon of the chiral anomaly principle. b A magnetically
inducedWeyl semimetal in GdPtBi. cObserved negative magnetoresistance in GdPtBi. dObserved
positive magnetoconductance in the Mn3Sn AF. Panels (a, b) adapted from [107], panel (c) from
[61], and panel (d) from [72]

introducing Landau levels [38]. We illustrate the chiral anomaly with Weyl fermions
in Fig. 9.10a.

The negative magnetoresistance became accepted as the signature of the pres-
ence of linearly dispersing topological quasiparticles, and was possibly observed for
instance in GdPtBi [61], which is a quadratic gapless semiconductor. In the mag-
netic field, the fourfold degenerate band-touching splits and pairs of Weyl points are
created as we illustrate in schematics in Fig. 9.10b. Rotating the external magnetic
field from out-of-plane to in-plane (see Fig. 9.10c) changes the magnetoresistance
frompositive to negative. Positive non-saturatingmagnetoconductancewas observed
recently also in the Mn3Sn AF [72]. Alternative sources of positive magnetoconduc-
tance such as current jetting and weak localization were carefully ruled out in this
study. The positivemagnetoconductance inMn3Sn is linear in amagnetic field which
was attributed to the type-II Weyl fermions [72] in contrast to the quadratic magne-
toconductance observed in type-I (non-tilted) Weyl semimetals [108]. The detailed
role of topological quasiparticles in the negative and large non-saturating magne-
toresistance remains to be clarified [104, 109–111]. Here the first step was made by
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ab initio [112] and transport studies [113] of Weyl points in strong magnetic fields
signaling the importance of linear dispersion for the observation of negative mag-
netoresistance. In strong magnetic fields, the negative magnetoresistance disappears
which was attributed to the gapping of Weyl points by the Zeeman splitting.

9.4.2 Topological Phase Transitions and Anisotropic
Magnetoresistance in Antiferromagnetic Systems

Topological phase transitions were experimentally demonstrated in heterostructures
with TIs and AFs [75, 114] or systems with an artificially engineered AF coupling
[115, 146]. AF CrSb/TI (Bi,Sb)2Te3/AF CrSb heterostructure shows spikes in the
magnetoresistance which were attributed to a topological phase transition of Dirac
quasiparticles at the interfaces [114]. A MTI/TI/MTI heterostrucutre was reported
for a presumed topological phase transition between QAHE state and axion insulator
(quantized topological magnetoelectric effect) by switching the magnetic order in
the MTI from ferromagnetic to antiferromagnetic by an external magnetic field or
electric gating [115, 116]. Albeit at mK temperatures, the phase transition yields
very large magnetoresistance or electroresitance changes corresponding to switch-
ing on and off the quantized conductivity plateous h/e2 ∼ 25, 8 k
 [115, 116].
The QAHE effect was to date observed only at mK temperatures [36]. Searching
for novel mechanism and material candidates with a more robust, controllable and
room temperature QAHE states represents an important direction of future research
in topological spintronics. Here for instance, QAHE induced by electrical gating was
predicted in Sr2FeOsO6 AF [117].

The prediction of tuning the Néel order parameter by the Néel SOT or gating
in antiferromagnetic DSMs opens the possibility of using the topological metal-
insulator transition (TopoMIT) in a bulk AF [20, 90]. The origin of these effects
is in the sensitivity of Dirac crossing hybridations on the orientation of the Néel
vector in the orthorhombic magnetic crystalline symmetry, as shown in Fig. 9.8d.
In the presence of SOC, only for the Néel vector along the [001] axis, protected
Dirac fermions emerge. All the other Néel vector orientations lead to a gapped
spectrum at the Fermi level [20]. The transport counterpart of the topoMIT was
predicted to be the topological anisotropic magnetoresistance (topoAMR) [20]. The
topoAMR can be extremely large and is understood as a limiting case of the crys-
talline AMR. In Fig. 9.11a we show the tetragonal lattice of a minimal model of the
DSM AF [20]. The corresponding Hamiltonian reads Hk = −2tτx cos

kx
2 cos ky

2 −
t ′

(
cos kx + cos ky

) + λτz
(
σy sin kx − σx sin ky

) + τz Jnσ · n, where first two terms
are first and second neighbor hoppings, third term is a staggered SOC, last term
is AF s-d type exchange and τ , and σ are Pauli matrices corresponding to orbital
and spin-degree of freedom, respectively. The longitudinal conductivity is calculated
from the Boltzmann formula in the limit of a small spectral broadening Γ :



9 Symmetry and Topology in Antiferromagnetic Spintronics 287

(a) (b)

(c) (d)

Fig. 9.11 Extreme anisotropies in magnetoresistance effects in topological semimetals. a Large
topological anisotropic magnetoresistance in a tetragonal AF Dirac semimetal model. bBand struc-
ture of the model Dirac AF. c Angular dependence of magnetoresistance in a magnetically induced
Weyl semimetal GdPtBi. d Angular dependence of magnetoresistance in AF Weyl semimetal
Mn3Sn. Panel (b) adapted from [20], panel (c) from [61], and panel (d) from [72]

σxx (φ) = e2

�4Γ L2

∑
kn

∂Ekn

∂kx

∂Ekn

∂kx
δ(E − EF ), (9.11)

where L is the size of the system, and φ is the angle between [100] axis and magne-
tization. The AMR is defined as:

AMR = −σxx (φ) − σ

σ
, (9.12)

where σ is the average conductivity within the plane. In Fig. 9.11a we show the
angular dependence of the AMR in this model [118]. In Fig. 9.11b we show the band
structure of the model. For the Néel vector orientations [100] and [010], preserving
the glide mirror planes of the system [20], the Dirac points are gapless and conduct.
Once the Néel vector is rotated away from these high symmetry axes, the crystalline
symmetries are broken, Dirac bands hybridize and gap opens. Consequently the con-
ductivity decreases exponentially. The sharp peaks in the angular dependence are
very different when comparing to the standard harmonic AMR dependence in ferro-
magnetic alloys. Also the origin is very distinct. The topoAMR originates in Fermi



288 L. Šmejkal and T. Jungwirth

surface topology changes instead of scattering effects responsible for the standard
AMR. The difference in conductivity between the [100] and [010] direction origi-
nates in the anisotropy of the Dirac cones. The orthorhombic CuMnAs was predicted
as the realistic material candidate based on ab initio calculations [20]. The interplay
of the Dirac points and topoAMR with disorder, interaction effects, and nonequilib-
rium currents needs to be carefully addressed to potentially make the effect relevant
for real spintronics device applications. Foreseen applications include topological
transistors or memories [90]. Since the control of the Néel vector can be achieved
either by the Néel SOT due to the applied current or due to the tuning of the MAE
by electric gating, the effect is presumably more favorable for spintronics than the
MIT manipulated by external magnetic field in pyrochlores [69] or AF topological
semimetal candidate NdSb [119]. Although this topoAMR due to the MIT was not
experimentally discovered yet, analogical effects controlled by external magnetic
field were observed in WSMs.

In GdPtBi, Weyl point positions are sensitive to the orientation of the applied
magnetic field [61]. This leads in turn to a pronounced angular dependence of the
magnetoconductance, as we show in Fig. 9.11c. The changes inmagnetoconductance
are attributed to the varying angle between the crystalline axis and the Zeeman field
what is in contrast to the behavior predicted for the AF DSM CuMnAs. The spikes
in magnetoconductance have been measured also in the correlated WSMAFMn3Sn
as we illustrate in Fig. 9.11d [72]. Here the magnetic order is controlled by the
relatively weak external magnetic field. The reorientation of the moments changes
the local symmetry and possibly redistributes theWeyl points close to the Fermi level
[72]. Importantly, the spikes inmagnetoconductance persist to temperatures∼100K,
despite the WSM is highly correlated and disordered. These temperatures are much
higher temperatures than the reported QAHE critical temperatures of ∼10mK.

9.4.3 Anomalous Hall Effect in Noncollinear
Antiferromagnets

AHE (discussed also in Chap. 6) refers to the transversal electric current generation
in the magnet subjected to an applied longitudinal electric field. The anomalous
Hall conductivity is for the magnetization along z axis the antisymmetric part of the
conductivity tensor:

σAHE = σxy − σyx

2
. (9.13)

For a long time, the AHE was considered to scale with the magnetization: ρH =
R0Hz + RSMz , where the first part corresponds to the ordinary Hall effect due to the
external magnetic field Hz , and the second term is the AHE due to the T symmetry
breaking due to the magnetization Mz , and R0, and RS are ordinary and (sponta-
neous) anomalous Hall coefficients, respectively. AHE was traditionally attributed
to the simultaneous presence of T symmetry breaking by the ferromagnetism and
SOC. Thus, naively, one would expect that the AHE must vanish in AFs because of

http://dx.doi.org/10.1007/978-3-319-97334-0_6
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the compensation moments of the opposite sublattices. Indeed, this picture is valid
in simple AFs where the combination of T symmetry with another crystalline sym-
metry forces the AHE to vanish. Typical examples include collinear AFs withPT
or T T1/2 symmetries which we discussed in the context of the Dirac quasiparticles
and TIs. Remarkably, the AHE was observed in systems with a negligible net mag-
netization and without the necessity for SOC. Interestingly, already Haldane pointed
out in 1988 [120] the possibility of the quantized AHE in honeycomb lattice with
complex hoppings with a staggered potential and Shindou et al. [121] later demon-
strated the nonzero AHE in a model calculation in AHE induced by distorting the
FCC lattice with 3Q AF order. More recently Hua Chen et al. [122] and Kübler and
Felser [99] predicted a large AHE in noncollinear AFs with a negligible net moment.
Presumably, the large MAE in Mn3Ir AF makes it impossible to orient the magnetic
domains and thus prevents the experimental detection of the AHE in this compound.

However, Mn3Ge and Mn3Sn have a much smaller MAE. AHE from the AF tex-
ture,ρ AF

H , was indeed observed in these compounds by carefully substracting theHall
effect originating from the external field, R0Hz , and from the small ferromagnetic
moment, RSM [16, 123]:

ρH = R0Hz + RSM + ρ AF
H , (9.14)

where M is the net magnetization. The experimental value of the AHE in Mn3Ge
is σxz ≈ 380
−1cm−1 [124] while the ab initio calculation from Berry curvature
gives σxz ≈ 330
−1cm−1 [71]. The noncollinear AF order on the kagome lattice
breaks the time-reversal symmetry as we show in Fig. 9.12a, b. For the AF structure
in Fig. 9.12a [102, 124] there is an effective time reversal symmetry T Mx (Mx

is the mirror (100) plane symmetry) which gives σyz = 0, and the emergent mag-
netic field lies along B ‖[010], and only σxz 	= 0. In constrast, for the chiral texture
in Fig. 9.12b [102, 124], the effective T Gy symmetry (Gy is the glide mirror plane{
My |(0, 0, 1

2 )
}
) implies σxz = 0, the emergent magnetic field points alongB ‖[100],

and only σzy 	= 0. Furthermore, independent on the in-plane orientation, there is an
effective time reversal symmetry T Mz (Mz is the mirror (001) plane symmetry)
making the component σxy = 0. The symmetry analysis is consistent with the exper-
imental data measured on Mn3Sn and Mn3Ge and presented in Figs. 9.2b and 9.12c.
In conclusion, the spin-orbit entangled bands generate a large fictitious magnetic
field in the crystal momentum space parallel to the direction of the field stabilizing
the triangular order, and the AHE takes place in the plane perpendicular to the field.

The emergentmagnetic fieldwas estimated to be very large, of the order of∼200T
inMn3Ge [124]. Although theMn3Ge andMn3Snwere predicted to hostWeyl points
close to the Fermi level, the ab initio calculation of the AHE shows that the largest
contributions come from BZ regions not related to any identified Weyl points, but
rather from spin-orbit entangled avoided crossings [100]. A recent study by Felser
and Kübler [126], however, demonstrates the possibility of propagation of Fermi
sea Weyl points in Mn3Ge and Mn3Sn to the Fermi surface-quasiparticle transport
[127, 128]. Finally, AHE was recently observed also in Mn3Pt (isostructural to
I rMn3) and it was switched on and off by the piezoelectric effect transferred from
the ferroelectric BaT iO3 substrate [143].
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(a) (b)

(e)

(d)

(c)

Fig. 9.12 Anomalous and topological Hall effects in chiral AFs. Two chiral inverted AF structure
stabilized by an externalmagnetic field along a [010], and b [100] direction. cMeasured temperature
dependence of AHE in Mn3Ge originating from AF texture. d Spin chirality and non-coplanar
magnetic moments of an antiferromagnetic candidate for the quantum topological Hall effect. e
Topological Hall effect observed in the spin liquid state on a pyrochlore lattice—fragment shown
in the inset. Panels (a, b) adapted from [88], panel (c) from [124], and panel (e) from [125]

9.4.4 Topological Hall Effects and Antiferromagnetic
Skyrmions

In the topological Hall effect, the role of SOC is overtaken by the spin chirality.
We show in Fig. 9.12d the spin chirality generating a nonzero Berry curvature. Spin
chirality is nonzero in non-coplanar spins, in contrast, it vanishes in coplanar non-
collinear antiferromagnetic structures of, e.g., Mn3Ge andMn3Sn. The spin chirality
generates a fictitious magnetic field (see red arrow in Fig. 9.12d), m̂ · (

∂xm̂ × ∂ym̂
)
.

This field acting on the Bloch electrons generates a Hall response. The topological
Hall effect and the AHE can be possible to experimentally disentangled by analyzing
the disorder dependence [129]. The topological Hall effect was initially reported in
antiferromagnetic pyrochlore iridates (see Fig. 9.12e) [125] and later in MnSi chiral
antiferromagnetic alloys [130, 131].Wenote that the effect does not imply in this case
a correspondence to a topological invariant, in sharp contrast to the topological Hall
effect in skyrmions. However, in the quantum topological Hall effect proposed for the
non-coplanar AFK0.5RhO2 [132], with its magnetic sublattices shown schematically
in Fig. 9.12d, the topological charge occurs in the momentum space as in the QAHE.
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The topological Hall effect from a skyrmion spin texture is associated with a
topological winding number of the skyrmion [116]. It is important to distinguish it
from the skyrmionHall effect which refers to the deflection of skyrmion center due to
the Magnus force. The Magnus force is according to micromagnetic calculations not
present in AF skyrmions, which implies that AF skyrmions might move in straight
lines [133]. This is favorable when considering skyrmions for storing information in
racetracks. Finally, the topological Hall effect in AF skyrmions with a compensating
sublattices vanishes, while the topological spin Hall effect can be still sizable and
can be used to detect an AF skyrmion [134, 135]. Chapters1, 4, and 5 of this book
are devoted to skyrmions.

9.5 Summary

Antiferromagnetic spintronics has been recently established as a new branch of mag-
netism [4, 88, 136, 137]. In parallel, last few years have seen progress in coupling
magnetism with topological states of matter, giving rise to a new spin-off: topolog-
ical spintronics [138]. We have shown that AF order might play an important role
in topological spintronics due to the unique AF symmetries [90]. While signatures
of correlated AF WSM were already observed [72], other topological AF phases
remain to be discovered. The large signal to noise ratio was reported in magnetore-
sistance signals of topological semimetals [20, 72]. Further theoretical and experi-
mental progress will possibly lead to topological spintronics effects improving the
reading and writing signals in AFs [90]. The progress in writing efficiency due to
the nontrivial topologies is in its infancy, although an increase of the spin Hall angle
in TI/MTI [139, 140] or TI/ferrimagnetic systems [76, 77] was already reported and
novel mechanisms for dissipationless SOT were suggested [141]. Here we focused
on the state-of-the-art effects which were predicted, and some of them already exper-
imentally confirmed, in antiferromagnetic systems. The unique AF symmetries and
the abundancy ofAF allow for other research directions to emerge such as topological
superconductivity inAFs and spintronics based on antiferromagnetic skyrmions [90].
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Chapter 10
Magnons

Sergej O. Demokritov

Abstract Spin waves and their quanta magnons are the dynamic eigen-excitations
of a magnetic system. They provide the basis for the description of spatial and
temporal evolution of themagnetization distribution of amagnetic object. The unique
features of spin waves such as the possibility to carry spin information over relatively
long distances, the possibility to achieve sub-micrometer wavelength at microwave
frequencies, and controllability by electronic signal via magnetic fields make these
waves uniquely suited for implementation of novel integrated electronic devices
characterized by high speed, low power consumption, and extended functionalities.
It is important to notice that contrary to photons and phonons magnons possess an
anisotropic dispersion. The energy/frequency of a magnons depends not only on the
absolute value of the wave vector of the magnon, but also on its angle relative to the
orientation of the static magnetization.

10.1 Introduction

10.1.1 Spin Waves and Magnons

Bloch [1] has theoretically introduced the concept of spin waves in 1930. He consid-
ered theoretically from the point of viewof quantummechanics a chain of exchanged-
coupled spins. By analyzing low-amplitude deviations of spins from their equilib-
rium orientations he has found that these deviations were dynamic and propagating
nature. Holstein and Primakoff [2] and Dyson [3] developed a generalized theory of
spin waves and took into account not only the exchange, but also magnetic dipole
interaction between spins and their Zeeman energy in the external magnetic field. In
the late 1950s the term for the quanta of spin waves—magnons—was introduced.
It is important to notice that contrary to photons and phonons magnons possess an
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anisotropic dispersion. The energy/frequency of a magnons depends not only on the
absolute value of the wave vector of the magnon, but also on its angle relative to
the orientation of the static magnetization. This dependence is determined by the
anisotropic magnetic dipole interaction.

Magnons are able to carry spin information, they can have sub-micrometer wave-
length at the frequencies in the interval of 1–100 GHz, their excitation and propa-
gation can be controlled electronically by applied magnetic fields. All these features
allow creation of magnonic devices that can be used for implementation of novel
high speed and low power consumption integrated electronic circuits. The emerging
field of magnonics [4–7] describes application of magnons for electronic opera-
tions such as logics, signal processing, neuromorphic calculations. An impressive
development in spintronics and nanomagnetism opened new horizons formagnonics.
Let us here mention the recent discovery of the spin-transfer torque (STT) [8–10]
and the spin-Hall effect (SHE) [11–13]. Both these effects brought about innovative
device geometries and functionalities [14–18].

The development of magnonics demonstrates an increasing importance of mag-
netic systems with reduced dimensionality for spin-wave studies. In fact, the T3/2

Bloch was predicted for three-dimensional magnets in the 1930s. Since 1950s the
scientists paied the major attention to quasi-two-dimensional objects (films and mul-
tilayers). This development resulted in the discovery of spin resonances [19, 20],
non-reciprocal Damon-Eshbach mode [21, 22] and the exchange interlayer cou-
pling [23]. In 1990s, quasi-one-dimensional stripes became the most actively stud-
ied magnetic systems. As a result, lateral quantization of spin waves [24] as well as
the edge modes [25, 26] were discovered. Approximately the same time the spin-
torque effect [8, 9] was theoretically predicted. Together with development of new
techniques for nano-fabrication, this allowed for investigation of zero-dimensional
objects such as spin-torque nano-oscillators [27–33]. Approximately 10 years later
room-temperature Bose-Einstein condensation—a coherent macroscopic quantum
state of magnons—was discovered [34].

10.1.2 Magnons in Three and Two Dimensions

TheLandau-Lifshitz torque equation,which describes dynamics of themagnetization
in a ferromagnet is as follows [35]:

1

γ

dM
dt

� M × Heff (10.1)

where M � MS + m(R, t) with MS and m(R, t) being the vectors of the saturation
and the (small) variable magnetization, correspondingly, γ is the gyromagnetic ratio
for the electron spin. Heff � −δW/δM is the effective magnetic field calculated
from the energy functionW , where all the relevant interactions have been taken into
account. For the case of an unbounded 3D ferromagnetic medium the time- and the
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Fig. 10.1 Magnon spectrum
in a bulk ferromagnet at H �
1kOe. The material
parameters 4πMs �1. 75 kg
and A�3.6×10−7 erg/cm
correspond to the values of
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space dependence of m(R, t) can be expanded in a series of plane spin waves (having
a 3D wave vector q), corresponding to magnon modes:

m(R, t) �
∑

q

mq exp(iqR) (10.2)

Note here, that although m(R, t) is small with respect to the saturation magneti-
zation, we consider here the situation, where the quantum population numbers for
all magnon modes are large, and a quasi-classical description can be applied. The
magnon frequency in an unbounded ferromagnetic medium is given by the Herrings-
Kittel formula [36]

ω � 2π f � γ

[(
H +

2A

Ms
q2

)(
H +

2A

Ms
q2 + 4πMs sin

2 θq

)]1/2

(10.3)

where A is the exchange stiffness constant, H is the applied magnetic field, and
θq is the angle between q and MS. Analyzing (10.3), one can clearly distinguish
between the contribution of the Zeeman- (H), the exchange (2Aq2/MS ) and the
magnetic dipole (4πMS sin2 θ ) interactions. As illustrated in Fig. 10.1, for small q
(the exchange can be neglected) themagnon frequency is independent of q. It depends
solely on θq demonstrating, an anisotropic spectrum. In contrast, for large q one has
an almost isotropic spectrum of the exchange magnons [1].
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Fig. 10.2 Schematics of the
propagation of the
Damon-Eshbach modes.
Modes are localized at the
surfaces, and the modes at
the opposite surfaces
propagate in the opposite
directions H

q
q

The transition from 3D to 2D can be made if one considers a magnetic film with a
finite thickness d. In this case, since the translational invariance along the direction
normal to the film surfaces (axis x) is broken, the 3D wave vector is represented
as a sum of a 2D continuous in-plane wave vector q‖ and quantized wave vector
(nπ/w)ex along the film thickness w, while R � R‖ + xex. Then, (10.2) changes
to: m(R, t) � ∑

q‖,p
mp(x) exp

(
iq‖R‖

)
. If the exchange is neglected, for the lowest

thickness mode propagating perpendicular to H one has the dispersion equation
derived by Damon and Eshbach for the dipolar surface mode [21]:

ωDE(qyd ) � 2π fDE(qyd ) � γ
[
H (H + 4πMS) + (2πMS)

2(1 − exp
(−2qyd

))]1/2
.

(10.4)

The mode profile of such a mode depicted in Fig. 10.2 is described by an exponential
function with a maximum at one of the interfaces of the film m(x) � m0 exp(−qx).
Moreover, the mode is nonreciprocal: it propagates in one direction only, whereas,
as shown in Fig. 10.2, the mode at the opposite interface propagates in the opposite
direction. Together, if synchronized, these two modes build a nontrivial topological
object.

It is possible to obtain an approximate general (quite complex) expression for
different magnon modes a magnetic film of a finite thickness with different absolute
values and directions of q and to build a two-dimensional magnon dispersion surface
[37]. Figure 10.3 illustrates the general typology of the lowest quasi-uniformmagnon
modes in the quasi-2D case of a magnetic film for different mutual orientations
between q‖ andMS. Three different geometries are shown. If MS is in the film plane
and q‖ is perpendicular to MS, the above-mentioned Damon-Eshbach (DE) mode
exists. If q‖ andMS are collinear in the film plane, a mode with a negative dispersion
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Fig. 10.3 Typology of
magnon modes in a magnetic
film for different orientations
of the magnetization, MS
and the in-plane wave vector,
q as indicated (solid lines).
The dash lines represent the
bulk spectrum for
comparison. The numerical
data correspond to a YIG
film with the thickness of 5
μm and the internal
magnetic field of 1 kOe
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q
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at small wave vectors, the so-called backward volume (BV) mode, exists. Finally,
if the magnetization MS is perpendicular to the film plane, the existing mode is the
so-called forward volume (FV) mode.

10.2 Brillouin Light Scattering—A Powerful Tool
for Investigation of Magnons

There are several techniques for investigation of magnons: ferromagnetic resonance
(FMR) [38], time resolved Kerr magnetometry [26, 39–41], Brillouin light scattering
spectroscopy (BLS) [42–44] and neutron scattering [45] are mostly used. The choice
of the technique strongly depends on the wave vector and the frequency of magnons
under study. FMR, for example, is appropriate for magnons with zero- or small wave
vectors, whereas neutron scattering is sensitive to magnons with high frequencies
and wave vectors comparable with that of the Brillouin zone. BLS has a number
of advantages for magnonic studies. It combines the possibility to study magnons
with wave vectors 0–106 cm−1 and in the frequency range of 1–500 GHz with an
extremely high sensitivity.

The BLS process can be considered as absorption/emission of a magnon with
the wave vector q and the frequency ω by a mono-energetic photon (visible light,
usually green line 532 nm) with the wave vector qI and frequency ωI �cqI. Due
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to the momentum and energy conservation laws, the photon increases/decreases its
energy and momentum, correspondingly:

�ωS � �(ωI ± ω) �qS � �
(
qI ± q

)
(10.5)

the measured frequency shift of the scattered light provides the frequency of the
magnon. It is also evident from (10.5) that the difference between the two wave
vectors qS − qI, is equal to the wave vector q of the magnon. Changing the scatter-
ing geometry one can sweep the value of q and measure the corresponding ω (q).
Note here that the maximum accessible wave vector q �2qI, which corresponds
to the backscattering geometry. The BLS intensity from a magnon state is directly
proportional to the magnon occupation number, or, in classical language, to the cor-
responding dynamic magnetization squared.

The momentum conservation law, given by (10.5), follows from the translation
invariance of the infinite medium. However, for a thin film, this invariance is broken
along the direction normal to the film surfaces. Therefore, only the in-plane wave
vector is conserved in the light scattering experiments. Correspondingly, if the in-
plane translational invariance of the magnetic film is broken by patterning, the in-
plane wave vector is no longer fully conserved in the BLS process. In the case of
a magnon mode localized in a long stripe, the only conserved component is the
component along the stripe axis. Finally, if the confinement takes place in all three
dimensions, no conservation laws for wave vectors can be applied in accordance
with the above uncertainty principle. One should perform a Fourier analysis of the
3D-distribution of the dynamic magnetization of a particular mode in the real space
to calculate its contribution to the BLS intensity.

A complimentary approach is the micro-focus BLS (μBLS) [43]. Here the light is
focused into a diffraction-limited spot. Direct spatial imaging of themagnon intensity
is realized by two-dimensional rastering of the probing spot over the sample surface.
For reliable two-dimensional imaging of magnons, the spatial resolution of μBLS
is of crucial importance, which is found to be about 250 nm for the wavelength of
532 nm. The approach of the near-field optical microscopy resolution of about 50 nm
[46]. However, in this case the setup has a much worse sensitivity.

In agreement with the uncertainty principle, high spatial resolution of the μBLS
technique is incompatible with the wave vector resolution. Thus, the information
about the wavelength of the studied magnons is lost. However, this drawback can be
eliminated bymapping the phase of the scattered light, which is directly correlated to
the phase of themagnetization oscillations in themagnonmode. The phase-resolution
technique was first applied for a macro-BLS apparatus [47] and was later adapted
for μBLS [48, 49].
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Fig. 10.4 a Magnon dispersion curves obtained for an array of permalloy stripes with a stripe
thickness of 20 nm, a width of 1.8 μm and a separation of 0.7 μm (open symbols) and 2.2 μm
(solid symbols) at He �500 Oe. The dash horizontal lines indicate the results of calculations with
the quantized wave vectors, determined by the quantization numbers n as indicated. b The magnon
dispersion of a permalloy film with a thickness of 20 nm at He �500 Oe. The solid lines in (a) and
(b) are the result of calculation based on (10.4)

10.3 Laterally Confined Magnons

10.3.1 Lateral Quantization of Magnons in Magnetic Stripes

Mathieu et al. [24] and Jorzick et al. [50] investigated magnons confined in arrays
of permalloy stripes and observed several dispersionless magnon modes. By varying
the in-plane wave vector q||, oriented perpendicular to the stripes, the correspond-
ing dispersion was obtained as displayed in Fig. 10.4a (cf. with the spectrum of a
continuous film in Fig. 10.4b). The spectrum shows a disintegration of the continu-
ous dispersion of an infinite film into several discrete, resonance-like modes with a
frequency spacing of about 0.9 GHz. Since no significant dependence on the stripes
separation was found, the mode splitting is purely caused by the quantization of the
magnons in a single 1D element.

After these twopioneeringworks,many studies on themagnon lateral quantization
has followed [51, 52].

10.3.2 Edge Magnons

Until now,we neglected demagnetizing factors and implied that the internalmagnetic
field is homogeneous. If, however, the field is directed along the width of a stripe,
the internal field is strongly inhomogeneous, in particular, it is almost zero close to
the edges of the stripes [53, 54]. Magnons in this case are affected not only by the
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Fig. 10.5 Spin wave dispersion of the stripe array measured atHe �500 Oe for a the DE geometry
with the quantization numbers of the quantized modes as indicated and b the BV-geometry. In the
latter case, the shadowed region represents the band of non-localized modes, whereas LM indicates
the localized mode. The dash lines represent the results of calculation

confinement effects, but also by the above inhomogeneity as illustrated by Fig. 10.5
showing the magnon dispersions of the same array of stripes in two geometries:
q⊥MS (DE) and q||MS (BV). In fact, Fig. 10.5a representing the DE-geometry is
very similar to Fig. 10.4a, resembling a typical “staircase” dispersion. In contrast,
the dispersion presented in Fig. 10.5b (BV-geometry) contains a broad band in the
frequency range 5.5–7.5 GHz. This is due to the fact that the spin-wave group veloc-
ity in the BV-geometry is smaller than that in the DE-geometry. Therefore, although
the quantized in the k-space w is the same for the both geometries, the frequency sep-
aration is in the BV-geometry is much smaller, and many unresolved peaks build the
band. Additionally, a separate, low frequency, dispersionless mode with a frequency
near 4.6 GHz (indicated as “LM” in Fig. 10.5b) is observed over the entire accessible
wave vector range (qmax �2.5×105 cm−1) with almost constant intensity. This is a
direct confirmation of a strong lateral localization of the mode within a region with a
width of �z � 2π

/
qmax � 250 nm. It is clear that a low frequency of the observed

mode indicates that the mode is localized near the edges of the elements, where the
internal field vanishes [54].

A quantitative analysis of the observed edge mode has been performed in [25].
Its frequency f can be found using a formalism similar to that for the potential well
in quantum mechanics:



10 Magnons 307

2
∫

q(H (z), f )dz + �ψ1 + �ψ2 � 2rπ (10.6)

for r = 1, whereas q(H(z), f ) is found from the magnon dispersion in the film, and
�ψl, �ψ2 are the phase jumps at the left and right turning points of the well.

The higher ordermagnonmodeswith r >1having their frequencies above 5.3GHz
are not localized under the used experimental conditions. In the experiment, they
show the broad band, since the frequency difference between the neighboring modes
is below the experimental frequency resolution. Note here, that several localized
modes can be observed at higher fields [55].

10.3.3 Magnon Beams in Waveguides

The lateral quantization of magnons and the edge magnon modes reveal themselves
also in properties ofmagnonicwaveguides,where two components of thewave vector
are of importance: one, continuously varying component along the waveguide and
another one, quantized due to the finite width of the waveguide, as illustrated in
Fig. 10.6. In fact, if the quantized components qnz are known, the spectrum of the
waveguide modes can be obtained from the two-dimensional dispersion surface [37]
as illustrated in Fig. 10.6a by the curves labeled as DE1- DE3, where the number just
labels the number of antinodes in the corresponding mode. For the sake of clearness
we project these curves onto the frequency-qy plane, as shown in Fig. 10.6b, keeping
in mind that the different curves correspond to different qnz . As seen from Fig. 10.6a,
the consideredmodes propagate perpendicular toHe, i.e. they are analogues of theDE
mode in an extendedfilm, their dispersion curves are shifted to lower frequencieswith
respect to that of the unconfined DE mode. The shift increases with the increase of
themode number, resembling the backward dispersion of the BV-modes (Fig. 10.6a).

The data of Fig. 10.6b show that the dispersion spectrum of waveguide modes
supportsmultimodepropagationofmagnons at all frequencies above f 0. For example,
for a given excitation frequency f 1, one simultaneously excites a number of modes
with different longitudinal wave vectors qy. Neglecting magnon attenuation, the
spatial distribution of the magnon density can be described as an interference of all
these modes:

I(y, z) �
∣∣∣∣∣
∑

n

An sin
(nπ
w

(
z +

w

2

))
exp(−iqny)

∣∣∣∣∣

2

(10.7)

where An are the amplitudes of the modes and qn are their longitudinal wave vectors
at the given excitation frequency (see Fig. 10.6b). Figure 10.7 illustrates the beam
profiles calculated using (10.7) for different ratios between the amplitudes An. If
one implies that only the fundamental mode with n �1 (Fig. 10.7a) is present, the
intensity distribution is uniform along the direction of the beam propagation, whereas
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Fig. 10.6 a Two-dimensional dispersion spectrum of spin waves in an extended in-plane magne-
tized ferromagnetic film. Inset shows the geometry of the stripe waveguide and transverse profiles of
the dynamic magnetization for normal waveguide modes. b Calculated (solid lines) and measured
(symbols) dispersion curves for a waveguide with the width w �800 nm and the thickness d �
20 nm magnetized by the static field He �900 Oe. Dashed curve shows the dispersion curve for
Damon-Eshbach mode in an extended film

in the transverse direction it shows a half-sine profile. If the fundamental mode and
the mode with n �2 co-propagate (Fig. 10.7b) the beam profile shows a “snake”-
like pattern. Moreover, as seen from Fig. 10.7c, if the fundamental mode and the
mode with n �3 co-propagate, one observes a periodic spatial beating pattern. In
such a beam, the density of magnons is periodically concentrated in the middle of
the waveguide. One can call this effect “spin-wave focusing” analogously to light
focusing in optics [56]. Figure 10.8a showing a typical measured magnon intensity
map for a 2.4 μm wide and 36 nm thick Py waveguide clearly demonstrates this
effect (compare with Fig. 10.7c). In order to highlight the details of the interference
pattern in Fig. 10.8a, the spatial decay of magnons (see solid symbols Fig. 10.8b) is
numerically compensated by multiplying the experimental data by exp(2y/ξ), where
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(a)

(b)

(c)

Fig. 10.7 Interference patterns for the three lowest-order waveguide modes calculated for different
ratios between their amplitudes, as labeled. Calculations were performed for the waveguide with
the width of 800 nm and the thickness of 20 nm magnetized by the field He �900 Oe

ξ�6.4 μm is the magnon decay length, determined directly from the data shown in
Fig. 10.8b. Figure 10.8b also illustrates the modulation of the beam width caused by
the focusing.

In the above discussion on the normal waveguide modes, we neglected the non-
uniformity of the magnetic field inside the waveguide caused by the demagnetization
effects, since the waveguide magnetized along its axis was considered. Following to
[53], the internal field in a magnetic stripe magnetized perpendicular to its axis is as
follows:

Hi(z) � He − 4πMS

π

[
atan

(
d

2z + w

)
− atan

(
d

2z − w

)]
(10.8)

as illustrated Fig. 10.9a. Figure 10.9b shows decay-compensated magnon intensity
maps obtained using an excitation signal at the frequencies below the FMR fre-
quency f 0 �10 GHz for the used experimental conditions. The data of Fig. 10.9b
clearly indicate thatmagnons do not occupy the entire cross-section of thewaveguide.
Contrary, they build two narrow beams with the submicrometer width frequency-
dependent spatial positions, as predicted by the simple qualitative model. Further
analysis (see Fig. 10.9c) demonstrates that, for the applied frequencies, the widths
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(a)

(b)

Fig. 10.8 a Measured map of the magnon intensity for a waveguide with the width of 2.4 μm and
the thickness of 36 nm magnetized by the field of 900 Oe. Excitation frequency is 9.4 GHz. Spatial
decay of spin waves is numerically compensated. b Solid symbols—BLS intensity integrated across
the transverse waveguide section versus the propagation coordinate in the log-linear scale. Line is
the exponential fit to the experimental data. Open symbols—transverse width of the magnon beam
measured at one half of the maximum intensity versus the propagation coordinate

of the beams vary in the range 400–500 nm. Contrarily, the distance between their
centers monotonously decreases with increasing frequency from 1.4 to 0.8 μm.

10.3.4 Control and Manipulation with Magnon Beams

One of the great advantages of magnon beams for implementation of signal-
processing devices is the possibility to control the propagation of the beams by
the applied magnetic field und on this way to manipulate their propagation. The
implementation of this mechanism on the macroscopic scale requires creation of
magnetic fields in large volumes making this approach extremely space- and power-
consuming. The downscaling of spin-wave devices provides a route for overcoming
this drawback, since, in microscopic systems, a sufficiently large control magnetic
field can be created by using electric currents [49]. However, a more elegant way to



10 Magnons 311

(a)

(b)

(c)

Fig. 10.9 a Calculated distribution of the internal static magnetic field across the width of a waveg-
uide with the width of 2.1 μm and the thickness of 20 nm magnetized by the static field of 1100
Oe. Horizontal dashed line marks the value of the external magnetic field. b Measured maps of the
magnon intensity for two excitation frequencies, as labeled. Spatial decay of spin waves is numeri-
cally compensated. c Distance between the centers of the magnon beams and their transverse width
measured at one half of the maximum intensity versus the magnon frequency
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control magnonic beams is tomanipulate the internal field using the shape anisotropy
of the waveguide by varying the ratio between the width and the thickness of the
waveguide [57, 58].

Figure 10.10a illustrates a waveguide with the varying width and a constant thick-
ness of d �36 nm. The width w varies from 1.3 to 2.4 μm over a transition region
with the length L, resulting, according to (10.8), in a spatial variation of the inter-
nal field. The field changes from 870 Oe in the narrow part of the waveguide to
950 Oe in its wide part (Fig. 10.10b). This variation, in its turn shifts the dispersion
curves of the fundamental center waveguidemode in the two parts by about 500MHz
(Fig. 10.10c). For the excitation frequency positioned between the cut-off frequen-
cies of the two parts of the waveguide from 8.7 to 9.2 GHz (f 1 in Fig. 10.10c), the
center mode propagating in the narrow part of the waveguide cannot pass into the
wide part. Instead, it is transformed into the edge mode, whose frequency range is
located below that of the center modes. Figure 10.10d illustrates this transforma-
tion. It shows two magnon density maps measured for the excitation frequencies
of 8.7 and 9.1 GHz, clearly demonstrating the conversion of the center mode into
two narrow magnon beams with frequency-dependent spatial separation. Since The
two beams propagate in the separate channels induced by the internal field, they are
independent from each other. Therefore, the observed transformation can be used for
implementation of a magnonic splitter.

When the frequency of magnons is larger than cut-off frequencies in both parts of
the waveguide (f 2 in Fig. 10.10c), in the waveguides with the long transition region
(L �3 μm in Fig. 10.10e), the propagation of magnons from the narrow to the wide
part is quasi-adiabatic. It is only accompanied by the increase in the wavelength,
while the spatial structure of the magnon beam remains unchanged. However, in
systems with shorter transitions (e.g., L �1 μm in Fig. 10.10e), the propagation is
accompanied by an appearance of an intensity pattern with a non-trivial topology.
This fact is apparently connected with interference of different propagating modes
in a strongly non-uniform internal field.

10.4 Magnons and the Spin Transfer Torque Effect

Since the first demonstration [27, 29–31, 59, 60] that spin-polarized electric currents
can excite magnetization dynamics due to the spin transfer torque (STT) effect [8, 9],
a lot of studies were performed on the dynamic spin torque phenomena. The ability
of dc currents to control magnetization precession with microwave frequencies is
very important for the generation of microwave signals [61–65] and propagating
magnons [18, 32, 66–68] in magnetic nanocircuits. Local generation of magnons
using electronic signals is of great importance for nanomagnonics,where propagating
magnons serve as the carriers for the transmission and processing of signals, pattern
recognition on nanoscale, and logic operations [5–7].

Initially, STT phenomena have been studied in 0D-nanodevices based on the
metallic magnetic structures, where STT is induced by the electric current flowing
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(d)

(e)

Fig. 10.10 a Schematic of a magnon waveguide with a varying width. b Calculated distribution of
the internal static magnetic field in the section along the axis of the waveguide with the thickness
of 36 nm and the geometrical parameters given in (a). The external static magnetic field He �
1000 Oe. c Calculated dispersion curves for the fundamental center waveguide mode in the wide
and the narrow parts of the waveguide. d Maps of the magnon intensity measured at the excitation
frequencies of 8.7 and 9.1 GHz, as labeled. Width of the transition region L �2 μm. e Maps of the
magnon intensity measured at the excitation frequency of 9.7 GHz in waveguides with L �3 and
1 μm, as labeled. In (d) and (e) the spatial decay of spin waves is numerically compensated
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through a multilayer consisting of a “fixed” magnetic spin-polarizer and the “free”
active magnetic layer, separated by a non-magnetic spacer. In these structures, the
electric charges must cross the active magnetic layer to excite its magnetization
dynamics. To enable current flow through the active magnetic layers, STT devices
operatingwith spin-polarized electric current require that current-carrying electrodes
are placed both on top and on the bottom of the spin valve. To keep the electric current
below a reasonable limit, the devices should have sub-100-nm dimensions in both
lateral directions.

One can avoid these shortcomings using pure spin currents—flows of spinwithout
directional transfer of electrical charge. Since in this case, the electrical current does
not flow through the active magnetic layer, the Joule heating and electromigration
effects are reduced. Finally, one canuse insulatingmagneticmaterials such asYttrium
Iron Garnet (YIG) [14, 69] for implementation of STT devices.

Among physical mechanisms used to create pure spin currents, one should men-
tion the spin-Hall effect (SHE) [11–13, 70], the nonlocal spin injection (NLSI) [71,
72], the spin Seebeck effect [73, 74], and the Rashba–Edelstein effect [75, 76]. Here
we will focus on SHE and NLSI, since they effectively can excite coherent mag-
netization oscillations and magnonic beams. SHE is usually large in non-magnetic
materials with strong spin-orbit interaction, such as Pt, W and Ta. By passing an
electrical current through these materials a spin current in the direction perpendic-
ular to the charge flow is produced [13, 70]. If a bilayer containing a SHE layer
and an adjacent ferromagnetic film, the spin current flows through the interface into
the ferromagnet and exerts STT on its magnetization [77]. Important to notice that
SHE can exert STT on ferromagnets over extended areas. Indeed, in such bilayer
the in-plane current flows through the bilayer, SHE injects the spin current over the
entire area of the sample, which can reach macroscopic sizes [77]. One can use this
feature to control the spatial decay of propagating magnons in waveguides, if the
natural magnetic damping is partially compensated by STT.

The effect of pure spin current on the magnetization is similar to that of spin-
polarized electric currents. Both can be described by the Slonczewski’s STT term
[10] included into the Landau-Lifshitz-Gilbert equation:

dM
dt

� −γM × Heff +
α

Ms
M × dM

dt
+

β

M 2
s

M × (M × ŝ) (10.9)

where α is the Gilbert damping parameter, β is the strength of STT, proportional to
the spin current density, and ŝ is the unit vector in the direction of the spin-current
polarization.All other notations are similar to those of (10.1) and (10.2). In fact, (10.9)
is an extension of (10.1), which takes into account magnetic damping and the STT
effect. Within this model, the third term is mathematically very similar to the second
one. Correspondingly, one expects that spin current with an appropriate polarization
can reduce magnetic damping of propagating spin waves. It should be mentioned,
that an additional, a field-like torque also follows from the theory (see, e.g., [61] and
references herein). However, this torque is responsible for modification of the spin-
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Fig. 10.11 Schematic of the experiment on compensation of the magnon damping by pure spin
current. Inset illustrates the generation of the pure spin current by the spin-Hall effect

wave frequencies. We, in contrast, are mainly interested in damping compensation
of spin waves. Therefore, we neglect this term in our discussion.

10.4.1 Spin Transfer Torque Effect and Damping
Compensation

The above compensation has been recently demonstrated experimentally [78].
Figure 10.11 shows the schematic of the test devices. They are based on a 20 nm
thick YIG film grown on Gadolinium Gallium Garnet (GGG) (111) substrate. The
film is covered by an 8 nm thick layer of Pt. The YIG/Pt bilayer is patterned into a
waveguide with the width of 1 μm. The waveguide is magnetized by the static mag-
netic field He �1000 Oe applied along its width. A dc electrical current I flowing in
the plane of the Pt film is converted by the SHE into the transverse spin accumulation
(see inset in Fig. 10.11). The associated pure spin current IS is injected into the YIG
film resulting in a spin-transfer torque on its magnetization.

The magnon beam was excited by applying a microwave current to an inductive
antenna. The beam was mapped using μBLS by rastering the probing laser spot over
the surface of the waveguide. Figure 10.12a shows a representative map of the BLS
intensity, proportional to the local density in the magnon beam. As seen from these
data, the magnon beam propagates along the waveguide nearly uniformly without
changing its transverse profile (inset in Fig. 10.12a), which is a clear signature of the
single-mode propagation regime caused by the strong separation of the transverse
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modes in a narrow waveguide. The magnon density of the beam decreases by only
60% over the propagation path of 10 μm. To characterize the decay length ξ of the
beam and its dependence on the current, we plot in Fig. 10.12b the dependences of
the magnon density on the propagation coordinate obtained for different dc currents
in the Pt layer. These data show that magnons in the waveguide experience well-
defined exponential decay (note the logarithmic vertical scale)~exp(−2y/ξ). As seen
from the Figure, ξ strongly increases with increasing dc current, as expected for the
effect of spin current on the effective magnetic damping.

Figure 10.12c summarizes the results of the spatially-resolvedmeasurements. The
decay length monotonously increases with the increasing I < IC and then shows an
abrupt decrease at I > IC in contradiction to naive expectations that for large values
of I the magnetic damping should be overcompensated by the spin current, and the
propagating spin wave should be amplified. This experimental observation can be
attributed to the strong scattering of the propagating magnons from large-amplitude
current-induced magnetic fluctuations.

10.4.2 Spin-Torque- and Spin-Hall- Nanooscillators

The STT effect discussed above is of particular importance for magnetic systems
fully confined in all three directions. A pure spin current, injected into a ferromag-
netic layer through a nanocontact exerts a torque on the magnetization, leading to
a strongly localized microwave-frequency precession of magnetization, which can
be considered as a 0D magnonic mode. This phenomenon can serve as a basis for
the development of tunable nanometer-sizemicrowave oscillators, the so-called spin-
torque nano-oscillators (STNO) [27, 29–31, 59, 60]. Since the spin precession excited
in a magnetic nanocontact is usually surrounded by a 2D film or is coupled to a 1D
waveguide, it may radiate propagating magnons. All these makes the phenomena
connected with the STT-driven magnetization dynamics multifarious and intriguing.

Let us consider an STNO shown in Fig. 10.13 [32]. The device is formed by a
nanocontact on an extended Permalloy (Py) film. The nanocontact is shaped as an
elliptical nanopillar formed by the nanopatterned polarizing Co70Fe30 layer and a
Cu spacer. A dc current I flowing from the polarizer to the Py film induces local
magnetization oscillations in this film. Figure 10.14 shows density maps of magnons
emitted by STNO at I �5 mA, measured for different in-plane directions of the
applied fieldHe usingμBLS.As seen in Fig. 10.14, the emissionmainly occurs in the
direction perpendicular to the in-plane field, regardless of its orientation with a decay
length of the emitted magnons below 500 nm. One sees in Fig. 10.14d an essential
difference between the intensity of spin waves along two opposite directions. This
fact is connected with the influence of the circular Oersted field of the current flowing
through the nanocontact. In fact, on one side of the nanocontact theOersted is parallel
to the uniform applied field He, whereas on the opposite side of the nanocontact it is
antiparallel toHe. Further studies [18, 66, 79] have shown that the magnons emitted
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Fig. 10.12 a Normalized spatial intensitymap of the propagating spin wave excited by the antenna.
The map was recorded for I �2.55 mA. The mapping was performed by rastering the probing spot
over the area 1.6 by 10μm,which is larger than thewaveguidewidth of 1μm.Dashed lines show the
edges of the waveguide. Inset shows the transverse profile of the magnon intensity. b Dependences
of the magnon intensity on the propagation coordinate for different currents, as labeled, in the log-
linear scale. Lines show the exponential fit of the experimental data. c Current dependences of the
decay length. Vertical dashed line marks IC. The data were obtained at He �1000 Oe

in these experiments have an evanescence nature, since their frequency were slightly
below the magnon spectrum of the surrounding Py film.
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Fig. 10.13 Schematic of the studied STNOwith an AFM image superimposed. The devices consist
of an extended 6-nm thick Permalloy free layer and an elliptical nanopillar formed by a 9-nm thick
Co70Fe30 polarizing layer and a 3-nm thick Cu spacer. The nanopillar is located close to the edge of
the top electrode enabling optical access to the free layer for BLS microscopy. Magnetic precession
in the device is induced by dc current flowing from the polarizer to the free layer. The spatially
resolved detection of spin waves is accomplished by focusing the probing laser light into a 250 nm
spot, which is rastered over the surface of the Py film

As demonstrated in Fig. 10.15, microwave parametric pumping can be used as
a mechanism for the transfer of the generated microwave energy into the desirable
spectral range above the FMR frequency [79]. In this study, an additional microwave
current with its frequency slightly above the double frequency of the auto-emitted
waveswas applied to the nanocontact. Due to parametric effects (see [79] for details])
an additional spinwavewith a higher frequency and a larger decay lengthwas formed.
This approach enables an increase of the decay length of 540 nm for the auto-emission
to 940 nm for the pumping-induced emission. Moreover, the phenomenon of the
pumping-induced emission does not disturb the unique directionality found for the
emission in the auto-oscillation regime, as illustrated by Fig. 10.15.

Another possibility to inject angular momentum into a magnetic system is uti-
lization of pure spin currents. As it has been already mentioned above, pure spin
current has numerous advantages compared to spin-polarized electric current as far
as the excitation of large-amplitude 0D magnon modes is concerned. A complete
compensation of damping by the spin current appears to be a straightforward exten-
sion of the damping reduction. However, as the compensation point is approached,
additional nonlinear damping emerges due to the coupling between different dynam-
ical modes enhanced simultaneously by the spin current, preventing the onset of
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Fig. 10.14 Normalized color-coded intensity maps of magnons emitted by the STNO, recorded
at different angles ϕ between the in-plane magnetic field He �900 Oe and the easy axis of the
elliptical nanopillar: a ϕ �5°, b ϕ �25°, c ϕ �45°, d ϕ �−45°. The bias current is I �5 mA. The
schematic of the top electrode is superimposed on each map, with a cross indicating the location of
the nanocontact. The intensity maps acquired at I �0 were subtracted to eliminate the contribution
from the thermal magnons. Arrows show the direction of the static magnetic field, and the dashed
lines indicate the direction of the magnon emission

auto-oscillation. Since magnon-magnon scattering rates are proportional to the pop-
ulations of the corresponding modes, detrimental effects of the mode coupling can
be avoided by selectively suppressing all the modes, except for the ones that can be
expected to auto-oscillate. To achieve selective suppression, in the described experi-
ments, the frequency-dependent damping caused by the magnon radiation was used.
To take advantage of this radiative damping, the spin current was locally injected into
an extended magnetic film. In fact, the local spin current enhances a large number
of magnon modes, but those having higher frequencies, and, consequently, higher
group velocities, quickly escape from the active region, which results in their efficient
suppression by the radiation losses.
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Fig. 10.15 Pseudocolor spatial intensity maps of the emitted magnons, acquired at I �5 mA. A
schematic of the top electrode and a cross indicating the location of the nanocontact is superimposed
on each map. a Magnon auto-emission, in the absence of the external pumping microwaves. b
Magnon emission under influence of parametric pumping. Note an extended magnon propagation
area for (b)

The scheme of the experiment with pure spin current is shown in Fig. 10.16a
[33]. The studied device is formed by a bilayer of a 8 nm thick film of Pt and a 5 nm
thick film of Py patterned into a disk with a diameter of 4 μm. Two 150 nm thick
Au electrodes with sharp points separated by a 100 nm wide gap are placed on top
of the bilayer, forming an in-plane point contact. Since the sheet resistance of the
Au electrodes is much smaller than that of the bilayer, the electrical current induced
by voltage between the electrodes is strongly localized in the gap, as illustrated in
Fig. 10.16b. Due to the spin-Hall effect, the electric current creates a pure spin current
flowing into Py, which exerts STT on its magnetization. As a result, the damping is
compensated, and the magnon modes are enhanced.

Figure 10.17 shows the BLS spectra obtained with the probing spot positioned
in the center of the gap between the electrodes, at different values of the dc current
I . At I �0, the BLS spectrum exhibits a broad peak corresponding to incoherent
thermal magnetization fluctuations in the Py film (Fig. 10.17a). As this thermal peak
grows with increasing current, its rising front becomes increasingly sharper than
the trailing front, consistent with the preferential enhancement of the low-frequency
modes. Analysis of the dependence of the frequency-integrated BLS intensity on
current (Fig. 10.17b) shows that the intensity of magnetic fluctuations diverges as
the current approaches a critical value of Ic ≈16.1 mA. In contrast to systems driven
by spatially uniform spin currents [80], the intensity of fluctuations does not saturate
as the current approaches Ic, indicating that the processes preventing the onset of
auto-oscillations are avoided.

At I ≥ Ic, a new peak highlighted in Fig. 10.17a by shadowing appears in the
BLS spectrum below the thermal peak. Since this peak is not present in the thermal
fluctuation spectrum, we can conclude that it corresponds to a new auto-oscillation
mode that does not exist at I < Ic. The peak rapidly grows and then saturates above
16.3 mA (Fig. 10.17c, d). Comparing the spectra for I �16.1 mA and 16.3 mA, we
see that the onset of auto-oscillations is accompanied by a decrease in the intensity
of thermal fluctuations, suggesting that the energy of the spin current is mainly chan-
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Fig. 10.16 a Scanning-electron microscopy image of the test spin-Hall nano-oscillator. The device
consists of a 4μm diameter disk formed by a 8 nm-thick Pt on the bottom and a 5 nm-thick Py layer
on top, covered by two pointed Au(150 nm) electrodes separated by a 100 nm gap. b Normalized
calculated distribution of current through the section of the device shown in the inset by a dashed
line

nelled into the auto-oscillation mode. Note that the linewidth in the spectra shown in
Fig. 10.17a, c is determined by the spectral resolution of our optical technique under
usual conditions. Additional measurements at our instrument’s ultimate spectral res-
olution of 60 MHz show that the actual linewidth in the saturated regime is below
this value, suggesting a high degree of coherence of the observed auto-oscillation
mode.

The frequency of the auto-oscillation peak monotonically decreases with increas-
ing I (Fig. 10.17d). We note that the generated frequency is significantly below the
frequencies of magnetic fluctuations even at the onset of auto-oscillations. We draw
three important conclusions based on this observation. First, the auto-oscillation
mode does not belong to the linear magnon spectrum. Second, this mode is formed
abruptly at the onset current, and not by gradual reduction of frequency from the
magnon spectrum due to the red nonlinear frequency shift. Third, since the energy
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Fig. 10.17 a BLS spectra of thermal fluctuation amplified by the spin current at currents below
the onset of auto-oscillation. b Integral intensity of amplified thermal fluctuations and its inverse
versus current. Both dependencies are normalized by their values at I �0. c BLS pectra of the
magnetization auto-oscillation driven by the spin current. Filled areas are the results of fitting by
the Gaussian function. Note, that the spectral widths are determined by the resolution of the BLS
setup. d The intensity and the center frequency of the auto-oscillation peak versus current. Curves
are guides for the eye

can be radiated only by propagating magnons and there are no available magnon
spectral states at the auto-oscillation frequency, the auto-oscillation mode is not
influenced by the radiation losses.

To determine the spatial profile of the auto-oscillation mode, we performed
two-dimensional mapping of the auto-oscillation mode using μBLS, as shown in
Fig. 10.18. The auto-oscillations are localized in a very small area in the gap between
the electrodes with the estimated size of the auto-oscillation region being less than
100 nm, significantly smaller than the characteristic size of the current localization
(Fig. 10.16b). Therefore, we conclude that the auto-oscillation area is determined not
by the spatial localization of the driving current, but by the nonlinear self-localization
processes defining the geometry of a standing spin-wave “bullet” [81].We emphasize
that the observed quick saturation of the intensity of the auto-oscillation peak above
the onset and its monotonic red frequency shift are the intrinsic characteristics of the
“bullet”mode. Only one “bullet”mode exists at the frequency of the auto-oscillations
and this frequency is well separated from the continuous spectrum of non-localized
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Fig. 10.18 Normalized color-coded map of the measured BLS intensity over the auto-oscillation
area, and two orthogonal sections through its center. Symbols are the experimental data, and filled
areas under solid curves are the results of fitting by a Gaussian function. Dashed lines on the map
show the contours of the top electrodes. The data were recorded at I �16.2 mA

spin waves, Therefore, our findings provide strong evidence that auto-oscillations
involve only a single mode in the studied system.

10.4.3 STNO as Sources of Magnons

Although STNOs can excite magnons, it is, in general, difficult to achieve frequency
matching of STNOwith the propagatingmagnons, since the large-amplitudemagnon
modes in STNOs are frequency shifted due to nonlinear effects with respect to char-
acteristic frequencies of propagating magnons. However, if one uses a magnonic
waveguide of a particular geometry as described below, efficient matching between
such waveguides and STNOs can be achieved. This matching is realized by tak-
ing advantage of the dipolar magnetic field within the waveguide, which acts on
propagating magnon modes [18].

Figure 10.19a shows the layout of the studied device. A point-contact STNO
comprises a multilayer Cu(4)/Co70Fe30(4)/Au(150) fabricated on top of an extended
5 nm-thick Permalloy (Py) film. Additionally, the device incorporates a 5 nm thick
and 200 nm wide Co70Fe30 nanostripe below the Py film. The device is magnetized
by a static magnetic field He �800–1200 Oe applied in the plane of the Py film
perpendicular to the CoFe nanostripe.

Figure 10.19b shows the characteristics of the oscillation of STNO determined
by the standard electronic spectroscopy measurements. Above the onset current of
about 3.5 mA, both the amplitude and the frequency of the auto-oscillations exhibit
a smooth dependence on current, indicating a single-mode operation of the STNO.
Correspondingly, Fig. 10.19c shows representative BLS spectra recorded with the
probing laser spot positioned above theCoFenanostripe.While propagatingmagnons
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spectrum analyzer at different driving dc currents, as indicated. c BLS spectra recorded at different
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are clearly detected above the CoFe nanostripe, no signals were detected away from
the nanostripe. This observation indicates that the STNO can efficiently generate
magnons, propagating along the CoFe nanostripe, but a radiation of magnons into
the free Py film is inefficient.

To understand this phenomenon, one has to consider the effects of the dipolar
field of the CoFe nanostripe on the internal field in the magnetic layers. Similar to
magnonic waveguides, the internal field is significantly reduced in the magnetic film
in the region of the CoFe nanostripe, as compared to that away from the nanostripe.
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The reduction of the internal field results in lowering of the local magnon spectrum,
creating a one-dimensional channel with allowed magnon frequencies below the
bottom of the spectrum in the free Py film. Low-frequency magnons excited by
STNO are directionally guided along the CoFe nanostripe, since there are no states
available at these frequencies in the free Py film.

The measured propagation characteristics of magnons in the nano-waveguide are
illustrated in Fig. 10.20. Figure 10.20a shows the normalized spatial map of the BLS
intensity, which is proportional to the local magnon intensity. The map was recorded
at a constant dc current of 5 mA by rastering the probing laser spot over a 1.6 μm by
1.6 μm area with the step size of 100 nm. To highlight the transverse profile of the
propagating wave, the spatial decay in the direction of propagation was compensated
by normalizing the signal with the integral over the transverse section of the map
(along the z-coordinate). The map of Fig. 10.20a clearly shows that the spin wave
energy is concentrated entirely in the nano-waveguide, i.e. magnons are guided by
the field-induced channel without noticeable losses associated with the radiation of
energy into the surrounding free Py film.

The BLS intensity integrated over the transverse section of themap exhibits a sim-
ple exponential spatial decay in the direction of propagation (shown on the log scale
in Fig. 10.20b). By fitting the data of Fig. 10.20b with the function exp(−2y/ξ),
we obtain ξ�1.3 μm. We note that this value is close to the best spin-wave
propagation characteristics obtained in low-loss Py films with comparable thick-
ness, despite the higher dynamical losses expected due to the stronger damping in
CoFe.

By analyzing transverse cross-sections of the BLS intensity map (Fig. 10.20c),
we determine the transverse full width at half maximum w of the spin wave intensity
distribution for different positions along the waveguide. The obtained value w =
320 nm is independent of the propagation coordinate (Fig. 10.20d), which confirms
that the magnons are efficiently localized in the waveguide without spreading out.
We note that the measured spatial profile (Fig. 10.20c) represents a convolution
of the actual profile of the magnon intensity with the distribution of intensity in the
diffraction-limited probing light spot whose estimated diameter is 250 nm. The value
w �320 nm is therefore in a reasonable agreement with the measured waveguide
width of 200 nm (inset in Fig. 10.19a). It is important to emphasize here that although
Fig. 10.20 clearly demonstrates that spinwaves are propagatingwithin thewaveguide
only, it has no information about modes propagating in the waveguide, since the
width of the waveguide is smaller than the diameter of the optical beam. However,
micromagnetic simulations indicate that the nanooscillator excites the low-frequency
edge modes of the waveguide,

10.5 Bose-Einstein Condensation Magnons

Bose-Einstein condensation (BEC), predicted by Einstein [82] in 1925, is one of
the most intriguing quantum phenomena, since it allows one to observe coherent
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Fig. 10.20 a Normalized decay-compensated spatial map of the magnon intensity. The positions
of the top device electrode and the CoFe nanostripe are schematically shown. b Measured depen-
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quantum effects on the macroscopic scale (for review see, e.g., [83]). Although BEC
was experimentally observed for different equilibrium (liquidHe4 [84, 85], ultra-cold
atoms [86, 87], magnetic triplons [88]) as well as non-equilibrium (excitons [89],
polaritons [90–92], magnons [34, 93], photons [94]) ensembles of bosonic particles,
the experimental investigation of spatially coherent structures in BECs remains an
attractive albeit a challenging task for researchers.
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For the simplest case of a very weak, but non-zero interaction between magnons,
BEC can be understood as follows: as the temperature of the boson gas T decreases
at a given density N , or, vice versa, the density increases at a given temperature, the
chemical potential, μ, describing the gas increases. On the other hand, μ cannot be
larger than the minimum energy of the bosons εmin. The condition μ(N , T )�εmin

defines the critical temperature T c(N) or the critical density Nc(T ). If the density of
the particles in the system is larger thanNc, BEC takes place: the gas is spontaneously
divided into two fractions: (i) particles with the density Nc distributed over the entire
spectrum of possible boson states; (ii) a coherent ensemble of particles accumulated
in the lowest state with ε = εmin. Exactly this scenario was realized in a gas of
magnons [34]. As illustrated in Fig. 10.21a, magnons in YIG film were pumped
usingmicrowave parametric pumping: amicrowave photon of a frequency 2f p creates
two primary magnons with frequencies f p and opposite wave vectors. The created
primary magnons then thermalized and accumulated close to the minimum of the
magnon spectrum. Figure 10.21b shows the measured BLS spectra of magnons in
YIG films under parametric pumping, illustrating the distribution of magnons over
the states. One observes that already at t �200 ns after the start of the pumping,
the distribution of magnons away from the minimum energy saturates and show
no further changes, whereas the peak corresponding to the minimum demonstrates a
dramatic growth for t >200 ns. It clearlymeans that for t >200 ns (almost) all pumped
magnons occupy the lowest state after thermalization [95]. Important to note that the
width of the peak in Fig. 10.21b is determined by the spectral resolution of BLS.
Further experiments [96] revealed that the intrinsic width of the peak is three orders
of the magnitude smaller (about 1 MHz) confirming a high temporal coherence of
the magnon condensate.

The most unambiguous way to investigate spatial coherence of a BEC is an inter-
ference experiment [97]. Since the lowest-energy magnon state is doubly degenerate
(Fig. 10.21a), the condensation spontaneously occurs at two non-zero values of the
wave vector k �±kBEC, resulting in formation of two condensates. The interference
of the wave-functions of the condensates forms a real-space standing wave of the
total condensate density:

|ψ|2 � |ψ+ exp(ikBECz) + ψ− exp(−ikBECz)|2 ∝ cos(2kBECz) (10.10)

Figure 10.22 shows the results of a two-dimensional mapping of the BLS intensity,
which is proportional to the total density of the condensate. The map accumulated
across an 8×5 μm2 area of the YIG film over several days, clearly demonstrates a
periodic pattern along the direction of the static magnetic field created because of
the interference of the two condensates. The obtained spatial period of the pattern
0.9±0.1 μm, agrees well with the period 0.92 μm calculated based on the known
value kBEC �3.4×104 cm−1 [98]. Note here, that a long-term (several days) stability
of the patterns indicates not only a high spatial coherence of each condensate, but
also their mutual phase-locking.

Another interesting feature of the interference pattern in Fig. 10.22 is the presence
of persistent topological defects marked by dashed circles. These fork-like defects
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correspond to singularities of the phase of the individual wave-functionsψ+ andψ−.
To illustrate this, we draw contours around the defects and calculate the phase shift
over them. It is obvious that the phase is constant as one moves along a red or dark
blue line in the map and that the phase changes by 2π, as one moves from a red
(blue) line to the neighboring one. When calculating the phase shift over the shown
contours according to these rules, one gets 2π in either ψ+ and ψ− for both defects.
The theoretical analysis [97] based on the generalized Ginzburg-Landau equations
shows that these defects correspond to two quantized persistent vortices, each of
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them existing in one condensate component only. These structures are analogous to
half vortices (fractional vortices) of two-component atomic BECs created by phase
imprinting [99].

10.6 Conclusion and Outlook

Concluding this Chapter, I would like to emphasize that it is far from fully cover-
ing the field of magnonic research. The main goal of the Chapter is to present to
the reader the concept of magnons as quanta of propagating excitations in magnetic
media, the fundamental ideas of spin waves and magnons, their similarities and dif-
ferences to widely known waves as light and sound. In fact, the main difference is
that due to contribution of the relativistic anisotropic magnetic dipole interaction,
the frequency/energy of spin waves/magnons depends not only the absolute value
of its wave vector, but on its direction as well. Thus, the dispersion law of magnons
is anisotropic, that results in numerous exciting physical phenomena spanning from
existence of the surface Damon-Eshbach mode to Bose-Einstein condensation of
magnons. We have also learnt how the development of the spin-wave studies was
following the development of magnetic technologies: from bulk via films and multi-
layers to laterally confined structures.An important newaspect ofmagnonic research,
which appears about the turn of the century, is the interaction of magnons with spin-
polarized electric and pure spin currents. This development brought about a lot of
new physics as discussed in the Chapter.

However, the very recent development connected with consequences of the
Dzyaloshinskii-Moriya interaction (DMI) [100, 101] on spin wave properties are
beyond this review, just because this field is too young for any review. Here I just
would like to note several key words and references. In fact, the DMI appears in
low-symmetry (breaking the inverse symmetry) materials, with a strong spin orbit
coupling. Since phenomenologically it can be described as antisymmetric exchange
interaction, it is responsible for the spontaneous formation skyrmionic structures
[102, 103] as well as stabilization domain walls with a given handedness [104] with
significant consequences on domain wall mobilities. It was also predicted [105] and
then experimentally observed [106], that such an antisymmetric interaction results
in an asymmetric magnon dispersion. Another interesting effect of the DMI on spin
waves is the magnon Hall effect [107, 108], since it revealed nontrivial topolo-
gies of the magnon dispersion laws. Finally, the existence of topological nontrivial
edge magnons suggests that topological magnon insulators may be created, which is
important for future spintronics applications [109].

Another important topic, which was not addressed in this Chapter is spin-wave
propagation in magnonic crystals. Similarly to photonic crystals in optics [110], the
artificial magnonic crystals [111–114] represent one of the important functional ele-
ments ofmagnonic circuits. They are—spin-wavepropagationmedia,where the char-
acteristics of waves are tailored by using spatially periodic modulation of magnetic
properties. Let us emphasize that an important new feature of magnonic crystals with



330 S. O. Demokritov

respect to photonic crystals is connected with fast controllability of magnetic sys-
tems by using, for example, non-uniform magnetic fields. This controllability allows
realization of reconfigurable magnonic crystals, whose properties can be changed on
demand.Without going into details, let us transfer the reader to recent comprehensive
reviews on the topic [115, 116].
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Chapter 11
Spin Transfer Torque Driven
Magnetodynamical Solitons

Johan Åkerman

Abstract The recent progress in generating high spin current densities in mag-
netic nanostructures has made it possible to excite unprecedented magnon densi-
ties from which a range of novel magnetodynamical solitons, such as spin wave
bullets, magnetic droplets, and dynamical skyrmions can nucleate. In this chapter,
these magnetodynamical solitons, and the devices where they can be created and
observed - so-called spin torque and spin Hall nano-oscillators are discussed in
detail. The solitons form under conditions of magnon-magnon attraction, which
arises when the magnetodynamics exhibits negative non-linearity, and the result-
ing particle-like objects exhibit a rich dynamics including Brownian motion, drift
instabilities, perimeter eigenmode excitations, and merging. While originally only
observed indirectly using microwave spectroscopy, these solitons can now also be
observed directly using scanning transmission x-ray microscopy.

11.1 Introduction

The first description of a soliton phenomenon—although not called that at the time—
was given by John Scott Russell in 1834. He observed how a propagating water wave,
created in between a drawn boat and the side of the narrow Union Canal in Scotland,
would, after the boat had stopped, continue on its own without any apparent loss of
shape or speed and only the slightest loss of amplitude. He followed the wave for
some 10–15minutes during which it had travelled about 1–2 miles. He called it a
“Wave of translation” and intrigued by this chance encounter, spent significant time
and effort to reproduce and study this phenomenon in a wave tank. He described a
number of properties typical of solitons: (i) the waves were stable over very long
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distances, in contrast to normal waves that would either flatten out, or break; (ii)
their speed depended on their size, and their width on the water depth; (iii) waves
would never merge, instead a bigger and faster wave would travel through a smaller
and slower one; (iv) a wave too big for the depth of water would separate into two
individual waves.

It is intuitively clear that such solitons are intrinsically dynamic and require
dynamics for their existence. Any attempt at forming a stable static structure out
of liquid water is bound to relax back to the energetically favored uniform state of
a flat water surface. However, if the coupling between the microscopic entities of
the system is strong, such as in a magnetic material, so-called topological solitons,
also called topological defects, can be statically stable. Examples include domain
walls, vortices, bubbles, and skyrmions, which are stable objects due to topolog-
ical constraints. Their stability is either related to the energy cost of moving the
topological defect to a nearby boundary, or breaking the coupling between two
neighboring spins. Nothing prevents dynamical solitons to also have topology, and
the dynamics can also help in stabilizing otherwise unstable topological defects (see
e.g. dynamical skyrmions below).

Magnetodynamical solitons were first experimentally demonstrated in thick YIG
films [1]. It required substantial pumping power and relied on the very lowdamping of
YIG to reach sufficient spin wave densities. The orders of magnitude higher damping
in metal based systems, make such approaches ineffective. However, the advent of
spin transfer torque [2, 3] opened up an entirely different route towards very high SW
densities. Using very high densities of spin polarized currents through nano-pillars or
nano-contacts, it is possible to locally overcome the high damping of ferromagnetic
metals and create a magnetic medium with gain. The spin wave intensity in such a
systemwill grow exponentially in time until non-linear damping effects finally limits
the growth and a steady auto-oscillatory state of a very high local spin wave intensity
is reached. Depending on the magnetic anisotropy of the system and of the applied
magnetic field, a number of different magnetodynamical solitons can then form.

This chapter is organized as follows. In Sect. 11.2, the basics of spin transfer torque
generated auto-oscillations is covered briefly. In Sect. 11.3, the spin wave bullet
and its experimental demonstration in different systems is described. Section11.4
describes the magnetic droplet in perpendicular anisotropy systems in detail. Finally,
Sect. 11.5 describes the dynamical skyrmion, i.e. a magnetodynamical soliton with
non-zero topology.

11.2 Spin Transfer Torque Driven Spin Wave
Auto-oscillations

Last year marked the 20th anniversary of the publication of two ground-breaking
papers by Slonczewski [2] and Berger [3], describing the spin transfer torque (STT)
phenomenon. Although Berger had already discussed the possibility for STT in
the late 1970s [4, 5] and in 1985 demonstrated STT-driven domain wall motion in
millimeter-wide films using rather extreme currents (45 A) [6], and Slonczewski had
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developed the theory for spin-current-driven exchange coupling in magnetic tunnel
junctions (MTJs) [7], their two papers in 1996 described how a current flowing
perpendicularly to the plane of a magnetic metal multilayer should be able to reorient
themagnetization direction in one of the layers. Their predictionswere hence directly
amenable to device fabrication at a time when giant magnetoresistance (GMR) [8,
9] multilayers were being readied for hard drive read-head production and the first
high-quality MTJs had just appeared [10, 11].

Although it took a few years before STT driven magnetization switching and
precession were experimentally demonstrated [12–14], the fundamental and techno-
logical impact of this phenomenon has been profound. Modern day magnetoresis-
tive random-access memory (MRAM), programmed using STT from a direct current
through the MTJ memory cell, is beginning to replace toggle MRAM [15, 16], and
so-called spin torque nano-oscillators for microwave signal generation and detection
are close to actual applications.

11.2.1 Spin Currents and Spin Transfer Torque

We will here only briefly describe the nature, origin, and consequences of spin cur-
rents. For in-depth STT reviews, please see [17, 18]. For more in-depth reviews of
STT-based MRAM and STNOs, see [19–23] and [24, 25].

In the general case, a spin current is a 3 × 3 tensor describing the flow, in three
spatial dimensions, of spin vectors, in three-dimensional spin space. As the spin of
the electron is associated with a magnetic moment in real space, one often pictures
the spin current as a flow of tiny magnetic moments. In most technologically relevant
device geometries, the situation can often be simplified to a one-dimensional flow of
three-, or sometimes even two-, dimensional spins.

Spin currents can be generated in many ways, e.g. from a spin-polarized charge
current through a ferromagnetic material, from spin pumping due to a precessing
magnetization [26], from the spin Hall effect (see below), from the spin Seebeck
effect, and from rapid demagnetization. In non-magnetic metals, spin currents are
carried by the charge carriers, in magnetic insulators by spin waves (magnons), and
in magnetic metals by both.

Spin transfer torque (STT) arises when a spin current is non-collinear with the
local magnetization. This torque may be gradual and spread out over a long distance,
e.g. when spin-polarized electrons flow through a domain wall and rotate with the
local magnetization, or it can be very abrupt, as in current-perpendicular-to-plane
spin valves and MTJs when a spin current from one ferromagnetic layer enters a
second ferromagnetic layer with a non-collinear magnetization direction. In metallic
system [27–29], STT is dominated by so-called in-plane or damping-like torque,
i.e. it has a component that (time-averaged) is either parallel or anti-parallel to the
ordinary damping torque. In MTJs, there is also a substantial so-called field-like
torque component perpendicular to the damping torque such that it has the same
effect as an applied magnetic field [28, 30–32].
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11.2.2 The Spin Hall Effect

The spin Hall effect (SHE), first described by D’yakonov and Perel’ in 1971 [33,
34], experienced a renaissance when Hirsch revisited the problem in 1999 [35],
which subsequently lead to its first experimental demonstration in 2004 [36, 37]. In
contrast to the combined spin and charge current generated when carriers traverse
a ferromagnetic material, the SHE can produce a pure spin current, typically in a
direction perpendicular to the charge current. The pure spin current can then exert
substantial STT on any adjacent magnetic layer, which can be used for magnetic
switching [38, 39] and magnetization precession [40, 41]. The SHE can be viewed
as a limiting case of the anomalous Hall effect (AHE) [42, 43], which was proposed
by Edwin Hall in 1881 when he applied his earlier discovery of the ordinary Hall
effect (HE) [44] to ferromagnetic metals and found that this effect could be ten times
greater than in nonmagnetic metals. The SHE is simply a limiting case of the AHE
in materials without any spontaneous magnetization but with substantial spin-orbit
coupling. Without any spin imbalance in the nonmagnetic material, the asymmetric
spin-dependent scattering does not result in any Hall voltage. What it does result in,
however, is a net spin current transverse to the charge current and, in a steady state,
the build-up of spin accumulation zones at the edges of the conductor, which can be
directly observed by optical means [36, 37] and which is used in spin-current-driven
devices. For recent in-depth reviews of the SHE and its origins, please see [45, 46].

11.2.3 The Landau-Lifshitz-Gilbert-Slonczewski Equation

For most practical purposes, the magnitude of the magnetization vector M in a
ferromagnet is always equal to the saturation magnetization MS (notable exceptions
include rapid demagnetization and operation close to the Curie temperature). Its
direction can, however, vary internally and this variation can be static, as in a domain
wall, or dynamic, as in spin waves. The magnetization dynamics is described by the
so-called Landau-Lifshitz-Gilbert (LLG) equation, first introduced by Landau and
Lifshitz [47] in 1935 and in 1955 modified by Gilbert [48], who added a friction-
like phenomenological damping parameter α. In 1996, Slonczewski added a STT
term [2], and the final Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation then
becomes:

∂M
∂t

= γ [He f f × M] + Tα + TS. (11.1)

where the first term describes conservative Larmor precession around the effective
fieldHe f f , the second term describes theGilbert damping torque, and the last termTS

is the Slonczewski STT.He f f is the sum of the externally applied field, the magneto-
dipolar field, an anisotropy field, the exchange field, and, in the presence of a drive
current, the Oersted field:

He f f = Ha + Hdip + Hk + Hex + Hoe. (11.2)
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11.2.4 Non-linear Spin Wave Auto-oscillations

Auto-oscillations [49] can happen in any system having an intrinsic resonance, such
as an organ pipe or a violin string. If the violin string is plucked, i.e. the system is
subjected to an impulse function, the resonance gets excited until various sources of
damping restores the original uniform, non-sounding, state. If one provides a constant
source of energy larger than this damping, such as the friction from a bow, the string
can auto-oscillate on its resonance indefinitely.

In the case of a violin string, the frequency is independent of the amplitude of the
oscillation and this type of auto-oscillator is therefore linear. To change the frequency
of a given string, the violinist instead has to use a finger to change the length of the
oscillating part. Spin wave auto-oscillators are however highly non-linear, i.e. their
frequency is dependent on the amplitude of oscillation. The non-linearity stems from
how the internal terms in Hef f , i.e. Hdip, Hk , and Hex , depend on the oscillation
amplitude. As a simplified example, we here consider a macrospin approximation of
an auto-oscillating easy-plane magnetization saturated normal to the film plane. To
reach saturation, the applied field must overcome the demagnetization field. During
auto-oscillation, the local magnetization processes around the applied field and as
the oscillation amplitude increases, so does the opening angle away from the film
normal. As the demagnetization field is proportional to theMz component of the auto-
oscillating magnetization, it decreases with increasing opening angle, which in turn
makes the total Hef f increase. As a consequence, in this Slonczewski geometry, the
frequency will increase with amplitude, and since the oscillation amplitude increases
with current the so-called non-linearity, d f/d I , is positive.

It can however be shown [50] that the non-linearity will decrease if the internal
magnetization angle deviates from the normal and for angles closer to the plane,
d f/d I can also be negative. As we will see in the following, a negative non-linearity
can have dramatic consequences as it leads to self-localization of the auto-oscillating
spin waves when their frequency falls below the SW gap of the extended film.

11.2.5 Spin Torque and Spin Hall Effect Nano-oscillators

Spin torque and spin Hall nano-oscillators (STNOs and SHNOs) come in a wide
variety of structures and layouts (Fig. 11.1). The first demonstrations of so-called
magnetic point-contacts relied on a highly sharpened metallic tip to make electrical
contact, with an area of about 102 nm2, to an extended multilayer film [12, 51, 52].
For better fabrication control and reliability, lithographically defined nano-contact
STNOs are now preferred [13, 53–56]. In both types of devices, it is only the current
injection site that is nanoscopic, and the magnetic films remain extended. In nano-
pillar STNOs [14, 57], on the other hand, all of the magnetic layers are patterned
through, which ensures that all of the electric current passes through the entire mul-
tilayer stack, typically resulting in lower threshold current densities (<107 A/cm2),
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Fig. 11.1 a–d Different structures and layouts of spin torque nano-oscillators (STNOs), where
the “free” and “fixed” layers are ferromagnetic and separated by either a metallic spacer or a thin
dielectric acting as a tunneling barrier. e–h Different structures and layouts of spin Hall nano-
oscillators (SHNOs). (From [25] with permission)

compared to nano-contacts (108–109 A/cm2). Hybrid STNOs, i.e. a nanopillar fabri-
cated on top of an extended film, have also been demonstrated [58, 59].

In a similar manner, SHNOs can be categorized into four geometries. In the
three-terminal nanopillar geometry, the magnetic free layer is patterned on top of an
extended layer of the SHE-generating normal metal [39, 40]. In another approach
one utilizes a nanogap between two highly conductive Au electrodes, injecting a
high current density into a nanosized region of an extended FM/Pt bilayer [41, 60].
In more recent nanoconstriction-based SHNOs, both the FM and the Pt (or W) layer
are patterned into a constriction [61–64]. Similar confinement of the SHE-induced
spin current has been demonstrated in a nanowire geometry [65]. The benefits of the
latter two device geometries include easier fabrication and direct optical access to
the entire magnetodynamically active region.

11.3 Spin Wave Bullets

The term spin wave bullet was inspired by its optical analogue, the Light Bullet [66],
theoretically predicted by Silberberg in 1990, but experimentally observed well after
the SW bullet in 2005.



11 Spin Transfer Torque Driven Magnetodynamical Solitons 341

11.3.1 Macroscopic Spin Wave Bullets

Macroscopic, millimeter-sized, SW bullets were for the first time experimentally
observed in antenna based experiments on thick (7µm) YIG films [67]. Short-lived
high intensity SW packets were excited using 29 ns long microwave pulses and their
spatial and temporal evolution was monitored using a Brillouin Light Scattering
(BLS) microscope. The high-intensity SW packets exhibited clear self-focusing,
shrinking more than 50% in both lateral directions and retaining its minimum size
as long as the SW intensity stayed over a certain threshold value.

11.3.2 Nanoscopic Spin Wave Bullets in STNOs

Although not described as such, STT generated nanoscopic SW bullets were first
observed in nano-contact STNOs in in-plane magnetic field by Rippard et al. [53,
55], where they made a number of experimental observations, which conflicted with
Slonczewski’s original predictions for propagating SWs: (i) a much lower threshold
current for auto-oscillations than theoretically predicted, (ii) an auto-oscillating fre-
quency below the FMR frequency instead of above, and (iii) a further red-shift in
the frequency as the current increased. As discussed in the next section, these are all
specific traits of SW bullets.

In an angular dependence study, Bonetti et al. subsequently demonstrated the
existenceof a critical out-of-planemagnetization angle abovewhichonlypropagating
SWs are observed [68–70] and below which both propagating SWs and SW bullets
can be generated [71, 72]. While small nano-contacts (≈40nm) only can sustain
one of the two modes at any given time, rapid mode hopping between propagating
SWs and SWbullets were observed. However, in larger nano-contacts, a single nano-
contact can drive both modes simultaneously, with their respective intensity maxima
at opposite sides of the nano-contact [73, 74]. In both large and small nano-contacts,
these phenomena are to a large extent governed by the strong Oersted field in the
nano-contact vicinity.

11.3.3 Direct Observation of Nanoscopic Spin Wave Bullets

Themain auto-oscillatingmode in nano-gapSHNOs in in-planefields is the spinwave
bullet, as first demonstrated by Demidov et al. [41]. The auto-oscillation frequency
is well below the FMR frequency and direct BLS observations also reveal a spatial
distribution of SWs consistent with an auto-oscillating regionmuch smaller (100nm)
than the spatial resolution of the BLS microscope (250nm).

To improve on the spatial resolution, other techniques, such as scanning trans-
mission X-ray microscopy (STXM) have been employed. The direct observation of
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a possible spin wave bullet was reported by Bonetti et al. [75] where they also were
able to follow the average time-evolution of the precessing spins using a stroboscopic
method.

11.4 Magnetic Droplets

11.4.1 Magnon Drops and Magnetic Droplets

Magnetic droplets derive their name from magnon drops, which are conservative
magnetodynamical solitons first described by Ivanov and Kosevich in thin films with
perpendicular anisotropy and zero SWdamping [76, 77].Magnon drops can be of any
size, but since they require a loss-less medium, they have not yet been experimentally
demonstrated.

Given their requirement for an unrealistic zero-damping magnetic material,
magnon drops remained a theoretical curiosity until it was realized by Hoefer and
coworkers that the active region underneath a nano-contact could serve as an effec-
tive magnetic medium with zero damping [78]. They showed both analytically and
numerically that STT can nucleate and sustain a condensed state of magnons even
in a magnetic material with significant damping, such as magnetic metals.

11.4.2 Experimental Demonstrations of Magnetic Droplets

The first experimental demonstration of magnetic droplets [79] was reported by
Mohseni et al. in so-called orthogonal STNOs [81] where the Co/Ni multilayer free
layer had strong PMA and the fixed layer was made of easy-plane Co. These results
were later confirmed byMacia et al. usingNiFe as the fixed layer [82]. The nucleation
of a droplet is observed as a large drop in microwave frequency, an increase in the
microwave power, an increase of the STNO resistance, and a sign change of its
magnetoresistance (Fig. 11.2). Sometimes the nucleation is also accompanied by
microwave noise in a lower frequency range of about 0.1–2GHz and even auto-
modulation.

In contrast to the original droplet theory developed for spin valve stacks where
both the free and the fixed layer were assumed to have perpendicular anisotropy,
the droplet nucleation current was experimentally found to have a non-trival field
dependence (Fig. 11.3). As discussed in detail in [80], the droplet nucleation current
in an orthogonal spin valve can be very well reproduced using one term linear in
field and another inversely proportional to the field, plus a constant,

In = αAH + B
H

+ C. (11.3)
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Fig. 11.2 a Schematic of a nano-contact spin torque oscillator based on an orthogonal spin valve
with an in-plane Co fixed layer and a [Co/Ni] free layer with its easy axis along the film normal.
Above the stack is shown a cartoon of the magnetization of the droplet, with the color indicating the
degree of reversal and the arrows showing the local precession of the spins. (Adapted from [79]).
b Power spectral density (PSD) and device resistance (R) versus magnetic field showing a sharp
drop in frequency, a dramatic increase in power, and a resistance step when the droplet nucleates
at about 0.49 T. c PSD and R versus current again showing a dramatic increase in microwave
power and a resistance step when the droplet forms at about −6.2mA. d, eMicrowave power in the
fundamental peak and at low frequency showing that the droplet is accompanied by the appearance
by low-frequency microwave noise. (Adapted from [80] with permission)

In orthogonal STNOs, a perpendicular field tilts the fixed layer orientation by an
angle θ , defined with respect to the film normal, consistent with a hard axis reversal
condition cos(θ) = H/Ms,p (valid until saturation, i.e. for H ≤ Ms,p). This is hence
the origin of the term inversely proportional to the field. As the field further increases,
the usual field dependent Slonczewski criterion for a STT-driven spinwave instability
gradually takes over. For fields above fixed layer saturation, only this field-dependent
term survives. Similar nucleation phase diagrams were observed also for NiFe fixed
layers [83].

11.4.3 Drift Instability and Auto-modulation

In a perpendicular field and with a completely saturated fixed layer, the droplet finds
itself in a circularly symmetric field landscape and remains stable underneath the
nanocontact. However, if either the field or the fixed layer magnetization (or both)
are tilted away from the film normal, the effective field landscape becomes distorted
and the droplet shifts away from the nanocontact center [78]. If the non-uniformity
is increased beyond a certain critical value this shift can be large enough to even-
tually dislodge, which allows the droplet to propagate away from the nanocontact,
losing amplitude to damping until it finally decays completely. If the current is above
the threshold for droplet nucleation, a new droplet can again form underneath the
nanocontact and the process can repeat itself indefinitely.
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Fig. 11.3 a Droplet nucleation boundary determined experimentally from field sweeps (empty
triangles), current sweeps (solid triangles), and from the presence of low-frequency microwave
noise (solid circles) for devices with different NC radii RNC . Fits using (11.3) are shown by solid
lines using the same color code for each RNC . The coefficients A and B are shown in b and c
as a function of NC area utilizing the same color code as shown in (a). (Adapted from [80] with
permission)

Figure11.4a shows an example of this process [83]. First a stable droplet is allowed
to nucleate in a uniform effective field landscape. Then the applied field is titled
away from the normal about 8◦, which induces enough non-uniformity to make the
droplet move away from the nanocontact and finally dissipate entirely. Within a few
nanoseconds a new droplet forms but almost immediately succumbs to the same drift
instability.While this process can have awell-defined periodicity at zero temperature,
thermal fluctuations induces large variations in the droplet life-timewhich leads to the
generation of low-frequency microwave noise instead of a well-defined frequency.

Well-defined sub-GHz frequencies can however still be observed at room tem-
perature and even lead to auto-modulation of the main precession signal, as shown
in Fig. 11.4b where both first and second order modulation sidebands are clearly
observable althoughno externalmodulationwas provided [79]. This auto-modulating
behavior was reproduced by micromagnetic simulations if the parameters were
adjusted such that the droplet performed a periodic translational motion without
leaving the nanocontact. It is however noteworthy that while droplet nucleation is
highly reproducible from device to device, auto-modulation displays a much greater
variability, sometimes not showing at all, which corroborates that the details of the
effective field landscape, typically affected by nanocontact imperfections, govern
this behavior.
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Fig. 11.4 a Micromagnetic simulations of a droplet, first (t < 5ns) in a perpendicular field and
then in a field tilted about 8◦ away from the film normal. In the tilted field the droplet shifts away
from the nanocontact center and finally dislodges and dissipates away, after which a new droplet can
form (From [83] with permission). bAuto-modulation of the droplet precession frequency showing
both first and second order upper and lower modulation sidebands. (Adapted with permission from
[79])

11.4.4 Breathing and Droplet Perimeter Modes

Already the first experimental demonstration of droplets showed evidence of droplet
breathing related to fundamental modes of the droplet perimeter. It was later worked
out, both analytically and using micromagnetic simulations, that the driving mech-
anism for this excitation of the perimeter eigenmodes is parametric pumping by the
fundamental spin precession itself.

Figure11.5a–f show spatial map snapshots of the free layer magnetization during
micromagnetic simulations of a droplet in a perpendicular field and with a fixed
layer that is saturated along the film normal. The top row shows the droplet at three
different fields and at currents just above droplet nucleation threshold. In all cases,
the droplet is highly stable, the perimeter follows the nanocontact edge closely, and
all spins precess in phase. The main effects of the increasing applied field is a linear
increase in the precession frequency and a slight reduction of the droplet size due to
its increasing Zeeman energy.

The situation changes dramatically if the current is increased an order of mag-
nitude (Fig. 11.5d–f). The droplet perimeter is now strongly excited on eigenmodes
with n = 3 − 5 as the field increases. Figure11.5g shows the frequency of the gen-
erated microwave signal as a function of applied field at this higher current. Two
qualitatively different types of regimes can be observed: (i) an unperturbed droplet
with a frequency that closely follows a linear dependence (dashed line) given by
theory, and (ii) three regions where the n = 3 − 5 perimeter eigenmodes are excited.
In these regions, the frequency of precession is close to twice that of the excited
perimeter mode, which indicates that the fundamental precession drives the eigen-
modes through parametric excitation. It also appears that the interaction between
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Fig. 11.5 a–cMicromagnetically simulated droplets versus increasing perpendicular field and at a
current just above the nucleation threshold. Themain effects of themagnetic field is a linear increase
of the precession frequency and a slight compression of the droplet due to its increasing Zeeman
energy. d–f Same simulated device at a higher current, now showing strong eigenmodes of the
perimeter, with mode number increasing with field. g The microwave frequency of the same device
highlighting the three regions where the eigenmodes are excited. In each case, the precession fre-
quency and twice the eigenmode frequency (indicated by straight colored lines) overlap, suggesting
parametric excitation. h–i Experimental power spectral density data for a STNO measured at two
different fields, where the second plots shows the appearance of a perimeter eigenmode excitation
at half the precession frequency. j–k Micromagnetic simulations of a similar device reproducing
the overall behavior and indicating that a fifth order eigenmode is likely excited. (Adapted with
permission from [84])

the fundamental precession and the perimeter modes leads to mode hybridization,
as evidenced by a reduction of the droplet frequency and the appearance of a large
number of higher harmonics.

In experiments, the drive current can typically not be increased an order of mag-
nitude above the nucleation threshold, and observations or excited perimeter modes
are rare [79, 84]. Figure11.5h–i shows one device where an additional frequency at
about half the droplet frequency appears for certain field and current conditions. The
micromagnetic simulations indicate that a fifth order perimeter eigenmode is excited
in this particular case.
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Fig. 11.6 a Schematic of the all-perpendicular STNO. bMajor andminor hysteresis loops showing
well defined square switching of both the free and the fixed layer, indicating strong perpendicular
anisotropy in both. c Direct STXM observation of a fully reversed droplet using the Ni edge. d
Direct STXM observation of the same droplet using the Co edge (normalized to the Co content in
the free layer). (Adapted from [85] with permission)

11.4.5 Direct Microscopic Observation of Magnetic Droplets

Direct imaging of magnetic droplets has proven difficult. Due to their small size,
the preferred technique is again STXM, which requires that devices be fabricated
on X-ray transparent SiN membranes and that the top contact providing current to
the nanocontact be as thin as possible. The devices must then survive several hours
of operation in a vacuum where heat dissipation is much less effective. Finally, the
measurement is made even more challenging since stable droplets require a perpen-
dicular field and a fully saturated fixed layer. The first attempts at direct observations
of droplets were made on orthogonal spin valves, where the applied field (0.7 T) was
possibly not sufficient to fully saturate theNiFe fixed layer.While a region of reduced
moment along the z axis could be observed, which in principle is consistent with
a droplet core, the degree of reversal (25◦) was much less than the expected (close
to) full reversal. In addition, the observed region of reduced moment was highly
irregular, in particular at higher current. Both observations are consistent with the
droplet suffering from drift instabilities, i.e. a droplet is only present underneath the
nanocontact for part of the time-averaged STXMmeasurement resulting in an appar-
ent reduction of the core reversal, and the droplet drifting away from the nanocontact
leads to an irregular apparent shape of the region of reduced moment.

Very recently, droplets have also been realized in STNOs where both the free
and the fixed layer have their remanent states along the film normal [85]. In such
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Fig. 11.7 a Top view snapshots of the free layer magnetization in a micromagnetic simulation
of an all-perpendicular nano-contact STNO where the lateral extension of the free layer has been
consecutively reduced in the y direction. M1: Ordinary droplet. M2: Edge droplet. M3: Quasi-1D
droplet. b Droplet frequency at threshold as a function of the nanowire width. (Adapted from [86]
with permission)

all-perpendicular STNOs, the requirement of a strong perpendicular field for stable
droplets is greatly relaxed, which both makes the experimental set-up less compli-
cated and reduces the required drive current. Thanks to the symmetric effective field
landscape (neither the field nor the fixed layer magnetization are tilted) any droplet
drift instability should be suppressed. As a consequence, STXM measurements on
both the Ni and the Co edges yield a fully reversed droplet with a well-defined cir-
cular perimeter (Fig. 11.6). Somewhat unexpectedly, the droplet size was found to
be about twice as large as the nanocontact, which was interpreted as mainly due to
lateral current spread in the STNO making the effective nanocontact area larger.

11.4.6 Edge and 1-Dimensional Magnetic Droplets

Droplets have also been studied in reduced dimensions where simulations of droplets
in magnetic nanowires suggest that the droplet can interact with the nanowire sides to
first form a so-called edge droplet, where the droplet is only attached to one side of the
wire, and a 1-dimensional droplet, if the nanowirewidth is further reduced (Fig. 11.7).
The edge droplet has the form of half a disk, i.e. it is essentially forming one half
of a much larger droplet, consistent with the microwave frequency of such a larger
droplet. The 1-dimensional droplet corresponds to two precessing domain walls,
continuously transforming between Bloch and Néel walls as their spins precess.
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Fig. 11.8 a Schematic of two nano-contacts fabricated on top of an orthogonal spin valve stack.
b Temporal evolution of the total moment along the z direction of the simulation area showing
how two individual droplets have formed at t1 and remain stable for about 5 ns until their mutual
interaction make them coalesce at about t1 = 6 ns. The spatial profiles of the droplets and their
interactions can be followed in the six panels labelled with the corresponding times t1 − t6. c The
merged droplet can be broken up by applying a very strong perpendicular field and to reform another
merged droplet, the field must again be reduced. (Adapted from [87] with permission)

11.4.7 Interacting and Merging Droplets

As nano-contacts can be fabricated very close to each other, it is in principle possible
to nucleate two or more droplets and study their mutual interactions. While this has
not yet been done experimentally, numerical simulations indicate that two adjacent
droplets can interact through their precessing spins and merge to form a much larger
droplet spanning both original nano-contacts (Fig. 11.8) [87]. This is a hysteretic
process as the merged droplet is highly stable. By increasing the magnetic field to
several Tesla, the merged droplet can eventually be broken up into two individual
droplets when the Zeeman energy of the large merged droplet becomes prohibitive
(Fig. 11.8c).
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11.5 Topological Magnetodynamical Solitons

11.5.1 Adding Topology to Magnon Drops

The theoretical possibility of adding topology tomagnetodynamical solitons in ultra-
thin magnetic films with strong perpendicular anisotropy and zero SW damping has
been discussed by Ivanov and coworkers [88, 89]. In contrast to the non-topological
magnon drop, where all spins precess in phase, the spins in the topological counter-
part all precess at the same frequency, but have a finite phase shift along the perimeter
to form bound stateswith an integral phase shift of 2πn along the perimeter. As a con-
sequence, the topological version has a slightly higher energy than the topologically
trivial drop.

11.5.2 Dynamically Stabilized Skyrmions

With the advent of (static) nano-skyrmions in thin magnetic films with both strong
PMA and Dzyaloshinskii-Moriya interaction (DMI) [90–93], the possibility of
adding topology to magnetic droplets was investigated by Zhou et al. [94]. As in
the conservative case, it was shown that topological versions can indeed be realized
in numerical simulations, and that DMI is not required for their stability—the pre-
cessional state provides the stability whether or not DMI is present. This is hence
in stark contrast to the static nano-skyrmion, which requires a very high DMI to be
stable [92]. From a skyrmion point of view, dynamics is hence a third mechanism,
in addition to magnetostatics and DMI, for stability.

Figure11.9 shows a micromagnetic simulation of an all-perpendicular nano-
contact STNO where the free layer also has substantial DMI. The simulation starts
at a current level where only an ordinary droplet with topological number S = 0
is nucleated (t2). While a stable droplet has all its spin precessing in phase with
zero topological density at all points, the large DMI favors a chiral magnetic struc-
ture, perturbs the droplet perimeter, and induces a substantial topological density
at opposing sides of the droplet (t3 and t4). These perturbations increase with cur-
rent density and when the drive current is increased the original droplet becomes
unstable and transforms into a topological magnetodynamical soliton, a so-called
dynamical skyrmion, with S = 1 (t5 − t7). When the current is again reduced, the
dynamical skyrmion remains stable, now at a higher frequency. If the current is fur-
ther decreased, SW damping takes over and the dynamical skyrmion collapses into
a uniform ferromagnetic state.

The dynamical skyrmion shows a number of drastically different properties com-
pared to the droplet. There is now a finite phase shift between spins along the perime-
ter, such that a full 2π rotation is acquired along the perimeter length. The size of
the dynamical skyrmion breathes with the precession frequency as the magneti-
zation texture continually transform between a vortex and a hedgehog skyrmion
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Fig. 11.9 a Snapshot top views of the magnetic state of the free layer in an all-perpendicular nano-
contact STNO with substantial DMI. The white circle outlines the nano-contact. The color scale
shows themz component of the magnetization and the black arrows indicate its in-plane orientation
and magnitude. b Snapshots of the topological density over the same simulation area as in (a). c
Plots of the mz component of the free layer magnetization overlayed on a plot of the topological
number (the integrated topological density) S. d The current density applied during the simulation
and labels high-lighting the magnetic state of the free layer. (From [94] with permission)

character. The breathing amplitude is proportional to the DMI, which favors expan-
sion of the hedgehog tecture, but wants to minimize the extension of the vortex
texture. The strong breathing provides a route to efficient generation of microwave
signals since a large part of the spins involved in the breathing experiences a
full parallel-to-antiparallel reversal and hence make use of all the available
magnetoresistance.

11.5.3 Possible Experimental Demonstrations of Dynamical
Skyrmions

There is so far only one report on the experimental demonstration of dynamical
skyrmions [95]. In nano-gap SHNOs based on Pt/[Co/Ni]6 multilayers, Liu et al.
observe awell-definedmicrowave signal well below the FMR spectrum. The signal is
at some field and current combinations accompanied by pronounced auto-modulated
sidebands. Since all observations, however, are also consistent with the nucleation
and auto-modulation of a droplet, additional experiments will be needed to claim
with confidence that a dynamical skyrmion has indeed been observed. One potential
way forwardwould be to study how the observed auto-oscillation locks tomicrowave
fields of different symmetries [94].
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11.6 Conclusions and Outlook

The possibility to drive very high intensity local spin currents in spin torque and
spin Hall nano-oscillators have opened up a realm of new possibilities to realize
and observe magnetodynamical solitons on the nano-scale. In this work we have
reviewed the present state-of-the-art with particular focus on spin wave bullets and
magnetic droplets. It is safe to say that the full potential of these novel objects is far
from exhausted. With the possibility of direct soliton observation using techniques
such as STXMand high-sensitivity electrical studies usingMTJs, the future promises
a continued increasing understanding and quite likely the discovery of both novel
magnetodynamical solitons and novel effects based on them.
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Chapter 12
Majorana States

Jeffrey C. Y. Teo

Abstract The main goal of this chapter is to introduce the basic concepts of Majo-
rana fermions and zero energyMajorana bound states, and their origin from topology,
magnetism and superconductivity. This chapter gears towards young researchers at
their early developing stage in their career, and for the most parts, the central ideas
are presented in a self-contained manner without assuming professional background
knowledge other than fundamental quantum mechanics and solid state physics.

The main goal of this chapter is to introduce the basic concepts of Majorana
fermions and zero energy Majorana bound states, and their origin from topology,
magnetism and superconductivity. This chapter gears towards young researchers at
their early developing stage in their career, and for the most parts, the central ideas
are presented in a self-contained manner without assuming professional background
knowledge other than fundamental quantum mechanics and solid state physics. For
the more experienced readers, this chapter perhaps can serve as a supplementary to
the more advanced review texts by [1–9] among others.

Noticing the incompatibility between Schrödinger’s description of quantum
mechanics [10] and Einstein’s theory of special relativity [11], Paul A. M. Dirac
in 1928 revised the quantum theory of relativistic electrons [12]. One of the many
ground-breaking consequences of the theory is the prediction of anti-particles, which
carry the same spin-exchange statistics but opposite conserved charge (such as elec-
tric charge) as their partners. In 1937, right before his mysterious disappearance,
Ettore Majorana proposed a symmetrical theory of electron and positron [13] that
described self-conjugate particles, now known as Majorana fermions, which are
their own anti-particle. None of the elementary fermions in the standard model are
Majorana fermions because they all carry gauge charges, and the hypothetical right-
handed sterile neutrinos, which may have a Majorana mass, have not been observed.
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Sitting at the opposite end of the energy spectrum, condensed electronic matter, such
as a superconductor or a quantum Hall state, often involve strong correlation and
quantum entanglement. These characteristics can facilitate fractionalization and the
emergent of Majorana fermions.

This chapter focuses on the origin andmechanism forMajorana fermion (MF) and
zero energyMajorana bound state (MBS) to appear in a quantum electronic medium.
In Sect. 12.2, we first describe the theoretical manifestation of MF and MBS in time
reversal breaking topological superconductors (TSC) [14–16]. We review the Kitaev
p-wave topological superconducting chain model [17] and some of its recent mate-
rial realizations [18–21]. We summarize the chiral px + i py superconductor in two
dimensions and explain its chiral Majorana fermion edge mode as well as vortex
zero energy MBS [22–27]. In Sect. 12.3, we move to inhomogeneous heterostruc-
tures [28–34], where electronic materials with distinct orders are juxtaposed andMF
and MBS arise at point and line junctions sandwiched between different materials.
Before embarking on these areas, we first begin with a brief review of the relevant
background.

12.1 Background and Motivation

Magnetization and conventional s-wave superconductivity are competing orders.
For instance, the magnetization order parameter Ŝz = c†↑c↑ − c†↓c↓ anti-commutes

with the s-wave superconducting pairing order parameter �̂ = c↑c↓, i.e. Ŝz�̂ =
−�̂Ŝz . In general, one does not expect a ground state to be a simultaneous eigen-
state of Ŝz and �̂. Therefore, loosely speaking, a ground state with large mag-
netization 〈GS|Ŝz|GS〉 ∼ 1 must have vanishing pairing because 〈GS|�̂|GS〉 ∼
〈GS|�̂Ŝz|GS〉 = −〈GS|Ŝz�̂|GS〉 ∼ −〈GS|�̂|GS〉. Moreover, magnetization and
pairing have opposite characteristics regarding charge conservation and time rever-
sal symmetry. While Ŝz commutes with the number operator n̂ = c†↑c↑ + c†↓c↓, �̂

anti-commutes with n̂ and thus a superconducting ground state must be a superposi-
tion of quantum states with different numbers of (Cooper pairs of) electrons. On the
other hand, time reversal (TR) symmetry flips spins

T c↑T −1 = −c↓, T c↓T −1 = c↑ (12.1)

and therefore pairing is even under TR T �̂T −1 = �̂ while magnetization is odd
under TR T ŜzT −1 = −Ŝz . In this section, we will consider superconductors beyond
the conventional s-wave regime. In particular, we will focus on superconductors
that violate TR symmetry. This can be a result of an applied magnetic field, an
asymmetric p-wave pairing order parameter, or proximity with a ferromagnet or
anti-ferromagnet.

A Bardeen-Cooper-Schrieffer (BCS) superconductor [35, 36] is described by a
mean-field theory where the charge U (1) conservation symmetry, c j → eiφc j , is
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spontaneously broken by the non-zero ground state expectation value of pairing
�̃i j = 〈GS|ci c j |GS〉 �= 0. It is facilitated by an attractive interaction, which can be
mediated by phonons for example, that under the mean-field approximation becomes

−ui j c
†
i ci c

†
j c j + h.c. −→ ui j�̃i j c

†
i c

†
j + h.c. (12.2)

where the i, j indices represent a combination of spin, orbital, and position degrees
of freedom. The dynamics of quasiparticle excitations of the superconductor is
described by the mean-field Hamiltonian

ĤBCS = Ĥ0 − ε f

∑

i

c†i ci +
∑

i j

�i j c
†
i c

†
j + h.c. (12.3)

where ε f is the Fermi energy, and we have absorbed the interaction strength ui j into
the pairing parameter �i j = ui j�̃i j . Here the first term Ĥ0 of (12.3) is a kinetic term
describing themetallic state. It could be a quadratic Hamiltonian p2/2m in the nearly
free electron limit, or a tight binding model

Ĥ0 =
∑

i j

ti j c
†
i c j + h.c. (12.4)

where ti j is the hopping amplitude for an electron to tunnel from site j to site i on
a lattice.

Electron operators in momentum space cλ(k) can be defined using operators in
real space cλ(r) using the Fourier transform cλ(r) = ∫

ddk
(2π)d

eik·rcλ(k), where λ =
1, . . . , n encodes some local degrees of freedom such as spin, orbital and lattice
basis. The integration is taken over the momentum space R

d for a continuum system
or the Brillouin zone (BZ) for a lattice periodic system, where d is the dimension
of the system. We choose the following Nambu vector notation that combines the
creation and annihilation operators

ξ(k) =
(
cλ(k), i(σy)λλ′c†λ′(−k)

)T
(12.5)

where σy is the Pauli matrix
(
0 −i
i 0

)
that acts on spin ↑,↓. The BCS Hamiltonian

(12.3) takes the following form in momentum space

ĤBCS =
∫

ddk
(2π)d

ξ(k)†HBdG(k)ξ(k) (12.6)

where HBdG(k) is a (2n) × (2n) hermitian matrix known as the Bogoliubov-de
Gennes (BdG) Hamiltonian. The Nambu doubling (12.5) is artificial and the anti-
commutation relation of fermion operators requires the BdG Hamiltonian matrix
(12.6) to satisfy a particle-hole (PH) symmetry:

�−1HBdG(k)� = σyτyHBdG(k)∗σyτy = −HBdG(−k) (12.7)
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where � = σyτyK is the PH operator, K is the complex conjugation operator, and
τy is the Pauli matrix

(
0 −i
i 0

)
that acts on the Nambu degrees of freedom (c, c†). It

is worth noticing that �2 = 1 and the PH symmetry corresponds to class D of the
Altland-Zirnbauer classification of band theories [37].

The BdG Hamiltonian of a BCS superconductor is similar to the Bloch
Hamiltonian of a band insulator. Its quasiparticle excitations ψ(k) = ξ(k)†u(k) =∑n

λ=1 u
λ(k)c†λ(k) + un+λ(k)cλ(−k) are representedbyeigenvectorsu(k) = (u1(k),

. . . , u2n(k)) of the BdG Hamiltonian, HBdG(k)u(k) = E(k)u(k). The excitation
requires a finite amount of energy |E(k)| ≥ �gap, where �gap > 0 is the smallest
amount of energy necessary to excite the ground state.

The PH symmetry of the BdG Hamiltonian (12.7) has two consequences. First,
the energy bands are also particle-hole symmetric in the sense that if E(k) is an
energy eigenvalue at k, then −E(k) is also an energy eigenvalue at −k. Second, the
energy bands and the eigenstates are redundant. The Nambu doubling (12.5) implies
that a “hole” excitation at k is equivalent to a “particle” at −k, i.e.

ψ(k)† = �ψ(−k)�−1. (12.8)

Therefore, the “negative” energy bands are actually “holes” of the positive energy
ones. As a matter of fact, there is no excitation with “negative” energy. As the
BdG quasiparticle ψ(k) is a linear superposition of the creation and annihilation
operator, it does not transform under the U (1) symmetry and is not associated to an
electric charge.However, it carries fermionic statistics andobeys thePauli’s exclusion
principle.

The finite energy gap �gap refers to the smallest energy required to excite a BdG
quasiparticle ψ(k) in the bulk of the superconductor. The wavefunction of ψ(k) is a
delocalized plane wave in all directions. When the system has defects or boundaries,
there can be additional low energy BdG excitations that are localized and carry
energies below the bulk energy gap �gap. In this section, we are interested in these
mid-gap defect or boundary excitations that are “topologically” protected [3, 6,
8] and stable against perturbations. In particular we focus on the manifestation of
protected Majorana fermions (MF) [13, 38] and zero energy Majorana bound states
(MBS) [1–5, 7, 9].

Zero energy BdG quasiparticles (also known as zero modes) are special in a
particle-hole symmetric system, �Ĥ�−1 = −Ĥ . Suppose ψ0 is a zero mode so
that [Ĥ ,ψ0] = 0, and suppose it is the only zero mode localized at the defect or
boundary. The PH symmetry implies �ψ0�

−1 is also a zero mode. However, since
the PH symmetry is local, it does not change the localization position, and therefore
ψ0 and�ψ0�

−1 are actually identical.1 On the other hand, theNambudoubling (12.5)
and the particle-hole symmetry (c.f. 12.8) require the zero mode to be hermitian or
self-conjugate

ψ†
0 = �ψ0�

−1 = ψ0. (12.9)

1The quantum phase difference eiφ between the two can be absorbed by a gauge redefinition
ψ0 → eiφ/2ψ0.
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Equation (12.9) is one the defining conditions of a Majorana fermion zero mode.2

Written in terms of the original electron operators, the Majorana zero mode takes the
superposition form ψ0 = u j c j + u∗

j c
†
j . From the fermionic anticommutation rela-

tions

{ci , c j } = ci c j + c j ci = 0, {ci , c†j } = ci c
†
j + c†j ci = δi j , (12.10)

theMajorana operator squares to a constantψ2
0 = 2|u|2, whichwe normalize to unity,

ψ2
0 = 1.
Now suppose there are multiple Majorana fermion zero modes γ1, . . . , γ2N . The

fermion exchange statistics requires Majorana operators to mutually anticommute.
Together with the normalization γ2

m = 1, they follow the algebraic relationship

{γl, γm} = 2δlm . (12.11)

One can group them in pairs and define n Dirac fermions dl = (γ2l−1 + iγ2l)/2,
which satisfies the anticommutation relations (12.10). Each Dirac fermion is associ-
ated a two-level system or a quantum bit (qubit) spanned by |0〉 = dl |1〉 and |1〉 =
d†
l |0〉, which are eigenstates of the number operator n̂l = d†

l dl . Together, they gen-
erate a degenerate zero energy Hilbert space of dimension 2n , where quantum states
are superpositions of the tensor product states |{nl}〉 = . . . ⊗ |nl〉 ⊗ |nl+1〉 ⊗ . . ., for
nl = 0, 1.

At this point, it is opportune to clarify the terminology we are going to use in this
section and distinguish between Majorana fermion (MF) and zero energy Majorana
bound state (MBS). The previous discussion of zero energy BdG quasiparticle ψ0

applies to excitation localized at either (i) a point defect, or (ii) an open system with
a boundary edge or surface. Zero energy MBS refers to the first case, where a zero
mode is bound to a pointwith awavefunction exponentially localized in all directions.
A MBS is protected if it is the only zero energy BdG quasiparticle localized at that
point, and there are no other BdG excitations (localized or not) near zero energy.
Figure12.1a shows the density of state (DOS) plot of a generic BdG Hamiltonian
with a single MBS at zero energy. There are no states near zero energy except the
MBS (shown as a spike in DOS at E = 0) and the extended bulk states appears at
energy larger than �gap. The zero energy MBS is protected against any perturbation
that does not close the bulk energy gap. It cannot gain a non-zero energy, otherwise
the particle-hole symmetry would imply another opposite energy BdG state which
however, is non-existing.

In the second case, the zero mode ψ0 extends in the form of a plane wave in the
direction(s) parallel to the boundary. Figure12.1b, c shows the edge or surface energy

2If there are multiple zero modes, there exists an orthogonal transformation that rotates to a new
basis where all zero modes are self-conjugate (12.9). For instance, given a zero mode ψ0 which
is not self-conjugate, one can define the self-conjugate zero modes ψ0 + �ψ†

0 , iψ0 − i�ψ†
0 . This

process can be repeated until all zero modes are self-conjugate.
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Fig. 12.1 Energy spectrum of zero energy Majorana bound state (MBS) and Majorana fermion
(MF). a Density of states of a BdG Hamiltonian with a MBS at zero energy. b Energy spectrum of
a 2D BdG Hamiltonian in a semi-infinite geometry with an open edge. Blue bands represent bulk
states, red band represents the chiral MF localized along the edge. c Energy spectrum of the MF
surface state of a TR symmetric 3D topological superconductor

spectra of a topological system. There are BdG excitation states arbitrarily close to
zero energy in the thermodynamic limit. We refer to these low-energy extended
BdG excitations as Majorana fermions (MF). With the appropriate edge or surface
boundary conditions, these Majorana fermions can also admit states at exactly zero
energy. However, as they are not bounded and localized at a point. We only refer to
them as Majorana zero modes but not Majorana bound states (MBS).

Zero energy Majorana bound states (MBS) are desirable. Unlike local qubits in
a system of spins for example, it takes two MBS to form a qubit. If the MBS are
far away with exponentially small wavefunction overlap, the quantum information is
stored non-locally in space. This means that the qubit is protected against accidental
measurement by local perturbations, or in other words, this enables a long lifetime
of quantum coherence. On the other hand, a qubit can be read off by determining the
fermion parity |0〉 or |1〉when a pair ofMBS is brought together. Moreover, MBS are
non-Abelian quasiparticles in the sense thatmutual exchange and braiding operations
do not commute with one another. This allows us to design quantum gates out of
unitary adiabatic operations that form the basis of a topological quantum computer
(TQC) [39–44]. The non-local nature of MBS demonstrates quantum entanglement.
An entangled state (|00〉 + |11〉)/√2 can be prepared for instance from a pure state
|00〉 through an MBS exchange operation.

12.2 Time Reversal Breaking Topological Superconductors

We discuss the topological classification of characterization of superconductors in
one and two dimensions that do not preserve time reversal (TR) symmetry [3, 6, 8,
14–16]. We show these topological superconductors (TSC) can support zero energy
Majorana bound states (MBS) [1, 2, 4, 5, 7, 9]. Section12.2.1 covers one dimen-
sional TSC. This includes the Kitaev’s p-wave superconducting chain [17] and the
superconducting spin-orbit coupled nanowire [18–21]. Section12.2.2 studies two
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dimensional TR breaking TSC and focuses on the prototype px + i py TSC [22–
26], which carries chiral edge Majorana fermion (MF) and vortex bound MBS.
Section12.3 considers superconducting heterostructures [28–34], where MBS are
located at point junctions between topological insulating, superconducting, andmag-
netic domains. A discussion on the classification and characterization of topological
point defects [3, 32, 33] in superconducting media will be given at the end.

12.2.1 Topological Superconductors in One Dimension

Previously, we introduced the BdG description of a BCS mean-field superconductor
(12.6). As a consequence of the artificial Nambu doubling (12.5), the BdG Hamilto-
nian HBdG(k) has a particle-hole (PH) symmetry (12.7). We begin with the example
of the Kitaev’s p-wave superconducting wire model before we move on to a more
recent application of superconducting spin-orbit coupled nanowire.

12.2.1.1 Kitaev’s p-Wave Superconducting Chain

A one dimensional metallic wire can be mimicked by a lattice Dirac fermion model.
Suppose there is a spinless electron degree of freedom cr on each site r on a simple 1D
chain. The tight-binding Hamiltonian Ĥ0 = t

2

∑
r c

†
r cr+1 + h.c., which consists of

nearest neighbor electron hoppings, has a periodic energy spectrum E(k) = t cos k.
With partial electron filling, it models a 1D metal with a Fermi energy ε f between
±t . Suppose there is some uniform attractive interaction between nearest neighbors
that, under a mean-field analysis, breaks charge U (1) conservation spontaneously.
The BCS Hamiltonian takes the form

ĤBCS = Ĥ0 − ε f

∑

r

c†r cr + �
∑

r

c†r c
†
r+1 + h.c. (12.12)

where � ∼ 〈cr cr+1〉 is the uniform (r independent) superconducting pairing param-
eter. Since the system is spinless and the pairing is odd under inversion r → −r , �
is p-wave.

Using the Fourier and Nambu transformation (c.f. (12.5)),

c(k) =
∫ π

−π

dk

2π
eikr c(r), ξ(k) = (

c(k), c†(−k)
)T

(12.13)

the BdG Hamiltonian (c.f. (12.6)) takes the 2 × 2 matrix form

HBdG(k) = (t cos k − ε f )τz + � sin kτy (12.14)
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Fig. 12.2 The trajectory of w(k) = (t cos k − ε f ) + i� sin k on the complex plane when (left)
|ε f | < |t |, the winding number is 1, or (right) |ε f | > |t |, the winding number is 0

where τz = (
1 0
0 −1

)
and τy = (

0 −i
i 0

)
act on the Nambu c, c† degree of freedom. The

Hamiltonian is PH symmetric, �HBdG(k)�−1 = −HBdG(−k) where � = τxK the
PH operator. The p-wave superconductor has a BdG excitation spectrum E(k) =√

(t cos k − ε f )2 + (� sin k)2, and has an excitation energy gap �gap = min{E(k)}
which is non-zero unless the chain is completely filled or empty, i.e. ε f = ±t .

The Kitaev’s model (12.14) [17] is a topological superconductor in one dimen-
sion. It is protected by a Chern-Simons topological invariant. We begin with the
“occupied” states of (12.14). One choice of the “negative energy” eigenstate is of
the form u(k) = (−1 + eiθ(k), 1 + eiθ(k))/2, where θ(k) is the argument of the com-
plex number w(k) = (t cos k − ε f ) + i� sin k. The Berry connection is defined to
be the differential 1-form

A(k) ≡ 〈u(k)| d
dk

u(k)〉dk = 〈u(k)| d
dθ

u(k)〉dθ = − i

2
dθ. (12.15)

The Chern-Simons invariant in this case is the integral

CS1 = i

π

∫ k=π

k=−π

A(k) = 1

2π

∫ k=π

k=−π

dθ(k) = θ(k = π) − θ(k = −π). (12.16)

The integral
∫
dθ/2π in (12.16) is also known as a winding number. It counts how

many times the complex number w(k) winds around the origin as k goes from −π
to π (See Fig. 12.2). Therefore we have

CS1 =
{
1, for |ε f | < |t |
0, for |ε f | > |t | (12.17)

Of course, since we began with a partially filled metallic chain with ε f between ±t ,
theKitaev’s p-wave superconductingmodel has a non-trivial Chern-Simons invariant
and is topological. The second case when |ε f | > t , the chain is completely filled or
empty to begin with. The system therefore connects to an insulating state, which in
one dimension must also connect to the trivial atomic limit where all electrons are
atomically localized.

The Berry connection (12.15), and consequently the Chern-Simons invariant
(12.16), is gauge dependent. One can choose another eigenstate that differs from
the origin by a gauge transformation u′(k) = eiϕ(k)u(k), where eiϕ(k) = eiϕ(k+2π) is
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some k-dependent periodic quantum phase. The new eigenstate u′(k) is continuous
and defines a new Berry connection

A′(k) = 〈u′(k)|du′(k)〉 = A(k) − idϕ(k). (12.18)

This modifies the Chern-Simons invariant

CS′
1 = CS1 + 1

π

∫ k=π

k=−π

dϕ(k). (12.19)

The correction term is twice of the winding number for the gauge transformation
eiϕ(k) and changes the invariant by an even integer.Hence, theChern-Simons invariant
(12.16) is well-defined only up to even integers. On the other hand, it also tells us
that the two scenarios (12.17) cannot be related by any gauge transformation.

One may ask if one can introduce a perturbation that changes the value of the
Chern-Simons invariant continuously away from 0 or 1 (modulo 2). If this were pos-
sible, one might be able to continuously deform and connect the BdG Hamiltonians
between the two limits |ε f | > t and |ε f | < t . Fortunately, the particle-hole symme-
try and the energy gap force the Chern-Simons invariant (12.16) to take an integral
value. Here we sketch a proof. First, the PH symmetry flips between the “positive”
and “negative” BdG bands. The “positive” energy eigenstates v(k) = �u(−k) asso-
ciates a new Berry connection A(+)(k), which is opposite to the one constructed
before from “negative” eigenstates.

A(+)(k) = 〈v(k)| d
dk

v(k)〉dk = 〈�u(−k)| d
dk

�u(−k)〉dk

= 〈u(−k)| d
dk

u(−k)〉∗dk = −A(−k). (12.20)

Here, the first identity in the second line holds because the PH operator is antiunitary
(i.e. 〈�w1|�w2〉 = 〈w1|w2〉∗) and local (i.e. spatially independent [ d

dk , �] = 0). The
minus sign in the last identity comes from the fact that the Berry connection A is
purely imaginary,A∗ = −A. However, as inversion k → −k changes the orientation
of momentum space, it adds a minus sign to the momentum integration in the Chern-
Simons invariant (12.16). Therefore the Chern-Simons invariant defined from the
“positive” eigenstates is actually identical to the one from the “negative” eigenstates,
CS(+)

1 = CS1.
Second, the Chern-Simons invariants from the “positive” and “negative” eigen-

states should add up to zero (modulo 2). This is because

CS(+)
1 + CS1 = i

π

∫ k=π

k=−π

A(+)(k) + A(k) = i

π

∫ k=π

k=−π

Tr(Atot(k)) (12.21)
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whereAtot
mn(k) = 〈um(k)|dun(k)〉 is the 2 × 2 total Berry connection constructed by

both “positive” and “negative” eigenstates, u1(k) = u(k), u2(k) = v(k). However,
U (k) = (u1(k),u2(k)) is simply a unitary basis transformation and the sum above
is just the winding number

CS(+)
1 + CS1 = i

π

∫ k=π

k=−π
Tr

(
U (k)

d

dk
U (k)

)
dk = 2 × i

2π

∫ k=π

k=−π
dk

d

dk
log detU (k). (12.22)

It counts twice the number of times the complex number detU (k) goes around the
origin as k goes from −π to π. In other words, CS(+)

1 + CS1 must be an even integer.
Combining with the previous observation that the two Chern-Simons invariants are
actually identical, we see that CS1 must be an integer. Lastly, we notice that the
definition of the Chern-Simons invariant (12.16) requires the energy eigenstate u(k)
to be continuous. This holds only when there is a non-vanishing energy gap so that
the “positive” band never crosses the “negative” one.

To summarize, the PH symmetry and energy gap requie the Chern-Simons invari-
ant (12.16) to be an integer. However, there is a gauge ambiguity as a large gauge
transformation can change the value by any even integer (see (12.19)). Therefore,
there are actually only two distinct values of CS1 = 0, 1 modulo 2, where the par-
ity (evenness or oddness) of the Chern-Simons invariant is a gauge independent
quantity. We refer to this type of invariants as a Z2-invariant, where Z2 = {0, 1} is
the binary group that follows the rule of addition 1 + 1 ≡ 0 modulo 2. It charac-
terizes the topology of the BCS superconductor. As CS1 will not be altered by any
energy gap preserving perturbation and deformation, a topological superconductor
with CS1 = 1 can never be adiabatically connected to a trivial superconductor with
CS1 = 0.

Now that we have established the bulk topology of the Kitaev’s p-wave super-
conducting wire, we move on to its non-trivial signature at the boundary. First, we
rewrite the model (12.12). Decomposing the Dirac electron operator at site r into
real and imaginary Majorana components cr = (γ2r−1 + iγ2r )/2, in the limit when
t = 2�, (12.12) becomes

ĤKitaev =
n∑

r=1

iε f γ2r−1γ2r + i tγ2rγ2r+1. (12.23)

This is the Majorana fermion (MF) version of the Su-Schrieffer-Heeger model of
polyacetylene [45], which is built out of Dirac fermions. The Fermi energy ε f term
corresponds to intra-unitcell MF coupling while the kinetic electron tunneling and
pairing term t corresponds to inter-unitcell MF coupling.

The distinction between the topological case with CS1 = 1 when |ε f | < |t | and
the trivial case with CS1 = 0 when |ε f | > |t | is revealed at the boundary of the 1D
chain. In the topological case, the inter-cell coupling is stronger than the intra-cell
coupling (see Fig. 12.3). A boundary therefore terminates at a strong bond and this
leaves behind a dangling boundary state at each end. For example in the limit ε f = 0,
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Fig. 12.3 The Kitaev’s Majorana chain model (12.23). (Top) The trivial case when ε f > t with no
boundary states. (Bottom) The topological case when ε f < t with zero energy boundary MBS γ1
and γ2n

the boundary MF γ1 and γ2n are completely decoupled from the rest of the chain,
i.e. [ĤKitaev, γ1] = [ĤKitaev, γ2n] = 0, and correspond to zero energy MBS localized
at the two ends. In the trivial limit where t = 0 and ε f > 0, MF are completely
dimerized within unitcells and there are no zero energy boundary states.

These boundary MBS are topologically protected. Their presence is a direct
consequence of the bulk topology, namely the non-vanishing Chern-Simons invari-
ant CS1 = 1. They are robust against any energy preserving perturbations. This is
because as long as there is a bulk energy gap, there are no extended quantum states
near zero energy to hybridize with the MBS. In other words, there are no low energy
channels for the zero energy boundary MBS to escape and the wave function of
the zero mode must be exponentially localized at the boundary. For example, if one
perturbs about half-filling by turning on the Fermi energy ε f , as long as |ε f | < |t |,
there is always a Majorana zero mode (i.e. [ĤKitaev, γ̃] = 0)

γ̃ = 1

N

∞∑

r=0

(ε f

t

)r
γ2r+1 (12.24)

in the thermodynamic semi-infinite geometry n → ∞, for N =
√∑∞

r=0(ε f /t)2r a

normalization constant so that γ̃2 = 1. The wave function of γ̃ has an exponentially
decaying tail ∼ e−r/ l with the localization length l = 1/ log(t/ε f ).

The boundary spectrum of a 1D superconductor in general consists of multiple
mid-gapMajorana zeromodes γ̃1, . . . , γ̃s . They are however not all protected against
boundary perturbation as they can acquire finite energy u by pair annihilation δH =
iuγ̃i γ̃ j . The PH symmetry requires the same number of “positive” energy states
and “negative” ones. Thus, when s is even, the zero modes can be paired up and
removed, whereas when s is odd, there is at least one MBS at zero energy remaining.
The number parity (evenness or oddness) ofMBS at a boundary defines aZ2 analytic
index, indbdry ≡ s modulo 2. In general, a one dimensional superconducting model is
either adiabatically connected to the topological case with CS1 = 1 or the trivial case
with CS1 = 0. Since boundary MBS cannot escape during adiabatic deformation,
the Chern-Simons invariant is a Z2 topological index that corresponds to the analytic
boundary signature,
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indbdry ≡ CS1 modulo 2. (12.25)

This identification of a boundary analytic index and a bulk topological invariant is
an example of a bulk-boundary correspondence.

Lastly, we notice that the bulk Chern-Simons invariant also applies when there
are translation symmetry breaking disorder. Equation (12.16) can be re-defined in
real space

CS1 = 2T (Pr̂ P−1) modulo 2, (12.26)

where the real-space position operator r̂ is represented by the momentum differential
operator id/dk after Fourier transform, P is the projection operator onto the “neg-
ative” BdG states, and T is the operator trace that includes the momentum integral
i
∫
dk/2π. 〈r̂〉 = T (Pr̂ P−1) locates the average center position of theWannier wave

function of the “negative” BdG bands, i.e. the ground state. It is well-defined only
up to integers because the value can be shifted by any integral amount by lattice
translations (or momentum dependent gauge transformations). The PH symmetry
forces 〈r̂〉 to take either integral or half-integral values. In the trivial case such as the
top diagram of Fig. 12.3, it takes integral value as the Wannier center (i.e. the strong
bond) is located at a unitcell, while in the topological case (see the bottom diagram
of Fig. 12.3), it takes half-integral value since the Wannier center is located between
unitcells.

12.2.1.2 Superconducting Spin-Orbit Coupled Nanowire

Superconductivity normally arises in a three dimensional material, but it can also be
induced on an one dimensional wire that is in proximity with a bulk 3D superconduc-
tor. These proximity induced superconducting wires can be topological and support
boundary zero energy Majorana bound states (MBS). Previously, we discussed the
Kitaev’s p-wave superconducting chain, which is a topological model built out of
spinless electrons. In reality, electrons have spin, and the Kramers’ theorem dictates
that BdG states must be doubly degenerate in any time reversal symmetric system.
Therefore, a system that support a single (or odd number of) zero energy MBS
must breaks time reversal. This can be realized by a nanowire with strong spin-orbit
coupling (SOC) under an external magnetic field or internal magnetization [18–21].

The normal metallic state of the SOC nanowire is described by the Hamiltonian

H0(k) = �
2k2

2m
+ λSOkσx + gμB Bσz (12.27)

where the Pauli matrices σ’s act on spin, and λSO is the SOC strength. The third term
is the Zeeman energy from an external magnetic field pointing in a direction per-
pendicular to spin-orbit direction. Equivalently, the third term can also be generated
by an internal magnetization. The energy spectrum is shown in Fig. 12.4. The SOC
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Fig. 12.4 The energy
spectrum of the SOC
nanowire under a magnetic
field (12.27). Dashed line
represents the case when the
magnetic field is absent

k

E

2mλSO/�
2

εf
2gμBB

−kf kf

displaces the parabolic bands according to spins↑,↓with respect to σx , and themag-
netic field introduces a Zeeman splitting at zero momentum. If the Fermi energy ε f

is located mid-Zeeman gap around 0, there is a pair of counter-propagating modes
at ±k f with opposite spins (in the limit B � λSO ). This mimics the helical edge
modes of a quantum spin Hall insulator [46–50].

Now when the SOC nanowire is in proximity of a bulk s-wave superconductor,
its electronic state acquires a proximity-induced pairing � and is described by the
BdG Hamiltonian

HBdG(k) =
[(

�
2k2

2m
− ε f

)
+ λSOkσx

]
τz + gμB Bσz + �τx (12.28)

where the Pauli matrices τx,z acts on the Nambu (c, c†) degrees of freedom (12.5). As
a consistency check, we see that the Hamiltonian has a PH symmetry with respect
to the PH operator � = σyτyK so that �HBdG(k)�−1 = −HBdG(−k). The mag-
netic Zeeman term is the only term that violates time reversal symmetry, or other-
wise the Hamiltonian would be TR symmetric, T HBdG(k)T −1 = HBdG(−k) where
T = iσyK is the TR operator. The magnetic Zeeman term commutes and therefore
competes with the pairing term. This agrees with the conventional competing the-
ory of superconductivity and magnetism. However in this case, due to the helical
(spin-momentum locked) nature of the 1D electronic modes, there is a region where
magnetism and superconductivity can coexist.

To simplify the problem, we notice that the Hamiltonian (12.28) has an accidental
chiral symmetry, σxτyHBdG(k)σxτy = −HBdG(k). This means that it takes an off-
block diagonal form under a basis transformation

H̃BdG(k) = UHBdG(k)U † =
(

0 h(k)
h(k)† 0

)
, U = 1√

2

( −i 0 0 1
0 −i 1 0
i 0 0 1
0 i 1 0

)
,

h(k) = −
(

�
2k2

2m
− ε f

)
112 − (λSOk − i�)μx − gμB Bμz (12.29)
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where μx,z are Pauli matrices acting on the new basis and 112 is the 2 × 2 identity
matrix. The superconducting wire has a finite energy gap unless the determinant

det(h(k)) = −(gμB B)2 + �2 + ε2f + �
4k4

4m2
− k2

(
�ε f

m
+ λ2

SO

)
− 2i�λSOk

(12.30)

vanishes. In the presence of SOC and proximity-induced pairing, λSO ,� �= 0,
the energy gap closes at k = 0 when (gμB B)2 = �2 + ε2f . This separates the (i)

weak field phase gμB |B| <
√

�2 + ε2f from (ii) the strong-field phase gμB |B| >
√

�2 + ε2f .

Next we show that the two phases are topologically distinct. This requires us to
solve for the eigenstates of the BdG Hamiltonian and compute the Chern-Simons
invariant (12.16). First, we notice that H̃BdG squares to the block diagonal form
diag(hh†, h†h), where the hermitian Laplacians L(k) = h(k)h(k)† and L ′(k) =
h(k)†h(k) are positive definite. Suppose x1(k), x2(k) are the normalized eigenvectors
for the first Laplacian so that L(k)x j (k) = ε j (k)2x j (k), where ε1(k)2, ε2(k)2 are the
positive eigenvalues. They generate the “negative” energy eigenvectors of the BdG
Hamiltonian

H̃BdG(k)u j (k) = −ε j (k)u j (k), u j (k) = 1√
2

(
x j (k)

−ε j (k)−1h(k)†x j (k)

)
. (12.31)

The Berry connection is given by

Tr(A(k)) = 〈u j (k)|du j (k)〉 = Tr(X (k)†dX (k)) + 1

2
Tr(h†(k)−1dh†(k)) (12.32)

where X (K ) = (x1(k), x2(k)) is unitary. The first term can be absorbed and can-
celed by a gauge transformationA → XAX† + XdX†. The Chern-Simons invariant
(12.16) in a multi-band model generalizes to

CS1 = i

π

∫ k=∞

k=−∞
Tr(A(k)) modulo 2 (12.33)

= i

2π

∫ k=∞

k=−∞
Tr(h†(k)−1dh†(k)) = i

2π

∫ k=∞

k=−∞
d log det h†(k)

which counts the number of times the complex number det(h†(k)) in (12.30) winds
around the origin as k runs from −∞ to ∞.

Figure12.5 shows the trajectory of det(h(k)) = | det(h(k))|eiϑ(k) for (i) the weak

field phase gμB |B| <
√

�2 + ε2f and (ii) the strong field phase gμB |B| >
√

�2 + ε2f .

When k → ±∞, the �
4k4/4m2 term in (12.30) dominates and therefore ϑ(k →

±∞) = 0. For finite k, the imaginary piece −2i�λSOk in (12.30) brings the phase
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Fig. 12.5 The trajectory of
det(h(k)) in (12.30) on the
complex plan for (i) the
weak field phase

gμB |B| <
√

�2 + ε2f and

(ii) the strong field phase

gμB |B| >
√

�2 + ε2f Re

Im

0

k=∞

=−∞k

(i)(ii)

ϑ away from π. The winding number depends on the sign of det(h(k = 0)) =
(gμB B)2 − �2 − ε2f . In the weak field phase, det(h(k = 0)) > 0 and the path can be
deformed and contracted along the negative real axis without crossing the origin. On
the contrary, in the strong field phase, det(h(k = 0)) < 0 and the path winds once
around the origin.

CS1 =
⎧
⎨

⎩
0, for gμB |B| <

√
�2 + ε2f

1, for gμB |B| >
√

�2 + ε2f
modulo 2. (12.34)

This shows that the strong field phase is topological whereas the weak field phase is
trivial.

Next we consider zero energy boundary BdG states of the superconducting SOC
nanowire. In a semi-infinite geometry where the nanowire occupies the positive real
axis x > 0, a normalizable boundary state takes the decaying form u0 ∼ e−κx where
l = 1/Re(κ) > 0 is the localization length. It is a zero mode if it is a zero eigenvector
of the BdG Hamiltonian HBdG(iκ)u0 = 0, and represents the MBS γ̃ = u0 · ξ(iκ).
In other words, a zero mode corresponds to a solution to the polynomial equation
det(h(iκ)) = 0 on the analytic-continued complex momentum half-plane k = iκ,
for Im(k) > 0. Using (12.30), we see that if k is a complex root of det(h(k)), then so
is −k∗. This means that complex roots usually come in pairs except when k = −k∗
lives on the imaginary axis. The number parity (evenness or oddness) of roots on
the momentum half-plane is therefore determined along the positive imaginary axis.
From (12.30), we see that the determinant has a single (or odd number of) root if
det(h(iκ)) changes sign between κ = 0 and κ = ∞. This is the case if and only if

gμB |B| >
√

�2 + ε2f , i.e. the strong field topological phase (Fig. 12.6).
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k
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k = 0k = ∞

C

Fig. 12.6 Mobiüs transformation w = (i − k)/(i + k) from the upper-half complex momentum
plane to the unit disc. Black dots • (white dots ◦) represent zeros (resp. poles) of det(h(k))

indbdry = number of MBS =
⎧
⎨

⎩
0, for gμB |B| <

√
�2 + ε2f

1, for gμB |B| >
√

�2 + ε2f
modulo 2. (12.35)

We recover the index theorem (12.25) by comparing and identifying (12.34) and
(12.35). In fact, one can show that the identification of indbdry and CS1 in the general
scenariowithout using the particular polynomial formof det(h(k)) in (12.30).We use
the Mobiüs transformation w(k) = (i − k)/(i + k) to map the upper half complex
k plane to the unit disc, where w lives (see Fig. 12.6). The Chern-Simons integral
(12.33) becomes the closed integral

CS1 = i

2π

∮

C
d log det h†(w) = number of zeros enclosed in C mod 2 (12.36)

along the unit circle. The closed loop C is defined to go around the point w = −1
(i.e. k = ∞) so that the pole of det h†(w) is avoided and there are no poles enclosed
by C. Equation (12.36) thus directly relates the Chern-Simons invariant CS1 and the
number of boundary zero modes indbdry.

We conclude the discussion on superconducting SOC nanowires by reporting
some recent progress in transport theory and experiments [20, 51–57]. We consider
a SOC nanowire where the proximity-induced superconductivity is turned on (off)
along the right (resp. left) segment, i.e.�(x) = �θ(x) for θ(x) the unit step function
that vanishes along the negative x-axis. The normal metallic segment (x < 0) is
treated as a lead.Abias potentialVb is put across thewire if there is a jumpof chemical
potential between the lead and the superconducting wire, ε(x) = ε + eVb(1 − θ(x)).

Electric transport is dictated by the scattering at the junction that describe the prob-
ability of transmission and backscattering. We are interested in bias Vb smaller than
the superconducting gap, so that at zero temperature, there is no mid-gap extended
transmission channels in the superconducting segment. There are two ways an elec-
tron injected from the normal lead can be backscattered at the junction. First, analogu-
ous to the conventional metal-insulator junction, the normal backscattering bounces
an incoming electron to an outgoing electron in the reverse direction along the normal
lead. Since there is no net charge transfer, this process does not contribute toelectric
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Fig. 12.7 An excerpt from the Science journal paper by [51]. Magnetic field-dependent spec-
troscopy. d I /dV versus V at 70 mK taken at different B fields (from 0 to 490 mT in 10-mT steps;
traces are offset for clarity, except for the lowest trace at B = 0). Arrows indicate the induced gap
peaks

transport. Second, the incoming electron can be backscattered into an outgoing hole
while the superconducting segment absorbs a charge 2e Cooper pair into the con-
densate. This process is called an Andreev reflection, and each of such channels
corresponds to the differential electric conductance σ = d I/dV = (2e2/h)|Seh |2,
where |Seh |2 is the electron-hole backscattering probability.

First, we consider the trivial case where the superconducting segment is in the

weak field phase gμB |B| <
√

�2 + ε2f . In the simplest scenario that there is no

boundary localized mode near zero energy, the only wavefunctions near Fermi
level are those corresponds to normal backscattering, ψ(x) = (1 − θ(x))(ψk f ↑(x) +
eiφψ−k f ,↓), whereψk f ↑,ψ−k f ↓ are the incoming and outgoing electronwavefunctions
at Fermi energy. Thus there is no electric conductance near zero bias.3

Next we move onto the topological case where the superconducting segment

is in the strong field phase gμB |B| >
√

�2 + ε2f . We assume a single boundary

Majorana zero mode γ̃(x) = ∑
σ=↑,↓ ξσ(x)cσ(x) + ξ∗

σ(x)c†σ(x), for x > 0, where
cσ(x), c†σ(x) are electron annihilation and creation operators, and ξσ(x) ∼ e−κx are
the wavefunctions localized at the boundary. Recall the Majorana condition γ̃ = γ̃†

requires equal contributions from electrons and hole, i.e. conjugate wavefunction
coefficients of c and c†. Bymatchingwavefunctions continuously across the junction,
the wavefunction along the normal lead is also an equal weight superposition of

3Even if there are accidental mid-gap BdG-states, they are not particle-hole symmetric and their
wavefunctions carry unequal weights between electron and hole. Consequently, the electric con-
ductance σ = (2e2/h)|Seh |2 will be smaller than the quantized value 2e2/h.
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electron and hole. In other words, the electron-hole backscattering probability is
|Seh |2 = 1 and there is a differential electric conductance σ = 2e2/h at zero bias.

When plotting σ against the bias voltage Vb, one expects a peak at zero bias with
σ = 2e2/h for the topological case. We notice that the conductance quantization
relies on the Majorana condition (12.9), which is a consequence of the particle-hole
symmetry at zero energy. Figure12.7 is an excerpt from the transport experiment
performed by [51] proximity-induced superconducting SOC InSb wire. It shows a
zero bias peak of differential electric conductance for a strong enough the magnetic
field. There are other experiments, such as those by [20, 53, 54, 57], that show sim-
ilar transport signatures. 2e2/h quantization of the zero bias conductance was not
achieved until very recently [58] thanks to improvements in materials and experi-
mental designs.

Before concluding this subsection, we notice that there are alternative measurable
signatures of protected Majorana zero modes in 1D topological superconductors. In
particular, the resonant tunneling of single electrons between two normal leads sep-
arated by a 1D topological superconducting island can be mediated by the pair of
Majorana zero modes at the two ends. Even when the mesoscopic superconducting
island is long and the Majorana wavefunctions do not overlap, the single-electron
resonant tunneling can be facilitated by charging energy alone (through a second
order perturbative process) without involving the gapped BdG-quasiparticle states in
the superconducting bulk. Consequently, the Coulomb-blockade conductance should
show oscillations with period of a single electric charge [59–62], whereas the period
should be 2e for trivial superconductors. Experimental observations have recently
been made [63] and are qualitatively consistent with this picture of electron telepor-
tation via Majorana bound states.

12.2.2 Topological Superconductors in Two Dimensions

Similar to the one dimension case, topological superconductors in higher dimensions
are systems that cannot be adiabatically connected to a trivial s-wave superconductor.
In this section, we are going to focus on time reversal breaking topological super-
conductors that support vortex and boundary Majorana modes. At the end we will
also briefly mention their counterparts in three dimensions as well as time reversal
symmetric cases.

We are interested in superconductors within the BCS mean-field regime where
excitations are described by a BdG Hamiltonian HBdG(k) (c.f. 12.6), where k ∈
BZ is the lattice momentum in the two dimensional Brillouin zone. Due to the
Nambu doubling (e.g. (12.5) for a spinful system), the Hamiltonian has a particle-
hole symmetry (12.7) and belongs to class D of the Altland-Zirnbauer classification
of band theories [37]. In two dimensions, these superconductors are topologically
Z-classified [3, 6, 8, 14–16]. This means that there is an integer—the first Chern
number Ch1—associated with any 2D BCS superconductors with a finite pairing
gap [24, 25, 64].Twosuperconductors canbe adiabatically connectedwithout closing
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the bulk gap if and only if their Chern numbers are identical. Ch1 is a topological
quantity that depends on the bulk quantum ground state, but also has non-trivial
analytic consequences along system boundary. It corresponds to the number of chiral
Majorana fermion (MF) channels along an edge. Despite being electrically neutral,
these boundary modes carry energy current and correspond to non-trivial quantum
thermal Hall conductances [24, 65, 66]. This integral invariant is also intimately
related to vortex bound zero energy Majorana bound states (MBS). The number
parity (even or odd) of vortex MBS is identical (modulo 2) to the product between
Ch1 and the vorticity [23–26, 33].

We begin with the prototype topological superconductor, the chiral spinless px +
i py-wave superconductor [23–25, 27, 36, 64, 67–69]. In the discrete lattice limit, it
can be modeled by the BdG Hamiltonian

H 0
BdG(k) = �(sin kxτx + sin kyτy) + [t (cos kx + cos ky) − ε f ]τz, (12.37)

where the τ ’s are Pauli matrices acting on the Nambu annihilation-creation degrees
of freedom (c, c†). The t term describes the Kinetic Hamiltonian of a metal on
a square lattice with spectrum Emetal(k) = t (cos kx + cos ky), where t is the near-
est neighbor hopping amplitude t

∑
〈rr′〉 c†rcr′ . ε f is the Fermi energy, which is set

to 0 at half-filling. We consider partially filled band so that the Fermi energy lies
between the band edges, i.e. 2|t | > |ε f |. As the model is spinless, there is no conven-
tional local s-wave pairing c↑c↓. � represents a non-local superconducting pairing
�

∑
r icrcr+ex + crcr+ey

+ h.c. between nearest neighbors. There is a finite pairing
gap except when the Fermi energy is zero, ε f = 0, where there are two massless
Majorana fermions at momenta X = (π, 0) and X ′ = (0,π). In the continuum limit,
a px + i py superconductor can be represented by spinless quadratic theory

H 0
BdG(k) = �(kxτx + kyτy) +

(
�
2k2

2m
− ε f

)
τz, (12.38)

where the Fermi energy ε f is positive. For the moment, the py + i px pairings �

in both of these cases are chosen to be real. The PH operator is � = τxK for both
(12.37) and (12.38), where K is the complex conjugation operator.

The Hamiltonians take the form H(k) = h(k) · �τ , where h(k) is a non-zero
vector in three dimensions (except when the lattice band is completely filled or
empty at 2|t | = |ε f |). The excitation energy of the BdG quasiparticle is E(k) =
|h(k)|. Expressing the vector in spherical coordinates h = |h|(sin θ cosφex + sin θ
sin φey + cos θez), the eigenstate with “negative” energy is u(k) = (− sin(θ(k)/2),

eiφ cos(θ(k)/2)
)T
. The Berry connection in the 1D case was defined in (12.15) and

is now generalized to

A(k) = 〈u(k)|∇ku(k)〉 · dk = i

2
[1 + cos θ(k)]dφ(k). (12.39)
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The Berry curvature is the momentum-space analogue of the magnetic field B =
∇ × A (or Bz = ∂x Ay − ∂yAx in 2D), and is defined to be the differential

F(k) = dA(k) = (∂kxAy − ∂ky
Ax )dkx ∧ dky = i

2
sin θ(k)dθ(k) ∧ dφ(k).

(12.40)

Here the wedge product ∧ is anti-symmetric and generalizes the cross product ×
for 3D vectors. For instance, dkx ∧ dky = −dky ∧ dkx , dθ ∧ dφ = −dφ ∧ dθ, and
dkx ∧ dkx = dky ∧ dky = dθ ∧ dθ = dφ ∧ dφ = 0. Up to the i /2 factor, the Berry
curvature is identical to the solid-angle area form dvol|S2 = sin θdθ ∧ dφ of the unit
2-sphereS

2 where ĥ = h/|h| lives. It can bewritten in the coordinates free expression

F(k) = i

2
ĥ(k) ·

[
dĥ(k) ∧ dĥ(k)

]
= i

2
ĥ(k) ·

[
∂kx ĥ(k) × ∂ky

ĥ(k)
]
dkx ∧ dky.

(12.41)

Just like the Gauss-Bonnet theorem

χ(�) = 2 − 2g(�) = 1

2π

∮

�

KdA (12.42)

that relates the Gaussian curvature K and the genus g(�)—number of “holes”—of
a closed orientable surface � (e.g. g = 0 for a sphere S

2 and g = 1 for a torus T 2),
the first Chern number

Ch1 = i

2π

∮

BZ
F(k) (12.43)

is an integer-valued topological invariant for the superconducting ground state. In
the present case, the integral also takes the form

Ch1 = −1

4π

∮

BZ
sin θ(k)dθ(k) ∧ dφ(k) = −1

4π

∮

BZ
ĥ(k) ·

[
dĥ(k) ∧ dĥ(k)

]
,

(12.44)

which is also known as a winding number. This counts the net solid-angle (in units of
4π) covered by the normal vector ĥ(k) as momentum k = (kx , ky) runs through the
lattice Brillouin zone BZ = [−π,π] × [−π,π] or the continuum momentum space
BZ = R

2. In other words, (12.44) is the winding number (c.f. (12.16) for the 1D
case) that counts the number of times the momentum space BZ wraps around the
unit sphere S

2 by the map ĥ : BZ → S
2. Equivalently, Ch1 is the momentum space

version of a skyrmion (see Fig. 12.8).
In the lattice case (12.37), depending on the sign of the Fermi energy ε, the Fermi

circle either encloses the origin � = (0, 0) or the corner point M = (π,π) in the
Brillouin zone (see Fig. 12.8a). We assume the hopping t is negative so that in the
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Fig. 12.8 The BdG Hamiltonian H(k) = h(k) · �τ represented in k-space for a the lattice model
(12.37) and b the continuum model (12.38). ĥ = h/|h| = (ĥx , ĥy, ĥz). Red arrows represent the
x, y components of ĥ, color contours represent the z component of ĥ. Solid brown lines represent
the Fermi circles in the metallic states where ĥz = 0

metallic state, there is a electron pocket around � and a hole pocket around M .
hz = t (cos kx + cos ky) − ε f vanishes on the Fermi circles, along which the x, y
components (hx , hy) = (� sin kx ,� sin ky) winds by 2π. In the ε f < 0 case, the
Fermi circle encloses the γ electron pocket where hz is negative. In the ε f > 0, it
encloses the M hole pocket where hz is positive. Thus the two cases have opposite
orientations and skyrmion number Ch1 = ±1. In the continuum case (12.38), there is
similarly a 2π winding of the vector (hx , hy) = (�kx ,�ky) around the Fermi circle
where hz = �

2k2/2m − ε f = 0. The Fermi circle encloses an electron pocket where
hz < 0 (see Fig. 12.8b). Thus the Chern number is Ch1 = 1.

In the general case, the Hamiltonian HBdG can be a 2N × 2N matrix. The
Berry connection is defined by the N × N matrix-valued 1-formAmn(k) = 〈um(k)|
dun(k)〉, where um(k), form = 1, . . . , N , are orthonormal eigenvectors of HBdG(k)

with “negative” energies. The Berry curvature is defined in a similar manner as the
field strength of aU (N ) gauge theoryF = dA + A ∧ A except now it is in momen-
tum space. TheA ∧ A piece does not contribute to the Chern number, which is now
defined by

Ch1 = i

2π

∮

BZ
Tr(F(k)). (12.45)

As the trace of the Berry curvature is invariant under any gauge transformation
un(k) → umgmn(k) for g = (gmn)N×N a unitary matrix, the Chern invariant is gauge
independent. As amatter of fact, theChern number is an obstruction to a global eigen-
frame um(k), i.e. there is no continuous globally-defined orthonormal um(k) for the
“negative” bands when the Chern number is non-vanishing.4 However Tr(F(k))

4The orthornormal frame corresponds to a N -dimensional subspace Vk = span{um(k)}m=1,...,N for
each k. The collection of these subspaces is known as a vector bundle V = ∐

k∈BZ Vk. The vector
bundle is trivial if it decomposes into a cartesian product V ∼= BZ × C

N , which is the case if and
only if there is a global continuous eigen-frame um(k). Otherwise, the vector bundle is topological.
For the mathematics of vector bundles and their classification, we refer the readers to [70–72].
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is still globally-defined continuously over the entire Brillouin zone. To understand
this, we use the analogy of magnetic monopoles [73]. The Chern number counts the
“magnetic” flux in momentum space, which is identical to the number of enclosed
“magnetic” monopoles. When it is non-trivial, there is no globally defined non-
singular “vector” potentials but the “magnetic” field is still physical and continuously
defined everywhere. The Chern number (12.45) is quantized in integers for the same
reason magnetic monopoles are quantized.

The Chern invariant (12.45) is non-zero only when time reversal (TR) symmetry
is broken. For the spinless lattice and continuum examples (12.37) and (12.38), TR
is represented by the complex conjugation operator T = K. Recall a TR symmetric
BdGHamiltonian obeys T HBdG(k)T −1 = HBdG(−k). TR is therefore broken by the
τx pairing terms in (12.37) and (12.38). In general, since TR is anti-unitary and the
Berry curvature Fmm is purely imaginary, TR reverses Tr(F(k)) → Tr(F(−k))∗ =
−Tr(F(−k)). As parity flips k → −k in 2D preserves orientation, after taking the
momentum integration, TR requires Ch1 = −Ch1, which holds only when the Chern
number is trivial. Thus, a topological superconductor of this kind must break time
reversal symmetry.

12.2.2.1 Chiral Majorana Edge Modes

We now focus on the boundary of the 2D superconductor. Although there is a finite
bulk excitation energy gap, due to the non-trivial topological nature of the ground
state, there are gapless modes localized along the system edge that can be excited by
an arbitrarily small energy. Figure12.9 show the energy spectrum of the chiral px +
i py superconductor in (a) an open lattice slab geometry where system is infinitely
long in the x-direction but has a finite length L in y, or (b) a semi-infinite continuum
geometry where (x, y) ∈ (−∞,∞) × [0,∞).

First, we describe the boundary modes for the lattice model (12.37) in a slab
geometry. Figure12.9a shows the energy spectrumwhen the square lattice is put on an
open stripwith L = 20 atomic sites along the y-axis. Rewriting (12.37) by the inverse

kx

E

kx

E

−2|t| < εf < 0 Ch1 = +1 2|t| > εf > 0 Ch1 = −1

−π 0−ππ π0

E

kx

Ch1 = +1

0

(a) (b)

Fig. 12.9 ChiralMajorana edgemodes of px + i py superconductors for a the lattice model (12.37)
in a slab geometry, and b the continuum model (12.38) in a semi-infinite geometry. Blue bands
represent bulk BdG states. a Red (Green) bands represent boundary Majorana fermion modes
localized along the open bottom (top) edge
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Fourier transform ckx ,y = ∫ dky

2π e
−ikyyckx ,ky

, ĤBCS = ∫ dkx
2π

∑L
y,y′=1 ξ†

kx ,y
H 0

BdG(kx )yy′

ξkx ,y′ , for ξkx ,y = (ckx,y, c
†
−kx ,y

)T and

H0
BdG(kx )yy′ = [

� sin kx τx + (t cos kx − ε f )τz
]
δyy′ +

[
1

2

(
�iτy + tτz

)
δy,y′+1 + h.c.

]
, (12.46)

the energy spectrum is obtained by diagonalizing the 2L × 2L BdG Hamiltonian as
a function of kx . The “negative” bands, shown as dashed lines, are redundant and
are coming from the artificial Nambu doubling in the BdG construction. The bulk
bands (blue lines) corresponds to the gapped excitation states that extend in both
x and y directions. The edge bands (red and green lines) are energy spectra of the
gapless boundary modes that are localized along the (resp. bottom and top) edges.
There are topological distinctions between (i) the ε f < 0 case, where Ch1 = +1,
and (ii) the ε f > 0 case, where Ch1 = −1. Firstly the chiralities—the propagating
directions—of the edge modes are reversed. Focusing on the top edge for instance,
system (i) carries a right-moving boundary mode, while system (ii) carries a left-
moving one. Secondly the momenta of the zero modes are different. The anti-unitary
PH symmetry requires zero energy edge modes to have momentum Kx = 0 or π
so that the lattice translation phase Tx = eiKx = ±1 is real. System (i) supports an
edge zero mode at 0 momentum, while system (ii) supports that at π. These two
distinctions have different topological origins.

Second, we describe the boundary modes for the continuum model (12.38) in a
semi-infinite geometry. The continuous spectrum in Fig. 12.9b corresponds to the
gapped BdG excitations in the bulk. It can be obtained from the 2D BdG spectrum
by collapsing ky since translation symmetry in y is broken by the open edge along the
x-axis. Similar to the lattice case, there are gapless right-moving boundary modes.
They are solutions to the differential equations

[
�

(
kxτx − i

d

dy
τy

)
+

(
�
2k2x
2m

− �
2

2m

d2

dy2
− ε f

)
τz

]
um(kx , y) = Em(kx )um(kx , y)

(12.47)

by replacing ky ↔ −id/dy in (12.38). The wavefunctions um(kx , y) are normal-
izable and obey the boundary condition um(kx , 0) = 0. In particular, we demon-
strate the zero mode wavefunction u0(0, y) = (u1(y), u2(y))T at kx = 0. Putting
E0(kx = 0) = 0, (12.47) requires DD†ui = D†Dui = 0 for

D = �
2

2m

d2

dy2
+ �

d

dy
+ ε f , D† = �

2

2m

d2

dy2
− �

d

dy
+ ε f . (12.48)

Assuming � > 0, there is a normalizable zero solution ui ∼ e−κy with Re(κ) > 0
for D but not for D†. The zero mode takes the real form u0(0, y) = (u(y), u(y))T ,
where
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u(y) = 1

N e−m�y/�
2
sin

⎛

⎝y

√
2mε f

�2
− m2�2

�4

⎞

⎠ or
1

N e−m�y/�
2
sinh

⎛

⎝y

√
m2�2

�4
− 2mε f

�2

⎞

⎠

(12.49)

depending on the sign of 2�
2ε f /m − �2, whereN is some normalization constant. It

is no coincident that the zeromode is a real eigenvector of τx . It satisfies theMajorana
condition (12.9), �u0 = τxKu0 = u0. For small kx so that the k2x term in (12.47) is
unimportant, u0(kx , y) has energy E0(kx ) = �kx . We notice in passing that if the
Chern number is reversed, say by substituting a−px + i py pairing�(−kxτx + kyτy)

in (12.38), the chiralities of the edge modes will also be reversed.
In general, the boundary modes have a low-energy effective (1 + 1)D free Majo-

rana fermion (MF) description

L =
NR∑

a=1

i�ψa
R(∂t + v∂x )ψ

a
R +

NL∑

b=1

i�ψb
L(∂t − v∂x )ψ

b
L , (12.50)

where ψR/L are right (resp. left) moving MF, i.e. ψR/L = ψ†
R/L . To be precise, the

MF are the Fourier transforms ψ(x) ∼ ∫ �

−�
dkxe−ikx xu0(kx) · ξ(kx ), where ξ is the

Nambu vector (12.5) of electron operators,u0 is the eigenvector of BdGHamiltonian,
such as (12.46) and (12.47), corresponding to the chiral Majorana mode, and �

is a small momentum cut-off. Although being electrically neutral, each Majorana
channel carries an energy current I 1T and corresponds to the differential thermal
conductance |κ1| = d|I 1T |/dT = c1(π2k2B/3h)T , where T is temperature and c1 =
1/2 is the central charge of a Majorana fermion conformal field theory [74]. In
the multi-fermion theory (12.50), since counter-propagating channels carry opposite
energy currents, the overall differential thermal conductance along the edge is [24,
65, 66]

κ = d IT
dT

= c
π2k2B
3h

T, where c = NR − NL

2
(12.51)

is known as the chiral central charge [24]. The numbers NR/L of right/left-moving
Majorana fermions are not protected and are unstable against backscattering δH =
imψa

Rψb
L , which pair annihilates ψa

R and ψb
L and remove them from the low-energy

effective theory when themassm is big. Thus the numbers can change by an arbitrary
amount (NR, NL) → (NR + N ′, NL + N ′). The chiral central charge c in (12.51),
on the other hand, is a unidirectional transport quantity and is robust against edge
perturbations.

This thermal response quantity (12.51), or equivalently the imbalance between
right and left-movingMajorana edge channels, corresponds exactly to the bulk topo-
logical invariant (12.45)

2c = NR − NL = Ch1. (12.52)
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This index theorem that identified the boundary analytic spectral flow quantity and
the bulk topological quantity was mathematically proven by [75–77]. It was applied
in the context of integer quantum Hall effect [78–82] and two dimensional topo-
logical superconductors [24, 25, 64]. We refer the interested readers to the existing
review texts in the literature, such as [27, 72]. We notice in passing that as the trans-
port quantity does not rely on translation symmetry, there should be an alternative
definition of the Chern number that does not involve momentum and can be applied
in disordered system. Analog to the 1D case where the Chern-Simons invariant takes
the real space form (12.26), the Chern number (12.45) can be rewritten as [24, 83–85]

Ch1 = 2πiT
(
P

[[x̂, P], [ŷ, P]]) . (12.53)

Here P is the projection operator to the BdG states with “negative” energy, x̂ and ŷ
are the position operators, and T is the operator trace.

Equation (12.52) is not the only bulk-boundary correspondence involved in a
topological superconductor. Recall in Sect. 12.2.1, we discussed the Chern-Simons
Z2-invariant (12.16) that classified topological superconductors in one dimension.
The same invariant applies on any 1D cycles inside the 2D momentum space that are
closed under the PH flip k → −k. For example, in a 2D lattice Brillouin zone, the
1-cycles Cx = BZ |kx=π and Cy = BZ |ky=π that run along the ky and kx directions on
the zone boundary define two additional weak topological Z2-invariants

νx,y = i

π

∮

Cx,y

Tr(A(k)) modulo 2. (12.54)

The index theorem (12.25) then dictates the number parity (even or odd) of zero
modes at edge momentum π. For example, when ε f < 0, the lattice model (12.37)
has trivial weak indices νx = νy = 0, and therefore there is no protected zero energy
boundary state at kx = π in Fig. 12.9a. On the contrary, when ε f > 0, the Fermi circle
encloses the corner point M in the BZ , and the lattice model (12.37) has non-trivial
weak indices νx = νy = 1. In this case, we see that in Fig. 12.9a, the boundary mode
is shifted and the zero energy state is now located at kx = π.

Lastly, we give a brief list of some proposals and findings in materials. For a
more complete description, we refer the readers to the review texts such as [27, 36,
68, 69]. Liquid helium-3 thin film in its time reversal breaking superfluid A-phase
is an example of a chiral px + i py superconductor [64, 86–88]. Superconducting
strontium ruthenate (Sr2RuO4) is a plausible candidate of a topological supercon-
ductor with Ch1 = 2 because of spin degeneracy. It shows signatures of time reversal
breaking and odd parity spin triplet pairing [89–92]. However, the precise pairing
and topological nature is still under debate [93–95]. A chiral px + i py supercon-
ductor can also be obtained in a Chern insulator (a.k.a. a quantum anomalous Hall
state) [96], such as chromium dopped bismuth antimony telluride thin film [97],
under strong proximity-induced superconducting pairing [98–101].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12.10 Pairing phases in superconducting vortices. Vector represents the parameters (�x ,�y).
a, b, c Vortices with vorticity ν = 1. d ν = −1. e ν = 2. f ν = −2. g Vortex dipole with ν = ±1.
h Vortex triplet with ν = 1 and ν = −2

12.2.2.2 Vortex Bound Majorana Zero Modes

Chiral topological superconductors in two dimensions support zero energyMajorana
bound states (MBS) at quantum flux vortices [23–26, 102]. The superconducting
pairing parameter in the BCSmean-field description�ci c j + h.c. is a complex order
parameter � = �x + i�y = |�|eiϕ, where ϕ is called the superconducting phase.
A superconducting vortex—known as a Caroli–de Gennes–Matricon vortex—in 2D
is a topological point defect where the pairing parameter �(r) spatially modulates
and the pairing phase winds non-trivially around the defect point [35, 36, 103]. The
vorticity is the winding number

ν = 1

2πi

∮

C
dϕ(r) (12.55)

where C is a (right-handed) loop going once around the vortex. Examples are drawn
in Fig. 12.10.

The vorticity corresponds to the monodromy Berry phase eiπν when an electron
orbits once around the vortex. This is because the phase winding � → �e2πiν in
the BCS Hamiltonian �ci c j + h.c. can be absorbed into the electron operator ci →
ci eiπν . Since ν is an integer, eiπν = e−iπν = ±1, and the same monodromy phase
also applies to BdG quasiparticles ψ → ψeiπν , which are linear superpositions of c
and c†. In a type-II superconductor which supports flux vortices, the superconducting
coherent length is shorter than the London penetration depth, and magnetic fluxes



12 Majorana States 383

are confined along the vortex core. Associating the monodromy phase with the gauge
holonomy [104],

πν = e

�c

∮

C
A · dl = 2π

�B

φ0
(12.56)

for φ0 = hc/e the magnetic flux quantum, magnetic flux along superconducting
vortices are quantized in �B = νφ0/2.

We consider vortices in the chiral px + i py superconductor continuum model
(12.37). We first put the model in a disc geometry. We assume the radius is much
longer than the localization length κ of the edge modes near zero energy, so that
locally, the edgemodes propagate approximately along a straight line. Themodel has
a rotation symmetry RθH 0

BdG(k)R†
θ = H 0

BdG(rθk), where Rθ = eiθτz/2 acts onNambu
space (c, c†) and rθ = eiθσy acts onmomentum space k.We saw previously that when
the edge terminates along the x-axis, the edge mode u0 is an eigenvector of τx . In
general, when the boundary terminates along an edge with a tangent angle θ from
the x-axis, the edge mode is rotated by Rθu0 and is an eigenvector of τθ = Rθτx R

†
θ .

When the edge mode circles once around the disc boundary, it accumulates a minus
sign u0 → R2πu0 = −u0. This minus sign is identical to the 2π twist phase of a
fermion, and is a consequence of the fermionic nature of the BdG excitation. In
other words, the low-energy MF description (12.50) takes an anti-periodic boundary
condition when put on a closed ring geometry.

The boundary condition has non-trivial consequences on the boundary modes.
It requires the translation phase TL = eik‖L to be −1, where TL is the translation
operator that takes the MF ψ once around the boundary ring, L is the circumference,
and k‖ is the edgemomentum of the edgemode. Thus k‖ is quantized in (2l + 1)π/L ,
where l is an integer. As the zero energy state is located at k‖ = 0 which is forbidden
by the anti-periodic boundary condition, it is not admissible. The boundary condition
can be modified by passing flux vortices across the superconducting bulk. When the
total vorticity is ν, due to the additional monodromy phase, the boundary condition
is now TL = eik‖L = −eiπν . In particular, there is a zero mode along the boundary
if and only if ν is odd. In the more general case, when there are multiple boundary
MF channels ψa

R,ψb
L , the boundary condition applies to all of them, and there will be

NR + NL zero modes if ν is odd. As the Chern number Ch1 = NR − NL in (12.52)
dictates the number of MF channels along the boundary, the following index counts
the number parity (even or odd) of boundary zero modes

indvrtx = νCh1 modulo 2. (12.57)

We notice that the finite disc geometry puts the chiral superconducting model in
a closed system with a closed Hilbert space. Majorana zero modes must come in
pairs because it takes two of them to form a two-level system (c.f. the discussion
below (12.11)). If there is an odd number of zero modes on the boundary, there
must also be an odd number of them in the bulk. However, there is a finite pairing
energy gap everywhere in the bulk except at the vortex cores where the � vanishes.
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This ensures there must be an odd number of zero energy MBS localized at vortices.
The index (12.57) therefore also counts the number parity of MBS at a vortex with
vorticity ν. This was applied in the context of fractional quantum Hall states [105–
107] and chiral superconductors [24, 27, 102]. The index theorem was verified by
[33] in the general setting by identifying it with a Chern-Simons invariant

indvrtx = CS3 ≡ 1

4π2

∫

BZ×S1
Tr

(
A ∧ dA + 2

3
A ∧ A ∧ A

)
modulo 2. (12.58)

Here Amn
k,r = 〈um

k,r|dun
k,r〉 is the Berry connection constructed from the “negative”

eigenstates of the defect Hamiltonian HBdG(k, r), where r is the spatial parameter far
away from the vortex core that slowly modulates the BdG Hamiltonian. The integral
is taken over momentum k ∈ BZ and the angle parameter θ ∈ S

1 that circles once
around the vortex in real space.

We now demonstrate and reproduce the vortex zero mode in the continuum px +
i py model discussed by [22, 67]. When there is a vortex with vorticity ν at the
origin, assuming that �(r) = |�∞|eiνθ, where θ is the polar angle, and r = |r| is
much longer than the London penetration depth, the BdG Hamiltonian (12.38) is
modified to

ĤBdG = −i |�∞|eiνθτz/2(∂xτx + ∂yτy)e
−iνθτz/2 −

(
�
2

2m
∇2 + ε f

)
τz (12.59)

by replacing momentum with the differential operator k ↔ −i∇. While preserving
the PH symmetry, (12.59) can be deformed into

eiνθτz/2H 0
BdG(−i∇)e−iνθτz/2 = ĤBdG + �

2

2m

(
ν2

4r2
+ iν

2r
∂θ

)
τz, (12.60)

for H 0
BdG the vortexless Hamiltonian, by continuously turning on the last correction

term. When ν = 2n is even, one can absorb the spatial dependence by the gauge
transformation u → einθτzu. Thus, the energy spectrum of (12.60) is identical to that
of a vortexless system, which has an energy gap. Since the number parity of zero
modes cannot change during a PH preserving deformation, (12.59) must have even
number of zero modes, if they exist at all.

When ν = 2n + 1 is odd, the transformation u → eiνθτz/2u is discontinuous as it
introduces a branch cut where the BdG states switch sign. Applying the continuous
gauge transformation u → einθτzu reduces the problem to ν = 1. We now seek a
solution to the zero energy differential equation ĤBdGu0(r) = 0 when ν = 1. Using
the PH symmetry and the Majorana condition (12.9), u0 = (u, u∗)T and it obeys

(
�
2

2m
∇2 + ε f

)
u + 2|�∞|e−iθ/2∂z̄e

−iθ/2u∗ = 0 (12.61)
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(a) (b) (c) (d)

Fig. 12.11 Dislocations (a, b) and disclinations (c, d) in 2D weak topological superconductors.
Zero energy Majorana bound states (MBS) are present and highlighted in red for (b, d). Each dot
represents a Majorana fermion (MF)

where ∂z̄ = (∂x + i∂y)/2 = eiθ(∂r + i∂θ/r)/2. We assume u is real and is θ-
independent. The differential equation becomes

[
�
2

2m

(
∂2 + 1

r
∂r

)
+ ε f + |�∞|

(
∂r + 1

2r

)]
u(r) = 0. (12.62)

Substituting u(r) = χ(r)e−m|�∞|r/�
2
,

[
∂2
r + 1

r
∂r + 2m

�2

(
ε f − m|�∞|2

2�2

)]
χ(r) = 0 (12.63)

which has the solution

χ(r) =

⎧
⎪⎨

⎪⎩

J0(x), if ε f >
m|�∞|2
2�2

I0(x), if ε f <
m|�∞|2
2�2

log(r/ l), if ε f = m|�∞|2
2�2

, for x = r

√
2m

�2

∣∣∣∣ε f − m|�∞|2
2�2

∣∣∣∣ (12.64)

where J0 and I0 are the Bessel function and modified Bessel function that are non-
singular when x → 0. The wavefunction u(r) is finite as r → ∞ and is normalizable
if ε > 0, in which case there is a vortex zero mode.

Pairing vortices are not the only kind of topological point defects in 2D super-
conductors. Here we briefly mention other types of defects that intertwine additional
symmetry breaking orders with the pairing order and bulk topology. Consequently,
these defects can also host protected zero energyMBS. First, we recall that the bound-
ary MBS of a 1D topological superconductor can be understood by a dimer model
of MF (see Fig. 12.3). This line of thought can be generalized in two dimensions.
Figure12.11 shows Majorana dimer models in 2D. (a, b) are arrays of the Kitaev’s
superconducting chains, where along each chain MF couple between unit cells. (c,
d) represent a generalized MF dimer model on a square lattice with four MF per site.
MF is coupled to the nearest neighboring sites and the square lattice model has a
fourfold rotation symmetry. Each one contains a lattice topological defect, either a
dislocation or a disclination [108, 109]. In (b, d), there is an unbonded MF at each



386 J. C. Y. Teo

Fig. 12.12 a Spatial
configuration of the d-vector
around a half-quantum
vortex (HQV) of a spin
triplet px + i py

superconductor. b Zero
energy Majorana bound state
(MBS) of a half-quantum
vortex and a full quantum
vortex

p+ip

p+ip

γ

HQV FQV

(a) (b)

d

hc/4e
γ↑

γ↓

defect center and it corresponds to a zero energy MBS. The defect bound state is a
consequence of the mixing of lattice translation and/or rotation order with the sym-
metry protected topology in the superconductor. For instance, with lattice translation
symmetry, superconductors in 2D are enriched with the the two weak Z2 topologi-
cal indices (12.54). They combine together to form the Z2-valued reciprocal vector
G = νxbx + νyby , where bx,y are the primitive reciprocal lattice vectors. There is a
protected dislocation MBS if the dislocation Burgers vector B is aligned in a way so
that the following Z2-index

inddislocation = 1

2π
G · B mod 2 (12.65)

is non-trivial [33, 110–113]. Similar index theorems are proposed to characterize
disclination MBS [113–115].

Second, we briefly discuss the mixing of rotation and charge U (1) symmetry
breaking order, and there corresponding half-quantum vortex (HQV) [116–119]. In
particular we focus on the spin-triplet px + i py superconducting model of Sr2RuO4

H0(k) = �(σ · d)(kxτx + kyτy) +
(

�
2k2

2m
− ε f

)
τz, (12.66)

where σ (τ ) acts on spin (Nambu) degree of freedom, the BdG states is arranged
according to the Nambu vector (c↑, c↓, c†↓,−c†↑), and the PH operator is� = σyτyK.
The three-dimensional unit d-vector breaks spin rotation symmetry by specifying a
spin direction. Here we assume d lies on the xy-plane where the quasi-2D material
lives. The model has an artificial spin symmetry S = (σ · d)σy, and each of the
S = ±1 =←,→ sectors corresponds to a chiral px + i py superconducting model
(12.38). The total Chern number is therefore Ch1 = 2 and there are twoMBS γ← and
γ→ at a full quantum vortex (FQV) with �B = φ0/2. They are not protected at zero
energy and can pair annihilate by spin mixing or a magnetic field δH = iuγ←γ→.

On the other hand, a HQVwith magnetic flux�B = φ0/4 consists of a π-rotation
of the pairing phase as well as the d-vector about the z-axis (see Fig. 12.12a). Neither
the pairingπ-vortex nor the spinπ-disclination alone are allowedpoint defects as both
require an extended branch cut where the spin triplet pairing function changessign.
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They are allowed and confined together because the two signs cancel. The HQV is
represented by the defect Hamiltonian

H(k, r) = eiθ(τz+σz)/4|�(r)|σx(kxτx + kyτy)e
−iθ(τz+σz)/4 +

(
�
2k2

2m
− ε f

)
τz,

(12.67)

where θ is the angular parameter around the vortex, and k ↔ −i∇. Notice that
(12.67) commutes with � = σzτz and the problem decomposes into the � = ±1
=↑,↓ sector. Effectively the HQV acts as a quantum vortex acting only on one of
the two spin sectors where τz and σz have the same sign. This gives a single protected
zero energy MBS as shown in Fig. 12.12b.

We notice in passing that the protected MBS at a dislocation, a disclination, or a
HQV all have the same topological origin and are universally characterized by the
Chern-Simons Z2-invariant (12.58) [33].

12.2.2.3 Time Reversal Symmetric Variations

We conclude this section by briefly digressing to time reversal symmetric topological
superconductors in one, two and three dimensions [3, 6, 8, 14–16]. The physical time
reversal (TR) operator in a spinful system squares to T 2 = −1. TheKramers theorem
guarantees Majorana zero modes, if they exist, must come in pairs. The BdG mean-
field Hamiltonian of a time reversal symmetric BCS superconductor belongs to class
DIII according to the band theory description by [37]. Topological superconductors
of this kind are Z2 classified in one and two dimensions, and are Z classified in three
dimensions.

In one and two dimensions, TR symmetric topological superconductors can be
constructed by taking TR pairs Htotal = H↑ ⊕ H↓, where H↓ = T H↑T −1 and H↑ has
the same structure as the spinless Kitaev’s p-wave superconducting chain (12.14) or
the chiral px + i py superconductor (12.37) respectively. Because of the spin degen-
eracy, the boundary Majorana spectra of these models are doubled. In the 1D case,
there is a pair (or in general odd number of pairs) of boundary zero energy MBS
γ↑ and γ↓ which are related by TR, T γ↑T −1 = −γ↓ and T γ↓T −1 = γ↑. They are
protected from pair annihilation δH = iuγ↑γ↓ as it breaks TR. Therefore, they are
pinned at zero energy and cannot be removed unless the bulk gap closes. In the 2D
case, the two spin sectors have opposite Chern numbers and chiralities. The TR sym-
metric (px + i py) ↑ ⊗(px − i py) ↓ superconductor has helical edge modes, which
consist of a pair of counter-propagating Majorana fermions with opposite spins. The
low-energy effective boundary theory is

L = i�ψ
↑
R(∂t + v∂x )ψ

↑
R + i�ψ

↓
L(∂t − v∂x )ψ

↓
L , (12.68)
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where TR switches T ψ
↑
RT −1 = −ψ

↓
L and T ψ

↓
LT −1 = ψ

↑
R . TheseMF cannot acquire

a mass because the backscattering term δH = imψ
↑
Rψ

↓
L violates TR. Although chiral

TR breaking superconductors in 2D are Z classified by the Chern number, helical
TR symmetric superconductors are only Z2 classified. For instance, two pairs of
helical boundary MF are unstable against the TR symmetric backscattering δH =
im(ψ

↑,1
R ψ

↓,2
L + ψ

↓,1
L ψ

↑,2
R ).

While there are no non-trivial strong topologies for TR breaking class D super-
conductors in three dimensions, TR symmetric ones are Z classified. A prototype is
given by the continuum model of liquid 3He in its superfluid B-phase [15, 16, 27,
120–124]

HBdG(k) = �vk · στx +
(

�
2k2

2m
− ε f

)
τz (12.69)

where k ∈ R
3 lives in the 3D momentum space, σx,y,z act on spins, and the Nambu

vector is arranged according to (c↑(k), c↓(k), c†↓(−k),−c†↑(−k)). The PH and TR
operators are � = σyτyK and T = iσyK. The combination of the two leads to a chi-
ral symmetry �5 = −i�T = τy , which anticommutes with HBdG. The non-singular
Dirac operator

g(k) ≡ P−HBdGP
†
+ =

(
�
2k2

2m
− ε f

)
11 + i�vk · σ, (12.70)

where P± is the 4 × 2 projection matrices onto the eigenspace of �5 = ±1 and 11 is
the 2 × 2 identity matrix, corresponds to a unit winding number

ν = i

48π3

∫

R3
Tr

[(
g(k)−1dg(k)

)∧3]
. (12.71)

The system’s surface hosts a massless Majorana fermion (c.f. its spectrum in
Fig. 12.13)

L = i�ψ(∂t11 + vσx∂x + vσz∂y)ψ, (12.72)

where the MF ψ = (ψ↑,ψ↓) is protected by TR which flips T ψT −1 = iσyψ and
forbids the mass term imψ↑ψ↓. Similar surface states can also be supported on
an electronic topological superconductor [125–128]. Unlike the 2D case which is
Z2 classified, 3D topological superconductors are Z classified. Surface MF with
the same helicity—the sign sgn(det(M)) of the general spin-momentum locked
Hamiltonian Hsurf = Mi jσi∂ j where i = x, z, j = x, y and M is real symmet-
ric non-singular—cannot mutually annihilate without breaking TR symmetry. For
instance, the TR symmetric mixing term between two surface MF with same helicity
δH = iu(ψ↑,1ψ↓,2 + ψ↓,1ψ↑,2) merely displaces the two MF in momentum space
without gapping any of them.
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Fig. 12.13 Linear energy
spectrum of the massless
surface Majorana fermion on
a time reversal symmetric
class DIII topological
superconductor

Topological 

superconductor

12.3 Superconducting Heterostructures and Topological
Defects

Previously, we discussed zero energyMajorana bound states (MBS) at the boundaries
of topological superconductors in one dimension (Sect. 12.2.1) and chiral Majorana
fermion (MF) along the edges of topological superconductors in two dimensions
(Sect. 12.2.2). In this section, we focus on the realization of MBS and MF in super-
conducting heterostructures in two and three dimensions. These are point or line
junctions sandwiched between different materials with distinct orders, such as insu-
lators, magnets or superconductors.

12.3.1 Majorana Bound States at Topological Point Junctions

12.3.1.1 Superconducting QSHI Edge and Fermion Parity Pump

We begin with the edge of a quantum spin Hall insulator (QSHI) [46–50, 129]. The
two dimensional band insulating system can be described by the Bloch Hamiltonian
model on a square lattice

HQSHI(k) = λ
(
sin kxσx + sin kyσy

)
μx + (

m + 2t − t cos kx − t cos ky

)
μz

(12.73)

where σ and μ are Pauli matrices acting on spin and orbital degrees of freedom. It
is time reversal (TR) symmetric, T H(k)T −1 = H(−k) for T = iσyK. t > 0 is a
hopping parameter in a tight bindingmodel,m + 2t gives an onsite energy difference
between the orbitals, λ is a spin-orbit coupling strength, and the Fermi energy ε f is
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set near zero inside the gap. The topological QSHI phase lies on the region where
−4t < m < 0 have opposite signs, and the trivial insulating phase lies outside this
region. ThismodelHamiltonian can be block diagonalized H = H+ ⊕ H− according
to the artificial spin-orbit symmetry σzμz = ±1. In the topological phase, each of
the two sectors is a Chern insulator [96, 97], which is the insulating analogue of the
px + i py superconductor (see Sect. 12.2.2). The Chern number (12.43) constructed
by the valence states of H+ (H−) is Ch1 = 1 (Ch1 = −1), and corresponds to a chiral
Dirac edge channel that propagates to the right (left).

The helical Dirac edge fermions are described by the low-energy effective Bloch
theory

Hedge(kx ) = λkxσx (12.74)

where in this case the edge is along the x-axis. The counter-propagating Dirac chan-
nels cR→, cL← can acquire either a TR breaking mass gμB Bc

†
R→cL← or a charge

U (1) breaking s-wave pairing gap �cR→cL←. The TR breaking mass gμB B can be
introduced by a Zeeman magnetic field or by putting the QSHI edge next to a mag-
netic insulator. The pairing� can be introduced by proximity with a superconductor.
These two orders can be put together in the BdG description

Hedge−BdG(kx ) = (λkxσx − ε f )τz + gμB Bσz + �τx , (12.75)

where the Nambu vector is arranged according to (cR(kx ), cL (kx ), c
†
L (−kx ), −c†R(−kx )).

The PH operator is σyτyK, and TR is still T = iσyK. Equation (12.75) has the same
structure as the superconducting spin-orbit coupled wire model (12.28) except that
the �

2k2/2m term is missing. One can follow the same derivation below (12.28) and
deduce that there is a energy gap closing topological phase transition at gμB |B| =√

�2 + ε2f that separates (i) the weak field phase for gμB |B| <
√

�2 + ε2f from (ii)

the strong field phase for gμB |B| >
√

�2 + ε2f .
5 We assume ε f is small so that the

weak field phase is connected to the superconducting edge and the strong field phase
is connected to the magnetic edge.

In a heterostructure where themagnetic domain is adjacent to the superconducting
one along the QSHI edge (see Fig. 12.14a) [30, 130], the BdG model (12.75) has
spatially modulated parameters gμB B(x) and �(x) so that the edge changes from
a weak field phase (i) to a strong field one (ii) across the junction. We demonstrate
the MBS in the simple limit ε f = 0. Equation (12.75) has an artificial symmetry
S = σzτx in this case. The Hamiltonian can be block diagonalized according the
sign of S, H = H (+) ⊕ H (−), where

H (±)
edge−BdG(kx , x) = λkx σ̃x + [gμB B(x) ± �(x)] σ̃z, (12.76)

5Contrary to the SOC wire model, by computing the Chern-Simons invariant (12.33) here, the
weak field phase (i.e. the superconducting edge) is topological while the strong field phase (i.e. the
magnetic edge) is trivial.
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Fig. 12.14 Zero energy Majorana bound states (MBS) and fermion parity pump controlled by
superconducting phase ϕ(t). a Quantum spin Hall insulator (QSHI)—magnetic insulator (MI)—
superconductor (SC) heterostructures that host MBS γ (yellow dots). Helical edge modes (blue and
red lines) are gapped by MI and SC islands. MBS γL

2 and γR
1 changes signs after a 2π cycle of SC

phase evolution. A single (or an odd number of) fermion is pump between the left and right systems.
b Phase evolution of a topological superconducting wire with Hamiltonian (12.80). c Energy level
crossing between opposite fermion parity states during a 2π phase cycle

and σ̃ are Pauli matrices acting on the new basis. Assuming that B,� ≤ 0, the
edge domain wall transition is captured only by H (−) since gμB B(x) + �(x) never
changes sign for H (+). Writing M(x) = gμB B(x) − �(x), the H (−) sector is identi-
cal to the Jackiw-Rebbi model [131]. In the thermodynamic limit where themagnetic
and superconducting islands are large, we approximate the junction by assuming
that M(x) asymptotically approaches the values limx→+∞ M(x) = M+∞ > 0 and
limx→−∞ M(x) = M−∞ < 0. The zero energy soliton solution to H (−)(kx ↔ −i∂x )

is given by

u0(x) = e−iπ/4

N exp

(
− 1

λ

∫ x

0
M(x ′)dx ′

) (
1
i

)
(12.77)

where N is some normalization constant. The wavefunction is exponentially local-
ized on both sides with the localization length l± ∼ λ/|M±∞|. Or in operator form
in the original basis, the MBS is

γ0(x) = 1

N ′ exp
(

− 1

λ

∫ x

0
M(x ′)dx ′

) [
e−i3π/4cR(x) + e−iπ/4cL(x) + h.c.

]

(12.78)

The heterostructure in Fig. 12.14a has four magnet—superconductor junctions
alongQSHI edges. Each one of themhosts a zero energyMBS γL ,R

1,2 , where L , R label
the two edges and 1, 2 label the two superconducting sides.We pair theMBS (dashed
circles) to form the Dirac operators dL = (γL

1 + iγL
2 )/2 and dR = (γR

1 + iγR
2 )/2.

Each one corresponds to a two-level system |0〉, |1〉 = d†|0〉 of opposite fermion
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parity states.When thewidth of themagnets are comparable to the localization length
l ∼ λ/gμB B, MBS can couple across the magnetic edges as their wavefunctions
overlap. Electron tunneling processes correspond to the perturbation away from zero
energy

δH = −i t
(
γL
1 γL

2 + γR
1 γR

2

)
(12.79)

that, when t > 0, favors the ground state |00〉 = |0〉L ⊗ |0〉R . Figure12.14b repre-
sents a simplification of Fig. 12.14awhere the line segments represent the topological
superconducting QSHI edge. The middle segment in Fig. 12.14b corresponds to the
top superconductor “2” of Fig. 12.14a when joining the QSHI edge on the left and
right sides together.

The superconducting phase difference between “2” and “1” can be tuned by con-
necting the top and bottom superconductors in a superconducting quantum inter-
ference device (SQUID) geometry [132]. The fermion parity pump physics only
depends on the phase difference and we assume the bottom superconducting phase
is fixed at ϕ = 0. During an adiabatic evolution of the top superconducting phase
ϕ(t), the top superconducting edge is modeled by the BdG Hamiltonian

Hedge−BdG(kx ,ϕ(t)) = ei(ϕ(t)−ϕ(0))τz/2Hedge−BdG(kx ,ϕ(0))e−i(ϕ(t)−ϕ(0))τz/2

= (λkxσx − ε f )τz + gμB Bσz + �(cosϕ(t)τx + sinϕ(t)) .

(12.80)

After a phase cycle where ϕ(t) winds by 2π (or equivalently an insertion of the
half-flux quantum φ0 across the SQUID), the Hamiltonian (12.80) goes back to its
initial form but the boundary zero modes acquire an extra phase γL ,R

2 = ξTu0 →
ξT ei(ϕ(T )−ϕ(0))τz/2u0 = −γL ,R

2 for ξ = (cR, cL , c
†
L ,−c†R) the Nambu vector. As a

result, the Dirac operators are conjugated dL ,R ↔ d†
L ,R after the cycle. Equivalently,

the adiabatic cycle can be projectively represented (up to aU (1)-phase) by the unitary
operation U = eπγL

2 γR
2 /2 = γL

2 γR
2 so that

UγL ,R
1 U † = γL ,R

1 , UγL ,R
2 U † = −γL ,R

2 , UdL ,RU
† = d†

L ,R . (12.81)

If the initial state is the ground state |00〉 = |0〉L ⊗ |1〉R , after the cycle it becomes
(up to a U (1)-phase)

U |00〉 = −(dL − d†
L)(dR − d†

R)|00〉 = −d†
Ld

†
R|00〉 = −|11〉, (12.82)

which is the excited state of δH in (12.79).
Despite there being a pairing gap in the superconducting edge, (12.82) suggests

that a unit ofDirac fermion is pumped between L and R during the adiabatic cycle. As
the ground state and excited state of δH is connected by the adiabatic evolution, there
must be an energy level crossing (or odd number of them) during the process (see
Fig. 12.14c). This fermion parity pump (first proposed by [17]) has a topological
nature. It is the superconducting version of the adiabatic charge pump across an



12 Majorana States 393

insulator [133], except that such pairing cycles areZ2 classified [33]. This is because
the number of fermions can only be counted modulo 2 in a superconductor with a
condensate of Cooper pairs.

12.3.1.2 Superconducting Vortex MBS on Topological Insulator
Surface

We switch gears from QSHI in two dimensions to topological insulators (TI) in three
dimensions [134–139]. The bulk Hamiltonian can be modeled by the lattice Bloch
Hamiltonian

HTI(k) = λ(sin kxσx + sin kyσy + sin kzσz)μx + (m + 3t − t cos kx − t cos ky − t cos kz)μz

(12.83)

which extends the 2DQSHI in (12.73).We assume, for simplicity, t > 0 > m > −2t
so that (12.83) is in the strong topological phase (1; 000) with trivial weak indices.
The model reduces to the QSHI model (12.73) when restricting to the TR symmetric
kxky, kykz and kzkx momentum planes in the 3D Brillouin zone. Consequently, when
terminating the system along a surface boundary, say the xy-plane, the QSHI model
along the kxkz bulk momentum plane guarantees that there is a pair of helical Dirac
boundary modes on the surface kx momentum axis. The same happens to the surface
ky axis. They can be put together and effectively described by the gapless surface
Dirac fermion Hamiltonian

Hsurface(k‖) = λ
(
kxσx + kyσy

)
(12.84)

in low energy and first order in momentum (see Fig. 12.15 for its energy spectrum).
Just like in the QSHI case, the surface Dirac fermion is protected by TR and the

linear crossing is protected by the Kramers’ theorem. It can acquire a mass by break-
ing either TR or charge U (1) symmetry. Here we consider surface s-wave pairing
� = �0eiϕ = �x + i�y , for �0 > 0, induced by proximity with a superconductor.
The BdG surface Hamiltonian is

HBdG−surface(k‖,ϕ) = [
λ(kxσx + kyσy) − ε f

]
τz + �xτx + �yτy (12.85)

where the Nambu vector is arranged according to (c↑(k‖), c↓(k‖), c†↓(−k‖), −c†↑(−k‖)).
The PH operator is � = σyτyK and the TR operator is T = iσyK, which is broken
by the �y pairing. For simplicity, we consider zero fermi energy ε f = 0.

When compared with the chiral px + i py topological superconductor discussed
in Sect. 12.2.2, due to the spin-momentum locking and the π Berry phase around the
surface Fermi circle, a superconducting vortex on the TI surface hosts protected zero
energy MBS [29, 31, 52] despite the pairing being s-wave. This was first discovered
by [140] in the context of zero modes in a vortex-fermion system with a chiral
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Fig. 12.15 Linear energy spectrum of the massless surface Dirac fermion on a time reversal sym-
metric class AII topological insulator
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Fig. 12.16 a Zero energy Majorana bound state (MBS) at a superconducting vortex core on the
surface of a topological insulator (TI). b Superconducting phase patterns on TI surface that host
MBS (orange balls) at tri-junctions

symmetry. We consider a pairing vortex �(r) = �0eiνθ, where ν is the vorticity, θ
is the polar angle about the vortex on the surface and r = |r| is much longer than the
London penetration depth. Similar to the previous px + i py case, even vortices with
ν = 2n are topologically connected to the vortexless case by a gauge transformation
einτz , and therefore zeromodes, if they exist, must come in pairs and are not protected.
We focus on the primitive vortex where ν = 1 and�B = φ0/2 (see Fig. 12.16a). The
model has an artificial chiral symmetry�5 = σzτz , which anticommutes with (12.85)
when ε f = 0 and distinguishes the spins, �5 = 1 for ↑ or−1 for ↓. The Hamiltonian
ĤBdG−surface = −iλ(∂xσx + ∂yσy)τz + �0(cos θτx + sin θτy) decomposes into the
off-diagonal Dirac operators under the new basis
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U ĤBdG−surfaceU
−1 =

(
0 D
D† 0

)
, U�5U

−1 =
(−11 0

0 11

)
, U =

(
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

)
.

(12.86)

The Dirac operator

D† =
(−2iλ∂z �0e−iθ

�0eiθ 2iλ∂z̄

)
= e−iθσ̃z

(−iλ(∂r − i∂θ/r) �0

�0 iλ(∂r + i∂θ/r)

)
(12.87)

has the normalizable zero mode u0(r) ∼ e−�0r/λ(eiπ/4, e−iπ/4)T , where σ̃z is the
Pauli matrix in the new basis. Or back in the Nambu basis, the MBS has the operator
form

γ0(r) = 1

N e−�0r/λ
(
eiπ/4c↓(r) + e−iπ/4c†↓(r)

)
(12.88)

where N is some normalization constant. It has negative chirality �5 = −1 as it
involves only ↓ spin.

Equation (12.88) is the only zero mode in this problem. In general the analytic
index of the chiral symmetric model—which is defined by the difference (i.e. chi-
rality)

indvrtx = dim ker(D) − dim ker(D†) (12.89)

= # positive chiral zero modes − # negative chiral zero modes

where dim ker counts the number of linearly independent zero modes of the Dirac
operator—is identified with a topological index [72, 141–146]. To see this, we notice

(12.89) equals the heat kernel T
(
�5e−t Ĥ 2

)
where t is an arbitrary positive parameter

and

H 2 = Ĥ 2
BdG−surface = −λ2∇2 + |�(r)|2 + λεi j∂k�i (r)σkτ j (12.90)

is the square of the vortex Hamiltonian with a general spatially winding pairing
�(r) = �x (r) + i�y(r), for i, j, k = x, y = 1, 2 and εi j the antisymmetric tensor.
All non-zero energy states come in±E pairs, | − E〉 = �5| + E〉, as�5 Ĥ = −Ĥ�5.
Thus 〈E |�5e−t Ĥ 2 |E〉 = 0 for any E �= 0 and does not contribute to the heat kernel.
On the other hand, the zero energy subspace can be decomposed according to chirality
�5 = ±1, and therefore the heat kernel counts the overall chirality (12.89) of the zero
modes.

Next we express the wavefunction with energy En in Fourier basis, ψn(r) =∫
d2k

(2π)2
ψn(k)eik·r, where ψn = (ψ1

n,ψ
2
n,ψ

3
n,ψ

4
n)

T . Using the completeness relation∑
n ψa

n (k)ψb
n(k

′)∗ = δ(k − k′)δab, the heat kernel becomes
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T
(
�5e

−t Ĥ 2
)

=
∑

n

∫
d2r

∫
d2k

(2π)2

d2k′

(2π)2
ψn(k)†e−ik·r�5e

−t Ĥ 2
eik

′ ·rψn(k
′)

=
∫

d2r
∫

d2k
(2π)2

Tr
[
�5e

−t(λ2k2+|�(r)|2+λεi j∂k�i (r)σkτ j)
]
, (12.91)

where Tr is now the 4 × 4 matrix trace and we have replaced −∇2 ↔ k2 in Fourier
space.

Expanding the exponential in series of t , due to the traceless �5, the lowest order
non-vanishing term is

Tr
[
�5e

−tλεi j∂k�i (r)σkτ j

]
= −t2λ2Tr (114) det

(
∂k�i (r)

) + O(t3), (12.92)

where 114 is the 4 × 4 identity matrix. To evaluate the integral, we compactify the
real space and pairing space to the sphere S

2 = R
2 ∪ {∞} and assume the pairing

vanishes at the vortex core �(0) = 0 and diverges at infinity �(∞) = ∞.6 The
determinant relates the measure d�xd�y = det(∂k�i )d2r between real space and
pairing space. The heat kernel becomes the Gaussian integral

T
(
�5e

−t Ĥ2
)

=
∫

νd�x d�y

∫
d2k

(2π)2
e−t (λ2k2+|�|2) (

−4t2λ2 + O(t3)
)

= −ν + O(t),

(12.93)

where ν is the winding number (12.55) of the pairing phase. Since we have already
identified the heat kernel with the analytic index (12.89), which takes discrete integral
value, (12.93) should be t-independent. Taking t → 0, we recover the Atiyah-Singer
index theorem

indvrtx = −ν. (12.94)

In the physical scenario where the chiral �5 symmetry is only accidental, positive
and negative chiral (i.e. spin) zeromodes canmix and pair annihilate. In fact, chirality
cannot be defined when the �5/spin symmetry is absent when ε f �= 0, but the vortic-
ity ν modulo 2 still defines a Z2-invariant that corresponds to the number parity of
vortex MBS for small ε f . The index theorem (12.94) resembles (12.57) for vortices
in chiral px + i py superconductors in two dimensions, and it is not a coincidence.
Firstly, both formulas apply to special cases that simplify and derive from the general
Chern-Simons invariant (12.58), which topologically characterizes all superconduct-
ing point defects in 2D [33]. Secondly, as we will see in the subsequent subsection,
a quasi-2D TI slab with superconducting top surface and magnetic bottom surface

6In reality the pairing strength plateaus �(r) = |�∞|eiϕ(r) for |r| � 0 far away from the vortex.
However, because of the non-trivial winding of the phase,�(r) cannot be compactified or otherwise
it would be discontinuous at ∞. We deform the model and let the pairing strength plateaus up to
some long length scale L until it eventually diverges at ∞. In this case after compactifying both
real and pairing spaces S

2 = R
2 ∪ {∞}, the pairing function � : S

2 → S
2 is continuous.
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Fig. 12.17 Hedgehog point defect configurations in real space of the order parameter vector n(r) =
(�x (r),�y(r),m(r)) (red vector field) that have unit winding number (12.97) and host protected
Majorana bound state (yellow balls)

is topologically equivalent to a chiral topological superconductor with odd Chern
number. Equations (12.94) and (12.57) therefore have an identical topological origin
although the pairing orders and the BdG Hamiltonians are drastically different.

Equation (12.94) applies to the general scenario where the phase winding can
be highly non-uniform. Figure12.16b shows a mesoscopic superconducting pairing
phase pattern on the surface of a TI proposed by [29]. The honeycomb lattice pattern
consists of superconducting hexagon plaquettes � j , each with a constant pairing
phase ϕ j (mod 2π), separated from adjacent plaquettes by Josephson line junctions.
The surface Dirac fermion underneath each hexagonal superconductor is gapped
by proximity effect. A line junction generically does not carry protected gapless
electronic channels unless the phase difference across the junction is π, where it hosts
a pair of helical Majorana modes (to be discussed in the subsequent subsection). If
the phase difference |ϕ1 − ϕ2| between two adjacent islands is smaller than π, we
assume the phase connects across the junction along the shortest path on the U (1)
phase circle. There is a zero energy MBS at a tri-junction if the phase winds by
2π around the three neighboring superconducting islands. The two configurations
in Fig. 12.16b host MBS at two different tri-junctions. By manipulating the phase
parameter δ, one can control the phasewinding around each tri-junction and therefore
the position of the MBS. When δ = 0, the MBS can leak through the low-energy
channels along the π junction and move from one tri-junction to another. The ability
to manipulate the position of MBS is essential for the implementation of braiding
operations.

Lastly, we remark that superconducting TI heterostructures are systems in three
dimensions. The previous discussion, which focuses on the TI surface, is valid
because the low-energy electronic degrees of freedom is frozen in the vertical
z-direction by the large energy gap in the bulk insulator and the superconductor.
There should be a more complete topological defect theory that captures the MBS
physics in three dimensions [32, 147]. Here we briefly describe the topological point
defect in a 3D setting. The BdG Hamiltonian that extends away from the TI surface
takes the following form

HBdG−TI−SC(k) = (
HTI(k) − ε f

)
τz + �xτx + �yτy, (12.95)



398 J. C. Y. Teo

where HTI is the TI model (12.83). The mass term m(r) in HTI changes sign across
the TI surface from the topological to the trivial insulator. The superconductor pair-
ing �(r) = |�(r)|eiϕ(r) = �x (r) + i�y(r) has support near the TI surface and its
phase winds by multiple of 2π around a vortex. Since the topological band inversion
happens at zero momentum, the relevant small momentum physics can be captured
by the continuum limit

HBdG−TI−SC(k, r) =
[
λk · σμx +

(
m(r) + tk2

2

)
μz − ε f

]
τz + �x (r)τx + �y(r)τy (12.96)

where k now lives on the momentum space R
3. Here the k2 term is kept only for

regularization in the bulk TI, and can be dropped in the context of topological point
defect. We assume again for simplicity that ε f = 0 so that the model has a�5 = μyτz
chiral symmetry. [140] and [141–146] showed in such situations, the overall chirality
of zero energy bound states (c.f. (12.89)) is identical to the number of times the
combined order parameter vector n(r) = |n(r)|n̂(r) = (�x (r),�y(r),m(r)) winds
around the defect point. The winding number is

ν = 1

2π

∮

S2
n̂(r)· [dn̂(r) ∧ dn̂(r)

]
(12.97)

(c.f. the momentum space version (12.44)). Equation (12.97) reduces to the vorticity
(12.55) of surface pairing when there is a TI transition across the surface so that the
mass term m(r) switches sign along the z-axis. The parameter vector n(r) can be
represented by a vector field in real space. Figure12.17 shows hedgehog configura-
tions of the vector that correspond to point defects with winding number ν = 1 and
host protected MBS. The index theorem in 3D (or higher dimensions in general) can
also be proven using a heat kernel similar to the one in the 2D case. For small finite
ε f that breaks the chiral symmetry, the number parity of MBS can be shown to be
identical to a Chern-Simons Z2-invariant [32].

12.3.2 Majorana Channels Along Topological Line Junctions

12.3.2.1 Chiral Majorana Channels in Topological Heterostructures

We start with the TI surface Dirac fermion (12.84). It can acquire a magnetic mass
gμB B by breaking TR or a s-wave superconducting mass � by breaking charge
U (1) symmetry. These mass terms can be introduced by proximity effect when the
TI surface is put in contact with a magnetic insulator or a s-wave superconductor.
The BdG Hamiltonian of the surface Dirac fermion is

HBdG−surface(k‖) = [
λ(kxσx + kyσy) − ε f

]
τz + gμB Bσz + �τx , (12.98)
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Fig. 12.18 a A superconductor—magnet domain wall on a topological insulator surface that host a
chiralMajorana fermion (yellow line) along the line interface.bThe energy dispersion (red curve) of
the chiral Majorana fermion channel. c A quasi-2D topological insulator slab with superconducting
and magnetic surfaces

which is an extension of the QSHI edge BdG model (12.75) by the vertical term
λkyσyτz . We consider a domain wall on the TI surface separating (i) a super-

conducting domain with gμB |B| <
√

�2 + ε2f and (ii) a magnetic domain with

gμB |B| >
√

�2 + ε2f (see Fig. 12.18a) [52, 55]. We assume without loss of gen-

erality that the domain wall is parallel to the y-direction so that the mass terms
B(x),�(x) varies along the x-axis. Horizontal momentum is replaced by the differ-
ential operator kx ↔ −i∂x but momentum ky is still a good quantum number.

The derivation of the zero mode at ky = 0 is identical to that in the QSHI case in
Sect. 12.3.1.1. For the simple case when ε f = 0, The zero mode (12.78) is exponen-
tially localized at the line junction. It is a positive eigenstate of σyτz , and therefore
when the λkyσyτz term is included when ky �= 0, (12.78) becomes the chiral Majo-
rana fermion (MF) that has energy dispersion E(ky) = +λky (see see Fig. 12.18b).
The chiral MF has the same low-energy behavior as the one we have seen along the
edge of a chiral px + i py superconductor in Sect. 12.2.2. For instance, it is electri-
cally neutral but carries the thermal response in (12.51) with chiral central charge
c = 1/2. For a general TI with an odd number of surface Dirac fermions, there may
be multiple number of chiral MF species along a superconductor—magnet inter-
face. The number must however be odd and the chiral central charge must still be a
half-integer.

It is no coincidence that the low-energy degrees of freedom along the
superconductor—magnet interface is identical to that of the edge of a 2D topological
superconductor. In fact, the two problems can be mapped on to each other. First the
3D heterostructure can be deformed into a quasi-2D slab geometry (see Fig. 12.18c),
where a TI slab is sandwiched between a superconductor and a magnet. We assume
the slab is still thick enough to forbid electron tunneling between the top and bottom
TI surfaces. The low-energy BdG description of this geoemetry is decomposed into
the top and bottom surfaces, HBdG−slab = HBdG−top ⊕ HBdG−bottom.
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HBdG−top(k‖) = [
λ(kxσx + kyσy) − ε f

]
τz + �τx

HBdG−bottom(k‖) = [
λ(kxσx + kyσy) − ε f

]
τz + gμB Bσz . (12.99)

The top surface is TR symmetric and does not contribute to theChern number (12.45).
The bottom surface is doubled by theNambu c, c† construction. It can be decomposed
into two sectors according to τz = ±1, each being a two-band model and of the form
H± = h± · σ = ±λ(kxσx + kyσy) ± ε f + gμB Bσz . For |ε f | < gμB |B|, the bottom
surface is insulating, and each sector corresponds to Chern/skyrmion number ±1/2
(depending on the signe of B) because ĥ± covers exactly half of the Bloch sphere.7

The BdG slab model therefore has overall Chern number Ch1 = ±1 and corresponds
to a single chiral Majorana edge channel.

Going back to the TI surface geometry in Fig. 12.18a, the line defect can also
be described in a three dimensional setting in (12.95) and (12.96) by taking � =
�x and turning off �y . The mass terms m(r) changes sign along the z-axis across
the TI surface. The difference between the magnetic and superconducting masses,
M(r) = gμB B(r) − �(r), changes sign along the x-axis from the magnet to the
superconductor. When r is far away from the line interface (the y-axis), these mass
terms modulate slowly in space and we can treat r as an adiabatic parameter. The
3D defect Hamiltonian HBdG−TI−SC(k, r) defines a Berry connection Aab(k, r) =
〈ua(k, r)|dub(k, r)〉 using its “negative” energy states ua . The corresponding Berry
curvature is defined similar to a non-AbelianU (N )-gauge theory,F = dA + A ∧ A.
The topology of the line defect is characterized by the second Chern number [33]

Ch2 = −1

8π2

∫

BZ×S1
Tr (F ∧ F) (12.100)

where BZ is the Brillouin zone/momentum space and S
1 is a (right-handed) circle

that wraps around the line defect once in real space. In general, this integral index is
identical to the net chirality of the Majorana channels enclosed by the circle, i.e. the
difference between the number of forward and backwardmovingMF, or equivalently
twice of the overall chiral central charge. In the TI surface case in (12.95) and (12.96),
when |ε f | < gμB |B|, |�|, (12.100) can be simplified by integrating out momentum
into the winding number

ν = 1

2π

∮

S1
εi j n̂i∂θn̂ j dθ, (12.101)

where n̂ = (n̂1, n̂2) is the unit direction of mass vector n = (m, M), and θ circles
once around the line defect in real space. ν counts the number of times n is rotated

7The Nambu doubled BdG theory of the bottom surface can be regularized at large momentum by
adding εk2σzτz , for instance, ε could be �

2/2m. Depending on the relative sign of ε and B, the
Chern numbers of the (+,−) sectors are now (±1, 0) or (0,±1) as ĥ± cover either the entire Bloch
sphere or nothing at all.
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Fig. 12.19 a A Mach-Zehnder interferometer with a magnetic flux �B = nvφ0/2 across the
grounded superconducting region (red island). V is the electric potential difference between the
chiral Dirac lead and the superconductor. b Electric conductance G(V ) versus V when nv is odd
or even

in one orbit around the line defect. In the heterostructure in Fig. 12.18, this number
is 1 and corresponds to a single chiral MF along the line interface.

12.3.2.2 Charge Transport and Interferometry

Chiral Majorana modes and zero energy MBS have non-trivial charge transport con-
sequences. Theoretical proposals in the context of TI heterostructureswere pioneered
by [52, 55, 56]. Here we briefly review the Mach-Zehnder interferometer involving
magnetic and superconducting domains on a TI surface (see Fig. 12.19a). The super-
conducting region is in the form of a compact disk/annulus with a magnetic flux
quantized in �B = nvφ0/2 passing through, where φ0 = hc/eis the magnetic flux
quantum. From the previous discussion in Sect. 12.3, we have seen that vortices with
odd nv host odd number of protected zero energy MBS. Its presence has non-trivial
holonomical effects on orbiting fermions.

The superconducting disk is sandwiched between two magnetic insulating
domains with opposite orientations. As a result, there are a pair of chiral Majo-
rana channels (represented by yellow directed lines in Fig. 12.19a) running along
the top and bottom semi-circular interfaces. The pair of Majorana channels join at
the two tri-junctions where the superconductor region terminates and sits next to
a pair of time reversal conjugate copies of magnetic regions. As the pair of MF
channels ψtop,ψbottom are co-propagating, they join into a chiral Dirac fermion chan-
nel d = (ψtop + iψbottom)/2 (red directed lines in Fig. 12.19a) along the interface
between the opposite magnetic domains [33].8 Assuming the proximity-induced
superconducting pairing does not extend to the magnetic domains, the chiral Dirac
channel carries electric charge transport.

8The chiral Dirac interface fermion between time reversal conjugate magnetic TI surface domains
can be illustrated by solving the Bloch Hamiltonian Hsurface(k‖) = λ(kxσx + kyσy) + gμB B(x)σz
for kx ↔ −i∂x and B(x) changes sign across the domain wall along the y-axis. The derivation is
similar to that of the Jackiw-Rebbi model (12.76) and is carried out in the context of a BdG model
later in (12.103).
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We consider the electric current I under a potential difference V between the
incoming chiral Dirac channel and the superconductor domain. The differential con-
ductance G(V ) = d I/dV depends on the total flux �B = nvφ0/2 across the super-
conductor domain, where nv is an integer and φ0 = hc/e is the magnetic flux quan-
tum. nv is also total vorticity ν of all the flux vortices passing the superconductor, and
recall from (12.94) (also see Fig. 12.16), nv modulo 2 counts the number parity of
protected zero energyMBS on the superconducting TI surface. However, we assume
all vortices are far away from the magnetic interface so that the vortex MBS wave
functions do not overlap with that of the chiral MF channels. In this case, as the
hybridization between vortex MBS and interface MF is unimportant, we ignore the
vortex zero modes and focus only on the low-energy modes along the line interfaces.

Assuming the potential eV and temperature kBT are small when compared to the
proximity-induced pairing gap in the superconducting surface domain, electrons near
the Fermi level from the chiral Dirac channels cannot tunnel as BdG quasiparticles
into the superconductor. Electric charge transport between the chiral Dirac leads and
the superconductor is generated by Andreev reflection processes, where incoming
Dirac electron d(in) = (ψ(in)

top + iψ(in)
bottom)/2 is scattered into an outgoing Dirac hole

d(out) = (ψ(out)
top − iψ(out)

bottom)/2 while leaking a charge 2e Cooper pair into the super-
conductor. This process is facilitated, for instance, by an odd number of vortices nv

between the top and bottompaths so that it corresponds to the phase difference (−1)nv

between the two MF ψtop,ψbottom. Another origin of phase difference eikδL is from
the path difference δL = L top − Lbottom between the top and bottom semi-circular
line interfaces, where k = eV/�vM is the momentum of the MF given a potential
V . Combining these together, the differential conductance takes the oscillating form
(see Fig. 12.19b)

G(V ) = 2e2

h
|Seh |2 = 2e2

h
sin2

(
nvπ

2
+ eV δL

2�vM

)
(12.102)

predicted by [52], where |Seh |2 is the scattering probability from an electron to a
hole. Similar predictions were also proposed in [55, 56]. For instance, when V = 0,
G(0) is trivial when nv is even, or is 2e2/h when nv is odd (c.f. the zero-bias charge
transport in superconducting SOC wire in Sect. 12.2.1).

12.3.2.3 Majorana Channels in Other Heterostructures

We briefly report other types of topological heterostructures that support chiral or
helical MF channels along line interfaces. First we start with the class DIII TR sym-
metric topological superconductor model in three dimensions we discussed before
in (12.69). The massless surface MF ψ = (ψ↑,ψ↓) is described by the effective
low-energy BdG Hamiltonian

Hsurface−MF(k‖, r) = �v(kxσx + kyσz) − m(x)σy (12.103)
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(c.f. (12.72) and Fig. 12.13), where the TR and PH operators are T = iσyK and
� = K, and the mass term m(x) breaks TR. We consider a domain wall on the
surface where the mass term m(x) changes sign across a line interface taken along
the y-axis, i.e. limx→±∞ sgn(m(x)) = ±1 (see Fig. 12.20a).

Replacing kx ↔ −i∂x and focusing on ky = 0, (12.103) has the identical structure
as the Jackiw-Rebbi model in (12.76) [131]. Following similar derivation, (12.103)
has the eigenvector wave function solution u0(x, ky) ∝ e− ∫ x

0 m(x ′)dx ′/�v(1, 0)T which
corresponds to the MF γ0(x, ky) ∝ e− ∫ x

0 m(x ′)dx ′/�vψ↑(x, ky) and has the chiral dis-
persion E0(ky) = +�vky . This shows that the TR conjugate massive domain wall
sandwiches a single chiral Majorana channel along the line interface [33, 148]. We
notice in passing that the BdGmodel (12.103) has the samematrix operator structure
as the Bloch Hamiltonian that describes the TR conjugate magnetic domain wall of
the Dirac surface state of a TI (Fig. 12.19). In this case, u0(x, ky) represents a chiral
Dirac fermion instead.

We have seen earlier in (12.101) that chiral MF channels can arise as vortices
of the order parameter n(r) = (m(r), gμB B(r) − �x (r)) in the three dimensional
model (12.96). Here we explore chiral MF along pairing vortices in superconducting
Dirac/Weyl (semi)metals.9 The simplest Dirac (semi)metal [149–155] consists of
two Weyl fermions cμ = (cμ,↑, cμ,↓), for μ = ±1, with opposite chiralities. They
can be described by the low-energy effective Bloch Hamiltonian

HDirac−3D(k) = �vk · σμz (12.104)

where σ acts on spins and μz = ±1 labels the two Weyl species. There is already an
abundant pool of semimetallic materials, such as TaAs, Cd3As2, Na3Bi that support
Dirac/Weyl fermions near Fermi energy [156–168] among many more. There has
been theoretical discussions as well as experimental observations of superconduc-
tivity in Dirac metals, such as [169, 170]. Here we consider a superconducting Dirac

9Here we do not make the distinction between Dirac and Weyl (semi)metals because they both
consist of pairs of Weyl fermions with opposite chiralities. We do not pay attention to their spatial
symmetry origins and their locations in momentum space.
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metal with intra-Weyl-species s-wave pairing [171, 172]. It has the BdG description

HBdG−Dirac(k, r) = (
�vk · σμz − ε f

)
τz + �s

x (r)τx + �s
y(r)τy + �a

x (r)μzτx + �a
y(r)μzτy

(12.105)

under the Nambu Basis ξ(k) = (c(k),−iσyc†(−k)). The pairing parameters can be
grouped into �± = �±

x + i�±
y = |�±|eiϕ± , for �±

x,y = �s
x,y ± �a

x,y , so that each
one of them acts only on theWeyl fermion species μ = ±. A pairing vortex of�±(r)
is therefore characterized by the two vorticities (ν+, ν−), where ν± = ∮

dϕ±/2π.
The net chirality of the vortex, i.e. the difference between the number NR of forward
moving MF and the number NL of backward moving ones (c.f. (12.52)), is

2c = NR − NL = ν+ − ν− (12.106)

where c is the chiral central charge that dictates low-temperature thermal transport
(12.51). Equation (12.106) is a special case of the index theorem proven by [75–77].
The difference ν+ − ν− can also be shown to be identical to the secondChern number
(12.100) defined by “negative” energy states of the defect Hamiltonian (12.105). The
proof of (12.106) will be omitted, but the readers should be able to derive the chiral
MF vortex solution themselves using previous techniques. For instance, (12.105) can
be block-diagonalized according to Weyl fermion species μz = ±1. Assuming the
vortex is along the z-direction and focusing at kz = 0, the Hamiltonian of each Weyl
species sector is simply the Jackiw-Rossi model (c.f. (12.85)).

Lastly, we go back to the superconducting pattern on TI surface in Fig. 12.16
that host MBS at tri-junctions. We indicated earlier that the MBS can move from
one tri-junction to a nearby one when the phase difference between two neighbor-
ing superconducting islands is tuned to π. We model the π-junction using the BdG
surface Hamiltonian (12.85) (see Fig. 12.20b). We restrict to real pairing so that
HBdG−surface(k‖) = [

λ(kxσx + kyσy) − ε f
]
τz + �x (x)τx is TR symmetric (recall

T = iσyK). We also assume the junction lies along the y-axis and the real pair-
ing �x changes sign across the junction. For simplicity, we consider ε f = 0. The
Hamiltonian now commutes with the artificial symmetry S = σzτx and can be block-
diagonalized according to S = ±1. One can check that each of the 2 × 2 block has
the form of (12.103) and therefore hosts a chiral MF along the line interface. The
two S = ± sectors are however TR conjugate because T S = −ST . TR symmetry
requires the two chiralMF from the S = ± sectors to propagate in the opposite direc-
tion, and form a pair of helicalMF channels. Similar to the helical Dirac edge modes
of a QSHI, helical MF modes are protected by the Kramers’ theorem as T 2 = −1
and are robust against any single-body interactions that preserves the bulk energy
gap and TR symmetry. On the other hand, the deviation δ away from real pairing on
the superconducting pattern on TI surface in Fig. 12.16 introduces the TR breaking
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�y . The MF along the line junction then acquire a TR breaking mass and the zero
energy MBS is pushed to either the left or the right of the line junction depending
on the sign of δ.

12.4 Summary

In this chapter, we studiedMajorana fermions (MF) and zero energyMajorana bound
states (MBS) in topological superconductors (TSC) in one, two and three spatial
dimensions. The main goal was to understand the conditions for their appearances
and their relationships with bulk topologies. The primary focus was on single pro-
tected Majorana modes, which required time reversal (TR) symmetry to be broken
and in many cases facilitated by magnetism that coexisted with superconductivity to
certain extent. The chapter was divided into two parts. Section12.2 concentrated on
homogeneous TSC, while Sect. 12.3 addressed non-uniform superconducting het-
erostructures. In both situations, protected MF could emerge as defect bound states
that localized along low-dimensional structures.

In Sect. 12.2.1, we studied TSC in one dimension. Zero energy MBS were sup-
ported and located at the two ends of the 1D superconductor. This was theoretically
understood by the Kitaev’s p-wave superconducting chain model and was applied to
superconducting spin-orbit coupled nanowires. Relevant recent experimental obser-
vations and their theoretical principles were reported. In Sect. 12.2.2, we studied TSC
in two dimensions. Chiral px + i py TSC was shown to carry chiral MF edge modes
that could only propagate in a single direction. Pairing vortices were shown to host
zero energyMBS. TR symmetric versions of TSCwere briefly introduced at the end.

In Sect. 12.3.1, we studied MBS at point junctions in heterostructures. This
included (i) the interface sandwiched between a superconducting segment and a
(anti)ferromagnetic segment along the helical edge of a 2D quantum spin Hall insu-
lator, and (ii) the superconducting vortex on the surface of a topological insulator. In
Sect. 12.3.2, we studied 1D MF along line junctions in heterostructures. We showed
chiral MF could run along line interfaces where materials with different topolo-
gies and orders meet in three dimensions. Possible consequences in transport were
reviewed.

Contemporary research in Majorana physics is primarily fueled by its promising
prospect in topological quantum computing. This relies on the non-Abelian nature of
Majorana zero modes that allows non-local quantum information storage and non-
commuting unitary quantum operations. Regretfully, these interesting topics are out
of the scope of this chapter and this book, but hopefully, for the readers who have not
been exposed to these ideas, theywill still be convinced thatMajorana is compellingly
remarkable.
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