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Preface

This book has been developed from the lecture notes of a course in Advanced
Quantum Mechanics given by the authors at the Politecnico of Torino for students
of physical engineering, who, even though oriented towards applied physics and
technology, were interested in acquiring a fair knowledge of modern fundamental
physics. Although originally conceived for students of engineering, we have
eventually extended the target of this book to also include students of physics who
may be interested in a comprehensive and concise treatment of the main subjects
of their theoretical physics courses. What underlies our choice of topics is the
purpose of giving a coherent presentation of the theoretical ideas which have been
developed since the very beginning of the last century, namely special relativity and
quantum mechanics, up to the first consistent and experimentally validated quantum
field theory, namely quantum electrodynamics. This theory provides a successful
description of the interaction between photons and electrons and dates back to the
middle of the last century.

Consistently with this purpose (and also for keeping the book within a reason-
able size), we have refrained from dealing with the many important ideas that have
been developed in the context of quantum field theory in the second part of the last
century, although these are essential for a satisfactory understanding of the current
status of elementary particle physics. A prominent example of such developments is
the so-called standard model, in which for the first time all the (non-gravitational)
interactions and the fundamental particles (quarks and leptons) were coherently
described within a unified field theory framework. Looking at the past, however,
one recognizes that this achievement has its very foundations in the two building
blocks of any modern physical theory: special relativity and quantum mechanics,
which have been left essentially unaffected by the later developments.

Quantum electrodynamics has provided a basic reference for the formulation
of the standard model and in general for any field theory description of the fun-
damental interactions. In particular, a major role is played in quantum electrody-
namics by the concept of gauge symmetry which is the guiding principle for the
correct description of the interaction. Likewise, the standard model too, as a

vii



quantum field theory, is based on a suitable gauge symmetry, which is a
non-abelian extension of that present in quantum electrodynamics.

On the basis of these considerations, we hope the concise account of quantum
electrodynamics that we give at the end of our book can provide the interested
reader with the necessary background to cope with more advanced topics on the-
oretical particle physics, in particular with the standard model.

The present book is intended to be accessible to students with only a basic
knowledge of non-relativistic quantum mechanics.

We start with a concise, but (hopefully) comprehensive exposition of special
relativity, for which we have added a chapter on the implications of the principle of
equivalence. Here we have a principle whose importance can be hardly overesti-
mated since it is at the very basis of the general theory of relativity, but whose
discussion in a class, however, requires no more than a couple of hours.
Nevertheless, this issue and its main implications are rarely dealt with even in
graduate courses of physics. Can general relativity be totally absent from the sci-
entific education of a student of physics or engineering? Of course it can be, as far
as the full geometrical formulation of theory is concerned. However it is well
known that many technological devices, mainly the GPS, require for their proper
functioning to consider the corrections implied by the Einstein’s theories of special
and general relativity. Our account of the principle of equivalence and its main
implications will allow us to derive in a rather non-rigorous but intuitive way the
concepts of connection, curvature, geodesic lines, etc., emphasizing their intimate
connection to gravitational physics.

Thereafter, in Chaps. 4 and 7, we give the basics of the theory of groups and Lie
algebras, discussing the group of rotations, the Lorentz and the Poincaré group. We
also give a concise account of representation theory and of tensor calculus, in view
of its application to the formulation of relativistically covariant physical laws. These
include the Maxwell’s equations, which we discuss in their manifestly covariant
form in Chap. 5.

In Chap. 6, anticipating part of the analysis which will be later developed, we
discuss the quantization of the electromagnetic field in the radiation gauge. We
thought it worth illustrating this important example early because it clarifies how
the concepts of photon and of its spin emerge quite naturally from a straightforward
application of special relativity and quantum theory in a field theoretical
framework.

In Chap. 8 we review the essentials of the Lagrangian and Hamiltonian for-
malisms, first considering systems with a finite number of degrees of freedom, and
then extending the discussion to fields. Particular importance is given to the relation
between the symmetry properties of a physical system and conservation laws.

The last four chapters are devoted to the development of quantum field theory. In
Chap. 9 we recall the basic construction of quantum mechanics in the Dirac
notation. Eventually in Chap. 10, we study the quantum relativistic wave equations
emphasizing their failure to represent the wave function evolution in a consistent
way.
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In Chap. 11 we perform the quantization of the free scalar, spin 1/2 and elec-
tromagnetic fields in the relativistically covariant approach. The final goal of this
analysis is to provide the quantum relativistic description of fields in interaction,
with particular reference to the interaction between spin 1/2 fields (like an electron)
and the electromagnetic one (quantum electrodynamics). This is done in Chap. 12
in which the graphical description of interaction processes by means of Feynman
diagrams is introduced. After the classical example of the tree-level processes, we
start analysing the one-loop ones where infinities make their appearance. We then
discuss how one can circumvent this difficulty through the process of renormal-
ization, in order to obtain sensible results. We shall however limit ourselves to give
only a brief preliminary account of the renormalization programme and its imple-
mentation at one-loop level.

As the reader can realize, there is scarcely any ambition on our side to develop
various topics in an original way. Our goal, as pointed out earlier, is to give in a
single one-year course the main concepts which are at the basis of contemporary
theoretical physics.

A Note on the Bibliography

It is almost impossible to give even a short account of the many textbooks covering
some of the topics which are dealt with in this book. Any textbook on relativity or
elementary particle theory covers at least a part of the content in our book. We
therefore limit ourselves to quote those excellent standard textbooks, which have
been for us a precious guide for the preparation of the present work, referring them
to the interested reader in order to deepen the understanding of the topics dealt with
in this book.
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Chapter 1
Special Relativity

1.1 The Principle of Relativity

The aim of physics is to describe the laws underlying physical phenomena.
This description would be devoid of a universal character if its formulation were

different for different observers, that is for different frames of reference, and, as
such, it could not deserve the status of an objective law of nature. Any physical
theory should therefore fulfil the following requirement:

The laws of physics should not depend on the frame of reference used by the
observer.

This statement is referred to as the principle of relativity, and is really at the heart
of any physical theory aiming at the description of the physical world.

Actually, the physical laws are described in the language of mathematics, that
is by means of one or more equations involving physical quantities, whose value
in general will depend on the reference frame (RF) used for their measure. As a
consequence of this, any change in the reference frame results in a change in the
physical quantities appearing in the equations, so that in general these will satisfy
new equations, called transformed equations. The requirement that the transformed
equations be equivalent to the original ones, so that they describe the same physical
law, allows us to give a more precise formulation of the principle of relativity:

The equations of a physical theory must preserve the same form under transfor-
mations induced by a change in the reference frame.

By preserving the same form we mean that if the physical law is given in terms of
a single equation, the transformed equation will have exactly the same form, albeit
in terms of the transformed variables. If we have a system of equations, we can allow
the transformed system to be a linear combination of the old ones. Obviously, in
both cases, the physical content of the original and transformed equations would be
exactly the same.

Changes in the reference frame of an observer can be of different kinds: spatial
translations, rotations, or any change in its state of motion. As we shall see in the

© Springer International Publishing Switzerland 2016
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2 1 Special Relativity

sequel, the latter transformations are the most relevant as far as the implications on
the description of the physical world are concerned.

The simplest relative motion is of course the uniform rectilinear motion or inertial
motion, and the requirement that the physical laws be independent of the particular
inertial frame means that the theory satisfies the requirements of the principle of
relativity only as far as inertial frames are concerned. We recall that inertial frames
are those in which the Galilean principle of inertia holds, and that, given any inertial
frame such as, for instance, the one attached to the center of mass of the solar system,
with axes directed towards fixed stars (the fixed star system), all other inertial frames
are in relative rectilinear uniform motion with respect to it.

In the following two chapters we shall refrain from considering accelerated (and
thus non-inertial) frames of reference, restricting ourselves to the analysis of the
implications of the principle of relativity only as far as inertial frames are concerned,
which is the main subject of the special theory of relativity.

The extension of the principle of relativity to any kind of relative motion between
observers, that is to accelerated reference frames, however, has a very deep impact
on our ideas of space, time and matter and leads to a beautiful new interpretation of
the gravitational force as a manifestation of the geometry of four-dimensional space-
time. This analysis, which is the subject of Einstein’s general theory of relativity,
requires, for its understanding, a solid knowledge of differential geometry and goes
beyond the scope of this book; in Chap.3, however, we shall give a short introduction
to general relativity by discussing the principle of equivalence and tidal forces.
Furthermore an intuitive picture of the four-dimensional geometry of space-time
and its relation to gravitation will be outlined.

1.1.1 Galilean Relativity in Classical Mechanics

In order to verify whether a theory satisfies the principle of relativity we need to
know the transformation laws relating the measures of physical quantities obtained
by different observers.When describing themotion of a systemof bodieswith respect
to a reference frame all the quantities we need can be expressed in terms of length,
time and mass.1 It is therefore sufficient to find the transformation laws for these
fundamental quantities.

The principle of relativity was first applied to classical mechanics; in this context,
however, only the transformation law of the space intervals is relevant; indeed, as
it is apparent from the formulation of Newton’s second law, the inertial mass of a
point-like object is defined as the constant ratio between the strength of the force
acting on it and the modulus of the resulting acceleration, and this constant value

1The reference frame associated with an observer is defined by a coordinate system, which we shall
choose to be a system of rectangular Cartesian coordinates (x, y, z) with origin O , with respect to
which the observer is at rest. The frame also consists of all the instruments the observer needs for
measuring the fundamental quantities: a ruler for lengths, a clock for time intervals and scales for
masses.

http://dx.doi.org/10.1007/978-3-319-22014-7_3


1.1 The Principle of Relativity 3

is assumed to be independent of the actual value of the velocity of the body. Since a
change in the state of motion of a reference frame results in a different velocity of
the body as measured by the new observer, this implies that the value of the mass is
the same in all reference frames.

As far as time intervals are concerned, they were also assumed to be independent
of the particular inertial observer. In the words of Newton: tempus est absolutum,
spatium est absolutum. The first statement about the absolute character of timemeans
that time flows equably for all observers so that the same time-interval between two
events is measured by any (inertial) observer; the second statement space is absolute,
means that space-intervals, or lengths, do not depend on the reference frame in which
they are measured, and, as we shall show presently, it is actually a consequence of
the first.

To illustrate this we first need to derive the transformation law for the position
vector x(t) of a material point due a change in the reference frame (for the sake of
simplicity, here and in the following, unless differently stated, when speaking of ref-
erence frames or observers, we shall be always mean inertial frames and observers).

Let us denote by S and S′ two inertial frames, as well as the observers associated
with them, and let (x, y, z), O and (x ′, y′, z′), O ′ be their coordinates and origins,
respectively. Since S and S′ are both assumed to be inertial, their relative motion,
say of S′ with respect to S, is of rigid translational type with constant velocity V.
Note that it is the same thing to say that S′ moves with velocity V with respect to S
or that S moves with velocity −V with respect to S′.

It is moreover convenient to make the following assumptions: The axes of S
and S′ are parallel and equally oriented, the x- and x ′- axes coincide and have the
same orientation as the velocity V. If we denote by t and t ′ the times as measured
by the two observers S and S′ respectively, their common origin t = t ′ = 0 is
chosen as the instant at which the two origins O and O ′ coincide: O = O ′. With
these assumptions the relative configuration of the two frames is referred to as the
standard configuration, see Fig. 1.1. As we shall see in the following, all the main
physical implications of the principle of relativity are alreadypresent in this simplified
situation.

Fig. 1.1 Position vectors of
P relative to two inertial
frames, S, S′, in standard
configuration
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Let the two observers S and S′ have identical instruments for measuring distances
and time intervals. The assumption of absolute time implies that the times measured
by S and S′ are the same:

t = t ′. (1.1)

Next, suppose that the two inertial observers are describing a same event, say the
position P at the time t ≡ t ′, of a particle moving along a given trajectory. The
position P with respect to O and O ′ is described by two different vectors x(t) and
x′(t), whose components are:

x(t) = (x(t), y(t), z(t)), x′(t) = (x ′(t), y′(t), z′(t)). (1.2)

By trivial geometrical considerations we derive the relation between x(t) and x′(t):

x(t) = x′(t) + OO′(t) = x′(t) + V t. (1.3)

In the standard configuration we have V = (V, 0, 0), and Eq. (1.3) can be written in
components as follows:

x(t) = x ′(t) + V t,

y(t) = y′(t), (1.4)

z(t) = z′(t).

To obtain the relation between the velocities v and v′ as measured with respect to S
and S′, respectively, one must differentiate x with respect to t in S and x′ with respect
to t ′ in S′. However, because of Eq. (1.1), we can simply differentiate both vectors
with respect to the same variable t = t ′, obtaining:

v = dx
dt

, v′ = dx′

dt ′
= dx′

dt
. (1.5)

Using the above definitions and differentiating both sides of Eqs. (1.3) or (1.4) with
respect to t , we find:

v = v′ + V, (1.6)

or in components:

vx (t) = v′
x (t) + V,

vy(t) = v′
y(t), (1.7)

vz(t) = v′
z(t).

Equation (1.6), or (1.7), defines the composition law for velocities and implies that
velocities behave like vectors under addition.
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A further differentiation of (1.6), or (1.7), with respect to t gives the relation
between the accelerations as measured by the two observers. Taking into account
that the relative velocity V is constant, we find:

a(t) = a′(t), (1.8)

or, in components,

ax = a′
x ,

ay = a′
y, (1.9)

az = a′
z .

Equations (1.3), (1.6), (1.8), or, in components, Eqs. (1.4), (1.7), (1.9), are called
Galilean transformations and represent the relations between the measures of the
kinematical quantities referred to two inertial reference frames in relative motion
with constant velocity V.

We are now ready to prove that the Newtonian statement about absolute space
(spatium est absolutum) is a consequence of the analogous assumption about time.
In other words, we verify that the spatial distance between two points is the same
for all inertial observers. As an example, let us consider, as shown in Fig. 1.2, a rod
placed along the x-axis whose endpoints A e B are at rest with respect to S′. The
position vectors of A and B in S′ are then x′

A = (x ′
A, 0, 0) and x′

B = (x ′
B, 0, 0), so

that their distance L ′ in S′, corresponding to the length of the rod, is:

L ′ = x ′
B − x ′

A. (1.10)

Wenote that in S′ the coordinates x ′
B and x ′

A are time independent and therefore can be
measured at different times without affecting the value of their difference, that is the
measure of the length of the rod. In S instead the coordinates of the endpoints depend
on time, due to the relative motion of S′ and S: xA(tA) = (xA(tA), yA(tA), z A(tA))

and xB(tB) = (xB(tB), yB(tB), zB(tB)). Their expression in terms of the coordinates
of A and B in S′ are given by (1.4):

Fig. 1.2 A rod at rest with
respect to S′
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xA(tA) = x ′
A + V tA,

yA(tA) = 0,
z A(tA) = 0,

xB(tB) = x ′
B + V tB,

yB(tB) = 0,
zB(tB) = 0.

(1.11)

In order to compute the length L of the rod in S we must consider the coordinates of
the endpoints A and B at the same instant, since evaluating them at different times
would lead to a meaningless result. Setting t = tA = tB we find:

x ′
B − x ′

A = (xB(tB) − V tB) − (xA(tA) − V tA) = xB(t) − xA(t). (1.12)

Equation (1.12) then implies:
L = L ′, (1.13)

that is, the length of the rod is the same for both observers. Note that, in defining the
measure of the length L of the moving rod, we have used the notion of simultaneity
of two events, tB = tA. This concept is, however, independent of the reference frame
since, having assumed from the beginning the equality of time durations, that is
Δt = Δt ′, in different frames, simultaneity in S (Δt = 0) implies simultaneity in
S′ (Δt ′ = 0) for any two inertial frames S and S′.We have thus proven that invariance
of the lengths (absolute space) is a consequence of invariance of the time intervals
(absolute time).

In the previous discussion we have considered the rod lying along the x- axis,
which is the direction of the relative motion. It is obvious that the distances along
the y- or z-axes are also invariant since y′ = y e z′ = z. This means that the
vector describing the relative position of any two points in space is invariant under
Galilean transformations. More specifically, if A and B are two points at rest in S′,
(not necessarily along the x-axis) with position vectors x′

A, x′
B and relative position

vector Δx′ ≡ x′
B − x′

A, and if xA(tA), xB(tB) are the position vectors of the two
points relative to S at different times, we define the relative position vector in S as
the difference between the position vectors taken at the same instant t :

Δx(t) ≡ xB(t) − xA(t) = (x′
B + Vt) − (x′

A + Vt) = x′
B − x′

A = Δx′. (1.14)

We conclude that not only the spatial distance between A e B, but also the direction
from A to B, i.e. the direction and orientation of the relative position vector, is
invariant under Galilean transformations.

So far we have examined the change of inertial frames due to a relative motion
with a constant velocity V. The change of an inertial frame due to a rotation or to a
rigid translation of the coordinate axes are in a sense trivial. They correspond to the
congruence transformations of the Euclidean geometry leaving invariant the space
relations between figures and objects. They have the form

x′ = R x + b,
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where R denotes a 3 × 3 matrix which implements a generic rotation or reflection.
Another trivial transformation is the change of the time origin, or time translation
namely

t ′ = t + β.

In general one refers to the invarianceof the lawsof physics under rotations/reflections
R and translations b as the properties of isotropy and homogeneity of space, respec-
tively. Similarly the invariance under shifts in the time origin is referred to as homo-
geneity in time. Note that both transformations do not affect the Newton postulates
of absolute time Δt ′ = Δt and absolute space, |Δx′| = |Δx|. Including the congru-
ence transformations and the time shift gives a more general form to the Galilean
transformations, namely:

x′ = R x + b − V t, (1.15)

t ′ = t + β. (1.16)

Unless explicitly mentioned, when referring to Galilean transformations we shall
always refer to the simpler form given in Eq. (1.3) or (1.4), (1.6), (1.8).

1.1.2 Invariance of Classical Mechanics Under Galilean
Transformations

We have seen that under the assumption of the invariance of time intervals, the
Galilean transformations, expressed by Eqs. (1.3), (1.6), (1.8), or, in components, by
Eqs. (1.4), (1.7), (1.9), provide the relations between the kinematical quantities as
measured in any two inertial systems.

To verify that classical mechanics satisfies the principle of relativity, we need to
transform the fundamental equations of the theory and see whether they keep the
same form in the new reference frame.

Let us start from the principle of inertia: Suppose that in the frame S a free particle,
that is not subject to interactions, moves at a constant velocity v. From Eq. (1.6) we
see that in S′ its velocity v′ = v − V is also constant, owing to the constancy of V.
Similarly if v′ is constant, also v is and thus the law of inertia satisfies the principle
of relativity.

Let us now examine the second law, namely the Newtonian equation of motion:

F = m a. (1.17)

As already pointed out the mass appearing on the right-hand side of Eq. (1.17) is
assumed to be the same in any reference frame; furthermore Eq. (1.8) implies that
the acceleration has the same property. Thus the right-hand side is invariant under a
change in the reference frame. In order for the principle of relativity to be satisfied,
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the force on the left-hand side must be invariant under Galilean transformations as
well.

To ascertain this we recall that in classical mechanics a force2 is defined as an
action at-a-distance between two interacting particles with the following properties:
Its direction coincides with the straight line connecting the particles, its strength only
depends on their distance and it acts on each of them according to the principle of
action and reaction. These properties define a conservative force. Explicitly, if Δx
is the relative-position vector of the interacting particles and |Δx| their distance, the
force F acting on one of them has the following form:

F = F(|Δx|) Δx
|Δx| . (1.18)

If we now recall that the vector Δx is left unchanged by Galilean transformations,
we immediately conclude that the force itself is invariant.

Thus both sides of Eq. (1.17) are invariant3 under a change in the reference frame
and therefore the Newtonian equation of motion satisfies the principle of relativity.
We refer to this propriety as the invariance of classical mechanics under Galileo
transformations. We stress once again that this conclusion is valid only under the
assumption that the mass of a particle does not depend on its velocity.

The study of electromagnetic phenomena has revealed the existence of funda-
mental forces of a different kind, not fitting the characterization given in classical
(Newtonian) mechanics and described by Eq. (1.18). Think about the magnetic force
exerted by an electric current in a segment of wire on the magnetized pointer of a
compass. Its direction does not coincide with the straight-line connecting the wire to
the compass, and moreover this force is non-conservative. Besides the action at-a-
distance picture of classical mechanics turns out to be inadequate to describe electro-
magnetic interactions involving fast-moving charged particles. What these processes
suggest is that the interaction between two particles should rather be described as
mediated by a physical, propagating field, such as the electromagnetic field for inter-
acting charges. In this newpicture a force ononeparticle originates fromanaction-by-
contact on it of the field electromagnetic field generated by another charged particle:
instead the action of the gravitational field generated by one mass on another mass
obeys the action at-a-distance principle in classical Newtonian mechanics.

Restricting ourselves, for the time being, to the purely mechanical case and to the
Newtonian description of forces, it is interesting to examine the implications of the
principle of relativity on the conservation law of the total linear momentum of an
isolated system of particles.

This property is usually seen as a direct consequence of the second and third
Newton laws. It is however well known that the law of conservation of linear

2Here we are referring to fundamental forces of the nature, like the gravitational force, not to
phenomenological forces like elastic forces, friction etc.
3In general we call covariant an equation which takes the same form in different frames; if not
just the form, but also the numerical values of the various terms are the same, we then say that the
equation is invariant.
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momentum can be taken, together with the principle of inertia, as a principle from
which bothNewton’s law ofmotion and the action-reaction principle can be deduced.
Indeed, from a modern point of view, the law of conservation of linear momentum
is more fundamental than Newton’s laws in that it retains its validity also in those
situations where the concept of Newtonian forces is no longer applicable (provided
its definition be appropriately extended).

Consider, with respect to some reference frame S, an interaction process in which
two particles, not subject to external forces, with linear momenta p1 and p2, and
massesm1 andm2, interact for a very short time (scattering), and give rise, in the final
state, to two free particles with momenta q1 and q2, and masses μ1 and μ2 (which
can be different from m1, m2, as it generally happens, for instance, in chemical
reactions). Now suppose that the conservation of linear momentum is verified in S:

p1 + p2 = q1 + q2. (1.19)

Denoting by v1, v2 and by u1, u2 the initial and final velocities of the two particles,
respectively, Eq. (1.19) can be written as follows:

m1 v1 + m2 v2 = μ1 u1 + μ2 u2. (1.20)

Let us now consider the same process in a new inertial frame S′, related to S by a
Galilean transformation. Substituting the old velocities in terms of the new ones and
using the relation (1.6), Eq. (1.20) becomes:

m1(v′
1 + V) + m2(v′

2 + V) = μ1(u′
1 + V) + μ2(u′

2 + V). (1.21)

Since m1v′
1, m2v′

2,μ1u′
1,μ2u′

2 are the initial and final linear momenta p′
1, p′

2, q′
1, q′

2
of the particles, as measured in S′, (1.21) takes the following form:

p′
1 + p′

2 = q′
1 + q′

2 + (μ1 + μ2 − m1 − m2)V. (1.22)

This relation implies that the conservation of linear momentum satisfies the principle
of relativity if, and only if, the total mass is conserved

μ1 + μ2 = m1 + m2. (1.23)

Indeed, under this condition, Eq. (1.22) becomes:

p′
1 + p′

2 = q′
1 + q′

2, (1.24)

which expresses the conservation of momentum also in the frame S′, consistently
with the principle of relativity.

We end this section with a few observations. From the above discussion, it
follows that the conservation of the total mass is not an independent principle in
classical mechanics, but rather a consequence of the law of conservation of linear
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momentum and the principle of relativity, a fact which is not always stressed in
standard treatments of Newtonian mechanics.

Secondly, if we consider the more general Galileo transformations (1.15), the
invariance of Newtonian mechanics with respect to spatial translations and time
shifts is obvious. As far as the invariance under rotations of the coordinate frame is
concerned it is sufficient to observe that the equations of classical mechanics can be
written as three-dimensional vector equations; since vectors are geometrical objects
(oriented segments) independent of the orientation of the coordinate frame, the same
is true for the vector equations of the theory. As a third point it must be noted that
the fact that a theory satisfies the principle of relativity does imply that the same
physical laws hold true in every inertial frame, but it does not imply that the actual
description of the motion is the same in different frames.

For example, if a ball is thrown vertically (vx = 0) in S, in S′ it will have an
initial velocity v′

x = −V �= 0. In S the trajectory is a vertical straight line, while
in S′ the trajectory is a parabola. Mathematically this follows from the fact that the
laws of mechanics are 2-order differential equations whose solution depends on the
initial conditions, which are different in different frames.

We also want to stress the different way the principle of relativity is implemented
for Newton’s second law, (1.17), and the conservation of linear momentum, (1.19):
In the latter case the same law holds in the new frame, but the physical quantities,
the momenta, have different values, while in the former case all the quantities, force,
mass, acceleration, have exactly the same values in the two frames. Under Galilean
transformations therefore the conservation of linear momentum is an example of a
covariant law, while the Newtonian law of motion is invariant.

As a last point we observe that the independence of the laws of classicalmechanics
from the inertial frame, is easily verified in our everyday life. Everybody traveling
by car, train, or ship and moving with uniform rectilinear motion with respect to the
earth (considered as an inertial frame) can observe that the oscillation of a pendulum,
the bouncing of a ball, the collisions of billiard-balls, etc., occur exactly in the same
way as in the earth frame. These considerations (with reference to a ship in uniform
motion) were actually clearly illustrated and discussed by Galilei in his celebrated
book Dialogue Concerning the Two Chief World Systems, (1630). On the other hand
if the moving frame is accelerated the laws of mechanics are violated, since the new
frame is no longer inertial.

1.2 The Speed of Light and Electromagnetism

It is well known thatmanymechanical phenomena, such as vibrating strings, acoustic
waves in a gas, ordinary waves on a liquid, can be described in terms of propagating
waves. These mechanical waves describe the propagation through a given material
medium of a perturbation originating from a source located in a point or a region
in its interior (like for instance the impact of a stone on the surface of a pond), the
propagation being due to the interactions among the molecules of the medium. If the
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medium is homogeneous and isotropic (which we shall always assume to be the case)
the speed of propagation of a wave has the same constant value in every direction
with respect to the medium itself.

For example, in the case of acoustic waves propagating through the atmosphere,
the speed of sound is v(s) � 330m/s with respect to the air (supposed still).

Let S be a frame at rest with respect to the air and S′ another frame in relative
uniform motion with velocity V with respect to the former (we assume the stan-
dard configuration between the two coordinate systems). By means of (1.6) we may
compute the velocity v′

(s) of a sound signal with respect to S′.

v′
(s) = v(s) − V. (1.25)

If the sound is emitted along the x-direction, that is in the same direction as the
relative motion, v(s) = (v(s), 0, 0) and one obtains:

v′
(s)x = v(s) − V,

v′
(s)y = 0, (1.26)

v′
(s)z = 0,

so that the velocity of the sound measured in S′ along the x-direction will be lower
than in S, v′

(s) x = v(s) − V < v(s). Viceversa, if the sound is emitted in the negative
x-direction, that is vs = (−v(s), 0, 0), then the modulus of the velocity measured in
S′ will be greater than in S; indeed

v′
(s) x = −v(s) − V,

v′
(s)y = 0, (1.27)

v′
(s)z = 0,

implying |v′
(s) x | = |v(s) + V | > v(s).

Let us nowconsider a soundwave propagating in S along a direction perpendicular
to the that of the relative motion, say along the negative y-axis, v(s) = (0,−v(s), 0)
(see Fig. 1.3). In S′ the velocity of the sound signal is:

v′
(s) = v(s) − V = (−V,−v(s), 0) (1.28)

It follows that for the observer in S′, the sound wave will propagate along a direction
forming an angle α with respect to the y-axis given by (Fig. 1.4):

tanα = V

v(s)
, (1.29)
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Fig. 1.3 Sound wave
propagating, with respect to
S, along the y-axis

Fig. 1.4 Same sound wave
as seen from S′

while the modulus of the velocity v′
(s) ≡ |v′

(s)| turns out to be:

v′
(s) =

√
v2(s) + V 2 > v(s). (1.30)

Note that, if V � v(s), the effect on the velocity of the motion of S′ relative to the

medium is an effect of order V 2

v2
(s)

since:

√
v2(s) + V 2 ≡ v(s)

√
1 + V 2

v2(s)

� v(s)

(
1 + 1

2

V 2

v2(s)

)
. (1.31)

The example of a sound wave illustrates the general fact that the velocity of prop-
agation of a mechanical wave is isotropic, that is the same in every direction, only
in a reference frame at rest with respect to the transmission medium. In any other
inertial frame, the wave velocity is not isotropic, but depends on the direction.
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If we now consider the theory of electromagnetism, and in particular the propaga-
tion of electromagnetic waves, we immediately note some peculiarities with respect
to ordinary material waves.

Electromagnetism, ignoring quantum processes, is described, with extremely
good precision, by the Maxwell equations. Maxwell’s theory predicts that electric
and magnetic fields can propagate, in the form of electromagnetic waves, in the vac-
uum, that is apparently without a transmission medium, with a velocity, denoted by
c, which is related to the parameters of the theory:

c = 1√
ε0μ0

= 2.997925 × 108 ms−1.

We refer to this velocity as the speed of light since, as is well known, light is just an
electromagnetic wave with wave-length in the approximate range between 380 and
780nm. According to the principle of relativity, this velocity, being determined only
by the parameters of the theory, should be the same for all the inertial observers. On
the other hand, we have learned that the velocity of a wave should change by a change
in the (inertial) reference frame. How can we resolve this apparent contradiction?

We note, first of all, that not only the velocity of electromagnetic waves changes
under a Galilean transformation, but, as one can easily ascertain, also the Maxwell
equations themselves are not left invariant by such transformations (in fact they
are not even covariant). Since we can not give up the principle of relativity for
electromagnetic phenomena, there are only two possibilities:

• Either the Maxwell equations and their consequences are valid only in a particular
frame, and thus should change their form by a change in reference frame;

• or the Maxwell equations are valid in every inertial frame, but the principle of
relativity should not be implemented by the Galilean transformations. Instead, the
right transformation laws should be chosen in such a way as to keep the validity of
this principle also for electromagnetism as expressed by the Maxwell equations.

Let us first discuss the former hypothesis. If there existed a privileged reference
frame in which the Maxwell equations hold, and thus with respect to which light
has velocity c, we should be able to experimentally detect it. In this respect, over the
course of the nineteenth century, physicists made various hypotheses, among which
we quote the following two.

A first hypothesis was that the frame with respect to which light has velocity
c, is the frame of the light source; however this possibility was immediately ruled
out because it would have led to consequences in sharp contrast with astronomical
observations. Indeed, suppose we observe a binary system of stars, of comparable
masses, revolving around their common center ofmass; since the respectivemomenta
are directed in opposite directions, there will be an instant when the motion of the
stars will be in the direction of the terrestrial observer, one approaching and other
withdrawing from it with velocities v and −v respectively. If the velocity of light
were c with respect to the emitting source, with respect to the earth the velocities of
the light signals emitted by the two stars would be c + v and c − v, respectively, see
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Fig. 1.5 Light emitted from
stars in a binary system

Fig. 1.5. Thus the two light waves would reach the terrestrial observer at different
times and themotion observed from the earthwould appear completely distortedwith
respect to that predicted by Newtonian mechanics. Needless to say that the motion
we observe from the earth instead perfectly agrees with Newton’s laws.4

A second hypothesis was based on the assumption that, in analogy with the
mechanicalwaves, also electromagneticwaves propagate through amaterialmedium,
called ether; therefore, as it happens for the mechanical waves, the ether would be
the privileged reference frame where the velocity of light is c and where theMaxwell
equations take their usual form. If this were true, the ether, whose vibrations should
propagate the electromagnetic waves, should fill the whole of space (thus allowing
the light from the stars to reach the earth) and also penetrate the interior of material
bodies. This hypothetical substance would actually have very unusual properties: It
should be stiff enough to give light such an enormous velocity, but also light enough
to allow for the motion of stars and planets through it.

If ether existed, it is reasonable to assume its rest frame to coincide, to a good
approximation, with the frame of the fixed stars, which, as is well known, is the
canonical reference frame where the principle of inertia and the whole of classical
mechanics hold. Accordingly, one should be able to detect the change in the velocity
of light (from the value c) as measured in a reference frame in motion with respect
to the fixed stars, namely, with respect to the ether.

Actually, when we observe the light coming from a star, we are in a frame which,
being attached to the earth, is moving with a velocity V ≈ 30km/s with respect to
the fixed star system. The velocity of the light from such a star in the earth frame
should be related to c by the Galilean transformations.

Let S be the fixed star frame, and S′ the earth frame moving with velocity V along
the x-direction. Suppose, for the sake of simplicity, that we are observing a light ray

4Another reason for ruling out the emitting source as the privileged frame where the Maxwell
equations hold is the fact that, according to the laws of electromagnetism, an electric charge in
an electric field E acquires an acceleration a which must vanish when E → 0; when the frame
is accelerated, as it is generally the case for a moving source, a would preserve a non vanishing
component equal to acceleration of the reference frame even in the limit of vanishing electric field.
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coming from the negative direction of the y-axis in S; note that we are exactly in the
same situation as previously described for the sound waves (see Figs. 1.3 and 1.4).
Thus the same conclusions should hold provided we replace, in Eqs. (1.27)–(1.31),
v(s) by c. In particular we find that the light ray will reach the telescope on earth at
an angle α with respect to the y′-axis given by

tanα = V

c
, (1.32)

and a speed

c′ =
√

c2 + V 2 > c. (1.33)

As far as the first effect is concerned, it implies that in order for the light ray to reach
the observer, the telescope should be adjusted by an angle α with respect to vertical
direction. Because of the revolution of the earth, in order to observe a same star over
one year, the orientation of the telescope should be continuously adjusted, so that it
describes a cone whose intersection with the sky defines a little ellipsis (Fig. 1.6).
This phenomenon is in fact observed, and is called aberration of starlight. Every star
on the sky is seen to describe an ellipsis over the course of one year. The angular
half-width of the corresponding cone is given by (1.29), that is, taking into account
of the numerical values of V and c, by (Fig. 1.6)

tanα � 10−4 ⇒ α = 20
′′
. (1.34)

The above value is consistent, in the limit of experimental errors, with the current
astronomical observations, and this therefore seems to support the hypothesis that
the velocity of the light is c only with respect to the ether.

Fig. 1.6 Aberration of starlight: Figure to the left and to the right are referred to S′ and S, respec-
tively
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This experimental evidence, however, relies on the measure of the change in the
direction of the light ray, which is an effect of order V

c , but does not verify that its
actual speed c′ differs from c according to Eq. (1.33). To ascertain this we should be
able to detect a non-vanishing difference c′ − c, which, as observed in the analogous
case of the sound waves, is an effect of order V 2

c2
, that is, in our case,

c′ =
√

V 2 + c2 = c

√
1 + V 2

c2
⇒

(
c′ − c

c

)
� V 2

c2
≈ 10−8.

To verify so tiny an effect, it is therefore necessary to set up an experiment with a
very high sensitivity. In 1886 Michelson and Morley realized such an experiment.
The main idea behind it is that, if the ether existed, and if two light signals were
emitted on the earth, one in the direction of its motion (with velocity V relative to
the ether frame), and the other in the opposite direction, their velocities with respect
to the earth would be c − V and −(c + V ), respectively (Fig. 1.7). The experiment
was so designed as to make two light rays, emitted by the same source, interfere
after having traveled back and forth along two orthogonal paths. Under the ether
hypothesis, a rotation of the interferometer by 90◦ would have changed the velocity
of each light signal with respect to the earth, and this would have resulted in a shift
of the interference fringes due to the change in the optical paths of the two beams.

The result of the experiment was negative, indicating that, with respect to the
inertial frame tied to the earth, the velocity of light is c in every direction. Thus,
either the earth reference frame is the ether frame where the velocity of light is
the same in the every direction (this would give the earth back a central role in the
Universe, four hundred years after Copernicus), or this result should be taken as the
evidence that the ether frame, and the ether itself as a physical substance, does not
exist.

The outcome of the Michelson and Morley experiment has been later confirmed
by an unaccountable number of other experiments, in the course of the last century,
and can be regarded as the first experimental evidence that the velocity of light is the

Fig. 1.7 Two light rays emitted from earth in opposite directions
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same in every inertial frame. It is also consistent with the more general assumption
that all the laws of physics, including electromagnetism, have the same form in every
inertial frame, in agreement with the principle of relativity.

1.3 Lorentz Transformations

According to our discussion in the previous section, the apparent contradiction
between the principle of relativity and the constancy of the speed of light, finds its
natural solution in the possibility that the Galilean transformations, used for imple-
menting the principle of relativity in classical mechanics, are not the correct trans-
formation laws relating the fundamental kinematic quantities x, y, z, t in different
inertial frames. Indeed, as we have seen, the use of the Galilean composition law for
velocities leads to a speed of light which depends on the reference frame.

To find how the Galileo transformations must be amended, Einstein assumed as
fundamental postulates the principle of relativity, which must apply to every law
of physics (though restricted to inertial frames), and the following new proposition,
based on the experimental evidence discussed in the previous section, and known as
the principle of the constancy of the speed of light:

The speed of light in the vacuum is the same and is isotropic with respect any
inertial reference frame, regardless of the motion of the source.

Aswe shall see in the following, this latter assumption is crucial in order to extend
the validity of the principle of relativity from mechanics to electromagnetism and in
general to all physical laws.

Starting from these two postulates Einstein developed his theory of special rela-
tivity5 which led to a deep re-examination, from an operative point of view, of the
very concepts of space and time and thus of the meaning of space and time intervals
as well as of simultaneity. In particular the notions of absolute space and time, which
the whole classical mechanics was founded on, were questioned.

Consistently with his two postulates (the principle of relativity and of constancy
of the speed of light) Einstein proposed new transformation laws for space and time
intervals which are known by the name of Lorentz transformations since they were
originally formulated by the Dutch physicist Hendrik Lorentz, albeit with a different
interpretation. These new transformation laws, together with all their consequences,
represent the basis on which Einstein’s theory is constructed. It is clear that the basic
postulate Δt = Δt ′ used in deriving the Galileo transformations must be given up,
since, once taken for granted, the Galileo transformations are unavoidable.

To derive the new transformations let us start by writing down the most general
relation between the coordinates and times of a given event as seen from two inertial
frames S, S′. The validity of the principle of inertia in both frames a = 0 ⇔ a′ = 0

5Here special refers to the fact that it is restricted to inertial frames.
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requires that if the coordinates x, y, z depend linearly on time in S:

x = x0 + vx t,
y = y0 + vy t,
z = z0 + vz t,

also x ′, y′, z′ should depend linearly on t ′ in S′, and this can only happen if the
transformation is linear. We can therefore write:

x ′ = a11x + a12y + a13z + a14t + a,

y′ = a21x + a22y + a23z + a24t + b,

z′ = a31x + a32y + a33z + a34t + c,
t ′ = a41x + a42y + a43z + a44t + d.

(1.35)

Furthermore, for the sake of simplicity, we will also take the two frames, like in
the Galilean case, in the standard configuration, see Fig. 1.1. We shall see in the
following (see also Chap. 4) how the Lorentz transformations can be extended to
more general configurations.

We shall show presently, working in the standard configuration, that the twenty
undetermined coefficients appearing in (1.35) can be reduced by kinematical con-
sideration, to just one.

First of all, having chosen the origin of times t = t ′ = 0 as the time at which the
origins coincide O = O ′, it immediately follows that, in (1.35), a = b = c = d = 0,
so that x = y = z = 0 implies x ′ = y′ = z′ = 0.

Next we observe that the equation of the z′y′ plane, with respect to S has the form:

x = V t,

while for the observer S′ the corresponding equation reads

x ′ = 0, ∀t ′.

It then follows that
x ′ = α(V ) (x − V t), (1.36)

where the coefficient α(V ) must be independent of the coordinates and time, and
can then only depend on the “kinematic parameter” V .

Secondly, as the planes xz ed x ′z′ coincide at all times, y = 0 should imply y′ = 0
and this constrains the relation between y and y′ to have the following form

y′ = β(V ) y. (1.37)

Note that had we started with the opposite orientation of the x- and x ′-axes we would
have obtained:

y′ = β(−V ) y. (1.38)

http://dx.doi.org/10.1007/978-3-319-22014-7_4
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The simultaneous validity of Eqs. (1.37) and (1.38) requires β to be an even function
of V :

β(V ) = β(−V ), (1.39)

Furthermore the principle of relativity implies that nothing should change if we
exchange the roles of the two observers, that is if we consider S in motion with
respect to S′ with velocity−V ; in that case the primed coordinates become unprimed
and viceversa, so that we may also write:

y = β(−V ) y′. (1.40)

Combining the Eqs. (1.37) with (1.40) we readily obtain:

y = β(−V ) y′ = β(−V )β(V ) y = β2(V ) y ⇒ β2(V ) = 1.

which implies β(V ) = ±1. On the other hand, since we have orientated y and y′ in
the same direction, we must have β(V ) ≡ 1. By the same token we also find z = z′.

Thus the first three equations of the transformations (1.35) take the simple form:

x ′ = α(V ) (x − V t), (1.41)

y′ = y, (1.42)

z′ = z. (1.43)

Let us now consider the fourth equation involving the time variable t ′. Solving
Eq. (1.41) with respect to t we find:

t = 1

V

(
x − x ′

α(V )

)
, (1.44)

Using the same argument which led to Eq. (1.38), if we consider S in motion with
velocity −V with respect to S′, the equation obtained from (1.44) by replacing t ′
with t , x with x ′ and V with −V must also be true:

t ′ = − 1

V

(
x ′ − x

α(−V )

)

= − 1

V

(
α(V )(x − V t) − x

α(−V )

)

= α(V ) t + 1

V

(
1

α(−V )
− α(V )

)
x . (1.45)

We may then rewrite the transformation (1.45) as follows:

t ′ = α(V ) t + δ(V ) x . (1.46)
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Fig. 1.8 Light signal as seen by S and S′

where we have set

δ(V ) = 1

V

(
1

α(−V )
− α(V )

)
. (1.47)

By simple considerations we have reduced the problem of determining all the coef-
ficients in (1.35), to that of computing a single function α(V ).

This coefficient will be now determined by implementing the principle of con-
stancy and isotropy of the speed of light.

Let us suppose that at t = t ′ = 0, when O ≡ O ′, a light (or electromagnetic
wave) source emits a signal isotropically, see Fig. 1.8. According to this principle,
the signal propagates isotropically with the same constant speed c for both observers
S and S′. Thus with respect to the two frames the wave front of the electromagnetic
signal will be described by spheres of radii r = c t and r ′ = c t ′ respectively. The
equations for the wave front of the spherical wave are thus given by:

x2 + y2 + z2 − c2t2 = 0, (1.48)

for the observer S, and
x ′2 + y′2 + z′2 − c2t ′2 = 0, (1.49)

for the observer S′.
Since the four coordinates (x, y, z, t) and (x ′, y′, z′, t ′) refer to the same physical

events, that is the locus of points reached by the signal at a fixed time, they must hold
simultaneously. We must then have:

x2 + y2 + z2 − c2t2 = κ
(

x ′2 + y′2 + z′2 − c2t ′2
)

. (1.50)

where κ is a constant.



1.3 Lorentz Transformations 21

If we now substitute the expression of x ′, y′, z′, t ′ in terms of x, y, z, t as given
by Eqs. (1.41), (1.42), (1.43) and (1.46), in Eq. (1.50), we obtain:

x2 + y2 + z2 − c2t2 = κ
[
α2(x − V t)2 + y2 + z2 − c2(αt + δx)2

]
, (1.51)

and this relation must be an identity in (x, y, z, t).
Comparing the coefficients of z and y on both sides, we immediately find κ = 1.
Next, equating the coefficients of t2, one finds:

−α2(V ) V 2 = c2
(
1 − α2(V )

)
⇒ α(V ) = ± 1√

1 − V 2

c2

.

Since at t = t ′ = 0, x and x ′ have the same orientation, we conclude that:

α(V ) = α(−V ) = 1√
1 − V 2

c2

. (1.52)

One can easily verify that, with the above value of α(V ), also the coefficients of x2

and x t are equal. The transformation laws (1.41), (1.42), (1.43) and (1.46) now take
the following final form

x ′ = γ(V ) (x − V t), (1.53)

y′ = y, (1.54)

z′ = z, (1.55)

t ′ = γ(V )

(
t − V

c2
x

)
, (1.56)

where

γ(V ) ≡ 1√
1 − V 2

c2

> 1. (1.57)

Equations (1.53)–(1.56) are the Lorentz transformations. They represent the correct
transformation laws connecting two inertial frames, which allow to extend the prin-
ciple of relativity to electromagnetism, as we shall discuss in detail in Chap.5. In the
present chapter and in the following one we shall deal with the consequences of the
Lorentz transformations in kinematics and dynamics.

One can verify, however, that the well established equations of classical mechan-
ics, which are covariant under Galilean transformations, are not covariant under
Lorentz transformations. It seems as if, by requiring the principle of relativity to
hold for electromagnetism, we loose its validity in mechanics. In order to solve
this apparent inconsistency, we should consider the fact that, until the beginning of
the twentieth century, before the discovery of the subnuclear physics and of certain

http://dx.doi.org/10.1007/978-3-319-22014-7_5
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astrophysical phenomena, all the known physical processes involved bodies moving
at speeds which are much lower than the speed of light. Now it is easy to show that
the Lorentz transformations actually reduce to the Galilean transformations in the
limit in which the velocity of the moving frame V is much smaller than c. Indeed,
in this situation, applying the Taylor expansion to the factor γ(V ) in Eq. (1.53) and
neglecting terms of order V 2

c2
,6 we find

γ(V ) = 1√
1 − V 2

c2

� 1 + 1

2

V 2

c2
+ O

(
V 4

c4

)
� 1.

With the same approximation we may also set t − V
c2

x � t . Thus in this limit the
Lorentz transformations (1.53) reduce to theGalilean ones (1.4). The laws of classical
mechanics should then be regarded as valid only in the limit in which velocities are
much smaller than the speed of light (non-relativistic limit).

It is often useful to deduce from equations (1.53) the relation between the compo-
nents of the relative position vector and the time lapse between two events occurring
at points A and B and at different times. Let (xA, yA, z A), (xB, yB, zB) be the coor-
dinates of A and B, respectively, and tA, tB the times of the corresponding events,
as measured in S, and let the primed symbols refer, as usual, to the same quantities
relative to S′. Writing (1.53) for the two events in A e in B and subtracting the former
from the latter we obtain:

Δx ′ = γ(V )(Δx − V Δt), (1.58)

Δy′ = Δy, (1.59)

Δz′ = Δz, (1.60)

Δt ′ = γ(V )

(
Δt − V

c2
Δx

)
, (1.61)

where we have set:

Δx = xB − xA ;Δx ′ = x ′
B − x ′

A,

Δt = tB − tA ;Δt ′ = t ′B − t ′A.

Equation (1.61) implies that, in contrast to Galilean transformations, the time lapse
between two events is no longer invariant since Δt �= Δt ′. The postulate of absolute
time (and thus of absolute space), as anticipated, are then inconsistent with the
principles of relativity and of constancy of the speed of light and thus should be
given up.

6To have an idea of this approximation, consider a very high velocity like, for instance, that of the
earth around the sun, which is about V ≈ 3 × 104 m/s. In this case we have V 2/c2 ≈ 10−8.
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1.4 Kinematic Consequences of the Lorentz Transformations

Let us now discuss some properties and physical implications of the Lorentz
transformations.

Reciprocity: We have already observed that, according to the principle of relativ-
ity, it is equivalent to say that S′ is moving at velocity V with respect to S, or that S is
movingwith velocity−V with respect to S′. This in particular implies that the inverse
Lorentz transformations (1.53) expressing (x, y, z, t) in terms of (x ′, y′, z′, t ′) can
be obtained by simply interchanging in (1.53) primed with unprimed coordinates,
and V with −V . Indeed if we invert equations (1.53), we find:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x = γ(V ) (x ′ + V t ′),
y = y′,
z = z′,
t = γ(V )

(
t ′ + V

c2
x ′

)
,

(1.62)

in accordance with the rule illustrated above.

Symmetry Between Space and Time Intervals: There is no doubt that the major
difference between Lorentz and Galilean transformations is the fact that the former
imply a non-trivial transformation of time intervals as opposed to the latter which
are based on the assumption of absolute time. In the former, there is, moreover, a
strong similarity between the transformation properties of space and time intervals
which becomes apparent if we use as new time coordinate x0 ≡ c t . In this notation
the spatial and time coordinates all have the same physical dimensions of a length.
Denoting x, y, z by x1, x2, x3 and defining the dimensionless number β = V/c, the
Lorentz transformations take the following form:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x1
′ = γ(V )(x1 − βx0),

x2
′ = x2,

x3
′ = x3,

x0
′ = γ(V ) (x0 − β x1),

(1.63)

where the symmetry between the transformation laws of spatial and time coordinates
is evident as they all appear in the above equations on an equal footing.7

The Speed of Light as the Maximum Velocity: Let us first observe that if S′

were moving at a velocity V > c with respect to S, the factor γ =
√
1 − V 2

c2
would

be purely imaginary and thus the transformations (1.53) physically meaningless.

7The reader should not mistake the upper labels of the space-time coordinates x0, x1, x2, x3 as
powers of a quantity x! The mathematical difference between quantities labeled by upper and lower
indices will be extensively discussed in the following chapters.
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Let us now show that if we require the principle of causality to be valid in any
inertial reference frame, then no physical signal can travel at a speed greater than c.

Recall that the principle of causality states that if an event A causes a second
event B to occur, then the event A should always precede B in time: tA < tB . If this
principle were violated, no physical investigation would be possible, since no theory
would be predictive.

Let us then consider two events A e B taking place in the reference frame S along
the x-axis at the points xA, xB at the times tA and tB , respectively, and assume that
in the frame S the event in A precedes the event in B, that is tB − tA ≡ Δt > 0.
Now we ask whether is it possible to find a new reference frame S′ where Δt ′ < 0,
i.e. where the event in B precedes the event in A.

Suppose the answer is positive, so that if Δt > 0 in S, there exists a frame S′ in
which Δt ′ < 0. Using Eq. (1.61) we then find

Δt ′ < 0 ⇒ Δx

Δt
>

c2

V
> c, (1.64)

and this can only happen if

Δt <
V

c2
Δx <

Δx

c
, (1.65)

where we have used V
c < 1.

On the other hand Δx
c has the meaning of the time τAB that a light ray takes to

cover the distance Δx = xB − xA; therefore the condition will be satisfied if:

Δt < τAB . (1.66)

When Eq. (1.66) holds one immediately finds that the velocity V of S′ with respect
to S must satisfy the inequality:

V > c
Δt

τAB
, (1.67)

what is certainly possible with V < c.
Having established under what condition it is possible to invert the chronological

order of two events by a change of reference frame, let us now assume that the event
A sends a physical signal at a velocity c′ > c and that this signal determines the
occurrence of the event B. (For example, with reference to Fig. 1.9, the event A can be
the pressing of a switch by the observer S at tA with the emission of a hypothetical
signal of velocity c′ > c whose effect in B is the lighting of a lamp at a later
time tB).

In this case the inequality (1.66) is certainly satisfied since Δt = Δx
c′ and c′ > c.

We then reach the conclusion that, if a signal propagating at velocity c′ > c
existed, that is if it were possible to transmit information at a velocity greater than c,
then two causally related events in one reference frame would appear in a different
frame in the inverse temporal sequence, thus violating the principle of causality,
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Fig. 1.9 Event A causing event B

since the effect would precede its cause. Since we can not give up the principle of
causality, we conclude that:

No physical signal can propagate at a velocity greater than the speed of light.

Time Dilation: Equation (1.61) provides the explicit transformation law for the
time intervals.

Consider a reference frame S′ in motion at a constant speed V relative to another
frame S (the standard configuration of the two frames is understood). Suppose an
observer in S is measuring the time lapse Δt = tB − tA between two events A and
B which occur in S′ at the same place but at different times, so that t ′B > t ′A (for
instance two successive positions of the second hand of a clock at rest in S′). If the
events occur in S′ along the x ′-axis, we then suppose Δx ′ = x ′

B − x ′
A = 0. From

Eq. (1.58) it then follows that Δx = V Δt . Substituting this relation in (1.61) we
find

Δt ′ = γ(V )

(
Δt − V

c2
Δx

)
= Δt γ(V )

(
1 − V 2

c2

)
= Δt

γ(V )
. (1.68)

We conclude that the time lapse measured in S is

Δt = γ(V )Δt ′ > Δt ′. (1.69)

This means that if an observer at rest in the frame S′ measures a time interval Δt ′,
an observer in S will measure a lapse Δt greater than Δt ′ by a factor γ(V ). As an
example, let S′ be a spacecraft traveling at a high velocity V relative a laboratory
frame S on earth, and let time in S and S′ be measured by two identical clocks.
Suppose the observer in S measures the rate at which the clock inside the spacecraft
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ticks. He notices that the clock in S′ runs more slowly than his, that is time on the
spacecraft flows more slowly than on earth.8

Relativity of Simultaneity: Another consequence of the transformation law for
time is the relativity of simultaneity. Indeed, let us consider again the inertial frames
S and S′, and suppose that A e B are two events which are simultaneous in S, namely
tA = tB, (Δt = 0). When observed by S′ the two events will be separated by a time
interval

Δt ′ = −γ(V )
V

c2
Δx �= 0. (1.70)

This implies that two events which are simultaneous in S,but occur at different points,
are not simultaneous with respect to a frame S′ in motion with respect to S.

We refer the reader to Appendix H for a further elaboration on this issue.

Length Contraction: The fact that simultaneity between events is not an absolute
concept implies that the distance between two points depends on the particular ref-
erence frame in which it is measured.

Let us consider the situation described in Sect. 1.1, in which a rod is placed at rest
along the x ′-axis of a frame S′ moving with respect to S at velocity V = (V, 0, 0).
Let the endpoints A and B of the rod be located in the points x ′

B and x ′
A. We can

repeat one by one the arguments given in Sect. 1.1, from formula (1.10) to formula
(1.12), using now the Lorentz transformations instead of the Galilean ones. In S′ the
length is defined as:

Δx ′ ≡ L ′ = x ′
B − x ′

A.

while the same length is measured in S as the difference between the coordinates of
the endpoints taken at the same time, that is simultaneously:

Δx = L = xB(tB) − xA(tA) ≡ xB(t) − xA(t),

where we have set t = tB = tA. From Eq. (1.53) we then find:

L ′ = Δx ′ = γ(V ) (Δx − V Δt) = γ(V )Δx = γ(V ) L ,

that is:
L = γ(V )−1 L ′.

Since γ(V )−1 = (1 − V 2

c2
)
1/2

< 1, the observer S in motion with respect to the rod

will measure a length L contracted by the factor γ(V )−1 with respect to L ′, which
is the length of the object at rest. The conclusion is that:

8Note that the time dilation is a relative effect, that is if we have a clock at rest in S, from Eq. (1.61)
it follows that Δt ′ = γ(V ) Δt , that is time in S′ is dilated with respect to S. The same observation
applies to the length contraction to be discussed in the following.
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The length L of an object in motion is contracted with respect its length L ′ at rest:

L =
√
1 − V 2

c2
L ′ < L ′. (1.71)

We note, instead, that lengths along the directions perpendicular to that of the relative
motion are not affected by the motion itselfΔy = Δy′,Δz = Δz′. This in particular
implies that a volume ΔV = ΔxΔyΔz transforms like the length of a rod parallel
to the motion, namely:

ΔV = 1

γ
ΔV ′ < ΔV ′. (1.72)

This in turn has the important consequence that the concept of rigid body, so useful
un classical mechanics, looses its meaning in the framework of a relativistic theory,
see Appendix H.

1.5 Proper Time and Space-Time Diagrams

We have learned, in the previous section, that both time and spatial intervals depend
on the reference frame, that is, space and time are not absolute as they were in
Newtonian mechanics, rather their transformation laws are combined in such a way
that only the velocity of light is absolute. Note that, in the standard configuration, the
transformation properties (1.58), (1.61) ofΔx andΔt under Lorentz transformations
are reminiscent of theway inwhich the components of a vector on the plane transform
under a rotation of the corresponding coordinate axes. It is then natural to describe
the effect of a change in the inertial frame as a kind of “rotation” of the space and time
axes x, t . Considering also the other two coordinates y, z, which do not transform if
the two inertial frames are in the standard configuration, one may regard a Lorentz
transformation as a kindof “rotation” in a four-dimensional space, the fourth direction
being spanned by the time variable.

A more precise definition of this kind of rotation will be given in Chap.4; for the
time being we call this four-dimensional space of points space-time or Minkowski
space. Every point in space-time defines an event which occurs at a point in space
of coordinates x, y, z, at a time t , and is labeled by the four coordinates t, x, y, z.

In three-dimensional Euclidean space R
3 a rotation of the coordinate axes

imply a transformation in the components Δx,Δy,Δz of the relative position
vector between two points, which however does not affect their squared distance
|Δx|2 = Δx2 + Δy2 + Δz2. In analogy to ordinary rotations in Euclidean space, a
Lorentz transformation preserves a generalized “squared distance” between events
in Minkowski space which generalizes the notion of distance between two points in
space. To show this let us recall that, in determining the Lorentz transformations, we
required the equality:

http://dx.doi.org/10.1007/978-3-319-22014-7_4
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x2 + y2 + z2 − c2 t2 = x ′2 + y′2 + z′2 − c2 t ′2. (1.73)

the left- and right-hand sides of this equation being separately zero, in accordance
to the constancy of the speed of light in every inertial frame. The two events in A
and B, in that case, were the emission of a spherical light wave in O = O ′ at the
time t = t ′ = 0 and the passage of the spherical wave-front through a generic point
of coordinates x, y, z, t and x ′, y′, z′, t ′, respectively. Consider now a light wave
which is emitted in a generic point, instead of the origin, at a generic time, and let
the spherical wave propagate for a time Δt in S. Equation (1.73) can be written as:

|Δx|2 − c2Δt2 ≡ Δx2 + Δy2 + Δz2 − c2 Δt2

= Δx ′2 + Δy′2 + Δz′2 − c2 Δt ′2 = |Δx′|2 − c2Δt ′2. (1.74)

It is now a simple exercise to verify that equality (1.74) holds even if the two events
do not refer to the propagation of a light ray. It is sufficient to express the primed
quantities on the right-hand side in terms of the unprimed ones by using the Lorentz
transformations (1.58)–(1.61). One then finds that Eq. (1.74) is identically satisfied.
Defining the four-dimensional distance Δ�, also called proper distance between two
events, as

Δ�2 = |Δx|2 − c2Δt2. (1.75)

Equation (1.74) then implies that:
The proper distance between two events in space-time is invariant under Lorentz

transformations. In particular, if there exists a frame where the two events are simul-
taneous, Δt = 0, the proper distance reduces in that frame to the ordinary distance
Δ� = |Δx|.

While the proper distance has the dimension of a length, we may define an anal-
ogous Lorentz-invariant quantity, called proper time interval Δτ , having dimension
of a time, as follows:

Δτ2 = Δt2 − 1

c2
|Δx|2 = − 1

c2
Δ�2. (1.76)

Both Δ� and Δτ , being proportional to each other, are referred to as space-time
intervals. If we consider the reference frame, say S′, where a body is at rest, then,
since in this frame Δx′ = 0, we have:

Δτ2 = Δt ′2,

so that the physical meaning of the proper time intervalΔτ is that of the time interval
between two events occurring at the same spatial point. In any other frame S, being
Δx �= 0, the time intervalΔt will be different, their relation being given byEq. (1.69).
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Writing Eq. (1.76) in infinitesimal form (that is referring to infinitely close events),
we find

dτ2 = dt2 − 1

c2
|dx|2 = dt2

(
1 − V 2

c2

)
,

since
∣∣ dx

dt

∣∣ is the velocity V of the frame S′ attached to the particle. It follows

dt = γ(V ) dτ .

consistently with (1.69).

1.5.1 Space-Time and Causality

When studying the properties of the Lorentz transformations we have seen that if two
events are causally related, namely if event A determines the occurrence of event B,
then they must be connected by some physical signal, having a velocity v ≤ c and
carrying to B the information of what happened in A (when A and B are the events
describing the passage of a particle through two points along its trajectory, it is the
very particle which carries the information).

Let Δx and Δt be the relative position vector and time lapse between the two
events; then the velocity of the signal will be:

v = Δx
Δt

,

and we must have |v| ≤ c for the two events to be causally related.
Looking at the definition of proper time, given in Eq. (1.76), we see that in this

case we have:
Δτ2 ≥ 0, (1.77)

or, equivalently
Δ�2 ≤ 0. (1.78)

Indeed:

Δτ2 ≥ 0 ⇔ c2 Δt2 − |Δx|2 = Δt2(c2 − |v|2) ≥ 0 ⇔ |v| ≤ c.

We conclude that two events can be causally related, that is connected by a physical
signal traveling at a velocity |v| ≤ c, if and only if Δτ2 ≥ 0 or, equivalently,
Δ�2 ≤ 0.

When (1.77) is strictly satisfied (i.e. when Δτ2 > 0) we say that the space-time
interval between the two events is time-like, since we can always find a reference
frame where the two events occur at the same point in space (|Δx| = 0). Indeed,
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referring to the Lorentz transformation between two frames in the standard config-
uration, (Δy = Δy′ = Δz = Δz′ = 0) from Eq. (1.58) we see that

|Δx′| ≡ Δx ′ = γ(V )Δt

(
Δx

Δt
− V

)
,

and since Δx
Δt < c for a time-like interval, Δx ′ = 0 in a new Lorentz frame moving

at velocity V = Δx
Δt .

If Δτ2 = 0, the proper distance between the two events is zero and the corre-
sponding space-time interval is called light-like, since the two points in space-time
can only be related by a light signal: v = c.

If instead the proper time interval between two events A and B is negative

Δτ2 < 0 ⇔ Δ�2 > 0 (1.79)

the interval is called space-like. In this case the two events cannot be causally related,
since from Eq. (1.75) |Δx|/Δt ≡ v > c, implying that no physical signal originating
from A, can ever reach the point B at a distance |Δx| during the time Δt .

In this case, however, it is possible to find a new reference frame where the two
events are simultaneous; indeed, if

Δτ2 < 0 ⇒ Δx

Δt
> c, (1.80)

from Eq. (1.61) it follows that we can choose a reference frame S′, moving at a speed
V < c relative to S given by

V = c2
Δt

Δx
< c, (1.81)

with respect towhichΔt ′ = 0. If, moreover,V satisfies the inequality c > V > c2 Δt
Δx

we can find a frame in which the chronological order of the two events is inverted.
It is useful to give a geometric representation of space-time, (that is of Minkowski

space) supposing, for obvious graphical reasons, to have a two-dimensional Euclid-
ean space spanned by the coordinates x, y instead of a three-dimensional one. The
time direction will be represented by an axis perpendicular to the xy-plane. It is
also convenient to measure time in units c t , so that all the coordinates of an event,
represented by a point in this space, share the same dimension. The origin O of this
coordinate system represents an event which has occurred in the point x = y = 0 at
t = 0, see Fig. 1.10.

All the points A whose proper distance �2 fromO is time-like or light-like c2τ2 ≡
−�2 = c2 t2 − |x|2 ≥ 0 are enclosed within a cone in Minkowski space named the
light-cone. As discussed earlier, there can be a causality relation between the event in
O and any other point inside the light-cone. More precisely, referring to the figure,
O can determine the occurrence of A at t > 0 (A is said to belong to the future
light-cone of O), while it can have been determined by an event A′ at t < 0 (A is
said to belong to the past light-cone of O); in any case the physical signal correlating
the two events travels at v ≤ c (Fig. 1.10).
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Fig. 1.10 Light-cone

Any event outside the light-cone instead, like the point B in the figure, is separated
from O by a space-like interval τ2 = −c2�2 = c2t2 − |x|2 < 0, and thus can not be
in any causal relation with it.

For the sake of simplicity we have just discussed the possible causal relations of
events with a particular one located at origin of our space-time coordinate system.
More generally we may associate with any event A its own light-cone dividing all
events into two sets: Those in the interior of the cone,Δτ2 ≥ 0, which can be causally
related to A, and those outside the cone, Δτ2 < 0 which can not be correlated to A.

Let us focus on the plane described by the time- and x-axes and relabel the
corresponding coordinates as follows: x0 ≡ c t, x1 ≡ x . We choose these axes to
be orthogonal and their equations in this plane are x1 = 0, x0 = 0, respectively.
Going to another reference frame S′, by a Lorentz transformation, the old coordinates
x0, x1 are related to the new ones x ′0, x ′1 as follows:

x ′1 = γ(x1 − β x0),

x ′0 = γ(x0 − β x1),
(1.82)

so that the new time and x ′-axes (x ′1 = 0, x ′0 = 0, respectively) are described, in
the old coordinates, by the equations:

x1 = β x0,

x0 = β x1.
(1.83)
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This means that the c t ′- and the x ′-axes, describing space-time in the new frame,
are rotated by an angle α with respect to the original c t- and x-axes, the former in
the clockwise direction and the latter in the counterclockwise direction, the angle α
being given by:

tgα = β = v

c
< 1,

so that |α| < π
4 . This explains geometrically why points inside the light-cone can

always be brought, by means of a suitable Lorentz transformation, to the same point
in space (x = y = 0) by the clockwise rotation of the time axis, while events outside
the light-cone can be always made simultaneous to t = 0 by the counter-clockwise
rotation of the x-axis.

1.6 Composition of Velocities

So far we have examined the implication of the Lorentz transformations as far as
space and time intervals are concerned. Let us now consider how the velocities
transform under Lorentz transformations. In contrast to what we did for the Galilean
transformations, we can not simply differentiate both sides of Eqs. (1.58)–(1.60) with
respect to time since dt �= dt ′. To find the correct relations we consider again two
frames of reference S e S′ as in Fig. 1.1, and a particle moving at velocity v = dx/dt
with respect to S and v′ = dx′/dt ′ with respect to S′. Restricting, as usual, to
the standard configuration where the velocity of S′ with respect to S is (V, 0, 0),
Eqs. (1.58)–(1.60), can be written in infinitesimal form:

dx ′ = γ(V )(dx − V dt),

dy′ = dy,

dz′ = dz,

dt ′ = γ(V )

(
dt − V

c2

)
.

From the above equations we easily find:

v′
x = dx ′

dt ′
= dx − V dt

dt − V
c2

dx
= vx − V

1 − V vx
c2

,

v′
y = dy′

dt ′
= dy

γ(V )
(

dt − V
c2

dx
) = vy

γ(V )
(
1 − V vx

c2

) ,

v′
z = vz

γ(V )
(
1 − V vx

c2

) .
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We have thus derived the following composition laws for velocities:

v′
x = vx − V

1 − V vx
c2

,

v′
y = vy

γ(V )
(
1 − V vx

c2

) , (1.84)

v′
z = vz

γ(V )
(
1 − V vx

c2

) .

The different forms of the transformation of the x- component of the velocity v,
parallel to the relative velocity V between the two frames, with respect to the y-
and z-components (orthogonal to V) is obviously due to our choice of the standard
configuration.

In the non-relativistic limit V, |v| � c, we can neglect V 2/c2 and V vx/c2 with
respect to 1, so that:

γ(V ) � 1 + 1

2

V 2

c2
+ · · · � 1,

1

1 − V vx
c2

� 1 + V vx

c2
+ · · · � 1,

and we retrieve the Galilean composition laws of velocities.

v′
x = vx − V,

v′
y = vy,

v′
z = vz .

From Eqs. (1.84) we can easily verify that the composition of two velocities |V| ≤ c
and |v| ≤ c can never result in a velocity |v′| ≥ c, in agreement with the fact that no
signal or body can travel at a velocity greater than the speed of light. We can prove
this property as follows:

|v′|2 = 1(
1 − V vx

c2

)2
[
(vx − V )2 +

(
1 − V 2

c2

)
(v2y + v2z )

]

= 1(
1 − V vx

c2

)2
[
|v|2 − 2vx V + V 2 − V 2

c2
(v2y + v2z )

]

= 1(
1 − V vx

c2

)2
[
|v|2 − 2vx V + V 2 − V 2

c2
(|v|2 − v2x )

]



34 1 Special Relativity

= 1(
1 − V vx

c2

)2
[

c2 − c2 + |v|2 − 2vx V + V 2 − V 2

c2
(|v|2 − v2x )

]

= 1(
1 − V vx

c2

)2
[

c2
(
1 − V vx

c2

)2

− c2
(
1 − |v|2

c2

) (
1 − V 2

c2

)]
,

from which it follows that

|v′|2
c2

= 1 − 1(
1 − V vx

c2

)2
(
1 − |v|2

c2

) (
1 − V 2

c2

)
≤ 1,

since |v| ≤ c e V ≤ c. In particular if |v| = c, then also |v′| = c, and we find that
the velocity of light is the same in every inertial reference frame.

This concludes the examination of the kinematical effects of the Lorentz trans-
formations. For the sake of simplicity we have used throughout standard Lorentz
transformations, as defined in Sect. 1.3. More general transformations where the rel-
ative velocity V is not directed parallel to the x-axis do not affect the kinematical
effects examined so far, as will be seen in the next chapter. Even the change of inertial
frame due to rotations and translations of the reference frame as well as the change
of the origin of the time coordinate do not affect the relativistic kinematics since they
do not involve the relative velocity between the frames, on which all the kinematical
effects depend. The explicit form of this more general change of frames will be dis-
cussed at the end of the next chapter, after the discussion of the relativistic dynamics.
Indeed a physical theory obeying the principle of relativity must be covariant under
any change of inertial frame and we shall see that the relativistic dynamics and the
Maxwell theory satisfy this requirement.

1.6.1 Aberration Revisited

The fact that the speed of the light c is the same in every inertial system, does not
imply that its direction of propagation is invariant under Lorentz transformations.
We will illustrate this in the example of the aberration of starlight, which has already
been discussedwithin the framework of theGalilean transformationswhere it seemed
to find a natural explanation. Referring to the same configuration considered in that
discussion, let us suppose that a light ray in the fixed-star frame S reaches a telescope
on earth (frame S′) with velocity: c = (0,−c, 0). Applying the composition laws of
velocities (1.84) we find:
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c′
x = 0 − V

1 − 0·V
c2

= −V,

c′
y = − 1

γ

c

1 − 0·V
c2

= − c

γ
, (1.85)

c′
z = 0, (1.86)

that is,

c′ =
(

−V,− c

γ
, 0

)
. (1.87)

It follows that in order for the light ray to be received by the observer in S′, the
telescope should be adjusted by an angle α with respect to the vertical x ′-direction,
given by:

tanα = γ
V

c
= 1√

1 − V 2

c2

V

c
. (1.88)

This formula, besides showing in a particular case how the direction of light changes
by a change in the reference frame, also illustrates why the Galilean transforma-
tion laws of velocities give a fairly good account of the phenomenon of aberration.
Indeed, comparing formula (1.88) with the Galilean expression (1.32), we see that
the relativistic correction given by the factor γ(V ) � 1− 1

2V 2/c2 � 1− 10−8 � 1,
is completely negligible, thus explaining why the observed phenomenon seemed to
be in accordance with the ether hypothesis. On the other hand, note that the same
formulae (1.88), give for the modulus of the velocity of the light signal

|c′|2 = c2

γ2 + V 2 = c2
(

1

γ2 + V 2

c2

)
= c2.

in agreement with the principle of the constancy of the speed of light (Fig. 1.11).
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Fig. 1.11 Aberration using Lorentz transformations
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1.7 Experimental Tests of Special Relativity

So far, apart from the aberration of starlight, we have never commented on the
experimental tests of special relativity.

Einstein’s special theory of relativity dates back to more than a century ago, over
the course of which, considerable advances have been made in our understanding of
the physical world, from the discovery of quantummechanics to the developments of
cosmology, and the formulation of the Standard Model for elementary particles. The
latter theory, which receives almost daily confirmations from experiments carried
out at the various particle accelerators all around the world, simply could not exist
without a relativistic extension of the original quantummechanics (called relativistic
quantum field theory). In the absence of Einstein’s theory, interaction processes
involving high-energy elementary particles would simply appear incomprehensible
while they are perfectly explained within the framework of relativistic kinematics,
which has never been contradicted by experiments so far. The same can be said for
our understanding of the universe as it results from the cosmological observations,
which are perfectly described byEinstein’s general theory of relativity,which extends
the results of special relativity to non-inertial frames of reference, thereby including
gravitation in the relativity principle (see late Chap. 3).

Nowadays the design of modern high-precision technological devices requires
taking into account relativistic corrections for their correct functioning.

We postpone to the following chapters a more detailed analysis of the impact
of special relativity on modern physics (restricting ourselves only to the quantum
description of electromagnetic interactions), and on technology (e.g. GPS devices).
For the time being it is interesting, from a historical point of view, to give a short
account of one of the first experimental evidences of special relativity, which dates
back to the thirties of the last century. In this experiment, which involved μ-mesons,
the phenomenon of time dilation and length contractions were first observed.

The μ-meson particles (or muons), which are about 200 times as heavy as the
electrons, can be produced in our laboratories, where they are observed to decay, in
a very short time, into an electron and two neutrinos (very light neutral fermions):

μ → e + ν̄e + νμ,

ν̄e and νμ being the electron (anti-)neutrino and the muon neutrino, respectively. The
measured mean lifetime τμ of μ-mesons which are approximately at rest, turns out
to be τμ � 2 × 10−6 s.

On the other hand a large amount of these particles is also produced from the
collisions of particles in the cosmic radiation against N2- and O2-molecules in the
top layers of the atmosphere. These muons are actually detected in our laboratories,
so that their velocity should be high enough as to reach our detectors before they
decay. If we were to perform a computation using classical Newtonian mechanics,
which is based on the assumption of absolute time, the mean lifetime of a muon is
the same in every inertial frame. Therefore the minimum velocity v for a μ particle

http://dx.doi.org/10.1007/978-3-319-22014-7_3
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to reach the surface of the earth would be approximately given by the height h of the
atmosphere divided its mean lifetime. In numbers:

v = h

τμ
≈ 0.5 × 1010 m/s > c.

Thus, according to Newtonian mechanics, they should have a velocity much greater
than c, while the actual measure of their velocity turns out to be less than c.

This apparent contradiction, however, disappears when we reconsider the compu-
tation of v in the framework of special relativity. Indeed we know that a time interval,
like the mean lifetime of a particle measured at rest, is not the same when measured
in a different reference frame; in our case we must consider the mean lifetime τ

(lab)
μ

of the decaying muon as measured in the laboratory frame S tied to the earth, and
the lifetime τμ measured in the frame S′, moving at velocity v towards the earth,

in which the particle is at rest. From Eq. (1.69) we deduce τ
(lab)
μ = γ(v) τμ. As a

consequence the velocity is given by:

v = h

τ
(lab)
μ

= 1

γ(v)

h

τμ
. (1.89)

Solving for v one finds:

v2 =
(
1 − v2

c2

)(
h

τμ

)2

= c2

c2 +
(

h
τμ

)2
(

h

τμ

)2

= 1

1 + 3.6 × 10−3 c2 < c2.

Thus the velocity that the meson must have to reach the earth is v ≈ 0.998 c < c, in
agreement with the experiments.

A possible objection to this result is the following: if we perform the computation
from the point of view of an observer moving with the meson, then its lifetime would
be measured at rest and so we should to use τμ instead of τ (lab)

μ . Note, however, that
the distance the meson should cover to reach the earth, as measured from its own
frame S′, would not be h, but rather

h′ = 1

γ(v)
h,

since now the distance h is not at rest, but in motion with velocity v in the reference
frame of the muon. Therefore, in S′ the distance h′ to cover is:

h′ = 1

γ(v)
h.
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And the corresponding velocity is

v = h′

τμ
= 1

γ(v)

h

τμ
,

in agreement with the computation made in the earth frame S (1.89).
In conclusion, in both cases we obtain a result in agreement with experiment; in

the former case by virtue of time dilation, in the latter case of length contraction.
As already stressed, uncountable phenomena where time dilation (or length con-

traction) is at work are observed in the elementary particle experiments. Indeed most
of the particles created in high energy scattering processes have velocities close to
the speed of light, so that the consequent time dilation can be easily observed.

In the next chapter, when discussing the implications of the Lorentz transforma-
tions on mechanics, other important consequences of the principle of relativity will
be examined.

1.7.1 References

For further reading see Refs. [1, 11, 12].



Chapter 2
Relativistic Dynamics

2.1 Relativistic Energy and Momentum

In the previous chapter we have seen that a proper extension of the principle of
relativity to electromagnetism necessarily implies that the correct transformation
laws between two inertial frames are the Lorentz transformations. The price we have
to pay, however, is that the laws of classical mechanics are no longer invariant under
changes in the inertial reference frame.1 We need therefore to re-examine the basic
principles of the Newtonian mechanics and to investigate whether they can be made
compatible with Einstein’s formulation of the principle of relativity which, together
with the principle of the constancy of the speed of light, requires invariance under
the Lorentz, rather than the Galileo, transformations.

We have indeed learned, form the discussion in the last chapter, that the relativistic
kinematics has an important bearing on the very concepts of space and time and, in
particular, of simultaneity, which are no longer absolute. This fact is incompatible
with some of the basic assumptions of classical mechanics. Let us recall that the
fundamental force of this theory, the gravitational force, is described as acting at-a-
distance. This gives rise to several inconsistencies from the point of view of special
relativity:

1. The instantaneous action of a body on another, implies the transmission of the
interaction at an infinite velocity. As we know, no physical signal can propagate
with a velocity greater than c. To put it differently, in the action at-a-distance
picture, the action of a body A and its effect, consisting in the consequent force
applied to B, are simultaneous events localized at different points (corresponding
to the positions of A and B respectively). Since simultaneity, in relativistic kine-
matics, is relative to the reference frame, there will in general exist an observer
with respect to which the two events are no longer simultaneous, or in which the
force is even seen to act on B before A exerts it, that is before A “knows” about B;

1Here by classical mechanics we refer to the Newtonian theory.

© Springer International Publishing Switzerland 2016
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Fig. 2.1 Action by contact

2. By the same token also Newton’s second law should be revisited. This equation
indeed relates the acceleration of a point-mass to the total force exerted on it by
all the other bodies, which is given by the sum of the individual forces taken at
the same instant, that is simultaneously. These forces in turn will depend on the
distances between the interacting objects. According to relativistic kinematics
both simultaneity and spatial distances are relative to the inertial observer and
thus, with respect to a different reference frame, the same forces will appear to
be exerted at different times and distances.

The previous considerations imply that a proper formulation of mechanics (and in
particular of dynamics) has to be given in terms of localized interactions, that is in
terms of an interaction which takes place only when the two interacting parts are in
contact and which is then localized in a certain point. This is in fact what happens
when two point-charges interact through the electromagnetic field. The interaction
is no longer represented as an action at-a-distance between the two charges but as
mediated by the electromagnetic field, and can be divided into two moments (see the
Fig. 2.1):

(a) a charge q1 generates an electromagnetic field;
(b) The field, which is a physical quantity defined everywhere in space, propagates

until it reaches the charge q2 located at some point and acts on it by means of a
force (the Lorentz force).

This mechanism is apparent when one of the two charges (say q1) is moving at a very
high speed. One then observes that the information about the position of the moving
charge is transmitted to q2 at the speed of light through the electromagnetic field,
causing the force acting on it to be adjusted accordingly with a characteristic delay
which depends on the distance between the two charges. In this action-by-contact
picture the interacting parts are three instead of just two: the two charges and the
field. The force acting on q2 is the effect of the action of the field generated by q1
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on q2. This implies that the action and the resulting force occur at the same time and
place (the position of q2) and this property is now Lorentz-invariant. Indeed if

Δt = |Δx| = 0, (2.1)

in a given frame, using the Lorentz transformations (1.58)–(1.61), we also have
Δt ′ = |Δx′| = 0 in any other frame. Thus the action-by-contact representation is
consistent with the principles of relativity and causality.

As for the electromagnetic interaction, we would also expect the gravitational
one to be mediated by a gravitational field. However, as we have mentioned earlier,
a correct treatment of the gravitational interaction requires considering non-inertial
frames of reference which goes beyond the framework of special relativity. In order
to discuss how classical mechanics should be generalized in order to be compatible
with Lorentz transformations (relativisticmechanics), we shall therefore refrain from
considering gravitational interactions.

Even in classical mechanics we can consider processes in which the interaction is
localized in space and time, so that the locality condition (2.1) is satisfied and we can
avoid the inconsistencies discussed above, related to Newton’s second law. These
are typically collisions in which two or more particles interact for a very short time
and in a very small region of space. Since the strength of the interaction is much
higher than that of any other external force acting on the particles, the system can be
regarded as isolated, so that the total linear momentum is conserved, and its initial
and final states are described by free particles. Let us focus on this kind of processes
in order to illustrate how one of the fundamental laws of classical mechanics, the
conservation of linear momentum, can be made consistent with the principle of
relativity, as implemented by the Lorentz transformations.

We shall first show that, if we insist in defining the mass as independent of the
velocity, then the conservation of momentum cannot hold in any reference frame,
thus violating the principle of relativity.2

Let us consider a simple process in which a mass m explodes into two fragments
of masses m1 = m2 = m/2 (or equivalently a particle of mass m decays into two
particles of equal masses, see Fig. 2.2). We shall assume the conservation of linear
momentum to hold in the frame S in which the exploding mass is at rest:

vm = 0 = m

2
v1 + m

2
v2 ⇒ v1 = −v2.

For the sake of simplicity we take the x-axis along the common direction of motion
of the particles after the collision, so that v1(y,z) = v2(y,z) = 0. Let us now check
whether the conservation of linear momentum also holds in a different frame S′.
We choose S′ to be the rest frame of fragment 1, which moves along the positive
x-direction at a constant speed V = v1(x) ≡ v1 relative to S, and let the explosion

2Here and in the rest of this chapter, when referring to the conservation of the total linear momentum
of an isolated systemof particles, we shall often omit to specify thatwe consider the totalmomentum
and that the system is isolated, regarding this as understood.

http://dx.doi.org/10.1007/978-3-319-22014-7_1
http://dx.doi.org/10.1007/978-3-319-22014-7_1
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Fig. 2.2 Decay of a particle
into two particles of equal
masses

Fig. 2.3 Same decay in the
rest frame of particle 1

occur at the instant t = t ′ = 0, see Fig. 2.3. In the frame S′, the velocity of the mass
m before the explosion is obtained by applying the relativistic composition law for
velocities (1.76):

v′
(m)x = 0 − v1

1 − 0·v1
c2

= −v1 = −V, v′
(m)y,z = 0.

Analogously, after the explosion, the velocities of the fragments in S′ are given by:

v′
1 ≡ v′

1x = 0, v′
2 ≡ v′

2x = −v1 − v1

1 + v21
c2

, v′
2y = v′

2z = 0.

Having computed the velocities in S′ wemay readily check whether the conservation
of linear momentum holds in this frame. It is sufficient to consider the components
of the linear momenta along the common axis x = x ′; before and after the explosion
the total momenta in S′ are given respectively by:

P ′
in = m v′

(m) = −m v1, (2.2)

P ′
f in = m

2
v′
1 + m

2
v′
2x = m

2
v′
2 = − m v1

1 + v21
c2

. (2.3)

http://dx.doi.org/10.1007/978-3-319-22014-7_1
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Since
m v1 �= m v1

1 + v21
c2

, (2.4)

we conclude that, in S′ the total momentum is not conserved. Or better, the principle of
conservation of linear momentum (as defined in classical mechanics) is not covariant
under Lorentz transformations thereby violating the principle of relativity. As such
it cannot be taken as a founding principle of the new mechanics. It is clear that,
just as the principle of relativity cannot be avoided in any physical theory, it would
also be extremely unsatisfactory to give up the conservation of linear momentum;
in the absence of it we would indeed be deprived of an important guiding principle
for building up a theory of mechanics. To remediate this apparent shortcoming, it is
important to trace back, in the above example, the origin of the non-conservation of
the total momentum.

For this purposewe note the presence of the irksome factor 1+ v2

c2
on the right hand

side of the inequality (2.4), which reduces to 1 in the non relativistic limit. This factor
derives from the peculiar form of the composition law of velocities, which, in turn,
originates from the non-invariance of time intervals under Lorentz transformations,
namely:

dt ′ = γ (V )

(
dt − V

c2
dx

)
= γ (V ) dt

(
1 − V vx

c2

)
.

Thus we see that the non-trivial transformation property of dt is at the origin of the
apparent failure of the conservation of momentum.

The same fact, however, gives us the clue to the solution of our problem: If
we indeed replace, in the definition of the linear momentum p of a particle, the
non-invariant time interval dt with the proper time dτ , which is invariant under a
change in the inertial frame, we may hope to have a conservation law of momentum
compatible with the Lorentz transformations.

Let us then try to define the relativistic linear momentum of a particle as follows:

p = m
dx
dτ

. (2.5)

Recalling the relation between dt and dτ , given by Eq. (1.76), and equations below,
of the previous chapter,

dτ = 1

γ (v)
dt =

√
1 − v2

c2
dt, (2.6)

we may write:

p = m
dx
dτ

= m γ (v)
dx
dt

= m(v) v, (2.7)

http://dx.doi.org/10.1007/978-3-319-22014-7_1
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Fig. 2.4 Collision

where
m(v) ≡ m γ (v) = m√

1 − v2

c2

. (2.8)

Note that the new definition of the relativisticmomentum, (2.7), can be obtained from
the classical one by replacing the constant (classical) mass m, with the velocity-
dependent quantity m(v), called the relativistic mass, so that the classical mass m
coincides with the relativistic one only when the body is at rest: m = m(v = 0). The
mass m is then called the rest mass of the particle.

Let us now show that the conservation law of linear momentum is relativistic,
provided we use (2.7) as the definition of the linear momentum of a particle. To prove
the validity of this principle we would need to consider the most general process of
interaction within an isolated system. For the sake of simplicity, we shall still restrict
ourselves to collision processes, in order to deal with localized interactions, between
two particles only. Consider then a process in which two particles of rest masses
m1, m2 and linear momenta p1, p2 collide and two new particles are produced with
rest masses and momenta μ1, μ2 and q1, q2, respectively, see Fig. 2.4.

We assume that, in a given frame S, the conservation of total linear momentum
holds:

p1 + p2 = q1 + q2. (2.9)

The above equation, using the definitions (2.7), can be rewritten in the following
equivalent forms

m1(v1)v1 + m2(v2)v2 = μ1(u1)u1 + μ2(u2)u1,

m1
dx1
dτ1

+ m1
dx1
dτ2

= μ1
dx̃1
d τ̃1

+ μ2
dx̃2
d τ̃2

,
(2.10)

where we have marked with a tilde the quantities referring to the final state.
For the purpose of writing the conservation law in a new reference frame, we shall

find it more useful to work with the second of Eqs. (2.10).
Let us consider now the process from a new frame S′ moving with respect to S

at constant speed, in the standard configuration. The two descriptions are related by
a Lorentz transformation. In particular, if we apply the Lorentz transformation to
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Eq. (2.10), we note first of all that the components of the same equation along the
y- and z-axes do not change their form since the lengths along these directions are
Lorentz-invariant (dy′ = dy, dz′ = dz), as well as the rest masses mi , μi and the
proper time intervals dτi , d τ̃i . We can therefore restrict to the only component of
Eq. (2.10) along the x-axis and prove that

m1
dx1
dτ1

+ m1
dx2
dτ2

= μ1
dx̃1
d τ̃1

+ μ2
dx̃2
d τ̃2

, (2.11)

has the same form in the frame S′, namely that it is covariant under a standardLorentz
transformation. This is readily done by transforming the differentials dxi , dx̃i in
Eq. (2.10), according to the inverse of transformation (1.58):

2∑

i=1

mi

(
dx ′

i

dτi
+ V

dt ′

dτi

)
γ (V ) =

2∑

i=1

μi

(
dx̃ ′

i

d τ̃i
+ V

dt ′

d τ̃i

)
γ (V ).

Let us now perform, using Eq. (2.7), the following replacement

d

dτ
= dt

dτ

d

dt
= γ (v)

d

dt
,

v being the velocity of the particle, so that, recalling the definition of the relativistic
momentum, (2.11) takes the following form3:

(∑

i

p′
xi −

∑

i

q ′
xi

)
= γ (V ) V

∑

i

(
miγ (v′

i ) − μiγ (u′
i )

)
,

where v′
i and u′

i , as usual, denote the velocities of the particles before and after the
collision in the frame S′. The above relation can also be written in vector form as
follows: (∑

i

p′
i −

∑

i

q′
i

)
∝

∑

i

(
mi (v

′
i ) − μi (u

′
i ), 0, 0

)
. (2.12)

3Note that γ (V ) = 1√
1− V 2

c2

is the relativistic factor associated with the motion of S′ relative to

S, while γ (v′
i ) = 1√

1− v′2
i

c2

and γ (u′
i ) = 1√

1− u′2
i

c2

are the relativistic factors depending on the

velocities of each particle and relate the time dt ′ in S′ to the proper times dτi , d τ̃i referred to the
rest-frames of the various particles, according to

⎧
⎪⎪⎨
⎪⎪⎩

dτi =
√
1 − v′2

i
c2

dt ′

d τ̃i =
√
1 − u′2

i
c2

dt ′.

http://dx.doi.org/10.1007/978-3-319-22014-7_1
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Since the right hand side contains only the difference between the sumof the relativis-
tic masses before and after the collision, it follows that, in order for the conservation
of linear momentum to hold in the new reference frame

∑

i

p′
i =

∑

i

q′
i , (2.13)

we must have: ∑

i

mi (v
′
i ) =

∑

i

μi (u
′
i ), (2.14)

that is the total relativistic mass must be conserved. From this analysis we can con-
clude that:

Given the new definition of linear momentum, (2.7), the conservation of momentum
is consistent with the principle of relativity, i.e. covariant under Lorentz transforma-
tions, if and only if the total relativistic mass is also conserved.

Let us emphasize the deep analogy between our present conclusion and the analo-
gous result obtainedwhen studying the covariance of the conservation lawofmomen-
tum under Galilean transformations in Newtonian mechanics (see Sect. 1.1.2).

2.1.1 Energy and Mass

We have seen that the concept of force as an action at a distance on a given particle
looses its meaning in a relativistic theory. However nothing prevents us from defining
the force acting on a particle as the time derivative of its relativistic momentum:

F = dp
dt

. (2.15)

Recalling the definition of p, namely, p = m(v) v, we find:

F = d

dt
(m(v)v) = dm(v)

dt
v + m(v)

dv
dt

,

Note that F is in general no longer proportional to the acceleration a = dv
dt . Writing

v = v u, where u is the unit vector in the direction of motion, we obtain

a = dv
dt

=
(

dv

dt

)
u + v2

ρ
n,

where, as is well known, the unit vector n is normal to u and oriented towards the
concavity of the trajectory, ρ being the radius of curvature.

http://dx.doi.org/10.1007/978-3-319-22014-7_1
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Computing the time derivative of the relativistic mass we find

dm(v)

dt
= m

d

dt

⎛
⎝ 1√

1 − v2

c2

⎞
⎠ = m(

1 − v2

c2

)3/2
v

c2
dv

dt
= m(v)

c2
v

1 − v2

c2

dv

dt
,

so that:

F = m(v)

(
1

1 − v2

c2

v2

c2
dv

dt
+ dv

dt

)
u + m(v)

v2

ρ
n = m(v)

1 − v2

c2

dv

dt
u + m(v)

v2

ρ
n.

We are now ready to determine the relativistic expression for the kinetic energy
of a particle by computing the work done by the total force F acting on it. For an
infinitesimal displacement dx = v dt along the trajectory, the work reads:

dW = F · dx = F · v dt = m(v)

1 − v2

c2

v
dv

dt
dt = 1

2

m(v)

1 − v2

c2

d(v2).

Integrating along the trajectory Γ (and changing the integration variable into x

= 1 − v2

c2
), we easily find:

W =
∫

Γ

F · dx =
∫

Γ

1

2

m(
1 − v2

c2

)3/2 dv2 = −c2

2
m

∫
dx

x3/2
= mc2

(
1

x1/2

)

= m√
1 − v2

c2

c2 + const. = m(v)c2 + const.

If we define the kinetic energy, as in the classical case, to be zero when the particle
is at rest, then the constant is determined to be −m(0)c2, so that, the kinetic energy
Ek acquired by the particle will be given by:

Ek(v) = m(v) c2 − m c2, (2.16)

where, from now on, m = m(0) will always denote the rest mass. Note that in the
non-relativistic limit v2/c2 � 1, we retrieve the Newtonian result:

Ek(v) = mc2√
1 − v2

c2

− mc2 � mc2
(
1 + 1

2

v2

c2

)
− mc2 = 1

2
mv2. (2.17)

where we have neglected terms of order O(v4/c4).
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Let us define the total energy of a body as:

E = m(v) c2, (2.18)

The kinetic energy is then expressed, in (2.16), as the difference between the total
energy and the rest energy, which is the amount of energy a mass possesses when it
is at rest:

Erest = E(v = 0) = m c2. (2.19)

To motivate the definition of the total energy of a particle given in (2.18), we prove
that the total energy in a collision process, defined as the sum of the total energies
of each colliding particle, is always conserved. This immediately follows from the
conservation of the total (relativistic) mass, which we have shown to be a neces-
sary requirement for the conservation law of momentum to be covariant. Indeed by
multiplying both sides of

m1(v1) + m2(v2) + · · · + mk(vk) = const.

by c2 and using the definition (2.18), we find

E1(v1) + E2(v2) + · · · + Ek(vk) = const.

This fact has no correspondence in classical mechanics where we know that, as
opposed to the total linear momentum, which is always conserved in collision
processes, the conservation of mechanical energy only holds in elastic collisions.
This apparent clash between the classical and the relativistic laws of energy conser-
vation is obviously a consequence of the fact that the rest energy can be transformed
into other forms of energy, like kinetic energy, etc. We can give a clear illustration of
this by considering again the collision of two particles with rest masses m1, m2 and
velocities v1 e v2. Suppose that the collision is perfectly inelastic, so that the two
particles stick together into a single one of rest mass M . It is convenient to describe
the process in the center of mass frame, in which the final particle is at rest. Let us
first describe the collision in the context of Newtonian mechanics. The conservation
of momentum reads:

p1 + p2 = P = 0,

or, equivalently

m1v1 + m2v2 = 0.

Moreover conservation of the classical mass is also assumed.

M = m1 + m2. (2.20)
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The initial and final mechanical (kinetic) energies are however different since

Ei
k = m1

v21

2
+ m2

v22

2
, E f

k = 0.

and thus

ΔEk = E f
k − Ei

k = −
(

m1
v21

2
+ m2

v22

2

)
�= 0.

In Newtonian physics, the interpretation of this result is that the kinetic energy of
the particles in the initial state is not conserved, while, from the thermodynamical
point of view it has been converted into heat, increasing the thermal energy of the
final body, that is the disordered kinetic energy of the constituent molecules.

Let us now describe the same process from the relativistic point of view.
Conservation of momentum and energy give the following two equations:

m1γ (v1)v1 + m2γ (v2)v2 = 0

m1(v1)c
2 + m2(v2)c

2 = M(0)c2

where we have set M(v = 0) = M(0). Using Eq. (2.16) to separate the rest masses
from the (relativistic) kinetic energies, we obtain

Ek(v1) + m1c2 + Ek(v2) + m2c2 = E f
k (0) + M(0)c2. (2.21)

where on the right hand side E f
k (0) ≡ E f

k (v = 0) = 0. It follows4

c2ΔM(0) ≡ c2(M(0) − m1 − m2) = − (0 − Ek(v1) − Ek(v2)) = −ΔEk . (2.22)

From the above relation we recognize that the loss of kinetic energy has been trans-
formed in an increase of the final rest mass M = M(0); thus M is not the sum of the
rest masses of the initial particles (as it was instead assumed in the classical case,
see Eq. (2.20)).

If we consider the inverse process in which a particle of rest mass M decays, in
its rest frame, into two particles of rest masses m1 and m2, we see that part of the
initial rest mass is now converted into the kinetic energy of the decay products. The
importance of this effect obviously depends on the size of the ratio (v2/c2).

These examples illustrate an important implication of relativistic dynamics: The
rest mass m of an object can be regarded as a form of energy, the rest energy m c2,
which can be converted into other forms of energy (kinetic, potential, thermal etc.).
Let us illustrate this property in an other example. Consider a body of mass M at
some given temperature: M will be given by the sum of the relativistic masses of its
constituent molecules, and its temperature is related to their thermal motion. If we

4Note that at order O(v2/c2) Eq. (2.21) can be written c2ΔM(0) = ( 12m1v
2
1 + 1

2m2v
2
2).
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now transfer an amount of energy E , in the form of heat, to the body, the total kinetic
energy of its molecules will increase by E , thereby implying an increase in the mass
by E/c2, M → M + E/c2. Since all forms of energy can be transformed into one
another and in particular into heat, we see that we can associate an equivalent amount
of energy E with any mass, and, in particular, with the rest mass m = m(0). Vice
versa to each form of energy there corresponds an equivalent amount of mass given
by m(v) = E/c2.

The equivalence between mass ed energy, which is expressed by Eq. (2.18) or,
equivalently, by

ΔE = Δm(v) c2, (2.23)

is one of the major results of Einstein’s theory of relativity. As a consequence, for a
system made of interacting parts we define the total energy as:

Etot = E0 + Ek + U + . . . , (2.24)

where the sum is made over all the forms of energy which are present in the system:
total rest energy, kinetic energy, potential energy and so on.

As a further example, let us consider a bound system.By definition a bound system
is a systemof interacting bodies such that the sumof the kinetic and potential energies
is negative:

Ek + U < 0, (2.25)

provided we fix the potential energy U to be zero when all the components are at
infinite distance from each other and thus non-interacting: U∞ = 0. If we think of
the bound system as a single particle of rest mass M , in its rest frame we can write
its energy E0 = M c2 as the total energy of the system,namely as the sum of the rest
energies of its constituents and their total kinetic and potential energies, according
to Eq. (2.24):

E0 = M c2 =
∑

i

E0 i + Ek + U =
∑

i

mi c2 + Ek + U, (2.26)

mi being the rest masses of the constituent particles. Equations (2.25) and (2.26)
imply that, in order to disassemble the system bringing its elementary parts to infinite
distances from one another (non-interacting configuration), we should supply it with
an amount of energy (called the binding energy of the system) given by

ΔE = −(Ek + U ) > 0.

Note that, being Ek + U a negative quantity, from Eq. (2.26) it immediately follows
that the rest mass of the bound state is smaller than the sum of the rest masses of its
constituents

M =
∑

i

mi − ΔE

c2
<

∑

i

mi , (2.27)
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the “missing” rest mass being the equivalent in mass of the binding energy, as it
follows from Eq. (2.26)

ΔM ≡
∑

i

mi − M = ΔE

c2
. (2.28)

Therefore when a bound state of two or more particles is formed starting from a
non-interacting configuration, the system looses part of its total rest mass which,
being the total energy conserved, is converted into an equivalent amount of energy
ΔE = ΔM c2 and released as, for instance, radiation.

An example of bound state is the hydrogen atom. It consists of a positively charged
proton and a negatively charged electron, the two being bound together by the electric
force. The rest masses of the two particles are respectively:

m p ∼= 938.3 MeV/c2; me ∼= 0.5 MeV/c2,

where, taking into account the equivalence between mass and energy, we have used
for the masses the unit MeV/c2.5 The corresponding binding energy

ΔE = 1Ry ∼= 13.5 eV,

is called a Rydberg. Since the rest energy of the hydrogen atom is

M c2 = me c2 + m p c2 − ΔE =
(
938.3 × 106 + 0.5 × 106 − 13.5

)
eV,

it follows that

Σi mi c2 − M c2

Σi mi c2
= ΔM

me + m p
= 13.5

938.8 × 106
∼= 10−8. (2.29)

Thus we see that, in this case, where the force in play is the electric one, the rate of
change in rest mass, ΔM/M , is quite negligible.

5We recall that 1MeV = 106 eV, where 1 eV is the energy acquired by an electron (whose charge
is e ∼= 1.6 × 10−19 C) crossing an electric potential difference of 1V:

1 eV = 1.6 × 10−19 J.

Another commonly used unit, when considering energy exchanges in atomic processes, is the atomic
mass unit u, that is defined as 1/12 the rest mass MC of the isotope 12C of the carbon atom at rest;
this unit is more or less the proton mass. Precisely we have: 1 u = 1.660 538 782(83) × 10−24 g
= 1

NA
g, where NA is the Avogadro number. Taking into account the equivalence mass-energy we

also have

1 u = 1

12
MC � 931.494MeV/c2.
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Let us now consider a two-body system bound by the nuclear force, The ratio of
the strength of the nuclear force to that of the electric one is of order 105. An example
is the deuteron system which is a bound state of a proton and a neutron. In this case
we may expect a much larger binding energy and, consequently, a greater rest mass
variation. Using the values of the proton and neutron masses,

c2 m p ∼= 938.272MeV � 1.00728 u,

c2 mn ∼= 939.566MeV � 1.00867 u,

ΔE � 2.225MeV,

it turns out that the corresponding loss of rest mass is:

−ΔM

m p + mn
= 2.225

1877.838
= 1.18 × 10−3,

that is, five orders of magnitudes greater than in the case of the hydrogen atom. This
missing rest mass (times the square of the speed of light) results in an amount of
energy which is released when the bound state is created. A similar mass defect is
present in all atomic nuclei. In fact, as the reader can easily verify, the atomic mass
of an atom, which can be read off the Mendeleev table, is always smaller than the
sum of the masses of the protons and neutrons entering the corresponding nuclei,
since they form a bound state.

2.1.2 Nuclear Fusion and the Energy of a Star

Taking into account that life on earth depends almost exclusively on the energy
released by the sun, it is of outmost importance to realize that the source of such
energy is the continuous conversion of the solar rest mass into radiation energy and
heat that we receive on earth, through the so-called nuclear fusion; just as for the
reaction discussed above, leading to the creation of the deuteron, nuclear fusion
essentially amounts to the formation of a bound state of nucleons (protons and neu-
trons) with a consequent reduction of rest mass which is released in the form of
energy (radiation). The fact that the solar energy, or more generally, the energy of
a star, could not originate from chemical reactions, can be inferred from the astro-
nomical observation that the mean life of a typical star, like the sun, is of the order
of 109–1010 years. If the energy released by the sun were of chemical origin, one
can calculate that the mean life of the sun would not exceed 105–106 years. It is
only through the conversion of mass into energy, explained by the theory of special
relativity, that the lifetime of stars can be fully explained in relation to their energy
emission.



2.1 Relativistic Energy and Momentum 53

Without entering into a detailed description of the sequences of nuclear processes
taking place in the core of a burning star (which also depend on the mass of the star),
we limit ourselves to give a qualitative description of the essential phenomenon.

We recall that after the formation of a star, an enormous gravitational pressure is
generated in its interior, so that the internal temperature increases to typical values of
106–107 K. At such temperatures nuclear fusion reactions begin to take place, since
the average kinetic energy of nucleons is large enough to overcome the repulsive
(electrostatic) potential barrier separating them. At sufficiently short distances, the
interaction between nucleons is dominated by the attractive nuclear force and nucleon
bound states can form. The fundamental reaction essentially involves four protons
which give rise, after intermediate processes, to a nucleus of Helium, 42He, together
with two positrons and neutrinos:

4 × 1
1H → 4

2He + 2e+ + 2νe. (2.30)

where e+ denotes the positron (the anti-particle of an electron) and νe the (electronic)
neutrino, their masses being respectively: me+ = me− � 0.5MeV, mνe � 0.
(Note that ionized hydrogen, that is protons, comprise most of the actual content of
a star.)

The reaction (2.30) is the aforementionednuclear fusion takingplace in the interior
of a typical star. To evaluate the mass reduction involved in this reaction we use the
value of the mass of a 4He nucleus, and obtain:

ΔM ∼= 0.0283 u = 0.0283 × 931.494MeV/c2 � 26.36MeV/c2.

This implies that every time a nucleus of 4He is formed out four protons, an amount
of energy of about 26.36 MeV is released.

Consider now the fusion of 1kg of ionized hydrogen. Since 1 mole of 1
1H ,

weighting about 1g, contains NA � 6.023 × 1023 (Avogadro’s number) particles,
there will be a total of ∼1.5 × 1026 reactions described by (2.30), resulting in an
energy release of 6:

ΔE(1 kg) = 26.36 × 1.5 × 1026 MeV � 3.97 × 1027 MeV ≈ 6.35 × 1014 J.

On the other hand, we know that a star like the sun fuses H1
1 at a rate of about

5.64 × 1011 kg s−1, the total energy released every second by our star amounts
approximately to:

ΔE

Δt
= 6.35 × 1014 × 5.64 × 1011 ≈ 3.58 × 1026 J s−1,

This implies a reduction of the solar mass at a rate of:

6Note that if we had a chemical reaction instead of a nuclear one, involving just the electrons of
two hydrogen atoms (H + H → H2) we would obtain an energy release of E � 2 × 106 J, which
is eight orders of magnitude smaller.
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Δm

Δt
= 1

c2
ΔE

Δt
∼= 3.98 × 109 kg s−1.

Since the energy emitted over one year (=3.2 × 107 s) is ΔEyear � 1.1 × 1034 J,
the corresponding mass lost each year by our sun is ΔMyear � 1.3× 1017 kg. If this
loss of mass would continue indefinitely,7 using the present value of the solar mass,
M
 � 1.9 × 1030 kg, its mean life can be roughly estimated to be of the order of

T = M

ΔM

(years) � 1.5 × 1013 years.

2.2 Space-Time and Four-Vectors

It is useful at this point to introduce a mathematical set up where all the kinematic
quantities introduced until now and their transformation properties have a natural
and transparent interpretation.

To summarize our results so far, the energy and momentum of a particle of rest
mass m moving at velocity v in a given frame S, are defined as:

• energy : E = m(v)c2 = mγ (v)c2 = m dt
dτ

c2,

• momentum: p = m dx
dτ

= m(v)v,

where v = dx
dt , and m(v) = m√

1− v2

c2

= m dt
dτ

.

From the above definitions we immediately realize that the four quantities:

(
E

c
, p

)
≡

(
m

dt

dτ
, m

dx
dτ

)
, (2.31)

transform exactly as (c dt, dx) under a Lorentz transformation, since both m and
dτ are invariant. Thus, using a standard configuration for the two frames in relative
motion with velocity V , we may readily compute the transformation law of E, p:

p′
x = m

dx ′

dτ
= mγ (V )

dx − V dt

dτ
= γ (V )

(
m

dx

dτ
− V m

dt

dτ

)
,

= γ (V )

(
px − V

E

c2

)
. (2.32)

7This does not happen however, because the nuclear fusion of hydrogen ceases when there is no
more hydrogen, and after that new reactions and astrophysical phenomena begin to take place.
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where we have used that m dt/dτ = m γ (v) = E/c2. Furthermore we also have

p′
y = py, (2.33)

p′
z = pz, (2.34)

E ′

c
= mc

dt ′

dτ
= m γ (V )

c dt − V
c dx

dτ
= γ (V )

(
E

c
− V

c
px

)
, (2.35)

where we have used the property that the proper time interval, as defined in
Eq. (1.76), is Lorentz-invariant: dτ ′ = dτ . Comparing the transformation laws
for the time and spatial coordinates with those for energy and momentum, given
by the Eqs. (2.32)–(2.35), we realize that, given the correspondences (px , py, pz) →
(dx, dy, dz) and E/c → c dt , they are identical:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

p′
x = γ (V )

(
px − V E

c2

)

p′
y = py

p′
z = pz

E ′
c = γ (V )

( E
c − V

c px
)

↔

⎧
⎪⎪⎨
⎪⎪⎩

dx ′ = γ (V ) (dx − V dt)
dy′ = dy
dz′ = dz

c dt ′ = γ (V )
(
c dt − V

c dx
)

(2.36)

We now recall the expression of the Lorentz-invariant proper time interval, as defined
in Eq. (1.76):

dτ 2 = dt2 − 1

c2
|dx|2. (2.37)

From the above correspondence it follows that the analogous quantity

E2

c2
− |p|2 = m2γ (v)2 c2 − m2γ (v)2 v2 = m2c2

1 − v2

c2

(
1 − v2

c2

)
= m2c2,

is Lorentz-invariant as well, being simply proportional to the rest mass of the particle.
Note that the relativistic relation between energy and momentum given by

E2

c2
− |p|2 = m2c2 ⇒ E =

√
p2 c2 + m2c4, (2.38)

separating the relativistic kinetic energy from the rest mass, can be rewritten as
follows:

mc2 + Erel.
k = mc2

⎛
⎝

√
1 + p2

rel

m2c2

⎞
⎠ . (2.39)

http://dx.doi.org/10.1007/978-3-319-22014-7_1
http://dx.doi.org/10.1007/978-3-319-22014-7_1
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In the non-relativistic limit, neglecting higher order terms in v2/c2, Eq. (2.39)
becomes:

m c2 + 1

2
m v2 � m c2

(
1 + p2

rel

2m2c2

)
⇒ 1

2
m v2 = p2

class.

2m
, (2.40)

in agreement with the standard relation between kinetic energy and momentum in
classical mechanics.

2.2.1 Four-Vectors

In the previous chapter we have seen that the time and space coordinates of an event
may be regarded as coordinates (ct, x, y, z) of a four-dimensional space-time called
Minkowski space, for which we shall use the following short-hand notation

(xμ) = (x0, x1, x2, x3) = (ct, x, y, z); (μ = 0, 1, 2, 3),

The time coordinate x0 = ct has been defined in such a way that all the four
coordinates xμ share the same dimension. These coordinates can be viewed as the
orthogonal components of the position vector of an event relative to the origin-event
O(xμ ≡ 0).

Given two events A, B labeled by

xμ
A = (ctA, xA, yA, z A), xμ

B = (ctB, xB , yB , zB),

we may then define a relative position vector of B with respect to A:

Δxμ = xμ
B − xμ

A = (Δx0,Δx1,Δx2,Δx3) = (cΔt,Δx,Δy,Δz).

Using this notation, the Lorentz transformation of the four coordinate differences
Δxμ (or their infinitesimal form dxμ) is given, in the standard configuration, by (see
also Eqs. (1.58)–(1.61) and (1.63)):

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δx ′0 = γ (V )
(
Δx0 − V

c Δx1
)
,

Δx ′1 = γ (V )
(
Δx1 − V

c Δx0
)
,

Δx ′2 = Δx2,

Δx ′3 = Δx3,

(2.41)

http://dx.doi.org/10.1007/978-3-319-22014-7_1
http://dx.doi.org/10.1007/978-3-319-22014-7_1
http://dx.doi.org/10.1007/978-3-319-22014-7_1
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which, in matrix form, can be rewritten as:

⎛
⎜⎜⎝

Δx ′0
Δx ′1
Δx ′2
Δx ′3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

Δx0

Δx1

Δx2

Δx3

⎞
⎟⎟⎠ , (2.42)

where, as usual, β = V/c. Restricting ourselves to a standard configuration we
shall provisionally call four-vector any set of four quantities that, under a standard
Lorentz transformation, undergoes the transformation (2.41) in Minkowski space. In
particular, recalling Eq. (2.36), we see that the four quantities8

pμ = (p0, p1, p2, p3) ≡ (E/c, px , py, pz),

are the components of a four-vector, the energy-momentum vector, which transforms
by the samematrix (2.42) as (Δxμ). Since p0 = E/c = m γ (v) c, recalling Eq. (2.7),
the energy-momentum vector can also be written as

pμ = m
dxμ

dτ
= m γ (v)(c, vx , vy, vz) = m Uμ, (2.43)

where Uμ, called four-velocity, is also a four-vector, since the rest mass m is an
invariant.

Recall that, in Eqs. (1.75) and (1.76), we defined as proper distance in Minkowski
space the Lorentz-invariant quantity

Δ
2 = (Δx1)2 + (Δx2)2 + (Δx3)2 − (Δx0)2 ≡ −c2 Δτ 2. (2.44)

which is the natural extension toMinkowski space of theEuclidean three-dimensional
distance in Cartesian coordinates. However in the following we shall mostly use
as space-time or four-dimensional distance9 in Minkowski space the quantity Δs2

= c2 Δτ 2 = −Δ
2, that is the negative of the proper distance. This choice is dictated
by the conventions we shall introduce in the following chapters when discussing the
geometry ofMinkowski space. Thus, for example, the square of the four-dimensional
distance or norm of the four-vector Δxμ is defined as

‖Δxμ‖2 = (Δx0)2 − (Δx1)2 − (Δx2)2 − (Δx3)2 = c2 Δτ 2 = Δs2. (2.45)

Note, however, that the square of the Lorentzian norm is not positive definite, that
is, it is not the sum of the squared components of the vector (see Eq. (2.44)) as

8As for Δxμ we define p0 = E/c so that all the four components of pμ share the same physical
dimension.
9Alternatively also the denominations Lorentzian or Minkowskian distance are used.

http://dx.doi.org/10.1007/978-3-319-22014-7_1
http://dx.doi.org/10.1007/978-3-319-22014-7_1
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the Euclidean norm |Δx|2 is. Consequently a non-vanishing four-vector can have a
vanishing norm.

In analogywith the relative position four-vector, we define the norm of the energy-
momentum vector as

‖pμ‖2 = (p0)2 − (p1)2 − (p2)2 − (p3)2 = (p0)2 − |p|2.

From Eq. (2.38) it follows that this norm is precisely the (Lorentz-invariant) squared
rest mass of the particle times c2: ‖pμ‖2 = m2 c2. Using the notation of four-vectors,
we may rewrite the results obtained so far in a more compact way.

Consider once again a collision between two particles with initial energies and
momenta E1, E2 and p1, p2, respectively, from which two new particles are pro-
duced, with energies and momenta E3, E4, p3, p4. The conservation laws of energy
and momentum read:

E1 + E2 = E3 + E4,

p1 + p2 = p3 + p4.
(2.46)

If we now introduce the four-vectors pμ
n , n = 1, 2, 3, 4 associated with the initial

and final particles

pμ
n =

⎛
⎜⎜⎝

En/c
pnx

pny

pnz

⎞
⎟⎟⎠ ,

and define the total energy-momentum as the sum of the corresponding four-vectors
associated with the two particles before and after the process, we realize that the
conservation laws of energy and momentum are equivalent to the statement that
the total energy momentum four-vector is conserved. To show this we note that
Eqs. (2.46) can be rewritten in a simpler and more compact form as the conservation
law of the total energy-momentum four-vector:

pμ
tot = pμ

1 + pμ
2 = pμ

3 + pμ
4 . (2.47)

Indeed the 0th component of this equation expresses the conservation of energy,
while the components μ = 1, 2, 3 (spatial components) express the conservation of
linear momentum. Note that for each particle the norm of the energy-momentum
four-vector gives the corresponding rest mass:

‖pμ
n ‖2 =

(
En

c

)2

− |pn|2 = m2
n c2.

Until nowwe have restricted ourselves to Lorentz transformations between frames
in standard configuration. For the next developments it is worth generalizing our
setting to Lorentz transformations with generic relative velocity vector V, however
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keeping, for the time being, the three coordinate axes parallel and the origins coin-
cident at the time t = t ′ = 0. Consider two events with relative position four-vector
Δx ≡ (Δxμ) = (c Δt, Δx) with respect to a frame S. We start decomposing the
three-dimensional vector Δx as follows

Δx = Δx⊥ + Δx‖,

where Δx⊥ and Δx‖ denote the components of Δx orthogonal and parallel to V,
respectively. Consider now the same events described in a RF S′ moving with respect
to S at a velocityV. It is easy to realize that the corresponding Lorentz transformation
can be written as follows

Δx′ = Δx⊥ + γ (V )
(
Δx‖ − VΔt

)
, (2.48)

Δt ′ = γ (V )

(
Δt − Δx · V

c2

)
. (2.49)

Indeed they leave invariant the fundamental Eq. (1.50) or, equivalently, the proper
time (and thus the proper distance):

c2 Δt ′2 − |Δx′|2 = c2 Δt2 − |Δx|2. (2.50)

Writing Δx⊥ = Δx − Δx‖, γ (V ) ≡ γ and using the variables Δx0 = c Δt and
β = V

c , Eqs. (2.48) and (2.49) become:

Δx′ = Δx + (γ − 1)Δx‖ − γ β Δx0, (2.51)

Δx ′0 = γ
(
Δx0 − Δx · β

)
. (2.52)

Recalling that the four-vector p ≡ (pμ) = ( E
c , p) transforms as x ≡ (xμ) = (ct, x),

we also obtain

p′ = p + (γ − 1) p‖ − γ V
E

c2
, (2.53)

E ′ = γ (E − p · V) , (2.54)

and since p = m(v)v = E
c2

v, the energy transformation (2.54) can be written as
follows:

E ′ = γ

(
E − v · V

c2
E

)
. (2.55)

http://dx.doi.org/10.1007/978-3-319-22014-7_1
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Observing that the vector Δx‖ can also be written as β·Δx
|β|2 β, the matrix form corre-

sponding to Eqs. (2.51) and (2.52) is

⎛
⎜⎜⎝

Δx ′
0

Δx ′
1

Δx ′
2

Δx ′
3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

γ −γβ1 −γβ2 −γβ3

−γβ1 1 + (γ−1)
|β|2 β1β1 (γ−1)

|β|2 β1β2 (γ−1)
|β|2 β1β3

−γβ2 (γ−1)
|β|2 β2β1 1 + (γ−1)

|β|2 β2β2 (γ−1)
|β|2 β2β3

−γβ3 (γ−1)
|β|2 β3β1 (γ−1)

|β|2 β3β2 1 + (γ−1)
|β|2 β3β3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

Δx0
Δx1
Δx2
Δx3

⎞
⎟⎟⎠ .

(2.56)

In the sequel we shall use the following abbreviated notation for the matrix (2.56):

Λ′μ
ν =

(
γ −β jγ

−β iγ δi j + (γ − 1)βi β j

|β|2

)
(2.57)

where i, j = 1, 2, 3 label the rows and columns of the 3 × 3 matrix acting on the
spatial components x1, x2, x3, and

β i = vi

c
⇒ γ = 1√

1 − β2
,

where we have defined β ≡ |β|. The symbol δi j is the Kronecker delta defined by
the property:

δi j = 1 if i = j, δi j = 0 if i �= j.

In Chap.4 it will be shown that the most general Lorentz transformation Λμ
ν,

μν = 0, 1, 2, 3 is obtained by multiplying the matrix Λ′μ
ν by a matrix R ≡ (Rμ

ν)

R =
(
1 0
0 Ri

j

)
(2.58)

where the 3 × 3 matrix Ri
j describes a generic rotation of the three axes (x, y, z),

so that � = �′ R. It is in terms of this general matrix that the notion of four-vector
is defined: A four-vector is a set of four quantities that under a general Lorentz
transformation transform with the matrix Λμ

ν . For example Δxμ and pμ are both
four-vectors; indeed they have the same transformation properties under a general
Lorentz transformation

p′μ =
3∑

ν=0

Λμ
ν pν,

Δx ′μ =
3∑

ν=0

Λμ
ν Δxν .

(2.59)

http://dx.doi.org/10.1007/978-3-319-22014-7_4
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To simplify our notation, let us introduce the Einstein summation convention: When-
ever in a formula a same index appears in upper and lower positions,10 summation
over that index is understood and the two indices are said to be contracted (or dummy)
indices.11 Using this convention, when we write for instance Λμ

ν pν , summation
over the repeated index ν will be understood, so that:

Λμ
ν pν ≡

3∑

ν=0

Λμ
ν pν .

Using (2.59) it is now very simple to show in a concise way that the conservation of
total momentum P implies the conservation of the total energy E and viceversa.

Let us consider the collision of an isolated system of N particles each having
a linear momentum pi

n , i, j = 1, 2, 3 and let us denote by Pi ≡ ∑N
n=1 pi

n their
total momentum. For each i = 1, 2, 3 the change ΔPi of the total momentum
Pi ≡ ∑N

n=1 pi
n occurring during the collision will be:

ΔPi ≡
(∑

n

pi
n

)

f in

−
(∑

n

pi
n

)

in

. (2.60)

We assume that the total momentum is conserved in a certain frame, say S, that is:

ΔPi = 0, ∀i = 1, 2, 3, (2.61)

and carry out a Lorentz transformation to a new frame S′. Taking into account that
the momentum of each particle transforms as

p′i
n = Λi

j p j
n + Λi

0 p0n, (2.62)

in the new frame S′ the change of the total momentum is:

ΔP ′i =
(∑

n

p′i
n

)

f in

−
(∑

n

p′i
n

)

in

= Λi
j

⎡
⎣

(∑
n

p j
n

)

f in

−
(∑

n

p j
n

)

in

⎤
⎦

+Λi
0

⎡
⎣

(∑
n

p0n

)

f in

−
(∑

n

p0n

)

in

⎤
⎦ , (2.63)

where Einstein’s summation convention is used and summation over the repeated
index j = 1, 2, 3 is understood. Since the first term in square brackets on the right

10So far the position of indices in vector components and matrices has been conventionally fixed.
We shall give it a meaning in the next chapters.
11We observe that contracted indices, being summed over, can be denoted by arbitrary symbols, for
example Λμ

ν pν ≡ Λμ
ρ pρ .
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hand side of Eq. (2.63) is zero by hypothesis, ΔPi = 0, requiring conservation of
the total momentum in S′, ΔP ′i = 0, implies:

(∑
n

p0n

)

f in

=
(∑

n

p0n

)

in

, (2.64)

that is, since ∑
n

p0n = c
∑

mn(v) = Etot

c
, (2.65)

the total mass, or equivalently the total energy, must be also conserved.
Viceversa, if we start assuming the conservation of energy

∑
n p0n = ∑

n En/c,
in S and write, for each n,

p0
′

n = Λ0
i pi

n + Λ0
0 p0n, (2.66)

the same Lorentz transformation gives:

1

c
ΔE ′

tot. =
(∑

n

p′0
n

)

f in

−
(∑

n

p′0
n

)

in

= Λ0
j

⎡
⎣

(∑
n

p j
n

)

f in

−
(∑

n

p j
n

)

in

⎤
⎦

+Λ0
0

⎡
⎣

(∑
n

p0n

)

f in

−
(∑

n

p0n

)

in

⎤
⎦ . (2.67)

The second term in square brackets on right hand side is ΔEtot/c and is zero, by
assumption; Being Λ0

j the three components of an arbitrary vector for generic
relative motions between the two frames, each of their coefficients must vanish
separately. We then conclude that the energy is conserved in S′ if and only if also the
total linear momentum is.

The notion of four-vector can be also used to give generalize the relativistic
vector Eq. (2.15) in a four-vector notation. Recalling the invariance of the proper
time interval, we may also define the force four-vector or four-force as:

f μ ≡ d Pμ

dτ
. (2.68)

To understand the content of this equation, let us consider, at a certain instant, an
inertial reference frame S′ moving at the same velocity as the particle. In this frame
the particle will thus appear instantaneously at rest (the reason for not considering
the rest frame of the particle, namely the frame in which the particle is constantly
at rest is that such frame is, in general, accelerated, and thus not inertial). We know
from our discussion of proper time that dτ coincides with the time dt ′ in the particle
frame S′ so that Eq. (2.68) becomes:
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f ′0 = m
d2x ′0

dt ′2
= mc

d2t ′

dt ′2
≡ 0, (2.69)

f ′i = m
d2x ′i

dt ′2
≡ Fi , (2.70)

where we have used dt ′ = dτ. It follows that in S′ f ′0 ≡ 0 so that Eq. (2.70) becomes
the ordinary Newtonian equation of classical mechanics. To see what happens in a
generic inertial frame S, we perform a Lorentz transformation from S′ to S and find:

f μ =
3∑

ν=0

Λμ
ν f ′ν =

3∑

i=1

Λμ
i f ′i ≡

3∑

i=1

Λμ
i Fi . (2.71)

The content of this equation is better understood by writing its time (μ = 0) and
spatial (μ = i) components separately (here, for the sake of simplicity, we neglect
in the Lorentz transformation the rotation part):

f 0 = Λ0
i Fi = γ

c
v · F, f i =

3∑

j=1

Λi
j f ′ j =

3∑

j=1

Λi
j F j

=
3∑

j=1

(
δi

j + (γ − 1)
vi v j

v2

)
F j ≡ Fi + (γ − 1)

vi

v2
v · F, (2.72)

v being the velocity of the particle.
We observe that the expression v ·F on the right hand side of the first of Eq. (2.72),

is the power of the force F acting on the moving particle. The time component of
Eq. (2.68) then reads

f 0 = d P0

dτ
= γ

c

d E

dt
≡= γ

c
v · F, (2.73)

and is the familiar statement that the rate of change of the energy in time equals the
power of the force.

If no force is acting on the particle the equation of the motion reduces to:

d Pμ

dτ
= 0, (2.74)

or, using Eq. (2.43),
dUμ

dτ
= d2xμ

dτ 2
= 0, (2.75)

Being dτ =
√
1 − v2

c2
dt , it is easy to see that this equation implies v = const. Thus

Eq. (2.75) is the Lorentz covariant way of expressing the principle of inertia.
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2.2.2 Relativistic Theories and Poincarè Transformations

We have seen that the conservation of the four-momentum and Eq. (2.68) defining
the four-force are relations between four-vectors and therefore they automatically
satisfy the principle of relativity being covariant under the Lorentz transformations
implemented by the matrix � ≡ (Λμ

ν). It follows that the laws of mechanics dis-
cussed in this chapter, excluding the treatment of the gravitational forces, satisfy the
principle of relativity, implemented in terms of general Lorentz transformations.

We may further extend the covariance of relativistic dynamics by adding trans-
formations corresponding to constant shifts or translations

x ′μ = xμ + bμ, (2.76)

bμ being a constant four-vector. This transformation is actually the four-dimensional
transcription of time shifts and space translations already discussed for the extended
Galilean transformations (1.15). However, differently from theGalilean case, there is
no need in the relativistic context to add three-dimensional rotations, since, as men-
tioned before, they are actually part of the general Lorentz transformations imple-
mented by the matrix �.

It is easy to realize that the four-dimensional translations do not affect the proper
time or proper distance definitions, nor the fundamental equations of the relativistic
mechanics, Eqs. (2.47) and (2.68).

We conclude that relativistic dynamics is covariant under the following set of
transformations

x ′μ = Λμ
ν xν + bμ, (2.77)

which are referred to as Poincaré transformations. Both the Lorentz and Poincaré
transformations will be treated in detail in Chap.4. Furthermore in Chap.5 it will
be shown that also the Maxwell theory is covariant under the transformation (2.77),
thus proving that the whole of the relativistic physics, namely relativistic dynamics
and electromagnetism, is invariant under Poincaré transformations.

One could think that the invariance under translations and time shifts should not
play an important role on the interpretation of a physical theory. On the contrary we
shall see that such invariance implies the conservation of the energy and momentum
in the Galilean case and of the four-momentum in the relativistic case (see Chap.8).

2.2.3 References

For further reading see Refs. [1, 11, 12].
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Chapter 3
The Equivalence Principle

3.1 Inertial and Gravitational Masses

In this section we discuss the principle of equivalence. We shall see that, besides
allowing the extension of the principle of relativity to a generic, not necessarily
inertial, frame of reference, it allows to define gravity, in a relativistic framework, as
a property of the four-dimensional space-time geometry.

The principle of equivalence, in the so-called weak form, asserts the exact equiv-
alence between the inertial mass m I and the gravitational one mG .

We recall that the inertial mass m I is defined through Newton’s second law of
dynamics:

F = m I a. (3.1)

Its physicalmeaning is, as iswell known, that of inertia of a body, that is its reluctance
to be set in motion or, more generally, to change its velocity.

The gravitational mass mG , on the other hand, enters the definition of Newton’s
universal law of gravitation according to:

F = −G
mG MG

r2
ur (3.2)

where G = 6.6732× 10−11 Nm2/kg2 is the gravitational constant, mG and MG are
the gravitational masses of the two attracting bodies.1 For definiteness we refer to the
situationwhere themass MG attracts themassmG .We see that the gravitational mass
sets the strength of the gravitational force that, ceteris paribus, a given body exerts on
another one. In this sense it would better deserve the name of gravitational charge,

1It goes without saying that we are referring to two spherical bodies or to bodies whose dimensions
are negligible with respect to their distance r .
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in analogy with Coulomb’s law of the electrostatic interaction, where the electric
charge sets the strength of the electric interaction, the mathematical structures of the
two laws being exactly the same.

However, besides the enormous quantitative difference between the strengths of
gravitational and electrostatic forces2 there is a major qualitative difference between
them: While any two bodies have mass, they do not necessarily have charge. As a
consequence the gravitational force is universal, while the electric force is not.

It is important to note that the equality between inertial and gravitational masses,
expressed by the principle of equivalence, is in some sense surprising, given the sub-
stantial difference between these two physical concepts, which reflects into different
operational definitions of their respective measures.

It is, however, one of the best established results from the experimental point of
view.

Indeed a large number of experiments were devised, since Newton’s times, to
ascertain the validity of this unexpected coincidence; among them, of particular
importance from a historical point of view is the Eötvos experiment, of which we
give a short description in Appendix A. The precision reached in this experiment is
such that Δm

m I
≡ |mG−m I |

m I
, is less than 2×10−3. Thanks to the advanced technological

features of modern experimental physics, the above ratio has been pushed to less than
10−15.

This justifies the theoretical assumption of the exact equality between inertial and
gravitational mass:

m I = mG, (3.3)

that is the principle of equivalence in its weak form, can be safely assumed as one of
the experimentally best established principles of theoretical physics.

The great intuition Einstein had at the beginning of last century, was to realize the
considerable importance of this seemingly curious “coincidence”, since it implies
that locally, it is impossible to distinguish between the effects of a gravitational field
and those of an accelerated frame of reference.

To justify such a conclusion we illustrate a so-called “Gedankenexperiment”, that
is a conceptual experiment, originally formulated by Einstein to be performed in a
frame of reference attached to an elevator; in our era of space journeys, it seems
however more appropriate to update this experiment by replacing Einstein’s elevator
with a spaceship. Note that the time duration of the experiment inside the spaceship,
together with its spatial extension, define a four-dimensional region of space-time. In
the followingwe shall moreover restrict ourselves to the framework of theNewtonian
theory of gravitation.

Let us now describe this conceptual experiment, in the following four steps:

(i) Suppose the spaceship, to be simply referred to by A, be initially placed, with
the engines turned off, in a region of spacewhich is far enough fromany celestial

2We recall that the ratio between the electric and gravitational forces between two protons is of the
order of 1038.
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body for the net gravitational force acting on it to be negligible. By definition
this is an inertial frame of reference. If a physicist performs experiments within
the spaceship, he will find that all bodies (if not subject to other kind of forces)
move in a rectilinear uniformmotion, according toGalileo’s principle of inertia.

(ii) Let us assume next that, at some stage, the spaceship reaches the proximity of
a planet, and thus becomes subject to a gravitational acceleration of the form:

g(r) = −G
M

r2
ur, (3.4)

M being the (gravitational) mass of the planet.
In the presence of such an attraction A starts orbiting around the planet, thus
becoming an accelerated frame of reference. The accelerated frame of reference
defined by any massive body which is not subject to forces other than gravity
is usually referred to as a free falling frame. Our spaceship A orbiting around
the planet, is an example of a free falling frame. In this situation an observer
inside A still finds that all bodies describe inertial motions: Indeed, the same
acceleration g(r), acting on the frame A, also acts on each body inside of it. It
follows that the motion of bodies in A is inertial with respect to the spaceship
itself, since their relative acceleration with respect to A is zero.
Since in both cases (i) and (ii) the motion inside A is of the same kind, that is
inertial, there is no way an observer in the spaceship can distinguish between
the two situations. We conclude that:
It is not possible through experiments performed in the interior of A to tell
whether it is a free falling frame or an inertial one.3

(iii) Consider again the spaceship A in a region far from any celestial body, and
suppose that now, in contrast to case (i), its engines are turned on, thus producing
an acceleration aR which is uniform all over the spaceship and constant in time.
Since nowA is accelerated, all bodies inside of it fall with the same acceleration
a′ = −aR, where a′ and aR are the accelerations with respect to A and the
relative acceleration of A with respect to an inertial system, respectively.

(iv) Finally consider the situation in which the spaceship is at rest on a massive
body (for example the earth) which creates a gravitational field of acceleration
g; because of the equality between inertial and gravitational masses, all bodies
inside A fall with the same acceleration g.
Comparing these two last examples, we see the an observer inside the space-
ship cannot tell whether he is in case (iv), where the observed acceleration is
due to a gravitational field and his frame of reference is inertial, or in case (iii)
where his frame of reference is accelerated by the engines of the spacecraft
with acceleration aR = −g with respect to an inertial frame. We conclude that:
It is not possible, through experiments performed in the interior of A, to

3The inertial motion inside a free falling system is a well known fact nowadays, think about the
absence of weight of astronauts inside orbiting spacecrafts.
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distinguish an inertial frame in the presence of a gravitational field from an
accelerated system of reference.

The previous discussion seems to lead to the conclusion that a perfect equivalence
exists between the effects of a gravitational field as observed in an inertial frame of
reference and those observed in an accelerated frame. This may seem very strange:
A gravitational field after all has its sources in the massive bodies where the field
lines converge, and its intensity is a decreasing function of the distance from them,
vanishing at infinity. The lines of force of the acceleration field a′, on the contrary,
are not converging and do not fall down to zero at infinity.

In fact, as we shall now show, a more accurate and quantitative discussion of
the “Gedankenexperiment” examined above, shows that the assumed equivalence
between gravitational field and non-inertial frames, holds only if we restrict ourselves
to events taking place in a small space region and during a small time interval, that
is, mathematically, in an infinitesimal region of space-time.

To clarify this point, let us examine the situations described in points (i) and
(ii) in some more detail. It is not difficult to realize that the supposed equivalence
between the free falling frame and the inertial system holds only in the limit where
the gravitational acceleration g(r) can be regarded as uniform in the interior of A,
that is only if:

g(r) � g(r0), (3.5)

where r0 is the barycenter of the spaceship.
Suppose indeed we have a system of particles of masses m1, m2, . . . , m N in a

gravitational field, g, each obeying its own equation of motion; let us now rewrite the
equation of motion of, say, the kth-particle (3.1), in an accelerated frame S′ having
a relative acceleration aR with respect to an inertial frame S.4 One has:

mG(k) g(rk) = m I (k)

(
a′

k + aR
)

(3.6)

where a′
k is the acceleration of the particle in the frame S′. In particular, if S′ is the

free falling system, we have:
aR = g(r0), (3.7)

so that Eq. (3.6) becomes:

mG(k) g(rk) − m I (k) g(r0) = m I (k) a′
k . (3.8)

The discussion made in points (i) and (ii) holds provided we use the approximation
(3.5), g(rk) � g(r0), that is we consider a sufficiently small neighborhood of the
center of mass ofA, such that the gravitational acceleration can be approximated by
a constant vector and higher order effects in the distance |rk − r0| can be neglected.

4We recall that the relative acceleration aR is given in general by the sumof four terms, the translation
acceleration a′, the centripetal acceleration a(centr), the Coriolis acceleration a(Cor) and a further
term proportional to the angular acceleration of S′ with respect to S.
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In this case, taking into account the principle of equivalence, mG(k) = m I (k), from
(3.8) it follows:

a′
k � 0. (3.9)

This more accurate analysis implies that the equivalence between the free falling
frame and the inertial frame described in the former two experiments only holds
locally, that is in an infinitesimal neighborhood where, up to higher order terms,
Eq. (3.5) is valid. The previous discussion can be made more general by assuming
that, besides the interactionwith the gravitational field, the particles are also subjected
to reciprocal non gravitational forces Fkl. In this case let us write the equation of
motion of the kth particle in an inertial frame where a gravitational field g is present:

mGk g(rk) +
∑

l �=k

Fkl(|rk − rl |) = mIk
d2 rk

d t2
. (3.10)

We may write the corresponding equation in the free falling system through the
coordinate transformation

r′ = r − 1

2
gt2. (3.11)

In the same hypotheses made before, namely assuming Eq. (3.5), which implies
g = const. and (3.3), Eq. (3.10) takes the following form:

∑

l

Fkl(|r′
k − r′

l |) = mIk
d2 r′

k

d t2
, (3.12)

which is the equation of motion of classical mechanics in the absence of a gravita-
tional field.

As far as the other two situations (iii) and (iv) are concerned, it is clear that also
in this case the equivalence only holds if the approximation (3.5) is used, that is only
locally, since the gravitational field would in general be a function of the point inside
the spaceship, while the field of accelerations is, at each instant, exactly uniform.

Let us recall that our analysis so far has been made within the framework of clas-
sical Newtonian mechanics, without any reference to the implications of Einstein’s
special relativity. If we now assume that the statement of the local equivalence
between an inertial frame of reference in a gravitational field and an accelerated one
also holds in the framework of relativistic mechanics, described in Chap.2, then we
may reformulate the conclusions of points (i) and (ii), as follows:

In the presence of a gravitational field, locally, the physical laws observed in a
free falling frame are those of special relativity in the absence of gravity.

As explained above, locally means, mathematically, in an infinitesimal neighbor-
hood or, more physically, in a sufficiently small neighborhood of a point such that,
up to higher order terms, the approximation (3.5) holds.

http://dx.doi.org/10.1007/978-3-319-22014-7_2
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The previous statement is referred to as the equivalence principle in its strong
form or simply strong equivalence principle.

In particular we see that when gravitation is included in the description of physi-
cal systems, if the strong equivalence principle is assumed to hold, the special role
played by inertial frames is lost, since frames of reference which are rigorously iner-
tial only exist in infinitesimal regions of space-time. Moreover, since acceleration
and gravitation are locally indistinguishable it is reasonable to assume that the phys-
ical laws should take the same form also in non-inertial frames, or, in other words,
to require that the principle of relativity be valid not only in inertial frames, but
more generally, in every frame of reference, described by generic four-dimensional
coordinate systems. Recall indeed that we restricted ourselves, in the first chapter,
to coordinate transformations which were linear, since we were only interested in
inertial frames of references (endowed with three-dimensional Cartesian coordinate
systems).5 Anticipating concepts to be introduced in next chapter, this characterizes
the four-dimensional coordinate system associated with inertial frames of reference
to be Cartesian or rectilinear. Extending our analysis to non-inertial frames implies
considering general (four-dimensional) coordinate systems, related to one another
by non-linear transformations: Transformations to arbitrary accelerated frames of
reference are described by arbitrary transformations of the four coordinates labeling
space-time. It follows that in order to implement the principle of relativity on the
laws of physics, in the presence of gravitation, we must require these to have the
same form in any frame of reference, so that they be covariant under general coor-
dinate transformations, i.e. arbitrary changes of coordinates with a non-vanishing,
coordinate-dependent, Jacobian:

xα′ = f α(x0 ≡ ct, x1, x2, x3). (3.13)

Summarizing, while in the special theory of relativity, where the gravitational inter-
action is not taken into account, the physical laws were required to be covariant only
under the linear Lorentz transformations, relating inertial frames, in the presence of
gravity the implementation of the principle of relativity requires that:

The laws of the Physics be covariant under general coordinate transformations
(3.13).

Note that covariance under general coordinate transformations means, as we
discussed in the case of the Lorentz transformations, that the equations describing
the physical laws have exactly the same form, albeit in the transformed variables, in
every coordinate system.

In other words: A theory including a treatment of the gravitational field must be
generally covariant.

5Linearity was then a consequence of the requirement that the principle of inertia holds in both the
old and the transformed frames: A motion which is uniform with respect to one of them cannot be
seen as accelerated with respect to the other.
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It is really amazing that this conclusion, assumed by Einstein as the starting point
for a relativistic theory of gravitation, can be drawn simply from the principle of
equivalence, that is the equality between inertial and gravitational masses.

Because of its general covariance the relativistic theory of gravitation is called
general theory of relativity.

3.2 Tidal Forces

Wehave seen that it is always possible to locally eliminate the effects of a gravitational
field by using a free falling frame. It is then extremely important to examine those
effects of a gravitational field which cannot be eliminated in the free falling frame,
that is which manifest themselves when we go beyond the crude equivalence implied
by the approximate relation (3.5).

In the present section we shall work purely in the classical limit, that is with no
reference to the corrections implied by special relativity, and show that what remains
of a gravitational force in the free falling frame are the tidal forces, see Fig. 3.1.

Let us start indeed fromEq. (3.8) which, in the classical case, assumingm I = mG ,
contains no approximations:

g(r) − g(r0) = a′, (3.14)

the position vector r defining a generic point in a neighborhood of r0. We shall also
denote by h = r − r0 = (hi ) the relative position vector between the two points,
with components hk ≡ xk − xk

0 , where k = 1, 2, 3 and (xk) ≡ (x, y, z), (xk
0 ) ≡

(x0, y0, z0) (see Fig. 3.2).

Fig. 3.1 Tidal forces
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Fig. 3.2 Coordinates

Let us compute, to the first order in hk , the i th component of the gravitational
acceleration in the free falling frame. From Eq. (3.14) it follows:

ai ′ =
3∑

k=1

∂gi

∂xk

∣∣∣∣
h=0

hk + O(|h|2) ≡ −
3∑

k=1

∂2φ

∂xk∂xi

∣∣∣∣
h=0

hk + O(|h|2). (3.15)

where i = 1, 2, 3 and φ denotes the gravitational potential.
Taking into account that

gi = − ∂φ

∂xi
= −G

M xi

r3
, (3.16)

Equation (3.15) becomes to first order in hi :

ai ′ = −G
M

r30

3∑

k=1

(
δik − 3

xi
0 xk

0

r20

)
hk . (3.17)

The acceleration field a′ ≡ (ai ′), defined in Eq. (3.17), is the remnant, to order
O(|h|), of the gravitational field in the free falling frame. We see that it is essen-
tially given by the gradient of the gravitational field and is called the tidal field.
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Correspondingly, the force f = ma′ of the tidal field, acting on a given mass m, is
the tidal force.

We stress that all these considerations have been obtained using the classical
Newtonian formula for the gravitational fieldwhich is both static and non-relativistic.

In order to show what the effect of tidal forces on an extended body is, let us
consider two bodies, say A and B, subject to their mutual gravitational interaction,
and let us assume that A is free falling in the gravitational field of B, like for instance
an orbiting satellite. We also assume, for the sake of simplicity, that the free falling
body A is spherical. We call S′ the frame of reference attached to A and S the one
attached to B. Let the origin of S′ coincide with the barycenter r0 of A, the z′-axis
coincide with direction joining r0 to the center of mass of the attracting body B and
the x ′ and y′-axes lie, as usual, in the plane orthogonal to the z′-axis (see Fig. 3.2).

With reference to this configuration we observe that x30 ≡ z0 ≡ r0, so that
Eq. (3.17) gives:

f z′ = 2G
Mm

r30
hz′, (3.18)

f x ′ = −G
Mm

r30
hx ′, (3.19)

f y′ = −G
Mm

r30
hy′, (3.20)

that is, in matrix notation:

⎛
⎝

f x ′
f y′
f z′

⎞
⎠ = m

⎛
⎜⎜⎝

−G M
r30

0 0

0 −G M
r30

0

0 0 2G M
r30

⎞
⎟⎟⎠

⎛
⎝

hx ′
hy′
hz′

⎞
⎠ , (3.21)

where the entries of the matrix on the right hand side are ∂gi

∂xk computed in r0. From

(3.18) it follows that f z′
is attractive or repulsive according to the sign of hz′; that is,

referring to Fig. 3.1, it points downwards on the part of the body facing B (z′ > 0),
and upwards on the opposite side (z′ < 0). The two horizontal components f x ′ e
f y′, instead, are always attractive, that is they are directed towards the origin of S′.
The net result is an outward stress acting along the line joining A and B and an
inward stress on the horizontal planes z′ = const.

Tidal forces can be very strong in the astrophysical phenomena; for example
the tidal forces exerted by the greatest planets of the solar system on their satellites
induce a tidal heating due to the consequent internal friction; in the case of the Jupiter
satellite Io this results in dramatic volcanic eruptions.6

6In the proximity of the event horizon of a black hole tidal forces are so strong as to completely
disintegrate any body falling inside.
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In the case of a deformable body, tidal forces deform a spherical body to the shape
of an ellipsoid, the major axis lying along the A–B direction. This is in fact what
happens in the case of the earth where the corresponding phenomenon, induced by
the moon,7 gives rise to the ordinary oceanic tides, whence the denomination tidal
forces has its origin.

We may indeed think of the earth as the body A in free fall on the gravitational
field of the moon, the body B. The “thin” layer represented by the oceans covering
the earth’s surface is indeed deformable. It follows that on the side facing the moon
and on the opposite side tidal forces give rise to high tides, while in the directions
perpendicular to the line earth-moon tidal forces produce low tides (Fig. 3.1). Because
of the bipolar character of these bulges and compressions, the periodicity of tides is
of 12h.

We may make a crude estimation of the tidal size on the earth.
First we observe that tidal forces are conservative. Indeed from Eqs. (3.18)–(3.20)

it follows that the associated tidal potential energy is:

EP = −G MLmT

r30

(
z′2 − 1

2
x ′2 − 1

2
y′2

)
= −G ML mT

r30

(
−1

2
R2 + 3

2
z′2

)

= −G MLmT

r30
R2

(
3 cos2 θ − 1

2

)
, (3.22)

where we have introduced spherical coordinates with origin on the center of the earth
(see Fig. 3.2), R being its radius, θ the latitude and we have denoted by ML , mT , r0,
the moon’s mass, the earth’s mass and the earth-moon distance, respectively.

The total potential energy of a water particle is obtained as the sum EP + m g h,
where m g h is the potential energy of the terrestrial attraction. At the equilibrium
the form of the oceans’ equipotential surface is determined by the condition:

Etot
P = m g h − G MLmT

r30
R2

(
3 cos2 θ − 1

2

)
= const. (3.23)

Equation (3.23) implies h = h(θ); the difference in height between high (θ = 0) and
low (θ = π

2 ) tides turns out to be:

Δh ≡ h(0) − h(π/2) = 3G Ml

2g r30
R2 � 53 cm. (3.24)

If the gravitational pull of the sun is also taken into account, one finds an additional
contribution about half as large as the previous one.8

7More correctly one should also consider the contribution of the sun which is not much less than
that of the moon. For the sake of simplicity we just illustrate the main contribution due to the moon.
8This crude estimate must be considered, together with the correction due to the sun, just a mean
value. It does not take into account resonance phenomena due to the earth rotation and the shape
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3.3 The Geometric Analogy

In this section we try to explain how the equivalence principle discussed in the pre-
vious section naturally leads to a modification of the space-time geometry, described
in special relativity by the Minkowski space. To this end we need to anticipate part
of the discussion of next chapter.

We begin by recalling that in Euclidean geometry the distance between two points
P1 e P2, which is invariant under rotations and translations of the Cartesian coordi-
nate system, can be written as9

Δ�2 = (Δξ1)2 + (Δξ2)2 + (Δξ3)2 =
∑

i, j

δij ΔξiΔξ j , (3.25)

if and only if we are using Cartesian (rectangular) coordinates ξi . By Cartesian
(rectangular) coordinates we mean rectangular (or rectilinear) coordinates, which, in
studying Euclidean geometry, are defined throughout the space. This is possible only
if the geometry is Euclidean, that is the properties of figures, the notion of parallelism
and so on are those derived by Euclid’s axioms.

In Eq. (3.25) we have adopted the following notation (see Sect. 2.2.1):

δij = 1 i = j,

δij = 0 i �= j, (3.26)

that is, in matrix notation:

(δij) =
⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠ . (3.27)

The Kronecker symbol δij defines the so called metric tensor.
If we adopt the Einstein convention that repeated indices are summed over, then

Eq. (3.25) can be written as follows:

Δ�2 =
∑

i, j

δij Δξi Δξ j ≡ δij Δξi Δξ j , (3.28)

or, if the two points are infinitesimally apart,

d�2 = δij dξi dξ j . (3.29)

(Footnote 8 continued)
of the oceanic depths which can locally alter in a sensible way the rough computation leading to
(3.24).
9In this section only we denote by ξi the Cartesian coordinates, while the notation xi is used for
generic curvilinear coordinates.

http://dx.doi.org/10.1007/978-3-319-22014-7_2
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It is clear that the same considerations and formalism hold if the Euclidean space
has a generic number D of dimensions; in this case the indices i, j, . . . would run
over D values instead of only three.

As we have already remarked in Sect. 1.5 of the first chapter, there is a close
analogy between the four-dimensional distance in Minkowski space-time and the
Euclidean distance (3.28) in D = 4 dimensions. Indeed the four-dimensional
distance between two events10 labeled by the four coordinates ξ0, ξ1, ξ2, ξ3 was
written as11:

Δs2 = c2(Δτ )2 = (Δξ0)2 − (Δξ1)2 − (Δξ2)2 − (Δξ3)2 =
∑

α,β

ηαβ ΔξαΔξβ

≡ ηαβ ΔξαΔξβ (α,β = 0, 1, 2, 3) (3.30)

that is in awaywhich is strictly analogous to the four-dimensionalEuclidean distance,
the only difference being the replacement of the metric δij with minus theMinkowski
metric ηαβ :

ηαβ =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ , (3.31)

where the extra fourth coordinate is related to time, ξ0 = ct. We stress that these sim-
ple expressions of distance in Euclidean space and of proper distance in Minkowski
case, are only valid if we use the three-dimensional Cartesian rectangular or the anal-
ogous four-dimensional Cartesian rectangular (also referred to as Minkowskian12)
coordinates ξα, the latter being defined as the coordinates used to describe inertial
frames in terms of the spatial Cartesian rectangular coordinates and the usual time
coordinate t . In any other coordinate system, not related by a three-dimensional rota-
tion or a Lorentz transformation, respectively, the Euclidean distance (3.28) or the
Minkowski proper distance (3.30) would take a more complicated form.

Suppose indeed that in the Euclidean case we want to use an arbitrary system
of curvilinear coordinates xi , i = 1, 2, 3 (an example would be the spherical polar
coordinates); we would then have:

ξi = ξi (x j ). (3.32)

10Recall that the space-time (four-dimensional) distance was conventionally defined as the negative
of the proper distance, see Eq. (2.45).
11From now on, we use Greek indices to label four dimensional space-time coordinates and Latin
ones for the coordinates in Euclidean space.
12We shall call Minkowskian the Cartesian rectangular coordinates in the four-dimensional
Minkowski space-time, with metric ηαβ .

http://dx.doi.org/10.1007/978-3-319-22014-7_1
http://dx.doi.org/10.1007/978-3-319-22014-7_2
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In these new coordinates the infinitesimal distance (3.30) becomes:

d�2 = δij
∂ξi

∂xk

∂ξ j

∂x�
dxkdx� .= gk�dxkdx�, (3.33)

where

gk� = δijV
i
k V j

� , (3.34)

being:

V i
k

.= ∂ξi

∂xk
. (3.35)

The dimensionless quantity gk�(x), replacing δij in the formula for the squared dis-
tance, is called metric tensor or, more simply, metric13 in curvilinear coordinates.

It is obvious that all the geometric quantities of Euclidean geometry (lengths,
angles, areas,etc) do not depend of the particular coordinates used for their descrip-
tion.However it iswell known that in general it ismuch simpler to compute geometric
quantities using Cartesian coordinates, rather than the curvilinear ones.14

The same considerations would of course apply to Minkowski space-time in spe-
cial relativity, if we were to use arbitrary “curvilinear” four-dimensional coordinate
frames. The physical interpretation in this case would be the following: Since an
arbitrary change of coordinates would correspond to arbitrary functions of the origi-
nal Minkowski coordinates ξ0 ≡ ct, ξ1, ξ2, ξ3, the new frame of reference cannot be
inertial since the transformation is, in general, not linear as it is the case for Lorentz
transformations. It then follows that the new coordinate system (xμ) must corre-
spond to an accelerated frame of reference. Moreover, as it happens in the Euclidean
case, instead of a constant Minkowski metric ηαβ we would end up with a met-
ric tensor depending on the four coordinates xμ = x0, x1, x2, x3. This, of course,
would not change the physical laws, but only describe them in a more general, albeit
cumbersome, way.

Given these preliminaries we now define a space, or a space-time as flat if there
exists a special class of coordinates such that the metric assumes a constant value in
a finite or infinite domain of the space or space-time. In Euclidean and Minkowski
spaces this special class is given by the Cartesian coordinates (in particular the
Minkowski coordinates of special relativity), any two elements of this class being
related by a combination of rotations and translations inEuclidean space or of Lorentz

13Here and in the following of this chapter we use the word tensor, whose precise meaning will be
given in Chap.4, in a loose sense, that is as a quantity carrying indices and whose transformation
properties are fixed in terms of the change of coordinates (or of reference frame). In this chapter
the transformation of coordinates considered are either cartesian orthogonal, or Lorentzian or even
arbitrary, as explained below.
14When dealing with problems which exhibit some degree of symmetry it may, however, be more
useful to use curvilinear coordinates, like spherical, cylindrical, etc.

http://dx.doi.org/10.1007/978-3-319-22014-7_4
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transformations and translations in Minkowski space. Note that the computation
in generic curvilinear coordinates of geometric quantities or of physical laws in
Euclidean or Minkowskian flat space, respectively, would involve the use of the
metric gμν(xρ), that is of a matrix whose elements are function of the coordinates.
However, in the special class of frames, the corresponding metric is simply given by
the constant matrices (3.27) or (3.31).

If, however, such a special class of coordinates cannot be found in a large
domain,15 we then say that the space or space-time is curved, that is it exhibits
curvature, a concept which we dwell on in the next section.

3.4 Curvature

Suppose now we have a space (finite or infinite) which possesses a curvature, that is
in which it is not possible to introduce in a large domain Cartesian (Minkowskian)
coordinates. For the sake of simplicity, and to have a help from our intuition, we
suppose for the moment that the space in consideration has two space dimensions,
though it may not necessarily be the plane R2, but rather an arbitrary surface Σ . It is
well known that on a generic surface it is not possible to introduce in a finite domain
Cartesian coordinates, but only curvilinear ones xi , i = 1, 2.

Restricting our attention to an infinitesimal neighborhood of a point P , however,
we can approximate the surface by the tangent plane toΣ at P . We say that the local
geometry of the surface at P is identified with that of the corresponding tangent
plane, the local coordinates on Σ , in the close vicinity of P , coinciding with the
Cartesian ones ξi , (i = 1, 2) on the plane16 (see Fig. 3.3).

In an infinitely small neighborhood of P we can then use Eq. (3.30) to compute
the infinitesimal distance between two points, and thus we conclude that locally
the metric can be always reduced to the form δij.17 However to compute geometric
quantities in a finite domain it is necessary to use general curvilinear coordinates by
transforming the local coordinates throughEq. (3.32).18 Thismeans that the geometry
in a large, possibly infinite, domain is determined by the metric tensor gij(x1, x2),
function of the curvilinear coordinates. For example, the length of a curve γ = γ(τ )

can be computed as:

15By large domain we mean a domain whose extension is finite or infinite.
16Being the plane flat, we can describe it by Cartesian coordinates.
17Here and in the following by locally we mean that our statement is valid in an infinitesimal
neighborhood of a point where higher order terms can be neglected.
18Alternatively one can use Cartesian coordinates at each point using the local tangent plane; in this
case, however, one needs a quantity, called connection, which relates the local geometries associated
with different tangent planes.
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Fig. 3.3 Local geometry and tangent space

� =
∫

γ

d� =
∫

γ

(
gij(x)dxi dx j

) 1
2 =

∫

γ

(
gij(x)

dxi

dτ

dx j

dτ

) 1
2

dτ , (3.36)

τ being any parameter on the curve.
We conclude that on a surface with curvature the metric cannot be reduced to

the constant matrix δij in a finite domain; its geometry is therefore described by the
metric tensor gk�(x) or, equivalently by the matrix V i

k defined by Eq. (3.35).
Even if these considerations have been made in the special case of a two-

dimensional surface, they can be straightforwardly extended to three- or N -
dimensional curved spaces19 that is to spaces where Cartesian coordinates cannot be
introduced in large domains and, also, to spaces where the local metric is not δij, but
ηαβ , as it happens for the Minkowskian space-time of special relativity.

We can now give a precise geometric interpretation of the strong equivalence
principle of the previous section: Saying that in a free falling frame the laws of
special relativity hold, means that the space-time geometry in such frame is locally
the same as that of the four-dimensional (hyper)-plane tangent to space-time at the
point in which the frame is located.

This (four-dimensional) tangent plane is of course theMinkowski space of special
relativity. Indeed we have learned that in a free falling frame, locally, that is in an
infinitesimal neighborhood of a point P = (x0, x) in its interior, up to higher order
terms, gravitation is absent, so that the metric tensor reduces to the constant metric
tensor ηαβ of special relativity.20 If instead we use a general frame of reference,
which is not free falling, the metric tensor gμν(x) must describe the presence of the
gravitational field.21

We may thus establish the following correspondence between the presence of
curvature in a four-dimensional space which is locally Euclidean (metric δi j ) and a
space which is locally Minkowskian (metric ηαβ).

19A more precise definition of curvature will be given in the next section.
20Note that this implies that the free falling frames are the inertial frames described by special
relativity. However, in the presence of a gravitational field, they can be only defined locally, since
only locally the effects of gravity can be canceled.
21As we shall see in the sequel of this chapter the space-time metric gμν(x) is related to the
gravitational potential rather than to the gravitational field.
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Summarizing, the geometry of space-time is the geometry of a four-dimensional
space with local Minkowski metric; this geometry cannot be flat in the presence of a
gravitational field. Space-time geometry must then be described by a metric gμν(x)

which depends on the presence of a gravitational field, each entry being a function of
the space-time coordinates x0, x1, x2, x3. The metric can be reduced to the special
relativity form ηαβ only locally, that is in an infinitely small neighborhood of an
event P , but not in a large region of space-time.

Generalizing Eqs. (3.33) and (3.34) to a four-dimensional space-time, where ξα

(α = 0, 1, 2, 3) are the local Minkowskian coordinates and xμ (μ = 0, 1, 2, 3) are
the general coordinates parametrizing a large domain of the space, we have:

ds2 = ηαβ V α
μ V β

ν dxμdxν = gμν dxμdxν , (3.37)

where

V α
μ

∣∣∣
P

= ∂ξα

∂xμ

∣∣∣∣
P

, (3.38)

and ξα are the local Minkowskian (i.e. inertial) coordinates in an infinitesimal neigh-
borhood of P .

3.4.1 An Elementary Approach to the Curvature

We recall that the Euclidean geometry is based on Euclid’s eleventh postulate which
states the uniqueness of the straight line passing through a given point P and parallel
to a given straight line. This postulate, in particular, implies that the three interior
angles of a triangle sum up to 180◦, see Fig. 3.4:
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Fig. 3.4 Euclidean geometry

Fig. 3.5 Spherical geometry

α + β + γ = π. (3.39)

Let us take again, for the sake of simplicity and intuition, a two-dimensional space,
more specifically a 2-sphere (see Fig. 3.5). Let us then consider a spherical triangle
defined by joining along maximal circles three arbitrary points of the sphere.22

In spherical geometry one can show that the following relation holds:

α + β + γ = π + A

R2 , (3.40)

where A is the area of the spherical surface enclosed by the triangle and R is the
radius of the sphere.

Let us define the curvature K of the sphere as:

K = 1

R2 . (3.41)

22A maximal circle is the shortest path joining two points on the sphere. It can be obtained by
intersecting the spherical surface with a plane determined by the two points and the center of the
sphere.
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the meaning of K is to indicate how much the geometry of the sphere deviates from
the Euclidean plane geometry where K = 0.

On the basis of its definition K seems to depend on the radius of the sphere
considered as a two dimensional manifold embedded in the ambient Euclidean space
R
3. Equation (3.40) however tells us that the curvature K can be evaluated by just

performing measures of angles and areas on the two-dimensional surface of the
sphere. It follows that K has an intrinsic geometric meaning, that is independent of
its embedding in the flat 3-dimensional space, since it can be computed by only using
measures on the spherical surface.

If we had considered a Lobacevskij surface, where K is constant, but negative,
Eq. (3.40) is also valid.

Considering a generic surface Σ , K is of course no longer constant, but becomes
a function of the point on the surface. Indeed we may characterize the value of K at
P as the curvature of the sphere that best approximates the generic surface in a small
neighborhood of P . In this case Eq. (3.40) can be generalized by writing:

α + β + γ − π =
∫

Δ

K (x1, x2) d A, (3.42)

where d A is an infinitesimal element of the surface Σ and Δ is the integration
domain.

K (x1, x2) is called the Gaussian curvature of S at P ≡ (x1, x2).
As it follows from the above discussion, K only depends on the intrinsic geometry

of Σ , while it does not depend on its particular representation in R
3, in terms of

parametric equations of the form:

x = x(x1, x2) , y = y(x1, x2) , z = z(x1, x2), (3.43)

where x1, x2, are curvilinear coordinates on Σ and x, y, z are Cartesian coordinates
on R

3. In fact one can show that K is invariant if S is flexed without stretching or
tearing; for example, since K is zero on a plane, it will also be zero on a cone or a
cylinder or in general on any surface which can be unfolded on a plane. If instead
we are to map a portion of the terrestrial globe on a plane, stretching is necessary,
since we have to change the value of K from a positive constant to zero. In this case
the map can be considered a good approximation only if the area considered is much
smaller than 1

K = R2.

3.4.2 Parallel Transport

There is an equivalent way of describing the curvature of a sphere.
Consider a cannon at the north pole (whichmaymetaphorically represent a tangent

vector) and let us carry it along a meridian till it reaches the equator at a point A,
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Fig. 3.6 Parallel transport

displacing it in such a way as to always keep it parallel to itself, so that the angle it
forms with the meridian remains constant (for example, in Fig. 3.6, the vector forms
an angle zero with the arcs NA and BN and π/2 with the arc AB). This is what it
is meant by parallel transport. Eventually, the same kind of parallel transport is
performed along an arc AB of the equator whose length is 1

4 the circumference, and
finally we carry the cannon back to the north pole along themeridianBN, see Fig. 3.6.

We easily realize that after this tour the cannon arrives back rotated by an angle
of π

2 , which is exactly the angular excess described by the curvature:

Δθ = α + β + γ − π = 3

2
π − π = π

2
= K A. (3.44)

Indeed the ratio between the angular excess Δθ and the area of the spherical octant,
πR2

2 , gives exactly the value of the curvature, namely 1
R2 ≡ K .

Although this result was obtained in a very particular case, it can be shown to
hold for a parallel transport along any closed path γ, not necessarily along geodesic
triangles, enclosing an areaΔ and on any surface. Indeed one can expect and actually
show that in the general case the rotation angle is found by first applying Eq. (3.44)
to an infinitesimal area d A and then integrating over the whole area Δ:

Δθ =
∫

Δ

K (x) d A. (3.45)

where Δ is the area enclosed by the curve γ.
This alternative way of defining the curvature can be easily extended to manifolds

with any number of dimensions. Since our goal is to define the curvature for the four-
dimensional space-time with local Minkowski metric ηαβ , we consider the parallel
transport of a vector vμ, (μ = 0, 1, 2, 3) along a closed path γ in a four-dimensional
manifold. After the trip, the vector will get back to the initial point “rotated” with
respect to the original direction. However, as we have previously learned, such a
“rotation” is a “four-dimensional rotation” in a space endowed with a metric which
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Fig. 3.7 Parallel transports along infinitesimal contours with opposite orientations

has the same signature as the Minkowski one ηαβ ,23 and therefore is a Lorentz
transformation.

In particular, if the closed path γ is infinitesimal, we can obtain the analogous of
the Gaussian curvature as in the case of a two-dimensional surface.

However, while in two dimensions we just have one orientation for the infinites-
imal area dA enclosed by the path γ, (that of the plane tangent to the surface), in
four dimensions dA can have several different orientations. More specifically, if we
represent γ as an infinitesimal parallelogram, we have

(4
2

) = 6 orientations, which
we may label by the ordered couple of indices of the two infinitesimal displacements
dxρ, dxσ defining the parallelogram d A: (ρ, σ) = (01), (02), (03), (12), (13), (23).

We can thus write:

d A → d Aρσ = −d Aσρ ≡ dxρ ∧ dxσ, (3.46)

where the antisymmetry in the couple ρσ, denoted by the symbol ∧, is due to the
orientation of d Aρσ , which is related to the orientation of the curve γ (in other words
the orientation of d A depends on whether the vector is transported along γ in one
direction or in the other, namely if the displacement dxρ precedes or follows dxσ ,
see Fig. 3.7).

In conclusion, performing a parallel transport of a Lorentz vector vμ24 along
an infinitesimal path in space-time the vector undergo an (infinitesimal) Lorentz
transformation given by:

δvμ = Rμ
νρσ vν dxρ ∧ dxσ. (3.47)

whereEinstein conventionof repeated indices is applied andwedefine Rμ
νρσ to be the

curvature of the space-timemanifold at a point P .We see that in four dimensions, the
curvature is actually described by an object carrying four four-dimensional indices,

23It can be shown that the signature of the metric, that is the number of positive and negative
eigenvalues of the matrix gμν(x), is the same at each point of a manifold. Since at a given point the
metric can be taken to coincide with ηαβ this explains the meaning of the statement in the text.
24Note that since the closed path is infinitesimal we are allowed to use the in the tangent hyper-plane
the usual flat geometry of special relativity and therefore the reference to vμ as a Lorentz vector is
appropriate.
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called Riemann curvature tensor, or simply Riemann tensor, providing the natural
generalization of the two-dimensional Gaussian curvature.

One can show that the number of independent components of Rα
βγδ is 20 (instead

of 44).

3.4.3 Tidal Forces and Space-Time Curvature

From the discussion in the previous section on the geometric analogy and from the
above geometric definition of the curvature, it follows that theRiemann tensor Rμ

νρσ

describes the deviation of the actual space-time geometry from the flat Minkowski
geometry, in an intrinsic, coordinate independent way. On the other hand, we have
seen that, in theNewtonian approximation, tidal forces acting in the free falling frame,
also describe the deviation from the Minkowskian geometry of special relativity. It
is therefore obvious that there must be a close relation between curvature and tidal
forces.

To establish this relation, we recall that Eq. (3.21) gives the tidal force in the
classical Newtonian approximation, that is in the limit where the description of the
gravitational field is static, non-relativistic and to the first order in the displacement
vector h.

We also note that the matrix in Eq. (3.21), which is the explicit form of ∂gi

∂xk |r=r0 ,

has the physical dimensions of [T −2], while curvature has dimension [L−2]. Thus
if a relation between tidal forces and curvature exists, the two quantities must be

related by a factor c2. At first sight this could seem impossible, since ∂gi

∂xk is a 3 × 3
matrix with only spatial indices, i, k = 1, 2, 3, while the Riemann tensor has four
four-dimensional indices, α,β, . . . = 0, 1, 2, 3.

This different structure of indices, however, simply means that only some com-
ponents of the Riemann tensor survive when we take the non-relativistic, static limit
of the full relativistic expression of the (gradient of the) gravitational field as given
by the Riemann tensor in the general theory. Indeed, from the exact formula of the
Riemann tensor of the general theory of relativity, one can see that, in the non rela-
tivistic limit c → ∞, denoting by Latin letters the space indices, to lowest order in
1/c one obtains:

Rk
0�0 = − 1

2 c2
∂gk

∂x�
, (3.48)

all the other components of the Riemann tensor being of higher order in 1/c. We
may therefore write:

f k = −2mc2 Rk
0�0 h� (k, � = 1, 2, 3). (3.49)
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Comparing Eqs. (3.48) and (3.49) with Eq. (3.21) one obtains:

Rk
0�0 = −1

2

⎛
⎜⎜⎝

2G M
r30 c2

0 0

0 − G M
r30 c2

0

0 0 − G M
r30 c2

⎞
⎟⎟⎠ , (3.50)

We conclude that this matrix describes the curvature of space-time in the classical
non-relativistic limit.

3.5 Motion of a Particle in Curved Space-Time

To determine the trajectory of a particle in space-time we take advantage of the
principle of equivalence, by first writing the equation of motion in the free falling
frame and then transforming to a general frame.

Locally, in the free falling frame attached to the particle, there is no gravitational
field and the motion is purely inertial in the local special relativistic coordinates ξα

(α = 0, 1, 2, 3). On the other hand, in Chap.2, the special relativistic inertial motion
was described by Eq. (2.75), namely:25

Uα = dξα

dτ
= const. −→ d2ξα

dτ2
= dUα

dτ
= 0, (3.51)

We stress that this equation is valid in an infinitesimal four-dimensional space-time
neighborhood of the particle. Switching to the “laboratory” systemwhere the general
coordinates xμ are used, and using the general relation between the two coordinates
ξα and xμ:

ξα = ξα(xμ), (3.52)

we find

dξα

dτ
= ∂ξα

∂xμ

dxμ

dτ
= V α

μ

dxμ

dτ
, (3.53)

d2ξα

dτ2
= d

dτ

(
V α

μ

dxμ

dτ

)
= V α

μ

d2xμ

dτ2
+ ∂V α

μ

∂xν

dxμ

dτ

dxν

dτ
= 0. (3.54)

We solve this equation with respect to the second derivatives, by multiplying both
sides by the inverse matrix (V −1)

μ
α, that we denote by

25With respect to the notations used in Chap.2, we have changed notation for the locally inertial
coordinates from xμ to ξα (α = 0, 1, 2, 3) since in the present setting the latter describe the locally
inertial coordinates of special relativity, while the former describe a general frame, for example the
coordinates used in the “laboratory” frame, where the gravitational field is present.

http://dx.doi.org/10.1007/978-3-319-22014-7_2
http://dx.doi.org/10.1007/978-3-319-22014-7_2
http://dx.doi.org/10.1007/978-3-319-22014-7_2


3.5 Motion of a Particle in Curved Space-Time 87

V μ
α ≡ (V −1)μα; V μ

α V α
ν = δμ

ν . (3.55)

Equation (3.54) takes then the following form:

d2xμ

dτ2
+ Γ μ

νρ

dxν

dτ

dxρ

dτ
= 0, (3.56)

where we have set:

Γ μ
νρ ≡ 1

2
V μ

α

(
∂V α

ν

∂xρ
+ ∂V α

ρ

∂xν

)
. (3.57)

The number of independent components of Γ
μ
νρ, taking into account the symmetry

in the two lower indices, is 40.
Note that the second term on the left hand side of Eq. (3.56) can be given the

meaning of the gravitational acceleration impressed to the particle of coordinates
xμ; thus Γ

μ
νρ, called affine connection, represents the relativistic generalization of the

gravitational field.
The solution to Eq. (3.56) for the spatial coordinates xi , (i = 1, 2, 3), gives the

trajectory of the particle in the gravitational field while the solution for x0 = ct gives
the relation between the local time t and the proper time τ .

One can show that Γ μ
νρ can be expressed in terms of the metric and its derivatives.

The quickest way do so is to observe that Eq. (3.56), from the four-dimensional
point of view, describes a free inertial motion in the curved space-time since the
gravitational field has been expressed in terms of the affine connection which is a
geometric property of space-time. From this point of view there is no force driving
the particle; instead, the very presence of a non-trivial geometry, characterized by
a non-vanishing Riemann tensor, implies that the free motion must be described by
Eq. (3.56).

This interpretation is corroborated by the observation that a free motion in a
curved space-time is the analogue of the inertial motion in flat space-time, given by a
straight line. We must therefore expect that the solution to Eq. (3.56) must represent
the analogue, in a curved space, of a straight line in flat space. Such curve is called
a geodesic and is defined as the shortest line joining two points.

Let us consider two points A and B (events) in the four-dimensional space-time
and let γ be a generic curve joining them. Its four-dimensional length s(γ) is given
by:

s(γ) =
∫

γ[A→B]
ds =

∫

γ[A→B]
(gμνdxμdxν)

1
2 . (3.58)

The analogue, in curved space, of the straight line in flat space can be obtained by
requiring the curve γ to be such that its length s(γ), as a functional of γ, has a
minimum, as it is the case for the straight line in flat space.
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Solving the variational problem one precisely finds Eq. (3.56) with:

Γ μ
νρ = 1

2
gμδ

(
− ∂

∂xδ
gνρ + ∂

∂xρ
gνδ + ∂

∂xν
gρδ

)
. (3.59)

Note that since the relativistic gravitational field is given in terms of Γ
μ
νρ, which

contains the first derivatives of the metric, the ten components of the metric gμν(x)

are the relativistic generalization of the Newtonian gravitational potential.
To simplify formulas, in the rest of the book we shall often use the following

short-hand notation for partial derivatives:

∂μ ≡ ∂

∂xμ
; ∂i ≡ ∂

∂xi
, (3.60)

where μ = 0, 1, 2, 3 and i = 1, 2, 3.

3.5.1 The Newtonian Limit

Since the geodesic equation (3.56) describes the trajectory of a particle in a gravi-
tational field, it must reduce to the usual Newtonian formula in the non-relativistic
limit. Recalling that the metric is related to the gravitational potential, we define
the classical Newtonian limit as that in which, besides the non-relativistic condition
v 
 c, we also require the gravitational field to be weak and static.

On the metric this implies:

gμν = ημν + hμν + O(h2), (3.61)
∂gμν

∂t
= c

∂gμν

∂x0
= 0, (3.62)

where hμν(x) is the first order deviation from the flatMinkowski space corresponding
to the absence of gravitational field. In Appendix B we show that, in this case, the
only non-vanishing components of the affine connection are:

Γ i
00 = 1

2
giμ(−∂μg00) � −1

2
ηij∂ j h00 = 1

2
∂i h00, (3.63)

where i is a three-dimensional space index and we have used ηij = −δij.
With these approximations the geodesic equation for the index μ = 0 gives

dt
dτ � 1, while for the spatial index μ = i we have:

1

c2
d2xi

dt2
= −1

2
∂i h00. (3.64)
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Equation (3.64) then coincides with the Newton equation if we set:

φ

c2
= 1

2
h00. (3.65)

where φ is the classical gravitational potential. With this identification, Eq. (3.64)
becomes:

d2xi

dt2
= − ∂iφ. (3.66)

In particular from Eq. (3.61) we find:

g00 = 1 + h00 = 1 + 2
φ

c2
. (3.67)

3.5.2 Time Intervals in a Gravitational Field

Equation (3.67) allows us to evaluate how time intervals are affected by the presence
of a gravitational field. Let us suppose that we are in a free falling frame, where the
Minkowskian coordinates ξα can be used. According to the principle of equivalence,
a clock at rest in such a system measures a time interval which coincides with the
proper time in the absence of gravity:

dτ2 = = 1

c2
ηαβdξαdξβ = η00 dt2 = dt2 (α,β = 0, 1, 2, 3), (3.68)

since, for a clock at rest, dξi

dt = 0.
In any other frame of reference with coordinates xμ, like our laboratory, the

gravitational field is present and the proper time interval will take the following
form:

dτ2 = 1

c2
gμνdxμdxν . (3.69)

If in this frame the clock has four-velocity dxμ/dt = vμ, then the time interval dt
between two consecutive (infinitely close) ticks satisfies the relation:

(
dτ

dt

)2

= 1

c2
gμν

dxμ

dt

dxν

dt
. (3.70)
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In particular, if the clock is at rest in the laboratory frame, that is if vi = 0, we obtain:

dt

dτ
= (g00)

− 1
2 . (3.71)

The dilation factor on the right hand side of (3.71), however, cannot be observed,
since the gravitational field affects in the same way the ticks of the standard clock
and those of the clock being studied. However, the difference between dt1 e dt2 in
two different points x1, x2 can be observed; indeed Eq. (3.71) implies:

dt1 = dτ (g00(x1))−
1
2 , (3.72)

dt2 = dτ (g00(x2))−
1
2 , (3.73)

so that:

dt2
dt1

=
[

g00(x1)
g00(x2)

] 1
2

. (3.74)

In particular, in the classical Newtonian limit, we may use (3.67) and, recalling
Eq. (3.67), we obtain

dt2
dt1

=
[
1 + 2 φ1

c2

1 + 2 φ2
c2

] 1
2

≈
(
1 + 2

φ1

c2

) 1
2
(
1 − 2

φ2

c2

) 1
2 ≈ 1 − φ2 − φ1

c2
= 1 − Δφ

c2
,

(3.75)

where we have defined φ1 = φ(x1) and φ2 = φ(x2) and used that φ
c2

is very small

in most situations.26

For example, if a clock is placed at the point x1 far away from other bodies, so
that no gravitational field is present, we have φ(x1) = 0, and therefore:

dt1 = dτ , (3.76)

since g00(x1) = η00 = 1. The same clock placed at a point x2, e.g. on the earth’s
surface, will tick time intervals dt2 such that:

dt2
dt1

= dt2
dτ

≈ 1 − Δφ

c2
= 1 − φ2

c2
. (3.77)

Since φ2 < 0 we find dt2 > dt1, that is time intervals are dilated in a gravitational
field by a factor (1 − φ2

c2
). In the case of the terrestrial gravitational field we have:

26As usual the value at infinity of φ is set equal to zero.
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dt2 =
(
1 + G M

c2r

)
dτ . (3.78)

where M is the earth’s mass.
In particular a same clock will tick at a different rate, depending on whether it is

placed at sea level or at height h. Indeed, since

φ1 = −G M

R
; φ2 = − G M

R + h
, (3.79)

we obtain:

dt2 =
(
1 − φ2 − φ1

c2

)
dt1 =

[
1 − G M

c2

(
1

R
− 1

R + h

)]
dt1. (3.80)

In general we may say that the more negative the gravitational potential is, (or the
greater its absolute value is), the more dilated time intervals are.

Because of the factor 1/c2, these effects are generally small, however gravitational
time dilation has been experimentally measured in various different situations.

The first verification by a experiment on earth was performed by Pound and
Rebka combining the gravitational dilation with Doppler effect in the emission and
absorption of photons in Fe57. Further experimental evidence can be inferred from
astrophysical observations (especially from the light spectra of white dwarfs). In this
case we can safely set to zero the earth’s gravitational potential being much smaller
in absolute value than the potential on the surface of a star. Thus, in this case, we
have:

dt2
dt1

= ν1

ν2
> 1, (3.81)

where ν denotes the light frequency and the suffix 1 and 2 are referred to the earth and
to the star, respectively. The frequency of the emitted light is then higher than that
observed on earth and we have a measurable shift towards the red of the wavelength.

In the eighties further confirmations were gained by experiments with time signals
sent to and from Viking 1 Mars lander and from time measurements using atomic
clocks on airplanes; the clocks that traveled aboard the airplanes, upon return, were
slightly faster than those on the ground.

However, the most spectacular evidence of the gravitational red-shift is nowadays
given by its technological application to GPS devices.

A GPS gives the absolute position on the surface of the earth to within 5–10m
of precision; this requires the clock ticks on the GPS satellite to be known with
an accuracy of 20–30ns. Such an accuracy cannot be reached if we neglected the
special and general relativity effects on time intervals . To compute these effects
we first observe that the transmitting clock is subject to the special relativistic time
dilation due to the satellite orbital speed, compared to an identical clock on the earth.

From our discussion of time dilation in special relativity the clock on the satellite
would run slower, compared to a clock on the earth, by the factor:
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√
1 − v2

c2
� 1 − v2

2c2
, (3.82)

to first order in v2

c2
, since v, the satellite speed, is much smaller than c.

Suppose the satellite is orbiting at a distance from the center of the earth of about
four times the earth’s radius R. Using the classical result

v2

r
= G M

r2
, (3.83)

with r = 4R, we obtain a time loss of about −7µs/day.
We now compute the general relativistic effect. First we recall that a clock in a

greater gravitational potential runs faster than one on earth. Then, calling ΔtE and
Δts the time intervals on earth and on the satellite, respectively, we find:

1 − ΔtE

Δts
= Δφ

c2
= 1

c2

[
G M

R + h
− G M

R

]
(3.84)

and if R + h � 4R this gives a gain in time of �45µs/day, six times larger than the
special relativistic effect.

Summing up the two effects we find that the clock on the satellite runs faster
�38µs/day ≡ 38 × 103 ns/day. We see that neglecting the relativistic effects,
would imply errors three order of magnitude higher than the necessary accuracy of
20–30ns!27

3.5.3 The Einstein Equation

Until nowwehavebeendiscussing someconsequences of theprinciple of equivalence
in relation to the motion of a particle in a given gravitational field. We have seen
that the motion is essentially a free motion in a curved space-time, the generalized
gravitational potential being described by the metric gμν(x) which was supposed to
be a known function of the space-time coordinates.

The knowledge of themetric field is, however, not known a priori, and the descrip-
tion of the gravitational field requires the knowledge of the equation of motion of
the metric field.

To arrive to a rigorous determination of this equation the principle of equivalence
is no more sufficient and we must address the full geometric formalism of general
relativity.

Nevertheless, in this section, with no ambition of being rigorous or complete, we
shall try to develop some heuristic considerations to justify the actual form of the
gravitational equations.

27 We also note that the given error increases day by day, since it is a cumulative effect.
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We recall that in the Newtonian non-relativistic theory the gravitational potential
is static, that is, non-propagating, and, given a distribution of mass in space, it can
be determined through the Poisson equation:

∇2φ = −4πG ρ(x), (3.85)

where ρ is the density of matter and, as usual, φ(x) the gravitational potential. On the
basis of the discussions given in the previous sections, it is clear that the relativistic
extension we are looking for must be covariant under general coordinate transfor-
mations. Furthermore the ten components of the metric field gμν(x) must describe a
propagating field generalizing the single static component of the Newtonian grav-
itational potential φ. Indeed, we know that already at the level of special relativity,
dependence on the spatial coordinates implies dependence on the time.

It then follows that the source term ρ must also be generalized, in a covariant
setting,28 in terms of ten quantities depending on the four space-time coordinates.
As we will show in Chaps. 5 and 8, such relativistic extension is given in terms of
the so-called energy momentum tensor Tμν , symmetric in μν, which describes the
density of matter four-momentum and of its current and can be shown to reduce, to
lowest order in v/c, to the single non-vanishing component T00 = ρc = ε/c, ε being
the energy density.

On the other hand, on the left hand side, the Laplace operator in the classical
Poisson equation must be replaced by an expression satisfying the following require-
ments:

1. It must have the same index structure as Tμν ;
2. It must be a second order differential expression on the metric field gμν(x);
3. It must be covariant under general coordinate transformations;
4. It must reduce to the left hand side of Poisson equation in the non-relativistic

limit.

Let us denote such unknown expression by Gμν . Then the equation we are looking
for should have the form:

Gμν = αTμν, (3.86)

where α is a constant. On the other hand our previous discussion on the geometric
properties of space-time in the presence of gravitation tells us that the Riemann
tensor Rμ

νρσ , the relativistic extension of the tidal forces, determines the geometric
properties of space–time associated with the presence of gravitation. Thus we expect
that Gμν must be related to the Riemann tensor. Actually one can show that, in
Riemannian geometry, all the requirements enumerated before are satisfied if we
set:

Gμν = Rα
μαν − 1

2
gμν Rτ

ρτσ gρσ, (3.87)

28Here covariant means with respect to general coordinate transformations.

http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_8
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and set the unknown constantα of Eq. (3.86)α = −8π G in order to reproduce in the
non relativistic static weak-field limit the Poisson equation (3.85). Thus we see that
the equation for the metric field, also known as Einstein’s equation, is a second order
differential equation whose source is Tμν , which, as we shall see later on, describes
the distribution of energy andmomentum in space-time. If such distribution is known
and the initial Cauchy data are given, we can determine the solution for the metric
field gμν . In other words: The energy-momentum distribution, that is the content of
matter-energy and of its current, determines the geometry of space-time.

3.5.4 References

For further reading see Refs. [1, 11, 12].



Chapter 4
The Poincaré Group

In this chapter, after briefly reviewing the notions of linear vector spaces, inner prod-
uct of vectors and metric in (three-dimensional) Euclidean space, we shall focus
on coordinate transformations, namely maps between different descriptions of the
same points in space. This will allow us to introduce covariant and contravariant
vectors, as well as tensors, characterized by specific transformation properties under
coordinate transformations. Though we shall be mainly concerned with Cartesian
coordinate transformations, which are implemented by linear relations between the
old and new coordinates, the formalism is readily extended to more general trans-
formations relating curvilinear coordinate systems, and thus also to curved spaces
where Cartesian coordinates cannot be defined. We shall then study rotations in
Euclidean space and show that they close an object called a Lie group, whose prop-
erties are locally captured by a Lie algebra. This will lead us to the important concept
of covariance of an equation of motion with respect to rotations. The generalization
of all these notions from Euclidean to Minkowski space will be straightforward. As
anticipated in an earlier chapter, points inMinkowski space are described by a Carte-
sian system of four coordinates x0, x1, x2, x3 and the distance between two points is
defined by a metric with Minkowskian (or Lorentzian) signature. Poincaré transfor-
mations will then be introduced as Cartesian coordinate transformations which leave
the coordinate dependence of the distance between two points invariant. These lin-
ear transformations include, as the homogeneous part, the Lorentz transformations,
which generalize the notion of rotation to Minkowski space. Poincaré transforma-
tions also comprise, as their inhomogeneous part, the space-time translations, and
close a Lie group called the Poincaré group. The principle of special relativity is
now restated as the condition that the equations of motion be covariant with respect
to Poincaré transformations.

© Springer International Publishing Switzerland 2016
R. D’Auria and M. Trigiante, From Special Relativity to Feynman Diagrams,
UNITEXT for Physics, DOI 10.1007/978-3-319-22014-7_4
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4.1 Linear Vector Spaces

Let us briefly recall some basic facts about vector spaces. Consider the three-
dimensional Euclidean space E3. We can associate with each couple of points A, B

in E3 a vector
−→
AB originating in A and ending in B. If we arbitrarily fix an origin O in

E3, any other point A in E3 will be uniquely identified by its position vector r ≡ −→
OA.

We can then consider the collection of vectors, each associated with couples of
points in E3, which constitutes a vector space associated with E3 and denoted by
V3. Indeed the space V3 is endowed with a linear structure, which means that an
operation of sum and multiplication by real numbers is defined on its elements: We
can consider a generic linear combination of two or more vectors V1, . . . , Vk in V3
with real coefficients and the result V:

V = a1V1 + · · · akVk, (4.1)

is still a vector, namely an element of V3, that is there is a couple of points A, B in

E3 such that V = −→
AB. If A and B coincide the corresponding vector is the null vector

0 ≡ −→
AA.

A set of three linearly independent vectors {u1, u2, u3} = {ui}1 defines a basis
for V3 and any vector V can be expressed as a unique linear combination of {ui}:

V = V 1u1 + V 2u2 + V 3u3 =
∑

i

V iui, (4.2)

where V 1, V 2, V 3 (with the upper index), are the components of V in the basis {ui}.
It is useful to describe the vectors {ui} as column vectors in the following way:

u1 ≡
⎛
⎝
1
0
0

⎞
⎠ ; u2 ≡

⎛
⎝
0
1
0

⎞
⎠ ; u3 ≡

⎛
⎝
0
0
1

⎞
⎠ . (4.3)

This allows to describe a generic vector V as a column vector having as entries the
components of V with respect to the basis {ui}.

V ≡ V 1

⎛
⎝
1
0
0

⎞
⎠ + V 2

⎛
⎝
0
1
0

⎞
⎠ + V 3

⎛
⎝
0
0
1

⎞
⎠ =

⎛
⎝

V 1

V 2

V 3

⎞
⎠ . (4.4)

This formalism will allow us to reduce all operations among vectors to matrix oper-
ations. We shall also use the boldface to denote the matrix representation of a given
quantity.

1Recall that this property means that a1u1 + a2u2 + a3u3 = 0 if and only if a1 = a2 = a3 = 0.
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Fig. 4.1 a Generic Cartesian coordinate system; b Cartesian rectangular coordinate system

A Cartesian coordinate system in E3 is defined by an origin O and a basis {ui} of
V3 and it allows to uniquely describe each pointP inE3 bymeans of three coordinates
x, y, z, which are the components of the corresponding position vector r = −→

OP, that
is the parallel projections along ui, see Fig. 4.1a:

r = −→
OP = xu1 + yu2 + zu3 ≡

⎛
⎝

x
y
z

⎞
⎠ . (4.5)

It will be convenient to rename the coordinates as follows: x1 = x, x2 = y, x3 = z.
This will allow us to use the following short-hand description of the position vector:

r ≡
3∑

i=1

xiui ≡ {xi}. (4.6)

A frame of reference (RF) in Euclidean space will be defined by a Cartesian coordi-
nate system. In V3 a scalar product is defined which associates with each couple of
vectors V, W a real number V ·W ∈ R and which satisfies the following properties:

(a) V · W = W · V (symmetry),
(b) (a V1 + b V2) · W = a(V1 · W) + b(V2 · W) (distributivity),
(c) V · V ≥ 0; V · V = 0 ⇒ V = 0 (positive definiteness)

(4.7)

With respect to a basis ui, i = 1, 2, 3, a scalar product can be described by means of
a symmetric non singular matrix called metric:

g = (gij) ≡ (ui · uj) i, j = 1, 2, 3, (4.8)
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in terms of which the scalar product between two generic vectors V, W

V =
3∑

i=1

V i ui, W =
3∑

i=1

Wi ui,

can be written as follows:

V · W = (V 1 u1 + V 2 u2 + V 3 u3) · (W1 u1 + W2 u2 + W3 u3) (4.9)

=
3∑

i=1

3∑

j=1

V iWjui · uj =
3∑

i=1

3∑

j=1

V iWjgij (4.10)

= (V 1, V 2, V 3)

⎛
⎝

g11 g12 g13
g21 g22 g23
g31 g32 g33

⎞
⎠

⎛
⎝

W1

W2

W3

⎞
⎠ = VT g W, (4.11)

where we have applied properties (a) and (b). Property (c) is specific to Euclidean
space and expresses the positive definiteness of its metric, namely that for any vector
V ∈ V3, different from the null vector 0 = (0, 0, 0), the quantity ‖V‖2 ≡ V · V =
V i gij V j, called the norm squared of V, is positive. This in turn implies that the
symmetric matrix gij has only positive eigenvalues. This property will not hold for
themetric inMinkowski space,whichhas three negative andonepositive eigenvalues.

As an example let us consider a basis in which the scalar product is described by
the following metric:

g = (gij) =
⎛
⎝
1 0 0
0 3 2
0 2 3

⎞
⎠ .

Given two vectors:

V = 3u1 + 4u2 ≡ (3, 4, 0) = V,

W = 5u1 + 2u3 ≡ (5, 0, 2) = W,

their scalar product can be expressed in terms of the following matrix operation:

V · W = VT g W = (3, 4, 0)

⎛
⎝
1 0 0
0 3 2
0 2 3

⎞
⎠

⎛
⎝
5
0
2

⎞
⎠ = 31.

It is very useful, in writing this kind of formulae, to use the Einstein summation
convention introduced in Chap.2: Whenever in a formula a same index appears in
upper and lower positions, summation over that index is understood. We say that

http://dx.doi.org/10.1007/978-3-319-22014-7_2
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a contraction is performed over that index, which is also called dummy index. For
instance the formula (4.11) for the scalar product can be written as follows:

V · W =
3∑

i=1

3∑

j=1

V iWjgij ≡ V iWjgij, (4.12)

contraction being over the indices i and j. In what follows we shall always use this
convention in order tomake formulae simpler andmore transparent. Starting from the
notion of scalar product on V3 we can define a distance in E3: The distance d(A, B)

between two pointsA andB, described by the position vectors rA = xi
A ui, rB = xi

B ui

respectively, is defined as the norm of the relative position vector rA − rB:

d(A, B) ≡ ||rA − rB|| = √
(rA − rB) · (rA − rB) =

√
(xi

A − xi
B) gij (x

j
A − xj

B),

(4.13)

where we have used the fact that

rA − rB =
(

x1A − x1B

)
u1 +

(
x2A − x2B

)
u2 +

(
x3A − x3B

)
u3. (4.14)

From property (c) of Euclidean metric it follows that, if two points have vanishing
distance, they coincide. Indeed d(A, B) = 0 means that ‖rA − rB‖ = 0, which is the
case only if the relative position vector rA − rB equals the 0-vector (0, 0, 0), i.e. if
rA = rB, that is A = B. This will not hold in Minkowski space where two distinct
points (i.e. two different events) can have vanishing four-dimensional distance.

In V3 we can always choose a basis of vectors {ui} which are orthonormal (defin-
ing a Cartesian rectangular coordinate system, see Fig. 4.1b), namely satisfy the
condition:

gij = ui · uj = δij =
{
1 i = j

0 i �= j
. (4.15)

The unit vectors {ui} define three mutually orthogonal axes: X, Y , Z .2 The metric
matrix, in this case, reads:

g =
⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠ . (4.16)

The scalar product between two vectors in this basis acquires the following simple
form:

2When referring to the collection of Cartesian rectangular coordinates in our Euclidean three-
dimensional space we shall often use, as we did in Chaps. 1 and 2, the symbol x instead of r:
x ≡ (x, y, z).

http://dx.doi.org/10.1007/978-3-319-22014-7_1
http://dx.doi.org/10.1007/978-3-319-22014-7_2
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V · W = V i δij Wj = V 1W1 + V 2W2 + V 3W3. (4.17)

The squared norm of a non-null vector reads: ‖V‖2 = (V 1)2 + (V 2)2 + (V 3)2 > 0.
Also the expression (4.14) of the distance between two points A and B simplifies
considerably:

d(A, B) =
√

(xA − xB)2 + (yA − yB)2 + (zA − zB)2. (4.18)

The above formula could have been deduced directly using Pythagoras’ theorem.

4.1.1 Covariant and Contravariant Components

Consider a transformation of the Cartesian coordinate systemwhich leaves the origin
fixed but brings a basis {ui} into a new one {u′

i} and let us see how the components
V ′ iof a vector V in the new basis are related to those (V i) in the old basis. Each
vector u′

i can be expressed in terms of its components relative to the old basis {ui}:

u′
j = Mi

j ui, (4.19)

where M = (Mi
j), i labelling the rows, j the columns, has to be an invertible matrix

in order for u′
i to be linearly independent. For the sake of convenience let us denote

by D the inverse of M, so that M = D−1. Notice that in the expression on the right
hand side of (4.19) the summation is taken over the row-index of M. If we arrange
the basis elements ui in a row vector, Eq. (4.19) can be written in a matrix form:

(u′
1, u′

2, u′
3) = (u1, u2, u3) D−1, (4.20)

namely the row vector (ui) transforms by acting on it with the matrix D−1 from the
right. Alternatively, thinking of (ui) as a column vector, it transforms by the action
of (D−1)T to the left. The components V i of the vector

V = V iui, (4.21)

will then transformwith the matrixD. Indeed, if V ′ i and V i are different descriptions
of a same vector, we have

V = V i ui = V ′ i u′
i, (4.22)
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which implies:

V juj = V ′ i D−1 j
i uj. (4.23)

Being ui independent we find

V ′ i D−1 j
i = V j. (4.24)

Using the matrix formalism, we can describe the same abstract vector in Eq. (4.21)
in terms of two column vectors V′ = (V ′ i) and V = (V i) consisting of the cor-
responding components in the new and old bases respectively. Equation (4.24) can
then be recast in a matrix form:

D−1 V′ = V. (4.25)

We can solve Eq. (4.25) in V′ multiplying both sides by the matrix D−1:

V′ = D V ⇔ V ′ i = Di
j V j. (4.26)

Compare now the two Eqs. (4.20) and (4.26). If the elements of a basis (which are
labeled by a lower index), as elements of a row vector, transform with a matrix D−1

from the right (or D−1T to the left if seen as a column vector), the corresponding
components of a vector (labeled by an upper index), as elements of a column vector,
transform with the matrix D from the left. We say that the elements of a basis trans-
form as a covariant vector (having a lower index), while the components of a vector
transform as a contravariant vector (having an upper index). In our conventions
we will often represent covariant and contravariant quantities, in matrix notation, as
components of row and column vectors respectively. Let us now consider the scalar
product (4.12) and define the quantities Vi ≡ gijV j. The presence of a lower index
suggests that it should transform as a covariant vector, as we presently show. Indeed,
from the definition (4.8) of metric and from (4.20) we can deduce its transformation
property:

g′ = (g′
ij) = (u′

i · u′
j) = (D−1 k

i D−1 �
j gk�) = D−T g D−1, (4.27)

where we have used the distributive property of the scalar product and defined D−T

as (D−1)T , namely the transpose of the inverse. The scalar product between two
vectors can be expressed in the following simple form:

V · W = Vi Wi = V i Wi, (4.28)

or, in matrix notation

V · W = (V1, V2, V3)

⎛
⎝

W1

W2

W3

⎞
⎠ = (W1, W2, W3)

⎛
⎝

V 1

V 2

V 3

⎞
⎠ , (4.29)
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It is useful to define the inverse metric g−1, whose components are denoted by
gij ≡ g−1 ij, so that gik gkj = δi

j . From Eqs. (4.27) and (4.15) it follows that the
inverse metric transforms as follows:

g−1 ′ = (g′ij) = (Di
k Dj

� gk�) = D g−1 DT . (4.30)

From (4.27) we deduce the transformation property of Vi:

V ′
i = g′

ij V j ′ = D−1 k
i D−1 �

j gk� Dj
s V s = D−1 k

i gk� δ�
s V s = D−1 k

i Vk,

(4.31)

where we have used the definition of inverse matrix: D−1 �
j Dj

s = δ�
s . Comparing

(4.31) with (4.20) we conclude that Vi transform as the basis elements ui, namely
as components of a covariant vector. We say that Vi are the covariant components
of the vector V, since they transform covariantly with the basis {ui}. To define them
we needed the notion of metric gij. Equivalently we can write the contravariant
components in terms of the covariant ones by contracting the latter with the inverse
metricV i = gij Vj.We conclude that a vectorV can be characterized either in terms of
its covariant or of its contravariant components, and that we can lower a contravariant
index or raise a covariant one by contracting it with the metric or the inverse metric,
respectively.

From (4.31) we also conclude that the scalar product between two vectors is
invariant under a change of basis, as we would expect since the result of this product
is a number (scalar):

V′ · W′ = V ′
i W ′ i = Vk D−1 k

i Di
� W� = Vk δk

� W� = Vi Wi = V · W.

Geometrically the covariant components of a vector are its orthogonal projections
along the coordinate axes. Indeed we can write:

Vi = gijV
j ≡ ui · ujV

j ≡ ui · (ujV
j) = ui · V, (4.32)

recalling the geometric meaning of the scalar product between two vectors, Vi is the
orthogonal projection of V along ui (provided ui has unit length), while the con-
travariant component is obviously the parallel projection, as it follows form (4.22).

Clearly if {ui} is an orthonormal basis, namely if ui · uj = δij the covariant and
contravariant components of a vector coincide: Vi = δij V j = V i.

Let r = (xi) and r′ = (x′i) denote the coordinate vectors of a point P with respect
to the two coordinate systems. By Eq. (4.26) we find the following relation between
the two:

r′ = D r ⇔ x′i = Di
j xj. (4.33)

Let us now consider the most general transformation relating two Cartesian coordi-
nate systems. It is an affine transformation which acts not only on the basis of vectors



4.1 Linear Vector Spaces 103

but also on the origin, by means of a translation. Let O, (ui) and O′, (u′
i) denote

the origins and the bases of the two systems. The two bases are related as in Eq.
(4.20). A point P is described by the vector

−→
OP = xi ui with respect to the former

coordinate system, and by
−→
O′P = x′i u′

i with respect to the latter. Let
−−→
OO′ = xi

0 u′
i be

the position vector of O′ relative to O in the new basis. From the relation:

−→
O′P = −→

OP − −−→
OO′, (4.34)

we derive the following relation between the new and old coordinates of P

x′i u′
i = xi ui − xi

0 u′
i = xj Di

j u′
i − xi

0 u′
i. (4.35)

Equating the components of the vectors on the right and left hand side we find

x′i = Di
j xj − xi

0, (4.36)

or, as a relation between coordinate vectors,

r′ = (D, r0) · r ≡ D r − r0, (4.37)

where r0 ≡ (xi
0). The most general transformation of a Cartesian coordinate system

is then implemented by a linear relation (4.36) between the old and the new coordi-
nates. In (4.37) this relation has been described as the action on r of a couple (D, r0)
consisting of an invertible matrix D and a vector r0 defining the homogeneous and
inhomogeneous part of the transformation, respectively. Homogeneous transforma-
tions are those considered at the beginning of the present section, which do not affect
position of the origin, O ≡ O′, and thus are just characterized by the matrix D, being
r0 ≡ 0. If, on the other hand, the homogeneous component of the transformation
is trivial, D = 1, the affine transformation (1, r0) only describes a rigid translation
of the frame of reference: x′i = xi − xi

0. Let us stress here that the matrix elements
Dj

i and the parameters xi
0 are constant, namely coordinate-independent. We can con-

sider the relative position vector between two infinitely close points. Its components
dr = (dxi), dr′ = (dx′i), with respect to the two coordinate systems, are the infin-
itesimal differences between the coordinates of the two points, i.e. the coordinate
differentials. Their relation is obtained from (4.36) by differentiating both sides:

dx′ j = Dj
i dxi = ∂x′j

∂xi
dxi. (4.38)

The matrix D thus represents the coordinate-independent Jacobian matrix of the
coordinate transformation.
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General coordinate transformations involve non-Cartesian, i.e. curvilinear coor-
dinate systems, and are typically described by non-linear coordinate relations3

x′i = x′i(x) ≡ x′i(x1, x2, x3), as anticipated in Chap.3. In this case the Jacobian

matrix D =
(

∂x′j
∂xi

)
in Eq. (4.38) will no longer be coordinate-independent (think

about the relation between Cartesian orthogonal coordinates x, y, z and spherical
polar coordinates r, θ,ϕ).4 We shall come back to this point at the end of this section.

All that have been said about three-dimensional Euclidean space E3 can be easily
extended its n-dimensional version En. It is sufficient to take the indices i, j, . . . to
run from 1 to n instead of taking only three values.

So far we have been considering the transformation properties of the components
of a (covariant or contravariant) vector as the basis of the reference frame is changed.
In physics (and geometry) one in general has to deal with vectors which are functions
of the point in space through its coordinates V(r) = V(x1, x2, . . . , xn), namely with
vector fields. Nothing changes in the transformation rule of the (covariant or con-
travariant) components of the vector field, since, if we perform aCartesian coordinate
transformation (4.36) (D, r0), at a given point P we will have:

V ′ i(P) = Di
j V j(P), contravariant vector,

V ′
i (P) = (D−1)k

iVk(P), covariant vector. (4.39)

However the same point P, in the two reference frames, will be described by two
different sets of coordinates: r ≡ (xi) and r′ ≡ (x′ i) respectively, i = 1, . . . , n.
Therefore the dependence of the components of the vector field on the coordinates
will in general change as a consequence of the transformation:

V ′ i(r′) = V ′ i(D r − r0) = Di
j V j(r)

V ′
i (r

′) = V ′
i (D r − r0) = (D−1)k

i Vk(r), (4.40)

where we have used (4.36). In what follows we shall, for the sake of simplicity, talk
about vectors even when dealing with vector fields, omitting their explicit coordinate
dependence, whenever this is not required by the context.5

The vector space Vn, with a positive definite scalar product, will capture all the
geometric properties of En. In particular we can describe all the points in En in terms
of a Cartesian coordinate system defined by an origin and a basis {ui}i=1,...,n of Vn.
This is a feature of flat spaces in general (the Euclidean space being an example of
flat space) and in the following of this book we shall restrict to this kind of spaces
only. Let us just mention that non-flat spaces have been considered in Chap.3 and

3Such relations are, by definition, invertible, namely the Jacobian matrix
(

∂x′j
∂xi

)
is non-singular.

4We shall use r = (xi) to denote the collection of Cartesian coordinates. Generic coordinates will
also be collectively denoted by x = (xi).
5This remark will also apply to tensors and tensor–fields, to be introduced in next section.

http://dx.doi.org/10.1007/978-3-319-22014-7_3
http://dx.doi.org/10.1007/978-3-319-22014-7_3
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their features have been described in a non-rigorous way by the introduction of the
concept of curvature. In particular we have seen that if the space is not flat (consider
a sphere in the three-dimensional Euclidean space E3), its geometric properties are
no longer captured by a vector space (take two vectors in E3 connecting two couples
of points on the sphere, their sum in general does not connect two points on the
sphere). One can show, however, as was described in an intuitive way in the previous
chapter, that infinitesimal displacements in the neighborhood of any point P of the
space, do close a vector space, called tangent space at P. The latter therefore cap-
tures only the local properties of the space, just as the tangent plane to a sphere at
a point P approximates the sphere in the immediate vicinity of P. As anticipated in
Chap.3, curved spaces can not be described, in a finite or infinite region, in terms
of Cartesian but only by means of curvilinear coordinates. If xi are coordinates in
this space, an infinitesimal displacement is a vector having, as components, the dif-
ferentials dxi of the coordinates. All that has been defined for the vector space Vn

associated with a flat space, such as the metric, covariant and contravariant vectors
etc. can now be defined on the tangent space to a curved space at a generic point, the
matrix D representing the coordinate-dependent Jacobian matrix of the general
coordinate transformation, see the end of this section. Since in this more general
situation, the coordinates xi are no longer components of vectors, it is correct to
associate with the differentials dxi, rather than with the coordinates xi themselves,
contravariant transformation properties. If the space is flat the tangent spaces at all
points coincide and the geometry is captured by a single vector space.

We end this section by giving a more general definition of contravariant and
covariant vectors, which holds also for non-linear coordinate transformations, and
thus extends the definition given earlier to generic coordinate transformations and,
in the light of our previous remark, to transformations on curved spaces. If we effect
a coordinate transformation:

xi −→ x′ i = x′ i(x1, x2, . . . , xn) i = 1 . . . , n, (4.41)

the coordinate differentials dxi transform through the (coordinate-dependent) Jaco-
bian matrix:

dx′ i = ∂x′ i

∂xj
dxj. (4.42)

We shall call contravariant a vector V i whose components transform as the coordinate
differentials dxi:

V i −→ V ′i = ∂x′ i

∂xj
V j. (4.43)

In case the transformation (4.41) connects two Cartesian coordinate systems, it is
linear, of the form (4.36), and the Jacobian matrix coincides with the constant matrix
D relating the two bases, so that we retrieve the previous definition (4.26).

http://dx.doi.org/10.1007/978-3-319-22014-7_3


106 4 The Poincaré Group

Consider now the following differential operators:

∂

∂xi
: f −→ ∂f

∂xi
, (4.44)

where ∂f
∂xi are the components of the gradient vector ∇ f of a function

f (r) = f (x1, x2, . . . , xn). These quantities transform under (4.41) according to
the rule of derivatives of composite functions:

∂

∂x′ i
= ∂xj

∂x′ i

∂

∂xj
. (4.45)

We shall call covariant any vector whose components transform as a gradient vector,
namely as (4.45). For an affine transformation (4.36) we then find

xj = D−1j
i x′ i =⇒ ∂xj

∂x′ i
≡ D−1j

i, (4.46)

so that the components of the gradient vector transform as the basis elements {ui} of
the Cartesian coordinate system:

∂

∂x′ i
= D−1j

i
∂

∂xj
, (4.47)

consistently with the earlier characterization of covariant vector.
In the following we shall restrict to Cartesian coordinate systems and thus will

only consider affine transformations, unless explicitly stated.

4.2 Tensors

Consider now the set of all quantities of the form V i Wj, namely expressible as the
product of the contravariant components of two vectors. Under a change of basis
(4.20), resulting from a Cartesian coordinate transformation (4.36), we have:

V ′ i Wj ′ = Di
k Dj

� V k W�. (4.48)

A collection of n2 numbers Fij (i, j = 1, 2, . . . , n) is a contravariant tensor of order
2 and type (2, 0), if, under a change of basis, it transforms as the product of two
contravariant vectors, namely as in (4.48):

Fij ′ = Di
k Dj

� Fk�. (4.49)
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The set of all such objects form a vector space (i.e. a linear combination of two type
(2, 0)-tensors is again a type (2, 0)-tensor) which is denoted by Vn ⊗Vn. Let us recall
at this point, that given two vector spaces Vn, Vm, the tensor product Vn ⊗ Vm is a
vector space containing the tensor products V ⊗ W of vectors V ∈ Vn and W ∈ Vm.
The tensor product operation ⊗ is bilinear in its two arguments: (α V1 + β V2) ⊗
W = α V1 ⊗ W + β V2 ⊗ W and V ⊗ (α W1 + β W2) = α V ⊗ W1 + β V ⊗ W2.
Therefore, if {ui}i=1,...,n and {wα}α=1,...,m are bases of Vn and Vm, respectively, all
products V ⊗ W can be expanded in the basis {ui ⊗ wα} consisting of mn (linearly
independent) elements, their components being the product of the components of the
two vectors:

V ⊗ W = (V ⊗ W)iα ui ⊗ wα = V i Wα ui ⊗ wα,

where the summation over i and α is understood. The tensor product space Vn ⊗ Vm

is defined as the vector space spanned by {ui ⊗wα} and has therefore dimension nm.
A generic element of it has the following form:

F ∈ Vn ⊗ Vm, F = Fiα ui ⊗ wα.

Notice that F is in general not the tensor product of two vectors: Fiα �= V i Wα. We
can generalize the above construction to define the tensor product of three or more
spaces: Vn ⊗ Vm ⊗ Vk ≡ (Vn ⊗ Vm)⊗ Vk (so that V1 ⊗ V2 ⊗ V3 ≡ (V1 ⊗ V2)⊗ V3,
for any V1 ∈ Vn, V2 ∈ Vm, V3 ∈ Vk) and so on. Given � vector spaces Vnk ,
k = 1, . . . , �, of dimension nk each, the tensor product Vn1 ⊗ Vn2 ⊗ · · · ⊗ Vn�

is the

vector space spanned by the �-fold tensor product u(1)
i1

⊗ u(2)
i2

⊗ · · · ⊗ u(�)
i�
, where

{u(k)
ik

}ik=1,...,nk is a basis of Vnk . The notion of tensor product of spaces is important
not just for the definition of tensors but also when describing, in quantummechanics,
the quantum states for a system of non-interacting particles (see Chap.9).

The n2 entries Fk� can either be arranged in a n×n matrix or can be viewed
as the components of a n2-dimensional “vector” which transform linearly under a
change of basis. Indeed the quantities Di

k Dj
� on the right hand side of (4.49) can

be thought of as entries of a single matrix M = (Mij
k�) in which the row and

column indices are represented by the couples (i, j), (k, �), respectively, running
over the n2 different combinations. This matrix would act on the column vector
F ≡ (Fk�) = (F12, F13, . . . , Fn n−1, Fn n), whose components are labeled by the
couple (k, �). We shall denote the matrix M by D⊗D, also called Kronecker product
the two D matrices, so that we can rewrite Eq. (4.49) in the following form:

Fij ′ = Di
k Dj

� Fk� = (D ⊗ D)ij
k� Fk�. (4.50)

As anticipated, Fkl, having two contravariant indices, is called contravariant tensor
of order (or rank) 2, or simply a (2, 0)-tensor, the latter notation indicating that it
has two contravariant (upper) indices and no covariant ones.

http://dx.doi.org/10.1007/978-3-319-22014-7_9
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Similarly we can define a covariant tensor of order 2, namely of type (0, 2) as a
quantity having two lower indices and transforming as the product of the covariant
components of two vectors Vi Wj:

F ′
ij = D−1k

i D−1�
j Fk� ≡

(
D−1 ⊗ D−1

)k�

ij Fk�. (4.51)

Clearly (0, 2)-tensors form a vector space as well. Finally we can consider objects
whose components have the form Fi

j and transform as the product of a covariant and
a contravariant vector V i Wj:

V ′ i W ′
j = Di

k D−1�
j V kW�. (4.52)

Such objects are order 2 tensors called type (1, 1)-tensors and are therefore collec-
tions of entries Fi

j transforming as:

F ′ i
j = Di

k D−1 �
j Fk

� ≡
(

D ⊗ D−T
)i; �

j; k Fk
�. (4.53)

Of this kind are the non-singular matrices A = (Ai
j) defining linear transformations

on Vn, i.e. linear mappings of (contravariant) vectors V = (V i) into (contravariant)
vectors W = (Wi):

V −→ W = A V ⇔ Wi = Ai
j V j, (4.54)

To show that Ai
j is a (1, 1)-tensor, let us consider the effect on it of a change of

basis. The column vectors V and W are mapped into V′ and W′, which still satisfy
a relation of the form:

W′ = A′ V′. (4.55)

Expressing the transformed (primed) quantities in terms of the old ones we can write:

A′ D V = D W ⇒
(

D−1A′ D
)

V = W. (4.56)

Being V and W generic, the above relation implies:

A′ = D−1A D, (4.57)

or, in components,

A′ i
j = Di

k D−1 �
j Ak

�, (4.58)

which shows that the matrix A = (Ai
j) is a type-(1, 1) tensor.



4.2 Tensors 109

The transformation property (4.27) implies that the metric is a covariant tensor
of order 2, namely a type-(0, 2) tensor called metric tensor. Similarly, Eq. (4.27)
implies that the inverse metric gij is a type (2, 0) tensor.

The Kronecker symbol δi
j is a (1, 1)-tensor which has the property of being invari-

ant, namely to have the same form in whatever coordinate system:

δ′ i
j = Di

k D−1 �
j δ

j
� = Di

k D−1 k
j = δi

j . (4.59)

It is natural now to define tensors with more than two indices. We define a (p, q)-
tensor, an object having p upper and q lower indices transforming as the product of
q covariant and p contravariant vector components:

T ′ a1...ap
b1...bq = Da1

c1 · · · Dap
cp D−1 l1

b1 · · · D−1 lq
bq Tc1...cp

l1...lq . (4.60)

or, using the obvious extension of the notation used for rank two tensors

T ′ a1...ap
b1...bq =

(
D ⊗ · · · ⊗ D ⊗ D−T ⊗ · · · ⊗ D−T

)a1...ap;l1...lq
b1...bq;c1...cp

Tc1...cp
l1...lq ,

(4.61)

with p factors D and q factors D−T .
We can convert covariant indices into contravariant ones using the metric tensor.

A typical example is the definition, given earlier, of the covariant components of a
vector, obtained from the contravariant ones V i by contractionwith themetric tensor:
Vi = gij V j. To start with, let us consider, as an example, a type (2, 1) tensor Tij

k .
Multiplying this quantity by the metric tensor and contracting over one index, we
obtain a new 3-index tensor:

Ti
j
k ≡ gi� T�j

k, (4.62)

which is of type (1, 2): The first index, which used to be contravariant, has become
covariant due to the contraction by gij. In general this procedure allows us to map a
type-(p, q) tensor into a type-(p − 1, q + 1) one.

Similarly we can use the tensor gjk to convert a covariant index into a contravariant
one and thus to map a type-(p, q) tensor into a type-(p + 1, q − 1) one. For example:

Ti
k = gij Tjk . (4.63)

4.3 Tensor Algebra

We have previously pointed out that rank 2 tensors of the same type ((2, 0), (1, 1) or
(0, 2)) can be considered as elements of a linear vector space: It is straightforward
to show that the linear combination of two rank 2 tensors of the same type is again
a tensor of the same type. The same property holds for generic type (p, q) tensors,
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which form, for given values of p and q a linear vector space: The linear combination
of two type (p, q) tensors F and G:

Sa1...ap
b1...bq = α Fa1...ap

b1...bq + β Ga1...ap
b1...bq , (4.64)

is again a type (p, q) tensor.
Moreover we can multiply tensors of different type to obtain a new tensor. Con-

sider two tensors F and G of type (p, q) and (r, s) respectively. We define the tensor
product F ⊗ G of the two tensors, the following type (p + r, q + s) tensor:

(F ⊗ G)a1...ap ap+1...ap+r
b1...bq bq+1...bq+s = Fa1...ap

b1...bq Gap+1...ap+r
bq+1...bq+s . (4.65)

Take for example a type (2, 0) tensorFij and a type (0, 1) tensorGk .We can construct
a type (2, 1) tensor from the tensor product of the two: Tij

k = (F ⊗ G)ij
k ≡ Fij Gk .

Indeed, from the transformation properties of F and G:

F ′ ij = Di
k Dj

� Fk�; G ′
i = D−1 j

i Gj, (4.66)

it follows that:

T ′ ij
k = F ′ ij G ′

k = Di
�Dj

m(D−1)n
k F�m Gn = Di

�Dj
m(D−1)n

k T�m
n.

The generalization of the above proof to tensors of generic rank is straightforward.
The set of all tensors, endowed with the tensor product operation, is called tensor
algebra.

Another operation defined within a tensor algebra is the contraction or trace,
which maps a type (p, q) tensor into a type (p − 1, q − 1) one, and which consists
in taking the entries of a tensor with the same values of an upper (contravariant) and
a lower (covariant) index and summing them over these common values. We say
that the upper and lower indices are contracted with one another. This is what we do
when we compute the trace of a matrix with entries ai

j: We consider the entries with
equal values of i and j (i.e. the diagonal entries) and we sum them up, namely we
compute tr(ai

j) = ai
i ≡ ∑n

i=1 ai
i. In computing the trace of (ai

j), in other words,
we are contracting the index i with the index j. Let us consider as an example the
tensor Tij

k , which transforms as follows:

T ′ ij
k = Di

� Dj
m D−1 s

k T�m
s. (4.67)

If we contract j with k, namely we set j = k and sum over j from 1 to n, we obtain:

T ′ ij
j = Di

� Dj
m D−1 s

jT
�m

s = Di
� δs

m T�m
s = Di

� T�m
m. (4.68)

We observe that T�m
m transforms as a contravariant vector, namely as a (1, 0) tensor.

In particular, if we have a tensor, or a product of tensors, with all indices contracted,
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the result is a (0, 0) tensor, which is a scalar, namely a quantity which does not
depend on the chosen coordinate system (an example is the trace ai

i of the matrix
(ai

j)). Consider, for instance, the transformation property of the product TijUij of a
(2, 0) and a (0, 2)-tensors:

T ′ ijU ′
ij = = Di

k Dj
� D−1m

i D−1 n
j Tkl Umn = δm

k δn
� Tk�Umn = Tk�Uk�.

An other example is the scalar product itself ViWi.
Just as we did for vectors, we may define a scalar field, that is a (0, 0)-tensor as

a scalar quantity defined in each point is space, i.e. a function over space. As such,
its value at any point does not depend on the coordinates used to describe it:

f ′(P) = f (P). (4.69)

This implies that the scalar function will in general have a different dependence on
the chosen coordinates, namely that, under a change of coordinates xi → x′i ≡ x′i(x)
it will be described by a new function f ′(x′) related to f (x) as follows:

f ′(x′) = f (x). (4.70)

If the functional dependence of f on the new and old coordinates does not change,
that is if:

f ′(x′) = f (x′), (4.71)

the scalar function f is said to be invariant.6

A tensor field is a tensor quantity which depends on the coordinates of a point P
in space. A change in coordinates, besides transforming the tensor components, will
also transform the coordinate dependence of the tensor, as we have shown for the
vector and scalar fields. Take for instance a (2, 1) tensor field described by a set of
functions Tij

k(x) in a given coordinate system. Under a coordinate transformation
we have:

T ′ ij
k(x

′) = Di
� Dj

m D−1 s
k T�m

s(x). (4.72)

Using the explicit form (4.36) of a Cartesian coordinate transformation, we find:

T ′ ij
k(r′) = Di

� Dj
m D−1 s

k T�m
s(D−1 r′ + D−1 r0), (4.73)

where, in the argument on the right hand side, we have expressed the old coordinate
vector r in terms of the new one r′ by inverting Eq. (4.37).

6Of course Eq. (4.70) can be also written f ′(x) = f (x), since x is a variable.
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The notion of invariance, which was given for scalar fields, can be extended to more
general tensor fields. Let us still take, for the sake of simplicity, the type (2, 1) tensor
field Tij

k(r). We will say that Tij
k(x) is invariant, if it transforms, under a coordinate

transformation, as follows:

T ′ ij
k(x

′) = Di
� Dj

m D−1 s
k T�m

s(x) ≡ Tij
k(x

′). (4.74)

The above invariance condition has an obvious generalization to tensors of type
(p, q). An example of invariant tensor is the Kronecker symbol, as it was shown in
the previous section.

Let us now define a (2, 0)-tensor Fij symmetric if Fij = Fji and antisymmetric
if Fij = −Fji. Considering a generic type (2, 0) tensor Fij, it can be decomposed
into a symmetric and an anti-symmetric part, with respect to the exchange of the two
indices, by writing the following trivial identity:

Fik = 1

2
(Fik + Fki) + 1

2
(Fik − Fki)

.= FS
ik + FA

ik, (4.75)

where FS
ik = FS

ki and FA
ik = −FA

ki define the symmetric and anti-symmetric parts
of Fij.

This decomposition does not depend on the coordinate basis we use, since under
a coordinate transformation a symmetric tensor FS

ik is mapped into a symmetric
tensor and similarly for the anti-symmetric ones:

FS
′ ij = Di

� Dj
m F�m

S = Di
� Dj

m Fm�
S = Dj

m Di
� Fm�

S = FS
′ ji,

FA
′ ij = Di

� Dj
m F�m

A = −Di
� Dj

m Fm�
A = −Dj

m Di
� Fm�

A = −FA
′ ji. (4.76)

We conclude that the vector space of type (2, 0)-tensors can be decomposed into
the direct sum of two disjoint subspaces spanned by symmetric and antisymmetric
tensors. The same decomposition can be performed on the space of (0, 2)-tensors,
by writing a generic covariant rank 2 tensor Fij into the sum of its symmetric and
anti-symmetric components: Fij = FS ij +FA ij. It is straightforward to prove that the
contraction over all indices of a type (2, 0) and a type (0, 2) tensors with opposite
symmetry (i.e. one symmetric and the other anti-symmetric) is zero. Consider, for
instance, the contraction of a symmetric (2, 0)-tensor with an anti-symmetric (0, 2)
one:

FS
ik FA ik = FS

ki FA ki = −FS
ik FA ik = 0. (4.77)

By the same token we would have FA
ik FS ik = 0. As a consequence of this property,

any rank 2 tensor contracted with a symmetric or an anti-symmetric tensor gets
projected into its symmetric or anti-symmetric component. Consider, for instance,
a tensor Tij with a definite symmetry property (i.e. it is either symmetric or anti-
symmetric) and let Uij be a generic type (0, 2) tensor, which has symmetric (US ij)
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and anti-symmetric (UA ij) components. Contracting the two tensors over all indices
we find

Tij Uij = Tij
[
1

2

(
Uij + Uji

) + 1

2

(
Uij − Uji

)] = Tij (US ij + UA ij
)
. (4.78)

Recall now that, according to (4.77), if Tij is symmetric Tij UA ij = 0 and thus
Tij Uij = Tij US ij, whereas if Tij is anti-symmetric, Tij US ij = 0 and so Tij Uij =
Tij UA ij.

We note that the previous decompositions into symmetric and antisymmetric part
cannot be performed for (1, 1) tensors, since the two indices transformdifferently and
therefore the symmetry or antisymmetry properties are not preserved by coordinate
transformations.

Let us finally introduce the operation of differentiation over tensor fields. By
definition, tensor fields depend on coordinates, and thus can be differentiated with
respect to them. The partial derivative with respect to the coordinate xk of a type-
(p, q) tensor field is a type-(p, q+1) tensor, whose structure differs from the original
one by one additional lower (covariant) index k. Consider, for instance, a type-(2, 1)
tensor field Tij

k(r). Differentiating with respect to x� we find a new quantity Uij
�k :

∂

∂x�
: Tij

k(r) −→ Uij
�k ≡ ∂

∂x�
Tij

k(r), (4.79)

which transforms, under a coordinate transformation, as follows:

U ′ ij
�k(r′) = ∂

∂x′ � T ′ ij
k(r′) = ∂

∂x′ �
[
Di

mDj
nD−1 p

k Tmn
p(r)

]

= Di
mDj

nD−1 p
k

∂xs

∂x′ �
∂

∂xs
Tmn

p(r). (4.80)

On the other hand
(

∂xs

∂x′ �
)
is the (constant) inverse Jacobian matrix of (4.36), that is

(D−1 s
�). Substituting this in Eq. (4.80) we find:

U ′ ij
�k(r′) = Di

mDj
nD−1 p

k D−1 s
� Umn

ps(r),

that is the quantity Uij
�k(r) ≡ ∂

∂x� Tij
k(r) is a tensor field, and, more specifically, a

type (2, 2) tensor. The operator ∂
∂xk , to be also denoted by the symbol ∂k , behaves,

by definition, as a type-(0, 1) tensor, i.e. as a covariant vector:

∂′
� ≡ ∂

∂x′ � = D−1 s
�

∂

∂xs
= D−1 s

� ∂s. (4.81)
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4.4 Rotations in 3-Dimensions

As we have previously pointed out, the scalar product associates with a couple of
vectors a number which does not depend on the basis we use to describe the vectors.
However, its explicit expression in termsof the vector components is basis-dependent,
since the metric tensor changes: g′

ij �= gij.
Suppose now the change of basis is such that themetric is invariant, that is g′

ij = gij.
We will then have:

V · W = V i gij Wj = V ′ i gij W ′ j, (4.82)

that is the functional dependence of V · W over the old and new components of the
two vectors is the same. Let us denote by

R ≡ (Ri
j) =

⎛
⎝

R1
1 R1

2 R1
3

R2
1 R2

2 R2
3

R3
1 R3

2 R3
3

⎞
⎠ , (4.83)

the matrix implementing such transformation: V ′ i = Ri
j V j, W ′ i = Ri

j Wj (or, in
matrix notation V′ = R V, W′ = R W). Expressing in (4.82) the new components
in terms of the old ones we find:

V i gij Wj = V k Ri
k gij Rj

� W�. (4.84)

Requiring the above invariance to hold for any couple of vectors (V i) and (Wi), we
conclude that:

Ri
k gij Rj

� = gk�. (4.85)

In matrix notation Eq. (4.85) reads

RT gR = g, (4.86)

where g ≡ (gij) is the matrix whose components are the entries of the metric tensor
gij. Recalling that gij = ui · uj, the above relation is telling us that scalar products
among the basis elements are invariant under R. It is now convenient to use an
ortho-normal basis (ui) to start with:

ui · uj = gij ≡ δij, (4.87)

since the ortho-normality property of a basis is clearly preserved by all the transfor-
mations R which leave the metric invariant. In the ortho-normal basis the relations
(4.85) and (4.86) become:
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Ri
k δij Rj

� =
n∑

i=1

Ri
k Ri

� = δk�, (4.88)

and, in matrix form:

RT 1 R = RT R = 1, (4.89)

where

1 ≡ (δij) =
⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠ . (4.90)

Transformation matrices satisfying Eqs. (4.88), or equivalently (4.89), are called
orthogonal. Orthogonal transformations can be alternatively characterized as the
most general Cartesian coordinate transformations in Euclidean space mapping two
orthonormal bases into one another, leaving the origin fixed, i.e. the most general
homogeneous transformations between Cartesian rectangular coordinate systems.7

Recalling from Eq. (4.13) that the distance squared between two points is defined as
the squared norm of the relative position vector, an orthogonal transformation leaves
its coordinate dependence invariant. Vice versa, if an affine transformation xi →
x′ i = Ri

j xj − xi
0 of the Cartesian coordinates xi leaves the distance between any two

points, as a function of their coordinates, invariant, its homogeneous part, described
by the matrix R and defining the transformation of the relative position vector, is an
invariance of the metric tensor. This means that, starting from an ortho-normal basis
in which gij = δij, R is an orthogonal matrix. To illustrate the above implication,
note that the invariance of the coordinate dependence of the distance d(A, B) between
any two points translates into the invariance of the norm of any vector as a function
of its components. This latter property amounts to stating that, if V = (V i) and
V′ = (V ′i) are the components of a same vector in the old and new bases, related
by the transformation R, then ‖V‖2 = VT V = ‖V′‖2 = V′T V′. Applying this
property to the squared norm ‖V + W‖2 of the sum of two generic vectors V, W,
one easily finds that the scalar product (V, W) = VT W is functionally invariant
under R, namely that VT W = V′ T W′ = VT (RT R) W. From the arbitrariness of
V and W, property (4.89) follows. Rotations about an axis and reflections in a plane
are examples of orthogonal transformations in E3.

Since Eq. (4.89) implies (RT )−1 = R, there is no distinction between the trans-
formation properties of the covariant and contravariant components of a vector under
orthogonal transformations, as it is apparent from the fact that, being the metric δij

7In what follows, when referring to Cartesian coordinate systems, the specification rectangular
will be understood, unless explicitly stated, since we shall mainly restrict ourselves to coordinate
systems of this kind.
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Fig. 4.2 Rotation about the
X axis by an angle θ

invariant, the two kinds of components coincide Vi = δij V j = V i in any Cartesian
coordinate system.

A simple example of orthogonal transformation is a rotation by an angle θ about
the X axis , see Fig. 4.2.8 The relation between the new and the old basis reads

u′
1 = u1,

u′
2 = cos θ u2 + sin θ u3,

u′
3 = − sin θ u2 + cos θ u3. (4.91)

Being u′
i = Rx

−1 j
i uj, from Eq. (4.91) we can read the form of the inverse of the

rotation matrix Rx:

R−1
x = (Rx

−1 j
i) =

⎛
⎝
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞
⎠ , (4.92)

from which we derive:

Rx = (Rx
j
i) =

⎛
⎝
1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎞
⎠ , (4.93)

8In our conventions, the rotation angle θ, on any of the three mutually orthogonal planes
XY , XZ, YZ , is positive if its orientation is related to that of the axis orthogonal to it (i.e. Z, Y , X)
by the right-hand rule.
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The new components V ′ i of a vector are related to the old ones V i according to:
V ′ i = Rx

i
j V j, that is

V ′ 1 = V 1,

V ′ 2 = cos θ V 2 + sin θ V 3,

V ′ 3 = − sin θ V 2 + cos θ V 3. (4.94)

The matrix Rx in (4.93), which describes this rotation, depends on the continuous
parameter θ: Rx = Rx(θ). The reader can easily verify that Eq. (4.89) is satisfied by
Rx . Let us observe that det(Rx) = 1. This is a common feature of all the rotation
matrices and can be deduced by computing the determinant of both sides of Eq. (4.89)
and using the known properties of the determinant: det(AT ) = det(A), det(AB) =
det(A) det(B):

det(R) det(RT ) = det(R)2 = 1 ⇒ det(R) = ±1. (4.95)

Orthogonal transformations with det(R) = +1 are called proper rotations, or simply
rotations, while those with det(R) = −1 also involve reflections and are called
improper. A matrix R having this property is called improper rotations. A typical
example of improper rotation is given by a pure reflection, that is a transformation
changing the orientation of one or all the coordinate axes, e.g.

⎛
⎝

−1 0 0
0 −1 0
0 0 −1

⎞
⎠ . (4.96)

Let us nowperform twoconsecutive rotations, represented by thematricesR1, R2.
Starting from a basis (ui), the components V i of a generic vector will transform as
follows:

V i R1−→ V ′ i = R1
i
j V j R2−→ V ′′ i = R2

i
j V ′ i = R2

i
j R1

j
k V k = R3

i
j V j,

or, in matrix form: V → V′′ = R3 V, where R3 ≡ R2 R1. Let us show now that
the resulting transformation, implemented by R3 is still a rotation, namely that it is
orthogonal (i.e. RT

3 R3 = 1) and has unit determinant:

RT
3 R3 = (R2 R1)

T (R2 R1) = RT
1 (RT

2 R2) R1 = RT
1 R1 = 1,

det(R3) = det(R2 R1) = det(R2) det(R1) = 1. (4.97)

This proves that the product of two rotations is still a rotation.
In general the product of two rotations is not commutative:

R2 R1 �= R1 R2. (4.98)
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We can easily understand this by a simple example: If we rotate a system of Cartesian
axes first about the X axis by 90◦ and then about the Z axis by the same angle
or we perform the two rotations in opposite order, we end up with two different
configurations of axes.

Any orthogonal matrix is invertible, having a non vanishing determinant, and its
inverse is still orthogonal. Indeed let R be an orthogonal matrix and R−1 its inverse.
We can multiply both sides of RT R = 1 by (R−1)T to the left and by R−1 to the
right, obtaining:

R−1T R−1 = I, (4.99)

which proves thatR−1 is still orthogonal. Clearly, ifR is a rotation, namely det(R) =
1, also its inverse is, since: det(R−1) = 1/ det(R) = 1.

Also the identity matrix 1 defines a rotation since it is orthogonal and has unit
determinant. It represents the trivial rotation leaving the system of axes invariant.

We have thus deduced, from their very definition (4.89), the following properties
of orthogonal matrices:

(i) The product of two orthogonal matrices is still an orthogonal matrix;
(ii) The identity matrix 1 represents the orthogonal transformation such that, given

any other orthogonal transformation R: R 1 = 1 R = R;
(iii) For any orthogonal transformation R one can define its inverse R−1: R R−1 =

R−1 R = 1. R−1 is still is orthogonal;
(iv) Let us add the associative property of the product of orthogonal transformations,

which actually holds for any transformationwhich is realizedbymatrices:Given
any 3 matrices R1 (R2 R3) = (R1 R2) R3.

The above properties define a group called O(3), where O stands for orthogonal,
namely for the defining property (4.89) of the transformations, and 3 refers to the
dimensionality of the space on which they act. The group O(3) contains the set of
all matrices describing rotations. This set is itself a group, since it satisfies the above
properties and thus is a subgroup of O(3), denoted by SO(3), where the additional S
stands for special, namely having unit determinant. Therefore SO(3) is the rotation
group in three dimensional Euclidean space.

4.5 Groups of Transformations

The orthogonal group is just an instance of the more general notion of group of trans-
formations. In general any set of elements G among which a product operation · is
defined and which satisfies the same properties (i), (ii), (iii), (iv) as the orthogonal
transformations, is called a group.

Consider general coordinate transformations and define the product A · B of two
such transformationsA,B, as the transformation resulting from the consecutive action
of B and A on the initial coordinate system S: If B transforms S, of coordinates xi,
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into a system S′, of coordinates x′i = x′i(x), A maps S′ into S′′, of coordinates
x′′i = x′′i(x′), A · B will transform S into S′′ and will be defined by the coordinate
relations x′′i = x′′i(x′(x)). Given a transformation A which maps S into S′, defined
by the relations x′i(x), its inverse A−1 is the unique transformation mapping S′ into
S, and is defined by the inverse relations xi(x′). The identity transformation I is
the trivial transformation mapping a coordinate system S into itself. Finally we can
convince ourselves that the product of transformations is associative, namely that, if
A, B, C are three transformations, A · (B · C) = (A · B) · C. This proves that the set
of all coordinate transformations satisfy the same properties (i), (ii), (iii), (iv) as
the rotations, and thus close a group called the group of coordinate transformations.

We can generalize the concept of orthogonal transformations and of rotations to
the n-dimensional Euclidean space En, namely to a n-dimensional space endowed
with a positive definite metric gij, i, j = 1, . . . , n. Orthogonal transformations in n
are those which leave this metric tensor invariant, and are represented, in an ortho-
normal basis in which gij = δij, by n × n matrices R satisfying the orthogonality
property: RT R = 1, 1 being the n × n identity matrix. These transformations close
themselves a group (i.e. satisfy axioms (i), (ii), (iii), (iv)), denoted by O(n), which
contains, as a subgroup, the group of rotations SO(n) over the n-dimensional space,
described of orthogonal matrices with unit determinant.

Let us consider the set of all Cartesian (not necessarily rectangular) n-dimensional
linear coordinate transformations, i.e. the affine transformations (4.36) and show that
they close a group. To this end, let us consider the effect, on a coordinate vector r of
two consecutive affine transformations (D1, r1), (D2, r2):

r
1−→ r′ = D1 r − r1

2−→ r′′ = D2 r′ − r2 = D2D1r − D2r1 − r2
= (D2D1, D2r1 + r2) · r.

The result of the two transformations defines their product, which is still an affine
transformation:

(D3, r3) ≡ (D2, r2) · (D1, r1) = (D2D2, D2r1 + r2). (4.100)

The identity element and the inverse of an affine transformation have the following
form:

I = (1, 0), (D, a)−1 = (D−1,−D−1 a). (4.101)

This proves that the affine transformations close a group, called the affine group. A
subset of affine transformations are the homogeneous transformations (D, 0) which
do not shift the origin of the Cartesian system, but describe the most general transfor-
mation on the basis elements, and are defined by an invertible matrix D. They close
themselves a group, as the reader can easily verify, which is the group of non-singular
n×nmatrices, called general linear group, and denoted byGL(n).We say that GL(n)

is a subgroup of the affine group. In general if a subset G ′ of a group G is itself a
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group with respect to the product defined on G, then G ′ is a subgroup of G. For
instance the rotation group SO(3) is a subgroup of GL(3), since all its elements are
invertible 3× 3 matrices. Similarly the rotation group in a n-dimensional Euclidean
space SO(n) is a subgroup of the general linear group on the same space GL(n). The
most general transformation relating two Cartesian rectangular coordinate systems
is an affine transformation of the form (R, r0):

r′ = (R, r0) · r = R r − r0, (4.102)

whereR is an orthogonalmatrix, since the two bases {ui}, {u′
i} are both ortho-normal,

and we allowed for a translation of the origin O → O′. Since this translation does not
affect the actual value of the relative position vector between two points, Eq. (4.102)
defines the most general Cartesian coordinate transformation leaving the distance
between two points, as a function of their coordinates, invariant. The reader can
verify that these transformations close a group, called the Euclidean or congruence
group E(n), which is therefore a subgroup of the affine one.9

We can now refine the notion of tensor, relating it to a certain group of trans-
formations. We have introduced tensors as quantities with definite transformation
properties relative to the most general homogeneous linear transformations, i.e. rela-
tive to the group GL(n). We can consider the transformation property of tensors with
respect to the subgroup SO(n) of GL(n). A tensor which is invariant with respect
to the latter, such as δi

j , is a fortiori, invariant under any of its subgroups, including
SO(n). However, a tensor which is invariant with respect to SO(n) is not in general
invariant under GL(n). As an example consider the Ricci tensor εijk , i, j, k = 1, 2, 3,
which is SO(3)-invariant but not GL(3)-invariant. Such tensor is defined as follows:
It is completely anti-symmetric in its three indices10 and therefore vanishes if any
couple of indices have equal value; Its value is +1 or −1 depending on whether
(i, j, k) is an even or odd permutation of (1, 2, 3) (for instance ε123 = +1). Under a
SO(3) transformation:

ε′
ijk = R−1m

i R−1 n
j R−1 �

k εmn� = det(R−1) εijk = εijk . (4.103)

This proves that εijk is SO(3)-invariant. It clearly is not GL(3)-invariant since trans-
formations in GL(3) may in general have a determinant which is not 1. One can

9Let us recall that Euclidean geometry can be fully characterized by the invariance under the
corresponding congruence group.
10 Complete antisymmetrization in the three indices μ, ν, ρ on a generic tensor Uμνρ, is defined as
follows:

U[μνρ] = 1

3! (Uμνρ + Uνρμ + Uρμν − Uμρν − Uνμρ − Uρνμ).

It amounts to summing over the even permutations of μ, ν, ρ with a plus sign and over the odd ones
with a minus sign, the result being normalized by dividing it by the total number 6 of permutations.
(see Chap.5).

http://dx.doi.org/10.1007/978-3-319-22014-7_5
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verify that for εijk the following properties hold:

εijkεijk = 3!,
εijkεljk = 2!δil,

εijkεlnk = (δilδjn − δinδjl).

Another tensor which is invariant under SO(3) (more generally with respect to O(3))
but not with respect to GL(3) is the metric gij = δij (note that this differs from the
tensor δi

j in that both indices are covariant). This follows from the very definition
of orthogonal matrices (4.88). For the same reason δij, i, j = 1, . . . , n, is in general
O(n)-invariant but not GL(n)-invariant. Note that δij, inverse of δij, clearly coincides
with δij, and thus is still O(n)-invariant.

Let us now consider the decomposition (4.75) for tensors transforming under the
subgroup O(n) ⊂ Gl(n). We have shown that the two vector spaces spanned by the
symmetricFij

S and anti-symmetric Fij
A components of rank 2 tensorsFij are invariant,

in the sense that a symmetric (anti-symmetric) tensor is mapped by any element of
GL(n) into a tensor with the same symmetry property. It is easy to show that, if
we consider transformations of tensors with respect to O(n), we can use the O(n)

invariant tensor δij to decompose the symmetric component Fij
S in Eq. (4.75) into a

trace part δij Fk
k , where

Fk
k ≡ δij Fij = δij Fij

S , (4.104)

and a traceless part F̃ij
S defined as:

F̃ij
S = 1

2
(Fij + Fji) − 1

n
δij Fk

k . (4.105)

As the reader can easily verify from the definition of trace, F̃ij
S is indeed a symmetric

traceless tensor, namely: F̃ij
S δij = 0. We can now decompose Fij as follows

Fij =
(

F̃ij
S + Dij

)
+ Fij

A, (4.106)

where

Dij = 1

n
δij Fk

k , (4.107)

is the trace part, while, as usual

Fij
A = 1

2
(Fij − Fij), (4.108)
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is the anti-symmetric component. Let us show that the components F̃ij
S and Dij of

all the type (2, 0) tensors span two invariant vector spaces with respect to O(n). We
need first to show that the O(n)-transformed of F̃ij

S is still symmetric traceless:

F̃ ′ ij
S = Ri

k Rj
� F̃k�

S =⇒ δij F̃ ′ ij
S = δijR

i
k Rj

� F̃k�
S = δk�F̃k�

S = 0. (4.109)

Finally the trace part Dij = 1
n δij δk� Fk� is also invariant being δij O(n)-invariant.

4.5.1 Lie Algebra of the SO(3) Group

Let us consider some properties of the rotation group SO(3). This group has dimen-
sion 3, whichmeans that themost general rotation in the three dimensional Euclidean
space is parametrized by three angles, such as for instance the Euler angles defining
the relative position of two Cartesian systems of orthogonal axes:

R = R(θ) ≡ R(θ1, θ2, θ3) θ ≡ (θi). (4.110)

The Euler angles are often denoted by (θ,φ,ψ) and correspond to describing a
generic rotation as a sequence of three elementary ones: A first rotation about the Z
axis by an angle θ, followed by a rotation about the new Y axis by an angle φ, and a
final rotation about the new Z axis by an angle ψ. The entries of the rotation matrix
R(θ) are continuous functions of the three angles.

In general the dependence of the group elements on their parameters θi is contin-
uous and the parameters are chosen so that

R(θi ≡ 0) = 1. (4.111)

We also know that the product of two rotations is still a rotation and one can verify
that the parameters defining the resulting rotation are analytic functions of those
defining the first two:

R(θ1) · R(θ2) = R(θ3), (4.112)

where θi
3 = θi

3(θ1,θ2) are analytic functions. In general a group of continuous
transformations satisfying the above properties is called a Lie group.

Since rotation matrices are continuous functions of angles, we can consider rota-
tions which are infinitely close to the identity element. These transformations, called
infinitesimal rotations, are defined by very small (i.e. infinitesimal) angles θi. We can
expand the entries of an infinitesimal rotation matrix R(θ1, θ2, θ3) in Taylor series
with respect to its parameters and write, to first order in the angles:

R(θ1, θ2, θ3) = 1 + ∂R
∂θi

∣∣∣∣
θi=0

θi + O(|θ|2). (4.113)
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Introducing the matrices Li ≡ ∂R
∂θi |θi=0, called infinitesimal generators of rotations,

the above expansion, to first order, reads:

R(θ) = 1 + θi Li + O(|θ|2) � 1 + θi Li. (4.114)

Let us consider, as an example, a rotation about the X axis, described by the matrix
Rx in (4.93), by an angle θ and let us expand it, for small θ, up to fist order in the
angle:

Rx =
⎛
⎝
1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎞
⎠ =

⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠ + θ

⎛
⎝
0 0 0
0 0 1
0 −1 0

⎞
⎠ + O(θ2)

� 1 + θ L1. (4.115)

From this equation we can read the expression of the first infinitesimal generator L1,
associated with rotations about the X axis:

L1 =
⎛
⎝
0 0 0
0 0 1
0 −1 0

⎞
⎠ . (4.116)

Similarly, expanding infinitesimal rotation matrices about the Y and Z axes we find:

Ry(θ) ≡
⎛
⎝
cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⎞
⎠ � 1 + θ L2, (4.117)

Rz(θ) =
⎛
⎝

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞
⎠ � 1 + θ L3, (4.118)

from which we can derive the corresponding infinitesimal generators:

L2 =
⎛
⎝
0 0 −1
0 0 0
1 0 0

⎞
⎠ , L3 =

⎛
⎝

0 1 0
−1 0 0
0 0 0

⎞
⎠ . (4.119)

In a more compact notation we may write the three matrices Li as follows11:

(Li)
j

k = εijk . (4.120)

11Recall that the orthogonal group makes no difference between upper and lower indices.
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Since a generic rotation R(θi) can be written as a sequence of consecutive rotations
about the three axes:

R(θ1, θ2, θ3) ≡ Rz(θ
3) Ry(θ

2) Rx(θ
1), (4.121)

expanding the right hand side for small θi, up to the first order, we find

R(θ1, θ2, θ3) ≡ 1 + θ1 L1 + θ2 L2 + θ3 L3, (4.122)

that is the infinitesimal generator of a generic rotation is expressed as a linear
combination (whose parameters are the rotation angles) of the three matrices Li

given in Eqs. (4.116) and (4.119). In other words, any linear combination of infini-
tesimal generators is itself an infinitesimal generator, that is infinitesimal generators
span a linear vector space, ofwhich thematrices (Li) define a basis. FromEq. (4.120)
it follows that the effect of an infinitesimal rotation R(δθ), by infinitesimal angles
δθi ≈ 0, can be described in terms of the following displacement of the coordinates:

x′ i = xi − εijk δθj xk ⇔ r′ = R(δθ) r � r − δθ × r, (4.123)

where× denotes the external product between twovectors: δθ×r ≡ (εijk δθj xk). The
reader can easily verify the following commutation relation between the infinitesimal
generators: [

Li, Lj
] ≡ Li Lj − Lj Li = Cij

k Lk, (4.124)

where

Cij
k = −εijk . (4.125)

In other words the commutator [,] of two infinitesimal generators is still in the same
vector space. As a consequence of this, in virtue of the linearity property of the
commutator with respect to its two arguments, the commutator of any two matrices
in the vector space belongs to the same vector space. The commutator then provides
a composition law on the vector space of infinitesimal generators which promotes it
to an algebra. Equations (4.124) and (4.125) define the structure of this algebra and
the constant entries of the SO(3)-tensor Cij

k are called structure constants. From
(4.125) it follows that Cij

k is a SO(3)-invariant tensor.
Let us now show how, from the explicit form of the infinitesimal generators Li,

we can derive the matrix defining a generic finite rotation. Consider a rotation R(θ),
parametrized by some finite angles θi. We can think of performing it through a
sequence of a very large number N � 1 of infinitesimal rotations R(δθ) by angles

δθi ≡ θi

N � 1. For large N , each infinitesimal rotation reads: R(δθ) ≈ 1 + δθi Li =
1 + 1

N θi Li. The finite rotation will therefore be approximated as follows:



4.5 Groups of Transformations 125

R(θi) ≈ [R(δθ)]N =
(

1 + 1

N
θi Li

)N

, N � 1. (4.126)

Intuitively, the larger N the better the above approximation is. Therefore we expect,
in the limit N → ∞, to obtain an exact representation of the finite rotation:

R(θ) = lim
N→∞

(
1 + 1

N
θi Li

)N

. (4.127)

Recalling that, if x is a number, we can express its exponential ex as the limit ex =
limN→∞

(
1 + x

N

)N , in a similar way it can be shown that the limit on the right hand
side of (4.127) is the exponential of the matrix θi Li:

R(θ) = exp(θi Li), (4.128)

where the exponential of a matrix A is defined by the same infinite series defining
the exponential of a number:

exp(A) ≡
∞∑

n=0

1

n! (A)n. (4.129)

Therefore, knowing the infinitesimal generators of the rotation group (and, as we
shall see in Chap.7, the same is true for any Lie group), we can express any rotation
as the exponential of an element of the infinitesimal generator algebra:

R(θ) = eθi Li . (4.130)

Obviously the determinant of the rotation matrix R(θi), being a continuous function
of its entries, will be a continuous function of the three angles as well. Since orthog-
onal matrices can only have determinant ±1, and the matrix in (4.130) at θi ≡ 0,
has determinant +1, in virtue of its continuity, the value of det(R(θ)) cannot jump
to −1 for some values of the angles. We conclude that the exponential in (4.130)
has determinant +1 and thus that only rotations can be expressed as exponentials.
Therefore transformations in O(3) involving also reflections, which have determi-
nant −1, cannot be written in that form. As opposed to rotations, we will say that
these transformations of O(3) are not in the neighborhood of the origin in which the
exponential representation holds. We can however write a generic orthogonal matrix
with determinant −1 as the product of a rotation times a given reflection O, e.g.
O = diag(−1, 1, 1).

From the physical point of view the infinitesimal generators of rotations have an
important meaning in quantum mechanics. Let us define the following matrices:

Mi = −i � Li, (4.131)

http://dx.doi.org/10.1007/978-3-319-22014-7_7
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which, in virtue of Eqs. (4.124) and (4.125), satisfy the following commutation
relations:

[
Mi, Mj

] = i � εijk Mk . (4.132)

These are the commutation relations between the components of the angular momen-
tum operator in quantum mechanics. Aside from the new normalization, Eq. (4.131)
expresses the fact that the angular momentum components can be identified with the
infinitesimal generators of the rotation group SO(3). Similarly, when dealing with
symmetries in Hamiltonian (classical) mechanics, we will learn that we can asso-
ciate with any continuous symmetry transformation of the Hamiltonian, a conserved
quantity on the phase space. This quantity will be identified with the infinitesimal
generator of such transformations. In particular invariance under rotations will imply
the conservation of the corresponding infinitesimal generators, which we shall show
to be the components of angular momentum (see Chap.8).

Let us observe that the infinitesimal generators Li are represented by anti-
symmetric matrices, as it is apparent from Eqs. (4.116) and (4.119). This is not
accidental, but follows from the defining property of the rotation group. Consider an
infinitesimal rotation R(δθi) = 1 + δθi Li ∈ SO(3), δθi ≈ 0. Let us write for R(δθ)

the orthogonality condition:

1 = RT (δθ)T R(δθ) = (1 + δθi LT
i ) (1 + δθj Lj) = 1 + δθi (LT

i + Li),

where we have neglected orders in δθi higher than the first. Form the above condition
it then follows that:

Li = −LT
i . (4.133)

that is the infinitesimal generators of rotations, with respect to an ortho-normal basis,
are represented by anti-symmetric matrices.

Let us end this section by giving the explicit form of a generic rotation in terms
of the Euler angles:

R(θ,φ,ψ) = eθ L3eφ L2eψ L3 . (4.134)

To construct the infinitesimal generators we have used the parametrization of a rota-
tion in terms of θ1, θ2, θ3 and not the Euler angles. This is due to the fact that the
latter define a parametrization which is singular at the origin where infinitesimal
generators are defined, while this is not the case for the parametrization we used. If
we indeed expand the matrix (4.134) for infinitesimal Euler angles, we do not find
the complete basis of generators.

http://dx.doi.org/10.1007/978-3-319-22014-7_8
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4.6 Principle of Relativity and Covariance of Physical Laws

The tensorial formalism is particularly convenient since it allows to easily tellwhether
physical laws are written in a form which does not depend on the frame of reference
we use, namely if the principle of relativity holds for the group of transformations
with respect to which the tensor quantities are defined. Indeed consider a group G
of Cartesian coordinate transformations (like the rotation group), subgroup of the
affine one.

If an equation is expressed as an equality between two tensors of the same type
with respect to G, if it holds in a RF, it will hold in any other RF related to it by a
transformation of the group G.

To prove this property, let us consider an equation which holds in a basis defining
a certain RF and which is written as an equality between tensors of the same type,
with respect to G:

Ti1...ik
ji...jp = Ui1...ik

j1...jp , (4.135)

and define Ai1...ik ji...jp = Ti1...ik ji...jp − Ui1...ik ji...jp . In the original RF Eq. (4.135) can
also be written as follows:

Ai1...ik
ji...jp = 0. (4.136)

In a new RF obtained from the original one by means of G-transformation, using
Eq. (4.60), we will have a new tensor A′, related to A as follows:

A′ i1...ik
ji...jp = Di1

n1 . . . Dik
nk D−1m1

j1 . . . D−1mp
jp An1... nk

m1... mp . (4.137)

A′ i1...ik ji...jp , the sameequation as seen in aG-related reference frame, is still vanishing
due to Eq. (4.136); Indeed the action of the tensor (or Kronecker) product of D-
matrices on the right hand side is an invertible transformation, being the D-matrices
themselves invertible by assumption. This can be proven using the following general
property of the Kronecker product of matrices: (A ⊗ B) · (C ⊗ D) = AC ⊗ BD,
which can be generalized to an n-fold tensor product. As a consequence of this, the
identity transformation on a tensor is the tensor product of identity matrices acting
on each index and, moreover, the inverse of a tensor product of invertible matrices
exists and is the tensor product of the inverses of each factor: IfA andB are invertible,
(A ⊗ B)−1 = A−1 ⊗ B−1.

The physical law expressed by Eq. (4.135), will then hold also in the new RF,
obtained from the original one through a G-transformation.We say that this equation
is manifestly covariant with respect to the transformation group G.

As an example let us show that the fundamental law of dynamics does not depend
on the orientation of the Cartesian orthogonal axes of the chosen RF, namely that
it is covariant with respect to O(3). Let us consider the simple case of Newton’s
second law in the presence of conservative forces F = m a. Being the force conser-
vative, its contravariant components Fi are expressed in terms of the gradient of a
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potential energy U, which is a function of the position of the point particle. Being
the components of a gradient covariant, this relation should involve the metric ten-
sor: Fi = −gij ∂jU, where gij = δij. Also the acceleration is described by contra-
variant components (ai), since it is expressed as the second derivative with respect
to time of the position vector r, which is described by contravariant components xi:

ai ≡ d2xi

dt2
. Newton’s second law is then written as an equality between two type

(1, 0) O(3)-tensors (contravariant vectors):

m ai = Fi = −gij ∂jU. (4.138)

If we act on the original RF by a transformation in O(3) (rotations and reflections),
we find:

F ′ i − m
d2x′ i

dt2
= Ri

j

(
Fj − m

d2xj

dt2

)
= 0, (4.139)

which shows that the fundamental law of dynamics is covariant with respect to O(3),
namely with respect to rotations and reflections of the RF.

When we shall consider four-dimensional space-time instead of the three-
dimensional Euclidean space, among all the possible transformations on a RF, of
particular interest are the Lorentz transformations, on which Einstein’s principle of
relativity is based. We shall show, at the end of this chapter, that Lorentz transfor-
mations close a group, the Lorentz group. If we also include space-time translations,
this group enlarges to the Poincaré group. If physical laws are expressed as an equal-
ity between tensors of the same type with respect to the Lorentz group, we will be
guaranteed that the principle of relativity holds.

4.7 Minkowski Space-Time and Lorentz Transformations

In discussing special relativity, we have seen that space-time can be regarded as a
four dimensional space M4 whose points are described by a set of four Cartesian
coordinates

(xμ) = (x0, x1, x2, x3), μ = 0, 1, 2, 3, (4.140)

three of which (xi) = (x1, x2, x3) = (x, y, z) are spatial coordinates of our Euclidean
space E3, and one x0 = c t is related to time. A point on M4 describes an event taking
place at the point (x, y, z), at the time t. Just as for the Euclidean space, we can define
vectors connecting couples of points inM4, like the infinitesimal displacement vector
connecting two infinitely close events:

dx ≡ (dxμ) = (dx0, dx1, dx2, dx3). (4.141)
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These vectors span a four-dimensional linear vector space on which a symmetric
scalar product is defined by means of the metric gμν = ημν , where12:

ημν =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (4.142)

Given two 4-vectors P ≡ (Pμ) and Q ≡ (Qμ), their scalar product reads:

P · Q = Pμ ημν Qν = P0Q0 −
3∑

i=1

PiQi. (4.143)

This scalar product, in contrast to the one defined on the Euclidean space, is not
positive definite, namely does not satisfy property c) of (4.7), since the corresponding
metric has onepositive and three negative diagonal entries (indefinite orMinkowskian
signature).As a consequence of this the squared norm of a 4-vectorP ≡ (Pμ), defined
using this scalar product:

‖P‖2 ≡ P · P ≡ Pμ ημν Pν = (P0)2 −
3∑

i=1

(Pi)2, (4.144)

can vanish even if P is not zero. In particular a non-vanishing 4-vector can have
positive, zero or negative squared norm, in which cases we talk about a time-like, null
or space-like 4-vector, respectively.We can take, as 4-vector, the displacement vector
dx, whose squared norm measures the squared space-time distance ds2 between two
infinitely close events:

ds2 = ‖dx‖2 = dxμ ημν dxν = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)3. (4.145)

As pointed out when discussing about relativity, the distance ds in (4.145) should be
interpreted as the infinitesimal proper-time interval times (square of) the velocity of
light: ds = c dτ . A four-dimensional space on which the metric (4.142) is defined,
is called Minkowski space (or better space-time).

Let us now consider linear coordinate transformations xμ → x′μ = x′μ(x) which
do not affect the position of the origin of the coordinate system (i.e. the origins of
the two Euclidean coordinate systems O(x = 0, y = 0, z = 0) and O′(x′ = 0, y′ =
0, z′ = 0) coincide at some common initial instant t = t′ = 0). Such transformations

12Some authors alternatively define the Lorentzianmetricη as diag(−1,+1,+1,+1). This notation
is common in the general relativity literature and has the advantage of yielding the Euclidean metric
when restricted to the spatial directions 1, 2, 3.
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are defined by homogeneous relations between old and new coordinates

x′μ = Λμ
ν xν ⇒ dx′μ = Λμ

ν dxν . (4.146)

Just as we defined orthogonal transformations in Euclidean space, we can con-
sider homogeneous transformations (4.146) which leave the distance ds, in (4.145),
between two events, as a function of their coordinates, invariant (invariance of ds).
This condition defines the Lorentz transformations, which are thus implemented by
a 4 × 4 invertible matrix Λ = (Λμ

ν). We can alternatively characterize a Lorentz
transformation by requiring that its action on two generic 4-vectors P ≡ (Pμ) and
Q ≡ (Qμ), which transform as dxμ in (4.146), namely

Pμ → P′μ = Λμ
ν Pν,

Qμ → Q′μ = Λμ
ν Qν, (4.147)

leaves their scalar product P · Q invariant:

P′μ ημν Q′ ν = Pμ ημν Qν . (4.148)

Substituting the expressions in (4.147) into the above equation, and requiring the
equality to hold for any choice of the two 4-vectors, we derive the following general
condition defining the matrix Λ

Λρ
μ Λσ

ν ηρσ = ημν, (4.149)

or, in matrix notation, setting η ≡ (ημν):

ΛT η Λ = η. (4.150)

Lorentz transformations are thus the linear homogeneous coordinate transformations
which leave the metric ημν invariant. Physically they represent the most general
coordinate transformation relating two inertial frames of reference, whose four-
dimensional origins xμ = 0 and x′μ = 0 coincide. Comparing Eq. (4.149) with
Eq. (4.88)we see that Lorentz transformations play inMinkowski the role that orthog-
onal transformation have in Euclidean space. The reader can easily verify that the
set of all matrices Λ, solution to Eq. (4.149), i.e. the Lorentz transformations, sat-
isfy axioms (i), (ii), (iii), (iv) of Sect. 4.4 which define a group structure. Lorentz
transformations therefore form a group called the Lorentz group. The elements of
this group depend on a set of continuous parameters, which are the entriesΛμ

ν of the
matrix Λ, subject to the condition (4.149). The Lorentz group is therefore another
example of continuous groups, together with the rotation group, which we have char-
acterized in the previous sections as Lie groups. The identity transformation 1 ≡ (δ

μ
ν )

is in particular a Lorentz transformation corresponding to a particular choice of the
continuous parameters: Λμ

ν = δ
μ
ν .
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Consider now the component μ = ν = 0 of Eq. (4.149):

(Λ0
0)

2 − (Λi
0)

2 = 1 ⇒ (Λ0
0)

2 ≥ 1, (4.151)

the above property implies that we can either haveΛ0
0 ≥ 1 orΛ0

0 ≤ −1.Moreover,
from Eq. (4.149), it also follows that

det(�)2 = 1 ⇒ det(�) = ±1. (4.152)

Lorentz transformations are then divided in the following four classes:

(i) Λ0
0 ≥ 1, det(Λ) = 1 (proper transformations);

(ii) Λ0
0 ≥ 1, det(Λ) = −1;

(iii) Λ0
0 ≤ −1, det(Λ) = −1;

(iv) Λ0
0 ≤ −1, det(Λ) = +1.

Lorentz transformations in the first class are calledproper and, as the reader can easily
verify, close a group. An example of a Lorentz transformation of the second kind is
the parity P, which is implemented by the matrix�P = η = diag(+1,−1,−1,−1).
Its effect is to reverse the orientation of the three Cartesian axes X, Y , Z:

xμ P−→ x′μ = ΛP
μ

ν xν ⇔
{

t −→ t′ = t

x −→ x′ = −x
. (4.153)

A transformation of the kind (iii) is the time reversal T , which consists in reversing
the orientation of time while leaving the space-coordinates inert. It is implemented
by the matrix �T = −η = diag(−1,+1,+1,+1)

xμ T−→ x′μ = ΛT
μ

ν xν ⇔
{

t −→ t′ = −t

x −→ x′ = x
. (4.154)

Finally a representative of last class is the product of the parity and time reversal
transformations, implemented by the matrix�P �T = −1. Its effect is to reverse the
orientation of the space and time Cartesian axes in Minkowski space-time.

Transformations withΛ0
0 ≥ 1 are called orthochronous since they do not involve

time reversal. Let us now prove an important property of Lorentz transformations:
Orthochronous transformations leave the sign of the time-component of time-like

(or in general non-space-like) four-vectors invariant, while non-orthochronous ones
reverse it.

To prove it let us consider a non-space-like four vector P ≡ (Pμ) = (P0, P):

‖P‖2 ≥ 0 ⇔ |P|
|P0| ≤ 1. (4.155)
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Let � be a Lorentz transformation which maps Pμ into P′μ = Λμ
ν Pν . The time-

component of the transformed vector reads:

P′0 = Λ0
0 P0 + Λ0

i Pi. (4.156)

The second term on the right hand side has the form of a scalar product�0 ·P between
the vectors �0 ≡ (Λ0

i) and P, which can be written as the product of their norms
times the cosine of the angle between them: Λ0

i Pi = |�0||P| cos(θ). Dividing both
sides of (4.156) by P0, we find:

P′0

P0 = Λ0
0

(
1 + |�0|

Λ0
0

|P|
P0 cos(θ)

)
= Λ0

0 (1 + A) . (4.157)

From (4.151) we find that |�0| = √
(Λ0

0)2 − 1 < |Λ0
0|. This property and Eq.

(4.155) imply that the constant A in (4.157) is, in modulus, smaller than one: |A| < 1,
so that 1 + A is positive and P′0/P0 has the same sign as Λ0

0. This proves the
property stated above, namely that P′0 and P0 have the same sign if, and only if, the
transformation is orthochronous (Λ0

0 ≥ 1).
Let us now consider the product of two Lorentz transformations �3 = �1 �2

and, in particular, the four-vector defined by the components Λ3
μ
0 = Λ1

μ
ν Λ2

ν
0. It

is expressed as the transformed through �1 of the four vector Λ2
ν
0. Both Λ3

μ
0 and

Λ2
μ
0 are time-like since, by virtue of Eq. (4.151), ‖Λ2

ν
0‖2 = ‖Λ3

ν
0‖2 = 1. As a

consequence of the previously proven property:

sign(Λ3
0
0) = sign(Λ1

0
0) sign(Λ2

0
0), (4.158)

namely the product of two orthochronous or two non-orthochronous transforma-
tions is orthochronous, while the product of an orthochronous transformation and
a non-orthochronous one is non-orthochronous. Since the product of two Lorentz
transformations in each class always has unit determinant, we conclude that the
product of any two transformations in each of the above four classes is a proper
Lorentz transformation. Consider now the inverse �−1 of a Lorentz transformation
�. Since �−1 � = 1, and 1 is orthochronous, �−1 is orthochronous if and only if
� is. This implies that any two representatives of each of the above classes are con-
nected, through the right (or left) multiplication, by a proper Lorentz transformation.
Consider indeed two transformations�1, �2 within a same class. From our previous
discussion it follows that � = �1 �−1

2 is a proper Lorentz transformation such that
�1 = � �2. We conclude that any representative of the classes (ii), (iii), (iv) can
be written as the product of a proper Lorentz transformation times �P, �T , �P �T ,
respectively.

We shall be mainly interested in those transformations Λμ
ν which are continu-

ously connected to the identity transformation 1. Since δ00 = 1 and det(1) = 1, these
transformations, by continuity, should be the proper Lorentz transformations. They
close a group denoted by SO(1, 3), which differs from the group SO(4) of rotations in
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a 4-dimensional Euclidean space in that the corresponding invariant metric, instead
of being δμν with diagonal entries (+1,+1,+1,+1), is the matrix ημν defined in
(4.142), with diagonal entries (+1,−1,−1,−1). The argument (1, 3) in the symbol
of the group refers then to the signature of the corresponding invariant metric.13

Just aswe did for the rotation group and the general linear group, we define vectors
(V μ) which are contravariant and vectors (Vμ) which are covariant with respect to
the Lorentz group as quantities transforming as (dxμ) and as the gradient ( ∂

∂xμ f (x))
of a function f (x), respectively:

V μ → V ′μ = Λμ
ν V ν, (4.159)

Vμ → V ′
μ = Λ−1 ν

μ Vν . (4.160)

Using the metric tensor gμν = ημν , we can raise or lower indices, that is we can map
a covariant into a contravariant vector and vice-versa, as we have seen in the more
general case

V μ → Vμ = ημν V ν,

Vμ → V μ = ημν Vν,

where we have used ημν ηνσ = δ
μ
σ . This is proven in the same way as in the general

case, this time using Eq. (4.149). Notice that, since η00 = 1, raising or lowering a
time component will not alter its sign, while, being ηij = −δij, the same operation
will invert the sign of the spatial components.

All the general properties that we have learned for tensors with respect to GL(4),
clearly apply to SO(1, 3)-tensors as well. For instance we can define a Lorentz tensor
of type (p, q), that is with p contravariant and q covariant indices

Tμ1...μp
ν1...νq , (4.161)

as a quantity transforming under Λ as follows:

T ′μ1...μp
ν1...νq = Λμ1

ρ1 . . . Λμq
ρpΛ

−1σ1
ν1 . . . Λ−1σq

νq Tρ1...ρp
σ1...σq . (4.162)

Tensors of the same type (p, q) form a linear vector space and the collection of all
possible tensors form an algebra with respect to the tensor product operation and
contraction.

Anticipating some concepts which will be introduced and discussed in Chap.7,
tensors of a given type (p, q) form a basis of a representation of the Lorentz group,
on which the group action is defined by (4.162). Such property means that the effect
on a type (p, q) tensor of two consecutive Lorentz transformations Λ1, Λ2 is the
transformation induced by the product of the two Λ2 Λ1. This follows from the

13If the invariant metric were diagonal with entries (+1,+1,−1,−1), the corresponding group
would have been SO(2, 2).

http://dx.doi.org/10.1007/978-3-319-22014-7_7
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definition of the Kronecker product of matrices and in particular from the property
(A ⊗ B) · (C ⊗ D) = (A C) ⊗ (B D), see Sect. 4.6. This representation is in general
reducible, that is the vector space spanned by type (p, q) tensors may decompose
into the direct sum of orthogonal subspaces each of which are stable under the action
of the Lorentz group, and therefore define themselves bases of representations of the
group. As an example let us consider a Lorentz tensor with two contravariant indices
Fμν , transforming according to (4.162). Similarly to what happened in the case of
the rotation group, see Eqs. (4.104) and (4.109), we can decompose this tensor into
three components which transform into themselves under the action of SO(1, 3). Let
us define the trace operation:

Fρ
ρ ≡ ημν Fμν, (4.163)

and decompose Fμν as follows

Fμν =
(

F̃μν
S + Dμν

)
+ Fμν

A . (4.164)

The first term within brackets denotes the symmetric traceless component of Fμν :

F̃μν
S = 1

2
(Fμν + Fμν) − 1

4
ημν Fρ

ρ , F̃μν
S ημν = 0.

The second term within brackets in (4.164) represents the trace part:

Dμν = 1

4
ημν Fρ

ρ ,

and, finally,

Fμν
A = 1

2
(Fμν − Fμν).

is the anti-symmetric component. With the above definitions the proof that each of
these components, under a Lorentz transformation, is mapped into the corresponding
component of the transformed tensor, is the same as the one given for the rotation
group. We conclude that antisymmetric, symmetric traceless and the trace each span
three orthogonal subspaces of the total space of type (2, 0) tensors, which are stable
under the action of the Lorentz group. Since they cannot be further reduced, we say
that they define the bases of three irreducible representations of SO(1, 3). The same
result applies to (0, 2)-tensors as well.

We can now apply the discussion of Sect. 4.6 to the case in which the group G is
the Lorentz group and conclude that:

If a physical law is written as an equality between Lorentz tensors of a same type,
in a given RF, it will hold in any other RF connected to the original one by a Lorentz
transformation.

Since Lorentz transformations are themost general homogeneous transformations
relating two inertial RFs. in relative motion, we conclude that a physical law which
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can be expressed as an equality between Lorentz tensors of the same type, that is in a
manifestly Lorentz covariant way, is consistent with the principle of special relativity.

The principle of relativity in other words requires all physical laws to be written
in the following general form:

Fμ1...μp
ν1...νq = Gμ1...μp

ν1...νq , (4.165)

where F and G are Lorentz-tensors. As we shall see, this is indeed the case for
Maxwell’s equations. A tensorial equation of the form (4.165) is said to bemanifestly
covariant under Lorentz transformations.

4.7.1 General Form of (Proper) Lorentz Transformations

In our discussion about special relativity in Chap.1, we limited ourselves to reference
frames with parallel axes and whose relative constant velocity vector was oriented
along the commonX axis (standard configuration). In Sect. 2.2.1 of Chap.2, however,
we have also given the form of the Lorentz transformation when, keeping the three
axes parallel, the velocity has an arbitrary direction. In this subsection we shall
construct the most general proper Lorentz transformation through the construction
of its infinitesimal generators, just as we did in the case of the rotation group, showing
that for parallel axes it coincides with Eq. (2.57) and then generalizing to the case
where the axes of the two frames S and S′ are rotated with respect to each other.

Let us start considering an infinitesimal Lorentz transformation, i.e. a Lorentz
transformation which is infinitely close to the identity 1:

Λμ
ν � δμ

ν + ωμ
ν, (4.166)

whereω = (ωμ
ν) is the infinitesimal generator of the transformation. It has infinites-

imal entries, for which we use the first order approximation. Substituting Eq. (4.166)
into (4.149) we find

ημσ ωσ
ν = −ηνσ ωσ

μ ⇔ η ω = −ωT η, (4.167)

Defining the matrix ωμν = ημσ ωσ
ν , Eq. 4.167 implies

ωμν = −ωνμ, (4.168)

namely the infinitesimal generator of themost general proper Lorentz transformation,
upon lowering one index by means of the metric, is represented by a 4 × 4 anti-
symmetric matrix. An anti-symmetric matrix has 4 × (4 − 1)/2 = 6 independent
entries, i.e. all entries above the main diagonal:

http://dx.doi.org/10.1007/978-3-319-22014-7_1
http://dx.doi.org/10.1007/978-3-319-22014-7_2
http://dx.doi.org/10.1007/978-3-319-22014-7_2
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(ωμν) =

⎛
⎜⎜⎝

0 ω01 ω02 ω03
−ω01 0 ω12 ω13
−ω02 −ω12 0 ω23
−ω03 −ω13 −ω23 0

⎞
⎟⎟⎠ = 1

2
ωρσ (Lρσ)μν,

where (Lρσ)μν = δ
ρ
μ δσ

ν − δσ
μ δ

ρ
ν = −(Lσρ)μν is an ortho-normal basis of anti-

symmetric matrices labeled by the (anti-symmetric) couple of indices (ρσ), ρ, σ =
0, . . . , 3. For notational convenience, we shall denote the entries ωρσ in the above
equation by δθρσ and write ωμν = 1

2 δθρσ (Lρσ)μν . The generic infinitesimal gener-
ator is obtained by raising one index of ωμν and has therefore the following form:

ω ≡ (ωμ
ν) = (ημσ ωσν) = 1

2
δθρσ

(
(Lρσ)μν

) = 1

2
δθρσ Lρσ, (4.169)

where the matrices Lρσ read:

Lρσ = (
(Lρσ)μν

) =
(
ημδ (Lρσ)δν

)
= (ηρμδσ

ν − ησμδρ
ν). (4.170)

The matrices Lρσ play for the Lorentz group the same role that the matrices Li

had for the rotation group: They form a basis for the six-dimensional vector space
spanned by the infinitesimal generators of Lorentz transformations (recall that the
infinitesimal generators of the rotation group spanned a three-dimensional vector
space of which the matrices Li represented a basis). The parameters δθρσ = −δθσρ

(only six of which are independent!) play then the same role of the 3 angles δθi in
the SO(3) case. A generic Lorentz transformation depends then on six independent
continuous parameters, and therefore we say that the Lorentz group has dimension 6.

Using Eqs. (4.166) and (4.169), we can write an infinitesimal proper Lorentz
transformation as follows:

Λμ
ν = δμ

ν + 1

2
δθρσ(Lρσ)μν ⇔ Λ = 1 + 1

2
δθρσ Lρσ, (4.171)

for infinitesimal δθρσ . After some algebra the reader can show that the following
commutation relations among the infinitesimal generators hold:

[
Lμν, Lρσ

] = ηνρ Lμσ + ημσ Lνρ − ημρ Lνσ − ηνσ Lμρ. (4.172)

In the sequel, we shall define a more general action of the Lorentz group on objects
which are not 4-vectors. In other words we shall consider different matrix repre-
sentations of the same Lorentz group. However the commutation relations (4.172)
between its infinitesimal generators, namely the structure constants, will not depend
on the particular matrix representation considered. For this reason they will charac-
terize the properties of the abstract Lorentz group in a neighborhood of the origin
(proper transformations). Let us observe that, aside from δ

μ
ν , there exist two invariant

tensors with respect to (proper) Lorentz transformations: The metric ημν (which is
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invariant under generic Lorentz transformations) and the Levi-Civita tensor εμνρσ ,
defined as follows:

εμνρσ = 1 (μνρσ) even permutation of (0, 1, 2, 3), (4.173)

εμνρσ = −1 (μνρσ) odd permutation of (0, 1, 2, 3), (4.174)

so that ε0123 = +1. Indeed, in virtue of Eq. (4.149)

ημν → Λρ
μΛσ

νηρσ = ημν,

εμνρσ → Λμ′
μ Λν

ν Λρ′
ρ Λσ′

σ εμ′ν ′ρ′σ′ = det(Λ) εμνρσ = εμνρσ.

Let us return to the basis of infinitesimal generators Lρσ . As previously pointed out,
only six of them are independent. It is therefore convenient to reorganize them as
follows:

L1 ≡ −L23, L2 ≡ −L31, L3 ≡ −L12, (4.175)

or, equivalently:

Li = −1

2
εijk Ljk, i, j, k = 1, 2, 3, (4.176)

and

Ki = L0i, i = 1, 2, 3. (4.177)

The generators Ki are given the name of boost generators. From (4.172) we may
deduce the commutation relations between the six generators Li, Ki. For instance.
let us write the following commutator:

[L1, L2] =
[
L23, L31

]
= η33 L21 = −L21 = −L3. (4.178)

Similarly we can show that:

[
Li, Lj

] = −εijk Lk, (4.179)

[
Li, Kj

] = −εijk Kk, (4.180)

[
Ki, Kj

] = εijk Lk . (4.181)

By comparing Eq. (4.179) with Eqs. (4.124) and (4.125), we conclude that Li are the
generators of rotations since they satisfy the corresponding commutation relations.
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They generate Lorentz transformations of the form

(ΛR
μ

ν) ≡
(
1 0
0 Ri

j

)
∈ SO(3), (4.182)

which clearly leave ημν invariant. The Lorentz group therefore contains the rotation
group SO(3) as a subgroup.

Consider now the generators Ki. As opposed to Li, they do not close an algebra.
From Eqs. (4.170) and (4.177) we may deduce their matrix form:

K1 =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ; K2 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ; K3 =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎠ ,

note that Ki are symmetric matrices, as opposed to Li. Let us see what a finite
transformationΛμ

ν generated by the set ofKi looks like. Since the rotation generators
Li are not involved, this transformation will not affect the orientation of the Cartesian
axes and thus the two RFs will keep their axes parallel.

Let us denote by σi the parameters of the transformation. According to our pre-
vious analysis, to obtain a finite Lorentz transformation we need to exponentiate the
infinitesimal generators (in this case σi Ki). We find:

Λ = eσi Ki =
∞∑

n=0

1

n! (σ
i Ki)

n. (4.183)

where the parameters σi are identified with ω0i. Let us now define the norm σ and
the unit vector u = (ui) associated with the vector (σi):

σ = ‖(σi)‖ =
√∑

i

(σi)2, ui = σi

σ
,

3∑

i=1

ui ui = 1, σi = σ ui.

Let us compute the following matrices:

ui Ki =
(
0 uj

ui
∅

ij

)
; (∅ij) =

⎛
⎝
0 0 0
0 0 0
0 0 0

⎞
⎠ ,

(ui Ki)
2 =

(
1 0
0 uiuj

)
; (ui Ki)

3 = (ui Ki); (ui Ki)
4 = (ui Ki)

2 . . .

. . . (ui Ki)
2k = (ui Ki)

2; (ui Ki)
2k+1 = (ui Ki).
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We can now compute the exponential in Eq. (4.183):

� = 1 + σ (ui Ki) + σ2

2
(ui Ki)

2 + σ3

3! (ui Ki) + σ4

4! (ui Ki)
2 + · · ·

= 1 +
(

σ + σ3

3! + σ5

5! + · · ·
)

(ui Ki) +
(

σ2

2
+ σ4

4! + · · ·
)

(ui Ki)
2

= 1 − (ui Ki)
2 + sinh σ (ui Ki) + cosh σ(ui Ki)

2

=
(

cosh σ sinh σ uj

sinh σ ui δij + (cosh σ − 1) uiuj

)
.

Let us take, for instance:

(σi) = (σ, 0, 0) → u = (ui) = (1, 0, 0), (4.184)

The corresponding transformation reads:

(Λμ
ν) =

⎛
⎜⎜⎝

cosh σ sinh σ 0 0
sinh σ cosh σ 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (4.185)

If we set in (4.185) sinh σ = − v
c γ and cosh σ = γ, which is consistent with

the property cosh2 σ − sinh2 σ = 1 provided γ = 1√
1− v2

c2

, the transformation Λ

becomes:

Λμ
ν =

⎛
⎜⎜⎜⎝

γ − v
c γ 0 0

− v
c γ γ 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ . (4.186)

The transformation Δx′μ = Λμ
νΔxν is precisely the one which maps a RF S onto

a RF S′ in uniform motion with respect to the former with a velocity v = (v, 0, 0),
which we have derived in Chap.1.

If, more generally, we define the following vector:

(βi) = β (u1, u2, u3) =
(

vi

c

)
= v

c
, (4.187)

where β = v/c, so that we can write γ = 1√
1−β2

, and set sinh σ = −β γ,

cosh σ = γ, the most general proper Lorentz transformation generated by Ki reads:

http://dx.doi.org/10.1007/978-3-319-22014-7_1
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Λμ
ν =

(
γ −βj γ

−βi γ δij + (γ − 1) βi βj

β2

)
. (4.188)

This is the Lorentz transformation which connects two frames of reference S and S′,
the latter moving with respect to the former with a translational uniformmotion with
constant velocity vector v = (vi). It was also derived in Chap.2, see Eq. (2.57). We
say that this transformation boosts the RF S onto S′ and is therefore called a boost
transformation, to be denoted by ΛB. Consequently the Ki are called infinitesimal
generators of Lorentz boosts and their parameters are related to the relative velocity
vector.

The most general Lorentz transformation can be written as the product of a boost
ΛB = exp(σi Ki) times a rotation ΛR = exp(θiLi):

Λ = ΛB ΛR = exp(σi Ki) exp(θ
iLi), (4.189)

or, alternatively, as the exponential of a finite combination of the infinitesimal gen-
erators Lρσ: Λ = exp( 12 θρσ Lρσ).

It is useful at this point to give the explicit matrix form of the Lorentz boost �p

which connects the rest frame S0 of a massive particle, in which p = 0 and thus
the corresponding four-momentum is p̄ = (mc, 0), to a generic RF S in which the
particle has momentum p ≡ (pμ) = (E/c, p):

pμ = Λp
μ

ν p̄ν .

The energy and the linear momentum of the particle in S are related by Eq. (2.38)
of Chap.2: E2 − |p|2c2 = m2c4. Moreover the velocity of the particle in S is pc/E.
Since S moves relative to S0 (in the standard configuration) with a velocity v which
is the opposite of that of the particle, we have to set in (4.188) v/c2 = −p/E. Using
the relation γ(v) = E/(mc2) we find for �p the following matrix expression:

�p =
⎛
⎝

E
mc2

pj

mc

pi

mc δij + pi pj

m (E+mc2)

⎞
⎠ . (4.190)

4.7.2 The Poincaré Group

We want now to write the most general coordinate transformation which leaves the
four-dimensional distance ds, as a coordinate function, invariant. It will generalize
the Lorentz transformation in (4.146) by allowing the four-dimensional origins of
the two systems of coordinates not to coincide. It will therefore be described by an
affine transformation (Λ, x0):

x′μ = Λμ
ν xν − xμ

0 ⇒ dx′μ = Λμ
ν dxν, (4.191)

http://dx.doi.org/10.1007/978-3-319-22014-7_2
http://dx.doi.org/10.1007/978-3-319-22014-7_2
http://dx.doi.org/10.1007/978-3-319-22014-7_2
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whose homogeneous part Λ is a Lorentz transformation acting on the directions of
the space-time axes, while the inhomogeneous part x0 = (xμ

0 ) describes a global
space-time translation. The reader can easily show, along the lines of Sect. 4.5, that
these transformations, called Poincaré transformations, close a group, named the
Poincaré group. A generic Poincaré transformation depends analytically on the six
parameters of the Lorentz part and the four parameters xμ

0 associated with the space-
time translations. The Poincaré group is therefore a ten-parameter Lie group.

In this chapter we have been dealingwithmatrix representations of transformation
groups acting on component vectors. In order to characterize the algebra associated
with the Poincaré group, we would need to work out a basis of infinitesimal gen-
erators. Such basis would comprise the six generators Lρσ of the Lorentz subgroup
and the four generators Pγ of the space-time translations. It is useful work with a
matrix realization of a generic group element. This is done by associating with a
transformation (Λ, x0) the following 5 × 5 matrix

(Λ, x0) →
(

Λμ
ν −xμ

0
∅ν 1

)
, [(∅ν) ≡ (0, 0, 0, 0)], (4.192)

acting on the coordinate vector, extended by an additional entry 1: (xμ, 1) ≡
(x0, x1, x2, x3, 1). The first four components of the resulting 5-vector are the trans-
formed coordinates:

(
xμ

1

)
→

(
Λμ

ν −xμ
0

∅ν 1

) (
xν

1

)
=

(
Λμ

ν xν − xμ
0

1

)
=

(
x′μ
1

)
. (4.193)

This matrix construction applies to a generic affine transformation. We wish now
to write the matrix representation of the infinitesimal Poincaré generators. To this
end let us write an infinitesimal Poincaré transformation to first order in its small
parameters δθρσ, δxμ

0 :

(
Λμ

ν −δxμ
0

∅ν 1

)
≈

(
δμ

ν + 1
2 δθρσ (Lρσ)μν −δxμ

0
∅ν 1

)
= 1 + 1

2
δθρσ Lρσ + δxγ

0 Pγ,

where 1 is the 5× 5 identity matrix and Lρσ are now represented by 5× 5 matrices:

Lρσ ≡
(

(Lρσ)μν ∅
μ

∅ν 0

)
. (4.194)

The reader can verify that the commutation relations (4.172) still hold. The four
matrices Pγ generate the space-time translations and read:

Pγ ≡
(

∅
μ

ν −δ
μ
γ

∅ν 0

)
. (4.195)
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The effect of the infinitesimal transformation on xμ is the following:

xμ → x′μ = xμ + δxμ, δxμ = δθμ
ν xν − δxμ

0 , (4.196)

where we have used the property 1
2δθρσ (Lρσ)μν = δθμ

ν which follows from
Eq. (4.170). A finite Poincaré transformation, with a proper Lorentz component Λ,
can be expressed in terms of exponentials of finite combinations of the infinitesimal
generators:

(
Λμ

ν −xμ
0

∅ν 1

)
= exγ

0 Pγ · e
1
2 θρσ Lρσ

. (4.197)

As an example consider the subset consisting of pure translations (1, x0). The reader
can verify that it is a subgroup. Moreover the result of two consecutive translations
does not depend on the order in which they are effected: (1, x0) · (1, x1) = (1, x1) ·
(1, x0). This property makes the group of translations commutative or abelian. Let
us verify that a finite translation (1, x0) is indeed represented by the 5 × 5 matrix
exγ

0 Pγ :

exγ
0 Pγ ·

(
xμ

1

)
=

(
δμ

ν −xμ
0

∅ν 1

) (
xμ

1

)
=

(
xμ − xμ

0
1

)
, (4.198)

where we have used the definition (4.129) of the exponential of a matrix, and the
property that powers of xγ

0 Pγ higher than one vanish: (xγ
0 Pγ)n = 0, n ≥ 2.

Let us compute the commutation relations between the Poincaré generators. We
clearly have [Pγ, Pσ] = 0. This represents the fact that the group of translations is
commutative. Let us now compute [Lρσ, Pγ]. Clearly Pγ Lρσ = 0, while:

[Lρσ, Pγ] = Lρσ Pγ =
(

∅
μ

ν −ηρμδσ
γ + ησμδ

ρ
γ

∅ν 0

)
= (ηρνδσ

γ − ησνδρ
γ) Pν .

Let us now summarize the commutation relations among the Poincaré generators:

[
Lμν, Lρσ

] = ηνρ Lμσ + ημσ Lνρ − ημρ Lνσ − ηνσ Lμρ, (4.199)[
Lμν, Pρ

] = Pμ δν
ρ − Pν δμ

ρ , (4.200)[
Pμ, Pν

] = 0. (4.201)

4.7.3 References

For further reading see Refs. [2, 5, 14].



Chapter 5
Maxwell Equations and Special Relativity

5.1 Electromagnetism in Tensor Form

As we have already noted in Chap.1, Maxwell’s electromagnetic theory is by defin-
ition a relativistic theory, since it implies in particular the constancy of the speed of
light in every RF. As such it must be covariant under the group of Lorentz transfor-
mations, or, using the terminology of the previous chapter, covariant under the group
SO(1, 3).

In this chapter, using the tensor formalism developed for the Lorentz group, we
shall establish the covariance of the electromagnetic theory under the Lorentz group
by formulating the Maxwell equations as tensor equations, namely as equalities
between Lorentz-tensors of the same kind.

The use of the Lorentz-tensors notation, besides making the relativistic nature of
Maxwell’s theory manifest, will also be useful for deriving some consequences of
the electromagnetic theory in a simpler and more transparent way.

To begin with, let us write the Maxwell equations in the usual vector notation,
which, by definition, is manifestly covariant under the three-dimensional rotation
group SO(3):

∇ · E = ρ, (5.1)

∇ × B = 1

c

∂E
∂t

+ j
c
, (5.2)

∇ · B = 0, (5.3)

∇ × E = −1

c

∂B
∂t

, (5.4)

where E(x) and B(x) denote as usual the electric and the magnetic field, respec-
tively, and we define x ≡ (xμ) = (ct, x1, x2, x3).1 In the following we shall use

1We are using the so called Heaviside-Lorentz (HL) system of units, the most useful for theo-
retical considerations. It amounts to considering the electric charge as a quantity whose physical
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the compact notation (3.60) for partial differentiation with respect to Minkowski and
spatial coordinates. We first translate the vector notation into a 3-dimensional ten-
sor notation. For example, using the SO(3)-tensor notation, the three-dimensional
divergence and curl operators can be written as follows:

∂i Ei ≡ ∇ · E, εijk∂ j Bk ≡ (∇ × B)i .

In the same notation, Eqs. (5.1)–(5.4) are recast in the following equivalent form:

∂i Ei = ρ, (5.7)

εijk∂ j Bk = 1

c

∂Ei

∂t
+ ji

c
, (5.8)

∂i Bi = 0, (5.9)

εijk∂ j Ek = −1

c

∂

∂t
Bi . (5.10)

Of course, in this formalism, only covariance with respect to three-dimensional rota-
tions is manifest. Recall that, with respect to the orthogonal group SO(3) (or in
general SO(n) for a n-dimensional Euclidean space), there is no difference between
covariant (lower) and contravariant (upper) indices, since they transform in the same
way. Indices are raised and lowered by contraction with the identity matrix, which

(Footnote 1 continued)
dimensions are derived from the basic dimensional quantities [M, L , T ] (the corresponding units
being [kilogram, meter, second]), by writing Coulomb’s law without additional physical constants,
namely in the following form:

F = 1

4π

q1 q2
r2

. (5.5)

In this way the electric charge has the physical dimensions [M
1
2 L

3
2 T −1], and the electric field

[M
1
2 L− 1

2 T −1]. (Note that the presence of the factor 1
4π in Coulomb’s law means that the HL

system is rationalized, that is there are no factors 4π explicitly appearing in Maxwell’s equations).
Moreover the electric and magnetic fields are defined so as to have the same dimension, so that the
Lorentz force reads:

F = q
(

E + v
c

× B
)

. (5.6)

The quickest way to translate formulae written in the international system of units (S.I.) into the HL
one, is to redefine the electric charge as follows: Let ẽ and e be the measures of the electric charge
in the S.I. and the HL systems respectively. We then have:

e = ẽ√
ε0

⇒ ρ = ρ̃√
ε0

, j = j̃√
ε0

.

Moreover the electric andmagnetic fields Ẽ, B̃ in the SI system are related to the analogous quantities
E e B in the HL system as follows:

√
ε0 Ẽ = E; B = 1√

μ0
B̃.

For example, the energy density takes the form: ρE = 1
2

(
ε0|Ẽ|2 + |B̃|2

μ0

)
= 1

2

(|E|2 + |B|2).

http://dx.doi.org/10.1007/978-3-319-22014-7_3
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does not affect the value of the corresponding components. For this reason, when
writing SO(3)-tensors like the Euclidean vectors Ei , Bi or the Levi-Civita symbol
εijk, we shall not care about the position of their indices: Ei = Ei , Bi = Bi and
so on.

In order to make covariance with respect to SO(1, 3), that is Lorentz transforma-
tions, manifest, we introduce a 4 × 4antisymmetric matrix Fμν whose entries are
defined as follows:

F0i = −Fi0 = Ei = Ei , (5.11)

Fij = εijk Bk ⇔ Bi = 1

2
εijk Fjk, (5.12)

that is:

Fμν =

⎛
⎜⎜⎝

0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

⎞
⎟⎟⎠ . (5.13)

The above quantity will be characterized as a Lorentz (i.e. a SO(1, 3))-tensor. The
position of its indices can be changed only with the Lorentz metric (4.142) ημν

(η00 = 1, ηij = −δij, η0i = 0). As remarked above, when three-dimensional indices
i, j, . . . belong to SO(3)-tensor quantities, like the electric and magnetic fields, their
position is irrelevant since they are raised or lowered with the metric δij. Instead
when indices i, j, . . . are a subset of the four-dimensional ones μ, ν, . . ., namely
label components of SO(1, 3)-tensors, we must use the Lorentz metric, so that the
raising, or lowering, of three-dimensional indices implies a change of sign of the
corresponding components, while the same operation on time components μ = 0
leaves their sign unchanged.

Therefore if we lower the two upper indices of Fμν with the Minkowski metric
ημν , we obtain:

Fμν = ημσηνρFσρ =

⎛
⎜⎜⎝

0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

⎞
⎟⎟⎠ . (5.14)

We shall prove in the sequel that Fμν (and Fμν) are actually contravariant (and
covariant) antisymmetric tensors of the Lorentz group.

We further define the electromagnetic four-current or, in short, the four-current as:

Jμ =
(

ρ,
1

c
jk

)
→ J 0 = ρ, J k = 1

c
jk . (5.15)

http://dx.doi.org/10.1007/978-3-319-22014-7_4
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Note that we have denoted Jμ as a Lorentz four-vector. The proof that the four
components of Jμ actually transform as a contravariant four-vector will be given in
Sect. 5.4.

We now show that Eqs. (5.7) and (5.8) can be written in the following compact
form:

∂ν Fνμ = −Jμ. (5.16)

Considering first the μ = 0 component of Eq. (5.16) and, taking into account the
antisymmetry of Fνμ (F00 = 0), we have:

∂i Fi0 ≡ −∂i F0i = −ρ ⇒ ∂i Ei = ρ,

which coincides with Eq. (5.7).
Setting instead μ = i in Eq. (5.16) one obtains:

∂0F0i + ∂ j Fji = − j i

c
,

and since εijk = −εjik,

∂0Ei − εijk∂ j Bk = − j i

c
→ εijk∂ j Bk = 1

c

∂Ei

∂t
+ j i

c
,

which coincides with Eq. (5.8).
Thus Eq. (5.16), written in terms of four-dimensional indices, is equivalent to the

two non-homogeneous Maxwell equations, (5.7) and (5.8).
Coming next to the homogeneous Maxwell equations (5.9) and (5.10), we show

that, using four-dimensional Minkowski indices, they can also be written in terms of
the following single covariant equation:

∂[μFνρ] ≡ 1

3
(∂μFνρ + ∂ν Fρμ + ∂ρFμν) = 0. (5.17)

The symbol [μνρ] denotes the complete antisymmetrization in the three indices
μ, ν, ρ. On a generic tensor Uμνρ, this operation is defined as follows:

U[μνρ] = 1

3! (Uμνρ − Uμρν + Uνρμ − Uνμρ + Uρμν − Uρνμ).

In words, it consists in summing over the even permutations of μ, ν, ρ with a plus
sign and over the odd ones with a minus sign, the result being normalized by dividing
it by the total number 6 of permutations. Since Fμν = −Fνμ, this definition applied
to ∂μFνρ, gives Eq. (5.17).
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Let us write Eq. (5.17) choosing one time-index and two spatial indices, that is
μ = 0; ν = i; ρ = j :

∂0Fij + ∂i Fj0 + ∂ j F0i = 0 ⇔ εijk∂0Bk + ∂i E j − ∂ j Ei = 0,

where we have used Ei = Ei = −F0i , since F0i = η0μηiν Fμν = η00ηij F0 j =
−Ei . This equation can be easily identified with one of the homogeneous Maxwell
equations; it is sufficient to multiply it by εij�, summing over i, j and using the
formula: εijkεij� = 2δk�. We find:

2∂0B� + 2ε�ij∂i E j = 0 ⇔ ε�ij∂i E j = −1

c

∂B�

∂t
,

which coincides with Eq. (5.10).
If, instead, in Eq. (5.17) we consider three spatial indices, namely, μ = i,

ν = j, ρ = k, we find:

∂i Fjk + ∂ j Fki + ∂k Fij = 0.

In this case we multiply the above equation by εijk and sum over i, j, k, obtaining:

3 εijk∂i Fjk = 3 εijkεjk�∂i B� = 6 δi
�∂i B� = 6 ∂i Bi = 0.

so that Eq. (5.9) is retrieved.
Summarizing: We have defined two quantities Fμν and Jμ such that the Maxwell

equations are written as:

∂μFμν = −J ν, (5.18)

∂[μFνρ] = 0. (5.19)

In particular, if we compute the four-dimensional divergence ∂ν of Eq. (5.18) and
take into account that ∂ν∂μFμν = 0, which follows from the fact that ∂μ∂ν = ∂ν∂μ

is symmetric while Fμν is antisymmetric, we obtain the equation:

∂ν J ν = 0, (5.20)

which, in three-dimensional notation, reads

∂0ρ + 1

c
∂i j i = 0 ⇔ ∂ρ

∂t
+ ∇ · j = 0. (5.21)

We recognize the above equation as thewell known continuity equation of the electric
current expressing, in local form, the conservation of the electric charge. Since this
property has been verified so far with no exception in different inertial systems, it is
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natural to expect Eq. (5.20) to be a Lorentz covariant equation,2 namely independent
of the particular inertial system. This implies that Jμ must transform as a Lorentz
four-vector. In any case we will explicitly verify the four-vector nature of Jμ from
its very definition in Sect. 5.4.

Assuming, for the time being, Jμ to be a four-vector, we may readily show that
Fμν , introduced as a matrix in Eq. (5.13), is actually a (contravariant antisymmetric)
tensor with respect to the group of Lorentz transformations, and that consequently
the inhomogeneous Maxwell equations are SO(1, 3)-covariant.

To show this, let us assume Eq. (5.16) to hold in a certain inertial RF S′:

∂′
μF ′μν = −J ′ν . (5.22)

Since ∂μ and Jμ are covariant and contravariant vectors, respectively, in a new RF
S, related to S′ by a Lorentz transformation (i.e. an SO(1, 3) rotation), we have:

Λ−1ρ
μ∂ρF ′μν = −Λν

σ Jσ,

Multiplying by the matrix Λ−1τ
ν and summing over ν we obtain:

Λ−1ρ
μΛ−1τ

ν∂ρF ′μν = −J τ

Therefore in the RF S we may write:

Fρτ = Λ−1ρ
μΛ−1τ

ν F ′μν
.

Finally, solving with respect to F ′μν , we conclude:

F ′μν = Λμ
ρΛ

ν
σ Fρσ, (5.23)

expressing the fact that the matrix Fμν is indeed a (contravariant) tensor of order
two.

It follows that the Maxwell equation (5.19) is also Lorentz covariant owing to the
four-vector nature of the differentiation operator ∂μ.

In conclusion, the theory of electromagnetism, described by Mawxwell’s equa-
tions, is covariant under Lorentz transformations, a fact which is consistent with our
discussion about the principle of invariance of the velocity of light given in Chap. 1.
Moreover, recalling the definition of the Poincaré group given in Chap.4 and the
fact that Maxwell’s equations are obviously invariant under four-dimensional trans-
lations, we may assert that the electromagnetic theory is invariant under the full
Poincaré group as it is the case for relativistic mechanics, see discussion in Chap.2.

2Actually, since Eq. (5.20) contains no free indices, it is a scalar equation, namely ∂μ Jμ(x) =
∂′

μ Jμ′(x ′).

http://dx.doi.org/10.1007/978-3-319-22014-7_1
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_2
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5.2 The Lorentz Force

We recall that in the Maxwell theory the Lorentz force acting on a given charge e is
given by

F = e
(

E + v
c

× B
)

, (5.24)

so that its equation of motion reads

F = dp
dt

. (5.25)

Equation (5.24), as it stands, is not written in an explicit tensor form. However we
shall prove that it has the same form in all inertial frames (we wish to remark here
that the tensor form of a physical law is a sufficient, though not necessary condition
for its validity in every RF). To show that Eq. (5.25) holds in every RF, we use the
covariant form of the equation of motion in Eq. (2.68)

f μ = d

dτ
pμ, (5.26)

and define the four-force f μ acting on the charge as follows:

f μ = −e

c
Fμν dxν

dτ
= −e

c
Fμν dxν

dt

dt

dτ
. (5.27)

Note that Eq. (5.27) is a covariant equation.
Let us examine both sides of Eq. (5.26) in components. Considering the time-

component, we have:

f 0 = e

c
F0i vi dt

dτ
= e

c
E · v

dt

dτ
,

dp0

dτ
= 1

c

dE
dt

dt

dτ
, (5.28)

respectively, wherewe have denoted by E the energy of the charged particle. Equating
the two expressions we find that the μ = 0 component of Eq. (5.26) becomes:

dE
dt

= e E · v = dW
dt

,

where W is the work of the force. Thus we retrieve the general result given by
Eq. (2.73): The rate of change of the energy of a particle in time equals the power of
the force (in our case of the electric force only).

Let us now consider the μ = i component of Eq. (5.26); on the left hand side we
find:

f i = e Ei dt

dτ
+ e

c
εijk v j Bk dt

dτ
= e

(
Ei + εijk v j

c
Bk

)
dt

dτ
,

http://dx.doi.org/10.1007/978-3-319-22014-7_2
http://dx.doi.org/10.1007/978-3-319-22014-7_2
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while, on the right hand side, we may write:

dpi

dτ
= dpi

dt

dt

dτ
,

Therefore the spatial components of Eq. (5.26) become:

e
(

E + v
c

× B
) dt

dτ
= dp

dt

dt

dτ
.

Erasing the common factor dt
dτ = γ, we obtain Eq. (5.24), corresponding to the

spatial part of Eq. (5.26).
Thus we conclude that Eq. (5.24), even if not written in a manifestly covariant

form, is covariant under Lorentz transformation and therefore valid in every RF.

5.3 Behavior of E and B Under Lorentz Transformations

Once we know the transformation properties of the electromagnetic tensor under
Lorentz transformations, we may easily find the corresponding laws for its three-
dimensional components E and B.

As Fμν is a Lorentz tensor its transformation under a change of RF is given by:

Fμν → F
′μν = Λμ

ρΛ
ν
σ Fρσ, (5.29)

where the Lorentz transformation matrix has been computed in the previous chapter.
For a generic boost it is given by Eq. (4.188), or Eq. (2.57), that is:

Λμ
ν =

(
γ −β jγ

−βiγ δij + (γ − 1)βi β j

β2

)
; i, j = 1, 2, 3; βi ≡ V i

c
,

V ≡ (V i ) being the velocity of S′ relative to S and V its norm. Recalling the
relations (5.11)–(5.12) and specializing Eq. (5.29) to the components (μ, ν = 0, i)
and (μ, ν = i, j), a simple computation yields the following transformation laws for
E and B:

E′ = γ(E + β × B) + (1 − γ)

β2 (β · E)β, (5.30)

B′ = γ(B − β × E) + (1 − γ)

β2 (β · B)β, (5.31)

where, as usual, we have set β = V
c and denoted by β its length. An equivalent,

and somewhat simpler, way to write the previous transformations is to decompose
the electric and magnetic fields into components E‖, B‖ which are parallel and

http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_2
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E⊥ = E − E‖, B⊥ = B − B‖ which are transverse to V. It is not difficult to see that
in this case Eq. (5.30) take the following form:

E′‖ = E‖; B′‖ = B‖, (5.32)

E′⊥ = γ(V )

(
E⊥ + 1

c
V × B⊥

)
, (5.33)

B′⊥ = γ(V )

(
B⊥ − 1

c
V × E⊥

)
. (5.34)

As an example, we compute the electromagnetic field of a charge e in uniformmotion
with velocity v in a frame S.

Let the charge e be at rest at the origin of a RF S′. An observer in S′ will observe
a Coulombian field:

E′ = e

4π

x′

r ′3 , (5.35)

and no magnetic field, B′ = 0.
Let the RF S be in standard configuration with respect to S′ so that V ≡ v =

(v, 0, 0). To find the fields in S in terms of those in S′, it is sufficient to exchange
the role of the two observers in Eq. (5.30), what amounts to exchange the primed
quantities with the unprimed ones and to change the sign of the velocity. One obtains:

E = γ(E′ − β × B′) + (1 − γ)

v2
(v · E′) v, (5.36)

B = γ(B′ + β × E′) + (1 − γ)

v2
(v · B′) v. (5.37)

Taking into account that in S′ we have B′ = 0, Eq. (5.36) becomes:

E = γ(v) E′ + (1 − γ) E ′
x

v
v
, (5.38)

B = γ(v)β × E′. (5.39)

Writing E in components we find:

Ex = E ′
x , (5.40)

Ey = γ E ′
y, (5.41)

Ez = γ E ′
z . (5.42)

Moreover, substituting these values ofE into the expression forB given by Eq. (5.38),
one finds that in the frame S the following relation holds:

B = v × E
c

, (5.43)
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which gives the value of themagnetic field generated by a chargemoving at a constant
velocity v in S.

Since E′ depends on x′, to obtain the value of E in S it is still necessary to express
the position vector x′, as measured in S′, in terms of the one (x) measured in S.

We may suppose, with no loss of generality, the field E′ to lie in the xy-plane of
the frame S′; then, taking into account the contraction of lengths along the direction
of motion, namely the x-axis, we have:

x ′ = γ x; y′ = y. (5.44)

Hence Eq. (5.40) can be rewritten as follows:

Ex = γe

4π

x

r ′3 , (5.45)

Ey = γe

4π

y

r ′3 , (5.46)

Ez = 0,

that is:

E = γe

4π

x
r ′3 . (5.47)

We can then express r ′ in terms of r by using the following relation:

r ′2 = x ′2 + y′2 = x2

1 − v2

c2

+ y2 = r2 − v2

c2
y2

1 − v2

c2

= γ2r2
(
1 − v2

c2
sin2 θ

)
, (5.48)

where sin θ ≡ y/r , θ being the angle between the direction of x and the y-axis. From
Eq. (5.48) it follows:

r ′3 = r3γ3
(
1 − v2

c2
sin2 θ

) 3
2

, (5.49)

and substituting in Eq. (5.47) we obtain the final result:

E = 1

4π

e

r3
x

⎡
⎢⎢⎣

1 − v2

c2(
1 − v2

c2
sin2 θ

) 3
2

⎤
⎥⎥⎦ . (5.50)

Moreover, substitution of Eq. (5.50) into Eq. (5.43) gives the value of the magnetic
field.
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The formula (5.50) tells us that when a charge is moving with constant velocity
v, the electric field differs from the electrostatic value by the relativistic factor:

f (v, θ) ≡ 1 − v2

c2(
1 − v2

c2
sin2 θ

) 3
2

. (5.51)

When the velocity v of the charge is much smaller than the speed of light, v 
 c, we
can set f ≈ 1. However, when the velocity of the charge is close to c the modulus
of E changes according to its direction, thus breaking spherical symmetry. Indeed,
since f (v, θ) is θ-dependent, the strength of the field will be larger when sin θ ≈ ±1,
that is when θ ≈ ±π

2 , while it will be smaller when θ ≈ 0.
Note, however, that the electric field is always radial, as in the static case.

5.4 The Four-Current and the Conservation of the Electric
Charge

In Sect. 5.1 the quantity defined in Eq. (5.15) was assumed to be a contravariant four-
vector under Lorentz transformations. An argument in favor of this was based on the
requirement that the conservation of the electric charge hold in any inertial frame.

In this section we shall construct the explicit expression of Jμ from which its
nature of Lorentz four-vector will be manifest.

Let us consider, in a given RF, a system of moving point-like charges
ek (k = 1, . . . n), and denote by xk(t) their positions at a given instant t . We want
to derive the explicit expressions for the charge density ρ(x, t) and the current den-
sity j(x, t).3 In the three-dimensional notation they can be respectively written as
follows:

ρ(x, t) =
∑

k

ek δ3(x − xk(t)), (5.52)

j i (x, t) =
∑

k

ek
dxi

k

dt
δ3(x − xk(t)),

where δ3(x − x′) is the three-dimensional Dirac delta function, defined by the prop-
erty4: ∫

d3x′ f (x′)δ3(x − x′) = f (x).

3Note that xk(t) is a kinematical variable referred to the kth particle, while (xμ) = (c t, x) are
space-time labels.
4In Cartesian coordinates, if x = (x, y, z) and xk(t) = (xk(t), yk(t), zk(t)), the three-dimensional
Dirac delta function reads: δ3(x − xk) = δ(x − xk(t)) δ(y − yk(t)) δ(z − zk(t)).
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To show that Jμ = (ρ,
j
c ) is a four-vector, we associate with each charge the coor-

dinate four-vector

xμ
k (t) ≡ (ct, xk(t)),

so that Jμ takes the following form:

Jμ = 1

c

∑

k

ek
dxμ

k

dt
δ3(x − xk(t)),

or, equivalently:

Jμ(x, t) = 1

c

∑

k

ek

∫
dt ′

dxμ
k (t ′)
dt ′

δ3(x − xk(t
′)) δ(t − t ′).

Since t ′ is an integration variable, it can be replaced by any other variable. In par-
ticular, in the kth-term of the sum, we may replace t ′ with the proper time τk of the
kth-particle, thus obtaining:

Jμ(x, t) =
∑

k

ek

∫
dτk

dxμ
k

dτk
δ4(xμ − xμ

k (τk)), (5.53)

where

xμ
k (τk) = (cτk, xk(τk)), (5.54)

and5

δ4(xμ − xμ
k (τk)) ≡ δ3(x − xk(τk)) δ (c(t − τk))

= 1

c
δ3(x − xk(τk))δ(t − τk). (5.55)

We now observe that given a four-vector Wμ, δ4(W μ) is a Lorentz scalar, indepen-
dently of W μ. Indeed, by well known properties of the Dirac δ-function we have6:

δ4(W ′μ) = δ4(Λμ
νW ν) = 1

| det(Λ)|δ
4(W μ) = δ4(W μ), (5.56)

5We used δ(αx) = δ(x)/α, a particular case of the incoming formula (5.56).
6This property is easily proven on test functions f (x) = f (xμ). Indeed we can write

∫
d4x δ4

(Λ · x) f (x) = ∫
d4x δ4(x ′) f (Λ−1 · x ′) = ∫ d4x ′

|det(Λ)| δ4(x ′) f (Λ−1 · x ′) = f (0)
|det(Λ)| , where we

have changed the integration variable from x ≡ (xμ) to x ′ ≡ Λ · x . Recalling that f (0) =∫
d4x δ4(x) f (x), and being f (x) generic, we conclude that δ4(Λ · x) = 1

|det(Λ)| δ4(x).
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since the determinant of a Lorentz transformation is±1. It is then apparent that, since
in Eq. (5.53) both τk and δ4(xμ − xμ

k (τk)) are Lorentz scalars, Jμ will transform as
dxμ

k , that is as a four-vector.
We can also derive from the previous expression the continuity equation (5.21)

leading to the conservation of the electric charge. To this end, let us compute the
divergence of the current density j = ( j i ):

∇ · j = ∂i j i =
∑

k

ek
dxi

k

dt

∂

∂xi
δ3(x − xk(t))

= −
∑

k

ek
dxi

k

dt

∂

∂xi
k

δ3(x − xk(t))

= −
∑

k

ek
∂

∂t
δ3(x − xk(t)) = − ∂

∂t
ρ(x, t). (5.57)

Thus we retrieve the continuity equation of the electric current:

∂i j i + ∂

∂t
ρ = 0 ⇔ ∂μ Jμ = 0.

Let us recall how the conservationof the electric charge is obtained from this equation.
Let

Q =
∫

V

d3xρ(x, t),

be the total electric charge contained in the volume V . Then

dQ

dt
=

∫

V

d3x
∂

∂t
ρ(x, t) = −

∫

V

d3x ∂i j i (x, t) = −
∫

S

d S n · j(x, t), (5.58)

where S is the surface enclosing the volume V , and n is the unit vector normal to d S.
If V represents a finite domain of the space, then Eq. (5.58) expresses the fact that
the variation of the charge inside V is compensated by the flux of current through its
boundary S, which is one way of characterizing the conservation of electric charge.

If, instead, V extends over the whole three-dimensional space, V ≡ R
3, then

S = S∞ is a sphere located at infinity, and, since there is no current at the spatial
infinity, the last term on the left hand side of Eq. (5.58) is zero. It then follows that:

dQ

dt
= 0,

that is, the total electric charge in the whole space is conserved.
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5.5 The Energy-Momentum Tensor

The procedure of assembling together the charge density and its current density into
the four-vector Jμ can be also used to construct a tensor quantity describing, together
with the energy andmomentumdensities associatedwith a systemof electric charges,
the corresponding currents.

Let us denote by T μ0
part. the density of the total energy-momentum Pμ

part. of the
system of charges, defined as:

T μ0
part. =

∑

k

pμ
k (t)δ3(x − xk(t)), (5.59)

where pμ
k is the four-momentum of the single charge ek . Upon integration over the

whole space V , we find:
∫

V

d3xT μ0
part. =

∑

k

pμ
k = Pμ

part.,

which is the total four-momentum of the system of charges. In particular its (00)
component reads: T 00

part = 1
c ρE where ρE is the energy density of the system of

charges.
We now define the current density of Pμ as the following three-vector:

T μi
part. = 1

c

∑

k

pμ
k

dxi
k

dt
δ3 (x − xk(t)) .

In particular T ji
part. is the i th component of the current density associated with the j th

component of the total momentum of the system.
We may now set together T μ0

part. and T μi
part. to build a 4 × 4 matrix T μν

part.:

T μν
part. = 1

c

∑

k

pμ
k

dxν
k

dt
δ3(x − xk(t)). (5.60)

If we use the property that for each massive particle pμ
k = m(vk)

dxμ
k

dt , so that we can
write:

pμ
k

m(vk)
= pμ

k

Ek
c2,

Equation (5.60) can be recast as follows:

T μν
part. = c

∑

k

pμ
k pν

k

Ek
δ3(x − xk(t)) = T νμ

part. (5.61)

showing that the matrix T μν
part. is manifestly symmetric.
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We now prove that T μν
part. is a tensor under Lorentz transformations. Indeed, fol-

lowing the same steps used to prove that Jμ is a four-vector, we can rewrite Eq. (5.60)
as follows:

T μν
part. = 1

c

∫
dt ′

∑

k

pμ
k

dxν
k

dt ′
(t ′) δ3(x − xk(t

′)) δ(t − t ′) (5.62)

=
∑

k

∫
dτk pμ

k

dxν
k

dτk
(τk) δ4(xρ − xρ

k (τk)). (5.63)

where we have used (5.54) and (5.55).
Since T μν

part. transforms as the product of the two four-vectors pμ
k and dxν

k it is,
by definition, a rank two tensor, symmetric in the two upper indices. It is called the
energy-momentum tensor of the charge system.7

Let us now compute its four-dimensional divergence ∂μT μν
part.. We first compute

its three-dimensional counterpart from the definition of T μi
part. given above:

∂i T
μi
part. = 1

c

∑

k

pμ
k

dxi
k

dt

∂

∂xi
δ3(x − xk(t))

= −1

c

∑

k

pμ
k

dxi
k

dt

∂

∂xi
k

δ3(x − xk(t)) = −1

c

∑

k

pμ
k

∂

∂t
δ3(x − xk(t))

= − ∂

∂t

(
1

c

∑

k

pμ
k δ3(x − xk(t))

)
+ 1

c

∑

k

(
d

dt
pμ

k

)
δ3(x − xk(t)).

(5.64)

On the other hand, from the definition (5.59), we have:

∂

∂t

(
1

c

∑

k

pμ
k δ3(x − xk(t))

)
= ∂

∂x0
T 0μ
part, (5.65)

so that Eq. (5.64) becomes:

∂i T
iμ
part. + ∂

∂x0
T 0μ
part. = 1

c

∑

k

(
d

dt
pμ

k

)
δ3(x − xk(t)), (5.66)

that is:

∂μT μν
part. = 1

c
Gν, (5.67)

7Note that since T μν
part. is a tensor, and being the product pμ pν a rank-two tensor as well, from

Eq. (5.61) it follows that δ3(x − xk(t))/Ek transforms as a rank 0-tensor, that is a scalar quantity.
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where the four-vector Gν defines the density of the total force acting on the system:

Gμ =
∑

k

dpμ
k

dt
δ3(x − xk(t)). (5.68)

It is important to note that, differently from the case of the four-current, where
∂μ Jμ = 0, here we find:

∂μT μν
part. 
= 0.

Actually, this was to be expected since ∂μT μν
part. = 0 would imply the conservation

of the total four-momentum Pμ
part. of the system of charged particles, and this cannot

be true since the system is not isolated being in interaction with the electromagnetic
field.

We may however expect that, since the total system consisting not only of the
particles, but also of the electromagnetic field, is isolated, its total four momentum
is conserved.

Let us show this in detail. We first observe that in the expression of the Lorentz

force-density, given by Eq. (5.68), we may replace on the right hand side
dpμ

k
dt with

f μ dτ
dt . For our system of charges in interaction with the electromagnetic field we

may therefore write:

Gμ =
∑

k

f μ dτ

dt
δ3(x − xk(t))

= −1

c

∑

k

ek
dτ

dt
Fμ

ν
dxν

k

dτ
δ3(x − xk(t))

= −1

c
Fμ

ν

∑

k

ek
dxν

k

dt
δ3(x − xk(t)) = −Fμ

ν J ν . (5.69)

where we have used the dynamic definition (5.27) of the four-force exerted by the
electromagnetic field on a charge. Using the Maxwell equation ∂ρFρν = −J ν , Gμ

can be rewritten as follows:

Gμ = Fμ
ν∂ρFρν = ∂ρ(Fμ

ν Fρν) − Fρν(∂ρFμ
ν)

= ∂ρ(Fμ
ν Fρν) − 1

2
Fρν(∂ρFμ

ν − ∂ν Fμ
ρ)

= ∂ρ(Fμ
ν Fρν) − 1

2
Fρν(∂

ρFμν + ∂ν Fρμ), (5.70)

where we have replaced ∂ρFμ
ν with its antisymmetric part in (ρ, ν), since it is

contracted with Fρν .
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Next, by using the homogeneous Maxwell equation ∂[ρFμν] = 0, we can make
the following replacement in the last term of the previous equation:

∂ρFμν + ∂ν Fρμ = −∂μFνρ = ∂μFρν,

and we find:

Gμ = ∂ρ(Fμ
ν Fρν) − 1

2
Fρν∂

μFρν = ∂ρ(Fμ
ν Fρν) − 1

4
∂μ(Fρν Fρν)

= ∂ρ

(
Fμ

ν Fρν − 1

4
ημρFσν Fσν

)
= −c ∂ρT ρμ

em ,

where we have defined the energy-momentum tensor of the electromagnetic field:

T μν
em = −1

c

(
Fμ

ρFνρ − 1

4
ημν Fρσ Fρσ

)
. (5.71)

We note that, as for the particle energy- momentum tensor, T ρμ
em defines the distrib-

ution in space of the energy and momentum, and of their currents, associated with
the electromagnetic field.8

We now substitute the expression of f μ into (5.67), to obtain:

∂μT μν
part. = 1

c
Gν ⇔ ∂μ

(
T μν
part. + T νμ

em

)
= 0.

Defining the sum of the energy-momentum tensors of particles and electromagnetic
field as the total energy-momentum tensor T μν of the system, we obtain the result:

∂μT μν = 0. (5.72)

As in the case of the four dimensional current, the vanishing of the four-dimensional
divergence (5.72) implies the conservation of the total four-momentum Pμ

tot, that is
of the total energy and linear momentum of the isolated system consisting of the
charges and the electromagnetic field.

Indeed, following the same steps as in the derivation of the charge conservation
from the continuity equation, and setting V = R

3, we have:

∫

V

d3x ∂0T μ0 = −
∫

V

d3x ∂i T
μi = −

∫

S∞

d S T μi ni . (5.73)

8Note that in our conventions all the components of T μν
em have the physical dimensions of a momen-

tum density.
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Since there is no energy or momentum density at spatial infinity, the last integral
vanishes and we obtain:

∂

∂t

∫

V

d3x T μ0 = 0 ⇒ d Pμ
tot

dt
= 0. (5.74)

Coming back to the expression (5.71) of the electromagnetic energy-momentum ten-
sor,we now showhow to retrieve the familiar definitions of energy, linearmomentum,
and Poynting vector from our four-dimensional formalism.

If we compute the density T 0μ
em in terms of the fields E and B, we find:

T 00
em = −1

c

(
F0

i F0i − 1

2
F0i F0i − 1

4
Fij F

ij
)

(5.75)

= −1

c

(
−Ei Ei + 1

2
Ei Ei − 1

2
Bi Bi

)
(5.76)

= 1

2 c

(
|E|2 + |B|2

)
= 1

c
ρE , (5.77)

where:

ρE = 1

2

(
|E|2 + |B|2

)
, (5.78)

is the energy density of the electromagnetic field.
Moreover:

T i0
em = −1

c
Fij F0

j = 1

c
Fij F0 j = 1

c
εijk Bk E j

= 1

c
(E × B)i = πi

em = 1

c2
Si , (5.79)

where:

πi
em = 1

c
(E × B)i , (5.80)

is the momentum density of the electromagnetic field and S = c E×B is the Poynting
vector measuring the energy current density carried by the electromagnetic field.Note
that |S| = ρE c.

We can rephrase the previous results, by stating that the energy E and the linear
momentum P associated with an electromagnetic field, in a given volume V , are
given by:

E = c
∫

V

d3x T 00
em =

∫

V

d3x ρE , (5.81)
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P i =
∫

V

d3x T i0
em = 1

c2

∫

V

d3x Si . (5.82)

As an example, suppose we consider a region where no charges are present. In this
case, T μν

part = 0, and Eq. (5.72) reduces to ∂μT μν
em = 0. Separating the ν = 0 and the

ν = i components, we have:

∂

∂t
ρE + ∂i Si = 0,

which expresses the conservation of energy in its local form. Upon integration over
a volume V we have:

d

dt

∫

V

d3xρE ≡ d

dt
E = −

∫

V

d3x∂i Si = −
∫

S

dσ n · S. (5.83)

As is well known, the physical interpretation of this equation is the following: The
positive (negative) rate of change of electromagnetic energy inside the volume is
compensated by the incoming (outgoing) flux of energy across the boundary S.
In particular, when the integration volume is infinite, owing to the vanishing of the
surface integral, the equation implies the conservation of the electromagnetic energy,
in its global form:

dE
dt

= 0.

Similarly, when ν = i , we obtain:

1

c

∂

∂t
πi + ∂ j T

ji
em = 0,

and, upon integration over V , we find:

1

c

d

dt
P i = −

∫

V

d3x ∂ j T
ji
em = −

∫

S

d S T ji n j , (5.84)

where, as usual, we have applied the divergence theorem (over index j) to the volume
integral on the right hand side. As in the previous case, Eq. (5.84) means that the
positive (negative) rate of change of electromagnetic linear momentum inside the
volume V is compensated by the incoming (outgoing) flux of momentum across
S. In particular, when the integration volume is infinite, the equation implies the
conservation of the electromagnetic linear momentum:

d

dt
P i = 0.
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5.6 The Four-Potential

We now observe that the homogeneous Maxwell equation (5.19) can be immediately
solved introducing a four-vector Aμ = (A0, Ai ), i = 1, 2, 3, and setting:

Fμν = ∂μ Aν − ∂ν Aμ. (5.85)

Indeed, since on any function∂μ∂ν is a symmetric tensor, the total antisymmetrization
of (5.19), using the definition (5.85), gives identically zero:

∂[μFνρ] = ∂[μ∂ν Aρ] − ∂[μ∂ρ Aν] = 2∂[μ∂ν Aρ] = 0.

The four-vector Aμ is given the name of four-potential.
We may readily express E e B in terms of Aμ, using Eqs. (5.14) and (5.85):

Ei = −F0i = −∂0Ai + ∂i A0 = −1

c

∂

∂t
Ai + ∂i A0, (5.86)

Bi = 1

2
εijk Fjk = εijk∂ j Ak . (5.87)

These formulae allow us to identify−A0(x, t) and Ai (x, t)with the electric potential
V and the vector potential A, respectively; indeed, as is well known in the electro-
magnetic theory, one has:

E = −1

c

∂

∂t
A − ∇V . (5.88)

and

B = ∇ × A, (5.89)

which are the vector form of the previous Eqs. (5.86) and (5.87). The four-potential,
however, is not uniquely defined; if we redefine Aμ by adding the four-dimensional
gradient of a scalar field,

Aμ → A′
μ = Aμ + ∂μϕ, (5.90)

where ϕ(x) ≡ ϕ(xμ) is an arbitrary function of the space-time coordinates, then
Fμν, and therefore E and B, remains unchanged.9 Indeed:

9While in the classical theory the only measurable physical quantities are E and B, so that the four-
potential seems not necessary for a complete description of the electromagnetic field, in quantum-
mechanics the Aharonov-Bohm effect shows that the E and B fields are not sufficient for describing
the electromagnetic field in interaction with matter, and that for its full description the four-potential
Aμ(x) is necessary.
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Fμν −→ F ′
μν = ∂μ A′

ν − ∂ν A′
μ = ∂μ Aν − ∂ν Aμ

+ ∂μ∂νϕ − ∂ν∂μϕ = ∂μ Aν − ∂ν Aμ = Fμν . (5.91)

From the invariance of Fμν under the change (5.90), it follows that Maxwell’s equa-
tions (5.18) and (5.19) are invariant as well. The transformation (5.90) is called
gauge transformation and the corresponding invariance of the Maxwell equations is
referred to as the gauge invariance of electromagnetism.

One can exploit the gauge invariance of electromagnetism to simplify Eq. (5.18).
Indeed one can choose the arbitrary scalar field ϕ(x) in such a way that the trans-
formed four-potential satisfy an auxiliary condition. We may for example require:

∂μ A′μ ≡ 1

c

∂

∂t
A′
0 − ∂i A′

i = 0. (5.92)

Using Eq. (5.90), we see that we can always construct a four-potential A′
μ satisfying

the above equation starting from one (Aμ) which does not, by choosing ϕ(x) in such
a way as to solve the equation:

∂μ A′μ = ∂μ Aμ + ∂μ∂μϕ = 0 → ∂μ Aμ + �ϕ = 0 (5.93)

where we have introduced the (Lorentz-invariant) d’Alembertian operator:

� ≡ ∂μ∂μ = (∂0)
2 −

3∑

i=1

(∂i )
2 = 1

c2
∂2

∂t2
− ∇2.

Indeed, as is well known, given ∂μ Aμ and suitable Cauchy data, Eq. (5.93) always
admits a solution in the unknown function ϕ(x).

Thus gauge invariance implies that we can always choose a four-potential Aμ(x)

satisfying

∂μ Aμ = 0. (5.94)

As the above condition fixes (though not completely) the gauge function ϕ(x), see
Eq. (5.111) and below, it is called a gauge-fixing condition. The corresponding choice
ofϕ, such that (5.94) holds, is referred to as theLorentz gauge.10 Note that theLorentz
gauge fixing condition (or simply Lorentz gauge condition) is a scalar under Lorentz
transformations.

When the Lorentz gauge is used, Eq. (5.18) simplifies considerably. Indeed, writ-
ing on the left hand side of the inhomogeneousMaxwell equation (5.18) Fμν in terms

10This is not the only possible gauge condition. Several other choices are possible. In particular,
when discussing the quantization of the electromagnetic field in Chap.6, we shall use the more
convenient Coulomb gauge ∇ · A(x) = 0. The Lorentz gauge has the advantage of being Lorentz
covariant. In Chap.11, the same quantization will be performed using the covariant Lorentz gauge.

http://dx.doi.org/10.1007/978-3-319-22014-7_6
http://dx.doi.org/10.1007/978-3-319-22014-7_11
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of Aμ and using the Lorentz gauge condition (5.94) we obtain:

∂μFμν = ∂μ∂μ Aν − ∂μ∂ν Aμ = �Aν − ∂ν(∂μ Aμ) = �Aν,

that is, each component of the four-potential Aμ satisfies the well known wave equa-
tion in the presence of a source:

�Aμ = −Jμ. (5.95)

Let us consider the case where, in some space domain, the source is absent, Jμ(x) ≡
0; then Eq. (5.95) becomes:

�Aμ = 1

c2
∂2Aμ

∂t2
− ∇2Aμ = 0. (5.96)

It is well known that the general solution to the homogeneous wave equation can
be written as a superposition of plane waves whose polarization is orthogonal to
the direction of propagation. Let us retrieve this result in our Lorentz- covariant
formalism.

We start solving Eq. (5.96) within a bounded region shaped as a parallelepiped,
with sides L A, L B, LC along the three Cartesian axes and volume V = L A L B LC ,
requiring periodic boundary conditions on the solution in each coordinate. This
allows us to expand the field Aμ(x, t) in a triple Fourier series with respect to the
coordinates x = (x, y, z):

Aμ(x, t) =
∑

k1k2k3

Ãk,μ(t) ei k·x. (5.97)

where the components of thewave number vector k = (k1, k2, k3) have the following
discrete values:

k1 = 2πn1

L A
; k2 = 2πn2

L B
; k3 = 2πn3

LC
, (5.98)

n1, n2, n3 being integers. Reality of Aμ(x) further imposes that: Ã−k,μ(t) =
Ãk,μ(t)∗. Inserting the expansion (5.97) in Eq. (5.96), in virtue of linearity of
Maxwell’s equations in the vacuum, Aμ(x) is a solution if and only if each of its
Fourier components are. Equation (5.96) on the generic k-component reads:

d2

dt2
Ãk,μ(t) + c2 |k|2 Ãk,μ(t) = 0, (5.99)

where we have used the property that

∂i Aμ(x) = ∑
k

i ki Ãk,μ(t) ei k·x ⇒ ∇2 Ãμ(x) = −∑
k

|k|2 Ãk,μ(t) ei k·x.

(5.100)
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From Eq. (5.99) we see that each component of Ãk,μ(t) has to satisfy the equation
of a harmonic oscillator of angular frequency

ωk = c |k| (5.101)

and can thus be written in the form:

Ãk,μ(t) = εk,μ(ωk) e−i ωk t + εk,μ(−ωk) ei ωk t , (5.102)

where the reality condition on Aμ(x) further requires that:

ε−k,μ(−ωk) = εk,μ(ωk)
∗. (5.103)

The solution (5.97) to Maxwell’s equation in the vacuum then reads:

Aμ(x, t) =
∑

k

εk,μ(ωk) e−i( ωk t−k·x) +
∑

k

εk,μ(−ωk) ei( ωk t+k·x)

=
∑

k

εk,μ(ωk) e−i( ωk t−k·x) +
∑

k

ε−k,μ(−ωk) ei(ωk t−k·x)

=
∑

k

(
εk,μ e−i( ωk t−k·x) + ε∗

k,μ ei(ωk t−k·x)
)

=
∑

k

(
εk,μ e−i k·x + ε∗

k,μ ei k·x) , (5.104)

where we have defined εk,μ ≡ εk,μ(ωk) referred to as the polarization four-
vector and used Eq. (5.103). Moreover we have also defined the wave-number four-
vector as:

k ≡ (kμ) = (k0, ki ); k0 ≡ ωk

c
, (5.105)

so that

k · x ≡ kμxμ = kμημνxν = k0x0 − k · x,

Equation (5.104) represents an expansion of the electromagnetic potential Aμ(x) in
plane waves, progressing in the direction of the wave number vector k with angular
frequency ωk ≡ 2π

T = c |k|. We shall also write the solution (5.104) in the more
implicit form:

Aμ(x, t) =
∑

k

(
Ak,μ(t) ei k·x + Ak,μ(t)∗ e−i k·x) , (5.106)

where Ak,μ(t) ≡ εk,μ e−i ωk t and Ak,μ(t)∗ are the two independent solutions to the
harmonic oscillator equation (5.99).
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From its definition and taking into account (5.101), we see that k ≡ (kμ) is
light-like

k2 ≡ kμkμ = (k0)2 − |k|2 = ω2
k

c2
− |k|2 = 0.

Anticipating part of the discussion of next chapter, we may give a quantum interpre-
tation to our result; indeed, from the quantum theory point of view, a monochromatic
plane wave can be interpreted as the relativistic wave function of a particle of energy
E = � ωk and momentum p = � k, that is having a four-momentum11:

pμ = �kμ = �

(ωk

c
, k

)
. (5.107)

If we now recall the general relation between energy and momentum given in
Eq. (2.38) of Chap.2, we see that, from the quantum point of view, the Maxwell
equations imply:

m2c2 = p2 = �
2 k2 = 0, (5.108)

that is the rest mass of a particle associated with the plane wave solution to Eq. (5.96),
called photon, is exactly zero.

5.6.1 The Spin of a Plane Wave

We must still require Aμ(x) to satisfy, besides the wave equation, the Lorentz gauge
condition (5.94).

Aswe are going to show, this requirement implies that, at each point x, the physical
degrees of freedom of a freely propagating electromagnetic field are just two.

Indeed, if we apply condition (5.94) to the generic plane wave superposition
(5.104) and separately equate each Fourier component k to zero, we easily find:

∂μ Aμ = 0 ⇔ kμεk,μ = 0, ∀k. (5.109)

Now we observe that, since kμ is a light-like vector, i.e. k2 = 0, it is always possible
to find a RF where it takes the form kμ ≡ (κ,κ, 0, 0) and thus kμ = (κ,−κ, 0, 0).
In this RF, using Eq. (5.109), the polarization four-vector has the following form:

εk,μ ≡ (εk,−εk, ε2, ε3). (5.110)

One may conclude that, for each term of the expansion, the degrees of freedoms, that
is the independent components of the polarization four-vector are three: εk, ε2, ε3.

11This interpretation was already proposed by Einstein in 1905 for the description of the photoelec-
tric effect.

http://dx.doi.org/10.1007/978-3-319-22014-7_2
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However this is not the end of the story: As previously anticipated, the choice
of the Lorentz gauge does not completely fix the gauge freedom. We may indeed
perform on Aμ(x) a further gauge transformation

Aμ → Aμ + ∂μϕ, (5.111)

still preserving ∂μ Aμ = 0, provided:

�ϕ = 0. (5.112)

This is easily shown by implementing such transformation on the four-potential in
the Lorentz gauge condition. Since it implies:

∂μ Aμ −→ ∂μ(Aμ + ∂μϕ), (5.113)

if condition (5.112) holds, the transformed field will still be in the Lorentz gauge.
A solution ϕ to the wave equation (5.112), describing the residual gauge symmetry,
can be expressed by the same Fourier expansion (5.104) as Aμ(x):

ϕ(x) =
∑

k

(
ξk e−i k·x + ξ∗

kei k·x) ; k2 = 0,

so that:

∂μϕ(x) =
∑

k

(
−i kμξk e−ik·x + i kμξ∗

k eik·x) .

Therefore under the transformation (5.111), supplemented by condition (5.112), the
solution (5.104) takes the form:

A′
μ(x) =

∑

k

(
ε′

k,μ e−i k·x + ε′∗
k,μ ei k·x) , (5.114)

where

ε′
k,μ = εk,μ − ikμ ξk ≡ (εk − iκξk,−εk + iκξk, ε2, ε3). (5.115)

Being ϕ, and therefore ξk, arbitrary, we may fix ξk in such a way that the first
two components of the polarization four-vector both vanish. In particular, setting
ξk = −i εk

κ , we obtain:

ε′
k,μ = (0, 0, ε2, ε3). (5.116)

We see that, once the gauge freedom has been completely fixed by Eqs. (5.93) and
(5.112), the independent components of the polarization four-vector are only two,
and precisely those transverse to the propagation vector k, namely ε2, ε3.
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Since there are only twophysical components of the four-dimensional polarization
vector for each wave vector k, we conclude that a generic electromagnetic wave
Aμ(x) has, at each point in space x, only two physical degrees of freedom, both
transverse to the direction of propagation.

This fact leads us to the concept of spin of a plane wave, or better, from the
quantum point of view, of spin of a photon.

Let us define the spin group of a particle as the residual subgroup of the Lorentz
group which remains once we fix our RF to be attached to the particle itself. Quite
generally when our particle has a non-vanishing rest mass this RF is defined as its

rest frame, in which pμ = (mc, p = 0) → m2 = p2

c2
> 0. In this case the residual

group, that is the spin group, is the rotation group SO(3), subgroup of the Lorentz
group, which leaves the p0 component of the four-momentum invariant.

If, on the other hand, the particle has vanishing rest mass, there exists no RF
where the particle is at rest, its velocity being c. In this case only rotations around
the propagation direction of the particle, corresponding to two-dimensional rotations
on the transverse plane, can be properly defined as the relevant spin group.

This latter is clearly the case of the electromagnetic field, the relevant particle being
the photon.Wewant to see how its physical degrees of freedom ε2, ε3 transformunder
the SO(2) rotations in the transverse plane, in our case the y − z plane. This can be
easily found by recalling that Aμ(x) is a covariant vector field, thus transforming,
under Lorentz transformations, as follows:

Aμ(x) → A′
μ(x ′) = Λ−1 ν

μ Aν(x),

where x ′ = Λ · x ⇒ x = Λ−1 · x ′. In our case, the subgroup of the Lorentz group
leaving the components p0 ≡ � k0 and p1 ≡ � k1 (along the x-direction) of the
photon momentum invariant, apparently coincides with the SO(2) rotation subgroup
whose generic element Λ(0) has the following matrix form:

Λ(0) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 cos θ sin θ
0 0 − sin θ cos θ

⎞
⎟⎟⎠ . (5.117)

Since in this RF the polarization four-vector has the form: εμ = (0, 0, ε2, ε3), the
spin group acts on the physical degrees of freedom as follows:

(
ε′
2

ε′
3

)
=

(
cos θ sin θ

− sin θ cos θ

)(
ε2
ε3

)
. (5.118)

It is convenient to use the complex basis ε2 ± iε3, so that the rotation matrix takes a
diagonal form and the transformation (5.118) becomes:

ε2 ± iε3 → ε′
2 ± iε′

3 = e∓iθ(ε2 ± iε3).
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In general, when the two polarization states of a massless particle transform, under a
rotation about the propagation direction, with a factor e∓inθ, one defines n� to be the
spin of the particle (the particle is simply said to have spin n). In our case we have
found n = 1, so that we conclude that the photon, the massless particle associated
with an electromagnetic plane wave, has spin one.

5.6.2 Large Volume Limit

In this section we have solved Maxwell’s equations in the vacuum within a finite
“box” of sides L A, L B, LC . This had the advantage of allowing us to work with
Fourier series instead of integrals, when expanding the solution Aμ(x) as a super-
position of plane waves. The components of the wave number vector k are indeed
discrete quantities, the step Δki between two successive values of one of them ki

(i= 1, 2, 3) beingΔki = 2π/Li , Li = L A, L B, LC . An elementary cell in the space
parametrized by k1, k2, k3 has then volume:

Δ3k ≡ Δk1Δk2Δk3 = (2π)3

V
. (5.119)

We can write the discrete sum over the Fourier modes k of a function f (x) as:

f (x) =
∑

k

fk ei k·x =
∑

k

Δ3k
(2π)3

V fk ei k·x. (5.120)

In the large volume limit, inwhich the size of theboxbecomes infinite, L A, L B, LC →
∞,Δki → dki , the ki ’s become continuous variables and the Fourier sum in (5.120)
is replaced by an integral in d3k ≡ dk1dk2dk3:

f (x) =
∑

k

Δ3k
(2π)3

V fk ei k·x →
∫

d3k
(2π)3

V f (k) ei k·x, (5.121)

where the notation f (k) ≡ fk emphasizes the fact that we are now treating k as a
continuous variable rather than a discrete label.

Thus the passage to the large volume limit is effected by replacing, in the triple
Fourier series:

∑

k

→
∫

d3k
(2π)3

V, (5.122)

which amounts to passing from a Fourier series expansion to a Fourier integral. The
general expansion (5.104) of the solution Aμ(x), in this limit, reads
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Aμ(x) =
∫

d3k
(2π)3

V
(
εμ(k) e−i k·x + εμ(k)∗ ei k·x) . (5.123)

Let us finally note that the delta-function δk,k′ , defined on discrete momenta as
follows

δk,k′ =
{
1 k = k′

0 k 
= k′ , (5.124)

so that

∑

k′
δk,k′ fk′ = fk, (5.125)

in the continuum limit becomes

δk,k′ −→ (2π)3

V
δ3(k − k′). (5.126)

Indeed we find:

∑

k′
δk,k′ fk′ →

∫
d3k

(2π)3
V

(2π)3

V
δ3(k − k′) f (k′) = f (k). (5.127)

5.6.3 References

For further reading see Ref. [8] (Vol. 2).



Chapter 6
Quantization of the Electromagnetic Field

In this section we shall analyze the general solution Aμ(x) to Maxwell’s equations
in the vacuum by choosing as gauge fixing condition the so called Coulomb gauge
differently from the Lorentz gauge condition used in the general discussion of the
electromagnetic field given in Chap.5. In this new framework we shall be able to
describe the electromagnetic field as a collection of infinitely many decoupled har-
monic oscillators. This will pave the way for the quantization of the electromagnetic
field and the consequent introduction of the notion of photon.

6.1 The Electromagnetic Field as an Infinite System
of Harmonic Oscillators

Let us now still consider an electromagnetic field, described by the vector potential
Aμ(x) ≡ Aμ(x, t) in a region which is “far away” from any charge and current. It is
a solution to the following Maxwell’s equations:

∂μFμν = 0; Fμν = ∂μAν − ∂νAμ. (6.1)

As shown in the previous chapter, Equations (6.1) are invariant under gauge trans-
formations:

Aμ → Aμ + ∂μφ. (6.2)

We have also shown that, upon using the Lorentz gauge:

∂μAμ = 0, (6.3)

and by suitably fixing φ, we can set to zero, for each term in the Fourier expan-
sion, the time-component and the longitudinal component, proportional to k, of the
polarization four-vector εk,μ, that is two components of the four-potential Aμ(x).
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172 6 Quantization of the Electromagnetic Field

For example, given an arbitrary wave propagating, say, in the x1 direction we can set
to zero the components A0, A1. It is however possible to choose other gauge-fixing
conditions, as we are going to do in the present chapter. In particular we are going
to use the Coulomb gauge, which corresponds to imposing the condition:

∇ · A(x) = 0 ⇔
3∑

i=1

∂iAi(x) = 0. (6.4)

Let us notice that, in contrast to the Lorentz gauge (6.3), this gauge choice is not
Lorentz covariant, since if it is satisfied in a frame S in a new frame S′ we find
∇′ · A′(x) �= 0.

In a region in which Jμ ≡ 0, the wave equation (6.1), which can be written in the
form:

∂ρ∂
ρAμ − ∂ν∂μAν = 0, (6.5)

when decomposed in the components μ = 0 and μ = i, yields the following equa-
tions1:

(∂0∂0 − ∂i∂i)A0 − ∂0(∂0A0 − ∂iAi) = 0, (6.6)

(∂0∂0 − ∂j∂j)Ai − ∂i∂0A0 + ∂i(∂jAj) = 0. (6.7)

Using the gauge choice (6.4) the first equation becomes:

∇2A0 = 0, (6.8)

whose solution is the electrostatic potential A0 = −V in the absence of charges,
which can be set to zero, A0 = 0. The second Eq. (6.7), in the Coulomb gauge,
becomes:

�Ai = 0, (6.9)

or, equivalently:

(
1

c2
∂2

t −
3∑

i=1

∂i∂i

)
A(x) = 0. (6.10)

Equations (6.9) arewave equations for each componentAi(x)ofA(x)whose solutions
describe electromagnetic waves. Let us solve these equations, as we did in Sect. 5.6,

1Recall that summation over repeated Euclidean indices (i, j or k), independently of their relative
position, is understood.

http://dx.doi.org/10.1007/978-3-319-22014-7_5
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within a box with sides LA, LB, LC and volume V = LALBLC . This allows us to
expand the field A(x, t) in the form of a triple Fourier series with respect to the
coordinates x and write the solution to Maxwell’s equations in the vacuum in the
form (5.106):

A(x, t) =
∑

k1k2k3

(
Ak(t)eik·x + Ak(t)∗ e−ik·x) , (6.11)

The choice of the Coulomb gauge ∇ · A = 0 then implies, on each single Fourier
component, the transversality condition: k · Ak = 0. Since we are working within
a finite size domain, the periodic boundary conditions on the surface of the cube
require the components of the wave number vector k = (k1, k2, k3) to have the
discrete values in Eq. (5.98). Substituting the expansion (6.11) into Eq. (6.9), and
using the linearity property of Maxwell’s equations in the vacuum, we find that each
Fourier component Ak(t) satisfies the harmonic oscillator equation (5.99):

d2Ak

dt2
+ c2|k|2Ak = 0, (6.12)

having used the property (5.100). The vectors Ak(t) and Ak(t)∗ were defined in
Sect. 5.6 to correspond to the two independent solutions to Eq. (6.12):

Ak(t) ≡ εk e−i ωk t , Ak(t)∗ ≡ ε∗
k ei ωk t , (6.13)

so that Eq. (6.11) represents an expansion in plane waves progressing along the
direction of k with angular frequency

ωk ≡ 2π

T
= c |k|. (6.14)

The following relations then hold:

Ȧk(t) = −i ωk Ak(t) ; Ȧk(t)∗ = i ωk A∗
k(t). (6.15)

The Fourier expansion (6.11) can then be also written in the form (see Eq. (5.104)):

A(x, t) =
∑

k1k2k3

(
εk e−ik·x + ε∗

k eik·x) . (6.16)

Let us now consider the electric field vector:

E = −1

c

∂

∂t
A + ∇A0 = −1

c

∂

∂t
A, (6.17)

http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_5
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and expand its components in Fourier series as we did for A(x):

E =
∑

k

(
Ek(t) ei k·x + Ek(t)∗ e−i k·x) , (6.18)

where, in virtue of Eqs. (6.17) and (6.13), Ek(t) are related to Ak(t) as follows:

Ek(t) = i

c
ωk Ak(t) = i |k| Ak(t). (6.19)

Similarly we can Fourier-expand the magnetic field B = ∇ × A:

B =
∑

k

(
Bk(t) ei k·x + Bk(t)∗ e−i k·x) , (6.20)

and find

Bk = i k × Ak(t) = nk × Ek, (6.21)

where nk ≡ k
|k| is the unit vector along the direction of propagation. Our aim is now

to compute the wave number expansion of the energy (5.81) of the electromagnetic
field enclosed in the box:

E =
∫

V

d3x
1

2
(|E|2 + |B|2). (6.22)

Let us first compute |E|2. Using the expansion (6.18) we can write:

|E|2 = 1

c2
∑

k,k′

[
Ek · Ek′ ei(k+k′)·x + E∗

k · E∗
k′ e−i(k+k′)·x

+ Ek · E∗
k′ ei(k−k′)·x + E∗

k · Ek′ e−i(k−k′)·x] ,

where, for the sake of simplicity, we have suppressed the dependence of the Fourier
components on time. A similar expansion can be written for |B|2. Note that, in the
above expression for |E|2, the spatial coordinates x only appear in the complex
exponentials. It then follows that for computing the integral of |E|2 over the volume
V we just need to integrate these exponentials. Consider the following integral:

∫

V

d3x ei (k+k′)·x =
LA∫

0

dx

LB∫

0

dy

LC∫

0

dz ei(k1+k′
1) x ei(k2+k′

2) y ei(k3+k′
3) z.

http://dx.doi.org/10.1007/978-3-319-22014-7_5
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It is the product of three integrals of the same kind. Let us evaluate for instance the
one in dx:

LA∫

0

dx ei(k1+k′
1) x = 1

i(k1 + k′
1)

ei(k1+k′
1)x

∣∣∣∣
LA

0

= 1

i(k1 + k′
1)

e
2iπ

(n1+n′
1)

LA
x

∣∣∣∣∣
LA

0

.

(6.23)

Since n1 + n′
1 is an integer, the above integral is always zero unless k1 + k′

1 = 0, in

which case
∫ LA
0 dx ei(k1+k′

1)x = ∫ LA
0 dx = LA. We then find:

∫

V

d3x ei (k+k′)·x = LA LB LC δk,−k′ = V δk,−k′ , (6.24)

where

δk,−k′ =
{
1 if k = −k′
0 if k �= −k′ . (6.25)

Similarly:
∫

V

d3xei(k−k′)·x = V δk,k′ , (6.26)

We can nowperform the volume integrals in the expression for |E|2 and the analogous
ones for |B|2 and then find the expansion in k of the energy E of the electromagnetic
field within V :

E = 1

2

∫

V

d3x
(
|E|2 + |B|2

)
= V

2

∑

k

[
(Ek · E−k + Ek · E∗

k + c.c.)

+ (Bk · B−k + Bk · B∗
k + c.c.)

]
, (6.27)

where c.c. denotes the complex conjugate of the previous terms. The terms Ek · E−k
and Bk · B−k cancel since:

Bk · B−k = (nk × Ek) · (n−k × E−k) = −εij� nj
k E�

k εipq np
k Eq

−k

= −|nk|2Ek · E−k + (nk · Ek) (nk · E−k) = −Ek · E−k,

where we have set nk = −n−k and have used the transversality condition
nk · E±k = 0 and the contraction properties of two εijk symbols (see Sect. 4.5).

http://dx.doi.org/10.1007/978-3-319-22014-7_4
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We also find:

|Bk|2 = |Ek|2 = ω2
k

c2
(Ak · A∗

k), (6.28)

which allows us to rewrite Eq. (6.27) in the form:

E = 2 V
∑

k

|Ek|2 = V

c2
∑

k

ω2
k

(
(Ak · A∗

k) + (A∗
k · Ak)

)

≡ 2
V

c2
∑

k

ω2
k (Ak · A∗

k). (6.29)

(The symmetric form of the sum on the right hand side in the first line will be seen
to be convenient for the purpose of the quantization (see next section).)
Let us now introduce the following variables2:

Qk =
√

V

c
(Ak + A∗

k); Pk = −i ωk

√
V

c
(Ak − A∗

k). (6.30)

Taking into account the time-dependence ofAk(t), seeEq. (6.15), it is straightforward
to verify that Pk = Q̇k. Equations (6.30) can be easily inverted to express Ak and
A∗

k in terms of Qk, Pk:

Ak = c

2ωk
√

V
(i Pk + ωkQk) ; A∗

k = c

2ωk
√

V
(−i Pk + ωkQk) , (6.31)

Using the above relations we can rewrite the energy in the new variables:

E = H = 1

2

∑

k

(|Pk|2 + ω2
k |Qk|2) =

∑

k

Ek, (6.32)

where we have identified the energy E with the Hamiltonian H of the system of
infinitely many degrees of freedom, described byQk = (Qi

k), each labeled by a wave
number vector k and a polarization index i (as a consequence of the transversality
condition, not all these polarizations are independent, as we shall discuss below).
We can easily verify that Pk, Qk are indeed the canonical variables corresponding
to the Hamiltonian H by showing that they satisfy Hamilton’s equations3:

Q̇i
k = ∂H

∂Pi
k

= Pi
k, Ṗi

k = − ∂H
∂Qi

k

= −ω2
k Qi

k,

2Notice that the Pk here have dimension (Energy)
1
2 .

3We are anticipating theHamiltonian formulation of the equations ofmotion of amechanical system,
which will be fully discussed in Chap.8. However we assume the reader to have a basic knowledge
of the Hamilton formalism which is propaedeutical to elementary quantum mechanics.

http://dx.doi.org/10.1007/978-3-319-22014-7_8
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where, as usual, the dot represents the time-derivative. These equations can also be
written in the second order form:

Q̈i
k + ω2

k Qi
k = 0, (6.33)

which, given the relation (6.30), are equivalent to the Maxwell equations (6.12) for
each component Ak. We realize that the above equation in the variable Qi

k, for each
polarization component i and wave-number vector k, is the equation of motion of a
harmonic oscillator with angular frequency ωk . Note now that the vectors Pk and Qk
are orthogonal to k in virtue of the transversality property Ak and A∗

k:

k · Pk = k · Qk = 0. (6.34)

This allows us, for a given direction of propagation nk, to decompose Pk and Qk
along an ortho-normal basis uk,α, α = 1, 2, on the plane transverse to n:

Pk =
2∑

1

Pkαuk,α, Qk =
2∑

1

Qkαuk,α.

The index α labels the two polarizations of the plane wave. Taking into account the
ortho-normality of the (uk,α) we can write the Hamiltonian as follows:

H = 1

2

∑

k

∑

α=1,2

(P2
αk + ω2

k Q2
αk) =

∑

k

Hk =
∑

k

Ek =
∑

k

∑

α=1,2

Hk,α, (6.35)

which describes a system of infinitely many, decoupled, harmonic oscillators, each
described by the conjugate variables Pαk, Qαk and Hamiltonian function Hk,α.

Summarizing we have shown that the electromagnetic field, far from charges and
currents, can be represented by a system of decoupled harmonic oscillators, each
associated with a wave-number vector k and polarization α and characterized by
an angular frequency ωk = c |k|.

We can also compute the momentum P ≡ (P i) associated with the electromag-
netic field, given by the formula:

P = 1

c

∫

V

d3x E × B, (6.36)

Using the mode expansion of the electric and magnetic fields we find:

P = V

c

∑

k

[
Ek × B−k + (Ek × B−k)∗ + Ek × B∗

k + E∗
k × Bk

]
. (6.37)
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The first term in the above sum can be recast in the following form:

[
Ek × B−k

]
i = − [

Ek × (nk × E−k)
]

i = −εijl εlpq Ej
k np

k Eq
−k = −ni

k (Ek · E−k),

which changes sign as k → −k, implying that
∑

k Ek × B−k = 0.
On the other hand we have:

Ek × B∗
k = nk|Ek|2. (6.38)

Using Eq. (6.29) we then find:

P = 2V

c

∑

k

nk |Ek|2 =
∑

k

nk

c
Ek. (6.39)

6.2 Quantization of the Electromagnetic Field

We have described in the previous section an electromagnetic field in a box, far
from charges and currents, as a collection of infinitely many, decoupled, harmonic
oscillators, each described by a couple of conjugate canonical variables. The field
itself is then a system having infinite degrees of freedom, its physical state being
described by infinitely many canonical variables:

{Pk α , Qk α}, k =
(
2 π

n1
LA

, 2 π
n2
LB

, 2 π
n3
LC

)
, (6.40)

where α = 1, 2 labels the physical components of Pk and Qk, which are transverse
to the direction of propagation of the corresponding plane-wave. The dynamics of
the field is encoded in the Hamiltonian H given in (6.32). Having described the
degrees of freedom of our system in the canonical formalism, we can now proceed to
its quantization4: The canonical variables Pk α, Qk α now become linear operators
P̂k α, Q̂k α in the space of states of the system, and the Poisson bracket between clas-
sical variables is replaced by the commutator between the corresponding operators
according to the rule {·, ·}P.B. → 1

i �
[·, ·]. Since the Poisson bracket between con-

jugate variables p, q corresponding to the same degree of freedom is {q̂, p̂}P.B = 1,
while that computed between variables associated with different degrees of freedom
vanishes, the operators Q̂k α, P̂k′ α′ satisfy the following commutation relations

[Q̂k,α, P̂k′,α′ ] = i � δk,k′ δα,α′ . (6.41)

4Although we assume the reader to have a basic knowledge of non-relativistic quantum mechanics,
the relevant notions will be reviewed in Chap.9. We refer the reader to that chapter for the notations
used here.

http://dx.doi.org/10.1007/978-3-319-22014-7_9


6.2 Quantization of the Electromagnetic Field 179

To compute the Hamiltonian operator let us first define the operators Âk in terms of
the canonical operators P̂k, Q̂k using the same relations (6.31):

Âk ≡ c

2ωk
√

V

(
i P̂k + ωkQ̂k

)
. (6.42)

Next we expand Âk along the two transverse directions and define the dimensionless
operators ak,α as follows:

Âk = c

√
�

2ωk V

2∑

α=1

ak,α u(k,α). (6.43)

where

ak α = 1√
2 �ωk

(
i P̂k,α + ωk Q̂k,α

)
. (6.44)

As it is well known, when passing from classical quantities to quantum operators, the
complex conjugation operation is replaced by hermitian conjugation. The hermitian
conjugate of ak α is:

a†k,α = 1√
2�ωk

(
−i P̂k,α + ωk Q̂k,α

)
. (6.45)

Using Eq. (6.41), we find that the operators ak α, a†k α satisfy the following commu-
tation relations:

[ak,α, ak′,α′ ] = [a†k,α, a†k′,α′ ] = 0,

[ak,α, a†k′,α′ ] = δk,k′ δα,α′ . (6.46)

The operator Â(x, t) associated with the vector potential of the electromagnetic field
is then expressed by the Fourier series:

Â(x, t) =
∑

k

(Âk(t) ei k·x + Âk(t)† e−i k·x)

=
2∑

α=1

∑

k

c

ωk
√

V

[
ωk Q̂k α cos(k · x) − P̂k α sin(k · x)

]
uk,α.

We can now use the expansions (6.18) and (6.20) as well as Eqs. (6.19) and (6.21)
to define the electric and magnetic field operators Ê and B̂ in terms of the operators
Âk, A†

k and thus of ak α, a†k α:
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Ê =
∑

k

(
Êkei k·x + Ê†

ke−i k·x) ; B̂ =
∑

k

(
B̂kei k·x + B̂†

ke−i k·x) . (6.47)

with:

Êk =
2∑

α=1

Êk α uk,α =
2∑

α=1

i

√
�ωk

2V
ak α uk,α; B̂k =

2∑

α=1

B̂k αuk,α = nk × Êk.

(6.48)

We are now able to compute the Hamiltonian operator Ĥ following the same deriva-
tion as in the classical case. Care, however, has to be used in deriving the operator
versions of Eqs. (6.28) and (6.29) from (6.27) since, as opposed to the corresponding
classical quantities which were just numbers, the operators Êk and Ê†

k, as well as
their magnetic counterparts, no longer commute. As a consequence of this, in writ-
ing the expression for the Hamiltonian, we should keep the order of factors in each
product and thus, instead of translating in operatorial form the term in the second
line of Eq. (6.29) we use the symmetric expression (ÂkÂ†

k + Â†
kÂk) in the first line

of the same equation since Âk and Â†
k do not commute. The Hamiltonian operator

then reads:

Ĥ =
∑

k

∑
α

� ωk

2

(
ak,αa†k α + a†k αak α

)
=

∑

k

∑
α

(
N̂k,α + 1

2

)
� ωk, (6.49)

where

N̂k,α ≡ a†k,αak,α, (6.50)

The operator Ĥ, in terms of the canonical operators, has the same form (6.35):

Ĥ = 1

2

∑

k

∑
α

[
(P̂k,α)2 + ωk(Q̂k,α)2

]
. (6.51)

Equations (6.49) and (6.51) describe the Hamiltonian operator associated with the
system of infinitely many quantum harmonic oscillators (k, α) defined in the previ-
ous section. The quantities ak,α and a†k,α are indeed nothing but the annihilation and
creation operators associated with the quantum oscillator (k, α), which are useful in
constructing the corresponding quantum states. It is now straightforward to determine
the expression for the momentum operator, by using Eqs. (6.39) and (6.49):

P̂ = 1

c

∫

V

d3x E × B =
∑

k

∑
α

� k
(

N̂k,α + 1

2

)
. (6.52)
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Both H and P̂ are expressed in terms of the occupation number operators N̂k,α

(6.50) associated with the quantum oscillators (k,α). We know from elementary
quantum theory that the states of each oscillator can be described as eigenstates of
the occupation number operator. These eigenstates of the (k,α)-oscillator at the time
t can then be written in the form |Nk,α, t〉 and satisfy:

N̂k,α|Nk,α, t〉 = Nk,α|Nk,α, t〉, (6.53)

where Nk,α, eigenvalue of N̂k,α, is a positive integer. The energy and momentum of
this state is

Ek,α = � ωk

(
Nk,α + 1

2

)
, Pk,α = � k

(
Nk,α + 1

2

)
. (6.54)

Note that the operators Âkα(t), and thus also akα(t), depend on time through a
factor e−i ωk t . It is apparent however that neither the Hamiltonian and the momentum
operators, nor the commutation relations, depend on time. We choose to use the
Schrodinger representation in which states depend on time while operators are time-
independent: ak,α ≡ ak,α(0). The state |Nk,α, t〉 is constructed by applying Nk,α-
times the creation operator a†k,α to the ground state |0〉:

|Nk,α, t〉 = 1√
Nk,α! (a

†
k,α)Nk,α |0, t〉. (6.55)

where 1√
Nk,α! is a normalization factor, the states being normalized to one, and the

ground state satisfies the relation:

ak,α |0, t〉 = 0. (6.56)

Equations (6.54) are telling us that the energy andmomentum of a state are quantized
in units � ωk and � k respectively.

The electromagnetic field, being a collection of decoupled harmonic oscillators,
is described by a state which is the tensor product of the states associated with each
oscillator. It will be then characterized by all the occupation numbers {Nk,α} ≡
{Nk1,α1 , Nk2,α2 , . . . } of the constituent states:

|{Nk,α}, t〉 ≡ |Nk1,α1 , t〉|Nk2,α2 , t〉 · · · . (6.57)

In particular the ground state of the system is the direct product of the oscillator
ground states. The energy and momentum of the field are the sum of the energies
and momenta associated with each oscillator state, as we easily find by applying the
operators in (6.49) and (6.52) to the state (6.57):
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Ĥ |{Nk,α}, t〉 =
[∑

k

∑
α

(
Nk,α + 1

2

)
� ωk

]
|{Nk,α}, t〉,

P̂ |{Nk,α}, t〉 =
[∑

k

∑
α

(
Nk,α + 1

2

)
� k

]
|{Nk,α}, t〉, (6.58)

We observe that the above eigenvalues exhibit an infinite term, which is the ground
state energy E0 and momentum P0, sum over all the oscillators (k,α), of the corre-
sponding ground state energies �ωk

2 and momenta �k
2 :

E0 =
∑

k

∑
α

1

2
� ωk = ∞,

P0 =
∑

k

∑
α

1

2
� k = ∞. (6.59)

These terms have no physical meaning and make the energy and momentum oper-
ators, as given in (6.49) and (6.52), ill defined. In order to correctly define these
operators in terms of a and a†, let us introduce the notion of “normal ordering” : :
for a generic bosonic field (such as the electromagnetic one, as we shall see), as the
operation by which all the operators a and a†, in a product, are reordered so that the
a† are moved to the left and the a to the right:

: a† a :≡ a† a, : a a† :≡ a† a. (6.60)

For instance:

: a1 a†1 a2 a3 a†2 := a†1 a†2 a1 a2 a3. (6.61)

We then give the prescription that all the operators associated with physical observ-
ables, should be defined as normal ordered products of the field operators. The
Hamiltonian operator Ĥ, for instance, should be defined as follows:

Ĥ = V
∑

k

: |Êk|2 :=
∑

k

∑
α

� ωk

2
: (ak,α a†k,α + a†k,α ak,α) :

=
∑

k

∑
α

�ωk(a
†
k,α ak,α) =

∑

k

∑
α

�ωkN̂k,α. (6.62)

Similarly, the correct definition of the momentum operator is:

P̂ = 2V

k c

∑

k

k : |Êk|2 :=
∑

k

∑
α

�k N̂k,α. (6.63)



6.2 Quantization of the Electromagnetic Field 183

Let us note that using the normal ordering in the definition of Ĥ and P̂ amounts to
subtracting to their eigenvalues the infinite un-physical contribution associated with
their ground state in the previous definitions (6.49), (6.52).

Having set the energy and momentum of the ground state |{0}, t〉 to zero, the
energy and momentum of a generic state |{Nk,α}, t〉 of the electromagnetic field is
now simply given by the sum of quanta � ωk and � k:

E =
∑

k

∑
α

Nk,α � ωk, P =
(∑

k

∑
α

Nk,α � k

)
, (6.64)

We associatewith each oscillator (k,α), i.e. with each planewave, a state of a particle
called photon and denoted by the symbol γ, carrying the quantum of momentum,
� k, and of energy, � ωk , and having polarization α. The state |Nk,α, t〉 of the (k,α)-
oscillator is then then interpreted as describing Nk,α photons in the state (k,α). Its
energy andmomentumareNk,α � ωk andNk,α � k respectively, namely the sumof the
Nk,α quanta of the two quantities associatedwith each photon. The state |{Nk,α}, t〉 of
the whole electromagnetic field then describes Nk,α photons in each state (k,α) and
its energy and momentum, as given in (6.64), is the sum of the energy and momenta
of the photons in the various states. A photon with energy E = � ωk and momentum
p = � k has a rest mass, given by:

m2
γ = 1

c4
E2 − 1

c2
|p|2 = 1

c4
�
2 (ω2

k − c2|k|2) = 0, (6.65)

where we have used the definition of ωk , (6.14). As was anticipated in Chap. 5, the
photon is therefore a massless particle. Its momentum four-vector pμ is thus � times
the wave number four-vector kμ associated with the corresponding plane wave and
defined in Eq. (5.105).

The action of a†k,α or of ak,α on a state amounts to “creating” or “destroying”
a (k,α)-photon since they increase or decrease the energy and momentum of the
corresponding oscillator state by one quantum respectively. This can be seen by
recalling, from elementary quantum mechanics, the following relations which hold
for the (k,α)-oscillator:

a†k,α |Nk,α, t〉 = √
Nk,α + 1 |Nk,α + 1, t〉,

ak,α |Nk,α, t〉 = √
Nk,α |Nk,α − 1, t〉. (6.66)

Expressing the canonical operators in terms of ak,α, a†k,α,

P̂k,α = −i

√
�ωk

2

(
ak,α − a+

k,α

)
,

Q̂k,α =
√

�

2ωk

(
ak,α + a+

k,α

)
, (6.67)

http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_5
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we find the following relations:

〈Nk,α|Qk,α|Nk,α − 1〉 = 〈Nk,α − 1|Qk,α|Nk,α〉 =
√

� Nk,α

2ωk
,

〈Nk,α|Pk,α|Nk,α − 1〉 = −〈Nk,α − 1|Pk,α|Nk,α〉 = i

√
� ωk Nk,α

2
. (6.68)

The representation of the states of the electromagnetic field in terms of occupation
number eigenstates associated with the constituent harmonic oscillators, is called
occupation number representation or second quantization. In this construction each
state is obtained by applying the a†k,α operators to the ground state.

We have been using, so far, the Schroedinger representation in which quantum
states evolve in time while operators are constant. The time evolution of a quantum
state |a, t〉 is described in this picture by the Schroedinger equation (see Chap. 9 for
a general review of the subject):

Ĥ |a, t〉 = i�
∂

∂t
|a, t〉, (6.69)

where |a, t〉 describes the electromagnetic field at a time t and is a generic linear
combination of the basis elements |{Nk,α}, t〉. Let us recall that, if the Hamiltonian
operator, as in our case, does not explicitly depend on time, a solution to (6.69) at

a time t can be expressed in terms of a time evolution operator of the form e− i
�
Ĥ t

acting on the state at a given initial time t = 0

|a, t〉 = e− i
�
Ĥ t |a, t = 0〉.

On the basis elements |{Nk,α}〉 we have:

|{Nk,α}, t〉 = e− i
�
Ĥ t |{Nk,α}, t = 0〉 = e−i (

∑
k,αNk,αωk) t |{Nk,α}, 0〉. (6.70)

On the other hand operators are all computed at t = 0. In this representation Lorentz
covariance is not manifest.

If we adopt the Heisenberg picture (or representation) instead, see Chap. 9,
the dependence on time is associated with operators, quantum states being time-
independent. We can easily obtain such representation by writing the matrix element
of the operator Âk(x), in the Schroedinger representation, between two states at a
time t and equating it to the matrix element of a time-dependent operator Â(x, t)
between the same states computed at t = 0:

〈{Nk′,α′ }, t |Â(x)|{Nk,α}, t〉 = 〈{Nk′,α′ }, 0|e i
�
Ĥ t Â(x) e− i

�
Ĥ t |{Nk,α}, 0〉

= 〈{Nk′,α′ }, 0|Â(x, t)|{Nk,α}, 0〉. (6.71)

http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
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In Heisenberg’s representation we act on constant states by means of the time-
dependent operator Â(x, t):

Âk,α(x, t) = e
i
�
Ĥ t Âk(x) e− i

�
Ĥ t . (6.72)

The resulting expression is manifestly Lorentz-covariant, as we can verify by com-
puting the matrix elements of the Fourier components Âk(t) at a time t between two
states:

〈Nk,α|Âk(t)|Nk,α + 1〉 = 〈Nk,α|e i
�
Ĥ t Âk e− i

�
Ĥ t |Nk,α + 1〉

= e−i ωk t 〈Nk,α|Âk|Nk,α + 1〉 ⇒ Âk(t) = Âke−iωk t .

(6.73)

In the Heisenberg representation we can then write the electromagnetic field operator
on the space of states in the form:

Â(x, t) =
∑

k

(
Âk,αe−i(ωk t−k·x) + Âk,αei(ωk t−k·x)

)

= c

√
�

2ωk V

∑

k

∑
α

[
ak,αuk,αe−ik·x + a†k,αu∗

k,αeik·x] . (6.74)

From the above expansion it is apparent that the operator Â(x, t) depends on the
space-time coordinates, just as in the classical case, through the Lorentz-invariant
product: k · x ≡ kμ xμ = k0 x0 − k · x, where, as usual, (kμ) ≡ (

ωk
c , k).

6.3 Spin of the Photon

We have learned, from our previous discussion, that each plane wave component

A(x, t) = εk e−i k·x + c.c. ≡ εk e− i
�

p·x + c.c., (6.75)

in the expansion (6.16) of a generic solution to Maxwell’s equation in the vacuum,
is associated with the quantum state of a photon of energy E = �ωk , momentum
p = �k and polarization εk. It can thus be interpreted as the wave function of the
corresponding photon.

We know, however, that the photon is a massless particle and, as such, there exists
no RF in which its linear momentum vanishes: p = 0. This implies that there is no
RF in which the total angular momentum J ≡ M + S = x × p + S, where M is
the orbital part and S is the spin (see Chap.9), coincides with S and thus acts on the
internal degrees of freedom only. The only component of J which acts only on the

http://dx.doi.org/10.1007/978-3-319-22014-7_9
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internal degrees of freedom of the photon and which thus can be taken as a definition
of its spin, is its component along p, called the “helicity” and denoted by Γ :

Γ ≡ J · p
|p| = (x × p) · p

|p| + S · p
|p| = S · nk. (6.76)

The helicity Γ generates rotations about the direction nk of p:

�R(θ) = e
i
�

Γ θ. (6.77)

On the internal components (polarization) of the photon, which are components of
a four-vector (εμ(k)) = (0, εk) (transverse components of Aμ), this transformation
acts as a particular Lorentz transformation. Let us choose a RF in which p is aligned
to the x-direction, p = (p, 0, 0) = � k. The infinitesimal generator of rotations about
the x axis is represented, on the four-vector kμ, by the matrix J1:

Γ = J1 = −i �

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ . (6.78)

Since εk is transverse to the direction x of motion, we have: (εμ(k)) = (0, 0, ε2, ε3),
we easily find that Γ has two eigenvalues i (∓i �) = ±� with eigenvectors:

ε(+)
μ (k) =

⎛
⎜⎜⎝

0
0
1
i

⎞
⎟⎟⎠ and ε(−)

μ (k) =

⎛
⎜⎜⎝

0
0
1
−i

⎞
⎟⎟⎠. (6.79)

We define the spin of a massless particle as the number s such that its states are
eigenstates ofΓ to the eigenvalues±� s. It then follows that the photonhas spin s = 1.
Note that the transformation �R(θ) precisely coincides with the transformation �(0)

given in Eq. (5.117), so that the definition of spin of a photon given here corresponds
to the definition of spin of a plane wave given in Sect. 5.6.1.

6.3.1 References

For further reading see Refs. [8] (Vol. 4), [9].

http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_5


Chapter 7
Group Representations and Lie Algebras

7.1 Lie Groups

As already mentioned in Chap.4 several properties of the rotation group SO(3) and
of the Lorentz group SO(1, 3) are actually valid for any Lie group G and do not
depend of the particular representation of their elements in terms of matrices. Such
representation independent features are encoded in the notion of an abstract group.

In this chapter we give the definition of an abstract group, restricting to Lie groups
only.Without any pretension to rigour or completeness, we define the general concept
of representation and that of aLie algebra. This will be essential for showing the deep
relation, existing in classical and quantum field theories, between symmetry and/or
invariance properties of a system, to be described in group theoretical language, and
conservation laws of physical quantities. These interrelations will be discussed in
the next chapters.

Let us first give the general axioms defining an abstract group.
Def: An abstract group G is a set of elements within which a law of composition

· (to be characterized as a “product”) is defined, such that, given any two elements
in it g1, g2 ∈ G, their product is an element of G as well: g1 · g2 ∈ G.

The following conditions are to be satisfied:

(1) Associative law: g1 · (g2 · g3) = (g1 · g2) · g3;
(2) There exists an element g0, called the identity1 which leaves any g unaltered by

the group composition: g0 · g = g · g0 = g;
(3) For each g ∈ G there exists an element called the inverse and denoted g−1 such

that: g · g−1 = g−1 · g = g0.

1The identity element is also called the unit element and is sometimes denoted by e.
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In general, given two group elements g1, g2, g1 · g2 �= g2 · g1. If for any g1, g2 ∈ G,
g1 · g2 = g2 · g1, the group is called commutative or abelian.2 As shown in Chap.4,
the set of all non-singular n × n matrices close a group with respect to the matrix
multiplication, which is denoted by GL(n, C), for complex matrices, and GL(n, R),
or simply GL(n), for real ones.

In order to define a Lie group, we first define a continuous group. In general a
q-parameter continuous group G has its elements labeled by q continuously varying
parameters (θr) ≡ (θ1, . . . , θq):

g ∈ G : g = g(θr) ≡ g(θ1, . . . , θq) , (7.1)

where continuity is expressed in terms of a (squared) “distance” d2 in parameter
space, d2 = ∑

r(θ
r − θ′r)2.

A Lie group is a continuous group such that the dependence of its elements on
the parameters θr satisfies the following requirement: If g(θr

1), g(θr
2) are two generic

elements of it, the parameters (θr
3) = (θ13, . . . , θ

q
3) defining their product

g(θr
1) · g(θr

2) = g(θr
3), (7.2)

are q analytic functions θr
3 = θr

3(θ
s
1, θ

s
2) of (θ

s
1) and (θs

2) (here the lower index on the
parameters refers to the corresponding group element). Moreover the dependence of
the group elements on the parameters is conventionally fixed so that

g(θr ≡ 0) = g0.

For example, in Chap.4, we defined the three-dimensional rotation group SO(3) as
the group of 3 × 3 matrices Ri

j acting on the three-dimensional Euclidean space
and leaving the metric gij = δij invariant. However the same group could have been
defined abstractly, that is independently of its matrix realization, as the group of
continuous transformations, depending on three parameters, and obeying a given
composition law θ3 = θ3(θ1, θ2) or, equivalently, as a Lie group described in the
neighborhood of the identity by an algebra of generators whose structure is defined
by Eqs. (4.124) and (4.125).

2We could have used a different notation and characterize the composition law as a “sum” +:
g1, g2 ∈ G, g3 = g1 + g2 ∈ G. In this case the identity element is called the zero-element and
denoted by 0: ∀g ∈ G, g + 0 = 0 + g = g. The inverse of g ∈ G is denoted by −g. This is clearly
just a notation since in general the + composition law has nothing to do with the ordinary sum of
numbers. As an example the real numbers form an abelian group with respect to the ordinary sum,
the zero-element clearly being number 0.

http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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7.2 Representations

The notion of an n-dimensional vector space Vn over the real numbers (real vector
space), introduced in Chap.4, readily generalizes to that of an n-dimensional vec-
tor space Vn over the complex numbers (complex vector space). The elements of a
complex vector space are uniquely defined by a collection of n complex numbers
representing their components relative to a given basis (ui): V = V i ui ≡ (V i),
V i ∈ C. Three dimensional rotations, Lorentz transformations and homogeneous
transformations of Cartesian coordinate systems, discussed in Chap.4, are examples
of linear, homogeneous transformations on vector spaces (three-dimensional rota-
tions act on vectors in E3, Lorentz transformations on four-vectors inM4 an so on). A
linear function, or operator, A on a vector space Vn is in general defined as mapping
of Vn into itself, which associates with any vector V ∈ Vn a vector A(V) in the same
space, and which satisfies the linearity condition: Given any two vectors V, W ∈ Vn

and two numbers a, b (real or complex depending on whether Vn is defined over the
real or complex numbers):

A(a V + b W) = a A(V) + b A(W). (7.3)

Suppose now A is invertible, so that one can define the inverse linear transformation
A−1 on Vn, then A is called a linear transformation. Being A invertible, if V, W are
linearly independent, also A(V), A(W) are. A therefore maps a basis (ui) of Vn into
a new basis (u′

i) ≡ (A(ui)). We have dealt in Chap.4 with linear transformations on
vectors when describing the correspondence between Cartesian coordinate systems
with a common origin (homogeneous linear coordinate transformations). In that case
we have adopted a passive point of view and made transformations act on the base
elements (ui) of the coordinate system only and not on vectors in space. We have
then considered the relation between the components of a same vector V in the two
bases. In this perspective the action of A is uniquely defined by the n × n invertible
matrix A ≡ (Ai

j) defining the components of the old basis relative to the new one.

ui = Aj
i u′

j. (7.4)

The components V′ = (V ′i) and V = (V i) of the same geometrical vector relative
to the new and old bases, respectively, are related by the action of A:

V ′i = Ai
j V j ⇔ V′ = A V. (7.5)

With an abuse of notation we shall denote the array vector V′ of the new components
by A(V).

The same relation is obtained if we use the active description of transformations
andview themas correspondences betweendifferent vectors (and in general points) in
space. Then if V = V i ui is a vector in Vn, the active action of a linear transformation

http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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A will map it into a different vector V′ = A(V). If we now define the matrix elements
Ai

j as the components of the new basis element u′
j = A(uj) along ui:

u′
j = Ai

j ui, (7.6)

using the linearity property of A we can write:

V′ = A(V) = V i A(ui) = V i Aj
i uj = V ′j uj. (7.7)

Although we find the same relation (7.5), the quantities involved have a different
interpretation: V ′i and V i in the passive description are the components of the same
vector in the new and old bases, while in the active representation they represent the
components of the new and old vectorswith respect to the same basis.We shall use the
active description when describing the effect of a coordinate transformation on the
quantum states (which are vectors in a complex vector space). From now on we shall
represent each vector by the array of its componentsV ≡ (V i)with respect to a given
basis, so that the effect of a transformationA, in both the complementary descriptions,
is then described by the same matrix relation (7.5): V → V′ = A(V) ≡ A V.

If we have two linear transformations A, B on Vn, their product A · B is the linear
transformation resulting from their consecutive action on each vector: If B maps V
intoV′ = B(V) = B V andAmapsV′ intoV′′ = A(V′) = A V′, thenA·B is the trans-
formation which maps V into V′′ = A(B(V)) = A(B V) = (A B) V. The product
of two transformations is thus represented by the product of the matrices associated
with each of them, in the same order.3 The identity transformation I is the linear
transformation which maps any vector into itself and it is represented by the identity
n × n matrix 1. For any linear transformation A we trivially have A · I = I · A = A.
Finally, being a linear transformation invertible, we can define its inverse A−1 such
that, if A maps V into V′ = A(V), A−1 is the linear transformation mapping V′ into
the unique vector V = A−1(V′) which corresponds to V through A. It follows that
A−1 is represented by the inverse A−1 of the matrix A associated with A. Finally
the product of linear transformations is associative, the argument being substan-
tially the same as the one used for coordinate transformations in Sect. 4.5. Linear
transformations on vector spaces close therefore a group. Given the identification of
linear transformations on Vn with n × n non singular matrices, the group of all such
transformations can be identifiedwith the groupGL(n, C), if Vn is complex, orGL(n)

if Vn is real (the symbol GL stands indeed for General Linear transformations).

3The action of a non-invertible operator A is also represented by a matrix A, its definition being
analogous to the one given for transformations. Such matrix, however, is singular. The product of
two generic operators A and B is defined as for transformations and is represented by the product of
the corresponding matrices in the same order. Examples of non-invertible operators appear among
the hermitian operators representing observables in quantum mechanics, Vn being in this case the
infinite dimensional vector space of quantum states. Another example of not necessarily invertible
operators are the infinitesimal generators of continuous transformations, to be introduced below,
which are indeed related, as we shall discover in the next chapters, to observables in quantum
mechanics.

http://dx.doi.org/10.1007/978-3-319-22014-7_4


7.2 Representations 191

An n-dimensional representation D (or representation of degree n) consists in
associating with each element g ∈ G a linear transformation D(g) on a linear vector
space Vn in such a way that:

D(g) · D(g′) = D(g · g′). (7.8)

Since linear transformations on Vn are uniquely defined by n ×n invertible matrices,
with respect to a given basis, Eq. (7.8) characterizes a representation as a homo-
morphic map of G into the set (group) of n × n invertible matrices.4 Introducing a
basis (ui), i = 1, . . . n, on Vn, D(g) acts as an n × n matrix D(g) ≡ (D(g)i

j) on the
components of a vector V = (V i, . . . , V n) according to the law

V ′i = D(g)i
j V j ⇔ V′ = D(g) V,

We shall denote by the bold symbol D the representation of a group in terms of matri-
ces. The vector space Vn is called the carrier of the representation, or representation
space. In the case of the rotation group, for example, the three dimensional Euclidean
space V3 is the carrier of the representation studied in Chap.4:

g(θ1, θ1, θ2) ∈ SO(3)
D−→ D(g)i

j = R(θ1, θ1, θ2)
i
j, i, j = 1, 2, 3.

For a general representation the matrix D(g) is an element of GL(n, C) or of
GL(n, R), depending on whether the base space is a complex or real vector space.

In the active picture, for any g ∈ G,D(g)maps vectors into vectors, all represented
with respect to a same basis (ui). On replacing the original basis (ui) by a new one
(u′

i), related to it through a non singular matrix A, as in Eq. (7.4), the matrix D(g)

gets replaced by the matrix D′(g) = A D(g) A−1 which represents the action of D(g)

in the new basis. This is easily shown starting from the matrix relation between the
components of a vector V1 and its transformed V2 in the old basis: V2 = D(g) V1.
Being the components V′

1 and V′
2 of the two vectors in the new basis given by

V′
1 = A V1, V′

2 = A V2, we find:

V′
2 = A V2 = A D(g) V1 = A D(g) A−1 V′

1 = D′(g) V′
1. (7.9)

It is easily verified that the mapping D′ of a generic group element g into D′(g) is
still a representation, also denoted by D′ = A D A−1.

The representations A D A−1 and D are then said equivalent, and we write:

D ∼ A D A−1. (7.10)

4It is obvious that the identity g0 = e element of the group is represented by the unit n-dimensional
matrix that we will denote by 1 or else by I .

http://dx.doi.org/10.1007/978-3-319-22014-7_4
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If the homomorphic mapping:
g −→ D(g), (7.11)

is isomorphic, namely it is one-to-one and onto, then the representation is faithful,
otherwise it isunfaithful.A trivial, but important, unfaithful representation is obtained
by the mapping:

g −→ 1, ∀g ∈ G, (7.12)

and is called the identity, or trivial representation, simply denoted by 1.
Coming back to the general case, let us assume that there exists a subspace

Vm ⊂ Vn of dimensions m < n such that every element of the subspace Vm is
transformed into an element of the same subspace under all the transformations of
the group G:

∀g ∈ G D(g) : Vm → Vm.

If such a subspace exists it is called invariant under the action of G and the represen-
tation D acting on Vn is said to be reducible in Vn. A representation is irreducible if
it is not reducible, that is if there is no proper invariant subspace of the carrier space.
If a representation is reducible, we may find a basis in Vn in which all matrices D(g),
with g ∈ G, can be simultaneously brought to the form

D(g) = (D(g)i
j) =

(
A 0
B C

)
, (7.13)

whereA, B, C arematrices of dimensions (n−m) × (n−m), m×(n−m) andm × m
and 0 is the (n − m) × m matrix whose elements are all zero. The corresponding
basis (ui) is chosen so that its last m elements (u�), � = 1, . . . , m, form a basis of
Vm, while the first m − n elements (ua), a = 1, . . . , n − m, generate the complement
Vn−m of Vm in Vn. The components of a generic column vector then split accordingly:
V = (V a, V �), and transform as follows:

V ′a = Aa
b V b , V ′� = C�

�′ V �′ + B�
a V a. (7.14)

Therefore, if V ∈ Vm, V a ≡ 0 and thus V ′a ≡ 0, that is V′ = D(g)(V) ∈ Vm.
If it is possible to find a basis inwhich all thematrices of the representation assume

the form (7.13), but with B = 0, we say that the representation is fully reducible or
decomposable. In this case both Vn−m and Vm are invariant subspaces.5 The space
Vn, as a vector space, is the direct sum of Vn−m and Vm, Vn = Vn−m ⊕ Vm, and the
representation D is said to be the direct sum of Dn−m and Dm

Dn = Dn−m ⊕ Dm,

5It can be proven that, for groups which admit finite-dimensional representations in terms of unitary
or orthogonal matrices (like the group of rotations in the Euclidean space), all reducible represen-
tations are completely reducible.
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where Dn−m and Dm are the two representations of G defined, for any g ∈ G, by the
upper and lower diagonal blocks of D(g)

D(g) =
(

Dn−m(g) 0
0 Dm(g)

)
. (7.15)

The representations Dm, Dn−m may still be completely reducible, and thus may be
further decomposed into lower dimensional representations.We can iterate the above
procedure until we end up with irreducible representations: Dk1, . . . , Dk�

, where∑�
i=1 ki = n. This corresponds to finding a basis in which the matrix representation

under D of a generic element g ∈ G has the following block structure:

D(g) =

⎛
⎜⎜⎜⎝

Dk1(g) 0 · · · 0
0 Dk2(g) · · · 0
...

. . .
...

0 0 · · · Dk�
(g)

⎞
⎟⎟⎟⎠. (7.16)

We say that the original representation D is completely reducible into the irreducible
representations Dki and write:

D =
�⊕

i=1

Dki ≡ Dk1 ⊕ Dk2 ⊕ . . . Dk�
. (7.17)

Correspondingly the representation space Vn of D has been decomposed into the
direct sum of spaces Vki on which Dk1 [g] act:

Vn = Vk1 ⊕ Vk2 ⊕ . . . Vk�
. (7.18)

As a simple example we may consider the group SO(2) of rotations in the (x, y)
plane. The three-dimensional representation acting on a generic vector of components
(x, y, z) has the following form:

⎛
⎝

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞
⎠. (7.19)

We see that the representation is fully reducible into a two-dimensional representation
acting on the components x, y and a one-dimensional representation acting on the
component z (which leaves it invariant).

The simplest (faithful) representation of GL(n) is given in terms of the set of
matrices acting on the components of a vector V ∈ Vn and is called the defining
representation.
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However, while studying the tensor algebra, we have emphasized that the (p, q)-
tensors can be thought of as vectors in a representation space of GL(n). More
precisely, the set of nk+� components Ti1...ik j1...j� of a tensor of type (k, �), can be
understood as the components of a vector in the representation space Vnk+� on which
the linear action of an element g ∈ GL(n) is defined by Eqs. (4.60) and (4.61),
that is by the tensor product D ⊗ · · · ⊗ D ⊗ D−T · · · ⊗ D−T of k matrices D and
� matrices D−T . As anticipated in Chap.4, using the properties of the Kronecker
product of matrices, one can easily verify that the action of the group on tensors
satisfies Eq. (7.8) and thus defines a representation.

As an example, let us recall fromSect. 4.3, that a generic tensorFij can be split into
a symmetric and antisymmetric component (Fij

S , Fij
A , respectively), see Eq. (4.75).F

ij

belongs to the vector space Vn2 of dimension n2, its n2 components can be thought of
as the independent entries of the n×nmatrix (Fij). This vector space is the base space
of a representation of GL(n), each tensor Fij transforming according to Eq. (4.49).
The symmetric and antisymmetric components Fij

S , Fij
A span orthogonal subspaces

V(S), V(A) of Vn2 , such that:

V (S) contains as elements the symmetric tensors, Fij
S = Fji

S ;
V (A) contains as elements the antisymmetric tensors, Fij

A = −Fji
A .

The dimensions of V(S) and V(A) are
n(n+1)

2 and n(n−1)
2 , so that their sum matches the

dimension of Vn2 :
n(n + 1)

2
+ n(n − 1)

2
= n2. (7.20)

In other words Vn2 is the direct sum of V(S) and V(A):

V n2 = V (S) ⊕ V (A).

Since symmetric (antisymmetric) tensors are transformed into symmetric (antisym-
metric) tensors, see Eqs. (4.76), both V(S) and V(A) are invariant subspaces of Vn2 ,
and thus that the representation D ⊗ D is fully reducible into the direct sum of a
representation D(S) acting on symmetric tensors and a representation D(A) acting on
antisymmetric ones:

D ⊗ D = D(S) ⊕ D(A). (7.21)

It must be observed that if we restrict the transformations of a group G to those
of a subgroup G ′ ⊂ G, a representation which was irreducible with respect to the G
may become reducible with respect the smaller group G ′. This is what happens, for
example,whenwe restrict the transformations ofGL(n) to those of the subgroupO(n)

as it was observed at the end of Sect. 4.5. In fact, with reference to Eqs. (4.106) and
(4.105),we see that ifwe restrict toO(n) transformations only, the space of symmetric
tensors,whichwas irreduciblewith respect toGL(n), becomes nowadirect sum of the
subspace of the symmetric and traceless tensors and of the one-dimensional subspace

http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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of tensors proportional to δij. It then follows that the n2-dimensional space of rank-
two O(n)-tensors Fij can now be reduced into the direct sum of three subspaces
according to the decompositions of tensors described in Eqs. (4.106) and (4.105)
that here we rewrite, for the sake of completeness:

Fij = F̃ij
S + Fij

A + Dij,

where

F̃ij
S = 1

2
(Fij + Fji) − 1

n
(δpq Fpq) δij,

Fij
A = 1

2
(Fij − Fji), Dij = 1

n
(δpq Fpq)δij.

As it was shown in Chap.4 each of the three subspaces is invariant under O(n)

transformations, elements of each subspace being transformed into elements of the
same subspace. It follows that the n2-dimensional representation of O(n) is fully
reducible into three irreducible representations D(S), D(A), DTr = 1 of dimensions
n(n+1)

2 − 1, n(n−1)
2 and 1, respectively:

D ⊗ D = D(S) ⊕ D(A) ⊕ DTr, (7.22)

where D(S) act on symmetric traceless matrices and DTr on the tensors proportional
to δij (traces).

The samedecompositions hold if instead of the groupO(n)wehave a non-compact
form like the Lorentz group SO(1, 3) when n = 4. The only difference is that the
one-dimensional subspace is now proportional to the Minkowski metric ημν .

Let us now discuss a property in group theory which has important applications
in physics.

Schur’s Lemma:Let D be an irreducible n-dimensional representation of a group
G.A matrix T which commutes with all matrices D(g), for any g ∈ G, is proportional
to the identity matrix 1n.

In formulas, if

∀g ∈ G : T D(g) = D(g) T, (7.23)

there exists a number λ such that:

T = λ 1n ⇔ Ti
j = λ δi

j , i, j = 1, . . . , n. (7.24)

To show this, let λ be an eigenvalue of T in Vn (which always exists) and V the
corresponding eigenvector:

T V = λ V. (7.25)

http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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Let Vλ = {V′ ∈ Vn | TV′ = λ V′} be the eigenspace of the matrix T corresponding
to the eigenvalue λ. This space is non-empty since V ∈ Vλ. It can be easily verified
that Vλ is invariant under the action of G. Indeed for any V′ ∈ Vλ and g ∈ G the
vector D(g)V′ is still in Vλ since:

TD(g)V′ = D(g)TV′ = λ D(g)V′, (7.26)

where we have used the hypothesis (7.23) of Schur’s lemma that T commutes with
the action of G on Vn defined by the representation D. Since Vλ is a non-empty
invariant subspace of Vn and being D an irreducible representation by assumption,
Vλ can only coincide with Vn. We conclude that T acts on Vn as λ times the identity
matrix.

An important consequence of Schur’s lemma is that, if D is a n-dimensional
representation of a group G and if there exists a matrix T which commutes with all
matrices D(g), for any g ∈ G, and which is not proportional to the identity matrix
1n, then D is reducible.

This property provides us with a powerful criterion for telling if a representation
is reducible and, in some cases, to determine its irreducible components: Suppose
we find an operator T on Vn which commutes with all the transformations D(g)

representing the action of a group G on the same space. The matrix representation
T of T will then have the form:

T =
⎛
⎜⎝

c1 1k1 0
. . .

0 cs 1ks

⎞
⎟⎠, (7.27)

where c1, . . . , cs are the eigenvalues of T and the corresponding eigenspaces
Vk1, . . . , Vks of T correspond to different irreducible representations Dk1 , . . . , Dks of
G. Thus the degeneracies k1, . . . , ks of the eigenvalues of T are dimensions of irre-
ducible representations of G. It can happen that two or more eigenvalues ci coincide,
thus implying that T is proportional to the identity on the carrier spaces of reducible
representations of G (direct sum of the irreducible representations corresponding to
the same eigenvalues). In these cases we say that there is an accidental degeneracy.6

We shall show in Chap.9 how Schur’s lemma allows to deduce important infor-
mation on the degeneracy of the energy levels of a quantummechanical system from
the knowledge of its symmetries.

6An accidental degeneracy may hint towards the existence of a larger group G ′ acting on the space
Vn and containing G, whose action on Vn still commutes with T, and of which the eigenspaces
of T define now irreducible representations. In Chap.9 we shall consider an important application
of Schur’s Lemma to quantum mechanics, in which T is the Hamiltonian operator Ĥ and G the
symmetry group of the system, whose unitary action on the space of states commutes with Ĥ . In
this case the eigenvalues ci corresponding to irreducible representations of G are the energy levels
of the system and the presence of an accidental degeneracy hints towards the existence of extra
hidden symmetries (not previously recognized) which enlarge G to a group G ′.

http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
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7.3 Infinitesimal Transformations and Lie Algebras

In the following we shall be mainly concerned with infinitesimal transformations of
a group G, generalizing the definition, given in Sect. 4.5.1 for the rotation group, of
the Lie algebra of infinitesimal generators. As we shall show shortly, the knowledge
of the structure of the group in an infinitesimal neighborhood of the unit element
(i.e. of the algebra of its infinitesimal generators), is sufficient to reconstruct, at least
locally, the structure of the group itself.7 In order to show this let us expand, as we
did for rotations, a generic group element in a given representation D in Taylor series
with respect to its parameters {θr} = (θ1, . . . , θq), assuming them to be small:

D(g(θr)) = 1 + θr ∂D
∂θr

∣∣∣∣
θt≡0

+ O(|(θ)|2)
= 1 + θr Lr + O(|(θ)|2), (7.28)

where:

Lr ≡ ∂D
∂θr

∣∣∣∣
θr≡0

define the infinitesimal generators of D(g). These matrices clearly depend on the
representation D of the group G we are using.

Just as we did in Sect. 4.5.1, let us write a generic transformation in G, defined
by finite values (θr) of the parameters, as resulting from the iterated action of a large
number N of “small” transformations with parameters δθr ≡ θr

N 
 1:

D(g(θr)) = D(g(δθr))N = D
(

g

(
θr

N

))N

. (7.29)

To first order each infinitesimal transformation D(g(δθr)) can be written using the
expansion (7.28) and neglecting second order terms in the infinitesimal parameters:

D(g(δθr)) ≈ 1 + δθr Lr = 1 + θr

N
Lr . (7.30)

We can then write the following approximated expression:

D(θr) ≈
[

1 + θr

N
Lr

]N

.

The larger N the better the above approximation is. In the limit N → ∞ we obtain

D(θr) = exp(θrLr), (7.31)

7It is important to note that locally the same Lie algebra can describe Lie groups which are globally
different. This is for example the case of the groups SO(3) and SU(2), see Appendix F.

http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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the exponential of a matrix being defined by Eq. (4.129). We can summarize the
above result as follows. Given an element g(θ) ∈ G in the neighborhood of the
identity element g = I , that is for values of the parameters θr in a neighborhood of
θr ≡ 0, we may associate with it a unique matrix A(θr)i

j ≡ θr (Lr)
i
j such that

D(θr)i
j =

(
eA(θr)

)i
j =

∞∑

n=0

1

n!
[
A(θr)n]i

j,

where we have used the short-hand notation D(θr) ≡ D(g(θr)). A(θr) is referred to
as the infinitesimal generator of the transformation D(g). As the parameters θr are
varied A(θr)i

j = θr (Lr)
i
j describes a vector space A of parameters θr with respect

to the basis of infinitesimal generators (Lr)
i
j. In particular the higher order terms in

the expansion (7.28) are written in terms of powers of A(θr). For example, to second
order the Taylor expansion (7.28) of D(θr) reads:

D(θr) = 1 + θr Lr + 1

2
θrθsLr Ls + O(|(θ)|3). (7.32)

From (7.32) we compute, to the same order, the inverse transformation:

D(θr)−1 = 1 − θr Lr + 1

2
θrθsLr Ls + O(|(θ)|3). (7.33)

Consider the matrix representation D(θ1), D(θ2) of two group elements, g1 =
g(θ1), g2 = g(θ2), where, for the sake of simplicity, we write θ for the set of n para-
meters {θ1, . . . , θn}, the lower index in θ1, θ2 referring to two different elements. We
define the commutator of D(θ1), D(θ2) as the matrix D−1(θ1)D−1(θ2)D(θ1)D(θ2).
This matrix must be a representation D(θ3) of some group element g3 = g(θ3) ≡
g−1
1 · g−1

2 · g1 · g2. Using Eqs. (7.32) and (7.33) a simple computation shows that the
terms linear in the θ parameters cancel against each other so that the expansion of
the group commutator becomes

D−1(θ1)D−1(θ2)D(θ1)D(θ2) = 1 + θr
1 θs

2 [Lr, Ls] + · · · (7.34)

where [Lr, Ls] is the algebra commutator defined as LrLs − LsLr .
On the other hand from the group composition law we also have

D(θ3) ≡ D−1(θ1)D−1(θ2)D(θ1)D(θ2) = 1 + θm
3 Lm + · · · . (7.35)

Since Eqs. (7.34) and (7.35) must coincide, we deduce

θk
1θ

l
2 [Lk, Ll] = θm

3 Lm, (7.36)

http://dx.doi.org/10.1007/978-3-319-22014-7_4
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that is
[Lk, Ll] = Ckl

m Lm, (7.37)

where we have set
Ckl

m θ[k
1 θl]

2 = θm
3 . (7.38)

The set of constants Ckl
m are referred to as the structure constants of the Lie group.

From (7.37) we see that the structure constants are antisymmetric in their lower
indices.

We can easily verify that the infinitesimal generators Lr satisfy the identity

[Lk, [Ll, Lm]] + [Ll, [Lm, Lk]] + [Lm, [Lk, Ll]] = 0 (7.39)

called Jacobi identity. As a consequence, by use of the Eqs. (7.37) and (7.39), we
obtain that the structure constants must satisfy the identity

Ckl
nCmn

p + Clm
n Ckn

p + Cmk
nCln

p = 0, (7.40)

or, equivalently:
C[kl

nCm]np = 0, (7.41)

where the complete antisymmetrization in three indices has been defined after
Eq. (5.17) of Chap.5.

A vector space of matrices A which is closed under commutation, namely such
that the commutator of any two of its elements is still in A, is an example of a Lie
algebra. Its algebraic structure is defined by the commutation relations between its
basis elements, as in Eq. (7.37), i.e. by its structure constants Cmn

p. The Lie algebra,
as we have seen, describes exhaustively the structure8 of the abstract group G in the
neighborhood of the identity of G. It follows that the structure constants Crs

p, do not
depend on the particular representation D of G.

7.4 Representation of a Group on a Field

Let us consider an n-dimensional flat space of points Mn and its associated vector

space Vn described by the vectors
−→
AB connecting couples of points in Mn. The space

Mn can be the Euclidean space En if the metric tensor defined on it is δij (in this case
we shall be mainly interested in our three-dimensional Euclidean space E3), or, for
n = 4, theMinkowski space M4 of special relativity if the metric is ημν . It is useful at
this point to recall the notations used in Chap. 4 for describing Cartesian coordinates

8By structure we mean the correspondence between any two elements of G and the third element
representing their product.

http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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in the various spaces: The collection of generic Cartesian coordinates on Mn is
denoted by r = (xi) while our familiar Cartesian rectangular coordinates are also
denoted by x = (x, y, z) and the space-time coordinates of an event in Minkowski
space are also collectively denoted by x = (xμ) = (ct, x). Let us introduce a second
p-dimensional vector space Vp and let us we consider a map Φα: Mn → Vp which
associateswith each pointP ∈ Mn, labeled byCartesian coordinates xi, i = 1, . . . , n,
a vector in Vp of components Φα(xi),α = 1, . . . , p, with respect to a chosen basis,

Φα : ∀xi ∈ Mn → Φα(xi) ∈ Vp. (7.42)

This function is called a field, defined on Mn, with values in Vp. The index α is
called the internal index since it labels the internal components Φα of the field,
which are degrees of freedom not directly related to its space-time propagation. An
example is the index α = 1, 2 labeling the physical polarizations of a photon. Vp is
consequently called the internal space. If, as Vp, we take the space Vnk+l of type-
(k, l) tensors, the corresponding field Φ i1...ik j1...jl (x

i) is called a tensor field. We have
already introduced the notion of tensor fields in Chap.4, Sect. 4.3, and illustrated
their transformation properties under a change in the Cartesian coordinates (affine
transformations) on Mn. There we discussed, as an example, the case of a tensor
Tij

k(xi)which has values in the n3-dimensional vector space Vp = Vn3 of type-(2, 1)
tensors. Its transformation law is given by Eq. (4.73), its indices transforming under
the homogeneous part D = (Di

j) (element of GL(n)) of the affine transformation,
according to their positions. Thinking of Tij

k as the p = n3 components of a vector in

Vp, they are subject to the linear action of the matrix
(
D ⊗ D ⊗ D−T

)ijs
lmk defining

the representation the GL(n) transformation on (2, 1) tensors. This transformation
property is generalized in a straightforward way to generic type-(k, l) tensor fields.
If we wish to restrict to transformations preserving the Euclidean or Lorentzian
metrics on E3 or M4, as we shall mostly do in the following, we need to restrict the
homogeneous part of the affine transformation to O(3) or to O(1, 3), respectively.

There are several instances in physics of tensor fields. In particular rank (1, 0)
and rank (0, 1) tensors are (contravariant or covariant) vector fields, while rank (0, 0)
tensors are scalar fields.

Let us give some examples. Well known three-dimensional vector fields are the
gravity field g(x, y, z) in Newtonian mechanics or the electric and magnetic fields
E(x, y, z, t) and B(x, y, z, t) of the Maxwell theory. More precisely they are vectors
with respect to the rotation group SO(3). They are instances of maps between the
Euclidean (E3) orMinkowski space (M4) and the Euclidean three-dimensional vector
space (Vp = V3).

The four-vector potential Aμ(xν) is again a vector field albeit with respect to
Lorentz transformations SO(1, 3). Here Mn = M4, and Vp = V4, the space of
four-vectors V = (V μ) = (V 0, V 1, V 2, V 3) associated with Minkowski space.

An example of rank (0, 2) tensor field is the covariant field strengthFμν = ∂μAν −
∂νAμ. Here again Mn is Minkowski space M4 while Vp is the six-dimensional space
of the antisymmetric tensors.

http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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The field of temperatures in a given region of ordinary space x, y, z (Mn = E3)
is an example of scalar field since Vp is the one-dimensional vector space of the
real numbers V1 ≡ R; a scalar field is also the wave function Ψ (x, y, z, t), solution
to the Schroedinger equation, which associates with each point in space-time M4 a
complex number, that is an element of the two-dimensional space V2 ≡ C (in this
case we talk about a complex scalar field).

In all these examples the transformation group G on the tensors, is chosen to
be either SO(3) or SO(1, 3) (or their affine extensions, like the Poincaré group on
M4, keeping in mind that tensor fields, just like vectors, always transform under the
homogeneous part of the coordinate transformation, like the Lorentz group).

We wish now to generalize this discussion to a generic transformation group G
and to a carrier space Vp supporting a generic representation space, not necessarily
of vector or tensor character. Indeed besides the known cases of the electromagnetic
field Aμ(x) and of its field strength Fμν(x), which are tensor fields, when discussing
the Dirac equation in Chap.10, we shall be dealing with a field belonging to a
representation of the Lorentz group, called spinor representation, which cannot be
constructed in terms of tensors. This field will provide the relativistic description of
particles with spin 1/2 like the electron.

Let us denote by R(g) the representation of G acting on Vn, and by D(g) the one
acting on Vp. We shall always consider Vn to be either the space of three-vectors on
E3, namely the vectors Δx, or that of four-vectors on M4, Δxμ. If G acts as an affine
group on the chosen Cartesian coordinate system on Mn, like the Poincaré group on
M4, the representations R and D only refer to the action of the homogeneous part of
G, like the Lorentz subgroup of the Poincaré group.

Let us now introduce a Cartesian coordinate system on Mn with origin O and
basis {ui} of Vn, and a basis {ωα} on Vp. Under a generic transformation g ∈ G two
vectors V = (V i) in Vn and W = (Wα) in Vp transform as follows:

V i → V ′i = R(g)i
j V j ⇔ V → V′ = R(g) V, (7.43)

Wα → W ′α = D(g)αβ Wβ ⇔ W → W′ = D(g) W. (7.44)

The transformation property of a generic field Φ(r) ≡ (Φα(r)) on Mn with values
in Vp under a transformation G is then the direct generalization of the analogous law
for tensor fields:

Φα(r) → Φ ′α(r′) = Dα
β Φβ(r) = Dα

β Φβ(R−1(r′ + r0))

⇔ Φ(r) → Φ ′(r′) = D Φ(r) = D Φ(R−1(r′ + r0)), (7.45)

where, for the sake of notational simplicity we have suppressed the explicit depen-
dence of the matrices D = (Dα

β) and Ri
j (and of the translation parameters r0) on

the group element g ∈ G. In the above equation R is a 3 × 3 rotation matrix on
r = x = (x, y, z) if Mn = E3 and G = SO(3), or a 4 × 4 Lorentz transformation
matrix (Λμ

ν) on r = x ≡ (xμ) = (ct, x, y, z) if Mn = M4 and G is the Poincaré

http://dx.doi.org/10.1007/978-3-319-22014-7_10
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group. In this latter case, under a generic Poincaré transformation (�, x0) ∈ G, the
space-time coordinates transform as in (4.191)9:

x′ = � x − x0 ⇔ x′μ = Λμ
νxν − xμ

0 , (7.46)

where x0 ≡ (xμ
0 ) parametrize the space-time translations, and Eq. (7.45) reads:

Φα(x) → Φ ′α(x′) = Dα
β Φβ(x) = Dα

β Φβ(�−1(x′ + x0))

⇔ Φ(x) → Φ ′(x′) = D Φ(x) = D Φ(�−1(x′ + x0)), (7.47)

where D = (Dα
β) = D(�) is the matrix implementing the Lorentz transformation

on the internal space.
Besides considering groups of Cartesian coordinate transformations acting both

on the space-time vectors of Vn (e.g. the Lorentz group acting on Δxμ as part of
the more general Poincaré group), and on the space Vp, we could consider groups
of internal transformations, namely transformation groups acting only on Vp, that is
on the internal degrees of freedom of the field, while the space or space-time vectors
are left unchanged. In this case R is the trivial representation 1 and r0 = 0. Such
transformations act on a field as follows:

Φα(r) → Φ ′α(r) = Dα
β Φβ(r) ⇔ Φ(r) → Φ ′(r) = D Φ(r). (7.48)

An example is the group which transforms a wave function, i.e. a complex scalar
field Φ(r), by multiplication with a phase:

Φ(r) → Φ ′(r) = D(ϕ)Φ(r) = ei ϕ Φ(r). (7.49)

The reader can easily verify that the set consisting of phases D(ϕ) = ei ϕ is a one-
parameter abelian Lie groupwith respect to multiplication. It has the simple structure
D(ϕ1) D(ϕ2) = D(ϕ3), where ϕ3 = ϕ1 + ϕ2. This group G is denoted by U(1) and
called the unitary one-dimensional group. When illustrating in the next chapters, the
relation between symmetry transformations and conserved quantities, we shall see
that the internal U(1) symmetry of a system, i.e. the invariance of a system under
internal U(1) transformations, is related to the conservation of a charge which, in
electromagnetism, is the electric charge.

Let us now come back to the case in which G is a transformation group acting
on the space-time reference frames. The simplest instance of field is the scalar field
in which D is the trivial representation 1, defining a type-(0, 0) tensor, with p = 1
that is Vp = R (real scalar field) or C (complex scalar field). A complex scalar field
Φ(r) can be described as a couple of real scalar fields Φ1(r), Φ2(r), defined at each
point r by the real and imaginary parts of Φ(r):

9Note that the analogous of the Poincaré group in the three dimensional Euclidean space E3 is the
known group of congruences of Euclidean geometry, acting on the space coordinates as in (4.102).

http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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Φ(r) = Φ1(r) + i Φ2(r) ≡ (Φ1(r), Φ2(r)). (7.50)

The transformation law (7.45) reduces, for a scalar field, to

Φ ′(r′) = Φ(r(r′)) = Φ(R−1 (r′ + r0)). (7.51)

If Mn = M4 and G is the Poincaré group, r is the space-time coordinate vector (xμ)

and R = Λ = (Λμ
ν) ∈ SO(1, 3).

In general, as discussed in Sect. 4.3, the coordinates r = (xi) and r′ = (x′i) refer to
the same point P of Mn, therefore the numerical value of the scalar field must be the
same, even if, when substituting xi = xi(x′j) = (R−1)i

j (x′j +xj
0) the functional form

changes fromΦ toΦ ′.WritingΦ ′(r′) = Φ(r)we are considering the transformation
r′ = R r − r0 from a passive point of view since space-points are considered fixed
while only the coordinate frame is changed.

However the same transformation can be also considered from a different point
of view, namely as a change in the functional form of Φ(r)

Φ(r) → Φ ′(r), (7.52)

with Φ ′(r) = Φ(R−1(r − r0)). In this case we consider the transformation as an
active transformation, since the emphasis is on the functional change ofΦ. The given
change of coordinate in this case is thought of as due to a change of the geometric
point.10

When considering the change in the functional form from an active point of view
it is sometimes convenient to denote the new functional form Φ ′ taken by Φ as
consequence of the coordinate change induced by an element g ∈ G, as the action
of an operator Og on Φ.11 Eq. (7.51) takes the following form:

Og Φ(r) = Φ(R−1 (r + r0)), (7.53)

where, as usual, R = R(g) and r0 = r0(g).

Consider, for the sake of simplicity, a group G acting in a homogeneous way on
the coordinates (i.e. r0 ≡ 0) and apply in succession two transformations g1, g2 ∈ G,

the resulting transformation corresponding to the product g2 · g1 ∈ G. We have:

xi g1−→ x′i = R(g1)
i
j xj g2−→ x′′i = R(g2)

i
j R(g1)

j
k xk = R(g2 · g1)

i
k xk

10Note that in the discussion of the vector and tensor calculus in Sect. 4.1 the emphasis was on the
passive point of view since the reference frame was changed by the transformations. Therefore the
whole of the vector and tensor calculus was developed taking this point of view. The active point,
as previously mentioned, will be actually adopted in Chap.9 when discussing the action of a group
on the Hilbert space of states in quantum mechanics.
11Here by operator we mean a linear mapping of the vector space of square-integrable functions
on Mn into itself, according to the definition given earlier. Og is actually a transformation and it is
therefore invertible.

http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_9
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or, expressing xi in terms of x′′k

xi = [R(g2 · g1)
−1]i

k x′′k .

Actually the operators OR give a homomorphic realization of the group G, where by
realization we mean a homomorphic mapping on the function space. Indeed from

Φ ′(r) ≡ Og Φ(r) = Φ(R(g)−1 r), (7.54)

using the short-hand notation R1 ≡ R(g1) and R2 ≡ R(g2), it follows

Og2 · Og1 Φ(r) ≡ Og2

(
Og1 Φ(r)

) = Og2 Φ ′(r) = Φ ′(R−1
2 r)

= Φ(R−1
1 R−1

2 r) = Φ((R2 R1)
−1 r) = Φ(R(g2 · g1)

−1 r),

(7.55)

where we have defined Φ ′(r) ≡ Og1Φ(r).
However the same result is also obtained acting on Φ with the operator Og2·g1 cor-
responding to the group element g2 · g1:

Og2·g1Φ(r) = Φ(R(g2 · g1)
−1r).

Therefore we conclude that
Og2·g1 = Og2 · Og1 . (7.56)

O is thus a homomorphism of G into the group of linear transformations on the space
of functions Φ(x) on Mn. It is easy to verify that O maps the unit element of G
into the identity transformation I which maps a generic function Φ(x) into itself.
Moreover O−1

g = Og−1 . The mapping O : g ∈ G → Og , has the same properties as
a representation D. However the linear transformations Og are not implemented by
matrices, since they affect the functional form of the field they act on. For this reason
O should be referred to as a realization of G on fields rather than a representation.

7.4.1 Invariance of Fields

The relation (7.53) is referred to general transformations of Cartesian coordinates
(affine transformations), whose homogeneous part describes a linear transformation
on Vn (i.e. belongs to the group GL(n)). This relation is actually valid also for any
(invertible) coordinate transformation (thus including curvilinear coordinates)

x′i = f i(x1, x2, . . . , xn), (7.57)

where f (x) ≡ (f i(x)) are differentiable functionswhich can be inverted to express the
old coordinates (x1, . . . , xn) in terms of the new ones (x′1, . . . , x′n): xi = f −1 i(x′),
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or simply x = f −1(x′). Also the effect of this coordinate transformation on Φ(x) can
be represented by the action of an operator Of

Of Φ(x) = Φ(f −1(x)). (7.58)

Only for linear coordinate transformations (among Cartesian coordinates) f i(x)
reduces to: x′i = Ri

j xj − xi
0. Let us now recall the definition of invariance of a

function Φ:
If the functional form of Φ does not change under a coordinate transformation

(7.57), Of Φ(x) = Φ(x) thenΦ is invariant. From the relation (7.51) and the require-
ment of invariance we obtain

Φ(x) = Φ(f −1(x)). (7.59)

From the active point of view this means that even if the geometric point is changed,
the functional form remains the same.12

As an example we may take the coordinate transformation corresponding to the
rotation of the Cartesian coordinate system by an angle θ in the plane x, y, given by
the general SO(2) element

r′ = f (r) = R(θ) r, R(θ) =
(

cos θ sin θ
− sin θ cos θ

)
. (7.60)

The function
Φ(x, y) = x4 + y2, (7.61)

is not invariant, as can be easily verified by substitution of the coordinates in terms
of the new ones. Instead the function

Φ(x, y) = x2 + y2, (7.62)

is invariant; indeed

x′2 + y′2 = (x cos θ + y sin θ)2 + (−x sin θ + y cos θ)2 = x2 + y2. (7.63)

In general to verify the invariance one replaces x with f −1(x) and checks if the same
function is obtained or not.

So far we have been considering the action of a group of transformations on a
scalar field. In the general case where the representation acts on a fieldΦα(xi)which
is not a scalar, but has internal components transforming in a given representation D
of G, the transformation law is given by Eq. (7.45). Also in this more general case it

12Equivalently, from the passive point of view, invariance means that a change in the coordinate
frame does not change the functional form.
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is useful to describe the effect of a transformation g ∈ G in terms of an operator Og

acting on the field:

g ∈ G : Φα(r)
g−→ Φ ′α(r′) = OgΦ

α(r′) = Dα
β Φβ(R−1 (r′ + r0)), (7.64)

where, as usual,wehave suppressed the explicit dependenceong ofD, R and r0.Also
in this case the operatorsOg give a homomorphic image of the group transformations,
their action on Vp being given in terms of the matrices D of the representation of
G.13 Indeed, using the matrix notation and restricting to homogeneous coordinate
transformations, for any two given elements g1, g2 of G we have:

Og2Og1Φ(r) = Og2Φ
′(r) = D2Φ

′(R−1
2 r) = D2D1Φ(R−1

1 R−1
2 r), (7.66)

where, as usual we have used the short-hand notation: R1 = R(g1), R2 =
R(g2), D1 = D(g1), D2 = D(g2). On the other hand applying the operator cor-
responding to g2 · g1 we also have

Og2·g1Φ(r) = D(g2 · g1)Φ(R(g2 · g1)
−1r), (7.67)

Comparing Eqs. (7.66) and (7.67) and taking into account that D and R are repre-
sentations of G

D(g2 · g1) = D(g2) D(g1), R(g2 · g1) = R(g2) R(g1) (7.68)

we find
Og2·g1 = Og2Og1 . (7.69)

Just as in the scalar field case, the homomorphism O between elements g ∈ G and
operators Og defines a realization of G on the field Φ(r). The reader can easily
extend the above proof to groups G acting as non-homogeneous linear coordinate
transformations: r0(g) �= 0.14 The concept of invariance given for scalar functions
can be easily extended to functions transforming in a non trivial representation D of
G. We say that the field Φα(x) is invariant under the action of G if

13Note that also in this more general case we may consider the given transformation from an active
point of view, by redefining in the two sides of last equality in (7.64) r′ → r:

Φα(r)
g→ Φ ′α(r) = Dα

βΦβ(R−1 (r + r0)). (7.65)

14If the transformation of the field is due to a general coordinate transformation thematrixD, which
is constant for linear transformations, will be given by the corresponding Jacobian at the point x.
For example, if a vector field vi(x) is invariant under x → f (x), then

v′i(x′) = vi(x′) = Ji
j(x) vj(x),

where x = f −1(x′) and Ji
j(x) = ∂f i

∂xj (x).
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Φ ′α(r) = Φα(r) = Dα
βΦβ(R−1 (r + r0)), (7.70)

which, for tensor fields acted on by GL(n), reduces to (4.74) and its generalization.

7.4.2 Infinitesimal Transformations on Fields

In this subsection we consider a Lie group G of parameters (θr) and describe, just as
we did for a generic matrix representation, the action of the operator Og , correspond-
ing to an element g ∈ G in a neighborhood of the identity, in terms of infinitesimal
generators Lr as follows:

Og = eθr Lr , (7.71)

whereLr are operators acting on the basisΦα(xi) both linearly, that is as matrices on
the internal index α and as differential operators with respect to the dependence on
the coordinates xi. The presence of a differential operator in Lr is due to the fact that
the operators Og , which provide a homomorphic image of the group G, act simulta-
neously on the linear (internal) vector space Vp, spanned by the vector-components
Φα(xi), as well as on the functional dependence of the field on the coordinates xi.
Therefore the infinitesimal operators Lr contain, besides the matrix algebra opera-
tors acting on the field components Φα(xi), also infinitesimal differential operators
acting on the functional space. The proof that a generic Og , in a neighborhood of the
identity operator I , can be expressed as the exponential of a Lie algebra element θr Lr

is analogous to the one given for matrix representations and thus we are not going to
repeat it here. In fact (Lr) represent a basis for the Lie algebra of the generators of
G in the realization O. We are interested instead in deriving the general expression
of the operators Lr .

Consider infinitesimal transformations defined by infinitesimal parameters
δθr 
 1. Expanding the exponential in Eq. (7.71) we can write Og to first order
in δθr as

Og = I + δθr Lr .

It follows that

OgΦ
α(r) ∼= Φα(r) + δθrLrΦ

α(r) = Φα(r) + δΦα(r), (7.72)

where we have expressed the infinitesimal local variation of the field as given by

δΦα(r) = δθr LrΦ
α(r). (7.73)

In order to determine the action ofLr onΦα(xi)we begin bywriting the infinitesimal
form ofR(g) andD(g), supposing at first the action of G on the Cartesian coordinates
r = (xi) to be homogeneous:

http://dx.doi.org/10.1007/978-3-319-22014-7_4
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R(g)i
j � δi

j + δθr (Lr)
i
j,

D(g)αβ � δα
β + δθr(Lr)

α
β, (7.74)

where (Lr)
i
j and (Lr)

α
β are the matrices describing the Lie algebra generators in the

two representations (recall that i, j = 1, . . . , n label the coordinates on the space Mn

while α,β = 1, . . . , p are indices of the representation space Vp). It follows that

x′i = R(g)i
j xj � xi + δxi ⇒ δxi = δθr (Lr)

i
j xj,

and
Dα

β(g)Φβ(r) � δα
β + δθr(Lr)

α
β Φβ(r).

Let us work out both sides of the finite relation

Φ ′α(r′) = D(g)αβΦβ(r), (7.75)

to first order in the infinitesimal δθr parameters. On the left hand side we have

Φ ′α(x′i) � Φ ′α(xi + δxi) = Φ ′α(xi) + ∂Φα

∂xi
(xi) δxi, (7.76)

where, expanding Φα(xi + δxi) we only kept first order terms in δxi (since δxi =
O(δθr)) and, for the same reason, we have replaced ∂

∂xi Φ
′α(xi) with ∂

∂xi Φ
α(xi) in

the derivative term.
On the other hand, using the infinitesimal generators defined in Eq. (7.28), the

right hand side of (7.75) reads, to first order in δθr :

D(g)αβ Φβ � [δα
β + δθr(Lr)

α
β] Φβ(xi). (7.77)

From (7.72), (7.76) and (7.77) we find

Φ ′α(r) − Φα(r) ≡ δΦα(r) = δθrLr Φα(r) =
[
δθr(Lr)

α
β − δα

β δxi ∂

∂xi

]
Φβ(r)

= δθr
[
(Lr)

α
β − δα

β(Lr)
i
j xj ∂

∂xi

]
Φβ(r). (7.78)

Since this equality must hold for each component δθr , r = 1, 2, . . . , q we finally
find the action of the infinitesimal operator Lr on Φα(xi):

LrΦ
α(r) =

[
(Lr)

α
β − δα

β (Lr)
i
j xj ∂

∂xi

]
Φβ(r). (7.79)
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In conclusion the action of the generators of theLie algebraA ofG on the component-
functions Φα(r), is given by the following operator:

Lr ≡ (Lr)
α

β − δα
β (Lr)

i
j xj ∂

∂xi
, (7.80)

where the first term acts linearly on the vector space of the representation labeled by
the index α, while the second term is a differential operator acting on the dependence
of the field on the coordinates. Note that (Lr)

α
β and (Lr)

i
j are the same infinitesimal

generator albeit in different representations: the p-dimensional representation on the
space Vp and the n-dimensional representation in the space of the coordinates.

The most interesting case for us is, of course, that in which G implements the
coordinate transformations corresponding to the relativistic invariance of a theory:
The Poincaré group on Minkowski space-time Mn = M4. Let first G be the Lorentz
group SO(1, 3). We have

x′μ = Λμ
νxν, (7.81)

where, according to our general conventions, the coordinate indices i, j, . . . have
been renamed μ, ν . . .. Furthermore the infinitesimal parameters δθr will be written
as δθρσ , the infinitesimal Lorentz parameters in (4.171). According to Eqs. (4.166),
(4.169), (4.170), the infinitesimal transformation is given by (the homogeneous part
of) Eq. (4.196)

δxμ = 1

2
δθρσ (Lρσ)μν xν = δθμ

ν xν . (7.82)

Inserting in Eq. (7.78) the general infinitesimal transformation of the field under the
Lorentz group takes the following form:

δΦα(x) = 1

2
δθρσ LρσΦα(x)

= 1

2
δθρσ

[
(Lρσ)αβ Φβ + (xρ∂σ − xσ∂ρ)Φ

α
]
, (7.83)

from which we deduce the expression of the infinitesimal Lorentz generators Lρσ as
differential operators acting on fields:

Lρσ =
[
(Lρσ)αβ + δα

β (xρ∂σ − xσ∂ρ)
]
. (7.84)

So far we have mainly been considering groups, as the Lorentz one, acting on coordi-
nates as in Eq. (7.81) that is in a linear and homogeneousway.We know, however, that
themost general relativistic theory is invariant under thePoincaré groupwhose action
on the coordinates, see Eq. (7.46), is linear but not homogeneous since it contains

http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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the subgroup of space-time translations, see Sect. 4.72. Let us restrict ourselves to
the subgroup of constant translations on the xμ coordinates

xμ → x′μ = xμ − xμ
0

and, more specifically, to infinitesimal translations, xμ
0 = εμ 
 1.

Since constant translations do not affect the components of relative position vec-
tors, they have a trivial action on Vn. Moreover they do not affect the internal com-
ponents of a field Φα as well. Therefore

Φ ′α(xμ − εμ) = Φα(xμ) → Φ ′α(xμ) − εν ∂Φα

∂xν
(xμ) = Φα(xμ), (7.85)

that is

δΦα ≡ Φ ′α(xμ) − Φα(xμ) = εν ∂

∂xν
Φα(xμ) = εν PνΦ

α(xμ). (7.86)

Thus a basis of infinitesimal generators of four-dimensional translations is given by

Pμ = ∂

∂xμ
. (7.87)

This is the representation of the infinitesimal generators of translations on the fields.
In Sect. 4.7.2 we gave a matrix representation Pμ of the same generators. There we
have proven that the Lie subalgebra of translations is abelian, as it is apparent also
from this new realization Pμ of its generators, since

[
∂

∂xμ
,

∂

∂xν

]
= 0.

This of course agrees with the Lie algebra of the Poincaré group worked out in
Chap.4.

Putting together (7.83) and (7.86) we find the following result:
Under an infinitesimal transformation of the Poincaré group (7.46) the classical field
Φα transforms as follows:

δΦα(x) =
(
1

2
δθρσ Lρσ + εμ Pμ

)
Φα(x)

= 1

2
δθρσ

[
(Lρσ)αβΦβ(x) + (xρ∂σ − xσ∂ρ)Φ

α(x)
]

+ εμ ∂

∂xμ
Φα(x).

(7.88)

In particular, for a scalar field, the term (Lρσ)αβΦβ is absent, and we find:

δφ(x) = 1

2
δθρσ(xρ∂σ − xσ∂ρ)φ(x) + εμ ∂

∂xμ
φ(x). (7.89)

http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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A finite Poincaré transformation (�, x0), � being defined by finite parameters θμν ,
can be written in terms of the action of an operatorO(�,x0) defined by exponentiating,
see Eq. (4.197), the infinitesimal generators in (7.88):

Φ ′α(x) = O(�,x0) Φα(x) = Dα
β(�)Φα(�−1 (x + x0)), (7.90)

where

O(�,x0) = exμ
0 Pμ e

1
2 θρσ Lρσ , D(�)αβ =

(
e
1
2 θρσ Lρσ

)α

β . (7.91)

We close this subsection by observing that since the structure constants do not depend
of the representation, the infinitesimal generators close the same algebra irrespective
of the representation. Thus we have

representationD : [Lr, Ls]
α
β = Crs

p (Lp)
α
β ,

representationR : [Lr, Ls]
i
j = Crs

p (Lp)
i
j,

realizationO : [Lr, Ls] = Crs
p Lp, (7.92)

as can be easily verified in general. In the case of the Poincaré group, we can verify,
using the explicit expression for the infinitesimal Lorentz and translation generators
Lμν, Pμ, the following commutation relations:

[Lμν,Lρσ
] = ηνρ Lμσ + ημσ Lνρ − ημρ Lνσ − ηνσ Lμρ, (7.93)[Lμν, Pρ

] = Pμ δν
ρ − Pν δμ

ρ , (7.94)[Pμ, Pν

] = 0. (7.95)

which share the same structure constants with those in Eq. (4.201).

7.4.3 Application to Non-Relativistic Quantum Mechanics

Let us apply the previous considerations to the non-relativistic Schrödinger wave
function ψ(x, t), x = (x, y, z) ∈ E3, describing the state of a particle at a time
t. Since we consider now only transformations in the Euclidean space Mn = E3,
we shall neglect the dependence of the wave function on time. Let us consider an
infinitesimal rotation R ∈ SO(3)

x′i = Ri
j xj, (i, j, k = 1, 2, 3),

where, for small angles δθr , the rotation matrix is given by Eq. (7.74)

Ri
j � δi

j + δθk (Lk)
i
j; δθk � 0.

http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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The infinitesimal generators L1, L2, L3 are represented by the matrices given in
Eqs. (4.116) and (4.119). Since the wave function ψ is a (complex) scalar field, the
action of SO(3) on the (internal) space C of complex values of ψ15 is trivial:

Dα
β = δα

β ⇒ (Lr)
α

β = 0.

Thus from (7.78) we find

δψ(x) = δθk Lk ψ(x) = −δθr (Lr)
i

j xj ∂

∂xi
ψ(x),

where, according to (4.120)

L1 = −x3
∂

∂x2
+ x2

∂

∂x3
,

L2 = −x1
∂

∂x3
+ x3

∂

∂x1
, (7.96)

L3 = −x2
∂

∂x1
+ x1

∂

∂x2
,

are the differential operators representing the action of SO(3) on the wave function
ψ(x). They can be rewritten in a more compact form as follows:

Li = εijk xj ∂

∂xk
. (7.97)

Let us now consider the action of an infinitesimal three-dimensional translation

x′ = x − ε,

where ε = (εi), εi 
 1. We have

ψ′(x′) = ψ′(x − ε) = ψ(x) ⇒ ψ′(x) − εi ∂ψ(r)
∂xi

= ψ(x), (7.98)

that is, according to Eq. (7.86)

δψ(x) = ψ′(x) − ψ(x) = εi Piψ(x) ⇒ Pi = ∂

∂xi
.

In conclusion, infinitesimal rotations and translations on the wave function ψ(r)
are represented by the differential operators in (7.97) and (7.99), respectively. Form
the physical point of view the operators Li and Pi are proportional to the quantum
mechanical operators M̂i, p̂i associatedwith the angularmomentum (seeEq. (4.131))

15Recall that, although complex numbers span a two-dimensional vector space, their components
are inert under the SO(3) group.

http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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and the linear momentum, respectively. In order to have hermitian operators with
the right physical dimensions one defines

p̂i = −i �Pi = −i �
∂

∂xi
M̂i = −i �Li. (7.99)

The identification of the above operators with the aforementioned physical quanti-
ties will be motivated in detail in the next chapters, when we will be dealing with
symmetries and conservation laws in quantum mechanics. Note that the Mi matrices
in Eq. (4.131) and the operators M̂i are different realizations of the same physical
quantity, i.e. the components of the orbital angular momentum. The physical inter-
pretation of the operators p̂i and M̂i is consistent with the fact that, writing in the
expression for M̂i the partial derivatives in terms of the momentum operator we find

M̂i = −i �Li = εijk xj
(

−i �
∂

∂xk

)
= εijk xj p̂k, (7.100)

or, simply
M̂ ≡ x × p̂,

where M̂ = (M̂1, M̂2, M̂3) and p = (p̂1, p̂2, p̂3).16

7.4.4 References

For further reading see Refs. [2, 5, 14].

16We shall use the convention of denoting by a hatted symbol Ô the quantum mechanical operator
acting on wave functions, associated with the observableO . Occasionally, for the sake of notational
simplicity, the hat will be omitted, provided the operator nature of the quantity be manifest from
the context.

http://dx.doi.org/10.1007/978-3-319-22014-7_4


Chapter 8
Lagrangian and Hamiltonian Formalism

In this chapterwegive a short account of theLagrangian andHamiltonian formulation
of classical non-relativistic and relativistic theories. For pedagogical reasons we first
address the case of systems of particles, described by a finite number of degrees
of freedom. Afterwards, starting from Sect. 8.5, we extend the formalism to fields,
that is to dynamical quantities described by functions of the points in space. Their
consideration implies the study of dynamical systems carrying a continuous infinity
of canonical coordinates, labeled by the three spatial coordinates.

8.1 Dynamical System with a Finite Number
of Degrees of Freedom

8.1.1 The Action Principle

Let us consider a mechanical system consisting of an arbitrary number of point-
like particles. We recall that the number of coordinates necessary to determine the
configuration of the system at a given instant, defines the number of its degrees of
freedom.These coordinates are not necessarily theCartesian ones, but are parameters
chosen in such a way as to characterize in the simplest way the properties of the
system. They are referred to as generalized coordinates or Lagrangian coordinates,
usually denoted by qi (t), i = 1 . . . n, where n is the number of degrees of freedom.
The space parameterized by the Lagrangian coordinates is the configuration space.
Each point P in this space, of coordinates P(t) ≡ (qi (t)), (i = 1 . . . n), defines
the configuration of the system, that is the position of all the particles at a given
instant. During the time evolution of the dynamical system the point P will therefore
describe a trajectory in the configuration space.

© Springer International Publishing Switzerland 2016
R. D’Auria and M. Trigiante, From Special Relativity to Feynman Diagrams,
UNITEXT for Physics, DOI 10.1007/978-3-319-22014-7_8
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216 8 Lagrangian and Hamiltonian Formalism

The mechanical properties of the system are encoded in a Lagrangian, that is a
function of the Lagrangian coordinates qi (t), their time derivatives q̇i (t) and time t :

L = L(qi (t), q̇i (t)), t), q = (q1, q2, . . . , qn).

Given the Lagrangian, the time evolution of the system is then derived from Hamil-
ton’s principle of stationary action.

Let us define the action S of the system as the integral of the Lagrangian along
some curve γ in configuration space between two points corresponding to the con-
figurations of the system at the instants t1, t21:

S[q; t1, t2] =
t2∫

(γ) t1

L(q(t), q̇(t), t) dt. (8.1)

Notice that while L depends on the values of qi and q̇i at a given time t , S depends
on the functions qi , namely on all the values qi (t), with t1 ≤ t ≤ t2, defining a path
γ in the configuration space. Thus, for fixed t1, t2, S is said to be a functional of qi .

Hamilton’s principle of stationary (or least) action states that among all the
possible paths γ connecting the two points q(t1) ≡ (qi (t1)) and q(t2) ≡ (qi (t2))
in the configuration space, the actual path described by the system during its time
evolution between the instants t1 and t2 is given by the curve γ corresponding to
an extremum of S. This extremum is found by performing a small deformation of γ
keeping its end-points fixed, that is by performing arbitrary variations δqi (t) of the
coordinates at any instant t , obeying the condition

δq(t1) = δq(t2) = 0, (8.2)

and by requiring S[q; t1, t2] to be stationary with respect to such a variation.
In formulae, the actual path γ of the dynamical system in configuration space is

found by solving the variational problem2:

δS =
t2∫

t1 (γ)

(
∂L

∂qi
δqi + ∂L

∂q̇i
δq̇i

)
dt = 0, δq(t1) = δq(t2) = 0. (8.3)

Note that by δqi (t) we denote the infinitesimal local change of the Lagrangian
coordinates, namely δqi � q ′

i (t) − qi (t).

1Here and in the following we shall often use the shorter notation q(t) for the set of the coordinates
{qi } = (q1, . . . , qn) and similarly for their time derivatives, q̇ = {q̇i } = (q̇1, . . . , q̇n).
2To avoid clumsiness in the following formulae we shall often adopt the Einstein convention of
summing over repeated indices i, j, . . . of the Lagrangian coordinates, even though these indices
are in general just suffixes with no tensorial property.
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To find the trajectory by extremizing of the action S[γ; t1, t2] one observes that,
being δqi (t) a variation at a fixed instant t , the variation symbol δ commutes with
the time derivative:

δ
d

dt
qi = d

dt
δqi .

Integrating by parts the second term in the integrand of (8.3), we obtain:

δS =
t2∫

t1

[(
∂L

∂qi
δqi +

(
∂L

∂q̇i

)
d

dt
δqi

)]
dt (8.4)

=
t2∫

t1

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqi dt = 0, (8.5)

where we have used the fact that the total derivative term d
dt

(
∂L
∂q̇i

δqi

)
gives a van-

ishing contribution by virtue of condition (8.2):

t2∫

t1

d

dt

(
∂L

∂q̇i
δqi

)
=
(

∂L

∂q̇i
δqi

)∣∣∣∣
t2

t1

= 0. (8.6)

Equation (8.4) has to hold for arbitrary variations δqi ; this implies that the integrand
must vanish identically. We thus obtain:

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 ∀i = 1, 2, . . . , n. (8.7)

Equations (8.7) are the Euler-Lagrange equation of the system under study. They
are a system of differential equations whose solution for given boundary conditions
determines the time evolution of the system.

We note that the Lagrangian L(q(t), q̇(t)), t) is not uniquely defined; adding to

it the total derivative d f
dt of an arbitrary function f (q, t), does not affect the Euler-

Lagrange equations.3 Indeed, if we let:

L(q, q̇, t) → L ′(q, q̇, t) = L(q, q̇, t) + d

dt
f,

so that S = ∫
dt L −→ S ′ = ∫

dt L ′, performing the variation qi (t) → qi (t) +
δqi (t), with δqi (t1) = δqi (t2) = 0, we obtain:

3Note that the function f can depend on qi and t only, f = f (q, t), in order for d f/dt not to
depend on derivatives of qi of order higher than one.
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δS ′ = δS +
t2∫

t1

d

dt
δ f dt = δS + δ f

∣∣t2
t1 .

However, by virtue of condition (8.2), δ f = ∂ f
∂qi

δqi , computed at the initial and final
instants, is zero, and we conclude that, being δS = δS ′, the same Euler-Lagrangian
equations are obtained.4

In order to determine the general form of the Lagrangian of a mechanical system
let us first work out the Lagrangian of a free particle in the non-relativistic case.

Anticipating our discussion on the symmetries of a system, we observe that this
Lagrangian cannot explicitly depend either on the position vector x or on time t , since
the classical theory is based on the assumption of homogeneity of space and time, as
discussed at the end of Sect. 1.1.1. Moreover, it cannot depend on the direction of the
velocity vector v, because of the isotropy of space (there is no preferred direction).
The Lagrangian must then be a function of the modulus v of v only: L = L(v2).
From the equations of motion it follows

d

dt

∂L

∂vi
= 0, ∀i = 1, 2, 3,

so that v = const ., that is we recover the principle of inertia.
As we shall discuss more systematically in the sequel, a transformation is a sym-

metry of a system if this leaves the Lagrangian invariant modulo an additional total
derivative. Ifwe nowperform aGalilean transformationwith an infinitesimal velocity
ε, requiring it to be a symmetry, the Lagrangian can vary at most by a total deriv-
ative in order to describe the same inertial motion. Now, an infinitesimal Galilean
transformation applied to L gives:

L(v′2) = L
[
v2 + 2v · ε + O(ε)2

]
= L(v2) + ∂L

∂v2
2v · ε (8.10)

4We can directly show that the presence of an additional total derivative does not affect the equations
of motion by showing that d f/dt identically satisfies Eq. (8.7). This is readily done by observing
that

d f

dt
(q, q̇, t) = q̇i

∂ f

∂qi
+ ∂ f

∂t
,

so that
∂

∂qi

d f

dt
= q̇ j

∂ f

∂qi ∂q j
+ ∂

∂qi

∂ f

∂t
. (8.8)

On the other hand we have

d

dt

(
∂

∂q̇i

d f

dt

)
= d

dt

(
∂ f

∂qi

)
= q̇ j

∂ f

∂qi ∂q j
+ ∂

∂t

∂ f

∂qi
. (8.9)

Subtracting side by side Eq. (8.8) from Eq. (8.9) and using the property that the partial derivations
with respect to qi and t commute, we conclude that the Euler-Lagrange equations are identically
satisfied by the total derivative.

http://dx.doi.org/10.1007/978-3-319-22014-7_1
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The term ∂L
∂v2

2v · ε will be a total derivative if ∂L
∂v2

is independent of v, namely it is
a constant α. It follows that:

L = 1

2
mv2, (8.11)

where we have set α = m/2. The right hand side of Eq. (8.11), defines the kinetic
energy of our system of particles.

Assuming that for a systemof N non-interacting (i.e. free) particles theLagrangian
be additive, we have5:

L =
N∑

k=1

1

2
m(k)v

2
(k) = T, (8.12)

where we have denoted the total kinetic energy of the system by T .
Let us now consider an isolated system of N interacting particles: the Lagrangian

is obtained by adding to the free Lagrangian an appropriate function of the coordi-
nates, that we will denote by −U :

L = T − U (x(1), . . . , x(N )). (8.13)

where T in the kinetic energy defined by the sum in Eq. (8.12) and the function U
defines the potential energy of the system. Using the Cartesian coordinates of the
particles as Lagrangian coordinates, the equations of motion (8.7) read, in this case:

∂L

∂xi
(k)

− d

dt

∂L

∂ ẋ i
(k)

= 0, (8.14)

where xi
(k) (i = 1, 2, 3) denotes the i th coordinate of the kth particle, (k =

1, . . . , N ).6 Using the Lagrangian (8.13), the Euler-Lagrange equations give:

m(k)

dẋi
(k)

dt
= − ∂U

∂xi
(k)

. (8.15)

Identifying the force acting on the kth particle with the right hand side of Eq. (8.15)

Fi
(k) = − ∂U

∂xi
(k)

, (8.16)

we retrieve the Newton equation.

5This last property gives a physical meaning to our definition of inertial mass m. Indeed, the
multiplication by a constant does not change the equations of motion, but it is equivalent to a
change of the mass unit in the Lagrangian (8.12). However all the mass ratios, having a physical
meaning, are unchanged.
6The number of degrees of freedom of the system is n = 3N .
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Finally we consider the case of a non-isolated system A interacting with a sys-
tem B, whose dynamics is known. For greater generality we use the generalized
coordinates q�, � = 1, . . . , n.

To determine the Lagrangian of the system A, we consider the Lagrangian of the
system A + B, and use for the coordinates of B their explicit time dependence. We
then start with a Lagrangian of the form

L = T (qA, q̇A) + T (qB, q̇B) − U (qA, qB), (8.17)

and replace the qB’s by their explicit dependence on time qB(t). We can then neglect
the term T (qB, q̇B), which, being an explicitly known function of time, can always
be written as a total derivative. The Lagrangian of A becomes:

L A = T (qA, q̇A) − U (qA, qB(t)). (8.18)

This means that if the system is not isolated the Lagrangian is written as in the case
of an isolated system, the only difference being that now the potential energy is an
explicit function of time through qB(t).

8.1.2 Lagrangian of a Relativistic Particle

We may easily determine the Lagrangian of a free relativistic particle, by requiring
L to be invariant under the group of Lorentz transformations (we shall explain in
the following the concept of invariance in a more systematic way). This ensures
covariance of the equations of motion so that the inertial motion will be maintained
in any reference frame.

The simplest relativistic invariant quantity under Lorentz transformations, is the
proper time τ defined by

dτ2 = dt2 − |dx|2
c2

= dt2
(
1 − |v|2

c2

)
.

It is natural to expect the relativistic action for a free particle to be proportional to
its proper time, namely:

S = α

t2∫

t1

dτ = α

t2∫

t1

dτ

dt
dt = α

t2∫

t1

√
1 − v2

c2
dt, (8.19)

where v ≡ |v|. The corresponding Lagrangian reads:

L(v) = α
dτ

dt
= α

√
1 − v2

c2
, (8.20)
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modulo a total time derivative. The constant α can be fixed by requiring that in the
non-relativistic limit, v

c � 1, the Lagrangian (8.20) reduces to the form L = 1
2 mv2.

Expanding the square root to order O(v2/c2) we find:

L(v) � α − α

2

v2

c2
= m

2
v2 + const.

Neglecting the inessential additive constant, we can then identify: α = −mc2.
The relativistic free particle Lagrangian is thus given by:

L(v) = −mc2

√
1 − v2

c2
, (8.21)

and for a system of N non-interacting particles, we have

L(vi) =
N∑

k=1

⎛
⎝−m(k)c

2

√
1 − v2(k)

c2

⎞
⎠ . (8.22)

8.2 Conservation Laws

In this section we show that, if the Lagrangian of a system of particles is invariant
under a group of transformations, then the dynamical system enjoys a set of conser-
vation laws. In general we shall refer to the invariance property of a Lagrangian with
respect to a group of transformations G as a symmetry under this group.

We first show that if a Lagrangian is invariant under time translations, t → t +δt ,
then energy is conserved.

For simplicity, we assume that the invariance under time translations is due to the
fact that the Lagrangian does not explicitly depend on t , namely, ∂L

∂t = 0.7 Then we
may write:

d L

dt
= ∂L

∂qi
q̇i + ∂L

∂q̇i
q̈i .

We now use the equations of motion (8.7) and obtain:

d L

dt
= d

dt

∂L

∂q̇i
q̇i + ∂L

∂q̇i
q̈i = d

dt

(
∂L

∂q̇i
q̇i

)
,

that is:
d H

dt
= 0, (8.23)

7The proof in a more general case is given in the following subsection.
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where we have defined:

H = −L + ∂L

∂q̇i
q̇i . (8.24)

We conclude that the quantity H(q, q̇) = −L + ∂L
∂q̇i

q̇i is conserved.

It is easy to recognize that H is the energy of the system. To show this in a
general way, let us consider a system of particles interacting with a potential energy
U (q1, . . . , qn):

L = T (q, q̇) − U (q).

Here T (q, q̇) is the kinetic energy which, in Cartesian coordinates, reads:

T = 1

2

N∑

k=1

3∑

i=1

m(k) ẋ
i
(k) ẋ

i
(k). (8.25)

Let us now switch to the generalized (or Lagrangian) coordinates q j , writing8:

xi
(k) = f i

(k)(q1, . . . , qn); ẋ i
(k) = ∂ f i

(k)

∂q j
q̇ j . (8.26)

In terms of the Lagrangian coordinates the kinetic energy takes the form:

T =
n∑

i, j=1

ai j (q)q̇i q̇ j . (8.27)

where we have set

a�j (q) =
N∑

k=1

3∑

i=1

m(k)

∂ f i
(k)

∂q�

∂ f i
(k)

∂q j
, �, j = 1, . . . , n.

This shows that the kinetic energy is homogeneous of degree two in the Lagrangian
velocities q̇i . Applying the Euler theorem for homogeneous functions, we find:

n∑

�=1

∂T

∂q̇�

q̇� = 2T . (8.28)

8With an abuse of notation, we shall use the same Latin indices i, j, k, . . . to label the three-
dimensional Euclidean coordinates xi and the generalized coordinates qi , though the reader should
bear in mind that in the latter case they run over the total number n of degrees of freedom of the
system. Moreover the index k, when written within brackets, is also used to label the particle in the
system. The meaning of these indices will be clear form the context.
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Moreover:
∂L

∂q̇�

= ∂T

∂q̇�

.

It follows:

H =
n∑

�=1

∂L

∂q̇�

q̇� − L =
n∑

�=1

∂T

∂q̇�

q̇� − L = T + U.

However T +U is by definition the energy of the system and therefore our statement
is proven.9

Let us now consider a system of particles whose Lagrangian L(x(k), ẋ(k)), in
Cartesian coordinates, is invariant under translations of the coordinates xi

(k); we
show that the total momentum is conserved.

Indeed, under a constant translation, the position vector of the kth particle trans-
forms as follows:

x(k) → x′
(k) = x(k) − ε; ε = const. (8.29)

where ε is a constant vector. In particular we have ẋ′
(k) = ẋ(k). Invariance of L ,

amounts to requiring it to have the same functional form in the old and in the new
variables, so that:

L(x, ẋ) = L(x ′, ẋ ′) ⇔ δL = L(x ′, ẋ ′) − L(x, ẋ) = −
∑

(k)

∂L

∂xi
(k)

εi = 0. (8.30)

Being εi arbitrary parameters, we conclude that

∑

(k)

∂L

∂xi
(k)

= 0, (8.31)

Using Eqs. (8.7), the previous equation takes the following form:

d

dt

∑

(k)

∂L

∂ ẋ i
(k)

= 0. (8.32)

On the other hand, in Cartesian coordinates, one has:

∂L

∂ ẋ i
(k)

= ∂T

∂ ẋ i
(k)

= mi ẋi
(k) = pi

(k), (8.33)

9Note that since we have assumed ∂L
∂t = 0 we have U̇ = 0, meaning that our system is isolated.
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so that Eq. (8.32) becomes:

d

dt

∑

(k)

p(k) = d

dt
P = 0, (8.34)

where we have denoted by P the total momentum of the isolated system. It follows
that:

The invariance of the Lagrangian under spatial translations implies the conser-
vation of the total momentum.

It is easy to see that if L is invariant only with respect to translations along some
directions (parametrized by the certain components of ε), only the corresponding
components of the total momentum will be conserved. For example if we have an
external force with Fz = 0 then the Lagrangian will be invariant only with respect
to translations along the z-direction, ε = (0, 0, εz) and we reach the conclusion that
only Pz is conserved.

Let us note here that invariance under the time and space translations are unrelated
in the classical theory, the former being related to time shifts and the latter to space
translations of the general Galilean group (1.15). In a relativistic theory, instead,
both invariances are part of the invariance of the Lagrangian under the subgroup of
four-dimensional translations of the Poincaré group, namely

xμ → xμ − εμ.

Therefore, energy and momentum conservation, which may hold separately in the
classical theory are strictly related in relativistic mechanics, as discussed in Chap.2,
and we may speak of the conservation of the total four-momentum pμ = (E/c, p).

Finally let us assume that the Lagrangian of the system is invariant under spatial
rotations. In Cartesian coordinates, an infinitesimal rotation changes the kth position
vector as follows (see Eq. (4.123)):

x(k) → x′
(k) = x(k) − δθ × x(k), (8.35)

where δθ is a constant infinitesimal vectorwhose direction coincideswith the rotation
axis and whose modulus is given by the infinitesimal rotation angle δθ.

Requiring invariance amounts to setting L(x, ẋ) = L(x′, ẋ′), that is:

0 = δL =
∑

(k)

(
∂L

∂xi
(k)

δxi
(k) + ∂L

∂ ẋ i
(k)

δẋ i
(k)

)

Using the Euler-Lagrange equations, we have

δL = −
∑

(k)

(
∂L

∂xi
(k)

εi j�δθ
j x�

(k) + ∂L

∂ ẋ i
(k)

εi j�δθ
j ẋ�

(k)

)

http://dx.doi.org/10.1007/978-3-319-22014-7_1
http://dx.doi.org/10.1007/978-3-319-22014-7_2
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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= −
∑

(k)

(
d

dt

∂L

∂ ẋ i
(k)

εi j�δθ
j x�

(k) + ∂L

∂ ẋ i
(k)

εi j�δθ
j ẋ�

(k)

)

= −
∑

(k)

d

dt

(
∂L

∂ ẋ i
(k)

εi j�δθ
j x�

(k)

)
.

It follows that

d

dt

∑

(k)

δθ j
(
εi j�x�

(k) pi
(k)

)
= δθ · d

dt

⎛
⎝∑

(k)

x(k) × p(k)

⎞
⎠ = 0.

Since the δθi are independent parameters, we obtain

dMtot

dt
= 0

where
Mtot =

∑

(k)

x(k) × p(k),

is the total angular momentum. Therefore the invariance of a Lagrangian under
rotations implies the conservation of the total angular momentum. As in the
previous case, if we have invariance only under a rotation about the i th-axis
(X , Y or Z ), parametrized by the i th component δθi of the infinitesimal rotation
vector, only the corresponding component of Mtot, i will be conserved.

8.2.1 The Noether Theorem for a System of Particles

The three conservation laws described in the previous subsection are associated with
the invariance properties of the Lagrangian under space and time transformations.
That means that the isotropy and homogeneity of space and time are not spoiled by
interactions.

Actually, these conservation laws are just some of the implications of a general
theorem, the Noether theorem, which we shall discuss in the present subsection. It
essentially states that a conserved quantity is associated with each invariance of the
action.

Let us first define our setting:We consider a systemwith a finite number of degrees
of freedom, which, in the reference frame S, is described in terms of a Lagrangian
L(q, q̇, t) function of the generalized coordinates qi , (i = 1, . . . , n), their time
derivatives q̇i and time t .
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Let the Lagrangian coordinates and time be subject to an arbitrary transformation
of the form:

t ′ = t ′(t), q ′
i (t

′) = q ′
i (q, t), (8.36)

the only restriction being that Eq. (8.36) be invertible. Such transformations of the
Lagrangian coordinates are often referred to as point transformations. In a different
reference frame S′, where the coordinates t ′, q ′

i are used, the Lagrangian of the
systemwill be given by a different function L ′(q ′, q̇ ′, t ′) of the new set of coordinates
q ′

i , (i = 1, . . . , n), q̇ ′
i and of time t ′.

We now observe that the action S of a dynamical system is a scalar under the
transformations (8.36), so that, taking into account the discussion made in Chap.4,
the two actions S and S ′ written in terms of their respective coordinates and times,
are related by the condition:

S ′[q ′
i ; t ′1, t ′2] = S[qi ; t1, t2]. (8.37)

where

S[qi ; t1, t2] =
t2∫

t1

dt L(q(t), q̇(t), t), (8.38)

in the reference frame S and

S ′[q ′
i ; t ′1, t ′2] =

t ′2∫

t ′1

dt ′L ′(q ′(t ′), q̇ ′(t ′), t ′), (8.39)

in the reference frame S′. Similarly also L transforms as a scalar quantity, so that L
and L ′ in the two RF’s are related by:

L ′(q ′(t ′), q̇ ′(t ′), t ′) = L(q(t), q̇(t), t). (8.40)

The new equations of motion in S′ are clearly derived in the same way from the new
Lagrangian:

∂L ′

∂q ′
i

− d

dt ′
∂L ′

∂q̇ ′
i

= 0 ∀i = 1, 2, . . . , n. (8.41)

However, the functional dependence of L ′(q ′(t), q̇ ′(t), t ′) on its arguments q ′(t),
q̇ ′(t), t ′ is in general different from that of L(q(t), q̇(t), t) on q(t), q̇(t), t . Similarly
the actions S and S ′ are different functionals of (qi ) and (q ′

i ), respectively. It follows
that the equations of motion derived from them will in general have a different form.

A transformation of the kind (8.36) is a symmetry of the system, namely the
system is invariant under (8.36), if the equations ofmotion, as a system of differential
equations, have the same form in the new and the old variables q ′

i (t
′) and qi (t).

http://dx.doi.org/10.1007/978-3-319-22014-7_4
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In light of our discussion in Sect. 8.1.1 we can easily convince ourselves that
the Euler-Lagrange equations in the two reference frames, described by different
generalized coordinates and times, will have the same form provided the functional
dependence of L ′ and L on their respective arguments is the same, modulo an addi-
tional total derivativewhich does not affect the equations ofmotion.Using the general
relation (8.40), this amounts to saying that

L(q ′(t ′), q̇ ′(t ′), t ′) = L(q(t), q̇(t), t) + d f

dt
. (8.42)

At the level of the action the above property can be stated as follows:

S[q ′
i ; t ′1, t ′2] =

t ′2∫

t ′1

dt ′L(q ′, q̇ ′, t ′) =
t2∫

t1

dt L(q, q̇, t) = S[qi ; t1, t2], (8.43)

where we have ignored the total derivative since it yields equivalent actions.
Summarizing we have seen that a transformation of the kind (8.36) is a symmetry

of the system if it leaves the action invariant, that is if the actions S and S ′ exhibit
the same functional dependence on the paths described by qi and q ′

i :

S[q ′
i ; t ′1, t ′2] = S[qi ; t1, t2], (8.44)

or, equivalently, if

δS ≡
t ′2∫

t ′1

dt ′ L(q ′, q̇ ′, t ′) −
t2∫

t1

dt L(q, q̇, t) = 0. (8.45)

After these preliminaries we may state the Noether theorem as follows:
If the action of a dynamical system is invariant under a continuous group of

(non singular) transformations of the generalized coordinates and time, of the form
q ′

i = q ′
i (q, t), t ′ = t ′(t), and if the equations of motion are satisfied, then the

quantity:

Q ≡
∑

i

∂L

∂q̇i
δqi + Lδt, (8.46)

is conserved.
We stress that the variations δqi = q ′

i (t) − qi (t) corresponding to infinitesi-
mal local transformations of the form (8.36), are not arbitrary as those used in
the discussion of the Hamilton action principle, but correspond to the subclass of
transformations leaving the action invariant.
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Let us now start from the invariance property (8.45) to derive the conserved
quantities.

We set

δS =
t ′2∫

t ′1

dt ′ L(q ′(t ′), q̇ ′(t ′), t ′) −
t2∫

t1

dt L(q(t), q̇(t), t)

=
t ′2∫

t ′1

dt L(q ′(t), q̇ ′(t), t) −
t2∫

t1

dt L(q, q̇, t), (8.47)

where, on the right hand side of the above equation, we have used the fact that t ′ is
an integration variable. We now decompose the integration over (t ′2, t ′1) as follows:
Setting t ′1 = t1 + δt1, t ′2 = t2 + δt2, we can write

t ′2∫

t ′1

=
t2∫

t1

+
t2+δt2∫

t2

−
t1+δt1∫

t1

, (8.48)

so that the first integral of Eq. (8.47) can be written as follows:

t ′2∫

t ′1

dt L
(
q ′(t), q̇ ′(t), t

) ≡
t2∫

t1

dt L
(
q ′(t), q̇ ′(t), t

)+ δt2 L (q(t2), q̇(t2), t2)

− δt1 L (q(t1), q̇(t1), t1) . (8.49)

In deriving (8.49) we have replaced, in the last two terms

L
(
q ′(t), q̇ ′(t), t

) ≡ L (q(t) + δq, q̇(t) + δq̇(t), t) , (8.50)

with L (q(t), q̇(t), t) since their difference is infinitesimal (of order O(δq)) and
therefore its product with the infinitesimal quantities δt2, δt1 is of higher order.

Next we substitute Eq. (8.49) into Eq. (8.47), obtaining:

δS =
t2∫

t1

[
L
(
q ′(t), q̇ ′(t), t

)− L (q(t), q̇(t), t)
]

dt + L (q(t), q̇(t), t) δt |t2t1 .

(8.51)
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The integral on the right hand side can be now expanded as follows:

t2∫

t1

[
L
(
q ′(t), q̇ ′(t), t

)− L (q(t), q̇(t), t)
]

dt

=
t2∫

t1

(
∂L

∂qi
δqi + ∂L

∂q̇i
δq̇i

)
dt

=
t2∫

t1

([
∂L

∂qi
− d

dt

∂L

∂q̇i

]
δqi + d

dt

(
∂L

∂q̇i
δqi

))
dt, (8.52)

where we have integrated by parts ∂L
∂q̇i δq̇i = ∂L

∂q̇i
d
dt δqi . Upon substituting Eq. (8.52)

into (8.51), we find:

δS =
t2∫

t1

[
∂L

∂qi
− d

dt

∂L

∂q̇i

]
δqi dt +

t2∫

t1

d

dt

(
∂L

∂q̇i
δqi + Lδt

)
dt (8.53)

where we used the obvious equality:

Lδt |t2t1 =
t2∫

t1

dt
d

dt
(Lδt). (8.54)

If the equations of motion are satisfied, the first integral on the right hand side of Eq.
(8.53) vanishes and Eq. (8.53) becomes:

δS =
t2∫

t1

d

dt

(
∂L

∂q̇i
δqi + Lδt

)
dt. (8.55)

From this it follows that, if the action is invariant, δS = 0, the quantity

Q(t) =
∑

i

∂L

∂q̇i
δqi + Lδt, (8.56)

is conserved, which is the content of the Noether theorem. Indeed from (8.55), taking
into account the arbitrariness of t2, t1, we have:

Q(t2) = Q(t1), ∀t1, t2 ⇔ d Q

dt
= 0. (8.57)
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Quite generally the transformations leaving the action invariant form a group with g
parameters θr (r = 1, 2, . . . , g), so that we may write

δqi = δθr f i
r (q, t).

For instance, rotations in space close the three-parameter groupSO(3), the parameters
being the three angles. Factorizing the linear dependence of Q on the infinitesimal
parameters δθr , Q = δθr Qr , and being the parameters θr independent, we end up
with g conserved charges associated with the variations δqi (g + 1 if we include also
the time translations).

The conserved quantities Qr are referred to as Noether charges.
As an application, let us derive the conservation laws of energy, momentum and

angular momentum directly from the Noether theorem.
Suppose the Lagrangian is invariant under time translations:

t ′ = t − dt ⇒ δt = −dt, (8.58)

Then the coordinates used in the two RF’s only differ by the infinitesimal time delay,
so that q ′

i (t
′) = qi (t). From this relationwe deduce the infinitesimal relation between

the two coordinate systems

q ′i (t − dt) = qi (t) ⇒ q ′i (t) − q̇i (t) dt = qi (t)

⇒ δqi (t) ≡ q ′i (t) − qi (t) = q̇i (t) dt. (8.59)

Correspondingly we find:

Q = Qtδt =
(

∂L

∂q̇i
q̇ i − L

)
δt = H δt. (8.60)

We see that invariance under time translations implies that we have one conserved
charge corresponding to the energy: H ≡ Q (Note that the time translation depends
on one parameter, δt).

We have thus generalized our proof of the energy conservation given earlier since
the invariance under time translations is satisfied if, in particular, the Lagrangian does
not explicitly depend on time, ∂L

∂t = 0, as was assumed in the previous subsection.
If the Lagrangian is invariant under space translations and rotations the value of

the conserved charges Qi is also readily computed using the variations δqk given,
in Cartesian coordinates, by Eqs. (8.29) and (8.35). In the case of constant space
translations, after renaming δqi ≡ −εi , following the same steps as for the energy
conservation, we find:

Q = Qi ε
i = −

∑

k

∂L

∂ ẋ i
(k)

εi ≡ −
∑

k

p(k) · ε = −P · ε (8.61)
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implying conservation of the total momentum. The Noether charges Qt , Qi in

Eqs. (8.60) and (8.61) can be grouped in the four-vector
(

Qt
c , Qi

)
= ( H

c ,−Pi
) =

Pμ = ημν Pν which is the total energy-momentum four-vectorwith the index lowered
with the metric. Analogously, setting δqi = −εilmδθl xm , invariance under spatial
rotations gives

Q = −
∑

k

∂L

∂ ẋ i
(k)

εilmδθl xm
(k) ≡ −δθ ·

∑

k

x(k) × p(k) = −δθ · M, (8.62)

implying the conservation of the total angular momentum.10

8.3 The Hamiltonian Formalism

In this sectionwe give a short reviewof theHamiltonian formalism for the description
of mechanical systems with a finite number of degrees of freedom.

The Hamiltonian formulation of mechanics can be obtained from the Lagrangian
one by introducing the canonical momenta pi , conjugate to the Lagrangian coordi-
nates, defined as:

pi = ∂L

∂q̇i
(q, q̇, t). (8.63)

Barring degeneracies, Eqs. (8.63) can be solved with respect to the Lagrangian veloc-
ities, obtaining: q̇i = q̇i (p, q).

Next one defines the Hamiltonian of the dynamical system as:

H(p, q, t) ≡
∑

pi q̇i (p, q) − L(q, q̇(p, q), t). (8.64)

Comparing the definitions (8.24) and (8.64), with see that the physical meaning
of H(p, q) is that of the energy of the system H = H(q̇, q) and indeed, by an
abuse of notation, they have been denoted by the same symbol. However it must be
kept in mind that while in the Lagrangian formalism H is a function of q, q̇ , in the
Hamiltonian formalism H = H(p, q), so that their functional definition is different.

Let us now see how the equations of motion are derived in the Hamiltonian
formalism.

By differentiating both sides of Eq. (8.64) one finds (using Einstein convention
for summation over repeated indices):

10As noted in the previous discussion invariance under transformations parametrized by just some
components of the vector parameters ε and δθ, implies the conservation of the corresponding
components of the vector quantities P and M.
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d H = dpi q̇i + pi
∂q̇i

∂ p j
dp j + pi

∂q̇i

∂q j
dq j − ∂L

∂qi
dqi

− ∂L

∂q̇i

∂q̇i

∂ p j
dp j − ∂L

∂q̇i

∂q̇i

∂q j
dq j − ∂L

∂t
dt

= dpi

[
q̇i +

(
p j − ∂L

∂q̇ j

)
∂q̇ j

∂ pi

]
+ dqi

[
− ∂L

∂qi
+
(

p j − ∂L

∂q̇ j

)
∂q̇ j

∂qi

]
− dt

∂L

∂t
.

Upon using Eq. (8.63) and the Euler-Lagrangian equations (8.7), one obtains:

d H =
∑

dpi q̇i −
∑

dqi ṗi − dt
∂L

∂t

= ∂H

∂ pi
dpi + ∂H

∂qi
dqi + ∂H

∂t
dt, (8.65)

where the last equality represents the general expression of the total derivative of H .
From the above equation we conclude that

q̇i = ∂H

∂ pi
; ṗi = −∂H

∂qi
, (8.66)

−∂L

∂t
= ∂H

∂t
. (8.67)

Equation (8.66) represent a first order system of differential equations for the
Lagrangian coordinates qi and their conjugate momenta pi , which is referred to as
the Hamilton equations of motion. The physical content of the Hamilton equations
and of the Euler-Lagrange equations is of course the same, however each formalism
gives different insight into the properties of the mechanical system.

Considering qi and pi as coordinates of a 2n-dimensional space, called the phase
space, the state of a mechanical system is completely determined at each instant t
by a point in this space labeled by the 2n coordinates q1, . . . , qn and p1, . . . , pn .
The time evolution of the system will then be described by a trajectory in the phase
space. The Lagrangian variables qi and their conjugate momenta pi are referred to
as canonical coordinates.

Let us note that theHamilton equations (8.66) can be also obtained from the action
principle δS = 0. Indeed, in terms of the pi and qi variables, the action takes the
form:

S =
t2∫

t1

(∑
pi q̇i − H(p, q)

)
dt. (8.68)

Ifwe require stationarity of the actionwith respect to arbitrary variations δ pi and δqi ,
with the constraint that they vanish at the end points of the time interval, δ pi (t1) =
δqi (t1) = δ pi (t2) = δqi (t2) = 0, one obtains:
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0 = δS = δ

⎡
⎣

t2∫

t1

(∑
pi q̇i − H(p, q)

)
dt

⎤
⎦

=
t2∫

t1

∑[
δ pi q̇i − ṗiδqi + d

dt
(piδqi ) − ∂H

∂qi
δqi − ∂H

∂ pi
δ pi

]
dt

=
t2∫

t1

dt
∑[

δ pi

(
q̇i − ∂H

∂ pi

)
− δqi

(
ṗi + ∂H

∂qi

)]
+
∑

(piδqi )|t2t1 ,

where the last term is zero. Being δ pi and δqi arbitrary, Eq. (8.66) are retrieved.
Let us now consider a dynamical variable f (q, p, t), function of pi (t), qi (t) and

carrying in general also an explicit dependence on t . Computing its time derivative
we find

d

dt
f (p, q, t) =

∑

i

(
∂ f

∂qi
q̇i + ∂ f

∂ pi
ṗi

)
+ ∂ f

∂t

=
∑

i

(
∂ f

∂qi

∂H

∂ pi
− ∂ f

∂ pi

∂H

∂qi

)
+ ∂ f

∂t
= ∂ f

∂t
+ { f, H}. (8.69)

where

{ f, H} ≡
∑

i

(
∂ f

∂qi

∂H

∂ pi
− ∂ f

∂ pi

∂H

∂qi

)
, (8.70)

defines the Poisson brackets of f with H . From Eq. (8.69) it follows that the dynam-
ical variable f (q, p, t) is a constant of motion if

∂ f

∂t
+ { f, H} = 0. (8.71)

In particular, (8.69) implies that if f does not explicitly depend on time, ∂ f
∂t = 0,

then f is a constant of the motion if and only if

{ f, H} = 0. (8.72)

The definition of the Poisson brackets can be extended to any pair of dynamical
variables f (p, q) and g(p, q). We define Poisson brackets of f and g, denoted by
the symbol { f, g}, the following quantity:

{ f, g} =
∑

i

(
∂ f

∂qi

∂g

∂ pi
− ∂ f

∂ pi

∂g

∂qi

)
= −{g, f }. (8.73)
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From the definition it follows that the Poisson bracket is antisymmetric in the
exchange of its two entries. In particular { f, f } = 0.

Moreover, given three dynamical variables f, g, h, the following Jacobi identity
holds (see Appendix D):

{ f, {g, h}} + {g, {h, f }} + {h, { f, g}} = 0. (8.74)

Of particular relevance are the Poisson brackets between the Lagrangian coordinates
and the conjugate momenta, which are readily found to be:

{qi , p j } = δi j , (8.75)

{qi , q j } = {pi , p j } = 0. (8.76)

It is important to observe that when the action S is evaluated along an actual tra-
jectory, defining the evolution of the system in phase space, we can regard S as a
function of the upper limit of the integral; fromEq. (8.68) it follows that the increment
of the action between the instants t and t + dt, is given by:

dS = pi dqi − H(p, q)dt,

that is:

∂S
∂qi

= pi ; ∂S
∂t

= −H. (8.77)

UsingCartesian coordinates for a single particle, Eq. (8.77) canbewritten in aLorentz
covariant way as follows:

∂S
∂xμ

= −ημν pν, (8.78)

where pν = ( H
c , p

)
and we have considered for simplicity a single particle.

As a simple application of the Hamilton formalism we compute the relativistic
Hamiltonian of a free particle.

Using as Lagrangian coordinates the Cartesian ones, from the relativistic
Lagrangian (8.21) we compute the conjugate momentum:

pi = ∂L

∂vi
= m√

1 − v2

c2

vi = m(v)vi , (i = 1, 2, 3),

which coincides with the relativistic momentum. The relativistic Hamiltonian is then
computed from Eq. (8.64):
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H = p · v − L = mv2√
1 − v2

c2

+ mc2

√
1 − v2

c2
(8.79)

= mc2√
1 − v2

c2

= m(v)c2, (8.80)

which coincides with the relativistic expression of the energy.11

8.4 Canonical Transformations and Conserved Quantities

In this section we describe the canonical transformations of the Hamiltonian for-
malism. This will allow us to give a new interpretation of the conserved quantities
as generators of those “canonical transformations” which are symmetries, namely
invariances, of the dynamical system.

Weobserve that thepoint transformationsof theq-variables used in theLagrangian
formalism for the discussion of the Noether theorem, if symmetries, do not change
the general form of either the Euler-Lagrange equations, or the Hamilton equations
of motion.

In the Hamiltonian formalism, however, we have as independent variables not
only the canonical coordinates qi , but also their conjugate momenta pi playing
the role of additional coordinates. The space parametrized by the 2n coordinates
pi , qi was called phase space. Taken together these 2n canonical coordinates admit a
much larger class of transformations.Wemay indeed consider arbitrary non-singular
transformations on the 2n canonical variables qi , pi :

pi → Pi = Pi (p, q, t),
qi → Qi = Qi (p, q, t),

(8.81)

where, for the sake of clarity, we have denoted the new variables obtained after the
transformation by Qi , Pi .12

We thendefine canonical transformations the subgroupof transformations leading
to canonical variables Qi , Pi satisfying a system of Hamilton equations of the same
form as in (8.66) though characterized by a different Hamiltonian function H ′13:

Q̇i = ∂H ′

∂Pi
; Ṗi = −∂H ′

∂Qi
(8.82)

11From the Hamiltonian point of view we must substitute v2 = c2|p|2
c2m2+|p|2 .

12Note that the transformations (8.81) form a group, the group of coordinate transformations in
phase space.
13We do not consider in this case transformation of the time variable.
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Note that in general H ′(P, Q, t) �= H(P, Q, t), that is we do not require these trans-
formations to leave the functional form of the Hamiltonian H invariant. Therefore
in general, the new canonical equations will have a different form compared to those
in the old variables pi , qi .

To derive the conditions under which a general transformation (8.81) is canonical,
we observe that the new variables Pi , Qi will satisfy Eq. (8.82) if and only if these
equations can be derived by the stationary action principle, as it is the case for the old
variables pi , qi . Therefore, under arbitrary variations of the canonical coordinates,
we must have:

δS = δ

∫ ∑

i

(pi dqi −Hdt) = 0 ↔ δS ′ = δ

∫ ∑

i

(Pi d Qi −H ′(Qi , Pi , t)dt) = 0.

This can only happen if the integrands of ◦S and ◦S′ differ by the total differential
of a function F :

d F +
∑

i

Pi d Qi − H ′dt =
∑

i

pi dqi − Hdt. (8.83)

If this equation is satisfied then the general transformation (8.81) is canonical and
the function F is called the generating function of the canonical transformation.

Equation (8.83) implies a set of equations defining F in terms of qi , Qi and t :

∂F

∂qi
= pi ; ∂F

∂Qi
= −Pi ; ∂F

∂t
= H ′ − H. (8.84)

From Eq. (8.84), we deduce that the generating function F can be regarded as a
function of the old and new Lagrangian coordinates qi , Qi .

We may, however, construct a new generating function Φ(qi , Pi ) depending on
the old coordinates qi and the new momenta Pi . This can be obtained from the
generating function F by the following Legendre transformation:

Φ(q, P, t) = F +
∑

i

Pi Qi . (8.85)

Substituting indeed F in terms of Φ in Eq. (8.83), we obtain:

dΦ =
∑

i

Qi d Pi +
∑

i

pi dqi + (H ′ − H)dt,

that is:
∂Φ

∂Pi
= Qi ; ∂Φ

∂qi
= pi ; ∂Φ

∂t
= H ′ − H. (8.86)
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OtherLegendre transformations canbedefined in order to obtain generating functions
of any couple of old and new canonical coordinates. For our purposes however we
shall only use the generating function (8.85). The reason is the following. Choosing
Φ(q, P) = ∑

i
qi Pi , Eq. (8.86) gives:

Qi = qi ; Pi = pi ; H = H ′, (8.87)

that is the corresponding canonical transformation is the identity transformation.
This allows us to generate infinitesimal canonical transformations considering

transformations differing by an infinitesimal amount from the identity one (8.87):

Φ(q, P, t) =
∑

qi Pi − δθr Gr (q, P, t) δθr � 1, (8.88)

where δθr (r = 1, ..., g) are the infinitesimal parameters of the canonical transfor-
mation. For this kind of transformations, Eq. (8.86) takes the following form:

Qi = qi − δθr ∂Gr

∂Pi
, (8.89)

pi = Pi − δθr ∂Gr

∂qi
, (8.90)

H ′ − H = −δθr ∂Gr

∂t
. (8.91)

On the other hand, on the right hand side of Eq. (8.89) we may replace ∂Gr
∂Pi

with ∂Gr
∂ pi

since their difference, multiplied by the infinitesimal δθr , is of higher order and can
thus be neglected. The previous equations, using the definition of Poisson brackets,
become:

δqi = Qi − qi = −δθr ∂Gr

∂ pi
= −δθr {qi , Gr } (8.92)

δ pi = Pi − pi = δθr ∂Gr

∂qi
= −δθr {pi , Gr }; (8.93)

δH = H ′ − H = −δθr ∂Gr

∂t
. (8.94)

Accordingly, the quantity δθr Gr is called infinitesimal generator of the canonical
transformation and the Gr ’s build a basis of generators.

Let us now consider a dynamical variable function of Pi , qi and let us compute
its transformation under an infinitesimal canonical transformation:
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δ f = f (P + δP, q + δq) − f (P, q) = ∂ f

∂Pi
δ pi + ∂ f

∂qi
δqi

= −δθr
(

∂ f

∂qi

∂Gr

∂ pi
− ∂ f

∂ pi

∂Gr

∂qi

)
= −δθr { f, Gr }, (8.95)

where, by the same token as above, we have approximated ∂Gr
∂Pi

by ∂Gr
∂ pi

and ∂ f
∂Pi

by
∂ f
∂ pi

since they are multiplied by an infinitesimal quantity. It is easy to verify that
under the infinitesimal canonical transformation, using (8.92), (8.93) and the Jacobi
identity (8.74), we have

δ{qi , p j } = 0. (8.96)

That means that the fundamental canonical brackets between the Lagrangian coor-
dinates and conjugate momenta are left invariant under an infinitesimal canonical
transformation and therefore also by finite ones.

It is important to observe that the time evolution of a dynamical system, i.e. the
correspondence between the canonical variables computed at a time t and those
evaluated at a later time t ′ > t , can be considered as a particular canonical trans-
formation whose infinitesimal generator is the Hamiltonian.

Let us indeed consider the change of the canonical coordinates when the time is
increased from t to t + dt :

qi (t) → q ′
i (t) = qi (t + dt) � qi (t) + dtq̇i (t),

pi (t) → p′
i (t) = pi (t + dt) � pi (t) + dt ṗi (t).

It is easy to show that the infinitesimal generator of this transformation is H . If we
indeed identify

Φ(q, P) = qi Pi + dt H(p, q, t),

and use Eqs. (8.92), (8.93), upon identifying G = −H and δθ = dt , we find

δqi = −dt
∂G

∂ pi
= dt

∂H

∂ pi
= dt q̇i ,

δ pi = dt
∂G

∂qi
= −dt

∂H

∂qi
= dt ṗi ,

where we have used the Hamilton equations (8.66). We may therefore state that The
Hamiltonian is the infinitesimal generator of the time translations. In other words H
generates the time evolution of the dynamical system.

We further note that if we compute the Poisson brackets of the canonical variables
with the Hamiltonian we find:

{qi , H} = ∂H

∂ pi
; {pi , H} = −∂H

∂qi
, (8.97)
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so that the Hamilton equations of motion (8.66) can be also written as follows:

q̇i = {qi , H} ; ṗi = {pi , H}. (8.98)

8.4.1 Conservation Laws in the Hamiltonian Formalism

In the Lagrangian formalism the conservation laws were derived by requiring the
symmetry transformations on the Lagrangian coordinates to leave the functional
form of the Lagrangian invariant, modulo an additional total derivative. Applying
this requirement to translations in space and time, and to rotations, we derived the
conservation laws for the linear momentum, energy and angular momentum.

Let us apply the same argument of invariance to the Hamiltonian of a dynamical
system: A canonical transformation is an invariance of the system if it leaves the
Hamilton equations of motion invariant in form, and this is the case if the functional
dependence of the Hamiltonian on the old and new canonical variables is the same14

H ′(p′, q ′, t) = H(p′, q ′, t). (8.99)

If we consider infinitesimal canonical transformations (8.89), (8.90), (8.91), p′, q ′
differ from p, q by infinitesimals δ p, δq, so that Eq. (8.99) amounts to requiring:

δH = H(p′, q ′) − H(p, q) = −δθr {H, Gr } = −δθr ∂Gr

∂t
, (8.100)

where we have used Eqs. (8.94) and (8.95). From Eqs. (8.69) and (8.100), being δθr

arbitrary, we conclude that

dGr

dt
= ∂Gr

∂t
+ {Gr , H} = 0,

namely that Gr are constants of motion. In particular we see that the infinitesimal
generators Gr of the canonical transformations in the Hamiltonian formalism cor-
respond to the Noether charges Qr of the Lagrangian formalism.

As an example, we want to retrieve once again the three conservation laws of
linear momentum, angular momentum and energy, in the Hamiltonian formalism.
Let us start implementing the condition of invariance of a system of n particles under
space translations. The (Cartesian) coordinates and momenta of the particles are
denoted, as usual, by x(k) and p(k), ( k = 1, ..., N ), respectively. Let us perform the
infinitesimal translations

x(k) → x′
(k) = x(k) − ε; |ε| � 1

14In this subsection we use the notations p′
i , q ′

i instead of Pi , Qi .
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p(k) → p′
(k) = p(k),

which are supposed to leave the action invariant. To compute the infinitesimal gen-
erator of a translation on the kth particle we use Eqs. (8.92) and (8.93):

δxi
(k) = −ε j ∂G j

∂ pi
(k)

= −εi ; δ pi
(k) = ε j ∂G j

∂xi
(k)

= 0.

From the above equations it follows that

∂G j

∂xi
(k)

= 0 ; ∂G j

∂ pi
(k)

= δi
j ⇒ G j (x(k), p(k)) =

∑

k

p j
(k) = P j

(tot),

where P j
(tot) is the j th component of the total linear momentum.

If the Hamiltonian is invariant under space-translations then the total linear
momentum Ptot has vanishing Poisson bracket with the Hamiltonian, which in turn
implies that it is conserved:

dP(tot)

dt
= 0.

By the same token we deduce the conservation of the total angular momentum.
Indeed under an infinitesimal rotation we have:

x(k) → x′
(k) = x(k) − δθ × x(k),

p(k) → p′
(k) = p(k) − δθ × p(k),

from which it follows that

δxi
(k) = −δθr ∂Gr

∂ pi
(k)

= −δθr εir j x j
(k) = − (

δθ × x(k)

)i
, (8.101)

δ pi
(k) = δθr ∂Gr

∂xi
(k)

= −εir jδθ
r p j

(k) = − (
δθ × p(k)

)i
. (8.102)

From (8.101) and (8.102) we obtain:

Gi =
∑

k

εi jr x j
(k) pr

(k) = Mi (tot),

where Mi (tot) is the i th component of the total angular momentum. Therefore, if the
system is invariant under rotations, the total angular momentum M(tot) commutes
with the Hamiltonian, implying that it is conserved:

d

dt
M(tot) = 0.
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Finally we note that if the Hamiltonian does not explicitly depend on t , so that we
have invariance under time translations,

∂H

∂t
= 0,

then, since {H, H} = 0, from (8.72) it follows:

d H

dt
= 0,

that is the energy conservation in the canonical formalism. In fact, as we have seen,
the Hamiltonian is the infinitesimal generator of time translations, which is a
symmetry if neither the Lagrangian, nor the Hamiltonian explicitly depend on time.

8.5 Lagrangian and Hamiltonian Formalism
in Field Theories

Our discussion has been confined so far to mechanical systems with a finite number
of degrees of freedom, q1(t), . . . , qn(t).

This, however, has been propaedeutic to our principal objective, namely the
description of continuous systems, hereafter called fields. A well known example
of field is the electromagnetic field whose description is given in terms of the four-
potential Aμ(x, t); that means that, at any instant t , its configuration is defined by
associating with each component μ the value of Aμ(x, t) at each point x in space.

In this case we have a continuous infinity of canonical coordinates qi (t) =
Aμ(x, t), labeled by the three coordinates x for the space-point and the index μ.15

Other examples of fields are the continuous matter fields like fluids, elastic media,
etc.

Quite generally we may view a continuous system as the limit of a mechanical
system described by a finite number of degrees of freedom qi (discrete system), by
letting i become the continuous index x. As a consequence every sum Σi over the
discrete label i will be replaced by an integration on d3x over a spatial domain V ,
usually the whole three-dimensional space16:

∑

i

→
∫

V

d3x.

15More precisely, since x ≡ (x1, x2, x3), we have a triple infinity of Lagrangian coordinates qi (t)
for each value of the index μ = 0, 1, 2, 3. The three components of x and the index μ play the role
of the index i of the discrete case.
16Actually in our treatment of a discrete number of degrees of freedom, we have often omitted the
symbol Σ when there were repeated indices.
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In the following we shall consider fields ϕα(x, t) carrying an (internal) index α,
where α labels the components of a “vector ϕ ≡ (ϕα)” on which a representation
of a group G acts. If α has just one value, it will be omitted and we speak of a
scalar field. In relativistic field theories, the group G will often be the Lorentz group
O(1, 3) so that the index will label a basis of the carrier of a representation of the
Lorentz group.17 For example, in the case of the electromagnetic field, the role ofα is
played by the index μ pertaining to the four-dimensional fundamental representation
of SO(1, 3).

8.5.1 Functional Derivative

When we think of fields as a continuous limit of discrete systems, the corresponding
Lagrangian obtained in the limit, L(ϕα, ∂tϕ

α, t), will depend, at a certain instant t,
on the values of the fields ϕα(x, t) and ∂tϕ

α(x, t) at every point in the domain V of
the three-dimensional space. We say in this case that the Lagrangian is a functional
of ϕα(x, t) and ∂tϕ

α(x, t), viewed as functions of x. It will be convenient in the
following to denote by ϕα(t) the function ϕα(x, t) of the point x in space at a given
time t , and by ϕ̇α(t) its time derivative ϕ̇α(x, t) ≡ ∂tϕ

α(x, t). We shall presently
explore some property of functionals.

Let us consider a functional F[ϕ], and perform an independent variation of ϕ(x),
at each space point x. The corresponding variation of F[ϕ] will be:

δF[ϕ] ≡ F[ϕ + δϕ] − F[ϕ] =
∫

δF[ϕ]
δϕ(x)

δϕ(x) d3x (8.103)

where, by definition, δF[ϕ]
δϕ(x)

is the functional derivative of F[ϕ] with respect to ϕ at
the point x. Here we have suppressed the possible dependence on time of ϕ and of
the functional F either explicitly or through ϕ: ϕ = ϕ(x, t), F = F[ϕ(t), t].

From its definition it is easy to verify that the functional derivation enjoys the same
properties as the ordinary one, namely it is a linear operator, vanishes on constants
and satisfies the Leibnitz rule.

When the functional depends on more than a single function, its definition can
be extended correspondingly, as for ordinary derivatives. Of particular relevance for
us is the additional dependence of F on the time derivative ∂tϕ(x, t) of ϕ(x, t).
Moreover we may consider a set of fields ϕα labeled by the index α pertaining
to a given representation of a group G. This is the case of the Lagrangian F =
L(ϕα(t), ϕ̇α(t), t), where we recall once again that, in writing ϕ(t), ϕ̇(t) among the
arguments of the Lagrangian, we mean that L depends on the values ϕ(x, t), ϕ̇(x, t)
of these fields in every point x in space at a given time t . Applying the definition

17Somewhat improperly, by the word representation people often refer to the carrier space Vp of
a representation. We shall also do this to simplify the exposition and thus talk about a basis of a
representation when referring to a basis of the corresponding carrier space.
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(8.103) to the two functions ϕα(t) and ϕ̇α(t) we have:

δL(ϕα(t), ϕ̇α(t), t) =
∫

d3x
[

δL

δϕα(x, t)
δϕα(x, t) + δL

δϕ̇α(x, t)
δϕ̇α(x, t)

]
.

(8.104)

Note that the Lagrangian depends on t either through ϕα and ϕ̇α or explicitly. The
Lagrangian, as a functional with respect to the space-dependence of the fields, can be
thought of as the continuous limit of a function of infinitely many discrete variables:

L(ϕxi (t), ϕ̇i (t), t)
i→x−→ L(ϕ(x, t), ϕ̇(x, t)).

Here and in the following we shall often omit the index α if not essential to our
considerations. Correspondingly, we can show that the functional derivative defined
above can be thought of as a suitable continuous limit of the ordinary derivative with
respect to a discrete set of degrees of freedom qi , described by aLagrangian L(qi , q̇i ).
Let us indeed regard the values of ϕ(x, t) at each point x as independent canonical
coordinates. To deal with a continuous infinity of canonical coordinates, we divide
the 3-space into tiny cells of volume δV i . Let ϕi (t) be the mean value of ϕ(x, t)
inside the i th cell and L(t) = L(ϕi (t), ϕ̇i (t), t) be the Lagrangian, depending on
the values ϕi (t), ϕ̇i (t) of the field and its time derivative in every cell. The variation
δL(ϕi , ϕ̇i ) can be written as:

δL(ϕi (t), ϕ̇i (t), t) =
∑

i

(
∂L

∂ϕi
δϕi + ∂L

∂ϕ̇i
δϕ̇i

)

=
∑

i

1

δV i

(
∂L

∂ϕi
δϕi + ∂L

∂ϕ̇i
δϕ̇

)
δV i , (8.105)

If we compare this expression with Eq. (8.104), in the continuum limit one can make
the following identification:

δL

δϕ(x, t)
≡ lim

δV i →0

1

δV i

∂L

∂ϕi
,

δL

δϕ̇(x, t)
≡ lim

δV i →0

1

δV i

∂L

∂(ϕ̇i )
, (8.106)

where x is in the i th cell. In the limit δVi → 0 we can set δVi ≡ d3x. Thus the
functional derivative δL(t)/δϕ(x, t) is essentially proportional to the derivative of
L with respect to the value of ϕ at the point x. Since in the discretized notation the
action principle leads to the equations of motion:

∂L(t)

∂ϕi
− ∂t

∂L(t)

∂ϕ̇i (t)
= 0 (8.107)
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in the continuum limit the Euler-Lagrange equations become:

δL

δϕα(x, t)
− ∂t

δL

δϕ̇α(x, t)
= 0. (8.108)

where we have reintroduced the index α of the general case.
In the discretized notation we shall assume the Lagrangian L , which depends

on the values of the fields and their time derivatives in every cell, to be the sum of
quantities Li defined in each cell: Li depends on the values of the field ϕα

i (t), its
gradient ∇ϕα

i and its time derivative ϕ̇α
i (t) in the i th cell only:

L(ϕα
i (t), ϕ̇α

i (t), t) =
∑

i

Li (ϕ
α
i (t), ∇ϕα

i (t), ϕ̇α
i (t), t). (8.109)

Multiplying and dividing the right hand side by δVi and taking the continuum limit
δVi → d3x, the above equality becomes

L(ϕα(t), ϕ̇α(t), t) =
∫

V

d3x L(ϕα(x),∇ϕα(x), ϕ̇α(x); x, t), (8.110)

where x ≡ (xμ) = (ct, x) and we have defined the Lagrangian density L as:

L(ϕα(x),∇ϕα(x), ϕ̇α(x); x, t) ≡ lim
δVi →0

1

δVi
Li (ϕ

α
i (t), ∇ϕα

i (t), ϕ̇α
i (t), t).

Just asLi depends, at a time t , on the dynamical variables referred to the i th cell only,
L is a local quantity in Minkowski space in that it depends on both x and t . We note
the appearance inL(x) of the space derivatives∇ϕα(x, t). This follows from the fact
that in order to have an action which is a scalar under Lorentz transformations, L
itself must be a Lorentz scalar. Since Lorentz transformations will in general shuffle
time and space derivatives,L should then depend on all of them. The action, in terms
of the Lagrangian density, will read

S[ϕα; t1, t2] =
t2∫

t1

dt L(t) =
∫

dt d3x L(x) = 1

c

∫

D4

d4xL(x) (8.111)

where D4 is a space-time domain: An event x ≡ (xμ) in D4 occurs at a time t
between t1 and t2 and at a point x in the volume V . In formulas we will write D4 ≡
[t1, t2]×V ⊂ M4. Since S does not depend only on the time interval [t1, t2] but also
on the volume V in which the values of the fields and their derivatives are considered,
we will write S ≡ S[ϕα; D4]. The boundary of D4, to be denoted by ∂D4, consists
of all the events occurring either at t = t1 or at t = t2, and of events occurring at a
generic t ∈ [t1, t2] in a point x belonging to the surface SV which encloses the volume
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V : x ∈ SV ≡ ∂V . The measure of integration d4x ≡ dx0dx1dx2dx3 = c dt d3x
is invariant under Lorentz transformations � = (Λμ

ν), since the absolute value
|det(�)| of the determinant of the corresponding Jacobian matrix�, is equal to one:

xμ −→ x ′μ = Λμ
ν xν ⇒ d4x −→ d4x ′ = |det(�)| d4x = d4x . (8.112)

It follows that in order to have a scalar Lagrangian density, L must have the same
dependence on ∇ϕα(x, t) as on ϕ̇α(x, t), that is it must actually depend on the four-
vector ∂μϕα(x, t). Moreover, being a scalar, it must depend on the fields and their
derivatives ∂μϕα(x, t) only through invariants constructed out of them. For the same
reason it cannot depend on t only, but, in general, on all the space-time coordinates
xμ.

Let us now consider arbitrary infinitesimal variations of the field ϕα(x) which
vanish at the boundary ∂D4 of D4: δϕα(x) ≡ 0 if x ∈ ∂D4. The corresponding
variation of L can be computed by using Eq. (8.110):

δL =
∫

d3x
[

∂L(x, t)

∂ϕα(x, t)
δϕα(x, t) + ∂L(x, t)

∂∂i ϕα(x, t)
δ∂i ϕ

α(x, t)

+ ∂L(x, t)

∂(ϕ̇α(x, t))
δϕ̇α(x, t)

]

=
∫

d3x
{[

∂L(x, t)

∂ϕα(x, t)
− ∂i

∂L(x, t)

∂∂i ϕα(x, t)

]
δϕα(x, t) + ∂L(x, t)

∂ϕ̇α(x, t)
δϕ̇α(x, t)

}
, (8.113)

where we have written ∇ ≡ (∂i )i=1,2,3, used the property that δ∂iϕ
α = ∂iδϕ

α and
integrated the second term within the integral by parts, dropping the surface term,
being δϕα(x) = 0 for x ∈ SV ≡ ∂V .

Taking into account that the quantity inside the curly brackets defines the func-
tional derivative of L , by comparison with Eq. (8.108) we find:

δL

δϕα(x)
=
[

∂L(x)

∂ϕα(x)
− ∂i

∂L(x)

∂∂iϕα(x)

]
,

δL

δϕ̇α(x)
= ∂L(x)

∂ϕ̇α(x)
. (8.114)

It is important to note that, using the Lagrangian density instead of the Lagrangian,
the derivatives of L(x, t) with respect to the fields in (x, t) are now the usual partial
derivatives, since they are computed at a particular point x. Using the equalities
(8.114) the Euler-Lagrange equations (8.108) take the following form:

∂t
∂L

∂(∂tϕα)
= ∂L

∂ϕα
− ∂i

∂L
∂(∂iϕα)

, (8.115)
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or, using a Lorentz covariant notation:

∂L
∂ϕα

− ∂μ

(
∂L

∂(∂μϕα)

)
= 0. (8.116)

8.5.2 The Hamilton Principle of Stationary Action

In the previous paragraph the equations of motion for fields have been derived using
the definition of functional derivative and performing the continuous limit of the
Euler-Lagrange equations for a discrete system.

Actually Eqs. (8.116), can also be derived directly from the Hamilton principle
of stationary action, considering the action S as a functional of the fields ϕα and
depending on the space-time domain D4 on which they are defined:

S[ϕα; D4] = 1

c

∫

D4

d4x L(ϕα, ∂μϕα, xμ). (8.117)

Here d4x ≡ dx0d3x = c dtd3x is the volume element in the Minkowski space M4,
and the integration domain D4 was defined as [t1, t2] × V ⊂ M4.

We can now generalize the Hamilton principle of stationary action to systems
described by fields, namely systems exhibiting a continuous infinity of degrees of
freedom. It states that:

The time evolution of the field configuration describing the system is obtained by
extremizing the action with respect to arbitrary variations of the fields δϕα which
vanish at the boundary ∂D4 of the space-time domain D4.

More precisely, we require the action S to be stationary with respect to δϕα, that
is to satisfy

δS = 0,

under arbitrary variations of ϕα at each point x and at each instant t :

ϕα(x) → ϕα(x) + δϕα(x),

provided:
δϕα(x) = 0 ∀xμ ∈ ∂D4. (8.118)

Let us apply this principle to the action (8.117). We have:

δS = 1

c

∫

D4

d4x

(
∂L
∂ϕα

δϕα + ∂L
∂(∂μϕα)

δ(∂μϕα)

)
. (8.119)
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Fig. 8.1 Space-time domain D4: of the form [t1, t2] × V (left), of generic form (right)

Now use the property δ(∂μϕα) = ∂μ(δϕα), and integrate by parts the second term
in the integral:

∫

D4

d4x
∂L

∂(∂μϕα)
∂μδϕα =

∫

D4

d4x ∂μ

(
∂L

∂(∂μϕα)
δϕα

)
−
∫

D4

d4x ∂μ

(
∂L

∂(∂μϕα)

)
δϕα

=
∫

∂D4

dσμ

(
∂L

∂(∂μϕα)

)
δϕα −

∫

D4

d4x ∂μ

(
∂L

∂(∂μϕα)

)
δϕα

= −
∫

D4

d4x ∂μ

(
∂L

∂(∂μϕα)

)
δϕα,

where we have applied the four-dimensional version of the divergence theorem by
expressing the integral of a four-divergence over D4 as an integral (boundary inte-
gral) of the four-vector ∂L

∂(∂μϕα)
δϕα over the three-dimensional domain ∂D4 which

encloses D4. We have used the notation dσμ ≡ d3σ nμ, d3σ being an element of
∂D4 to which the unit norm vector nμ is normal, see Fig. 8.1. As for the last equality
we have used Eq. (8.118) which implies the vanishing of the boundary integral.18

Thus the partial integration finally gives:

δS = 1

c

∫

D4

d4x

[
∂L
∂ϕα

− ∂μ

(
∂L

∂(∂μϕα)

)]
δϕα. (8.120)

18This is true if the boundary ∂D4 does not extend to spatial infinity; when the integration domain
D4 fills the whole space, we must require that the fields and their derivatives fall off sufficiently
fast at infinity, or we may also use periodic boundary conditions. In any case the integration on an
infinite domain can always be taken initially on a finite domain, and, after removing the boundary
term, the integration domain can be extended to infinity.
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From the arbitrariness of δϕα it follows:

∂L
∂ϕα

− ∂μ

(
∂L

∂(∂μϕα)

)
= 0 (8.121)

which are the Euler-Lagrange equations for the fieldϕα, coinciding with Eq. (8.116).
Aswehave previously seen in the case of discrete dynamical systems, Lagrangians

differing by a total time derivative lead to the same equations of motion. Similarly for
field theories we can show that Lagrangian densities differing by a four-divergence
∂μ f μ yield the same field equations.

Indeed, let the Lagrangian densities L and L′ be related as

L′(ϕα(x), ∂μϕα(x), x) = L(ϕα(x), ∂μϕα(x), x) + ∂μ f μ,

where f μ = f μ(ϕα(x), x), then the two actions differ by a boundary integral:

S ′ = 1

c

∫

D4

d4xL′(ϕα, ∂μϕα) = 1

c

∫

D4

d4xL(ϕα, ∂μϕα)

+1

c

∫

D4

d4x∂μ f μ = S + 1

c

∫

∂D4

dσμ f μ. (8.122)

We therefore have:

δS ′ = δS + 1

c

∫

∂D4

dσμδ f μ = δS,

since δ f μ = ∂ f μ

∂ϕα(x)
δϕα(x) = 0 on the boundary ∂D4.

8.6 The Action of the Electromagnetic Field

Asan application of our general discussion,we construct the action of the electromag-
netic field in interaction with charges and currents and show that the stationary action
principle gives the covariant form of the Maxwell equations discussed in Chap. 5.
To this end we shall be guided by the symmetry principle. As it will be shown in
detail in Sect. 8.7, the invariance of the equations of motion under space-time (i.e.
Poincaré) transformations or under general field transformations is guaranteed if the
Lagrangian density, as a function of the fields, their derivatives and the space-time
coordinates, is invariant in form, up to a total divergence, see Eq. (8.150). As far as
space- time translations are concerned, this is the case ifL does not explicitly depend
on xμ. Covariance with respect to Lorentz transformations further requires L to be
invariant as a function of the fields and their derivatives, namely to be a Lorentz
scalar as a function of space-time.

http://dx.doi.org/10.1007/978-3-319-22014-7_5
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The construction of the action for the electromagnetic field is relatively simple
once we observe that:

• For the field Aμ(x) describing the electromagnetic field the generic index α coin-
cides with the covariant index μ = 0, 1, 2, 3 of the fundamental representation of
the Lorentz group;

• The equations of motion (the Maxwell equations) are invariant under the gauge
transformations:

Aμ → Aμ + ∂μϕ.

This is guaranteed if the Lagrangian density is invariant under the same transfor-
mations, since the action would then be invariant. In the absence of charges and
currents, the action should be constructed out of the gauge invariant quantity Fμν ;

• The Lagrangian density must be a scalar under Lorentz transformations;
• In order for the equations of motion to be second-order differential equations, L
must at most be quadratic in the derivatives of Aμ(x), that is quadratic in Fμν .

To construct Lorentz scalars which are quadratic in Fμν we may use the invariant
tensors ημν, εμνρσ of the Lorentz group SO(1, 3).19 It can be easily seen that the most
general Lagrangian density satisfying the previous requirements has the following
form:

L(Aμ, ∂μ Aν) = a Fμν Fμν + b εμνρσ Fμν Fρσ, (8.123)

where Fμν = ημρηνσ Fρσ and a and b are numerical constants. On the other hand,
the second term of Eq. (8.123) is the four-dimensional divergence of a four-vector so
that it does not contribute to the equations of motion. Indeed:

εμνρσ Fμν Fρσ = 2εμνρσ∂μ Aν Fρσ

= ∂μ
(
2εμνρσ Aν Fρσ

)− 2εμνρσ Aν∂μFρσ

= ∂μ
(
2εμνρσ Aν Fρσ

)− 2εμνρσ Aν∂[μFρσ]

= ∂μ f μ,

where we have set: f μ = 2εμνρσ Aν Fρσ and use has been made of the identity:
∂[μFρσ] = 0.

Therefore the Lagrangian density reduces, up to a four-dimensional divergence
to the single term:

Lem = a Fμν Fμν .

The value of the constant a is fixed in such a way that the Lagrangian contains the
positive definite (density of) “kinetic term” 1/(2c2) ∂t Ai∂t Ai with a conventional

19Recall that the latter tensor εμνρσ is not invariant under Lorentz transformations which are in
O(1, 3) but not in SO(1, 3), namely which have determinant −1. Examples of these are the parity
transformation �P , or time reversal �T .
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factor 1/2which is remnant of the one appearing in the definition (8.25) of the kinetic
energy.20 Expanding Fμν Fμν = (∂μ Aν − ∂ν Aμ)(∂μ Aν − ∂ν Aμ) one easily finds
a = − 1

4 .
In the presence of charges and currents, the interaction with the source Jμ(x)

requires adding an interaction term Lint to the pure electromagnetic Lagrangian.
The simplest interaction is described by the Lorentz scalar term:

Lint = b Aμ Jμ. (8.124)

This term seems, however, to violate the gauge invariance of the total Lagrangian,
since agauge transformationon Aμ implies a correspondent changeon theLagrangian
density:

δAμ = ∂μϕ ⇒ δ(gauge)Lint = (∂μϕ) Jμ.

On the other hand, by partial integration, δLint can be transformed as follows:

δLint = ∂μ(ϕJμ) − ϕ∂μ Jμ.

The first term is a total four-divergence, not contributing to the equations of motion
and thus can be neglected; the second term is zero if and only if ∂μ Jμ = 0, that is if
the continuity equation expressing the conservation of the electric charge holds. We
have thus found the following important result:

Requiring gauge invariance of the action of the electromagnetic field interacting
with a current, implies the conservation of the electric charge.

In conclusion, the action describing the electromagnetic field coupled to charges
and currents is given by:

S = 1

c

∫

M4

d4x

(
−1

4
Fμν Fμν + bAμ Jμ

)
, (8.125)

where the (four)-current Jμ(x) has the following general form (see Chap. 5)21:

Jμ(x) = 1

c

∑

k

ek
dxμ

(k)

dt
δ3(x − x(k)(t)). (8.126)

We may now apply the principle of stationary action to compute the equations of
motion. Recalling the form Eq. (8.121) of the Euler-Lagrange equations for fields,

20Note that the kinetic term for A0 is absent because of the antisymmetry of Fμν .
21Note that we are describing the interaction of the electromagnetic field, possessing infinite degrees
of freedom, with a system of N charged particles, having 3N degrees of freedom represented by
the N coordinate vectors x(k)(t), (k = i, . . . , N ). The Dirac delta function formally converts the
3N degrees of freedom of x(k)(t) into the infinite degrees of freedom associated to x.

http://dx.doi.org/10.1007/978-3-319-22014-7_5
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we have:
∂L
∂ Aμ

− ∂ρ

(
∂L

∂(∂ρ Aμ)

)
= 0. (8.127)

The first term of Eq. (8.127) is easily computed and gives:

∂L
∂ Aμ

= bJμ(x).

As far as the second term is concerned, only the pure electromagnetic part −1/4Fμν

Fμν contributes to the variation, yielding:

∂(Fρσ Fρσ)

∂(∂μ Aν)
= 2

[
∂Fρσ

∂(∂μ Aν)

]
Fρσ = 4

∂(∂ρ Aσ)

∂(∂μ Aν)
Fρσ = δμ

ρ δν
σ Fρσ = 4 Fμν(x).

Putting these results together, Eq. (8.127) becomes:

∂μFμν(x) + bJ ν(x) = 0. (8.128)

Finally the constant b is fixed by requiring Eq. (8.128) to be identical to the Maxwell
equation22:

∂μFμν = −J ν,

and this fixes b to be 1. The final expression of the Lagrangian density therefore is:

L = Lem + Lint = −1

4
Fμν Fμν + Aμ Jμ. (8.129)

In order to give a complete description of the charged particles in interaction with
the electromagnetic field, we must add to L (8.129) the Lagrangian density Lpart

associated with system of particles.
Let us consider for the sake of simplicity the case of N particles of charges ek and

masses mk , k = 1, . . . , N . The total action will have the following form23:

Stot = Sem + Sint + Spart , (8.130)

where:

Sem[∂μ Aν] = 1

c

∫
d4x

(
−1

4
Fμν Fμν

)
,

22Note that this condition just fixes the charge normalization.
23The index k given tox(k) in the following formulae has the function of indicating that the coordinate
vector x(k)(t) is a dynamical variable, and not the labeling of the space points, as is the case for x.
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Spart [ẋ(k)] =
N∑

k=1

(−mkc2)
∫

dt

(
1 − v2(k)

c2

) 1
2

,

Sint [Aμ(x), x(k), ẋ(k)] = 1

c

∫
d4x Aμ(x, t)Jμ(x, t)

= 1

c

∫
dt

∑

k

∫
d3x

[
ek

c
Aμ(x)δ(3)(x − x(k))

dxμ
(k)

dt

]

= 1

c

∑

k

∫
dt

ek

c
Aμ(xk, t)

dxμ
(k)

dt
, (8.131)

where in deriving the expression of Sint
24 we have used the explicit form of the

four-current given in (8.126).

Lint =
∫

d3xAμ(x, t)Jμ(x, t) =
∑

k

ek

c
Aμ(x(k), t)

dxμ
(k)

dt

=
∑

k

(
ek A0(x(k), t) + ek

c
Ai (x(k), t)vi

(k)

)
. (8.132)

We recall that x are labels of the points in space, while x(k)(t) are the particle coor-
dinates, that is dynamical variables, as stressed in the footnote.

We now observe that since Sem does not contain the variables xi
(k), we may

compute the equation of motion of the kth charged particle by varying only L̂ =
L part + Lint :

L̂ = L part + Lint = −
∑

k

⎛
⎝mkc2

√
1 −

v2
(k)

c2
+ ek A0(x(k), t) + ek

c
Ai (x(k), t)vi

(k)

⎞
⎠ .

For the sake of simplicity in the following we neglect the index (k) of the particle.
The first term of the Euler-Lagrange equations:

∂ L̂

∂xi
− d

dt

∂ L̂

∂vi
= 0, (8.133)

24Note that also Spart can be written as a four-dimensional integral:

Sint = −
∑

k

mkc
∫

d4x δ(3)(x − x(k))

(
1 − 1

c2

(
dx
dt

)2
)

.

.
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reads:
∂ L̂

∂xi
= ∂Lint

∂xi
= e

∂ A0

∂xi
+ e

c

(
∂ A j

∂xi

)
v j . (8.134)

The second term contains the time derivative of the canonical momentum pi conju-
gate to xi , namely:

pi = ∂ L̂

∂vi
= ∂(L par + Lint )

∂vi
= m(v)vi + e

c
Ai . (8.135)

We see that in the presence of the electromagnetic field the canonical conjugate
momentum is different from the momentum pi

(0) = m(v)vi of a free particle.25 In
fact we have the following relation:

pi = pi
(0) + e

c
Ai . (8.136)

Taking into account (8.133), (8.135) and (8.136), the equation of motion of the
charged particle becomes:

d

dt

(
pi
(0) + e

c
Ai

)
− e∂i A0 − e

c
∂i A j v j = 0. (8.137)

We now recall that A0 = −V,where V is the electrostatic potential. Moreover, since

d Ai

dt
= ∂ Ai

∂x j

dx j

dt
+ c

∂ Ai

∂x0
,

and Ei = Fi0 = ∂i A0 − ∂0Ai , Eq. (8.137) becomes:

dpi
(0)

dt
= e Ei − e

c

(
∂ j Ai − ∂i A j

)
v j

= e Ei − e

c
Fjiv

j = e Ei + e

c
εi jk v j Bk

= e

(
Ei + 1

c
(v × B)i

)
.

Thus we have retrieved from the variational principle the well known equation of
motion of a charged particle subject to electric and magnetic fields, since the right
hand side is by definition the Lorentz force.

25Here and in the following we use the subscript 0 to denote the usual free-particle momentum
pi
(0) = m(v)vi and the symbol pi for the momentum canonically conjugated to xi .
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8.6.1 The Hamiltonian for an Interacting Charge

As we have computed the Lagrangian Lint + L par for a charged particle, we pause
for a moment with our treatment of the Lagrangian formalism in field theories and
compute the Hamiltonian of a charge interacting with the electromagnetic field.

From the definition (8.64) we find26:

H(p, x) = p · v − Lint − L par = p · v − eA0 − e

c
A · v + m2c2

m(v)
,

where we have used the relation

−L part = mc2

√
1 − v2

c2
= m2c2

m(v)
.

It follows:

H(p, x) =
(

p − e

c
A
)

· v + m2c2

m(v)
+ eV (x). (8.138)

We now use Eq. (8.135) to express vi in terms of pi :

v =
(
p − e

c A
)

m(v)
= p(0)

m(v)
.

Taking into account the relativistic relations:

E2 = |p(0)|2c2 + m2c4; m(v) = E/c2, (8.139)

where E is the energy of the free particle, we can write:

H(p, x) = E2

m(v)c2
+ e V = c

√
m2c2 +

∣∣∣p − e

c
A
∣∣∣
2 + eV (x). (8.140)

From the above equation we find:

(H + eA0)
2 − c2

3∑

i=1

(
pi − e

c
Ai

)2 = m2c4. (8.141)

26Recall that the vector A ≡ (Ai ) is the spatial part of the four-vector Aμ ≡ (A0, A), so that Aμ ≡
(A0, −A). On the other hand p is the spatial component of pμ ≡ (p0, p), so that pμ ≡ (p0,−p).
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Next we use the property A0 = A0, Ai = −Ai to put (8.141) in relativistic invariant
form: (

pμ + e

c
Aμ
) (

pμ + e

c
Aμ

)
= m2c2. (8.142)

where we have set H
c = p0.

Note that Eq. (8.142) can be obtained from the relativistic relation pμ
(0) p(0)μ =

m2c2 of a free particle through the substitution:

pμ
(0) → pμ + e

c
Aμ, (8.143)

in agreement with Eq. (8.136). This substitution gives the correct coupling between
the electromagnetic field and the charged particle and is usually referred to asminimal
coupling.

8.7 Symmetry and the Noether Theorem

In this section we explore the connection between symmetry transformation and
conservation laws in field theory.

We consider a relativistic theory described by an action of the following form:

S [ϕα, D4
] = 1

c

∫

D4

d4xL(ϕα, ∂μϕα, xμ). (8.144)

where L(ϕα, ∂μϕα, x) is the Lagrangian density.
We consider a generic transformation of the coordinates xμ and of the fields ϕα:

xμ ∈ D4 → x ′μ = x ′μ(x) ∈ D′
4,

ϕα → ϕ′α = ϕ′α(ϕα, x),

∂μϕα → ∂′
μϕ′α = ∂′

μϕ′α(ϕα, ∂μϕα, x).

(8.145)

where ∂′
μ = ∂

∂x ′μ .A transformation on space-time coordinates will in general deform
the domain D4, which we had originally taken to be a direct product of a time interval
and a space volume V , into a region D′

4 with a different shape.
As already discussed in the case of a discrete set of degrees of freedom the actual

value of the action computed on a generic four-dimensional domain D4 does not
depend on the set of fields and coordinates we use, since it is a scalar; in other
words:

S ′ [ϕ′α; D′
4

] = S [ϕα; D4
]
, (8.146)
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or, more explicitly

1

c

∫

D′
4

d4x ′L′(ϕ′α(x ′), ∂′
μϕ′α(x ′), x ′) = 1

c

∫

D4

d4xL(ϕα(x), ∂μϕα(x), x), (8.147)

where the transformed Lagrangian density L′ in S ′ is given by:

L′(ϕ′α, ∂′
μϕ′α, x ′) = L(ϕα, ∂μϕα, x), (8.148)

the transformed fields and coordinates being related to the old ones by Eq. (8.145).
However, as we have already emphasized in the case of a discrete system, the fact
the action is a scalar does not imply that the Euler-Lagrange equations derived from
S ed S ′ have the same form. The latter property holds only when the transformations
(8.145) correspond to an invariance (or symmetry) of the system. This is the case
when the action is invariant, namely when:

S [ϕ′α; D′
4

] = S [ϕα; D4
]
. (8.149)

Note that Eq. (8.149) implies that the Lagrangian L is invariant under the transfor-
mations (8.145) only up to the four-divergence of an arbitrary four-vector f μ, which,
as we know, does not change the equations of motion:

L(ϕ′α(x ′), ∂′
μϕ′α(x ′), x ′) = L(ϕα(x), ∂μϕα(x), x) + ∂μ f μ, (8.150)

where f μ = f μ(ϕα(x), x).27

In the sequel we shall consider transformations differing by an infinitesimal
amount from the identity, to which they are connected with continuity. We write
these transformations in the following form:

x ′μ = xμ + δxμ,

ϕ′α(x) = ϕα(x) + δϕα(x), (8.151)

where δxμ and δϕα(x) are infinitesimals and, just as we did in Chap. 7, we define the
local variation of the field as the difference δϕα(x) ≡ ϕ′α(x) − ϕα(x) between the
transformed and the original fields evaluated in the same values of the coordinates
x = (xμ), see for instance Eq. (7.72). The invariance of the action under infinitesimal
transformations is expressed by the equation

27We note that the invariance of the action means that two configurations [ϕα(x), xμ ∈ D4] and[
ϕ′α(x ′), x ′μ ∈ D′

4

]
related by the transformation (8.145) are solutions to the same partial differ-

ential equations.

http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_7
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cδS =
∫

D′
4

d4x ′L(ϕ′α(x ′), ∂′
μϕ′α(x ′), x ′) −

∫

D4

d4xL(ϕα(x), ∂μϕα(x), x) = 0,

(8.152)
where, for the time being, we do not consider the contribution of a four-divergence
∂μ f μ since it leads to equivalent actions.28 The Noether theorem states that:

If the action of a physical system described by fields is invariant under a group of
continuous global transformations, it is possible to associate with each parameter
θr of the transformation group a four-current Jμ

r obeying the continuity equation
∂μ Jμ

r = 0, and, correspondingly, a conserved charge Qr , where

Qr =
∫

d3x J 0
r . (8.153)

Here by global transformations we mean transformations whose parameters do not
depend on the space-time coordinates xμ.

The proof of the theorem requires working out the consequences of Eq. (8.152)
along the same lines as for the proof of the analogous theorem for systems with a
finite number of degrees of freedom. For the sake of clarity we shall give, at each
step of the proof, the reference to the corresponding formulae of Sect. 8.2.1.

We begin by observing that since x ′ is an integration variable, we may rewrite δS
as follows (cfr. (8.47)):

cδS =
∫

D′
4

d4xL(ϕ′α(x), ∂μϕ′α(x), x) −
∫

D4

d4xL(ϕα(x), ∂μϕα(x), x). (8.154)

The integration domains of the two integrals of Eq. (8.154) are D′
4 and D4 respec-

tively. In the discrete case we had [t ′1, t ′2] and [t1, t2] instead of D′
4 and D4. It is then

convenient to write the first integral over D′
4 as the sum of an integral over D4 and

an integral over the “difference” D′
4 − D4 between the two domains:

∫

D′
4

=
∫

D4

+
∫

D′
4−D4

. (8.155)

The domain D′
4 − D4, see Fig. 8.2, can be decomposed in infinitesimal four-

dimensional hypercubes having as basis the three-dimensional elementary volume
d3σ on the boundary hypersurface ∂D4 and height given by the elementary shift δxμ

of a point on d3σ due to the transformation (8.145). We also define dσμ ≡ nμ d3σ
as explained after Eq. (8.122).

28This freedomwill be taken into account when discussing the energy momentum tensor in the next
section.
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Fig. 8.2 Space-time
domains D4 and D′

4

Thus we may write an elementary volume in D′
4 − D4 as follows:

d4x = dσμδxμ,

so that the first integral on the right hand side of (8.154) reads

∫

D′
4

d4x(· · · ) =
∫

D4

d4x(· · · ) +
∫

D′
4−D4

(· · · )d4x =
∫

D4

d4x(· · · )

+
∫

∂D4

dσμδxμ(· · · ). (8.156)

A comparison with the analogous decomposition made in the discrete case, (8.48),
reveals that ∂D4 plays the role of the boundary of the interval t1 − t2 (consisting in
that case of just two points) and δxμ generalizes δt .

We may now insert this decomposition in Eq. (8.154) obtaining (see Eq. (8.51)):

cδS =
∫

D4

d4xL(ϕ′α(x), ∂μϕ′α(x), x) −
∫

D4

d4xL(ϕα(x), ∂μϕα(x), x)

+
∫

∂D4

dσμδxμL(ϕα(x), ∂μϕα(x), x), (8.157)

where, in the last integral,wehave replacedL(ϕ′α(x), ∂μϕ′α(x), x)withL(ϕα(x), ∂μ

ϕα(x), x), since their difference, being multiplied by δxμ would have been an infin-
itesimal of higher order (see the analogous equation (8.49)).
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On the other hand the difference between the first two integrals can be written as
follows (see (8.52)):

∫

D4

d4x
[
L(ϕ

′α(x), ∂μϕ
′α(x), x) − L(ϕα(x), ∂μϕα(x), x)

]

=
∫

D4

d4x

[
∂L
∂ϕα

δϕα + ∂L
∂(∂μϕα)

δ∂μϕα

]
(8.158)

=
∫

D4

d4x

[
∂L
∂ϕα

− ∂μ
∂L

∂(∂μϕα)

]
δϕα(x) +

∫

D4

d4x∂μ

(
∂L

∂(∂μϕα)
δϕα

)
,

where, as usual, we have applied the property

δ(∂μϕα) = ∂μδϕα.

Finally we substitute Eqs. (8.157) and (8.158) into Eq. (8.152) obtaining, for the
variation of the action (see (8.53)):

cδS =
∫

D4

d4x

[
∂L
∂ϕα

− ∂μ
∂L

∂(∂μϕα)

]
δϕα(x) +

∫

D4

d4x∂μ

(
∂L

∂(∂μϕα)
δϕα

)

+
∫

∂D4

dσμδxμL(ϕα(x), ∂μϕα(x), x). (8.159)

If the Euler-Lagrange equations (8.121) are satisfied, the first integral in Eq. (8.159)
vanishes; moreover the last integral can be written as an integral on ∂D4 by use of
the four- dimensional Gauss theorem (or divergence theorem) in reverse:

∫

∂D4

dσμδxμL =
∫

D4

d4x∂μ(δxμL). (8.160)

We have thus obtained:

δS = 1

c

∫

D4

d4x∂μ

[
∂L

∂(∂μϕα)
δϕα + δxμL

]
. (8.161)

The above equation gives the desired result: It states that when δS = 0, the integral
in Eq. (8.161) is zero. Taking into account that the integration domain is arbitrary,
we must have:

∂μ Jμ = 0, (8.162)
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where:

Jμ = ∂L
∂(∂μϕα)

δϕα + δxμL. (8.163)

In terms of the infinitesimal, global parameters δθr , r = 1, . . . , g of the continuous
transformation group G, the infinitesimal variations δϕα and δxμ can be written as:

δϕα = δθrΦα
r ; δxμ = δθr Xμ

r . (8.164)

where Φα
r and Xμ

r are, in general, functions of the fields ϕα and coordinates xμ.
Thus we may write:

Jμ = δθr Jμ
r ,

where

Jμ
r =

(
∂L

∂(∂μϕα)
Φα

r + Xμ
r L

)
. (8.165)

Taking into account that the δθr are independent, constant parameters, we can state
that we have a set of g conserved currents ∂μ Jμ

r = 0. To each conserved current Jμ
r

there corresponds a conserved charge Qr :

Qr =
∫

R3

d3xJ 0
r , (8.166)

where we take as V the entire three-dimensional space R
3. Indeed:

d Qr

dt
= c

∫

R3

d3x
∂

∂x0
J 0

r = −
∫

R3

d3x
∂

∂xi
J i

r = −
∫

S∞

d2σ

3∑

i=1

J i
r ni = 0.

where the last surface integral is zero being evaluated at infinity where the currents
are supposed to vanish.

8.8 Space-Time Symmetries

As already stressed in the first Chapter of this book, in order to satisfy the princi-
ple of relativity a physical theory must fulfil the requirement of invariance under
the Poincaré group. The latter was discussed in detail in Chap. 4 and contains, as
subgroups, the Lorentz group and the four-dimensional translation group. Invariance
of a theory, describing an isolated system of fields, under Poincaré transformations
implies that its predictions cannot depend on a particular direction or on a specific
space-time region in which we observe the system, consistently with our assumption
of homogeneity and isotropy of Minkowski space.

http://dx.doi.org/10.1007/978-3-319-22014-7_4
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The Noether theorem allows us to derive conservation laws as a consequence
of this invariance. Let us first work out the conserved charges associated with the
invariance of the theory under space-time translations:

xμ → x ′μ = xμ − εμ −→ δxμ = −εμ, (8.167)

ϕ′α(x − ε) = ϕα(x) ⇒ δϕα(x) = ϕ′α(x) − ϕα(x) = ∂ϕα(x)

∂xμ
εμ. (8.168)

Comparing this with the general formula (8.164) we can identify the index r with
the space-time index ν, the parameters δθr with εμ so that

Φα
r = Φα

ν = ∂μϕαδμ
ν ; Xμ

r = Xμ
ν = −δμ

ν .

Requiring invariance of the action under the transformations (8.167)–(8.168), and
inserting the values of δxμ and δϕα in the general expression of the current (8.163)
we obtain:

Jμ = Jμ
ρ ερ =

(
∂L

∂(∂μϕα)
∂ρϕ

α − δμ
ρ L
)

ερ ≡ c ερ T μ
ρ (8.169)

where we have introduced the energy-momentum29 tensor Tμ|ρ:

Tμ|ρ ≡ 1

c

[
∂L

∂(∂μϕα)
∂ρϕ

α − ημρL
]

, (8.170)

so that we have the general conservation law

∂μT μ|ν = 0. (8.171)

We note that both the indices of Tμ|ν are Lorentz indices, but we have separated
them by a bar since the first index is the index of the four-current while the second
index is the index r labeling the parameters. This being understood, in the following
we suppress the bar between the two indices of Tμ|ν .

The four Noether charges associated with the space-time translations are obtained
by integration of J 0

μ ≡ cT 0
μ over the whole three-dimensional space:

Qμ = c
∫

d3x T0μ
.= c Pμ, (8.172)

and, from the Noether-conservation law ∂νT νμ = 0, we obtain in the usual way that:

d

dt
Pμ = 0.

29The alternative name of stress-energy tensor is also used.
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To understand the physical meaning of the energy-momentum tensor and of the
conserved four-vector

Pμ ≡
∫

V

d3xPμ ≡
∫

V

d3xT 0μ, (8.173)

where we have definedPμ ≡ T 0μ, we recall that in the case of systems with a finite
number of degrees of freedom, the conserved four charges associated with space-
time translations are the components of the four-momentum. It is natural then to
interpret Pμ as the total conserved four-momentum associated with the continuous
system under consideration, described by the fields ϕα(x).

As a consequence of this the tensor Tμν can be thought of as describing the
density of energy and momentum and their currents in space and time. In particular,
Pμ ≡ T 0μ represents the spatial density of the four-momentum.We conclude that the
four conserved charges Qμ/c associated with the space-time translations, which are
an invariance of an isolated system, are the components of the total four-momentum.

Let us now consider the further six conserved charges associated with the invari-
ance with respect to Lorentz transformations.

Under such a transformation, the fields ϕα will transform according to the
SO(1, 3) representation, labeled by the index α, which they belong to; its infini-
tesimal form has being given in Eq. (7.83), namely:

δϕα = 1

2
δθρσ

[
(Lρσ)αβϕβ + (xρ∂σ − xσ∂ρ)ϕ

α
]
. (8.174)

If the action is invariant under the Lorentz group, substitution of the variations (8.174)
and (7.82) into Eq. (8.163) gives the following conserved current:

Jμ = − c

2
δθρσMμ|ρσ, (8.175)

where we have introduced the tensor:

Mμ|ρσ = −1

c

[
∂L

∂(∂μϕα)

(
(Lρσ)αβϕβ + (xρ∂σ − xσ∂ρ)ϕ

α
)

+ (
xσ ημρ − xρημσ

)L] , (8.176)

and used the identification of the index r with the antisymmetric couple of indices
(μν) labeling the Lorentz generators, so that

Xμ
r ≡ Xμ

ρσ = δμ
ρ xσ − δμ

σ xρ,

Φα
r ≡ Φα

ρσ = (Lρσ)αβϕβ + (xρ∂σ − xσ∂ρ)ϕ
α. (8.177)

http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_7
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Comparing (8.176) with the definition of the energy-momentum tensor Tμρ,
Eq. (8.170), little insight reveals that the two terms proportional to xμ within square
brackets in the former can be expressed in terms of Tμρ as xσTμρ − xρTμσ . Therefore
the conserved current Mμ|ρσ takes the simpler form:

Mμ|ρσ = −
[
1

c

∂L
∂(∂μϕα)

(Lρσ)αβϕβ + (xρTμσ − xσTμρ)

]
. (8.178)

Being this current associated with Lorentz transformations which are always a sym-
metry of a relativistic theory, the Noether theorem implies:

∂μMμ
ρσ = 0. (8.179)

Using the explicit form (8.178) in the conservation law (8.179) together with (8.171),
we derive the following two equations:

∂μ Hμρσ + Tρσ − Tσρ = 0, (8.180)

∂μTμν = 0. (8.181)

where we have set

Hμρσ ≡ 1

c

∂L
∂(∂μϕα)

(Lρσ)αβϕβ . (8.182)

We have encountered instances of the energy-momentum tensor earlier in this book:
On the right hand side of the Einstein equation (3.86) as the source of space-time
curvature and in Chap.5 in relation to a system of charged particles and to the
electromagnetic field, see Eqs. (5.61) and (5.71), respectively. In all these cases it
described the matter-energy distribution in space and its currents and was introduced
as a symmetric matrix. This is not the case for the quantity T μν defined in Eq. (8.170),
which, in general, is not a symmetric tensor. In fact its antisymmetric part is related
in equation (8.180) to the divergence ∂μHμρσ of Hμρσ , which can be non-vanishing
whenever the field ϕ carries a Lorentz-representation index α, related to its internal
degrees of freedom. As we show below, it is possible to define a symmetric tensor
Θμν having the same physical content as T μν . This is the energy-momentum tensor
we have introduced in our earlier discussions (Eqs. (3.86), (5.61) and (5.71)), as we
shall show at the end of this section for the case of the electromagnetic field. In
terms of the symmetric energy-momentum tensor Θμν , as we illustrate shortly, the
conserved currents associated with the Lorentz generators will also acquire a simpler
expression which is analogous to that of angular momentum in terms of the position
vector and the linear momentum.

Wefirst notice that the definition (8.170) does not determine the energy-momentum
tensor uniquely. If we indeed redefine T μν as:

T μν → T μν + ∂ρU νμρ U νμρ = −U νρμ (8.183)

http://dx.doi.org/10.1007/978-3-319-22014-7_3
http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_3
http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_5


264 8 Lagrangian and Hamiltonian Formalism

it still satisfies the conservation law, since ∂μ∂ρU νμρ ≡ 0, due to the antisymmetry
of U νμρ in its last two indices. This possibility is related to the freedom we have of
adding to the Lagrangian a four-divergence ∂μ f μ. Although we had neglected such
freedom when proving the Noether theorem, one can exploit it to obtain a symmetric
energy-momentum tensor.30

To show this, let us perform the following redefinitions:

Θμν = Tμν + ∂λUνμλ ; Uνμλ = −Uνλμ, (8.184)

M̂μ|ρσ = Mμρσ − ∂λ
(
xρUσμλ − xσUρμλ

)
. (8.185)

where Θμν is the new energy momentum tensor. As already remarked these rede-
finitions do not spoil the conservation law associated with the energy-momentum
tensor, since, due to the antisymmetry of Uμνλ in the last two indices, we still have
∂μΘμν = 0. Moreover, by the same token, it is easily shown that M̂μ|ρσ is still
conserved, i.e. ∂μM̂μ|ρσ = 0, since taking into account (8.179) the additional term
∂λ

(
xρUσμλ − xσUρμλ

)
is divergenceless by virtue of the antisymmetry of Uσμλ in

its last two indices:

∂μ∂λ
(
xρUσμλ − xσUρμλ

) = 0. (8.186)

Let us now show that M̂μρσ can be written in the simpler form:

M̂μ|ρσ = −xρΘμσ + xσΘμρ, (8.187)

by a suitable choice of Uσμλ. If we prove this, then, from the conservation of the
current M̂μ|ρσ we have

0 = ∂μM̂μρσ = −δμ
ρ Θμσ + δμ

σΘμρ = −Θρσ + Θσρ, (8.188)

which implies that Θμν is symmetric. To prove Eq. (8.187) we first write the explicit
form ofM̂μρσ by expressing Tμν in Eq. (8.178) in terms ofΘμν and use the following
identity:

−xρ∂
λUσμλ + xσ∂λUρμλ = −∂λ

(
xρUσμλ − xσUρμλ

)− Uρμσ + Uσμρ.

The four-divergence on the right hand side cancels against the opposite term in
(8.185) and we end up with:

M̂μ|ρσ = −Hμρσ − xρΘμσ + xσΘμρ − Uσμρ + Uρμσ. (8.189)

30We shall illustrate an application of this mechanism to the case of the electromagnetic field at the
end of this section.
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Thus in order for M̂ to have the form (8.187) we need to find a tensorUνμλ satisfying
the following condition:

Uρμσ − Uσμρ = 1

c

∂L
∂∂μϕα

(Lρσ)αβϕβ ≡ Hμρσ. (8.190)

The solution is31

Uμρσ = 1

2

[
Hμρσ − Hσμρ − Hρσμ

]
. (8.191)

Let us now discuss the physical meaning of the conservation law (8.179), by com-
puting the conserved “charges” Qρσ associated with the 0-component of the current
Mμ|ρσ (8.188). Let us rename Qρσ → Jρσ , since, as we shall presently see, they are
related to the angular momentum. Then, integrating over the whole space V = R

3:

Jρσ =
∫

V

d3xM0ρσ = −
∫

V

d3x
[

∂L
∂ϕ̇α

(Lρσ)αβϕβ + (xρT0σ − xσT0ρ)

]
, (8.192)

are the conserved charged associated with Lorentz invariance:

d

dt
J ρσ = 0. (8.193)

In particular for spatial indices (μν) = (i j) we find:

Ji j = −
∫

V

d3x
[

∂L
∂ϕ̇α

(Li j )
α

βϕβ + (xiP j − x jPi )

]
= −εi jk J k, (8.194)

where P i is the momentum density.
Let us first consider the case of a scalar field ϕwhich, by definition, does not have

internal components transforming under Lorentz transformations, so that the first
term of Eq. (8.194) is absent. The second term in the integrand of Eq. (8.194) is easily
recognized as the density of orbital angular momentum. Therefore Ji j ≡ −εi jk Mk

is the conserved orbital angular momentum, which, for a scalar field, coincides with
the total angular momentum.

If, however, we have a field ϕα transforming, through the index α, in a non-trivial
representation of the Lorentz group, the first term in Eq. (8.178) is not zero; it is
clear that it should also describe an angular momentum which must then refer to the

31The solution (8.191) can be obtained by writing, besides Eq. (8.190), two analogous equations
obtained by cyclic permutation of the indices ρμσ. Subtracting the last two equations from the
first and using the antisymmetry property (8.183) we find (8.191).
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intrinsic degrees of freedom of the field.32 In fact the first term describes the intrinsic
angular momentum or spin of the field.

In general if the field is not spinless the conservation law implies that only the
sum of the orbital angular momentum and of the spin, that is only the total angular
momentum is conserved.

Note that so far we have been discussing the conservation of the three charges Ji j

associated with the invariance under three dimensional rotations and corresponding
to the components of the total angular momentum. It is interesting to understand the
meaning of the other three conservation laws (8.179) associated with the invariance
under Lorentz boosts, that is with the components J 0i of the Jμν charges. Restricting
for the sake of simplicity to the case of a scalar field,wehave from (8.192) and (8.193),
setting (Li j )

α
β = 0,

d

dt

[
x0
∫

d3xT 0i −
∫

xi T 00d3x
]

= 0. (8.195)

Taking into account the conservation of Pi , defined by the first integral, we obtain:

c Pi = d

dt

∫
xi T 00d3x. (8.196)

On the other hand since c T 00 represents the energy density, we have T 00d3x =
d E/c = cdm, where E is the total energy related to the total mass by the familiar
relation E = mc2. It then follows:

P = d

dt

∫
xdm. (8.197)

In words: The conservation law associated with the Lorentz boosts implies that the
relativistic center of mass moves at constant velocity.

Let us end this section by proving that, in the case of a free electromagnetic field,
the tensor Θμν coincides with the symmetric energy-momentum tensor T μν

em defined
in (5.71). To this end let us compute, by using Eq. (8.170), the Noether currents Tμν

associated with the invariance of the action Sem of a free electromagnetic field under
space-time translations. From Eq. (8.129), with Jμ = 0, and Eq. (8.170) we find:

Tμρ = 1

c

(
∂Lem

∂(∂μ Aσ)
∂ρ Aσ − ημρ Lem

)

= 1

c

(
−∂μ Aσ∂ρ Aσ + ∂σ Aμ∂ρ Aσ + 1

4
ημρ Fδξ Fδξ

)
. (8.198)

32Recall from Chap.4 that, since Lρσ are Lorentz generators, Li = −εi jk L jk/2 are generators of
the rotation group.

http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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Notice that this tensor is not symmetric: Tμρ �= Tρμ. Next we evaluate Hμνρ, defined
in (8.182), using the explicit form (4.170) of the infinitesimal Lorentz generators on
the internal index μ of the field Aμ:

Hμρσ = 1

c

(−Aσ∂μ Aρ + Aρ∂μ Aσ + Aσ∂ρ Aμ − Aρ∂σ Aμ

)
. (8.199)

From Eq. (8.191) we can now compute the tensor Uρμσ:

Uρμσ = 1

c

(
Aρ∂μ Aσ − Aρ∂σ Aμ

) = −Uρσμ. (8.200)

Finally, using (8.184) we evaluate Θμν to be

Θμν = Tμν + ∂λUνμλ = −1

c

(
Fμσ Fν

σ − 1

4
ημν Fρσ Fρσ

)
. (8.201)

As expected the symmetric tensor Θμν coincides with the definition of the energy-
momentum tensor T μν

em for the electromagnetic field, given in (5.71).

8.8.1 Internal Symmetries

The symmetries and the associated conserved charges discussed in the previous
section are space-time symmetries, namely symmetries associated with translations
and Lorentz transformations under which, in a relativistic theory, the action is invari-
ant.

We now want to give an example of a symmetry which does not involve changes
in the space-time coordinates xμ, but that is rather implemented by transformations
acting on the internal index α of a field ϕα(x). In this case the index α labels the
basis of a representation of the corresponding symmetry group G. Such symmetries
are called internal symmetries and G is the internal symmetry group:

xμ → x ′μ = xμ ⇒ δxμ = 0,

ϕα(x) → ϕ′α(x) = ϕα(x) + δϕα(x), (8.202)

where
δϕα = δθr (Lr )

α
βϕβ δθr � 1.

From Eq. (8.163) the conserved currents have the simpler form:

δθr Jμ
r = ∂L

∂(∂μϕα)
δϕα. (8.203)

http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_5
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The simplest, albeit important, example is the case in which we have two real scalar
fields ϕ1,ϕ2, or, equivalently, a complex scalar field ϕ,ϕ∗, the two descriptions
being related by:

ϕ1 = 1√
2
(ϕ + ϕ∗) ; ϕ2 = − i√

2
(ϕ − ϕ∗),

and a Lagrangian density of the following form:

L = c2
(

∂μϕ∗∂μϕ − m2c2

�2
ϕ∗ϕ

)
. (8.204)

The Euler-Lagrangian equations are:

�
2∂μ∂μϕ + m2c2ϕ = 0 (8.205)

and its complex conjugate.
As will be shown in the next chapter this equation is the natural relativistic exten-

sion of the Schrödinger equation for a particle of mass m and wave function ϕ.
It is referred to as the Klein-Gordon equation, and the Lagrangian (8.204) is the
Klein-Gordon Lagrangian density.

We observe that the Lagrangian density L of Eq. (8.204) is invariant under the
following transformation:

ϕ(x) → ϕ′(x) = e−iαϕ(x) (8.206)

where α is a constant parameter.
In the real basis, the transformation belongs to the group SO(2):

(
ϕ′
1

ϕ′
2

)
=
(

cosα sinα
− sinα cosα

)(
ϕ1
ϕ2

)
. (8.207)

In the complex basis the transformation (8.206) defines a one-parameter Lie group
of unitary transformations denoted by U(1), which is isomorphic to, i.e. has the same
structure as, SO(2).

The infinitesimal version of Eq. (8.206) is:

ϕ(x) → ϕ′(x) � ϕ(x) − iαϕ(x) ⇒ δϕ(x) = −iαϕ(x); δϕ∗ = iαϕ∗.

Using a suitable multiplicative coefficient to normalize the conserved current Jμ to
the dimension of the electric current, we obtain from (8.203):

α Jμ = e

c�

[
∂L

∂(∂μϕ)
δϕ + ∂L

∂(∂μϕ∗)
δϕ∗

]
= −i

ec

�

[
ϕ∂μϕ∗ − ϕ∗∂μϕ

]
α. (8.208)
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Let us verify the conservation law ∂μ Jμ = 0 explicitly:

i
�

ec
∂μ Jμ = ∂μϕ∂μϕ∗ + ϕ∂μ∂μϕ∗ − ∂μϕ∗∂μϕ − ϕ∗∂μ∂μϕ

= m2c2

�2
ϕϕ∗ − m2c2

�2
ϕϕ∗ = 0

where we have used the equation of motion (8.205). We shall see in Chap.10 that
the conserved charge:

Q =
∫

d3xJ 0 = i
e

�

∫
d3x(ϕ∗∂tϕ − ϕ∂tϕ

∗) (8.209)

can be identified with electric charge of a scalar field ϕ interacting with the electro-
magnetic field.

Let us note that if the field were real,ϕ(x) = ϕ∗(x), that is if we had just one field,
there would be no invariance of the Lagrangian and the charge Q would be zero. As
it will be shown in the sequel, this is a general feature: when a field is interpreted as
the wave function of a particle, a real field describes a neutral particle, as it happens
for the photon field Aμ(x) = A∗

μ(x), while fields associated with charged particles
are intrinsically complex.

8.9 Hamiltonian Formalism in Field Theory

In the previous section we have described systems with a continuum of degrees of
freedom using the Lagrangian formalism. We want now to discuss the dynamics of
such systems using the Hamiltonian formalism.

The most direct way to derive the Hamiltonian description of field dynamics is to
use the limiting procedure discussed in Sect. 8.5.1 for the Lagrangian formalism.

Consider a theory describing a field ϕ(x) (let us suppress the internal index α for
the time being). Just as we did in Sect. 8.5.1, we divide the 3-dimensional domain V
in which we study the system, into tiny cells of volume δV i , defining the Lagrangian
coordinates ϕi (t) as the mean value of ϕ(x, t) within the i th cell. We thus have a
discrete dynamical system and define the momenta pi conjugate to ϕi as

pi = ∂L(t)

∂ϕ̇i (t)
. (8.210)

The Hamiltonian of the system is given by:

H =
∑

i

pi ϕ̇i − L , (8.211)

http://dx.doi.org/10.1007/978-3-319-22014-7_10
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with equations of motion:

ϕ̇i = ∂H

∂ pi
; ṗi = −∂H

∂ϕi
. (8.212)

Recall now from the discussion in Sect. 8.5.1 that, in the continuum limit (δVi infin-
itesimal)

pi (t) = ∂L

∂ϕ̇i (t)
= δVi

δL

δϕ̇(x, t)
= δVi

∂L(x, t)

∂ϕ̇(x, t)
= δVi π(x, t), (8.213)

where x ∈ δVi and we have defined the field π(x, t) as:

π(x, t) ≡ ∂L(x, t)

∂ϕ̇(x, t)
, (8.214)

so that pi (t) represents themean value ofπ(x, t)within the i th cell δVi (multiplied by
δVi ). Thefieldπ(x) is the momentum conjugate to theϕ(x). Expressing pi (t) in terms
of π(x) through Eq. (8.213), upon identifying in the continuum limit δVi = d3x, we
may write the Hamiltonian (8.211) as:

H =
∫

V

[π(x)ϕ̇(x) − L(x)]d3x, (8.215)

where we have used the definition (8.110) of Lagrangian density. The integrand in
the above equation

H = π(x)ϕ̇(x) − L(x), (8.216)

defines theHamiltonian density. Using the notion of functional derivative, theHamil-
ton equations of motion can be derived in a way analogous to Eq. (8.106):

δH(t)

δϕ(x, t)
= lim

δV i →0

1

δVi

∂H(t)

∂ϕi (t)
,

δH(t)

δπ(x, t)
= lim

δV i →0

1

δVi

∂H(t)

∂πi (t)
, (8.217)

and combining Eqs. (8.106), (8.217) with Eqs. (8.212) and (8.213) we obtain:

π̇(x) = −δH(t)

δϕ(x)
= −∂H(x)

∂ϕ(x)
, (8.218)

ϕ̇(x) = δH(t)

δπ(x, t)
= ∂H(x)

∂π(x)
. (8.219)
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Using the same limiting procedure one can see that the Poisson brackets of two
functionals F[ϕ,π], G[ϕ,π] is defined as:

{F, G} =
∫

V

(
δF

δϕ(x)

δG

δπ(x)
− δF

δπ(x)

δG

δϕ(x)

)
d3x, (8.220)

so that, the time derivative of F gives:

Ḟ(t) = ∂F

∂t
+
∫

V

(
δF

δϕ(x)
ϕ̇(x) + δF

δπ(x)
π̇(x)

)
d3x (8.221)

= ∂F

∂t
+
∫

V

(
δF

δϕ(x)

δH

δπ(x)
− δF

δπ(x)

δH

δϕ(x)

)
d3x

= ∂F

∂t
+ {F, H},

where we have used Eqs. (8.218 and 8.219).
In particular, if F does not have an explicit dependence on time:

Ḟ(t) = {F, H}.

In this case the dynamical variable F is conserved if and only if its Poisson bracket
with the Hamiltonian vanishes.

Writing:

ϕ(x, t) =
∫

V

δ3(x − x′)ϕ(x′, t)d3x

π(x, t) =
∫

V

δ3(x − x′)π(x′, t)d3x

from the definition of functional derivative we have:

δϕ(x, t)

δϕ(x′, t)
= δπ(x, t)

δπ(x′, t)
= δ3(x − x′). (8.222)

Applying this relations we find:

{ϕ(x, t), H} = δH

δπ(x, t)
(8.223)

{π(x, t), H} = − δH

δϕ(x, t)
, (8.224)
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and using the Hamilton equations (8.218–8.219):

ϕ̇(x, t) = {ϕ(x, t), H}, (8.225)

π̇(x, t) = {π(x, t), H}. (8.226)

From Eq. (8.222) we also derive the fundamental relations:

{ϕ(x, t),π(x′, t)} = δ3(x − x′), (8.227)

{ϕ(x, t),ϕ(x′, t)} = {π(x, t),π(x′, t)} = 0. (8.228)

In order to simplify notation, we have developed the Hamilton formalism using just
one field. If we have several fields in some non trivial representation of a group G,
we need an additional index α. The extension of the previous formalism to several
fields is, however, straightforward. For example the momenta conjugate to the fields
are defined as:

πα(x) ≡ ∂L(x)

∂ϕ̇α(x)
. (8.229)

Similarly, in defining the Poisson brackets, we need, besides the integration on the x
variable, also a sum over the index α:

{F, G} =
∑
α

∫

V

(
δF

δϕα(x)

δG

δπα(x)
− δF

δπα(x)

δG

δϕα(x)

)
d3x. (8.230)

Furthermore, the relations (8.227) and (8.228) generalize as follows:

{ϕα(x, t),πβ(x′, t)} = δα
β δ3(x − x′), (8.231)

{ϕα(x, t),ϕβ(x′, t)} = {πα(x, t),πβ(x′, t)} = 0. (8.232)

An important case is that of two real scalar fields ϕ1,ϕ2 which, as shown in
Sect. 8.8.1, is equivalent to a single complex scalar field and its complex conjugate. In
this case, using the real notation we have indices α,β = 1, 2. If however, as we shall
mostly do in the next chapters, we use the complex scalar fields ϕ(x, t),ϕ∗(x, t),
then the Poisson brackets (8.231) become

{ϕ(x, t),π(y, t)} = δ3(x − y), (8.233)

{ϕ∗(x, t),π∗(y, t)} = δ3(x − y), (8.234)

all the other Poisson brackets being zero.
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8.9.1 Symmetry Generators in Field Theories

We have seen in Sect. 8.4.1 that the infinitesimal generators of continuous canonical
transformations δθr Gr (t) generate transformations δqi , δ pi leaving the Hamilton
equations in the standard form (8.67)–(8.218). Moreover, when the Hamiltonian
is left invariant, H ′ = H , for each parameter θr associated with the continuous
symmetry group G, the infinitesimal generator Gr (t) provides a constant of motion
which coincides with the “charge” given by Noether theorem.

The same of course applies to continuous theories described by fields, namely,
the generators of canonical symmetry transformations of a field theory are precisely
the conserved Noether charges. Therefore, in analogy with Eqs. (8.92) and (8.93),
we may write:

δϕα(x, t) = −{ϕα(x, t), G(t)} (8.235)

δπα(x, t) = −{πα(x, t), G(t)}. (8.236)

where G(t) ≡ δθr Gr (t). When the Hamiltonian is left invariant it coincides, aside
from an overall sign, with the charge Q(t) ≡ δθr Qr (t) of the Noether theorem.

In the case of Poincaré transformations given by space-time translations and
Lorentz transformations, let us show that the infinitesimal generator has the fol-
lowing form:

G(t) = −εμ Pμ(t) + 1

2
δθμν Jμν(t), (8.237)

where the explicit expression of the generators is obtained from Eqs. (8.170) and

(8.192) identifying ∂L
∂ϕ̇α ≡ πα:

Pρ =
∫ (

πα(x, t)∂ρϕα(x, t) − η0ρL(x)
)

δ3x, (8.238)

Jρσ = −
[∫ (

πα(x, t)(Lρσ)αβϕβ(x, t) + (xρPσ − xσPρ

)]
d3x. (8.239)

Let us first consider the case of space-time translations, that is we take G(t) =
−εμ Pμ. Taking into account the fundamental Poisson brackets (8.231) and the gen-
eral formulae (8.235), (8.236), we obtain:

δϕα = −{ϕα(x, t), [−ερ Pρ(t)]} = ερ
δPρ(t)

δπα
(x, t) = ερ∂ρϕα(x, t), (8.240)

so that, for time or space translations we find, respectively:

δϕα = δt {ϕα(x, t), H(t)} = δt ∂tϕ
α, (8.241)

δϕα = εi {ϕα(x, t), Pi (t)} = εi∂iϕ
α = ε · ∇ϕα, (8.242)

where ε ≡ (εi ).
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For infinitesimal canonical transformations generated by Jμν we find

δϕα = −δθρσ

2
{ϕα(x, t), Jρσ(t)} = −δθρσ

2

δJρσ

δπα
(x, t)

= δθμν

2

[
(Lμν)

α
βϕβ + (xμ∂ν − xν∂μ)ϕα

]
. (8.243)

Let us now compute the infinitesimal change of the Hamiltonian:

δH = H(ϕ′,π′) − H(ϕ,π) =
∑
α

∫ (
δH

δϕα
δϕα + δH

δπα
δπα

)
d3x

= −
∑
α

∫ (
δH

δϕα

δG

δπα
− δH

δπα

δG

δϕα

)
d3x

= −{H, G(t)}. (8.244)

If the transformations are a symmetry of the Hamiltonian, δH = {G, H} = −∂G
∂t ,

see Eqs. (8.99) and (8.100), we recover the result that G(t) is a conserved quantity:

dG

dt
= {G(t), H} + ∂G

∂t
= 0, (8.245)

As an example let us consider Lorentz boosts for which δH �= 0 since it transforms
as the 0-component of the four vector Pμ; infinitesimally we have:

δP0 ≡ 1

c
δH = −θ0i {H, J0i }. (8.246)

On the other hand
δP0 = δθ0μ Pμ = δθ0i Pi ,

so that combining the two expressions of δP0 we find: {H, J0i } = −cPi . Now
if we consider the component 0i of Eq. (8.239) we see that when the Lorentz
index ρ = 0, it carries an explicit time dependence in the second term, namely
− ∫

d3x (x0Pi − xiP0). It follows:

d J0i

dt
= −{H, J0i } + ∂ J0i

∂t
= c Pi − c

d

dt

∫
d3xt Pi = c Pi − c Pi = 0, (8.247)

and therefore J0i is also conserved, in agreement with the Noether theorem.

8.9.2 References

For further reading see Refs. [6], [8] (Vol. 1).



Chapter 9
Quantum Mechanics Formalism

9.1 Introduction

In this chapter we give a concise review of the quantum mechanics formalism from
a perspective which generalizes the ordinary Schroedinger formulation. In this way
we may reconsider the Schroedinger approach to quantum mechanics from a more
geometrical and group-theoretical point of view and show the close relationship
between the classical Hamiltonian theory and quantum mechanics. Moreover the
formalism developed in this chapter will be useful for an appropriate exposition of
the relativistic wave equations in Chap.10 and the field quantization approach in
Chap.11.

9.2 Wave Functions, Quantum States and Linear
Operators

In elementary courses in quantum mechanics the state of a system is described by a
wave function ψα(ξ, t) where the variables ξ denote the set of the coordinates which
the wave function depends on and the suffix α refers to a set of (discrete) physical
quantities, or quantum numbers, which, together with ξ, define the state of the sys-
tem. In the Schroedinger approach the variables ξ comprise the space coordinates
x = (x, y, z) while, if spin is present, the variable α labels the corresponding polar-
ization state. In this caseψα(x; t) is referred to as the wave function in the coordinate
representation. In this section we wish to adopt the Dirac formalism which allows a
quantum description of a system that is independent of its explicit coordinate rep-
resentation. Since throughout this section we refer to states at a particular instant t,
the time coordinate will not be indicated explicitly.

We recall that the essential difference between quantum theory and classical
mechanics resides in the different characterization of the concept of state of a phys-
ical system. According to a more general point of view than the wave function
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description, any quantum state can be characterized, independently of the particular
representation, by a complex vector in an abstract finite or infinite dimensional com-
plex vector space hereafter denoted by V (c). The vector nature of quantum states is
in agreement with the superposition principle of quantum mechanics, implying that
any linear combination of quantum states is again a quantum state. In this chapter we
shall be dealing with single particle states. As we presently show the wave function
description of the quantum state will then appear as the set of components of the state
vector along a particular basis.

For the sake of clarity let us first consider the particular case of a finite dimensional
space V (c) endowed with a hermitian scalar product. To recall the Dirac formalism
and to fix the conventions, let us briefly sketch out the defining properties of V (c).

We introduce an n-dimensional complex vector space V (c)
n (see Chap.7 for a

formal introduction to the concept of complex vector space), whose elements are
called kets, on which the observable dynamical quantities act as linear operators.
Using the ket notation an element a ∈ V (c)

n is denoted by the symbol |a〉 and a basis
{ui} of V (c)

n by {|ui〉}(i = 1, . . . , n).

We define on V (c)
n a hermitian scalar (or inner) product associating with each

pair of elements |a〉, |b〉 ∈ V (c)
n a complex number that is denoted by 〈a|b〉,

|a〉, |b〉 ∈ V (c)
n → 〈a|b〉 ∈ C,

with the following properties:

〈a|b〉 = 〈b|a〉∗, (9.1)

〈a|a〉 ≥ 0 ; 〈a|a〉 = 0 ⇒ |a〉 = 0, (9.2)

〈a| (α |b〉 + β |c〉) = α 〈a|b〉 + β 〈a|c〉, ∀α,β ∈ C. (9.3)

Two vectors are said to be orthogonal if

〈a|b〉 = 0.

We may thus associate, by means of the scalar product, with each |a〉 a dual vector
“bra” 〈a| defining a linear correspondence from V (c)

n to C

〈a| : |b〉 ∈ V (c)
n → 〈a|b〉 ∈ C. (9.4)

From the properties of the scalar product it follows that the bra corresponding to the
ket α|b〉+β|c〉 is 〈b|α∗ +〈c|β∗. The squared norm ‖a‖2 of a state |a〉 is the quantity
〈a|a〉, which is strictly positive if |a〉 is non-zero. The distance d of two elements
|a〉, |b〉 is then defined as

d(a, b) = √
(〈a| − 〈b|) (|a〉 − |b〉).

http://dx.doi.org/10.1007/978-3-319-22014-7_7
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A state in quantum mechanics is associated with a vector of V (c)
n modulo multipli-

cation by a complex number, that is parallel vectors |a〉 and α |a〉, α ∈ C define the
same quantum state:

quantum state ↔ {|a〉} ≡ {α |a〉 | α ∈ C}. (9.5)

In general we shall choose to describe states by unit norm vectors |a〉: ‖a‖2 =
〈a|a〉 = 1. This of course fixes the vector associated with a given state modulo an
arbitrary phase factor. In next section we shall comment on a convenient choice of
such factors.

Recalling the definition given in Sect. 7.2, a linear operator F̂ on the vector space
V (c)

n is defined as a (not necessarily invertible) mapping from V (c)
n into itself:

F̂ : |v〉 ∈ V (c)
n → |Fv〉 ≡ F̂|v〉 ∈ V (c)

n , (9.6)

satisfying the linearity condition (7.3) which, in our new notations, reads:

F̂(α|v〉 + β|w〉) = αF̂|v〉 + βF̂|w〉, ∀α,β ∈ C. (9.7)

Linear transformations are invertible operators on V (c)
n . Of particular physical rele-

vance in quantum mechanics is the notion of expectation value 〈F̂〉 of an operator F̂
on a state |a〉:

〈F̂〉 ≡ 〈a|F̂|a〉
〈a|a〉 .

Let |ui〉, i = 1, . . . , n, be a basis of ket vectors in V (c)
n , and let 〈ui| be the dual basis

of bra vectors. The basis |ui〉 is said to be orthonormal if

〈ui|uj〉 = δi
j . (9.8)

With respect to this basis F̂ can be represented by a matrix F ≡ (Fi
j), see Eq. (7.6)

and footnote 3 of Chap.7:

|ui〉 F̂−→ |Fui〉 ≡ F̂ |ui〉 = Fj
i |uj〉, (9.9)

that is, using (9.8)
Fi

j = 〈ui|F̂|uj〉.

Clearly if F̂ is not invertible, and thus is not a transformation, the matrix F is singular
and the vectors |Fui〉 do not form a new basis.

http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_7
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The identity operator Î on V (c)
n can be written in the form

Î =
n∑

i=1

|ui〉〈ui|, (9.10)

since it can be easily verified, using the orthonormality of the basis, that Î |ui〉 = |ui〉,
for all i = 1, . . . , n. The corresponding matrix representation is the n × n identity
matrix 1 ≡ (δi

j).
In quantum mechanics there are two classes of operators which play a special

role: The hermitian and the unitary operators. Both of them can be characterized by
their properties with respect to their hermitian conjugate operators.

The hermitian conjugate F̂† of F̂, is defined as the operator such that

∀ |a〉, |b〉 ∈ V (c)
n , 〈a|F̂|b〉 = 〈b|F̂†|a〉∗,

or, equivalently, 〈a|Fb〉 = 〈F†a|b〉. This definition implies that 〈F b| ≡ 〈b|F̂† is the
bra of F̂|b〉. F̂ is a hermitian operator iff F̂ = F̂†, or, equivalently

Fi
j = 〈ui|F̂|uj〉 = 〈uj|F̂†|ui〉∗ = 〈uj|F̂|ui〉∗ = (Fj

i)
∗,

that is, the matrix representing it coincides with the conjugate of its transposed
(hermitian conjugate): F = F† ≡ (FT )∗, and is therefore a hermitian matrix. In other
words an operator is hermitian if and only if its matrix representation with respect to
an orthonormal basis is hermitian. From this it clearly follows that the expectation
value of a hermitian operator on any state is a real number since 〈a|F̂|a〉 = 〈a|F̂†|a〉 =
〈a|F̂|a〉∗.

A unitary operator U is defined by the condition

UU† = U†U = Î. (9.11)

From the above definition we derive the corresponding unitarity property of the
matrix U = (Ui

j) representing U:

δi
j = 〈ui|uj〉 = 〈ui|U†U|uj〉 =

n∑

k=1

〈ui|U†|uk〉〈uk |U|uj〉 =
n∑

k=1

(Uk
i)

∗Uk
j,

i.e. U† U = 1. While a hermitian operator is not necessarily invertible, a unitary one
is, being the corresponding matrix U non-singular: |detU|2 = 1. Unitary operators
are therefore linear transformations and their geometrical and physical meaning
will be discussed in the next section. It can be shown, from the properties of the
corresponding matrix representations, that both hermitian and unitary operators are
diagonalizable, namely admit n linearly independent eigenvectors, and, moreover,
have the following important properties:
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(a) The eigenvalues of hermitian operators are real;
(b) The eigenvalues of unitary operators have unit complex modulus;
(c) The eigenvectors |λ1〉, |λ2〉 corresponding to two different eigenvalues λ1,λ2

are orthogonal.

Having defined the relevant mathematical objects, let us recall their relation to our
physical world within quantum mechanics and in particular the role of hermitian
operators. In quantum mechanics physical observables O, like energy, momentum,
position etc. are represented by hermitian operators Ô acting on states and their
expectation value on a given state is defined as |a〉

〈O〉 ≡ 〈a|Ô|a〉
‖a‖2 . (9.12)

This quantity has the following interpretation: If infinitely many identical systems
are prepared in a state |a〉, a measurement of the observable O on them will give a
statistical distribution of results about an average value 〈O〉. In other words it can
be interpreted as the most likely value that a measurement of the observable O on
|a〉 would give. The hermitian property of Ô, i.e. Ô† = Ô, then guarantees that its
expectation value in (9.12) be a real number, as a measurable quantity should be.
The eigenvalues λi of Ô represent all possible values that the actual measurement
of O can give on the system and the corresponding eigenvectors |λi〉 describe states
characterized by the values λi of O.

Given two states |a1〉, |a2〉, the quantity

P(|a1〉, |a2〉) ≡ |〈a2|a1〉|2
‖a2‖2‖a2‖2 , (9.13)

represents the probability of finding, upon measurement, a system which was ini-
tially prepared in the state |a1〉, in the state |a2〉, characterized, for instance, by a
definite value of a quantity we are measuring. P(|a1〉, |a2〉) is also called transi-
tion probability from the state |a1〉 to |a2〉. For instance P(|λi〉, |a〉) represents the
probability that the measurement of an observable O on the state |a〉 yield the value
λi. Note that neither of the two measurable quantities (9.12) and (9.13) depends on
the normalization of the state vectors. Such normalization, as anticipated earlier, is
unphysical and can be fixed at convenience.

We also recall the concept of a complete set of commuting observables, as a
maximal set of observables representedby commutingoperators. It has a considerable
importance in quantum mechanics, since by measuring the value of such a set of
observables on the system, the state vector is uniquely determined: It is the common
eigenvector associatedwith the eigenvalues of the corresponding hermitian operators.

So far the dimension of the vector space V (c) was taken to be finite. Let us now
suppose the number of dimensions to be infinite as it happens in quantum mechanics
when the eigenvalues of operators representing physical observables form an infinite
but discrete set. Then, if every Cauchy sequence of vectors converges to an element
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of the space, we say that our complex infinite-dimensional vector space is a Hilbert
space.1

We introduce an orthonormal basis in the Hilbert space given by the eigenfunc-
tions of a hermitian operator F̂, which we suppose to have a discrete spectrum of
eigenvalues {Fi}, n = 1, . . . ∞. We may expand the state vector |a〉 of the Hilbert
space along the orthonormal eigenvectors {|Fi〉}, labeled by the eigenvalues Fi of F̂

|a〉 =
∞∑

i=1

ai |Fi〉. (9.14)

By definition the wave function describing the state |a〉 in the F-representation is the
totality of the infinite coefficients of the expansion, namely the components ai of the
state vector along the eigenvectors {|Fi〉}. Since we are using an orthonormal basis,
each component ai can be written as the scalar product between the bra 〈Fi| and the
ket |a〉.2

ai = 〈Fi|a〉. (9.15)

Actually the Hilbert space does not cover the description of all the possible quantum
states of a physical system. Indeed when the eigenstates of a hermitian operator
belong to a continuous spectrum of eigenvalues (or to a discrete set of values followed
bya continuousone), it is necessary to enlarge theHilbert space to includegeneralized
functions, like the Dirac delta function, and we may thus have non-normalizable
wave-functions.

In this case we must allow for the dimensions of the vector space to be labeled
by continuous variables and, correspondingly, the sum in (9.14) to be replaced by
an integral over the continuous set of eigenvalues (or by an integral and a sum over
the discrete part of the spectrum).

This is the case, for instance, of the coordinate operator F̂ = x̂ ≡ (x̂, ŷ, ẑ),
the momentum operator F̂ = p̂ ≡ (p̂x, p̂y, p̂z), as well as the energy operator for
certain systems. As far as the coordinate or momentum operators are concerned, the
integral should be computed over the corresponding eigenvalues F = x = (x, y, z)
or p = (px, py, pz) and the wave function 〈F|a〉 becomes a continuous function of
F: ψ(a)(F).

1We recall that a Cauchy sequence is any sequence of elements φn such that limm,n→∞ d(φn,φm) =
0. In particular, the finite dimensional space V (c)

n treated so far is trivially a Hilbert space.
2Indeed the expansion (9.14) is quite analogous to the expansion of an ordinary vector v along a
orthonormal basis ui in a finite dimensional space

v =
∑

i

viui =
∑

i

ui(ui · v)

and the “wave function” representation {〈F|v〉} of v corresponds to the representation of the vector
in terms of its components along the chosen basis: v ≡ {vi}.
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For quantum states defined in V (c) the coordinate representation is defined by
taking F̂ ≡ x̂ so that the expansion (9.14) takes the form

|a〉 =
∫

V
d3x 〈x|a〉|x〉, (9.16)

where d3x ≡ dx dy dz and each eigenvector |x〉 describes a single particle localized
at the point x = (x, y, z) in space. It is defined by the equation x̂|x〉 = x |x〉. The
volume V of integration can be finite or infinite, that is coinciding with the whole
space R

3.
In this framework, the wave functionψ(a)(x) of the Schrödinger’s theory, describ-

ing the state |a〉, is the continuous set of the components of the ket |a〉 along the
eigenvectors of the position operator x̂: ψ(a)(x) = 〈x|a〉. Multiplying both sides of
Eq. (9.16) by 〈x′| we find

〈x′|a〉 = ψa(x′) =
∫

d3x ψa(x)〈x′|x〉. (9.17)

We see that for consistency we must set

〈x′|x〉 = δ3(x′ − x). (9.18)

The above normalization equation can be interpreted as the definition of the wave
function ψx(x′) describing the ket |x〉 in the coordinate representation. Such eigen-
function is no ordinary function, but belongs to the class of generalized or improper
functions. The reader can then easily verify that the identity operator Î can be
expressed in this basis as follows: Î = ∫

d3x |x〉〈x|, which generalizes Eq. (9.10) to
a basis labeled by a triplet of continuously varying variables (i.e. (x, y, z)). Restor-
ing for the moment the explicit dependence of the quantum state |a, t〉 on time, the
(time-dependent) wave function is defined as

ψ(a)(x, t) = 〈x|a, t〉. (9.19)

Note that since d3x has dimension L3, in order for the Eq. (9.16) to be consistent the

state |x〉 has to be dimensionful, of dimension L− 3
2 . This is in agreement with the

normalization (9.18).
There is a one-to-one correspondence between states and wave-functions which

satisfies the property that a linear combination of states corresponds to the same linear
combination of the wave functions representing them (the space of wave function is
said to be isomorphic to V (c)). In particular we can write a hermitian scalar product
of wave functions which reproduces the inner product between states:

〈b|a〉 = 〈b|Î|a〉 =
∫

V
d3x 〈b|x〉〈x|a〉 =

∫

V
d3x ψ(b)(x)∗ψ(a)(x), (9.20)
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so that we can write the squared norm ‖a‖2 of a state as

‖a‖2 = 〈a|a〉 =
∫

d3x |ψ(a)(x)|2. (9.21)

We conclude that states with finite norm (i.e. normalizable) correspond to square
integrable wave functions, belonging to the Hilbert space L2(V ).

Let us recall, for completeness, the probabilistic interpretation of a wave function
ψ(x, t), normalized to one, in quantum mechanics:

The quantity |ψ(x, t)|2 dV measures the probability of finding the particle within
an infinitesimal volume dV about x at a time t.

To complete the correspondence between abstract states and their wave function
representation, we observe that operators acting on states correspond to differential
operators acting on the corresponding wave functions:

|b〉 ≡ Ô|a〉 ⇔ ψ(b)(x) = Ô(x,∇)ψ(a)(x), (9.22)

where Ô(x,∇) is a local differential operator. For example, as we shall review in
Sect. 9.3.1, the momentum operator p̂ is implemented on wave functions by the oper-
ator −i� ∇. Observables quantities are represented by differential operators which
are hermitian with respect to the inner product (9.20). For the time being, we shall
denote abstract operators and their differential representation on wave functions by
the same symbol. Eigenstates |λi〉 of an observable Ô are represented by eigen-
functions ψi(x) of the corresponding differential operator, solution to a differential
equation:

Ô|λi〉 = λi |λi〉 ⇔ Ô(x,∇)ψi(x) = λi ψi(x). (9.23)

The eigenstates of p̂ are then represented by the functions ψp(x) ∝ e
i
�

p·x.
It is apparent fromour analysis thus far, that our spaceV (c) also contains stateswith

no finite norm, whose wave functions are therefore not in L2(V ). Simple examples
are given by eigenstates of the x̂ or of the p̂ operators, represented, respectively, by

delta functions and by e
i
�

p·x. The norm of the latter is indeed infinite if the space

V is infinite:
∫

V d3x|e i
�

p·x|2 = ∫
V d3x = ∞.3 Although the physical (probabilistic)

interpretation of non-normalizable wave functions is more problematic, as we saw

3As we shall see in Sect. 9.3.1, when dealing with free one-particle states, we can avoid the use of
non-normalizable wave functions, generalized functions Dirac delta-functions etc., by quantizing
the physical system in a box. In this case, instead of considering the whole R

3 as the domain of inte-
gration, we take a large box of finite volume V , so that the functions which were not L2(−∞; +∞)-
integrable become now L2(V )-integrable. In this way we may always restrict ourselves to consid-
ering the Hilbert space of functions defined over a finite volume.
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for the case of the position eigenstates, they are useful to express wave functions
which are L2(V ).4

Let us emphasize here the different roles played in non-relativistic quantum
mechanics by the space and time variables x, t. Just as in classical mechanics, the
former are dynamical variables while the latter is a parameter. By this we do not
mean that the argument x in ψ(x, t) should be intended as the position of the particle
at the time t, since we adopt for the probability distribution in space the analogue
of the Eulerian point of view in describing the velocity distribution of a fluid in
fluid-dynamics.

If we have a system of N non-interacting particles, the corresponding space of
quantum states is the tensor product of the spaces describing the quantum states of
each particle (see Chap. 4, Sect. 4.2). We can therefore consider as a basis of the
N-particle states the vectors:

|x1〉|x2〉 . . . |xN 〉 ≡ |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xN 〉,

also denoted by |x1, x2, . . . , xN 〉, describing the particles located in x1, x2, . . . , xN .
The corresponding representation of a state |a, t〉 is described by the wave function:

ψ(x1, x2, . . . , xN , t) ≡ 〈x1|〈x2| . . . 〈xN |a, t〉.

Let us come back now to a single particle system.
Similarly to what we have done when defining the coordinate representation, we

can choose to describe a state |a〉 in the momentum representation by expanding it
in a basis of eigenvectors |p〉 of the momentum operator:

|a〉 = const. ×
∫

d3p 〈p|a〉|p〉 =
∫

d3p ψ̃(a)(p) |p〉, (9.24)

where p̂|p〉 = p |p〉, and ψ̃(a)(p) is the wave function in the momentum representa-
tion. The proportionality factor after the first equality in Eq. (9.24) depends on the
normalization of the momentum eigenstates, which will be defined in Sect. 9.3.1.

As previously pointed out, the state of a system can be completely characterized
in terms of a complete set of observables. Therefore a single particle state can be
identified not just by a certain position x (or momentum p), but also by its spin state,
since the spin operator Ŝ commutes with x̂ (and p̂). Let us label the spin state of a

4This is not an uncommon feature. For example in the Fourier integral transform

f (x) = 1√
2π

∫
dp F(p) eipx,

if f (x) ⊂ L2(−∞; +∞), so does its Fourier transform. However the basis functions 1√
2π

eipx are

not in L2(−∞; +∞) since | 1√
2π

eipx|2 = 1
2π .

http://dx.doi.org/10.1007/978-3-319-22014-7_4
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particle by a discrete index α (representing for instance the eigenvalues of Ŝ
2
and

Ŝz). We can then take as a basis of the Hilbert space either {|x, α〉} or {|p, α〉}. In
the former case, normalizing the basis elements as follows

〈x,α|x′,α′〉 = δ3(x − x′) δαα′ , (9.25)

Equation (9.16) generalizes to

|a〉 =
∫

d3x
∑

α

|x,α〉〈x,α| a〉 =
∫

d3x
∑

α

Φα
(a)(x) |x,α〉, (9.26)

the wave function being defined by Φα
(a)(x) ≡ 〈x, α| a〉. Restoring the explicit

dependence on time the above definition reads

Φα
(a)(x, t) = 〈x, α|a, t〉. (9.27)

We stress that the wave function Φ(a)(x) is a c-number field, that is a classical
field.5 As an example, the electromagnetic potential in the Coulomb gauge A(x) =
εkei(k·x−ω t) can be thought of as the wave function6 describing a photon in the
state |a〉 = |� k,α〉, where p = � k is the momentum and, recalling that in the
Coulomb gauge εk · k = 0 (see Chap. 6), the index α = 1, 2 labels the two physical
polarizations in the plane orthogonal to k.

Wemay of course describe the state in other representations. If we take, for exam-
ple, the complete set of the eigenfunctions of the Hamiltonian operator, possessing
a discrete spectrum of eigenvalues En and eigenstates |En〉

|a〉 =
∑

En

|En〉〈En|a〉,

the set 〈En|a〉 will now represent the wave function of the same state in the energy
representation. Its relation to the wave function in the coordinate representation is
given by

〈x| a〉 =
∑

n

〈x|En〉〈En|a〉, (9.28)

〈x|En〉 being the eigenfunctions of the Hamiltonian.

5As we shall see in Chap.11 a consistent interpretation of a quantum relativistic theory requires
that the interpretation of Φ(a)(x) as a quantum mechanical wave function must be abandoned and
that the classical field be promoted to a quantum mechanical operator.
6Clearly a normalization factor should be used when giving this interpretation since Aμ has dimen-

sion (Newton)
1
2 and not (length)

3
2 , as a wave.

http://dx.doi.org/10.1007/978-3-319-22014-7_6
http://dx.doi.org/10.1007/978-3-319-22014-7_11
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9.3 Unitary Operators

As pointed out in Sect. 7.2, when describing transformations in three-dimensional
Euclidean space or in Minkowski space, we have adopted the so-called passive point
of view, that is we have assumed that transformations (rotations, translations, Lorentz
transformations etc.) act on the reference frame {O, ui} → {O′, u′

i} while points and
vectors are fixed. That means that the geometrical meaning of vectors and points
is not altered by a transformation, only their description in terms of coordinates or
components undergoes a change.

This same point of view was adopted in Chap. 7 for the description of the trans-
formation of a field under a change in coordinates. There, writing φ′(x′) = φ(x) we
were considering the transformation x′ = f (x) from a passive point of view. However
we pointed out that the transformation φ(x) → φ′(x) with φ′(x) = φ(f −1(x)) could
also be considered from an active point of view, thereby putting the emphasis on the
functional change of φ.

In the following transformations on the Hilbert space of states, namely on the ket
vectors |v〉, will be mainly considered for the time being from the active point of
view. That means that we will describe a linear transformation U on a ket-vector as
acting on the vector itself, while the basis with respect to which it is described is kept
fixed:

|v〉 → |v′〉 = |Uv〉 ≡ U|v〉,

where U is a linear transformation. Here both |v′〉 and |v〉 are then represented in
components with respect to the same basis |ui〉 defined by the simultaneous eigen-
states of a complete systemof observables.7 Thismeans that the effect of a space-time
coordinate transformation is described at the level of quantum states by means of the
action of an operator mapping the original state vector of the system into a new one.

To motivate this consider, for example, a particle that, with respect to a reference
frame S has definite momentum p and thus is in a state |p〉. In a different frame S ′,
obtained by a rotation R of the first, the same particle will be described as having a
momentum p′ = R p, that is as being in the new quantum state |p′〉, different from
the original one |p〉. The effect of the transformation is then to change the quantum
state of the system and thus is naturally described on the space of states from an
active point of view: The new state results from the action of an operator U on the
old one: |p′〉 = U |p〉. Such active description of a transformation is referred to as the
Schroedinger representation. We shall also consider the Heisenberg representation
in which operators rather than states are affected by a transformation, and which
realize the passive description of transformations on a quantum system.

Let us choose an orthonormal basis {|ui〉} for the Hilbert space of states (e.g.
the eigenstates of the momentum operator). The action of an operator U from the
active point of view was described in Eqs. (7.6), (7.7) and, in the new notations,
in Eq. (9.9). In the chosen basis the transformation U is represented by a non-

7We warn the reader that, in the case of space-time transformations, the orthonormal basis |ui〉 has
nothing to do with the space, or space-time, reference frame which undergoes the transformation.

http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_7
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singular matrix U = (Ui
j). If we write the original state |v〉 and the transformed one

|v′〉 ≡ |U v〉 ≡ U |v〉 in components with respect to the same basis {|ui〉}

|v〉 = vi |ui〉, |v′〉 = v′i |ui〉, (9.29)

the old an new components are related by the action of U: v′i = Ui
j v

j. If the
basis elements form a denumerable infinity, then U has infinitely many rows and
columns. If the basis elements form a non-denumerable infinity, as it is the case of
the coordinate (or momentum) representation, the action of U is more conveniently
expressed in terms of a differential operator on wave functions. We may consider
transformations belonging to a group G, like the Lorentz transformations. In this case
U provides a representation of G on the space of states (which is more appropriately
called realization if the transformations are realized in terms of differential operators
on wave functions):

g ∈ G : |a〉 ∈ V (c) g−→ |a′〉 = |g a〉 = U(g)|a〉,
∀g1, g2 ∈ G : U(g1 · g2) = U(g1) · U(g2). (9.30)

The transformation U(g) on states, associated with a coordinate transformation g,
must be defined in such a way that the expectation value 〈O〉 of any observable
quantity, like the position vector x or the linear momentum p, transform accordingly
under g. For instance wemust have that the expectation value of the position operator
x̂ = (x̂i) on a particle state |a〉 transforms under a rotation R ∈ SO(3) as the position
vector x of a classical particle, namely as follows:

〈xi〉 ≡ 〈a|x̂i|a〉 R−→ 〈xi〉′ = 〈R a|x̂i|R a〉 = Ri
j 〈xi〉. (9.31)

We recall that in quantum mechanics given two states |b〉 and |a〉, the probability of
transition from |a〉 to the state |b〉 is given by (or it is proportional to) |〈b|a〉|2, if the
state is normalizable (or not normalizable), see Eq. (9.13). Since this probability is a
measurable quantity, it must have the same value in every reference frame. It follows
that the action of a generic element g of the transformation group G, represented on
states by the operator U, must leave |〈a|b〉|2 invariant for any pair of kets |a〉 and |b〉.
In formulae, if

∀g ∈ G :
{ |a〉

|b〉
g−→

{ |a′〉 = |g a〉 = U(g)|a〉
|b′〉 = |g b〉 = U(g)|b〉, (9.32)

is the action of g ∈ G on the given kets, we require that:

|〈a|b〉|2 = |〈a′|b′〉|2 = |〈a|U(g)†U(g)|b〉|2.
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A theorem by Wigner, which we are not going to prove, states that it is possible to
fix the multiplicative phases in the definition of the (unit norm) state vectors in such
a way that that U(g) is either unitary

〈a|U(g)†U(g)|b〉 = 〈a|b〉 ⇒ U(g)† = U(g)−1,

or antiunitary8

〈a|U(g)†U(g)|b〉 = 〈a|b〉∗.

We shall show in the next chapter that the discrete transformation t → −t called
time reversal is an example of antiunitary operator. Clearly not all transformations
of a group G can be realized as antiunitary operators, since, as the reader can easily
verify, the product of two antiunitary transformations is unitary.

If U(g) is unitary for any g ∈ G, we say that U defines a unitary representation of
G on V (c). In the following we restrict our discussion to the unitary representations
only:

∀g ∈ G : U(g)†U(g) = U(g)U(g)† = Î.

According to our analysis of Lie algebras in Chap.7, the structure of a Lie group G
in a neighborhood of the identity element U(g0) = Î is captured by the Lie algebra
A of infinitesimal generators, so that a generic element U(g) can be expressed as the
exponential of an element of A:

U(g) = e
i
�

θr Ĝr , (9.34)

where (θr) are the parameters defining the element g of G and Ĝr is a basis of A
and consists of operators in the quantum-space of states V (c). Note that, with respect
to the notation used in Chap.7, the infinitesimal generators here are rescaled by a
factor i/�. As usual infinitesimal transformations, parametrized by δθr � 1, can be
expressed by truncating the exponential to first order in the parameters:

U(g) ≈ Î + i

�
δθr Ĝr . (9.35)

Writing the unitary condition to first order in the infinitesimal parameters δθr we
find the following property of the infinitesimal operators:

8An antiunitary operator Â does not fit the definition of linear operators given in Eq. (9.7). In fact
Â is an example of an antilinear operator defined by the property

Â(α|v〉 + β|w〉) = α∗ Â|v〉 + β∗ Â|w〉, ∀α,β ∈ C. (9.33)

http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_7
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U(g)†U(g) = U(g)U(g)† = Î ⇔
(

Î − i

�
δθr Ĝ†

r

)(
Î + i

�
δθr Ĝr

)

� Î − i

�
δθr(Ĝ†

r − Ĝr) = Î ⇔ G†
r = Ĝr,

namely we find that the infinitesimal generators Ĝr , defined in Eq. (9.34), are her-
mitian. The hermiticity condition allows us to associate each Gr with observable
quantities that iswith operatorswhose eigenvalues are real and therefore interpretable
as the result of ameasurement of a physical quantity.9 In Chaps. 4 and 7, see Sect. 7.3,
the exponential representation of a finite transformation in (9.34) was motivated by
the fact that any finite transformation, in a neighborhood of the identity element, can
be realized by iterating infinitelymany infinitesimal transformations. If F̂ = θr Ĝr/�

is a finite element of A, iterating a large number n � 1 of times the infinitesimal
transformation generated by the infinitesimal element i

n F̂, in the limit n → ∞, we
generate a finite group element

U = lim
n→∞

(
1 + i

n
F̂

)n

= Î + i F̂ + i2

2! F̂2 + · · · = ei F̂ . (9.36)

By suitably choosing F̂ we can reach, through the exponential map (9.36), any
element of G in a finite neighborhood of the identity.

So far we have described the effect of transformations (e.g. of coordinate trans-
formations closing a group G) on the quantum description of a system in terms of the
action of unitary operators on the state vectors. Such description defines the so called
Schrödinger picture (or representation), in which the state of a system belongs to a
unitary representation of the transformation group G. As explained above, the con-
dition defining such unitary action is that the expectation value 〈Ô〉 of an observable
Ô on a state |a〉 transform under a change in the RF as the corresponding classical
quantity O:

〈O〉 ≡ 〈a|Ô|a〉 U−→ 〈O〉′ = 〈a′|Ô|a′〉 = 〈a|U† Ô U|a〉. (9.37)

We can adopt an alternative description, called the Heisenberg representation, in
which transformations affect the operators Ô associated with observables, leaving
state vectors unchanged. Since in both representations the effect of a transformation
on the expectation value 〈O〉 of an observable should be the same, we deduce the
following transformation rules in the Heisenberg picture:

Ô U−→ Ô′ = U† Ô U; |a〉 ∈ V (c) U−→ |a〉. (9.38)

If U represents a Lie group of transformations G, we can consider the effect on Ô
of an infinitesimal transformation defined by parameters δθr � 1:

9Note that the imaginary unit i in Eq (9.34) has been inserted in order to deal with hermitian
generators.

http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_7
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Ô′ =
(

Î − i

�
δθr Ĝr

)
Ô

(
Î + i

�
δθr Ĝr

)
= Ô + i

�
δθr [Ô, Ĝr] = Ô + δÔ,

where we have neglected second order terms in δθ and used the property Ĝ†
r = Ĝr .

We deduce that

δÔ = Ô′ − Ô = i

�
δθr [Ô, Ĝr]. (9.39)

Compare now Eq. (9.39) with Eq. (8.95) describing the infinitesimal transformation
property of the corresponding observable O in the classical theory. We observe that
the former can be obtained from the latter by replacing the Poisson brackets of the
classical theory with the commutator of the quantum theory:

{·, ·} → − i

�
[·, ·], (9.40)

and the classical observableO(p, q) and Gr with their quantum counterparts Ô, Ĝr .
Taking into account that in the classical theory Gr(p, q) are the infinitesimal gener-
ators of canonical transformations, we conclude that canonical transformations are
implemented in the quantum theory by unitary operators U. This was to be expected
since just as Poisson brackets in the classical theory were invariant under canon-
ical transformations, commutators between quantum operators are invariant under
unitary transformations (9.38), as it can be easily verified.

9.3.1 Application to Non-Relativistic Quantum Theory

Let us apply the above considerations in the context of non-relativistic quantum
mechanics.

According to Eq. (9.40) the Heisenberg commutation conditions can be deduced
from the Poisson brackets (8.75) of the fundamental quantum canonical variables.
We have [

x̂i, p̂j

]
= i� δi

j Î. (9.41)

Using these commutation relations we can introduce the operators Ĝr corresponding
to the infinitesimal generators of rotations, space and time translations in the quantum
theory. Let us recall from Chap.7 that the angular momentum M = (Mi), the linear
momentum p = (pi) and the Hamiltonian H are the infinitesimal generators of rota-
tions, spatial and time translations. The corresponding quantum hermitian operators
will generate the same transformations implemented on quantum states. Promoting
the classical dynamical variables to quantum operators in the Hilbert space, we then
obtain the following infinitesimal generators:

http://dx.doi.org/10.1007/978-3-319-22014-7_8
http://dx.doi.org/10.1007/978-3-319-22014-7_8
http://dx.doi.org/10.1007/978-3-319-22014-7_7
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Ĝr :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M̂i (i = 1, 2, 3)
angular momentum operator
M̂ = x̂ × p̂ generating SO(3)
rotations.

p̂i i = 1, 2, 3
momentum operator p̂, generating
space translations

.

Ĥ Hamiltonian operator, generating
time-evolution.

They are operators corresponding to physical observables and generate transforma-
tions on the system which can be described as an action either on the quantum states
(Schroedinger representation) or on the hermitian operators corresponding to classi-
cal observables (Heisenberg representation). Let us first describe in some detail the
action of these operators on other dynamical variables.

The operators p̂ generate translations in x:

x → x′ = x − ε; δx = x′ − x = −ε, (9.42)

the corresponding finite unitary transformation being:

U(ε) = e
i
�

p̂·ε. (9.43)

If we take an infinitesimal displacement ε the variation of x̂ is

δx̂i = i

�
εj

[
x̂i, p̂j

]
= −εi Î.

reproducing Eq. (9.42) on the operator x̂. For finite transformations we then have:

x̂′ = U(ε)† x̂ U(ε) = x̂ − εÎ. (9.44)

It is now straightforward to check that the expectation value 〈x〉 of x̂ on a state |a〉
(relative to a frame S) has the right transformation property

〈x〉 ≡ 〈a|x̂|a〉 U(ε)−→ 〈x〉′ = 〈a′|x̂|a′〉 = 〈a|U(ε)† x̂ U(ε)|a〉
= 〈a|(x̂ − εÎ)|a〉 = 〈x〉 − ε, (9.45)

where |a′〉 = U(ε) |a〉 = e
i
�

p̂·ε |a〉 is the state of the particle as observed in the
frame S ′ translated with respect to S. Similarly it can be easily shown that if |x〉 is
the eigenstate of x̂ corresponding to the eigenvalue x, U(ε)|x〉 is the eigenstate of x̂
corresponding to the eigenvalue x − ε. To this end let us apply x̂ to the transformed
vector U(ε)|x〉 (we suppress, for the sake of simplicity, the argument of U):

x̂ U|x〉 = U (U†x̂ U)|x〉 = U
(

x̂ − εÎ
)

|x〉 = (x − ε) U|x〉, (9.46)
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where we have used Eq. (9.44). From the above derivation we conclude that, modulo
a proportionality factor, we can make the following identification:

U(ε)|x〉 = |x − ε〉. (9.47)

Applying instead U(ε) to the eigenvector |p〉 of p̂, corresponding to an eigenvalue p,
its effect amounts to a multiplication by a phase: U(ε)|p〉 = e

i
�

p̂·ε |p〉 = e
i
�

p·ε |p〉.
Let us now use this property and Eq. (9.47) to write the wave function ψp(x) asso-
ciated with an eigenstate of the momentum operator:

ψp(x) = 〈x|p〉 = 〈x = 0|U(x)|p〉 = 〈0|p〉 e
i
�

p·x, (9.48)

where we have written |x〉 = U(−x) |x = 0〉 and used the propertyU(−x)† = U(x).

We see that ψp(x) ∝ e
i
�

p·x, which has an infinite norm as observed in Sect. 9.2
after Eq. (9.21). Physically this descends from the fact that a particle with definite
momentum is completely delocalized in space, as implied by Heisenberg’s uncer-
tainty principle.

We can now write the relation between the coordinate and the momentum repre-
sentations, see Eq. (9.24)

ψ(a)(x) = 〈x|a〉 = const. ×
∫

d3p 〈x|p〉〈p|a〉 =
∫

d3p ψ̃(a)(p) e
i
�

p·x,

(9.49)

where we have absorbed normalization factors like 〈x = 0|p〉 in the definition of
ψ̃(a)(p). We see that ψ̃(a)(p) is the familiar Fourier transform of ψ(a)(x). Particles
which are localized at each timewithin afinite regionof space of sizeΔx are described
bywavepacketsψ(x),whoseFourier transform ψ̃(p) is peakedon someaveragevalue
p̄ of the linear momentum and has a width of size Δp, related to Δx by Heisenberg’s
uncertainty principle: ΔxΔp � �. The probabilistic interpretation of such a wave
function is that the particle it describes is localized within a volume (Δx)3 andmoves
with a momentum p which is undetermined within a region (Δp)3 about p̄.

As mentioned in Sect. 9.2 it is possible to extend the space of square-integrable

wave functions corresponding to normalizable states to include functions like e
i
�

p·x.
We can indeed avoid the problem of dealing with non-normalizable states if we

quantize the particle in a box, just as we did for the photon in Chap. 5: We consider
the particle as propagating inside a parallelepiped of sides LA, LB, LC along the three
directions X, Y , Z and volume V = LALBLC . We then impose periodic boundary
conditions on the wave function, as a consequence of which the eigenvalues of p̂ are
quantized:

p = (px, py, pz) = 2π �

(
nx

LA
,

ny

LB
,

nz

LC

)
, nx, ny, nz ∈ Z, (9.50)

http://dx.doi.org/10.1007/978-3-319-22014-7_5
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and the corresponding eigenstates are normalizable to one:

〈p|p′〉 = δp,p′ . (9.51)

Writing the identity operator as Î = ∑
p |p〉〈p| we rederive the relation (9.49)

between the coordinate and momentum representation of a state in the form of a
Fourier series

ψ(a)(x) =
∑

p

ψ̃(a)(p) e
i
�

p·x. (9.52)

In the infinite volume limit LA, LB, LC → ∞, see discussion in Sect. 5.6.2 of
Chap. 5 and set k = p/�, we recover a continuous momentum spectrum and the
sum over the discrete momentum values becomes an integral through the replace-
ment:

∑

p

→
∫

d3p
(2π �)3

V . (9.53)

This limit amounts to requiring that V bemuch larger than the size (Δx)3 of the wave
packet describing the particle. In the large volume limit the normalization condition
(9.51) becomes

〈p|p′〉 = (2π�)3

V
δ3(p − p′), (9.54)

where we have used the prescription

δp,p′ −→ (2π�)3

V
δ3(p − p′), (9.55)

which follows from Eq. (5.126) of Chap. 5 upon replacing k with p/�.10

Using Eqs. (9.54) and (9.53), the identity operator can be written as

Î =
∑

p

|p〉〈p| →
∫

d3p
(2π �)3

V |p〉〈p|. (9.56)

The one-particle volume V is a normalization factor which should ultimately drop
off the expression of observable quantities, as it will be shown in Chap.12, when
computing transition probabilities and cross sections of interaction processes.

10We have also used the property of delta-functions δ(cx) = δ(x)/c, so that δ3(k − k′) = �
3 δ3

(p − p′).

http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_12
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Let us now describe the effect of a spatial translation (9.42) on the wave function
ψ(x) ≡ ψ(a)(x) of a particle which is in state |a〉 with respect to the frame S. An
observer in the translated frameS ′ will observe the particle in the state |a′〉 = U(ε) |a〉
and describe it through the following wave function:

ψ′(x′) ≡ ψ(a′)(x
′) = 〈x′|a′〉 = 〈x′|e i

�
p̂·ε |a〉 = 〈x′ + ε|a〉 = ψ(x′ + ε).

We thus find the correct transformation property of the wave function given in infin-
itesimal form in equation (7.98).

Writingψ′(x) as resulting from the action of a differential operatorOε = e
i
�

p̂·ε on
ψ(x):ψ′(x) = ψ(x+ε) = e

i
�

p̂·ε ψ(x) and expanding the expression for infinitesimal
shift parameters εi � 1, along the lines of Sect. (7.4.3), we derive the form of p̂i as
differential operators on wave functions:

p̂i = −i�
∂

∂xi ⇔ p̂ = −i� ∇. (9.57)

As we have seen in Sect. 4.5.1, ordinary rotations are described by the following
transformations:

g ∈ SO(3) → U(θ) = e
i
�

θiM̂i , i = 1, 2, 3,

where θ ≡ (θi) and the M̂i operators satisfy the commutation rules (4.132)

[
M̂i, M̂j

]
= i� εijk M̂k .

If we take as Ô the same operators M̂i and compute their variation (9.39), with
Ĝi = M̂i we find

δM̂i = i

�
δθj

[
M̂i, M̂j

]
= −εijk δθj M̂k,

that is
δM̂ = −δθ × M̂.

This means that M̂ transforms under rotations as a three-dimensional vector. As far
as the effect of rotations on the position and momentum operators is concerned, we
may further verify that

[M̂i, x̂j] = i� εijk x̂k; [M̂i, p̂j] = i� εijk p̂k,

implying that x̂ and p̂ transform under rotations as the vectors they represent

δx̂ = −δθ × x̂, δp̂ = −δθ × p̂.

http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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Under finite transformations, recalling our discussion of the rotation group and its
algebra given in Sect. 4.5.1 (see specifically equation (4.123)), we have

M̂i → M̂
′i = U(θ)† M̂i U(θ) = R(θ)i

j M̂j, (9.58)

x̂i → x̂
′i = U(θ)†x̂iU(θ) = R(θ)i

j x̂
j, (9.59)

p̂i → p̂
′i = U(θ)†p̂iU(θ) = R(θ)i

j p̂
j, (9.60)

which imply the correct transformation rules under rotations of the corresponding
expectation values.

Let us now investigate the action of a rotation on the physical states represented
by kets. We take, for the sake of definiteness, as a basis of the Hilbert space either
the eigenstates |x〉 of the operator x̂ or the eigenstates |p〉 of p̂, defined in Sect. 9.2.
Consider, for instance, the action of a rotation U(θ) on |p〉: Applying the operator p̂
to the transformed vector |p′〉 = U(θ) |p〉 we have

p̂ U(θ)|p〉 = U(θ)U(θ)†p̂ U(θ) |p〉 = U(θ) p̂′ |p〉 = U(θ)
(
R(θ)p̂

) |p〉
= (R(θ)p)U(θ)|p〉.

It follows that U(θ)|p〉 is eigenstate of p̂ corresponding to the eigenvalue Rp ≡
(Ri

j pj). Therefore, neglecting a possible normalization coefficient

U(θ)|p〉 = |R(θ) p〉.

In an analogous way we may show

U(θ)|x〉 = |R(θ) x〉.

The transformation property of a wave function under rotations is readily derived:
Let |a〉 and |a′〉 = U(θ) |a〉 be the states of a same (spin-less) particle in S and in
the rotated frame S ′, ψ(x) and ψ′(x′) the corresponding wave functions. We have:

ψ′(x′) = 〈x′|a′〉 = 〈x′|U(θ) |a〉 = 〈R(θ)−1 x′|a〉 = ψ(R(θ)−1 x′) = ψ(x).

Writing ψ′(x) = Oθ ψ(x) = e
i
�

M̂·θψ(x) and expanding for small angles θi � 1
we find the explicit expression (7.99) for the angular momentum components as
differential operators on wave functions.

We note however that, writing the effect of rotations on a state just bymeans of the
action of the (orbital) angular momentum operator M̂ is correct only if the particle
does not carry spin degrees of freedom as it has been discussed in Chap.8. If this is
not the case we may think of the rotation as acting simultaneously on the coordinates
by means of the M̂i generators and on the spin degrees of freedom by means of the
generators Ŝi. That means that the infinitesimal generator of the rotations is given by
the total angular momentum operator Ĵ,

http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_8
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Ĵ = M̂ + Ŝ. (9.61)

The effect of a finite rotation g(θ) ∈ SO(3) is

U(θ) |x,α〉 = Dβ
α|R x,β〉, (9.62)

where the explicit dependence on θ was suppressed and

U(θ) = e
i
�

Ĵ·θ (9.63)

D(θ)βα =
(

e
i
�

Ŝ·θ)β

α acts on the spin-components, (9.64)

R(θ)j
i =

(
e

i
�

M̂·θ)j
i acts on the space-components. (9.65)

Similarly, for the momentum eigenstates |p,α〉, we find

U|p,α〉 = Dβ
α|R p,β〉.

Consider now a local, scalar differential operator Â(x) (here we suppress, for the
sake of notational simplicity, the obvious dependence of Â on the partial derivatives:
Â(x) ≡ Â(x, ∇)), acting on wave functions and depending on x and on partial deriv-
atives with respect to the coordinates (by scalar we mean representing an observable
which does not transform under spatial rotations). An example of Â(x) is the Hamil-
tonian operator Ĥ(p̂, x) = Ĥ(−i�∇, x) in the coordinate representation. Let us illus-
trate how Â(x) transforms under a coordinate transformation f : x → x′ = f (x),
which can be a rotation, a translation, or a general congruence. Let the transformation
be implemented on wave functions by the operator Of :

Of ψ(x) = ψ(f −1(x)) ⇔ O−1
f ψ(x) = ψ(f (x)). (9.66)

If f is a rotation,Of is the transformationOθ defined above,while x′ = f (x) = R(θ)x
and f −1(x) = R(θ)−1x. Let Φ(x) denote the result of the action of Â(x) on ψ(x):

Â(x)ψ(x) = Φ(x), (9.67)

and let us act on both sides by O−1
f :

O−1
f Â(x)ψ(x) = O−1

f Φ(x) = Φ(f (x)) = Â(f (x))ψ(f (x)), (9.68)

where it is understood that Â(f (x)) = Â(x′) is the operator Â in which also the partial
derivatives are computed with respect to the new coordinates x′i: Â(x′) ≡ Â(x′, ∇′).
On the other hand we have:
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O−1
f Â(x)ψ(x) = O−1

f Â(x)Of O−1
f ψ(x) = O−1

f Â(x)Of ψ(f (x))

= Â′(x)ψ(f (x)). (9.69)

Comparing (9.68) with (9.69), being ψ(x) a generic function, we deduce the trans-
formation property of the local differential operator Â(x) under a coordinate trans-
formation:

Â′(x) = O−1
f Â(x)Of = Â(f (x)). (9.70)

The above equation defines the transformation property of a scalar operator Â(x). It
expresses Eq. (9.38) in the coordinate representation. The scalar operator is invariant
under f iff Â′(x) = Â(x), namely if

O−1
f Â(x)Of = Â(f (x)) = Â(x), (9.71)

or, equivalently:

[Â(x), Of ] ≡ Â(x) Of − Of Â(x) = 0. (9.72)

We conclude that a local differential (scalar) operator is invariant under a coordinate
transformation f if it commutes with Of .

9.3.2 The Time Evolution Operator

In non-relativistic quantum mechanics space and time are treated on a different
footing. So far we have considered quantum states and their transformations under
unitary operators at a fixed time t, and we have shown that they play in quantum
mechanics the same role as canonical transformations in the classical theory. In
classical mechanics time-evolution, namely the correspondence between the state of
a system at a given instant and its evolved at a later time, is a canonical transformation
generated by theHamiltonian of the system. In quantummechanics, however, in order
to describe the time-evolution of a system, we must find an operator on V (c) that
connects the states of a system at two generic instants, say |a, t〉 and |a, t0〉. From
the superposition principle in quantum mechanics it follows that if at t0

|a, t0〉 = α1 |b, t0〉 + α2 |c, t0〉,

the same superposition must hold at any other time t:

|a, t〉 = α1 |b, t〉 + α2 |c, t〉.
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This implies that the mapping U between |a, t0〉 and |a, t〉

|a, t〉 = U(t, t0) |a, t0〉 (9.73)

must be a linear operator. Requiring also the conservation of the norm of a state
during its time-evolution (conservation of probability), we must have

〈a, t|a, t〉 = 〈a, t0|a, t0〉 ⇒ 〈a, t0|U†U|a, t0〉 = 〈a, t0|a, t0〉,

implying
U†U = Î,

that is, the time-evolution operator U has to be unitary. Moreover if U(t, t0) maps
|a, t0〉 into |a, t〉, U(t, t0)−1 = U(t, t0)† maps |a, t〉 into |a, t0〉, so that U(t, t0)† =
U(t0, t). We finally require U to satisfy the condition U(t0, t0) = Î .

In order to determine the time-evolution of |a, t〉 we compute the change of |a, t〉
under an infinitesimal change in the parameter t. We have

∂|a, t〉
∂t

∣
∣
∣
∣
t=t0

= lim
t→t0

|a, t〉 − |a, t0〉
t − t0

=
{

lim
t→t0

U − Î

t − t0

}

|a, t0〉. (9.74)

Let us denote the limit of the operator inside the curly brackets by −i Ĥ/�; we can
then write, at a generic time t, the differential equation

Ĥ|a, t〉 = i�
∂

∂t
|a, t〉. (9.75)

The operator Ĥ is the infinitesimal generator of time-evolution and, in analogy with
classical mechanics, is identified with the quantum Hamiltonian. If we substitute Eq.
(9.73) in (9.74) we obtain an equation for the evolution operator:

i�
dU(t, t0)

dt
= ĤU(t, t0) ⇔ i�

dU(t, t0)†

dt
= −U(t, t0)

† Ĥ, (9.76)

where we have used the hermiticity property of Ĥ: Ĥ† = Ĥ. If the Hamiltonian is
time-independent, as it is the case for a free particle, we can easily write the formal
solution to the above equation with the initial condition U(t0, t0) = Î:

U(t, t0) = U(t − t0) = e− i
�

Ĥ (t−t0). (9.77)

The equation for the wave function

ψ(x, t) = 〈x|a, t〉,
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is obtained by scalar multiplication of both sides of (9.75) by the bra 〈x|. Taking into
account Eq. (9.19) we obtain

Ĥψ(x, t) = i �
∂

∂t
ψ(x, t), (9.78)

that is the Schrödinger equation, where Ĥ is now the Hamiltonian operator realized
as a differential operator on wave functions. For a free particle

Ĥ = |p̂|2
2m

= − �
2

2m
∇2,

and eq. (9.78) reads:

− �
2

2m
∇2ψ(x, t) = i �

∂

∂t
ψ(x, t), (9.79)

where ∇2 ≡ ∇ · ∇ = ∑3
i=1 ∂2

i . Note that in this formulation the dynamical vari-
ables described by hermitian operators are not evolving in time, that is they are
time-independent, while states, or equivalently wave-functions, are time-dependent.
Thinking of time-evolution as of a particular kind of transformation, we have previ-
ously referred to such description as the Schroedinger picture.

In the Heisenberg picture on the other hand, transformations (including time-
evolution) act on operators while states stay inert. In this representation therefore
states are time-independent while operators Ô(t) representing observables evolve in
time. To see how, let us specialize Eq. (9.38) to the time-evolution and apply it to an
observable Ô(t):

Ô(t) = U(t − t0)
† Ô(t0) U(t − t0) = e− i

�
Ĥ (t0−t) Ô(t0) e− i

�
Ĥ (t−t0), (9.80)

where we have used the property U(t − t0)† = U(t0 − t). Clearly at t = t0, being
U(t0, t0) = Î , any Heisenberg dynamical variable, as well as the state of the system,
is the same as the corresponding one in the Schroedinger picture. To find the equation
of motion for the operator Ô(t)we differentiate both sides of (9.80) with respect to t:

d

dt
Ô(t) =

(
d

dt
U(t − t0)

†
)
Ô(t0) U(t − t0) + U(t − t0)

† Ô(t0)
d

dt
U(t − t0)

= i

�

(
Ĥ U(t − t0)

† Ô(t0) U(t − t0) − U(t − t0)
† Ô(t0) U(t − t0) Ĥ

)
,

where we have used (9.76). Using Eq. (9.80) again we find

d

dt
Ô(t) = i

�
[Ĥ, Ô(t)], (9.81)

which is referred to as the quantum Hamilton equations of motion.
Let us compare this equation with the Hamilton equations of motion of the classi-

cal theory, Eq. (8.98).We see that the time-evolution of a dynamical variable in quan-

http://dx.doi.org/10.1007/978-3-319-22014-7_8
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tum mechanics can be obtained from the classical formula Eq. (8.98) by replacing
the Poisson bracket between the classical observable quantities with the commutator
between the corresponding quantum operators, according to the prescription (9.40).

We give another example of this procedure by examining the condition under
which a quantum dynamical variable is conserved. In the classical case this happens
when the Hamiltonian of the system is invariant under the action of a group of
transformations G.

Quantum mechanically the transformation of the Hamiltonian operator Ĥ under
the transformations U(g) of G reads

∀g ∈ G : Ĥ ′ = U(g)† Ĥ U(g).

The infinitesimal formof the above transformation is given byEq. (9.39)with Ô = Ĥ:

δĤ = Ĥ ′ − Ĥ = i

�
δθr [Ĥ, Ĝr], ∀θr, (9.82)

where Ĝr denote the infinitesimal generators ofG.As in the classical case, in quantum
mechanics the groupG is a symmetry or an invariance of the theory if under the action
of G-transformations, the Hamiltonian is left invariant (here we assume Ĝr not to
explicitly depend on time):

δĤ = 0 ⇒ ∀r : [Ĥ, Ĝr] = 0.

On the other hand from Eq. (9.81), using the invariance condition, we obtain

d

dt
Ĝr(t) = i

�
[Ĥ, Ĝr] = 0,

that is the generators Ĝr of G are conserved. Equation (9.82) amounts to saying
that, a system is invariant with respect to the transformations in G if and only if the
Hamiltonian operator commutes with all the infinitesimal generators of G. Using
the exponential representation of a finite time-evolution operator U(t − t0) and of
a finite G-transformation U(g), this property implies that for any g ∈ G and t, t0:
U(t − t0)U(g) = U(g)U(t − t0), that is the result of a time-evolution and of a G-
transformation (e.g. a change in the RF) does not depend on the order in which the
two are effected on the system.

Let us now mention an important application of Schur’s Lemma, see Sect. 7.2, to
quantum mechanics. Let G be a symmetry group of a quantum mechanical system.
We know, from our previous discussion, that the Hamiltonian operator Ĥ commutes
with the action U of G on the Hilbert space V (c). Its matrix representation on the
states will then have the form (7.27), where c1, . . . , cs (s may be infinite!) are the
energy levels E1, . . . , Es of the system, and k1, . . . ks their degeneracies. This means
that the k� states |E�〉 of the system corresponding to a given energy level E�, define a

http://dx.doi.org/10.1007/978-3-319-22014-7_8
http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_7
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subspace of V (c) on which an irreducible representation Dk�
of the symmetry group

G acts. We can easily show this by writing the Schroedinger equation for a state |E�〉:
Ĥ|E�〉 = E� |E�〉. (9.83)

Consider a generic symmetry transformation g ∈ G and the transformed state |E�〉′ =
U(g)|E�〉. This state corresponds to the same energy levelE� as the original one, since

Ĥ|E�〉′ = ĤU(g)|E�〉 = U(g)Ĥ|E�〉 = E� U(g)|E�〉 = E�|E�〉′, (9.84)

where we have used the property that Ĥ commutes with U(g). Since the above prop-
erty holds for any g ∈ G, the eigenspace of the Hamiltonian operator corresponding
to a given energy level supports a representation of the symmetry group G.

In the generic case, in which there is no accidental degeneracy, Dk1, . . . , Dks are
irreducible representations of G. If Dki is not irreducible, this may indicate that there
exists a larger symmetry groupG ′ containingG, whose action on Vki is irreducible. In
other words accidental degeneracies may signal the existence of a larger symmetry of
the system. As an example consider the Hydrogen atom which is a system consisting
of an electron and a proton, with charges ±|e|. The classical Hamiltonian of the
system reads:

H(p, x) = |p|2
2me

− e2

4π |x| , (9.85)

and is manifestly invariant under rotations H(p, x) = H(p′, x′), where x′ = R(θ) x,
p′ = R(θ) p, since it only depends on the norms of the two vectors. In quantum
mechanics, the Hamiltonian operator in the coordinate representation Ĥ(p̂, x) =
Ĥ(−i� ∇, x) reads

Ĥ(−i� ∇, x) = − �
2

2m
∇2 − e2

4π |x| . (9.86)

It shares the same symmetry as its classical counterpart: If Oθ is the differential
operator defined in Sect. 9.3.1, which implements a rotation on wave functions
(ψ(x) → Oθψ(x) = ψ(R(θ)−1x)), then, applying Eq. (9.70) to Ĥ we find:

Ĥ ′(−i� ∇, x) = O−1
θ Ĥ(−i� ∇, x)Oθ = Ĥ(−i� ∇′, x′) = Ĥ(−i� ∇, x),

namely theHamiltonian operator is invariant under rotations. Thus by Schur’s lemma
we expect the wave functions corresponding to a given energy level to define a basis
of a representation of SO(3). This is actually the case, although such representation
is completely reducible. In other words, there is an accidental degeneracy which
can be explained by the existence of a larger symmetry group of the system, which
contains, besides the rotation group SO(3) generated by the angular momentum M̂,
a further hidden symmetry SO(3)′, commuting with the first one, generated by the
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so called Laplace–Runge–Lenz vector. We say that the symmetry group is actually
G = SO(3) × SO(3)′.

9.4 Towards a Relativistically Covariant Description

Consider the effect on states of a space-time translation. Suppose a same particle is
observed from two different frames S, S ′ whose Cartesian rectangular coordinates
coincide at all times. The only difference is that the chronometers in the two systems
were not set to start at the same time but measure two times, t, t′ respectively, related
by t = t′ + ε. The state |a′, t′〉 observed from S ′ must coincide with the state |a, t〉
measured from S at the same time, so we can write:

|a′, t′〉 = |a, t〉 = |a, t′ + ε〉 = e− i
�

Ĥ ε |a, t′〉. (9.87)

Suppose now the two spatial coordinate systems are related by a rigid translation,
so that the coordinate vectors of the particle in the two RF’s are related as follows:
x = x′ + ε. The relation between the two quantum descriptions of the particle
becomes:

|a′, t′〉 = e
i
�

p̂·ε|a, t′ + ε〉 = e
i
�

p̂·ε e− i
�

Ĥ ε |a, t′〉.

We see that the effect of the coordinate transformation is implemented on the state
by the unitary transformation

U(εμ) ≡ e
i
�

p̂·ε e− i
�

Ĥ ε = e− i
�

P̂μ εμ , (9.88)

where we have defined the four-momentum operator P̂μ ≡ ( 1c Ĥ, p̂) and the four-
vector (εμ) ≡ (c ε, ε). Note that in this derivation we have used the property that,
for a free particle, Ĥ and p̂ commute.

Consider now the wave function description of the particle state in the two RF’s.
Using the definition (9.27) we find:

Φα
(a′)(x

′, t′) ≡ 〈x′,α|a′, t′〉 = 〈x′,α|e i
�

p̂·ε |a, t′ + ε〉 = 〈x′ + ε,α|a, t′ + ε〉
= Φα

(a)(x
′ + ε, t′ + ε) = O Φα

(a)(x
′, t′), (9.89)

which is the correct transformation property under space-time translations of a field
Φα

(a)(x
μ) ≡ Φα

(a)(x, t) on Minkowski space. Note that, from an active point of view,
the above transformation can be written as the effect on Φα

(a)(x
μ) of a differential

operator O which implements a space-time translation on wave functions:

Φα
(a′)(x

μ) ≡ O Φα
(a)(x

μ) = Φα
(a)(x

μ + εμ), (9.90)
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where we have just renamed x′μ in (9.89) by xμ. Writing O = e− i
�

P̂μ εμ , we can find
the explicit realization of the four-momentum operator on wave functions from the
infinitesimal form of Eq. (9.90) (εμ � 1). The derivation is analogous to that of Eq.
(7.86) and yields the following identification

P̂μ = i� ημν ∂

∂xν
. (9.91)

If we use the short-hand notation ∂μ ≡ ∂
∂xμ and ∂μ ≡ ημν ∂ν , we can simply write

P̂μ = i� ∂μ.
To achieve a relativistically covariant description of states, we need to define on

them Lorentz (and in general Poincaré) transformations, that is they should have a
definite transformation property under Poincaré transformations.11 To this end let us
define the following vectors:

|x,α〉 = |(xμ),α〉 = |(ct, x),α〉 ≡ e
i
�

Ĥ t |x,α〉 = e
i
�

P̂·x |(xμ = 0),α〉. (9.92)

The wave function corresponding to a given state would then read:

Φα
(a)(x

μ) = 〈x,α|a, t〉 = 〈x,α| e− i
�

Ĥ t |a〉 = 〈x,α|a〉, (9.93)

where |a〉 ≡ |a, t = 0〉. So far we have just performed redefinitions. Let us now
define the action of Poincaré transformations on these states. In analogy with the
transformation property of states under rotations (9.62) and space translations (9.47)
in the non-relativistic theory, we try to define the action of a Poincaré transformation
(�, x0) on the basis |x,α〉 by means of a unitary operator U(�, x0):

|x,α〉 (�,x0)−→ U(�, x0)|x,α〉 ≡ Dβ
α |x′,β〉 = Dβ

α |� x − x0,β〉, (9.94)

where we have used the general transformation law (7.46). Consistency requires for
these states a normalization condition which generalizes Eq. (9.25):

〈x,α|x′,β〉 = δ4(x′ − x) δα
β = 1

c
δ(t′ − t) δ3(x′ − x) δα

β . (9.95)

The index α labels internal degrees of freedom which can be made to freely vary
by means of Poincaré transformations at fixed point xμ in M4. We may convince
ourselves that the largest group of transformations which leaves xμ fixed is the full
Lorentz group.12 Consider the state corresponding to the origin of the RF xμ ≡ 0

11In fact we shall characterize a single particle state as belonging to an irreducible representation
of the Poincaré group.
12This statement seems to be at odds with what we have learned from our earlier discussion about
Lorentz transformations: Under a Lorentz transformation a generic position four-vector xμ trans-
forms into a different one x′μ = Λμ

ν xν , and the only four vector which is left invariant is the null

http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_7
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and act on it by means of a Lorentz transformation:

|0,α〉 �−→ U(�)|0,α〉 ≡ Dβ
α |0,β〉. (9.96)

By virtue of homogeneity of space-time, whatever statement about the point xμ = 0
equally applies to any other point xμ. We conclude that the matrix D ≡ (Dβ

α) =
D(�) acting on the internal index α is a representation of the Lorentz group. Assum-
ing {|x,α〉} to be a basis of the Hilbert space we define the coordinate representation
of a state by expanding it in this basis:

|a〉 =
∫

d4x
∑

α

Φα(x) |x,α〉. (9.97)

Acting on |a〉 by means of U(�, x0) we deduce the transformation property of the
coefficients Φα(x):

|a′〉 = U(�, x0)|a〉 =
∫

d4x Φα(x) U(�, x0)|x,α〉

=
∫

d4x Φα(x) Dβ
α|� x − x0,β〉 =

∫
d4x′ Φα(x) Dβ

α|x′,β〉

=
∫

d4x′ Φ ′β(x′) |x′,β〉, (9.98)

where x′ ≡ � x − x0 and we have used the invariance of the elementary space-time
volume under Poincaré transformations: d4x = d4x′. We conclude that

Φ ′α(x′) = Dα
β Φβ(x). (9.99)

We have thus retrieved the general transformation property (7.47) of a relativistic
field under Poincaré transformations.

(Footnote 12 continued)
one (xμ) ≡ 0 = (0, 0, 0, 0) defining the origin O of the RF. For a given Lorentz transformation
� in SO(1, 3) and a point P described by x ≡ (xμ), we can define the Poincaré transformation
Λx ≡ (1,−x) (�, 0) (1, x), see Sect. 4.7.2 of Chap. 4 for the notation, which consists in a first
translation (1, x) mapping P into the origin O (x → 0), then a Lorentz transformation � which
leaves O invariant (0 → 0), followed by a second translation which brings O back into P (0 → x).
By construction Λx , which is not pure Lorentz since it contains translations, leaves x invariant. The
transformations Λx , corresponding to � ∈ SO(1, 3), close a group which has the same structure
as the Lorentz group, though being implemented by different transformations: The correspondence
� ↔ Λx for a given x is one-to-one, and, moreover, if ��′ = �′′ then ΛxΛ

′
x = Λ′′

x . The two
groups are said to be isomorphic. Transformation groups sharing the same structure represent the
same symmetry. We shall denote the group consisting of theΛx transformation by SO(1, 3)x . It can
be regarded as the copy of the Lorentz group, depending on the point x, which leaves x invariant.

http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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As we did in Sect. 7.4.2, we can describe the effect of a Poincaré transformation
(�, x0) onΦα(x) in terms of the active action of an operatorO(�,x0), as in Eq. (7.90):

Φα(x)
(�,x0)−→ Φ ′α(x′) = O(�,x0) Φα(x′). (9.100)

We then write O(�,x0) as the exponential of infinitesimal differential operators, as in
Eq. (7.91):

O(�,x0) = e− i
�

xμ
0 P̂μ e

i
2�

θρσ Ĵρσ , D(�)αβ =
(

e
i

2�
θρσ Σρσ

)α

β, (9.101)

where, with respect to the notations used in Sect. 7.4.2 we have defined P̂μ = i�Pμ

and

Ĵρσ = −i�Lρσ = M̂ρσ + Σρσ,

M̂ρσ = −i� (xρ∂σ − xσ∂ρ) = −xρ P̂σ + xσ P̂ρ, (Σρσ)αβ = −i� (Lρσ)αβ . (9.102)

The commutation relations (7.95) in these new generators read:

[
Ĵμν, Ĵρσ

]
= −i�

(
ηνρ Ĵμσ + ημσ Ĵνρ − ημρ Ĵνσ − ηνσ Ĵμρ

)
, (9.103)

[
Ĵμν, P̂ρ

]
= −i�

(
P̂μ δν

ρ − P̂ν δμ
ρ

)
;

[
P̂μ, P̂ν

]
= 0. (9.104)

The differential operator M̂ρσ realizes the action of the Lorentz generators on the
coordinate dependence of the field, while the matrix Σρσ defines the corresponding
action on the internal components. Clearly, since these two operators act on different
degrees of freedom, i.e. different components, they commute:

[M̂ρσ, Σμν] = 0. (9.105)

For the same reasonΣμν commutes with the four-momentum operator P̂μ. Both M̂ρσ

and Σμν satisfy the same commutation relations (9.103) as Ĵρσ , being generators of
different Lorentz representations.

Recalling that the angular momentum operator Ĵ = (Ĵi) generates the rotation
subgroup of SO(1, 3), its components are related to the Lorentz generators as in
Eq. (4.176):

Ĵi = −1

2
εijk Ĵ jk = εijk xi p̂j − 1

2
εijk Σ jk = M̂i + Ŝi, (9.106)

where we have used the general expression (9.61). From the above equation we
deduce the expression of the spin component operators Ŝi, which implement the
effect of a rotation on the internal components, in terms of the Lorentz generators:
Ŝi = − 1

2 εijk Σ jk . We shall give a more intrinsic definition of spin in the next section,
when describing relativistic states in the momentum representation.

http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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Aside from the operators P̂μ which generate the space-time translations andwhich
are associated with the components of the four-momentum pμ, also the Lorentz
generators Ĵμν define, through their eigenvalues, observables Jμν transforming under
Lorentz transformations as components of a rank-2 antisymmetric tensor.

The wave functionΦα(x) describes then a free particle with a given spin.We have
not yet imposed, however, the condition that the particle has a certainmassm, namely
that its momentum satisfies the mass-shell condition: p2 = m2 c2. Such condition
will be implemented on Φα(x) by a differential operator obtained upon replacing, in
the mass-shell equation p2 −m2 c2 = 0, the four-momentum with the corresponding
operator P̂μ. We end up with the following, manifestly Lorentz-invariant, differential
equation:

(
P̂μ P̂μ − m2 c2

)
Φα(x) = 0 ⇔

(
∂μ ∂μ + m2 c2

�2

)
Φα(x) = 0. (9.107)

We shall examine, in the next chapter, the solutions to the above equation and their
physical interpretation.

Tomake contact with our previous non-relativistic discussion, we have introduced
the basis of vectors |x,α〉 and used it to define the relativistic wave-function. There
are however problems in defining such states within a relativistic framework. Let us
mention some of them:

• The state |x,α〉 would describe a particle located in x at a time t. Due to the
possibility, in relativistic processes, of creating new particles, provided the energy
involved is large enough, and in the light of Heisenberg’s uncertainty principle,
there is a physical obstruction in determining the position of a particle at a given
time with indefinite precision: The smaller the distances we wish to probe, in order
to locate a particle with a sufficiently high precision, the larger the momentum and
thus the energy we need to transfer to the particle and, if the energy transferred
is large enough to produce one or more particles identical to the original one, we
may end up with a system of virtually undistinguishable particles, thus making
our initial position measurement meaningless. This is also related to the problem
with interpreting the relativistic field Φα(x) as the wave function associated with
a given single-particle state, like we did in the non-relativistic theory. We shall
comment on this in some more detail in the introduction to next chapter;

• The normalization (9.95), which guarantees that all the states of the basis have
a positive norm, is not Lorentz-invariant. Indeed, while δ4(x − x′) is Lorentz-
invariant, δα,β would be invariant only if the representation D were unitary. There
is however a property in group theory which states that unitary representations
of the Lorentz group can only be infinite dimensional (like the one acting on
the infinitely many independent quantum states of a particle). Being D finite-
dimensional, it cannot be unitary, namely D†D �= 1. As an example, suppose the
representationD is the fundamental (defining) representation of the Lorentz group,
that is D(�) = � = (Λμ

ν). If these matrices were unitary, being real, they would
be orthogonal. We have learned, however, that � are pseudo-orthogonal matrices,
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namely they leave the Minkowski metric ημν , rather than the Euclidean one δμν ,
invariant. In other words �T � �= 1.13

These are some of the reasons why the coordinate basis {|x,α〉} is ill defined in a
relativistic context. We find it however pedagogically useful to use such states in
order to introduce the main objects and notations of relativistic field theory starting
from non-relativistic quantum mechanics. From now on the main object associated
with a given particle will be the relativistic field Φα(x).

9.4.1 The Momentum Representation

Since relativistic effects pose in principle no obstruction in determining the momen-
tum and energy of a particle with indefinite precision, the basis of eigenvectors
|p, r〉 = |(pμ), r〉 of the four-momentum operator:

P̂μ |p, r〉 = pμ |p, r〉, (9.108)

is the most appropriate in order to describe the single-particle relativistic quantum
states and thus the action on them of the Poincaré group. It is important at this
point to stress the differences between the coordinate and the momentum bases,
besides the problems mentioned above with defining the former. The internal index
r of the state |p, r〉 labels the degrees of freedom which can be made to freely
vary, using Lorentz transformations, keeping pμ fixed. In the coordinate basis we
could act on α with the full Lorentz group, generated by Σμν , while keeping xμ

fixed. This was related to the fact that we can move everywhere in space-time by
means of space-time translations, and in particular we could move to the origin of
the RF, whose invariance under Lorentz transformations is manifest, see Eq. (9.96).
The set of Lorentz transformations keeping pμ fixed would coincide with the full
Lorentz group, as for xμ, only if we were able to Poincaré-transform a generic pμ

into pμ = 0, corresponding to the absence of a particle (the vacuum state). This
is clearly not possible, since the momentum four-vector is inert under space-time
translations and only transforms under Lorentz transformations, which, however,
cannot alter the Lorentz-invariant rest-mass m2 = p2/c2 of the particle (if we work

13A problem related to the non-unitarity of D is the fact that if we defined Φα(x) = 〈x,α|a〉, as
we did in the non-relativistic theory, it would no longer have the correct transformation property
(9.99) under Poincaré transformations. For spin 1/2 and 1 particles, we can however define a real
symmetric matrix γ = (γαβ) squaring to the identity γ2 = 1, such that γ D(�)† γ = D(�)−1: For
spin 1 particles D is the fundamental representation, namely D(�) = �, and γ = η, while for spin
1/2 particles, as it will be shown in next chapter, D is the spinorial representation and γ = γ0. We
can use this matrix to define Φα(x) ≡ 〈x,β|a〉 γαβ . We shall however, for notational convenience,
still write Φα(x) = 〈x,α|a〉, keeping though this subtlety in mind. We can also use the γ matrix to
define a Lorentz-invariant normalization for the |x,α〉 states: 〈x,α|x′,β〉 = δ4(x′ − x) γαβ . Such
normalization is however problematic since γ is not positive definite and thus some of these states
would have negative norm!
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with proper Lorentz transformations, also the sign of p0 is invariant). The subgroup
of the Poincaré group which leaves a covariant object unchanged is called the little
group G(0) of the object. The little group of xμ is thus the full Lorentz group O(1, 3)
(see comment in footnote 12), while the little group of pμ is a proper subgroup of the
Lorentz group. From this it follows that, while α is an index of a representation of
the Lorentz group, the index r of |p, r〉 will label a representation of the little group
G(0)

p of pμ. Clearly the matrix representation of G(0)
p will depend upon pμ, since it

consists of matrices �(0)
p = (Λ

(0) μ
p ν) such that:

�(0)
p ∈ G(0)

p : Λ(0) μ
p ν pν = pμ, (9.109)

its structure however only depends on m2. We can indeed, for a given m2, evaluate
G(0) = G(0)

p̄ in a RF S0 in which pμ = p̄μ is simplest, namely has the largest number
of vanishing components (standard four-momentum). Any other four-momentum
vector p = (pμ) with the same value of m2 will be related to p̄ = (p̄μ) by a Lorentz
boost �p: p = �p p̄. The explicit matrix form of �p was given in (4.190) of Chap.
4. The little group G(0) can be taken as the definition of the spin of a particle: It
represents the residual symmetry once we keep its four-momentum fixed at some
representative value p̄.

Let us now see how the structure of the little group depends on m2 (for a more
rigorous discussion of this issue see section E.2 of Appendix E). If m2 > 0, we can
define a rest-frame for the particle, in which p = 0 and thus choose p̄ = (mc, 0)

as the standard four-momentum. The little group G(0) clearly contains the group
of rotations in three dimensions, since a particle at rest is a system with spherical
symmetry. Its generators consist in the components of the total angular momentum
Ĵ, which coincide with the spin components Ŝ since, in the rest frame, the orbital part
is zero M̂|p̄, r〉 = 0. We recover the definition of the spin of a massive particle as its
angular momentum when it is at rest. In this case the index r spans a representation
of the spin group SU(2) (the group SU(2), i.e. the group of 2 × 2 unitary matrices
with determinant 1, has the same local structure as SO(3), though it admits more
representations, like the double-valued representation pertaining to particles with
spin 1/2. The spin group is therefore SU(2) rather than SO(3), see Appendix F for
a definition of the group SU(2) and its relation to the rotation group). If m2 = 0,
we cannot define a rest-frame for the particle. The best that we can do is to go
to a RF S0 in which the X-axis coincides with its direction of motion and thus
choose p̄ = (E, E, 0, 0)/c. Clearly in this RF we have symmetry under rotations
about the X-axis, which is generated by the helicity operator defined in Sect. 6.3,

Γ̂ = Ĵ·p̄
|p̄| , where p̄ = (E, 0, 0)/c. In this case the generators of G(0) consist of other

two generators, which we impose to vanish on the state, since they would generate
infinitely many internal degrees of freedom, see Appendix E. Helicity therefore
provides the definition of the spin for massless particles.

http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_6
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Consider the action of the spin group G(0) on a state |p̄, r〉. Since it does not affect
p̄, it will only act on the internal index r:

�(0) ∈ G(0) : U(�(0)) |p̄, r〉 = Rr′
r |p̄, r′〉, (9.110)

where the matrix R = (Rr′
r) = R(�(0)) represents the action of the G(0)-element

�(0) in the representation pertaining to the spin of the particle. Note thatR is always
defined to be unitary. This is possible since, in contrast to the full Lorentz group,
G(0) consists of rotations only (it is SU(2) for massive and effectively SO(2) for
massless particles) and thus admits finite dimensional unitary representations.

Howdoes a generic transformation� ∈ SO(1, 3) act on a state |p, r〉?The infinite-
dimensional, unitary representation of the Lorentz group acting on the states |p, r〉
is constructed starting from the finite-dimensional unitary representation R of G(0)

acting on the particle states in the RF S0 as in Eq. (9.110). The particle state |p, r〉
in a RF in which the momentum is p is defined by acting on |p̄, r〉 by means of the
boost �p relating p̄ to p: p = �p p̄

|p, r〉 ≡ U(�p) |p̄, r〉. (9.111)

This suffices to define the action of a Lorentz transformation � on a generic state
|p, r〉. As it is shown in detail in Appendix E, the action of the unitary operator U(�)

which realizes � on states reads:

U(�) |p, r〉 = Rr′
r |� p, r′〉, (9.112)

where now the rotationmatrixR inG(0) depends onboth� andp:R = R(�, p). If�
is a simple boost, the corresponding rotationR(�, p) is called Wigner rotation. The
method of constructing the unitary infinite-representation of the Lorentz group on
the states |p, r〉 starting from the finite-dimensional representation of the little group
is called method of induced representations, see Appendix E for a more detailed
discussion.

Clearly the effect of a translation on |p, r〉 is trivial since it amounts to multiplying

the state by a phase e
i
�

p·x0 .
Single-particle states are characterized by irreducible representations of the

Poincaré group. Consequently we require the representation R of the spin group
G(0) to be irreducible, as motivated in Appendix E. On these states the mass-shell
condition has not been imposed yet. Just as we did for the eigenstates |p,α〉 in
Sect. 9.3.1, we can derive the wave function description Φα

p,r(x) of the states |p, r〉
by projecting them on the basis |x,α〉 (see footnote 13 for subtleties with this projec-
tion) andwriting each vector |x,α〉 as e

i
�

P̂·x|x = 0,α〉, where the point x = (xμ) = 0
is the origin of the coordinate system:

Φα
p,r(x) = 〈x,α|p, r〉 = 〈x = 0,α|e− i

�
P̂·x|p, r〉 = cp uα(p, r) e− i

�
p·x, (9.113)
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where we have defined cp uα(p, r) ≡ 〈x = 0,α|p, r〉, cp being a Lorentz-invariant
normalization factor: c�p = cp. Note that Φα

p,r(x), for different p = (pμ), define a
complete set of eigenfunctions of the four-momentum operator (9.91):

P̂μ Φβ
p,r(x) = i� ημν ∂νΦ

β
p,r(x) = pμ Φβ

p,r(x). (9.114)

For a given particle, the components pμ are not independent but constrained by the
mass-shell condition p2 = m2 c2. From now on we describe a single particle state in
terms of the simultaneous eigenstates |p, r〉 of the linear momentum operator p̂ and
of the Hamiltonian Ĥ whose energy eigenvalue E is fixed by themass-shell condition
E = Ep ≡ √

m2 c4 − |p|2 c2 > 0:

|p, r〉 ≡ |p, r〉
p0= Ep

c
. (9.115)

Such states were defined in Sect. 9.3.1 and normalized as in Eq. (9.54). Their wave
function representation is given by Eq. (9.113) in which p0 is now fixed by the mass-
shell condition to Ep/c. The normalization condition (9.54), using Eqs. (9.113) and
(9.20), reads:

〈p, r|p′, s〉 =
∫

d3xe
i
�

(p−p′)·x c∗
pcp′

∑

α

uα(p, r)∗ uα(p′, s)

= (2π�)3 δ3(p − p′) |cp|2 u(p, r)†u(p, s) = (2π�)3

V
δ3(p − p′) δrs,

where we have defined the vector u(p, r) ≡ (uα(p, r)). The above equation implies
for the vectors u(p, r) the following normalization:

u(p, r)†u(p, s) = 1

|cp|2 V
δrs. (9.116)

Comparing Eqs. (9.100) and (9.112) we find forΦα
p,r(x) the following transformation

property under a Lorentz transformation:

O� Φα
p,r(x) = D(�)αβ Φβ

p,r(�
−1 x) = cp D(�)αβ uα(p, r) e− i

�
p·(�−1 x)

= cp D(�)αβ uα(p, r) e− i
�

(� p)·x = R(�, p)r′
r Φα

� p,r(x)

= cp R(�, p)r′
r uα(� p, r′) e− i

�
(� p)·x, (9.117)

where we have used the Lorentz invariance of cp. From the above equation which
we deduce:

D(�)αβ uβ(p, r) = R(�, p)r′
r uα(� p, r′). (9.118)

The vectors u(p, r) for a scalar particle are proportional to 1, being the corresponding
Lorentz and spin representations, spanned by the indices α and r, trivial. For a spin
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1/2 particle, like the electron or the positron, as we shall see in the next chapter,
they will be of two kinds: One denoted by the same symbol u(p, r), the other by
v(p, r). In this case r = 1, 2 labels the two spin states Sz = ±�/2, while α labels
the four components corresponding to the spinorial representation of the Lorentz
group. As far as the photon is concerned, the role of uα(p, r) will be played by the
polarization vector εr

μ(p), where α ≡ μ labels the Lorentz representation D(�) = �

of the potential four-vector, while r = 1, 2 label the two transverse polarizations.
As remarked earlier, the state |a〉 of a particle is in general described by a wave

packetΦα(x) propagating in space and can be represented in terms of its momentum
representation by using Eqs. (9.93) and (9.113):

Φα(x) = 〈x,α|a〉 =
∫

d3p
(2π�)3

V
∑

β

〈x,α|p,β〉〈p,β|a〉

=
∫

d3p
(2π�)3

V cp

∑

r

u(p, r)αΦ̃(p, r) e− i
�

p·x

=
∫

d3p
(2π�)3

V cp

∑

r

u(p, r)αΦ̃(p, r) e− i
�

(E t−p·x), (9.119)

where, we have defined Φ̃α(p) ≡ 〈p,α|a〉. A wave packet is thus expressed as a

superposition of plane waves e− i
�

(E t−p·x) with angular frequency ω = E/� and
wave number k = p/�. It propagates in space at a speed which is the group velocity
of the wave, and which is given by the well known formula v = dω

d|k| . In terms of
the energy and linear momentum, using the relativistic relation between E = Ep and
|p|, we find:

v = dω

d|k| = dE

d|p| = |p| c2

E
, (9.120)

which is indeed the expression of the velocity of a free particle in special relativity.

9.4.2 Particles and Irreducible Representations
of the Poincaré Group

An elementary particle state is characterized as transforming in an irreducible rep-
resentation of the Poincaré group. Such representations are uniquely defined by the
massm and the spin s of the particle which, as we are going to show below, are indeed
invariants of the group, namely if we change inertial RF their values are unaffected.
Therefore all states belonging to the base space of an irreducible representation of the
Poincaré group, being quantum descriptions of a same particle from different inertial
RF’s, share the same values of m and s. To show that these observables are Poincaré
invariant, we first need to express them in terms of Lorentz-invariant quantities. On
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a single particle state the action of the Poincaré generators Ĵρσ, P̂μ is defined. With
respect to the Lorentz group, these are a rank-2 antisymmetric tensor and a four-
vector, respectively. Using the Lorentz-invariant tensor εμνρσ we can define a second
four-vector, besides P̂μ:

Ŵμ ≡ −1

2
εμνρσ ĴνρP̂σ, (9.121)

which is called the Pauli-Lubanski four-vector. We first notice that the component
M̂νρ of Ĵνρ does not contribute to Ŵμ since

− 1

2
εμνρσ M̂νρP̂σ = −�

2 εμνρσxν ∂ρ∂σ = 0, (9.122)

where we have used the property that the ε-tensor is totally antisymmetric in its four
indices and that two partial derivatives commute: ∂ρ∂σ = ∂σ∂ρ. By the same token
one can show that [Ŵμ, P̂ν] = 0, which implies that Ŵμ, just as P̂μ, is invariant
under space-time translations. Clearly the mass m of a particle is Lorentz-invariant
since it is the eigenvalue of the Lorentz-invariant operator 1

c2
P̂μ P̂μ.

Consider now a particle with mass m �= 0. In its rest frame S0 its linear momen-
tum vanishes, pi = 0, that is its state is annihilated by the operators p̂i, while the
eigenvalue of the time-component P̂0 corresponds to the rest energymc. In this frame
we can replace the components of the operator P̂μ in the expression of Ŵμ by their
eigenvalues p̄ = (mc, 0, 0, 0). The only non-vanishing components of Ŵμ in this RF
are the space ones:

Ŵi = −mc

2
εijk0 Σ jk = mc

2
εijk Σ jk = −mc Ŝi , Ŵ0 = 0, (9.123)

where we have used the convention that εijk0 = −ε0ijk = −εijk , namely that ε0123 =
+1, and the definition of the spin-component operators, see Eqs. (9.101)–(9.106).
The squared norm ŴμŴ μ of Ŵμ is Lorentz-invariant and, on the states in the rest
frame, reads

ŴμŴ μ = −
3∑

i=1

Ŵ iŴ i = −m2c2 |Ŝ|2 = −�
2 m2c2 s(s + 1), (9.124)

where we have replaced |Ŝ|2 by its eigenvalue �
2 s(s + 1) defining the spin s of the

particle. Being ŴμŴ μ Lorentz-invariant, its eigenvalue will not change if we switch
to a generic RF. We then conclude that the mass m and the spin s of an elementary
particle are Poincaré invariant quantities. Using the four-vectors P̂μ, Ŵ μ, we could
in principle build a third Lorentz-invariant operator P̂ · Ŵ ≡ P̂μ Ŵμ. Such operator
is however null, being proportional to εμνρσ Σμν ∂ρ∂σ = 0. Since there are no other
independent invariant, commuting with the previous ones, which can be constructed
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out of the eigenvalues of the Poincaré generators, we conclude that a single particle
state is completely defined by the values of the mass m and the spin s.14

Consider now the case of amassless particle. The standard four-momentum vector
can be chosen to be p̄ = (E, E, 0, 0)/c = (E/c, p̄). Let us compute the four vector
Ŵμ on the states |p̄, r〉:

Ŵμ = −|p̄|
2

(
εμνρ0 + εμνρ1

)
Ĵνρ. (9.125)

In components:

Ŵ0 = −|p̄|
2

ε01ij Ĵ ij = |p̄| Ĵ1; Ŵ1 = |p̄|
2

ε01ij Ĵ ij = −|p̄| Ĵ1,

Ŵa = |p̄| εab (Ĵ0b − Ĵ1b); a, b = 2, 3. (9.126)

As proven in the Appendix E, in order to have finitely many spin states, we need the
two operators N̂a ≡ Ĵ0a − Ĵ1a to vanish on the states |p̄, r〉, so that Ŵa = 0 and we
can effectively write:

Ŵμ = Ĵ1 p̄μ = Γ̂ p̄μ, (9.127)

where we have defined the helicity operator as

Γ̂ ≡ Ĵ · p̄
|p̄| = Ĵ1. (9.128)

In going from S0 to any other frame S, p̄μ and Ŵμ are four vectors transforming by
the same Lorentz transformation, so that, in S, Ŵμ = pμ Γ̂ . We conclude that Γ̂ is
a Lorentz-invariant operator. The condition that the single particle state transform in
an irreducible representation of the little group further implies that there can be just
two helicity states:

Γ̂ |p̂,±s〉 = ±� s |p̂,±s〉, (9.129)

The state of a single massless particle is completely defined by the value if its helicity,
which is a Poincaré invariant quantity.15

14If we consider proper Lorentz transformations (Λ0
0 ≥ 0, det� = 1), the sign of p0, eigenvalue

of P̂0, is invariant as well.
15Here we are restricting to proper Lorentz transformations. The parity transformation �P : p0 →
p0, p → −p reverses the sign of Γ .
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9.5 A Note on Lorentz-invariant Normalizations

In this note we show that the normalization that we have adopted for single particle
states is Lorentz-invariant. To this end let us consider a particle of mass m and let
S0 denote its rest frame in which p̄ = 0 and p̄0 = mc. S0 then moves, relative to a
given RF S, at the corresponding velocity v of the particle. The relation between the
four-momenta p̄ and p of the particle inS0 andS, respectively, is given by the Lorentz
boost �p, using Eq. (4.190). If we write p̄ = �−1

p p, expressing the transformation
matrix in terms of v we have:

p̄0 = γ(v)
(

p0 − v · p
c

)
= γ(v)

(
1 − v2

c2

)
p0 = 1

γ
p0,

p̄i = pi + (γ − 1)
v · p
c2

vi − γ
v
c

p0, (9.130)

where we have used the relation p = p0 v/c and v2 ≡ |v|2 (here, as usual, upper and
lower indices for three-dimensional vectors are the same: vi = vi, pi = pi). If we
perturb the rest state of the particle in S0 by an infinitesimal velocity, but keeping
the relative motion between the two frames unchanged, the momentum p relative to
S will vary by an infinitesimal amount p → p + dp. We can relate the infinitesimal

variation of p̄ to that of p by computing the Jacobian matrix Jp
i
j = ∂p̄i

∂pj :

dp̄i = ∂p̄i

∂pj
dpj = Jp

i
j dpj. (9.131)

This Jacobian is computed from the transformation law (9.130) by taking into account
that p0 is not independent of p, being p0 = √|p|2 + m2c2. Using the property:

∂p0

∂pi
= pi

p0
= vi

c
, (9.132)

from Eq. (9.130) we find:

Jp
i
j = ∂p̄i

∂pj
= δi

j + (γ − 1)
vivj

v2
− γ

vi

c

∂p0

∂pj

= δi
j +

(
1

γ
− 1

)
vivj

v2
. (9.133)

The reader can easily verify that the matrixJp has one eigenvalue 1/γ corresponding
to the eigenvector v, and two eigenvalues 1, corresponding to the two vectors per-
pendicular to v. The determinant of this matrix, being the product of its eigenvalues,
is therefore:

http://dx.doi.org/10.1007/978-3-319-22014-7_4
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det(Jp) = 1

γ
. (9.134)

We can now compute the transformation property of an infinitesimal volume in
momentum space when moving from S to S0:

d3p̄ ≡ dp̄xdp̄ydp̄z = |det(Jp)|d3p = 1

γ
d3p. (9.135)

Note fromEq. (9.130) that the same relation holds for the energies: p̄0 = mc = p0/γ.
We conclude that:

d3p
p0

= d3p̄
p̄0

, (9.136)

namely that d3p/p0 is Lorentz-invariant.
Let us now consider the relation between the position vectors of the particle in

the two frames:

x̄0 = γ(v)
(

x0 − v · x
c

)
,

x̄i = xi + (γ − 1)
v · x
c2

vi − γ
v
c

x0. (9.137)

The above equations allow us to compute the relation between the measures dV0 =
d3x̄ and dV = d3x which are infinitesimal cubic volumes in S0 and S, respectively.
The two quantities are related by the Jacobian matrix Jx

i
j ≡ ∂x̄i

∂xj which can be
computed from (9.137).Weneed however to observe that, in contrast to the case of the
four- momentum, where the energy p0 depends on the remaining space components,
the four components of the position vector are independent and thus ∂x0/∂xi = 0.
The Jacobian matrix Jx

i
j is then easily computed to be:

Jx
i
j = δi

j + (γ − 1)
vivj

v2
. (9.138)

The eigenvalues of the above matrix are γ (eigenvector v) and twice 1 (eigenvectors
perpendicular to the velocity), so that det(Jx) = γ and

dV0 = d3x̄ = |det(Jx)| dV = γ dV . (9.139)

The same relation holds for a finite volume: V0 = ∫
dV0 = γ

∫
dV = γ V . This

result was also obtained in Chap. 1 as a consequence of the contraction of lengths
along the direction of relative motion.

We conclude that the following quantities are Lorentz-invariant:

d3p V = d3p̄ V0 ; E V = mc2 V0. (9.140)

http://dx.doi.org/10.1007/978-3-319-22014-7_1
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From equation (9.139) it also follows the transformation property of the density of
particles. Indeed the particle density is computed in a given RFS as the ratio between
the number of particles N contained in a volume V and V : ρ ≡ N/V . Since N does
not depend on the RF, ρ transforms under a Lorentz transformation as 1/V , namely,
if ρ0 = N/V0 is the density in S0, we have:

ρ = γ ρ0. (9.141)

Consider now the transformation property of a δ3-function computed in the difference
between two momenta p and q, which can be shown to be:

δ3(p̄ − q̄) = 1

|det(Jp)| δ3(p − q) = γ δ3(p − q). (9.142)

From the above property we conclude that 1
V δ3(p − q), which is the normalization

that we have chosen for the momentum eigenstates, is Lorentz-invariant as well.
Since the value of the product E V does not depend on the RF, we can fix for the

volume, as measured in S0, an arbitrary value V0 and write in a generic RF S:

2E V = 2mc2V0 ⇒ V = c0
2E

, (9.143)

wherewe have defined c0 ≡ 2mc2V0. Since the definition of c0 is referred to a specific
RF S0, it is Lorentz-invariant by construction. In all formulas we can then replace
the normalization volume V by 1/(2E) times this Lorentz-invariant normalization
factor c0 which however finally drops off the expression of any measurable quantity,
as we shall show in the last chapter when evaluating transition probabilities and cross
sections for interaction processes.

The above conclusions also apply to massless particles, although in this case a
rest frame S0 cannot be defined.

9.5.1 References

For further reading see Refs. [4, 8] (Vols. 3, 4), [3].



Chapter 10
Relativistic Wave Equations

10.1 The Relativistic Wave Equation

In the previous chapter we have recalled the basic notions of non-relativistic quan-
tum mechanics. We have seen that, in the Schroedinger representation, the physical
state of a free particle of mass m is described by a wave function ψ(x, t) which is
itself a classical field having a probabilistic interpretation. For a single free particle
this function is solution to the Schroedinger equation (9.79). A system of N inter-
acting particles will be described by a wave function ψ(x1, x2, . . . , xN ; t) whose
squared modulus represents the probability density of finding the particles at the
points x1, x2, . . . , xN at the time t . In this description the number N of particles is
always constant that is it cannot vary during the interaction.

Note that the conservation of the number of particles is related to the conservation
of mass in a non-relativistic theory: The sum of the rest masses of the particles, and
in fact the identity of each particle, cannot change during the interaction. A change
in this number would imply a variation in the sum of the corresponding rest masses.

Strictly related to this property of the Schroedinger equation is the fact that the
total probability is conserved in time. Let us recall the argument in the case of a
single particle.

The normalization of ψ(x, t) is fixed by requiring that the probability of finding
the particle anywhere in space at any time t be one:

∫

V

d3x |ψ(x, t)|2 = 1,

whereV = R
3 representing thewhole space. This total probability should not depend

on time, and indeed, by using Schroedinger’s equation and Gauss’ law we find:
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d

dt

∫

V

d3x |ψ(x, t)|2 =
∫

V

d3x
(

ψ∗ ∂

∂t
ψ + ψ

∂

∂t
ψ∗
)

= i�

2m

∫

V

d3x
[
(∇2ψ)ψ∗ − ψ∇2ψ∗]

= i�

2m

∫

V

d3x ∇ · (ψ∗∇ψ − ψ∇ψ∗)

= i�

2m

∫

S∞

dS n · (ψ∗∇ψ − ψ∇ψ∗) = 0, (10.1)

n being the unit vector orthogonal to dS and S∞ is the surface at infinity which ideally
encloses the whole space V . The last integral over S∞ in the above equation vanishes
since both ψ and ∇ψ vanish sufficiently fast at infinity. Thus the total probability is
conserved in time.

Equation (10.1) can also be neatly expressed, in a local form, as a continuity
equation:

∂tρ + ∇ · j = 0, ρ ≡ |ψ(x, t)|2, j ≡ −i �

2m
(ψ∗∇ψ − ψ∇ψ∗), (10.2)

which, as we have seen, holds by virtue of Schroedinger’s equation.
Can the above properties still be valid in a relativistic theory? Let us give some

physical arguments about why the very concept of wave function looses its meaning
in the context of a relativistic theory. As emphasized in Chap.9, in non-relativistic
quantummechanicsx and t play different roles, the former being a dynamical variable
as opposed to the latter.

Furthermore we know that one of the most characteristic features of elementary
particles is their possibility of generation, annihilation, and reciprocal transformation
as a consequence of their interaction. Photons can be generated by electrons inmotion
within atoms, neutrinos are emitted in β-decays, a neutral pion, a composite particle
of a quark and an anti-quark, can decay and produce two photons, a fast electron
moving close to a nucleus can produce photons which in turn may transform in
electron-positron pairs, and so on.

That means that in phenomena arising from high energy particle interactions, the
number of particles is no longer conserved.

Consequently some concepts of the non-relativistic formulation of quantum
mechanics must be consistently revised.

First of all, we must give up the possibility of localizing in space and time a parti-
cle with absolute precision, which was instead allowed in the non-relativistic theory.
Indeed if in a relativistic theory we were to localize a particle within a domain
of linear dimension Δx less than �/2mc, by virtue of the Heisenberg uncertainty
principle ΔxΔpx ≥ �/2, the measuring instrument should exchange with the par-
ticle a momentum Δpx ≥ mc, carried for example by a photon. Such a photon of

http://dx.doi.org/10.1007/978-3-319-22014-7_9
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momentum Δpx , would carry an energy ΔE = c Δpx ≥ mc2 which is greater than
or equal to the rest energy of the particle. This would be in principle sufficient to
create a particle (or better a couple particle-antiparticle, as we shall see) of rest mass
m which may be virtually undistinguishable from the original one.

It is therefore impossible to localize a particle in a region whose linear size is of
the order of the Compton wavelength �/mc. In the case of photons, having m = 0
and v = c, the notion of position of the particle simply does not exist.

The existence of a minimal uncertainty Δx ≈ �/mc in the position of a particle
also implies a basic uncertainty in time, since from the inequality ΔtΔE ≥ �

2 and

the condition ΔE ≤ mc2 ≈ �c
Δx deduced above, it follows that Δt � �

ΔE � Δx
c ≈

�/mc2 (note that in the non-relativistic theory c = ∞ so that Δt can be zero). As
far as the uncertainty in the momentum of a particle is concerned, we note that from
Δx � c Δt it follows that Δp � �

c Δt , that is the uncertainty in the momentum px

can be made as small as we wish (Δpx → 0) just by waiting for a sufficiently long
time (Δt → ∞). This can certainly be done for free particles. Localizing a particle
in space and time with indefinite precision is thus conceptually not possible within a
relativistic context and the interpretation of ρ ≡ |ψ(x, t)|2 as the probability density
of finding a particle in x at a time t should be substantially reconsidered. By the same
token, we can conclude that, using the momentum representation ψ̃(p) of the wave
function instead, we can consistently define a probability density in the momentum
space as |ψ̃(p)|2.

The argument given above relies on the possibility, in high energy processes, for
particles to be created and destroyed. This fact, as anticipated earlier, is at odds with
the Schroedinger’s formulation of quantum mechanics, which is based on the notion
of single particle state, or, in general of multi-particle states with a fixed number of
particles. Such description is no longer appropriate in a relativistic theory.

In order to have a more quantitative understanding of this state of affairs let us go
back to the quantum description of the electromagnetic field given in Chap.6.

We have seen that in the Coulomb gauge (A0 = 0, ∇ · A = 0), the classical field
A(x, t) satisfies the Maxwell equation:

� A = 1

c2
∂2

∂t2
A − ∇2A = 0. (10.3)

Suppose that we do not quantize the field as we did in Chap. 6, but consider the
Maxwell equation as the wave equation for the classical field A(x, t), just as the
Schroedinger equation is the wave equation of the classical field ψ(x, t). We may
ask whether a solution A(x, t) to Maxwell’s equations can be consistently given the
same probabilistic interpretation as a solution ψ(x, t) to the Schroedinger equation.
In other words, does the quantity |Aμ(x, t)|2d3x make sense as probability of finding
a photonwith a given polarization in a small neighborhood d3x of a point x at a time t?

http://dx.doi.org/10.1007/978-3-319-22014-7_6
http://dx.doi.org/10.1007/978-3-319-22014-7_6
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To answer this question we consider the Fourier expansion of the classical field
A(x, t) given in (6.16):

A(x, t) =
∑

k1k2k3

(
εk e−i k·x + ε∗

k ei k·x) , (10.4)

where εk can be written as in Eq. (6.43)

εk = c

√
�

2ωk V

2∑

α=1

ak,α uk,α, (10.5)

but with the operators a, a† replaced by numbers a, a∗ since we want to consider
A(x, t) as a classical field. If Maxwell’s propagation equation could be regarded
as a quantum wave equation, then, according to ordinary quantum mechanics, the
(complex) component of the Fourier expansion of A(x, t)

Ak,α(x) ≡ c

√
�

2ωk V
ak,αuk,αe−ik·x ,

can be given the interpretation of eigenstate of the four momentum operator P̂μ,
describing a free particle with polarization uk,α, energy E = �ω and momentum
p = �k, respectively and satisfying the relation E/c = |p|. This would imply that
Ak,α(x) represents the wave function of a photon with definite values of energy and
momentum. Consequently it would seem reasonable to identify the four potential
Aμ(x, t) as the photon wave function expanded in a set of eigenstates, so that the
Maxwell equation for the vector potential would be the natural relativistic general-
ization of the non-relativistic Schroedinger’s equation.

We note however that, while the Schroedinger’s equation is of first order in the
time derivatives, the Maxwell equation, being relativistic and therefore Lorentz-
invariant, contains the operator � ≡ 1/c2∂2

t − ∇2 which is of second order both in
time and in spatial coordinates. This makes a great difference as far as the conser-
vation of probability is concerned since the proof (10.1) of the continuity equation
(10.2) makes use of the Schroedinger equation (9.78). More specifically such proof
strongly relies on the fact that the Schroedinger equation is of first order in the time
derivative and of second order in the spatial ones.

The fact that Maxwell’s propagation equation, involves second order derivatives
with respect to time, makes it impossible to derive a continuity equation for the
“would be” probability density ρ ≡ |A(x)|2: ∂tρ + ∇ · j 
= 0. Indeed the first order
time derivatives are actually Cauchy data of the Maxwell propagation equation. As a
consequence the quantity ρ cannot be interpreted as a probability density, since the
total probability of finding a photon in the whole space would not be conserved.

On the other hand, as we have illustrated when discussing the quantization of
the electromagnetic field, these difficulties are circumvented if we quantize the

http://dx.doi.org/10.1007/978-3-319-22014-7_6
http://dx.doi.org/10.1007/978-3-319-22014-7_6
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infinite set of canonical variables associated with Aμ(x, t) by the usual prescrip-
tion of converting Poisson brackets into commutators. This is effected by converting
the coefficients ak,α, a∗

k,α, defined in Eq. (10.5), and thus each Fourier component εk,
into operators through the general procedure introduced in Chap.6 under the name
of second quantization.1 In this new framework the classical field Aμ(x, t) becomes
a quantum field, that is an operator, and the quantum states of the electromagnetic
field are described in the occupation number representation by themulti-photon state
|{Nk,α}〉, characterized by Nk,α photons in each single-particle state (k,α).

We may therefore expect the same considerations to apply, as we shall see, also
to free particles of spin 0 and 1/2, for which a consistent relativistic description
can be achieved by a quantum field theory in which particles are seen as quantized
excitations of a field, in the sameway as photons were defined as quantum excitations
of the electromagnetic field.

Notwithstanding the difficulties of interpretation mentioned above, it is however
our purpose to give in this chapter a treatment of the classical wave equations for
spin 0 and 1/2 particles in some detail for two reasons: First we want to give a precise
quantitative discussion of how inconsistencies show up when trying to interpret the
relativistic fields as wave functions of one-particle states, thus tracing back the histor-
ical development of relativistic quantum theories. Second, the formal development of
these equations will allow us to assemble those formulae which we shall need in the
next chapter where the “second quantization” of the spin 0 and 1/2 fields, besides the
Lorentz-covariant quantization of the electromagnetic field, will be developed, that
is the classical fields will be treated as dynamic variables and, as such, promoted to
quantum operators. As shown for the electromagnetic case, the second quantization
procedure allows to describe the system in terms of states which differ in the number
of particles they describe and thus provides an ideal framework in which to analyze
relativistic processes involving the creation and destruction of particles, namely in
which the number and the identities of the interacting particles are not conserved.
This will be dealt with in Chap.12, where a relativistically covariant, perturbative
description of fields in interaction will be developed for the electromagnetic field
in interaction with a Dirac field. This analysis provides however a paradigm for the
description of all the other fundamental interactions among elementary particles.

10.2 The Klein-Gordon Equation

Let us consider a relativistic field theory describing a classical field Φα(xμ). Such
field is defined by its transformation property (7.47) under a generic Poincaré trans-
formation (�, x0) (7.46):

1The name second quantization is somewhat improper since, just as in the first quantization, only
dynamical quantities are promoted to operators acting on states. However, while in the first quanti-
zation these quantities include the position and the momentum of a particle, in this new framework,
the dynamical quantities to be quantized are fields, the space-coordinates being just a labels.

http://dx.doi.org/10.1007/978-3-319-22014-7_6
http://dx.doi.org/10.1007/978-3-319-22014-7_12
http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_7
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(�, x0) : xμ → x ′μ = Λμ
ν xν − xμ

0 ,

Φα(x) → Φ ′α(x ′) = Dα
β Φβ(x) = Dα

β Φβ(�−1(x ′ + x0)),

where D = (Dα
β) = D(�) represents the action of the Lorentz transformation �

on the internal degrees of freedom of the field, labeled by α and defining a represen-
tation of the Lorentz group SO(1, 3). In Chap.7 and in Chap.9, see Eq. (9.101), the
action of a Poincaré transformation onΦα(x)was described in terms of the infinites-
imal generators Ĵμν associated with the Lorentz part, and P̂μ generating space-time
translations. The latter provide the operator representation, in a relativistic quantum
theory, of the four-momentum of a particle:

P̂μ ≡
(
1

c
Ĥ , p̂

)
= i� ημν ∂ν . (10.6)

The identification of the Hamiltonian operator, function of the particle position and
the momentum operator, with the generator of time evolution i� ∂t is expressed by
the Schroedinger equation (9.78), and describes the dynamics of the system. For a
free particle this equation has the form (9.79), which is clearly not Lorentz covariant,
since it is obtained from the non-relativistic relation E = |p|2/2m upon replacing

p → p̂ = −i� ∇, E → Ĥ = i� ∂t . (10.7)

In seeking for the simplest Lorentz-covariant generalization of the Schrödinger equa-
tion describing a free particle, we should start from the mass-shell condition of rel-
ativistic mechanics which relates the linear momentum and the energy with the rest
mass of the particle

p2 + m2c2 = E2

c2
←→ pμ pμ − m2c2 = 0. (10.8)

Implementing the same canonical prescription (10.7) on Φα we end up with
Eq. (9.107) of the previous chapter, which can be written in the following compact
form: (

� + m2c2

�2

)
Φα(x) = 0. (10.9)

By construction the above equation represents a manifestly Lorentz-invariant gen-
eralization of the Schroedinger equation2 and is referred to as the Klein-Gordon
equation.

We note that this equation should hold for particles of any spin, that is for any
representation of the Lorentz group carried by the index α. For example, in the case
of the electromagnetic field, setting φα(x) ≡ Aμ(x) and m = 0 we obtain

� Aμ(x) = 0, (10.10)

2Extension of the invariance to the full Poincaré group is obvious.
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that is the Maxwell propagation equation for the electromagnetic four-potential
describing particles of spin 1, in the Lorentz gauge. We shall see in the sequel that
also the wave functions associated with spin-1/2 particles satisfy the Klein Gordon
equation.

In the rest of this section we shall treat exclusively the case of spin-0 fields, that
is fields that are scalar under Lorentz transformations. We shall consider a complex
scalar field, φ, or equivalently two real scalar fields (see Chap.7, Sect. 7.4).

In this case the equation of motion (10.9) can be derived from the Hamilton
principle of stationary action, starting from the followingLagrangian density (8.204):

L = c2
(

∂μφ∗∂μφ − m2c2

�2
φ∗φ

)
. (10.11)

Indeed in this case the Euler-Lagrange equations

∂L
∂φ(x)∗

− ∂μ

(
∂L

∂∂μφ(x)∗

)
= 0; ∂L

∂φ(x)
− ∂μ

(
∂L

∂∂μφ(x)

)
= 0,

give: (
� + m2c2

�2

)
φ(x) = 0. (10.12)

together with its complex conjugate.
As a complete set of solutions we can take the plane waves (Eq.9.113)

Φp(x) ∝ e− i
�

pμxμ , (10.13)

with wave number k = p/� and angular frequency ω = E/�. These are the eigen-
functions of the operator P̂μ which describe the wave functions of particles with
definite value of energy E and momentum p, see Chap.9. Substituting the exponen-
tials (10.13) in Eq. (10.12) we find

E2

c2
− |p|2 = m2c2, (10.14)

or

E = ±Ep = ±
√

|p|2c2 + m2c4. (10.15)

We see that solutions exist for both positive and negative values of the energy corre-
sponding to the exponentials:

e− i
�

(Ept−p·x); e
i
�

(Ept+p·x). (10.16)

http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_8
http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
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Strictly speaking this is not a problem as long as we consider only free fields. Indeed
the conservation of energy would forbid transition between positive and negative
energy solutions and a positive energy statewill remain so. Thereforewe could regard
as physical only those solutions corresponding to positive energy E > 0. However
the very notion of free particle is far from reality since real particles interact with
each other, usually in scattering processes. During an interaction transitions between
quantum states are induced, according to perturbation theory. Therefore we cannot
neglect the existence of negative energy states. For example, a particle with energy
E = +Ep could decay into a particle of energy E = −Ep, through the emission
of a photon of energy 2Ep. Moreover the existence of negative energies is in some
sense contradictory since, as shown in the following, from a field theoretical point
of view, the Hamiltonian of the theory is positive definite.3

Thus, the existence of negative energy solutions is a true problem when trying to
achieve a relativistic generalization of the Schroedinger equation.4

A second problem arises when trying to give a probabilistic interpretation to the
wave function ψ(x, t). As we have anticipated in the introduction with each solution
to the Schroedinger equation we can associate a positive probability ρ = |ψ(x, t)|2,
and a current density j = i�

2m (ψ∇ψ∗ − ψ∗∇ψ) satisfying the continuity equation
(10.2), which assures that the total probability is conserved.

We can attempt to follow the same route for the Klein-Gordon equation, and
associate with its solution a conserved current, i.e. a current jμ for which we can
write a continuity equation in the form ∂μ jμ = 0. Although this can be done, as
we are going to illustrate below, the conserved quantity associated with jμ cannot
be consistently identified with a total probability. To construct jμ let us multiply
Eq. (10.9) by φ∗

φ∗
(

� + m2c2

�2

)
φ = 0,

and subtract the complex conjugate expression. We obtain:

φ∗
(

� + m2c2

�2

)
φ − φ

(
� + m2c2

�2

)
φ∗ = 0,

which can be written as a conservation law:

∂μ jμ(x) = 0, (10.17)

where5

jμ = i
(
φ∗∂μφ − ∂μφ∗φ

)
. (10.18)

3Furthermore, erasing the negative energy solutions would spoil the completeness of the eigenstates
of P̂μ and the expansion in plane waves would be no longer correct.
4A possible interpretation of the negative-energy states as ‘holes’ in the sea of positive-energy ones
was originally proposed by Dirac. For further reading on this we refer the reader to the references
at the end of the chapter.
5The factor i has been inserted in order to have a real current.
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Note however that j0 = i
c (φ∗ φ̇ − φ φ̇∗) is not positive definite and thus cannot

be identified with a probability density. In fact this current has a different physical
interpretation. If we define

Jμ = ce

�
jμ = i ce

�

(
φ∗∂μφ − ∂μφ∗φ

)
, (10.19)

we recognize this as the conserved current in Eq. (8.208), associated with the invari-
ance of the Lagrangian (10.11) under the symmetry transformation (8.206). The
corresponding conserved Noether charge was given by Eq. (8.209), namely:

Q =
∫

d3x J 0 = i
e

�

∫
d3x(φ∗∂tφ − φ∂tφ

∗), (10.20)

and was interpreted in Chap.8 as the charge carried by a complex field.6

Notwithstanding the above difficulties we shall develop in the following all the
properties of the Klein-Gordon equation since they will be very useful in the second
quantized version of the scalar field theory.

Let us now write down the most general solution to the Klein-Gordon equation.
It can be written in a form in which relativistic invariance is manifest:

φ(x) = 1

(2π�)3

∫
d4 p φ̃(p) δ(p2 − m2c2)e− i

�
p·x (10.21)

where d4 p = dp0 d3p. Let us comment on this formula. We have first solved
Eq. (10.12), as we did for Maxwell’s equation in the vacuum (5.96), in a finite size
box of volume V , see Sect. 5.6, so that the momenta of the solutions have discrete

values p = � k = �

(
2πn1
L A

, 2πn2
L B

, 2πn3
LC

)
as a consequence of the periodic boundary

conditions on the box. We have then considered the large volume limit V → ∞, see
Sect. 5.6.2, in which the components of the linear momentum become continuous
variables and the discrete sum over p is replaced by a triple integral, according to
the prescription Eq. (5.122):

∑
p

→ V

(2π�)3

∫
d3p. (10.22)

This explains the factor 1/(2π�)3 in Eq. (10.21) while the normalization volume V
has been absorbed in the definition of φ̃(p).

Secondly, the Dirac delta function δ(p2 − m2c2) makes the integrand non-zero
only for p0 = E

c = ± Ep
c , thus implementing condition (10.15). Indeed, applying

6Actually this “charge” can be any conserved quantum number associated with invariance under
U(1) transformations, like baryon or lepton number etc. However wewill always refer to the electric
charge.

http://dx.doi.org/10.1007/978-3-319-22014-7_8
http://dx.doi.org/10.1007/978-3-319-22014-7_8
http://dx.doi.org/10.1007/978-3-319-22014-7_8
http://dx.doi.org/10.1007/978-3-319-22014-7_8
http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_5
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the Klein-Gordon operator to Eq. (10.21) and using the property x δ(x) = 0 we find:

(
� + m2 c2

�2

)
φ(x) ∝

∫
d4 p φ̃(p) (−p2 + m2c2)δ(p2 − m2c2)e− i

�
p·x = 0,

(10.23)

that is the Klein-Gordon equation is satisfied by the expression (10.21).
The representation (10.21) of the general solution of the Klein-Gordon equation

has the advantage of being explicitly Lorentz-invariant, but it is not verymanageable.
Amore convenient representation is found by eliminating the constraint implemented
by the delta function. This can be done by integrating over p0 so that only the
integration on d3p remains.

For this purpose we recall the following property of the Dirac delta function:
Given a function f (x) with a certain number n of simple zeros, f (xi ) = 0,

xi , (i = 1, . . . , n), then

δ ( f (x)) =
n∑

i=1

1

| f ′(xi )|δ(x − xi ). (10.24)

We apply this formula to the function f (E) = p2 − m2 c2 = E2

c2
− |p|2 − m2c2. It

has two simple zeros corresponding to E = ±Ep. Taking into account that

| f ′(±Ep)| = 2

c2
Ep, (10.25)

the derivative being computed with respect to E, and using (10.24), we find:

δ(p2 − m2c2) = c2

2Ep

(
δ(E − Ep) + δ(E + Ep)

)
. (10.26)

Substituting this expression in Eq. (10.21) one obtains:

φ(x) = c

(2π�)3

∫
d3p

∫
dE

2Ep
φ̃(p)

(
δ(E − Ep) + δ(E + Ep)

)
e− i

�
p·x

= c

(2π�)3

∫
d3p
2Ep

(
φ̃(Ep, p)e− i

�
(E pt−p·x)

+ φ̃(−Ep,−p)e− i
�

(−E pt−(−p)·x)
)

. (10.27)

Note that in the second term of the integrandwe have replaced the integration variable
p with −p; such change is immaterial since the integration in d3p runs over all the
directions of p. This replacement however allows us to rewrite the argument of
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the exponential e− i
�

(−E pt−(−p)·x) as i
�
times the product of the four-vectors pμ =( 1

c Ep, p
)
and xμ:

e− i
�

(−E pt−(−p)·x) = e
i
�

(E pt−p·x) = e
i
�

p·x . (10.28)

Thus Eq. (10.27) takes the final form:

φ(x) = c

(2π�)3

∫
d3p
2E p

[
φ̃+(p) e− i

�
p·x + φ̃−(p) e

i
�

p·x]

= 1

(2π�)3

∫
d3p
2p0

[
φ̃+(p) e− i

�
p·x + φ̃−(p) e

i
�

p·x] , (10.29)

where p0 ≡ Ep/c and we have defined

φ̃+(p) ≡ φ̃(Ep, p); φ̃−(p) ≡ φ̃(−Ep,−p). (10.30)

They represent the Fourier transforms of the positive and negative energy solutions.
It is important to note that in the particular case of a real field φ(x), φ(x) = φ∗(x),

the two Fourier coefficients would be related by complex conjugation, φ̃∗+ = φ̃−.
Instead in the present case of a complex scalar field there is no relation between

them. We also note, by comparing Eqs. (10.21) and (10.29), that the quantity d3p
2Ep

is
Lorentz-invariant (see also Sect. 9.5).

In summary Eq. (10.29) represents the most general solution of the Klein-Gordon
equation for a complex scalar field φ(x), given in terms of both positive and negative
energy solutions. Moreover Eq. (10.29), though not manifestly, is Lorentz-invariant
since it has been derived from (10.21).

For future purpose it is interesting to compute the conserved charge (10.20) in
terms of the Fourier coefficients (10.30).

To this end let us first compute the Fourier integral form of φ̇(x) from (10.29):

φ̇(x) = −ic
∫

d3p
2(2π�)3 �

[
φ̃+(p)e− i

�
p·x − φ̃−(p)e

i
�

p·x] . (10.31)

Inserting the general solution (10.29) and (10.31) in the left hand side of the following
equation:

�

e
Q = i

∫
d3x (φ∗φ̇) + c.c.

we find a number of terms involving two momentum and one volume integrals. The
integral in d3x can be performed over the exponentials and yields delta functions

http://dx.doi.org/10.1007/978-3-319-22014-7_9
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according to the property:

∫
d3xe± i

�
(p−p′)·x = (2π�)3δ3(p − p′). (10.32)

Let us consider each term separately. The terms containing the products φ+φ+ give
the following contribution:

c

(2π�)6

∫
d3x

∫
d3p
4 � p0

∫
d3q

[
φ̃∗+(p)φ̃+(q)e+ i

�
((p0−q0)x0−(p−q))·x + c.c.

]

= c

(2π�)3

∫
d3p
4 � p0

∫
d3q

[
φ̃∗+(p)φ̃+(q)e+ i

�
(p0−q0)x0δ3(p − q) + c.c.

]

= c

(2π�)3

∫
d3p
4 � p0

[
φ̃∗+(p)φ̃+(p) + c.c.

]
= c

(2π�)3 �

∫
d3p
2p0

φ̃∗+(p)φ̃+(p).

where we have used the fact that if p = q, then Ep = Eq. Similarly, for the φ−φ−
terms we find:

− c

(2π�)6

∫
d3x

∫
d3p
4�p0

∫
d3q φ̃∗−(p)φ̃−(q)e− i

�
((p0−q0)x0−(p−q))·x + c.c.

= − c

(2π�)3

∫
d3p
2�p0

φ̃∗−(p)φ̃−(p).

Finally the terms containing themixed productsφ+φ− give a vanishing contribution:

c

(2π�)6

∫
d3x

∫
d3p
4� p0

∫
d3q

[
φ̃∗−(p)φ̃+(q)e− i

�
((p0+q0)x0−(p+q))·x−

− φ̃∗+(p)φ̃−(q)e
i
�

((p0+q0)x0−(p+q))·x]+ c.c.

= c

(2π�)3

∫
d3p
4� p0

[
φ̃∗−(p0, p)φ̃+(p0,−p) e− 2i

�
p0 x0−

− φ̃∗+(p0,−p)φ̃−(p0, p) e
2i
�

p0 x0
]

+ c.c. = 0.

The last equality is due to the fact that the expression within brackets, being the
difference between two complex conjugate terms, is purely imaginary and therefore,
when adding to it its own complex conjugate, we obtain zero.

The final result is therefore:

Q = 1

(2π�)3

ec

�2

∫
d3p
2p0

[
φ̃∗+(p)φ̃+(p) − φ̃∗−(p)φ̃−(p)

]
(10.33)

confirming the fact that Q is not a positive definite quantity.
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In the introduction we have pointed out that the difficulties in giving a probabilis-
tic interpretation to wave functions satisfying a relativistic equation is ultimately
related to the fact that in the relativistic processes the number and identities of the
particles involved is not conserved. We also know, however, that in any experiment
performed so far, the electric charge is always conserved. We may therefore argue
that the conserved quantity Q should be interpreted as the total charge and J 0 as
the charge density. Furthermore, from (10.33), it follows that solutions with posi-
tive and negative energy have opposite charge. This will have a consistent physical
interpretation only when, in next chapter, we shall pursue the second quantization
program and promote the field φ(x) to a quantum operator acting on multi-particle
states. The quantity Q will be reinterpreted as the charge operator and the positive
and negative energy solutions will describe the creation and destruction on a state of
positive energy solutions associated with particles and antiparticles having opposite
charge.

Note that a real field has charge Q ≡ 0, since φ− = φ∗+, so that it must describe
a neutral particle coinciding with its own antiparticle. This is the case, for example,
of the electromagnetic field.

10.2.1 Coupling of the Complex Scalar Field φ(x)

to the Electromagnetic Field

We show in this section that the charge Q introduced in the previous section can be
given the interpretation of electric charge carried by the particle whosewave function
is described by a complex scalar field. To this end, we observe that the presence
of electric charge can only be ascertained by letting the particle interact with an
electromagnetic field. In other words the interpretation of the quantity Jμ = (ρ, j/c)
as the electric four-current can be justified only by studying the interaction of φ(x)

with the electromagnetic field Aμ(x).
We have seen in Chap.8 that the passage from the Hamilton function of a free

particle to the Hamilton function of a particle interacting with the electromagnetic
field can be effected by the minimal coupling substitution pμ → pμ + e

c Aμ.
Using the analogy with the classical case, the quantum equation describing the

interaction of a complex scalar with the electromagnetic field Aμ can therefore be
derived through the substitution:

P̂μ → P̂μ + e

c
Aμ = i� ∂μ + e

c
Aμ, (10.34)

into the mass-shell condition (9.107) of Chap.9:

[(
P̂μ + e

c
Aμ
) (

P̂μ + e

c
Aμ

)
− m2c2

]
φ = 0,

http://dx.doi.org/10.1007/978-3-319-22014-7_8
http://dx.doi.org/10.1007/978-3-319-22014-7_9
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thus obtaining, using (10.34), the new field equation:

[(
∂μ − i

e

�c
Aμ
) (

∂μ − i
e

�c
Aμ

)
+ m2 c2

�2

]
φ(x) = 0. (10.35)

Defining the covariant derivative Dμ as:

Dμ = ∂μ − ie

�c
Aμ, (10.36)

Equation (10.35) becomes:

(
DμDμ + m2 c2

�2

)
φ(x) = 0. (10.37)

which can be derived from the Lagrangian density

L = c2
[
(Dμφ)∗Dμφ − m2c2

�2
|φ|2

]
. (10.38)

We observe that the equation of motion (10.35) is not invariant under the gauge
transformation Aμ(x) → Aμ(x) + ∂μϕ(x). However, it can be easily checked that
gauge invariance can be restored if we extend the gauge transformation also to the
complex scalar field as follows:

φ(x) → φ′(x) = φ(x) ei e
�c ϕ(x). (10.39)

Note that in the particular case of a constant gauge parameter ϕ(x) = const. we
have no transformation of the gauge field and we retrieve the invariance under the
U(1)-transformation (8.206) with a constant parameter α = −eϕ/(�c), also called
global-U(1) transformation, which implies the conservation of the electric charge.
The name of covariant derivative given to (10.36) stems from the fact that under the
combined transformations

φ′(x) = ei e
�c ϕ(x) φ(x),

A′
μ(x) = Aμ(x) + ∂μϕ(x), (10.40)

we have
Dμφ → ei e

�c ϕ(x) Dμφ,

that is Dμφ transforms exactly as φ. It follows that the Lagrangian density (10.38),
being a sum of moduli squared, is invariant under (10.40). Equation (10.40) define
the so called local-U(1) transformations, since they involve a U(1) transformation
of the complex scalar field with a local, i.e. space-time dependent, parameter.

http://dx.doi.org/10.1007/978-3-319-22014-7_8
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We may now read off the Lagrangian density describing the interaction of Aμ

with φ by expanding the right hand side of (10.38) up to terms which are linear in the
electric charge e and comparing these with the general form of the coupling between
the electromagnetic field ad an electric current, given in Eq. (8.125) of Chap.8. We
find:

L = L0 + Lint,

with

L0 = c2
(

∂μφ∗∂μφ − m2c2

�2
φ∗φ

)
and Lint = Aμ Jμ,

the four-current Jμ being given by Eq. (10.19). As shown in Chap.8 this current is
conserved ∂μ Jμ = 0 as a consequence of the invariance of the Lagrangian under
the global-U(1) transformation (8.206)

φ(x) −→ φ′(x) = e−iα φ(x),

with a constant parameter α. This justifies our previous guess that

Q =
∫

d3xJ 0(x, t),

is the conserved electric charge carried by the field φ.
We have learned that the interaction of a charged scalar field with the electromag-

netic one is described by a Lagrangian (10.38) which is invariant under local-U(1)
transformations. This guarantees that the minimal coupling between Aμ and φ does
not spoil the gauge invariance associated with the vector potential. The Lagrangian
(10.38) is obtained from the one in Eq. (10.35), describing the free scalar field,
through the substitution: ∂μ → Dμ.

10.3 The Hamiltonian Formalism for the Free Scalar Field

The Klein-Gordon equation can be cast into a Hamiltonian form following the pro-
cedure discussed in Chap.8. Rewriting the Lagrangian density (10.12) as:

L = φ̇∗φ̇ − c2∇φ∗ · ∇φ − m2c4

�2
φ∗φ, (10.41)

the Hamiltonian H and the Hamiltonian densityH then reads:

H =
∫

d3x H(φ,φ∗,π,π∗), (10.42)

H = πφ̇ + π∗φ̇∗ − L = 2φ̇∗φ − L, (10.43)

http://dx.doi.org/10.1007/978-3-319-22014-7_8
http://dx.doi.org/10.1007/978-3-319-22014-7_8
http://dx.doi.org/10.1007/978-3-319-22014-7_8
http://dx.doi.org/10.1007/978-3-319-22014-7_8
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where

π(x, t) = ∂L
∂φ̇(x, t)

= φ̇∗(x, t), (10.44)

π∗(x, t) = ∂L
∂φ̇(x, t)∗

= φ̇(x, t). (10.45)

Substituting these values into (10.43) we obtain:

H =
∫

d3xH; H = ππ∗ + c2∇φ∗ · ∇φ + m2c4

�2
φ∗φ, (10.46)

showing that the Hamiltonian density, and hence the Hamiltonian, are positive defi-
nite.

The Hamilton equations of motion are:

π̇ = −δH

δφ
; φ̇ = δH

δπ
(10.47)

π̇∗ = − δH

δφ∗ ; φ̇∗ = δH

δπ∗ . (10.48)

The equation for the conjugatemomentumdensityπ∗ gives the propagation equation:

π̇∗ = − δH

δφ∗ ⇒ ∂2φ

∂t2
= c2∇2φ − m2c4

�2
φ,

where, in computing the functional derivative, we have integrated the term∇δφ∗ ·∇φ
by parts and we neglected the total divergence since it gives a vanishing contribution
when integrated over the whole space. Thus we have retrieved the Klein-Gordon
equation (10.12) in the Hamiltonian formalism.

Since the Hamiltonian density has the physical meaning of an energy density
it could have been computed alternatively, in the Lagrangian formalism, in terms
of the canonical energy-momentum tensor associated with the Lagrangian density
(10.12). Indeed, from the definition (8.170), and taking into account that we have
two independent fields φ and φ∗, we compute the energy-momentum tensor to be:

Tμν = 1

c

[
∂L

∂(∂μφ)
∂νφ + ∂L

∂(∂μφ∗)
∂νφ

∗ − ημνL
]

, (10.49)

where
∂L

∂(∂μφ)
= c2∂μφ∗; ∂L

∂∂μφ∗ = c2∂μφ.

http://dx.doi.org/10.1007/978-3-319-22014-7_8
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Substituting in Eq. (10.49) we find:

Tμν = c (∂μφ∗∂νφ + ∂νφ
∗∂μφ) − ημν

L
c

. (10.50)

In particularwemayverify the identity between energydensity c T00 andHamiltonian
density:

T00 = 1

c
(2φ̇∗φ̇ − L) = 1

c

(
φ̇∗φ̇ + c2∇φ∗ · ∇φ + m2c4

�2
|φ|2

)
= H

c
.

that is

H = c
∫

d3x T00 =
∫

d3x
(

ππ∗ + c2∇φ∗ · ∇φ + m2c4

�2
|φ|2

)
. (10.51)

As far as the momentum of the field is concerned we find

Pi =
∫

d3x
(
φ̇∗∂iφ + φ̇ ∂iφ∗) ⇒ P = −

∫
d3x

(
π ∇φ + π∗ ∇φ∗) .

(10.52)

10.4 The Dirac Equation

In the previous sections we have focussed our attention on a scalar field, whose
distinctive property is the absence of internal degrees of freedom since it belongs
to a trivial representation of the Lorentz group. This means that its intrinsic angular
momentum, namely its spin, is zero.

We have also studied, both at the classical level and in a second quantized setting,
the electromagnetic field which, as a four-vector, transforms in the fundamental
representation of the Lorentz group. Its internal degrees of freedom are described by
the two transverse components of the polarization vector. At the end of Chap.6 we
have associated with the photon a unit spin: s = 1 (in units of �). As explained there,
by this we really mean that the photon helicity is Γ = 1.

Our final purpose is to give an elementary account of the quantum description
of electromagnetic interactions. The most important electromagnetic interaction at
low energy is the one between matter and radiation. Since the elementary building
blocks of matter are electrons and quarks, which have half-integer spin (s = 1/2),
such processes will involve the interaction between photons and spin 1/2 particles.
It is therefore important to complete our analysis of classical fields by including the
fermion fields, that is fields associated with spin 1/2 particles.

In this section and in the sequel we discuss the relativistic equation describing
particles of spin 1/2, known as the Dirac equation.

http://dx.doi.org/10.1007/978-3-319-22014-7_6
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10.4.1 The Wave Equation for Spin 1/2 Particles

Historically Dirac discovered his equation while attempting to construct a relativistic
equation which, unlike Klein-Gordon equation, would allow for a consistent inter-
pretation of the modulus squared of the wave function as a probability density. As
we shall see in the following, this requirement can be satisfied if, unlike in the Klein-
Gordon case, the equation is of first order in the time derivative. On the other hand,
the requirement of relativistic invariance implies that the equation ought to be of
first order in the space derivatives as well. The resulting equation will be shown to
describe particles of spin s = 1

2 .
Let ψα(x) be the classical field representing the wave function. The most general

form for a first order wave equation is the following:

i�
∂ψ

∂t
= (−ic� αi∂i + β mc2)ψ = Ĥ ψ. (10.53)

In writing Eq. (10.53) we have used a matrix notation suppressing the index α of
ψα(x) and the indices of the matricesαi ,β acting onψα namelyαi = (αi )αβ, β =
(β)αβ .

In order to determine the matrices αi ,β we require the solutions to Eq. (10.53)
to satisfy the following properties:

(i) ψα(x) must satisfy the Klein-Gordon equation for a free particle which imple-
ments the mass-shell condition:

E2 − |p|2 c2 = m2 c4;

(ii) It must be possible to construct a conserved current in terms of ψα whose 0-
component is positive definite and which thus can be interpreted as a probability
density;

(iii) Equation (10.53) must be Lorentz covariant. This would imply Poincaré invari-
ance.

To satisfy the first requirement we apply the operator i� ∂
∂t to both sides of

Eq. (10.53) obtaining:

− �
2 ∂2ψ

∂t2
= (−ic � αi ∂i + β mc2)(−ic� α j∂ j + β mc2)ψ, (10.54)

where, because of the symmetry of ∂i∂ j , the term αi α j ∂i∂ j can be rewritten as

αi α j ∂i∂ j = 1

2
(αi α j + α j αi ) ∂i∂ j .
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If we now require αi and β to be anticommuting matrices, namely to satisfy:

{
αi , α j

}
≡ αi α j + α j αi = 2 δij 1;

{
αi , β

}
= 0, (10.55)

and furthermore to square to the identity matrix:

β2 = (αi )2 = 1 (no summation over i), (10.56)

then Eq. (10.54) becomes:

− �
2 ∂2ψα

∂t2
= (−c2 �

2 ∇2 + m2c4)ψα, (10.57)

which is the Klein-Gordon equation

(
� + m2c2

�2

)
ψα = 0, (10.58)

where the differential operator is applied to each component of ψ.
Therefore, given a set of four matrices satisfying (10.55) and (10.56), Eq. (10.53)

implies the Klein-Gordon equation, for each component of ψα, consistently with
our first requirement. Equation (10.53) is called the Dirac equation. We still need to
explicitly construct the matrices αi , β and to show that requirements (i i) and (i i i)
are also satisfied. In order to discuss Lorentz covariance of the Dirac equation, it is
convenient to introduce a new set of matrices

γ0 ≡ β; γi ≡ β αi , (10.59)

in terms of which conditions (10.55) and (10.56) can be recast in the following
compact form

{
γμ, γν

} = 2ημν 1, (10.60)

where, as usual, i, j = 1, 2, 3 and μ, ν = 0, 1, 2, 3. In terms of the matrices γμ

Eq. (10.53) takes the following simpler form7:

(
i�γμ∂μ − mc 1

)
ψ(x) = 0. (10.61)

It can be shown that the minimum dimension for a set of matrices γμ satisfying
Eq. (10.60) is 4. Therefore the simplest choice is to make the internal index α run

7For the sake of simplicity, we shall often omit the identity matrix when writing combina-
tions of spinorial matrices. We shall for instance write the Dirac equation in the simpler form(
i�γμ∂μ − mc

)
ψ(x) = 0.
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over four values so that

ψα(x) =

⎛
⎜⎜⎝

ψ1(x)

ψ2(x)

ψ3(x)

ψ4(x)

⎞
⎟⎟⎠ (10.62)

belongs to a four-dimensional representation of the Lorentz group.
It must be noted that although the Lorentz group representation S(�) acting on

the “vector” ψ has the same dimension as the defining representation � = (Λμ
ν),

the two representations are different. In our case ψα is called a spinor, or Dirac
field, and correspondingly the matrix Sα

β belongs to the spinor representation of the
Lorentz group (see next section).8 This representation will be shown in Sect. 10.4.4
to describe a spin 1/2 particle. This seems to be in contradiction with the fact that ψ
has four components, corresponding to its four internal degrees of freedom, which
are twice as many as the spin states sz = ±�

2 of a spin 1
2 particle. We shall also prove

that if we want to extend the invariance from proper Lorentz transformation SO(1,3)
to transformations in O(1, 3) which include parity, that is including reflections of
the three coordinate axes, all the four components of ψ are needed. It is convenient
to introduce an explicit representation of the γ-matrices (10.60), called standard or
Pauli representation, satisfying (10.60):

γ0 =
(

12 0
0 −12

)
; γi =

(
0 σi

−σi 0

)
, (i = 1, 2, 3) (10.63)

where each entry is understood as a 2 × 2 matrix

0 ≡
(
0 0
0 0

)
; 12 =

(
1 0
0 1

)
.

The σi matrices are the Pauli matrices of the non-relativistic theory, defined as:

σ1 =
(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
. (10.64)

We recall that they are hermitian and satisfy the relation:

σiσ j = δij 12 + i εijk σκ, (10.65)

which implies

Tr(σi σ j ) = 2 δij; {σi ,σ j } = 2 δij 12; [σi , σ j ] = 2i εijk σk . (10.66)

8As mentioned in Chap. 7 the spinor representation cannot be obtained in terms of tensor represen-
tations of the Lorentz group.

http://dx.doi.org/10.1007/978-3-319-22014-7_7
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The matrices αi , β read:

αi =
(

0 σi

σi 0

)
; β =

(
12 0
0 −12

)
. (10.67)

Using the representation (10.63), the Dirac equation can be written as a coupled
system of two equations in the upper and lower components of the Dirac spinor
ψα(x). Indeed, writing

ψα(x) =
(

ϕ(x)

χ(x)

)
; ϕ(x) =

(
ϕ1

ϕ2

)
; χ(x) =

(
χ1

χ2

)
, (10.68)

where ϕ(x), e χ(x) are two-component spinors, the Dirac equation (10.61) becomes

{
i�c

[(
12 0
0 −12

)
∂

∂x0
+
(

0 σi

−σi 0

)
∂

∂xi

]
− mc2

(
12 0
0 12

)}(
ϕ
χ

)
= 0.

(10.69)
The matrix equation (10.69) is equivalent to the following system of coupled
equations:

i�
∂

∂t
ϕ = −i �c σ · ∇χ + mc2ϕ, (10.70)

i�
∂

∂t
χ = −i�cσ · ∇ϕ − mc2χ, (10.71)

where σ ≡ (σi ) denotes the vector whose components are the three Pauli matrices.
The two-component spinors ϕ and χ are called large and small components of the
Dirac four-component spinor, since, as we now show, in the non-relativistic limit, χ
becomes negligible with respect to ϕ.

To show this we first redefine the Dirac field as follows:

ψ = ψ′ e−i mc2
�

t , (10.72)

so that Eq. (10.61) takes the following form:

(
i�

∂

∂t
+ mc2

)
ψ′ =

[
c αi (−i�∂i ) + β mc2

]
ψ′.

The rescaled spinor ψ′ is of particular use when evaluating the non-relativistic limit,
since it is defined by “subtracting” from the time evolution ofψ the part due to its rest
energy, so that its time evolution is generated by the kinetic energy operator only:
Ĥ − mc2 Î . In other words i � ∂tψ

′ is of the order of the kinetic energy times ψ′ and,
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in the non-relativistic limit, it is negligible compared to mc2 ψ′. Next we decompose
the field ψ′ as in Eq. (10.68) and, using Eq. (10.67), we find:

i�
∂

∂t
ϕ = c σ · p̂ χ, (10.73)

(
i�

∂

∂t
+ 2mc2

)
χ = c σ · p̂ ϕ, (10.74)

where we have omitted the prime symbols in the new ϕ and χ. In the non-relativistic
approximation we only keep on the left hand side of the second equation the term
2mc2 χ, so that

χ = 1

2mc
σ · p̂ ϕ. (10.75)

Substituting this expression in the equation for ϕ we obtain:

i�
∂

∂t
ϕ = 1

2m
p̂2ϕ = − �

2

2m
∇2ϕ, (10.76)

where we have used the identity:

(p̂ · σ)(p̂ · σ) = |p̂|2 = −�
2 ∇2, (10.77)

which is an immediate consequence of the properties (10.65) of the Pauli matrices.
Equation (10.76) tells us that in the non-relativistic limit the Dirac equation

reduces to the familiar Schroedinger equation for the two component spinor wave
function ϕ. Moreover, from Eq. (10.75), we realize that the lower components χ of
the Dirac spinor are of subleading order O( 1c ) with respect to the upper ones ϕ and
therefore vanish in the non-relativistic limit c → ∞. This justifies our referring to
them as the small and large components of ψ, respectively. We also note that in the
present non-relativistic approximation, taking into account that the small compo-
nents χ can be neglected, the probability density ψ†ψ = ϕ†ϕ+χ†χ reduces to ϕ†ϕ
as it must be the case for the Schroedinger equation.

10.4.2 Conservation of Probability

Wenow show that property (ii) of Sect. 10.4.1 is satisfied by the solutions to the Dirac
equation, namely that it is possible to construct a conserved probability in terms of
the spinor ψα. Let us take the hermitian conjugate of the Dirac equation (10.61)

− i � ∂μψ† γμ † − mc ψ† = 0. (10.78)
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We need now the following property of the γμ-matrices (10.63) which can be easily
verified:

γ0γμ † = γμγ0. (10.79)

Multiplying both sides of Eq. (10.78) from the right by the matrix γ0 and defining
the Dirac conjugate ψ̄ of ψ as

ψ̄(x) = ψ†(x) γ0,

we find:
−i � ∂μψ̄ γμ − mc ψ̄ = 0,

where we have used Eq. (10.79). Thus the field ψ̄(x) satisfies the equation:

ψ̄(x)(i �
←−
∂ μγμ + mc) = 0, (10.80)

where, by convention

ψ̄
←−
∂ μ ≡ ∂μψ̄.

Next we define the following current:

Jμ = ψ̄γμψ, (10.81)

and assume that Jμ transforms as a four-vector. This property will be proven to hold
in the next Section. Using the Dirac equation we can now easily show that ∂μ Jμ = 0,
that is Jμ is a conserved current:

∂μ Jμ = (∂μψ̄)γμψ + ψ̄γμ∂μψ = ψ̄
←−
∂ μγμψ + ψ̄γμ∂μψ

= i
mc

�
ψ̄ψ − i

mc

�
ψ̄ψ = 0. (10.82)

Note that the 0-component ρ = J 0 = ψ†ψ of this current is positive definite. If we
normalizeψ so as to have dimension [L−3/2], then ρ has the dimensions of an inverse
volume and therefore it can be consistently given the interpretation of a probability
density, the total probability being conserved by virtue of Eq. (10.82). The second
requirement (ii) is therefore satisfied.

10.4.3 Covariance of the Dirac Equation

We finally check that Dirac equation is covariant under Lorentz transformations, so
that also the third requirement of Sect. 10.4.1 is satisfied.



340 10 Relativistic Wave Equations

Lorentz covariance of the Dirac equation means that if in a given reference frame
(10.61) holds, then in any new reference frame, related to the former one by a Lorentz
transformation, the same equation should hold, although in the transformed variables.

Let us write down the Dirac equation in two frames S′ and S related by a Lorentz
(or in general a Poincaré) transformation:

(
i � γμ ∂′

μ − mc
)

ψ′(x ′) = 0, (10.83)
(
i � γμ∂μ − mc

)
ψ(x) = 0, (10.84)

where ∂′
μ = ∂

∂x ′
μ
and x ′μ = Λμ

ν xν .

We must require Eq. (10.83) to hold in the new frame S′ if Eq. (10.84) holds in
the original frame S.

As explained after Eq. (10.62) we denote by S ≡ (Sα
β) = S(�) the spinor repre-

sentation of the Lorentz transformation acting on ψ(x). A Poincaré transformation
on ψα(x) is then described as follows:

ψ′α(x ′) = Sα
β ψβ(x), (10.85)

where, as usual, x ′ = � x −x0.We use amatrix notation for the spinor representation
while we write explicit indices for the defining representation Λμ

ν of the Lorentz
group. Since :

∂

∂x ′μ = ∂xν

∂x ′μ
∂

∂xν
= (Λ−1)νμ∂ν,

we have:
(

i� γμ∂′
μ − mc

)
ψ′(x ′) =

(
i� γμ(Λ−1)νμ∂ν − mc

)
S ψ(x) = 0. (10.86)

Multiplying both sides from the left by S−1 we find:

[
i� (Λ−1)νμ

(
S−1 γμ S

)
∂ν − mc

]
ψ(x) = 0. (10.87)

We see that in order to obtain covariance, we must require

(Λ−1)νμ S−1γμS = γν ⇒ S−1 γν S = Λν
μ γμ. (10.88)

In that case Eq. (10.87) becomes:

(
i�γν∂ν − mc

)
ψ(x) = 0, (10.89)

that is we retrieve (10.84). In the next section we shall explicitly construct the trans-
formation S satisfying condition (10.88). We then conclude that Dirac equation is
covariant under Lorentz (Poincaré) transformations.
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Wemay now check that the current Jμ = ψ̄γμψ introduced in the previous section
transforms as a four-vector. From Eq. (10.85) we have, suppressing spinor indices

ψ
′
(x ′) = S ψ(x) = ψ†(x)S†γ0, (10.90)

so that

ψ
′
(x ′)γμψ′(x ′) = ψ†(x)γ0(γ0S†γ0)γμSψ(x) = ψ(γ0S†γ0)γμSψ, (10.91)

where we have used the property (γ0)2 = 1. As we are going to prove in the next
subsection, the following relation holds:

γ0S†γ0 = S−1. (10.92)

In this case, using (10.88), Eq. (10.91) becomes

ψ
′
(x ′)γμψ′(x ′) = ψ(x) S−1γμS ψ = Λμ

ν ψ(x)γνψ(x), (10.93)

which shows that the current Jμ transforms as a four-vector.

10.4.4 Infinitesimal Generators and Angular Momentum

To find the explicit form of the spinor matrix S(�) we require it to induce the
transformation of the γ-matrices given by Eq. (10.88). Actually it is sufficient to
perform the computation in the case of infinitesimal Lorentz transformations.

We can write the Poincaré-transformed spinor ψ′(x ′) in (10.85) as resulting from
the action of a differential operator O(�,x0), defined in Eq. (9.101):

ψ′α(x ′) = O(�,x0) ψα(x ′) = Sα
β ψβ(x), (10.94)

Thegenerators Ĵ ρσ of O(�,x0) are expressed, seeEq. (9.102), as the sumof differential
operators M̂ρσ acting on the functional form of the field, and matrices Σρσ acting
on the internal index α (which coincide with (−i�) times the matrices (Lρσ)αβ in
Eq. (7.83)). These latter are the Lorentz generators in the spinor representation:

S(�) = e
i
2�

θρσ Σρσ
, (10.95)

and satisfy the commutation relations (9.103):

[
Σμν,Σρσ

] = −i�
(
ηνρ Σμσ + ημσ Σνρ − ημρ Σνσ − ηνσ Σμρ

)
. (10.96)

http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_9
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We can construct such matrices in terms of the γμ ones as follows:

Σμν = −�

2
σμν, (10.97)

where the σμν matrices are defined as:

σμν ≡ i

2
[γμ, γν] = −σνμ. (10.98)

Using the properties (10.60) of theγμ-matrices, the reader can verify thatΣμν defined
in (10.97) satisfy the relations (10.96). The expression of an infinitesimal Lorentz
transformation on ψ(x) follows from Eq. (7.83), with the identification (Lρσ)αβ =
i
�

(Σρσ)αβ = − i
2 (σρσ)αβ :

δψ(x) = i

2 �
δθρσ Ĵ ρσ ψ(x)

= 1

2
δθρσ

[
− i

2
σρσ + xρ∂σ − xσ∂ρ

]
ψ(x), (10.99)

where we have adopted the matrix notation for the spinor indices and used the
identification:

Ĵρσ = M̂ρσ + Σρσ = −i� (xρ∂σ − xσ∂ρ) − �

2
σρσ. (10.100)

To verify that thematricesΣρσ defined in (10.97) generate the correct transformation
property Eq. (10.88) of the γμ matrices, let us verify Eq. (10.88) for infinitesimal
Lorentz transformations:

Λμ
ν ≈ δμ

ν + 1

2
δθρσ (Lρσ)μν = δμ

ν + δθμ
ν,

S(�) ≈ 1 − i

4
δθρσ σρσ, (10.101)

where we have used the matrix form (4.170) of the Lorentz generators Lρσ =
[(Lρσ)μν] in the fundamental representation: (Lρσ)μν = ηρμ δσ

ν − ησμ δ
ρ
ν . Equa-

tion (10.88) reads to lowest order in δθ:

(
1 + i

4
δθρσ σρσ

)
γμ

(
1 − i

4
δθρσ σρσ

)
= γμ + 1

2
δθρσ (Lρσ)μν γν .

The above equation implies:

i

2
[σρσ, γμ] = (Lρσ)μν γν = ηρμ γσ − ησμ γρ, (10.102)

http://dx.doi.org/10.1007/978-3-319-22014-7_7
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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which can be verified using the properties of the γμ-matrices. Having checked
Eq. (10.88) for infinitesimal transformations, the equality extends to finite trans-
formations as well, since the latter can be expressed as a sequence of infinitely many
infinitesimal transformations.

As far as Eq. (10.92) is concerned, from the definition (10.97) we can easily prove
the following property:

γ0 (Σρσ)† γ0 = i�

4
γ0 [γρ, γσ]† γ0 = i�

4
γ0 [(γσ)†, (γρ)†] γ0

= i�

4
[γ0(γσ)†γ0, γ0(γρ)†γ0] = − i�

4
[γρ, γσ] = Σρσ.

Let us now compute the left hand side of Eq. (10.92) by writing the series expansion
of the exponential and use the above property of Σμν :

γ0 S† γ0 = γ0

[ ∞∑

n=0

1

n!
(

− i

2�
θρσ Σρσ †

)n
]

γ0 =
∞∑

n=0

1

n!
(

− i

2�
θρσ γ0 Σρσ † γ0

)n

= exp

(
− i

2�
θρσ γ0 Σρσ † γ0

)
= exp

(
− i

2�
θρσ Σρσ

)
= S−1. (10.103)

This proves Eq. (10.92).
In terms of the generators Ĵ ρσ of the Lorentz group we can define the angular

momentum operator Ĵ = ( Ĵi ) as in Eq. (9.106) of last chapter:

Ĵi = −1

2
εijk Ĵ jk = M̂i + Σi ,

M̂i = εijk x̂ i p̂ j ; Σi = −1

2
εijk Σ jk, (10.104)

where, as usual M̂ = (M̂i ) denotes the orbital angular momentum, while we have
denoted by � = (Σi ) the spin operators acting as matrices on the internal spinor
components. Let us compute the latter using the definition (10.97) of Σμν :

Σi = −1

2
εijk Σ jk = �

4
εijk σ jk = �

2

(
σi 0
0 σi

)
, (10.105)

The above expression is easily derived from the definition of σij and the explicit form
of the γμ-matrices:

σij = i

2
[γi , γ j ] = − i

2

([σi , σ j ] 0
0 [σi , σ j ]

)
= εijk

(
σk 0
0 σk

)
,

http://dx.doi.org/10.1007/978-3-319-22014-7_9
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where we have used the properties (10.66) of the Pauli matrices and the relation
εijk ε jk� = 2 δ�

i . For a massive fermion, like the electron, � = (Σi ) generate the spin
group G(0) = SU(2), see Sect. 9.4.1, which is the little group of the four-momentum
in the rest frame S0 in which p = p̄ = (mc, 0). In Sect. 9.4.2 we have shown that
|�|2 = −ŴμŴ μ/(m2c2), i.e. the spin of the particle, is a Poincaré invariant quantity.
In our case, using (10.105), we have:

|�|2 = �
2 s(s + 1) 1 = 3

4
�
2 1, (10.106)

from which we deduce that the particle has spin s = 1/2, namely that the states
|p, r〉 belong to the two-dimensional representation of SU(2), labeled by r . The
matrix R(�, p) in Eq. (9.112) is thus an SU(2) transformation generated by the
matrices si ≡ � σi/2, see Appendix F:

R(�, p) = exp

(
i

�
θi si

)
, (10.107)

where, if � were a rotation, θi would coincide with the rotation angles, and thus be
independent of p, whereas if�were a boost, θi would depend on p and on the boost
parameters.

Note that, in the spinorial representation of the Lorentz group, which acts on the
index α of ψα(x), a generic rotation with angles θi is generated by the matrices Σi

in Eq. (10.105) and has the form:

S(�R) = e
i
�

θi Σi =
(

e
i
�

θi si 0

0 e
i
�

θi si

)
=
(

S(θ) 0
0 S(θ)

)
, (10.108)

S(θ) ≡ e
i
�

θi si = cos

(
θ

2

)
+ i σ · θ̂ sin

(
θ

2

)
, (10.109)

where θ ≡ (θi ), θ ≡ |θ| and θ̂ ≡ θ/θ. Equation (10.109) is readily obtained along
the same lines as in the derivation of the 4 × 4 matrix representation of a Lorentz
boost in Chap.4.

Equation (10.108) shows that, with respect to the spin group SU(2), the spinor-
ial representation is completely reducible into two two-dimensional representations
acting on the small and large components of the spinor, respectively. Moreover we
see that a rotation by an angle θ of the reference frame about an axis, amounts to a
rotation by an angle θ/2 of a spinor.

If the particle ismassless,R is an SO(2) rotation generated by the helicity operator
Γ in the frame in which the momentum is the standard one p = p̄. Choosing9

9Note that, with respect to the last chapter, we have changed our convention for the standard
momentum of a massless particle. Clearly the discussion in Chap. 9 equally applies to this new
choice, upon replacing direction 1 with direction 3.

http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_9
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p̄ = (E, 0, 0, E)/c, Γ̂ = Σ3 we have

R(�, p) = exp

(
i

�
θ s3

)
. (10.110)

Finally we may verify that the spin � does not commute with the Hamiltonian, i.e.
it is not a conserved quantity. Indeed, let us recall the expression of the Hamiltonian
given in Eq. (10.53), namely

Ĥ = −ic � αi∂i + β mc2 = c αi p̂i + β mc2 =
(

mc2 c p̂ · σ
c p̂ · σ −mc2

)
,

where we have used the explicit matrix representation (10.67) of αi , β. Using for
� the expression (10.105) we find:

[Ĥ ,Σk] = i c�

(
0 εkijσ

i p̂ j

εkijσ
i p̂ j 0

)
= i c� εkij α

i p̂ j 
= 0. (10.111)

We see that, considering the third component Σ3, the commutator does not vanish,
except in the special case p1 = p2 = 0, p3 
= 0. In general the component of� along
the direction of motion, which is the helicity Γ , is conserved. This is easily proven
by computing [Ĥ ,� · p̂] = [Ĥ ,Σi p̂i ] and using the property that Ĥ commutes with
p̂i , so that, in virtue of Eq. (10.111), [Ĥ ,Σi p̂i ] = [Ĥ , Σi ] p̂i = 0.

Similarly also the orbital angularmomentum is not conserved since, ifwe compute
[Ĥ , M̂k] and use the commutation relation [x̂ i , p̂ j ] = i � δi

j , we find:

[Ĥ , M̂k] = εkij [Ĥ , x̂ i ] p̂ j = c εkij α
� [ p̂�, x̂ i ] p̂ j = −i c� εkij α

i p̂ j .

Summing the above equation with Eq. (10.111) we find:

[Ĥ , Ĵk] = [Ĥ , M̂k + Σk] = −i c� εkij α
i p̂ j + i c� εkij α

i p̂ j = 0,

namely that the total angular momentum J = M + � is conserved.
So far we have been considering the action of the rotation subgroup of the Lorentz

group on spinors. On the other hand we have learned in Chap.4 that a generic proper
Lorentz transformation can be written as the product of a boost and a rotation:

S(�) = S(�B) S(�R). (10.112)

Let us consider now the boost part. Lorentz boosts are generated, in the fundamen-
tal representation, by the matrices Ki defined in Sect. 4.7.1 of Chap.4. To find the

http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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representation of these generators on the spinors, let us expand a generic Lorentz
generator in the spinor representation:

i

2�
θμν Σμν = i

�
θ0i Σ0i + i

�
θi Σ i = Λi K i + i

�
θi Σ i , (10.113)

where, as usual, θi = −εijk θ jk/2 while Λi ≡ θ0i . The boost generators K i =
i Σ0i/� read:

K i = 1

2
γ0γi = 1

2
αi . (10.114)

A boost transformation is thus implemented on a spinor by the following matrix

S(�B) = e
i
�

Λi Σ0i = eλi K i
. (10.115)

The abovematrix can be evaluated by noting that (λi K i )2 = −λiλ j γiγ j/4 = λ2/4,
where λ = |λ| and we have used the anticommutation properties of the γi -matrices.
By using this property and defining the unit vector λ̂i = λi/λ the expansion of the
exponential on the right hand side of Eq. (10.115) boils down to:

S(�B) = cosh

(
λ

2

)
1 + sinh

(
λ

2

)
λ̂i αi . (10.116)

From the identifications cosh(λ) = γ(v), sinh(λ) = γ(v) v/c, λ̂ = (λ̂i ) = v/v, see
Sect. 4.7.1 of Chap.4, we derive:

cosh

(
λ

2

)
=
√

γ(v) + 1

2
; sinh

(
λ

2

)
=
√

γ(v) − 1

2
,

S(�B) =
√

γ(v) + 1

2
1 +

√
γ(v) − 1

2

vi

v
αi . (10.117)

It is useful to express the boost �p which connects the rest frame S0 of a massive
particle to a generic one in which p = (pμ) = (Ep/c, p). In this case we can write
γ(v) = E/(mc2), v/c = pc/Ep and Eq. (10.117), after some algebra, becomes:

S(�p) = 1√
2m (mc2 + Ep)

(pμ γμ + mc γ0) γ0

= 1√
2m (mc2 + Ep)

(
(p0 + mc) 12 p · σ

p · σ (p0 + mc) 12

)
. (10.118)

http://dx.doi.org/10.1007/978-3-319-22014-7_4
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10.5 Lagrangian and Hamiltonian Formalism

The field equations of the Dirac field can be derived from the Lagrangian density:

L = i
�c

2

(
ψ̄(x)γμ∂μψ(x) − ∂μψ̄(x)γμψ(x)

)− mc2ψ̄(x)ψ(x). (10.119)

Indeed, since
∂L

∂∂μψ̄(x)
= −i

�c

2
γμψ(x),

we find

∂L
∂ψ̄(x)

− ∂μ

(
∂L

∂∂μψ̄(x)

)
= 0 ⇔ (

i� γμ∂μ − mc 1
)
ψ(x) = 0, (10.120)

that is, the Dirac equation.
In an analogous way we find the equation for the Dirac conjugate spinor ψ̄(x):

∂L
∂ψ

(x) − ∂μ

(
∂L

∂∂μψ(x)

)
= 0 ⇔ ψ̄(x)

(
i� γμ←−

∂μ + mc 1
)

= 0. (10.121)

The Lagrangian density has, in addition to Lorentz invariance, a further invariance
under the phase transformation

ψ(x) −→ ψ′(x) = e−iα ψ(x), ψ̄(x) −→ ψ̄′(x) = eiα ψ̄(x). (10.122)

α being a constant parameter. In Sect. 10.2.1, we have referred to analogous trans-
formations on a complex scalar field as global U (1) transformations, the term global
refers to the property of α of being constant. This is indeed the same invariance
exhibited by the Klein-Gordon Lagrangian of a complex scalar field and leads to
conservation of a charge according to Noether theorem. The reader can easily ver-
ify that the conserved Noether current associated with the symmetry (10.122) is the
quantity Jμ defined in (10.81), which will be shown, just as for the complex scalar
field, to be proportional to the electric four-current.

Let us compute the energy-momentum tensor

T νμ = 1

c

[
∂L

∂∂νψ(x)
∂μψ(x) + ∂μψ̄(x)

∂L
∂∂νψ̄(x)

− ημνL
]

= 1

c

[
i
�c

2

(
ψ̄γν∂μψ − ∂μψ̄γνψ

)− ημνL
]

. (10.123)
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We observe that the Lagrangian density is zero on spinors satisfying the Dirac equa-
tion. We may therefore write

T νμ = i
�

2

(
ψ̄γν∂μψ − ∂μψ̄γνψ

)
. (10.124)

This tensor is not symmetric. We can however verify that the divergences of T μν

with respect to both indices vanish:

∂μT νμ = ∂μT μν = 0, (10.125)

The latter equality is a consequence of the Noether theorem, being μ the index of the
conserved current. As for the former, it is easily proven as follows:

∂μT νμ = i
�

2

(
∂μψ̄γν∂μψ + ψ̄γν�ψ − �ψ̄γνψ − ∂μψ̄γν∂μψ

) = 0,

where we have used the Klein-Gordon equation forψ and ψ̄. Using property (10.125)
we can define a symmetric energy momentum-tensor Θμν simply as the symmetric
part of T μν :

Θμν = 1

2
(T μν + T νμ), (10.126)

since (10.125) guarantee that ∂μΘμν = 0. The four-momentum of the spinor field

Pμ =
∫

V

d3x T 0μ,

has the following form

Pμ = i
�

2

∫

V

d3x
(
ψ̄γ0∂μψ − ∂μψ̄γ0ψ

)
, (10.127)

while the Noether energy of the field H = cp0 reads

H = i
�

2

∫

V

d3x
(
ψ†ψ̇ − ψ̇† ψ

)
. (10.128)
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Using the Dirac equation and integrating by parts, we can easily prove that the right
hand side is the sum of two equal terms:

i�
∫

V

d3x ˙̄ψγ0ψ = −i�c
∫

V

d3x ∂i ψ̄γiψ − mc2
∫

V

d3x ψ̄ψ

= i�c
∫

V

d3x ψ̄γi∂iψ − mc2
∫

V

d3x ψ̄ψ = −i�
∫

V

d3x ψ̄γ0ψ̇,

so that the energy can also be written in the following simpler form:

H = i �

∫

V

d3x ψ†ψ̇. (10.129)

This energy will be shown below to coincide with the Hamiltonian of the field. For
this reason we describe it by the symbol H.
Let us now compute the conjugate momenta of the Hamiltonian formalism:

π(x) = ∂L(x)

∂ψ̇(x)
= i

�

2
ψ†(x), (10.130)

π†(x) = ∂L(x)

∂ψ̇†(x)
= −i

�

2
ψ(x). (10.131)

We note that from these equations it follows that the canonical variables π,ψ, π†,ψ†

are not independent: π† ∝ ψ, π ∝ ψ†. In view of the quantization of the Dirac field,
we need to deal with independent canonical variables. It is useful, in this respect, to
redefine the Lagrangian density in the following way:

L = i �c ψ̄(x)γμ∂μψ(x) − mc2ψ̄(x)ψ(x). (10.132)

The reader can easily verify that the above expression differs from the previous
definition (10.119) by a divergence.We thendefine, as the only independent variables,
the components of ψ(x), so that the corresponding conjugate momenta read

π(x) = ∂L(x)

∂ψ̇
= i� ψ†(x). (10.133)

From the canonical Poisson brackets (8.231) and (8.232) and the above expression
of π(x), we find:

{
ψα(x, t),ψ†

β(y, t)
}

= − i

h
δ3(x − y)δα

β , (10.134)
{
ψα(x, t),ψβ(y, t)

}
=
{
ψ†

α(x, t),ψ†
β(y, t)

}
= 0. (10.135)

http://dx.doi.org/10.1007/978-3-319-22014-7_8
http://dx.doi.org/10.1007/978-3-319-22014-7_8
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It is convenient to rewrite the energy H in Eq. (10.129) using Dirac equation (10.53):

H = i�
∫

V

d3x ψ† ψ̇ =
∫

V

d3xψ† [−i �c αi∂i + mc2 β] ψ. (10.136)

The reader can verify that the energy density in the above formula coincides with
the Hamiltonian density, which has the form:

H = πα ψ̇α − L. (10.137)

We can also verify that the Hamilton equation

π̇†(x) = − δH

δψ†(x)
= −

[
−i�c αi ∂i + mc2 β

]
ψ, (10.138)

coincides with the Dirac equation

i� ψ̇ = (−i�cαi ∂i + mc2 β)ψ.

10.6 Plane Wave Solutions to the Dirac Equation

We now examine solutions to the Dirac equation having definite values of energy
and momentum. A spinor field with definite four-momentum p = (pμ) and spin r ,
must have the general plane-wave form given in (9.113):

ψp,r (x) = cp w(p, r) e
i
�

(p·x−Et) = cp w(p, r) e− i
�

p·x , (10.139)

where w(p, r) is a four-component Dirac spinor and cp a Lorentz-invariant normal-
ization factor, to be fixed later. Inserting (10.139) into Eq. (10.61), and using the
short-hand notation p/ ≡ γμ pμ, we find that the generic spinor w(p) satisfies the
equation

(p/ − mc) w(p, r) = 0, (10.140)

where pμ = ( E
c , p). If we decompose w(p, r) into two-dimensional spinors as

in Eq. (10.68) and use the representation (10.63) of the γ- matrices, Eq. (10.140)
becomes: ( E

c − mc −σ · p
σ · p − E

c − mc

)(
ϕ
χ

)
= 0. (10.141)

We have shown that each component of ψ(x) is in particular solution to the Klein-
Gordon equation (10.58) which implements the mass-shell condition. This can be
also verified by multiplying Eq. (10.140) to the left by the matrix (p/ + mc):

http://dx.doi.org/10.1007/978-3-319-22014-7_9
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(p/ + mc)(p/ − mc)w(p, r) = (p/2 + mc p/ − mc p/ − m2c2) w(p, r) = 0.

Using the anti-commutation properties of the γμ-matrices we find

p/2 = γμγν pμ pν = 1

2
(γμγν + γνγμ) pμ pν = ημν pμ pν = p2, (10.142)

which implies

(p/ + mc)(p/ − mc)w(p, r) = (p2 − m2c2) w(p, r) = 0, (10.143)

namely the mass-shell condition.
As noticed earlier, the Klein-Gordon equation contains negative energy solutions

besides the positive energy ones:

E2

c2
= p2 + m2c2 ⇒ E = ±Ep = ±

√
|p|2c2 + m2c4. (10.144)

The problem of interpreting such solutions, as already mentioned in the case of the
complex scalar field, will be resolved by the field quantization which associates them
with operators creating antiparticles.

We write the solutions with E = ±Ep in the following form:

ψ(+)
p,r (x) ≡ cp w((Ep/c, p), r) e

i
�

(p·x−Ep t) = cp u(p, r) e− i
�

p·x ,

ψ(−)
p,r (x) ≡ cp w((−Ep/c, p), r) e

i
�

(p·x+Ept) = cp v((Ep/c,−p), r) e
i
�

(p·x+Ept),

where we have defined u(p, r) ≡ w((
Ep
c , p), r), v((

Ep
c ,−p), r) ≡ w((− Ep

c , p), r).

We shall choose the normalization factor cp to be: cp ≡
√

mc2
Ep V . Note that the

exponent in the definition of ψ
(−)
p,r acquires a Lorentz-invariant form if we switch p

into −p. We can then write:

ψ(+)
p,r (x) ≡

√
mc2

Ep V
u(p, r) e− i

�
p·x , (10.145)

ψ
(−)
−p,r (x) ≡

√
mc2

Ep V
v(p, r) e

i
�

p·x . (10.146)

In the above solutionwe have defined p = (pμ) = (
Ep
c , p) so that (10.146) describes

a negative-energy state with momentum −p, v(p, r) ≡ w(−p, r).
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The general solution to the Dirac equation will be expanded in both kinds of
solutions, and have the following form:

ψ(x) =
∫

d3p
(2π�)3

V
2∑

r=1

(
c(p, r)ψ(+)

p,r (x) + d(−p, r)∗ ψ(−)
p,r (x)

)
,

where c, d are complex numbers representing the components of ψ(x) relative to
the complete set of solutions ψ

(±)
p,r (x). By changing p into −p in the integral of the

second term on the right hand side, we have:

ψ(x) =
∫

d3p
(2π�)3

V
2∑

r=1

(
c(p, r)ψ(+)

p,r (x) + d(p, r)∗ ψ
(−)
−p,r (x)

)

=
∫

d3p
(2π�)3

√
mc2 V

Ep

2∑

r=1

(
c(p, r) u(p, r) e− i

�
p·x + d(p, r)∗ v(p, r) e

i
�

p·x) .

(10.147)

We need now to explicitly construct the spinors u(p, r), v(p, r). Being u(p, r) =
w(p, r) and v(p, r) = w(−p, r), the equation for u(p, r) is the same asEq. (10.140),
while the one for v(p, r) is obtained from (10.140) by replacing p → −p:

(p/ − mc) u(p, r) = 0; (p/ + mc) v(p, r) = 0. (10.148)

The Lorentz covariance of the above equations implies that S(�)u(p, r) and
S(�)v(p, r) must be a combination of u(�p, s) and v(�p, s),10 with coefficients
given by the rotation R(�, p)s

r of Eq. (10.107), or (10.110) for massless particles,
according to our discussion in Sect. 9.4.1:

S(�) u(p, r) = R(�, p)r ′
r u(� p, r ′)

S(�) v(p, r) = R(�, p)r ′
r v(� p, r ′). (10.149)

These are nothing but the transformation properties derived in Eq. (9.118). In the
frame S0 in which the momentum p is the standard one p̄, u( p̄, r) and v( p̄, r)

transform covariantly under the action of the spin group. Let us construct them in
this frame and then extend their definition to a generic one.

10This can be easily ascertained by multiplying both Eq. (10.148) to the left by S(�). We
find that S(�)u(p, r) and S(�)v(p, r) satisfy the following equations: (S(�)p/ S(�)−1 − mc)
S(�)u(p, r) = 0 and (S(�)p/ S(�)−1 + mc) S(�)v(p, r) = 0. Next we use property (10.88) and
invariance of theLorentzian scalar productγ·p ≡ γμ pμ = p/ towrite S(�)p/ S(�)−1 = p/′ = γμ p′

ν ,
where p′ = � p. Thus the transformed spinors satisfy Eq. (10.148)with the transformedmomentum
p′, and consequently, should be a combination of u(p′, s) and v(p′, s), respectively.

http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
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Consider a massive particle, m 
= 0, and let us first examine the solutions of the
coupled system (10.141) in the rest frame S0, where p = 0, namely p̄ = (mc, 0).
Equation (10.141) becomes:

(
E − mc2

)
ϕ = 0;

(
E + mc2

)
χ = 0. (10.150)

Then we have either

E = Ep=0 = mc2; ϕ 
= 0, χ = 0,

or
E = −Ep=0 = −mc2; ϕ = 0, χ 
= 0.

The non zero spinors in the two cases can be chosen arbitrarily. We choose them to
be eigenvectors of σ3:

ϕ1 =
(
1
0

)
; ϕ2 =

(
0
1

)
. (10.151)

In S0 we can then write the positive and negative energy solutions in the momentum
representation as

u(0, r) ≡ u( p̄, r) =
(

ϕr

0

)
; v(0, r) ≡ v( p̄, r) =

(
0
ϕr

)
r = 1, 2, (10.152)

where 0 =
(
0
0

)
. Since the ϕr are eigenstates of σ3, the rest frame solutions u(0, r)

and v(0, r) are eigenstates of the operator:

Σ3 =
(

�

2 σ3 0
0 �

2 σ3

)
, (10.153)

corresponding to the eigenvalues±�/2. Once the solutions in the rest frame are given
we may construct the solutions u(p, r) and v(p, r) of the Dirac equation in a generic
frame S where p 
= 0 as follows:

u(p, r) = p/ + mc√
2m (mc2 + Ep)

u(0, r), (10.154)

v(p, r) = −p/ + mc√
2m (mc2 + Ep)

v(0, r). (10.155)

The denominators appearing in Eqs. (10.154) and (10.155) are normalization factors
determined in such a way that the spinors u(p, r), v(p, r) obey simple normalization
conditions (see Eqs. (10.168) and (10.169) of the next section).
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It is straightforward to show that u(p, r) and v(p, r) satisfy Eq. (10.148) by using
the properties

(p/ + mc)(p/ − mc) = (p/ − mc)(p/ + mc)

= p2 − m2c2 + mc p/ − mc p/ = p2 − m2c2 = 0, (10.156)

which descend from Eq. (10.142). Using the representation (10.63) of the γ-matrices
and the explicit form of p/, we obtain u(p, r) and v(p, r) in components:

u(p, r) =

⎛
⎜⎜⎜⎜⎝

√
Ep + mc2

2mc2
ϕr

p · σ√
2m(Ep + mc2)

ϕr

⎞
⎟⎟⎟⎟⎠

; v(p, r) =

⎛
⎜⎜⎜⎜⎝

p · σ√
2m(Ep + mc2)

ϕr

√
Ep + mc2

2mc2
ϕr

⎞
⎟⎟⎟⎟⎠

.

(10.157)

Let us show that the above vectors transform as in Eq. (10.149) with respect to
rotations �R :

S(�R)u(p, r) = e

i

�
θi Σi

u(p, r) =

⎛
⎜⎜⎜⎜⎝

√
Ep + mc2

2mc2
S(θi )ϕr

S(θi ) p · σ√
2m(Ep + mc2)

ϕr

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

√
Ep + mc2

2mc2
ϕ′

r

S(θi ) p · σS(θi )−1
√
2m(Ep + mc2)

ϕ′
r

⎞
⎟⎟⎟⎟⎠

, (10.158)

where:

ϕ′
r ≡ S(θi )ϕr = S(θi )s

r ϕs = Rs
r ϕs . (10.159)

Let us now use the property of the Pauli matrices to transform under conjugation by
an SU(2) matrix S(θ), θ ≡ (θi ), as the components of a three-dimensional vector
σ ≡ (σi ) under a corresponding rotation R(θ), see Appendix (F):

S(θ)−1σi S(θ) = R(θ)i
j σ j ⇒ S(θ)σi S(θ)−1 = R(θ)−1

i
j σ j . (10.160)
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We can then write:

S(θ) p · σS(θ)−1 = p ·
(

R(θ)−1 σ
)

= p′ · σ, (10.161)

where p′ ≡ R(θ) p. Since �R p = (p0, p′), we conclude that

S(�R)u(p, r) = Rs
r

⎛
⎜⎝

√
Ep+mc2

2mc2
ϕs

p′·σ√
2m(Ep+mc2)

ϕs

⎞
⎟⎠ = Rs

r u(�R p, s). (10.162)

A similar derivation can be done for v(p, r). If � is a boost, of the form � =
exp( i

�
ω0i J 0i ), the corresponding representation on the spinors reads S(�) =

exp( i
�

ω0i Σ0i ). The resulting SU(2) rotation R(�, p), which we are not going
to derive, is the Wigner rotation.

We note that u(p, r) and v(p, r) are not eigenstates of the third component of the
spin operator Σ3 (10.153) except in the special case of p1 = p2 = 0, p3 
= 0. This
can be explained in light of the discussion done in Sect. 9.4.1 about little groups. The
solutions u(p, r) and v(p, r), for a fixed p, transform as doublets with respect to the
little group of the momentum p, which we have denoted by G(0)

p : The action of G(0)
p

on the solutions u(p, r) and v(p, r), according to Eq. (10.149), does not affect their
dependence on p, and only amounts to an SU(2)-transformation on the index r . This
group is related to the little group G(0) = SU(2) of p̄ = (mc, 0), generated by the
Σ i matrices as follows: G(0)

p = �p · SU(2) · �−1
p . This means that its generators

are Σ ′
i = S(�p)Σi S(�p)

−1. If instead we act on u(p, r) and v(p, r) by means of
a G(0) = SU(2)-transformation, it will affect the dependence of these fields on p,
mapping it into p′ = (p0, R p). Therefore, if u( p̄, r) and v( p̄, r) are eigenvectors
of Σ3, u(p, r) and v(p, r) will be eigenvectors of Σ ′

3.
In Sect. 9.4.1 of last chapter, a general method was applied to the construction

of the single-particle quantum states |p, r〉 acted on by a unitary irreducible repre-
sentation of the Lorentz group. The method consisted in first constructing the states
of the particle | p̄, r〉 in some special frame S0 in which the momentum of the par-
ticle is the standard one p̄, and on which an irreducible representation R of the
little group G(0) of p̄ acts ( p̄ = (mc, 0) and G(0) = SU(2) for massive particles,
while p̄ = (E, E, 0, 0)/c and G(0) is effectively SO(2) for massless particles). A
generic state |p, r〉 is then constructed by acting on | p̄, r〉 by means of U (�p), see
Eq. (9.111), that is the representative on the quantum states of the simple Lorentz
boost �p connecting p̄ to p: p = �p p̄. This suffices to define the representative
U (�) of a generic Lorentz transformation, see Eq. (9.112).

In this section we have applied this prescription to the construction of both the
positive and negative energy eigenstates of the momentum operators. The role of
|p, r〉 is now played by the spinors u(p, r), v(p, r), and that of U (�) by the matrix
S(�), as it follows by comparing Eq. (10.149) with Eq. (9.112). It is instructive at
this point to show that the expressions for u(p, r), v(p, r) given in (10.154) or,

http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9


356 10 Relativistic Wave Equations

equivalently, (10.157), for massive fermions, could have been obtained from the
corresponding spinors u(0, r), v(0, r) in S0 using the prescription (9.111), namely
by acting on them through the Lorentz boost S(�p):

u(p, r) = S(�p) u(0, r); v(p, r) = S(�p) v(0, r). (10.163)

This is readily proven using thematrix form (10.118) of S(�p) derived in Sect. 10.4.4
and the definition of u(0, r), v(0, r) in Eq. (10.152). The matrix product on the
right hand side of Eq. (10.163) should then be compared with the matrix form of
u(p, r), v(p, r) in (10.157).

10.6.1 Useful Properties of the u( p, r) and v( p, r) Spinors

In the following we shall prove some properties of the spinors u(p, r) and v(p, r)

describing solutions with definite four-momentum.

• Let us compute the Dirac conjugates of u(p, r) e v(p, r):

ū(p, r) = u†(p, r)γ0 = u†(0, r)
p/ † + mc√

2m(Ep + mc2)
γ0

= u†(0, r)γ0γ0 p/ † + mc√
2m(Ep + mc2)

γ0

= ū(0, r)
p/ + mc√

2m(Ep + mc2)
. (10.164)

In an analogous way one finds:

v̄(p, r) = v̄(0, r)
−p/ + mc√

2m(Ep + mc2)
. (10.165)

Recalling the property (10.156), from (10.164) and (10.165) we obtain the equa-
tions of motion obeyed by the Dirac spinors ū(p, r) e v̄(p, r):

ū(p, r)(p/ − mc) = 0,
v̄(p, r)(p/ + mc) = 0. (10.166)

• Next we use the relations:

(p/ + mc)2 = 2mc(p/ + mc),

(p/ − mc)2 = 2mc(−p/ + mc), (10.167)

http://dx.doi.org/10.1007/978-3-319-22014-7_9
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which follow from Eq. (10.142) and the mass-shell condition p2 = m2c2, to
compute ū(p, r)u(p, r ′):

ū(p, r)u(p, r ′) = 2mc

2m(Ep + mc2)
ū(0, r)(p/ + mc)u(0, r ′)

= c

Ep + mc2
(ϕr , 0, 0)(p/ + mc)

⎛
⎝

ϕr ′
0
0

⎞
⎠

= ϕr · ϕr ′ = δrr ′ , (10.168)

With analogous computations one also finds:

v̄(p, r)v(p, r ′) = c

Ep + mc2
v̄(0, r)(−p/ + mc)v(0, r ′)

= c

Ep + mc2
(0, 0,−ϕr )(−p/ + mc)

⎛
⎝

0
0

ϕr ′

⎞
⎠

= −δrr ′ , (10.169)

and moreover

ū(p, r)v(p, r ′) ∝ ū(0, r)(p/ + mc)(−p/ + mc)v(0, r ′)
= 0 = v̄(p, r)u(p, r ′). (10.170)

Summarizing, we have obtained the relations

ū(p, r)u(p, r ′) = δrr ′ ,= −v̄(p, r)v(p, r ′),
ū(p, r)v(p, r ′) = 0. (10.171)

• Next we show that:

u†(p, r)u(p, r ′) = Ep

mc2
δrr ′ ≥ 0, (10.172)

v†(p, r)v(p, r ′) = Ep

mc2
δrr ′ ≥ 0. (10.173)

Indeed, using the Dirac equation p/ u = mc u, and ū p/ = mc ū, we find

u†(p, r)u(p, r ′) = ū(p, r)γ0u(p, r ′) = ū(p, r)
mγ0 + mγ0

2m
u(p, r ′)

= ū(p, r)
p/γ0 + γ0 p/

2mc
u(p, r ′).
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Using now the property

p/γ0 + γ0 p/ = {p/, γ0} = pμ{γμ, γ0} = 2ημ 0 pμ = 2Ep

c
,

the last term, can be rewritten as follows:

Ep

mc2
ū(p, r)u(p, r ′) = Ep

mc2
δrr ′ ,

so that Eq. (10.172) is retrieved. Equation (10.173) is obtained in an analogous
way.
We conclude that u†(p, r)u(p, r ′) and v†(p, r)v(p, r ′) are not Lorentz-invariant
quantities, since they transform as Ep, that is as the time component of a four-
vector. This agrees with the previous result that Jμ = ψ̄γμψ is a four-vector whose
time component is J 0 = ψ†ψ > 0.
We can also prove the following orthogonality condition:

u(p, r)† v(−p, s) = 0, (10.174)

where we have used the short-hand notation u(p, r) ≡ u((Ep/c, p), r), v(p, r) ≡
v((Ep/c, p), r). To prove the above equation we use the Dirac equation for
v(−p, s): p/′v(−p, s) = −mc v(−p, s), where p′ ≡ (Ep/c,−p). We can then
write:

u(p, r)† v(−p, s) = ū(p, r) γ0 v(−p, s) = 1

2mc
ū(p, r) (p/ γ0 − γ0 p/′) v(−p, s)

= 1

2mc
ū(p, r) (piγ

i γ0 + γ0 γi pi ) v(−p, s) = 0. (10.175)

From property (10.174) it also follows that positive and negative energy states are
represented by mutually orthogonal spinors if they have the same momentum:

[
ψ(+)

p (x)
]†

ψ(−)
p (x) = 0. (10.176)

Recalling from Eqs. (10.145) and (10.146) that

ψ(+)
p,r (x) = cp u(p, r) e− i

�
(Ept−p·x); ψ(−)

p,r (x) = cp v(−p, r) e
i
�

(Ept+p·x),

from the orthogonality condition (10.174) it indeed follows that

ψ(+)
p,r (x)† ψ(−)

p,s (x) = |cp|2 u†(p, r) v(−p, s) e
2i
�

Ep t = 0. (10.177)
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Having fixed the normalization factor cp in Eq. (10.139) to be
√

mc2
V Ep

, we now

observe that Eqs. (10.172) and (10.173) represent the right normalization (9.116)
of the u and v vectors in order for the corresponding positive and negative energy
solutions ψ

(±)
p,r (x) to be normalized as in (9.54):

(
ψ(±)

p,r , ψ
(±)

p′,r ′
)

=
∫

d3x ψ(±)
p,r (x)† ψ

(±)

p′,r ′(x) = (2π�)3

V
δ3(p − p′) δrr ′ ,

as the reader can easily verify.11 Similarly, using the orthogonality condition
(10.174), which applies to the above expression only when p = p′, we can show
that positive and negative energy solutions are mutually orthogonal:

(
ψ(+)

p,r , ψ
(−)

p′,r ′
)

=
∫

d3x |cp|2 u(p, r)† v(−p′, r ′) e
i
�

(Ep+E ′
p) t e− i

�
(p−p′)·x

× ∝ (2π�)3 δ3(p − p′) e
2i
�

Ep t u(p, r)† v(−p, r ′) = 0.

• Finally we define projection operators Λ+(±p) on the positive and negative
energy solutions:

Λ+(p)αβ ≡
2∑

r=1

u(p, r)αū(p, r)β, (10.178)

Λ−(p)αβ ≡ −
2∑

r=1

v(p, r)αv̄(p, r)β . (10.179)

Using the formulae (10.171) we see Λ±(p) are indeed projection operators:

Λ+(p) u(p, r) = u(p, r); Λ+(p) v(p, r) = 0, (10.180)

Λ−(p)u(p, r) = 0; Λ−(p)v(p, r) = v(p, r). (10.181)

The explicit form of Λ± is immediately derived from Eq. (10.167) since they
express the fact that p/ ± mc are proportional to projection operators. Thus we
have:

Λ+(p) = 1

2mc
(p/ + mc), (10.182)

Λ−(p) = − 1

2mc
(p/ − mc). (10.183)

11In the above derivation the time-dependent exponential e
i
�

(p0−p′0)x0 equals one since the equality
p = p′ implemented by the delta-function implies p0 = p′0.

http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
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10.6.2 Charge Conjugation

We show the existence of an operator in theDirac relativistic theorywhich transforms
positive energy solutions into negative energy solutions, and viceversa. One can
prove on general grounds that there exists a matrix in spinor space, called the charge-
conjugation matrix, with the following properties

C−1γμC = −γT
μ ; CT = −C; C† = CT = C−1. (10.184)

In the standard representation we may identify the C matrix as

C = iγ2γ0 =
(

0 −iσ2

−iσ2 0

)
. (10.185)

Given a Dirac field ψ(x), we define its charge conjugate spinor ψc(x) as follows:

ψc(x) ≡ C ψ̄T (x). (10.186)

The operation which maps ψ(x) into its charge conjugate ψc(x) is called charge-
conjugation. Let us show that charge conjugation is a correspondence between pos-
itive and negative energy solutions.

To this end let us consider the positive energy plane wave described by the spinor
u(p, r). Its Dirac conjugate ū will satisfy the following equation:

ū(p) (p/ − mc) = 0.

By transposition we have

(
γT

μ pμ − mc
)

ūT (p) = 0

If we now multiply the above equation to the left by the C matrix and use properties
(10.184) we obtain

(p/ + mc) CuT (p) = 0, (10.187)

which shows that charge-conjugate spinor uc(p) = CuT (p) satisfies the second of
Eq. (10.148) and should therefore coincide with a spinor v(p) defining the negative
energy solution ψ

(−)
−p with opposite momentum −p. Besides changing the value of

the momentum, charge-conjugation also reverses the spin orientation. Going, for
the sake of simplicity, to the rest frame, where a positive energy solution with spin
projection �/2 along a given direction, is described by

u(0, r = 1) = (1, 0, 0, 0)T ,
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(see Eq. (10.152)), we find for the charge conjugate spinor uc ≡ Cγ0 u∗ (note that
γ0T = γ0)

uc(0, r) = Cγ0 u∗(0, r = 1) = (0, 0, 0, 1)T = v(0, r = 2),

that is a negative energy spinor with spin projection −�/2. In general the reader can
verify that

uc(0, r) = εrs v(0, s), (10.188)

where summation over s = 1, 2 is understood, and (εrs) is the matrix i σ2: ε11 =
ε22 = 0, ε12 = −ε21 = 1.

Let us now evaluate uc(p, r) using the explicit form of u(p, r) given in
Eq. (10.154):

uc(p, r) = C γ0 u(p, r)∗ = C γ0 p/∗ + mc√
2m(mc2 + Ep)

u(0, r)∗

= C
p/T + mc√

2m(mc2 + Ep)

γ0 u(0, r)∗ = −p/ + mc√
2m(mc2 + Ep)

uc(0, r)

= εrs
−p/ + mc√

2m(mc2 + Ep)

v(0, s) = εrs v(p, s). (10.189)

In the above derivation we have used the properties Cp/T C−1 = −p/ and γ0 p/∗ =
p/T γ0.

We shall see in the next chapter that, upon quantizing the Dirac field, negative
energy solutionsψ(−)

−p,r withmomentum−p and a certain spin component (up or down
relative to a given direction) are reinterpreted as creation operators of antiparticles
with positive energy, momentum p and opposite spin component. Thus the charge
conjugation operation can be viewed as the operation which interchanges particles
with antiparticles with the same momentum and spin. As far as the electric charge
is concerned we need to describe the coupling of a charge conjugate spinor to
an external electromagnetic field as it was done for the scalar field. This will be
discussed in Sect. 10.7. We anticipate that the electric charge of a charge conjugate
spinor describing an antiparticle is opposite to that of the corresponding particle.

10.6.3 Spin Projectors

In Sect. 10.6.1 we have labeled the spin states of the massive solutions to the Dirac
equation by the eigenvalues, in the rest frame, of Σ3: u(0, r), v(0, r), for r = 1, 2
correspond to the eigenvalues +�/2 and −�/2 of Σ3. This amounts to choosing
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the two-component vectors ϕr to correspond to the eigenvalues +1 and −1 of σ3.
We could have chosen u(0, r), v(0, r) to be eigenvectors of the spin-component
� · n along a generic direction n in space, |n| = 1. The corresponding eigenvalues
would still be ±�/2. Clearly, for generic n, � · n is not conserved, namely it does
not commute with the Hamiltonian, as proven in Sect. 10.4.4. This is not the case if
n = p/|p|, in which case the corresponding component of the spin vector defines the
helicity Γ = � · p/|p| which is indeed conserved (see discussion after Eq. (10.111).

We now ask whether it is possible to give a covariant meaning to the value of
the spin orientation along a direction n. We wish in other words to define a Lorentz-
invariant operator On which reduces to � · n in the rest frame, namely such that, if
in S0:

(� · n) u(0, r) = εr
�

2
u(0, r); (� · n) v(0, r) = εr

�

2
v(0, r), (10.190)

where ε1 = 1, ε2 = −1, in a generic frame S:

On u(p, r) = εr
�

2
u(p, r); On v(p, r) = εr

�

2
v(p, r). (10.191)

Clearly, using Eq. (10.163), we must have:

On = S(�p) (� · n)S(�p)
−1 = �′ · n, (10.192)

where Σ ′
i are the generators of the little group G(0)

p ≡ SU(2)p of p.
We shall however compute On in a simpler way, using the Pauli-Lubanski four-

vector Ŵμ introduced in Sect. 9.4.2, which, on spinor solutions with definite momen-
tum pμ, acts by means of the following matrices:

Wμ ≡ −1

2
εμνρσ Σνρ pσ, (10.193)

It is useful towrite it in a simplerway by introducing thematrix γ5 (seeAppendixG):

γ5 = iγ0γ1γ2γ3 = i

4! εμνρσγμγνγργσ =
(

0 12
12 0

)
. (10.194)

Note that γ5 anticommutes with all the γμ-matrices and thus commutes with the
Lorentz generators Σμν which contain products of two γμ-matrices. From this we
conclude that γ5 commutes with a generic Lorentz transformation S(�), since it
commutes with its infinitesimal generator.

http://dx.doi.org/10.1007/978-3-319-22014-7_9
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Using the γ5 matrix the Pauli-Lubanski four-vector (10.193) takes the simpler
form:

Wμ = −1

2
εμνρσ

(
−�

2
σνρ

)
pσ = �

4
εμνρσσνρ pσ

= i�

2
γ5 σμν pν = −iγ5Σμν pν, (10.195)

where we have used the identity

γ5 σμσ = − i

2
εμσνρ σνρ,

given in Appendix G, which can be verified by direct computation, starting from
the definition of γ5. Using the Lorentz transformation properties (10.88) of the γμ-
matrices, and the invariance of the εμνρσ-tensor under proper transformations, we
can easily verify that W μ transforms like the γμ-matrices:

S(�) W μ S(�)−1 = 	−1μ
ν W ν . (10.196)

Let us now introduce the four-vector nμ(p) = (n0(p), n(p)) having the following
properties:

{
n2 = nμnμ = −1,

nμ pμ = 0.
(10.197)

In the rest frame, p = 0 and E = mc2 
= 0, the previous relations yield:

nμ pμ = n0E = 0 ⇒ n0 = 0,

n2 = (n0)2 − |n|2 = −1 ⇒ |n| = 1, (10.198)

that is nμ(p = 0) = (0, n). We may now compute the scalar quantity nμWμ:

nμWμ = i�

2
γ5 σμν nμ pν = −�

4
γ5(γμγν − γνγμ)nμ pν

= −�

4
γ5 (2γμγν − 2ημν) nμ pν = −�

2
γ5γμnμ p/. (10.199)

where the property n · p = 0 has been used. In the rest frame p = 0, nμWμ becomes:

(n · W )(p = 0) = �

2
γ5 (niγi ) p0γ0 = −�

2
mc γ5 γ0 γi ni = −�

2
mc γ5 αi ni

= −mc � · n, (10.200)
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where we have used the property

Σ i = �

2
γ5 αi , (10.201)

which can be verified using Eqs. (10.67), (10.105) and (10.194). Thus we have found
a Lorentz scalar quantity that in the rest frame reduces to n · �:

On ≡ − 1

mc
nμWμ

p=0−→ O(0)
n = n · �. (10.202)

In the particular case of n pointing along the z-axis, n = nz = (0, 0, 0, 1), from
Eq. (10.105) we find

O(0)
nz

= − 1

mc
nμWμ

∣∣∣∣
p=0

=
(

�

2 σ3 0
0 �

2 σ3

)
= Σ3. (10.203)

Clearly, using the transformation property (10.196) of W μ and the Lorentz invariance
of the expression of On , in a generic frame S we find

On = − 1

mc
nμWμ = S(�p) O(0)

n S(�p)
−1, (10.204)

that is if u(0, r), v(0, r) are eigenvectors on � · n, u(p, r), v(p, r) are eigenvectors
on On corresponding to the same eigenvalues, which is the content of Eqs. (10.190)
and (10.191).

We can define projectorsPr on eigenstates of On corresponding to the eigenvalues
εr �/2 = ±�/2:

Pr ≡ 1

2

(
1 + εr

2

�
On

)
= 1

2

(
1 + εr

1

mc
γ5 n/p/

)
. (10.205)

In the rest frame the above projector reads:

P(0)
r ≡ 1

2

(
1 + εr γ5 ni αi

)
=
(

12 + εr n · σ 0
0 12 + εr n · σ

)
. (10.206)

ThematricesPr project on both positive and negative energy solutions with the same
spin component along n. Let us now define two operators Λ+,r , Λ−,r projecting on
positive and negative solutions with a given spin component r , respectively:

Λ+,r u(p, s) = δrs u(p, s); Λ+,r v(p, s) = 0,

Λ−,r u(p, s) = 0; Λ−,r v(p, s) = δrs v(p, s). (10.207)
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They have the following general form:

(Λ+,r )
α

β = uα(p, r) ūβ(p, r); (Λ−,r )
α

β = −vα(p, r) v̄β(p, r), (10.208)

as it follows from the orthogonality properties (10.168) and (10.169). To find the
explicit expression of these matrices in terms of p and n, we notice that they are
obtained by multiplying to the right and to the left the projectors Pr on the spin state
r by the projectors Λ± on the positive and negative energy states:

Λ±,r = Λ± Pr Λ± = 	±
1

2
(1 ± εr γ5 n/) = ± 1

4mc
(p/ ± mc) (1 ± εr γ5 n/),

where we have used the property:

(
1 + εr

1

mc
γ5 n/p/

)
(p/ ± mc) = (p/ ± mc)(1 ± εr γ5 n/), (10.209)

which can be easily verified using the fact that p/ and n/ anticommute: n/p/ = −p/n/.

10.7 Dirac Equation in an External Electromagnetic Field

We shall now study the coupling of the Dirac field to the electromagnetic field Aμ.
To this end, as we did for the complex scalar field in Sect. 10.2.1, we apply the

minimal coupling prescription, namely we substitute in the free Dirac equation

pμ → pμ + e

c
Aμ, (10.210)

that is, in terms of the quantum operator

i�∂μ → i�∂μ + e

c
Aμ. (10.211)

In the convention which we adopt throughout the book, the electron has charge
e = −|e| < 0.

The coupled Dirac equation takes the following form:

[
(i�∂μ + e

c
Aμ)γμ − mc

]
ψ(x) = 0. (10.212)

Using the covariant derivative introduced in Eqs. (10.36) and (10.212) becomes

[
i� γμ Dμ − mc

]
ψ(x) = 0. (10.213)
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Just as in the case of the complex scalar field, the resulting equation is not invariant
under gauge transformations

Aμ(x) → Aμ(x) + ∂μϕ(x), (10.214)

unless we also apply to the Dirac wave function the following simultaneous phase
transformation

ψ(x) → ψ(x)e
ie
�c ϕ(x). (10.215)

In connection with the discussion of the meaning of the charge-conjugation oper-
ation, it is instructive to see how the Dirac equation in the presence of an external
electromagnetic field transforms under charge-conjugation. The equation for the

charge-conjugate spinor ψc = Cψ
T = C γ0 ψ∗ is easily derived from (10.212) and

reads: (
(i�∂μ − e

c
Aμ)γμ − mc

)
ψc(x) = 0. (10.216)

We see that ψ and ψc describe particles with opposite charge. This justifies the
statement given at the end of Sect. 10.6.2 that antiparticles have opposite charge with
respect to the corresponding particles.12

Let us now recast Eq. (10.212) in a Hamiltonian form. Solving with respect to the
time derivative, we have:

i�
∂ψ

∂t
=
[
−c

(
i� ∂i + e

c
Ai

)
αi + β mc2 − eA0

]
ψ = Ĥ ψ, (10.218)

where H = Hfree + Hint, Hfree being given by Eq. (10.53) and Hint = −e (A0 +
Ai αi ). In order to study the physical implications of the minimal coupling it is
convenient to study its non-relativistic limit.

We proceed as in Sect. 10.4.1. We first redefine the Dirac field as in Eq. (10.72),
so that the Dirac equation (10.218) takes the following form:

(
i�

∂

∂t
+ mc2

)
ψ′ =

[
−c

(
i� ∂i + e

c
Ai

)
αi + β mc2 − eA0

]
ψ′.

Next we decompose the field ψ′ as in Eq. (10.70) (omitting prime symbols on ϕ and
χ) and find:

(
i�

∂

∂t
+ eA0

)
ϕ = c σ ·

(
p̂ − e

c
A
)

χ, (10.219)

12We also observe that the Dirac equation is invariant under the transformations

ψ → ψc, Aμ → −Aμ. (10.217)
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(
i�

∂

∂t
+ eA0 + 2mc2

)
χ = c σ ·

(
p̂ − e

c
A
)

ϕ. (10.220)

As explained earlier, in the non-relativistic limit, we only keep on the left hand side
of the second equation the term 2mc2 χ, since the rest energy mc2 of the particle is
much larger than the kinetic and potential energies, so that

χ = 1

2mc
σ ·

(
p̂ − e

c
A
)

ϕ,

so that only the large upper component ϕ remains.
Substituting the expression for χ into the first of Eq. (10.219) we obtain:

(
i�

∂

∂t
+ e A0

)
ϕ = 1

2m

[
σ ·

(
p̂ − e

c
A
)]2

ϕ. (10.221)

To evaluate the right hand side we note that given two vectors a, b the following
identity holds as a consequence of the Pauli matrix algebra:

(a · σ)(b · σ) = a · b + iσ · (a × b).

In our case
a = b =

(
p̂ − e

c
A
)

= −
(

i�∇ + e

c
A
)

,

but the wedge product does not vanish, since ∇ and A do not commute. We find:

(
p̂ − e

c
A
)

×
(

p̂ − e

c
A
)

ϕ = i
e�

c
(−A × ∇ + ∇ × A)ϕ + i

e�

c
A × ∇ϕ

= i
e�

c
B ϕ. (10.222)

Substituting in (10.221)we finally obtain:

i�
∂ϕ

∂t
=
[

1

2m
|i� ∇ + e

c
A|2 + e V − e

mc
s · B

]
ϕ ≡ Ĥϕ, (10.223)

where we have defined, as usual, s ≡ � σ/2, and written A0 as −V , V being the
electric potential. Equation (10.223) is called the Pauli equation. It differs from the
Schroedinger equation of an electron interacting with the electromagnetic field by
the presence in the Hamiltonian of the interaction term:

Hmagn = − e

mc
s · B = −μs · B, (10.224)
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which has the form of the potential energy of a magnetic dipole in an external
magnetic field with:

μs = e

mc
s = g

e

2mc
s, (10.225)

representing the electron intrinsic magnetic moment. The factor g = 2 is called the
g-factor and the gyromagnetic ratio associated with the spin, defined as |μ|/|s|, is
g|e|/(2mc). Recall that the magnetic moment associated with the orbital motion of
a charge e reads

μorbit = e

2mc
M, (10.226)

M being the orbital angular momentum. The gyromagnetic ratio |μ|/|s| = |e|/(mc)
is twice the one associated with the orbital angular momentum. This result was found
by Dirac in 1928.13

Let us write the Lagrangian density for a fermion with charge e, coupled to the
electromagnetic field:

L = ψ̄(x)
(

i�c D/ − mc2
)

ψ(x). (10.227)

The reader can easily verify that the above Lagrangian yields Eq. (10.212), or, equiv-
alently (10.213). Just as we did for the scalar field, we can write L as the sum of a
part describing the free fermion, plus an interaction termLI , describing the coupling
to the electromagnetic field:

L = L0 + LI ,

L0 = ψ̄(x)
(

i�c ∂/ − mc2
)

ψ(x),

LI = Aμ(x) Jμ(x) = e Aμ(x)ψ̄(x)γμψ(x), (10.228)

where we have defined the electric current four-vector Jμ as:

Jμ(x) ≡ e jμ(x) = eψ̄(x)γμψ(x). (10.229)

In Sect. 10.4.2 we have shown that, by virtue of the Dirac equation, Jμ is a conserved
current, namely that it is divergenceless: ∂μ Jμ = 0. As pointed out earlier, the
electric four-current defined above, is the conserved Noether current associated with
the global U(1) invariance (10.122).

13We recall that the Zeeman effect can only be explained if g = 2.We see that this value is correctly
predicted by the Dirac relativistic equation in the non-relativistic limit.
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10.8 Parity Transformation and Bilinear Forms

It is important to observe that the standard representation of the γ-matrices given in
Sect. 10.4.1 is by no means unique. Any other representation preserving the basic
anticommutation rules works exactly the sameway. It is only amatter of convenience
to use one or another. In particular the expression (10.97) of the Lorentz generators
Σμν in terms of γμ-matrices is representation-independent.

In this section we introduce a different representation, called the Weyl represen-
tation, defined as follows:

γ0 =
(

0 12
12 0

)
; γi =

(
0 −σi

σi 0

)
; i = 1, 2, 3. (10.230)

It is immediate to verify that the basic anticommutation rules (10.60) are satisfied.
Defining

σμ = (12,−σi ); σ̄μ = (12,σi ), (10.231)

Equation (10.230) can be given the compact form

γμ =
(

0 σμ

σ̄μ 0

)
. (10.232)

The standard (Pauli) and the Weyl representations are related by a unitary change of
basis:

γ
μ

Pauli = U †γ
μ

WeylU.

Decomposing as usual the spinor ψ into two-dimensional spinors ξ e ζ:

ψ =
(

ξ
ζ

)
, (10.233)

one can show that, in the Weyl representation, the proper Lorentz transformations
act separately on the two spinors, without mixing them. As we are going to show
below, this means that the four-dimensional spinor representation, irreducible with
respect to the full Lorentz groupO(1, 3) becomes reducible into two two-dimensional
representations under the subgroup of the proper Lorentz group SO(1, 3).

To show this we observe that since infinitesimal transformations in the spinor
representation of the Lorentz group are, by definition, connected with continuity to
the identity, they ought to have unit determinant, and therefore they can only belong
to the subgroup of proper Lorentz transformations SO(1, 3).

We can compute, in the Weyl basis, the matrix form of the Σμν generators:

Σμν = −�

2
σμν = − i�

4

[
γμ, γν

]
(10.234)
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= − i�

4

(
σμσ̄ν − σνσ̄μ 0

0 σ̄μσν − σ̄νσμ

)
, (10.235)

and restricting μν to space indices we have

Σi = −1

2
εijkΣ

jk = �

2

(
σi 0
0 σi

)
. (10.236)

The generators Σi of rotations S(�R) have the same form as in the Pauli represen-
tation. The corresponding finite transformation will therefore be implemented on
spinors by the same matrix S(�R) in Eq. (10.108).

Moreover from Eq. (10.100) the spinor representation of the infinitesimal boost
generators J 0i , are also given in terms of a block diagonal matrix

Σ0i = −i� Ki = −i�
αi

2
= − i�

2

(
σi 0
0 −σi

)
. (10.237)

It follows that if we use the decomposition (10.233) a proper Lorentz transformation
can never mix the upper and lower components of the Dirac spinor ψ. The explicit
finite form of the proper Lorentz transformations in the spinor representation can
be found by exponentiation of the generators, following the method explained in
Chap.7.

A generic proper Lorentz transformation can be written as the product of a rota-
tion and a boost transformation, as in Eq. (10.112). The rotation part was given in
Eq. (10.108), while the boost part S(�B) was given in Eq. (10.116) in terms of the
matrices αi , whose matrix representation now, in the Weyl basis, is different. One
finds that under �R and �B the two two-dimensional spinors ξ, ζ transform as
follows:

ξ
�R−→

[
cos

θ

2
+ i σ · θ̂ sin

θ

2

]
ξ; ζ

�R−→
[
cos

θ

2
+ i σ · θ̂ sin

θ

2

]
ζ,

ξ
�B−→

[
cosh

Λ

2
+ σ · λ̂ sinh

λ

2

]
ξ; ζ

�B−→
[
cosh

λ

2
− σ · λ̂ sinh

λ

2

]
ζ,

where θ ≡ |θ|; λ ≡ |λ|; λ̂ = λ
|λ| ;θ = θ

|θ| .
The above results refer to proper Lorentz transformations, that is they exclude

transformationswith negative determinant: det� = −1. Let us nowconsider Lorentz
transformations with det� = −1. Keeping Λ0

0 > 0, the typical transformation with
det� = −1 is the parity transformation�P ∈ O(1, 3) defined by the following
improper Lorentz matrix:

(ΛP )μν =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (10.238)

http://dx.doi.org/10.1007/978-3-319-22014-7_7
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On the space-time coordinates xμ it acts as follows :

x0 → x0; x → −x, (10.239)

that is it corresponds to a change of the orientation of the three coordinate axes.
We now show that �P acts on spinors as follows:

S(�P ) = ηP γ0, (10.240)

where ηP = ±1.
We may indeed verify that

S(�P )−1γμS(�P ) = 	P
μ

ν γν .

which generalizes the general formula (10.88) to the parity transformation. The above
property is readily proven, using Eq. (10.240):

S(�P )−1γ0S(�P ) = γ0 = �P
0
0 γ0,

S(�P )−1γi S(�P ) = −γi = �P
i

j γ j . (10.241)

The action of a parity transformation on a Dirac field ψ(x) is therefore:

ψ(x)
P−→ ηP γ0 ψ(x0,−x). (10.242)

If we take into account that in the Weyl representation the γ-matrices are given by
Eq. (10.230) and are off-diagonal, we see that the parity transformation �P trans-
forms ξ and ζ into one another:

{
ξ → ηP ζ,

ζ → ηP ξ.
(10.243)

This result shows that while for proper Lorentz transformations the representation of
the Lorentz group is reducible since it acts separately on the two spinor components,
if we consider the full the Lorentz group, including also improper transformations
like parity, the representation becomes irreducible and we are bound to use four-
dimensional spinors.

Let us now write the Dirac equation in this new basis. On momentum eigenstates

w(p) e− i
�

p·x it reads:

(p/ − mc) w(p) = 0 ⇒
{

(p0 − p · σ) ξ = mc ζ,

(p0 + p · σ) ζ = mc ξ,
(10.244)
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where we have written w = (ξ, ζ). For massless spinors m = 0 the above equations
decouple:

(p0 − p · σ) ξ = 0; (p0 + p · σ) ζ = 0, (10.245)

which will have solutions for p0 > 0 and p0 < 0. The above equations fix the
helicity Γ of the solution which, as we know, is a conserved quantity and labels
the internal degrees of freedom of a massless particle.14 On the two bi-dimensional
spinors ξ, ζ, the helicity is indeed Γ = � p ·σ/(2|p|) = � p ·σ/(2 p0): It is positive
for negative energy solutions ζ and positive energy solutions ξ, while it is negative
for positive energy solutions ζ and negative energy solutions ξ.

In nature there are three spin 1/2 particles, called neutrinos and denoted by
νe, νμ, ντ , which, until recently, were believed to be massless.

In next chapterwe shall be dealingwith the other improper Lorentz transformation
besides parity, which is time-reversal.

10.8.1 Bilinear Forms

Let us now consider the matrix γ5, introduced in Eq. (10.194). Its explicit form in
the Weyl representation is

γ5 = iγ0γ1γ2γ3 = i

4!εμνρσγμγνγργσ =
(

12 0
0 −12

)
. (10.246)

Let us investigate the transformation properties of γ5 under a general Lorentz trans-
formation:

S(�)−1γ5S(�) = i

4!εμνρσ S−1γμS S−1γν S S−1γρS S−1γσ S

= i

4!εμνρσΛμ
μ′Λν

ν ′Λρ
ρ′Λσ

σ′γμ′
γν ′

γρ′
γσ′

= det(�)
i

4
εμνρσγμγνγργσ

= det(�) γ5. (10.247)

In particular under a parity transformation, being det�P = −1, we have:

S(�P )−1γ5S(�P ) = −γ5, (10.248)

14Recall that helicity is invariant under proper Lorentz transformations and labels irreducible rep-
resentations of SO(1, 3) with m = 0.
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that is, it transforms as a pseudoscalar. By the same token we can show that:

S(�)−1γ5γμS(�) = det(�)Λμ
ν (γ5γν). (10.249)

so that γ5γμ transforms as an pseudo-vector, that is as an ordinary vector under
proper Lorentz transformations, and with an additional minus sign under parity.

Defining

γμν ≡ 1

2
[γμ, γν],

we verify that γμν transforms an antisymmetric tensor of rank two:

S(�)−1γμν S(�) = 1

2

[
S−1γμS, S−1γν S

]
= Λμ

ρΛ
ν
σγρσ, (10.250)

while γ5γ
μν transforms like a pseudo- (or axial-) tensor, that is with an additional

minus sign under parity as it follows from Eq. (10.248):

S(�)−1γ5γ
μν S(�) = det(�)Λμ

ρΛ
ν
σγ5γμν . (10.251)

These properties allow us to construct bilinear forms in the spinor fields ψ which
have definite transformation under the full Lorentz group.

Indeed if we consider a general bilinear form of the type:

ψ̄(x)γμ1...μk ψ(x), (10.252)

as shown in Appendix G the independent bilinears are:

ψ̄(x)ψ(x); ψ̄(x)γμψ(x); ψ̄(x)γμνψ(x); ψ̄(x)γ5ψ(x);
ψ̄(x)γ5γμψ(x). (10.253)

To exhibit their transformation properties we perform the transformation

ψ′(x ′) = Sψ(x) → ψ
′
(x ′) = Sψ(x) = ψ†(x)S†γ0, (10.254)

and use the relation (10.92) of Sect. 10.3.3, namely

γ0S†γ0 = S−1. (10.255)

Using Eqs. (10.247) and (10.248) it is easy to show that ψ̄(x)ψ(x) is a scalar field
while ψ̄(x)γ5ψ(x) is a pseudoscalar, i.e. under parity they transform as follows:

ψ̄(x)ψ(x) → ψ̄′(x ′)ψ′(x ′) ; ψ̄(x)γ5ψ(x) → −ψ̄′(x ′)γ5ψ′(x ′). (10.256)
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By the same token, and using Eqs. (10.250) and (10.251) as well, we find analo-
gous transformation properties for the remaining fermion bilinears. The result is
summarized in the following table:

bilinear P-transformed kind

ψ̄(x)ψ(x) ψ̄(xP )ψ(xP ) scalar field
ψ̄(x)γ5ψ(x) −ψ̄(xP )γ5ψ(xP ) pseudo-scalar field
ψ̄(x)γμψ(x) ημμ ψ̄(xP )γμψ(xP ) vector field

ψ̄(x)γ5γμψ(x) −ημμ ψ̄(xP )γ5γμψ(xP ) axial-vector field
ψ̄(x)γμνψ(x) ημμ ηνν ψ̄(xP )γμνψ(xP ) (antisymmetric) tensor field

where, in the second column, there is no summation over the μ and ν indices, and
xP ≡ (xμ

P ) = (ct,−x).

10.8.2 References

For further reading see Refs. [3], [8, vol. 4], [9, 13].



Chapter 11
Quantization of Boson and Fermion Fields

11.1 Introduction

In the previous chapter we have examined the relativistic wave equations for spin 0
and spin 1/2 particles. The corresponding fields φ(x) and ψα(x) were classical in
the same sense that the Schroedinger wave function ψ(x, t) is a classical field. In
contrast to the non-relativistic Schroedinger construction, we have seen that requir-
ing relativistic invariance of the quantum theory, that is invariance under Poincaré
transformations, unavoidably leads to serious difficulties when trying to interpret
the field as representing the physical state of the system: It implies the appearance
of a non-conserved probability density and, most of all, the appearance of negative
energy states. Note that the latter difficulty is in some sense contradictory because if
we just consider the field aspect of the wave equations, the field energy, expressed
in terms of the canonical energy momentum tensor, is positive.

As we have anticipated in the previous chapter and shall show in the present one,
the key to a consistent quantization procedure is provided by the quantization of a free
electromagnetic field discussed as an example in Chap.6, where the would-be wave
function represented by the classical field Aμ(x, t) was interpreted as a quantum
“mechanical” system with infinite degrees of freedom described by a system of
infinitely many decoupled harmonic oscillators. Within the Hamiltonian formulation
of the theory, the infinite dynamical variables associated with the degrees of freedom
of Aμ(x) were quantized according to the same prescription used for systems with
a finite number of degrees of freedom, namely trading dynamical variables with
operators whose commutation rules are determined by the Heisenberg prescription1:

{A, B}P.B. = − i

�
[A, B]. (11.1)

1In this chapter we denote the Poisson brackets by the symbol {, }P.B. since we want to reserve the
symbol {A, B} to the anticommutator of quantum operators, {A, B} = AB + B A.
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Actuallywhenwe try to extend this procedure to free fields other than the electromag-
netic one, we shall find that in order to ensure the positivity of energy we have to treat
fields with integer and half-integer spin on a different footing, respectively. Integer
spin fields, also calledbosonic fields, like the electromagnetic field discussedChaps. 5
and 6, or the Klein-Gordon field, will be quantized by a straightforward extension
of the canonical Heisenberg quantization method already used for the electromag-
netic field, namely trading classical Poisson brackets with commutators according
to Eq. (11.1). Fields with half-integer spin, like the Dirac field, will instead require
a quantization procedure based on anticommutators rather than commutators. Only
in this case we can obtain a consistent description of the quantized fermion field in
which the energy is positive definite. Besides the self-consistency of the procedure,
it will turn out that the different quantization rules for relativistic bosonic and fermi-
onic fields give a natural explanation of the connection between spin and statistics
namely the Pauli principle for spin 1/2 particles, which, in a non-relativistic theory,
must be introduced as an independent assumption. Actually, while the quantization
of bosonic fields using commutators yields a consistent theory, the same prescription
applied to fermionic fields will be seen to violate the microcausality of the theory
which is a fundamental requirement of the relativity principle.

11.2 Quantization of the Klein Gordon Field

In the previous chapters we have been dealing with classical fields of different spin:
bosonic with spin 0 and 1 (massless) and fermionic with spin 1/2. These fields are
distinguished, at the classical level, by their different transformation properties under
the Lorentz group. A bosonic field φα(x) sits in a tensor representation of the Lorentz
group. For example, while the scalar field is a Lorentz singlet, the electromagnetic
field Aμ(x) transforms in the defining representation of the Lorentz group. A fermi-
onic field, like the spin 1/2 Dirac field, transforms instead in the spinor representation
(or for higher half-integer spins in higher spinor representations).

In Chap.8 we have given the fundamental Poisson brackets between the classi-
cal field Φα(x) and its conjugate momentum density πα(x). We have also pointed
out that, in a quantum theory, the dynamical variables Φα(x) and their conjugate
momenta πα(x) are promoted to linear operators Φ̂α(x), π̂α(x) acting on the Hilbert
space of the physical states. As mentioned in the introduction their commutation
properties depend on their being bosonic or fermionic. For every boson field φα(x)

the quantization procedure is effected using the canonical Heisenberg equal time
commutation rules through the prescription (11.1). A bosonic quantum field theory
will thus be characterized by the following commutators between the field operators:

[
φ̂α(x, t), π̂β(y, t)

]
= i� δα

β δ3(x − y),
[
φ̂α(x, t), φ̂β(y, t)

]
= [

π̂α(x, t), π̂β(y, t)
] = 0. (11.2)

http://dx.doi.org/10.1007/978-3-319-22014-7_5
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Taking into account that the complex conjugation of a classical dynamical variable
must be replaced by the hermitian conjugate of the corresponding quantum operator,
we can also write the hermitian conjugate counterparts of (11.2):

[
φ̂†α(x, t), π̂†

β(y, t)
]

= i� δα
β δ3(x − y),

[
φ̂†α(x, t), φ̂†β(y, t)

]
=
[
π̂†

α(x, t), π̂†
β(y, t)

]
= 0. (11.3)

Note that the classical relation (8.214) now becomes

π̂α(x, t) = ∂

∂t
φ̂†

α(x, t); π†α(x, t) = ∂

∂t
φ̂α(x, t). (11.4)

The same replacement (11.1) implies that the classical Hamilton equations, given in
terms of the Poisson brackets in (8.227) and (8.228), at the quantum level become

i�
∂

∂t
φ̂α(x, t) =

[
φ̂α(x, t), Ĥ

]
,

i�
∂

∂t
π̂α(x, t) =

[
π̂α(x, t), Ĥ

]
, (11.5)

where the Hamiltonian operator is obtained from the classical expression (8.215),
(8.216) by promoting the field variables to quantum operators. We note that this
replacement implies time evolution in the quantum system to be described in the
Heisenberg picture since the classical dynamical variables are time dependent. Thus
the quantum state of the system is time independent.

In this section we restrict our discussion to the dynamics of a free complex scalar
field, which, as discussed in Sects. 8.8.1 and 8.9, is equivalent to two real scalar
fields. Since by definition a scalar field sits in the trivial representation of the Lorentz
group, it corresponds to a spin-0 field, carrying no representation indices. Its classical
description is given in terms of the Lagrangian (10.11) from which the classical
Klein-Gordon equation (10.12) is derived. In that case, following (11.1), the Poisson
brackets (8.232) become the equal-time commutators (11.2) with no indices α,β:

[
φ̂(x, t), π̂(y, t)

]
= i�δ3(x − y),

[
φ̂†(x, t), π̂†(y, t)

]
= i�δ3(x − y), (11.6)

all the other possible commutators being zero.
To derive the quantum equations of motion we first need to compute the Hamil-

tonian operator. Recall that the classical Hamiltonian density is given by Eq. (10.46),
that we rewrite here for convenience:

H = ππ∗ + c2∇φ∗∇φ + m2c4

�2
φ∗φ. (11.7)

http://dx.doi.org/10.1007/978-3-319-22014-7_8
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http://dx.doi.org/10.1007/978-3-319-22014-7_8
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http://dx.doi.org/10.1007/978-3-319-22014-7_8
http://dx.doi.org/10.1007/978-3-319-22014-7_8
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Caution is however required when trading the classical fields in the above expression
by their quantum counterparts ϕ̂(x), ϕ̂†(x), π̂(x), π̂†(x), since operators appearing
in products in (11.7), being computed at the same space-time point xμ = yμ, do not
in general commute (see Sect. 11.4 below). This implies that a certain order must be
chosen. The convention we shall use will be shown in the sequel to lead to consistent
results in the development of the theory. It consists in the following substitutions:

(classical fields) (field operators),

π∗(x)π(x) → π̂(x)π̂†(x),

φ∗(x)φ(x) → φ̂†(x)φ̂(x),

∇φ∗(x) · ∇φ(x) → ∇φ̂†(x) · ∇φ̂(x).

(11.8)

The resulting Hamiltonian operator reads:

Ĥ =
∫

d3x
[
π̂(x)π̂†(x) + c2∇φ̂†(x) · ∇φ̂(x) + m2c4

�2
φ̂†(x)φ̂(x)

]
. (11.9)

Let us now use this Hamiltonian in the quantum Hamilton equations (11.5)

i�
∂

∂t
φ̂(x, t) =

[
φ̂(x, t), Ĥ

]
; i�

∂

∂t
π̂(x, t) =

[
π̂(x, t), Ĥ

]
, (11.10)

and show that it reproduces the quantum version of the classical Klein-Gordon equa-
tion.

Applying Eq. (11.6) to the first of (11.10) we find

i�
∂

∂t
φ̂(x, t) =

[
φ̂(x, t), Ĥ(t)

]
=
∫

d3y
[
φ̂(x, t), π̂(y, t)

]
π̂†(y, t)

= i� π̂†(x, t), (11.11)

which is the expression (11.4) of the conjugate momentum operators. The same
computations applied to the last of (11.10) (or better to its hermitian conjugate),
yields

i�
∂

∂t
π̂†(x, t) = c2

∫
d3y

[
π†(x, t),

(
∂φ̂†

∂yi

∂φ̂

∂yi

)
(y, t)

]

+ m2c2

�2

∫
d3y

[
π̂†(x, t), φ̂†(y, t)

]
φ̂(y, t)
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= −c2
∫

d3y
[
π̂†(x, t), φ̂†(y, t)

]
∇2φ̂(y, t)

− i
m2c2

�
φ̂(x, t)

= i�

(
c2∇2φ̂ − m2c2

�2
φ̂

)
(x, t). (11.12)

Substituting in the left hand side the value of π† given by Eq. (11.11) we obtain

1

c2
∂2φ̂

∂t2
− ∇2φ̂ − m2c2

�2
φ̂ = 0, (11.13)

so that the quantum field operator obeys the same Klein-Gordon equation as its
classical counterpart.

In an analogous way we reproduce the quantum version of Eq. (10.52)

P̂(t) = −
∫

d3y
[
π̂(y)∇φ̂(y) + ∇φ̂†(y)π̂†(y)

]
, (11.14)

where y = (ct, y), which yields the right transformation property of the field operator
under infinitesimal space-translations (see Eq. (9.39))

δεφ̂(x, t) = i

�

[
φ̂(x, t), ε · P̂(t)

]
= − i

�

∫
d3y

[
φ̂(x, t), π̂(y, t)

]
ε · ∇φ̂(y, t)

= ε · ∇φ̂(x, t). (11.15)

We can thus also write:

− i� ∇φ̂(x, t) =
[
φ̂(x, t), P̂(t)

]
. (11.16)

Recalling that P̂ is the three-dimensional counterpart of the four-momentum P̂μ =
(Ĥ/c, P̂) of the field, (11.11) and (11.16) can be written in a Lorentz covariant
form as [

φ̂(x, t), P̂μ(t)
]

= i�∂μφ̂(x, t) = i� ημν ∂νφ̂(x, t). (11.17)

Solving the quantum Klein-Gordon theory means to explicitly construct the Hilbert
space of states V (c) and the dynamical variables φ̂α, π̂α, Ĥ acting as operators on
it, such that the commutation relations (11.6), and the equations of motion (11.10)
are satisfied. In the free field case we are now considering, this can be achieved by
constructing the quantum states of the system in terms of states describing a definite
number of particles with given momenta, that is in terms of simultaneous eigenstates

http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_9
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of the occupation number operator. This representation is called the Fock space
representation, or occupation number representation, and was in fact used for the
quantization of the free spin 1 electromagnetic field given in Chap. 6.

Let us shortly recall our procedure in that case: We started representing the free
field as a collection of infinitely many decoupled harmonic oscillators, one for each
plane wave, i.e. for each wave number vector k and polarization. The quantization of
the field was effected by quantizing each constituent harmonic oscillator: A complete
set of quantum stateswas constructed as the product of the various quantumoscillator
states, each characterized by an integer number, the occupation number, representing
the corresponding oscillation mode. In this picture a single particle state, that is
a photon state with energy � ω, linear momentum �k and a given polarization i
(helicity), was associated with each plane wave, i.e. harmonic oscillator, and the
occupation number of the corresponding quantum state represented the number of
photons with those physical properties. A quantum field state in this representation
is completely defined by specifying the occupation number of each oscillator state,
that is the number of photons with a given four-momentum � kμ and helicity i . Such
states differ in the number of particles they describe, each photon representing a
quantum of field-excitation.

The same procedure will be applied in the present chapter to the quantization of
scalar and fermion fields. The key ingredient for this construction, namely the repre-
sentation of the field as a collection of decoupled harmonic oscillators, is guaranteed
by the fact that all free fields satisfy the Klein-Gordon equation and can thus be
expanded in plane waves.

For interacting fields instead no closed solution to the problem of quantization is
known in general and we have to resort to a perturbative approach, to be developed
in the next chapter.2

As classical and quantum equations of motion are formally identical, we can
expand the quantum field φ̂(x) in plane waves with positive and negative angular
frequencies, that is in a complete set of eigenfunctions with definite four-momentum
defined in (10.13) and (10.16).

We replace in the classical expansion of (10.29) the c-number coefficients of the
exponentials by operator coefficients as follows:

φ̃+(p) → φ̂+(p) = �

c

√
2EpV a(p),

φ̃−(p) → φ̂−(p) = �

c

√
2EpV b†(p), (11.18)

2Actually we shall only consider the quantum description of the interaction between the electro-
magnetic field and a Dirac field.

http://dx.doi.org/10.1007/978-3-319-22014-7_6
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
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where the normalization has been chosen such that a(p) and b†(p) are dimensionless
operators. Therefore we have the following expansions:

φ̂(x) =
∫

d3p
(2π�)3

�
√

V√
2Ep

(a(p)e− i
�

p·x + b†(p)e
i
�

p·x ), (11.19)

φ̂(x)† =
∫

d3p
(2π�)3

�
√

V√
2Ep

(a†(p)e
i
�

p·x + b(p)e− i
�

p·x ), (11.20)

π̂(x) = ∂

∂t
φ̂† = i

∫
d3p

(2π�)3

√
V Ep

2

[
a†(p)e

i
�

p·x − b(p)e− i
�

p·x] , (11.21)

π̂(x)† = ∂

∂t
φ̂ = −i

∫
d3p

(2π�)3

√
V Ep

2

[
a(p)e− i

�
p·x − b†(p)e

i
�

p·x] . (11.22)

Note that had we considered an hermitian field φ̂†(x) = φ̂(x), corresponding to a
real classical field, hermiticity would have identified b† ≡ a†. For a non-hermitian
field instead the a and b operators are independent.3

Equations (11.19) and/or (11.20) can be inverted to compute the operators a(p),
b(p) and their hermitian conjugates in terms of φ̂ and φ̂†. To this end let us define
the following function:

fp = 1√
2EpV

e− i
�

p·x ,

and prove that

a(q) = i
∫

d3x
[

f ∗
q (x)∂t φ̂(x) − φ̂(x)∂t f ∗

q (x)
]

= i
∫

d3x
[

f ∗
q (x) π̂†(x) − φ̂(x)∂t f ∗

q (x)
]
, (11.23)

a†(q) = −i
∫

d3x
[

fq(x)∂t φ̂
†(x) − φ̂†(x)∂t fq(x)

]
(11.24)

= −i
∫

d3x
[

fq(x)π̂(x) − φ̂†(x)∂t fq(x)
]
. (11.25)

Let us recall here some useful properties which we shall extensively use in the
following:

∫
d3x e± i

�
p·x = (2π�)3 δ3(p); f (p) =

∫
d3q δ3(p − q) f (q),

Ep ≡
√

m2c4 + |p|2c2 = E−p. (11.26)

3We have used a similar argument after Eq. (10.30), in the classical case.

http://dx.doi.org/10.1007/978-3-319-22014-7_10
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Consider the first of (11.23) and let us rewrite the first term on the right hand side
using for φ̂ the expansion (11.19):

i
∫

d3x f ∗
q (x)∂t φ̂(x) =

∫
d3x

∫
d3p

(2π�)3

√
Ep

Eq

[
a(p)

2
e− i

�
(p−q)·x − b†(p)

2
e

i
�

(p+q)·x
]

= a(q)

2
− b†(−q)

2
e
2i
�

Eq t , (11.27)

where we have used the fact that p = q implies Ep = Eq. By the same token we
prove that:

− i
∫

d3x φ̂(x)∂t f ∗
q (x) = a(q)

2
+ b†(−q)

2
e
2i
�

Eq t . (11.28)

Summing (11.27) and (11.28) the terms with b†(−q) drop out and we find the first
of (11.23). We can prove similar formulas for b and b†:

b(q) = i
∫

d3x
[

f ∗
q (x)∂t φ̂

†(x) − φ̂†(x)∂t f ∗
q (x)

]

= i
∫

d3x
[

f ∗
q (x) π̂(x) − φ̂†(x)∂t f ∗

q (x)
]
, (11.29)

b†(q) = −i
∫

d3x
[

fq(x)∂t φ̂(x) − φ̂(x)∂t fq(x)
]

= −i
∫

d3x
[

fq(x)π̂†(x) − φ̂(x)∂t fq(x)
]
, (11.30)

by showing that the following properties hold:

i
∫

d3x f ∗
q (x)∂t φ̂

†(x) = −a†(−q)

2
e
2i
�

Eq t + b(q)

2
,

−i
∫

d3x φ̂†(x)∂t f ∗
q (x) = a†(−q)

2
e
2i
�

Eq t + b(q)

2
. (11.31)

From (11.23) and (11.29), and from the commutation relations (11.6), we may now
compute the commutators among a(q), a†(q), b(q), b†(q)

[a(p), a†(q)]
=
∫

d3xd3y
[

f ∗
p (x)π̂†(x) − φ̂(x)∂t f ∗

p (x), fq(y)π̂(y) − φ̂†(y)∂t f ∗
q (y)

]

=
∫

d3xd3y
(

f ∗
p (x)∂t fq(y) [φ̂†(y), π̂†(x)] − ∂t f ∗

p (x) fq(y) [φ̂(x), π̂(y)]
)

= i�
∫

d3xd3y
(

f ∗
p (x)∂t fq(y) − ∂t f ∗

p (x) fq(y)
)

δ3(x − y)
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= i�
∫

d3x
(

f ∗
p (x)∂t fq(x) − ∂t f ∗

p (x) fq(x)
)

= i�

2V

(
− i

�

√
Eq

Ep
− i

�

√
Ep

Eq

)
(2π�)3 δ3(p − q) = (2π�)3

V
δ3(p − q).

Analogous computations give the complete set of commutation relations:

[
a(p), a(q)†

]
= (2π�)3δ3(p − q) · 1

V
,

[
b(p), b(q)†

]
= (2π�)3δ3(p − q)

1

V
, (11.32)

all the other possible commutation relations being zero. The reverse is also true:Given
φ̂(x), φ̂†(x) expressed in terms of operators a, b, a†, b†, satisfying the relations
(11.32), the canonical commutation rules (11.2) are satisfied. Let us check the first
of (11.2). Using the expansions (11.19)–(11.22) and assuming the commutation rules
(11.32), we find

[
φ̂(x, t), π̂(y, t)

]
=
∫

d3p
(2π�)3

∫
d3q

(2π�)3

�
2 V

2
√

Ep Eq

× i

�
Eq

[
[a(p), a(q)†]e− i

�
(Ep−Eq)t e

i
�

(p·x−q·y)

− [b(p)†, b(q)]e i
�

(Ep−Eq)t e− i
�

(p·x−q·y)
]

=
∫

d3p
(2π�)3

�
2

2Ep

[
i

�
Epe

i
�

p(x−y) + i

�
Epe− i

�
p(x−y)

]

= i�δ3(x − y).

With analogous computations one verifies the other commutation rules in (11.2).
For a finite volume V , the components of the linear momentum p have discrete

values, see Eq. (9.50) of Chap.9, and the integral in d3p becomes a sum, according to
the identification (9.53). In particular, using the prescription (9.55), the commutation
relations (11.32) for discrete momenta simplify to:

[
a(p), a(q)†

]
= δp,q;

[
b(p), b(q)†

]
= δp,q, (11.33)

all other commutators being zero.4

Let us now express, in the large volume limit, the Hamiltonian operator (11.9) in
terms of the operators a, a† and b, b†. Upon using the expansions (11.19)–(11.22),

4In the discrete notation we shall often use the following symbols ap ≡ a(p), bp ≡ b(p).

http://dx.doi.org/10.1007/978-3-319-22014-7_9
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the first term on the right hand side of (11.9) gives:

∫
d3x π̂(x)π̂†(x)

=
∫

d3x
∫

d3p
(2π�)3

d3q
(2π�)3

V

2

√
Ep Eq

×
[
a†(p)a(q)e

i
�

((Ep−Eq)t−(p−q)·x) + b(p)b†(q)e− i
�

((Ep−Eq)t−(p−q)·x)

− a†(p)b†(q)e
i
�

((Ep+Eq)t− i
�

(p+q)·x) − b(p)a(q)e− i
�

((Ep+Eq)t−(p+q)·x)
]

=
∫

d3p
(2π�)3

V

2
Ep

[
a†(p)a(p) + b(p)b†(p) −

(
a†(p)b†(−p)e

2i
�

Ept

+ b(p)a(−p)e− 2i
�

Ept
)]

, (11.34)

where we have used the properties (11.26). With an analogous calculation, and using
the following expansion

∇φ̂(x) = i
∫

d3p
(2π�)3

√
V

2Ep
p
(

a(p) e− i
�

p·x − b†(p) e
i
�

p·x) , (11.35)

the second term on the right hand side of (11.9) reads:

∫
d3x∇φ̂(x)† · ∇φ̂(x)

=
∫

d3x
∫

d3p
(2π�)3

d3q
(2π�)3

V

2
√

Ep Eq
p · q

×
[
a†(p)a(q)e

i
�

((Ep−Eq)t−(p−q)·x) + b(p)b†(q)e− i
�

((Ep−Eq)t−(p−q)·x)

− a†(p)b†(q)e
i
�

((Ep+Eq)t− i
�

(p+q)·x) − b(p)a(q)e− i
�

((Ep+Eq)t−(p+q)·x)
]

=
∫

d3p
(2π�)3

V

2Ep
|p|2

[
a†(p)a(p) + b(p)b†(p) + a†(p)b†(−p)e

2i
�

Ept

+ b(p)a(−p)e− 2i
�

Ept
]
, (11.36)

while the third term has the following expansion

∫
d3xφ̂†(x)φ̂(x) =

∫
d3p

(2π�)3

�
2V

2Ep

[
a†(p)a(p) + b(p)b†(p)

+
(

a†(p)b†(−p)e
2i
�

Ept + b(p)a(−p)e− 2i
�

Ept
)]

. (11.37)
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Summing up the three results, we finally obtain

∫
d3x

[
π̂(x)π̂†(x) + c2∇φ̂†(x) · ∇φ̂(x) + m2c4

�2
φ̂†(x)φ̂(x)

]

=
∫

d3p
(2π�)3

V

2Ep

[
(E2

p + c2|p|2 + m2c4)(a†(p)a(p) + b(p)b†(p))

+ (−E2
p + c2|p|2 + m2c4)

(
a†(p)b†(−p)e

2i
�

Ept + b(p)a(−p)e− 2i
�

Ept
)]

=
∫

d3p
(2π�)3

V Ep(a†(p)a(p) + b(p)b†(p)). (11.38)

where we have used the definition of Ep in (11.26).
The Hamiltonian operator has therefore the following form,

Ĥ =
∫

d3p
(2π�)3

V Ep(a†(p)a(p) + b(p)b†(p))

=
∫

d3p
(2π�)3

V Ep

[
a†(p)a(p) + b†(p)b(p) + (2π�)3

V
δ3(p − p)

]
. (11.39)

The Dirac delta function appearing in the last term of the right hand side is an infinite
constant devoid of physical significance since it associateswith the vacuuman infinite
energy. This is apparent if we consider the particle in a finite-size box, with volume
V . The momentum becomes discretized and Eq. (11.39) will have then the form:

Ĥ =
∑

p

Ep

[
a†(p)a(p) + b†(p)b(p) + 1

]
. (11.40)

The vacuum energy part would read
∑

p Ep = ∞. This inessential infinite constant
can be formally eliminated in the same way as we did for the electromagnetic field
in Chap.6, that is by introducing the normal ordering prescription when computing
physical quantities. Let us recall the definition of “normal ordering” : :. An oper-
ator product is normal ordered if all the creation operators stand to the left of all
destruction operators. For instance:

: a(p)a†(p) : = : a†(p)a(p) := a†(p)a(p),

: b(p)b†(p) : = : b†(p)b(p) := b†(p)b(p). (11.41)

With the normal order prescription the Hamiltonian (11.9) is replaced by

Ĥ =
∫

d3x :
[
π̂π̂† + c2∇φ̂† · ∇φ̂ + m2c4

�2
φ̂†φ̂

]
: (11.42)

http://dx.doi.org/10.1007/978-3-319-22014-7_6
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As a consequence Eq. (11.39) takes the following form:

Ĥ =
∫

d3p
(2π�)3

V Ep :
[

a†(p)a(p) + b(p)b†(p))
]

:

=
∫

d3p
(2π�)3

V Ep

[
a†(p)a(p) + b†(p)b(p)

]
, (11.43)

where no infinite constant appears. For finite volume V the normal ordered Hamil-
tonian reads

Ĥ =
∑

p

Ep :
[
a†(p)a(p) + b(p)b†(p)

]
:

=
∑

p

Ep

[
a†(p)a(p) + b†(p)b(p)

]
. (11.44)

It is instructive to compare the above expression with the corresponding one (6.62)
found in Chap.6 for the electromagnetic field. Identifying � ωk with the energy Ep
of a photon of momentum p = � k, we recognize that the two expressions for the
energy are quite similar. The only differences between (11.44) and (6.62) consist, on
the one hand, in the absence in the former of the polarization index, as it must be the
case for a spinless field, (recall that the electromagnetic field has spin 1 and therefore
has a polarization index related to the helicity of the photon); on the other hand we
have the presence, on the right hand side of (11.44), of additional operators b, b†,
which, as will be shown in the following, are always present for a charged field. They
are not present in the electromagnetic field due to the hermiticity of Âμ(x).

We can proceed in the same way to evaluate the total quantum momentum of the
field P̂i , given in (11.14), in terms of the operators a(p), b(p) and their hermitian
conjugates. Using (11.35), (11.21) and (11.22) we find:

P̂ =
∫

d3p
(2π�)3

V

2
p
[(

a†(p)a(p) + b(p)b†(p)
)

+ a†(p)b†(−p) e
2i
�

Ept − b(−p)a(p) e− 2i
�

Ept
]

+ h.c.,

where h.c. denotes the hermitian conjugate terms. In the last term on the right hand
side of the above equation we have performed a change in the integration variable,
namely p → −p, gaining a minus sign. Note that the last two terms in the integral
sum up to an anti-hermitian operator, which cancels against its hermitian conjugate.
The first two terms instead are hermitian, so that we end up with:

P̂ =
∫

d3p
(2π�)3

V p
(

a†(p)a(p) + b(p)b†(p)
)

=
∑

p

p
(

a†(p)a(p) + b(p)b†(p)
)

, (11.45)

http://dx.doi.org/10.1007/978-3-319-22014-7_6
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where the last equality refers to the case of a finite volume V and discrete momenta.
Note that in this case no normal ordering is necessary since, when writing bb† in
terms of b†b in (11.45) we have

∑
p

p b(p)b†(p) =
∑

p

p
(

b†(p)b(p) + 1
)

=
∑

p

p b†(p)b(p), (11.46)

due to the cancellation of p against −p when summing the constant term over all
possible values of p.

Putting together the results obtained for Ĥ and P̂i , we may define the four-
momentum quantum operator

P̂μ =
∫

d3p
(2π�)3

V pμ (a†(p)a(p) + b†(p)b(p)). (11.47)

So far we have defined the quantum operator associated with a Klein-Gordon field.
We still need to define the Hilbert space of quantum states on which such operator
acts. This will allow us to give a particle interpretation of our results.

Our discussion so far paralleled the one for the electromagnetic field in Chap.6.
When we wrote the field operators φ̂(x), φ̂†(x) in terms of the a, b operators and of
their hermitian conjugates satisfying the commutation relations (11.32) (or (11.33)),
we have described the quantum system as a collection of infinitely many decoupled
quantum harmonic oscillators of two kinds: The “(a)” and the “(b)” oscillators, asso-
ciated with the positive and negative energy solutions to the Klein-Gordon equation.
Each value of p defines a corresponding oscillator of type (a) and (b), the operators
a(p), a†(p) and b(p), b†(p) being the corresponding destruction and creation oper-
ators, respectively. For the two kinds of oscillators we define the (hermitian) number
operators:

N̂ (a)
p = a†(p)a(p); N̂ (b)

p = b†(p)b(p). (11.48)

We see that both the energy (11.43) and the momentum (11.45) are expressed as
infinite sums over such operators. In particular the Hamiltonian operator Ĥ is the
sum over the Hamiltonian operators Ĥ (a)

p , Ĥ (b)
p of the various oscillators (we use

here, for the sake of simplicity, the finite volume notation):

Ĥ =
∑

p

(
Ĥ (a)

p + Ĥ (b)
p

)
, (11.49)

Ĥ (a)
p ≡ Ep N̂ (a)

p = Ep a†(p)a(p); Ĥ (b)
p ≡ Ep N̂ (b)

p = Ep b†(p)b(p).

Since these harmonic oscillators correspond to independent, decoupled degrees of
freedom of the scalar field, operators associated with different oscillators commute,
as it is apparent from (11.32). In particular the hermitian operators N̂ (a)

p , N̂ (b)
p form a

http://dx.doi.org/10.1007/978-3-319-22014-7_6
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commuting system5 and thus can be diagonalized simultaneously. As a consequence
of this the quantum states of the field can be expressed as products of the infinite states
pertaining to the constituent quantum oscillators, each constructed as an eigenstate
of the corresponding number operator.

Recall indeed, from elementary quantum mechanics, that the states of a, say, type
(a), quantum oscillator, corresponding to a momentum p, have the form |Np〉(a), and

are eigenstates of N̂ (a)
p :

N̂ (a)
p |Np〉(a) = Np |Np〉(a), (11.51)

the energy of such state being Np Ep. The action on it of a(p) or a†(p), lowers or
raises Np by one unit, respectively. In other words they destroy or create quanta of
energy Ep. This follows from the commutation relations:

[N̂ (a)
p , a†

p] = a†
p; [N̂ (a)

p , ap] = −ap, (11.52)

from which we find

N̂ (a)
p a†

p|Np〉(a) = a†
p N̂ (a)

p |Np〉(a) + a†
p |Np〉(a) = (Np + 1)|Np〉(a),

N̂ (a)
p ap|Np〉(a) = ap N̂ (a)

p |Np〉(a) − ap|Np〉(a) = (Np − 1)|Np〉(a),

that is the states a†
p|Np〉(a) and ap|Np〉(a) correspond to the eigenvalues Np + 1 and

Np − 1 of N̂ (a)
p , respectively.

Requiring Np, as well as the energy, to be non-negative, the sequence Np−1,
Np −2, . . . must terminate with zero, corresponding to ground state |0〉(a) for which
ap|0〉(a) = 0, so that

N̂ (a)
p |0〉(a) = 0.

The eigenvalues Np are then non-negative integers ( Np = 0, 1, 2, . . . ), also called
occupation numbers, and the corresponding eigenstates are constructed by applying
the creation operator a†(p) to |0〉(a) Np-times:

|Np〉(a) = 1√
(Np)!a

†
pa†

p . . . a†
p |0〉(a),

5The fact that [N̂ (a), N̂ (b)] = 0 immediately follows from the property that a and b commute, as
stressed after (11.33). Consider now the number operators corresponding to oscillators of a given
kind, say (a):

[N̂ (a)
p , N̂ (a)

p′ ] = a†(p)[a(p), a†(p′)]a(p′) + a†(p′)[a†(p), a(p′)]a(p)

=
(

a†(p)a(p′) − a†(p′)a(p)
)

δpp′ = 0, (11.50)

the same result obviously holds for the operators N̂ (b).
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where the denominator is fixed by normalizing the state to one. What we have said
for the type-(a) oscillator equally applies to the type-(b) ones. The ground states of
the two kinds of oscillators will be denoted by |0〉(a) and |0〉(b) respectively. We can
summarize the construction of single-oscillator states, for a given momentum p, as
follows

Type a-oscillators ; Type b-oscillators

N̂ (a)
p |Np〉(a) = Np|Np〉(a) ; N̂ (b)

p |Np〉(b) = Np|Np〉(b)

ap|0〉(a) = 0 ; bp|0〉(b) = 0

|Np〉(a) = (a†p)Np√
(Np)! |0〉(a) ; |Np〉 = (b†p)Np√

(Np)! |0〉(b)

a†
p|Np〉(a) = √

Np + 1|Np + 1〉(a) ; b†(p)|Np〉(b) = √
Np + 1 |Np + 1〉(b)

ap|Np〉(a) = √
Np|Np − 1〉(a) ; bp|Np〉(b) = √

Np |Np − 1〉(b)

We may now construct the Hilbert space of quantum field states, labeled by the
eigenvalues of the number operators. The states |{N }〉(a) of the system of type-(a)

oscillators are constructed as tensor products of the single-oscillator states |Np〉(a)

over all possible values p1, p2, . . . , of p:

|{N }〉(a) ≡ |Np1, Np2 , . . . 〉(a) = |Np1〉(a)|Np2〉(a) · · ·

=
[

(a†(p1))
Np1 (a†(p2))

Np2 · · ·√
(Np1)! (Np2)! · · ·

]
|0, 0, . . . , 0〉(a), (11.53)

where |0, 0, . . . , 0〉(a) denotes the product over all p of the ground states |0〉(a)

associated with each type-(a) oscillator. By the same token we construct a complete
set of states from the system of type-(b) oscillators |{N }〉(b). The full Hilbert space of
states of the quantum field will be the product of the Hilbert spaces associated with
each type of oscillators, and will therefore be generated by the following complete
set of vectors:

|{N }; {N ′}〉 ≡ |{N }〉(a) ⊗ |{N ′}〉(b), (11.54)

Each of the above states are constructed by repeatedly applying a† and b† operators
to the “vacuum” state:

|0〉 ≡ |0, 0, . . . , 0〉(a) ⊗ |0, 0, . . . , 0〉(b), (11.55)
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For instance

a†(p)|0〉 = |0, . . . 0, 1, 0, . . . 0〉(a) ⊗ |0, . . . 0〉(b),

b†(p)|0〉 = |0, . . . 0〉(a) ⊗ |0, . . . 0, 1, 0, . . . 0〉(b),

where the position of the entry 1 corresponds to type-(a), respectively (b), oscillator
state labeled by the momentum p. The states |{N (a)}; {N (b)}〉 are, by construction,
eigenstates of all the number operators N̂ (a)

p , N̂ (b)
p and theHilbert space they generate

is called Fock space.
Recall now the expression of the momentum operator P̂ of the field in the contin-

uous as well as in the discrete (i.e. finite volume) notations (here and in the following
we denote by an arrow the change to the finite-volume notation)

P̂ =
∫

d3p
(2π�)3

V p (N̂ (a)
p + N̂ (b)

p )→
∑

p

p (N̂ (a)
p + N̂ (b)

p ), (11.56)

which completes, with the Hamiltonian operator Ĥ in (11.49), the four momentum
operator:

P̂μ =
∫

d3p
(2π�)3

V pμ(N̂ (a)
p + N̂ (a)

p )→
∑

p

pμ(N̂ (a)
p + N̂ (a)

p ). (11.57)

Just as we did for the quantized electromagnetic field, the quantum field states are
interpreted as describing a multiparticle system: Each type-(a) and type-(b) oscil-
lator defines a single particle state with definite momentum p and the occupation
number Np is interpreted as the number of particles in that state. This time however
the quantized excitations of the field are described in terms of two kinds of particles,
according to the type of oscillator. Conventionally those describing excitations of
type-(a) and type-(b) oscillators are referred to as particles and antiparticles respec-
tively. For instance the state |{N }; {N ′}〉 describes Np1 particles and N ′

p1
antiparticles

with momentum p1; Np2 particles and N ′
p2

antiparticles with momentum p2, and so
on.

With this interpretation the quantum Hamiltonian and momentum operators are
simply understood as the sum of the energies and momenta of the particles and
antiparticles in the system, each carrying a quantum of energy Ep and of momentum
p. Every single-particle (antiparticle) state contributes to the energy and momentum
of the total field state |{N }; {N ′}〉 an amount Np Ep and Np p (N ′

p Ep and N ′
p p),

respectively, proportional to the corresponding occupation number.
Thereforewhen this number varies by a unit, the total energy andmomentumof the

state vary by Ep andp, respectively. It is important to note that even if antiparticles are
associated with negative energy solutions to the classical Klein-Gordon equation,
they contribute a positive energy Ep to the Hamiltonian, that is antiparticles are
positive energy particles. Let us observe in this respect that the photon, associated
with the excitations of the electromagnetic field, coincides with its own antiparticle,
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since in that case, as often pointed out, the field Âμ(x) is hermitian, thus implying
a = b.

We conclude that the operators a†(p) and b†(p) create a particle and an antiparticle
with momentum p, respectively, while a(p) and b(p) destroy them. In an analogous
way, denoting by φ̂+(x) and φ̂−(x) the positive and negative energy components of
the field operator φ̂(x) in (11.19):

φ̂(x) = φ̂+(x) + φ̂−(x),

φ̂+(x) =
∫

d3p
(2π�)3

�
√

V√
2Ep

a(p)e− i
�

p·x →
∑

p

�√
2EpV

a(p)e− i
�

p·x ,

φ̂−(x) =
∫

d3p
(2π�)3

�
√

V√
2Ep

b†(p)e
i
�

p·x →
∑

p

�√
2EpV

b†(p)e
i
�

p·x ,

(11.58)

the former destroys a particle at the space-time point x ≡ (xμ) (since it contains a(p))
while the latter creates an antiparticle at x (since it contains b†(p)). The reverse is
true for φ̂†

−(x), φ̂†
+(x), defined as the negative and positive frequency components

of φ̂†(x), respectively:

φ̂†
−(x) =

∫
d3p

(2π�)3

�
√

V√
2Ep

a†(p)e
i
�

p·x ,

φ̂†
+(x) =

∫
d3p

(2π�)3

�
√

V√
2Ep

b(p)e− i
�

p·x . (11.59)

It is implicit from the above discussion that we are working in the Heisenberg picture
in which operators, like φ̂(x, t) depend on time while states are constant. This is
necessary in order to have a relativistically covariant framework, see Sect. 6.2 of
Chap.6.

The Fock space formalism is particularly suited for providing a multiparticle
description of a quantum relativistic free field theory. It is however interesting to
write down the familiar non-relativistic wave function of a system of particles, using
the x-representation instead of the Fock representation. We define a state describing
n particles located at the points x1, . . . , xn at a time t as

|x1, . . . , xn; t〉 ≡ φ̂†
−(x1, t) . . . φ̂†

−(xn, t)|0〉, (11.60)

where the effect of φ̂†
−(xi , t) is that of creating a particle in xi at the time t . On the

other hand a generic n particle state in the Fock-representation is defined as

|N1, N2, . . . 〉(a) = (a†
1)

N1(a†
2)

N2 . . .

(N1!N2! . . . ) 1
2

|0〉(a), (11.61)

http://dx.doi.org/10.1007/978-3-319-22014-7_6
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where N1+ N2+· · · = n and we have used the short-hand notation N1 ≡ Np1 , N2 ≡
Np2 , and so on. The wave function φ

(n)
N1,N2,...

(x1 . . . xn, t) realizing the coordinate
representation of the state (11.61) therefore reads

φ(n)
N1,N2,...

(x1, . . . , xn, t) = 〈x1 . . . xn; t |N1, N2, . . . 〉(a). (11.62)

By the same token we construct the coordinate representation of a multi-antiparticle
state |N ′

1, N ′
2, . . . 〉(b) or of a generic particle-antiparticle state |{N }; {N ′}〉. We con-

clude from this that the multi-particle wave function (describing both particles and
antiparticles) is completely symmetric with respect to the exchange of the particles
(antiparticles) since the operators φ̂†

−(xi , t) and φ̂†
−(x j , t) (φ̂−(xi , t) and φ̂−(x j , t))

commute. In other words: Spin-zero particles obey the Bose-Einstein statistics. This
result, which obviously also holds for the photon field, can be shown to be valid for
all particles of integer spin.

11.2.1 Electric Charge and Its Conservation

We have seen that a complex scalar field, being equivalent to two real fields, has
extra (internal) degrees of freedom which are related to the existence of antipar-
ticles. We now show that these extra degrees of freedom are connected with the
presence of a charge carried by the field. We recall that in the classical Hamilton for-
mulation the current and the charge associated with the Klein-Gordon field are given
by Eqs. (8.208) and (8.209) of Chap.8, see also (10.19) and (10.20) of Chap.10. At
the quantum level they become the following operators:

Ĵμ = −i
ec

�
:
[
∂μφ̂†(x)φ̂(x) − φ̂†(x)∂μφ̂(x)

]
:, (11.63)

and

Q̂ = i
e

�

∫
d3x :

(
φ̂†(x)π̂†(x) − h.c.

)
:, (11.64)

where h.c. denotes, as usual, the hermitian conjugate of the preceding terms. The
explicit computation of Q̂ is quite similar to that of Q in Eq. (10.33) of Chap.10. If
we compute the first term of (11.64) we find

i
e

�

∫
d3xφ̂†(x)π̂†(x)

= i
e

�

∫
d3x

∫
d3p

(2π�)3

d3p
(2π�)3

(−i�)
V

2

√
Eq

Ep

×
[
a†(p)a(q)e

i
�

(Ep−Eq)t− i
�

(p−q)·x − b(q)b†(q)e
i
�

(Ep−Eq)t− i
�

(p−q)·x

http://dx.doi.org/10.1007/978-3-319-22014-7_8
http://dx.doi.org/10.1007/978-3-319-22014-7_8
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
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− a†(p)b†(q)e
i
�

(Ep+Eq)t− i
�

(p+q)·x + b(p)a(q)e− i
�

(Ep+Eq)t+ i
�

(p+q)·x]

= e
∫

d3p
(2π�)3

V

2

[
a†(p)a(p) − b(p)b†(p) − a†(p)b†(−p)e

2i
�

Ept

+ b(−p)a(p)e− 2i
�

Eqt
]
,

where, in the last integral we have changed p → −p. If we sum the above expression
with its hermitian conjugate, the quantities containing a†a and b†b, being hermitian,
will sum up. The terms containing ba and a†b†, on the other hand, add up to a
antihermitian operatorwhich cancels against its hermitian conjugate.We then obtain:

Q̂ = e
∫

d3p
(2π�)3

V :
[
a(p)†a(p) − b(p)b(p)†

]
:

= e
∫

d3p
(2π�)3

V (a(p)†a(p) − b(p)†b(p)), (11.65)

or, equivalently, in terms of the number operators N̂ (a)
p , N̂ (b)

p ,

Q̂ = e
∫

d3p
(2π�)3

V
(

N̂ (a)
p − N̂ (b)

p

)
, (11.66)

Using the finite-volume notation, the charge operator has the following simple form:

Q̂ =
∑

p

e(N̂ (a)
p − N̂ (b)

p ). (11.67)

This formula shows that if particles have charge e, antiparticles have opposite charge
−e.We conclude that, as anticipated in Sect. 10.6.2, antiparticles have the same mass
as the corresponding particles but opposite charge.

We have learned that, in the classical Klein-Gordon theory, the charge Q is con-
served. This was related, in the Hamiltonian framework, to the fact that it generates
phase transformations which leave the Hamiltonian invariant. We show that the same
properties hold in the quantum theory.

From the classical treatment we expect the generator Ĝ of a global phase trans-
formation to be related to Q̂ as follows:

Ĝ(t) = −�

e
Q̂(t), (11.68)

so that the corresponding unitary transformation reads:

U (α) = e
i
�

αĜ(t) = e− i
e αQ̂(t), (11.69)

where α is the parameter introduced in Eq. (8.206).

http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_8
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To show that the above operator implements a phase transformation on φ̂(x), let us
transform the latter by means of U (α), computed at the same time. For α � 1 we
have

φ̂′(x, t) = U †(α)φ̂(x, t)U (α) ≈ φ̂(x, t) − i
α

e

[
φ̂(x, t), Q̂(t)

]
= φ̂(x) + δφ̂(x),

δφ̂(x, t) = −i
α

e

[
φ̂(x, t), Q̂(t)

]
. (11.70)

On the other hand, from the explicit form of Q̂ in Eq. (11.64) and the canonical
commutation relations between φ̂ and π̂, we also have

[
φ̂(x, t), Q̂(t)

]
= − ie

�

∫
d3y

[
φ̂(x, t), π̂(y, t)

]
φ̂(y, t) = eφ̂(x, t), (11.71)

from which it follows that

δφ̂(x, t) = −iαφ̂(x, t), (11.72)

as in the classical case. Furthermore we can easily verify that the transformation
(11.72) leaves the Hamiltonian (11.42) invariant:

δ Ĥ = [Q̂, Ĥ ] = 0. (11.73)

Combining this result with the quantum equation

d Q̂

dt
= − i

�
[Q̂, Ĥ ],

we find that the charge operator is conserved.

11.3 Transformation Under the Poincaré Group

We recall that, in the Heisenberg picture, any operator on the Hilbert space of states
transforms according to Eq. (9.38) of Chap.9. In particular the action of a Poincaré
transformation (�, x0) on a scalar field operator φ̂(x) reads

φ̂(x) = φ̂′(x ′) = U †(�, x0)φ̂(x ′)U (�, x0) = O(�, x0)φ̂(x ′), (11.74)

where, as usual, x ′ = � x − x0. We can indeed easily verify that the above trans-
formation law for the quantum field is in agreement with the transformation law of
the classical field, namely of the wave function. Recall from (11.60) and (11.62),
the general relation between a multi-particle state and the corresponding coordinate

http://dx.doi.org/10.1007/978-3-319-22014-7_9
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representation. For a single particle state |s〉 in the Fock space, the corresponding
wave function φ(s)(x) is expressed as (see Eq. (9.19)):

φ(s)(x) = 〈0|φ̂(x)|s〉. (11.75)

If we now perform the Poincaré transformation (�, x0) on the field operator, accord-
ing to (11.74), we find

φ(s)(x)
(�, x0)−→ φ′(x ′) = 〈0|φ̂′(x ′)|s〉 = 〈0|U †(�, x0)φ̂(x ′)U (�, x0)|s〉

= 〈0|φ̂(x)|s〉 = φ(x)(s) = φ(�−1(x ′ + x0)) = O(�, x0)φ(x ′),
(11.76)

where we have used the property, which we shall always assume to hold, that the vac-
uum state is invariant under the Poincaré group:U (�, x0)|0〉 = |0〉. Equation (11.76)
is indeed the correct transformation law for a classical scalar field. It is important
however to bear in mind that the unitary operator U (�, x0) acts on the Fock space
of states, while O(�, x0) acts on the space of functions. Clearly Eq. (11.76) defines a
relation between the infinitesimal Poincaré generators of the two operators. Let us
denote here by Ĵ

ρσ and P̂
μ the generators of U (�, x0), that is the representation of

the Poincaré generators on the quantum states. We can write:

U (�, x0) = e− i
�

P̂μxμ
0 e

i
2�

θρσ Ĵρσ
. (11.77)

Recalling the expression (9.101) of O(�, x0) in terms of its infinitesimal generators
Ĵ ρμ and P̂μ, given in (9.102), we can write an infinitesimal Poincaré transformation
of the field operator as follows:

δφ̂(x) = i

�

[
φ̂(x),

1

2
δθρσ Ĵ

ρσ − ε · P̂

]
= i

�

(
1

2
δθρσ Ĵ ρσ − ε · P̂

)
φ̂(x),

where we have expanded in Eq. (11.74) both U (�, x0) and O(�, x0) to first order in
the infinitesimal Poincaré parameters δθρσ, xμ

0 = εμ. Using the explicit form of Ĵ ρμ

and P̂μ in Eq. (9.102) we find:

i

�
[φ̂(x), Ĵρσ] = (xρ∂σ − xσ∂ρ)φ̂(x); i

�
[φ̂(x), P̂μ] = −∂μφ̂(x), (11.78)

so that the realization of Ĵμν and P̂
μ in terms of the field operator is obtained from

(8.240) and (8.243) respectively, by promoting all the classical fields to quantum
operators.

Coming back to the finite unitary transformation (11.74) it is interesting to see how
the creation and annihilation operators transform under a Lorentz transformations.

http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_8
http://dx.doi.org/10.1007/978-3-319-22014-7_8
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Let us show that the following transformation laws for a(p) and b(p):

U †(�)a(p)U (�) = a(�−1 p); U †(�)b(p)U (�) = b(�−1 p). (11.79)

induce on φ̂(x) the corresponding transformation (11.74). Indeed we have

U †(�)φ̂(x ′)U (�) =
∫

d3p
(2π�)3

�
√

V√
2Ep

[
U †(�)a(p)U (�)e− i

�
p·x ′

+ U †(�)b†(p)U (�)e
i
�

p·x ′]

=
∫

d3p
(2π�)3

�
√

V√
2Ep

[
a(�−1 p)e− i

�
p·x ′ + b†(�−1 p)e

i
�

p·x ′]

=
∫

d3p′

(2π�)3

�
√

V ′
√
2Ep′

[
a(p′)e− i

�
(�p′)·x ′ + b†(p′)e

i
�

(�p′)·x ′]

=
∫

d3p′

(2π�)3

�
√

V ′
√
2Ep′

[
a(p′)e− i

�
p′·(�−1x ′) + b†(p′)e

i
�

p′·(�−1x ′)
]

= φ̂(�−1x ′), (11.80)

so that Eq. (11.74) is verified.6

11.3.1 Discrete Transformations

In the study of the Lorentz transformations, we have mostly considered the proper
subgroup SO(1, 3) corresponding to transformations with unit determinant that are
connected with continuity to the identity transformation. This allows us to consider
their infinitesimal action on the fields.

In Chap.4 we have also defined other Lorentz transformations. These include the
parity transformation or space reflection P and the time reversal transformation T ,
whose active action of a scalar field is

P : φ̂(x, t) → ηP φ̂(−x, t), (11.81)

T : φ̂(x, t) → ηT φ̂(x,−t). (11.82)

These transformations are respectively implemented on four-vectors by the matrices
�P and �T given in Chap.4, with negative determinant: det�P = det�T = −1.
The complex factors ηP , ηT can only be ±1 since parity and time reversal are invo-
lutive, namely applying them twice gives the identity transformation.

6In the above derivation we have used the Lorentz invariance of the measure d3pV and of EpV ,
see Sect. 9.5 of Chap.9.

http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_9
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Let us first consider the parity transformation. In classical canonical mechanics,
a parity transformation implies the inversion of the position vector x and the linear
momentum of a particle, while it leaves its angular momentum (including spin),
invariant:

P : x → −x; p → −p; J → J. (11.83)

In field theory, we note that the Klein-Gordon equation is invariant under (11.81).
The sign ηP in the transformation defines the intrinsic parity of the field, the sign
plus or minus corresponding to scalar or pseudoscalar field, respectively.7 Since
any transformation is determined by a unitary transformation in the Hilbert space of
the states, let us denote by U (P) the one implementing parity, so that

U (P)†φ̂(x, t)U (P) = ηP φ̂(−x, t), (11.84)

where ηP = ±1 denotes the intrinsic parity of the field. Using the expansion (11.19)
it is easy to see that the transformations (11.84) can be realized in terms of the
oscillators a(p), b(p) as follows:

U (P)†a(p)U (P) = ηP a(−p); U (P)†b(p)U (P) = ηP b(−p). (11.85)

Let us give an explicit realization of the operator U (P) in terms of a, b, a†, b†,
depending on the intrinsic parity of the field. Consider the operator eiλS , with

S =
∑

p

(
a†

pa−p + b†pb−p

)
,

where, for the sakeof clarity,wehaveused adiscrete notation:ap ≡ a(p), bp ≡ b(p).
Now use the identity (see for instance [2] for a general proof)

eiλS Oe−iλS = O + iλ[S, O] + i2λ2

2! [S, [S, O]] + · · · . (11.86)

Since
[S, ap] = −a−p [S, [S, ap]] = ap,

we find
eiλSape−iλS = ap cosλ − ia−p sin λ,

7The intrinsic parity can only be fixed by experiment involving interactions, so that it is meaningful
only when specified relative to other particles.
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and the same relation for bp. Setting λ = ηP π/2, we get rid of the term in ap,
obtaining

ei π
2 ηP Sape−i π

2 ηP S = −iηP a−p, (11.87)

ei π
2 ηP Sbpe−i π

2 ηP S = −iηP b−p. (11.88)

This is close to (11.85), but not yet correct. To get the exact result we further multiply
eiλS by the operator eiλ′S′

, defined in such a way that

eiλ′S′
ape−iλ′S′ = iap, (11.89)

eiλ′S′
bpe−iλ′S′ = ibp. (11.90)

This is achieved by taking

S′ =
∑

p

(
a†

pap + b†pbp

)
,

and λ′ = −π/2. The reader can show that [S, S′] = 0.
Combining these results and defining

U (P) ≡ ei π
2 S′

e−iηP
π
2 S = exp i

π

2
(S′ − ηP S)

= exp i
π

2

∑
p

(
a†

pap + b†pbp − ηP a†
pa−p − ηP b†pb−p

)
. (11.91)

Note that U (P) is indeed a unitary operator satisfying

U (P)|0〉 = |0〉,

as can be easily seen by expanding the exponentials. Thus the vacuum state has even
parity. Moreover considering the momentum operator (11.45) we see that

U (P)†P̂U (P) = −P̂,

consistently with the fact that the eigenvalues of the physical momentum are ordinary
vectors under a space reflection.

On the other hand U (P) commutes with the Hamiltonian, implying the conserva-
tion of the parity operator: [U (P), Ĥ ] = 0.8

On the quantum field φ̂(x, t)we can also define a transformation with no analogue
in the non-relativistic quantum theory: the charge conjugation C . It corresponds to

8Since the parity transformation is involutive, U (P)2 = Î , its eigenvalues can only be ±1.
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exchanging particles for antiparticles, that is

ap → ηC bp; bp → ηC ap, (11.92)

or, in terms of the field operator,

φ̂(x) → ηC φ̂†(x),

where ηC is a constant which, defining C as an involutive transformation, can be
chosen to be ±1. This operation is clearly a symmetry of the charged scalar theory.
The construction of the unitary operatorU (C) implementing such transformation on
the Hilbert space of the states, namely

U (C)† ap U (C) = ηC bp,

U (C)† bp U (C) = ηC ap,

U (C)† φ̂(x) U (C) = ηC φ̂†(x), (11.93)

can be done by the same procedure used for the parity transformation. The result is

U (C) = exp

⎡
⎣ iπ

2
ηC

∑
p

(
a†

pap + b†pbp − ηC a†
pbp − ηC b†pap

)
⎤
⎦. (11.94)

It is easily verified thatU (C) is unitary and satisfiesU (C)|0〉 = |0〉. Moreover, from
(11.63) and (11.64) it follows

U (C)† ĴμU (C) = − Ĵμ; U (C)† Q̂U (C) = −Q̂. (11.95)

That means that, under charge conjugation the sign of the charge is flipped, according
to our previous discussion in Sect. 11.2.1.

We finally consider time reversal T : t → −t . In classical canonical mechanics
time-reversal leaves the positionx of a particle unchangedwhile it reverses its velocity

v = dx/dt → dx/d(−t) = −v

and thus its linear momentum p → −p, as well as the angular momentum (including
spin). In summary

T : x → x; p → −p; J → −J. (11.96)
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Time reversal is a symmetry of classical Newtonian mechanics, where force is taken
to depend only on the position on the particle:

d2x(t)

dt2
= F(x(t)) ⇔ d2x(−t)

dt2
= d2x(−t)

d(−t)2
= F(x(−t)), (11.97)

that is if x(t) is a solution to the Newton equation, also x(−t) is. T , however, is
not a symmetry when we consider, for instance, the action of the Lorentz force on a
moving charge, which depends on the velocity of the particle, and thus in general is
not invariant under it.

As far as field theory is concerned, the Klein-Gordon equation is invariant under
the transformation

φ̂(x, t) → ±φ̂(x,−t), (11.98)

but the equal time commutation relations, for example

[φ̂(x, t),
∂

∂t
φ̂†(y, t)] = i�δ3(x − y), (11.99)

do not exhibit this invariance unless (11.99) is accompanied by the change i → −i .
That means that we must include in the time reversal operator U (T )

U (T )† φ̂(x, t)U (T ) = ηT φ̂(x,−t), (11.100)

the complex conjugation operator K . This operator is defined by the following prop-
erties9

K (λ1 |a〉 + λ2|b〉) = λ∗
1|K a〉 + λ∗

2|K b〉; 〈a|K b〉 = 〈b|K a〉, 〈K a|K b〉 = 〈b|a〉,
(11.101)

where |a〉 is a generic state, λ is a c-number and the last equation expresses the
fact that the norm is not affected by complex conjugation: given a generic state |a〉,
we indeed have 〈K a|K a〉 = 〈a|a〉. The first of (11.101) represents the property of
K of being antilinear. We define, for a generic antilinear operator A, its hermitian
conjugate A† through the relation 〈a|Ab〉 = 〈b|A†a〉, for any |a〉 and |b〉 (note
the difference with respect to the definition of the analogous quantity for a linear
operator S: 〈a|Sb〉 = 〈S†a|b〉). An antilinear operator A is antiunitary if, and only
if, for any two states: 〈Aa|Ab〉 = 〈b|a〉 (one can show that if A preserves the
norm of any vector it is antiunitary, so that antiunitarity for an antilinear operator
is equivalent to norm-preserving). If A is antiunitary we have A†A = AA† = Î ,
since 〈Aa|Ab〉 = 〈b|A†Aa〉 = 〈b|a〉, for any |a〉 and |b〉. The second of (11.101)
characterizes then K as a hermitian operator (K = K †), while the last of (11.101)

9For a formal treatment of this issue see for instance A.Messiah, Quantum Mechanics, Dover 1999.
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expresses the fact that K is antiunitary: K †K = K K † = Î . The complex conjugation
K , being antiunitary and hermitian, squares to the identity: K 2 = Î . From this
property one can show that there exists an orthonormal basis of vectors |un〉 on
which K |un〉 = |un〉 (real basis). With respect to a real basis, the action of K on any
vector simply amounts to changing its components into their complex conjugates,
hence the name complex conjugation for K .

If Ô is a linear operator and A is an antilinear transformation, the following
relation can be easily derived:

〈a|A† Ô A|b〉 = 〈a|A† Ô Ab〉 = 〈Ô Ab|Aa〉 = 〈Ab|Ô†|Aa〉,

which implies that, if we take A to be antiunitary and Ô = i Î , we then have:
〈a|A† i A|b〉 = −i 〈Ab|Aa〉 = −i 〈a|b〉, for any two states |a〉 and |b〉. Symbolically
this property can be expressed by the relation:

A† i A = −i.

where the identity operator on the right hand side is understood. We must require
U (T ) to satisfy the same properties (11.101) as K , namely to be antiunitary, so that

U (T )† [φ̂(x, t),
∂

∂t
φ̂†(y, t)] U (T ) = U (T )† i� U (T )δ3(x − y),

implies

[φ̂(x,−t),
∂

∂(−t)
φ̂†(y,−t)] = −i�δ3(x − y),

and the equal time commutation relations are left invariant.
Let us write the time-reversal operator as

U (T ) = U K , (11.102)

where U is a unitary transformation. The operator U (T ) defined above is indeed
antiunitary since, defining for a generic couple of states |T a〉 ≡ U (T )|a〉, |T b〉 ≡
U (T )|b〉, we have:

〈T a|T b〉 = 〈U K a|U K b〉 = 〈K a|K b〉 = 〈b|a〉. (11.103)

Requiring it to satisfy (11.100), we get

U† ap U = ηT a−p; U† bpU = ηT b−p, (11.104)

ηT = ±1, so that we can take U to have the same form as U (P) in Eq. (11.91), with
ηP → ηT . To show this, let us implement U (T ) defined above on the field operator
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φ̂(x) defined in (11.19) and written in the discrete notation:

U (T )† φ̂(x)U (T ) =
∑

p

�√
2EpV

(
ηT a−p e

i
�

p·x + ηT b†−p e− i
�

p·x)

= ηT

∑
p

�√
2EpV

(
ap e− i

�
p·xT + b†p e

i
�

p·xT
)

= ηT φ̂(x,−t),

where xT ≡ (xμ
T ) = (−ct, x). In the above derivation we have used K † e± i

�
p·x K =

e∓ i
�

p·x and changed the summation variable from p to −p.
We can also verify that

U (T )† P̂ U (T ) = −P̂,

and, as far as the current operator is concerned, we also find from (11.63)

U (T )† ĵ(x, t) U (T ) = −ĵ(x,−t); U (T )† ĵ0(x, t) U (T ) = ĵ0(x,−t).

Both these results are in agreement with our physical intuition.

11.4 Invariant Commutation Rules and Causality

Let us note that all the commutation rules among field operators considered so far
are equal-time commutators. We now consider commutators at different times. We
show that the commutator

D(x − y) = c

�

[
φ̂(x), φ̂†(y)

]
, (11.105)

is aLorentz-invariant function. Furthermore, if the four-dimensional distancebetween
x ≡ (xμ) e y ≡ (yμ) is space-like, that is if (x − y)2 = (x0 − y0)2 − |x − y|2 < 0,
then the commutator is zero.

To show these properties we decompose φ̂(x) and φ̂†(x) in their positive energy
and negative energy parts, according to (11.58) and (11.59). We clearly have
[φ̂+(x), φ̂†

+(y)] = [φ̂−(x), φ̂†
−(y)] = 0, so that

D(x − y) = c

�
[φ̂+(x), φ̂†

−(y)] + c

�
[φ̂−(x), φ̂†

+(y)]. (11.106)

From the commutation rules (11.32) between a, a† and b, b†, we find

c

�
[φ̂±(x), φ̂†

∓(y)] = ±D±(x − y), (11.107)
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where

D±(x − y) = � c
∫

d3p
(2π�)3

1

2Ep
e∓ i

�
p·(x−y), (11.108)

and therefore Eq. (11.106) becomes

D(x − y) = D+(x − y) − D−(x − y) = −2i� c
∫

d3p
(2π�)3

1

2Ep
sin

p · (x − y)

�
.

(11.109)

Using then Eq. (10.26) we find that D(±)(x − y) and D(x − y) can be written in the
following manifestly Lorentz-invariant form

D+(x − y) = �

∫
d4 p

(2π�)3
δ(p2 − m2c2)θ(p0)e− i

�
p·(x−y),

D−(x − y) = �

∫
d4 p

(2π�)3
δ(p2 − m2c2)θ(−p0)e− i

�
p·(x−y),

D(x − y) = �

∫
d4 p

(2π�)3
δ(p2 − m2c2)ε(p0)e− i

�
p·(x−y), (11.110)

where

θ(p0) =
{
1 for p0 > 0
0 for p0 < 0,

(11.111)

and ε(p0) = θ(p0) − θ(−p0).
The relativistic invariance of the three D-functions follows from the fact that

the functions θ(p0), θ(−p0), ε(p0) are themselves invariant under proper Lorentz
transformations since the four-vector pμ is non-spacelike. Indeed the restriction
E > 0 due to the presence of θ(p0) on the right hand side of Eq. (11.110) implies
that, when expanding δ(p2 − m2c2) according to the (10.24)–(10.26), we must only
take the positive energy solution E > 0 of p2 − m2c2 = 0. This choice is Lorentz-
invariant (more precisely it is invariant under proper Lorentz transformations) since
pμ is non-spacelike, as it was proven in full generality in Chap.4: If p0 > 0 in a
given reference frame it will keep the same sign in any other frame.10 The same
argument holds for the functions θ(−p0) and ε(p0).

10Let us repeat here the argument given in Chap.4 in a more compact form. Suppose p0 > 0, in a
frame S. In a Lorentz transformed frame S′ moving at velocity v relative to S, we have

p′0 = γ
(

p0 − v
c

· p
)

≥ γ

(
p0 − |v|

c
|p|
)

.

http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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We conclude that D(x − y) = D(x0 − y0, x − y) as well as D±(x − y) are
Lorentz-invariant functions, namely

D±(x − y) = D±(� · (x − y)),

where� ≡ (�μ
ν) is a proper Lorentz transformation and�·(x−y) ≡ �μ

ν(xν−yν).
Recalling our discussion in Sect. 1.5.1, we know that when (x − y)2 < 0 there exists
a frame where x0 = y0, in which

D(x − y) ≡ D(0, x − y) = 2i� c
∫

d3p
(2π�)3

1

2Ep
sin

p · (x − y)

�
= 0, (11.112)

since the integrand is odd forp → −p. This implies that D+(0, x−y) = D−(0, x−y)

as can be also verified from their explicit expressions:

D±(0, x − y) = � c
∫

d3p
(2π�)3

1

2Ep
e∓ i

�
p·(x−y)

= � c
∫

d3p
(2π�)3

1

2Ep
e

i
�

p·(x−y). (11.113)

On the other hand Lorentz invariance of the D-functions implies that the properties
(11.112) and (11.113) must hold in any any Lorentz frame. Therefore from (11.109)
and (11.105) we conclude that if the four-dimensional distance is spacelike, (x −
y)2 < 0, the function D(x − y), vanishes

(x − y)2 < 0 ⇒ D(x − y) = c

�
[φ̂(x), φ̂(y)†] = 0, (11.114)

and moreover
D+(x − y) = D−(x − y). (11.115)

This result is important in order to have a causal theory. The operators φ̂(x) and
φ̂†(y) are associated with the field excitations which can be interpreted as particles
at the points xμ ed yμ of space-time. If the two events related to the presence of
the two quanta are separated by a space-like distance, (x − y)2 < 0, they cannot

(Footnote 10 continued)
However p0 =

√
|p|2 + m2c2 ≥ |p| and therefore, since |v|

c < 1

p′0 ≥ γ

(
1 − |v|

c

)
|p| > 0.

http://dx.doi.org/10.1007/978-3-319-22014-7_1
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be correlated since this would imply the presence of a signal traveling at a velocity
greater than c, thus violating the causality principle, as explained in Chap.1.11

The requirement of commutativity of two observables separated by a space-like
distance is referred to as the principle of microcausality. It is also worth noting that
this result is guaranteed by the cancellation of the contributions from D±(x − y)

in the commutator, related in turn to the presence of positive and negative energy
solutions φ̂+(x), φ̂−(x). The very presence of these two solutions and, in particular,
of the negative energy ones, so embarrassing for the classical Klein-Gordon equation,
is therefore essential for the consistency of the quantum field theory.

For the sake of completeness we now show that D+(0, x − y) is different from
zero, and give its explicit expression.

D+(0, x − y) = � c
∫

d3p
(2π�)3

1

2Ep
e

ip·(x−y)
� . (11.116)

Using polar coordinates for the variable p, we have d3p = |p|2 sin θd|p|dθdϕ, so
that:

�

c
D+(0, x − y) = �

2

(2π�)3
(2π)

∞∫

0

d|p| |p|2
2Ep

1∫

−1

d(cos θ)e
i
�

|p||x−y| cos θ

= 1

(2π)2�

∞∫

0

d|p| |p|2
2Ep

�

(
e

i
�

|p||x−y| − e− i
�

|p||x−y|
)

i |p||x − y|

= 1

(2π)2

∞∫

0

d|p| |p|
Ep|x − y| sin

( |p|
�

|x − y|
)

= 1

(2π)2c

∞∫

0

d|p| |p|√|p|2 + m2c2
sin

( |p|
�

|x − y|
)

1

|x − y|

= 1

(2π)2

m

|x − y| K1

(mc

�
|x − y|

)
. (11.117)

11Wenote that the requirement of causality refers to observables and in general field operators are not
necessarily observables. However quite generally observables in a physical system are constructed
in terms of local functions of the field variables so that the requirement of causality can be expressed
in terms of the fields themselves. The requirement of commuting operators for space-like separations
is also called “locality” and, correspondingly, the quantum field theory is referred to as a “local
theory”. Locality assures that the results of two measures made at a space-like distance cannot have
any influence on one another, there being no correlation between the two events.

http://dx.doi.org/10.1007/978-3-319-22014-7_1
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where Kn(z) are the modified Bessel functions of the second type and we have used
the general formula

∞∫

0

dzz
sin(bz)√
z2 + γ2

e−β
√

z2+γ2 = bγ√
b2 + β2

K1(γ
√

b2 + β2). (11.118)

In our case we have z = |p|, γ = mc, b = |x−y|
�

, β = 0. The asymptotic behavior
of K1(s) as s → ∞ is:

K1(s) =
√

π

2s
e−s

(
1 + O

(
1

s

))
�
√

π

2s
e−s, (11.119)

and therefore for large space-time separation |x − y| → ∞

D+(0, x − y) ≈ 1

(2π)2

√
πmc

2�

1

|x − y| 32
e− mc

�
|x−y|, (11.120)

that is D+ is sensibly different from zero only within spatial distances of the order
of the Compton wave-length λ = �

mc of the particle.

11.4.1 Green’s Functions and the Feynman Propagator

The invariant D-functions discussed in the previous paragraph are strictly related
to another invariant function which plays a major role in the theory of interacting
fields: the Feynman propagator function DF (x − y). It is defined to be the vacuum
expectation value of the so called time-ordered product:12

DF (x − y) = c

�
〈0|T φ̂(x)φ̂†(y)|0〉, (11.122)

where

T φ̂(x)φ̂†(y) =
{

φ̂(x)φ̂†(y) x0 > y0,
φ̂†(y)φ̂(x) y0 > x0.

(11.123)

andwe note that there is no ambiguitywhen x0 = y0 since in this case φ̂(x) and φ̂†(y)

commute. Furthermore the fact that φ̂(x) and φ̂†(y) commute at space-like distances

12For a hermitian (and thus neutral) field

DF (x − y) = c

�
〈0|T φ̂(x)φ̂(y)|0〉. (11.121)
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ensures that time ordering remains invariant under Lorentz transformations, and thus
that the Feynman propagator is Lorentz-invariant.

To compute DF (x − y) we note that if x0 > y0, using Eq. (11.108) and the fact
that the destruction operators annihilate the vacuum, we have

〈0|T φ̂(x)φ̂†(y)|0〉 = 〈0|φ̂+(x)φ̂†
−(y)|0〉

= 〈0|
[
φ̂+(x), φ̂†

−(y)
]
|0〉 = �

c
D+(x − y).

Similarly for y0 > x0 we get

〈0|T φ̂(x)φ̂†(y)|0〉 = 〈0|[φ̂†
+(y), φ̂−(x)]|0〉 = �

c
D−(x − y). (11.124)

We may then write the Feynman propagator in the following compact form:

DF (x − y) = θ(x0 − y0)D+(x − y) + θ(y0 − x0)D−(x − y). (11.125)

The physical meaning of the Feynman propagator is easily understood if we observe
that for x0 > y0, DF (x − y) = 〈0|φ̂+(x)φ̂†

−(y)|0〉, that is DF (x − y) measures
the probability amplitude that a particle be created at y at the instant y0 and then
destroyed at x at the instant x0, while, if y0 > x0, DF (x − y) = 〈0|φ̂†

+(y)φ̂−(x)|0〉
is the probability amplitude that an antiparticle be created in x at the time x0 and
then destroyed in y at the time y0.

If we now use the explicit expression of D+(x − y) and D−(x − y) we may write

DF (x − y) =
[
θ(x0 − y0)D+(x − y) + θ(y0 − x0)D−(x − y)

]

= c�

∫
d3p

(2π�)3

1

2Ep

[
θ(x0 − y0)e− i

�
p·(x−y) + θ(y0 − x0)e

i
�

p·(x−y)
]
.

(11.126)

We are now going to prove that, using the Cauchy residue theorem, we can write
the above expression for the Feynman propagator in terms of a an integral in the
complex p0 plane along the path CF in Fig. 11.1, as follows:

DF (x − y) = i �
2
∫

d3p
(2π�)3

∫

CF

dp0

2π�

e− i
�

p·(x−y)

p2 − m2 c2

= i�2
∫

d3p
(2π�)3

∫

CF

dp0

2π�

e− i
�

(
p0(x0−y0)−p·(x−y)

)

(
p0 − p̄0

) (
p0 + p̄0

) , (11.127)
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Fig. 11.1 Integration in the complex p0 plane

Fig. 11.2 The x0 > y0 case

where, as usual, p · (x − y) ≡ p0(x0 − y0)− p · (x − y) and p̄0 ≡ √|p|2 + m2 c2 =
Ep/c > 0. To show thiswe observe that if x0 > y0 we can close the contourCF in the
lower p0 half-plane, where the imaginary part of p0 is negative, along a semi-circle
C (−)∞ of infinite radius, so that the integral along C (−)∞ be exponentially suppressed,
see Fig. 11.2. Indeed, denoting the integrand in (11.127) by f (p0, p):

f (p0, p) ≡ i �

2π

1

p2 − m2 c2
e− i

�
p·(x−y),

the integral of f along C (−)∞ vanishes since limIm(p0)→−∞ e
1
�
Im(p0) (x0−y0) = 0. We

can then write:
∫

CF

f (p0, p) dp0 =
∫

CF +C(−)∞

f (p0, p) dp0 = −2π i Resp̄0( f )

= −2π i [(p0 − p̄0) f (p0, p)]p0= p̄0 = �

2 p̄0
e− i

�
p·(x−y)

∣∣∣
p0= p̄0

.
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Therefore, for x0 > y0, the integral in (11.127) reads:

∫
d3p

(2π�)3

∫

CF

dp0 f (p0, p) = � c
∫

d3p
(2π�)3

e− i
�

p·(x−y)

2 Ep
= DF (x − y).

which is consistent with Eq. (11.126). If instead y0 > x0 we close the contour in the
upper half-plane along the semi-circle C (+)∞ , see Fig. 11.3, and obtain:

∫

CF

f (p0, p) dp0 =
∫

CF +C(+)∞

f (p0, p) dp0 = 2π i Res− p̄0( f )

= �

2 p̄0
e

i
�

(
p̄0(x0−y0)+p·(x−y)

)
.

Inserting the above result in (11.127) and changing the integration variable from p
to −p, we find

∫
d3p

(2π�)3

∫

CF

dp0 f (p0, p) = � c
∫

d3p
(2π�)3

e
i
�

p·(x−y)

2 Ep
= DF (x − y),

which completes the proof of Eq. (11.127).

Fig. 11.3 The y0 > x0 case
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Fig. 11.4 Prescription for the Feynman propagator: Shifting the poles in the p0 plane

Summarizing, the Feynman propagator is defined by the integral over the four-
momentum space of f (p0, p), with the prescription that the integral over p0 be
computed along CF . Such prescription is equivalent to integrating over the real p0

axis and shifting at the same time the poles to±( p̄0−i ε)), where ε is an infinitesimal
displacement, as shown in Fig. 11.4. The denominator p2 − m2 c2 of f (p0, p), with
this prescription, changes into p2 − m2 c2 + i ε and Eq. (11.127) can be also written
as follows

DF (x − y) = i�2
∫

CF

d4 p

(2π�)4

e− i
�

p·(x−y)

p2 − m2c2

=
∫

d4 p

(2π�)4
e− i

�
p·(x−y) DF (p), (11.128)

where

DF (p) ≡ i�2

p2 − m2c2 + iε
, (11.129)

Equation (11.129) is the expression of the Feynman propagator in momentum space.
We now show that DF (x − y) is a Green’s function for the Klein-Gordon equa-

tion. Let us briefly recall the notion of Green’s function for a linear differential
equation. Consider the problem of finding the function f (xμ) which satisfies the
inhomogeneous differential equation

L(x) f (x) = g(x), (11.130)

L(x) being a local differential operator. If there exists a unique solution for each
g(x), there must exist an inverse operator L−1 such that, formally:

f (x) = L−1g(x).

Computing the operatorL−1, however, is more than just taking the inverse toL, since
it denotes that operation plus the boundary conditions. By definition the Green’s
function G(x, y) is the solution of Eq. (11.130) where g(x) = −i δ4(xμ − yμ) and
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corresponds to L−1 together with the associated boundary conditions. The solution
of the differential equation (11.130) is then given by the formula

f (xμ) = f0(xμ) + i
∫

d4yG(xμ, yμ)g(yμ). (11.131)

where f0(xμ) is the general solution of the associated homogeneous equation. This
is easily verified applying the operator L to both sides of (11.131).

Let us then consider the Klein-Gordon equation describing the interaction of a
classical field φ(x) with an external source J (x):

(
�x + m2c2

�2

)
φ(x) = J (x). (11.132)

Identifying L(xμ) with the operator �x + m2c2

�2 and g(xμ) with J (xμ), the general
solution of Eq. (11.132) can be written as

φ(x) = φ0(x) + i
∫

d4y D(x, y)J (y) (11.133)

where φ0(x) is the general solution of the homogeneous part of the Klein-Gordon

equation
(
�x + m2c2

�2

)
φ0(x) = 0 while the last term is a particular solution of the

inhomogeneous equation. Acting with the Klein-Gordon operator on (11.128) we
find

(
� + m2c2

�2

)
DF (x − y) = i�2

∫
d4 p

(2π�)4
e− i

�
p·(x−y) 1

�2

(
−p2 + m2c2

)
DF (p)

= −iδ(4)(x − y), (11.134)

so that DF (x − y) is the Green’s function of the Klein-Gordon equation together
with the boundary conditions implicit in the choice of the integration contour CF .

Since the Green’s function is not unique we may introduce two further Green’s
functions corresponding to different boundary conditions, defined as follows:

DR(x − y) = c

�
θ(x0 − y0)

[
φ̂(x), φ̂†(y)

]
, (11.135)

named retarded Green’s function and

DA(x − y) = c

�
θ(y0 − x0)

[
φ̂(x), φ̂†(y)

]
,
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named advanced Green’s function. Direct computation yields the following expres-
sion for the retarded Green’s function:

DR(x − y) = c

�
θ(x0 − y0)

([
φ̂+(x), φ̂†

−(y)
]

+
[
φ̂−(x), φ̂†

+(y)
])

= θ(x0 − y0) (D+(x − y) − D−(x − y))

= θ(x0 − y0)�c
∫

d3p
(2π�)3

1

2Ep

(
e− i

�
p(x−y) − e

i
�

p(x−y)
)

.

(11.136)

Proceeding as in the case of the Feynman propagator we may write DR(x − y) as
the integral to the function f (p0, p) with a specific prescription

DR(x − y) = i�2
∫

d3 p

(2π�)3

∫

CR

dp0

2π�

e− i
�

p·(x−y)

p2 − m2 c2
=
∫

d3 p

(2π�)3

∫

CR

dp0 f (p0, p),

where CR is the contour shown in Fig. 11.5. As shown in the figure, if x0 > y0

the contour should be closed on the lower half plane, giving two residues, which
reproduce the expression (11.136), while if x0 < y0 the contour should be closed in

Fig. 11.5 Prescription for the retarded Green’s function
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Fig. 11.6 Prescription for
the advanced Green’s
function

the upper half plane, yielding zero. By the same token one shows that the advanced
Green’s function DA(x − y) can be written as

DA(x − y) = i�2
∫

d4 p

(2π�)4

e− i
�

p(x−y)

p2 − m2c2
,

where the p0 integration now has to be done along the contour CA of Fig. 11.6.

11.5 Quantization of the Dirac Field

The consistent quantization of the bosonic spin 0 scalar field illustrated in this chapter
and of the spin 1 electromagnetic field pursued in Chap.6 was effected by replac-
ing the classical Poisson brackets between dynamical variables with commutators
between operators. This quantization procedure leads, among other things, to a posi-
tive definite energy and in general to a consistent description of the quantized dynam-
ical variables.

If we now turn to the quantization of the Dirac field which describes spin 1/2
particles and is solution to the Dirac equation, we shall show that the aforementioned
prescription does not work. Indeed we shall shortly see that in order to have a positive
definite field energy at the quantum level we shall be forced to trade the canonical
Poisson brackets in the classical theory for anticommutation rules among operators.

To show this it is instructive to first pursue the canonical approach which trades
the classical Poisson brackets (10.134), (10.135) for commutation rules showing that
it unavoidably leads to inconsistent results.

Let us start from the classical Poisson brackets of the previous chapter, Sect. 10.5.
Replacing ψ and π = i�ψ† with the field operators ψ̂(x) and π̂(x) = i�ψ̂† and
implementing the replacement (11.1), we find

[
ψ̂α(x, t), ψ̂†

β(y, t)
]

= δ3(x − y)δα
β ,

[
ψ̂α(x, t), ψ̂β(y, t)

]
=
[
ψ̂†

α(x, t), ψ̂†
β(y, t)

]
= 0,

(11.137)

where ψ̂(x, t) and ψ̂†(x, t), being time-dependent operators, are described in the
Heisenberg picture.

http://dx.doi.org/10.1007/978-3-319-22014-7_6
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
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Ifwedefine theHamiltonianoperator by replacing in the expressionof the classical
one (10.136), classical with quantum fields, the Heisenberg equation obeyed by ψ̂
reads:

˙̂
ψ(x, t) = − i

�

[
ψ̂(x, t), Ĥ(t)

]

= − i

�

∫

V

d3y
{ [

ψ̂(x, t), ψ̂†(y, t)
]
(−i�c αi∂i + mc2 β)ψ̂(y, t)

}

= − i

�
(−i�c αi∂i + mc2β)ψ̂(x, t), (11.138)

implying:
i� ˙̂

ψ(x) = (−i�c αi∂i + mc2 β)ψ̂(x),

that is (
i�γμ∂μ − mc

)
ψ̂(x) = 0. (11.139)

As for the complex scalar field we find that the field operators satisfy the same
equations as their classical counterparts.

Proceeding as in the classical casewe expand the field ψ̂(x) in terms of the positive
and negative energy solutions of the classical equation of motion, as in (10.147):

ψ̂(x) =
∫

d3p
(2π�)3

√
mc2V

Ep

2∑

r=1

[
c(p, r)u(p, r)e−i p·x

� + d†(p, r)v(p, r)ei p·x
�

]
,

(11.140)

ψ̂†(x) =
∫

d3p
(2π�)3

√
mc2V

Ep

2∑

r=1

[
c†(p, r)u†(p, r)ei p·x

� + d(p, r)v†(p, r)e−i p·x
�

]
,

(11.141)

where c(p, r) and d†(p, r) are now operators and the overall normalization has
been chosen in order for them to be dimensionless. Just as we did for the scalar
field operator, it is convenient to split ψ̂(x) into its positive and negative energy
components, ψ̂+(x) and ψ̂−(x) respectively:

ψ̂(x) = ψ̂+(x) + ψ̂−(x),

ψ̂+(x) =
∫

d3p
(2π�)3

√
mc2V

Ep

2∑

r=1

c(p, r)u(p, r)e−i p·x
� ,

ψ̂−(x) =
∫

d3p
(2π�)3

√
mc2V

Ep

2∑

r=1

d†(p, r)v(p, r)ei p·x
� . (11.142)

http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
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We also define ψ̂†
+(x) ≡ (ψ̂−(x))† and ψ̂†

−(x) ≡ (ψ̂+(x))†, as the corresponding

components of ψ̂†(x). Let us now determine the commutation rules obeyed by the
c, d, c†, d† operators. In order to do this we observe that the expansions (11.140)
and (11.141) can be inverted to compute the operator coefficients c(p, r) and d(p, r)

in terms of ψ̂(x) and ˆ̄ψ(x). For example we can show that:

c(p, r) =
√

mc2

V Ep

∫

V

d3xū(p, r)γ0ψ̂(x)e
i
h p·x . (11.143)

Indeed:

c(p, r) =
√

mc2

V Ep

∫

V

d3xū(p, r)γ0ψ̂(x)e
i
�

p·x

=
∫

V

d3x
∫

d3q
(2π�)3

mc2√
Ep Eq

2∑

s=1

[
ū(p, r)γ0u(q, s)c(q, s)e−i (q−p)·x

�

+ ū(p, r)γ0v(q, s)d†(q, s)ei (q+p)·x
�

]

=
∫

d3q
(2π�)3

mc2√
Ep Eq

2∑

s=1

[
ū(p, r)γ0u(q, s)c(q, s)(2π�)3δ3(p − q)

+ ū(p, r)γ0v(q, s)d†(q, s)(2π�)3δ3(p + q)e
2i
h Ept

]

= mc2

Ep

2∑

s=1

[
ū(p, r)γ0u(p, s)c(p, s) + ū(p, r)γ0v(−p, s)d†(−p, s)e

2i
h Ept

]

= mc2

Ep

2∑

s=1

Ep

mc2
δrsc(p, s) = c(p, r),

where in the last line we used (10.172) and (10.174).
In an analogous way we can compute the operator coefficient d(p, r):

d(p, r) =
√

mc2

V Ep

∫

V

d3x ˆ̄ψ(x)γ0v(p, r)e
i
h p·x ,

and their hermitian conjugates

c†(p, r) =
√

mc2

V Ep

∫

V

d3x ˆ̄ψ(x)γ0u(p, r)e− i
h p·x , (11.144)

http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
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d†(p, r) =
√

mc2

V Ep

∫

V

d3xv̄(p, r)γ0ψ̂(x)e− i
h p·.x .

It is now possible to compute the commutators among the operators c, c†, d, d†. We
find

[
c(p, r), c†(q, s)

]
= mc2

V
√

Ep Eq

∫

V

d3x
∫

V

d3y u†(p, r)
[
ψ̂(x, t), ψ̂†(y, t)

]
u(q, s)

× e
i
h (p·x−q·y) = (2π�)3

V
δ3(p − q)δrs, (11.145)

where we used (11.137) and (10.172). Analogous computations also give

[
d(p, r), d†(p, s)

]
= (2π�)3

V
δ3(p − q)δrs, (11.146)

while all the other commutators are zero

[c, c] =
[
c†, c†

]
= [d, d] =

[
d†, d†

]
= 0.

[c, d] =
[
c, d†

]
= 0.

Using (10.136) it is now easy to compute the energy Ĥ

Ĥ = i�
∫

V

d3xψ̂†∂t ψ̂ = i�
∫

V

d3x
∫

d3p
(2π�)3

√
mc2V

Ep

2∑

r=1

[
c†(p, r)u†(p, r)e

ip·x
�

+ d(p, r)v†(p, r)e− i p·x
�

] ∫ d3q
(2π�)3

√
mc2V Eq

(−i

�

)

×
2∑

r=1

[
c(q, s)u(q, s)e− iq·x

� − d†(q, s)v(q, s)e
iq·x
�

]
.

The terms containing c†(p, r)d†(q, s) and d(p, r)c(q, s) give a vanishing contribu-
tion since the integration in dx implies q = −p and the resulting factors are zero in
virtue of Eqs. (10.174):

u†(p, r)v(−p, s) = 0; v†(p, r)u(−p, s) = 0.

http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
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Using then (10.172) and (10.173) we finally find:

Ĥ =
∫

d3p
(2π�)3

V Ep

[
c†(p, r)c(p, r) − d(p, r)d†(p, r)

]
. (11.147)

A similar computation gives the quantum momentum operator as it follows from
(10.127):

P̂i = −i�
∫

V

d3xψ̂†∂i ψ̂

=
∫

d3p
(2π�)3

V pi
[
c†(p, r)c(p, r) − d(p, r)d†(p, r)

]
. (11.148)

where a partial integration has been used.
Finally we compute the conserved charge Q̂ associated with the four-current

Ĵμ = e ˆ̄ψγμψ̂:

Q̂ = e
∫

V

d3xψ̂†(x)ψ̂(x)

= e
∫

d3p
(2π�)3

V
[
c†(p, r)c(p, r) + d(p, r)d†(p, r)

]
. (11.149)

Let us now observe that Eq. (11.147) implies that the energy H can have both positive
and negative values, even if we normal order it by dropping the infinite ground state
energy:

Ĥ =
∫

d3p
(2π�)3

V Ep

[
c†(p, r)c(p, r) − d†(p, r)d(p, r)

]
. (11.150)

On the other hand, the charge operator Q̂ turns out to have the same sign for particles
and antiparticles (it is positive definite if e > 0, negative definite is e < 0).

Thus the negative energy problem is not solved by field quantization and, more-
over, also the charge operator, being positive definite, gives an inconsistent result,
owing to the experimental fact that particles and antiparticles (e.g. an electron and a
positron) have opposite charges. Such conclusions are of course unacceptable.

To avoid these difficulties we replace the equal-time commutation relations
(11.137) of the Dirac field with equal-time anticommutation relations, that is we
set

{
ψ̂α(x, t), ψ̂†

β(y, t)
}

= δ3(x − y)δα
β ,

{
ψ̂α(x, t), ψ̂β(y, t)

}
=
{
ψ̂†

α(x, t), ψ̂†
β(y, t)

}
= 0. (11.151)

http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
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Thus for spin 1/2 fields we assume that the correspondence between the classical
Poisson brackets is given by

{ , }P.B. → − i

�
{ , } ,

where {A, B} = A · B + B · A is the anticommutator. The Heisenberg equation
obeyed by ψ̂(x, t) is, however, still written in terms of a commutator:

i� ˙̂
ψ(x, t) =

[
ψ̂(x, t), Ĥ(t)

]
. (11.152)

Indeed, if we write Eq. (11.152) explicitly

i� ˙̂
ψ(x, t) =

[
ψ̂(x, t), Ĥ(t)

]

=
⎡
⎣ψ̂(x),

∫

V

d3y ψ̂†(y, t)(−i�c αi∂i + βmc2) ψ̂(y, t)

⎤
⎦ , (11.153)

and use the identity
[C, A B] = {A, C} B − A {B, C} ,

identifying the operators in the last line of (11.153) with C, A, B respectively, we
easily retrieve the Dirac equation for ψ̂(x, t).

Along the same lines which previously led to the derivation of the commutation
rules (11.145) and (11.146), we nowfind the following anticommutation rules among
the operators c, c†, d, d†:

{
c(p, r), c†(q, s)

}
= (2π�)3

V
δ3(p − q)δrs =

{
d(p, r), d†(q, s)

}
, (11.154)

all other anticommutators being zero. The Hamiltonian is still given by Eq. (11.147)
since commutation rules were not used in deriving (11.149). Now, however, we can
use the anticommutation relations (11.154) to write

d(p, r)d†(p, r) → −d†(p, r)d(p, r) + (2π�)3

V
δ3(0). (11.155)

Subtracting the infinite zero-point energy we find

Ĥ =
∫

d3p
(2π�)3

V Ep

[
c†(p, r)c(p, r) + d†(p, r)d(p, r)

]
. (11.156)

The same result is obtained using a normal ordering prescription, that is by requir-
ing that in all physical operators the creation operators must be to the left of the
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destruction operators. However, since in the present case the operators are fermionic,
that is they obey anticommutation rules, we must take into account an extra minus
sign when swapping the position of two of them:

: cc† := −c†c = − : c†c :, : dd† := −d†d = − : d†d : . (11.157)

Defining all the physical quantities in terms of normal ordered products of field
operators, we have:

Ĥ = i�
∫

V

d3x : ψ̂†∂t ψ̂ :=
∫

d3p
(2π�)3

V Ep

2∑

r=1

(N̂ (c)
p,r + N̂ (d)

p,r ), (11.158)

P̂i = i�
∫

V

d3x : ψ̂†∂i ψ̂ :=
∫

d3p
(2π�)3

V pi
2∑

r=1

(N̂ (c)
p,r + N̂ (d)

p,r ), (11.159)

Q̂ =
∫

V

d3x : ψ̂†ψ̂ :=
∫

d3p
(2π�)3

V
2∑

r=1

(N̂ (c)
p,r − N̂ (d)

p,r ), (11.160)

where N̂ (c)
p,r = c†(p, r)c(p, r) and N̂ (d)

p,r = d†(p, r)d(p, r).
We see that the adoption of the anticommutation rules (11.151) leads to an Hamil-

tonian operator which is positive definite while the charge operator may assume both
positive and negative values. In conclusion, much like in the case of the complex
scalar field associated with spin 0 particles, and the electromagnetic field associated
with the spin 1 photons, we have found that for spin 1/2 particles the quantum field
is represented as an infinite collection of two types of quantum harmonic oscillators:
For each single particle state (p, r), there are oscillators of type “c” (associated with
the classical positive energy solutions) whose excitations are interpreted as particles
in the state (p, r); and oscillators of type “d” (associated with the classical negative
energy solutions) whose excitations, for each state (p, r), are interpreted as antiparti-
cles in the same state. The essential difference between the bosonic and the fermionic
case is the necessity of using anticommutation rules for the quantization of the latter
in order to obtain a sensible theory.

The most important implication of the anticommutation rules for the c and d
operators is obtained when we construct the Fock space of states for the fermion
field in an analogous way as we did for the scalar field. Indeed multiparticle states
are obtained by acting on the vacuum state of the whole system by means of the
creation operators c†(p, r) (for particles) and d†(p, r) (for antiparticles). We can
easily convince ourselves that in this construction two identical particles cannot
occupy the same state. If we indeed try to act twice on the vacuum, or on a generic
state, with the same creation operator to create two identical particles in a given state,
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we find zero. This is a consequence of the anticommutation relations (11.151), which
imply

(c†)2 = 1

2
{c†, c†} = 0 = (d†)2,

for each (p, r). Therefore the states of the system are of the type

|0〉; |N (c)
p,r = 1〉 = c†(p, r)|0〉; |N (d)

p,r = 1〉 = d†(p, r)|0〉.

It follows that the particle and antiparticle occupation numbers for each single par-
ticle state (p, r) can only take the values 0 or 1:

N (c)
p,r = 0, 1 ; N (d)

p,r = 0, 1.

This is indeed the content of Pauli’s exclusion principle for particles of spin 1
2 which

states that two spin 1/2 particles cannot exist in a same quantum state (p, r).
At the end of Sect. 11.2we have shown that spin 0 particles obey theBose-Einstein

statistics. We now show that for spin 1/2 particles the Schroedinger wave function is
completely antisymmetric under the exchange of particles. Following the same steps
as for spin 0 particles, the wave function Ψ

(n)
N1..Nk

(x1 . . . xn, t) in the Schroendiger
representation is

Ψ
(n)
N1..Nk

(x1, . . . , xn, t) = 〈x1 . . . xn; t |N1, . . . , Nk〉, (11.161)

where Ni = 0, 1 since (c†i )
2 = 0. Moreover, since

|x1, . . . xn; t〉 = ψ̂†
−(x1, t) · · · ψ̂†

−(xn, t)|0〉, (11.162)

and the quantum operators anticommute
{
ψ̂†

−(xi , t), ψ̂†
−(x j , t)

}
= 0, the wave

function Ψ (n) is antisymmetric in the exchange of xi and x j . We conclude that

Ψ
(n)
N1...Nk

(x1, . . . xn; t) is completely antisymmetric in the exchange of the particles
positions xi , thus implying that spin-1/2 particles obey the Fermi-Dirac statistics.

The connection between spin and statistics or, equivalently, between spin and the
type of the commutation relations used for quantization, is one of themost significant
predictions of local relativistic quantum field theory. It is specifically a relativistic
effect, since it can be shown that in the non-relativistic Schroedinger theory, using the
Fock-space representation, both quantization procedures based on commutators and
anticommutators, give a consistent theory. Therefore such a connection, so essential
for explaining the stability of ordinary matter in the non-relativistic domain, is a con-
sequence of the relativistic formulation, that is of the principle of relativity expressed
by the Lorentz invariance of physical laws.

Let us end this section by commenting on the definition of the single particle (or
antiparticle) states. A single spin-1/2 particle state (describing say electron) with
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momentum p and spin component sz = εr �/2 (ε1 = +1, ε2 = −1), is obtained by
acting on the vacuum state |0〉 by means of c(p, r)†:

|p, r〉(c) = c(p, r)†|0〉. (11.163)

The normalization is the usual Lorentz-invariant one:

(c)〈p, r |q, s〉(c) = 〈0|c(p, r)c(q, s)†|0〉 = 〈0|{c(p, r)c(q, s)†}|0〉
= (2π�)3

V
δ3(p − q)δrs . (11.164)

As for the antiparticle state, recall from our discussion on charge conjugation in
Chap.10, that the component r of d(p, r) is associated with an antiparticle (say a
positron) of opposite spin component sz = −εr �/2. Thus if |p, r〉(d) describes an
antiparticle with momentum p and spin component sz = εr �/2, we have:

|p, r〉(d) = εrs d(p, s)†|0〉, (11.165)

where the effect of εsr is to reverse the spin component.

11.6 Invariant Commutation Rules for the Dirac Field

As for the Klein-Gordon field we now compute the general anticommutation rules
for Dirac fields at different times. Using the decomposition (11.142) of the field
operator ψ̂(x) into its positive and negative energy components we can write the
general anticommutators among Dirac fields as follows

{ψ̂(x), ψ̂(y)} = {ψ̂+(x), ψ̂−(x)} + {ψ̂−(x), ψ̂+(y)}, (11.166)

where we have suppressed the spinor indices α,β.
Taking into account Eq. (11.154), the anticommutators on the right hand side give

{ψ̂+(x), ψ̂−(y)} =
∫

d3p
(2π�)3

mc2

Ep

2∑

r=1

u(p, r)u(p, r)e− i
�

p·(x−y), (11.167)

{ψ̂−(x), ψ̂+(y)} =
∫

d3p
(2π�)3

mc2

Ep

2∑

r=1

v(p, r)v(p, r)e
i
�

p·(x−y), (11.168)

http://dx.doi.org/10.1007/978-3-319-22014-7_10
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respectively. Using the spin sum given by (10.182) and (10.183) and summing the
two results we obtain

{ψ̂(x), ψ̂(y)} =
∫

d3p
(2π�)3

c

2Ep

(
( �p+mc)e− i

�
p·(x−y) + ( �p−mc)e

i
�

p·(x−y)
)

=
∫

d3p
(2π�)3

c

2Ep
(i� �∂ + mc)

[
e− i

�
p·(x−y) − e

i
�

p·(x−y)
]
.

(11.169)

Comparing (11.167), (11.168) with the definitions (11.108) we find

{ψ̂±(x), ψ̂∓(y)} = ±
(

i �∂ + mc

�

)
D±(x − y) ≡ S±(x − y), (11.170)

so that we may rewrite (11.169) as follows:

{ψ̂(x), ψ̂(y)} = S(x − y) =
(

i �∂ + mc

�

)
D(x − y), (11.171)

where we have defined

S(x − y) = S+(x − y) + S−(x − y). (11.172)

Note that S(x − y), S±(x − y) all satisfy the Klein-Gordon equation. Moreover, if
(x − y)2 < 0, D(x − y) vanishes, and so does its derivatives with respect to x , since
if we increase x by an infinitesimal amount dx , x +dx is still at a space-like distance
from y and thus the zero value of D is unaffected. We conclude that S(x − y),
that is the anticommutator between two spinor-field operators, vanishes at space-
like distances (x − y)2 < 0. In Dirac theory the local observables are expressed in
terms of fermion bilinears. It can be verified that bilinears in the Dirac fields satisfy
microcausality. Indeed

[ψ̂α(x)ψ̂β(x), ψ̂γ(y)ψ̂δ(y)]
= ψ̂γ(y)[ψ̂α(x)ψ̂β(x), ψ̂δ(y)] + [ψ̂α(x)ψ̂β(x), ψ̂γ(y)]ψ̂δ(y)

= −ψ̂γ(y)Sδ
α(y − x)ψ̂β(x) + ψ̂α(x)Sβ

γ(x − y)ψ̂δ(y). (11.173)

which is zero if (x − y)2 < 0 since S(x − y) is. Therefore the commutators of
bilinears for space-like separations is zero, ensuring microcausality for the Dirac
theory.

http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
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11.6.1 The Feynman Propagator for Fermions

Weextend the concept of time ordering introduced for bosonic particles inSect. 11.4.1
to Dirac fermions. For notational convenience we shall, from now on, omit the “hat”
symbol ˆon the field operator whenever there is no possibility of confusing it with
the corresponding classical quantity. We define the Feynman propagator for spin 1/2
fields as

SF (x − y) = 〈0|T ψ(x)ψ(y)|0〉, (11.174)

where the time-ordered product is

T ψ(x)ψ(y) =
{

ψ(x)ψ(y) x0 > y0,
−ψ(y)ψ(x) y0 > x0.

(11.175)

Note the difference in signwhen y0 > x0 with respect to the bosonic case. If x0 > y0

we have:

SF (x − y) = 〈0|(ψ+(x) + ψ−(x))(ψ+(y) + ψ−(y))|0〉
= 〈0|ψ+(x)ψ−(y)|0〉 = 〈0|{ψ+(x),ψ−(y)}|0〉 = S+(x − y).

Similarly for x0 < y0 we find

SF (x − y) = −{ψ−(x),ψ+(y)} = −S−(x − y). (11.176)

The Feynman propagator becomes

SF (x − y) = θ(x0 − y0)S+(x − y) − θ(y0 − x0)S−(x − y)

= 1

�

[
θ(x0 − y0) (i� �∂ + mc) D+(x − y)

+θ(y0 − x0) (i� �∂ + mc) D−(x − y)
]
. (11.177)

Let us now move the θ factors past the differential operator (i� �∂ + mc). Since the
latter contains a derivative with respect to x0, we will have to write:

θ(x0 − y0) (i� �∂ + mc) (· · · ) = (i� �∂ + mc) [θ(x0 − y0)(· · · )]
−i�γ0 [∂0θ(x0 − y0)](· · · ).
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Using the property of distributions13 d
dz θ(z) = δ(z), Eq. (11.177) can be recast in

the following form:

SF (x − y) = 1

�
(i� �∂ + mc)

[
θ(x0 − y0)D+(x − y) + θ(y0 − x0)D−(x − y)

]

−i γ0δ(x0 − y0)
[
D+(x − y) − D−(x − y)

]
. (11.178)

The last term vanishes since

δ(x0 − y0) (D+(x − y) − D−(x − y)) = δ(x0 − y0)D(x − y) = 0,

in virtue of the microcausality condition (11.114). We end up with the following
expression for the Feynman propagator:

SF (x − y) = 1

�
(i� �∂ + mc)

[
θ(x0 − y0)D+(x − y) + θ(y0 − x0)D−(x − y)

]

= 1

�
(i� �∂ + mc) DF (x − y), (11.179)

where DF (x − y) is the Feynman propagator for the spinless field, as defined in
Eq. (11.125). Using now the definitions (11.128) and (11.129) we obtain the final
result

SF (x − y) =
∫

CF

dp4

(2π�)4
SF (p)e− i

�
p·(x−y), (11.180)

SF (p) = i�
�p + mc

p2 − m2c2 + iε
. (11.181)

With an abuse of notation, it is common in the literature to denote the spinorial matrix
SF (p) in (11.181) with the following symbol:

SF (p) = i�

�p − mc + iε
. (11.182)

Formally multiplying both the numerator and denominator by the matrix p/ + mc,
we retrieve the right hand side of Eq. (11.181).

13This property is easily proven on a generic test function f (z):
∫∞
−∞ f (z) d

dz θ(z)dz =
− ∫∞

−∞ f ′(z)θ(z)dz = − ∫∞
0 f ′(z)dz = f (0) = ∫∞

−∞ f (z)δ(z)dz.



11.6 Invariant Commutation Rules for the Dirac Field 425

11.6.2 Transformation Properties of the Dirac Quantum Field

We consider first the transformation properties of the Dirac field operator ψ̂α(x)

under the space-time symmetries of the Poincaré group.14 Equations (11.161) and
(11.162) allow to define the general relation between the relativistic wave function
ψα

(a)(x) describing the state |a〉 of a spin 1/2 particle in the coordinate representation
(configuration space) and the field operator ψ̂α(x):

ψα
(a)(x) = 〈0|ψ̂α(x)|a〉. (11.183)

Take, for instance, a single particle state |a〉 which is described by a wave packet,
superposition of monochromatic plane-waves associated with the states |p, r〉 (see
Chap.9):

|a〉 =
∫

d3p
(2π�)3

V
2∑

r=1

f (p, r) |p, r〉 =
∫

d3p
(2π�)3

V
2∑

r=1

f (p, r) c(p, r)†|0〉

=
∑

p

2∑

r=1

f (p, r) c(p, r)†|0〉, (11.184)

where in the last line we have used the discrete momentum notation. If we substitute
in Eq. (11.183) the above expansion and use the expression (11.140) for ψ̂(x), we
find (we keep, for the sake of simplicity, the discrete momentum notation):

ψα
(a)(x) =

∑
p

∑
q

√
mc2

EpV

2∑

r,s=1

f (q, r)u(q, s)〈0|c(p, s)c(q, r)†|0〉e− i
�

p·x

=
∑

p

∑
q

√
mc2

EpV

2∑

r,s=1

f (q, r)u(q, s)〈0|{c(p, s), c(q, r)†}|0〉e− i
�

p·x

=
∑

p

√
mc2

EpV

2∑

r=1

f (q, r)u(q, r)e− i
�

p·x , (11.185)

where we have used the finite-volume version of the anticommutator in (11.154):
{c(p, s), c(q, r)†} = δp,q δrs . We then retrieve for ψα

(a)(x) the general form of the
classical positive energy solution to the Dirac equation.

In Chap.10 we have written the general transformation property of a Dirac field
ψ(x) induced by a space-time symmetry transformation. A generic Poincaré trans-
formation is implemented on the quantum states, as discussed in Chap. 9, by a unitary
transformation U (�, x0). In light of the relation (11.183) we can write for the field
operator ψ̂(x) the following transformation law:

14In this subsection we restore the “hat” symbol on the field operators.

http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_9
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ψ̂α(x)
(�,x0)−→ ψ̂′α(x ′) = U (�, x0)

†ψ̂α(x ′)U (�, x0) = S(�)αβψ̂β(x)

= O(�,x0)ψ̂
α(x ′), (11.186)

where, as usual x ′ = � x − x0. Using (11.183), it is straightforward to see that
Eq. (11.186) implies (10.85). Performing indeed a Poincaré transformation on the
state |a〉 (|a〉 → |a′〉 = U (�, x0)|a〉), the corresponding wave function given by
(11.183) transforms as follows

ψα(x)
(�,x0)−→ ψ′α(x ′) = 〈0|ψ̂α(x ′)U |a〉 = 〈0|UU †ψ̂α(x ′)U |a〉

= S(�)αβ〈0|ψ̂β(x)|a〉 = S(�)αβ ψβ(x), (11.187)

where ψ(x) ≡ ψ(a)(x), ψ′(x) ≡ ψ(a′)(x), U ≡ U (�, x0).
Just as we did for the scalar field in Sect. 11.3, we write the unitary operator

U (�, ε) corresponding to an infinitesimal transformation in terms of its generators
J
μν, P

μ so that, expanding both U (�, ε) and O(�,ε) to first order in the Poincaré
parameters δθρσ, εμ � 1, we can express the infinitesimal variation of ψ̂(x) as
follows:

δψ̂α(x) = i

�
[ψ̂α(x),

1

2
δθρσ Ĵ

ρσ − ε · P̂] = i

�

(
1

2
δθρσ Ĵ ρσ − ε · P̂

)
ψ̂α(x),

where, as usual, Ĵ ρσ, P̂μ are the infinitesimal generators of O(�,x0) which imple-
ments the Poincaré transformation on the internal components and the functional
form of ψ̂α(x). Using the explicit form of Ĵ ρσ in (10.100) we deduce from (11.188)
the following commutation relations for ψ̂(x):

i

�
[ψ̂α(x), J

ρσ] = − i

2
(σρσ)αβ ψ̂β(x) + (xρ∂σ − xσ∂ρ)ψ̂α(x),

i

�
[ψ̂α(x), Pμ] = −∂μψ̂α(x). (11.188)

The above commutators completely define the transformation properties of ψ̂ under
the action of the Poincaré group. Of courseU , as well as its generators J

μν, P
μ, act on

the c andd operators in the expansion of ψ̂. Let us definewhat such an action should be
in order to reproduce the correct transformation property (11.186). To this end let us
recall that the u(p, r) and v(p, r) spinors transform under a Lorentz transformation
as in Eq. (10.149) of Chap.10, where the matrixR(�, p)r

s is a rotation in the spin-
group, namely a SU(2) (for massive particles) or an SO(2) (for massless particles)

http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
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transformation depending on the momentum p and the Lorentz transformation itself.
Let us show that the transformation law (11.186) is correctly reproduced if:

U (�, x0)
†c(p, s)U (�, x0) = e− i

�
p·x0R(�,�−1 p)s

r c(�−1 p, r),

U (�, x0)
†d(p, s)U (�, x0) = e− i

�
p·x0 [R(�,�−1 p)s

r ]∗ d(�−1 p, r).

(11.189)

Computing the hermitian conjugate of last equation we find:

U (�, x0)
†d†(p, s)U (�, x0) = e

i
�

p·x0R(�,�−1 p)s
r d†(�−1 p, r). (11.190)

Applying the above properties, the transformation rule for the spinor field operator
reads:

U (�, x0)
†ψ̂(x ′)U (�, x0)

=
∑
p,r

√
mc2

EpV

(
U †c(p, r)U u(p, r) e− i

�
p·x ′

+ U †d†(p, r)U v(p, r) e
i
�

p·x ′) =
∑
p,r,s

√
mc2

EpV
R(�,�−1 p)r

s

×
(

c(�−1 p, s) u(p, r) e− i
�

p·(x ′+x0) + d†(�−1 p, s)v(p, r) e
i
�

p·(x ′+x0)
)

=
∑

p′,r,s

√
mc2

Ep′ V ′R(�, p′)r
s

×
(

c(p′, s) u(�p′, r) e− i
�

(�p′)·(x ′+x0) + d†(p′, s)v(�p′, r) e
i
�

(�p′)·(x ′+x0)
)

=
∑

p′,s

√
mc2

Ep′ V ′
(

c(p′, s) S(�)u(p′, s) e− i
�

p′·x + d†(p′, s)S(�)v(p′, s) e
i
�

p′·x)

= S(�)
∑

p′,s

√
mc2

Ep′ V ′
(

c(p′, s) u(p′, s) e− i
�

p′·x + d†(p′, s)v(p′, s) e
i
�

p′·x)

= S(�)ψ̂(x), (11.191)

where we have changed summation variable from p to p′ = �−1 p and, as usual,
wrote x = �−1(x ′ + x0). We have moreover used the transformation properties
(10.149).

http://dx.doi.org/10.1007/978-3-319-22014-7_10
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11.6.3 Discrete Transformations

Let us now consider the three discrete transformations corresponding to parity P ,
charge conjugation C and time-reversal T for theDirac quantumfield. In the previous
chapterwe have seen that for the classical Dirac field the space reflection corresponds
to the active transformation (see Eq. (10.242)):

ψ(x, t) → ψ′(x, t) = ηP γ0ψ(−x, t), (11.192)

with respect to which it is easily verified that the Dirac equation is invariant. For the
quantized field we must seek a unitary operator U (P) such that15

U (P)† ψ(x, t) U (P) = ηPγ0ψ(−x, t). (11.193)

We can define U (P) through its action on the operators c(p, r), d†(p, r), which
should reproduce (11.193). Using the properties

γ0u(p, r) = u(−p, r), γ0v(p, r) = −v(−p, r)

which can be easily derived from the explicit form of the spinors u(p, r) and v(p, r)

given in (10.154) and (10.155), we find the operators c and d† should transform
under parity as follows

U (P)† c(p, r) U (P) = ηP c(−p, r), (11.194)

U (P)† d†(p, r) U (P) = −ηP d†(−p, r). (11.195)

The explicit form of U (P) can be obtained following the same procedure as in the
scalar field case. The result is

U (P) = e
iπ
2

∑
p,r

[
c†(p,r)c(p,r)−d†(p,r)d(p,r)−ηP c†(p,r)c(−p,r)−ηP d†(p,r)d(−p,r)

]
.

In the case of charge conjugation one seeks a unitary operator U (C) such that

U (C)† ψ U (C) = ηCψc, (11.196)

whereψc = Cψ
T
is the charge conjugate field defined in Sect. 10.6.2, and the matrix

C = iγ2γ0 satisfies (10.184). We have seen in sect. 10.6.2 that ψ → ψc leaves the
(free) Dirac equation invariant. Moreover also the anticommutation rules are invari-
ant under the same substitution. Indeed writing the (equal-time) anticommutation
relations as

{ψα(x),ψ(y)β} = (γ0)αβδ(3)(x − y) (11.197)

15We suppress here and in the following the “hat” symbol for the field operator.

http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
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multiplying by CρβC−1
ασ , and contracting over the repeated indices α, β, we obtain

{ψα(x)C−1
ασ ,ψc

ρ(y)} = (C−T γ0CT )σ
ρ δ(3)(x − y).

We now observe that
ψc = −ψT C−1

so that, using the property (10.184) we have

{(ψc)σ(x), (ψc)
ρ
(y)} = (γ0)ρσδ(3)(x − y) (11.198)

Exchanging x ←→ y we prove the invariance.
We observe now that the operator ψc(x) has the following form:

ψc(x) =
∑
p,r

√
mc2

EpV

(
c(p, r)†uc(p, r)e

i
�

p·x + d(p, r)vc(p, r)e− i
�

p·x) .

Recalling the following relations (see (10.189)):

uc(p, r) = εrsv(p, s); vc(p, r) = −εrs u(p, s),

it is straightforward to prove that the action ofU (C) on the c, d operators should be:

U (C)†c(p, r)U (C) = ηCεrs d(p, s); U (C)†d(p, r)U (C) = −ηCεrs c(p, s).

We leave to the reader the exercise of finding the explicit form of the unitary operator
U (C).

Let us give here the transformation properties of fermion bilinears. As men-
tioned in last chapter, all physical quantities associated with the Dirac field, like
the conserved current Jμ, are expressed in terms of fermion bilinears of the form
ψ̄(x)Γ ψ(x), where Γ can be 1, γμ, γ5, γ5γμ, γμν . In the quantum theory of the
free fermion field, physical quantities should be expressed in terms of normal-ordered
bilinears : ψ̄(x)Γ ψ(x) : in the fermion field operator ψ(x). Consider the effect of
charge conjugation on a generic fermion bilinear:

: ψ̄(x)Γ ψ(x) : C−→ : ψ̄c(x)Γ ψc(x) :, (11.199)

where we have used the property |ηC |2 = 1. The transformed bilinear can also be
written in the following form:

: ψ̄c(x)Γ ψc(x) := − : ψT (x)C−1Γ C γ0ψ†(x) :, (11.200)

http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
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where we have used the property ψ̄c = −ψT C−1 and the † symbol in ψ† should be
intended as the hermitian conjugate of each component ψα as a quantum operator,
and not as the transposed of the complex conjugate of the spinorial vector (ψα).

Now consider the following property of normal ordered products of Dirac field
operators:

: ψ†
α(x)ψβ(x) : = − : ψβ(x)ψ†

α(x) :, (11.201)

which can be easily proven by decomposing each field operator into its positive and
negative energy components and using the definition (11.157) of normal-ordering.
The transformed bilinear can then be recast in the following form:

: ψ̄c(x)Γ ψc(x) :=: ψ̄(x) CΓ T C−1ψ(x) :, (11.202)

where we have used the properties of γ0 and of theC-matrix described in last chapter.
From Eq. (11.202) we can deduce the transformation properties of the fermion bilin-
ears, which are summarized below:

scalar: : ψ̄(x)ψ(x) : C−→ : ψ̄(x)ψ(x) : (11.203)

pseudo-scalar: : ψ̄(x)γ5ψ(x) : C−→ : ψ̄(x)γ5ψ(x) :,
vector: : ψ̄(x)γμψ(x) : C−→ − : ψ̄(x)γμψ(x) :,

pseudo-vector: : ψ̄(x)γ5γμψ(x) : C−→ : ψ̄(x)γ5γμψ(x) :,
antisymmetric tensor: : ψ̄(x)γμνψ(x) : C−→ − : ψ̄(x)γμνψ(x) :,

where we have used the property Cγ5C−1 = γ5, so that C(γ5γμ)T C−1 =
C(γμ)T γ5C−1 = C(γμ)T C−1γ5 = γ5γμ.

Finally we consider the time-reversal. From the discussion given in the Klein-
Gordon case we expect that it will be represented by an antiunitary operator of the
form

U (T ) = U K ,

where K is the complex conjugation operator defined in Sect. 11.3.1. The general
transformation property of the spinor field operator reads:

U (T )†ψ(x, t)U (T ) = ηT S(T )ψ(x,−t), (11.204)

where the matrix S(T ) implements the effect of time reversal on the spinor compo-
nents of ψ(x). Let us determine S(T ).

We multiply the Dirac equation to the left by U (T )† and to the right by U (T ).
When these operators pass across the γμ-matrices and the i factor, their effect is to
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complex-conjugate them, being U (T ) antilinear. We find

(
i�(γμ)∗∂μ + mc

)
U (T )†ψ(x, t)U (T ) = 0.

Using Eq. (11.204) and multiplying the equation to the left by the spinorial matrix
S(T )−1, we find:

(
i�S(T )−1(γμ)∗S(T )

∂

∂xμ
+ mc

)
ψ(xT ) = 0,

where we have defined xT ≡ (xμ
T ) = (−ct, x). Taking into account that ∂

∂xμ
T

=
−ημμ ∂

∂xμ (no summation over μ), in order for the above equation to be equivalent to
the Dirac equation (though in the time-reversed coordinates):

(
−i�γμ ∂

∂xμ
T

+ mc

)
ψ(xT ) = 0 ⇔

(
−i�γμ ∂

∂xμ
+ mc

)
ψ(x) = 0,

we must require for the matrix S(T ) the following property:

S(T )−1(γμ)∗S(T ) = ημμγμ no summation over μ. (11.205)

The reader can verify that the matrix below satisfies this condition:

S(T ) = γ5 C, (11.206)

where γ5 is the matrix introduced in Sect. 10.6.3.
We may compute the effect of time reversal on the four-current jμ = ψ̄γμψ. We

have

U (T )† jμ(x, t)U (T ) = U (T )†ψ̄(x)U (T )(γμ)∗U (T )†ψ(x)U (T )

= ψ†(xT )S(T )†γ0 ∗γμ ∗S(T )ψ(xT ) = ψ̄(xT )S(T )−1γμ ∗S(T )ψ(xT )

= ημμ jμ(xT ), (11.207)

where we have used the property S(T )†γ0 = −γ0 S(T ) = γ0 S(T )−1, being
S(T )−1 = −S(T ). Similarly we can verify that the action of time reversal on the
other spinor bilinears reads:

scalar: : ψ̄(x)ψ(x) : T−→ : ψ̄(xT )ψ(xT ) : (11.208)

pseudo-scalar: : ψ̄(x)γ5ψ(x) : T−→ : ψ̄(xT )γ5ψ(xT ) :,
pseudo-vector: : ψ̄(x)γ5γμψ(x) : T−→ ημμ : ψ̄(xT )γ5γμψ(xT ) :,

antisymmetric tensor: : ψ̄(x)γμνψ(x) : T−→ ημμηνν : ψ̄(xT )γμνψ(xT ) :,

http://dx.doi.org/10.1007/978-3-319-22014-7_10
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To define the action ofU (T ) on the c and d operators,wefirst observe, using (10.154),
(10.155) and (11.205) that16:

S(T )u(p, r) = εrs u(−p, s)∗; S(T )v(p, r) = εrs v(−p, s)∗, (11.209)

where the effect of εrs is to flip the spin component, as time reversal should do. From
the above relations wemay conclude that the action ofU (T ) on the c and d operators
should be:

U (T )†c(p, r)U (T ) = ηT εsr c(−p, s); U (T )†d(p, r)U (T ) = ηT εsr d(−p, s).

(11.210)

We leave the proof that (11.210) reproduce (11.204) as well as the explicit construc-
tion of the U (T ) operator to the reader as an exercise.

11.7 Covariant Quantization of the Electromagnetic Field

In Chap.6 the quantization of the electromagnetic field was achieved using the
Coulomb (or radiation) gauge

∇ · A = 0 = A0.

This approach has the advantage that only the physical degrees of freedom of the
Maxwell field, namely, for each value of the momentum p, the two polarization
states orthogonal to p, are quantized. The Coulomb gauge, however, refers to a
particular frame where A0(x) = 0 so that the Lorentz invariance of the theory is not
manifest: Moving to another RF, the corresponding Lorentz transformation would
not in general preserve such condition and would switch on the time-component
of the vector potential. For practical calculations it is important to have a covariant
formalism. In the classical case this is achieved by choosing the manifestly covariant
Lorentz gauge ∂μ Aμ = 0, but, as we shall see below, this cannot be imposed as an
operatorial equation when Aμ(x) is quantized. We must rather impose a suitable
version of it on the physical states of the theory.

To understand what concretely goes wrong when we try to naively apply to the
electromagnetic field, the quantization procedure that we have followed for the lower
spin fields, let us observe that the Maxwell Lagrangian density (8.129) depends on
the derivatives of Aμ(x) only through the field strength Fμν , which does not contain

16To prove it suffices to note that S(T )p/S(T )−1 = γμ ∗ p′
μ, where (p′μ) ≡ (p0, −p) and that

S(T )u(0, r) = εrs u(0, s).

http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_6
http://dx.doi.org/10.1007/978-3-319-22014-7_8
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the time derivative Ȧ0 of A0. As a consequence of this, the momentum π0, conjugate
to A0 is zero:

π0 = ∂L
∂ Ȧ0

= 0. (11.211)

This clearly poses a problem when we try to quantize the system by promoting the
field components and their conjugate momenta to operators satisfying the canonical
commutation relations. This problem arises from the gauge symmetry associated
with the field Aμ(x), which is telling us that the number of variables we use to
describe it exceeds the number of its physical degrees of freedom (which is two).

On the other hand, as pointed out above, the covariant structure of Maxwell’s
equations and a canonical quantization procedure which only takes into account
the independent (physical) degrees of freedom, are incompatible: If we choose, for
instance, to promote only the spatial components A(x) of Aμ(x), and their conjugate
momenta, to operators, leaving A0(x) to be a classical field, we are breaking the
manifest Lorentz covariance of the theory. A possible way out is to modify the
Lagrangian of the electromagnetic field so as tomanifestly break gauge invariance. In
doing so, all the four components of Aμ(x) become independent degrees of freedom,
which can thus be quantized. The alternative Lagrangian density proposed, along
these lines, by Fermi is obtained by adding to the Maxwell’s Lagrangian density
(8.129) a term proportional to (∂μ Aμ)2, so as to obtain:

L = −1

4
Fμν Fμν − 1

2
(∂μ Aμ)2 = −1

2
∂μ Aν∂

μ Aν + 1

2
∂μ Aν∂

ν Aμ − 1

2
(∂μ Aμ)2.

(11.212)

Writing

− 1

2
(∂μ Aμ)2 = −1

2
∂μ Aν∂

ν Aμ + (4-divergences), (11.213)

and neglecting the four-divergences, the Lagrangian density (11.212) reads:

L = −1

2
∂μ Aν∂

μ Aν = − 1

2c2
Ȧμ Ȧμ + 1

2
∇Aμ · ∇Aμ, (11.214)

and the corresponding Euler-Lagrange equations of motion are

�Aμ = 0. (11.215)

We observe that, even if the equations of motion have the same form as Maxwell’s
equations in the Lorentz gauge, they are by no means equivalent to them since the
condition ∂μ Aμ = 0 has not been imposed. To recover the description of the field in
terms of the two physical degrees of freedom we shall eventually have to impose a
constraint on the physical states (see next section).

http://dx.doi.org/10.1007/978-3-319-22014-7_8
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The conjugate momentum is

πμ = ∂L
∂ Ȧμ

= − 1

c2
Ȧμ, (11.216)

and the classical Hamiltonian of the field turns out to be

H(t) =
∫

d3x[πμ Ȧμ − L] = −
∫

d3x
1

2
[c2πμπμ + ∇Aμ · ∇Aμ]

=
∫

d3x
1

2c2

[
3∑

i=1

(
( Ȧi )

2 + c2|∇Ai |2
)

−
(
( Ȧ0)

2 + c2|∇A0|2
)]

.

(11.217)

We can now promote, according to the general quantization prescription, the com-
ponents of Aμ and the corresponding conjugate momenta, to operators.17 The equal
time commutation relations will then read:

[Aμ(x, t),πν(y, t)] = i� δν
μδ3(x − y), (11.218)

[Aμ(x, t), Aν(y, t)] = [πμ(x, t),πν(y, t)] = 0. (11.219)

It is also a simple matter to check that the quantum equations of motion

Ȧμ(x, t) = − i

�
[Aμ(x, t), H(t)], (11.220)

π̇μ(x, t) = − i

�
[πμ(x, t), H(t)], (11.221)

lead to Eq. (11.215); indeed

Ȧμ(x) = i

2�

[
Aμ(x),

∫
d3yc2πν(y)πν(y)

]
= −c2

∫
d3yδν

μδ3(x − y)πν(y)

= −c2πμ(x),

π̇μ(x) = i

�

∫
d3y

[
πμ(x),

∂ Aν(y)

∂yi

]
∂ Aν(y)

∂yi

= − i

�

∫
d3y

[
πμ(x), Aν(y)

] ∇2Aν(y) = −
∫

d3yδ3(x − y)∇2Aμ(y)

= −∇2Aμ(x). (11.222)

17Here and in the remainder of this chapter we denote the quantized fields without the “hat symbol”.
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Comparing the two commutators we obtain

1

c2
Äμ(x) = ∇2Aμ(x),

which coincides with (11.215).
Let us now expand the field operator in plane waves, as we did in Chap.5,

Eq. (5.123). We recall that, in the present theory, all components of the polariza-
tion vector εμ(k) are in principle independent. As far as the classical field Aμ(x) in
Eq. (5.123) is concerned, it is convenient to expand, for each monochromatic wave,
the four vector εμ(k) in a basis ε

(λ)
μ (k) of four independent real four-vectors:

εμ(k) = c

√
�

2ωkV

3∑

λ=0

ε(λ)
μ (k) aλ(k), (11.223)

where the factor in front of the right hand side is introduced in order for the vectors ε(λ)
μ

and the Fourier coefficients aλ(k), to be dimensionless. In terms of these quantities,
the expansion (5.123) for the classical field reads:

Aμ(x) = c
∫

d3k
(2π)3

√
�V

2ωk

3∑

λ=0

ε(λ)
μ (k)

[
aλ(k) e−ik·x + aλ(k)∗ eik·x] ,

(11.224)

When we consider the quantum field operator, the complex coefficients a and a∗ in
the above expansion become operators a and a†, so that we can write:

Aμ(x) = c
∫

d3k
(2π)3

√
�V√
2ωk

3∑

λ=0

ε(λ)
μ (k)

[
aλ(k) e−ik·x + a†

λ(k) eik·x] ,

(11.225)

πμ(x) = i

c

∫
d3k

(2π)3

√
�V ωk

2

3∑

λ=0

ε(λ)
μ (k)

[
aλ(k) e−ik·x − a†

λ(k)eik·x] .

(11.226)

As mentioned earlier, the polarization vectors ε
(λ)
μ (k) are a set of four real uncon-

strained polarization four-vectors which will be chosen to satisfy, in the four dimen-
sional space-time, the orthonormality condition

ε(λ)(k) · ε(λ′)(k) = ηλλ′
, (11.227)

http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_5
http://dx.doi.org/10.1007/978-3-319-22014-7_5
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and the completeness condition

3∑

λ,σ=0

ε(λ)
μ (k)ε(σ)

ν (k) ηλσ = ημν . (11.228)

It is useful to have an explicit expression of the four polarization vectors in a given
reference frame. We first observe that in three-dimensional space, for each value of
the wave number vector k, we may take as a complete set of orthonormal vectors the
transverse polarization vectors ε(1)(k), ε(2)(k) and the longitudinal vector n = k

|k|
(ε(3)(k) = −n) satisfying ε(r)(k) · ε(r ′)(k) = δrr ′

, r, r ′ = 1, 2 and ε(r)(k) · n = 0
together with the completeness relation

2∑

r=1

ε(r)
i (k)ε(r)

j (k) + ki k j

|k|2 = δi j . (11.229)

This is sufficient for the description of the polarization vectors used in Chap.6, where
we worked in the Coulomb gauge in which A0(x) = 0. However we can formally
extend the completeness relation (11.229) to a four-dimensional setting by writing
the transverse polarization vectors and the longitudinal vector n as follows:

ε(3)
μ (k) =

(
0

−n

)
ε(1,2)
μ (k) =

(
0

ε(1,2)(k)

)
. (11.230)

Of course the above vectors refer to a particular RF S0 in which the time component
is zero. A Lorentz transformation will in general alter this property. In a arbitrary
frame the longitudinal vector ε(3)

μ (k) can be written as

ε(3)
μ (k) = kμ − ημ(k · η)

(k · η)
(11.231)

where kμ = (k0,−k)T , k0 = |k| and we have introduced a time-like vector ημ with
unit norm (ημημ = 1) which, in the RF S0, has the form

ημ = (1, 0)T , (11.232)

so that in this frame the expression (11.231) for ε(3)
μ (k) reduces to the form (11.230).

To obtain a complete set of orthonormal four-dimensional vectors in Minkowski
space, we further add the time-like polarization vector

ε(0)
μ (k) = ημ. (11.233)

http://dx.doi.org/10.1007/978-3-319-22014-7_6
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It is now easily verified that the given four vectors ε
(λ)
μ (k),λ = 0, 1, 2, 3 satisfy

the two conditions (11.227) and (11.228) corresponding to the orthonormality and
completeness relations in Minkowski space.

Aside from the presence of the polarization vectors, the expansion (11.225) is
quite analogous, for each of the four values of μ, to the expansion of four real scalar
fields and their conjugate momenta as given in (11.19) and (11.21) (the reality of
Aμ being expressed by the relation b† = a†). Therefore, along the same lines as in
Sect. 11.2 (see the discussion from (11.23) to (11.32)) we can compute aλ and a†

λ in
terms of Aμ(x) ad πμ(x) by inverting (11.226) and (11.225). Applying the canonical
commutation relations (11.218), we find for aλ and a†

λ the following relations

[
aλ(k), a†

σ(k′)
]

= −ηλσ
(2π)3

V
δ3(k − k′), (11.234)

[a, a] =
[
a†, a†

]
= 0. (11.235)

The computation of the invariant commutation rules follows the same lines as in
Sect. 11.4; indeed from (11.215) one finds

[Aμ(x), Aν(y)] = −�c

⎛
⎝

3∑

λ,λ′=0

ε(λ)
μ (k)ε(λ′)

ν (k)ηλλ′

⎞
⎠ D(x − y), (11.236)

where D(x − y) is the function of Eq. (11.110) where we set m = 0. If we assume
the polarization vectors to satisfy the completeness relation (11.228), we end up with

[Aμ(x), Aν(y)] = −�c ημν D(x − y). (11.237)

Similarly, following the steps of Sect. 11.4.1, one can evaluate the Feynman propa-
gator

DFμν(x − y) = 1

c�
〈0|T Aμ(x)Aν(y)|0〉

= 1

c�
〈0|

[
θ(x0 − y0)Aμ(x)Aν(y) + θ(y0 − x0)Aν(y)Aμ(x)

]
|0〉

= −ημν DF (x − y) =
∫

CF

d4 p

(2π�)4

−i�2ημν

p2 + iε
e−i p

�
·(x−y) (11.238)

where DF (x − y) is the Feynman propagator for the scalar field, computed in
Sect. 11.4.1, CF is the contour defined in Fig. 11.1, and pμ = �kμ is the photon
four-momentum. The Feynman propagator in momentum space is therefore

DFμν(p) = − i�2

p2 + iε
ημν . (11.239)
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Note that, just as the Feynmanpropagator for the scalar and spinor fields, DFμν(x−y)

is the Green’s function associated with the equation of motion for Aμ(x), namely it
satisfies the equation

�x DFμν(x − y) = iημν δ4(x − y). (11.240)

This can be easily verified by taking the four-dimensional Fourier transform of both
sides and using the fact that the Fourier transform of δ4(x − y) is 1.

Let us mention that we could have broken the gauge invariance of the Maxwell
Lagrangian by adding a term proportional to ∂μ Aμ with a generic coefficient, thus
obtaining:

L = −1

4
Fμν Fμν − 1

2α
(∂μ Aμ)2

= −1

2
∂μ Aν∂

μ Aν + 1

2

(
1 − 1

α

)
(∂μ Aμ)2, (11.241)

where we have neglected additional four-divergences and α is a generic number,
which we have previously fixed to 1. Imposing the Lorentz gauge ∂μ Aμ = 0 the
above Lagrangian is equivalent to the original one. This time, however, the conjugate
momenta read:

πμ(x) = − 1

c2
Ȧμ + ημ0

c

(
1 − 1

α

)
(∂ν Aν). (11.242)

The equations of motion now have the following form:

[
� δρ

μ −
(
1 − 1

α

)
∂μ∂ρ

]
Aρ(x) = 0. (11.243)

The equation for the Feynman propagator changes accordingly, from (11.240) to:

[
� δρ

μ −
(
1 − 1

α

)
∂μ∂ρ

]
DFρν(x − y) = iημν δ4(x − y). (11.244)

Going to the momentum representation by evaluating the Fourier transform of both
sides, we find:

[
p2 δρ

μ −
(
1 − 1

α

)
pμ pρ

]
DFρν(p) = −i�2ημν, (11.245)

which is now solved by:

DFμν(p) = − i�2

p2 + iε

(
ημν − (1 − α)

pμ pν

p2

)
, (11.246)

as the reader can easily verify.
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11.7.1 Indefinite Metric and Subsidiary Conditions

As it stands this theory exhibits the embarrassing property that the Hilbert space
contains states with negative norm, which is the price we have to pay for preserving
manifest Lorentz covariance at the quantum level. To see this it is sufficient to observe
that the commutation relations (11.234) are the usual ones only if λ = λ′ = 1, 2, 3.
When λ = λ′ = 0, however, we have

[
a0(k), a†

0(k
′)
]

= −(2π)3δ(3)(k − k′) 1
V

.

For the sake of simplicity, let us switch once again to the discretemomentumnotation,
pertaining to a finite volume V , and treat correspondingly the discrete variable k as
an index, defining: ak μ ≡ aμ(k), ε(λ)

k μ ≡ ε
(λ)
μ (k). We can then write

[
ak 0, a†

k′ 0

]
= −δkk′ .

The appearance of the minus sign is of course related to the indefinite character of
the Lorentz metric.

To see why negative norm states appear, let us compute the norm of the state
a†

k 0|0〉:
〈0|ak 0a†

k 0|0〉 = 〈0|
[
ak 0, ak 0

†
]
|0〉 = −1,

or more generally for a state containing N (0)
k “timelike” (i.e. excitations of the μ = 0

quantum oscillator) photons

〈N (0)
k |N (0)

k 〉 = (−1)N (0)
k . (11.247)

Negative norm states are clearly unacceptable on physical grounds since they would
lead to negative probabilities. Furthermore their existence implies that the expectation
value of the quantum Hamiltonian can be negative. To show this we first observe that
quantization of the Hamiltonian (11.217) can be computed exactly as in the case of
the (real) scalar field leading to

Ĥ =
∑

k

�ωk

(
3∑

λ=1

a†
k λak λ − a†

k 0ak 0

)

=
∑

k

�ωk a†
k λak σηλσ, (11.248)

where, as usual, we have discarded the infinite constant corresponding to the zero
point energy by the normal-ordering prescription.
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Wenote that theminus sign appearing in theHamiltonian does not imply a negative
contribution to the energy. In fact the number operator for the time-like photons reads

N (0)
k = −a†

k 0ak 0,

since

N (0)
k a†

k 0|0〉 = −a†
k 0[ak 0, a†

k 0]|0〉 = 1 × a†
k 0|0〉,

N (0)
k (a†

k 0)
2|0〉 = 2 × (a†

k 0)
2|0〉, etc.

The expectation value of the Hamiltonian, however, can be negative, since, using
(11.247),

〈N (0)
k |H |N (0)

k 〉 = N (0)
k � ωk(−1)N (0)

k .

It is important to stress that what we have quantized so far is not the Maxwell theory,
but rather a theory based on the Lagrangian (11.214). In the classical theory the
additional degrees of freedom related to the longitudinal and timelike components
were eliminated by choosing the Lorentz gauge ∂μ Aμ = 0.Wemay try to implement
the Lorentz gauge as an operatorial constraint on the state vectors |s〉 of the Hilbert
space, through the condition

∂μ Aμ|s〉 = 0. (11.249)

This is however too strong a condition, and indeed it is clearly not satisfied by
the vacuum state |0〉. Indeed, decomposing the quantum field Aμ into positive and
negative frequency parts, we obtain

∂μ Aμ|0〉 = ∂μ A−μ(x)|0〉 = 0, (11.250)

from which it follows

0 = A+ν(y)
∂

∂xμ
A−μ(x)|0〉

= ∂

∂xμ

[
A+ν(y), A−μ(x)

] |0〉 = −�c ημν
∂

∂xμ
D+(y − x)|0〉,

and since the last right hand side is not zero, condition (11.250) is inconsistent. The
consistent formulation of the quantum Lorentz-gauge condition, called subsidiary
condition, is due to Gupta and Bleuler and is given by the less stringent requirement:

∂μ A+μ|s〉 = 0, (11.251)
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which is obviously satisfied by the vacuum state. The above condition can be inter-
preted as defining a physical state. Moreover (11.251) also implies that the classical
Lorentz-gauge condition is satisfied in terms of its expectation value between phys-
ical states |s〉. Indeed

〈s|∂μ Aμ|s〉 = 〈s|∂μ
(

A−μ + A+μ

) |s〉 = 〈s|∂μ A+μ|s〉∗ + 〈s|∂μ A+μ|s〉 = 0.

where we have used the relation A+μ = (A−μ)† and the general property that
〈s|Ô†|s〉 = 〈s|Ô|s〉∗, which holds for any operator Ô .

Let us now express the subsidiary condition in terms of the operators a†
k 0, ak 0,

by defining the operator L(k) as follows:

∂μ Aμ
+(x) = −i

∑

k

c

√
�

2ωkV
L(k)e−i k·x ⇒ L(k) = kμ

3∑

λ=0

ε
(λ)
k μ ak λ,

(11.252)

where we have used the expansion (11.225). Equation (11.251) can be recast in the
following form

L(k)|s〉 = 0, ∀k. (11.253)

In the frame in which k = (κ, 0, 0,κ) (k0 = k3 = κ), using as polarization vectors

ε
(0)
kμ = (1, 0, 0, 0); ε

(1)
kμ = (0,−1, 0, 0); ε

(2)
kμ = (0, 0,−1, 0); ε

(3)
kμ = (0, 0, 0,−1),

L(k) becomes
L(k) = κ (ak 0 − ak 3), (11.254)

Moreover from (11.253) we also find

〈s|a†
k 0ak 0|s〉 − 〈s|a†

k 3ak 3|s〉 = 0, (11.255)

that is the occupation numbers associated with the timelike and longitudinal photons
coincide on a physical state, so that the total contribution from these excitations
to the expectation value of the quantum Hamiltonian is zero. Thus the subsidiary
condition ensures that only the physical degrees of freedom of the electromagnetic
field contribute to the (expectation value of) energy. The same can be shown to hold
for the four-momentum Pμ of the field.
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Let us finally show that the subsidiary condition (11.253) eliminates all the neg-
ative norm states. We first prove that the operator L† commutes with L18:

[
L(k), L†(k′)

]
= κ2

[
ak 0 − ak 3, a†

k 0 − a†
k 3

]

= κ2
[
ak 0, a†

k 0

]
+ κ2

[
ak 3, a†

k 3

]
= 0. (11.257)

The action of the operator L†(k) = κ (a†
k 0 − a†

k 3) on a state generates a particular
admixture of timelike and longitudinal photons which we shall call pseudophoton.
Clearly a state containing only transverse photons satisfies the subsidiary condition
(11.253) and thus is physical. Given a physical state |s〉, any other state obtained
acting on it any number of times by L† is still physical. This is easily shown using
(11.257):

L (L†)k |s〉 = (L†)k L |s〉 = 0. (11.258)

This is not the case if we act on a physical state, setting ak 0 = a0 and ak 3 = a3, by
a combination of a†

0 and a†
3 which is different from L†, say a†

0 + a†
3 . The resulting

state would not be physical since:

L(k)(a†
0 + a†

3)|s〉 = [L(k), (a†
0 + a†

3)]|s〉 = −2κ |s〉 �= 0. (11.259)

Thus pseudophotons are the only combinations of longitudinal and timelike photons
allowed in a physical state. Let us show that a physical state containing at least one
pseudophoton is perpendicular to any other state (including itself) satisfying (11.253)
and thus has zero norm. Consider a physical state (L†)k |s〉 containing a number of
pseudophotons created by (L†)k , and let |s′〉 be another physical state, we have:

〈s′|(L†)k |s〉 = (〈s′|L†)(L†)k−1|s〉 = 0, (11.260)

by virtue of (the hermitian conjugate of) condition (11.253): L|s′〉 = 0.We conclude
that states containing at least one pseudophoton have zero norm and are orthogonal
to any other physical state. Adding to a physical state an other one containing at least
one pseudophoton will not alter its physical content. In fact it corresponds to a gauge
transformation, see below.

18It is straightforward to prove this property in a generic RF, using the general expression of L(k)

in Eq. (11.252)

[L(k), L(k′)†] = kμk′νε(λ)
k,με(σ)

k′,ν [ak λ, a†
k′ σ]

= −kμk′νε
(λ)
k,με

(σ)

k′,νηλσ δk k′ = −k2 δk k′ = 0, (11.256)

where we have used the photon mass-shell condition k2 = 0 and the completeness property of the
polarization vectors.
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We have thus far learned that a state satisfying the subsidiary condition can only
contain pseudophotons besides the transverse ones, and thus we can convince our-
selves that the most general physical state |sph〉 is constructed by adding to a state
|s0〉 containing just transverse photons (and thus no pseudophotons) other ones con-
taining any number of pseudophotons besides the transverse ones:

|sph〉 ≡ |s0〉 +
∑

k

f0(k)L†(k)|s′
0〉 +

∑

k1,k2

f1(k1) L†(k1) f2(k2)L†(k2)|s′′
0 〉 + . . . ,

(11.261)
where |s0〉, |s′

0〉, |s′′
0 〉 are states containing transverse photons only. The second state

on the right hand side contains one pseudophoton, the third two and so on. We can
easily show that the terms in (11.261) containing pseudophotons do not affect scalar
products between physical states of the form (11.261), being them orthogonal to any
state satisfying the subsidiary condition, including themselves. Take indeed an other
state |s̄ ph〉 = |s̄0〉 + . . . of the form (11.261), using (11.253) and (11.257) we find:

〈s̄ ph |sph〉 = 〈s̄0|s0〉. (11.262)

This important result states that the allowed admixtures of timelike and longitudinal
photons (pseudophotons) do not affect the scalar products and in particular the norm
of the states. Thus all the physical state vectors have positive norm. As pointed
out earlier, the states |sph〉 and |s0〉 are physically equivalent. Mathematically the
difference between them corresponds to the gauge freedom of the classical theory.
To see this explicitly, let us write, just as we did for the scalar and Dirac field, the
relation between the classical potential Aμ(x) and its quantum counterpart Âμ(x)

(we temporarily restore the “hat” symbol on the field operator). If |s〉 is a physical
state describing a single photon, we can describe it in configuration space through
the classical potential

Aμ(x) = 〈0| Âμ(x)|s〉. (11.263)

Let us now consider the physically equivalent state, obtained by adding to |s〉 a
single-pseudophoton state:

|s′〉 = |s〉 +
∑

k

i f (k) L(k)†|0〉. (11.264)

Let us show that the classical field Aμ(x) changes accordingly by a gauge transfor-
mation:

A′
μ(x) = 〈0| Âμ(x)|s′〉 = Aμ(x) + δAμ(x),

δAμ(x) =
∑

k,k′
c

√
�

2ωk′ V
i f (k) ε

(λ)

k′μ〈0|ak′λ, L(k)†|0〉e−ik′·x
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=
∑

k,k′
c

√
�

2ωk′ V
i f (k) ε

(λ)

k′μkνε
(σ)
kν 〈0|[ak′λ, a†

kσ]|0〉 e−ik′·x

=
∑

k

c

√
�

2ωkV
(−ikμ) f (k) e−ik·x = ∂μ�(x), (11.265)

where

Λ(x) ≡
∑

k

c

√
�

2ωkV
f (k) e−ik·x , (11.266)

where we have used (11.228).
Thus adding to |s〉 a single pseudophoton state amounts to a gauge transformation
on the corresponding classical field.

A physical state is therefore more appropriately described in terms of a class or
a set of vectors which differ from one another by zero norm states (i.e. containing
pseudophotons). Different choices of vectors within a same class differ by a gauge
transformation and thus define the same physical object. In a consistent quantum
theory of the electromagnetic field, measurable quantities should be gauge invariant.
The expectation value of an observable Ô on a physical state should not therefore
depend on the choice of vectors within the corresponding class. Take two physical
states |sph〉 = |s0〉+ . . . and |s̄ ph〉 = |s̄0〉+ . . . of the form (11.261), and therefore in
the same classes as |s0〉 and |s̄0〉, respectively.Gauge invariance requires the following
condition on the matrix element of any observable Ô between these two states:

〈s̄ ph |Ô|sph〉 = 〈s̄0|Ô|s0〉. (11.267)

A sufficient condition for this to hold is that the operator Ô commute with L and
L†:

[Ô, L] = [Ô, L†] = 0. (11.268)

The above condition indeed allows us to move, in the terms containing L and L†,
the L† operators to the left and the L ones to the right, past Ô , hitting the bra and
ket physical vectors, respectively, and thus giving a zero result.

In next chapter we shall study electromagnetic interaction processes, like the
Compton scattering. We will learn that the probability amplitude describing the
transition between the initial and final states in the process is expressed as the matrix
element of an operator, the S-matrix, between the states of the incoming and outgoing
particles. Gauge invariance is then guaranteed if the S-matrix satisfies conditions
(11.268).

We can choose to describe physical states through the representative vectors |s0〉
of each class, which only contain transverse photons. This corresponds to a gauge
choice. In particular single photon states with definite momentum p = �k and
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transverse polarization r (r = 1, 2) will read:

|p, r〉 = a†
p r |0〉. (11.269)

A generic physical state will then be expressed as a superposition of the above states:

|s0〉 =
∑

p

2∑

r=1

f (p, r)|p, r〉, (11.270)

and the corresponding description in configuration space is:

Aμ(x) = 〈0| Âμ(x)|s0〉 =
∑

p

c�√
2Ep V

2∑

r=1

ε(r)
p μ f (p, r) e− i

�
p·x

V →∞−→ c�

∫
d3p

(2π�)3

√
V

2Ep

2∑

r=1

ε(r)
μ (p) f (p, r) e− i

�
p·x . (11.271)

We see that the transverse polarization vectors ε
(r)
μ (p) play the role of the vectors

u(p, r) introduced in Eq. (9.113) of Chap.9.19 Recall, from our discussion of irre-
ducible representations of the Poincaré group, that the states of a massless particle
are characterized by a definite value of its helicity Γ . From last section of Chap.6
we have learned that the polarization vectors with definite helicity ±� are given by
complex combinations of the transverse vectors: ε(1)

μ (p) ± i ε
(2)
μ (p).20 If we denote

by εμ(p, r), εμ(p, r)∗ such complex vectors we can write the photon field operator
in the following form:

Âμ(x) = c�

∫
d3p

(2π�)3

√
V

2Ep

2∑

r=1

(
εμ(p, r)a(p, r) e− i

�
p·x

+ εμ(p, r)∗ a(p, r)† e
i
�

p·x) . (11.272)

where a(p, r) are the complex combinations a1(p) ∓ i a2(p).

19Note that this correspondence should take into account a normalization factor due to the fact that
Aμ(x) does not have the dimension of a wave-function: 〈x|s0〉.
20In Chap.6 the direction of motion was chosen along the X -axis so that the transverse directions
were 2 and 3. Here the motion is chosen along the Z axis.

http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_6
http://dx.doi.org/10.1007/978-3-319-22014-7_6
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11.7.2 Poincaré Transformations and Discrete
Symmetries group

Let us recall the transformation property of the classical electromagnetic field under
a Poincaré transformation:

Aμ(x)
(�,x0)−→ A′

μ(x ′) = Λμ
ν Aν(x) = O(�,x0) Aμ(x ′), (11.273)

where μ and ν indices are raised and lowered using the Lorentzian metric (Λμ
ν ≡

ημρΛ
ρ
σ ησν = (�−T )μ

ν) and, as usual, x ′ = � x − x0. From the relation (11.263)
we deduce, just as we did for the scalar and Dirac fields, the transformation property
of the field operator Âμ(x):

Âμ(x)
(�,x0)−→ U † Âμ(x ′)U = Λμ

ν Âν(x) = O(�,x0) Âμ(x ′), (11.274)

where U = U (�, x0) is the unitary operator implementing the Poincaré transfor-
mation on the physical multi-photon states. The commutation relations between the
infinitesimal generators J

μν, P
μ of U (�, x0) and the Âν(x), which characterize its

transformation properties, are deduced just as we did for the lower spin fields, namely
by writing (11.274) for an infinitesimal transformation and expanding it to first order
in the parameters.

Let us now evaluate the action of the discrete symmetries C, P, T on the photon
field. Since a photon coincides with its own antiparticle, the action ofC only amounts
to a multiplication by a factor ηC = ±1:

U (C)† Âμ(x)U (C) = ηC Âμ(x). (11.275)

We shall choose ηC = −1 for reasons we are going to illustrate below, so that the
photon is odd under charge conjugation. As for P, T , the transformation properties
read:

U (P)† Âμ(x)U (P) = ηP ΛPμ
ν Âν(xP ) = ηP ημμ Âμ(xP ), (11.276)

U (T )† Âμ(x)U (T ) = ηT ΛT μ
ν Âν(xT ) = −ηT ημμ Âμ(xT ), (11.277)

with no summation over μ. In the above formulas we have defined xP ≡ �P x =
(ct,−x), and xT ≡ �T x = (−ct, x). In order to determine action of U (C), U (P)

and U (T ) on the a operators which reproduces (11.275)–(11.277), one follows the
same procedure illustrated for the scalar and Dirac field, which we shall not repeat
here.
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11.8 Quantum Electrodynamics

In Sect. 10.7 of Chap.10, we have studied the interaction of a charged Dirac field
ψ(x) (such as an electron) with the electromagnetic one Aμ(x). The description of
such interaction was obtained by applying to the free Dirac equation the minimal
coupling prescription (10.210). The resulting equations of motion could be derived
from the Lagrangian density (10.228). If we include the electromagnetic field in the
description by adding to L in (10.228) the term Le.m. describing the free Maxwell
field we end up with the following Lagrangian density for the system:

Ltot = L0 + LI , (11.278)

where L0 describes the free Dirac and electromagnetic fields:

L0 = LDirac + Le.m.,

LDirac = ψ̄(i�c γμ∂μ − mc2)ψ,

Le.m. = −1

4
Fμν Fμν, (11.279)

while LI is the interaction term in Eq. (10.228):

LI = Aμ(x) Jμ(x) = e Aμ(x)ψ̄(x)γμψ(x). (11.280)

The classical equations of motion are readily derived from Ltot and read

�Aμ = −eψ̄γμψ, (11.281)
(
i� γμ∂μ − mc

)
ψ = −e

c
γμψ Aμ, (11.282)

the latter coinciding with Eq. (10.212) of last chapter.
In this sectionwe formulate the quantum version of this theory, known as quantum

electrodynamics, that is the quantum theory describing the interaction between an
electron (or in general a charged spin 1/2-particle) and the electromagnetic field. To
this end we describe the classical system in the Hamiltonian formalism and write
the Maxwell term Le.m. in the form (11.214). We easily realize that the conjugate
momenta to the Dirac and electromagnetic fields are given by the same as in the free
case, namely by (10.133) and (11.216). The Hamiltonian density reads

H = πψψ̇ + πμ Ȧμ − Ltot = HDirac + He.m. + HI = H0 + HI , (11.283)

http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
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where

HDirac = −i� cψγi∂iψ + mc2ψψ, (11.284)

He.m. = − 1

2c2
Ȧμ Ȧμ − 1

2
∂i Aν∂i Aν, (11.285)

HI = −eψγμψ Aμ ≡ −LI , (11.286)

and H0 ≡ HDirac + He.m. represents the Hamiltonian density of the free fields
ψ(x), Aμ(x). The quantization of the system is effected by promoting ψα(x) and
Aμ(x) to operators and the Poisson brackets to commutators/anticommutators21:

[Aμ(x, t),πν(y, t)] = i�δν
μδ3(x − y), (11.287)

[Aμ(x, t), Aν(y, t)] = [πμ(x, t),πν(y, t)] = 0, (11.288)
{
ψα(x, t),ψ†

β(y, t)
}

= − i

�
δ3(x − y)δα

β , (11.289)
{
ψα(x, t),ψβ(y, t)

}
=
{
ψ†

α(x, t),ψ†
β(y, t)

}
= 0. (11.290)

Furthermore we require that Dirac and electromagnetic field operators commute
at equal time:

[ψα(x, t), Aμ(x′, t)] = [ψα(x, t), Ȧμ(x′, t)] = 0. (11.291)

The time evolution is determined by the Hamilton quantum equations

ψ̇ = − i

�
[ψ, Ĥ ]; Ȧμ = − i

�
[Aμ, Ĥ ]; π̇μ = − i

�
[πμ, Ĥ ]. (11.292)

where

Ĥ =
∫

d4xĤ(x),

is the conserved Hamiltonian. One easily verifies that the Hamilton equations of
motion are equivalent to the Euler-Lagrange equations. Equations (11.292) can be
formally integrated to read

ψ(x, t) = e
i
�

Ĥ tψ(x, 0)e− i
�

Ĥ t , (11.293)

Aμ(x, t) = e
i
�

Ĥ t Aμ(x, 0)e− i
�

Ĥ t .

Quantizing the interacting system means defining a Hilbert space of states and
quantum field operators acting on it, which satisfy the canonical commutation/anti-
commutation relations, as well as the equations of motion. As the operators obey

21As often done previously, we shall omit in this section the hat symbol on field operators only.
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coupled equations, we cannot expand them in terms of the free field solutions. We
can of course expand the field at a certain time, say t = 0 exactly as in Eqs. (11.225)
and (11.140), with creation and destruction operators obeying the same commutation
rules as in the free case. However they are no longer eigenmodes of the Hamiltonian
and hence we cannot interpret them as creation and destruction operators of single
particles. Indeed (11.293) imply that those operators evolve in time as

cp,t = e− i
�

Ĥ t cp,0e
i
�

Ĥ t

and analogously for the other operators. This means the entire apparatus of the free
field theories for constructing the eigenmodes of the Hamiltonian breaks down and
the exact solution of the coupled equations is unknown. Indeed interacting quantum
theories are too complex to be solved exactly and we must resort to perturbative
methods, to be developed in the next chapter. Let us here anticipate some con-
cepts related to this issue. In the perturbative approach the quantum Lagrangian and
Hamiltonian are written in terms of the free field operators ψ(x), Aμ(x), evolving
with H0 = ∫

d3x(HDirac + He.m.), and acting on the Fock space of free-particle
states. These are expressed as the tensor product of the electron/positron states and
the photon states:

|{Ne−}; {Ne+}〉0 ⊗ |{Nγ}〉0, (11.294)

where Ne− , Ne+ , Nγ are the occupation numbers of electron, positron and photon
states, the subscript “0” indicates that these states pertain to the free theory (e = 0).
Such states are constructed, as illustrated in this chapter, by acting on a vacuum state
|0〉0 by means of creation operators. Also the free field operators are expressed in
terms of creation and annihilation operators, and all terms in the quantumLagrangian
andHamiltonian arewritten in normal ordered form. In particular the interaction term
reads:

ĤI = −e : ψ̄γμψ Aμ :≡ −L̂I . (11.295)

Writing everything (fields, states, Hamiltonian etc.) in terms of the solution to the free
problem, corresponding the absenceof interaction (e = 0), is the lowest order approx-
imation fromwhich the perturbation analysis is developed, the perturbationparameter
being the dimensionless fine structure constant α ≡ e2/(4π�c) ≈ 1/137 � 1. All
perturbative corrections, as we shall illustrate in next chapter, are expressed in terms
of a series expansion in powers of the interaction Hamiltonian:

ĤI ≡
∫

d3xĤI , (11.296)

(and thus in powers of the small constant α), through the so called S-matrix. Let us
stress that each term in this expansion is expressed in terms of free fields.

Here we wish to comment on the issue of symmetries. So far we have defined
symmetry transformations on free fields. The Lagrangian and Hamiltonian density
operators L̂tot , Ĥtot according to the above prescription, are obtained from their



450 11 Quantization of Boson and Fermion Fields

classical expressions in (11.278), (11.279), (11.283), (11.284), by replacing the fields
by their corresponding free quantum operators, and normal ordering the resulting
expression. Let g be a symmetry transformation of the free theory (e = 0), belonging
to some symmetry group G, and let U (g) be the unitary operator which realizes it
on the free-particle states. The invariance property is expressed in terms of the free
action operator

∫
d4xL̂0

g−→
∫

d4xL̂′
0 =

∫
d4xU (g)† L̂0 U (g) =

∫
d4xL̂0. (11.297)

If U (g) also commutes with the interaction Hamiltonian (11.296) or, equivalently
with the interaction Lagrangian, we have

∫
d4xL̂′

tot =
∫

d4xU (g)† L̂tot U (g) =
∫

d4xL̂tot . (11.298)

The above property is equivalent to the statement that g is a symmetry of the classical
interacting theory described by Ltot .

In this case the transformation g will also commute with the S-matrix which, as
mentioned above, is expressed as a series expansion in powers of ĤI . If this is the
case for any g ∈ G, then the whole group G will be a symmetry of the full quantum
theory. This is the case, however, if also the vacuum |0〉 of the interacting theory is
invariant under U (g), for any g ∈ G:

U (g)|0〉 = |0〉. (11.299)

Although we do not know |0〉 a priori, we assume it to be unique and to be invariant
under the symmetries of L̂tot .

Let us review these symmetries

• Poincaré invariance. This was our guiding principle for constructing a local rela-
tivistic field theory. It is guaranteed by the fact that Ltot is written in a manifestly
Poincaré invariant form (that is it is Lorentz and translation invariant) and therefore
transforms as a scalar under Poincaré transformations:

L̂′
tot (x ′) = U (�, x0)

† L̂tot (x ′) U (�, x0) = L̂tot (x), (11.300)

where x ′ = � x − x0.
• Local-U(1) invariance. This symmetry characterizes the present theory and is
described by the local transformations in (10.214) and (10.215) of Chap.10:

Aμ(x) → Aμ(x) + ∂μϕ(x),

ψ(x) → ψ(x) e
ie
�c ϕ(x). (11.301)

http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
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• Parity. The free part of the action is parity invariant, since the Lagrangian density
is written in a form which is manifestly invariant under (proper and improper)
Lorentz transformations. Consider the transformation property of LI (x) under
parity:

U (P)†L̂I (x)U (P) = e U (P)†(: ψ̄(x)γμψ(x) :)U (P)U (P)†Aμ(x)U (P)

= e ηP : ψ̄(xP )γμψ(xP ) : Aμ(xP ), (11.302)

where we have used the transformation properties of the fermion current, derived
in Sect. 10.8.1, and of Aμ(x). The factor ηP is the photon intrinsic parity. Choosing
ηP = 1, the whole action is invariant. This is consistent with the fact that parity is
conserved in all electromagnetic processes.

• Time-reversal. The free part of the action is invariant for the reasons explained
above, while L̂I (x) transforms as:

U (T )†L̂I (x)U (T ) = e U (T )†(: ψ̄(x)γμψ(x) :)U (T )U (T )†Aμ(x)U (T )

= −e ηT : ψ̄(xT )γμψ(xT ) : Aμ(xT ), (11.303)

where we have used the transformation properties (11.208) of the fermion current
and those of Aμ(x). The factor ηT is related to the photon field. Choosing ηT = −1,
the action is invariant. This is also consistent with experimental evidence.

• Charge-conjugation. The free part of the action is invariant. Indeed we have:

U (C)†L̂0(x)U (C) = L̂0(x) + four-divergence. (11.304)

This is apparent if we consider the Maxwell contribution to L̂0 and the mass term
of the spinor field, which is proportional to the invariant bilinear ψ̄ψ, see (11.203).
As far as the kinetic term for ψ(x) is concerned we have:

U (C)†ψ̄(x)(i�cγμ∂μ)ψ(x)U (C) = −∂μψ̄(x)i�cγμψ(x)

= ψ̄(x)(i�cγμ∂μ)ψ(x) + four-divergence.

(11.305)

The interaction Lagrangian density L̂I (x) transforms as:

U (C)†L̂I (x)U (C) = e U (C)†(: ψ̄(x)γμψ(x) :)U (C)U (C)†Aμ(x)U (C)

= −e ηC : ψ̄(x)γμψ(x) : Aμ(x), (11.306)

where we have used the transformation properties (11.203) of the fermion current
and those of Aμ(x). The factor ηC is again related to the photon field and choosing
ηC = −1, the action is invariant. Electromagnetic processes are indeed found to
respect charge-conjugation symmetry.

http://dx.doi.org/10.1007/978-3-319-22014-7_10
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Not all the fundamental interactions in nature respect the above symmetries and, in
particular, the discrete ones. The strong (nuclear) interaction, which is responsible
for the binding force among protons and neutrons within nuclei as well as for the
confinement of quarks inside protons and neutrons, respects P, C, T separately,
just as electromagnetic interaction does. On the other hand the weak interaction,
responsible for the beta decay of certain nuclei, is known to violate parity: The
mirror image of certain processes do not occur with the same rate as the original
ones.

There is however an important theorem, which we are not going to prove, which
states that in a local field theory described by a Lorentz-invariant, normal-ordered
Lagrangian density L̂(x), the numbers ηC , ηP , ηT for each field can be chosen so
that the product CPT of the three discrete transformations C, P, T is always a
symmetry. In particular L̂(x) transforms as follows:

U (T )†U (P)†U (C)†L̂(x)U (C)U (P)U (T ) = L̂(−x). (11.307)

This is known as the CPT theorem. The symmetry of a theory under CPT implies
that the image under CPT of a process must be as likely to occur as the process itself.
The effect of a CPT transformation is to change particles into antiparticles, and to
reverse space and time directions. The latter operation maps a process into its inverse
with the initial and final states interchanged. Furthermore the spin components of
the various particles are reversed as well.

Although we are not going deal with interactions other that the electromag-
netic one, let us mention that the weak, strong and electromagnetic interactions
are described by a unified local, Lorentz-invariant field theory known as standard
model. The weak interaction is found to violate parity, charge conjugation and also,
to a smaller extent, the combination CP. Assuming it to be correctly described by
the standard model, by the above theorem we expect the combination CPT to be
preserved in the weak interaction phenomenology.

11.8.1 References

For further reading see Refs. [3], [8, vol. 4], [9, 13].



Chapter 12
Fields in Interaction

12.1 Interaction Processes

So far we have restricted our analysis to free bosonic and fermionic fields. In this
case we were able to canonically quantize them, by associating with the fields and
their conjugate momenta operators acting on a Hilbert space of states and satisfy-
ing the canonical commutation (or anti-commutation) relations and the equations of
motion. This was possible since free fields can be represented as collections of infi-
nitelymanydecoupledharmonic oscillators, each associatedwith a givenone-particle
state. Quantizing them amounted to quantizing each oscillator,1 whose elementary
excitation is now interpreted as an elementary particle in the corresponding state.
This defines the correspondence between particles and fields, such as for the photon
and the electromagnetic field, as explained in Chap.6. The field operators are then
constructed in terms of the annihilation and creation operators associated with each
quantum oscillator and satisfy canonical relations, expressed in terms of commuta-
tors (for bosons) or anti-commutators (for fermions). Quantum states for the system
are multi-particle states constructed as tensor products of the elementary oscilla-
tor states. They are completely characterized by occupation numbers, interpreted as
the number of particles in each single-particle state, and generate the Fock–space
of quantum states of the field. The Hamiltonian operator then describes the time
evolution of a generic state of the system.

This route to the canonical quantization of fields, however, only works for free
fields. In the presence of interactions, a basis of eigenstates of the Hamiltonian
operator is in general not known. One has to give up the purpose of finding an exact
solution to the canonical quantization problem and try to achieve a perturbative
description of the interaction whenever this is feasible. It is useful in this respect,
generalizing our discussion in Sect. 11.8, to write Lagrangian L of the interacting

1For fermionic fields it is more appropriate to talk about anti-oscillators, being them quantized
using anti-commutators in order to reproduce the right statistics.
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theory as the sum of a term L0 describing the free fields and an interaction term
LI ≡ L − L0:

L = L0 + LI . (12.1)

A similar decomposition can be done for the Hamiltonian H of the system:

H = H0 + HI . (12.2)

We shall assume the interaction term LI not to involve time derivatives of the fields,
so that we have: HI = −LI . If the interaction term HI is “small”, namely it is
proportional to some small coupling constant λ, we can study its effect on the known
solution to the free problem perturbatively. In other words we express the solution
to the complete theory, i.e. field operators φ̂ and states2 |ψ〉, in terms of the free field
operators φ̂0 and states |ψ〉0 plus perturbative effects due to the interaction, which
can be expanded in powers of λ and which vanish in the limit λ → 0:

φ̂(x) = φ̂0(x) +
∞∑

n=1

φ̂n(x)λn,

|ψ〉 = |ψ〉0 +
∞∑

n=1

|ψ〉n λn. (12.3)

The example which we shall be mostly concerned with, is the interaction between
an electron (or, in general, a charged fermion) and the electromagnetic field, which
was dealt with in Sect. 11.8 of Chap.11. In this case HI has the following form (see
Eq. (11.285) of Chap.11):

HI = −
∫

d3x e Aμ ψ γμ ψ. (12.4)

where Aμ(x) and ψ(x) are the photon and the electron fields respectively,
e = −|e| < 0 the electron charge. The dimensionless coupling constant associ-
ated with the electromagnetic interaction is the fine structure constant λ = α =

e2

4π �c ∼ 1
137 , which is small and thus allows a perturbative analysis.

In this chapter we wish to give a concise account of the relativistic-covariant
perturbation theory developed, for quantum electrodynamics, by Feynman, Dyson,
Schwinger and Tomonaga, which generalizes the familiar perturbative analysis in
non-relativistic quantum theory to a framework in which relativistic covariance is
manifest at all perturbative orders. This approach provides a powerful and simple
diagrammatic technique for computing amplitudes of scattering or decay processes,
as well as perturbative corrections to generic physical observables: Each order λn

2In this book we often denote states by |ψ〉. The reader should, however, bear in mind that the Greek
letter ψ in this symbol has no relation to fermion fields, generically denoted by ψ(x).

http://dx.doi.org/10.1007/978-3-319-22014-7_11
http://dx.doi.org/10.1007/978-3-319-22014-7_11
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term in a perturbative expansion is described in terms of diagrams made of basic
building blocks called propagators and vertices.

The starting point of this analysis is to express the complete Lagrangian and
Hamiltonian in terms of the free fields φ0(x), namely in terms of fields evolving
according to H0 and quantized as operators acting on the Fock space of free field
states. Such Hamiltonian should be itself regarded as the first term of a perturbative
expansion and by no means describes the total energy of the interacting system. Sim-
ilarly, the constants appearing in this Hamiltonian (coupling constants and masses)
should be regarded just as the first term of a perturbative expansion in λwhich yields
the measured values of the corresponding physical quantities.

As we shall see, however, in the computation of the amplitudes of interaction
processes,while everything is consistent to the lowest-order approximation, to second
order divergent quantities occur, which seem to spoil the perturbative program. It
turns out, however, that if we express these divergent amplitudes in terms of the
physical (i.e. measurable) parameters, and not in terms of the bare ones (coupling
constants, masses, charges of the free theory), then the amplitudes become finite,
while the bare parameters, which are devoid of physical meaning in the interacting
theory, become infinite. The technique to arrive at suchfinite results is usually referred
to as renormalization program and we shall give of it just simple examples to second
order in the S-matrix perturbative expansion. A complete proof that this procedure
actuallyworks to any order in perturbation theory can be found in the references given
at the end of the chapter. It should also be said that the roles of the renormalization
program and of the so-called renormalization-group flow related to it, are actually
of foremost importance in modern physics. Indeed, as it became apparent from the
later developments of quantum field theory, the renormalization technique is more
than just a technical procedure for making an interacting theory predictive and thus
experimentally testable, and has a profound bearing on the understanding of several
physical phenomena.

Before entering into the mathematical details of this analysis let us discuss the
relativistic-invariant description of scattering and decay processes.

12.2 Kinematics of Interaction Processes

If there were no interaction term HI in the Hamiltonian, a system originally prepared
in an eigenstate of the free Hamiltonian H = H0, |ψ, t = 0〉 = |E〉0, and describing
free particles with definitemomenta and total energyE, will stay (in the Schroedinger

picture) in the same state ever after |ψ, t〉 = e− i
�

Ĥ0t |E〉 = e− i
�

Et |E〉. In the presence
of an interaction HI �= 0, the eigenstates |E〉0 of H0 are no longer eigenstates of the
complete Hamiltonian and a system initially prepared in |E〉0 will in general evolve
in time towards a different state. If we consider processes in which the interaction
among the particles takes place in a small volume and during a short time-lapse,
we can describe the states of the interacting particles long before (t → −∞) and
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long after (t → +∞) the interaction as free-particle states and express them in
terms of eigenstates of H0. We shall call these two asymptotic states as the states
of incoming and outgoing particles, to be denoted by |ψin〉 and |ψout〉 respectively.
They belong to the Fock space of free-particle states.We should think of the incoming
and outgoing (in the far past and future respectively) particles as being so far apart
from one another as not to feel their reciprocal action.3 This picture would not be
consistent with describing the corresponding states as those of particles with definite
momenta, since momentum eigenstates are completely delocalized in space and
time. We should instead think of |ψin〉 and |ψout〉 as combinations of momentum
eigenstates describing wave packets with definite width �, approaching each other
before the interaction and departing from one another after it. Each wave packet
will have a momentum which is indeterminate within a cubic element Δ3p ∼ �

3/�3

about a central value p. We assume � to be large enough for the probability of each
process not to vary appreciably within Δ3p but to depend only on the mean values
pi of the momenta of each wave packet.

Let us now make some general remarks about the number of independent kine-
matic variables describing an isolated system of interacting particles in relation to
its symmetry properties. Consider a process involving a total number N of parti-
cles (which include both the incoming and the outgoing ones), each particle being
described by a 4-momentum pμ

i , i = 1, . . . , N , a polarization and a rest-mass mi.
Long before and after the interaction, for each free-particle we can write the mass-
shell condition p2i = pμ

i piμ = m2
i c2 (also called on-shell condition). Thus each free

particle state is described by the three components of its linear momentum pi and its
polarization (i.e. as we have learned in the previous chapters, a free-particle is defined
by an irreducible representation of the Poincaré group). If the particles are scalars,
the total state of the system is therefore defined by 3N variables. Poincaré symmetry
however reduces the number of independent variables. Invariance under space-time
translations (a given process should look the same if observed in different places of
our universe at different times) implies the conservation of the total 4-momentum,
which amounts to 4 conditions on the 3N variables, cutting the number of indepen-
dent ones down to 3N −4. The physics of the process is also invariant under rotations
and boosts of the frame of reference (i.e. Lorentz invariance), though the description
of the system in terms of the 3N − 4 variables is not. If we are to achieve a Lorentz-
invariant description of the process,we need to find amaximal number of independent
combinations of the 3N − 4 which are not affected by Lorentz transformations of
the frame of reference (Lorentz-invariant quantities). We have already taken into
account N of them, namely the rest-masses m2

i , with the mass-shell condition. The
remaining Lorentz-invariant quantities are obtained by requiring generic functions
of the 3N − 4 variables to be invariant under each of the six independent infinites-
imal Lorentz transformations. This implies six further conditions which reduce the
number of variables to a total of 3N − 10 Lorentz-invariant quantities. The above

3This would not be true if, during the interaction process, bound states of particles are formed. The
final system at t → +∞ would not consist in this case of free-particles only. We shall not consider
interactions which allow the creation of bound states.
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counting therefore accounts for the 10 conserved Noether charges associated with
each Lorentz symmetry generator, see Sect. 8.8, which reduce the number of inde-
pendent momentum components to 3N − 10. For particles with spin, this number
should be further multiplied by the number of spin states.

12.2.1 Decay Processes

Each elementary decay process consists of a single particle decaying into two or
more particles, like, for instance, a neutron which decays into a proton, an electron
and an anti-neutrino:

n → p+ + e− + ν̄e. (12.5)

Consider a system of identical unstable particles prepared in a same initial state |ψin〉
at t → −∞. With the passing by of time a number of the initial particles will decay.
If N(t) � 1 is the number of particles in a small volume dV 4 at a time t, so that
ρ(t) = N(t)

dV is the corresponding particle density, and if dN(in) 	 N(t) denotes the
number of these particles decaying between t and t +dt, we can write the probability
of a decay per unit time as follows:

dP(in)

dt
= dN(in)

N(t) dt
= dN(in)

ρ(t) dV dt
. (12.6)

Experimentally one finds that this quantity is a constant, depending only on the
initial state |ψin〉 and related to the probability of a single decay event to occur. Such
constant is expressed in terms of a decay width Γ (in), which has the dimension of
an energy, divided by �:

dN(in)

ρ(t) dV dt
= Γ (in)

�
. (12.7)

When computed in the rest-frame of the particle, the inverse of the above quantity
gives the mean life-time τ ≡ �

Γ (in)
, which is a characteristic feature of the particle

itself. The mean life-time of an isolated neutron, for instance, is about 15min, while
that of a muon μ− is of the order of 10−6 s (see Chap.1).

Let us discuss now the relativistic covariance of Eq. (12.7). Suppose the quantities
in (12.7) are referred to an inertial RF S and let us consider the same decay process
as described from a different inertial RF S′ (primed quantities being referred to the
latter). The space-time volume element dV dt is Lorentz-invariant, and so is the
number of events contained therein: dV dt = dV ′ dt′, dN = dN ′. Equation (12.7)

4Here we denote by dV a volumewhich is infinitesimal but still macroscopic in size, so as to contain
a considerable number of particles.

http://dx.doi.org/10.1007/978-3-319-22014-7_8
http://dx.doi.org/10.1007/978-3-319-22014-7_1
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implies that the product ρΓ (in) is Lorentz-invariant: ρΓ (in) = ρ′ Γ (in′), where in′
refers to the initial state |ψ′

in〉 of the decaying particles as seen from S′.
Consider now a process in which a particle of rest mass M decays into a final

system of n particles of rest masses m1, m2, . . . , mn. As outlined above, we consider
a statistical sample consisting of identical decaying particles prepared in a same state
with definite momentum and energyEin (in the rest-mass framewe have Ein = Mc2).
We wish to study the probability for the decays to yield outgoing particles in a
certain quantum state |ψout〉. Let us characterize |ψout〉 by a complete system of
observables, which include the momenta of the outgoing particles qi, i = 1, . . . , n,
and other (discrete) quantities like the spin, which we collectively denote by α, so
that |ψout〉 = |α, q1, . . . , qn〉. If each outgoing particle is thought of as contained
in a finite box of volume5 Vi, i = 1, . . . , n, in which it is quantized, the momenta
are discrete as well and, denoting by dN(in; α, q1, . . . , qn) the number of decay
events, within dV dt, yielding particles in the asymptotic state |ψout〉, the probability
per unit time of observing the n outgoing particles in the final state |α, q1, . . . , qn〉
reads:

d

dt
P(in; α, q1, . . . , qn) = dN(in; α, q1, . . . , qn)

ρ dV dt
= 1

�
Γ (in; α, q1, . . . , qn).

(12.8)

Since, as already observed, dN(in;α, q1,...,qn)
dV dt is Lorentz-invariant, also the product,

which we shall denote by Γ̂ , of the partial-width Γ (in; α, q1, . . . , qn) times ρ must
have the same property. This implies that, in changing the reference frame from S to
S′ we have:

Γ̂ (in; q1, . . . , qn) = ρΓ (in; q1, . . . , qn)

= ρ′ Γ ′(in′, q′
1, . . . , q′

n) = Γ̂ (in′, q′
1, . . . , q′

n), (12.9)

The total probability per unit time of the decay event is obtained by summing the
partial probability (12.8) over all the final states

d

dt
P(in) = Γ (in)

�
=
∑

q1...qn

∑
α

d

dt
P(in; α, q1, . . . , qn)

=
∑

q1...qn

∑
α

1

� ρ
Γ̂ (in; α, q1, . . . , qn). (12.10)

As usual, in the limit of large volume V we may replace the sum over momenta by

an integral:
∑

q = ∫ d3q V
(2 π �)3

and write

5The normalization volumes Vi, here and in the following, should be thought of as having a micro-
scopic size, given by the width of the wave packet describing the particle. It should not be confused
with the macroscopic volume element dV in which the decay events occur.
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d

dt
P(in) = Γ (in)

�

=
∫ ∑

α

1

� ρ
Γ̂ (in; α, q1, . . . , qn)

d3q1 V1

(2 π �)3
. . .

d3qn Vn

(2 π �)3
. (12.11)

Notice that each factor d3qi Vi
(2 π �)3

is Lorentz-invariant. The integrand in (12.11) now
represents the probability per unit time of observing the final particles with momenta
contained within elementary cubic volumes d3qi about some average values qi,
i = 1, . . . , n. Let us stress that the momenta qi are referred to the final state of the
system at t → ∞ in which the particles are infinitely far apart and in this state Vi

represents the average volume occupied by the wave-packet associated with the ith
particle. We can then define for each produced particle a density (number of ith-
type particles per unit volume) ρi = 1

Vi
. According to our discussion in Sect. 9.5 of

Chap.9, we can, for each particle, refer the definition of the volume Vi to a RF S0i

in which the product of twice the volume times the energy has a certain value c0i

(2 V0i E0i = c0i) in the appropriate units and write:

ρi = 1

Vi
= 2Ei

2 V0 E0i
= 2Ei

c0i
. (12.12)

The same can be done for the density ρ of the initial particle, by setting ρ = 2Ein/c0,
Ein being its energy. The normalization factors c0, c0i have dimension (Newton) ×
(length)4 and are relativistically invariant since they are defined in a specific frame
of reference. As we shall see, these constants will finally drop out of the expressions
for any physical quantity. Equation (12.11) will then have the following form:

dP(in)

dt
= Γ (in)

�
= c0

2Ein

∫
1

�
Γ̂ (in; q1, . . . , qn) dΩq1 . . . dΩqn , (12.13)

where we have introduced the following Lorentz-invariant measures: dΩqi ≡
d3qi c0i

(2π �)3 2Ei
. The final momenta and energies are related by the mass-shell condition:

E2
i − c2 |qi|2 = m2

i c4. The above equation provides a Lorentz-covariant description
of a decay process. The integration in (12.13) is performed over all possible final
momenta of the outgoing particles, which are constrained by the energy-momentum
conservation condition, being our system isolated:

Pμ
in = Pμ

out, (12.14)

where Pμ
in ≡ ( 1c Ein, pin), is the energy-momentum vector of the decaying particle

and Pμ
out ≡∑n

i=1 qμ
i is the total final energy-momentum of the system. We can take

condition (12.14) into account in the integration by factoring out of Γ̂ a δ4(Pin−Pout),
that is redefining:

http://dx.doi.org/10.1007/978-3-319-22014-7_9
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Γ̂ → Γ̂ (2π�)4 δ4(Pin − Pout). (12.15)

Equation (12.13) will then read:

dP(in)

dt
= Γ (in)

�
= c0

2Ein

∫
1

�
Γ̂ (in; q1, . . . , qn) dΦ(n), (12.16)

where dΦ(n) is the n-particle relativistically invariant measure in phase space and is
defined as:

dΦ(n) ≡ (2π�)4 δ4(Pin − Pout)
d3q1

(2 π �)3
V1 . . .

d3qn

(2 π �)3
Vn

= (2π�)4 δ4(Pin − Pout)
d3q1 c01

(2 π �)3 2E1
. . .

d3qn c0n

(2 π �)3 2En
. (12.17)

It is manifestly Lorentz-invariant since δ4(Pin−Pout) is. In Eq. (12.16), the kinematic
analysis of the process, i.e. all the implications of the conservation laws, is encoded
in the integration over dΦ(n), and is separated from the dynamics of the process,
which depends on the nature of the interaction involved, which is described by Γ̂ .
This latter quantity, being Lorentz-invariant, should depend on the 3N −10 = 3n−7
Lorentz-invariant variables associated with the system. For a particle decaying into
two particles, n = 2 and 3n−7 is negative, meaning that all the kinematical variables
are fixed by the symmetry of the system and the mass-shell condition, so that Γ̂ will
only depend on the rest-masses (i.e. it is a constant).

A same particle may decay into different systems of particles, defining different
decay channels. For instance the neutral pion π0, which is a neutral particle about 270
times as heavy as the electron, decays, most of the times, into two photons, π0 → 2γ.
However about 1% of them decay into an electron, a positron and a photon, π0 →
e+ +e− +γ. There are other decay channels which are much rarer. We can define for
each channel a decaywidthΓ (in; channel), given byEq. (12.16),where the sums and
integrals on the right-hand-side are over all possible states of the decay products in
the given channel. The total decay width Γ (in), yielding the probability of decay per
unit time, will then be given by the sum of the widths associated with each channel:
Γ (in) = ∑

channel Γ (in; channel). The relative probability associated with each
channel can be characterized by a branching ratio BR(in; channel) ≡ Γ (in; channel)

Γ (in)
,

which tells us how likely is the corresponding decay to occur. For the neutral pion
we have:

BR(π0 → 2γ) = Γ (π0 → 2γ)

Γ (in)
∼ 99%,

BR(π0 → e+ + e− + γ) = Γ (π0 → e+ + e− + γ)

Γ (in)
∼ 1%, (12.18)
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all other channels having BR less than 10−3. The mean life-time of a neutral pion is
about 10−16 s.

12.2.2 Scattering Processes

Consider a process in which particles are projected at a fixed target. If the incident
particle comes close enough to the target particle at rest, the two will feel the interac-
tion and be scattered or produce new particles. This happens if the impact parameter,
i.e. the distance between the initial line of motion and the line parallel to it through
the target particle, is “small enough”. Depending on the nature of the interaction and
on the energy of the incident particle, we can define an effective area about the target
particle, on the plane perpendicular to the initial line of motion, so that if the incident
particle crosses this area interaction takes place, otherwise the states of motion of
the two particles remain practically unperturbed. This area is called cross-section σ
of the interaction.

Let ρ1 and ρ2 be the densities of the incident and target particles respectively in
the laboratory frame S0 in which the latter are at rest, and let v be the relative velocity
of the two colliding particles in S0 (that is the velocity of the incident particle). The
number of incident particles colliding with a single target particle during a short time
lapse dt is given by the number of particles which pass through the corresponding
cross-sectional area σ: ρ1 v σ dt, where v = |v| and ρ1 v is the flux of the incident
particles. Multiplying this number by the number ρ2 dV of target particles in a small
volume dV , we find the number dN of collisions taking place in dV during dt. The
number of events per unit time and volume then reads:

dN(in)

dV dt
= ρ1 ρ2 v σ(in). (12.19)

The cross sectionσ is then defined as the number of collision events for each scatterer,
per unit flux of the incident beam and unit time. We can also define the probability
dP(in) of a single event between t and t + dt as the number of events per target
particle, that is: dP(in) = dN(in)/Ntarget = dN(in)/(ρ2 dV ). Equation (12.19) can
also be written in the following way:

dP(in)

dt
= (ρ1 v)σ, (12.20)

providing an alternative definition of cross section as the probability of the scattering
event per unit flux of the incident beam and unit time.

Since the left-hand side of Eq. (12.19) is Lorentz-invariant, we wish to write the
right-hand side in terms of Lorentz-invariant quantities as well. Suppose each colli-
sion produces n particles with rest-masses m1, . . . , mn. We can consider, just as we
did for the decays, the number of events dN(in; α, q1, . . . , qn)which produce parti-
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cles in a final state |ψout〉 characterized by momenta contained within an elementary
momentum space volume d3qi about an average value qi, i = 1, . . . , n, and certain
values of the remaining (discrete) quantum numbers α: |ψout〉 = |α, q1, . . . , qn〉.
To this end we write the cross section σ associated with this final state in terms of a
density function Σlab times the invariant measure on the phase space dΦ(n), which
accounts for all the kinematic constraints:

dN(in; α, q1, . . . , qn)

dV dt
= ρ1 ρ2 v Σlab(in; α, q1, . . . , qn) dΦ(n). (12.21)

The above formula is still not Lorentz-invariant since we are in the reference frame
S0 in which the target particle is at rest. Let us now move to a generic RF S in which
the incident and target particles have velocities v1, v2 and four-momenta pμ

1 , pμ
2

respectively. Let M1, M2 denote the rest-masses of the two interacting particles:
M2

1 c2 = p1 ·p1, M2
2 c2 = p2 ·p2. Recalling the discussion in Sect. 9.5 andEq. (9.141)

therein, the densities ρ1, ρ2 in S can be expressed in terms of their corresponding
values ρ(0)

1 , ρ(0)
2 in the rest-frames of the two particles, through the γ-factors: ρi =

ρ(0)
i γi, γi = (1− v2i

c2
)− 1

2 , vi = |vi|, i = 1, 2. Let us show that the quantity ρ1 ρ2 v in
S0 can be expressed with respect to S in the following Lorentz-invariant fashion

ρ(0)
1 ρ(0)

2

√
(p1 · p2)2

M2
1M2

2 c2
− c2, (12.22)

as we can show using the properties
p0i

Mi c = γi,
pi
Mi

= γi vi:

ρ(0)
1 ρ(0)

2

√
(p1 · p2)2

M2
1M2

2 c2
− c2 = ρ(0)

1 ρ(0)
2 γ1 γ2 c

√(
1 − v1 · v2

c2

)2 − 1

γ2
1 γ2

2

= ρ1 ρ2

√
|v1 − v2|2 − 1

c2
(
v21 v22 − (v1 · v2)2

)

= ρ1 ρ2

√
|v1 − v2|2 − 1

c2
|v1 × v2|2

= ρ1 ρ2 f (v1, v2), (12.23)

where we have used the property |v1 ×v2|2 = v21v
2
2 − (v1 ·v2)2 and we have defined

f (v1, v2) ≡
√

|v1 − v2|2 − 1
c2

|v1 × v2|2. If the collision is head-on, the two initial

velocities are collinear (i.e. v1 × v2 = 0) and f (v1, v2) is the modulus of the relative
velocity: f (v1, v2) = |v1 − v2|. In the laboratory frame v2 = 0, v1 = v and the
above expression yields ρ1 ρ2 v. Formula (12.23) is more general and also applies
to the case in which one of the two particles (say particle 1) is massless, so that
v1 = c. In this case the corresponding rest-frame does not exist but Eq. (12.23)

http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9


12.2 Kinematics of Interaction Processes 463

yields ρ1 ρ2 (1−v2 cos(θ)), where θ is the angle between v1 and v2. If both particles
are massless, the frame S0 does not exist and Eq. (12.23) gives ρ1 ρ2 (1 − cos(θ)).

Equation (12.21) can now be written in a fully Lorentz-invariant way:

dN

dV dt
(in; α, q1, . . . , qn) = ρ1 ρ2 f (v1, v2) Σ(in; α, q1, . . . , qn) dΦ(n),

= (2E1) (2E2)

c01 c02
f (v1, v2) Σ(in; α, q1, . . . , qn) dΦ(n),

(12.24)

where we have written ρi = 1/Vi = 2Ei/c0i and Σ(in; α, q1, . . . , qn) is a Lorentz-
invariant function which equals Σlab in the laboratory frame S0. The quantity
Σ(in; α, q1, . . . , qn) dΦ(n) is also called differential cross section dσ and charac-
terizes the probability that the scattering process, starting from a given initial state,
yields final particles with momenta contained within infinitesimal neighborhoods
d3qi of qi:

dσ(in; α, q1, . . . , qn) = Σ(in; α, q1, . . . , qn) dΦ(n)

= 1

ρ1 ρ2 f (v1, v2)
dN

dV dt
(in; α, q1, . . . , qn)

= 1

ρ1 f (v1, v2)
dP

dt
(in; α, q1, . . . , qn). (12.25)

In the above formula summation (or integration) over all quantities referred to the
final state whichΣ(in; α, q1, . . . , qn) does not depend on is understood. It is useful,
when explicitly calculating of dσ, to eliminate the delta-function δ4 in the expression
of dΦ(n), by first integrating over one of the final linear momenta, and then over the
total energy of the system. We shall illustrate this below when computing dΦ(2).

The total cross section of the process is the sum of the differential cross sections
over all possible states of the final n particles:

σ(in) =
∑
α

∫
dσ(in; α, q1, . . . , qn) =

∑
α

∫
Σ(in; α, q1, . . . , qn) dΦ(n).

The Lorentz-invariant quantity Σ(in; α, q1, . . . , qn), should only depend, aside
from the rest-masses of the particles, on the 3N − 10 = 3n − 4 remaining Lorentz-
invariant variables associatedwith the system, and on the polarizations of the particles
in the initial and final states. If the scattering produces two outgoing particles, n = 2,
of momenta qμ

1 , qμ
2 , and rest-masses μ1, μ2, starting from two colliding particles

with momenta pμ
1 , pμ

2 and rest masses m1, m2, the system is described by only two
independent Lorentz-invariant variables (aside from the rest-masses which we con-
sider as constants). It is useful to express them in terms of the Mandelstam variables
s, t, u:
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s ≡ (p1 + p2)
2 = (q1 + q2)

2, t ≡ (p1 − q1)
2 = (p2 − q2)

2,

u ≡ (p1 − q2)
2 = (p2 − q1)

2, (12.26)

which aremanifestlyLorentz-invariant, thoughnot independent. The relationbetween
s, t, u is readily found by expressing them as follows:

s = (m2
1 + m2

2)c
2 + 2p1 · p2, t = (m2

1 + μ2
1)c

2 − 2p1 · q1,

u ≡ (m2
1 + μ2

2)c
2 − 2p1 · q2. (12.27)

We then find:

s + t + u = (3m2
1 + m2

2 + μ2
1 + μ2

2)c
2 + 2p1 · (p2 − q1 − q2)

= (m2
1 + m2

2 + μ2
1 + μ2

2)c
2. (12.28)

Therefore we can choose as independent Lorentz-invariant variables describing the
system any two of s, t, u, the third Mandelstam variable being fixed in terms of them
by (12.28).

In the center of mass frame p1 = (E1/c, p), p2 = (E2/c,−p), q1 = (E′
1/c, q),

q2 = (E′
2/c,−q), p1 + p2 = ((E1 + E2)/c, 0) and thus s = (E1 + E2)

2/c2, so that
c
√

s is the total energy. Consider now an elastic collision (m1 = μ1, m2 = μ2) in
the center of mass frame. In this case E1 + E2 = E′

1 + E′
2 implies |p| = |q|, from

which it follows that E1 = E′
1 and E2 = E′

2. We then find, after some algebra:

t = −2 |p|2 (1 − cos θ) = −4 |p|2 sin2
θ

2
, (12.29)

u = −2 |p|2 (1 + cos(θ)) + (E1 − E2)
2

c2
= −4 |p|2 cos2

(
θ

2

)

+ (E1 − E2)
2

c2
, (12.30)

where θ is the angle between p and q. The variable −t represents the norm of the
momentum Δp = p − q transferred during the process.

12.3 Dynamics of Interaction Processes

In the description we have given in last section of decay and scattering processes,
we have encoded the dynamics of the event, namely the details of the interaction, in
the Lorentz-invariant functions Γ̂ andΣ , separating it from the kinematics, which is
captured by the phase-space element dΦ(n). In this Section we are going to express
these quantities in terms of the interaction Hamiltonian HI .
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12.3.1 Interaction Representation

As anticipated in the introduction, in perturbation theory the Hamiltonian of the
interacting system is computed on free fields, namely on fields evolving according
to H0.

In the Schrödinger picture, see Sect. 9.3.2, operators, including the Hamiltonian,
are constant while states |ψ(t)〉S evolve in time according to the Schroedinger equa-
tion:

i �
∂

∂t
|ψ(t)〉S = Ĥ(S) |ψ(t)〉S = (Ĥ0 + Ĥ(S)

I ) |ψ(t)〉S. (12.31)

Both Ĥ0 and Ĥ(S)
I can be expressed in terms of Hamiltonian-density operators

Ĥ0 =
∫

d3x Ĥ0, Ĥ(S)
I =

∫
d3x Ĥ(S)

I , (12.32)

Ĥ0 and Ĥ(S)
I being functions of the field-operators and their derivatives computed

at some fixed time t = t0 	 0 and thus not evolving (occasionally, in what follows,
we shall explicitly take t0 = −∞). The reference instant t0 is chosen long before the
interaction process occurs, so that the particles are consistently regarded as free and
described in terms of their free-field operators φ̂0

6:

Ĥ0 = Ĥ0(φ̂0(t0, x), ∂μφ̂0(t0, x)), Ĥ(S)
I = Ĥ(S)

I (φ̂0(t0, x), ∂μφ̂0(t0, x)). (12.33)

Clearly, theSchroedinger picture does not provide a relativistically-covariant descrip-
tion of the interaction since the free-field operators are all computed at t = t0.

The time-evolution of states was described, in Sect. 9.3.2 of Chap.9, in terms of
a time-evolution operator U(t, t0), defined by property (9.73):

|ψ; t〉S = U(t, t0) |ψ; t0〉S. (12.34)

Let us recall the main properties of U(t, t0) discussed in Sect. 9.3.2. The inverse of
U(t, t0) is the operator which maps the state at t back to t0: U(t, t0)−1 = U(t0, t).
Substituting (12.34) into (12.31) we find that U(t, t0) is solution to the following
equation

i �
d

dt
U(t, t0) = Ĥ(S) U(t, t0), (12.35)

6Strictly speaking, identifying the fields of the particles long before the interaction process as free
is not correct: As we shall see when discussing quantum electrodynamics, although not interacting
with each other, charged particles interact with their own electromagnetic field. The effect of this
self-interaction will be discussed and taken into account in Sects. 12.7 and 12.8.

http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
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with the initial condition U(t0, t0) = 1. From hermiticity of Ĥ(S) it follows that
U(t, t0) is unitary. Indeed let us first show that U(t, t0)† U(t, t0) is constant:

d

dt
(U(t, t0)

† U(t, t0)) =
(

d

dt
U(t, t0)

†
)

U(t, t0) + U(t, t0)
†
(

d

dt
U(t, t0)

)

= i

�

(
U(t, t0)

† Ĥ(S)†
)

U(t, t0) + U(t, t0)
†
(

− i

�
Ĥ(S) U(t, t0)

)

= i

�
U(t, t0)

† Ĥ(S) U(t, t0) − i

�
U(t, t0)

†Ĥ(S) U(t, t0) = 0.

(12.36)

Being constant this operator should be equal to its value at t = t0, namely
U(t, t0)† U(t, t0) = 1, and thus U(t, t0) is unitary.

In the Heisenberg picture states |ψ〉H are constant while operators evolve in time.
The relation between states in the Heisenberg and in the Schroedinger pictures
is defined by the time-evolution operator: |ψ〉H = U(t, t0)† |ψ(t)〉S . Similarly the
operators Ô(t)H and Ô in the two representations are related to one another in such a
way that theirmean values on the states is the same: Ô(t)H = U(t, t0)† Ô U(t, t0). As
pointed out in the introduction, the fundamental problemwhich motivates the pertur-
bative approach is that an exact solution to either Eq. (12.31) or (12.35) is not known.
In order to develop a Lorentz-covariant perturbation theory, it is convenient to work
in the interaction representation which is somewhat in between the Schroedinger
and the Heisenberg picture. In this representation operators, which depend on the
free-field operators, evolve according to Ĥ0, while states evolve according to Ĥ(S)

I .
Let us introduce the time-evolution operator U0(t, t0) associated with the free-field
theory and thus satisfying the equation:

i �
d

dt
U0(t, t0) = Ĥ0 U0(t, t0). (12.37)

According to our discussion of Sect. 9.3.2, Chap. 9, being Ĥ0 a constant operator,

the above equation is easily integrated: U0(t, t0) = U0(t − t0) = e− i
�

Ĥ0 (t−t0). The
states |ψ(t)〉I and operators Ô(t) in the interaction picture are related to those in the
Schroedinger representation as follows7:

|ψ(t)〉I ≡ U0(t, t0)
† |ψ(t)〉S = e

i
�

Ĥ0 (t−t0) |ψ(t)〉S,

Ô(t) = e
i
�

Ĥ0 (t−t0) Ô e− i
�

Ĥ0 (t−t0). (12.38)

It is straightforward to verify that the state |ψ(t)〉I satisfies Eq. (9.76):

7Note that, for the sake of notational simplicity, we have simply denoted by Ĥ0 the free Hamiltonian
in the Schroedinger representation as well as in the interaction picture.

http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
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i �
d

dt
|ψ(t)〉I = ĤI(t) |ψ(t)〉I , (12.39)

where ĤI(t) ≡ e
i
�

Ĥ0 (t−t0) Ĥ(S)
I e− i

�
Ĥ0 (t−t0) is the interaction Hamiltonian in the

interaction representation. It non-trivially depends on time since ĤI and Ĥ0 do not
commute. In particular, if we compute in this picture the density ĤI(t) associated
with the interaction Hamiltonian, we see that it is expressed in terms of the free-field
operators, and their derivatives, computed in a generic space-time point xμ = (c t, x)

and thus has a Lorentz-covariant expression:

ĤI(t) ≡ e
i
�

Ĥ0 (t−t0) ĤI(φ̂0(t0, x), ∂μφ̂0(t0, x)) e− i
�

Ĥ0 (t−t0)

= ĤI(φ̂0(t, x), ∂μφ̂0(t, x)),

where we have used the property of free-field operators of evolving according to Ĥ0:

e
i
�

Ĥ0 (t−t0) φ̂0(t0, x) e− i
�

Ĥ0 (t−t0) = φ̂0(t, x). (12.40)

12.3.2 The Scattering Matrix

In perturbation theory the solution to the evolutionEq. (12.39) is sought for in the form
of a series expansion in the small coupling-parameter λ which HI(t) is proportional
to. This expansion is to be determined by successive approximations.

Let us now define a time-evolution operator UI(t, t0) for states in the interaction
representation:

|ψ(t)〉I = UI(t, t0) |ψ(t0)〉I , (12.41)

satisfying the initial condition UI(t0, t0) = 1. Substituting in (12.39), we find for
UI(t, t0) the following equation:

i �
d

dt
UI(t, t0) = ĤI(t) UI(t, t0), (12.42)

which is analogous in the interaction picture to Eq. (12.35) in the Schroedinger rep-
resentation. Since ĤI(t) is hermitian (ĤI(t) = ĤI(t)†), we can apply the same argu-
ment used for U0, see Eq. (12.36), to prove that UI is unitary: UI(t, t0) UI(t, t0)† =
UI(t, t0)† UI(t, t0) = 1. From this it follows that UI(t, t0)−1 = UI(t0, t) =
UI(t, t0)†.

Let us now seek for a solution to the above equation in the form of a series
expansion in λ:

UI(t, t0) =
∞∑

k=0

Uk(t, t0), (12.43)
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where each term Uk(t, t0) is proportional to λk . For λ = 0 there is no interaction and
thus the interaction picture coincides with the Heisenberg one in which the states do
not evolve in time, implying that the first term in the above expansion is the identity
matrix Uk=0(t, t0) = 1. The initial condition on UI(t, t0) then implies on the other
terms: Uk>0(t0, t0) = 0. Substituting the expansion (12.43) in (12.42), recalling that
ĤI(t) is proportional to λ, and equating the coefficients of the same power in the
coupling-constant, we find the following iterative relation:

d

dt
Uk(t, t0) = − i

�
ĤI(t) Uk−1(t, t0)

⇒ Uk(t, t0) = − i

�

t∫

t0

dt1 ĤI(t1) Uk−1(t1, t0).

The above equation is formally solved for each k as follows:

Uk(t, t0) =
(

− i

�

)k t∫

t0

dt1

t1∫

t0

dt2 . . .

tk−1∫

t0

dtk ĤI(t1) ĤI(t2) . . . ĤI(tk). (12.44)

It is convenient to write the above composite integral in a form in which all integrals
are computed between t0 and t. To this end, let us consider, for the sake of simplicity,
the second order term Uk=2(t, t0):

U2(t, t0) = − 1

�2

t∫

t0

dt1

t1∫

t0

dt2 ĤI(t1) ĤI(t2). (12.45)

In the above expression the integration variables are in the following order t1 > t2.
Let us define the chronological operator T as follows:

T [ĤI (t1) ĤI(t2)] ≡
{

ĤI(t1) ĤI(t2) if t1 > t2
ĤI(t2) ĤI(t1) if t2 > t1.

(12.46)

From the above definition we see that, if we compute the double integral of
T [ĤI(t1) ĤI(t2)] over the square in the (t1, t2)-plane defined by t0 ≤ t1 ≤ t,
t0 ≤ t2 ≤ t, we find

t∫

t0

dt1

t∫

t0

dt2 T [ĤI (t1) ĤI(t2)] =
t∫

t0

dt1

t1∫

t0

dt2 ĤI(t1) ĤI(t2)

+
t∫

t0

dt2

t2∫

t0

dt1 ĤI(t2) ĤI(t1).
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Being t1, t2 integration variables, the two terms on the right-hand side are equal and
we can then write:

U2(t, t0) = − 1

�2

t∫

t0

dt1

t1∫

t0

dt2 ĤI(t1) ĤI (t2)

= − 1

2 �2

t∫

t0

dt1

t∫

t0

dt2 T [ĤI (t1) ĤI (t2)]. (12.47)

Similarly we define the chronological operator on a generic k-fold product of ĤI(t)
operators at different times, as the operator which rearranges the factors so that the
instants at which the operators are computed, decrease in reading the product from
left to right (time-ordered product):

T [ĤI(ti1) ĤI(ti2) . . . ĤI(tik )] ≡ ĤI(t1) ĤI(t2) . . . ĤI(tk), (12.48)

where t1 > t2 > · · · > tk . Generalizing our discussion for the k = 2 case, we
can convince ourselves that, since the left hand side of (12.48) is symmetric in
the interchange of the factors, it contributes k! equal terms when integrated over
t1, t2, . . . , tk , each varying from t0 to t, so that the correct expression for Uk(t, t0)
is obtained by dividing this integral by k!. Definition (12.48) then allows us to write
Uk(t, t0) in (12.44) as follows:

Uk(t, t0) = 1

k!
(

− i

�

)k t∫

t0

dt1

t∫

t0

dt2 . . .

t∫

t0

dtk T [ĤI(t1) ĤI(t2) . . . ĤI(tk)].

(12.49)

Note that, if the values of the operator ĤI(t) at different times commuted (that is
if [ĤI(t), ĤI(t′)] = 0), there would be no issue of time-ordering and thus no need
of using the T -operator. In this case the right-hand side of Eq. (12.49) would have a
simple form in terms of the kth power of a single integral

Uk(t, t0) = 1

k!
(

− i

�

)k
⎛
⎝

t∫

t0

dt′ ĤI(t
′)

⎞
⎠

k

, (12.50)

and the series (12.43) is easily summed to an exponential:

UI(t, t0) = exp

⎛
⎝− i

�

t∫

t0

dt′ ĤI(t
′)

⎞
⎠ . (12.51)
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In general, however, [ĤI(t), ĤI(t′)] �= 0 and the correct solution to Eq. (12.42) is
not given by the above exponential but rather by the following formal expansion

UI(t, t0) = T

⎡
⎣exp

⎛
⎝− i

�

t∫

t0

dt′ ĤI(t
′)

⎞
⎠
⎤
⎦

=
∞∑

k=0

1

k!
(

− i

�

)k t∫

t0

dt1

t∫

t0

dt2 . . .

t∫

t0

dtk T [ĤI(t1) ĤI(t2) . . . ĤI(tk)],

(12.52)

where the symbol T [exp(. . . )] represents the prescription that the integrand in each
multiple integral originating from the expansion of the exponential should be time-
ordered. This means that, when acting by means of UI(t, t0) on a state |ψ(t0)〉I ,
the values of the operator ĤI(t) at earlier times should be applied to it before those
computed at later times.

Let |ψ(t)〉I describe the state of the system at the time t. Long before the interac-
tion, the system consists of free-particles described by the state |ψin〉 (we shall often
omit the subscript “I” of the interaction representation), so that:

|ψin〉 = lim
t→−∞ |ψ(t)〉I = |ψ(−∞)〉I . (12.53)

At a time t, the state |ψ(t)〉I can be formally expressed in terms of |ψin〉 using the
time-evolution operator UI :

|ψ(t)〉I = UI(t,−∞) |ψin〉. (12.54)

Long after interaction the system is described by the free-particle state |ψ(+∞)〉I ,
related to the initial state as follows:

|ψ(+∞)〉I = UI(+∞,−∞) |ψin〉 = S |ψin〉, (12.55)

where we have defined the scattering matrix S (S-matrix) as

S ≡ UI(+∞,−∞) = T

⎡
⎣exp

⎛
⎝− i

�

+∞∫

−∞
dt′ ĤI(t

′)

⎞
⎠
⎤
⎦

=
+∞∑

n=0

(−i

�

)n 1

n!
+∞∫

−∞
dt1 . . .

+∞∫

−∞
dtn T

[
ĤI(t1) . . . ĤI(tn)

]
. (12.56)

If we now use Eq. (12.32) in the interaction representation, we can express S in a
Lorentz-invariant fashion, in terms of the interaction Hamiltonian density ĤI(t, x) =
ĤI(x):



12.3 Dynamics of Interaction Processes 471

S ≡ T

⎡
⎣exp

⎛
⎝− i

c �

+∞∫

−∞
d4x ĤI(x)

⎞
⎠
⎤
⎦

=
+∞∑

n=0

(−i

c �

)n 1

n!
+∞∫

−∞
d4x1 . . .

+∞∫

−∞
d4xn T

[ĤI(x1) . . . ĤI(xn)
]
. (12.57)

Just as UI , S is a unitary operator acting on the Fock space of free-particle states:

SS† = 1, (12.58)

and it encodes the information about the interaction.
In general one is interested in the probability of finding the system, after the

interaction, in a free-particle state |ψout〉. If the particles are initially prepared in a
state |ψin〉, this probability P(in; out) reads

P(in; out) = |〈ψout |ψ(+∞)〉|2
〈ψout |ψout〉〈ψ(+∞)|ψ(+∞)〉 = |〈ψout |S|ψin〉|2

〈ψout |ψout〉〈ψin|ψin〉 , (12.59)

where we have used Eq. (12.55). The transition amplitude A(in; out) (also called,
for scattering processes, scattering amplitude) is then given by the matrix element of
S between the initial and final states. Let us define an operator T so that S = 1 + i T.
The identity operator only contributes to the transition amplitude when the initial
and final states coincide, namely when there is no interaction. Excluding this case
we can write

A(in; out) ≡ 〈ψout |S|ψin〉 = i 〈ψout |T|ψin〉. (12.60)

Since the system is isolated, the total four-momentum is conserved. If we think
of the initial and final states as consisting of plane waves of total four-momenta
Pμ

in, Pμ
out , respectively,we can factor out of thematrix element (12.60) a delta function

implementing this constraint

〈ψout |T|ψin〉 = (2 π �)4 δ4(Pout − Pin) 〈ψout |T |ψin〉, (12.61)

As previously emphasized, if the interacting particles were described by plane waves
(i.e. eigenstates of the momentum operator), it would not even make sense to talk
about “initial” and “final” states. We should always think of the process as of an
interaction between wave-packets moving with linear momenta which are narrowly
distributed about some average value, so that we can suppose the matrix element
of T not to vary appreciably within the momentum intervals associated with each
particle.

To make contact with our discussion in Sects. 12.2.1 and 12.2.2 let us express the
probability of an interaction process per unit time in terms of S-matrix elements.
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We start considering a scattering process of two particles of masses m1, m2, which
yield a number of outgoing particles. The initial state describes two wave-packets
of momenta narrowly distributed about two average values p̄1, p̄2. Therefore using
Fock space representation it has the form

|ψin〉 = |ψ1〉|ψ2〉,
|ψi〉 =

∫
dΩp

∑
r

fi(p, r) |p, r〉, i = 1, 2, (12.62)

where fi(p, r) is the weight of each |p, r〉 contributing to the wave-packet |ψin〉,
and where, as usual, dΩp ≡ d3pi

(2π�)3
Vi. The one-particle states |ψi〉 correspond to

the following positive-energy solutions to the Klein-Gordon equation, which, for
type-(a) bosons (complex scalar field and electromagnetic field) and type-(c) fermi-
ons, respectively, read:

φi(x) = 〈0|φ̂(x)|ψi〉 =
∫

d3p

(2π�)3
�

√
Vi

2Ep
fi(p) e− i

�
p·x

= �

∫
dΩp√
2Ep Vi

fi(p) e− i
�

p·x,

Aμ(x) = 〈0|Âμ(x)|ψi〉 = c�

∫
dΩp√
2Ep Vi

2∑

r=1

fi(p, r) εμ(p, r) e− i
�

p·x, (12.63)

ψα
i (x) = 〈0|ψ̂α(x)|ψi〉 =

∫
dΩp

√
m c2

Ep Vi

2∑

r=1

fi(p, r) u(p, r)α e− i
�

p·x, (12.64)

We wish now to relate the Fourier coefficients fi of the wave packets to the corre-
sponding particle density. Consider, for instance, the case in which the incoming
particles are described by either a complex scalar field, or a Dirac field.8 For each
of them we can define a conserved current ji μ = (ρi,

1
c ji), which, for a scalar and a

fermion, respectively, reads:

ji μ = i
c

�
(φ∗

i (x)∂μφi(x) − ∂μφ∗
i (x)φi(x)),

ji μ = ψiγμ ψi, (12.65)

no summation over i. The time-components ρi = j0i of the current are positive defi-
nite, being constructed out of positive-energy solutions, and thus can be consistently
regarded as one-particle densities. We are now considering a single interaction event
and therefore, being ρi related to a single-particle state, it will be normalized as

8The final relations we are going to derive apply to the photon field as well.
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follows9:
∫

d3x ρi = 1. This choice, using Eq. (12.65), implies the following nor-
malization for the one-particle states, as the reader can easily verify10:

1 =
∫

d3x ρi =
∫

dΩp

∑
r

|fi(p, r)|2 = 〈ψi|ψi〉. (12.66)

The above normalization is used also for the outgoing particles, so that 〈ψin|ψin〉 =
〈ψout |ψout〉 = 1.

In the following, for the sakeof simplicity,we shall limit ourselves to two incoming
spin 0 particles, described by complexfieldsφi(x), although the final relation between
the transition probability, the differential cross section and the S-matrix elements,
straightforwardly extends to spin 1/2 and 1 particles. Being φi(x) positive energy
solutions, ρi > 0 can be consistently regarded as single-particle densities. We now
observe that, substituting (12.63) inside (12.65) we find:

ji μ(x) = i
c

�

∫
dΩp√
2Ep Vi

dΩp′√
2Ep′ Vi

�
2

×
(

fi(p)∗fi(p′) (−i)
p′

i μ

�
e− i

�
(p′−p)·x − i fi(p)fi(p′)∗

p′
i μ

�
e

i
�

(p′−p)·x
)

≈ 2
c

�2
p̄i μ |φ(x)|2, (12.67)

where we have used the property that fi(p) are narrowly peaked about average values
p̄i and thus we have approximated, in the integral, p′

i μ, pi μ with p̄i μ.11 Using the

same approximation, and restricting to the time component ρi = j0i of the currents, we
can set p′0 ≈ p0 ≈ Ep̄/c, so that the energy factors arising from the time-derivatives
cancel against the factor 1/

√
Ep Ep′ , andwe canwrite the densities ρi in the following

form:

ρi(x) ≈ 1

Vi

∫
dΩp dΩp′ fi(p)∗ fi(p′) e− i

�
(p′−p)·x, (12.68)

Let |ψout〉 describe a system of free outgoing wave packets whose momenta are also
narrowly distributed about some average values, the average final total momentum
being P̄out μ. Let us now write the matrix element of T in plane waves components

9In Sects. 12.2.1 and 12.2.2, in contrast to the present section, we were considering collections of
particles decaying or interacting (i.e. colliding beams) and thus the densities ρ were referred to
multi-particle systems.
10Recall our choice of normalization for the single-particle momentum eigenstates: 〈p, r|p′, r′〉 =
(2π�)3

V δ3(p − p′) δrr′ .
11For fermionic fields, in the same approximation, we would find ji μ(x) ≈ p̄i μ

m c ψi(x) ψi(x).
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〈ψout |T|ψin〉 =
∫

dΩp1 dΩp2 f1(p1) f2(p2) 〈ψout |T|p1〉|p2〉

=
∫

dΩp1 dΩp2 f1(p1) f2(p2) (2π�)4δ4(P̄out μ − p1μ − p2μ)

×〈ψout |T |p1〉|p2〉. (12.69)

To evaluate the transition probability, we need to compute the squared modulus of
the above amplitude:

|〈ψout |T|ψin〉|2 =
∫

dΩp1 dΩp2 dΩp′
1

dΩp′
2

f1(p1)f
∗
1 (p′

1) f2(p2)f
∗
2 (p′

2)

×(2π�)8 δ4(P̄out μ − p1μ − p2μ) δ4(P̄out μ − p′
1μ − p′

2μ)

×〈ψout |T |p1〉|p2〉〈ψout |T |p′
1〉|p′

2〉∗. (12.70)

Let us nowapproximate thematrix elements 〈ψout |T |p1〉|p2〉, 〈ψout |T |p′
1〉|p′

2〉with
the corresponding value computed on p̄i, 〈ψout |T |p̄1〉|p̄2〉. Writing
δ4(P̄out μ − p1μ − p2μ) δ4(P̄out μ − p′

1μ − p′
2μ) as δ4(P̄out μ − p1μ − p2μ) δ4(p1μ +

p2μ − p′
1μ − p′

2μ) and expressing the second delta function as follows

(2π�)4 δ4(p1μ + p2μ − p′
1μ − p′

2μ) =
∫

d4x e− i
�

(p1+p2−p′
1−p′

2)·x, (12.71)

the expression (12.70) can be recast in the form

|〈ψout |T|ψin〉|2 =
(∫

d4x
∫

dΩp1 dΩp2 dΩp′
1

dΩp′
2

f1(p1)f
∗
1 (p′

1)

×f2(p2)f
∗
2 (p′

2) e− i
�

(p1+p2−p′
1−p′

2)·x
)

×(2π�)4 δ4(P̄out μ − p̄1μ − p̄2μ) |〈ψout |T |p̄1〉|p̄2〉|2

=
(∫

d4x ρ1(x) V1 ρ2(x) V2

)

×(2π�)4 δ4(P̄out μ − p̄1μ − p̄2μ) |〈ψout |T |p̄1〉|p̄2〉|2, (12.72)

where we have used the approximated expressions (12.68). Finally, differentiating
both sides of Eq. (12.72) with respect to time and using the definition (12.59) of
transition probability we find:

dP

dt
(in; out) = c

(∫
d3x ρ1(x) V1 ρ2(x) V2

)

×(2π�)4 δ4(P̄out μ − p̄1μ − p̄2μ) |〈ψout |T |p̄1〉|p̄2〉|2. (12.73)

If we consider ρ1 uniform in the region where particle 2 is localized (i.e. the region
in which ρ2 is non vanishing) we can write in the above expression

∫
d3xρ2 = 1.
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If the final state |ψout〉 = |α, q1, . . . , qn〉 describes n outgoing particles with def-
inite momenta q1, . . . , qn and characterized by discrete quantum numbers which
collectively denoted by α, we would rewrite Eq. (12.73) in the following form:

dP

dt
(in; α, q1, . . . , qn) = c ρ1(x) V1 V2 |〈α, q1, . . . , qn|T |p̄1〉|p̄2〉|2 dΦ(n).

(12.74)

where dΦ(n), defined in (12.17), is, as usual, the phase space element which depends
on the uncertainties d3q� in the definition of each final momenta and accounts for the
kinematic constraints. Using Eq. (12.25) we can write the differential cross section:

dσ = 1

ρ1 f (v1, v2)
dP

dt
(in; α, q1, . . . , qn)

= c
V1 V2

f (v1, v2)
|〈α, q1, . . . , qn|T |p̄1〉|p̄2〉|2 dΦ(n), (12.75)

where, for head-on collisions, f (v1, v2) = |v1 − v2|.
Along the same lines we can derive the expression of a decay probability per unit

time in terms of matrix elements of T. In this case the initial state |ψin〉 = |ψ1〉
would describe a single particle with rest mass M and average four momentum
p̄μ = ( 1c Ep̄, p̄). The reader can easily verify that

dP

dt
(in; α, q1, . . . , qn) = c

(∫
d3x ρ(x) V

)
|〈α, q1, . . . , qn|T |p̄〉|2 dΦ(n)

= c V |〈α, q1, . . . , qn|T |p̄〉|2 dΦ(n)

= V

�
Γ̂ (in; q1, . . . , qn) dΦ(n), (12.76)

where dΦ(n) is the phase-space element describing the n outgoing particles, ρ is
the density associated with the decaying particle, V the corresponding volume and
we have used the definition of the differential width Γ̂ given in (12.16). The above
equation allows to express Γ̂ in terms of T-matrix elements.

Note that in Eqs. (12.75) and (12.76), for scattering and decay processes respec-
tively, each incoming andoutgoingparticle contributes a volume factor: InEq. (12.75)
Vi, i = 1, 2, for each colliding particle, in Eq. (12.76) the normalization volume V
associated with the decaying particle, and V�, � = 1, . . . , n, for each particle pro-
duced, from the definition of dΦ(n). It is useful, as we did in the previous sections,
to express each volume factor in terms of the energy of the corresponding particle
by a suitable choice of the normalization: Vi = c0i/(2Epi) (incoming particles),
V = c0/(2Ep) (decaying particle), and V� = c0�/(2Eq�

) (outgoing particles). As
pointed out in Sect. 12.2.1, the dimensionful normalization coefficients c0k , k running
over all the incoming and outgoing particles, should finally drop out of the expres-
sion for the cross section or the decay width, since these physical quantities ought
not depend on the specific normalization used. They indeed cancel against analo-



476 12 Fields in Interaction

gous coefficients originating from |〈α, q1, . . . , qn|T |in〉|2, (|in〉 being |p̄1〉|p̄2〉 for
scattering processes or |p̄〉 for decays). Let us motivate this by anticipating part of
the forthcoming discussion on the structure of the scattering amplitude. Consider the
contribution to the amplitude 〈α, q1, . . . , qn|T |in〉, of a generic term in the perturba-
tive expansion (12.57). It will be expressed as the matrix element between the initial
and final states of products of a number of Hamiltonian densities ĤI(x) computed
in different points:

〈α, q1, . . . , qn|ĤI(x1) . . . ĤI(xm)|in〉. (12.77)

As we shall see in the Sect. 12.3.6, the above matrix element can be written as a
sum of terms, each containing a number of propagators, depending on m, which do
not contribute volume factors, and factors of the form 〈p|Φ̂|0〉, for each incoming
and outgoing particle, Φ being the particle field and p its momentum.12 These terms
will contribute a factor

∏
k

1√
Vk

∝ ∏
k

1√
c0k

, k running over the total number N

of incoming and outgoing particles. Therefore the squared modulus of the matrix
element precisely contains inverse normalization factors which cancel against those
originating from the normalization volumes in the formula (12.75), so that the final
expression for dσ does not depend on them. This implies that we can forget about the
normalization factors and safely replace in all formulas the normalization volumes
V by 1

2E . This is done by replacing the matrix element 〈T 〉 by a rescaled one 〈T ′〉
defined as follows:

〈T ′〉 =
N∏

k=1

√
Vk 2Ek 〈T 〉, (12.78)

where the multiplicative factor on the right hand side does the job of replacing
the normalization volumes Vk (one for each incoming and outgoing particle) in the
expression of 〈T 〉 by 1/(2Ek). With this position Eqs. (12.75) and (12.76) will read:

dσ = c
1

4Ep1 Ep2 f (v1, v2)
|〈α, q1, . . . , qn|T ′|p̄1〉|p̄2〉|2 dΦ(n), (12.79)

dP

dt
(in; α, q1, . . . , qn) = 1

2 � Ep
Γ̂ (in; q1, . . . , qn) dΦ(n)

= c

2Ep
|〈α, q1, . . . , qn|T ′|p̄〉|2 dΦ(n), (12.80)

12This will be shown in detail when provingWick’s theorem. Eachmatrix element 〈p|Φ̂|0〉 contains
a factor

√
V coming from the expansion of Φ̂ in terms of creation and annihilation operators

(a†, a, respectively), and a factor 1
V coming from the vacuum expectation value (v.e.v.) 〈0|aa†|0〉,

(Footnote 12 continued)
which equals 〈0|[a, a†]|0〉 = [a, a†] for bosons and {a, a†} for fermions. The matrix element
〈p|Φ̂|0〉 will thus contribute a factor 1√

V
.



12.3 Dynamics of Interaction Processes 477

where now dΦ(n) = (2π�)4 δ4(P̄out μ − p̄1μ − p̄2μ)
∏n

�=1 d Ωq�
and Ωq�

=
d3q�

(2π �)3 2Eq�

.

The formula for the cross section, in particular, can be made manifestly invariant
by recalling, from Eq. (12.23), that

f (v1, v2) = 1

γ1 γ2 M1 M2 c

√
(p̄1 · p̄2)2 − M2

1 M2
2 c4.

This allows to recast Eq. (12.79) in the following Lorentz-invariant form

dσ = 1

4 c2
√

(p̄1 · p̄2)2 − M2
1 M2

2 c4
|〈α, q1, . . . , qn|T ′|p̄1〉|p̄2〉|2 dΦ(n).

(12.81)

If we are in the laboratory frame in which particle 2 is a target particle at rest, the
above formula reduces to

dσ = 1

4 c3 M2 |p1|
|〈α, q1, . . . , qn|T ′|p̄1〉|p̄2〉|2 dΦ(n). (12.82)

Upon replacing V → 1/(2E), the dimension of |〈T ′〉|2 for a scattering process
involving two incoming and n outgoing particles is

[
|〈T ′〉|2

]
= [length]3n−2 × [energy]n+2. (12.83)

The reader is invited to re-derive Eqs. (12.81) and (12.82) in the more general case
in which the incoming particles are generic bosonic fields (like a spin 1 photon) or
fermionic fields (like an electron or a positron).

We have reduced the problem of studying, at a perturbative level, an interaction
process to that of computing S-matrix (or, equivalently, T-matrix) elements, which
encode the dynamics of the process itself. In what follows we shall introduce, in the
framework of quantum electrodynamics, a graphical method, originally developed
by Feynman, for computing these matrix elements.

Let us briefly elaborate on the issue of symmetry and its implications for interac-
tion processes. Consider a transformation implemented on the space of states by a
unitary operator U. Let U be a symmetry of the free theory which remains a sym-
metry also in the presence of interaction. In light of our discussion in Sect. 11.8, it
will in particular commute with the interaction Hamiltonian: [U, ĤI ] = 0. We also
require the vacuum |0〉 of the interacting theory, which we assume to be unique, to
be invariant under U: U|0〉 = |0〉. It follows that U commutes with S:

[U, S] = 0 ⇔ U†SU = S. (12.84)

As a consequence of this 〈out|S|in〉 = 〈out|U†SU|in〉 = 〈out′|S|in′〉, where |in′〉 ≡
U|in〉 and |out′〉 ≡ U|out〉. This implies that the transition probabilities in (12.59)

http://dx.doi.org/10.1007/978-3-319-22014-7_11
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between the original and the transformed states be the same:

P(in; out) = P(in′; out′). (12.85)

As an example we can consider the Poincaré symmetry, which, as often stressed,
encodes the fundamental assumption of homogeneity and isotropy of space-time, and
which has been our guiding principle for constructing a relativistic theory. Invariance
under a generic Poincaré transformation implies:

U†(�, x0)SU(�, x0) = S. (12.86)

If the symmetry, on the other hand, involves time-reversal T , U is antiunitary and
thus:

U†SU = S†, (12.87)

since U commutes, in the expansion of S, with all the ĤI factors, but switches i into
−i. Consequently we can write

〈out|S|in〉 = 〈out|S (in)〉 = 〈U S (in)|U (out)〉 = 〈S† U (in)|U (out)〉
= 〈in′|S|out′〉, (12.88)

that is

P(in; out) = P(out′; in′). (12.89)

In other words one of the effects of a transformation which involves time reversal,
is to invert the roles of the initial and final states, as it was to be expected.

12.3.3 Two-Particle Phase-Space Element

Before moving to dynamics and the computation of amplitudes, let us calculate,
in the new conventions, the phase space element dΦ(2) associated with two final
particles of rest-masses μ1, μ2:

dΦ(2) = c δ(Etot − E′
1 − E′

2) δ3(ptot − q1 − q2)
d3q1d3q2

(2π�)2 4E′
1E′

2
, (12.90)

where E′
1 = Eq1 , E′

2 = Eq2 . We can integrate over q2 and then move to the center
of mass frame where q1 = q = −q2, obtaining

dΦ(2) = c δ(Etot − E′
1 − E′

2)
|q|2 d|q| dΩ

(2π�)2 4E′
1E′

2
, (12.91)
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where we have written d3q = |q|2 d|q| dΩ , dΩ being the solid angle element13:
dΩ = 2π sin(θ)dθ. Note now that E′

1 and E′
2 are not independent since |q|2 =

1
c2

(E′
1)

2 −μ2
1 c2 = 1

c2
(E′

2)
2 −μ2

2 c2. We wish to integrate (12.91) in the total energy
E′
1 + E′

2, in order to get rid of the remaining delta-function. To this end we use
|q|d|q| = E′

1dE′
1/c2 = E′

2dE′
2/c2 and write:

|q|d|q| = E′
1 |q|d|q| + E′

2 |q|d|q|
E′
1 + E′

2
= E′

1E′
2

c2
d(E′

1 + E′
2)

E′
1 + E′

2
. (12.92)

Integration of (12.91) over the total energy then yields:

dΦ(2) =
∫

δ(Etot − E′
1 − E′

2)
|q| dΩ

16(π�)2 c

d(E′
1 + E′

2)

E′
1 + E′

2
= |q| dΩ

16(π�c)2
√

s
,

(12.93)

We can express now |q|2 in terms of s by solving14
√

s =
√

μ2
1 c2 + |q|2 +√

μ2
2 c2 + |q|2:

|q|2 = (μ2
1 − μ2

2)
2 c4 − 2s (μ2

1 + μ2
2) c2 + s2

4s
. (12.94)

Equation (12.93) then becomes:

dΦ(2) =
√

(μ2
1 − μ2

2)
2 c4 − 2s (μ2

1 + μ2
2) c2 + s2

32(π�c)2 s
dΩ. (12.95)

If, for example, μ1 = μ2 = μ, we have E′
1 = E′

2 = √
s c/2, |q|2 = s

4 − μ2 c2 and
the above formula yields:

dΦ(2) = 1

32(π�c)2

√
1 − 4μ2 c2

s
dΩ. (12.96)

It is useful to totally express the phase-space element in terms of invariant quantities,
so that the resulting formula can be easily specialized to the frame of reference in
which a given process is most conveniently studied. To this end let us consider the

13We have supposed the dynamics of the process not to depend on the azimuthal angle ϕ, which is
reasonable for an isolated system of interacting particles: In the case of a head-on collision both θ
and ϕ are referred to the common direction of the two incident particles in the CM frame.
14For an elastic collision between two particles of rest masses m1, m1, we have μ1 = m1, μ2 = m2

and |p| = |q|. Using Eq. (12.94) one can easily show that the factor
√

(p1 · p2)2 − m2
1m2

2 c4 in the

formula (12.81) for the cross-section can be alternatively bewritten as
√

s|p| = E |p|/c,E = E1+E2
being the total energy of the system.
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expression (12.29) for t. For given total energy of the system, in the CM frame,
|p| = |q| is fixed, so that θ is the only variable t depends on. Differentiating both
sides we find:

d(−t) = −2 |q|2d cos(θ) = |q|2
π

dΩ. (12.97)

Substituting the above expression in (12.95), and using (12.94) once again, we find

dΦ(2) = 1

8(π�c)2
d(−t)√

(μ2
1 − μ2

2)
2 c4 − 2s (μ2

1 + μ2
2) c2 + s2

. (12.98)

12.3.4 The Optical Theorem

Let us now discuss an important consequence of the unitarity property (12.58) of the
S-matrix, known as the optical theorem. Consider a scattering between two particles
of rest masses m1, m2, and let us use the short-hand notation of denoting by Sfi and
Tfi the matrix elements 〈Ψout |S|ψin〉, 〈Ψout |T |ψin〉 (the subscripts f and i stand for
final and initial state respectively). Let us now compute the matrix element of both
sides of Eq. (12.58) between |ψin〉 and |ψout〉 and write SS† =∑n S|n〉〈n|S†, where
{|n〉} is a complete set of states in the Fock space. We can then rewrite Eq. (12.58) in
components as follows:

∑
n

SfnS∗
in = δfi, (12.99)

where we have used the property 〈Ψout |1|ψin〉 = δfi and denoted by Sfn and Sin

the elements 〈Ψout |S|n〉 and 〈Ψin|S|n〉, respectively. Recall now the definition of the
matrix elementTab between two states a and b: Sab = δab+i (2π�)4δ4(Pa−Pb)Tab,
Pa, Pb being the total 4-momenta in the two states. Equation (12.99) can then be
recast in the following form:

i(2π�)4δ4(Pout − Pin)
(
Tfi − T ∗

if

)

+
∑

n

(2π�)8δ4(Pout − Pn)δ
4(Pin − Pn)TfnT

∗
in = 0, (12.100)

wherewehave used the property of {|n〉}of being a complete set of states,
∑

n δfnδin =
δfi. Writing δ4(Pout −Pn)δ

4(Pin −Pn) = δ4(Pout −Pin)δ
4(Pout −Pn), we can deduce

from Eq. (12.100) the following equation:

Tfi − T ∗
if =

∑
n

i(2π�)4δ4(Pout − Pn)TfnT
∗

in , (12.101)
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where all the kinematical quantities are subject to the constraint Pin = Pout . Note
that, since Tab is proportional to the (small) coupling constant λ, by (12.101), its
lowest order component in λ is hermitian: Tfi = T ∗

if .
Suppose now that the kinematical constraints only allow elastic processes. This

means that δ4(Pin − Pn)Tni is different from zero only for states |n〉 describing two
(free) particles of rest masses m1, m2. In the CM frame the final state is totally
defined by the scattering angle θ between q and p. The value θ = 0, in particular,
corresponds to the forward scattering in which the initial and final states coincide
|ψin〉 = |ψout〉 (i.e. i = f and p = q). In this case Eq. (12.101) reads:

2 Im(Tii) =
∑

n

(2π�)4δ4(Pout − Pn) |Tin|2. (12.102)

Observe now that we can replace the sum over the intermediate states n, by the
integral over the momenta q1, q2 of the corresponding two particles and the sum∑

pol.(n) over their polarizations:

∑
n

→
∑

pol.(n)

∫
d3qi

(2π�)3
Vi. (12.103)

Equation (12.102) will then read:

2 Im(Tii) =
∑

pol.(n)

∫
|Tin|2 dΦ(2). (12.104)

Note that the left hand side is proportional to the total cross-section of the elastic
scattering

σt(in) ≡
∫

dσ(in; n) = c V1 V2

f (v1, v2)

∑

pol.(n)

∫
|Tin|2 dΦ(2), (12.105)

where we have used Eq. (12.75). Equation (12.104) can now be written in the follow-
ing form:

2 Im(Tii) = f (v1, v2)
c V1 V2

σt . (12.106)

We have not performed the replacement V → 1/(2E) yet. This is done by writing
the left hand side in terms of T ′

ii , defined in Eq. (12.78):

Tii = 1

V1 V2 4E1 E2
T ′

ii . (12.107)

The normalization volumes cancel and we end up with:
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Im(T ′
ii ) = 2 c2

√
(p1 · p2)2 − m2

1m2
2 c4 σt = 2 c E |p| σt, (12.108)

where E is the total energy in the CM frame and we have used the comment in
footnote 14. Equation (12.108) directly descends from the unitarity property of S
and relates the imaginary part of the forward scattering amplitude to the total cross
section of the process. It describes the content of the optical theorem.

12.3.5 Natural Units

Our analysis would simplify considerably if we could get rid of all the factors �, c
occurring in our formulas. This can be done by an appropriate redefinition of the
units of measure: Being �, c dimensionful universal constants, we can consistently
relate the units of length (m), time (s) and mass (kg) to one another so that in the
new system of units (referred to as natural units) � = c = 1.15 This can be done,
for instance, by choosing length (or mass) as the only fundamental quantity and by
defining in terms of it the units of mass (or length) and time. Let us denote by c,h̄
the measures (numbers) of c and �, respectively, in the standard system of units:

c = c (m/s) , � = h̄
(
kg (m)2/s

)
,

c = 2.997925 × 108, h̄ = 1.054589 × 10−34.

When expressing meter, second, kg in natural units, we have:

c (m/s) = 1, h̄
(
kg (m)2/s

)
= 1.

The above equations can be solved in any one of the three units. Choosing for instance
the meter as independent unit:

1 s = c (m) ≈ 3 × 108 (m), 1 kg = c

h̄
(m−1) ≈ 2.84 × 1042 (m−1),

1 J = 1

ch̄
(m−1) ≈ 3.16 × 1025 (m−1), 1 eV ≈ 5.07 × 106 (m−1).

We see that in this system of units mass dimensions is inverse to length dimension
while time has the same dimension as length:

15We are familiar with a similar choice for heat and energy: being the mechanical equivalent of heat
a universal constant (4.186 J/cal) we can think of its value as just related to the different operational
definitions used for heat and work, so that measuring the two equivalent quantities in the same
standard units, namely setting 1cal = 4.186 J, this constant equals one.

By the same token, in the (rationalized) Heaviside-Lorentz system of units, see footnote 1 of
Chap.5, the unit of measurement for the electric charge is defined in terms of the units of length,
mass and time by requiring that the vacuum permittivity ε0 be one.

http://dx.doi.org/10.1007/978-3-319-22014-7_5
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[time] = [length], [mass] = [energy] = 1

[length] .

In particular the mass m of a particle has the same value as its rest energy mc2 and
as the inverse Compton wavelength of the particle mc/�. The electric charge, which

in the Heaviside-Lorentz system had dimension of (mass)
1
2 (length)

3
2 × (time)−1, in

natural units is dimensionless. The measures of the elementary electric charge and
of the electron mass are

e ≈ 0.303, α = e2

4π
≈ 1

137
,

me ≈ 9.109 × 10−31 kg = me c2 ≈ 0.511MeV ≈ 2.59 × 1012 (m−1).

The dimensions of bosonic and fermionic fields are:

[φ] = 1

[length] , [ψ] = 1

[length] 32
, (12.109)

while action is dimensionless. The Fourier expansion of a field operator in these units
will have the following simpler form:

Complex scalar field :
φ̂(x) = φ̂(+)(x) + φ̂(−)(x),

φ̂(+)(x) =
∫

d3p
(2π)3 2Ep

ap e−i p·x,

φ̂(−)(x) =
∫

d3p
(2π)3 2Ep

b†p ei p·x,

Real vector field :
Âμ(x) = Â(+) μ(x) + Â(−) μ(x),

Â(+) μ(x) =
∫

d3p
(2π)3 2Ep

∑
r

a(p, r) εμ(p, r) e−i p·x,

Â(−) μ(x) =
∫

d3p
(2π)3 2Ep

∑
r

a(p, r)† εμ(p, r)∗ ei p·x,

Spin–1/2 field:

ψ̂(x) = ψ̂(+)(x) + ψ̂(−)(x),

ψ̂(+)(x) =
∫

d3p
(2π)3 2Ep

√
2m

2∑

r=1

c(p, r) u(p, r) e−i p·x,

ψ̂(−)(x) =
∫

d3p
(2π)3 2Ep

√
2m

2∑

r=1

d(p, r)† v(p, r) ei p·x,
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where, as explained in the previous Section, we have replaced V by 1/(2E). In the
sequel, we shall often label the helicity states of the photon by the index i = 1, 2, and
denote the corresponding (complex) polarization vectors by εμ(p, i), not to confuse
it with the analogous index r of the fermion field.

Let us also recall the expressions for the Feynman propagators, which we shall
use in the following sections:

Complex scalar field :

DF(x − y) = 〈0|T [φ̂(x)φ̂†(y)]|0〉 =
∫

d4p

(2 π)4
DF(p) e−i p·(x−y),

DF(p) = i

p2 − m2 + i ε
,

Real, massless vector field :
DFμν(x − y) = 〈0|T [Âμ(x)Âν(y)]|0〉

=
∫

d4p

(2 π)4
DFμν(p) e−i p·(x−y),

DFμν(p) = − i

p2 + i ε

(
ημν − (1 − α)

pμpν

p2

)
,

where α should not be mistaken for the fine structure constant. It is the constant
associated with the choice of gauge fixing for the photon field.

Spin–1/2 field:

SF(x − y)αβ = 〈0|T [ψ̂α(x)ψ̂β(y)]|0〉

=
∫

d4p

(2 π)4
SF(p)αβ e−i p·(x−y),

SF(p) = i

p/ − m + i ε
. (12.110)

From now on we shall use the natural units. The factors �, c in any formula can
be eventually restored by straightforward dimensional arguments.

12.3.6 The Wick’s Theorem

In what follows we shall be interested in computing S-matrix elements between
the initial and final states. This requires evaluating matrix elements of time-ordered
products of interaction Hamiltonians, of the form (12.77). To this end it will be useful
to express a time ordered product of free-field operators in terms of normal ordered
products of the same operators. This is the content of Wick’s theorem.
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Let us introduce the notion of contraction between field-operators. Ifϕ1(x),ϕ2(x)
denote generic (bosonic or fermionic) field operators (we shall omit, from now on,

the hat over the symbols of field operators), the contraction ϕ1(x1)ϕ2(x2) is defined
as follows:

ϕ1(x1)ϕ2(x2) ≡ 〈0|Tϕ1(x1)ϕ2(x2)|0〉. (12.111)

Clearly to the v.e.v. on the right hand side only products of annihilation and creation
operators of the same kind (i.e. associated with the same field) contribute, and thus
the contraction is non vanishing only if ϕ2 = ϕ†

1. A non vanishing contraction thus
coincides with the Feynman propagator:

φ(x1)φ
†(x2) = DF(x1 − x2),

ψα(x1)ψβ(x2) = SF(x1 − x2)
α

β,

Aμ(x1)Aν(x2) = DFμν(x1 − x2). (12.112)

Ifwedenote byϕ(+) andϕ(−) the positive andnegative energyparts ofϕ, proportional
to the annihilation, creation operators respectively, we can write the contraction, or
Feynman propagator, as a commutator (anti-commutator for fermionic fields) of field
operators.16 Suppose first x01 > x02

ϕ(x1)ϕ†(x2) = 〈0|ϕ(x1)ϕ†(x2)|0〉 = 〈0|ϕ(+)(x1)ϕ†
(−)(x2)|0〉 (12.113)

= 〈0|
[
ϕ(+)(x1), ϕ†

(−)(x2)
]
± |0〉 =

[
ϕ(+)(x1), ϕ†

(−)(x2)
]
± ,

where we have used the property that ϕ(+)|0〉 = 〈0|ϕ(−) = 0 and the fact that the
commutator (or anti-commutator for fermions), of two field operators is a complex
number. Similarly for x02 > x01 we find

ϕ(x1)ϕ†(x2) = ±〈0|ϕ†(x2)ϕ(x1)|0〉 = ±
[
ϕ†

(+)(x2), ϕ(−)(x1)
]
± , (12.114)

the lower sign, here and in the following, refers to the case of two (components of)
fermionic fields. From the definition of time ordering it follows that the contraction
of two fermionic operators is odd with respect to the inversion of their order:

ψ(x1)ψ(x2) = −ψ(x2)ψ(x1).

Let us now define the contraction between two operators which are not adjacent
within a product:

16For the sake of simplicity we shall also denote the commutator and anti-commutator by
[·, ·]+, [·, ·]−, respectively. That is: [·, ·]+ = [·, ·], [·, ·]− = {·, ·}.
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ϕ1(x1)ϕ2(x2) · · · ϕk−1(xk−1)ϕ
†
1(xk)ϕk+1(xk+1) · · ·

= ±
(
ϕ1(x1)ϕ†

1(xk)
)

ϕ2(x2) · · · ϕk−1(xk−1)ϕk+1(xk+1) · · · (12.115)

where the minus sign only occurs if ϕ1 is fermionic and, in bringing ϕ†
1 in front of

the product, it has crossed an odd number of fermionic fields, as in the following
case:

ψ1(x1)ψ2(x2)ψ1(x3) = −ψ1(x1)ψ1(x3) ψ2(x2). (12.116)

Wick’s Theorem A time-ordered product of field-operators can be written as a sum
of normal ordered products as follows

T [ϕ1(x1) . . . ϕn(xn)] = : ϕ1(x1) . . . ϕn(xn) : +
+
∑

single
contraction

: ϕ1(x1) · · · · · · ϕn(xn) : +

+
∑

two
contractions

: ϕ1(x1) · · · · · · · · · · · ·ϕn(xn) : +

+ · · · (12.117)

where the final ellipses represent terms with a higher number of contractions.
Before proving it, as an example, let us apply the theorem to a four-fermion

product (one should think of each field below as a generic component of a Dirac
spinor, so that ψ̄(x1) should be intended as ψ̄α(x1), ψ(x2) as ψβ(x2), ψ̄(x3) as ψ̄γ(x3)
and ψ(x4) as ψσ(x4), with no contraction in general among the indices, which are
suppressed for the sake of notational simplicity):

T [ψ(x1)ψ(x2)ψ(x3)ψ(x4)]
=: ψ(x1)ψ(x2)ψ(x3)ψ(x4) : + : ψ(x1)ψ(x2)ψ(x3)ψ(x4)

: + : ψ(x1)ψ(x2)ψ(x3)ψ(x4) : +ψ(x1)ψ(x2)ψ(x3)ψ(x4)

: + : ψ(x1)ψ(x2)ψ(x3)ψ(x4) : + : ψ(x1)ψ(x2)ψ(x3)ψ(x4)

: + : ψ(x1)ψ(x2)ψ(x3)ψ(x4) :
=: ψ(x1)ψ(x2)ψ(x3)ψ(x4) : −SF(x2 − x1) : ψ(x3)ψ(x4)

: −SF(x4 − x1) : ψ(x2)ψ(x3) : + SF(x2 − x3) : ψ(x1)ψ(x4)

: −SF(x4 − x3) : ψ(x1)ψ(x2) : + SF(x2 − x1) SF(x4 − x3)

−SF(x4 − x1) SF(x2 − x3). (12.118)
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In the above derivation we have used the properties ψψ = ψψ = 0. We shall prove
Wick’s theorem by induction. Let us first prove it for n = 2 and use, for the sake of
simplicity, the short-hand notation ϕi ≡ ϕi(xi):

T [ϕ1 ϕ2] = : ϕ1 ϕ2 : +ϕ1 ϕ2. (12.119)

FromEqs. (12.113) and (12.114), ifϕ1 andϕ2 commute, their contraction is zero and
the creation and annihilation operators in the time ordered product can be rearranged
to obtain a normal ordered expression, so that Eq. (12.119) is trivially satisfied. If the
two field operators do not commute, namely if ϕ2 = ϕ†

1, we start considering the
case x01 > x02 and expand the left hand side into products of the positive and negative
energy components of the two fields:

T [ϕ1 ϕ2] = ϕ1 ϕ2 = ϕ1 (+) ϕ2 (+) + ϕ1 (+) ϕ2 (−) + ϕ1 (−) ϕ2 (+) + ϕ1 (−) ϕ2 (−)

= ϕ1 (+) ϕ2 (+) ± ϕ2 (−) ϕ1 (+) + ϕ1 (−) ϕ2 (+) + ϕ1 (−) ϕ2 (−)

+ [ϕ1 (+), ϕ2 (−)

]
± =: ϕ1 ϕ2 : +ϕ1 ϕ2, (12.120)

where, in order to obtain a normal ordered expression, we had to swap the positions
of ϕ1 (+) and ϕ2 (−) in second term of the second line, and this has produced a
commutator/anti-commutator (the lower sign, as usual, refers to the case of two
fermionic fields). Then we have used Eq. (12.113). If, on the other hand, x01 < x02 we
have

T [ϕ1 ϕ2] = ±ϕ2 ϕ1 = ± (ϕ2 (+) ϕ1 (+) + ϕ2 (+) ϕ1 (−) + ϕ2 (−) ϕ1 (+) + ϕ2 (−) ϕ1 (−)

)

= ± (ϕ2 (+) ϕ1 (+) ± ϕ1 (−) ϕ2 (+) + ϕ2 (−) ϕ1 (+) + ϕ2 (−) ϕ1 (−)

)

± [ϕ2 (+), ϕ1 (−)

]
± =: ϕ1 ϕ2 : +ϕ1 ϕ2, (12.121)

Suppose now the theorem holds for the product of n fields, let us prove it for n + 1.
We start from a time-ordered product of the form T [ϕϕ1 . . . ϕn], where ϕ ≡ ϕ(x).
With no loss of generality, we can assume x0 > x01, . . . , x0n , so that

T [ϕϕ1 . . . ϕn] = ϕ T [ϕ1 . . . ϕn] = ϕ [: ϕ1 . . . ϕn : +
+
∑

single
contraction

: ϕ1 · · · · · · ϕn : +

+
∑

two
contractions

: ϕ1 · · · · · · · · · · · · ϕn : + · · · ], (12.122)

where we have appliedWick’s theorem to T [ϕ1 . . . ϕn]. It is useful now to write ϕ =
ϕ(+) + ϕ(−) and to insert each component ϕ(±) inside the normal ordered products
within square bracket. Since ϕ(−) contains a creation operator and multiplies the



488 12 Fields in Interaction

normal ordered terms to the left, it can bemoved inside the normal order symbol, since
the resulting product is already normal ordered:ϕ(−) : ϕ1 . . . ϕn :=: ϕ(−)ϕ1 . . . ϕn :.
This is not the case forϕ(+), which contains an annihilation operator and thus should
bemoved to the right of all the creation operators in a normal ordered product in order
for the resulting expression to be in normal order as well. Every timeϕ is moved past
a field to the right, a commutator (or anti-commutator) is produced. Considering, for
simplicity, only bosonic fields, we can write

ϕ(+) : ϕi1 . . . ϕik : = : ϕi1 . . . ϕik : ϕ(+)+ : [ϕ(+), ϕi1 ]ϕi2 . . . ϕik

: + : ϕi1 [ϕ(+), ϕi2 ] . . . ϕik : + . . . : ϕi1ϕi2 . . . [ϕ(+), ϕik ]
: = : ϕ(+)ϕi1ϕi2 . . . ϕik : + : ϕϕi1ϕi2 . . . ϕik

: + : ϕϕi1ϕi2 . . . ϕik : + · · · + : ϕϕi1ϕi2 . . . ϕik :, (12.123)

where we have used the properties : ϕi1 . . . ϕik : ϕ(+) =: ϕ(+)ϕi1ϕi2 . . . ϕik : and
: ϕϕi = [ϕ(+), ϕi] (recall that x0 > x0i ). The reader is invited to explicitly verify
Eq. (12.123) in the simple case of three bosonic fields ϕ, ϕ1, ϕ2, by writing the
expression of the normal ordered products in terms of the positive and negative-
energy components of the fields, and to generalize the above derivation to the case
of fermionic fields. We can now apply Eq. (12.123) to the product of ϕ(+) with
each normal ordered term within square brackets in Eq. (12.122). The contractions
in Eq. (12.123) yield all the missing contractions involving ϕ, which are needed
to write Wick’s formula (12.117) for the case of the n + 1 fields ϕ, ϕ1, . . . ,ϕn.
From the first term, for instance, indeed get : ϕ(+)ϕ1 . . . ϕn : which sums up with:
ϕ(−)ϕ1 . . . ϕn : to give : ϕϕ1 . . . ϕn :, plus all the terms with single contractions
involving ϕ. This completes the proof of the theorem.

We shall be interested in applyingWick’s theorem to write a generic time ordered
product

T [ĤI(x1) . . . ĤI(xn)], (12.124)

of the interaction Hamiltonian, in terms of normal ordered quantities. Each operator
ĤI(x) consists of a normal ordered product of field operators computed in the same
point x. The whole product (12.124), however, is not normal ordered. In other words
we have a time-ordered product of normal-ordered groups ĤI(x) of field operators.
As a corollary of Wick’s theorem, we can prove that, when applying Eq. (12.117),
the contractions between fields within a same normal ordered group (i.e. a same
factor ĤI(x)) do not contribute. Let us prove this in the simple case of a normal
ordered group : ϕ(x)ϕ†(x) : consisting of two fields and apply Wick’s theorem to a
product of the form T [: ϕ(x)ϕ†(x) : ϕ1 . . . ϕn]. Since the two fields ϕ(x), ϕ†(x) are
computed at the same time, we can write their product as a time-ordered one, and
apply Eq. (12.119):

ϕ(x)ϕ†(x) = T [ϕ(x)ϕ†(x)] =: ϕ(x)ϕ†(x) : +ϕ(x)ϕ†(x). (12.125)
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We can now write

T [: ϕ(x)ϕ†(x) : ϕ1 . . . ϕn] = T [ϕ(x)ϕ†(x)ϕ1 . . . ϕn] − ϕ(x)ϕ†(x)T [ϕ1 . . . ϕn].

Applying Wick’s theorem to the time ordered terms on the right hand side, we see
that the second term precisely cancels against the one containing the contraction

ϕ(x)ϕ†(x) from the first one, which therefore does not appear in the final expression.
Let us now consider the problem of evaluating thematrix elements of S (or equiva-

lently of T) between an initial state |in〉 = |p1, r1; . . . ; pk, rk〉 describing k incoming
particles with momenta p1, . . . , pk and spin components r1, . . . , rk (the k = 1 case
corresponds to a decay process), and a final state |q1, s1; . . . ; qn, sn〉 describing n
outgoing particles withmomenta q1, . . . , qn and spin components s1, . . . , sn. Denot-
ing generically by ai, a†i the annihilation and creation operators associated with the
ith particle, respectively, we can write

|p1, r1; . . . ; pk, rk〉 =
k∏

i=1

ai(pi, ri)
†|0〉,

|q1, s1; . . . ; qk, sk〉 =
n∏

�=1

a�(q�, s�)
†|0〉, (12.126)

so that

〈q1, s1; . . . ; qk, sk |T|p1, r1; . . . ; pk, rk〉 = 〈0|
n∏

�=1

a�(q�, s�) T
k∏

i=1

ai(pi, ri)
†|0〉.

(12.127)

If we apply Wick’s theorem to each term in the perturbative expansion (12.57) of
the S matrix, we see that the only terms which contribute to the above matrix ele-
ment are those containing for each incoming particle an annihilation operator on the
right to match the corresponding creation operator acting on the vacuum, and, for
each outgoing particle, a creation operator on the left, to match the corresponding
annihilation operator to the left of T. In this way, the creation and annihilation oper-
ators, for each particle, would combine into non-vanishing matrix elements of the
form 〈0|aj a†j |0〉 �= 0. Therefore the terms in the expression of T contributing to the
amplitude of the process have the general (normal-ordered) form

n∏

�=1

a�(q�, s�)
†

k∏

i=1

ai(pi, ri) × (contractions), (12.128)

the number of contractions depending on the order in λ of the term in the perturbative
expansion (12.57). In the next section we shall review, within the theory of quantum
electrodynamics, the Feynman rules for computing the contributions, of different
order, to the amplitude of a given process.
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12.4 Quantum Electrodynamics and Feynman Rules

Quantum electrodynamics (QED) is the quantum field theory describing the inter-
action of electrons and/or positrons, the quanta of the Dirac field, with photons,
the quanta of the electromagnetic field. The Lagrangian density is obtained from
Eq. (10.228) of Chap.10 by adding the term describing the free Maxwell field Aμ(x),
and reads:

L = ψ (i D/ − m)ψ − 1

4
Fμν Fμν = ψ (i ∂/ − m)ψ − 1

4
Fμν Fμν + Aμ Jμ

= L0 + LI , (12.129)

where, as usual, D/ ≡ γμ Dμ, Dμ ≡ ∂μ − ie Aμ being the covariant derivative, and
Jμ(x) ≡ e ψ(x)γμ ψ(x) is the conserved electric current.17 The interaction Hamil-
tonian is HI(x) = −LI = −Aμ Jμ and the corresponding operator is obtained by
replacing the fields in its expression by the corresponding free operators, and by
normal ordering the resulting products18:

ĤI(x) ≡ −e : ψ(x)γμ ψ(x) Aμ(x) : . (12.130)

If we want to describe electromagnetic interaction processes involving not just an
electron but also other charged fermion particles, like muons for example, we would
need to include in the definition of L the corresponding kinetic term and electric
current. For instance, to include a fermion with charge q and field ψq(x), the electric
current is to be defined as: Jμ(x) = e ψ(x)γμ ψ(x) + q ψq(x)γ

μ ψq(x).
Let us start considering for the time being interaction processes involving elec-

trons, positrons and the electromagnetic fields. We need to compute the S-matrix
elements between the initial and final states. The scattering matrix S is defined per-
turbatively in the coupling constant e, according to Eq. (12.57), the nth-order term
S(n) having the form:

S(n) = (−i)n

n!
+∞∫

−∞
d4x1 . . .

+∞∫

−∞
d4xn T

[ĤI(x1) . . . ĤI(xn)
]
. (12.131)

As pointed out in the previous section, each of these terms is a time-ordered product
of normal-ordered quantities ĤI(x). In order to compute the contribution to a given
process ofS(n), wewould need to applyWick’s theorem in order to express each time-
ordered product in terms of normal-ordered terms. It is then useful to represent each of
these terms by a diagram, which will considerably simplify the task of computing the
corresponding contribution to the amplitude. We associate with each factor ĤI(xi),

17In order to restore the � and c factors in the covariant derivative, we simply need to replace
e → e

� c , as the reader can easily verify.
18For the sake of simplicity, we shall suppress the hats on the symbol of the field operators.

http://dx.doi.org/10.1007/978-3-319-22014-7_10
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i = 1, . . . , n, in the integral (12.131) a point in the diagram, localized in xμ
i , called

vertex. The plane of the diagram thus represents space-time, with just one spatial
direction. Which of the two is the time direction will then depend on the specific
process we are going to consider and will not be specified for the time being. The
operator ĤI (xi) consists of three field-operators computed in xi:ψ(xi)which destroys
an electron in xi or creates a positron in the same point and ψ(xi) which creates an
electron or destroys a positron in xi. The former will be represented by a solid line
ending in the vertex and directed towards it, the latter by a solid line originating in
the vertex and directed outwards. Finally the operator Aμ(xi) creates or destroys a
photon in xi. It will be represented by an undirected dashed line ending in xi. In this
way, we have associated with each factor in the integral (12.131) a vertex with three
lines. The Wick expansion of the integrand in (12.131) will contain normal-ordered
terms inwhich two ormore operators belonging to different ĤI factors are contracted
(recall that contractions between operators in the same ĤI -factor do not enter the
Wick expansion). These terms are graphically represented by drawing the three line-
vertices for each factor and connecting the lines corresponding to the contracted
operators. Contracted operators are then represented graphically by lines connecting

two vertices: ψα(xi)ψβ(xj) by a line connecting xi and xj and oriented from xj to xi;

Aμ(xi)Aν(xj) by a dashed, undirected line joining xi to xj. The reason why the latter
line is not oriented is due to the symmetry of the photon propagator DFμν(xi − xj)

with respect to an exchange of xi and xj: DFμν(xi − xj) = DFμν(xj − xi). Each of
these internal lines describes a virtual particle propagating between the two vertices.
By virtual particle wemean a particle whose momentum does not satisfy the on-shell
condition: p2 − m2 = 0 for the electron, k2 = 0 for the photon, kμ being the photon
4-momentum.

Thenormal ordered terms, besides the contractions,will also contain un-contracted
field operators, which we shall refer to as free. These operators will be represented by
lines extending from the vertex in which they are computed to infinity: The line rep-
resenting ψ(x) will originate at infinity and end in x. In the matrix element between
initial and final state, it will contribute only if the initial state contains a free electron
or if the final state contains a free positron. In these two cases ψ(x) will destroy
the incoming electron or create the outgoing positron in x, respectively. In the first
case, if the electron state is |pe− , r〉 = c†(pe− , r)|0〉, ψ(x) would give the following
non-vanishing contribution to the amplitude19:

19Recall that, in the light of our comments below Eq. (12.76), we have replaced everywhere the
normalization volume of each particle with 1/(2E) so that, for instance, [c(p, r), c†(q, s)]− =
(2π)3 2E δrs δ3(p − q). Note that, had we kept the normalization volumes, the calculation below
would yield 〈0|ψ(x)|p, r〉 =

√
m

EpV u(p, r) e−i p·x , contributing a factor 1/
√

V to the amplitude, as

anticipated in our discussion below Eq. (12.76).
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〈0|ψ(x)|pe− , r〉 =
∫

dΩq
√
2m

2∑

s=1

u(q, s)〈0|c(q, s) c†(pe− , r)|0〉 e−i q·x

=
∫

dΩq
√
2m

2∑

s=1

u(q, s)〈0|[c(q, s), c†(pe− , r)]−|0〉e− e−i q·x

= √
2m u(pe− , r) e−i pe−·x. (12.132)

Similarly, in the second case, if the final positron state is |pe+ , r〉 = d†(pe+ , r)|0〉,
the field ψ(x) will contribute the following non-vanishing quantity:

〈pe+ , r|ψ(x)|0〉 = √
2m v(pe+ , r) e−i pe+·x. (12.133)

By the same token we can show that a free ψ(x) operator contributes only to those
processeswith an incomingpositron,whichwill be destroyed in x, orwith anoutgoing
electron, which will be created in x by the same operator. It will be represented by
a line originating in the vertex x and extending towards infinity. In these two cases
ψ(x) will therefore, contribute the following matrix elements to the amplitude:

〈0|ψ(x)|pe+ , r〉 = √
2m v̄(pe+ , r) ei pe+·x,

〈pe− , r|ψ(x)|0〉 = √
2m u(pe− , r) ei pe−·x. (12.134)

We can also have a process with an electron in both the initial and final states. In
this case the normal-ordered product : ψα(y)ψβ(x) : will contribute the following
quantity to the amplitude:

〈qe− , r| : ψα(y)ψβ(x) : |pe− , r〉 = 〈0|c(qe− , r)ψ(−) α(y)ψ
β
(+)(x)c

†(pe− , r)|0〉
= 〈0|

[
c(qe− , r), ψ(−) α(y)

]
−

[
ψ

β
(+)(x), c†(pe− , r)

]
− |0〉

= 〈qe− , r|ψα(y)|0〉〈0|ψβ(x)|pe− , r〉, (12.135)

where we have used the property that 〈0|c c† c c†|0〉 = 〈0|[c, c†]− [c c†]−|0〉 =
〈0|c c† |0〉〈0|c c†|0〉.

Finally a free photon field operator Aμ(x) can either destroy an incoming photon
or create an outgoing one in x, giving the following contributions to the amplitude
in these two cases respectively:

〈0|Aμ(x)|k, i〉 = εμ(k, i) e−i k·x,
〈k, i|Aμ(x)|0〉 = εμ(k, i)∗ ei k·x, (12.136)

where i = 1, 2 labels the transverse polarizations of the photon. Graphically a free
Aμ(x) operator is represented by an infinite, undirected, dashed line extending from
infinity to the vertex x. A same diagram can therefore describe a variety of processes:
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A solid line extending from infinity to a vertex x (oriented towards it), can either
describe an incoming electron destroyed in x or an outgoing positron created in x,
and similarly a solid line originating in x and ending at infinity can either describe
an incoming positron destroyed in x or an outgoing electron generated in the same
point. The direction on a fermion line is thus not related to the direction ofmotion, but
rather to the flow of the electron charge. Similarly a dashed line stretching from x to
infinity can either describe a photon destroyed in x (i.e. absorbed) or a photon created
at the same point. This ambiguity is due to the fact that a same normal ordered term
in the Wick expansion of S(n) will in general contribute to different processes. The
lines of a diagram which originate or end at infinity are called external legs. When
we consider specific processes, we shall identify the external legs with incoming or
outgoing particles, thus fixing the time direction in the graph.

Consider the lowest order term S(1):

S(1) = ie
∫

d4x : ψ(x)γμψ(x) Aμ(x) : . (12.137)

The integrand is already normal-ordered and all field operators are free. It is repre-
sented by the vertex in Fig. 12.1 with three external legs. It may describe a process
in which an electron decays in x into an electron and a photon (photon emission),
or the analogous decay of a positron, or an electron and a positron annihilating and
giving rise to a photon etc. All these processes, although having a non vanishing
amplitude, cannot occur because of kinematical reasons. Consider, for instance, an
electron with momentum p which emits a photon with momentum k, ending up in a
free state with momentum p′. The momentum conservation implies:

p = p′ + k. (12.138)

Computing the norm of both sides and using the on-shell conditions p′2 = p2 =
m2, k2 = 0, we find m2 = m2 + 2k · p′, namely k · p′ = 0. In the rest frame of
the initial electron this condition reads k0p′0 − k · p′ = k0 (p′0 + |p′|), where we
have used the properties k = −p′ and k0 = |k|. Since p′0 + |p′| > 0, momentum
conservation implies k0 = 0, namely that there is no final photon and that the initial
electron stays still. Thus the probability of the process is suppressed by the phase
space element dΦ, which is non vanishing only for the trivial process with k0 = 0.

Fig. 12.1 A vertex in QED
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Let us now consider the second order term S(2):

S(2) = −e2

2!
∫

d4x d4y T [: ψ(x)γμψ(x) Aμ(x) : : ψ(y)γνψ(y) Aν(y) :].
(12.139)

Wick expanding the integrand we find the following terms:

(1) : ψ(x)γμψ(x) Aμ(x)ψ(y)γνψ(y) Aν(y) :
(2) : ψ(x)γμψ(x) Aμ(x)ψ(y)γνψ(y)Aν(y) :

=: ψ(x)γμψ(x)ψ(y)γνψ(y) : DFμν(x − y)

(3) : ψ(x)γμψ(x) Aμ(x)ψ(y)γνψ(y) Aν(y) :
=: ψ(x)γμ SF(x − y) γνψ(y) Aμ(x) Aν(y) :

(4) : ψ(x)γμψ(x) Aμ(x)ψ(y)γνψ(y) Aν(y) :
=: ψ(y)γμ SF(y − x) γνψ(x) Aμ(y) Aν(x) :

(5) : ψ(x)γμψ(x) Aμ(x)ψ(y)γνψ(y) Aν(y) :
= −SF(y − x)αβ(γμ)βσ SF(x − y)σδ (γν)δα : Aμ(x) Aν(y) :
= −Tr

(
SF(y − x) γμ SF(x − y) γν

) : Aμ(x) Aν(y) :

(6) : ψ(x)γμψ(x) Aμ(x)ψ(y)γνψ(y) Aν(y) :
=: ψ(x)γμ SF(x − y)γνψ(y) : DFμν(x − y)

(7) : ψ(x)γμψ(x) Aμ(x)ψ(y)γνψ(y) Aν(y) :
=: ψ(y)γμ SF(y − x) γνψ(x) : DFμν(y − x) :

(8) : ψ(x)γμψ(x) Aμ(x)ψ(y)γνψ(y) Aν(y) :
= −Tr

(
SF(y − x) γμ SF(x − y) γν

)
DFμν(y − x) : (12.140)

Note that the terms (3) and (4) only differ for the exchange x ↔ y, and thus, upon
integrating over the positions of the twovertices, give an equal contribution. The same
holds for (7) and (6). All the diagrams corresponding to these terms are illustrated
in Fig. 12.2. We see that the diagram representing the first term is disconnected and
describes two separate, single-vertex, processes occurring in x and y, each of these
are forbidden by the conservation of 4-momentum, as explained above. The second
term may describe an electron-electron scattering, in which one of the two incoming
electrons emits a virtual photon in x, which is absorbed by the second incoming
electron in y. Similarly itmay also describe an electron-positronor a positron-positron
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Fig. 12.2 Diagrams of S(2)

scattering.Thus in QED the electric interaction between two charged particles is
described in terms of an exchange of virtual photons between them. Finally the same
diagram can describe the annihilation of an incoming electron and a positron in a
point x, which produces a virtual photon decaying in y into a new electron-positron
pair. The diagram (3) has several interpretations as well. It may describe an electron
emitting two photons in y and x respectively, or absorbing a photon in y and emitting
one in x, or vice-versa, or finally absorbing two photons in x and y respectively. It may
also describe analogous emission/absorption processes by a positron moving from x
to y (opposite to the flow of the electron charge). Note that, between two consecutive
emissions/absorptions, the electron or positron is described by its propagator, namely
it is virtual. Diagram (5) may describe a photon which produces a couple of virtual
electron and positron in y, which annihilate in x to produce a final photon. Diagram
(6) may describe an electron emitting a virtual photon in y and re-absorbing it in x.
In other words the electron interacts with itself. Such process represents then a self-
interaction of an electron or a positron. Finally (8) is a vacuum diagram: The initial
and final states are both empty and at some point y, for instance, a virtual electron-
positron couple and a photon are created from the vacuum and then destroyed in
some other point x. Diagrams (1)–(3) do not contain loops and are thus called tree
diagrams. The remaining diagrams, on the contrary, contain loops. As we shall see
in Sect. 12.7, the corresponding amplitudes ar plagued by infinities. Note that in all
the above diagrams there is no discontinuity in the orientation of the fermion lines.
This is a general property which is related to the conservation of the electric charge
and thus to the continuity of its flow in a given process.
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As a final remark, we notice that when computing the contribution of S(n) in
(12.131) to the amplitude of a given process, terms in the integral differing in the order
of the n vertices x1, . . . , xn give an equal contribution to the amplitude. Exchanging,
for instance, x with y in the diagrams in Fig. 12.2 will yield the same processes. As a
consequence of this, when computing the amplitudes, we shall always find a factor
n! which cancels against the 1

n! in (12.131).
The graphical representations of interaction amplitudes, discussed in the present

section, are known as Feynman diagrams.We shall better appreciate the utility of this
technique when working in the momentum representation, namely when explicitly
computing the S-matrix element between eigenstates of the 4-momentum operator.

12.4.1 External Electromagnetic Field

Consider now electromagnetic interaction processes involving an electron and an
other fermionic particle with charge q, which we shall refer to as “particle q” (for
example the scattering of an electron by a nucleus of charge q = Ze). Upon including
the electric current associated with particle q, the interaction Hamiltonian will read

ĤI(x) ≡ − : [e ψ(x)γμ ψ(x) + q ψq(x)γ
μ ψq(x)] Aμ(x) : . (12.141)

Suppose particle q is massive enough for its state not to change during the process:

|ψin〉 = |ine〉|inq〉, |ψout〉 = |oute〉|outq〉 = |oute〉|inq〉,
in other words |outq〉 = |inq〉. For these processes we need not have a second quan-
tized description of particle q in terms of a field operator, since we do not need to
destroy an initial state and to create a new final one. Indeed, the only terms in the
Wick expansion of S at all orders, which contribute to the amplitude are those hav-
ing, as free operators, only ψ which destroys the electron in the initial state, ψ which
creates an electron in the final state, ψq which destroys the incoming particle q and
ψq which creates an outgoing one in the same state. The terms should not contain
any external Aμ, since neither |ψin〉 nor |ψout〉 contains photons. This implies that
all the photon fields are to be computed between vacuum states, namely they only
contribute in contractions (i.e. propagators). The lowest order term contributing to
the scattering amplitude is S(2):

S(2) = (i)2

2! e q
∫

d4xd4y :
[
ψ(x)γμ ψ(x)ψq(y)γ

ν ψq(y) DFμν(x − y)

+ (x ↔ y)
] := (i)2 e q

∫
d4xd4y : ψ(x)γμ ψ(x)ψq(y)γ

ν ψq(y) : DFμν(x − y).

(12.142)
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where we have used the fact that, by virtue of the parity of Dμν
F (x − y), the two terms

in square bracket give an equal contribution to the integral. Computing the matrix
element of S(2) between the initial and final states, we find:

〈ψout |S(2)|ψin〉 = −e
∫

d4xd4y〈oute| : ψ(x)γμ ψ(x) : |ine〉 DFμν(x − y) Jν
q (y),

(12.143)

where
Jν

q (y) ≡ 〈inq| : ψq(y)γ
ν ψq(y) : |inq〉, (12.144)

is the classical current associated with particle q in the state |inq〉. Recall now, from
the definition of the Green’s function DF , that:

Aext
μ (x) ≡ i

∫
d4yDFμν(x − y) Jν

q (y), (12.145)

is the classical electromagnetic field generated by the current Jν
q . In our problem it

represents the electromagnetic field generated by a particlewhose state is unperturbed
by the interaction process and will be referred to as an external field. The amplitude
(12.143) can the be recast in the following first order form:

〈ψout |S(2)|ψin〉 = 〈oute|
(

ie
∫

d4x : ψ(x)γμ ψ(x) : Aext
μ (x)

)
|ine〉

= 〈oute|
(

−i
∫

d4x Ĥext
I (x)

)
|ine〉, (12.146)

where

Ĥext
I (x) = −e : ψ(x)γμ ψ(x) : Aext

μ (x). (12.147)

We have shown that, in all interaction processes in which particle q is just a “specta-
tor”, its effect on the electron can be accounted for by means of the external field Aext

μ
it generates. This is done by adding to the QEDHamiltonian describing just the elec-
tron and the electromagnetic field, the corresponding interaction term, generalizing
thus the definition of the interaction Hamiltonian

Ĥ′
I(x) ≡ ĤI(x) + Ĥext

I (x) = −e : ψ(x)γμ ψ(x) (Aμ(x) + Aext
μ (x)) : .

This amounts in turn to redefining the electromagnetic potential in the QED
Lagrangian (12.129) as the sum Aμ(x) + Aext

μ (x) of the field operator Aμ(x) and
the external field Aext

μ (x). Let us stress that Aext
μ (x) is a classical field and not an
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Fig. 12.3 Interaction with
an external field

operator, namely it is a number and thus acts as the identity on the Fock space of free
photons. Therefore the interaction term Ĥext

I (x) contains just two field operators,
ψ,ψ. Graphically it will be represented by a 2-line vertex, with the external field
being represented by a cross, as in Fig. 12.3.

12.5 Amplitudes in the Momentum Representation

12.5.1 Möller Scattering

Let us start considering a specific process describing the scattering between two
electrons (labeled by 1, 2 respectively):

e− + e− −→ e− + e−. (12.148)

The initial state describes the incoming electrons with momenta p1, p2 and polariza-
tions r1, r2, respectively. The final momenta and polarizations of the two electrons
are q1, q2 and s1, s2 respectively:

|ψin〉 = |p1, r1〉|p2, r2〉,
|ψout〉 = |q1, s1〉|q2, s2〉. (12.149)

We shall compute the amplitude of the process to lowest order, namely the matrix
element of S(2) between the initial and final states. The only term contributing to the
amplitude is the one described by the diagram (2) in Fig. 12.2, so that:

〈ψout |S(2)|ψin〉 = (ie)2

2!
∫

d4xd4y

×
[
〈q1, s1|〈q2, s2| : ψ(x)γμψ(x)ψ(y)γνψ(y) :

|p1, r1〉|p2, r2〉 DFμν(x − y)

]
. (12.150)

We can convince ourselves that the only term in the normal product which contributes
to the matrix element is the one of the form c† c† cc, since we need to destroy the two
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incoming electrons and to create the two outgoing ones. Let us explicitly compute
the corresponding matrix element, bearing in mind that the two c† operators come
from the ψ fields, while the two c operator originate from the ψ fields. We write the
initial and final states in terms of creation operators acting on the vacuum:

|p1, r1〉|p2, r2〉 = c(p1, r1)
† c(p2, r2)

†|0〉,
|q1, s1〉|q2, s2〉 = c(q1, s1)

† c(q2, s2)
†|0〉. (12.151)

There is a peculiarity about this kind of processes which involve identical particles
in the initial and final states: There is an overall sign ambiguity in the amplitude due
to the choice of the order in which the creation operators are written in (12.151). We
can write:

〈ψout | : ψ(x)γμψ(x)ψ(y)γνψ(y) : |ψin〉
=
∫

dΩqdΩpdΩq′dΩp′ 4m2
∑

s,r,s′,r′

×
[

− ū(q, s)γμu(p, r) ū(q′, s′)γνu(p′, r′)

×〈0|c(q2, s2)c(q1, s1)c(q, s)†c(q′, s′)†c(p, r)c(p′, r′)c(p1, r1)
†c(p2, r2)

†|0〉
× e−i[(p−q)·x+(p′−q′)·y]

]
, (12.152)

theminus sign on the second line is due to the definition of normal order for fermions.
To compute the v.e.v. of the eight creation/annihilation operators,we compute a single
state of the form c c c† c†|0〉, which is clearly proportional to the vacuum. To this end
we move each c operator to the right until it annihilates the vacuum, at each step an
anti-commutator being produced

c(p, r)c(p′, r′)c(p1, r1)
†c(p2, r2)

†|0〉
= c(p, r){c(p′, r′), c(p1, r1)

†}c(p2, r2)
†|0〉 − c(p, r) c(p1, r1)

†c(p′, r′) c(p2, r2)
†|0〉

= {c(p′, r′), c(p1, r1)
†} {c(p, r), c(p2, r2)

†}|0〉 − c(p, r) c(p1, r1)
†{c(p′, r′) c(p2, r2)

†}|0〉
= {c(p′, r′), c(p1, r1)

†} {c(p, r), c(p2, r2)
†}|0〉 − {c(p, r) c(p1, r1)

†}{c(p′, r′) c(p2, r2)
†}|0〉.

(12.153)

By the same token we prove that

〈0|c(q2, s2)c(q1, s1)c(q, s)†c(q′, s′)† = 〈0|{c(q1, s1), c(q, s)†} {c(q2, s2), c(q′, s′)†}
−〈0|{c(q2, s2), c(q, s)†} {c(q1, s1), c(q′, s′)†}.

(12.154)

The scalar product between the states in (12.153) and (12.154) gives rise to four
terms, each of the form of a product of four anti-commutators:
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〈0|c(q2, s2)c(q1, s1)c(q, s)†c(q′, s′)†c(p, r)c(p′, r′)c(p1, r1)
†c(p2, r2)

†|0〉 =
= {c(q1, s1), c(q, s)†} {c(q2, s2), c(q′, s′)†}{c(p′, r′), c(p1, r1)

†} {c(p, r), c(p2, r2)
†}

− {c(q1, s1), c(q, s)†} {c(q2, s2), c(q′, s′)†}{c(p′, r′), c(p2, r2)
†} {c(p, r), c(p1, r1)

†}
− {c(q2, s2), c(q, s)†} {c(q1, s1), c(q′, s′)†}{c(p′, r′), c(p1, r1)

†} {c(p, r), c(p2, r2)
†}

+ {c(q2, s2), c(q, s)†} {c(q1, s1), c(q′, s′)†}{c(p′, r′), c(p2, r2)
†} {c(p, r), c(p1, r1)

†}.

Each anti-commutator provides a delta function on the momenta times a delta func-
tion on the polarizations. Substituting the above expansion in the integral (12.152),
for each term the integration over the momenta and the summation over the polar-
izations disappear:

〈ψout | : ψ(x)γμψ(x)ψ(y)γνψ(y) : |ψin〉
= 4m2

[
− ū(q1, s1)γ

μu(p2, r2) ū(q2, s2)γ
νu(p1, r1) e−i[(p2−q1)·x+(p1−q2)·y]

+ ū(q2, s2)γ
μu(p2, r2) ū(q1, s1)γ

νu(p1, r1) e−i[(p2−q2)·x+(p1−q1)·y]

+ ū(q1, s1)γ
μu(p1, r1) ū(q2, s2)γ

νu(p2, r2) e−i[(p1−q1)·x+(p2−q2)·y]

− ū(q2, s2)γ
μu(p1, r1) ū(q1, s1)γ

νu(p2, r2) e−i[(p1−q2)·x+(p2−q1)·y]
]
.

(12.155)

Note that the first and the fourth term, as well as the second and the third ones within
square brackets, are obtained from one another by exchanging x and y. They will
then give equal contributions to the integral (12.150), producing a factor 2 which
cancels against the 1/2!. The first term in square brackets describes the electron
(p1, r1) which is destroyed in y where the electron (q2, s2) is created. This transition
is due to the emission of a virtual photon in y, which is absorbed by the electron
(p2, r2), causing its transition to the state (q1, s1). In the second term the roles
of the two final electrons is interchanged. The Feynman diagram representation of
these two contributions to the amplitude are represented in Fig. 12.4. Both these
diagrams have the same geometry represented in Fig. 12.2, (2). Since however we
are now considering a specific process, it is useful to identify the external legs so
as to identify in the plane of the graph the time direction: The plane of the picture
represents space-time and time flows from right to left. The reader should however
bear in mind that Feynman diagrams are not a graphical representation of the actual
time evolution of the interacting system.They are just a graphical tool for constructing
the contributions to the amplitude of a given process to all orders.

Substituting the above result in Eq. (12.150) we find

〈ψout |S(2)|ψin〉 = (ie)2
∫

d4x d4y 4m2

×
[ (

−ū(q1, s1)γ
μu(p2, r2) ū(q2, s2)γ

νu(p1, r1) e−i[(p2−q1)·x+(p1−q2)·y]

+ ū(q2, s2)γ
μu(p2, r2) ū(q1, s1)γ

νu(p1, r1) e−i[(p2−q2)·x+(p1−q1)·y]
)

×
∫

d4p

(2π)4
D̃Fμν(p) e−i p·(x−y)

]
, (12.156)
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Fig. 12.4 Two 2nd-order contributions to the e− − e− scattering amplitude

where we have written the photon propagator in momentum space. Let us notice
that an incoming electron in a state (p, r) contributes a factor u(p, r) e−ip·xv to the
integrand in the expression of the amplitude, xμ

v being the location of the vertex in
which the electron state is destroyed. An outgoing electron created at xμ

v is a state
(p, r) contributes a factor ū(p, r) eip·xv . In general with every particle annihilated or
created, at a point xμ

v is associated a characteristic factor e−ip·xv , or eip·xv , respectively,
pμ being the corresponding 4-momentum.Therefore, inEq. (12.156) the exponentials
e−ip·x, eip·y signal the creation of a virtual photon in y with momentum p (being the
photon virtual p2 �= 0), and its destruction in x. Let us now perform the integrations
over the space-time positions x and y of the two vertices. The integrand depends on
these variables only through the exponential factors. Let us consider the first term in
Eq. (12.156). The integrals for the two vertices yield the following delta functions:

∫
d4x e−i (p2−q1+p)·x = (2π)4 δ4(p2 − q1 + p),

∫
d4y e−i (p1−q2−p)·y = (2π)4 δ4(p1 − q2 − p). (12.157)

We find, upon integration, a delta function which implements the conservation of
4-momentum at each vertex: At x the sum of the momenta p2 and p of the incoming
electron and photon equals the momentum q1 of the outgoing electron; Similarly at
y we have p1 = q2 +p. If we now perform the integration over the momentum of the
virtual photon, we end upwith a single delta-function implementing the conservation
of 4-momentum for the whole process, as a consequence of the invariance of the
system under global space-time translations:

∫
d4p

(2π)4
(2π)8 δ4(p2 − q1 + p) δ4(p1 − q2 − p) = (2π)4 δ4(p1 + p2 − q1 − q2).
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Similarly, as far as the second term in Eq. (12.156) is concerned, the integration over
x and over y yield (2π)4 δ4(p2 − q2 + p) and (2π)4 δ4(p1 − q1 − p), respectively,
and upon integrating over p we find the same factor (2π)4 δ4(p1 + p2 − q1 − q2).
Factoring this delta function out, we finally end up with the following amplitude

〈ψout |S(2)|ψin〉 = i〈ψout |T(2)|ψin〉 = i (2π)4 δ4(p1 + p2 − q1 − q2)

× 〈ψout |T ′
(2)|ψin〉 = (2π)4 δ4(p1 + p2 − q1 − q2) (ie)2 4m2

×
(
−ū(q1, s1)γ

μu(p2, r2) ū(q2, s2)γ
νu(p1, r1) D̃Fμν(p2 − q1)

+ū(q2, s2)γ
μu(p2, r2) ū(q1, s1)γ

νu(p1, r1) D̃Fμν(p1 − q1)
)

.

(12.158)

We have thus found the second order contribution to the amplitude 〈ψout |T ′|ψin〉
entering the formula (12.74) for the probability per unit time of the process. Let
us now insert in 〈ψout |T ′

(2)|ψin〉 the explicit expression of the photon propagator in
momentum space. Consider the first term within brackets in Eq. (12.158):

ū(q1, s1)γ
μu(p2, r2) ū(q2, s2)γ

νu(p1, r1) D̃Fμν(p)

∣∣∣
p=p2−q1

=
[

ū(q1, s1)γ
μu(p2, r2)

(−i)

p2 + i ε

(
ημν − (1 − α)

pμpν

p2

)

× ū(q2, s2)γ
νu(p1, r1)

]∣∣∣∣
p=p2−q1

. (12.159)

Let us show that the pμpν term in the propagator does not contribute to the above
quantity by using the Dirac equation for the incoming and outgoing electrons (let us
recall, for completeness, the same equations for the positron states as well):

(q/ − m) u(q, r) = 0, ū(q, r) (q/ − m) = 0, (12.160)

(q/ + m) v(q, r) = 0, v̄(q, r) (q/ + m) = 0. (12.161)

Using p = p2 − q1, it is easy to show that ū(q1, s1)p/u(p2, r2) = 0:

ū(q1, s1)p/u(p2, r2) = ū(q1, s1)p/2u(p2, r2) − ū(q1, s1)q/1u(p2, r2)

= (m − m) ū(q1, s1)u(p2, r2) = 0. (12.162)

By the same token we prove that ū(q2, s2)p/u(p1, r1) = 0. We can then conclude
that:

i 〈ψout |T ′
(2)|ψin〉 = (ie)2 4m2

×
(

−ū(q1, s1)γ
μu(p2, r2)

−i

(p2 − q1)2
ū(q2, s2)γμu(p1, r1)

+ū(q2, s2)γ
μu(p2, r2)

−i

(p1 − q1)2
ū(q1, s1)γμu(p1, r1)

)
.

(12.163)
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As previously pointed out, there is an ambiguity in the overall sign, while the relative
sign between the two terms in brackets is fixed and physically relevant.

12.5.2 A Comment on the Role of Virtual Photons

The treatment of the Möller scattering has shown that the interaction between elec-
trons to second order in the fine structure constant can be viewed as due to the
exchange of a virtual photon between the two electrons.20 We recall that by vir-
tual photon we mean a photon whose momentum k = p2 − p1 does not satisfy
the mass-shell condition, k2 �= 0, and which can thus be interpreted as a massive
particle with m2 = k2. While for a real photon only the two transverse polariza-
tions are physical, when a virtual photon is exchanged, all four polarization vectors
ε
(λ)
μ (k),λ = 0, 1, 2, 3 contribute to the amplitude. It is then interesting to see what is

the role of the time-like and longitudinal photons ε
(0)
μ (k), ε

(3)
μ (k) in the interpretation

of the process.
Let us refer for concreteness to the second diagram of theMöller scattering whose

lowest order amplitude is given by the second term of Eq. (12.163). We observe
that the sum over the indices μ of the gamma-matrices is due to the ημν factor
of the photon propagator D̃Fμν = −iημν(k2 + iε)−1, which in turn comes from the
completeness relation (11.229). Therefore the amplitude corresponding to the second
term of Eq. (12.163) could have been alternatively written as

ū(q2, s2)γ
μu(p2, r2)

[
3∑

λ=0

ε(λ)μ(k)ε(λ)
ν (k)

]
−i

(p1 − q1)2
ū(q1, s1)γ

νu(p1, r1).

(12.164)

For a virtual photon we must take as polarization vectors a set which for k2 → 0
reduces to the set used for a real photon in (11.231) and (11.232). As seen in Sect. 11.7
of Chap.11, such set is obtained by simply replacing the longitudinal vector ε

(3)
μ (k)

of Eq. (11.232) with

ε(3)
μ (k) = kμ − ημ(k · η)√

(k · η)2 − k2
. (12.165)

Let us now decompose the sum appearing in the completeness relation (11.229)
into the sum over λ = σ = 0, 3, corresponding to the exchange of timelike and
longitudinal photons and the sum over the transverse polarizations λ = σ = 1, 2. In
particular, using Eq. (12.165) for ε(3)

μ (k) and the value ε(0)
μ (k) = ημ of Eq. (11.234),

we have

20The same interpretation is of course also true for the interaction between electron and positron
in Bhabha scattering, see Sect. 12.5.3. For the sake of definiteness and simplicity we shall refer the
considerations of this subsection to the Möller scattering.

http://dx.doi.org/10.1007/978-3-319-22014-7_11
http://dx.doi.org/10.1007/978-3-319-22014-7_11
http://dx.doi.org/10.1007/978-3-319-22014-7_11
http://dx.doi.org/10.1007/978-3-319-22014-7_11
http://dx.doi.org/10.1007/978-3-319-22014-7_11
http://dx.doi.org/10.1007/978-3-319-22014-7_11
http://dx.doi.org/10.1007/978-3-319-22014-7_11
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ε(0)
μ (k)ε(0)

ν (k) − ε(3)
μ (k)ε(3)

ν (k) = ημην − [kμ − ημ(k · η)][kν − ην(k · η)]
(k · η)2 − k2

.

Since we are interested in the contribution to the amplitude of the λ = 0, 3 polar-
izations, we substitute the right hand side of this expression into Eq. (12.164) with
the sum restricted to the values λ = 0,λ = 3. Since, as already seen in the previous
section, the terms proportional to kμ do not contribute by virtue of gauge invariance21

we obtain

− i

k2
ū(q2, s2)γ

μu(p2, r2)ū(q1, s1)γ
νu(p1, r1) × ημην

(
1 − (k · η)2

(k · η)2 − k2

)

= −iū(q2, s2)γ
0(p2, r2)

1

k2 − (k0)2
ū(q1, s1)γ

0u(p1, r1)

= iu†(q2, s2)u(p2, r2)
1

|k|2 u†(q1, s1)u(p1, r1), (12.167)

where in the second step we have used the explicit value η = (1, 0, 0, 0) valid in the
Lorentz frame where ε

(1,2)
μ (k) are transverse (see Sect. 11.7 of Chap.11). We now

observe that u†(q2, s2)u(p2, r2) and u†(q1, s1)u(p1, r1) are the Fourier transform in
the momentum space of the charge densities, while 1

|k|2 is the Fourier transform of
1/(4πr). It follows that Eq. (12.167) represents an “instantaneous” Coulomb interac-
tion between the two electrons. Adding the sum over the two transverse polarizations
λ = 1, 2 the result is that the interaction between the two electrons is given by trans-
verse “waves” plus an instantaneous Coulomb interaction.

12.5.3 Bhabha and Electron-Muon Scattering

Let us now consider the scattering between an electron e− and a positron e+ (first
studied by H. Bahbha in 1936):

e− + e+ −→ e− + e+. (12.168)

Let themomenta and polarizations of the electron and positron be (p−, r−), (p+, r+)

in the initial state, and (q−, s−), (q+, s+) after the interaction, respectively:

21In this special case this can be also seen directly. Indeed

kμū(q2, s2)γ
μu(p2, r2) = ū(q2, s2)(p2 − q2)μγμu(p2, r2)

= −mū(q2, s2)u(p2, r2) + mū(q2, s2)u(p2, r2) = 0,
(12.166)

and similarly for the other factor of Eq. (12.167).

http://dx.doi.org/10.1007/978-3-319-22014-7_11
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|ψin〉 = |p+, r+〉|p−, r−〉 = d(p+, r+)†c(p−, r−)†|0〉,
|ψout〉 = |q+, s+〉|q−, s−〉 = d(q+, s+)†c(q−, s−)†|0〉,
〈ψout | = 〈0|c(q−, s−)d(q+, s+), (12.169)

where we have used the property that, if A, B are two operators (A B)† = B† A†.
Note that we have represented the initial state as resulting from the action on the
vacuum of the electron creation operator followed by that of the positron, and we
have used the same (conventional) ordering of creation operators for the final state.
This will fix the overall sign of the amplitude, in contrast to the previous case in
which identical particles where present in the initial and final states and the overall
sign was ambiguous.

As for the electron-electron scattering, the second order contribution to the ampli-
tude will come from term (2) in the Wick expansion (12.140) of S(2) (represented by
diagram (2) of Fig. 12.2):

〈ψout |S(2)|ψin〉 = (ie)2

2!
∫

d4xd4y

×
[
〈q+, s+|〈q−, s−| : ψ(x)γμψ(x)ψ(y)γνψ(y) : |p+, r+〉|p−, r−〉
×DFμν(x − y)

]
. (12.170)

Only terms of the form d† c† cd in the normal ordered product will contribute to the
matrix element, with a term proportional to:

〈0|c(q−, s−)d(q+, s+) d† c† cd d(p+, r+)†c(p−, r−)†|0〉
= {d(q+, s+), d†} {d, d(p+, r+)†}{c(q−, s−), c†} {c, c(p−, r−)†}.

Each anti-commutator in the above expression provides a delta function on the
momenta times a delta on the polarizations. These deltas single out, in the expan-
sion of the field operators, the term with the same momentum and polarization as
the corresponding external state: For instance {d(q+, s+), d†} will single out in
the expansion of the ψ operator containing d†, the term proportional to v(q+, s+);
{d, d(p+, r+)†} the term proportional to v̄(p+, r+) in the expansion of the ψ field
containing d, and so on. Since d† may come either from ψ(x) or from ψ(y) and d
from ψ(x) or ψ(y), there are, in total, four such terms. Consider the contributions
in which d, d† originate from field operators computed in the same vertex. There
are two of them, related by an exchange of the two vertices x ↔ y, which then give
equal contributions to the integral (12.170). Each of them describes a positron and
electron exchanging a virtual photon, as illustrated in Fig. 12.5a. Note that, in the
corresponding Feynman diagram, the direction of motion for the positron is opposite
to the orientation on the corresponding external leg, as is represented by an arrow
parallel to it. The reason is that the arrow on an external fermionic leg indicates the
flow of negative charge (electron charge), which is clearly opposite to the flow of the
positron charge. One of them contributes to the integrand in (12.170) a term of the
form:
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Fig. 12.5 Two 2nd-order contributions to the e− − e+ scattering amplitude: The diffusion, (a), and
the annihilation, (b) diagrams

−v̄(p+, r+)γμv(q+, s+) ū(q−, s−)γνu(p−, r−) e−i (p+−q+)·x e−i (p−−q−)·y,

to be contracted with the photon propagator, the other a similar termwith x ↔ y. The
minus sign in the above expression originates from the definition of normal ordering
for fermions: : d d† c† c := −d† c† c d.

Consider now the two terms in which d† and d originate from field operators
computed in different vertices. They are also related by an exchange of the two
vertices and thus give equal contributions to the integral (12.170). Each of them
describes a process in which the incoming electron and positron lines converge on a
same vertex, where the two particles are both destroyed (by c and d, respectively).
They annihilate, producing a virtual photon which propagates up to the second vertex
where it originates the couple of outgoing electron and positron (created by c† and
d†, respectively), see Fig. 12.5b. This is thus an annihilation process rather than a
diffusion one. Its contribution to the integrand in (12.170) is a term of the form:

ū(q−, s−)γμv(q+, s+) v̄(p+, r+)γνu(p−, r−) e−i (p−+p+)·y ei (q++q−)·x,

to be contracted with the photon propagator. The integration over x and y yields
the conservation of 4-momentum at each vertex. We have thus found two distinct
contributions to this integral, one describing a diffusion and an other an annihilation
process. In the former case the momentum of the photon is p = p− −q− = q+ −p+,
while in the latter p = p− + p+ = q+ + q− (the sign of p is irrelevant since the
integral is invariant upon changing p → −p and x ↔ y).

Upon integration over x and y and the photonmomentum pwe end upwith a single
delta function implementing the conservation of the total momentum p− + p+ =
q+ + q−. By factoring this delta function out, just as we did in the case of the
electron-electron scattering we derive the expression for the matrix element ofT ′

(2):
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i 〈ψout |T ′
(2)|ψin〉 = (ie)2 4m2

×
(

−v̄(p+, r+)γμv(q+, s+)
−i

(p− − q−)2
ū(q−, s−)γμu(p−, r−)

+ ū(q−, s−)γμv(q+, s+)
−i

(p− + p+)2
v̄(p+, r+)γμu(p−, r−)

)
,

(12.171)

wherewehave used the properties v̄(p+, r+)(p/+−q/+)v(q+, s+) = 0 and v̄(p+, r+)

(p/+ + p/−)u(p−, r−) = 0 which descend from Eqs. (12.161) and (12.160).
Consider now an electron-muon scattering:

e− + μ− −→ e− + μ−. (12.172)

The interaction Hamiltonian is obtained by writing the electric current as the sum
of the electron and the muon ones, as in Eq. (12.141), in which “particle q” (which
however now is no longer a “spectator”) is the muon (q = e = −|e| < 0):

ĤI(x) ≡ −e : [ψ(x)γμ ψ(x) + ψ(μ)(x)γ
μ ψ(μ)(x)] Aμ(x) : . (12.173)

We shall indicate the quantities associated with the muon by a subscript (μ), not
to be confused with a 4-vector index. Let the initial and final electron states be
(p1, r1), (q1, s1), while the initial and final muon states be (p2, r2), (q2, s2), respec-
tively:

|ψin〉 = |p1, r1〉|p2, r2〉 = c(p1, r1)
† c(μ)(p2, r2)

†|0〉,
|ψout〉 = |q1, s1〉|q2, s2〉 = c(q1, s1)

† c(μ)(q2, s2)
†|0〉. (12.174)

The second order contribution to the amplitude, see Eq. (12.142), reads:

〈ψout |S(2)|ψin〉 = (ie)2
∫

d4xd4y

× 〈q1, s1|〈q2, s2| : ψ(x)γμ ψ(x)ψ(μ)(y)γ
ν ψ(μ)(y) : |p1, r1〉|p2, r2〉

× DFμν(x − y). (12.175)

In the expansion of the normal product in creation and annihilation operators, there
is just one term contributing to the matrix element, of the form c† c†(μ) c(μ) c: The
incomingmuon canonly be destroyedbyψ(μ)(y) and the outgoingoneonly be created
byψ(μ)(y).We have therefore just one term contributing to the amplitude, represented
in Fig. 12.6. This situation should be contrasted with the electron-electron case, in
which the initial and final states consisted of identical particles and the independent
diagrams contributing to the amplitude, modulo x ↔ y, were two, one obtained from
the other by interchanging the external legs corresponding to the outgoing electrons.
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Fig. 12.6 Two 2nd-order
contribution to the e− − μ−
scattering amplitude

Using the property:

〈0|c(μ)(q2, s2)c(q1, s1) c† c†(μ) c(μ) c c(p1, r1)
† c(μ)(p2, r2)

†|0〉
= {c(μ)(q2, s2), c†(μ)} { c(μ), c(μ)(p2, r2)

†} {c(q1, s1), c†} {c, c(p1, r1)
†},

and integrating over the momenta and the positions of the vertices, we arrive at the
following expression for the amplitude:

i 〈ψout |T ′
(2)|ψin〉 = (ie)2 4m mμ

×
(

ū(μ)(q2, s2)γ
νu(μ)(p2, r2)

−i

(p1 − q1)2
ū(q1, s1)γνu(p1, r1)

)
.

(12.176)

We leave as an exercise to the reader to show that the second order amplitude for the
annihilation process, see Fig. 12.7,

e− + e+ −→ μ− + μ+, (12.177)

Fig. 12.7 Two 2nd-order
contribution to the
e− + e+ → μ− + μ+
amplitude
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reads:

i 〈ψout |T ′
(2)|ψin〉 = (ie)2 4m mμ

×
(

ū(μ)(q−, s−)γνv(μ)(q+, s+)
−i

(p+ + p−)2
v̄(p+, r+)γνu(p−, r−)

)
.

(12.178)

12.5.4 Compton Scattering and Feynman Rules

Let us now consider the interaction between electromagnetic radiation (photons) and
matter, in particular a process in which a photon is scattered by an electron (Compton
scattering):

γ + e− −→ γ + e−, (12.179)

in which the initial state consists of a photon γ in the state (p1, i) (i = 1, 2 being
its polarization) and an electron in the state (p2, r), while the final state describes a
photon and electron in the states (q1, i′), (q2, s), respectively:

|ψin〉 = |p1, i〉|p2, r〉 = a(p1, i)† c(p2, r)†|0〉,
|ψout〉 = |q1, i′〉|q2, s〉 = a(q1, i′)† c(q2, s)†|0〉. (12.180)

We shall compute the second-order amplitude of this process. The only terms in the
Wick expansion (12.140) of S(2) contributing to the amplitude are those containing
two electromagnetic free fields and two electron free fields, namely terms (3) and
(4), which, however, give an equal contribution upon integration over x and y. We
can thus focus of (3) and write:

〈ψout |S(2)|ψin〉 = (ie)2
∫

d4xd4y

× 〈q1, i′|〈q2, s| : ψ(x)γμ SF(x − y) γνψ(y) Aμ(x) Aν(y) : |p1, i〉|p2, r〉.
(12.181)

Expanding the free field in creation an annihilation operators, we can convince our-
selves that the only terms contributing to the matrix element have the form: c† a† c a,
which destroys the initial photon and electron (operators a, c, respectively) and cre-
ates the outgoing ones (operators a†, c†). Their non-vanishing contributions have
the general form:

〈0|c(q2, s)a(q1, i′) c† a† c a a(p1, i)† c(p2, r)†|0〉
= [a(q1, i′), a†] [a, a(p1, i)†] {c(q2, s), c†}{c, c(p2, r)†}. (12.182)
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Fig. 12.8 Two 2nd-order contributions to the Compton scattering amplitude

Let us note, however, that there are two terms of the form c† a† ca: One in which a
comes from Aμ(x) (and thus a† from Aμ(y)), the other in which a comes from Aμ(y)
(and thus a† from Aμ(x)). The former describes a process in which the incoming
electron emits the outgoing photon (q1, i′) in y and absorbs the incoming one in x,
see Fig. 12.8a, while in the latter the incoming photon (p1, i) is absorbed in y and
the outgoing one emitted in x, see Fig. 12.8b. Using, for each term, Eq. (12.182), and
eliminating, by integration, the delta functions arising from the commutators and
anticommutators, we end up with:

〈ψout |S(2)|ψin〉 = (ie)2
∫

d4xd4y
∫

d4p

(2 π)4
2m

×
[

ū(q2, s)γμ i

p/ − m
γνu(p2, r)εμ(p1, i) εν(q1, i′)∗ e−i(p2−q1−p)·y

× ei(q2−p1−p)·x + ū(q2, s)γμ i

p/ − m
γνu(p2, r)εν(p1, i) εμ(q1, i′)∗

×e−i(p1+p2−p)·y ei(q2+q1−p)·x
]
, (12.183)

We note that under the exchange

p1 � −q1; εμ(p1, i) � εμ(q1, i′)∗,

the total matrix element remains invariant. This invariance is known as crossing
symmetry, the graph (a) being referred to as the crossed term of graph (b). The
integrations over x and y implement the conservation of momentum at each vertex,
while the integration over the momentum p of the virtual electron yields the global
delta function (2π)4 δ4(p1 + p2 − q1 − q2). The matrix element of T ′

(2) reads:

i 〈ψout |T ′
(2)|ψin〉 = (ie)2 2m

× ū(q2, s)

[
γμ i

p/2 − q/1 − m
γν + γν i

p/1 + p/2 − m
γμ

]
u(p2, r)

× εμ(p1, i) εν(q1, i′)∗. (12.184)
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Let us now verify that the above result does not depend on our gauge choice for the
electromagnetic potential, namely that it is not affected by a gauge transformation
Aμ → Aμ + ∂μΛ. In momentum space a gauge transformation amounts to adding
an unphysical component to εμ:

εμ(p, i) −→ εμ(p, i) + χ(p) pμ. (12.185)

To show that such component gives no contribution to Eq. (12.184), let us replace any
of the photon polarization vectors (e.g. εμ(p1, i)) by the corresponding 4-momentum
p1μ and prove that the resulting expression is zero. It suffices to prove that the
following quantity vanishes:

ū(q2, s)

[
γμ i

p/2 − q/1 − m
γν + γν i

p/1 + p/2 − m
γμ

]
u(p2, r) p1μ

= ū(q2, s)

[
p/1

i

p/2 − q/1 − m
γν + γν i

p/1 + p/2 − m
p/1

]
u(p2, r). (12.186)

To this end let us write, in the first and second terms within square brackets:

p/1 = −(−p/1 + q/2 − m) + (q/2 − m) = −(p/2 − q/1 − m) + (q/2 − m)

p/1 = (p/1 + p/2 − m) − (p/2 − m), (12.187)

respectively. As far as the first term is concerned, we can use ū(q2, s)(q/2 −
m) = 0, while (p/2 − q/1 − m) cancels against the electron propagator, yielding
−ū(q2, s)γνu(p2, r). Similarly, for the second term, we use the equation of motion
(p/2 − m)u(p2, r) = 0, while (p/1 + p/2 − m) cancels against the propagator, yielding
ū(q2, s)γνu(p2, r). Summing the two contributions we find for (12.186):

ū(q2, s)(−γν + γν)u(p2, r) = 0, (12.188)

thus proving that the amplitude (12.184) is gauge invariant. This result extends to any
amplitude with external photon fields and is required by consistency of the quantum
theory.

Feynman Rules. From the above discussion we can formulate few simple graphical
rules which allow us to write each perturbative contribution to the amplitude of a
process. The order-n amplitude i 〈T ′

(n)〉 of a process is computed as follows:

• Write n three-leg vertices, of the form in Fig. 12.1, identify some of these legs with
the incoming and outgoing fields (external legs) and connect all the remaining legs
to one another (photon to photon, electron to electron) in all possible ways. In this
way we write all possible n-vertex Feynman diagrams with the given external
legs. Each diagram yields a contribution to the amplitude, which should be finally
summed up over all the diagrams.

• In each diagram we associate an incoming electron or positron with the field
u(p, r) or v̄(p, r), respectively, while outgoing electrons and positrons contribute
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fields ū(p, r) and v(p, r) respectively. Finally an incoming or outgoing photon
contributes a polarization vector εμ(p, i) or εμ(p, i)∗, respectively.

• Each vertex is associated with a factor ie γμ = ie ((γμ)αβ), where α can contract
either an incoming positron (v̄α) or an outgoing electron (ūα) field, while index β
can contract either an outgoing positron vβ or an incoming electron uβ .

• 4-momentum is conserved at each vertex.
• Each internal fermion line contributes a propagator S̃F(p) = i

p/−m+iε , while an

internal photon line contributes a propagator D̃Fμν(p) (the final expression for the
amplitude does not depend on the gauge choice α), where pμ is the momentum
carried by the corresponding virtual particle.

• Diagrams differing by an exchange of two external legs corresponding to identical
fermions contribute terms with a relative minus sign.

12.5.5 Gauge Invariance of Amplitudes

Different gauge choices for the photon field should not affect the physical predictions
of the theory. This is indeed the case since, as we are going to show shortly, the
S-matrix element defining the amplitude of a process is gauge invariant.

Consider a generic diagram, or set of diagrams, describing an interaction process.
As we have already noted, fermion lines always form polygonal curves which con-
sist of internal lines, contributing fermion propagators to the amplitude, between
external ones describing incoming and outgoing fermions. The orientation on the
fermionic line segments along a polygonal path, which represents the flow of the
fermion charge, is continuous because of charge conservation. Their end points are
vertices at which an internal or external photon line ends. The former contributes a
photon propagator DFμν(k) to the amplitude, the latter a photon polarization vector
εμ(k, r). In both cases the index μ contracts the γμ matrix at the vertex. The gauge
choice for a virtual photon, is encoded in the term kμkν within DFμν(k), which, if
the amplitude is to be gauge invariant, should not contribute to the S-matrix element.
This was indeed shown to be the case for the Möller scattering. A gauge transforma-
tion on a real photon, on the other hand, induces a transformation of the amplitude
which is obtained by replacing the polarization vector εμ(k, r) with kμ, according to
(12.185). When discussing the Compton scattering amplitude, we have proven that
such transformation is indeed ineffective. We have also shown that the final ampli-
tude of the process is the sum of all diagrams in which a given (internal or external)
photon line is attached to a different vertex of a fermion line, see Fig. 12.8 for the
Compton scattering. In Fig. 12.9 this is illustrated for a generic fermion line with
n + 2 vertices: The three diagrams represented in the picture are the contributions to
the amplitude in which the photon with momentum k (k-photon) is attached to the
(i + 3)th, (i + 2)th, and (i + 1)th vertices respectively; These are clearly part of the
sum over the n + 2 diagrams in which the k-photon line ends in all possible vertices.
The momenta pi, i = 0, . . . , n + 1, are fixed in terms of the momentum p0 of the
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Fig. 12.9 Contributions to the amplitude of a process in which a photon with momentum kμ ends
in different vertices along a fermion line

incoming fermion and of the photon momenta ki by the momentum conservation at
each vertex:

pi = p0 +
i−1∑

�=0

k�. (12.189)

To prove gauge invariance in full generality, it suffices then to show that, replacing
the k-photon polarization with the corresponding momentum kμ (that is replacing
it with a gauge photon εμ ∝ kμ) in each of the n + 2 diagrams the sum of the
resulting amplitudes is zero. Consider, for instance, the contribution from diagram
a) of Fig. 12.9. In this case the matrix γμ in the (i + 3)th vertex is contracted with
kμ, yielding:

· · · γμi+2
1

p/i+2 + k/ − m
k/

1

p/i+2 − m
γμi+1

1

p/i+1 − m
· · ·

= · · · γμi+2
1

p/i+2 + k/ − m
(k/ + p/i+2 − m − (p/i+2 − m))

1

p/i+2 − m
γμi+1 · · ·

= · · · γμi+2

(
1

p/i+2 − m
− 1

p/i+2 + k/ − m

)
γμi+1

1

p/i+1 − m
· · · , (12.190)
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where we have written k/ = k/ + p/i+2 − m − (p/i+2 − m). Similarly, from diagram (b)
we have:

· · · 1

p/i+2 + k/ − m
γμi+1

1

p/i+1 + k/ − m
k/

1

p/i+1 − m
γμi

1

p/i − m
· · ·

= · · · γμi+1
1

p/i+1 + k/ − m
(k/ + p/i+1 − m − (p/i+1 − m))

1

p/i+1 − m
γμi · · ·

= · · · 1

p/i+2 + k/ − m
γμi+1

(
1

p/i+1 − m
− 1

p/i+1 + k/ − m

)
γμi

1

p/i − m
· · · ,

(12.191)

and from diagram (c):

· · · 1

p/i+1 + k/ − m
γμi

1

p/i + k/ − m
k/

1

p/i − m
γμi−1

1

p/i−1 − m
· · ·

= · · · γμi
1

p/i + k/ − m
(k/ + p/i − m − (p/i − m))

1

p/i − m
γμi−1 · · ·

= · · · 1

p/i+1 + k/ − m
γμi

(
1

p/i − m
− 1

p/i + k/ − m

)
γμi−1

1

p/i−1 − m
· · · . (12.192)

Note that the second term in (12.190) cancels against the first one in (12.191) and
that the second term in (12.191) is canceled by the first one in (12.192). We can then
convince ourselves that, summing all the n + 2 diagrams up, the contributions from
the intermediate diagrams cancel out and we are thus left with the two contributions
from the diagrams in which the k-photon ends in the first and last vertices. These
read:

· · · γμ0
1

p/0 + k/ − m
k/ u(p0, r)

= · · · γμ0
1

p/0 + k/ − m
(p/0 + k/ − m − (p/0 − m)) u(p0, r), (12.193)

ū(pn+1 + k, s) k/
1

p/n+1 − m
γμn · · ·

= ū(pn+1 + k, s) (−(p/n+1 − m) + k/ + p/n+1 − m)
1

p/n+1 − m
γμn · · · (12.194)

The first term in Eq. (12.193) cancels against the second term from the next contri-
bution, in which the k-photon ends in the second vertex, while the second term is
zero by virtue of the Dirac equation: (p/0 − m) u(p0, r) = 0. Similarly the first term
in Eq. (12.194) cancels against the first term from the previous diagram, in which the
k-photon ends in the one but last vertex, while the second term is zero by virtue of
the Dirac equation.
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This argument equally applies to all the fermion lines in the diagrams of a process,
showing that a gauge transformation on a generic photon field does not affect the
total amplitude.

12.5.6 Interaction with an External Field

Let us end this subsection by considering the interaction of an electron with an
external electromagnetic fieldAext

μ , analyzed in Sect. 12.4.1. This process is described
withinQEDby replacing, in the interaction termof theHamiltonian,Aμ → Aμ+Aext

μ .
Let us write the first order term in the amplitude in the non-relativistic limit. Let the
incoming and outgoing electron states be (p, r) and (q, s), respectively. Let us restore,
for this analysis only, all the �, c factors, as well as the normalization volume Ve of
the electron. The lowest-order S-matrix element reads:

〈ψout |S(1)|ψin〉 = 〈ψout | ie

�c

∫
d4x : ψ̄(x)γμψ(x) : Aext

μ (x)|ψin〉. (12.195)

Let us write the external field in Fourier components:

Aext
μ (x) =

∫
d4k

(2π�)4
Ãext

μ (k) e− i
�

k·x, (12.196)

where kμ is a 4-momentum. In theLorentz gaugewe thenhave∂μAext
μ ⇔ kμÃext

μ = 0.
The matrix element in (12.195) is readily computed by writing the electron field
operators and the initial andfinal states in termsof creation and annihilation operators.
As usual the integration over x yields the conservation of momentum at the vertex:
q = p + k. Integrating out all the delta functions we find:

〈ψout |S(1)|ψin〉 = i
e

�c

(
mc2√

EpEq Ve

)
ū(p + k, s)γμu(p, r) Ãext

μ (k). (12.197)

In the non-relativistic limit we retain only terms of order less than two in the ratio v
c .

We can then approximate the energy of the electron with its rest energy Eq ≈ Ep ≈
m c2. In this limit k0 = Eq − Ep ≈ 0, namely kμ ≈ (0, k). Defining A/ ≡ Ãext

μ (k) γμ

and writing u(p, r) ≈ p/+m c
2m c u(0, r), where u(0, r) ≡ (ϕr, 0), we find

〈ψout |S(1)|ψin〉 ≈ i
e

�c Ve

ū(0, s)(p/ + k/ + m c)A/(p/ + m c)u(0, r)

4m2 c2
. (12.198)
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It is useful to write the field strength Fμν of the external electromagnetic field in
momentum space as well:

Fμν =
∫

d4k

(2π�)4
F̃μν(k) e− i

�
k·x ; F̃μν(k) = − i

�
(kμÃext

ν − kν Ãext
μ ),

(12.199)

and to introduce the Fourier transforms Ẽ(k), B̃(k) of the electric andmagnetic fields,
respectively:

Ẽi ≡ F̃i0, B̃i ≡ 1

2
εijk F̃jk . (12.200)

We wish now to rewrite the matrix (p/ + k/ + m c)A/(p/ + m c) using the properties:

A/ p/ = 2 (Ãext · p) − p/ A/, k/ A/ = (k · Ãext) + 1

2
[k/, A/]

= (k · Ãext) + kμ Ãext
ν γμν, (12.201)

which directly descend from the gamma matrix algebra (recall that γμν ≡ 1
2 [γμ,

γν]). We then find

(p/ + k/ + m c)A/(p/ + m c) = p/A/p/ + k/A/(p/ + m c) + m c {A/, p/} + m2 c2 A/

= [2 (Ãext · p) + (k · Ãext) + kμ Ãext
ν γμν] (p/ + m c)

= [2 (Ãext · p) + kμ Ãext
ν γμν] (p/ + m c), (12.202)

where we have used properties (12.201), the on-shell condition p2 = m2 c2 and the
Lorentz gauge condition k · Ãext = 0. We can now rewrite the amplitude (12.197):

〈ψout |S(1)|ψin〉 ≈ i
e

4 �c Ve m2 c2
×

× ū(0, s)[2 (Ãext · p) + i�

2
F̃μν γμν ] (p/ + m c)u(0, r) = i

e

4 �c Ve m2 c2

× ū(0, s)[2 (Ãext · p) − i �Ẽi γ0i + i�

2
εijk γijB̃k] (p/ + m c)u(0, r).

(12.203)

Let us now write the matrix p/ + m c:

p/ + m c = m c(1 + γ0) − p · γ =
(
2mc 12 −p · σ
p · σ 02

)
. (12.204)
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in the non-relativistic limit, the off-diagonal blocks are subleading, so we shall only
consider the diagonal ones. Thematrix element between ū(0, s) and u(0, r) belongs to
the upper-diagonal block, and, being γ0i off-diagonal, the term in (12.203) containing
the electric field is subleading in the non-relativistic limit. To lowest order in v

c we
find:

〈ψout |S(1)|ψin〉 ≈ i

�c Ve
ϕ†

s

[
e

mc
(Ãext · p) + ie�

4mc
εijk γijB̃k

]
ϕr

= − i

�c Ve
ϕ†

s

[
e Ṽ (k) − e

mc
pi Ãext

i (k) − e

mc
s · B̃(k)

]
ϕr

= − i

�c

∫
d4x〈ψout |Ĥext

I (x)|ψin〉, (12.205)

where Ṽ (k) = −Ãext
0 (k) is the Fourier transform of the electrostatic potential, s =

� σ/2 is the spin vector. To derive Eq. (12.205) we have used the property

i �

2
εijk γijB̃k = �

(
B̃kσ

k 02
02 B̃kσ

k

)
. (12.206)

The quantity between square brackets in Eq. (12.205) can be compared with the
analogous quantity appearing on the right hand side of Eq. (10.223) of Chap.10.
Since s = �

2σ, we see that, excluding the kinetic term 1
2m p2, the expressions of

the two interaction Hamiltonians coincide at first order in e. The last term in square
brackets is the coupling term −μs · B̃ of the electron spin to the external magnetic
field, where the magnetic moment associated with the spin is usually written in the
form

μs = ge

2mc
s. (12.207)

g being the so called electron g-factor. Comparing this definition with the corre-
sponding term in Eq. (12.205), we see that for the electron g = 2, to lowest order
in the perturbative expansion (classical value). We also note that, setting s = �

2σ,
this value coincides with the result given in Eqs. (10.224) and (10.226), namely the
gyromagnetic ratio e

mc is twice as large as the one related to the orbital angular
momentum.

The exact amplitude is obtained by summing to (12.205) all higher order correc-
tions 〈S(n)〉. In particular the term in 〈S(2)〉, described by the diagram in Fig. 12.10,
will be computed in Sect. 12.8.6 and will provide an important test of the theory
against experiments.

http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
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Fig. 12.10 First perturbative
contribution to the electron
anomalous magnetic moment

12.6 Cross Sections

We analyze here two instances of interaction processes: the Bahbha and the Compton
scattering.

12.6.1 The Bahbha Scattering

Let us first compute the cross section for the electron-positron scattering (12.168), to
lowest order in α. The Lorentz-invariant variables describing the process are, aside
from the electron (positron)-mass m, the cross scalar products among the 4-momenta
pμ
+, pμ

−, qμ
+, qμ

−, all of which can be expressed in terms of the three Mandelstam
variables s, t, u defined in (12.26):

p+ · p− = q+ · q− = s − 2m2

2
, p+ · q+ = p− · q− = 2m2 − t

2
,

p+ · q− = q+ · p− = 2m2 − u

2
. (12.208)

Equation (12.28) in this case implies s + t + u = 4m2. The explicit form of t, u in
the CM frame is given by Eqs. (12.29) and (12.30):

t = −4 |p|2 sin2
(

θ

2

)
, u = −4 |p|2 cos2

(
θ

2

)
, (12.209)

being E1 = E2 = E′
1 = E′

2 = E = √m2 + |p|2 and s = 4E2.
Let us now use Eq. (12.81) to write, in the CM frame:

dσ = 1

2
√

s(s − 4m2)
|〈T ′

(2)〉|2 dΦ(2) = 1

64π2 s
|〈T ′

(2)〉|2 dΩ, (12.210)
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where we have used the property
√

(p+ · p−)2 − m4 = 1
2

√
s(s − 4m2) and the gen-

eral form (12.96) of dΦ(2). We shall consider the simpler case in which the incoming
particles are not polarized and the spin states of the final particles are not measured.
The probability per unit time is then computed by averaging the one referred to
distinct polarizations of the electron-positron system, over the initial spin state and
summing over the final ones. This amounts, in Eq. (12.210), to define:

|〈T ′
(2)〉|2 = 1

4

∑
s±,r±

|〈q+, s+|〈q−, s−|T ′
(2)|p+, r+〉|p−, r−〉|2, (12.211)

where the factor 1/4 is related to the average over the four distinct polarization states
of the initial electron-positron system. Let us now use our previous result (12.171)
for the scattering amplitude and write:

|〈T ′
(2)〉|2 = 4 e4 m4

∑
s±,r±

[
AA∗ + BB∗ + AB∗ + BA∗] , (12.212)

where the terms

A = −1

t
v̄(p+, r+)γμv(q+, s+) ū(q−, s−)γμu(p−, r−),

B = 1

s
ū(q−, s−)γμv(q+, s+) v̄(p+, r+)γμu(p−, r−), (12.213)

are referred to the diagrams in Fig. 12.5a (diffusion) and b (annihilation), respectively.
Now, using the gamma-matrix properties (γμ)† γ0 = γ0 γμ and (γ0)† = γ0, one can
easily show that

(ū1γ
μu2)

∗ = u†2(γ
μ)†(γ0)†u1 = u†2γ

0γμu1 = ū2γ
μu1, (12.214)

and similarly (v̄1γ
μu2)∗ = ū2γμv1, (v̄1γ

μv2)
∗ = v̄2γ

μv1, so that we can write

A∗ = −1

t
v̄(q+, s+)γμv(p+, r+) ū(p−, r−)γμu(q−, s−),

B∗ = 1

s
v̄(q+, s+)γμu(q−, s−) ū(p−, r−)γμv(p+, r+). (12.215)

Next we need to recall the formulas (10.182) and (10.183) of Chap.10, for the
projectors on the positive and negative-energy solutions of the Dirac equation.22

22In the case of polarized fermions, there would be no summation over the spin states and we
should use, for each particle, the expressions in Sect. 10.6.3 for the projector on the corresponding
polarization:

u(p, r) ū(p, r) = (p/ + m)

4m
(1 + εrγ

5n/), v(p, s) v̄(p, s) = (p/ − m)

4m
(1 − εsγ

5n/).

http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
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∑
r

u(p, r)αū(p, r)β = (p/ + m)αβ

2m
,

∑
r

v(p, r)αv̄(p, r)β = (p/ − m)αβ

2m
, (12.216)

to rewrite the AA∗ term in (12.212) as follows:

∑
r±,s±

AA∗ = 1

16m4 t2
Tr
(
γμ(q/+ − m)γν(p/+ − m)

)
Tr
(
γμ(p/− + m)γν(q/− + m)

)
.

To prove the above formula it is useful to write, in the product AA∗, the spinor indices
explicitly. By the same token we find:

∑
r±,s±

BB∗ = 1

16m4 s2
Tr
(
γμ(q/+ − m)γν(q/− + m)

)
Tr
(
γμ(p/− + m)γν(p/+ − m)

)
,

∑
r±,s±

AB∗ = − 1

16m4 st
Tr
(
γμ(q/+ − m)γν(q/− + m)γμ(p/− + m)γν(p/+ − m)

)
,

∑
r±,s±

BA∗ = − 1

16m4 st
Tr
(
γμ(q/+ − m)γν(p/+ − m)γμ(p/− + m)γν(q/− + m)

)
.

To compute the above traces we need to recall from Appendix G the following
gamma-matrix identities:

Tr(γμγν) = 4 ημν,

Tr(γμγνγργσ) = 4(ημνηρσ + ημσηρν − ημρηνσ),

Tr(γμ1 · · · γμ2k+1) = 0,

γμA/γμ = −2A/,

γμA/B/γμ = 4 (A · B),

γμA/B/C/γμ = −2C/B/A/. (12.217)

The first of the above identities is proven by writing γμγν = 2ημν − γμγν ,
computing the trace of both sides and using the cyclic property of the trace
Tr(γμγν) = Tr(γνγμ). Similarly the second is proven by shifting γσ to the left,
past the other three gamma-matrices, and then using again the cyclic property of
the trace Tr(γμγνγργσ) = Tr(γσγμγνγρ). Finally the property that the trace of
an odd number of gamma-matrices is zero is easily proven using the properties
(γ5)2 = 1, γμγ5 = −γ5γμ of the γ5-matrix:

Tr(γμ1 · · · γμ2k+1) = Tr(γμ1 · · · γμ2k+1(γ5)2) = Tr(γ5γμ1 · · · γμ2k+1γ5)

= −Tr(γμ1 · · · γμ2k+1). (12.218)
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We shall also need the general identities (G.25), (G.26) of Appendix G.
Now the reader can easily derive the following formulas:

Tr
(
γμ(p/ ± m)γν(q/ ± m)

) = 4
[
pμqν + pνqμ −

(
p · q − m2

)
ημν
]
,

Tr
(
γμ(p/ ± m)γν(q/ ∓ m)

) = 4
[
pμqν + pνqμ −

(
p · q + m2

)
ημν
]
,

which are needed, together with (G.25), to derive, after some algebra, the following
expressions:

∑
r±,s±

AA∗ = 1

m4 t2
(2 (p+ · p−)(q+ · q−) + 2 (q+ · p−)(p+ · q−)

+ t (q+ · p+) + t (q− · p−) + t2
)

= 1

m4 t2

(
s2 + u2

2
+ 4m2 (t − m2)

)
,

∑
r±,s±

BB∗ = 1

m4 s2

(
t2 + u2

2
+ 4m2 (s − m2)

)
,

∑
r±,s±

AB∗ =
∑

r±,s±
BA∗ = 2

m4 st
(p+ · q−)

(
p+ · q− + 2m2

)

= 2

m4 st

(
m2 − u

2

) (
3m2 − u

2

)
. (12.219)

Inserting the above result in Eq. (12.210) we find a general formula for the cross
section:

dσ

dΩ
= α2

s

[
1

t2

(
s2 + u2

2
+ 4m2 (t − m2)

)
+ 1

s2

(
t2 + u2

2
+ 4m2 (s − m2)

)

+ 4

st

(
m2 − u

2

) (
3m2 − u

2

)]
, (12.220)

where, as usual,α = e2/(4π). The first and second terms in square brackets originate
from the squared norm of the diffusion and annihilation terms in the amplitude,
respectively, while the third is a cross product.

Consider now the non-relativistic limit in which E ∼ m (s ∼ 4m2) and we
neglect terms of the order |p|2/m2 (like t/m2 and u/m2). In this limit we see that the
second and third terms on the right hand side of (12.220) are subleading, that is the
annihilation amplitude does not contribute to the cross section, which then reduces
to23:

dσ

dΩ
=
(

α

2μv2

)2 1

sin4
(

θ
2

) , (12.221)

23Note that, in order to restore the �, c factors, we would need to multiply Eq. (12.220) by �
2, while

Eq. (12.221) needs no �, c factors to be restored.
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where v = |p|/μ = 2 |p|/m is the relative velocity, being μ = m/2 the reduced mass
of the system. Since only the diffusion diagram contributes in the non-relativistic
limit, we would have obtained the same result for the scattering of an electron off
any charge-e particle. Equation (12.221) reproduces the classical result obtained by
E. Rutherford when studying the scattering of alpha-particles off heavy nuclei.

12.6.2 The Compton Scattering

Let us now analyze the Compton scattering (12.179). We shall denote the quantities
associated with the photon and the electron by 1 and 2, respectively. The initial and
final 4-momenta of the photon are written as follows:

p1 = (ω, p1), q1 = (ω′, q1), (12.222)

where |p1| = ω, |q1| = ω′, ω, ω′ being the angular frequencies of the incoming
and outgoing electromagnetic plane-waves. We shall analyze the scattering in the
laboratory frame in which the electron is initially at rest: p2 = 0. The angular
variables are referred to the direction of the incident photon. In particular we shall
denote by θ the photon diffusion angle, namely of the angle between q1 and p1.

Recalling that, for physical photons, p21 = q21 = 0, we have:

s − m2 = 2 p1 · p2 = 2 q1 · q2 = 2mω, u − m2 = −2 p1 · q2
= −2 p2 · q1 = −2mω′. (12.223)

Let us nowuse the conservation of the total 4-momentum andwrite q2 = p1+p2−q1.
Computing the squared norm of both sides we find

0 = p1 · p2 − p1 · q1 − p2 · q1 = m (ω − ω′) − ωω′ (1 − cos(θ)),

from which we find

1

ω′ − 1

ω
= 1

m
(1 − cos(θ)). (12.224)

Let us now express the phase-space element in terms of photon quantities. To this
end let us write the t variable as follows

t = 2m2 − 2 p2 · q2 = −2 p1 · q1 = −2ωω′ (1 − cos(θ)) = −2m (ω − ω′),

where we have used Eq. (12.224). For a given ω, t will depend on the variable ω′,
related to θ by (12.224). From the above equation we find dt = 2m dω′. Using
Eq. (12.224) we can write dω′ = ω′2 d cos(θ)/m and thus:
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d(−t) = −2m dω′ = −2ω′2 d cos(θ) = ω′2

π
Ω. (12.225)

We can now write the phase space element substituting the above expression for
d(−t) in Eq. (12.98) and identifying μ2 = m, μ1 = 0:

dΦ(2) = 1

8π

d(−t)

s − m2 = ω′2

16π2 m ω
dΩ. (12.226)

The differential cross-section, to lowest order, reads:

dσ = 1

4 p1 · p2
|〈T ′

(2)〉|2 dΦ(2) = 1

16π

d(−t)

(s − m2)2
|〈T ′

(2)〉|2

= 1

(8π m)2

(
ω′

ω

)2
|〈T ′

(2)〉|2 dΩ. (12.227)

Let us now evaluate |〈T ′
(2)〉|2. As usual we consider unpolarized initial particles and

we do not measure the spin states of the outgoing electron and photon. This implies
that the probability per unit time should be summed over the final polarizations and
averaged over the initial ones, which amounts, in (12.227), to write

|〈T ′
(2)〉|2 = 1

4

∑

i,i′,r,s
|〈q1, i′|〈q2, s|T ′

(2)|p1, i〉|p2, r〉|2

= e4 m2
∑

i,i′,r,s

[
εμ(p1, i) εν(q1, i′)∗ερ(p1, i)∗ εσ(q1, i′)

× ū(q2, s)

(
γμ 1

p/2 − q/1 − m
γν + γν 1

p/1 + p/2 − m
γμ

)
u(p2, r)

× ū(p2, r)

(
γσ 1

p/2 − q/1 − m
γρ + γρ 1

p/1 + p/2 − m
γσ

)
u(q2, s)

]
.

(12.228)

Consider the quantity Rμν ≡ ∑2
i=1 εμ(p, i)εν(p, i)∗ in the Coulomb gauge where

εμ = (0, ε). This tensor has only spatial components, R00 = R0i = Ri0 = 0, which,
being ε transverse to the direction of propagation n ≡ p/|p|, read:

Rij = δij − ninj. (12.229)

The reader may easily verify that Rμν can be written in the form:

Rμν = −ημν + χμpν + χνpμ, (12.230)

where χ0 = 1
2ω , χi = −ni/(2ω). The last two terms on the right hand side of

(12.230) can be reabsorbed by a gauge transformation of εμ and do not contribute to
(12.228) since, as shown in Sect. 12.5, the amplitude of the process is gauge invariant
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and thus the contraction of the photon momentum with any of the gamma-matrices
γμ, γν, γρ, γσ is zero (see Eqs. (12.186) and (12.188)). We can thus replace in
Eq. (12.228) the sum over the photon polarizations,

∑2
i=1 εμ(p, i)εν(p, i)∗, by−ημν .

Equation (12.228) can now be recast in the following compact form:

|〈T ′
(2)〉|2 = e4

4
Tr

[
(q/2 + m)

(
γμ p/2 − q/1 + m

u − m2 γν + γν p/1 + p/2 + m

u − s2
γμ

)

× (p/2 + m)

(
γν

p/2 − q/1 + m

u − m2 γμ + γμ
p/1 + p/2 + m

u − s2
γν

)]
,

(12.231)

where we have used the property (p/ + m)(p/ − m) = p2 − m2. Using the identities
(G.25) and (G.25), we find the following useful formulas

Tr
[
(q/2 + m)γμ (p/2 − q/1 + m)γν(p/2 + m)γν (p/2 − q/1 + m)γμ

]

= 8 [4m4 − (s − m2)(u − m2) + 2m2(u − m2)],
Tr
[
(q/2 + m)γμ (p/2 + p/1 + m)γν(p/2 + m)γν (p/2 + p/1 + m)γμ

]

= 8 [4m4 − (s − m2)(u − m2) + 2m2(s − m2)],
Tr
[
(q/2 + m)γμ (p/2 − q/1 + m)γν(p/2 + m)γμ (p/2 + p/1 + m)γν

]

= Tr
[
(q/2 + m)γμ (p/2 + p/1 + m)γν(p/2 + m)γμ (p/2 − q/1 + m)γν

]

= 8m2[4m2 + (s − m2) + (u − m2)].
(12.232)

Expanding the right hand side of (12.231) and using the above identities we find:

|〈T ′
(2)〉|2 = 8 e4

[
m4
(

1

u − m2 + 1

s − m2

)2
+ m2

(
1

u − m2 + 1

s − m2

)

− 1

4

(
s − m2

u − m2 + u − m2

s − m2

)]

= 8 e4
[

m2

4

(
1

ω′ − 1

ω

)2
+ m

2

(
1

ω
− 1

ω′

)
+ 1

4

(
ω

ω′ + ω′

ω

)]
,

(12.233)

where we have used Eq. (12.223). Next we use Eq. (12.224) to rewrite the above
equation in the following form:

|〈T ′
(2)〉|2 = 2 e4

[
ω

ω′ + ω′

ω
− sin2(θ)

]
. (12.234)
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Substituting the above result in (12.227) we obtain the following formula for the
differential cross-section:

dσ

dΩ
= r2e

2

(
ω′

ω

)2 [ ω

ω′ + ω′

ω
− sin2(θ)

]
, (12.235)

where re ≡ α
m = e2

4πm (= e2

4πmc2
) is the classical radius of the electron. The above

formula was originally found by O. Klein and Y. Nishina in 1929, and by I.E. Tamm
in 1930.

In the limit of low-energy photons, in which ω 	 m, neglecting terms of order
ω
m , we can approximate, by virtue of Eq. (12.224), ω′ with ω and write:

dσ

dΩ
≈ r2e

2

(
1 + cos2(θ)

)
. (12.236)

The approximation becomes exact if we compute the total cross-section at threshold,
that is when ω,ω′ → 0. Since

lim
ω,ω′→0

ω

ω′ = 1

by integration in dΩ we easily find

σ(thr.) = 8

3
π r2e = 8

3
π

(
e2

4πm

)2
. (12.237)

12.7 Divergent Diagrams

So far we have considered amplitudes and cross-sections corresponding to tree-
diagrams, that is diagrams where no closed lines (loops) appear. They correspond
to the terms from (1)–(4) of the second order S-matrix S(2) given in Eq. (12.140)
and to the corresponding diagrams in Fig. 12.2. The amplitudes from (5)–(8) instead
involve loops, as it is apparent from the same figure. In particular diagrams (5) and
(6) in Fig. 12.2 (which represents the equal contributions of the terms (6) and (7)
in Eq. (12.140)) refer to transitions between initial and final states consisting of a
single particle with the same quantum numbers. They are referred to as self-energy
transitions. Considering first the electron self-energy diagram corresponding to the
terms (6) and (7). The S-matrix element contributing to the process is read from
Eq. (12.140)24:

24The factor 1
2 is canceled by the sum of the two identical terms (6) an (7) of Eq. (12.140).
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(ie)2
∫

d4xd4y : ψ̄(x)γμSF(x − y)γνψ(y) : DFμν(x − y)

= −i
∫

d4xd4y : ψ̄(x)Σ(x − y)ψ(y) :, (12.238)

where we have defined25:

Σ(x − y) ≡ −ie2 γμSF(x − y)γν DFμν(x − y)

= −ie2
∫

d4q

(2π)4

d4k

(2π)4
γμ 1

q/ − m
γν 1

k2
e−i (q+k)·(x−y)

=
∫

d4p

(2π)4
Σ(p) e−ip·(x−y). (12.239)

and p = q + k. The Fourier transform Σ(p) of Σ(x − y) reads

Σ(p) ≡ −ie2
∫

d4k

(2π)4
γμ 1

p/ − k/ − m
γν 1

k2
. (12.240)

Computing the S(2) term (12.238) between an incoming and outgoing electron states
with momenta Pi and Pf , the space-time integrals yield a delta-function δ4(Pf − Pi)

implementing the total momentum conservation (Pf = Pi), times a second delta-
function which sets Pi = q + k = p. We find:

i 〈T ′〉 = −2miū(p, r)Σ(p)u(p, r). (12.241)

Notice that, in contrast to the tree-amplitudes, here the delta functions are not enough
to eliminate all themomentum integrals andwe are left with the integral (12.240) over
the photon momentum k. This is a common feature of diagrams containing loops.
The function Σ(p) describes the presence of the kind of loop in Fig. 12.11a, in the
momentum space representation of an amplitude and only depends on the inflowing
momentum p. We see that the integral representing Σ(p) is linearly divergent as
k → ∞ since there are four powers of k in the numerator and three in the denominator.
Divergencies arising for high values of the four-momentum circulating in a loop are
also called ultraviolet divergences.

As for the photon self-energy, corresponding to diagram (5) of Fig. 12.2, the term
in S(2) contributing to it can be written as follows:

−i
∫

d4xd4y : Aμ(x)Aν(y) : Πμν(x − y), (12.242)

25Here and in the following we shall omit, for the sake of simplicity, the integration prescription
defined by the infinitesimal term iε in the Feynman propagators.
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Fig. 12.11 a Electron
self-energy diagram;
b Photon self-energy
diagram; c Second order
vacuum–vacuum transition

where we have defined

Πμν(x − y) ≡ ie2 Tr
(
γμSF(x − y)γνSF(y − x)

) =
∫

d4k

(2π)4
Πμν(k) e−i k·(x−y),

where we have denoted by k the difference between the momenta of the internal
fermions, see Fig. 12.11b. The Fourier transform Πμν(k) of Πμν(x − y) reads:

Πμν(k) = −ie2
∫

d4p

(2π)4
Tr

(
γμ 1

p/ − m
γν 1

p/ − k/ − m

)
. (12.243)

ComputingS(2) between two single-photon states, and factoring out the delta function
which implements the total momentum conservation, we find:

i 〈k, i|T ′|k, i〉 = −i εμ(k, i)∗ Πμν(k) εν(k, i). (12.244)

Just like Σ(p), Πμν(k) represents the presence, in the momentum representation
of an amplitude, of a loop (in this case a fermion loop), and only depends on the
inflowing photonmomentum k. It is referred to as the vacuum polarization tensor.We
see thatΠμν(k) exhibits a quadratic ultraviolet divergence.Aswe shall discuss in the
following, the presence of infinities is a general feature of the perturbative expansion
when closed lines, that is loops, appear in a diagram, since the integration over the
virtual particles circulating in the loop makes in general the integral divergent. We
note that the existence of transitions between initial and final one-particle states
implies that the one-particle states are not stable, since

U(+∞,−∞)|p, s〉 �= |p, s〉, (12.245)

U(+∞,−∞)|k, i〉 �= |k, i〉. (12.246)

Furthermore in our case the matrix elements are divergent. As we shall see in
Sect. 12.8.2 to dispose of the linear divergence in the electron self-energy graph
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we must perform a mass renormalization which allows us to absorb the linear diver-
gent part of (12.240) in the definition of the experimental mass, thereby ensuring
that the one-particle electron (or positron) states (12.245) are stable.

As far as the photon self-energy graph is concerned, we can show that it must
vanish as a consequence of gauge invariance of the S-matrix. To show this it is
convenient to first decompose the vacuum polarization tensor in Eq. (12.243) as

Πμν(k) = Πμν(0) + Π(1)
μν (k), (12.247)

so that
Π(1)

μν (k) = Πμν(k) − Πμν(0) → 0

as k → 0. Let us prove that the quadratic divergence of Πμν(k) is entirely contained
in Πμν(0). To this end consider the general operator expansion26

1

A + B
= 1

A
− 1

A
B
1

A
+ 1

A
B
1

A
B
1

A
+ . . .

and apply it to the propagator (p/ − k/ − m)−1 with A = p/−m and B = −k/We obtain

1

(p/ − k/ − m)
= 1

(p/ − m)
+ 1

(p/ − m)
k/

1

(p/ − m)
+ . . . (12.248)

Inserting this into Eq. (12.243) we find

Πμν(0) = −ie2
∫

d4p

(2π)4
Tr

(
γμ 1

p/ − m
γν 1

p/ − m

)
, (12.249)

while Π
(1)
μν (k) is given by the sum of the other terms in the expansion each of which

features extra powers of p in the denominator implying that the divergence ofΠ(1)
μν (k)

is at worst linear.
SinceΠμν(k) is a rank-two Lorentz tensor depending only of k, by Lorentz covari-

ance we may set

Πμν(0) = Aημν,

Π(1)
μν (k) = C(k2)k2ημν + D(k2)kμkν . (12.250)

26The expansion is easily derived from the identity

1

A + B
= 1

A
(A + B − B)

1

A + B
= 1

A
− 1

A
B

1

A + B
.
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whereA is a constant. On the other hand, gauge invariance of the S(2) term in (12.242)
implies

kμΠμν(k) = 0. (12.251)

This can be shownbygauge-transforming the polarization vectors in (12.244) accord-
ing to (12.185). This induces the following extra pieces in the amplitude27:

εμ(x)Πμν(k)kνχ + εν(x)Πμν(k)kμχ + χ2kμkνΠμν .

Requiring them to vanish, by gauge invariance, Eq. (12.251) follows. Using the
decomposition (12.250), we have

kμΠμν(k) = kν

(
A + C(k2)k2 + D(k2)k2

)
= 0.

For k2 = 0, with kμ �= 0, we find
A = 0.

Hence for arbitrary k
C(k2) = −D(k2).

Since the term containing the quadratic divergence A vanishes the expression of the
vacuum polarization tensor reduces to

Πμν(k) = Π(1)
μν (k) = C(k2)(ημνk2 − kμkν). (12.252)

Finally, inserting this result in the matrix element 〈k, i|T ′|k, i〉 in (12.244), we find

i 〈k, i|T ′|k, i〉 = −i εμ(k, i) C(k2)(ημνk2 − kμkν) εμ(k, i) = 0, (12.253)

as a result of the mass-shell and transversality conditions: k2 = 0, kμεμ = 0.
We conclude that the vanishing of the photon self-energy for the second order

S-matrix elements ensures that one-particle photon states (12.246) are stable.
Let us note that the result A = 0, was obtained by requiring gauge invariance of

the S-matrix. Actually if one computes the trace Πμ
μ(0) directly from the integral

expression (12.243) one finds

A = 1

4
Πμ

μ(0) = − i

4
e2
∫

d4p

(2π)4
Tr

(
γμ (p/ + m)

p2 − m2 γμ
(p/ + m)

p2 − m2

)

= −ie2
∫

d4p

(2π)4

(−2 p2 + 4m4)

(p2 − m2)2
, (12.254)

27Note that this relation is obtained by gauge-transforming the polarization vectors in (12.244)
according to (12.185), and requiring the variation of the amplitude to vanish.
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where we have used Tr(γμ) = 0. The result is that A does not vanish, but diverges
quadratically so that gauge invariance appears to be violated. It is however essential
that no gauge invariance property be lost in a consistent theory. Actually it can be
shown that there are different ways of manipulating the divergent integral, one of
them reestablishing the A = 0 result. From this point of view we can say that the
gauge invariance of the theory must be the guiding principle in defining divergent
ill-defined integrals and thus consistency of the quantum theory implies A = 0.

Finally we consider the last term of the second order amplitude (12.140), namely
the term (8)which is associatedwith thematrix element 〈0|S(2)|0〉. Diagrammatically
it is a graph with no external line, see Fig. 12.11c, consisting of just propagators, and
it is referred to as a vacuum–vacuum transition. The amplitude is readily calculated
to be

〈0|S(2)|0〉 = ie2 (2π)4 δ(4)(0)
∫

d4p

(2π)4

d4q

(2π)4
Tr

[
γμ 1

�p − m
γμ

1

�q − m

]
1

k2
,

where k = q − p, and corresponds, in momentum space, to the graph in Fig. 12.11c.
We have two sources of infinities in the above expression,: One given by the δ(4)(0)
factor due to the absence of external lines in the diagram, implying that the matrix
element is proportional to the four-dimensional volume in space-time; The other
infinity shows up in the double integral which is ultraviolet divergent in p as well as
in q. Actually we may simply ignore this diagram along with all vacuum–vacuum
transition amplitudes, of any order in the perturbative expansion. For example at
fourth order we may have the vacuum diagrams in Fig. 12.12a. To show that the sum
of all these diagram is physically irrelevant, we recall that the S-matrix elements
describe the evolution of a state vector from t = −∞ to t = +∞ in the inter-
action picture (it is a mapping between asymptotic free-particle states). Under this
transformation the vacuum state must remain invariant. Let us denote by

C = 〈0|S|0〉,

the sum of all the vacuum–vacuum transitions to all orders in perturbation theory.
Conservation of the four-momentum pμ implies that the S-matrix can only map the

Fig. 12.12 a Fourth order
vacuum–vacuum transition;
b Disconnected fourth order
graph for the Compton
scattering
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vacuum state, which has pμ = 0, into itself. Therefore

S|0〉 = C|0〉 = 〈0|S|0〉|0〉.

However unitarity of the S-matrix implies

〈0|SS†|0〉 = 〈0|CC∗|0〉 = 〈0|0〉 = 1 ⇒ |C|2 = 1.

The conclusion is that C is just a phase factor and can be disregarded.
Note that each Feynman diagram can be accompanied by a set of vacuum graphs.

For example at fourth order we may have the disconnected graph in Fig. 12.12b and
so on at any order in perturbation theory. Since in any disconnected diagram the
S-matrix element is the product of the matrix elements of the disconnected parts, we
conclude that the constant C appears as an overall multiplicative phase factor in the
S-matrix. If S′ is the S-matrix with all the disconnected diagrams omitted CS′ is the
full S-matrix differing from S by a trivial phase factor. It follows that all the discon-
nected Feynman diagrams can be omitted in studying the perturbative expansion.

12.8 A Pedagogical Introduction to Renormalization

In Sect. 12.7 we have shown that the last three diagrams of Fig. 12.10 are expressed
in terms of divergent integrals. Aside from the divergences associated with vacuum–
vacuum transitions (which, as we have seen, can be disregarded because their effect
is of multiplying any S-matrix element by a same phase factor), the divergence
associated with the photon self-energy transitions (vacuum polarization) was shown
to vanish on the grounds of gauge invariance. On the other hand, the divergence
associated with the electron self-energy graph was found to be somewhat “serious”
in that there seems to be no simple and consistent way to eliminate it.28

Actually the treatment of the aforementioned divergences was given for matrix
elements 〈out|S(2)|in〉 of S(2) between initial and final single-particle states obeying
the equations of motion of the free theory (on-shell particles), namely29

( �p − m)u(p, s) = 0 (12.255)

k2 = 0; ε · k = 0. (12.256)

28Note that the problem of the electron self-energy already exists in the classical theory of the
electron. Indeed, either one assumes the electron to be a point particle without structure, in which
case the total energy of the electron together its associated field is infinite; or one assumes a finite
electron radius, in which case it should explode as a consequence of the internal charge distribution.
29Here and in the following we shall refer, for simplicity, only to electron wave functions u(p, s),
to electron lines and so on. However all our analysis equally applies to the electron antiparticle, the
positron, as well as to, any other charged lepton, like muons and tau mesons.
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Photon and electron self-energies are just an example of diagrams containing loops.
As already mentioned, the presence of loops in a Feynman diagram entails an inte-
gration over the momentum k of the virtual particle circulating in the loop, and
this, in general, implies an ultraviolet divergence of the integral when the k → ∞.

Thus, when we consider higher order terms in the perturbative expansion many more
ultraviolet divergences (actually infinitely many) show up in the computation of the
S-matrix. This tells us that the Feynman rules for the computation of the amplitudes
are in some sense incomplete since they do not tell us what to do with divergent inte-
grals when computing amplitudes beyond the lowest tree-level. It turns out, however,
that if we express amplitudes in terms of the physical measurable parameters of the
theory, namely the mass and the coupling constant, the amplitudes become finite.

Let usmake this statementmore precise. Itmust be observed thatwhenweconsider
higher order terms in perturbation theory, the parameters m and e appearing in the
Lagrangian do not represent the experimental values of mass and coupling constant,
as it was anticipated in the introduction. For example the electron experimental mass
is defined as the expectation value of the Hamiltonian (the energy operator) when
the one-particle electron state has zero three-momentum. This has to be computed,
to the order of precision required, using

mexp = 〈p, s|Ĥ|p, s〉
〈p, s|p, s〉

∣∣∣∣∣
p=0

,

|p, s〉 and Ĥ being the states and Hamiltonian operator of the complete interacting
theory, the former being perturbatively expressed in terms of free states in (12.3).
Notice that in no situation an electron state can be identified with a free state in the
Fock space, of the kind we have been using so far in our analysis: the higher order
terms in the expansion (12.3) are always present. The reason for this is that an electron
is never isolated since it always interacts at least with its own electromagnetic field,
and its self interaction contributes to the perturbative expansion (12.3).

Similarly the coupling constant, the physical charge of the electron, should be
defined as the quantity which appears in an experimental result. For example the
charge may be defined as the parameter that appears in the Compton scattering
cross-section at threshold. Therefore to any order in the computation, the result must
be given by the formula (12.237) with e replaced by eexp.

When these definitions are implemented, the parameters e, m entering the original
Lagrangian can be expressed in terms of the physical ones by relations of the form

e = e(eexp),

m = m(mexp, eexp).

In the following it will be convenient to rename e0 and m0 the parameters entering
the Lagrangian„ called the bare parameters, while the physical measurable values of
the coupling constant and mass will be denoted by e and m, respectively, so that the
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relations (12.257) take the form

e0 = e0(e),

m0 = m0(m, e).

As we shall see in the sequel, these relations actually contain divergent quantities.
This means that, since the experimental mass and charge are obviously finite, the
parameters e0, and m0 entering the Lagrangian, in terms of which the Feynman rules
were constructed, must be themselves infinite in order to obtain finite results for the
physical parameters. Therefore e0 and m0 are not observable. By eliminating e0, m0
in terms of m, e, and by suitable redefinition of the fields, all higher order amplitudes
turn out to be finite.

The technique used to handle the divergences appearing in perturbation theory
is called renormalization. By means of it the divergences can be isolated and rein-
terpreted as unobservable redefinitions of the mass, coupling constants and field
operators of the theory.

Let us observe that the renormalization program requires manipulations of infinite
quantities, given in terms of divergent integrals showing up in the perturbative expan-
sion. This raises many questions of mathematical consistency, not all of them having
a clear answer. However, even if its mathematical formulation may seem somewhat
unsatisfactory, from a pragmatic point of view the renormalization program is fully
justifiable, since by means of it we are able to extract finite results which are found
to be in remarkable agreement with experiments. We shall give examples of that in
the last section.

Renormalization is therefore a necessary route in order to extract physical verifi-
able predictions from the quantum theory of fields.

The complete renormalization program is rather complicated and its full exposi-
tion is beyond the scope of this book. The key point however is that, as it will be
shown in the next section, in quantum electrodynamics all the divergences appear-

Fig. 12.13 One-loop
divergent diagrams in QED
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Fig. 12.14 a Second order
electron self-energy parts in
fourth order diagrams;
b Second order photon
self-energy parts in fourth
order diagrams

ing in higher order corrections are associated with a limited number of diagrams,
represented in Fig. 12.13a–c, namely the self-energy diagrams considered as parts
of larger higher-order graphs, together with the vertex-part diagram to be defined
below. This means that, once we are able to consistently eliminate the divergences
associated with this limited number of diagrams, all the divergences of the theory, at
least in principle, can be eliminated. In this case we say that the theory, QED in our
case, is renormalizable.

By self-energy part or self-energy insertion of a larger diagramwemean a portion
of the graph which, if cut off from the rest, is a self energy diagram of the kinds illus-
trated in Fig. 12.11a, b. It is important at this stage to distinguish between self-energy
parts and self-energies, computed for the second order amplitudes in Sect. 12.7.
Indeed, in the latter case the amplitude was taken between external on-shell states,
that is between states obeying the equations of motion of a free particle, while the
former describe just parts of the amplitude associated with the larger diagram. They
can be viewed themselves as self-energy amplitudes, whose external lines however,
may not describe on-shell particles, but rather be internal lines of the larger graph,
represented by propagators. For example in the Compton scattering we may have,
at fourth order, the diagrams in Fig. 12.14a. We see that in these diagrams there is a
second-order 1-loop electron self-energy inserted in an external and internal electron
line of the larger graph. Note that, in the latter case, both the lines attached to the self-
energy part are internal and thus correspond to electron propagators in the amplitude.
Therefore the self-energy part is not computed between external one-particle states
obeying the free-particle equations of motion ( �p − m)u(p, s) = 0, i.e. the inflowing
momentum is off-shell p2 �= m2.

Similarly, considering a photon self-energy insertion, wemay have at fourth order
the 1-loopdiagrams inFig. 12.14b,where the second-order self-energypart is inserted
between two photon lines, one ofwhich is internal and thus describes a virtual photon,
for which the mass-shell and transversality conditions k2 = 0, ε · k = 0 are not
satisfied. It follows that our computations of the self-energies given in Sect. 12.7 for
the second-order 1-loop S-matrix elements between external on-shell states should
be reconsidered when applied to self-energy parts. In particular the proof that the
(divergent) 1-loop self-energy of the photon is zero does not apply when we have a
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photon self-energy part since the conditions k2 = ε · kμ = 0 used in the proof do
not hold. The same is true a fortiori for the 1-loop electron self-energy considered
in Sect. 12.7, where we have seen that it is actually divergent even if it refers to an
amplitude between external states.We shall show in the following that both the photon
and electron self-energy insertions can be made finite by mass renormalization,
coupling constant renormalization and field renormalization.

Furthermore, when we consider diagrams that are parts of larger ones, besides
the self-energy graphs, a further divergent contribution comes into play, namely the
vertex part, whose 1-loop diagram, (second order in the coupling constant), is given
in Fig. 12.13c. This diagram exists onlywhen it is part of a larger diagram sincewhen
the external electron and photon lines are on the mass-shell momentum conservation
cannot be satisfied. This justifieswhy it was not consideredwhen discussing S-matrix
elements between external states.30

12.8.1 Power Counting and Renormalizability

In this section we show that QED is a renormalizable theory, by which we mean, as
mentioned earlier, that only a limited number of amplitudes is divergent. In particular,
to one-loop, the divergent amplitudes are those associated with the self-energies and
vertex insertions discussed in the previous section, see Fig. 12.13a–c. This justifies
the assertion made in the previous section that the consideration of the self-energies
and vertex parts are actually sufficient to show that in QED all the divergences can
be disposed of.

We have so far restricted our attention to diagrams containing just one loop. A
generic diagram may however contain various loops. Let us define the superficial
degree of divergence DG of a diagram as a number which signals, if non-negative, the
presence in the amplitude of divergent integrals. We observe that in each Feynman

graph there is an integration in d4p
�p−m for each internal fermion (electron) line and an

integration d4k
k2

for each internal boson (photon) line, which contributes three and
two units, respectively, to the degree of divergence of the amplitude, Furthermore, at
each vertexwe have a δ4-function expressing conservation of themomenta flowing in
and out of the vertex. This eliminates four momentum integrations at each vertex (i.e.
an integral in d4p). However one of the momentum δ4-functions just implements the
conservation of the total momentum and thus is ineffective in eliminatingmomentum
integrals. Taking this into account, wemay define the superficial degree of divergence
to be given by

DG ≡ 3Fi + 2Bi − 4(V − 1). (12.257)

30There are in principle further divergences associated with the so-called photon-photon system,
Fig. 12.13d and the three-photon vertex, Fig. 12.13e. Such divergences are however armless (see
below.).
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where Fi and Bi are the number of internal fermion and boson lines, respec-
tively, and V is the number of vertices. Here we are using the words “fermion”
and “boson” instead of electron and photon because our considerations in general
apply to any theory containing bosons and fermions. What actually characterizes
a theory is the interaction vertex. For QED the interaction Hamiltonian density is
HI = −eψ̄(x)γμψ(x)Aμ(x), so that at each vertex there are two fermion and one
boson lines. Let us denote Fi, Fe and Bi, Be the number of internal and external lines.
Since an external line is connected to one vertex and an internal line connects two
vertices, it is easy to see that31

2Fi + Fe = 2V,

2Bi + Be = V . (12.258)

If we solve the above equations in Fi and Bi and substitute the result into Eq. (12.257)
we find

DG = 4 − 3

2
Fe − Be. (12.259)

We conclude that the degree of divergence does not depend on the number of
vertices and internal lines, but only on the number of external lines. In particular we
see thatDG > 0 only for a limited number of diagrams. In general when this happens
we say that the theory is renormalizable. Therefore QED is renormalizable.

On the other hand the renormalizability property is related to the physical dimen-
sion of the coupling constant. Let us first recall from Sect. 12.3.5 that, using natural
units, the fermions have dimension 3

2 in mass units and the bosons dimension 1.
Furthermore the action of a theory is dimensionless, so that the Lagrangian density
has dimension (in mass) [M4]. On the other hand, if from each vertex f fermionic
and b bosonic lines originate, respectively, we must have that the dimension of the
coupling constant g in front of the interaction Lagrangian density is

[λ] = [M4−ν] = [Mdλ ],

where ν = 3
2 f + b and dλ = 4 − ν is the mass-dimension of λ. In particular for

quantum electrodynamics we find ν = 3
2 f + b = 4, so that the coupling constant

e√
4π
, ( e√

4π�c
in the usual units) is indeed dimensionless. For a general theory we can

generalize Eqs. (12.258) as follows

2Fi + Fe = f V

2Bi + Be = b V . (12.260)

31To derive these relations, one can cut each internal fermion line of a diagram into two parts. The
total number of lines so obtained should be twice the number of vertices. In this counting however,
each internal line contributes two units (i.e. a total of 2Fi units) and each external ones a single unit
(i.e. a total of Fe units). A similar argument applies to the boson lines.



12.8 A Pedagogical Introduction to Renormalization 537

Substituting the values of Fi and Bi in Eq. (12.257) we find

DG = bV − Be + 3

2
(f V − Fe) − 4V + 4

= V

(
b + 3

2
f − 4

)
+ 4 − 3

2
Fe − Be = −dλV − 3

2
Fe − Be + 4,

(12.261)

where we have used the definition dλ = 4− 3
2 f − b of the mass-dimension of λ. We

then have the following cases:
Ifb + 3

2 f < 4, that is ifdλ > 0, as the perturbative orderV increases,DG decreases
and amplitudes are finite. We say in this case that the theory is super-renormalizable.

If b + 3
2 f = 4, so that dλ = 0, the coupling constant is dimensionless. In this

case DG is independent of V and the theory is renormalizable. The divergences
occurring in the infinitely many loop diagrams, as we shall illustrate in the sequel for
the case of quantum electrodynamics, can be disposed of by adding a finite number
of counterterms to the Lagrangian, which amounts to a redefinition of the parameters
of the theory (renormalization).

If b + 3
2 f > 4, dλ < 0, the theory is non-renormalizable since, by increasing

the order of the diagram, that is the number of the vertices, the degree of divergence
also increases. This time, however, in order to dispose of the divergences occurring
to each order in the coupling constant, counterterms should be added to the origi-
nal Lagrangian, whose functional dependence on the fields and their (higher-order)
derivatives, would in general depend on the corresponding power of the coupling con-
stant. Therefore, in contrast to the renormalizable theories, in the non-renormalizable
ones the divergences cannot be cured through the redefinition of a finite number of
parameters but infinitely many counterterms need be added to the Lagrangian. An
example of a non-renormalizable theory is the quantized Einsten gravity, in which
the interactions are all expressed in terms of a fundamental coupling constant, which
is proportional to the square root of Newton’s constant and thus has dimension of a
length in natural units.

After this general discussion, let us come back to the case of the QED. To one-
loop order besides the three divergent diagrams (a–c) of Fig. 12.13, corresponding
to the electron and photon self-energy parts and vertex part discussed before, which
are of second-order in the coupling constant, there is also at one loop a divergent
fourth-order diagram, represented in Fig. 12.13d, which is referred to as the photon-
photon system and an order-three three-photon vertex, see Fig. 12.13e. Applying
Eq. (12.257) to diagrams (a)–(c)we immediately conclude by power counting that the
electron self-energy part is linearly divergent (DG = 1), the photon self-energy part
is quadratically divergent (DG = 2) and the vertex part is logarithmically divergent
(DG = 0).

As far as the photon-photon system is concerned, it is logarithmically divergent,
while the three-photon vertex is linearly divergent DG = 1. However, an explicit
evaluation of the former diagram, shows that the coefficient of its divergent part is
exactly zero. Therefore we shall disregard this diagram in the following. As far as the
three-photon vertex is concerned, it is zero being odd under charge conjugation and
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thus would violate the charge conjugation symmetry (recall from Chap.11 that the
photon is odd under charge conjugation: ηC = −1). Actually, by the same argument,
one can show that all diagrams with an odd number of external photons is zero
(Furry’s theorem).

Renormalizability of QEDmeans that all the divergences appearing in the pertur-
bative expansions can be eliminated. As previously anticipated, a complete account
of the full renormalization program to all orders is rather heavy and complicated
and would be outside the scope of this pedagogical introduction. In the following
we shall therefore limit ourselves to apply the renormalization program to the self-
energy and vertex parts given in Fig. 12.13 which correspond to 1-loop insertions
and are therefore of second order in the coupling constant. We believe that even in
this restricted framework the main ideas used in the full renormalization program,
to all orders, can be understood.

Thus far we have been dealing with divergences as if they were well defined
quantities. Actually, in order to make sense of divergent integrals, and their manipu-
lations, it is important, as a first step, to make such divergent integrals finite by some
regularization procedure. The general procedure is the following. One first separates
the divergent integral into two parts,32 where the first part is still divergent, but the
divergence is entirely contained in a set of divergent constants, that is in a set of
integrals which do not depend on the external momenta, the second part instead is
completely finite and, in general, will depend on the external momenta. To show
how this separation can be made we quote the following simple example.33 Let us
consider the following integral

σ(p) =
∞∫

0

dk

k + p
,

which is logarithmically divergent. If we differentiate with respect to p we obtain

σ′(p) = −
∞∫

0

dk

(k + p)2
= −1

p
.

Therefore
σ(p) = − log p + c.

We have thus separated the divergent part of σ(p), given by the constant c, from its
finite part. Analogously, from the linearly divergent integral

σ(p) =
∞∫

0

k dk

k + p
,

32Actually, beyond 1-loop, there are divergences that require a more careful treatment than just
separation into a divergent and a finite part (overlapping divergences). We can neglect them, since
we are going to discuss only 1-loop self-energy and vertex insertions which cannot give rise to this
kind of divergences.
33See Weinberg’s book [13].

http://dx.doi.org/10.1007/978-3-319-22014-7_11


12.8 A Pedagogical Introduction to Renormalization 539

by the same procedure, we obtain

σ(p) = a + bp + p log p,

where a and b are divergent constants. In general for a divergence of order D of
the integral we obtain a polynomial in the external momenta of degree D − 1 whose
constant coefficients are divergent plus a finite part.Actually the given decomposition
is equivalent to the first terms of a Taylor expansion of the integral in the external
momenta. However we must pay attention to the fact that the separation between
a divergent part and a finite part is not uniquely defined. Indeed we may always
change the value of the finite part by adding a constant to it and subtracting the same
constant from the divergent part. In order to have a uniquely defined expansion we
must therefore add some requirement dictated by physical considerations.

The previous examples are given in terms of one-dimensional integrals. Coming
back to the divergent four-dimensional integrals arising from loop integration, in
order to manipulate the “constant” divergent integrals they need to be regulated, that
is made finite, by a some convenient regularization scheme.

There are several regularization schemes which do the work and would be worth
discussing, since they allow to compute the explicit form of the divergence. However,
being their treatment rather technical, it would be outside the limited discussion of
the renormalization that we plan to present. We shall therefore avoid entering the
detail of the regularization procedures. We can just give a simple example of how
regularization can be achieved for the linearly divergent integral (12.240). In this
case can use the so called Pauli–Villars scheme of regularization by modifying the
photon propagator in the integral as follows

ημν
−i

k2
→ ημν

(−i

k2
− −i

k2 − Λ2

)
= −iημν

−Λ2

k2 (k2 − Λ2)
.

The integral (12.240) becomes

Σ(reg)(p) = −ie2
∫

d4k

(2π)4
γμ 1

( �p− � k) − m
γμ

[ −Λ2

k2 (k2 − Λ2)

]
. (12.262)

We see that Σ(reg)(p) is finite as long as Λ2 is kept finite. If we separate the integral
into a divergent (in theΛ2 → ∞ limit) and a finite part, as we shall do in Sect. 12.8.2,
the finite part remains the same when Λ2 → ∞, while the divergent regulated part
becomes infinite only when Λ2 → ∞.

This example shows how regularization allows us to manipulate quantities which
become divergent only when the regularization is removed. In the following, with
abuse of notation, we shall call these regulated quantities “divergent”, but it must
be kept in mind that they are in fact regulated. Only once regularization has been
performed the renormalization program allows us to separate the divergent part of an
integral from its finite part and to prove that the entire divergence can be eliminated
by appropriate redefinitions of the mass and coupling constant of the theory. This
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procedure is referred to as mass and coupling constant renormalization, and will be
discussed in the next sections.

Since our process of elimination of the infinities will require a redefinition of
the parameters and of the fields entering the Lagrangian, we will rewrite the initial
Lagrangian, in terms of which the Feynman rules are defined, as follows:

L0 = ψ0 (i∂/ − m0)ψ0 − 1

4
F0μν Fμν

0 + e0 A0μ ψ̄0γ
μψ0. (12.263)

Therefore, in this notation, the fieldsψ(x), Aμ(x) and the coupling constant e appear-
ing in all the formulas written so far, should be intended as ψ0(x), A0μ(x) and e0,
respectively.

12.8.2 The Electron Self-Energy Part

Consider an internal electron line of a Feynman graph. When adding higher order
contributions to the amplitude of the same process, we will have to consider a dia-
gram which differs from the initial one only in the insertion of a self-energy part in
the electron line. In summing the contributions from the two diagrams, all the rest
factorizes while the propagator associated with the internal line is replaced by the
following sum, see Fig. 12.15:

SF(x − y) +
∫

d4x1d4x2 SF(x − x1)[−iΣ(x1 − x2)]SF(x2 − y),

where Σ(x1 − x2) was defined in (12.239). Since the effect of the higher order
contribution is accounted for by replacing the propagator SF(x − y) in the original
amplitude with the above sum, the second term on the right hand side can be seen as
a second order correction to the free propagator. In momentum space this correction
reads,

SF(p) + SF(p)
[−iΣ(p)

]
SF(p), (12.264)

Fig. 12.15 Corrected electron propagator by insertion of a second-order self-energy part
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where

SF(p) = i ( �p − m0)
−1 ≡ i

�p + m0

p2 − m2
0

,

and −iΣ(p) is given in Eq. (12.240). Diagrammatically the 1-loop corrected propa-
gator is given in Fig. 12.15.34

The correction (12.264) to the free propagator can be improved by considering
the so called chain approximation. In this procedure one considers higher order
corrections to the free propagator arising as a (infinite) sum of all the graphs obtained
as chains of 1-loop insertions as in Fig. 12.16. The improved correction S′

F to the
propagator is then

S′
F(p) = SF(p) + SF(p)[−iΣ(p)]SF(p)

+ SF(p)[−iΣ(p)]SF(p)[−iΣ(p)]SF(p) + · · ·
= SF(p)

(
1

1 + iΣ(p) SF(p)

)

= i

�p − m0

1

1 − Σ(p)( �p − m0)−1 = i

�p − m0 − Σ(p)
. (12.265)

Note that each correction term in the above sequence is two orders (in the coupling
constant) higher than the preceding one, since each self-energy insertion in the chain
is of second-order.35

To proceedwe apply the considerations of the last section to separate the divergent
part ofΣ(p) from its finite part. Aswe have noted earlier, the expansion of a divergent

34Note that if (12.264) were taken between external (on-shell) electron lines, we would recover the
electron self-energy computed in Sect. 12.7, namely Eq. (12.241).
35Actually we could make the chain approximation (12.264) exact if we would consider each
electron self energy insertion not restricted to one-loop order. This can be done by introducing the
concept of one particle irreducible (1PI) diagram. A diagram is 1PI if it cannot be disconnected by
cutting one internal line. Thus wemay consider a self-energy diagram which has contributions from
1PI diagram only, like the three fourth order diagrams of Fig. 12.17a, while the graph (b), being
reducible, would not contribute. The reason for selecting only 1PI diagrams is that the reducible
diagrams can always be decomposed in 1PI diagrams without further integration, and therefore if
we can take care of the divergences of the 1PI diagrams, we automatically take care of the general
diagram. Let us denote the correction to the free propagator due to the sum of all possible 1PI
self-energy diagrams by −iΣ∗(p), see Fig. 12.18a. The correction (12.264) becomes

SF(p) + SF(p)
(−iΣ∗(p)

)
SF(p). (12.266)

If we now perform the chain expansion as in (12.265) but with −iΣ(p) replaced by −iΣ∗(p), we
obtain the exact propagator in the form

S′
F(p) = i

�p − m0 − Σ∗(p)
, (12.267)

see Fig. 12.18b. In the following however we will limit ourself to consider the approximation
(12.264) where only the 1-loop integral Σ(p), lowest order approximation of Σ∗(p), appears.
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Fig. 12.16 Correction to the electron propagator in the chain approximation

Fig. 12.17 Examples of fourth-order corrections to the electron propagator: a one-particle irre-
ducible; b one-particle reducible

Fig. 12.18 a Definition of −iΣ∗(p) as the sum of the corrections to the electron propagators due
to all 1PI diagrams; b Exact propagator

integral into a polynomial in the external momenta with divergent coefficients plus
a finite remainder is equivalent to a Taylor series expansion, truncated to the first
divergent terms plus a finite remainder. Let us apply this technique to the divergent
integral

Σ(p) = −ie20

∫
d4k

(2π)4
γμ 1

p/ − k/ − m0
γμ

1

k2
. (12.268)

By differentiation with respect to the external momentum p, we increase the power
of k in the denominator by one unit making the result only logarithmically divergent.
Through a second differentiation we obtain a finite, that is convergent, integral. In
our case we have then a Taylor expansion truncated to first order in p plus a finite
remainder. Taking into account that by Lorentz invarianceΣ(p) can only be function
of �p and p2, we expand Σ(p) in powers of ( �p − m) where m is arbitrary:

Σ(p) = δm + B( �p − m) + Σ(c)(p). (12.269)
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Here δm and B are divergent constants given by

δm = Σ(p)|p2=m2 , B = 1

4
γμ ∂Σ

∂pμ

∣∣∣∣
p2=m2

.

while Σ(c)(p) is convergent and satisfies

Σ(c)(p) = γμ ∂Σ(c)

∂pμ
= 0 for p2 = m2. (12.270)

We see that the entire divergence of Σ(p) is contained in the infinite constants δm
and B.

We can now insert the result (12.269) into the expression on the right hand side
of (12.265), obtaining

i

�p − m0 − Σ(p)
= i

�p − m0 − δm − B( �p − m) − Σ(c)(p)
. (12.271)

We see that the pole of the improved propagator S′
F(p), which defines the mass of the

particle, is no longer at p2 = m2
0. If we choose the arbitrary parameter m to satisfy:

m0 + Σ(m) = m, (12.272)

where Σ(m) ≡ Σ(p)|p2=m2 = δm, Eq. (12.271) yields

S′
F(p) = i

( �p − m)(1 − B) − Σ(c)(p)
. (12.273)

Recalling thatΣ(c) vanishes forp2 = m2,m becomes themass of theparticle,which is
shifted from its original valuem0, the shift beingproportional to the divergent quantity
δm ≡ Σ(m). Since δm is divergent we conclude that the bare mass m0 present in the
original Lagrangian must be divergent as well, in order for the physical mass m to
be finite.36 The mass renormalization given by the mass shift (12.272) provides the
removal of the divergent term δm = Σ(m) from the corrected propagator, but it still
depends on the infinite constant B.37 As it is apparent from the (12.273), this infinite

36Naively one could think that the separation of the physical mass into the bare mass m0 and the
mass-shift δm = Σ(m)would correspond to the separation of the electronmass into a “mechanical”
and a “electromagnetic” mass. However such separation is devoid of physical meaning since it
cannot be observed. We also note that the process of mass renormalization is not a peculiarity of
field theory. For example when an electron moves inside a solid it has a renormalized mass m∗, also
called effective mass, which is different from the mass measured in the absence of the solid, i.e.
the bare mass m0. However, differently from our case, the effective and bare mass can be measured
separately, while in field theoretical case m0 cannot be measured.
37We observe that this term would give a vanishing contribution if we had an external on-shell state
instead of the propagator in (12.264) since the term B(�p − m) in Eq. (12.269) is zero on the free
electron wave function.
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constant changes the residue at the pole from its original value i to

i (1 − B)−1 .

To dispose of the divergent constant B we observe that neglecting higher order terms
in e20 we may write

Σ(c)(p) � Σ(c)(p)(1 − B),

that is
Σ(c)(p) � Σ(c)(p)(1 − B) = Σ(c)(p)Z−1

2 ,

where
Z2 ≡ (1 − B)−1. (12.274)

Equation (12.273) can be recast in the following form

S′
F(p) = i

Z2

( �p − m) − Σ(c)(p)
.

We see that the expression multiplying Z2 is completely finite. On the other hand, the
multiplicative constant Z2 can be reabsorbed in a redefinition of the electron field,
namely by defining a renormalized physical field ψ(x) in terms of a bare unphysical
one ψ0(x) as follows:

ψ0 = Z
1
2
2 ψ. (12.275)

Recalling indeed the definition (12.110) of the Feynman propagator and its Fourier
transform, we have

S′
F =

∫
d4ξ eip·ξ〈0| T(ψ(y + ξ)ψ̄(y))|0〉

= Z−1
2

∫
d4ξ eip·ξ 〈0|T(ψ0(y + ξ)ψ̄0(y))|0〉

= i
1

( �p − m) − Σ(c)
. (12.276)

so that, when written in terms of the renormalized mass m and the renormalized field
ψ, the corrected propagator is completely finite. The renormalization of the bare field
into the physical field by the divergent constant Z2 given in Eq. (12.275) is usually
referred to as the wave function renormalization.38

At the Lagrangian level, we can give an interpretation of the renormalization
procedure as the addition of counterterms to the original Lagrangian L0. Indeed,
taking into account Eqs. (12.272) and (12.275) we have

38Recall that a one-particle state and its wave function ψ(x) is related to the quantum fields ψ̂ by
〈0|ψ̂(x)|a〉, see for example Eq. (12.64) for a boson particle.
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LDirac
0 = ψ0 (i∂/ − m0)ψ0 = Z2 ψ (i∂/ − m)ψ + Z2ψψδm. (12.277)

Therefore the Dirac Lagrangian written in terms of the physical mass and fields is

LDirac = ψ (i∂/ − m)ψ

= LDirac
0 − (Z2 − 1)ψ (i∂/ − m)ψ − Z2ψψδm. (12.278)

One can verify that applying the Feynman rules to these counterterms the mass
m0 acquires the correction (12.272) while the logarithmically divergent part B is
subtracted from Σ(p).

12.8.3 The Photon Self-Energy

Let us now consider the photon self-energy graph. We perform the same steps as
in the case of the electron self-energy graph. A photon self-energy insertion in an
internal photon line defines a second order correction to the photon propagator. In
the coordinate representation the second-order corrected photon propagator reads:

D′
Fμν(x − y) = DFμν(x − y)

+
∫

d4x1d4x2DFμρ(x − x1)[−i Πρσ(x1 − x2)] DFμρ(x2 − y),

and is represented diagrammatically in Fig. 12.19. In the momenutm representation
the corrected propagator reads:

D′
Fμν(k) = DFμν(k) + DFμρ(k)[−iΠρσ(k)]D′

Fσν(k). (12.279)

Fig. 12.19 Second order correction to the photon propagator
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Fig. 12.20 Correction to the propagator in the chain approximation

As in the electron case, the self-energy diagram is just part of a larger graph and the
inflowing momentum k is off mass-shell. For this reason Πρσ(k) is non-vanishing
and is expressed by the divergent integral in Eq. (12.243), which is of second order
in the charge e0.

Just as for the electron case, we limit ourselves to the chain approximation and
consider all the higher order corrections to the propagator originating from chains of
self-energy insertions, see Fig. 12.20.39 Performing the sum over the chain of 1-loop
diagrams is, however, somewhat more complicated than in the case of the electron
self-energy, because of the tensor indices carried byΠμν .Wemay proceed as follows.
Denote by DF(k) and �(k) the 4× 4 matrices DFμν(k) and Πρσ(k). Define now the
projector P(k) = (P(k)μν):

P(k)μν ≡ δμ
ν − kμkν

k2
. (12.280)

The reader can easily verify that P(k)n = P(k). From the general form (12.252) of
the vacuum polarization tensor found in Sect. 12.7 and the expression of DFμν(k) in
(12.110), it follows that:

− i Πρσ(k) DFσν(k) = −C(k2) P(k)ρν . (12.281)

The corrected propagator in the chain approximation reads:

D′
F = DF + DF[−i�]DF + DF[−i�]DF[−i�]DF + · · ·

= DF

[
1 − i � DF + (−i � DF)2 + · · ·

]

= DF

[
1 − C P + C2

P + · · ·
]

= DF

[
1 − P +

( ∞∑

n=0

(−C)n

)
P

]

= DF

[
1 − P + 1

1 + C
P

]
, (12.282)

where C = C(k2) and we have used the property of the matrix P(k) of being a
projector. From the above derivation we then find:

39The discussion made in footnote 35 about the exact electron propagator also applies to the photon
case. We can express the exact photon propagator as the sum of chains of insertions Π∗μν(k)

each representing the sum of all the 1PI diagrams to the photon propagator. We shall restrict, for
the sake of simplicity, to the chain approximation of the photon propagator, in which Π∗μν(k) is
approximated, to lowest order, by Πμν(k).
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D′
Fμν(k) = −i

ημν

k2

(
1

1 + C
+ C

1 + C

kμkν

k2

)
. (12.283)

In light of the discussion made in Sect. 12.5.5 about the gauge invariance of
S-matrix elements, we can disregard the kμkν terms in D′

F since they give a van-
ishing contribution to the S-matrix. Therefore the non trivial part of D′

Fμν(k) reduces
to

D′
Fμν(k) = − iημν

k2
(
1 + C(k2)

) . (12.284)

The important point is the fact that, assuming that C(k2) has no pole at k2 = 0, the
pole of the photon propagator is not shifted with respect to the tree diagram level,
namely it is located at k2 = 0. Therefore no mass renormalization is needed for
the photon self-energy part. Recalling our discussion in Sect. 12.7, this absence of
renormalization is due both to gauge invariance which implies the vanishing of the
quadratically divergent part Πμν(0) = Aημν , and to the assumption of regularity of
C(k2) at k2 = 0.

We now have to eliminate the further divergent term C(k2) from D′
Fμν(k) the

residue being now given by (1+ C(0))−1. This can be done exactly as in the case of
the electron self-energy part. We first observe that the quantity

Π(c)(k2) = k2C(k2) − k2C(0) = k2 C(R)(k2), (12.285)

where C(R)(k2) ≡ C(k2) − C(0), must be finite since C(k2) is logarithmically
divergent. In fact Πμν(k) is given by a quadratically divergent integral and C(0) is
the coefficient of k2 in its expansion around k2 = 0

k2C(k2) = k2C(0) + Π(c)(k2). (12.286)

Therefore the divergence is entirely contained in C(0). We fix the ambiguity in
(12.285) alluded to in Sect. 12.8.2, assuming Π(c)(0) = 0, which can always be
done by shifting a constant fromC(0) toΠ(c)(k2). Therefore the corrected propagator
takes the form

D′
Fμν(k) = − iημν

k2 (1 + C(0)) + Π(c)(k2)
. (12.287)

We see that the residue changes by the factor Z3 ≡ (1+C(0))−1. Moreover, neglect-
ing higher order terms, we may also write

Π(c)(k2) � Π(c)(k2)(1 + C(0)) = Π(c)(k2)Z−1
3 ,

so that Eq. (12.287) becomes

D′
Fμν(k) = − iημνZ3

k2 + Π(c)(k2)
. (12.288)
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where the expression multiplying Z3 is completely finite. As for the electron self-
energy, the factor Z3 can be now by reabsorbed by the photon wave function renor-
malization, namely by setting

A0μ = Z
1
2
3 Aμ (12.289)

Indeed recalling Eqs. (12.110) we have

D′
μνF =

∫
d4ξ eip·ξ〈0| T(Aμ(y + ξ)Aν(y))|0〉

= Z−1
3

∫
d4ξ eip·ξ〈0|T(A0μ(y + ξ)A0ν(y))|0〉

= −iημν
1

k2 + Π(c)(k2)
= −i ημν

1

k2(1 + C(R)(k2))
. (12.290)

Similarly to what we did for the electron self-energy, the photon wave function
renormalization (12.289) can be interpreted at the Lagrangian level, as the addition
of a counterterm. Indeedwe canwrite for the electromagnetic freeLagrangian density

LF2
0

= −1

4
Fμν
0 F0μν = −1

4
Z3FμνFμν . (12.291)

Therefore the electromagnetic Lagrangian density in terms of the physical renormal-
ized fields is

LF2 = −1

4
FμνFμν = LF2

0
+ 1

4
(Z3 − 1)FμνFμν . (12.292)

The change in the photon propagator given by the self-energy insertion is referred
to as vacuum polarization. The vacuum polarization is a physical measurable effect.
Indeed, let us consider for example theMöller scattering.We have seen in Sect. 12.5.2
that, in a specific Lorentz frame, we can separate the interaction due to the exchange
of transverse photon from the one due to the exchange of longitudinal and timelike
photons, the latter resulting in a instantaneous Coulomb potential energy, whose
Fourier transform is40

e0 V (|k|) = e20
|k|2 .

When the self-energy insertion is taken into account, we have to replace the lowest
order photon propagator DFμν with the new propagator D′

Fμν given in Eq. (12.288).
This implies that the vacuum polarization changes the Coulomb law as follows

e2

|k|2 → e2

|k|2 [1 + C(R)(−|k|2)] .

40With respect to Eq. (12.163) we have replaced the coupling constant e with e0 since the amplitude
was computed to lowest order in the coupling constant.
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where we have defined e2 = Z3e20 and we have set k2 = −|k|2 since we are in the
non-relativistic limit in which k0 = 0. The factor (1 + C(R)(−|k|2)) behaves much
like a dielectric constant ε(k) since, as we show below, it reduces the effective charge
(in absolute value) ‘seen’ at a given |k|, as |k| decreases (i.e. as the distance from the
charge increases), in the same way as it happens for charges in a dielectric material.
Pictorially we may say that the vacuum polarization creates electron-positron virtual
pairs circulating in the loopwith a resulting partial screening of the electric charge, as
it happens for a charge in a polar dielectricmaterial. The actual value ofΠ(c)(−|k|2))
can be computed explicitly by appropriate regularization of Πμν(k2). One finds that
for k2 	 m2 (the threshold for the pair production e+ e−)

e2

|k|2 [1 + C(R)(−|k|2)] � e2

|k|2
(
1 + α

15π

|k|2
m2

)
. (12.293)

By Fourier transforming to configuration space we have

eV (x) =
∫

d3k
(2π)3

eik·x −e2

|k|2[1 + C(R)(−|k|2)] � − e2

4πr
− α

15π

e2

m2 δ(3)(x),

where r = |x|. This change indicates that the electromagnetic force becomes stronger
at small distances.41 This effect can be measured in hydrogen-like atoms, where the
wave function is non-zero at the origin for s-waves. In fact this produces a shift of
the 2s 1

2
level given by

ΔE =
∫

d3x |ψ(x)|2
(

− α

15π

e2

m2 δ(3)(x)

)
= − 4α2

15m2 |ψ(0)|2,

and using |ψ(0)|2 = α3m3

8π for the 2s state, we get

ΔE = −1.123 × 10−7 eV.

This change has in particular the effect of removing the degeneration between the
2s 1

2
and 2p 1

2
levels. As will be discussed in the last section, the Lamb shift also

removes the degeneration with a much larger correction. The agreement between
theory and experiments, however, is good enough to verify the shift due to the vacuum
polarization.

41The seeming singularity due to the presence of the delta function is actually due to our approxi-
mation |k|2 	 m2. In general the correction will be smooth and strongly peaked around x = 0.
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12.8.4 The Vertex Part

We now discuss the third divergent diagram, namely the vertex part whose 1-loop
second order graph is shown in Fig. 12.21, together with the tree-level vertex. The
element of S(3) contributing to the amplitude reads:

(ie0)
3
∫

d4xd4yd4z : ψ̄0(x)γ
μSF(x − y)γνSF(y − z)γρψ0(z) :

× DFμρ(x − z) A0ν(y) = ie0

∫
d4xd4yd4z : ψ̄0(x)Λν(x, z|y)ψ0(z) : A0ν(y),

(12.294)

where we have defined the vertex part connecting the three external legs as:

Λν(x, z|y) ≡ (ie0)
2 γμSF(x − y)γνSF(y − z)γρ DFμρ(x − z).

Using the explicit form (12.110) of the propagators in momentum representation we
can write:

Λν(x, z|y) = (ie0)
2
∫

d4q′

(2π)4

d4q

(2π)4

d4k′

(2π)4

× γμ i

q/′ − m
γν i

q/ − m
γμ

−i

(k′)2
ei(q′−q)·(y−x)ei(q+k′)·(z−x).

(12.295)

Changing integration variables from q, q′, k′ to k = q′ − q, p = q + k′ and q the
above expression simplifies to:

Λν(x, z|y) =
∫

d4p

(2π)4

d4k

(2π)4
Λμ(p + k, p)eik·(y−x)eip·(z−x), (12.296)

Fig. 12.21 Third order vertex loop
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where

Λμ(p + k, p) ≡ −ie20

∫
d4q

(2π)4
γμ 1

k/ + q/ − m
γν 1

q/ − m
γμ

1

(p − q)2
. (12.297)

When the operator (12.294) is computed between on-shell states, conservation of the
total momentum sets the corresponding amplitude to zero, as explained in Sect. 12.4.
Consequently the third order term (12.294) can only contribute to the amplitude of
a larger process, in which at least one of the three external legs is an internal line
of the corresponding Feynman diagram. This means that at least one of the fields
ψ̄0(x), ψ0(z), A0μ(y) in (12.294) is contracted with some other one within a higher
order S-matrix term, to make a propagator. Another process to which such term may
contribute is the interaction of an electron with an external field, in which caseA0μ(y)
is to be replaced by Aext

0μ (y). In this case the one loop vertex diagram contributes to
the amplitude a term of the form

2ime0 V μ(p′, p) Aext
0μ (k) = 2ime0ū(p′)Λμ(p′, p)u(p) Aext

0μ (k), (12.298)

where V μ(p′, p) ≡ ū(p′)Λμ(p′, p)u(p), while p and p′ = p + k are the momenta of
the incoming and outgoing electrons, respectively. We see that the above term has
the same form as the tree vertex contribution (12.197) except for the presence of
Λμ(p′, p) instead of γμ. Similarly, if the photon of momentum k is a virtual photon
within a larger graph, the current V μ(p′, p) will have to be contracted with the cor-
responding photon propagator DFμν(k). According to our discussion in Sect. 12.5.5,
gauge invariance with respect to the incoming photon of momentum k = p′ − p
requires the current V μ to be conserved (i.e. divergenceless), namely:

kμ V μ(p′, p) = (p′ − p)μ V μ(p′, p) = 0. (12.299)

When summing all the contributions to a given amplitude coming from S-matrix
terms of orders differing by two units, we will have to sum contributions from two
diagrams differing just in the substitution of a tree vertex by a one loop vertex. Adding
up the two terms amounts to effectively replacing in the lowest order one:

γμ → Γ μ(p′, p),

Γ μ(p′, p) ≡ γμ + Λμ(p′, p). (12.300)

The quantity Λμ(p′, p) then represents a second order correction to a vertex, whose
integral expression in (12.297) has a logarithmic divergence for large values of the
integration variable q, representing the momentum of a virtual electron. The matrix
Γ μ(p′, p) is referred to as the second order corrected vertex. There are other cor-
rections to the vertex, obtained by inserting self-energy parts in the legs of the three
diagram. These are in principle accounted for by using the exact propagators for the
electrons and the photon.
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Expanding Λμ(p′, p) in p, p′

Λμ(p′, p) = Lγμ + Λf
μ(p′, p), (12.301)

where Lγμ = Λμ(0, 0) and one can isolate the divergent part L, which is a constant,

from the finite remainder Λ
f
μ(p′, p). The second order corrected vertex Γ μ(p′, p)

consequently splits as follows:

Γμ(p′, p) = (1 + L)γμ + Λf
μ(p′, p). (12.302)

The ambiguity in the definition of L is fixed as follows. Let us first show that,
on the general grounds of Lorentz covariance, if p′ = p, the current V μ(p, p) =
ū(p)Λμ(p, p)u(p) is proportional, through a constant, to ū(p)γμu(p). By Lorentz
covariance we can indeed convince ourselves that Λμ(p, p), which is a spinorial
matrix depending on p, can only be combination of the matrices pμ 1 and γμ. Using
then the property42

ū(p)γμu(p) = pμ

m
ū(p)u(p), (12.304)

we conclude that

V μ(p, p) = ū(p)Λμ(p, p)u(p) = f0 ū(p)γμu(p), (12.305)

f0 being a constant. Actually, using Lorentz covariance and the gauge invariance con-
dition (12.299), one can show that the current V μ(p′, p) can only have the following
general form

V μ(p′, p) = ū(p′)
(

F1(k
2) γμ + F2(k

2) γμν kν

)
u(p), (12.306)

where k = p′ −p.43 It follows that V μ(p, p) = F1(0)u(p)γμu(p), so that F1(0) = f0.
We now fix the ambiguity in L by requiring L = f0, which implies

42To show this use the general on-shell identity (which only holds on-shell):

ū(p′)γμu(p) = 1

2m

[
u(p′)γμ �pu(p) + u(p′)�p′γμu(p)

]

= u(p′)
[

p ′μ + pμ

2m
− γμν (p ′

ν − pν)

2m

]
u(p),

(12.303)

where we have written γμγν = ημν + γμν , and γμν being defined as [γμ, γν ]/2.
43See Weinberg’s book [13] for a general derivation of this formula. There the most general form
of Γ μ(p′, p) is written in terms of γ-matrices, p and p′. The number of independent terms reduces
considerably upon using the Dirac equation p/u(p) = mu(p) (ū(p′)p/′ = m ū(p′)) and the identity
(12.303). By further implementing the gauge invariance condition (12.299) the final expression
boils down to the one in Eq. (12.306).
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u(p, s′)Λf
μ(p, p)u(p, s) = 0. (12.307)

Let us observe that the vertex Γμ(p′, p) contains in general the coupling constant e0

and a factor Z2Z
1
2
3 originating from the wave function renormalization of the electron

and photon fields

LI
0 = e0 ψ̄0γ

μψ0 A0μ = e0Z2Z
1
2
3 ψ̄γμψ Aμ. (12.308)

We conclude that the logarithmic divergence in the vertex part correction can be
absorbed in a charge (or coupling constant) renormalization as follows

e0Z2Z
1
2
3 → e0Z2Z

1
2
3 (1 + L) = e, (12.309)

where e defines the physical renormalized coupling constant. Setting 1 + L = Z−1
1

we rewrite (12.309) as follows

e = e0Z2Z
1
2
3 Z−1

1 . (12.310)

We now show an important identity between the vertex function Γμ(p′, p) and the
propagator S′

F(p). The identity, referred to as Ward identity, is

Γμ(p, p) = i
∂S′ −1

F (p)

∂pμ
(12.311)

and, as we shall presently show, it is a consequence of the gauge invariance of the
theory. The identity is trivially satisfied by the tree level vertex γμ and the free
propagator i ( �p − m)−1. To next order, using Eqs. (12.265) and (12.301), we can
rewrite the Ward identity as follows

Λμ(p, p) = −∂Σ(p)

∂pμ
(12.312)

The proof (to second order) can be done by exploiting the fact that, in the presence
of a constant external electromagnetic field Aext

0μ , the electron self-energy part is
modified as follows

− iΣ(p) → −iΣ(p) + ie0Ãext
0μΛμ(p, p) + . . . , (12.313)

where the right hand side represents a power series in the constant Ãext
μ and the second

term represents a single interaction with Ãext
μ . Note that, since the external field is

constant, it transfers zero momentum, so that its Fourier transform is non-zero only
for k = 0: Ãext

0μ = Ãext
0μ (k = 0) δ4(k). Diagrammatically we can represent (12.313) as

in Fig. 12.22. On the other hand, gauge invariance requires that the interaction with
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Fig. 12.22 Insertion of an external field in an electron line at zero momentum transfer k = 0

the external field can be obtained by performing the minimal coupling substitution:

pμ → pμ + e0Aext
μ . (12.314)

Therefore we also have

Σ(p) → Σ(p) + e0Ãext
μ

∂Σ(p)

∂pμ

∣∣∣∣
Ãext

μ =0
+ . . . . (12.315)

Comparison of (12.313) and (12.315) gives the Ward identity (12.312).
An important consequence of the Ward identity is that the wave function and

vertex renormalization constants are equal

Z1 = Z2 ⇔ L = −B, (12.316)

where B was defined in (12.269). To show this we compute the right hand side of the
Ward identity (12.312) using Eq. (12.269) while on the left hand side we substitute
Eq. (12.301). We obtain

Lγμ + Λf
μ(p, p) = −γμB − ∂

∂pμ
Σ(c)(p).

We now sandwich this relation between external on-shell states and find

u(p, s′)γμu(p, s)L = −Bu(p, s′)γμu(p, s). (12.317)

where we have used Eq. (12.307) and the fact that ∂
∂pμ Σ(c)(p) vanishes for �p = m.

Recalling the definition (12.274) and that Z1 ≡ (1 + L)−1, we immediately obtain
Eq. (12.316).

The equality (12.316) implies that the coupling constant renormalization (12.309)
reduces to

e = Z
1
2
3 e0 → e0A0μ = eAμ. (12.318)

The cancelation between the electron and photon wave function renormalization
constants has been shown to work at one loop level (second order in the coupling
constant). Actually the implementation of the full renormalization program reveals
that the cancelation between the constants Z1 and Z2 is valid at all orders of the
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perturbation theory. It follows that these renormalizations are in fact spurious. This
result is of fundamental importance. Indeed, generalizing to the electromagnetic
interaction of other charged particles, it implies that the electromagnetic coupling is
universal.

The interpretation of the coupling constant renormalization follows the usual lines.
Starting from Eqs. (12.308) and (12.309) we have

LI
0 = e0 ψ̄0γ

μψ0 A0μ = Z1e ψ̄γμψ Aμ (12.319)

Therefore the physical renormalized interaction Lagrangian density can be written
as

LI = e ψ̄γμψ Aμ = LI
0 + e(1 − Z1) ψ̄γμψ Aμ. (12.320)

12.8.5 One-Loop Renormalized Lagrangian

We can now summarize the results of the previous sections writing down the relation
between the bare Lagrangian density (12.263) we started from and the physical
renormalized Lagrangian density L. Adding Eqs. (12.278), (12.292) and (12.320)
we find

L0 = ψ0 (i∂/ − m0)ψ0 − 1

4
F0μν Fμν

0 + e0 A0μ ψ̄0γ
μψ0

= L + ΔL (12.321)

where

L = ψ (i ∂/ − m)ψ − 1

4
FμνFμν + e ψγμψ̄ Aμ, (12.322)

and

ΔL = (Z2 − 1)ψ (i ∂/ − m)ψ + Z2ψψδm +
−1

4
(Z3 − 1)FμνFμν − e(1 − Z1)ψγμψ̄ Aμ. (12.323)

The relation between the bare fields and parameters and the physical ones is given
by

ψ0 = Z
1
2
2 ψ; A0μ = Z

1
2
3 Aμ

m0 = m − δm; e0 = Z1Z−1
2 Z

− 1
2

3 e = Z
− 1

2
3 e (12.324)
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Note that the added terms inΔL have exactly the same structure as the terms present
in the original Lagrangian L0.

The conclusion is that in order to have finite two-point Green’s functions, that
is propagators, and vertex functions we must start from a Lagrangian whose fields
and parameters are not the physical fields and parameters, but are the unphysical,
formally infinite bare quantities defined by Eq. (12.324). This has been shown at one-
loop level or, equivalently, at second order for the self-energy and vertex insertions.
In the general theory of renormalization one proves that the results obtained at one-
loop level are sufficient to render finite the diagrams to any order in the perturbative
expansion.

12.8.6 The Electron Anomalous Magnetic Moment

We have seen that the removal of the divergences from the second- order self-energy
and vertex parts of a larger diagram is achieved by separating the divergent from the
finite parts of the amplitude, the former being reabsorbed in the mass, coupling con-
stant and wave-function (field) renormalization. The finite parts, on the other hand,
give a well defined contribution to the amplitude and the result of its computation
can be compared with experiment.44

In this subsection we want to give an important example of this finite contribution
in a specific case, namely the (second-order) correction to the scattering of an electron
by an external field Aext

μ . This will allow us to compute the anomalous magnetic
moment of the electron and compare the result with experiment.

Let us start with the first-order computation of the scattering amplitude of an
electron in the external field Aext

μ . It was computed in Sect. 12.5, Eq. (12.197), with
the result

〈ψout |S(1)|ψin〉 = i
e

�c

(
mc2√

EpEp′ Ve

)
ū(p′, s)γμu(p, r) Ãext

μ (k), (12.325)

where k = p′ − p. Let us now consider the second order correction to the vertex part
whose diagram is given in Fig. 12.23. We know that the vertex correction is given
by the right hand side of Eq. (12.301), where the entire (logarithmic) divergence is
contained in the constant L and can be reabsorbed in the coupling constant renormal-
ization via Z1 = (1 + L)−1. Hence Λ

f
μ represents an observable effect. We are thus

confronted with the explicit computation of Λ
f
μ. The computation of this integral

is not trivial and we shall only quote the result. If the electron is supposed on the
mass-shell, p′ 2 = p2 = m2, and if the momentum transfer kμ is small one obtains

44Corrections given by the finite parts of loop diagrams are often referred to as radiative corrections.
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Fig. 12.23 Radiative
correction to the Aext

μ field

ū(p′)Λf
μ(k)u(p) = α

2π
ū(p′)

[
− 1

2mc
γμνkν + 2k2

3m2c2
γμ

(
ln

m

λmin
− 3

8

)]
u(p).

(12.326)

Comparing the above formula with the general expression in Eq. (12.306) we can
identify the invariant functions F1(k2), F2(k2) in the latter with the following quan-
tities:

F1(k
2) = L + α

3π

k2

m2c2

(
ln

m

λmin
− 3

8

)
,

F2(k
2) = − α

4πmc
, (12.327)

where we have used the identification of L with F1(k2 = 0) = f0. We see that
only F1 is divergent, the divergence being in L and is reabsorbed in the charge
renormalization, while F2 is finite and gives the correction to the electron magnetic
moment, as we shall show.

The constant λmin in (12.326) is a fictitious photon mass that has been introduced
in order to avoid the divergence of the integral for small k, known as the “infrared
catastrophe”. In fact to obtain the previous result the photon propagator has been
modified as follows

− i
1

k2
→ −i

1

k2 + λ2
min

. (12.328)

This modification obviously entails that the amplitude (12.326) diverges when we
let the photon mass go to zero giving rise to the so-called infrared catastrophe.
Let us shortly comment on this point, since this kind of infrared divergence occurs
quite often when computing Feynman diagrams. Actually this infrared divergence
has nothing to do with the ultraviolet one present in Λμ(p′, p) which was included
in the definition of L. Its origin lies in the fact that considering an electromagnetic
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interaction process, we are asking a wrong question, namely: What is the amplitude
of electron scattering with the emission of no photon? Now, in any scattering experi-
ment, the electrons can radiate photons whose energy and momentum is sufficiently
small to be undetected by the experimental apparatus. If the apparatus has an energy
resolution Em, then photons with energy E < Em will remain undetected. When
the amplitude for the soft photon emission is combined with the infrared divergent
amplitude, the divergence disappears.

Coming back to the our second order amplitude, we see that the first order ampli-
tude (12.325) is changed as follows

〈ψout |S(1) + S(3)|ψin〉

= i
e

�c

(
mc2√

EpEp′ Ve

)
ū(p′, s)

(
γμ + Λf μ(p′, p)

)
u(p, r) Ãext

μ (k), (12.329)

whereΛf μ(p′, p), the finite remainder of the second-order vertex part, is the radiative
correction to the first-order electron scattering. This is not the only correction to the
first-order scattering. There is a further correction arising from the vacuum polar-
ization graph of Fig. 12.23. One can show that the external field will get replaced
by

A(ext)
μ (k) → A(ext)

μ (k)

(
1 − α

15π

k2

m2c2

)
,

which amounts just to adding − 1
5 to − 3

8 in the last term of Eq. (12.326).
We now show that the first term of Eq. (12.326), depending on the function F2,

computed at zeromomentum transfer (k2 = 0), represents the effect of an anomalous
electron magnetic moment to the amplitude. To this end let us rewrite the current
u(p′)γμu(p) in the three-level part (12.197) of (12.329) using Eq. (12.303). As shown
in Sect. 12.5.6 by evaluating the non-relativistic limit of the tree amplitude, the term
contributing to the magnetic coupling is the one proportional to γμνkμÃext

ν which has
the following form:

i
1

�cVe

e

2mc
ū(p′)γμνkμÃext

ν (k)u(p),

where we have used the non-relativistic approximation Ep ∼ Ep′ ∼ mc2. The factor
e/(mc) = ge/(2mc) represents the gyromagnetic ratio thatwe have computed earlier.
If we add the second order correction represented by the first term in Eq. (12.326)
we end up with

i
1

�cVe

e

2mc
(1 − 2mcF2) ū(p′)γμνkμÃext

ν (k)u(p).
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We see that the gyromagnetic ratio has acquired a correction of the form:

e

mc
→ e

mc
(1 − 2mc F2) = 2e

2mc

(
1 + α

2π

)
= ge

2mc
, (12.330)

corresponding to a corrected g-factor:

g = 2
(
1 + α

2π

)
.

This result was first obtained by Schwinger in 1948. The quantum deviation

Δμ = (g − 2)e

2mc
s,

of the electron magnetic moment from its classical value, due to perturbative correc-
tions, is usually referred to as the electron anomalous magnetic moment. Nowadays
the very high precision measurements [10] of g − 2 provide the most stringent tests
of QED (the agreement between theory and experiment is to within ten parts in a
billion).45

There is another experimental result which is successfully predicted by quantum
electrodynamics, and is worth mentioning without entering into heavy technical
details. It is the splitting of the 2s1/2 and 2p1/2 levels in hydrogen atom, which was
firstmeasured byLambandRetherford in 1947 and is knownas theLamb shift. Indeed
one can interpret the correction Λ

f
μ appearing in Eq. (12.326) as a modification of

the effective field Ãext
μ seen by the electron, in our case Ãext

μ reducing to the Coulomb
potential. This modification produces a splitting of the 2s1/2 and 2p1/2 levels, but it
still depends on the λmin cutoff present in Eq. (12.326). However if one takes into
account the contribution from emission and absorption of virtual photons ofmomenta
less than λmin, then the dependence from λmin cancels out. The final result gives for
the splitting a value 1052.01Mc/s. By improved theoretical calculations the value is
raised to 1057.916. This agrees with the experimental value of with an accuracy of
10−5.

12.8.7 References

For further reading see Refs. [3], [8, vol. 4], [9, 13].

45Since in order to test QED predictions for higher order corrections to a given quantity (like the
g − factor), a high-precision determination of the coupling constant α is needed, one uses the
QED formulas to experimentally determine α. QED is then tested by comparing the values of α
determined from different experiments.



Appendix A
The Eotvös’ Experiment

Let us consider two bodies, with inertial massesmI em′
I , and suppose we attach them

to the ends of a torsion pendulum as in Fig.A.1. We denote by � and �′ the distances
of the masses from the center of suspension. Let z and x be directed vertically
and southwards, respectively; on the left part of Fig.A.1 these directions have been
drawn at a particular pointP of the terrestrial surface, the y direction being the normal
passing through P corresponding to the west–east direction. Note that the centrifugal
force mI a due to the rotation of the earth forms an angle θ with the vertical direction
equal to the latitude of P, while the gravitational force mG g is directed towards the
center of the earth.

On the right part of the Fig.A.1 we have drawn the torsion pendulum, and the
centrifugal forces mI a and m′

I a have been decomposed along the x and z axes.
The centrifugal forces acting in the x direction give rise to a momentum along the

vertical direction z given by:

τz = mI ax � − m′
I ax �′. (A.1)

On the other hand, equilibrium in the east–west direction requires the vanishing of
τx, so that we may write:

(mG g − mI az) � = (
m′

G g − m′
I az

)
�′. (A.2)

If we now substitute the value of �′ given by (A.2) into Eq. (A.1) we find:

τz = mI ax � g

(
m′

G
m′

I
− mG

mI

)

g
m′

G
m′

I
− az

. (A.3)

This component τz, if non vanishing, should be balanced by the momentum exerted
by the torsion of the rod to which the pendulum is suspended. Experimentally no
torsion momentum is observed, and therefore we must have: τz = 0, that is:

© Springer International Publishing Switzerland 2016
R. D’Auria and M. Trigiante, From Special Relativity to Feynman Diagrams,
UNITEXT for Physics, DOI 10.1007/978-3-319-22014-7

561



562 Appendix A: The Eotvös’ Experiment

Fig. A.1 The Eotvös’ experiment

m′
G

m′
I

= mG

mI
. (A.4)

It follows that the ratio between inertial and gravitational masses does not depend
on the particular body we are considering. Choosing the same unit for their measure
we conclude that the two masses are indeed equal.



Appendix B
The Newtonian Limit of the Geodesic Equation

In this section we show that in the non-relativistic limit v � c, by further assuming
the gravitational field to beweak and stationary, the geodesic equation (3.56) reduces
to the Newton equation of a particle in a gravitational field. We recall from Chap.3
that the metric field gμν(x) is the generalization of the Newtonian potential, and
the statement that the gravitational field be weak and stationary is expressed by
conditions (3.61) and (3.62), computing all quantities to first order in v/c and h.

We first rewrite Eq. (3.56) by splitting the coordinate index μ into μ = 0 and
μ = i(i = 1, 2, 3):

d2(ct)

dτ2
+ Γ 0

00

(
d(ct)

dτ

)2

+ 2Γ 0
0i

d(ct)

dτ

dxi

dτ
+ Γ 0

ij
dxi

dτ

dxj

dτ
= 0, (B.1)

d2xi

dτ2
+ Γ i

00

(
d(ct)

dτ

)2

+ Γ i
jk

dxk

dτ

dxj

dτ
+ 2Γ i

0j
dct

dτ

dxj

dτ
= 0. (B.2)

Since

(
dxi

dτ

)
/

(
dx0

dτ

)
= vi

c
, (B.3)

one recognizes that the condition v/c � 1makes the last two terms of both equations
negligible, so that Eqs. (B.1) and (B.2) become:

1

c

d2t

dτ2
+ Γ 0

00

(
dt

dτ

)2

= 0 (B.4)

1

c2
d2xi

dτ2
+ Γ i

00

(
dt

dτ

)2

= 0. (B.5)

Taking into account that the time derivative of gμν is zero for a stationary field, from
(3.59) we find:
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Γ 0
00 = 1

2
g0ρ (−∂ρg00 + 2 ∂0gρ0) = −1

2
(η0ρ − h0ρ) ∂ρg00 + O(h2)

= −η00 ∂0h00 + O(h2) = O(h2) � 0, (B.6)

Γ i
00 = −1

2
gij ∂jg00 = −1

2
(ηij − hij) ∂jh00 + O(h2)

= 1

2
∂jh00 + O(h2), (B.7)

where we have taken into account Eqs. (3.61), (3.62), the fact that ηij = −δij, and
the inverse of relation (3.61), namely:

gμν = ημν − hμν + O(h2). (B.8)

Equation (B.4) implies, taking into account (B.6)

dt

dτ
= const. (B.9)

so that d2xi

dτ2
=

(
dt
dτ

)2
d2xi

dt2
. By virtue of (B.9) and (B.7), Eq. (B.5) becomes:

d2xi

dt2
= −c2

2
∂ih00, (B.10)

where theminus sign on the right hand side originates from themetric. This is exactly
Newton’s equation of a particle in a gravitational field if we identify the Newtonian
potential φ(x) with h00 as follows:

φ

c2
= 1

2
h00. (B.11)

Indeed, with such identification, Eq. (3.64) can be rewritten as:

d2xi

dt2
= − ∂iφ. (B.12)

Furthermore, from the previous equations, we also see that in the limit of non-
relativistic, weak and static field we can write:

g00 = 1 + h00 = 1 + 2
φ

c2
. (B.13)
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Appendix C
The Twin Paradox

The so called twin paradox is the seemingly contradictory situation arising from
a naive application of the time dilation phenomenon discussed in Chap. 1 to the
following conceptual experiment.

Let A e B be two twins which are initially both at rest on earth. Suppose the twin B
makes a journey on a high speed spaceship with constant velocity v and then comes
back to earth meeting again the twin A. Let S be the frame of reference on earth
and S′ the one attached to the spaceship. If Δ t is the time duration, relative to the
earth’s system S, of the total journey of B, if we were to naively apply the special
relativity formulas given in Chap.1, and since the two events (departure of B from
A and final meeting of the two twins) occur in the same place relative to S′, the
corresponding timeΔt′ elapsed in the spaceship frame S′ is related toΔ t by the time
dilation relation Δt = Δ t′ γ(v). It follows that the twin B must be younger than the
twin A when they meet again. This result appears to be paradoxical, since from the
principle of relativity it follows that it is the same thing to consider B traveling with
velocity v with respect to A or A traveling with velocity −v with respect to B. Since
time dilation depends on v2, considering B at rest and A traveling, it should be also
possible to argue that A be younger than B. This puzzling result can be easily seen
not to be correct if we recall that the special relativity effects can be applied only to
frames of reference in relative uniform motion. If the two twins are to meet again to
find out who is the younger, the spaceship system S′ must invert its motion in order
to come back to earth and therefore there is a part of its motion which is accelerated
with respect to S. The situation is therefore not symmetrical since the S frame always
remains inertial, while the frame S′ is non-inertial during the inversion of its motion.
There is thus no logical contradiction in saying that B is younger than A.

Even if the analysis of the twin paradox can bemade entirelywithin the framework
of special relativity we shall give its solution by applying the principle of equivalence
discussed in Chap. 3 and showing that in both reference systems S and S′ the twin B
is younger than the twin A.

We shall perform the computation to the first order in v2

c2
and we shall denote

by t1, t3, t2 the time durations of the forth and back journeys and the inversion of
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motion, respectively. In the frame of reference S′ the corresponding times lapses will
be denoted by t′1, t′2, t′3.
• Let us first compute the total time duration of the journey from the point of view
of the twin A, that is relative to the frame of reference S.
TheB twin in the frameS′,measures a total duration of the journey t′ = t′1 + t′2 + t′3,
while A measures t = t1 + t2 + t3 where:

t′1 = t1

√
1 − v2/c2 � t1

(
1 − 1

2
v2/c2

)
, (C.1)

t′3 = t3

√
1 − v2/c2 � t1

(
1 − 1

2
v2/c2

)
, (C.2)

t′2 � 0 t2 � 0, (C.3)

where we have set t′2 = t2 � 0 since the time of turnaround of S′, from the point
of view of the inertial frame S, can be neglected compared with t1 and t3. Note
that the times t′i are proper times since B is at rest in S′.
Setting t1 = t3 the total duration of the journey of B from the point of view of A
is:

t′ = 2 t1

(
1 − 1

2

v2

c2

)
. (C.4)

Thus, if we take v = 9×107m/s and t1 = 20 years, and if the two twins were, say,
22 years old when B departed, as they meet again after the trip, their age difference
will be t1

v2

c2
≈ 2 years: A will be 62 and B 60. It is instructive to derive Eq. (C.4)

from geometric considerations, see Fig.C.1.

Fig. C.1 World-lines of the
two twins in a space-time
diagram
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Let us plot on a space-time diagram, relative to S, the trajectories (world-lines)
of the two twins. Let the points O and R in the diagram be the events in which
they depart and meet again, respectively. The twin A is at rest in S and thus its
world-line is vertical, directed along the time direction. Suppose, for the sake of
simplicity, that the twin B moves forth and back along the x-axis, so as to describe,
in the diagram, two segments: One, OP, with positive slope Δx

cΔt = v
c > 0 during

the forward journey, and an other, PR, with slope − v
c < 0, during the backward

journey. The lengths of the two world-lines, divided by c, measure the proper-time
intervals relative to A and B (i.e. the times measured by A and B, respectively)
between the two events O and R. Since A is at rest in S, its proper time interval is
t = |OR|

c = t1 + t2 + t3 � 2 t1. As for B, its proper time interval is

t′ = t′1 + t′2 + t′3 � 2t′1 = 2

c
|OP|. (C.5)

From the diagram one would naively conclude that t′ > t since the length of the
trajectory of B appears to be greater than that of A. Recall, however, that we are in
Minkowski space and that lengths are measured with the Lorentzian signature for
the metric. As a consequence, in contrast to the Pythagorean theorem which holds
in Euclidean geometry, the squared length of the hypotenuse of the right triangle
OPP′ is given by the difference of the squared lengths of the catheti, instead of the
sum (in other words the hypotenuse is shorter than each of the catheti):

|OP| =
√

|OP′|2 − |PP′|2 =
√

c2 t21 − Δx2 = c t1

√
1 − v2

c2
, (C.6)

where we have usedΔx = v t1. Substituting the above result in (C.5), and expand-
ing the square root to the first order in v2/c2, we find (C.4).

• Let us now compute the duration of the journey from the point of view ofB himself
(frame of reference S′).
In this case t1 e t3 are proper times, being the twin A at rest with respect to the
earth’s frame of reference S, which is now moving relative to B, and we have

t′1 = t1√
1 − v2/c2

� t1

(
1 + 1

2
v2/c2

)
, (C.7)

t′3 = t3√
1 − v2/c2

� t3

(
1 + 1

2
v2/c2

)
.

Let us now compute t′2 which now, as opposite to the previous analysis, cannot be
neglected: We are indeed now in a non-inertial frame of reference and, as we shall
see below, it will turn out to be proportional to t1.
Indeed, during the turnaround of the spaceship, there is an acceleration field
g = 2v

t2
with respect to earth (directed towards the earth itself). According to
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the equivalence principle, we can interpret this acceleration as due to an equiva-
lent gravitational potential with strength φ = g h where h = v t′1; using Eq. (3.75)
one obtains:

t′2 = t2

(
1 − g h

c2

)
= t2

(
1 − 2vh

t2c2

)
= t2 − 2v2

c2
t′1 = t2 − 2

v2

c2
t1 + O

(
v4

c4

)
,

where we made use of (C.7) implying t′1 = t1 + O(v2/c2). The final result is
therefore:

t′ = t′1 + t′2 + t′3 � 2 t1

(
1 + 1

2

v2

c2

)
+ t2 − 2

v2

c2
t1

� 2t1

(
1 − 1

2

v2

c2

)
, (C.8)

where we have used t2 � t1, see (C.3).
We see that Eq. (C.8) coincides with (C.4). We conclude that from both the points
of view of A and B the time elapsed for the twin B is shorter than the time elapsed
for the twin A. In other words, after the journey the twin B is younger than the
twin A.

http://dx.doi.org/10.1007/978-3-319-22014-7_3


Appendix D
Jacobi Identity for Poisson Brackets

We show that given three dynamical variables f (p, q), g(p, q), h(p, q) their Poisson
brackets obey the Jacobi identity, namely:

{f1, {f2, f3}} + {f2, {f3, f1}} + {f3, {f1, f2}} = 0, (D.1)

wherewehave renamed f (p, q), g(p, q), h(p, q)of the text (seeEq. (7.39) of Sect. 8.3)
with the more convenient notation f1(p, q), f2(p, q), f3(p, q).

Let us compute {f1, {f2, f3}}:

{f1, {f2, f3}} = ∂f1
∂qi

∂

∂pi

[
∂f2
∂qj

∂f3
∂pj

− ∂f2
∂pj

∂f3
∂qj

]
− ∂f1

∂pi

∂

∂qi

[
∂f2
∂qj

∂f3
∂pj

− ∂f2
∂pj

∂f3
∂qj

]

= ∂f1
∂qi

[
∂2f2

∂pi∂qj

∂f3
∂pj

+ ∂2f3
∂pi∂pj

∂f2
∂qj

− ∂2f2
∂pi∂pj

∂f3
∂qj

− ∂2f3
∂pi∂qj

∂f2
∂pj

]

− ∂f1
∂pi

[
∂2f2

∂qi∂qj

∂f3
∂pj

+ ∂2f3
∂qi∂pj

∂f2
∂qj

− ∂2f2
∂qi∂pj

∂f3
∂qj

− ∂2f3
∂qi∂qj

∂f2
∂pj

]
,

where sum over the repeated indices i, j is understood.
Considering the terms which are bilinear in the first derivatives with respect to

the two q′
is we have:

∂f1
∂qi

[
∂f2
∂qj

∂2f3
∂pi∂pj

− ∂f3
∂qj

∂2f2
∂pi∂pj

]
. (D.2)

Adding to this expression the analogous terms coming from the second and third term
of the identity (D.1) which are simply obtained by cyclic permutations of 1, 2, 3, we
see that the total contribution sum up to zero:
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∂f1
∂qi

[
∂f2
∂qj

∂2f3
∂pi∂pj

− ∂f3
∂qj

∂2f2
∂pi∂pj

]

+ ∂f2
∂qi

[
∂f3
∂qj

∂2f1
∂pi∂pj

− ∂f1
∂qj

∂2f3
∂pi∂pj

]

+ ∂f3
∂qi

[
∂f1
∂qj

∂2f2
∂pi∂pj

− ∂f2
∂qj

∂2f1
∂pi∂pj

]
= 0.

The same of course would happen if we considered all the other terms bilinear in the
first derivatives with respect to two p′

is and to one qi and one pi. Therefore the total
sum is identically zero.



Appendix E
Induced Representations and Little Groups

E.1 Representation of the Poincaré Group

The single particle states |p, r〉 are constructed as a basis of a (infinite dimensional)
space V (c) supporting a unitary, irreducible representation of the Poincaré group.
This construction is effected through the method of induced representations: We
start defining the single particle states |p̄, r〉 in a fixed reference frame S0, where the
four momentum is a standard one pμ = p̄μ. These states differ by the internal degree
of freedom, labeled by r, related to the spin of the particle and which is acted on by
the little group G(0) ⊂ SO(1, 3) of the momentum p̄ ≡ (p̄μ) (spin group), consisting
of the Lorentz transformations �(0) which leave p̄ inert:

�(0) ∈ G(0) ⇔ �(0) μ
ν p̄ν = p̄μ. (E.1)

A transformation �(0) of G(0) is implemented on the states |p̄, r〉 by a unitary opera-
tor U(�(0)) which then maps |p̄, r〉 into an eigenstate of the four-momentum corre-
sponding to the same eigenvalue p̄. The vector U(�(0))|p̄, r〉 has then to be a linear
combination of the basis elements |p̄, r〉 through a matrix R ≡ (Rr

s):

U(�(0))|p̄, r〉 = R(�(0))s
r |p̄, s〉. (E.2)

SuchmatrixR(�(0)) defines a (unitary) representationR ofG(0) which characterizes
the spin of the particle. For a massive particle m2 �= 0, G(0) = SU(2), see Sect.E.2,
and R has dimension 2s + 1 (that is r = 1, . . . , 2s + 1), s being the spin of the
particle (in units �); for a massless particle, m2 = 0, G(0) is effectively SO(2),
generated by the helicity operator, see Sect.E.2, and r = 1, 2 labels the helicity
state. Proper Lorentz transformations do not alter the eigenvalue of the helicity, as
proven in Sect. 9.4.2.

A state |p, r〉, corresponding to a generic four momentum p ≡ (pμ) is defined by
acting on |p̄, r〉 with the Lorentz boost �p which relates S0 to the RF S in which
the momentum of the particle is p: p = �p̄. If U(�) is the unitary transformation
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implementing a Lorentz transformation � on the states, |p, r〉 is then defined as:

|p, r〉 = |�pp̄, r〉 ≡ U(�p)|p̄, r〉. (E.3)

The above relation defines |p, r〉 and U(�p) at the same time. Equations (E.2) and
(E.3) allow to define the action of a generic Lorentz transformation � on the states
|p, r〉 through a corresponding unitary operator U(�). Suppose � transforms p into
p′: p′ = � p. We can then write:

U(�) |p, r〉 = U(�) U(�p) |p̄, r〉 = U(�p′)
(

U(�p′)−1 U(�) U(�p)
)

|p̄, r〉
= U(�p′) U

(
�−1

p′ ��p

)
|p̄, r〉, (E.4)

where �p′ is the Lorentz boost connecting p̄ to p′. Note now that the transformation
�(0) ≡ �−1

p′ ��p first maps p̄ into p, then p into p′ and finally p′ back into p̄. It

therefore belongs to the little group G(0) of p̄ and thus its action on |p̄, r〉 is defined
in (E.2). We then find:

U(�) |p, r〉 = Rr′
r U(�p′) |p̄, r′〉 = Rr′

r |� p, r′〉, (E.5)

where now the rotation matrix R, associated with �(0), depends on both � and p:
R = R(�, p). If Λ is a simple boost, the corresponding rotation R(�, p) is called
Wigner rotation.

The action of a Poincaré transformation (�, x0) on |p, r〉 then reads:

e− i
�

xμ
0 P̂μ U(�)|p, r〉 = Rr′

r e− i
�

xμ
0 P̂μ |� p, r′〉 = Rr′

r e− i
�

x0·(� p) |� p, r′〉.

As mentioned in Chap.9, the procedure illustrated here for constructing the uni-
tary, infinite dimensional representation of the Poincaré group on single particle
states starting from the (finite-dimensional) representation of the spin group is called
method of induced representations.

Having defined the single particle states |p, r〉 and the action of Poincaré transfor-
mations on them, let us prove general properties that were used, or simplymentioned,
in Sect. 9.4.1.

• The little group G(0)
p of a generic momentum p, defined in Eq.9.109, is related to

G(0) through conjugation by�p: G(0)
p = �p G(0) �−1

p . To see this we first observe

that with each element �(0) of G(0), defined by the property �(0) p̄ = p̄, we can
associate a unique transformation �(0)

p in the little group G(0)
p of p, whose effect

consists in a first boost to the RF S0 in which the four-momentum is p̄, followed
by the transformation �(0) which leaves p̄ inert, and then a second boost back to
the initial frame in which the momentum is p: �(0)

p = �p �(0) �−1
p . We easily

verify that �(0)
p so defined leaves p invariant:

http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
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�(0)
p p =

(
�p �(0) �−1

p

)
p = �p �(0) p̄ = �p p̄ = p, (E.6)

which implies that �(0)
p ∈ G(0)

p . Similarly, given an element �(0)
p ∈ G(0)

p we can

construct the unique element �(0) = �−1
p �(0)

p �p in G(0). This proves that little
groups corresponding to four-momenta with the same mass squared, are conju-
gated to one another, and thus share the same structure, though being represented
by different matrices. The one between G(0)

p and G(0) is the same kind of relation,
that we have called isomorphism in footnote 12 of Chap.9, which exists between
the little group O(1, 3) of the origin (Lorentz group), and that of a generic space-
time point x, O(1, 3)x , and implies that the two groups realize the same symmetry.

• In order for the representation U of the Poincaré group on the single-particle
states |p, r〉 to be irreducible, the representationR of the spin group G(0) has to be
irreducible as well. Indeed, ifR were reducible, there would be a proper subset of
states in S0, denoted by |p̄, s〉0 which is stable with respect to the action of G(0).
The states |p, s〉0 = U(�p) |p̄, s〉0 span a proper subspace V (c)

0 of the full Hilbert
space V (c) which is stable with respect to the Lorentz group. This is easily shown
by applying a generic Lorentz transformation U(�) to |p, s〉0, as in Eq. (E.5): The
corresponding G(0) transformation �(0) ≡ �−1

p′ ��p will act on |p̄, s〉0 mapping

it into a combination of states in the same G(0)-invariant subspace. The action of
�p′ on such combination will therefore still be in V (c)

0 . Thus the full representation
of the Lorentz group would be reducible.
ConsequentlyR is the (2s+1)-dimensional representation of the spin group SU(2)
for massive particles, while it is the one-dimensional representation defined by a
given value of the helicity for massless particles.

E.2 Little Groups

The little group of a four-momentum vector p = (pμ) was defined in Sect. 9.4 as
the set of all the Lorentz transformations Λ

(0)
p leaving p invariant, namely satisfying

Eq. (9.109). Such set is indeed a group, as the reader can easily verify. Let us construct
the little group G(0) of the standard four-momentum p̄. Writing Eq. (9.109) for an
infinitesimal transformation (4.171) we find1:

Λ(0) p̄ ≈
(

1 + i

2 �
δθρσ Jρσ

)
p̄ = p̄ ⇒ δθρσ Jρσ p̄ = 0, (E.7)

from which we deduce that G(0) is generated by those combinations δωρσ Jρσ of the
Lorentz generators Jρσ which annihilate p̄. Let us consider the different cases:

1Recall that Jρσ = −i�Lρσ , Lρσ being defined in (4.170).

http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_9
http://dx.doi.org/10.1007/978-3-319-22014-7_4
http://dx.doi.org/10.1007/978-3-319-22014-7_4
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m2 > 0: In this case we can choose the standard RF S0 as the rest frame of
the particle in which p̄ = (mc, 0, 0, 0). Equation (E.7) the implies the following
conditions on the infinitesimal generators:

⎛
⎜⎜⎝

0 δθ0,1 δθ0,2 δθ0,3
δθ0,1 0 −δθ1,2 −δθ1,3
δθ0,2 δθ1,2 0 −δθ2,3
δθ0,3 δθ1,3 δθ2,3 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ ⇒ δθ0μ = 0, (E.8)

that is the infinitesimal generators of G(0) read:

i

2 �
δθij Jij = i

�
δθi Ji, (E.9)

having defined δθi = −εijk δθjk/2.We conclude thatG(0) is the rotation groupSO(3).
When we consider the action of these generators on states, Ĵi also contains the spin-
component Ŝi, which can act on bi-dimensional representations (as it is the case for
spin 1/2 particles). Since SO(3) has no such representation, it is appropriate to say
that Ĵi generate the spin group SU(2).

m2 = 0: The standard four-momentum vector can be chosen to be p̄ = (E, E,

0, 0)/c. Equation (E.7) the implies:

⎛
⎜⎜⎝

0 δθ0,1 δθ0,2 δθ0,3
δθ0,1 0 −δθ1,2 −δθ1,3
δθ0,2 δθ1,2 0 −δθ2,3
δθ0,3 δθ1,3 δθ2,3 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
1
0
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ ⇒

{
δθ01 = 0

δθ0a = −δθ1a,
(E.10)

where a = 2, 3. The generators of G(0) consist in J23 = −J1 which generates
rotations about the direction X of motion, and the following two matrices:

Na ≡ J0a − J1a. (E.11)

From the commutation relations among the Jρσ · s we deduce:

[J23, N2] = −i� N3 ; [J23, N3] = i� N2 ; [N2, N3] = 0. (E.12)

A group generated by three generators J23, Na with the above commutation relations
is denoted by ISO(2) and contains an SO(2) subgroup generated by J23 and a two-
parameter subgroup of translations generated by Na. It is the group of congruences
on the Euclidean plane E2.

Defining N± = N2 ± i N3 and the helicity matrix Γ ≡ J1 = −J23 we find:

[Γ, N±] = ±� N± ; [N+, N−] = 0. (E.13)
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Consider now the action of the operators Γ̂ , N̂± on the states |p̄, r〉. In going from
the 4 × 4 matrix representation of these operators, to their representation on states,
the commutation structure (E.13) is preserved. Moreover N̂+ = (N̂−)†, while Γ̂ is
hermitian and can thus be diagonalized. Suppose it has an eigenvalue � s on |p̄, s〉
(the state vectors being normalized to one). Note that the operators N̂+, N̂− behave
as creation and annihilation operators in the sense that, using (E.13) one can easily
verify the following:

N̂+ |p̄, s〉 = α0 |p̄, s + 1〉; N̂− |p̄, s + 1〉 = α∗
0 |p̄, s〉, (E.14)

α0 being some complex number. If we continue applying those operators we can
construct infinitely many states |p̄, s + k〉:

N̂+ |p̄, s + k〉 = αk |p̄, s + k + 1〉; N̂− |p̄, s + k + 1〉 = α∗
k |p̄, s + k〉, (E.15)

Note that N̂ ≡ N̂+ N̂− = N̂− N̂+ is positive definite and:

N̂ |p̄, s + k〉 = N̂− N̂+ |p̄, s + k〉 = |αk|2 |p̄, s + k〉 = N̂+ N̂− |p̄, s + k〉
= |αk−1|2 |p̄, s + k〉; k = . . . ,−2,−1, 0, 1, 2, . . . , (E.16)

from which we deduce that |αk−1|2 = |αk|2 = |α|2. If we require the system to have
finitely many spin states, corresponding to its internal degrees of freedom, some state
should be annihilated by N̂+, which implies αk = 0 for some k, and thus α = 0. We
conclude that N̂± and N̂ must be zero on any state (consequently also N̂a are zero):
The only generator of the little group which has non trivial action on the states is
the helicity operator Γ̂ generating the SO(2) subgroup of ISO(2). The condition that
the single particle state transform in an irreducible representation of SO(2) further
implies that there can be just two helicity states:

Γ̂ |p̄,±s〉 = ±� s |p̄,±s〉, (E.17)

s being the spin of the particle.
m2 < 0: Let us just mention this case which corresponds to an unphysical particle

called tachyon which moves faster than light: v2

c2
= |p|2c2

E2 > 1. The standard four-

momentumvector can be chosen to be p̄ = (0, p1, 0, 0). Clearly Eq. (E.7) is solved by
a 4 × 4 matrix A obtained from δθρσ Jρσ by deleting the second row and the second
column. It generates Lorentz transformations in the three-dimensional subspace of
M4 spanned by the coordinates (ct, y, z) and orthogonal to the X-axis. This space
is a three-dimensional Minkowski space M3 with a metric η = diag(+1,−1,−1)
and the corresponding symmetry subgroup of the Lorentz group is therefore G(0) =
SO(1, 2).



Appendix F
SU(2) and SO(3)

The group SU(2) is the group of all 2 × 2 unitary matrices with unit determinant
(also called special unitary matrices). Let S = (Sr

s) be a generic element of the
group. By definition S†S = 12 and det(S) = 1. From our general discussion of
unitary matrices, it follows that, we can write S, in a neighborhood of the identity,
as the exponential of i times a hermitian matrix A as follows:

S = ei A ⇒ A† = A. (F.1)

From the matrix property det(S) = exp(iTr(A)), it follows that, being S special, A
should be traceless. The most general 2× 2 hermitian traceless matrix has the form:

A =
(

a b − i c
b + i c −a

)
= b σ1 + c σ2 + a σ3, (F.2)

where σi are the Pauli matrices, defined as:

σ1 =
(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
. (F.3)

The Pauli matrices therefore form a basis for 2× 2 hermitian traceless matrices, and
thus a basis of the algebra of infinitesimal generators of SU(2). The reader can verify
that these three matrices satisfy the following relations:

σiσj = δij 12 + i εijk σκ. (F.4)

In particular, we can choose as basis elements the matrices si ≡ �σi/2 which satisfy
the following commutation relations:

[
si, sj

] = i� εijk sk, (F.5)

© Springer International Publishing Switzerland 2016
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as it can be easily verified using (F.4). Note that the three matrices si satisfy the
same commutation relations as the components M̂i of the orbital angular momen-
tum, which generate the group SO(3) of rotation in the three-dimensional Euclidean
space. These two groups share therefore the same structure in a neighborhood of the
identity element (they are locally isomorphic). For this reason the spin is sometimes
improperly referred to as an internal angular momentum. The two groups are how-
ever globally different and this reflects in the fact that SU(2) has representations (the
even-dimensional ones) which SO(3) does not have.

Let us illustrate the relationship between SU(2) and SO(3) in some more detail.
We define a mapping between elements of the two groups as follows. Consider an
element (2× 2 complexmatrix)S = (Sr

s), r, s = 1, 2, of SU(2) and its adjoint action
on the Pauli matrices: S−1 σi S = S† σi S, i, j = 1, 2, 3. Since the Pauli matrices form
a basis for hermitian traceless matrices, resulting matrix is still hermitian traceless:

(S† σi S)† = S† σ†
i S = S† σi S, Tr(S† σi S) = Tr(SS† σi) = Tr(σi) = 0.

Therefore S† σi S can be expanded in the basis (σi). Let us denote by R[S]i
j the

components along σi of S† σi S:

S† σi S = R[S]i
j σj. (F.6)

SinceR[S] ≡ (R[S]i
j) is a 3× 3matrix,wehave thus defined a correspondencewhich

maps a 2 × 2 matrix S of SU(2) into a 3 × 3 matrix R[S]. We want to show first that
this correspondence is a homomorphism, namely that R[S1 S2]i

j = R[S1]i
k R[S2]k

j:

(S1 S2)
† σi (S1 S2) = S†

2 (S†
1 σi S1) S2 = R[S1]i

k (S†
2 σk S2)

= R[S1]i
k R[S2]k

j σj = (R[S1] R[S2])i
j σj. (F.7)

Let us prove now that the matrix R[S] is real by computing the hermitian-conjugate
of both sides of Eq. (F.6) and using the property that the left hand side is hermitian:

S† σi S = (S† σi S)† = (R[S]i
j)∗ σj. (F.8)

Since the components associated with any vector (in this space vectors are hermitian
matrices!) are unique, comparing (F.8)–(F.6) we find: (R[S]i

j)∗ = R[S]i
j. Using the

first of properties (10.66), we can write

R[S]i
j = 1

2
Tr[(S† σi S)σj], (F.9)

Finally let us show that the matrix R[S] is orthogonal. To this end we use the general
property of homomorphisms that: R[S−1] = R[S]−1 and write

R[S]−1
i
j = R[S†]i

j = 1

2
Tr[(S σi S†)σj] = 1

2
Tr[(S† σj S)σi] = R[S]j

i,

http://dx.doi.org/10.1007/978-3-319-22014-7_10
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where we have used the cyclic property of the trace. We conclude that R[S]−1 =
R[S]T , which means that R[S] ∈ O(3). Let us show that R[S] ∈ SO(3), namely that
det(R[S]) = 1. To show this let us use the property that σ1 σ2 σ3 = i 12. Then, from
unitarity of S it follows that:

12 = S† S = −i S† σ1 σ2 σ3 S = −i (S† σ1 S) (S† σ2 S) (S† σ3 S)

= −i (R[S]1i σi) (R[S]2j σj) (R[S]3k σk) = −i R[S]1i R[S]2j R[S]3k (σi σj σk).

(F.10)

Now use the following property of the Pauli matrices

σi σj σk = i εijk 12 + δij σk − δik σj + δjk σi, (F.11)

which follows from (F.4), to rewrite σi σj σk . Note that the terms with the δ matrix
do not contribute because of the orthogonality property of R: R[S]k

i R[S]�j δij =∑3
i=1 R[S]k

i R[S]�i = δk�, which is zero if k �= �. The only term in σi σj σk which
contributes to the summation is i εijk 12, and therefore we can rewrite Eq. (F.10) as
follows:

R[S]1i R[S]2j R[S]3k εijk 12 = 12. (F.12)

We recognize in the sum R[S]1i R[S]2j R[S]3k εijk the expression of the determinant
of a matrix in terms of its entries and therefore we conclude that:

det(R[S]) = 1, (F.13)

namely that R[S] ∈ SO(3). We have thus defined a homomorphism between SU(2)
and SO(3):

S ∈ SU(2)
R−→ R[S] ∈ SO(3). (F.14)

This homomorphism is two-to-one. Indeed, thematrixSwhich corresponds to a given
orthogonal one R[S] is defined modulo a sign: R[S] = R[−S]. In a neighborhood of
the identity of SU(2), the correspondence is therefore one-to-one and thus the two
groups are called locally isomorphic.

The fact that si and the 3 × 3 SO(3)-generators Mi, defined in (4.131), have the
same commutation relations allows to write the correspondence R as a mapping

between the element S = e
i
�

θi si of SU(2) and e
i
�

θi Mi of SO(3) defined above in the
following way:

R[e i
�

θi si ] = e
i
�

θi Mi ∈ SO(3), (F.15)

as it can be easily verified for infinitesimal transformations (θi � 1).

http://dx.doi.org/10.1007/978-3-319-22014-7_4


Appendix G
Gamma Matrix Identities

We collect in this Appendix the most useful formulae used for the manipulation
of gamma-matrices. All the following relations are actually a consequence of the
defining anticommutation rules (10.61), namely

γμγν + γνγμ = 2ημν μ, ν = 0, 1, 2, 3, (G.1)

where we recall that ημν ≡ diag(+1,−1,−1,−1). Let us first observe that, since
the matrix representation is four-dimensional, from (G.1) it follows

ημνγ
μγν ≡ γμγμ = 4. (G.2)

Let us suppose that we have an expression of the type

γμ
(
γνγργσ · · · ) γμ.

Using several times the anticommutation rules (G.1), the two γμ can be put side by
side, and we find the following formulae:

γμγνγμ = −2γν , (G.3)

γμγνγργμ = 4ηνρ,

γμγνγργσγμ = −2γσγργν .

The first is readily proven by writing γργμ = −γμγρ + 2ημρ.
As for the second we write

γμγργσγμ = γμγρ
(−γμγσ + 2ημσ

) = 2γργσ + 2γσγρ = 4ηρσ.
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In an analogous way, using the previous result, we have for the third identity

γμγργσγτγμ = γμγργσ
(−γμγτ + 2ημτ

) = −4ηρσγτ + 2 γτγργσ

= −4ηρσγτ + 2γτ
(−γσγρ + 2ηρσ

) = −2γτγσγρ.

In most applications the indices of the gamma matrices are contracted with four-
vectors. Introducing the notation

�a = γ · a = γμaμ, (G.4)

and using (G.1) we have, for example

�a�b + �b�a = 2a · b; �a�a = a · a. (G.5)

The formulae (G.3) take the following form

γμ �aγμ = −2 �a (G.6)

γμ �a�bγμ = 4a · b (G.7)

γμ �a�b� cγμ = −2 � c�b�a. (G.8)

Consider now the matrix γ5 defined in (10.194) and define the following matrices:

γμν = γ[μγν] = 1

2

[
γμ, γν

] ≡ −i σμν ; γμνρ = γ[μγνγρ], (G.9)

whereσμν was defined in (10.98).Wemay easily prove the following duality relations

γ5 γμ = − i

3! εμνρσ γνρσ,

γ5 γμν = − i

2
εμνρσ γρσ,

γ5 γμνρ = i εμνρσ γσ. (G.10)

As for the first one, multiplying both sides of (10.194) by γ3 to the right and using
the property γ3γ3 = 1, we find:

γ5 γ3 = iγ0γ1γ2 = i ε0123 γ0γ1γ2 = −i ε3012 γ0γ1γ2, (G.11)

where we have used ε0123 = 1. By Lorentz covariance, the above relation implies the
first of Eqs. (G.10). As far as the second equation is concerned, we further multiply
Eq. (G.11) to the right by γ2 and find:

γ5 γ3γ2 = iγ0γ1 = −i ε3201 γ0γ1. (G.12)

http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
http://dx.doi.org/10.1007/978-3-319-22014-7_10
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Covariantizing the above equation, the second of Eqs. (G.10) follows. By a similar
argument, the third of those equations can also be proven.

Let us now consider the following set of 16 matrices

ΓA =
{

1, γ5, γμ, γ5γμ, γμν
}

; A = 1, . . . , 16, (G.13)

where, when A labels the matrices γμν , we consider only the six independent couples
(μ, ν) with μ < ν, so as to avoid repetitions: A = (μ, ν) = {(0, 1), (0, 2), (0, 3),
(1, 2), (1, 3), (2, 3)}.

Note that for each value of A:

γAγA = εA 1, (no summation over A)

where εA = 1 for ΓA = {1, γμ, γ5} and εA = −1 for ΓA = {γμν, γ5 γμ}. The
following properties hold:

Γ A �= 1 ⇒ Tr(Γ A) = 0 ; 1

4
Tr(Γ AΓB) = εA δA

B, (G.14)

where εA = ±1. For instance Tr(γμν γρσ) = −8 δ
μν
ρσ =≡ −4 (δ

μ
ρ δν

σ − δ
μ
σδν

ρ ). In this

case A = (μν), B = (ρσ) and εA = −1, being δA
B = 2 δ

μν
ρσ .

The proof that all the Γ A, s, except 1, are traceless is based on the observation
that the trace of the product of two anticommuting matrices is zero. Indeed from the
invariance of the trace of a matrix product under a cyclic permutation of the matrices,
we have

AB = −BA → Tr(AB) = 0.

Now γ5γμ and γμν are already in this form. As for γ5 it suffices to write

γ5 = iγ0γ1γ2γ3 = −iγ1γ2γ3γ0.

Taking the trace of the above γμ-matrix products, it immediately follows that this
trace must vanish. On the other hand we can observe from (10.194) that the explicit
for of γ5 in the Pauli basis is traceless. Clearly this product is basis-independent,
since a change of basis amounts to a conjugation of γ5 or any other matrix by a
non singular one U, and such conjugation does not affect the value of the trace:
Tr(U−1γ5U) = Tr(UU−1γ5) = Tr(γ5) = 0. A similar argument applies to the γμ

matrices, which are traceless in the Pauli basis, and thus are traceless in any other
basis.

We can regard the Γ A as vectors in a vector space and define among them a
symmetric scalar product (·, ·) as follows: (Γ A, Γ B) ≡ Tr(Γ A Γ B). Being the Γ A

mutually orthogonal with respect to this scalar product, they are linearly independent.
Indeed if we consider a generic combination of them

http://dx.doi.org/10.1007/978-3-319-22014-7_10
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16∑

1

cAΓ A = 0,

upon multiplication of both sides by ΓB and taking the trace, we obtain:

16∑

1

cA Tr(Γ AΓB) = 4εB cB = 0 → cB = 0 ∀B.

A generic 4 × 4 matrix is defined by its 16 elements, which implies that the vector
space consisting of all the 4 × 4 matrices is 16-dimensional. The 16 linearly inde-
pendent matrices {Γ A} form therefore a basis for this space, i.e. a complete set of
matrices in terms of which any other matrix M can be expressed as a unique linear
combination:

M =
16∑

A=1

CA Γ A; CA = εA

4
Tr(MΓ A). (G.15)

In Chap.12 we shall often need to compute traces of products of gamma matrices.
Let us derive some useful properties of these traces. We start defining the following
quantities:

Tμ1μ2···μn ≡ 1

4
Tr(γμ1γμ2 · · · γμn). (G.16)

These are Lorentz-invariant tensors. To prove this let us observe that the γμ matrices,
if written in components (γμ)αβ , can be viewed as a mixed Lorentz-tensor, with
two contravariant indices μ, α in the fundamental and spinorial representations,
respectively, and one covariant spinorial index β. As a Lorentz tensor, it is invariant
sice, if we simultaneously apply to all its indices a Lorentz transformation �, it
remains unchanged:

(γμ)αβ
�−→ Λμ

ν S(�)αα′S(�)−1β′
β (γν)α

′
β′ ⇔

⇔ γμ �−→ Λμ
ν S(�)γν S(�)−1 = γμ, (G.17)

where we have used (10.88) with � → −�. If we apply the above property to each
gamma-matrix in Tμ1μ2···μn we find:

Tμ1μ2···μn ≡ 1

4
Tr(γμ1γμ2 · · · γμn)

= Λμ1
ν1 · · · Λμn

νn

1

4
Tr(Sγν1S−1Sγν2S−1 · · · Sγνn S−1)

= Λμ1
ν1 · · · Λμn

νn Tν1ν2···νn , (G.18)

http://dx.doi.org/10.1007/978-3-319-22014-7_12
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where we have used the invariance of the trace under conjugation of the gamma-
matrices by S = S(�). This proves the Lorentz-invariance of the tensors Tμ1μ2···μn .
These tensors should therefore be expressed in terms of the only invariant tensor of
the full Lorentz group O(1, 3), namely ημν . Since every tensor made up in terms
of the metric tensor is necessarily of even order, the trace of the product of an odd
number of gamma matrices is zero.

From the anticommutation relations (G.1), using the cyclic property of the trace
we easily find

Tμν ≡ 1

4
Tr(γμγν) = ημν . (G.19)

Let us now consider the trace of the product of four gamma matrices. We show that

Tμ1μ2μ3μ4 = ημ1μ2 ημ3μ4 − ημ1μ3 ημ2μ4 + ημ1μ4 ημ2μ3 . (G.20)

By successive steps we bring γμ1 to the right end of the product. In the first step,
using (G.1) we find

Tμ1μ2μ3μ4 = 2ημ1μ2 Tμ3μ4 − Tμ2μ1μ3μ4 = 2ημ1μ2 ημ3μ4 − Tμ2μ1μ3μ4 . (G.21)

As a second step we (anti)commute γμ1 with γμ3 on the right hand side of (G.21),
and so on until after the last anticommutation we find the tensor Tμ2μ3μ4μ1 , which
equals to Tμ1μ2μ3μ4 by the cyclic identity of the trace. Putting together the results of
the successive commutations we recover Eq. (G.20).

The same iterative procedure can be applied to any number of gamma matrices.
As a further example consider the trace of six gamma matrices. We can write

Tμ1μ2μ3μ4μ5μ6 = ημ1μ2 Tμ3μ4μ5μ6 − ημ1μ3 Tμ2μ4μ5μ6

+ ημ1μ4 Tμ2μ3μ5μ6 − ημ1μ5 Tμ2μ3μ4μ6 + ημ1μ6 Tμ1μ2μ3μ4 ,

and the four-index tensors can be reduced using (G.21). In general, using the property

Tμ1μ2...μn = ημ1μ2 Tμ3...μn − ημ1μ3 Tμ2...μn + · · · + ημ1μn Tμ2...μn−1 , (G.22)

a generic rank tensor can be reduced to combinations of products of η-matrices.
In actual computations the Lorentz indices of the gamma matrices are contracted

with four vectors aμ, so that we typically have to evaluate expressions like

(a1a2 . . . an) ≡ 1

4
Tr( �a1�a2 . . . �an). (G.23)

In that case formula (G.22) implies:

(a1a2 . . . an) = (a1·a2) (a3 . . . an)−(a1·a3) (a2 . . . an)+· · ·+(a1·an) (a2 . . . an−1) .

(G.24)
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Using the properties discussed above we can also prove the following identities
which will be useful when computing cross sections in Chap. 12:

Tr
[
(A/ + a)γμ(B/ + b)γν(C/ + c)γμ(D/ + d)γν

]

= −32(A · C)(B · D) + 16 ab(C · D) + 16 ac(B · D) + 16 ad(B · C)

+16 bc(A · D) + 16 bd(A · C) + 16 cd(A · B) − 32 abcd, (G.25)

Tr
[
(A/ + a)γμ(B/ + b)γν(C/ + c)γν(D/ + d)γμ

]

= 16 [(A · D)(B · C) + (A · B)(C · D) − (A · C)(B · D)]

− 32 [ab(C · D) + ad(B · C) + bc(A · D) + cd(A · B)]

+ 64 ac(B · D) + 16 bd(A · C) + 64 abcd. (G.26)

http://dx.doi.org/10.1007/978-3-319-22014-7_12


Appendix H
Simultaneity and Rigid Bodies

In this Appendix we shall discuss the relativity of the concept of simultaneity, giving
some simple examples and illustrating its main consequences. We shall also prove
the meaninglessness, in relativity, of the classical concept of rigid body.

Let us first discuss simultaneity.
According to the invariance of the speed of light and its independence of the source

speed, two events taking place at two points P1, P2 are defined to be simultaneous
when two light rays departing from them arrive at the same instant in the midpoint
between P1 and P2. As we have seen in Chap.1, the simultaneity of two events
occurring at different points, observed in a frame S is not in general observed in a
different inertial frame S′, that is (see Eq. (1.70)):

Δt = 0 → Δt′ = −γ
β

c
Δx �= 0. (H.1)

This result can be made intuitive in the following way.
Let S be the observer at rest on a railway, that is relative to the earth (considered

as an inertial frame) and S′ be an observer on a train of length l′ = A′B′ moving at a
velocity V in the x direction.2 Let the two events be the lighting of two light bulbs
in A′ and B′, of coordinates x′

A and x′
B in S′, at the two ends of the train (B′ at the

front, A′ at the rear). In the instants the two events occur, A′ and B′ coincide with
two points A, B along the railway, of coordinates xA and xB in S, respectively. We
suppose the two events to be simultaneous in S. That means that the two light signals
reach simultaneously the midpoint C of the length l = AB, as measured along the
railway, of coordinate xC = (xB − xA)/2. In S the two events therefore occur at the
same time: tA = tB.

In the S′ frame connected to the train the signal coming from the endA′ reaches the
midpointC′ of the train, of coordinate xC′ = (x′

B−x′
A)/2, later than that sent fromB′,

since during the light propagation the train has shifted its position in the direction of
motion. It follows that in the S′ frame the event “lighting of the bulb” in B′ precedes

2As always we suppose that the two frames are in the standard configuration.
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the corresponding event inA′, i.e. the two events are therefore no longer simultaneous
and t′A < t′B. This is consistent with Eq. (H.1) since t′B − t′A = −γ β

c (xB − xA) is
negative being xB > xA.

Note that this result, which seems paradoxical from the point of view of classical
mechanics, is due to the fact that we are used to consider the propagation of light as
instantaneous. However, if we were to use the Galileo transformations of classical
mechanics, we could find a similar result by assuming the speed of light to be finite.
Using Galileian transformation laws we would write:

c′
A = c − V ; c′

B = c + V, (H.2)

where c′
A and c′

B are the speeds of the light signals from the two endpoints of the train
in S′, propagating in opposite directions, while c is the corresponding common speed
in the frame S connected to the earth. It is then obvious that, since c′

B > c′
A, in the

frame S′ the signals from A′ reaches the midpoint of the train later than that from B′.
From the classical viewpoint, however, thiswould have nobearing on the simultaneity
of the two events since the observer in S′, taking into account the different speeds
of the two signals, would find A′ and B′ to be simultaneous just as they are for the
observer in S. This is not the case in special relativity, where c′

B = c′
A = c and

different transformation laws should be used.
We also note that the fact that the coincidence of the times of two events is relative

to the reference frame, is quite analogous to the fact that the occurrence of two events
at the same place is relative to the frame, a well accepted fact in everyday life. For
example, if a bulb is lit and later turned off on a train, the two events happen in the
same point in S′, but in different places in S.

Finally we observe that if we consider the same process from the point of view of
an observed located in C′, at rest in S′, the point B′ is seen to coincide with B before
A′ is seen to coincide with A. That means that the observer perceives the length of
the train l′ = A′B′ larger then the length l = AB on the railway, i.e. he observes
a contraction of the length l. This shows, as already observed in Chap.1, a close
connection between simultaneity and length-contraction.

Let us now discuss the meaninglessness of the concept of rigid body in special
relativity.

As wementioned at the end of Sect. 1.4, the concept of rigid body, being related to
the invariance of distances in classical mechanics, looses its meaning in a relativistic
theory. This conceptual limitation can be made apparent by considering accelerated
bodies, and we shall take as an example the circular motion of the hand of a clock
(the second-hand, for example).

Indeed suppose we have a clock in an inertial frame S. An observer in this frame
sees the clock hands, which are straight segments, moving with uniform circular
motion (which is indeed accelerated) around the center of the clock face. As we
shall show below, the same hand is seen curved by a second inertial observer O′ in
a reference frame S′.

http://dx.doi.org/10.1007/978-3-319-22014-7_1
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Indeed let us take a point P on the rotating hand whose coordinates in the S-frame
are x, y. We have

x(t) = r cosωt,

y(t) = r sinωt, (H.3)

r being the of P from the center along the hand and ω its angular velocity. Using
Lorentz transformations the same point in the frame S′ (standard configuration
between S′ and S being understood) has the following time-dependence of its coor-
dinates x′, y′

x′(t′) = γ (r cosωt − V t),

y′(t′) = γ (r sinωt − V t). (H.4)

where t′ is related to t by:

t′ = γ

(
t − V

c2
r cosωt

)
≡ f (r, t). (H.5)

To express t in terms of t′ we have to solve the transcendental equation f (r, t) = t′
in order to write

t = t(r, t′).

Though we cannot give t(r, t′) explicitly, we can Taylor-expand it in r and write

t = t′

γ
+ V

c2
r cos[ω t(r, t′)] = t′

γ
+ V

c2
r cos

(
ω t′

γ

)
+ O(r2). (H.6)

Substituting this expansion in (H.4) and expanding x′(r, t′) and y′(r, t′) in r, the
presence of quadratic terms in this expansion implies that the clock hand is a curved
line in S′.

The meaninglessness of the concept of rigid body in relativity is also apparent in
the famous pole and hole paradox first described by Rindler [15].
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non-relativistic limit, 338
plane waves solutions, 350

Dirac field
quantum Fourier expansion, 414

Dirac spinor
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for electrodynamics, 511
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quantum, 297
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quantum operator for scalar fields, 378
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Heisenberg
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complete set of commuting observables,
279
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for the canonical coordinates and
momenta, 234

invariance under canonical transforma-
tions, 238
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Polarization
four-vector, 165
transverse, 167

Polarization vectors
completeness relation, 435

Positive energy
one particle states, 472

Potential
electromagnetic four-potential, 162

Principle
of causality, 24
of constacy of the speed of the light, 17
of inertia, 7
of relativity in arbitrary frames, 70

Principle of microcausality, 405, 422
Probability of transition, 474
Pseudophotons, 442

and gauge transformations, 443

Q
Quantization

in a box, 291
Quantum electrodynamics, 447

R
Radiative correction

to the Coulomb law, 548
to the electron magnetic moment, 556

Reference frame, 1
accelerated, 2, 66
inertial, 2
of fixed stars, 14
standard configuration of, 3, 18

Regularization, 538
Relativity

general, 71
general theory of, 2
principle of, 1
special, 17
special theory of, 2

Relativity principle
covariance of the physical laws written
in tensor form, 134

in tensor form, 127
Renormalizability

and coupling constant dimensions, 536
of a theory, 536
of quantum electrodynamics, 536

Renormalization, 533
of electric charge (coupling constant),
553

of the interaction Lagrangian, 555

Representation, 191
coordinate, 281
defining, 193
equivalent, 191
faithul,unfaithful, 192
fully reducible,decomposable, 192
Heisenberg, 184
reducible,irreducible, 192
Schrödinger, 184
trivial, 192
unitary, 287

Rigid body, 27
Rotation

improper, 117
infinitesimal, 122

Rotations
unitary operator in Hilbert space, 293

S
Scalar field

multiparticle wave function, 391
quantum Fourier expansion, 381

Scalar product, 97
hermitian, 276

Scattering
electron-muon, 507
matrix, 470

Scattering amplitude
invariance under symmetry, 478

Scattering matrix
invariance under symmetry, 477
second-order contributions, 494
unitarity, 471

Schrödinger
equation, 298
picture, 298, 465
representation, 288
wave function, 281

Schrödinger wave function
infinitesimal transformation under rota-
tions, 212

infinitesimal transformation under trans-
lations, 212

Schur’s lemma, 195
Self-energy

diagrams, 525
electron self-energy diagram, 525
parts (or insertions), 533
photon self-energy diagram, 526

Simultaneity
in classical mechanics, 6
in special relativity, 26
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Space
flat, 104
invariant, 192
Minkowski, 27, 56
non-flat, 104

Space-time, 27
Spin, 265

covariant description of orientation, 362
group, 168
of the photon, 169
projectors, 364

Spinor
bilinear forms, 372
Dirac conjugate, 339
infinitesimal transformation under
Lorentz, 342

large and small components, 337
representation, 336
representation generators, 342

Spinor representation
angular momentum and spin, 343
parity transformation, 370
reducibility under proper Lorentz trans-
formations, 369

Standard model, 452
Statistics

Fermi-Dirac, 420
Structure constants, 199
Super-renormalizable

theories, 537

T
Tensor, 106

O(n) symmetric traceless, 121
O(n) traceless symmetric, 121
(p, q)-tensors, 109
O(n) symmetric traceless, 194
covariant or contravariant under Lorentz
transformations, 133

of mixed rank, 108
algebra, 110
contraction of indices, 110
contravariant, 106
covariant, 108
differentiation, 113
field, 200
general transformation law, 109
invariant, 112
Lorentz-invariant, 136
raising and lowering of indices, 109
symmetric and antisymmetric, 112

Tensor representation

of Lorentz group, 133
Time

dilation, 25
evolution operator, 296
proper, 28

Time intervals
in a gravitational field, 91

Time reversal
transformation, 131
transformation of a quantum scalar field
under, 399

Time-ordered
product, 469

Time-ordered product
for boson fields, 406
for spinor fields, 423

Time-reversal
exchange of final and initial states in scat-
tering amplitude, 478

transformation of a quantum spinor field,
430

Transformation
GL(n), 190
active, 189, 203, 285
affine, 102, 119, 140
antilinear, 400
antiunitary, 287, 400
boost, 140
canonical versus unitary, 289
congruence, 6
Galileian, 5
general coordinate, 70
homogeneous, 103
internal, 202
invariance under Galileo, 8
Lorentz, 21, 59, 60
of a classical field under Poincaré group,
208

of a quantum scalar field under infinites-
imal space-time translation, 379

of a quantum scalar field under Poincaré
group, 394

of a spinor field under Poincaré group,
425

of electric and magnetic fields, 151
of the quantum electromagnetic field
under Poincaré, 446

passive, 189, 203, 285
translation, 103

Transition amplitude, 471
Translation

space-time, 142
time, 7
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Twin paradox, 565

U
Units

Heaviside-Lorentz, 143

V
Vacuum polarization, 548
Vacuum polarization tensor

gauge invariance of, 529
Vacuum-vacuum

transition, 530
Vector

bra vector, 276
ket vector, 276

Vector space, 96
n-dimensional, 104

Velocity
classical composition of, 4
limit, 25
relativistic composition of, 33

Vertex
part, 534

Vertex part, 550
correction, 551
general form of the, 552

Volume

large volume limit, 169
normalzation volume for wave packets,
458

W
Ward identity, 553
Wave equation

classical relativistic, 321
Wave function

antisymmetry for fermion particles, 420
energy representation, 284
general definition, 280
in momentum space, 283
probabilistic interpretation, 282
spin dependence, 283

Wave function renormalization
for the Dirac field, 544
for the photon field, 547

Waves
electromagnetic, 13
mechanical, 10

Wick’s theorem, 486
Wigner rotation, 308, 572

Z
Zeeman effect, 368
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