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Preface

Engineers are always interested in the worst-case scenario. The seismic design of
buildings should ensure structural safety against the worst possible future earth-
quakes. The features of this monograph are:

(1) Consideration of elastic–plastic behavior of building structures in the critical
excitation method for improved building-earthquake resilience,

(2) Consideration of uncertainties of structural parameters in structural control
and base-isolation for improved building-earthquake resilience, and

(3) New insights into structural design of super high-rise buildings under long-
period ground motions (case study on tall buildings in mega cities in Japan
during the 2011 off the Pacific coast of Tohoku earthquake on March 11).

This book consists of two parts. The first part deals with the characterization
and modeling of worst or critical ground motions on inelastic structures. The
second part of the book focuses on investigating the worst-case scenario for
passively controlled and base-isolated buildings.

Chapter 1 provides an overview of the effects of historic and recent strong
earthquake ground motions on building structures and associated life loss.

Chapter 2 provides comprehensive information about the most recent and
devastating Tohoku earthquake of moment magnitude 9.0 which hit off the pacific
coast of eastern Japan on 11 March 2011. This earthquake and the tsunami fol-
lowing it left severe damage to building structures and caused nearly 20,000 of
losses of life.

As is well known, the robust design of buildings for future earthquake loads
requires reliable understanding of the ground motion characteristics. Accordingly,
Chaps. 3 and 4 report on the characteristics of near-field (near-fault) ground
motions with pulse-like acceleration. Furthermore, these two chapters provide
simple mathematical models for this class of ground motions and associated
structural response. Chapter 3 deals with the simulation of near-field ground
motions with pulse-like acceleration while a critical excitation of multiple
sequences for inelastic responses is discussed in Chap. 4.
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Chapters 5–7 deal with the characterization and modeling of earthquake ground
motion of multiple sequences. Recently, this class of ground motions was clearly
observed during the 2011 off the Pacific coast of Tohoku earthquake on March 11.
This research subject is new and has not received adequate attention from
researchers. For instance, most seismic codes specify design ground motions as
single events. However, moderate ground motion with repeated acceleration
sequences could lead to more severe damage to structures than a single sequence
of strong ground motion. The worst-case scenario is studied within the determi-
nistic and probabilistic frameworks. Characteristics of earthquake ground motion
of repeated sequences are made clear in Chap. 5 while critical ground motion
sequences are discussed in Chap. 6. In Chap. 7, responses of elastic–plastic
structures to nonstationary random acceleration sequences are investigated and the
reliability of such structures is evaluated.

A practical problem always arises in the design of buildings against earthquake
loads. It is always difficult to select a suite of suitable earthquake records from a
large set of records as input to the nonlinear time-history analysis of structures.
Chapter 8 provides deterministic and probabilistic measures that can be used to
identify unfavorable accelerograms. This chapter provides simple concepts which
can be utilized to select a suit of appropriate earthquake records for nonlinear time-
history analysis of structures.

Chapters 9 and 10 deal with the worst-scenario of earthquake loads on inelastic
structures with special emphasis on the type of seismic waves of the ground
motion and damage quantification using damage indices.

Chapter 11 deals with the worst-case scenario for bidirectional ground motions.
Most of the current seismic-resistant design codes are based on the simulation of
building response under uni-directional earthquake input. However, bidirectional
input is inevitable for the reliable design of columns.

Chapters 12 and 13 tackle the worst-case scenario for passively controlled
buildings. The structural member stiffness and strength of buildings are uncertain
due to various factors resulting from randomness, material deterioration, temper-
ature dependence, etc. The passive damper systems are also uncertain depending
on various sources. The concept of sustainable building design under such
uncertain structural-parameter environment may be one of the most challenging
issues to be tackled recently. By predicting the response variability accurately, the
elongation of service life of buildings may be possible.

Chapter 14 focuses on the worst-case scenario for base-isolated buildings. The
stiffness and damping of the base-isolation system and the stiffness of the super-
structure are selected as uncertain parameters. An efficient methodology is explained to
evaluate the robustness (variability of response) of an uncertain base-isolated building.

The book closes with Chap. 15 on current challenges and future directions on
design of building structures with greater earthquake resilience.

The importance of the worst-scenario approach for improved earthquake resil-
ience of buildings and nuclear reactor facilities has been recognized and demon-
strated by the recent great earthquake (March 11, 2011) in Japan. Such
understanding is of extreme significance especially for large or important structures.
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The word ‘unexpected incident’ is often used in Japan after the 2011 great
earthquake. It may be true that the return period of this class of earthquakes at the
same place could be 500–1,000 years and the use of this word may be acceptable to
some extent from the viewpoint of the balance between the construction cost and
the safety level. However, the critical excitation method is expected or has a
potential for enhancing the safety level of building structures against undesirable
incidents drawn from this irrational concept in the future. One of the most important
and challenging missions of structural engineers may be to narrow the range of such
unexpected incidents in building structural design. Redundancy, robustness, and
resilience are expected to play important roles in such circumstances.

Izuru Takewaki
Abbas Moustafa

Kohei Fujita
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Chapter 1
Introduction

1.1 Background and Review

The 1994 Northridge earthquake and the 1995 Kobe earthquake have remained as
two of the most destructive earthquakes in the world and have changed thinking of
earthquake and structural engineers for many years. Modern seismic codes have
been revised taking into account lessons learned from these earthquakes.
Notwithstanding this, the two recent devastating earthquakes in Japan (11 March
2011) and in Haiti (12 January 2010) have raised significant concerns within the
earthquake engineering community [1, 2]. Perhaps these two quakes are the
strongest earthquakes during the last 100 years. These earthquakes have brought to
our attention the challenges still facing the developing as well as the developed
countries. The 2011 Tohoku earthquake has caused massive structural damage and
enormous economic loss off the Pacific coast of Tohoku in Japan. On the other
hand, the 2010 Haiti earthquake has killed about 250,000 people and left a long-
term suffer for the residents of the country. The signature of these two earthquakes
will remain for a long time in the minds of earthquake and structural engineers.
These earthquakes bring to our attention the worst-case scenario or what is also
known as the critical excitation.

As is well known, engineers are always interested in the worst-case scenario.
This is because engineering structures must resist static and dynamic loads during
their service life without loss of safety and functionality. In the field of earthquake-
resistant design, seismic design of buildings should ensure structural safety against
the possible worst future earthquakes. The features of this monograph are:

(1) Consideration of elastic–plastic behavior of building structures in the critical
excitation method for improved building earthquake resilience.

(2) Consideration of uncertainties of structural parameters in structural control
and base isolation for improved building earthquake resilience.

I. Takewaki et al., Improving the Earthquake Resilience of Buildings,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-4144-0_1,
� Springer-Verlag London 2013
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(3) New insights into structural design of super high-rise buildings under long
period ground motions (case study on tall buildings in megacities in Japan
during the 2011 off the Pacific coast of Tohoku earthquake on March 11).

It is well recognized and widely accepted that earthquake ground motions are
uncertain even with the up-to-date cutting-edge knowledge and it does not appear
easy to predict forthcoming earthquake events precisely at a specific site both in
time and frequency contents [3–5]. It is therefore strongly desirable to develop a
robust structural design method taking into account these uncertainties, enabling
the design of safer structures to a broader class of design earthquakes. This also
enables structural engineers to narrow the range of ‘out of Scenario’ and to
enhance the structural safety. The concept of ‘‘critical excitation’’ or ‘‘worst-case
input’’ is promising and seems to enable the realization of a rational design con-
cept. As the limit states of structures play an important role in setting allowable
structural capacity and alternative performance levels of structures during distur-
bances, the clarification of critical excitations for a given structure or a group of
structures appears to provide the structural designers with useful information in
determining excitation parameters in a reasonable and reliable way.

The method of the critical excitation was proposed in earthquake engineering
by Drenick in 1970 [3] for linear elastic single-degree-of-freedom (SDOF) systems
in order to take into account inherent uncertainties in the ground motions. The
critical excitation that produces the maximum response from a class of allowable
inputs defines the critical excitation for the given structure.

By using the Cauchy–Schwarz inequality, Drenick [3] showed that the critical
excitation for a linear elastic SDOF system is its impulse response function
reversed in time. This implies that the critical envelope function for linear elastic
SDOF systems in deterministic problems can be represented by an increasing
exponential function and the critical excitation must be defined from the time at
minus infinity. This result may be unrealistic and of only theoretical significance.
However, Drenick’s paper in 1970 is pioneering in the field of critical excitation
since it paved way for developing a new concept. It was often suggested that the
critical response by Drenick’s model (1970) is conservative. To remedy this point,
Shinozuka [4] discussed the same problem in the frequency domain and proved
that, if an envelope function of Fourier amplitude spectra can be specified, a
narrower upper bound of the maximum response can be derived.

After the works of Drenick and Shinozuka, many useful theories and methods
have been proposed on critical excitation including the work of Iyengar [6] and
Iyengar and Manohar [7]. The interested readers can refer some of the recent
review articles e.g., [5, 8]. The works of Takewaki [5, 8] and Abbas and Manohar
[9] tackle the probabilistic modeling of critical excitations in the frequency
domain. Abbas and Manohar [9] and Abbas [10], Moustafa [11, 12] tackled the
deterministic modeling of critical excitations.
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1.2 Input Ground Motion and Worst-Case Scenario

The structural response under random or uncertain loads, such as wind or strong
ground motion, depends primarily on how accurate the mathematical models
adopted in describing the structural behavior and in predicting possible future
earthquake events at the site. In general, the earthquake load can be specified as input
to the structure using the response spectrum method, the recorded ground acceler-
ations, or using the theory of random vibration. Each of these methods accounts for
uncertainty involved in the earthquake load in a different way. As is well known, the
uncertainty involved in the dynamic load, resulting from the fault properties, travel
path, and local soil condition, represents the main source of uncertainty arising in the
structural response compared to the uncertainty resulting from the variability in the
structure’s parameters (e.g., cross-section dimensions and capacity). For instance, it
is difficult to predict the future ground motion that can cause maximum damage to the
structure during its lifetime. This difficulty includes the time, location, and ground
motion characteristics (e.g., total duration, energy, frequency content, peak accel-
eration, etc.). On the other hand, the structural behavior can be accurately described
using mathematical models with relatively lower uncertainty.

Structural engineers are required to design safe structures against possible future
earthquake events on one hand, and to achieve optimum use of the construction
material on the other hand. This implicitly implies that one has to model the worst
future ground motion capable of causing the largest damage in the structure. The
preface of the recent book by Elishakoff and Ohsaki [13] provides a historic review
on the development of the worst-case scenario or what is also known as the critical
excitation. The senior author communicated with Drenick (Drenick, 2002, ‘‘Private
communication’’) and was informed that the work by Prof. Drenick was motivated
by his communication with Japanese researchers in the late 1960s.

In short, the worst-case scenario is an asymptotic scenario in which the maxi-
mum response of the structure under possible worst future earthquakes is estimated.
Theoretically, the predicted future seismic load represents the worst earthquake
load that can happen at the site and the associated response, i.e., the worst response.
In this case, the worst ground motion is mathematically obtained using constrained
optimization techniques. The constraints associated with the optimization problem
involve the main characteristics of the earthquake loads estimated from the seismic
data available at the site or from other sites with similar geological soil conditions.

1.3 Organization of the Book

This book consists of two parts. The first part deals with the characterization and
modeling of worst or critical ground motions on inelastic structures. The second
part of the book focuses on investigating the worst-case scenario for passively
controlled and base-isolated buildings.

1.2 Input Ground Motion and Worst-Case Scenario 3



This chapter provides an overview on the effects of historic and recent strong
earthquake ground motions on building structures and associated life loss.

Chapter 2 provides a comprehensive information on the most recent and dev-
astating Tohoku earthquake of moment magnitude 9.0 which hit off the pacific
coast of eastern Japan on 11 March 2011. This earthquake and the tsunami fol-
lowing it left severe damage to building structures and caused nearly 20,000 life
loss [1].

As is well known the robust design of buildings for future earthquake loads
requires reliable understanding of the ground motion characteristics. Accordingly,
Chaps. 3 and 4 report on the characteristics of near-fault ground motions with
pulse-like acceleration. Furthermore, these two chapters provide simple mathe-
matical models for this class of ground motions and associated structural response
[14, 15].

Chapters 5–7 deal with the characterization and modeling of earthquake ground
motion of multiple sequences [16–18]. This research subject is new and has not
received adequate attention from researchers. For instance, most seismic codes
specify design ground motions as single events. However, moderate ground
motion with repeated acceleration sequences could lead to severe damage to
structures than strong ground motion of a single sequence. The worst-case scenario
is studied within the deterministic and the probabilistic frameworks.

A practical problem always arises in the design of buildings against earthquake
loads. It is always difficult to select a suite of suitable earthquake records from a
large set of records as input to the nonlinear time-history analysis of structures.
Chapter 8 provides deterministic and probabilistic measures that can be used to
identify unfavorable accelerograms [19]. This chapter provides simple concepts
which can be utilized to select a suite of appropriate earthquake records for
nonlinear time-history analysis of structures.

Chapters 9 and 10 deal with the modeling worst scenario of earthquake loads on
inelastic structures with special emphasis on the type of seismic waves of the
ground motion and structural damage quantification using damage indices [12, 20,
21].

Chapter 11 deals with the mathematical modeling of the worst-case scenario for
bidirectional ground motions [22]. In this context, it may be recalled that, most of
current seismic-resistant design codes are based on the simulation of building
response under unidirectional earthquake input. However, bidirectional input is
inevitable for the reliable design of columns.

Chapters 12 and 13 tackle the modeling of the worst-case scenario for passively
controlled buildings. The structural properties such as the member stiffness and
strength of buildings are modeled as uncertain due to various factors resulting from
randomness, material deterioration, temperature dependence, etc. [23, 24]. The
passive damper systems could also contain uncertain parameters depending on
various sources. The concept of sustainable building design under such uncertain
structural-parameter environment may be one of the most challenging issues to be
tackled recently. By predicting the response variability accurately, extending the
service life of buildings may be possible.
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Chapter 14 focuses on the worst-case scenario for base-isolated buildings [25].
The stiffness and damping parameters of the base-isolation system and the stiffness
of the super structure are modeled as random variables. An efficient methodology
is explained to evaluate the robustness (variability of response) of an uncertain
base-isolated building.

This book closes with Chap. 15 on current challenges and future directions on
design of building structures with greater earthquake resilience.

The importance of the worst scenario approach for improved earthquake
resilience of buildings and nuclear reactor facilities has been recognized and
demonstrated by the recent great earthquake in Japan. Such understanding is of
extreme significance especially for important structures and critical facilities.

The word ‘unexpected scenario’ is often used in Japan after the 2011 great
earthquake. In fact, this quake reminds us of the 1923 Great Kanto earthquake that
killed more than 140,000 people in Tokyo and surrounding area and left massive
damage to structures. It may be true that the return period of this class of earth-
quakes at the same place could be 500–1,000 years and the use of this word may be
acceptable to some extent from the viewpoint of the balance between the con-
struction cost and the safety. However, the critical excitation method is expected
or has a potential for narrowing the range of ‘unexpected scenario’ and enhancing
the safety of building structures against undesirable incidents drawn from this
irrational concept in the future.
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Chapter 2
Earthquake Resilience of High-Rise
Buildings: Case Study of the 2011
Tohoku (Japan) Earthquake

2.1 Introduction

Accumulated data and experiences are very important in the reliable seismic
design of structures. However, it is also true that theoretical expectations and
predictions are also of significance for the design of extremely important structures
and facilities which are influential for the society and wide district. This was
demonstrated in the past earthquakes which are very rare from the viewpoint of
return period in the same area.

The most devastating earthquake in Japan after the 1923 Great Kanto earthquake
hit eastern Japan in the afternoon of March 11, 2011 (see [1], Takewaki [2, 3],
Takewaki et al. [4]). The moment magnitude 9.0 earthquake is one of the five most
powerful earthquakes in the world since modern record-keeping began in 1900. It
was made clear afterward that the recording system for low-frequency and large-
amplitude ground motions was not sufficient in Japan and the first preliminary Japan
Meteorological Agency (JMA) magnitude was smaller than 8 (7.9 exactly). The JMA
magnitude was updated immediately as 8.4. Records of earthquake ground motions
outside Japan were then used to determine the exact moment magnitude of 9.0
(intermediate announcement was 8.8). The earthquake resulted from the thrust
faulting near the subduction zone plate boundary between the Pacific and North
America Plates (AIJ [1], NIED [5], USGS [6]).

Nearly 20,000 people were killed or are still missing by this great earthquake
and the ensuing monster tsunami as of November 1, 2011. The principal cause of
this devastating result is due to the great tsunami following the large earthquake.
Table 2.1 and Fig. 2.1 show the human and economic loss in recent major
natural disasters (data from Asahi newspaper [7]). It can be observed that the
economic loss in the 2011 off the Pacific coast of Tohoku earthquake is
extremely large.

The maximum height (run-up height) of the tsunami was reported to have
attained almost 40 m (Miyako City, Iwate Prefecture) and this was observed in the

I. Takewaki et al., Improving the Earthquake Resilience of Buildings,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-4144-0_2,
� Springer-Verlag London 2013

7



bay area with complex coast line shapes. It was also reported that the tsunami
arrived at the third or fourth story in some buildings and invaded over 5 km from
the coastline (Natori City, Miyagi Prefecture). It should be remarked that the
number of collapsed (or damaged) buildings and houses remains not clear because
most of the damages resulted from the tsunami and a clear record was not left.
More detailed data on this earthquake can be obtained from the National Research
Institute for Earth Science and Disaster Prevention (NIED) of Japan.

Table 2.1 Human and economic loss in recent major natural disasters (data from Asahi news-
paper [7])

Number of victims Economic loss
(Billion dollars)

East Japan great earthquake disaster (2011) 20,631 309
Hurricane Katrina (2005) 1,833 135
Hyogoken–Nanbu earthquake (Kobe EQ 1995) 6,437 100
China (2008) 87,476 85
Chile earthquake (2010) 562 30
New Zealand earthquake (2011) 181 13
Haiti earthquake (2010) 222,570 7.8
North Pakistan earthquake (2005) 73,338 5.2
Sumatra earthquake (2004) 165,708 4.5
Cyclone Nargis (Myanmar 2008) 138,366 4.0

Tohoku EQ
(2011)

Three hundred 
billion dollars
=Apple’s 
current price

Twenty 
thousand 
people

Haiti EQ
(2010)

Sumatra EQ
and Tsunami

(2004)

New Zealand EQ
(2011)

Hurricane
Katrina
(2005)

Chile EQ
(2010)

Number of victims

Loss of economic cost

Fig. 2.1 Human and economic loss in recent major natural disasters (data from Asahi
newspaper [7])
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Because super high-rise buildings in mega cities in Japan have never been
shaken by the so-called long-period ground motions with high intensities, the
response of high-rise buildings to such long-period ground motions is now one of
the most controversial issues in the field of earthquake-resistant design in Japan
[8]. The issue of long-period ground motion and its effect on building structural
design was initially brought up in Mexico, the USA, and Japan during 1980–1990s
(for example [9–10]). Some clear observations have actually been reported
recently (most famous one is the severe sloshing in oil tanks during the Tokachioki
earthquake, Japan in 2003 [11]) and the earthquake ground motions in Tokyo,
Yokohama, and Osaka during the March 11, 2011 earthquake are regarded to be
extremely influential for super high-rise buildings. In December 2010, just before
this earthquake, a set of simulated long-period ground motions was constructed
and provided by the Japanese Government [8] for the retrofit of existing high-rise
buildings and as a design guideline for new high-rise buildings.

In this chapter, we describe first the characteristics of this 2011 earthquake and
discuss the properties of long-period ground motions from the viewpoint of
critical excitation, i.e., the phenomenon of resonance characterized by the coin-
cidence of the predominant period of ground motions with the fundamental
natural period of high-rise buildings. It is shown that the criticality of the long-
period ground motions can be investigated based on the theory of critical
excitation [12–14]. This theory is intended to overcome the difficulty resulting
from the uncertainty of earthquake ground motions (for example Geller et al.
[15]). The credible bounds of input energy responses are obtained using the
critical excitation method with the constraints on acceleration and velocity
powers. It is demonstrated that the long-period ground motions can be controlled
primarily by the velocity power and the ground motion recorded in Tokyo during
the 2011 off the Pacific coast of Tohoku earthquake actually included fairly large
long-period wave components.

Furthermore, tentatively designed 40- and 60-story steel buildings are subjected
to such long-period ground motion as recorded in Shinjuku, Tokyo during the 2011
off the Pacific coast of Tohoku earthquake. It is shown that high-hardness rubber
dampers, a kind of viscoelastic dampers with low temperature and frequency
dependency, are able to damp the building vibration during long-period ground
motions in an extremely shorter duration than in case of the building without those
dampers. It is reported recently that this high-hardness rubber damper has a
damping performance comparable with oil dampers. Two assumed 40-story steel
buildings are also subjected to a set of simulated long-period ground motions taken
from a December 2010 document of the Japanese Government [8] for the detailed
investigation of response characteristics of super high-rise buildings under many
simulated long-period ground motions in various areas.

2.1 Introduction 9



2.2 General Characteristics of the 2011 Off the Pacific
Coast of Tohoku Earthquake

The general characteristics of the 2011 off the Pacific coast of Tohoku earthquake
are explained first. The source inversion and slip distribution using near-source
strong ground motions are shown in Fig. 2.2a [16]. Since it is necessary to
understand the size of the 2011 earthquake, the comparison of slipped fault size is
shown in Fig. 2.2b among the 2004 Sumatra earthquake (M = 9.1), the 1923 Great
Kanto earthquake (M = 7.9), the 1995 Hyogoken-Nanbu (Kobe) earthquake
(M = 7.3), and the 2011 off the Pacific coast of Tohoku earthquake (M = 9.0)
[17]. Due to the large magnitude and the distance from the source to the Honshu
island of Japan, fairly wide areas in the eastern Japan were influenced and shaken
by this earthquake.

The representative near-source ground motions along the Pacific coast in the
eastern Japan are illustrated from north to south in Fig. 2.3a [18]. It can be found
that two or more series (or groups) of waves exist in some areas and most ground
motions continue for over 2 min. This implies the repeated occurrence of the fault
slips in wide areas. This phenomenon has been pointed out by many researchers
(for example Elnashai et al. [19], Hatzigeorgiou and Beskos [20], Moustafa and
Takewaki [21]). It was reported afterwards that three main fault slips were
observed in this series of events, i.e., the first at the eastern side of Sendai City (off
Miyagi Prefecture), the second at the southern (off Miyagi and Fukushima Pre-
fectures) and northern (off Iwate Prefecture) parts of the first one, and the third at
the further southern side of the second slip (off Ibaragi Prefecture).

Figure 2.3b presents a more detailed description of those recorded ground
motions (Yellow star indicates the epicenter). The following is the interpretation
by NIED of Japan [22]. In Tohoku area (from Iwate Prefecture through Fukushima
Prefecture), two wave groups (pink and yellow colors) can be observed from the
vicinity of the epicenter (star mark). This means that main fault ruptures occurred
twice in the vicinity of the epicenter one after another. In Fukushima Prefecture, a
wave group (blue color) can be observed around 200 s toward the north. There are
intensive waves between the yellow and the blue arrows. In Ibaragi Prefecture, a
wave group (blue color arrow downward) can be seen. These results imply that a
fault rupture occurred around the epicenter and this rupture induced many sub-
sequent ruptures.

It is believed that the data of ground motions in Fig. 2.3 are very useful for the
investigation of the accuracy of methods for constructing the ground motions from
several sources. The distributions of the maximum ground accelerations and the
maximum ground velocities determined from K-NET and KiK-net (NIED) data
are shown in Fig. 2.4 [23].

Table 2.2 shows the top ten largest observed peak ground accelerations during
this earthquake [18]. It is found that the maximum ground acceleration over 2.9 g
was recorded at the K-NET station of Tsukidate in Kurihara City of Miyagi
Prefecture. However, it is reported that the predominant period of this ground
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motion is shorter than 0.3 s and this ground motion did not affect most buildings so
much. These ground motion characteristics are common in almost all the areas
along the Pacific coast in eastern Japan and the damage to buildings is not so large
in spite of the tremendous magnitude of 9.0. The damages of most buildings are
thought to result from the monster tsunami.

Other peculiar points observed in this 2011 earthquake may be a wide spread of
liquefaction and settlement of land along the Pacific coast in Miyagi and Iwate
Prefectures. It was reported that remarkable liquefaction occurred in many places
on soft grounds including sands (over 42 km2 even in Tokyo bay area) and the
settlement over 1 m of land in Miyagi and Iwate Prefectures may result from the
movement of plates near the epicenter. It is understood that the unexpected wide
spread of liquefaction in spite of not so high level of maximum ground acceler-
ation results from the long duration of shaking (over 2 min and four times longer
than the Hyogoken-Nanbu earthquake). It is thought that this long duration of

Fig. 2.2 a Source inversion
and slip distribution using
near-source strong ground
motions [16], b Fault size of
2004 Sumatra earthquake
(M = 9.1), 1923 Great Kanto
earthquake (M = 7.9), 1995
Hyogoken-Nanbu (Kobe)
earthquake (M = 7.3), and
2011 off the Pacific coast of
Tohoku earthquake
(M = 9.0) (data from Asahi
newspaper [17]) (Reproduced
from Takewaki et al. [4] with
kind permission from �
Elsevier)
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Fig. 2.3 a Characteristics of near-source ground motions along Pacific coast in East Japan [18],
b Relation among fault rupture, wave propagation, and ground motion sequences (Yellow star
indicates the epicenter) [22]
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shaking caused a rapid increase of excess pore water pressure. The liquefaction
was also observed in Tokyo bay area and it was reported that 14.5 km2 experi-
enced liquefaction in Urayasu City in Chiba prefecture (one of Tokyo bay area
cities).

As stated above, one of the most important issues in mega cities like Tokyo,
Osaka, and Nagoya during this 2011 earthquake is the occurrence of long-period
ground motions which could affect severely most super high-rise buildings through
the resonant phenomenon. It is often reported that many super high-rise buildings
in Tokyo and Osaka were severely shaken by those long-period ground motions.
This issue will be discussed in the following sections in detail.

2.3 Seismic Response Simulation of Super High-Rise
Buildings in Tokyo

2.3.1 Properties of Ground Motions in Tokyo

Figure 2.5a shows the acceleration waveforms of the long-period ground motion
recorded at K-NET, Shinjuku station (TKY007) [18] and Fig. 2.5b presents the
corresponding velocity wave forms [18]. It can be observed that the maximum
ground velocity attains about 0.25 m/s and the ground shaking continues for over
several minutes. The velocity response spectra for 1 and 5 % damping are shown
in Fig. 2.6 [18]. The corresponding ones of Japanese seismic design code for 5 %

Fig. 2.3 (Continued)
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damping are also plotted in Fig. 2.6. It is understood that these ground motions
include long-period components up to 10 s. The duration of records at K-NET
stations is 300 s and it was found that this duration is not sufficient for the
investigation of long-period ground motions.

For investigating further the long-period characteristics of that record, the
Fourier amplitude spectra of both acceleration and velocity records have been
obtained. Figure 2.7 shows the Fourier amplitude spectra of accelerations of
Fig. 2.5a and Fig. 2.8 illustrates those of velocities of Fig. 2.5b [2].

Fig. 2.4 Maximum ground accelerations and maximum ground velocities determined from K-
NET and KiK-net data [23]

Table 2.2 List of 10 largest observed peak ground accelerations [18]

Station name PGA (gal) JMA instrumental intensitya

1 MYG004 2,933 6.6
2 MYG012 2,019 6.0
3 IBR003 1,845 6.4
4 MYG013 1,808 6.3
5 IBR013 1,762 6.4
6 FKSH10 1,335 6.0
7 TCGH16 1,305 6.5
8 TCG014 1,291 6.3
9 IBRH11 1,224 6.2
10 MYGH10 1,137 6.0
a JMA Japan Meteorological Agency
MYG Miyagi prefecture, IBR Ibaragi prefecture, FKS Fukushima prefecture, TCG Tochigi pre-
fecture. This list is based on information obtained by March 13, 2011 from 276 K-NET and 112
KiK-net sites
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Fig. 2.5 a Long-period acceleration ground motion recorded at K-NET, Shinjuku station
(TKY007) (Reproduced from Takewaki et al. [4] with kind permission from � Elsevier), b Long-
period velocity ground motion recorded at K-NET, Shinjuku station (TKY007) (Reproduced
from Takewaki et al. [4] with kind permission from � Elsevier)
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Fig. 2.6 Velocity response spectra (5 and 1 % damping) of ground motions at Shinjuku station
(TKY007) and the corresponding ones of Japanese seismic design code for 5 % damping
(Reproduced from Takewaki et al. [4] with kind permission from � Elsevier)

Fig. 2.7 Fourier amplitude
spectra of acceleration
ground motion at K-NET,
Shinjuku station (TKY007)
(Reproduced from Takewaki
et al. [4] with kind permission
from � Elsevier)
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2.3.2 Measure of Criticality in Long-Period Ground Motions

The critical excitation method [12, 24] is one of the methods for disclosing the
level of criticality of ground motions. In the early stage, the maximum displace-
ment was employed as the criticality measure. Then earthquake input energy was
introduced to measure the criticality from the view point of input energy [24].

Figure 2.9 explains the schematic diagram for computing credible bounds of
the input energy per unit mass EI=m to a single degree-of-freedom (SDOF) model
for acceleration and velocity constraints [13, 14, 24]. The function F(x) in the
diagram indicates the energy transfer function defined by

FðxÞ ¼ 2hXx2

pfðX2 � x2Þ2 þ ð2hXxÞ2g
ð2:1Þ

where X: natural circular frequency of the SDOF model, h: damping ratio and x:
the excitation frequency. The input energy per unit mass EI=m to the SDOF model
can then be expressed by

EI=m ¼
Z1

0

AðxÞj j2FðxÞdx ð2:2aÞ

or

EI=m ¼
Z1

0

VðxÞj j2x2FðxÞdx ð2:2bÞ

where A(x) and V(x) are the Fourier transforms of the ground motion acceleration
and ground motion velocity, respectively. It can be observed from Fig. 2.9 that the
region of short natural period can be controlled by the credible bound for the

Fig. 2.8 Fourier amplitude
spectra of velocity ground
motion at K-NET, Shinjuku
station (TKY007)
(Reproduced from Takewaki
et al. [4] with kind permission
from � Elsevier)
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acceleration constraint and the region of long period can be controlled by the
credible bound for the velocity constraint as explained in [13, 24]. It may be
concluded that the introduction of both credible bounds enables the construction of
the credible bound with uniform risk in all the natural period range. The word of
‘uniform risk’ is used in the meaning that the ratio of the actual input energy to the
corresponding credible bound is almost constant in some ground motions
regardless of the natural period of the model.

Figure 2.10a presents the comparison of the actual input energies (5 %
damping), the credible bounds [13, 14, 24] for acceleration constraints (acceler-
ation power in Housner and Jennings [25]) and the credible bounds for velocity
constraints (velocity power in Housner and Jennings [25]) for NS and EW com-
ponents [2]. The intersection point implies the predominant period from the
viewpoint of input energy. The periods of 4 and 6 s are such predominant periods
of ground motions and this implies that the ground motion recorded at K-NET,
Shinjuku station (TKY007) actually included fairly large long-period wave com-
ponents. For comparison, Fig. 2.10b shows the corresponding figures for El Centro
NS 1940 and JMA Kobe NS 1995 (Hyogoken-Nanbu earthquake) [2, 13, 24]. The
intersection point corresponds to rather shorter period ranges.

It may be concluded that the credible bound for the velocity constraint can
control the bound of input energy from the long-period ground motion and this
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bound plays a role for overcoming the difficulties caused by uncertainties of long-
period ground motions (predominant period and intensity level).

2.3.3 Seismic Response Simulation of Super High-Rise
Buildings in Tokyo

The 2011 off the Pacific coast of Tohoku earthquake may be the first earthquake to
have occurred between tectonic plates and have affected super high-rise buildings

(a)

(b)

Fig. 2.10 a Actual input energies per unit mass (5 % damping), the credible bounds for
acceleration constraints and the credible bounds for velocity constraints for the ground motions at
K-NET, Shinjuku station (TKY007), b Actual input energies per unit mass (5 % damping), the
credible bounds for acceleration constraints and the credible bounds for velocity constraints for El
Centro NS (1940) and JMA Kobe NS (1995) (Reproduced from Takewaki et al. [4] with kind
permission from � Elsevier)
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in mega cities. In order to investigate the influence of the recorded long-period
ground motions on high-rise buildings, two steel moment-resisting building frames
of 40 and 60 stories have been studied in [2]. The 40-story building has a fun-
damental natural period of T1 = 4.14 s and the 60-story building has a corre-
sponding one of T1 = 5.92 s.

The buildings have a plan of 40 9 40 m (equally spaced 36 columns; span
length = 8 m) and one planar frame is taken as the object frame. The uniform
story height is 4 m. The floor mass per unit area is assumed to be 800 kg/m2. The
damping ratio is taken as 0.01 in accordance with the well-accepted database [26].
The variability of damping ratio is large depending on amplitude, building usage,
etc. and most of the data exist in 0.5–3.0 % in high-rise steel buildings [26].
Therefore, 1 % damping (most credible one) has been used here. The cross-
sectional properties of the 40-story steel building frame are shown in Table 2.3.
The composite beam action (stiffening by floor slabs) has been taken into account.
The stiffness of beams has been set as 1.5 times the original stiffness. The yield
stress of the steel members is 235 N/mm2. The rigid part of members is introduced
at each beam–column connection.

It is well accepted that the passive dampers are very effective in the reduction of
earthquake response in high-rise buildings. For the purpose of clarifying the merit
of viscoelastic dampers (high-hardness rubber dampers [27]) (see Fig. 2.11), the
buildings of 40 and 60 stories without and with these high-hardness rubber
dampers have been subjected to the long-period ground motion recorded at
K-NET, Shinjuku station (TKY007). The outline of the high-hardness rubber
dampers is shown in Fig. 2.11. One damper unit consists of rubber thick-
ness = 15 mm and rubber area = 0.96 m2. The frame includes four damper units
at every story.

Figure 2.12 shows the maximum story displacements and interstory drifts of the
40-story building of T1 = 4.14 s without or with high-hardness rubber dampers to
ground motion at Shinjuku station (TKY007) (frame response: elastic or elastic–
plastic) [2]. It can be understood that linear and nonlinear analyses provide nearly
the same results in this case. On the other hand, Fig. 2.13 illustrates the maximum
story displacements and interstory drifts of the 60-story building of T1 = 5.92 s
without or with high-hardness rubber dampers to ground motion at Shinjuku sta-
tion (TKY007) (frame response: elastic–plastic, ‘four dampers per story’ corre-
sponds to ‘damper double’) [2]. Only nonlinear analyses have been performed. It
can be observed that high-hardness rubber dampers are effective for the reduction
of displacements.

Table 2.3 Cross-sections of members

Story Column (mm) Beam (mm)

31–40 600 9 600 9 20 9 20 850 9 300 9 15 9 25
21–30 800 9 800 9 25 9 25 850 9 300 9 15 9 25
11–20 1,000 9 1,000 9 35 9 35 850 9 300 9 20 9 30
1–10 1,000 9 1,000 9 45 9 45 1,000 9 300 9 20 9 40
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Table 2.4 shows the comparison of the maximum absolute accelerations at the
top between the 60-story buildings without and with high-hardness rubber dampers
under three recorded ground motions (EW component of TKY007, EW component
at Chiyoda-ku station near Shinjuku station and NS component at Osaka WTC)
during the 2011 off the Pacific coast of Tohoku earthquake. It can be seen that the
top acceleration is reduced by the introduction of the high-hardness rubber
dampers.

Figure 2.14a presents the comparison of time histories of top-story displace-
ments of the assumed 60-story building of T1 = 5.92 s to ground motion at
Shinjuku station (EW component of TKY007) during the 2011 off the Pacific coast
of Tohoku earthquake (frame response: elastic–plastic, without or with high-
hardness rubber dampers) [2]. It can be understood that the high-hardness rubber
dampers can damp the building vibration in an extremely short duration. It should
be remarked that this ground motion was recorded for 300 s (records at K-NET
stations are recorded for 300 s as a rule) and the response after 300 s is a free
vibration in this case. Figure 2.14b shows a similar comparison to ground motion
(EW component) at Chiyoda-ku station near Shinjuku station during the 2011 off
the Pacific coast of Tohoku earthquake. It can be understood that the longer ground
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Fig. 2.11 High-hardness rubber dampers a Overview, b Modeling into three elements
(Reproduced from Takewaki et al. [4] with kind permission from � Elsevier)
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motion duration of 600 s can demonstrate well the damping performance of the
high-hardness rubber dampers.

It has been reported [28] that a 54-story building [height = 223 m: fundamental
natural period = 6.2 s (short-span direction), 5.2 s (long-span direction)] retro-
fitted with passive oil dampers including the supporting bracing system in
Shinjuku, Tokyo experienced a top displacement of 0.54 m during the 2011 off the
Pacific coast of Tohoku earthquake. The vibration duration has been reported to be
over 13 min. It has also been found that the building would have attained a top
displacement of 0.7 m if the passive dampers had not been installed. This fact
corresponds well to the result explained above.

Fig. 2.12 a Maximum story displacement and b maximum interstory drift of a 40-story building
of T1 = 4.14 s without or with high-hardness rubber dampers to ground motion at Shinjuku
station (TKY007) during the 2011 off the Pacific coast of Tohoku earthquake (frame response:
elastic or elastic–plastic) (Reproduced from Takewaki et al. [4] with kind permission from
� Elsevier)
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There is another report that a 55-story super high-rise building in Osaka
[height = 256 m: fundamental natural period = 5.8 s (long-span direction), 5.3 s
(short-span direction)] was shaken severely regardless of the fact that Osaka is
located far from the epicenter (about 800 km) and the JMA instrumental intensity
was three in Osaka. It should be pointed out that the level of velocity response
spectra of ground motions observed here (first floor) is almost the same as that at
the Shinjuku station (K-NET) in Tokyo and the top-story displacement are about
1.4 m (short-span direction) and 0.9 m (long-span direction). Figure 2.15a shows
the ground acceleration, ground velocity and top-story displacement. It can be
observed that a clear resonant phenomenon occurs during about eight cycles. The
corresponding velocity response spectra of the ground motion are shown in
Fig. 2.15b. The resonance phenomenon can be explained by using the structure of

Fig. 2.13 a Maximum story displacement and b maximum interstory drift of a 60-story building
of T1 = 5.92 s without or with high-hardness rubber dampers to ground motion at Shinjuku
station (TKY007) during the 2011 off the Pacific coast of Tohoku earthquake (frame response:
elastic–plastic, ‘4 dampers per story’ corresponds to ‘damper double’) (Reproduced from
Takewaki et al. [4] with kind permission from � Elsevier)

Table 2.4 Reduction of top acceleration via high-hardness rubber dampers (m/s2)

60-story
building

EW component of
TKY007

EW component at Chiyoda-ku
station

NS component at Osaka
WTC

No damper 1.79 1.54 0.933
With damper 1.65 1.21 0.667
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the surface ground in Fig. 2.15c. Figure 2.15d illustrates the comparison of the
actual input energies (5 % damping), the credible bounds [13, 14, 24] for accel-
eration constraints (acceleration power in Housner and Jennings [25]) and the
credible bounds for velocity constraints (velocity power in Housner and Jennings
[25]) for NS and EW components [2]. It can be seen that the ground motion
recorded here in Osaka bay area actually included fairly large long-period wave
components. These facts imply the need of consideration of long-period ground
motions in the seismic resistant design of super high-rise buildings in mega cities
even though the site is far from the epicenter. The seismic retrofit using hysteretic
steel dampers and oil dampers is being planned.

Figure 2.16 illustrates the comparison of the sensitivity of the response
amplification in the resonant case and nonresonant case with respect to damping
reduction. It may be useful to note that the amplification by damping can be
expressed by

1=2 h for resonant long-period ground motion ð2:3aÞ

1:5=ð1þ 10 hÞ for non-resonant conventional ground motionðratio to h ¼ 0:05Þ
ð2:3bÞ

This implies that the high sensitivity of the response to damping in resonant
long-period ground motions. Since the damping ratio in super high-rise buildings
is usually small (smaller than 0.02), this high sensitivity may be kept in mind in
their structural design.

Fig. 2.14 a Comparison of time histories of top-story displacement of an assumed 60-story
building of T1 = 5.92 s without or with high-hardness rubber dampers to ground motion at
Shinjuku station (EW component of TKY007) during the 2011 off the Pacific coast of Tohoku
earthquake (frame response: elastic–plastic) (Reproduced from Takewaki et al. [4] with kind
permission from � Elsevier), b Comparison of time histories of top-story displacement of an
assumed 60-story building of T1 = 05.92 s without or with high-hardness rubber dampers to
ground motion (EW component) at Chiyoda-ku station near Shinjuku station during the 2011 off
the Pacific coast of Tohoku earthquake (frame response: elastic–plastic) (Reproduced from
Takewaki et al. [4] with kind permission from � Elsevier)
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2.4 Seismic Response of High-Rise Buildings
to Simulated Long-Period Ground Motions
(Japanese Government Action)

2.4.1 Characteristics of Simulated Long-Period Ground
Motions

On December 21, 2010, the Japanese Government made a press release to upgrade
the regulation for high-rise buildings under long-period ground motions. The
Ministry of Land, Infrastructure, Transport and Tourism (MLIT) of Japan specified
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Fig. 2.15 a Ground acceleration, ground velocity and top-story displacement of a 55-story
building in Osaka during the 2011 off the Pacific coast of Tohoku earthquake, b Velocity
response spectra of ground motion (horizontal two directions, 229: NS, 319: EW), c Shear wave
velocity distribution of surface ground, d Actual input energies per unit mass (5 % damping), the
credible bounds for acceleration constraints and the credible bounds for velocity constraints for
the ground motions in Osaka bay area
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nine areas in Tokyo, Nagoya, and Osaka (see Fig. 2.17) [8]. Areas 1–4 exist in
Tokyo, Areas 5–7 in Nagoya, and Areas 8, 9 in Osaka.

Figure 2.18a shows the acceleration and velocity records of simulated ground
motions in those nine areas specified in Fig. 2.17. These simulated ground motions
were generated by using the acceleration response spectra (5 %) at the bedrock and
the group delay time (mean and standard deviation) for the phase property [8]. It
can be observed that large velocity waves appear in later times.
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Figure 2.18b presents the pseudo velocity response spectra and velocity
response spectra of the simulated acceleration ground motions specified by the
MLIT. It can be seen that the velocity spectra in 2–8 s have relatively large
magnitudes.

Figure 2.18c shows the actual input energies per unit mass [13, 24, 23], the
credible bounds for acceleration constraints [13, 24] and the credible bounds for
velocity constraints [13, 24] for the simulated ground motions specified by the
MLIT. As stated before, the intersection point indicates the predominant period
of the ground motion. As in the ground motion recorded at K-NET, Shinjuku
station (TKY007), 3–8 s are such predominant periods and this implies that the
simulated ground motions actually include fairly large long-period wave
components.
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Fig. 2.16 Comparison of sensitivities of the response amplification in the resonant case and
nonresonant case with respect to damping reduction

Fig. 2.17 Nine areas in Osaka, Nagoya, and Tokyo specified by the MLIT of Japan MLIT [8]
(Reproduced from Takewaki et al. [4] with kind permission from � Elsevier)
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Fig. 2.18 a Acceleration and
velocity ground motion
records at nine areas specified
by the MLIT of Japan (data
from MLIT [8]) (Reproduced
from Takewaki et al. [4] with
kind permission from
� Elsevier), b Pseudo
velocity response spectra
(5 % damping) and velocity
response spectra of the
simulated acceleration
ground motions specified by
the MLIT of Japan MLIT [8]
(Reproduced from Takewaki
et al. [4] with kind permission
from � Elsevier), c Actual
input energies per unit mass
(5 % damping), the credible
bounds for acceleration
constraints and the credible
bounds for velocity
constraints for the simulated
ground motions specified by
the MLIT of Japan
(Reproduced from Takewaki
et al. [4] with kind permission
from � Elsevier)
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Fig. 2.18 (Continued)
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2.4.2 Response Simulation of Super High-Rise Buildings
Without and With High-Hardness Rubber Dampers

In order to investigate the influence of the simulated ground motions in Areas 1–9
on the response of high-rise buildings, two buildings of 40 stories have been
assumed. The parameters of the buildings are the same as those stated in Sect.
2.3.3. The stiffness of beams has been evaluated as double the original stiffness for
the building frame of T1 = 3.6 s and as 1.5 times the original stiffness for the
building frame of T1 = 4.14 s. Judging from the database on the relationship of
the building height with its fundamental natural period in Japan, the model of
T1 = 3.6 s is a slightly stiff building model for 40-story steel buildings and the
model of T1 = 4.14 s is a slightly flexible steel building model. Only the latter has
been treated in Sect. 2.3. For the purpose of clarifying the merit of viscoelastic
dampers [high-hardness rubber dampers [27] as in the previous case], the buildings

Fig. 2.18 (Continued)
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of 40 stories without and with these high-hardness rubber dampers have been
subjected to the simulated long-period ground motions. One damper unit consists
of rubber thickness = 15 mm and rubber area = 0.96 m2. ‘Damper single’
includes two damper units at every story and ‘damper double’ includes four
damper units at every story.

Figure 2.19a illustrates the comparison of the time histories of the top dis-
placement of the 40-story buildings of T1 = 3.6 s without and with high-hardness
rubber dampers (frame response; elastic) under a simulated long-period ground
motion in Area 5 (Nagoya area). It can be observed that the high-hardness rubber
dampers are able to damp the building vibration during long-period ground
motions in an extremely shorter duration compared to the building without those
dampers.

Figure 2.19b explains the mechanism of response amplification under long-
period ground motion. It can be found that remarkable building response ampli-
fication begins almost after the end of input acceleration and such amplification
corresponds well with the velocity wave.

Figure 2.20 presents the time histories of the top displacement of the 40-story
buildings of T1 = 3.6 s without and with high-hardness rubber dampers (frame
response; elastic) under simulated long-period ground motions in nine areas. It can
be found that the responses in Areas 5 and 7 (Nagoya area) are large. Figure 2.21
shows the maximum interstory drifts of the 40-story buildings of T1 = 3.6 s
without and with high-hardness rubber dampers (frame response; elastic). It can
also be understood that the maximum response of the damper double is not dif-
ferent much from that of the damper single and the damper single is sufficient for
the maximum response reduction in this case. However, as for the reduction rate of
the vibration, the damper double is better than the damper single.

Figure 2.22 illustrates the time histories of the top displacement of the 40-story
buildings of T1 = 4.14 s without and with high-hardness rubber dampers (frame
response; elastic). It can be seen that the responses are quite different from those of
T1 = 3.6 s shown in Fig. 2.20. This characteristic may depend on the relation of
the fundamental natural period of the building with the predominant period of
ground motions in nine areas. Figure 2.23 shows the maximum interstory drifts of
the 40-story buildings of T1 = 4.14 s without and with high-hardness rubber
dampers (frame response; elastic). Different from the case for T1 = 3.6 s shown in
Fig. 2.21, the maximum response of the damper double is much smaller than that
of the damper single especially in Area 7 which shows the maximum response.
This indicates the superiority of the increase of damper quantity in the reduction of
the maximum response in addition to the reduction rate of the vibration.

Figure 2.24 presents the comparison of the top displacements of the 40-story
buildings of T1 = 3.6 s (elastic or elastic–plastic, without or with dampers) under
the simulated long-period ground motion in Area 5. It can be observed that the
elastic–plastic response of the building frame decreases the response level to some
extent. However, it can also be seen that the high-hardness rubber dampers can
damp the vibration so quickly. It has been confirmed that this quick vibration
reduction rate can be achieved also by viscous dampers like oil dampers so long as
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an appropriate amount of dampers is provided. Figure 2.25 shows the maximum
interstory drifts of 40-story buildings of T1 = 3.6 s (Area 5) and T1 = 4.14 s
(Area 7) without high-hardness rubber dampers (elastic or elastic–plastic). As in
Fig. 2.24, it can be seen that the elastic–plastic response of the building frame
decreases the response level to some extent. Since the plastic deformation may
cause some problems in the beam–column connections (as observed during
Northridge and Hyogoken–Nanbu earthquakes) and member plastic deformation
capacities, a more detailed investigation will be necessary on the overall charac-
teristics of this property. Figure 2.26 illustrates the plastic hinge formation
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Fig. 2.19 a Comparison of the time histories of the top displacement of the 40-story buildings of
T1 = 3.6 s without and with high-hardness rubber dampers (frame response; elastic) under a
simulated long-period ground motion in Area 5 (Reproduced from Takewaki et al. [4] with kind
permission from � Elsevier) b Mechanism of response amplification under long-period ground
motion
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Fig. 2.20 Time histories of top displacement of 40-story buildings of T1 = 3.6 s without and
with high-hardness rubber dampers (frame response; elastic) (Reproduced from Takewaki et al.
[4] with kind permission from � Elsevier)
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Fig. 2.21 Maximum interstory drifts of 40-story buildings of T1 = 3.6 s without and with high-
hardness rubber dampers (frame response; elastic) (Reproduced from Takewaki et al. [4] with
kind permission from � Elsevier)
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Fig. 2.22 Time histories of top displacement of 40-story buildings of T1 = 4.14 s without and
with high-hardness rubber dampers (frame response; elastic) (Reproduced from Takewaki et al.
[4] with kind permission from � Elsevier)
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Fig. 2.23 Maximum interstory drifts of 40-story buildings of T1 = 4.14 s without and with high-
hardness rubber dampers (frame response; elastic) (Reproduced from Takewaki et al. [4] with
kind permission from � Elsevier)
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diagram of the building frames without and with dampers. The nonlinear analyses
performed take into account both material and geometrical nonlinearities.

The purposes of this chapter (Sect. 2.4) are to disclose the general properties of
the effect of simulated long-period ground motions on the responses of high-rise
buildings and to investigate the effect of high-hardness rubber dampers in the
vibration reduction of high-rise buildings under long-period ground motions. For
these purposes only elastic responses have been investigated comprehensively at
first (Figs. 2.20, 2.21, 2.22, 2.23). This treatment is valid when high strength steels
are used (this is often the case now in Japan), because the response will be almost
within the elastic limit. However, since it seems to be also useful to investigate the
effect of elastic–plastic behavior on the resonant phenomenon, the comparison
between elastic and elastic–plastic responses have been conducted for the model of
T1 = 3.6 s in Area 5 and that of T1 = 4.14 s in Area 7 as representative ones. As
can be seen from Fig. 2.20, most of the responses are within the elastic limit
except in a few cases including Areas 5 and 7. Furthermore, it was made clear that
most responses of high-rise buildings in Japan (Tokyo and Osaka) during the 2011
off the Pacific coast of Tohoku earthquake are within the elastic limit. It seems
reasonable to a limited extent also from these viewpoints to deal with the elastic
response of high-rise buildings under simulated long-period ground motions.

Fig. 2.24 Top displacement of 40-story buildings of T1 = 3.6 s without and with high-hardness
rubber dampers (frame response: elastic or elastic–plastic) (Area 5) (Reproduced from Takewaki
et al. [4] with kind permission from � Elsevier)
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2.4.3 AIJ’s Research Result

Architectural Institute of Japan (AIJ) made a press release on March 4, 2011 just
1 week before the March 11, 2011 earthquake on the result of their research on the
response of high-rise buildings under long-period ground motions [29]. The
conclusions in this press release may be summarized as follows:

1. High-rise buildings in Tokyo, Nagoya, and Osaka may experience long-dura-
tion vibration under simulated long-period ground motions obtained as a
sequence of Tokai, Tonankai, and Nankai earthquakes [30]. However, the
collapse will not occur (the possibility may be very low).

2. The long-period ground motions exhibit different properties in different areas.
The high-rise buildings also have different properties depending on their
heights and constructed periods. The relation of the structural properties of
high-rise buildings with the properties of long-period ground motions plays a
key role in the evaluation of seismic response of high-rise buildings.

3. The damage to non-structural components, facilities, and furniture may be
caused easily. Such damage can be reduced effectively by introducing appro-
priate steps.

4. Passive dampers will be able to damp the building vibration remarkably and
reduce the damage to structural members.
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Fig. 2.25 Maximum interstory drifts of 40-story buildings of T1 = 3.6 s and T1 = 4.14 s
without high-hardness rubber dampers (frame response; elastic or elastic–plastic), a 40-story
building of T1 = 3.6 s in area 5, b 40-story building of T1 = 4.14 s in area 7 (Reproduced from
Takewaki et al. [4] with kind permission from � Elsevier)
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2.5 Summary

1. The 2011 off the Pacific coast of Tohoku earthquake is the most devastating
earthquake in Japan after the 1923 Great Kanto earthquake in terms of the
damaged area and loss cost. This earthquake may be the largest interplate
earthquake which attacked mega cities after the construction of super high-rise
buildings. However, it is reported that this earthquake may not be the most
influential one to be taken into account because the influence depends on the
plate (including epicenter) on which mega cities lie and on the soil condition
supporting buildings. This fact has been confirmed from the comparison with
the result using the simulated ground motions provided by the Japanese Gov-
ernment in December 2010.

2. The ground motion recorded at K-NET, Shinjuku station (TKY007), Tokyo
during the 2011 off the Pacific coast of Tohoku earthquake contains fairly large
long-period wave components and has a frequency content of broad band
(2–6 s). This can be observed from not only the velocity response spectra (and
Fourier spectra) but also the earthquake input energy spectra taking into
account of the concept of critical excitation. This characteristic has also been

without dampers with dampers

Fig. 2.26 Plastic hinge
formation in 40-story
buildings of T1 = 3.6 s
without and with high-
hardness rubber dampers
(Area 5) (Reproduced from
Takewaki et al. [4] with kind
permission from � Elsevier)
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demonstrated by the simulated ground motions provided by the Japanese
Government in December 2010.

3. The region of short natural period in the input energy spectrum can be controlled
by the credible bound for the acceleration constraint and the region of long period
can be controlled by the credible bound for the velocity constraint as demon-
strated in the references [13, 14]. The introduction of both credible bounds
enables the construction of the credible bound with uniform risk (almost constant
ratio of the input energy to its credible bound) in all the natural period range in
some ground motions. The credible bound introduced in the references [13, 14]
for the velocity constraint can control the bound of input energy from the long-
period ground motion and this bound plays a key role for overcoming the
difficulties induced by uncertainties of long-period ground motions.

4. Viscoelastic dampers, such as high-hardness rubber dampers, and viscous
dampers, such as oil dampers, are able to reduce the building vibration during
long-period ground motions in an extremely shorter duration compared to the
building without those dampers. It has been made clear from this March 11,
2011 earthquake that the safety is not the only target and the functionality
together with the consideration of psychologic aspects (relief) of residents has
to be maintained appropriately.

5. The word ‘unexpected incident’ is often used in Japan after this great earthquake.
It may be true that the return period of this class of earthquakes at the same place
could be 500–1000 years and the use of this word may be acceptable to some
extent from the viewpoint of the balance between the construction cost and the
safety level. However, the critical excitation method is expected to enhance the
safety level and earthquake resilience of building structures against undesirable
incidents drawn from this irrational concept in the future.

References

1. Architectural Institute of Japan (2011) Preliminary reconnaissance report on the 2011 off the
Pacific coast of Tohoku earthquake, 6 April 2011 (in Japanese)

2. Takewaki I (2011) Preliminary report of the 2011 off the Pacific coast of Tohoku earthquake.
J Zhejiang Univ-SCI A 12(5):327–334

3. Takewaki I (2011) The 2011 off the Pacific coast of Tohoku earthquake and its impact on
building structural design, keynote paper (Plenary speaker) at the ASEM11+Congress, in
Seoul, Korea, 18–23 Sept 2011

4. Takewaki I, Murakami S, Fujita K, Yoshitomi S, Tsuji M (2011) The 2011 off the Pacific
coast of Tohoku earthquake and response of high-rise buildings under long-period ground
motions. Soil Dyn Earthq Eng 31(11):1511–1528

5. NIED (2011) National research institute for earth science and disaster prevention. 2011 Off
the Pacific Coast of Tohoku earthquake. (in Japanese) Available from http://
www.hinet.bosai.go.jp/topics/off-tohoku110311/. Accessed on 3 May 2011

6. USGS (2011) Magnitude 9.0—Near the East coast of Honshu, Japan. Available from http://
earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/#summary. Accessed on 3
May 2011

40 2 Earthquake Resilience of High-Rise Buildings

http://www.hinet.bosai.go.jp/topics/off-tohoku110311/.
http://www.hinet.bosai.go.jp/topics/off-tohoku110311/.
http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/#summary
http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/#summary


7. Asahi newspaper (2011) 7 Aug 2011 (in Japanese)
8. Ministry of Land, Infrastructure, Transport and Tourism (MLIT) (2011) Code draft for the

retrofit of existing high-rise buildings and design guideline for new high-rise buildings. 21
Dec 2010 (in Japanese) Available from http://www.mlit.go.jp/report/press/
house05_hh_000218.html. Accessed on 11 Jan 2011

9. Heaton T, Hall J, Wald D, Halling M (1995) Response of high-rise and base-isolated
buildings to a hypothetical M 7.0 blind thrust earthquake. Science 267:206–211

10. Ariga T, Kanno Y, Takewaki I (2006) Resonant behavior of base-isolated high-rise buildings
under long-period ground motions. Struct Des Tall Spec Buildings 15(3):325–338

11. Zama S, Nishi H, Yamada M, Hatayama K (2008) Damage of oil storage tanks caused by
liquid sloshing in the 2003 Tokachi Oki earthquake and revision of design spectra in the long-
period range. In: Proceedings of the 14th world conference on earthquake engineering,
Beijing, China, 12–17 Oct 2008

12. Drenick RF (1970) Model-free design of aseismic structures. J Eng Mech Div, ASCE
96(EM4):483–493

13. Takewaki I (2004) Bound of earthquake input energy. J Struct Eng, ASCE 130(9):1289–1297
14. Takewaki I (2008) Critical excitation methods for important structures, invited as a semi-

plenary speaker. EURODYN 2008, Southampton, England, 7–9 July 2008
15. Geller RJ, Jackson DD, Kagan YY, Mulargia F (1997) Earthquakes cannot be predicted.

Science 275:1616
16. NIED (2011) National research institute for earth science and disaster prevention. 2011 off

the Pacific Coast of Tohoku earthquake. Source inversion and slip distribution using near-
source strong ground motions. (in Japanese) (revised version in 12 April 2011 by Suzuki W,
Aoi M and Sekiguchi H) Available from http://www.kyoshin.bosai.go.jp/kyoshin/topics/
TohokuTaiheiyo_20110311/inversion/. Accessed on 3 May 2011

17. Asahi newspaper (2011) 10 April 2011 (in Japanese)
18. NIED (2011) National research institute for earth science and disaster prevention. 2011 Off

the Pacific Coast of Tohoku earthquake, strong ground motion, emergency meeting of
headquarters for earthquake research promotion, 13 March 2011. Available from http://
www.k-net.bosai.go.jp/k-net/topics/TohokuTaiheiyo_20110311/nied_kyoshin2e.pdf. Acces-
sed on 20 April 2011

19. Elnashai A, Bommer JJ, Martinez-Pereira A (1998) Engineering implications of strong
motion records from recent earthquakes. In: Proceedings of 11th European conference on
earthquake engineering. CD-ROM, Paris

20. Hatzigeorgiou GD, Beskos DE (2009) Inelastic displacement ratios for SDOF structures
subjected to repeated earthquakes. Eng Struct 31(13):2744–2755

21. Moustafa A, Takewaki I (2011) Response of nonlinear single-degree-of-freedom structures to
random acceleration sequences. Eng Struct 33:1251–1258

22. NIED (2011) National research institute for earth science and disaster prevention. 2011 off
the Pacific Coast of Tohoku earthquake: overview (in Japanese). Available from http://
www.hinet.bosai.go.jp/topics/off-tohoku110311/. Accessed on 3 May 2011

23. NIED (2011) National research institute for earth science and disaster prevention. 2011 off
the Pacific coast of Tohoku earthquake, strong ground motion. (in Japanese) Available from
http://www.kyoshin.bosai.go.jp/kyoshin/topics/html20110311144626/
main_20110311144626.html. Accessed on 20 April 2011

24. Takewaki I (2006) Critical excitation methods in earthquake engineering. Elsevier,
Amsterdam

25. Housner GW, Jennings PC (1975) The capacity of extreme earthquake motions to damage
structures. In: Hall WJ (ed) Structural and geotechnical mechanics. Prentice-Hall, Englewood
Cliff, pp 102–116

26. Satake N, Suda K, Arakawa T, Sasaki A, Tamura Y (2003) Damping evaluation using full-
scale data of buildings in Japan. J Struct Eng, ASCE 129(4):470–477

References 41

http://www.mlit.go.jp/report/press/house05_hh_000218.html.
http://www.mlit.go.jp/report/press/house05_hh_000218.html.
http://www.kyoshin.bosai.go.jp/kyoshin/topics/TohokuTaiheiyo_20110311/inversion/.
http://www.kyoshin.bosai.go.jp/kyoshin/topics/TohokuTaiheiyo_20110311/inversion/.
http://www.k-net.bosai.go.jp/k-net/topics/TohokuTaiheiyo_20110311/nied_kyoshin2e.pdf.
http://www.k-net.bosai.go.jp/k-net/topics/TohokuTaiheiyo_20110311/nied_kyoshin2e.pdf.
http://www.hinet.bosai.go.jp/topics/off-tohoku110311/
http://www.hinet.bosai.go.jp/topics/off-tohoku110311/
http://www.kyoshin.bosai.go.jp/kyoshin/topics/html20110311144626/main_20110311144626.html
http://www.kyoshin.bosai.go.jp/kyoshin/topics/html20110311144626/main_20110311144626.html


27. Tani T, Yoshitomi S, Tsuji M, Takewaki I (2009) High-performance control of wind-induced
vibration of high-rise building via innovative high-hardness rubber damper. Struct Des Tall
Spec Buildings 18(7):705–728

28. Asahi newspaper (2011) evening edition of 19 April 2011 (in Japanese)
29. Architectural Institute of Japan (AIJ) (2011) Report at the open research meeting on design

guide for super high-rise buildings under long-period ground motions. 4 March 2011 (in
Japanese)

30. Kamae K, Kawabe H, Irikura, K (2004) Strong ground motion prediction for huge subduction
earthquakes using a characterized source model and several simulation techniques. In:
Proceedings of the 13th WCEE, Vancouver

42 2 Earthquake Resilience of High-Rise Buildings



Chapter 3
Simulation of Near-Field Pulse-Like
Ground Motion

3.1 Introduction

The accurate prediction of ground motions from possible future earthquakes is the
first step towards the robust assessment and mitigation of structural damage
against earthquake hazards. The modeling of critical or resonant ground motions
has been developed by the present authors in several studies [1–7]. These studies
showed that the resonant ground motion has its energy in a narrow frequency range
and produces larger damage in the structure compared to ordinary records.
Resonant or pulse-like ground motion has been observed in near-field records with
directivity focusing or fling effects. Such ground motion is influenced by the
rupture mechanism and possesses the following characteristics (e.g. [8]): (1) large
peak ground velocities and displacements, (2) concentration of energy in a single
or a few pulses, and (3) unusual response spectra shapes. These features have been
recently studied by these authors [8].

The first seismological evidence of the near-field phenomenon was observed in
the 1952 Kern County (California) earthquake [9]. The propagation of the fault
rupture as a moving source was shown to lead to different types of ground motions
at opposite ends of the rupture. Housner and Hudson reported the first engineering
evidence of near-field ground motions in the 1957 Port Hueneme earthquake
[10, 11]. They showed that this earthquake consisted of a single pulse and
attributed the unusual damage caused by such moderate earthquake to the con-
centration of the energy in one pulse. They further concluded that if a pulse-like
earthquake of larger magnitude could occur, it would require a revision of engi-
neering thinking with possible intensities of ground motions. Similarly, the 1966
Parkfield earthquake measured 61 m from the fault was shown to consist of three
pulses [12]. The severity of the impulsive nature of near-field ground motions on
the damage of structures was observed in the 1971 San Fernando earthquake
[13, 14]. In fact, the 1966 Parkfield and the 1971 San Fernando earthquakes
represent historical milestones related to near-source ground motions [15]. Near-
field velocity pulses were represented by different types of idealized pulses to

I. Takewaki et al., Improving the Earthquake Resilience of Buildings,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-4144-0_3,
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examine their effects on the performance of various structures systematically
[16–20]. Near-field effects became a focus of research after the 1994 Northridge
(California), the 1995 Kobe (Japan), and the 1999 Izmit (Turkey) earthquakes
[8–35]. These earthquakes caused widespread damage to the urban infrastructure
in the near-field region. Near-field ground motions with high PGV/PGA ratios
were shown to have wide acceleration-sensitive regions in the response spectra
that increase the base shear, inter-story drift, and ductility demand of high-rise
buildings [21]. Extensive reviews on the historical development and character-
ization of near-fault ground motions can be found in [8]. Several studies have
investigated the factors that influence near-source ground motions [22–26]. The
implications of this class of ground motion on the design of the engineering
structures in the near-fault region have been studied by many researchers [27–31].

The literature on modeling earthquake ground motions is vast. In the context of
near-field ground motion, several authors have modeled this class of ground
motion. Two kinds of models have been developed, namely, seismological and
engineering models. The seismological (also known as physical or predictive)
models account for the source properties (fault dimension, rupture velocity,
attenuation, stress drop, density of intervening medium), epicentral distance,
earthquake magnitude, and local soil condition [32–34]. The engineering models
replicate the gross features observed in earthquake records in the near-field region
[15, 16]. The seismological models require specifying information on the source
properties. The engineering models, on the other hand, can be used when infor-
mation on the source properties is not available or difficult for the engineer to
prescribe. Some of the engineering models represent the ground motion with an
equivalent main pulse (e.g. [15, 35]). A few studies have accounted for the mul-
tiple pulses in modeling near-field ground motions. For instance, several studies
developed deterministic engineering models using triangular or sinusoidal half
pulse, single pulse, or multiple pulses for this class of ground motion [16–20].
They showed that multiple pulses can produce larger displacements in linear
structures than half and single pulses. Suzuki and Asano [34] used the Green’s
functions and seismological models to simulate near-source records. The study has
also attempted to include higher frequencies using regression techniques.
Mavroeidis and Papageorgiou [15] developed a simple analytical model that
accounts for the observed qualitative and quantitative characteristics of the
impulsive nature in the ground displacement, velocity, and, in some cases,
acceleration. Baker [32, 33] used the signal processing (the wavelet transform) to
extract the pulse-like signals from 3,500 near-field records. The literature on near-
field earthquakes is vast and all previous works cannot be reported here. Readers
can refer Moustafa and Takewaki [8] for a comprehensive review on this subject.

The above discussion reveals that the characterization and modeling of near-
field pulse-like ground motions is of essential importance in seismic-resistant
design of engineering structures in the near-field region. The objective of this
chapter is to develop simple deterministic and probabilistic models for near-field
pulse-like ground motions that account for nonstationarity and multiple-pulses in
the velocity signal, and, to examine the implication of this class of ground motions
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on the response of structures. The next sections develop the representation of this
class of ground motions using deterministic and probabilistic approaches.

3.2 Characterization and Representation of Near-field
Pulse-Like Ground Motions

This section discusses the main features of near-field pulse-like ground motion and
develops the mathematical representation of this class of ground motions.
Table 3.1 lists 27 near-field ground motion records from 15 earthquakes. The table
contains information on earthquake magnitude, duration, Aria’s intensity (square
root of the area under the square of the ground acceleration), site-source distance,
and peak values of ground acceleration (PGA), velocity (PGV), and displacement
(PGD) [36]. The local soil condition and the ratios of the PGV/PGA and PGD/
PGA are also reported in the table. Figure 3.1 depicts the time history and the
Fourier amplitude spectra of the ground velocity for 20 of these records. Similar
plots for the ground accelerations of the same records are shown in Fig. 3.2.
Regardless of the soil type, the pulse-like tendency and large velocity amplitude
are evident from the plots of Fig. 3.1 and from the ratio of PGV/PGA in Table 3.1.
This feature is particularly obvious in some records, such as, H-E06230, TAB-TR,
YPT060, LCN275, ERZ-NS, and DZC-NS. These records have most of the energy
of the ground velocity contained in very narrow frequency band. This observation
is not easily remarkable in the plots of the ground accelerations. The average
dominant frequency of the ground motion xef is also reported in Table 3.1 [8]. The
numerical value of xef is reasonably small for the records that have high impulsive
characteristics. It may be emphasized that the value of xef depends on the source
properties, local soil type, and path effects [8].

Referring to the plots of the velocity and acceleration of the near-field ground
motions shown in Figs. 3.1 and 3.2, the following observations can be made:

1. The frequency content of the ground velocities is about (0–5) Hz.
2. The frequency content of the ground accelerations is about (0–10) Hz.

Therefore, the frequency content of the ground acceleration is wider compared
to the frequency content of the ground velocity. The representation of near-field
ground motions using deterministic sine or cosine function of a single pulse may
fail to capture the aforementioned feature. This is particularly obvious for records,
such as, C02065, RRS228, TCU078 W, CPM000, and DZC180 (see Figs. 3.1 and
3.2). Single pulse representation does not account for the relatively wide frequency
content of the ground acceleration compared to the narrow frequency content of
the ground velocity. This is of essential importance since the ground acceleration,
not the ground velocity, is always used in estimating the structural response
through numerical integration of the equations of motion. A few researchers
observed this feature and showed that multiple pulses produce larger maximum
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response in linear structures compared to half and single pulses [11, 16–20]. Thus,
the problem in modeling near-field ground motions with a single equivalent pulse
is the incapability of the model to include amplitudes from lower and higher
frequencies other than the dominant pulse [11]. This gets automatically encap-
sulated in the ground acceleration leading to underestimation or overestimation of

C02065 TAB-TR RRS228

SCS052 TAK000 KJM000 YPT060

TCU068N TCU068W ALS-E TCU078W

LGP000 LCN275 WSM090 JOS090

H-E06230

C02065 ERZ-NS DZC180 PCD164

(a)

C02065
TAB-TR RRS228H-E06230

SCS052 TAK000 KJM000 YPT060

TCU068N TCU068W ALS-E TCU078W

LGP000 LCN275 WSM090 JOS090

CPM000 ERZ-NS DZC180 PCD164

(b)

Fig. 3.1 Near-field strong ground motion with distinct velocity pulses: a velocity time history,
b velocity Fourier amplitude spectra [41]
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the structural response. For instance, some records, such as, H-E06230, TAB-TR,
and TCU068N could be modeled with a single pulse. On the other hand, multiple
pulses can be seen in other records, such as, RRS228, TAK000, YPT060, and
DZC-NS. This problem can be overcome by the accurate representation of all the
pulses contained in the ground motion. An alternative, in which the ground

H-E06230 C02065 TAB-TR RRS228

SCS052 TAK000 KJM000 YPT060

TCU068N TCU068W ALS-E TCU078W

LGP000 LCN275 WSM090 JOS090

CPM000 ERZ-NS DZC180 PCD164

(a)

H-E06230 C02065
TAB-TR RRS228

SCS052 TAK000 KJM000
YPT060

TCU068N TCU068W ALS-E TCU078W

LGP000 LCN275 WSM090 JOS090

CPM000 ERZ-NS DZC180 PCD164

(b)

Fig. 3.2 Near-field ground motion with distinct velocity pulses: a acceleration time history,
b acceleration Fourier amplitude spectra [41]
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displacement is used instead of the ground acceleration in estimating the structural
response, has been recently proposed [11, 37]. This alternative, however, could be
computationally expensive and may introduce additional errors to the solution if
not used carefully.

To investigate the contribution of each time segment to the total energy of the
ground motion, it is first noted that the scaled Arias intensity is given as [36]:

It ¼
Z t

0

€xgðtÞ
� �2

dt

2
4

3
5

1=2

; ð3:1Þ

where €xgðtÞ is the ground acceleration. Similarly, the contribution to the
earthquake total energy from each frequency range can also be estimated in the
frequency domain by making use of the Parseval’s theoremR1
�1 ½€xgðtÞ�2dt ¼ ð1=2pÞ

R1
�1 jyðxÞj

2dx
� �

as follows:

EX ¼
ZX

�1

jyðxÞj2dx

2
4

3
5

1=2

¼
ZX

�1

yðxÞy�ð�xÞdx

2
4

3
5

1=2

: ð3:2Þ

Herein, yðxÞ is the Fourier transform of €xgðtÞ and y�ð�xÞ is the complex
conjugate function of yðxÞ: Therefore, we use Eq. (3.2) to estimate the contri-
bution of each frequency range to the total energy of the ground velocity by
replacing €xgðtÞ with _xgðtÞ:

Table 3.2 summarizes the percentage contribution of each frequency range to the
total energy of the ground velocity for the records of Table 3.1. For most of the
records, the contribution from the frequency range (0–1) Hz is about 70–90 % of the
total energy of the signal. The contributions from the frequency ranges between (1–2)
and (2–3) Hz are about 6–18 and 1–8 %, respectively. The average value of energy in
each frequency range across the set of records is also summarized in Table 3.2. The
total average value of the velocity intensity from (0–5) Hz is about 97 % of the total
intensity. These numerical results reveal that the ground velocity of near-field pulse-
like ground motions can be represented with a velocity function that has most of the
energy contained in the frequency range (0–1) Hz and the remaining of the energy
being located in the frequency range of (1–3) Hz. These numerical results confirm
the observation made by some researchers on the presence of multiple pulses in the
near-field records [16–20]. For example, the 1940 El Centro and the 1966 Parkfield
records contain multiple pulses.

In this chapter, we represent the ground velocity as follows:

_xgðtÞ ¼ eðtÞ _ugðtÞ; ð3:3Þ

where eðtÞ is a modulating envelope function that imparts the transient trend to the
ground motion, _ugðtÞ is a steady-state function (a stationary component), and dot
indicates differentiation with respect to time. This representation belongs to the
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class of uniformly modulated ground motions. Several models can be used to
describe the envelope function, such as, exponential, Gamma, Beta, and piecewise
linear models. In this study, we use two models of the exponential form which are
given as follows:

e1ðtÞ ¼ A expð�atÞ � expð�btÞ½ �; b[ a[ 0; ð3:4Þ

e2ðtÞ ¼ A expf�½2pðt � t0Þ=c�2g: ð3:5Þ

Here, the parameters of the envelope function a;b and k control the nonsta-
tionarity of the ground motion, A is a scaling constant and t0 is the time instant of
the peak pulse amplitude. Note that in the second model, the time instant of the
peak velocity t0 can be directly controlled. The plots of the envelope functions of
Eqs. (3.4) and (3.5) are shown in Fig. 3.3. Note that the value of the parameter k

Table 3.2 Percentage of Arias intensity in different frequency ranges to the total intensity for
near-field ground motion [41]

Event, station and record % Intensity to total intensity

(0–1) Hz (1–2) Hz (2–3) Hz (3–4) Hz (4–5) Hz

1940 El Centro, ELC#9, H-180 82.03 13.27 2.70 1.22 0.49
1940 El Centro, ELC#9, H-270 63.11 18.36 8.02 3.51 1.98
1966 Parkfield, Chol.#2, C02065 72.51 15.03 6.47 2.32 1.20
1971 San Fernando, LA HW, PCD164 77.79 11.84 6.00 1.43 1.03
1978 Tabas, Tabas, TAB-LN 91.37 6.36 1.24 0.40 0.10
1978 Tabas, Tabas, TAB-TR 82.73 9.33 2.70 1.66 0.96
1979 Imperial Valley, H-AEP045 68.78 14.28 6.48 4.65 1.58
1979 Imperial Valley, H-E06230 89.86 6.09 1.71 0.96 0.62
1981 Westmorland, WSM-090 94.47 3.66 0.80 0.35 0.15
1989 Loma Prieta, LGP000 65.57 8.56 6.13 3.01 2.61
1992 Erzincan, ERZ-NS 78.13 12.83 5.27 1.44 0.95
1992 Landers, LCN-275 67.43 20.11 6.41 2.13 0.79
1992 Landers, JOS-090 95.11 3.54 0.90 0.35 0.10
1992 Cape Mendocino, CPM000 86.75 8.30 1.98 1.03 0.60
1994 Northridge, Rinaldi, RRS228 83.43 10.93 2.98 1.37 0.55
1994 Northridge, Sylmar, SCS052 79.03 13.53 4.55 1.27 0.81
1995 Kobe, Takatori-000 67.06 25.15 4.29 1.50 0.69
1995 Kobe, Takatori-090 68.43 24.13 3.60 1.63 0.74
1995 Kobe, KJM-000 91.43 6.02 1.40 0.58 0.21
1995 Kobe, KJM-090 87.98 6.91 1.75 1.24 0.49
1999 Kocaeli, YPT060 85.46 7.23 3.61 1.50 0.89
1999 Chichi, TCU068-N 74.44 17.49 4.15 1.65 0.81
1999 Chichi, TCU068-W 34.44 24.50 12.49 8.87 5.55
1999 Chichi, ALS-E 53.52 16.41 8.95 6.37 4.01
1999 Chichi, TCU078 W 92.71 5.19 1.31 0.40 0.18
1999 Chichi, TCU089 N 69.05 16.61 6.11 3.27 1.57
1999 Duze, DZC180 72.65 16.72 5.83 2.01 0.95
Average value (total % = 97.12) 76.86 12.68 4.36 2.08 1.13
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can be used to control the envelope shape, and, thus the shape of the velocity pulse.
Based on the framework of analysis to be adopted (deterministic or probabilistic),
the ground velocity _ugðtÞ can be modeled as a deterministic steady-state function
or a stationary random process. The next sections develop the simulation of near-
field ground motions using deterministic and probabilistic models.

3.3 Representation of Near-field Pulse-Like Ground Motions
Using Deterministic Models

A simple, yet, realistic model for the velocity signal of near-field ground motions
with multiple pulses can be represented as [see Eq. (3.3)]:

_xgðtÞ ¼ eðtÞ _ugðtÞ ¼ eðtÞ
Xn

i¼1

vpi sin½2p fpiðt � tiÞ�; ð3:6Þ

where vpi; fpi are the ith amplitude and pulse frequency (fpi ¼ xpi=2p) and ti is the
associated time instant of peak amplitude. Based on the discussion presented in the
previous section, typical values of n are n� 1: Note that, when n ¼ 1; the model
reduces to similar models developed before, e.g. [15, 35]. To proceed further, the
ground acceleration can be obtained by differentiating Eq. (3.6) as follows:
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Fig. 3.3 Envelope function:
a Eq. (3.4), b Eq. (3.5) for
t0 ¼ 4 s [41]
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€xgðtÞ ¼ eðtÞ€ugðtÞ þ _eðtÞ _ugðtÞ: ð3:7Þ

Thus, for the envelope functions of Eqs. (3.4) and (3.5), the ground acceleration
is given as:

€xgðtÞ ¼ A½b expð�btÞ � a expð�atÞ�
Xn

i¼1

vpi sin½2p fpiðt � tiÞ�

þ 2pe1ðtÞ
Xn

i¼1

vpifpi cos½2p fpiðt � tiÞ�;
ð3:8Þ

€xgðtÞ ¼ 2p e2ðtÞ
Xn

i¼1

vpi fpi cos½2p fpiðt � tiÞ�

� 8p2ðt � t0Þ
c2

e2ðtÞ
Xn

i¼1

vpi sin½2p fpiðt � tiÞ�:
ð3:9Þ

Hence, the ground acceleration is given in a closed form eliminating numerical
techniques.

To examine the realism of the proposed model of Eqs. (3.6–3.9), we use these
equations to simulate the time history of the ground velocity. For the first
exponential model [Eqs. (3.4) and (3.8)], the envelope parameters are taken as
a ¼ 0:35, b ¼ 0:75 and A is selected such that the envelope function has a peak
value of unity. The number of velocity pulses n is taken as 1, 2, and 3, and the
total duration of the earthquake signal is adopted as 20 s. The pulse frequencies
are taken as 0.15, 0.35 and 0.60 Hz, and the associated amplitudes as 0.7, 1.0, and
0.5 m/s, respectively. Note that, the main pulse amplitude is taken at 0.35 Hz
while the other two secondary amplitudes are considered at 0.15 and 0.60 Hz.
The ground velocities are normalized to the same intensity using the Arias
intensity measure [36]. Figure 3.4 shows the plots of the time history of the
ground velocity and associated Fourier spectrum for different values of the model
parameters. It can be seen that, the shape of the ground velocity and the
amplitude at the main pulse frequency depend significantly on the number of
velocity pulses.

The simulated ground velocity using the second envelope function [Eqs. (3.5)
and (3.9)] is shown in Fig. 3.5. Herein, n = 1 and the pulse frequency = 0.35 Hz.
The value of the parameter c is varied to control the shape of the velocity pulse.
Again, it can be observed that the shape of the velocity signal and the associated
amplitude depend on the number of pulses adopted.

This section examined the representation of near-field pulse-like ground motion
using deterministic engineering models. The next section develops the represen-
tation of near-field pulse-like ground motions using probabilistic models.
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3.4 Representation of Near-Field Pulse-Like Ground Motions
Using Probabilistic Models

In this section, the ground motion is modeled as a nonstationary Gaussian random
process of zero mean. The ground velocity is again taken to be represented by Eq.
(3.3) but with _ugðtÞ modeled as a stationary random process. Referring to Eq. (3.6)
and considering the velocity amplitudes vpi; i ¼ 1; 2; . . .; n to be modeled as a set
of uncorrelated normal random variables of zero mean that satisfy the following
conditions:
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Fig. 3.4 Ground velocity and associated Fourier amplitude spectra with envelope function from
Eqs. (3.4), (3.8): a Single pulse fb ¼ 0:35 Hz, b Two pulses fb1 ¼ 0:15, fb2 ¼ 0:35 Hz, c Three
pulses fb1 ¼ 0:15, fb2 ¼ 0:35, fb3 ¼ 0:60 Hz [41]
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\vpivpj [ ¼ r2
i dij; i ¼ 1; 2; . . .; n;

dij ¼ 1 8 i ¼ j; dij ¼ 0; 8 i 6¼ j;
ð3:10Þ

where \:[ denotes the mathematical expectation, dij is the Kronecker delta, and
r2

i is the variance of the ith amplitude vpi: Under these conditions, _ugðtÞ is a
stationary Gaussian random process, and _xgðtÞ is a nonstationary Gaussian random
process. Note that, e(t) is a deterministic envelope function [see Eqs. (3.4) and
(3.5)]. The one-sided power spectral density function (PSDF) of the ground
velocity _ugðtÞ can be shown to be given as [see Eq. (3.6)]:

S _uðxÞ ¼ 2
Xn

i¼1

r2
i dðx� XiÞ ð3:11Þ
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Fig. 3.5 Ground velocity with envelope function from Eqs. (3.5) and (3.9), and n = 1: a c ¼ 2,
b c ¼ 4, c c ¼ 8, d c ¼ 12, e c ¼ 16, f c ¼ 20 [41]
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where Xi is the frequency of the ith pulse.
Figure 3.6 shows the PSDF for the set of records shown in Fig. 3.1. The PSDFs

for the stationary ground velocity _ugðtÞ obtained from Eq. (3.11), for alternative
values of the number of velocity pulses n, are shown in Fig. 3.7. Herein, the PSDF
of the ground acceleration is obtained as S€uðxÞ ¼ x2S _uðxÞ [38]. The plots of this
figure reveal that the proposed velocity pulse model is capable of representing
near-field pulse-like ground motion of multiple pulses. Multiple pulses observed in
recorded ground motions, such as, H-E06230, YPT060, ALS-E, LCN275, and
DZC180 can be represented by the model.

Simulated realizations for the time history of the ground velocity from the
PSDFs of Fig. 3.7 are shown in Fig. 3.8. This stochastic model when combined
with structural reliability methods (e.g. FORM/SORM) facilitates carrying out
probabilistic applications for near-field pulse-like ground motions, such as,
reliability assessment of elastic, and inelastic structures to this class of ground
motion [4, 39, 40]. The next section provides numerical demonstrations on the use
of deterministic and probabilistic models for response assessment of structures to
near-field ground motion.
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Fig. 3.6 Power spectral density function for near-field ground velocity [41]
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3.5 Numerical Applications

The deterministic model is considered first. The maximum displacement response
for single-degree-of-freedom (SDOF) elastic–plastic structures to the simulated
ground motions with different number of velocity pulses developed above is
computed. Figure 3.9a shows the inelastic response spectra for elastic–plastic
SDOF systems with damping ratio = 0.05 and yield strength = 4 9 104 N. It can
be seen that the first secondary pulse at 0.15 Hz has a very significant effect on the
structural response in the lower frequency range (0–2.0 Hz). This effect decreases
at higher frequencies. The second pulse at 0.60 Hz has minor effect on the
structural response. This could be attributed to the shift caused by this pulse to the
energy of the ground velocity in the frequency domain. The figure reveals also that
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Fig. 3.7 Power spectral
density function for the
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component of near-field
ground motion: a n = 1,
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the structure response is overly high, especially for inelastic structures of lower
initial frequencies.

To examine the reduction of the structural response of engineering structures in
the near-field region, we estimate the structure’s responses after adding supple-
mental dampers. Figure 3.9a depicts the displacement spectra for elastic–plastic
SDOF structures with 0.05 damping ratio under different number of pulses from
the deterministic model of Sect. 3.3. Similar plots with added viscous damping of
0.15 (i.e., total damping ratio = 0.20) are shown in Fig. 3.9b. Added viscous
damping reduces the maximum response significantly for structures of natural
frequency higher than about 1.0 Hz. The response in the lower frequency range of
(0–1.0) Hz is reduced by about 25 %. A slight difference in the structural response
for frequencies higher than about 5.0 Hz can be observed.
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The pseudo velocity spectra are also computed and plotted in Fig. 3.10a for the
ground motion for different number of pulses and damping ratio = 0.20. It can be
seen that the pseudo acceleration is higher and reaches a steady state for larger
number of pulses, particularly for frequencies larger than about 2.0 Hz. The
hysteretic energy dissipated by yielding is also estimated and shown in Fig. 3.10b.
The effect of the secondary pulses is seen to be substantially different from their
effect on the structural inelastic response. The difference in dissipated energy from
single and two pulses is seen to be in the lower frequency range of about
(0–1.0) Hz. The dissipated energy by yielding is almost constant for frequencies
higher than 2.0 Hz. The presence of the third frequency pulse causes the dissipated
energy by yielding to decrease.

In order to demonstrate the application of the stochastic model in assessing the
structural reliability, we consider a one-storey frame structure of storey stiffness
k ¼ 4:50� 105 N=m and mass = 4.50 9 105 kg (natural frequency = 1.0 Hz).
Since the input ground motion is a Gaussian random process and the structure is
linear, any response quantity of the structure, such as, the displacement, or a linear
transformation of the displacement (e.g. stress component or stress resultant) will
also be a Gaussian random process. Following the standard reliability terminology,
the structural response LðtÞ is denoted as the load effect that is a time-variant
quantity. The associated capacity of the structure (e.g. the maximum permissible
displacement or stress) is denoted by R. The determination of the structural failure
probability constitutes a time-variant reliability problem and is given as [39]
(Fig. 3.11):
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Pf ¼
Z1

0

PRðlÞ pLmðlÞ dl ð3:12Þ

where PRðrÞ is the probability distribution function of the capacity R and pLmðlÞ is
the probability density function of the load effect Lm ¼ max

0\t\Td

jLðtÞj (Td is the total

duration of the ground motion). Let the load effect be taken as the shear force in
the columns Lm ¼ ku tð Þ where u tð Þis the displacement. The structural capacity R is
defined as the maximum permissible yield force in the columns, modeled as a
normal random variable with lR ¼ 6:0� 104 N and rR ¼ 6:0� 103 N. Assuming
that the ground motion is modeled by Eq. (3.11) with the envelope function taken
as unity and making use of extreme value distribution of stationary normal random
processes, pLmðlÞ can be shown to be given as [39]:

pLmðlÞ ¼
Nþ0 lTd

k2r2
0L

exp � l2=k2 þ 2Nþ0 Tdr2
0L expð�l2=ð2k2r2

0LÞ
2r2

0L

� �
; 0� l�1

ð3:13Þ
Herein, Nþ0 is the average rate of zero crossing of the response process LðtÞ

given as Nþ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

2L=r
2
0L

p
=ð2pÞ; in which, r2

0L and r2
2L are the zeroth and the

second spectral moments of LðtÞ. These moments are given in terms of the PSDF
of the ground acceleration as:

r2
iL ¼

Z1

0

xijHLðxÞj2S€xg
ðxÞ dx; i ¼ 0; 2 ð3:14Þ

where HLðxÞ is the frequency response function of the response quantity LðtÞ. The
probability of failure from three pulses, two pulses, and one pulse was computed to
be 1.10 9 10-2, 2.0 9 10-3, and 3.0 9 10-3, respectively. This confirms the same
results obtained from the deterministic model.

Finally, it may be emphasized that, the probabilistic model can be combined
with standard reliability methods (e.g. FORM, SORM, importance sampling
technique, and response surface method) to assess the safety of inelastic structures
under near-field pulse-like ground motion. In this case, the exact evaluation of the
structure’s failure probability is not available in a closed form, but the theory of
reliability indices is used to provide an estimate of the notional safety of the
structure [4, 40].

3.6 Summary

Despite the lessons learned from the past damaging earthquakes, and despite the
large strong ground motion database accumulated worldwide during the last
76 years, the accurate prediction of future strong ground motions remains one of
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the major challenges for engineers to build a safe environment. This is particularly
of importance for engineering structures to be constructed in the near-fault region.
The widespread damage and inadequate performance of code-designed structures
during the 1994 Northridge (California) and the 1995 Kobe (Japan) earthquakes
have prompted seismologists and engineers of the essential importance of char-
acterizing and modeling near-field ground motions with impulsive nature. The
large velocity pulses associated with these two earthquakes have resulted from the
rupture directivity and the tectonic displacement (fling effect).

This chapter investigated the features of near-field ground motions with distinct
velocity pulses. Deterministic and probabilistic models for the representation of
this class of ground motions have been developed. These models belong to the
class of engineering models which aim to replicate some of the gross features
observed in strong ground motions at the near-field region. Both models account
for nonstationarity and multiple pulses in the ground velocity. The deterministic
model can be used for simulating pulse-like ground motion as inputs to time
history analysis of elastic and inelastic structures. The probabilistic model com-
bined with standard reliability methods (e.g. FORM, SORM, importance sampling
technique, and response surface method) can be used for reliability assessment of
elastic and inelastic structures. This model facilitates handling uncertainties in the
ground motion and variability in the structure properties. This chapter has also
studied the reduction of the structural responses using added supplemental
dampers.

References

1. Abbas AM (2002) Deterministic/reliability-based critical earthquake load models for linear/
nonlinear engineering structures. PhD. Thesis, Indian Institute of Science, Bangalore

2. Abbas AM, Manohar CS (2002) Investigations into critical earthquake excitations within
deterministic and probabilistic frameworks. Earthq Eng Struct Dynam 31:813–832

3. Abbas AM (2006) Critical seismic load inputs for simple inelastic structures. J Sound Vib
296:949–967

4. Abbas AM, Manohar CS (2007) Reliability-based vector nonstationary random critical
earthquake excitations for parametrically excited systems. Struct Saf 29:32–48

5. Takewaki I (2002) Seismic critical excitation method for robust design: a review. J Struct
Eng 128:665–672

6. Takewaki I (2004) Bound of earthquake input energy. J Struct Eng 130:1289–1297
7. Takewaki I (2006) Probabilistic critical excitation method for earthquake energy input rate.

J Eng Mech 132(9):990–1000
8. Moustafa A, Takewaki I (2010) Critical characterization of pulse-like near-fault strong

ground motion. Struct Eng Mech 34(6):755–778
9. Benioff H (1955) Mechanism and strain characteristics of the white wolf fault as indicated by

aftershocks sequence, earthquakes in Kern County, California during 1952. Calif Dept Nat
Res Div Mines Bull 171:199–202

10. Housner GW, Hudson DE (1958) The Port Hueneme earthquake of March 18, 1957. Bull
Seismol Soc Am 48(2):163–168

62 3 Simulation of Near-Field Pulse-Like Ground Motion



11. Moustafa A (2010) Discussion of analytical model of ground motion pulses for the design
and assessment of seismic protective systems. J Struct Eng 136:229–230

12. Anderson JC, Bertero VV (1987) Uncertainties in establishing design earthquakes. J Struct
Eng 113(8):1709–1724

13. Sasani M, Bertero VV (1978) Importance of severe pulse-like ground motions in
performance-based engineering: historical and critical review. In: Proceedings of the
twelfth world conference on earthquake engineering, Aukland, New Zealand

14. Bertero VV, Mahin SA, Herrera RA (1978) Aseismic design implications of near-fault San
Fernando earthquake records. Earthq Eng Struct Dynam 6:31–41

15. Mavroeidis GP, Papageorgiou AS (2003) A mathematical representation of near-fault ground
motions. Bull Seismol Soc Am 93(3):1099–1131

16. Alavi B, Krawinkler H (2004) Behavior of moment-resisting frame structures subjected to
near-fault ground motions. Earthq Eng Struct Dynam 33:687–706

17. Huang CT (2003) Considerations of multimode structural response for near-field earthquakes.
J Struct Eng 129:458–467

18. Makris N (1997) Rigidity–plasticity–viscosity: can electrorheological dampers protect base-
isolated structures from near-source ground motions? Earthq Eng Struct Dynam 26:571–591

19. Makris N, Chang SP (2000) Response of damped oscillators to cycloid pulses. J Eng Mech
126:123–131

20. Zhang J, Makris N (2001) Rocking of free-standing blocks under cycloidal pulses. J Eng
Mech 127(5):473–483

21. Malhotra PK (1999) Response of building to near-field pulse-like ground motions. Earthq
Eng Struct Dynam 28:1309–1326

22. Bray JD, Rodriguez-Marek A (2004) Characterization of forward-directivity ground motions
in the near-fault region. Soil Dyn Earthq Eng 24:815–828

23. Hall JH, Heaton TH, Halling MW, Wald DJ (1995) Near-source ground motion and its effect
on flexible buildings. Earthq Spectra 11:569–605

24. Iwan W (1997) Drift spectrum: measure of demand for earthquake ground motions. J Struct
Eng 123(4):379–404

25. Kalkan E, Kunnath SK (2007) Effective cyclic energy as a measure of seismic demand.
J Earthq Eng 11:725–751

26. Mavroeidis GP, Dong G, Papageorgiou AS (2004) Near-source ground motions, and the
response of elastic and inelastic single-degree-of-freedom (SDOF) systems. Earthq Eng
Struct Dynam 33:1023–1049

27. Cao H, Friswell MI (2009) The effect of energy concentration of earthquake ground motions
on the nonlinear response of RC structures. Soil Dyn Earthq Eng 29:292–299

28. Krawinkler H, Alavi B, Zareian F (2005) Impact of near-fault pulses on engineering design:
directions in strong motion instrumentation In: Gulkan P, Anderson JG (eds) Springer,
Dordrecht

29. Mavroeidis GP, Papageorgiou AS (2002) Near-source strong ground motion: characteristics
and design issues. In: Proceedings of the seventh US national conference on earthquake
engineering, Boston, Massachusetts, 21–25 July 2002

30. Moustafa A (2009) Discussion of the effect of energy concentration of earthquake ground
motions on the nonlinear response of RC structures. Soil Dyn Earthq Eng 29:1181–1183

31. Somerville PG, Smith N, Graves R, Abrahamson N (1997) Modification of empirical strong
ground motion attenuation relations to include the amplitude and duration effects of rupture
directivity. Seismol Res Lett 68(1):199–222

32. Baker JW (2007) Quantitative classification of near-fault ground motions using wavelet
analysis. Bull Seismol Soc Am 97(5):1486–1501

33. Baker JW (2008) Identification of near-fault velocity pulses and prediction of resulting
response spectra. In: Proceedings of the geotechnical earthquake engineering and structural
dynamics IV, Sacramento, CA, 18–22 May 2008

34. Suzuki S, Asano K (2000) Simulation of near source ground motion and its characteristics.
Soil Dyn Earthq Eng 20:125–136

References 63



35. He WL, Agrawal AK (2008) Analytical model of ground motion pulses for the design and
assessment of seismic protective systems. J Struct Eng 134(7):1177–1188

36. Arias A (1970) A measure of earthquake intensity. In seismic design of nuclear power plants.
MIT press, Cambridge, pp 438–468

37. Wilson EL (2002) Three-dimensional static and dynamic analysis of structures: a physical
approach with emphasis on earthquake engineering, 3rd edn. Computers & Structures Inc.,
CA

38. Clough RW, Penzien J (2003) Dynamics of structures, 3rd edn. Computers & Structures Inc,
CA

39. Abbas AM, Manohar CS (2005) Reliability-based critical earthquake load models. Part 1:
linear structures. J Sound Vib 287:865–882

40. Abbas AM, Manohar CS (2005) Reliability-based critical earthquake load models. Part 2:
nonlinear structures. J Sound Vib 287:883–900

41. Moustafa A, Takewaki I (2010) Deterministic and probabilistic representation of near-field
pulse-like ground motion. Soil Dyn Earthq Eng 30(5):412–422

42. PEER. Pacific Earthquake Engineering Research Center (2005). http://peer.berkeley.edu/
smcat/search.html

64 3 Simulation of Near-Field Pulse-Like Ground Motion

http://peer.berkeley.edu/smcat/search.html
http://peer.berkeley.edu/smcat/search.html


Chapter 4
Critical Characterization and Modeling
of Pulse-Like Near-Field Strong
Ground Motion

4.1 Introduction

Pulse-like (also known as resonant, cycloidal pulses, or impulse-like) ground
motion has been observed in near-field (also near-fault or near-source) records
with directivity focusing or fling effects. This class of ground motion is signifi-
cantly influenced by the rupture mechanism, substantially different from ordinary
ground motion records, and can be characterized by the following features [1–8,
among others]: (1) long period and large amplitudes, (2) high peak ground velocity
(PGV)/peak ground acceleration (PGA) and peak ground displacement
(PGD)/PGA ratios, (3) unusual response spectra shapes, and (4) concentration of
energy in one or very few pulses.

Pulse-like ground motions occurring close to urban and metropolitan regions
can place severe demands on buildings and other facilities in the near-fault region.
The 1923 Kanto earthquake is a striking example of a great earthquake occurring
close to a heavily populated city killing about 140,000 persons (59,000 in Tokyo)
and causing structural damage of more than $2.0 billion [9]. Near-field effects have
been known for many years and became a focus of research after the 1994
Northridge and the 1995 Kobe earthquakes. The 1957 Port Hueneme earthquake of
magnitude 4.7 was the first earthquake that consisted of a single pulse [5]. Since
the energy was concentrated in one pulse, the damage caused by this earthquake
was unusual for a moderate earthquake. Similarly, the 1966 Parkfield earthquake
measuring 61 m from the source consisted of three pulses [1].

Table 4.1 summarizes information of 27 near-fault records from 15 earthquakes
[10]. Figure 4.1 shows the acceleration, velocity, and displacement of three pulse-
like records and one ordinary record (1940 El Centro) from Table 4.1. The res-
onance and large velocity and displacement amplitudes of pulse-like motions are
evident from Fig. 4.1. For instance, the 1999 Chi-Chi record exhibits unusual high
PGV and PGD (see Fig. 4.1d and Table 4.1).

I. Takewaki et al., Improving the Earthquake Resilience of Buildings,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-4144-0_4,
� Springer-Verlag London 2013
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The widespread damage caused to code designed structures during the 1994
Northridge and the 1995 Kobe earthquakes have motivated engineers and
researchers for better and deeper understanding of near-fault strong ground
motions of impulsive characteristics. Meanwhile, the increasing availability of
strong ground motion data (e.g., from Japan, California, Taiwan, Turkey, India,
and Iran) and the ease in accessing these data facilitate studying this class of
ground motions and their effects on structures. With this in mind, the objectives of
this chapter are: (1) to demonstrate the distinctive features of near-fault pulse-like
ground motions and their differences from ordinary records in addition to those
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Fig. 4.1 Near-fault ground motion; a 1940 El Centro #9, H180, b 1966 Parkfield earthquake
(Cholame # 2, C02065). c The 1995 Kobe earthquake (Takatori, TAK000), d The 1999 Chi-Chi
earthquake (TCU068-N) (Moustafa and Takewaki [46] with permission from Techno Press)
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explained in Sect 3.2, (2) to investigate the structural performance to this class of
ground motions using energy concepts and damage indices, and (3) to provide
simple mathematical models for pulse-like ground motion using optimization
techniques, energy concepts, and damage indices for sites having limited earth-
quake data. In order to facilitate the formulation, the next section summarizes
various measures for characterizing near-fault ground motions.
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Fig. 4.1 (continued)
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4.2 Characteristics of Near-Field Pulse-Like Strong
Ground Motion From Another Viewpoint

The characterization of near-field pulse-like ground motions was made in Sect 3.2
and some features of near-field pulse-like ground motion were explained. In this
section, the representation of near-field pulse-like ground motions is provided from
another viewpoint.

The potential of strong ground motions to damage structures can be quantified
in terms of measures of the recorded free-field ground motion or in terms of
measures that are based on the structure performance during ground shaking.
These measures can be described as follows:

1. Free-field measures: These are parameters based on the ground motion records,
such as magnitude, energy, PGA, PGV, PGD, frequency content, duration, and
epicentral distance. These parameters do not depend on the structure’s prop-
erties, and, therefore have limited capability in quantifying the earthquake
potential to damage structures.

2. Elastic response spectra: These include response spectra, spectrum intensity,
and drift spectra. Such parameters do not account for inelastic structural
behavior including effects from amplitude and number of cycles of inelastic
stress reversals.

3. Inelastic response spectra: These parameters are based on the maximum
inelastic response of single-degree-of-freedom (SDOF) structures, such as
displacement, ductility, interstory drift, and design spectra. These parameters
do not include effects from the duration of the ground motion and cumulative
energy dissipated by the structure.

4. Energy spectra: This includes the cumulative energy dissipated by damping and
yielding mechanisms. These parameters account for fundamental features of
inelastic response and cumulative effects of repeated cycles of inelastic
deformation and duration of ground motion. These measures require normali-
zation with respect to the structure’s energy dissipation capacity.

5. Damage spectra: These measures represent the variation of a damage index
versus the natural period of structures. By definition, damage indices contain
contribution from maximum deformation excursion and cumulative energy
dissipated by the structure, and thus, are expected to be robust measures for the
earthquake potential to damage the structures.

In this chapter, we utilize the above measures and develop new measures for the
frequency content of the ground acceleration to characterize pulse-like strong
ground motion for the set of records listed in Table 4.1. The two horizontal
components of the 1940 Imperial Valley earthquake (ordinary records) of MW ¼
6:9 are also included in the set of records for comparison. The following sections
provide details on the above measures.
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4.2.1 Measures Based on Recorded Free-Field
Ground Motion

A distinct pattern of near-fault pulse-like ground motion can be observed in the
time histories of the ground velocity and displacement, and also in the large ratios
of PGV/PGA and PGD/PGA (see Fig. 4.1 and Table 4.1). For example, such
pulse-like records exhibit large velocity and displacement amplitudes compared
with other ordinary records. An example can be found in the TCU068 NS com-
ponent of the 1999 Chi-Chi earthquake. The ratios of PGV/PGA and PGD/PGA
are substantially large for these records compared with other ordinary records.

Figure 4.2 illustrates the Fourier amplitude spectra for the earthquake accel-
erations presented in Fig. 4.1. Each acceleration record is scaled to unit Arias
intensity [11] as an acceleration power. In other words, the square root of the area
under the square of the ground acceleration is set to unity. Note that, although this
scaling affects the amplitude of the ground acceleration, this procedure does not
alter the frequency content. It can be seen that most of the near-fault records (e.g.,
1995 Kobe and 1999 Chi-Chi earthquakes) possess narrow frequency contents
compared with other ordinary ones, e.g., the 1940 El Centro records. It is also
remarkable that the peak Fourier amplitude of the Kobe and Chi-Chi records are
higher than those of ordinary records. We present a new measure for quantifying
the frequency content of the ground acceleration below.

The Arias intensity of the ground acceleration is given as [11]:

Et ¼
Z1

�1

½€xgðsÞ�2ds

2
4

3
5

1=2

ð4:1Þ

Equation (4.1) provides a measure of the acceleration energy (or power)
computed in time domain. Let €XgðxÞ ¼

R1
�1 €xgðtÞe�ixtdt denote the Fourier

transform of the ground acceleration. Recalling Parseval’s theorem expressed by

Z1

�1

½€xgðtÞ�2dt ¼ 1
2p

Z1

�1

j€XgðxÞj2dx; ð4:2Þ

a similar measure can be obtained in frequency domain:

EX ¼
Z1

�1

j€XgðxÞj2dx

2
4

3
5

1=2

¼
Z1

�1

€XgðxÞ€X�gð�xÞdx

2
4

3
5

1=2

ð4:3Þ

In Eq. (4.3), €X�gð�xÞ is the complex conjugate function of €XgðxÞ: The intro-
duced new measure for the frequency content of the ground motion is taken as
ðxa;xbÞ: Herein, xa and xb express the frequencies at which a and (1 - b) times
the Fourier energy EX are attained, respectively. Thus, the frequency bandwidth is
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taken to be given as xef ¼ xb � xa (see Fig. 4.3). Typical values of a and b can be
taken as a = b = 0.05 or any reasonable values (e.g. 0.01 or 0). When
a = b = 0.05, xef can be understood as a measure of the frequencies contributing
to the strong phase of the ground motion [12]. Furthermore, the bandwidth xef can
be normalized to provide a measure bounded between zero and one:
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Takewaki [46] with permission from Techno Press)
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�xef ¼
xb � xa

Xu � X0
ð4:4Þ

The frequency content (X0;Xu) is generally defined in the range of 2p 9

(0.5 * 50) rad/s depending on the site soil condition and the fault-rupture
properties. When �xef is close to zero, the ground motion resembles the resonance
phenomenon or pulse-like trend. An example of this scenario is a harmonic signal
of a single or a few frequencies. For example, it is expressed by €xgðtÞ ¼
A sinðxgtÞ; where A;xg are the acceleration amplitude and dominant frequency,
respectively. When �xef is significantly larger than zero, the ground acceleration
will be rich in frequencies. The frequency bandwidth of the ground motion can
also be quantified based on the random vibration theory. That is expressed by

xs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2 � x2
1

q
; xi ¼

Z1

�1

xij€XgðxÞjidx

, Z1

�1

j€XgðxÞj2dx ð4:5Þ

In Eq. (4.5), x1 is the central frequency of the ground acceleration and xs is the
radius of gyration as a measure of the dispersion of the center of mass of the
Fourier spectrum function from the central frequency. This measure comes from
the work of Vanmarcke [13, 14] that he used for quantifying the frequency
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bandwidth of stationary random processes in terms of the moments of the power
spectral density (PSD) function. In this chapter, the Fourier spectrum is used for
the ground acceleration instead of the PSD function. The frequency xs can also be
normalized with respect to x2 to provide a measure �xs that is bounded between
zero and one.

The quantified values of �xef and �xs for the 27 earthquake records of Table 4.1
are shown in the same table. The parameters a and b are taken as a = b = 0.01.
The values of �xef are understood to correlate well with the frequency bandwidth of
the ground accelerations. Note here that �xs is inversely proportional to the fre-
quency bandwidth. These results clearly reveal that �xef is an accurate descriptor
for the frequency content of the ground acceleration.

The energy of the ground acceleration is an important parameter for charac-
terizing earthquake ground motions [11, 12, 15, 16]. For example, the expressions
of the acceleration energy in time and frequency domains are given by Eqs. (4.1)
and (4.3), respectively. The time and frequency variations of the energy of the
ground motion can be useful indicators of the potential of earthquake ground
motions to damage structures. For instance, near-fault ground motion can cause
severe damage to structures due to the large input energy in a short duration to the
structure. This feature can be well captured by examining the time variation of the
acceleration energy and the relation between the structure fundamental natural
frequency and the dominant frequency of the ground motion [15, 17]. The com-
putation and quantification of the energy of the ground motion in the frequency
domain are essential for this purpose since it reflects clearly the acceleration
energy at various frequencies. For this purpose, two energy measures are used for
characterizing the earthquake properties. The first measure is the energy rate in
time domain [18, 19] which represents the instantaneous incremental energy of the
ground motion in time domain per unit time. The second measure is a new measure
and is the incremental energy of the ground motion in frequency domain per unit
frequency. These measures are given as:

�EtðtiÞ ¼
Etðtiþ1Þ � EtðtiÞ

tiþ1 � ti
¼ DEtðtiÞ

Dti
; �EXðxiÞ ¼

EXðxiþ1Þ � EXðxiÞ
xiþ1 � xi

¼ DEXðxiÞ
Dxi

ð4:6a; bÞ

where

EtðtÞ ¼
Z t

�1

½€xgðsÞ�2ds

2
4

3
5

1=2

; EXðxÞ ¼ 2
Zx

0

j€XgðcÞj2dc

2
4

3
5

1=2

ð4:7a; bÞ

Many years ago, Trifunac and Brady [12] proposed an energy measure for the
ground acceleration by normalizing the energy with respect to the total duration of
the ground motion. Note that �EtðtÞ in Eq. (4.6a, b) provides a robust measure of the
acceleration energy at discrete time instants.
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The plots of the two measures of Eq. (4.6a, b) for the records presented in
Fig. 4.1 are shown in Figs. 4.4b and 4.5b. Figures 4.4a and 4.5a illustrate the plots
of the energies given by Eq. (4.7a, b). Note that all records are normalized to unit
Arias intensity. The effectiveness of the energy measures �EtðtÞ and �EXðxÞ in
characterizing pulse-like ground motion records is evident from the plots shown in
Figs. 4.4 and 4.5. For instance, the Chi-Chi record has most of its energy at about
38 s. In frequency domain, the energies of the Kobe and Chi-Chi records are
concentrated in a narrow frequency range. It can also be seen that the peak
amplitude of the Chi-Chi and Kobe records are substantially higher than other
records. It is believed that the measures �xef ; �EtðtÞ and �EXðxÞ provide important
and useful information on the nature of the ground motion. However, the use of
these measures alone for quantifying possible damage of the structure without the
inclusion of the structural parameters is inadequate. The following section tackles
this limitation by considering measures by paying attention to the structural
responses.

4.2.2 Measures Based on the Structural Response

Figures 4.6a and b show the elastic and inelastic response spectra for the records in
Fig. 4.1. These plots represent the maximum elastic and inelastic pseudo velocity
of an SDOF system versus the natural period of the system, respectively. A viscous
damping model of damping ratio = 0.05 is adopted for elastic and inelastic sys-
tems. For the inelastic case, the material nonlinearity is modeled by an elastic–
plastic force-deformation law. The yield displacement and strength are assumed to
be xy ¼ 0:10 m and fy ¼ 104 N: All records are normalized to the PGA of 0.30 g.
The significant differences in the maximum responses of pulse-like records from
ordinary records are remarkable. Kobe and Chi-Chi records produce significantly
higher responses compared with ordinary records.

The energy spectrum of the ground acceleration represents the plot of the
maximum energy with respect to the natural period of a structure. In order to do
this, we consider the equation of motion of an elastic–plastic SDOF system driven
by a single component of the ground acceleration €xgðtÞ:

m€xðtÞ þ c _xðtÞ þ fsðtÞ ¼ �m€xgðtÞ ð4:8Þ

In Eq. (4.8), m and c are the mass and damping coefficient of the structure and
fsðtÞ is its hysteretic restoring force. Integrating Eq. (4.8), we get the following
relation [17, 20–25]:

EK þ ED þ ES ¼ EI ð4:9Þ

where EK;ED;ES;EI are the relative kinetic energy (although physically not
exact), the energy absorbed by damping, the strain energy, and the earthquake
input energy to the structure, respectively. EKðtÞ ¼ m _x2ðtÞ=2 and ESðtÞ is
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composed of the cumulative unrecoverable hysteretic energy EHðtÞ and elastic
recoverable energy EeðtÞ ¼ kx2ðtÞ=2; where k is the initial stiffness.

We construct the spectra (ED þ EH) of dissipated energy for the acceleration
records shown in Fig. 4.1. These results are presented in Fig. 4.6c. The distinct
differences in the energy spectra of pulse-like records are evident. The pulse-like
records are seen to produce higher energy demands than ordinary records.

Structural damage under strong ground motions occurs not only due to the
maximum deformation or ductility, but also due to the hysteretic cumulative
energy dissipated by the structure. The literature on structural damage measures of
buildings under strong ground motion is versatile [26–28]. Damage indices are
based on either a single or combination of structural response parameters. Mea-
sures that are based on a single response parameter, such as the maximum ductility
or the maximum energy dissipated during the ground shaking, neither incorporates
information on how the earthquake input energy is imparted on the structure nor
how this energy is dissipated. Therefore, the definition of the structural damage in
terms of a single response parameter is inadequate. Damage indices can be
established by comparing the response parameters demanded by the earthquake
with the corresponding structural capacities. The damage index developed by Park
and co-workers is the well-known and most commonly used damage index due to
its simplicity and extensive experimental calibration with the field observations in
earthquakes. That damage index is given by the following form [29]:

DIPA ¼
xmax

xu

þ k
EH

fyxu

¼ lmax

lu

þ k
EH

fyxylu

ð4:10Þ

In Eq. (4.10), xmax and EH are the maximum absolute displacement and max-
imum dissipated hysteretic energy under the earthquake, respectively. In addition,
lu is the ultimate yield ductility capacity under a monotonic loading and k is a
positive constant weighting the effect of cyclic loading on structural damage. The
state of the structural damage is defined in the following form:

(a) Repairable damage, when DIPA\0:40;
(b) Damaged beyond repair, when 0:40�DIPA\1:0; and
(c) Total or complete collapse, when DIPA� 1:0:

These criteria are based on calibration of DIPA for experimental results and field
observations after earthquakes [29]. Equation (4.10) demonstrates that both the
maximum ductility and hysteretic energy dissipation contribute to the structural
damage during ground motion. Here, the damage is expressed as a linear com-
bination of the damage caused by excessive deformation and that contributed by
repeated cyclic loading effect. It should be noted that the quantities xmax;EH

depend on the loading history, while the quantities k; xu; fy are determined only
from experimental tests. The numerical results on DIPA are plotted in Fig. 4.6d.
Herein, lu is assumed to be 6 and k ¼ 0:15: From the numerical results, it is
evident that pulse-like records produce more damage than ordinary records for

78 4 Critical Characterization and Modeling



structures having natural period greater than 0.70 s. However, the examination is
narrow and more elaborated discussion should be necessary.

Near-field ground motions were characterized in this section using measures
that are based on the recorded free-field ground motion and those that are based on
the structural responses and damage indices. It has been shown that near-fault
pulse-like earthquake ground motions possess distinctive features compared with
ordinary records, and also produce large structural responses and damage indices.
The following section provides simple analytical expressions for modeling near-
fault pulse-like earthquake ground motions.

4.3 Modeling Near-Field Pulse-Like Ground Motion

It was noted in the introduction section that real recorded ground motions exhibit
the resonance nature when the energy of the earthquake ground motion is con-
centrated in a narrow frequency range. The concept and method of critical exci-
tation may provide a useful tool for modeling such a pulse-like or resonant ground
motion for a given structure. This discussion has been made frequently [18, 20,
30–33]. The damage caused by the critical ground motions can be larger (some-
times significantly) than those from ordinary ground motions, since such a ground
motion is tailor-made to produce the maximum response. In this section, a simple
analytical representation of this class of ground motion is made using optimization
techniques and simple procedures are provided for solving the optimization
problem. These simple analytical expressions can be easily and effectively used by
the structural engineer to assess the structural safety in a simple, but reliable
manner without numerical integration of the equation of motion to obtain the
structural response.

4.3.1 Representation of Pulse-Like Ground Motion Using
Trigonometric Functions

A simple functional representation of concerned pulse-like ground motion can be
expressed as:

€xgðtÞ ¼ A sinðxptÞ
_xgðtÞ ¼ A½1� cosðxptÞ�=xp

xgðtÞ ¼ A½t � sinðxptÞ=xp�=xp; 0\t� Tp ¼ 2p=xp

ð4:11Þ

In Eq. (4.11), A is a constant representing the acceleration amplitude and xp is the
pulse frequency of the ground motion.

This simple representation has been used earlier for modeling near-fault pulse-
like ground motions [7]. In that reference, the velocity record is used to derive the
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pulse frequency xp and the acceleration amplitude as A ¼ ðxp _xpmax
Þ=2: An

improved analytical model for near-fault pulse-like ground motions was developed
by He and Agrawal [34]. In that reference, the velocity pulse is represented as a
sinusoidal function modulated by an exponential decaying envelope function. In
this model the velocity is expressed by

_xgðtÞ ¼ Ctne�at sinðxpt þ tÞ; t� t0 ð4:12Þ

In Eq. (4.12), xp is the pulse frequency, C is an amplitude scaling factor, t is a
phase angle, a is a constant that controls the modulation function, n is a non-
negative integer parameter controlling the skewness of the pulse envelope in time,
and t0 is the starting time point of the pulse. These authors derived the analytical
expressions for the ground acceleration and displacement together with those for
the displacement response of SDOF systems. This model is used for the seismic
performance-based design of passive energy dissipation structures [35].

In this section, a resonant or pulse-like ground motion is modeled for linear
structures. For this modeling, the parameters xp and A of the ground motion are
computed by optimization techniques so that the structural response is maximized.
Assume that the ground motion is given by Eq. (4.11) and the structure exhibits
linear elastic behavior with zero initial conditions. The displacement response of
the SDOF structure can then be given by

xðtÞ ¼ �mA

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2Þ2 þ 4g2r2

q sinðxpt � hÞ; h ¼ tan�1 2gr

1� r2

� �
ð4:13Þ

where r is the ratio of the pulse frequency xp to the structure natural frequency,
xn; h is a phase angle of response, and g is the structural damping ratio. Hence, the
displacement response is given in a closed-form and thus numerical integration of
the equation of motion is eliminated. In addition, the errors associated with the
numerical integration are also eliminated.

It can be shown that the clear resonance of the displacement, velocity, and

acceleration responses occur at xn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2g2

p
; xn; xn=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2g2

p
; respectively. For

viscous damping model of g ¼ 0:03; these values are 0:9991xn; xn; 1:0009xn;
respectively. Similarly, the resonant frequencies for g ¼ 0:05 are 0:9975xn; xn;
1:0025xn: For practical applications the resonance frequency can be taken equal to
xn:

It may be noted that the representation of ground motion discussed above does
not account for the nonstationarity or the transient nature of the ground motion.
The representation of the ground motion developed here can be utilized for pre-
liminary analysis and design of structures. The optimization problem is solved in
two steps. First, the dominant frequency of the ground motion is taken to coincide
with the structure natural frequency. Subsequently, the acceleration amplitude is
determined so that the structure response is maximized subject to predefined
constraints. These procedures will be demonstrated below.
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4.3.1.1 Energy Constraint

Arias intensity was introduced originally to measure the power of acceleration
[11]. Arias intensity is recognized as the most commonly used measure of
earthquake energy or power. Mathematically, this constraint is given by the fol-
lowing form (see Eq. (4.1)):

IA ¼
Z1

0

½€xgðtÞ�2dt

2
4

3
5

1=2

ð4:14Þ

Using Eq. (4.11), the parameter A can be shown to be given by

A ¼ IA=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ1

0

½sinðxptÞ�2dt

vuuut ð4:15Þ

After this process, the problem reduces to computing the value of the parameter
A from the above equation, while the pulse frequency is taken to coincide with the
structure fundamental natural frequency.

4.3.1.2 PGV Constraint

In earlier works, the parameters characterizing the pulse model are estimated so
that the model possesses the pulse frequency and peak velocity amplitude observed
in previous recorded ground motions. Implicit constraints on the peak values of
acceleration and displacement and the ground motion energy are automatically
considered and included due to the closed-form representation adopted [36]. In this
case, _xgðtÞ is explicitly constrained to its peak value N. Then the parameter A leads
to

A ¼ xpN=j1� cosðxptÞjmax ð4:16Þ

Now, the problem reduces to finding the value of the parameter A from
Eq. (4.16). The velocity constraint is known and recognized to be more effective
than the acceleration constraint [15].

The model considered here is called Model I in the numerical analysis. The
representation of a pulse-like ground motion presented above does not account for
the nonstationarity of the ground motion. Since the nonstationarity of the ground
motion is very important in the proper characterization of ground motions, the
following section tackles this limitation.
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4.3.2 Representation of Pulse-Like Ground Motion Using
Trigonometric Functions Modulated
by Envelope Function

The nonstationarity of ground motion can be well accounted for by modulating the
sine signal of Eq. (4.11) with an exponential envelope function as follows:

€xgðtÞ ¼ eðtÞ€ugðtÞ ¼ A½expð�atÞ � expð�btÞ� sinðxptÞ ð4:17Þ

In Eq. (4.17) the parameters a and b are introduced to control the nonstation-
arity of the ground acceleration. These parameters can be calculated so that they
make the expression of Eq. (4.17) match the nonstationarity trend of past recorded
ground accelerations [18, 20, 30–33]. The displacement response of the SDOF
structure to this input can be shown to be given by

xðtÞ ¼ ½Ba expð�atÞ þ Bb expð�btÞ� cosðxptÞ
þ ½Da expð�atÞ þ Db expð�btÞ� sinðxptÞ

ð4:18Þ

where the coefficients Ba and Da are given by

Ba ¼
�2Axpða� gxnÞ

4x2
pða� gxnÞ2 þ ða2 � x2

p � 2gxnaþ x2
nÞ

2

Da ¼
�Aða2 � x2

p � 2gxnaþ x2
nÞ

2

4x2
pða� gxnÞ2 þ ða2 � x2

p � 2gxnaþ x2
nÞ

2

ð4:19Þ

The parameters Bb;Db can be obtained from the above expressions by replacing
a with b. The advantages of this expression are (1) the elimination of the numerical
integration in calculating the structural response and also the error involved in the
numerical integration, (2) the exclusion of nonlinear optimization techniques. The
model considered here is called Model II in the numerical analysis.

The numerical results for Models I and II are summarized in Table 4.3. The
energy and PGV constraints are taken as 3.26 m/s1.5 and 0.30 m/s, respectively.
These values are determined to reflect the intensity and PGV of the 1940 El Centro
NS record. The elastic and elastic–plastic responses of the same structural model
to El Centro 1940 NS component are also included in Table 4.3. The parameters of
the elastic–plastic structural models are taken as given in Sect. 2.2. It can be seen
that the energy constraint (case 1) provides realistic response quantities compared
with those produced with the PGV constraint (case 2). It is also noticeable that the
elastic linear model is not sufficient especially when dealing with the extreme
loads of pulse-like trend.

Since inelastic responses are important in the seismic design of structures, the
following section accounts for inelastic structural behavior in modeling pulse-like
ground motions.
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4.4 Damage-Based Critical Earthquake Ground Motion
for Inelastic Structures

4.4.1 Problem Formulation

As seen and discussed in the introduction and the previous sections, ground
motions in near-fault regions affected by directivity focusing or fling effects
possess a peculiar pulse-like trend. It may be possible that the dominant frequency
of such ground motion coincides with the structure fundamental natural frequency.
In such a case, the ground motion is sometimes termed ‘critical excitation’ and
produces the largest response in the structure under certain conditions or frame-
works. Comprehensive reviews of previous works on this topic can be found in the
references [18, 20, 30–33]. The use of critical excitation methods is generally
associated with safety assessment of important structures to be constructed in
seismically active regions having limited or sparse earthquake data. The method
provides a rational answer to the question on the worst-case scenario that can (or
may) happen to the structure under uncertain situations. This worst-case scenario
represents one of the main concerns for structural engineers. The method relies on
the high uncertainty associated with earthquake occurrence and its properties.
Since inelastic responses are important in the seismic design of structures, this
section characterizes pulse-like ground motions for inelastic structures.

Most of the theories for critical excitations deal with elastic structures and
displacement and (or) acceleration as critical measures except a few works. The
historical sketch can be found in [33]. Unlike earlier work in which the critical
earthquake is defined as that to produce the maximum response, we develop
earthquake loads that cause the maximum damage in the structure using energy
concepts and damage indices. The ground acceleration is represented by

€xgðtÞ ¼ eðtÞ
XNf

i¼1

Ri cosðxit � /iÞ

¼ A0½expð�atÞ � expð�btÞ�
XNf

i¼1

Ri cosðxit � /iÞ
ð4:20Þ

In Eq. (4.20), A0 is a scaling constant and the parameters a and b represent the
transient trend in €xgðtÞ: Ri and /i are 2Nf unknown amplitudes and phase angles,
respectively, and xi; i ¼ 1; 2; . . .;Nf are the frequencies presented in the ground
acceleration that are selected to span satisfactorily the frequency content of €xgðtÞ:
In constructing critical ground accelerations, the envelope function is introduced to
be a known one. The information on energy E, PGA M1, PGV M2, and PGD M3 are
also assumed to be available. This enables one to define the following constraints
[20, 30]:
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R1
0
½€xgðtÞ�2dt

� �1=2

�E;

max
0\t\1

j€xgðtÞj �M1;

max
0\t\1

j _xgðtÞj �M2;

max
0\t\1

jxgðtÞj �M3;

M5ðxÞ� j€XgðxÞj�M4ðxÞ

ð4:21Þ

In Eq. (4.21), €XgðxÞ is the Fourier transform of €xgðtÞ: From Eq. (4.20), the
constraints of Eq. (4.21) can be expressed in terms of the unknown variables
Ri;/i; i ¼ 1; 2; . . .;Nf . Those expressions can be summarized as

A2
0

PNf

m¼1

PNf

n¼1
RmRn

R1
0
½expð�atÞ�expð�btÞ�2 cosðxmt�/mÞcosðxnt�/nÞdt

� �1
2

�E

max
0\t\1

jA0½expð�atÞ�expð�btÞ�
PNf

n¼1
Rn cosðxnt�/nÞj�M1

max
0\t\1

jA0
PNf

n¼1

Rt
0

Rn½expð�asÞ�expð�bsÞ�cosðxns�/nÞds

�A0
PNf

n¼1

R1
0

Rn½expð�asÞ�expð�bsÞ�cosðxns�/nÞdsj�M2

max
0\t\1

jA0
PNf

n¼1

Rt
0

Rn½expð�asÞ�expð�bsÞ�ðt�sÞcosðxns�/nÞds

�A0t
PNf

n¼1

R1
0

Rn½expð�asÞ�expð�bsÞ�cosðxns�/nÞdsj�M3

M5ðxÞ�jA0
PNf

n¼1

R1
0

Rnfexp½�ðaþ ixÞt��exp½�ðbþ ixÞt�gcosðxnt�/nÞdtj�M4ðxÞ

ð4:22Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

: The bounds M4ðxÞ and M5ðxÞ are introduced to replicate the
Fourier spectra of past records on the critical ground acceleration [37, 38] and are
given by

M4ðxÞ ¼ E max
1� i�Nr

j�Vgi
ðxÞj; M5ðxÞ ¼ E min

1� i�Nr

j�Vgi
ðxÞj ð4:23Þ

In Eq. (4.23) the function �Vgi
ðxÞ; i ¼ 1; 2; . . .;Nr represents the Fourier

transform of the ith normalized accelerogram €vgi
ðtÞ computed using the Fast Fourier

Transform.
Now, the problem of deriving critical earthquake loads can be posed as

determining the variables y ¼ fR1;R2; . . .;RNf
;/1;/2; . . .;/Nf

gT such that DIPA

given by Eq. (4.10) is maximized under the constraints of Eq. (4.22).
It may be emphasized that, the ground energy rate is a more effective measure

than the energy constraint in influencing the structural responses. A few
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researchers have confirmed the effectiveness of the energy rate of the ground
motion in producing larger structural responses [39, 40]. Note, however, that the
energy of the ground motion indicates the earthquake magnitude and can be easily
estimated from the time histories of the ground motion. The energy rate of the
ground motion, on the other hand, is a time-dependent function. Constraining the
energy rate of the ground motion requires imposing this constraint at discrete
points of time which will increase the computational loads. This constraint can be
implemented in the same way as the Fourier amplitude spectra constraints have
been imposed (see Eqs. (4.21) and (4.22)). An alternative is to derive the critical
ground velocity by maximizing the energy rate of the ground motion. Takewaki
[18] has discussed the earthquake input energy rate to the structure in modeling the
critical earthquake loads.

4.4.2 Solution Procedures

The nonlinear constrained optimization problem stated above is solved using the
sequential quadratic programming (SQP) method [41]. In the numerical method,
the following convergence criteria are adopted:
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Fig. 4.7 Critical earthquake accelerations and associated critical responses for case 1 (Moustafa
and Takewaki [46] with permission from Techno Press)
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jfj � fj�1j � e1; jyi;j � yi;j�1j � e2 ð4:24Þ

In Eq. (4.24), the function fj is the objective function at the jth iteration, yi,j is
the ith optimization variable at the jth iteration and e1; e2 are small quantities to
be specified. The inelastic deformation of the structure is estimated by solving
the equation of motion in the incremental form [20]. In distributing the fre-
quencies of Eq. (4.20), it was found to be advantageous to place more fre-
quencies within the half bandwidth of the natural frequency of the elastic
structure and to select one of these frequencies to coincide exactly with this
frequency. It seems that this enables the energy of the ground motion to get
distributed around the structure fundamental natural frequency and to facilitate
rapid convergence of the optimization procedure. In the numerical analyses,
several initial guesses were examined and it was found that the optimization
procedure converges to the same optimal solution.

It may be emphasized that the quantities lðtÞ ¼ umax=uy and EHðtÞ do not reach
their respective maxima at the same time. In this case, the optimization problem is
solved at discrete time steps and the optimal solution y� ¼ ½R�1;R�2; . . .;

R�Nf
;/�1;/

�
2; . . .;/�Nf

�T is the one that produces the maximum index DIPA across all
time points. The critical earthquake loads are then characterized by the accelera-
tions and associated damage indices, inelastic deformations and energy dissipated
by the structure. This model is called Model III in the numerical analysis.
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Fig. 4.8 Critical earthquake accelerations and associated critical responses for case 4 (Moustafa
and Takewaki [46] with permission from Techno Press)
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4.4.3 Illustrative Example

Illustrative examples are discussed in this section. Consider an elastic–plastic SDOF
building frame with mass = 9 9 103 kg, initial stiffness k = 1.49 9 105 N/m,
and viscous damping model of 0.03 damping ratio. The initial natural circular
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Fig. 4.9 Fourier amplitude of critical acceleration: a case 1, b case 4 (Moustafa and Takewaki
[46] with permission from Techno Press)

Table 4.2 Nomenclature of constraint scenarios for Models I, II, and III (Moustafa and Take-
waki [46] with permission from Techno Press)

Case Models I and II Model III

1 Energy Energy and PGA
2 PGV Energy, PGA, PGV, and PGD
3 – Energy, PGA and UBFS
4 – Energy, PGA, UBFS, and LBFS

UBFS: upper bound of Fourier spectrum, LBFS: lower bound of Fourier spectrum

Table 4.3 Response parameters of SDOF (xn = 4.10 rad/s) to alternative acceleration inputs
(Moustafa and Takewaki [46] with permission from Techno Press)

Response quantity Earthquake input load

El Centro NS record Critical input
(model I)

Critical input
(model II)

Critical input
(model III)

Case 1 Case 2 Case 1 Case 2 Case 1 Case 4

Max. displ.a (m) 0.7518 1.1601 4.8370 2.04 3.85 – –
Max. displ.b (m) 0.0918 0.0839 0.1653 0.1145 0.1655 0.16 0.13
Ductility 1.37 1.25 2.46 1.71 2.47 3.18 2.10
DIPA 0.26 0.72 3.84 0.66 1.31 0.97 0.39

a Linear elastic analysis
b Elastic–plastic analysis
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frequency is about 4.10 rad/s and the yield force fy ¼ 104N and the yield dis-
placement uy ¼ 0:07 m. The structure is assumed to start vibrating from rest.

The constraint quantities are set as E = 4.17 m/s1.5, M1 = 4.63 m/s2 (0.47 g),
M2 = 0.60 m/s, and M3 = 0.15 m. The envelope parameters are set as A0 = 2.17,
a = 0.13, and b = 0.50. The upper and lower constraint values on the Fourier
spectra are evaluated from the set of past records in Table 4.1 measured at a
medium soil. The convergence limits e1; e2 are set as 10-6. The frequency content
of €xgðtÞ is defined as 2p 9 (0 * 25) rad/s.

The nonlinear constrained optimization problem is solved using the SQP
method through the Matlab optimization toolbox [42]. To select the number of
frequency terms Nf ; a parametric study was carried out and the number Nf ¼ 51
was found to give satisfactory results.

The constraint cases considered in obtaining critical earthquake loads are listed
in Table 4.2. The numerical results obtained are presented in Figs. 4.7, 4.8, 4.9,
Tables 4.3, and 4.4. Figure 4.7 shows the results for ‘constraint scenario 1’ and
similar results for case 4 are presented in Fig. 4.8. Each figure shows the time
history of the critical ground acceleration, the inelastic structural deformation, the
hysteretic force, and the energy, dissipated by the structure. Based on extensive
analyses of the numerical results, the following observations are induced:

1. The frequency content and Fourier amplitude of the critical earthquake ground
motion are strongly dependent on the constraints imposed (see Table 4.3). If
available information on earthquake ground motion data is limited to the total
energy and PGA, the critical input is resonant to the structure natural frequency
or of pulse-like nature and the structure deformation is conservative (see
Fig. 4.7 and Table 4.3). Furthermore, most of the power of the Fourier
amplitude is concentrated at a frequency close to the natural frequency of the
elastic structure while the amplitudes at other frequencies are low and uni-
formly distributed (see Fig. 4.9a). It appears that the results for case 1 coincide
well with earlier works reported by Abbas [20] and Takewaki [38]. These
results, however, are substantially different from those of the elastic structure
where all energy of the acceleration is centered around x0 [30]. Additional
constraints on the Fourier amplitude spectra (see Table 4.3) require the Fourier
amplitude of the critical acceleration to get distributed across other frequencies
(see Fig. 4.9b). The critical acceleration possesses a dominant frequency close
to the average frequency of past records. It should be noted that the realism of

Table 4.4 Sensitivity analysis of the critical damage index to the constraints parameters
(Moustafa and Takewaki [46] with permission from Techno Press)

Parameter E M1 M2 M3 M4ðxÞ M5ðxÞ a b

‘1 0.51 0.18 0.14 0.23a 0.16a 0.13 0.04 0.06
‘2 4.52 1.60 1.71 2.04a 1.42a 1.15 0.36 0.53
a these values represent ‘1; ‘2; at the frequency at which M4ðxÞ; M5ðxÞ reach their maximum
values
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the critical earthquake input is also evident from the maximum damage index it
produces. For instance, the damage index for case 4 is 0.39 which is substan-
tially smaller than 0.97 for case 1.

2. To study the influence of the damping ratio on the computed critical earthquake
ground motion, limited studies were further carried out. The damping ratio is
changed (namely, 0.01, 0.03, and 0.05) while all other parameters are kept
unchanged. The critical earthquake ground motion is computed by solving a
new optimization problem for each case. The value of the damping ratio does
not seem to significantly influence the frequency content of the earthquake
acceleration. It was observed, however, that the ductility ratio and the maxi-
mum inelastic deformation for the structure decrease toward higher damping
ratios. Thus, the ductility ratio decreases to 1.98 for the damping ratio of 0.05,
while the ductility ratio increases to 2.95 for damping ratio = 0.01. It is also
observed that the inelastic structure with higher damping ratio dissipates more
energy through damping compared to that with lower damping ratio. The
damage index also reduces when the damping ratio becomes large.

3. The sensitivity of the critical damage index with respect to variation in values
of the constraint values E, M1, M2, M3, M4ðxÞ; M5ðxÞ and the envelope
parameters a; b are studied using numerical methods. To examine the sensi-
tivity of DIPA with respect to a specific parameter, the value of this parameter is
changed by 1 % while all other parameters are held unchanged, and the opti-
mization problem is solved again. This leads to the calculation of the per-
centage change in the optimal damage index ‘1; and also the ratio of change in
the optimal damage index DIPA to the change in the parameter value ‘2:
Table 4.4 summarizes the results of these calculations for case 4. For the
bounds M4ðxÞ; M5ðxÞ of constraints, the change of 1 % is taken to be uniform
across all frequencies. Table 4.4 reveals that the changes in energy E and PGD
M4ðxÞ alter the optimum solution considerably compared with similar changes
in other parameters. The optimum solution is less sensitive to changes in the
envelope parameters.

It may be noted that models I and II represent near-field pulse-like ground
motions with an equivalent main pulse. Model III accounts for the multi-pulses in
the ground velocity. It is well known that this class of ground motion may contain
several pulses. Furthermore, the earthquake ground motion has been treated as
deterministic in nature. The modeling of this class of ground motion using the
probabilistic approach facilitates handling uncertainties in the ground motion,
variability in the structure’s parameters, and assessing the structure’s reliability.
These aspects have been recently investigated by the present authors [43]. Fur-
thermore, the reduction of the structural responses under strong ground motion
including critical ones by passive dampers has also been studied [44, 45].
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4.5 Summary

This chapter investigates the distinctive characteristics of near-field pulse-like
strong ground motions. This class of ground motion can be characterized using
measures based on analyses of the free-field earthquake records or based on the
associated structural response. A new measure of the effective frequency content
of the ground acceleration has also been developed. An additional measure for the
frequency content of the ground motion that is based on the work of Vanmarcke
[13, 14] has also been examined. It has been shown that these two measures
successfully identify resonant or pulse-like ground motions. The energy rate of the
ground acceleration in time and frequency domains were also employed for the
same purpose. Pulse-like ground motions have also been characterized in terms of
measures of the structural performance during the ground shaking (response,
energy, and damage spectra). This chapter also provides simple analytical models
for near-fault pulse-like ground motion which can be used by the structural
engineer to assess the safety of linear structures without the need for numerical
integration of the equations of motion.

Given the central importance of considering nonlinear behavior of structures
under strong ground motion, the mathematical modeling of near-field pulse-like
ground motions has also been investigated for inelastic structures using the critical
excitation method and nonlinear sequential optimization techniques and damage
indices. It has been shown that the proposed method can successfully model pulse-
like ground motions at sites having limited earthquake data.
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Chapter 5
Characteristics of Earthquake Ground
Motion of Repeated Sequences

5.1 Introduction

Ground acceleration sequences separated by short time intervals have been
observed at several parts of the world, including Japan, Mexico, Turkey, Italy, and
California. However, such ground motion data is not available in catalogues for
easy access to structural engineers. It should be emphasized that the 2011 off the
Pacific coast of Tohoku earthquake had multiple sources and exhibited multiple
sequences (see Fig. 2.3a, b). Ground motion sequences can create significant
damage in structures due to the accumulation of the inelastic deformation from the
repeated sequences before any structural repair is possible. Additionally, the low-
frequency content in secondary sequences may cause resonance in lower modes of
the damaged structure leading to further damage to the structure (see Chap. 10).
Accordingly, the verification of the structure adequacy to withstand multiple
acceleration sequences without collapse is of essential concern in earthquake
engineering, especially since current seismic codes do not account for their effects.

Elnashai et al. [1] shed lights on this subject and reported significant increase in
the force demand of ductile structures to multiple acceleration sequences. The
dynamic analysis of inelastic structures under acceleration sequences has been
studied by Amadio et al. [2] and Das et al. [3]. Simulated acceleration sequences have
been used as input to inelastic structures. Extensive investigations on the displace-
ment ratio of SDOF inelastic structures driven by repeated earthquakes have been
carried out by Hatzigeorgiou and Beskos [4]. 112 ordinary accelerograms recorded at
four different soil sites have been used to produce two and three repeated sequences.
More recently, Hatzigeorgiou [5, 6] studied the properties of near-fault and far-fault
repeated acceleration sequences using ordinary recorded accelerograms for different
soil types. He derived analytical expressions for the inelastic displacement ratio and
the ductility demand in terms of the period of vibration, the viscous damping ratio,
the strain-hardening ratio, the force reduction factor, and the soil class. Most research
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carried out so far has focused on the effect of the repeated earthquake shakings on
SDOF systems. However, a few studies have dealt with multi-degree-of-freedom
(MDOF) systems (e.g. [7–9]). These studies have shown that repeated acceleration
sequences can produce large deformations in the structures. It may be emphasized
that the characteristics of recorded earthquakes of multiple sequences have not been
studied before. In other words, the structural response to repeated ground motions
have been extensively studied but the characteristics of strong ground motion of
multiple sequences have not been studied.

Given the drastic growth in strong ground motion data worldwide over the last
76 years, it is of interest to investigate the characteristics of repeated acceleration
sequences. This aspect is of relevance to (a) the mathematical modeling and
simulation of ground motion acceleration sequences, (b) the selection of earthquake
ground motion records as input to the time-history analysis of inelastic (or loading-
history dependent) structures, and (c) the performance-based seismic design of
structures. The objectives of this chapter are (1) to provide a list of recorded earth-
quake ground motions with multiple sequences, (2) to explain the characteristics of
ground motion sequences using actual recorded data, (3) to examine if such ground
motion occurs at the near-fault region or at the far-fault region, and whether it is
limited to certain soil condition, and (4) to discuss the inelastic structural response to
recorded earthquake ground motions of multiple sequences. It is emphasized in this
chapter that it is needed to consider repeated acceleration sequences in seismic
design of structures beyond its elastic limit or with loading history-dependent
properties. It may be recalled that the 1994 Northridge and the 1995 Hyogoken-
Nanbu earthquakes have motivated modern seismic codes to introduce modification
factors to design spectra in the near-fault regions [10–15]. The characteristics of
recorded ground motion sequences are discussed in the next section.

5.2 Characteristics of Earthquake Records
of Repeated Sequences

The horizontal and vertical components of the ground accelerations of a set of 54
ground accelerations are adopted from 18 earthquakes recorded in seven countries.
Table 5.1 summarizes information on these records. This information includes the
moment magnitude, the observed number of sequences, the site-source distance, the
total duration, the peak ground acceleration (PGA), and the Arias intensity (square
root of the area under the square of the ground acceleration) [16]. The Arias intensity
was discussed in Chap. 4. The earthquake date, time of occurrence, the site, the
recording station, and the local soil condition beneath the recording station are also
included in the table. The digitized accelerations data have been accessed from the
COSMOS database Center [17], the Kyoshin-Network [18], the Kiban Kyoshin-
Network [19], and the Pacific Earthquake Engineering Research Center [20]. These
records cover a variety of earthquake magnitude, duration, soil condition, site-
source distance, and PGA. These records represent strong ground motion in the
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range of M C 5.0 or PGA C 0.05 g. The selection criterion of these records was
not based on the site-source distance, the duration, or the soil class. Each record is
reported as a single accelerogram of multiple acceleration sequences. Note also that,
some of the secondary sequences represent aftershocks following the mainshock.
Some of the secondary sequences of a few earthquakes represent foreshocks pre-
ceding the mainshock. In fact, it is difficult to explain the silence time separating the
acceleration sequences unless they are interpreted as mainshock/aftershock events.
Further investigations from seismologists and engineers may provide deeper
understanding of the multiple acceleration sequences in future.

Table 5.1 summarizes also information on the three acceleration components of
two ordinary earthquakes without sequences. The first one is the 1940 Imperial
Valley (El Centro) earthquake recorded at El Centro array #9 and the second one is
the 1995 Hyogoken-Nanbu (Kobe) earthquake recorded at the Kobe university
recording station for comparison. Figure 5.1 shows the three acceleration
components for earthquakes having two and three sequences (see Table 5.1).
Based on analyses of these records, the following remarks can be made.

1. Source-site distance: Most records (except Katsurao and Bhuj earthquakes)
represent strong ground motion measured in the near-fault region with site-
source distance less than about 23 km. The three acceleration records of each
earthquake contain distinct sequences. The sequence trend is also observable
in the velocity and the displacement waves. The acceleration records of the
Katsurao earthquake (site-source distance = 39 km) have two sequences. The
vertical acceleration only of Bhuj earthquake contains two sequences which
could be attributed to the local soil effects [17]. Thus, multiple sequences can
often be observed at the near-fault and the far-fault regions.

2. Influence of source mechanism: Most earthquake ground motion records of
repeated sequences are measured at sites with various soil conditions. A few
records, however, are reported at sites with rock condition. This implies that
the occurrence of repeated acceleration sequences is independent of the local
soil condition beneath the recording station. For this reason, such ground
motion is primarily influenced by the source mechanism, where the energy at
the source is released in sequences separated by short-intervals of time.

3. Number of acceleration sequences: The observed number of acceleration
sequences is generally two or three (see Table 5.1 and Fig. 5.1). On the other
hand, a larger number of sequences have been observed in a few records. For
instance, the vertical acceleration of the 2004 Niigata-ken Chuetsu earthquake
recorded at Ojiya (NIG019) contains five sequences (see Table 5.1). Note that,
the number of acceleration sequences depends on the records considered. Note
also that, a clear criterion for defining the effective number of acceleration
sequences does not exist, and is introduced in the next section.

4. Total duration and duration of sequences: The total duration of acceleration
records listed in Table 5.1 is remarkably larger than those of ordinary records
and ranges between about 1.0 and 10.0 min. Some records, however, have
shorter durations than 1.0 min (see Table 5.1). The duration of individual
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sequences (duration between 5 and 95 % of the sequence energy) known as
bracketed duration [21] is significantly small, typically about 5–30 s. The
individual sequences of most records have sharp build up, short strong-phase
and sudden decay. The time-intervals separating the acceleration sequences
are about 1–3 times the duration of the individual sequences. Note that, the
earthquake total duration depends on the triggering mechanism of the seismic
instrument, the processing methodology of the ground motion adopted by each
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Fig. 5.1 Ground accelerations with multiple sequences. a 2004 Niigata-ken Chuetsu earthquake
at Nagaoka-shisho (NIG028). b 2004 Niigata-ken Chuetsu earthquake at Koide (NIG020)
(Moustafa and Takewaki [32] with permission from Techno Press)
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agency and the criterion adopted for selecting earthquake ground motion
records of multiple sequences. For instance, if aftershock records are included,
the total duration could increase remarkably.

5. Frequency content of sequences: Figure 5.2 shows the Fourier amplitude
spectra for each sequence of the NS acceleration components of the 2004 Niigata-
ken Chuetsu and the 2007 Honshu earthquakes (Table 5.1). These plots show that
the frequency content and the amplitude for the individual sequences of the same
record could be significantly different. Hence, in simulating repeated acceleration
sequences, the consideration of identical sequences may not be accurate.

6. Distribution of energy in individual sequences: In general, the individual
sequences of the same record have different energies and durations. The first
sequence (mainshock) of most records has larger energy and longer duration
than secondary sequences in general. In addition, the individual sequences
have sharp build up of energy (see Figs. 5.3 and 5.4).

7. PGA: The PGA is generally contained in the first sequence (mainshock) and
the largest observed PGA is 1.33 g. In this study, we limited our attention to
ground motions with the minimum PGA of about 0.05 g. Some records,
however, have PGA slightly less than 0.05 g but the magnitude is M C 5.0.

8. Magnitude range: The earthquake magnitude corresponding to the ground
motions reported in this chapter ranges between 5.0 and 7.4 (see Table 5.1).
One earthquake, however, has magnitude = 3.9, but the associated PGAs are
larger than 0.05 g.
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9. Correlation of acceleration components: Three acceleration components of
each earthquake exhibit significant correlations (Fig. 5.1). The corresponding
sequences in the three records of the same earthquake have similar durations
and time instants of initial build up, strong-phase and decay. Therefore, as
expected, the cross-correlation functions of the acceleration components are
significant during the strong shaking durations (Fig. 5.5).

10. Mainshock and aftershocks: The 2004 Niigata-ken Chuetsu earthquakes
represent a series of earthquake events containing the mainshock and 16
aftershocks occurring during about 3 weeks. The first six aftershocks occurred
in the same day of the mainshock. Each event contains distinct acceleration
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sequences. Note, however, that some earthquakes have foreshock and after-
shocks but the individual records do not have acceleration sequences. These
earthquakes are not included here.

Section 5.3 investigates the earthquake characteristics, such as, the energy,
frequency content, and effective number of sequences and effective duration of
repeated acceleration sequences.

5.3 Characteristics of Free-Field Acceleration Records
of Repeated Sequences

In this section, the time variation of the energy is examined of strong earthquake
ground motion of repeated sequences. The definition of the effective number of
sequences is introduced for later convenience. The acceleration energy (or power)
is defined in terms of the Arias intensity as follows [16].
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Fig. 5.4 Time-variation of energy for ordinary earthquakes. a 1940 Imperial valley earthquake
(El Centro array #9). b 1995 Hyogoken-Nanbu earthquake (Kobe University) (Moustafa and
Takewaki [32] with permission from Techno Press)
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EðtÞ ¼
Z t

0

€xðsÞ½ �2ds

2
4

3
5

1=2

; ð5:1Þ

where €xðtÞ is the ground acceleration and s is a dummy time variable. It is well-
known that the total input energy can be estimated by replacing t with td (td = total
duration) in the above equation.

Figure 5.3 illustrates the time variation of earthquake ground motion energy
estimated using Eq. (5.1) for three acceleration components for the earthquake
records shown in Fig. 5.1. Figure 5.4 shows the ground motion energy for one of the
horizontal accelerations (H1 in Table 5.1) for the two ordinary earthquakes without
sequences. The multiple sequences have repeated build up of energy during each
sequence and no significant contribution from the time-intervals separating
sequences. This feature is more remarkable in the Niigata-ken Chuetsu accelero-
grams recorded at Nagaoka-shisho (Fig. 5.3a). It can be seen that the contribution to
the total energy from the first sequence is remarkably high (72–87 %) while that from
the secondary sequences is small (6–20 %). Note that, minor secondary sequences of
low amplitude exist in some records. These sequences have small build up of energy
(Fig. 5.3b). The contribution from these secondary sequences to the total energy is
very small. This observation is used to define the effective number of sequences in
earthquake ground motion records of multiple sequences below.

It is proposed and discussed here that the effective number Nef of ground motion
acceleration sequences be defined based on the contribution of the individual
sequence energy to the total energy of the ground acceleration. Let the total energy
of the ground motion acceleration signal be described by Eq. (5.1) with t = td. The
effective number of sequences is defined as those sequences that contribute by a
minimum of a % to the total acceleration energy where a is a positive quantity to
be specified. For instance, if a = 5, the earthquake acceleration records of
Fig. 5.1a have two sequences while those of Fig. 5.1b have three sequences. The
ratio of the PGA in each sequence to that of the entire record can also be used as a
criterion for defining Nef. This criterion, however, excludes important information,
such as, the duration and the energy of each sequence. Similarly, the definition of
the effective acceleration duration tef can also be introduced. Herein, tef is defined
as the sum of individual effective durations of all acceleration sequences excluding
the time intervals separating sequences. This duration reflects the actual duration
of strong shaking of the ground. Based on this, the effective duration for the 2004
Niigata-ken Chuetsu earthquake recorded at Nagaoka-shisho is about 50 s. This
definition can be used in comparing the effective duration of ground shaking of
ordinary records with records of multiple sequences. As for the effective duration,
there are several definitions, e.g. the bracketed duration [21] as mentioned above.

To examine the frequency content and amplitude of repeated acceleration
sequences, the short-time Fourier transform (STFT) is effective and used. Herein,
the Fourier transform is estimated for snapshots or a sliding window of the original
acceleration signal as follows:
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Xðx; tÞ ¼
Z1

�1

€xðsÞgðs� tÞe�ixsds ð5:2Þ

In Eq. (5.2) X(x, t) is the Fourier transform of the acceleration at time t, g(s) is
a sliding rectangular window of unit intensity and i ¼

ffiffiffiffiffiffiffi
�1
p

: Thus, for a fixed time
t = tj, X(x, tj) represents the local spectral content of the ground acceleration as a
function of the frequencies near tj.

Figure 5.6 shows the STFT for the three records of the 2004 Niigata-ken
Chuetsu earthquake recorded at Nagaoka-shisho (NIG028) and those recorded at
Koide (NIG020) (see Table 5.1). These plots clearly reflect the non-stationarity of
the acceleration sequences in time and frequency domains. Note that, the records
of Fig. 5.6a have peak amplitudes at the frequency range (0–4) Hz, while those of
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Fig. 5.6 Short-Time Fourier amplitude spectra for repeated earthquake sequences. a 2004
Niigata-ken Chuetsu earthquake at Nagaoka-shisho (NIG028). b 2004 Niigata-ken Chuetsu
earthquake at Koide (NIG020) (Moustafa and Takewaki [32] with permission from Techno Press)
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Fig. 5.6b have peak amplitudes near 8.0 Hz. The frequency content of the ground
accelerations is seen to be distributed around (0–30) Hz. It can also be observed
that the vertical accelerations are richer in frequency content compared to the
horizontal components within the frequency range of (0–20) Hz. Note that, the
STFT may lead to smooth spectra compared to the ordinary Fourier spectra when
the length of the window function g(s - t) is small. The inelastic response of
SDOF structures to repeated acceleration sequences is examined in the next
section.

5.4 Response Quantities of Inelastic Structures
to Acceleration Sequences

Let us examine the displacement response, the input and dissipated energies, and
the damage of SDOF inelastic structures to strong ground motions with multiple
acceleration sequences. Let €xðtÞ be the multiple acceleration sequences. It is first
noted that the equation of motion for the SDOF inelastic structure is given by [22]

m €uðtÞ þ c _uðtÞ þ fsðtÞ ¼ �m €xðtÞ ð5:3Þ

where m, c are the mass and the damping coefficient of the system, fs(t) is the
nonlinear hysteretic restoring force, u(t) is the displacement response, and dot
indicates differentiation with respect to time. Herein, u(t) is estimated using
numerical integration techniques. The input energy per unit mass for the SDOF
structure is given as follows [23].

EiðtÞ ¼ �
Z t

0

€xðsÞ _uðsÞds ð5:4Þ

The kinetic energy (pseudo because relative velocity is used) and elastic strain
energy are given, respectively, by

EKðtÞ ¼ _u2ðtÞ=2; ESðtÞ ¼ f 2
s ðtÞ=ð2k0Þ ð5:5Þ

In Eq. (5.5) k0 is the initial elastic stiffness. The hysteretic and damping
energies are given by

EHðtÞ ¼
Z t

0

_uðsÞfsðsÞds� ESðtÞ;EDðtÞ ¼
Z t

0

c _u2ðsÞds ð5:6Þ

The literature on damage of structures during earthquakes and the use of
damage indices to quantify the associated damage level are vast. Moustafa [29]
and Khashaee [24] presented extensive reviews on this subject. Several mathe-
matical expressions for quantifying the damage level of SDOF inelastic structures
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have been developed by many researchers. It may be meaningful to review some
representative ones. The first damage index is given in terms of the maximum
ductility demanded by the ground motion lmax [25]:

DIl ¼
lmax � 1
lu � 1

ð5:7Þ

In Eq. (5.7) lu is the ultimate ductility capacity of the structure under mono-
tonic loading estimated from experimental tests. The second damage index is
given in terms of the normalized hysteretic energy demanded by the earthquake
ground motion [26]:

DIH ¼
EH=ðfyuyÞ

lu � 1
ð5:8Þ

where EH, fy, uy are the hysteretic energy demand, the yield strength, and the yield
displacement, respectively. Park and coworkers expressed damage as a linear
combination of the maximum ductility and the hysteretic energy [27, 28]. That is
given by

DIPA ¼
lmax

lu

þ b
EH=ðfyuyÞ

lu

ð5:9Þ

In Eq. (5.9) b is a positive constant that weights cyclic loading effects on structural
damage. The parameter b ranges typically between 0 and 0.30. The quantities
lmax, EH depend on the loading history while b, lu, fy are determined from exper-
imental tests. Note that, the first damage index does not account for energy
dissipation while the second damage index is dependent on the hysteretic energy. The
third damage index accounts for both effects from maximum ductility and cyclic
loadings. This damage index, although has some limitations, has been widely used by
many researchers due to its simplicity and extensive experimental calibrations for
structures during earthquakes [29]. Due to this damage index, the structure’s damage
state is defined as (a) repairable damage (DIPA \ 0.40), (b) damaged beyond repair
(0.40 B DIPA \ 1.0), and (c) total collapse (DIPA C 1.0) [28].

To investigate the effect of the acceleration sequences on the structural inelastic
response, the response is estimated of an elastic-perfectly plastic (simply elastic–
plastic) SDOF structure of initial period = 2.0 s to the NS acceleration of the 2004
Niigata-ken Chuetsu earthquake recorded at Nagaoka-shisho. A viscous damping of
0.03 damping ratio is adopted. The yield strength and initial stiffness are taken as
5 9 103 N and 1.49 9 105 N/m, respectively. These parameters are modified later
to examine their influence on the structure’s response. The dynamic analysis is
carried out using the Newmark-b linear acceleration method with time
step = 0.005 s.

Figure 5.7 shows the displacement, the input energy, the hysteretic energy, the
damping energy, the force–displacement hysteretic loops, and the damage indices
(Eqs. (5.7)–(5.9)). The displacement response reveals clearly that each accelera-
tion sequence drives the structure to a new equilibrium position (see Fig. 5.7a) and
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that a significant permanent deformation remains at the end of the overall ground
shaking. The second sequence slightly increases the maximum displacement
(secondary sequences of other records increase the maximum displacement by up
to 20 %) but has a substantial effect on the input, hysteretic, and damping energies
(see Fig. 5.7b). It can be observed that most of the input energy (about 82 %)
results from the first sequence. However, the maximum displacement response is
attained during the second sequence.

The influences of the second acceleration sequence on the force–displacement
hysteretic loops and on the hysteretic energy demand for two different yield
strength values are shown in Fig. 5.8. The second sequence causes more yielding
events to the structure (see Fig. 5.8 and Table 5.2). The force–displacement
hysteretic loops, the hysteretic energy, and damping energy are significantly
influenced by the second acceleration sequence. For instance, EH increases by
about 17 % and ED increases by about 25 % due to the second acceleration
sequence. Furthermore, the input energy and the displacement response can be
observed to be larger for the lower yield strength. This observation is confirmed by
the hysteretic loops shown in Figs. 5.8a, b. The structure with a larger yield
strength has small damage indices while that with a lower yield strength exhibits
large damage indices. Thus, DIPA = 1.62 (total collapse) for fy = 5 9 103 N,
DIPA = 0.55 (damaged beyond repair) for fy = 1 9 104 N and DIPA = 0.27
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(repairable damage) for fy = 2 9 104 N (b = 0.12, lu = 8.0). The associated
ductility demands (8.19, 3.04, and 1.82) correspond to high, moderate, and low
ductility levels, respectively. It appears that the effect of the second sequence on
the Park and Ang damage index is small (about 5 %). However, the damage index
in Eq. (5.8) increases by about 16 % due to the effect of the second sequence.
When the yield strength decreases from 1 9 104 N to 5 9 103 N, the maximum
ductility demand increases 2.7 times, the maximum hysteretic energy decreases by
about 70 %, the number of yield points doubles, the permanent plastic deformation
increases 5 times, DIPA increases 2.9 times (the damage state changes from
‘damaged beyond repair’ to ‘total collapse’), and DIl increases about 3.5 times
(see Table 5.2). Hence, the structural response depends on the yield parameters of
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the structural model. The structural response under the earthquake records listed in
Table 5.1 has been computed and the general feature was found to be the same.

To examine the influence of the structure’s initial natural period on the inelastic
response to different acceleration sequences, the responses of three inelastic
structures with three different initial natural periods T0 = 0.3, 1.0, and 3.0 s are
estimated under the horizontal acceleration (H1) of the earthquake records shown
in Table 5.1. These natural periods represent typical structures of short-period
(\0.5 s), medium-period (0.5–1.5 s), and long-period ([1.5 s). The same response
quantities are also determined for the two ordinary records. Elastic–plastic and
bilinear inelastic force–deformation laws have been considered (fy = 1 9 104 N
and 1 = 0.03).

The results of these analyses are presented in Fig. 5.9 and Table 5.3. Figure 5.9
shows the time variation of the input energy and the damage index DIPA for SDOF
elastic–plastic structures to two earthquake records with two sequences and for the
ordinary records. It can be observed that the input energy and the damage indices
depend on the structure’s fundamental natural period and the dominant period and
intensity of the input acceleration. For instance, the NS component of the 2004
Niigata-ken Chuetsu earthquake (NIG028) produces the maximum input energy
and the maximum damage index for the structures with short- and medium-
periods. The NS record of the 2004 Niigata-ken Chuetsu earthquake (NIG020)
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Fig. 5.9 Time-variation of input energy and Park and Ang damage index for elastic–plastic
structures under different earthquake inputs. a Input energy. b Damage index (Moustafa and
Takewaki [32] with permission from Techno Press)
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results in the least input energy and damage index. The 1940 El Centro record
provides the largest input energy and damage indices for the structure with long-
period (this record has large amplitude near T0 = 3.0 s). The structures with short-
and medium-periods are either damaged with the level of repairable damage
(DIPA \ 0.40) or behave elastically (see Fig. 5.9 and Table 5.3). The long-period
structure behaves elastically under the 2004 Niigata-ken Chuetsu (NIG020) record
and is damaged beyond repair (DIPA [ 0.40) under other earthquake records. Note
that, the influence of the repeated sequences is more obvious in the plots of the
input energy to the structure compared to the plots of the damage index (Fig. 5.9).
Accordingly, it can be concluded that, the ground acceleration with multiple
sequences need not always produce the maximum response and/or damage in the
structure. In other words, although can be understood without much difficulty, the
structural inelastic response depends on the structure’s initial natural period, the
yield parameters and the associated dominant period, and intensity of the ground
motion. Tables 5.1 and 5.3 summarize the intensity Eq. (5.1) and the average
frequency content (f0 - fc) of the ground acceleration (the frequency range that
contains 90 % of the acceleration intensity) [30, 31]. The numerical values of
these parameters confirm clearly that the structure’s response depends on the
characteristics of the input acceleration sequences and the structure’s properties.
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To compare the structural responses of elastic–plastic and bilinear structures,
two SDOF systems are considered of initial natural period = 1.0 s, initial stiff-
ness = 1.49 9 105 N/m, viscous damping ratio = 0.03, and yield strength in
tension and compression = 5 9 103 and -5 9 103 N, respectively. The strain-
hardening ratio of the bilinear structure is taken as 0.05. The two structures are
assumed to be driven by the horizontal acceleration H1 (see Table 5.1) of the
Iwate-Miyagi earthquake with PGA = 1.0 g. The responses of the two structures
are illustrated in Fig. 5.10. The maximum input energy to the elastic–plastic
structure is seen to be slightly smaller than that for the bilinear inelastic structure
(Fig. 5.10c). However, the maximum displacement of the elastic–plastic structure
is larger than that for the bilinear structure by about 10 % (Fig. 5.10a). In addition,
it appears that the elastic–plastic structure yields more frequently (Ny = 33) than
the bilinear structure (Ny = 8) (Fig. 5.10b). The maximum hysteretic energy
dissipated by the bilinear structure is 16 % larger than the hysteretic energy dis-
sipated by the elastic–plastic structure. These results reveal that the elastic–plastic
structure is more vulnerable to the acceleration sequences compared with the
bilinear structure (see e.g. [2]).

5.5 Summary

Repeated acceleration sequences separated by short time intervals have been
observed in many parts of the world, such as, Japan, Mexico, Italy, Turkey,
California. This ground motion results from mainshock preceded by foreshocks or
followed by aftershocks. This chapter has investigated the characteristics of this
class of ground motion. Specifically, the number, the duration, PGA, and energy of
the individual sequences are studied. Similarly, properties of the entire record
(e.g., duration, PGA, Fourier amplitude and frequency content, and site-source
distance) have also been studied. The definitions of the effective number of
sequences and the effective duration of recorded acceleration sequences have also
been introduced. The two horizontal and the vertical accelerations of 20 strong-
motion earthquakes have been used in the numerical investigation. These records
are measured in several different countries covering a variety of earthquake
magnitude, duration, site-source distance, PGA, and local soil condition.

It has been found that (1) multiple acceleration sequences are greatly influenced
by the source mechanism, (2) have longer effective durations compared to ordinary
records, and (3) can be observed at the near-fault and the far-fault regions. The first
sequence (mainshock) possesses most of the acceleration energy. The secondary
sequences (aftershocks) have shorter durations and lower energy compared to the
main sequence. The individual sequences have short duration, sharp build up, short
strong-phase, and sudden decay. These characteristics should be considered in
simulating acceleration sequences. In this chapter, the general characteristics of
the ground motion of multiple sequences that are commonly relevant to engineers
have been explained. The modeling of acceleration sequences including the
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discontinuity of the released energy at the source and associated attenuation due to
path and local soil effects is of future concern.

The structural response to recorded acceleration sequences has been investi-
gated. Each sequence drives the structure to a new equilibrium position. Secondary
sequences increase the ductility demand, the number of yield points, and the input,
hysteretic, and damping energies. Their influences on damage indices based on
maximum ductility are seen to be small, but have substantial effect on damage
indices that are based on hysteretic energy demand. In this chapter, elastic–plastic
and bilinear SDOF inelastic structures have been studied. It is also of interest to
examine the structural behavior of inelastic MDOF structures with degrading
stiffness and/or strength which can describe the formation of plastic hinges and the
time-dependent damage of the structure. Moreover, accelerograms that are
reported as single records with multiple sequences were considered. If aftershocks
are also included, the ground motion characteristics, such as, the total duration, the
number of sequences, the input, and dissipated energies, will change. In both
cases, the inclusion of repeated acceleration sequences in the nonlinear design of
the structure remains necessary.
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Chapter 6
Modeling Critical Ground-Motion
Sequences for Inelastic Structures

6.1 Introduction

Earthquake loads are usually specified as inputs to engineering structures using the
seismic coefficient method, the response or hazard spectra of the site, or in terms of
the time history of the ground acceleration [1–3]. On the other hand, the nonlinear
time history analysis is compulsory in cases of important structures, critical
facilities, structures having irregularities in plan or elevation, structures designed
for high ductility levels, structures in which higher modes can get excited, and
special structures containing seismic isolation or energy dissipation devices [4].
This is because the time history analysis provides the most accurate means for
dynamic analysis of structures [5].

Some ground-motion sequences separated by short intervals of time have been
observed in regions of medium–strong seismicity, such as, Italy, Mexico, Japan,
Turkey, California, and other parts of the world. Some characteristics of earth-
quake records of repeated sequences were explained in Sect. 5.2. Figure 6.1 shows
three acceleration components for the 23 October 2004 Niigata-ken Chuetsu
earthquake of Mw = 6.5 recorded at the Niigata-ken Chuetsu station at 28.7 km
from the source [6]. These records contain two sequences of about 30 s duration
each, separated by time interval of about 400 s, with peak ground acceleration
(PGA) of 0.89, 0.72, and 0.44 g in NS, EW and UD components, respectively. The
foreshock of this earthquake was followed by 16 aftershocks, 7 of which occurred
on the same day of the foreshock. Figure 6.2 illustrates three acceleration com-
ponents for the 15 April 2007 Western Honshu earthquake of Mb = 5.4 recorded
at the Kohga-SIG012 station at 21.0 km from the source. These records contain
two sequences of about 100 s total duration and PGA of 0.26, 0.11, and 0.05 g for
EW, NS, and UD components, respectively.

Multiple earthquake ground-motion sequences may not be an important issue in
dynamic analysis of linear structures since linear structures with damping return to
their initial equilibrium position by the start of each subsequent sequence. Such

I. Takewaki et al., Improving the Earthquake Resilience of Buildings,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-4144-0_6,
� Springer-Verlag London 2013
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ground motion, however, can create severe damage in inelastic structures (or
structures with loading history-dependent properties) due to accumulation of
inelastic deformations and (or damage) from all sequences before any structural
repair is possible. In addition, the low-frequency content in secondary sequences
may cause resonance in lower modes of the damaged structure leading to further
damage or total collapse to the structure (see [7], also Chap. 10). Accordingly, the
verification of the structure’s adequacy to withstand earthquakes with multiple
sequences without collapse or instability is of essential concern to structural
engineers. For instance, a series of moderate earthquakes separated by short
periods of time could cause larger damage to the structure compared to a single
severe event. This aspect is of interest in performance-based seismic design of
structures in earthquake-prone countries.

Dynamic analysis of inelastic structures under multiple sequences of ground
motion has received limited research attention. This may result from the fact that
the effect of such events on the structural damage has never been clear. Elnashai
et al. [8] emphasized the implication of multiple earthquake ground-motion
sequences on the response of structures and reported an increase of up to 30 % in
the force demand of ductile structures due to acceleration sequences. The effect of
repeated ground-motion sequences on the inelastic response of single degree-of-
freedom (SDOF) systems has been studied recently by Amadio et al. [9] and
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Fig. 6.1 Ground accelerations for the 23 October 2004 Niigata-ken Chuetsu earthquake
sequences recorded at Nagaoka-Shisho station [6] (Moustafa and Takewaki [49] with permission
from Multi-Science Publishing)
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Das et al. [10]. These studies employ simulated acceleration sequences as repre-
sentative inputs to inelastic structures. More recently, an extensive parametric
investigation on the displacement ratios of SDOF inelastic structures subjected to
repeated earthquakes was carried out by Hatzigeorgiou and Beskos [11]. In their
paper, 112 accelerograms of single shocks recorded at four different soil sites were
used to produce two and three identical sequences. All these studies have clearly
shown that repeated earthquake sequences could produce larger deformations in
structures compared with ordinary earthquakes and the consideration of such a
scenario is important for the construction of a framework of more reliable seismic
resistant designs.

The specification of earthquake loads (or demands) as inputs to inelastic
structures is a crucial task in earthquake engineering. Transformed static loads,
demands based on inelastic response spectra, and time history data are examples of
various load representations. There are cases, however, where the site under
consideration has limited or scarce seismic data, making this process a difficult
task. Meanwhile, given the high uncertainty involved in the earthquake phenom-
enon (see for example [12]), structural engineers are often concerned with the
worst-case scenario that can happen to the structure during its service life under
possible future earthquakes. This scenario is of further interest in cases of
important structures and critical facilities in which collapse or severe damage is
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Fig. 6.2 Ground accelerations for the 15 April 2007 western honshu earthquake sequences
recorded at Kohga-SIG012 station [6] (Moustafa and Takewaki [49] with permission from
Multi-Science Publishing)
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absolutely prohibited. The critical excitation method has been developed as a
counterpart to other methods of seismic load specification and provides reliable
solutions to such situations. An overview on this method can be found in Takewaki
[12–14] and Abbas and Manohar [15–17]. The critical input to a given structure is
derived by solving an inverse dynamic problem so that the structure response is
maximized while the input is constrained to a group qualified based on available
earthquake information at the site.

In the context of the potential of ground motions to damage structures, several
authors have attempted to identify the characteristics of the critical earthquake
records. One of the early studies on this subject has been carried out by Housner
and Jennings [18]. These authors have attempted to identify the maximum credible
ground motion that can be used in seismic design of the structure by developing a
simple intensity measure similar to the Arias measure [19]. They also introduced a
velocity power which can be derived by replacing the acceleration wave with the
velocity wave. This concept was followed by Takewaki [12, 14] for identification
of critical inputs in the context of earthquake input energy. (PGA), the effective
PGA, the peak ground velocity (PGV), the effective PGV, the energy, the intensity,
the duration, and the number of cycles of the ground accelerations have been used
for this purpose (see e.g. [20, 21]). However, damage of structures is contributed
by several parameters of the ground motion, and thus there is no single parameter
for identifying critical ground motions.

Naeim and Anderson [21] used the earthquake magnitude and PGA (limited to
M� 5:0 and PGA� 0:05 g) to select 1,157 horizontal accelerations from a set of
about 5,000 accelerograms recorded during 1933–1992. Subsequently, 30 records
that have the highest PGA, EPGA, PVA, EPGV, PGD, IV, and ID have been
selected from the 1,157 records. A set of 84 records was further selected based on
the ‘bracketed duration’ (see [22], also Chap. 5) and a subset of 36 records with
long durations was identified. This led to a database of 120 records. This study
provided simple procedures for identifying the most severe real seismic design
ground motions. More recently, the critical excitation concept has been used in
identifying resonant or unfavorable earthquake records [23–25]. Thus, Zhai and
Xie [25] considered a database of 852 records from 34 earthquakes measured
during 1940–2001 and classified it into four groups based on the site soil type. This
database was further divided into three groups based on the region (mainland
China, Taiwan of China, and regions outside China). The most unfavorable records
were then determined for each of these three groups by considering their damage
potential in terms of the parameters of the ground motion and the associated
structural damage criteria, such as, deformation, hysteretic energy, and damage
indices.

This chapter explains the mathematical modeling of critical earthquake loads
composed of multiple sequences and its effects on inelastic structures. This theme
was motivated by the high level of uncertainty involved with ground motions and
the uncompromised safety requirements of important structures against earthquake
loads. The following section provides a brief overview on damage assessment in
inelastic structures using damage indices.
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6.2 Damage Assessment in Inelastic Structures Using
Damage Indices

Several methods of damage assessment for inelastic structures were explained in
Chaps. 4 and 5. For deeper understanding of such concepts and technical merit, the
main part will be explained again here.

As explained in Chap. 5, damage indices are estimated by comparing structural
responses demanded by the earthquake with the structure capacities. For example,
the ductility capacity lu and the ductility demand lmax are used to quantify
damage as follows [26]:

DIl ¼
lmax � 1
lu � 1

: ð6:1Þ

This damage index does not incorporate hysteretic energy dissipation. Another
damage index [27, 28] based on the hysteretic energy EH ; yield strength fy; and
yield displacement xy is given by

DIH ¼
EH=ðfyxyÞ
lu � 1

: ð6:2Þ

Park and Ang [29–31] expressed damage as a linear combination of maximum
ductility and cumulative energy dissipation by

DIPA ¼
lmax

lu
þ b

EH=ðfyxyÞ
lu

ð6:3Þ

where lmax and EH are the maximum ductility and dissipated hysteretic energy,
respectively, demanded by the earthquake. The parameter lu is the ultimate
ductility capacity under monotonic loading and b is a positive constant that
weights the effect of cyclic loading on structural damage. The quantities lmax;EH

depend on the loading history while b; lu; fy are independent of the loading history
and are determined from experimental tests. The estimation methods and its results
of hysteretic energy dissipated by inelastic structures under earthquake loads can
be found in many Ref. [32–34].

Equation (6.3) can be used to compute the damage index for SDOF structures or
a member in a multi-degree-of-freedom (MDOF) structure. On the other hand, the
global damage index for MDOF structures can be estimated as a weighted sum of
member’s local damage indices as follows [30]:

DIg ¼
XN

i¼1

kiDIi ¼
XN

i¼1

Ei

Et
DIi ð6:4Þ

6.2 Damage Assessment in Inelastic Structures Using Damage Indices 119

http://dx.doi.org/10.1007/978-1-4471-4144-0_4
http://dx.doi.org/10.1007/978-1-4471-4144-0_5
http://dx.doi.org/10.1007/978-1-4471-4144-0_5


where N is the number of the structure’s members, Ei is the energy absorbed by the
ith member, and Et is the total energy absorbed by the structure. The structure’s
damage state is defined based on calibration of Park and Ang damage index against
experimental tests and field observations during earthquakes [29]. The damage
state consists of (a) repairable damage ðDIPA\0:40Þ; (b) damaged beyond repair
ð0:40�DIPA\1:0Þ; and (c) total or complete collapse ðDIPA� 1:0Þ.

In this chapter, the damage indices expressed by Eqs. (6.3) and (6.4) are used in
modeling critical earthquake sequences for inelastic structures. As discussed above,
DIPA is more robust than those of Eqs. (6.1) and (6.2) because it accounts for damage
from the maximum deformation and hysteretic energy. This damage index, however,
has some limitations [35, 36], namely, (a) the weak cumulative component given the
dominance of peak displacement over accumulated energy, (b) the use of linear
combination of deformation and energy despite the nonlinearity of the problem, (c)
the lack of considering loading sequence effect in the cumulative energy term, (d) for
elastic behavior, DIPA is greater than zero, and (e) when the system reaches its
maximum deformation, Eq. (6.3) leads to DIPA [ 1.0. A modification to DIPA to
correct for the last drawback was proposed by Chai et al. [37]. Notwithstanding this,
DIPA has been extensively used by many researchers, due to its simplicity and
extensive calibration against experimentally observed structural damage during past
earthquakes. The modeling of critical earthquake ground-motion sequences for
inelastic structures is explained in the following section.

6.3 Modeling Critical Ground-Motion Sequences
for Inelastic Structures

Some important characteristics of earthquake ground accelerations with multiple
sequences and their effect on inelastic structures were explained in Chap. 5.
However, mathematical modeling of such earthquake ground accelerations with
multiple sequences has never been explained. In this section, the mathematical
modeling will be provided in detail.

Let the ground acceleration of n sequences be represented as a combination of
Fourier series modulated by envelope functions as follows [9, 10]:

€xgðtÞ ¼
Xn

i¼1

ei½t0 þ ði� 1ÞT �
Xm

j¼1

Rij cos½xijft0 þ ði� 1ÞTg � uij�
( )

ð6:5Þ

In Eq. (6.5) eiðtÞ;Rij;/ij are the envelope function, jth amplitude, and phase angle
of the ith sequence. Furthermore, T is a time parameter separating ith and (i ? 1)th
sequences, and m is the number of frequencies adopted in each sequence. The time
parameter t0 is defined in Fig. 6.3a. For identical sequences, the above expression
reduces to
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€xgðtÞ ¼ eðt0Þ
Xm

j¼1

Rj cosðxjt
0 � ujÞ þ eðt0 þ TÞ

Xm

j¼1

Rj cosfxjðt0 þ TÞ � ujg þ � � �

ð6:6Þ

In constructing critical earthquake inputs, the envelope functions are assumed to
be known. A well-known envelope function is used here. The envelope function of
the ith sequence is represented by

eiðtÞ ¼ ai½t0 þ ði� 1ÞT� e�ai½t0þði�1ÞT � ð6:7Þ
Herein a1; a2; . . .; an; are n scaling constants and a1; a2; . . .; an are positive

parameters that control the nonstationary trend of each sequence. Figure 6.3b
shows the envelope functions for two acceleration sequences with a1 ¼ a2 ¼ 0:30;
T ¼ 50 s: The parameters a1; a2 are selected so that each envelope has a peak
value of unity and the total acceleration duration = 80 s.

In modeling critical earthquake sequences, the information about the total
energy E, peak ground acceleration M1, PGV M2, peak ground displacement
(PGD) M3, lower bound Fourier amplitude spectra (LBFAS) M4ðxÞ; and upper
bound Fourier amplitude spectra (UBFAS) M5ðxÞ is assumed to be available. In
this case, the constraints lead to the following form [15, 16]:
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Fig. 6.3 a Envelope
functions for two acceleration
sequences according to Eq.
(6.5) b Envelope functions
for two acceleration
sequences with a1 ¼ a2 ¼
0:30; T ¼ 50 s. The
parameters a1;a2 are selected
so that each envelope has a
peak value of unity and the
total acceleration
duration = 80 s ([49] with
permission from Multi-
Science Publishing)
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Z1

0

€x2
gðtÞ dt

0
@

1
A

1=2

�E

max
0\t\1

j€xgðtÞj �M1

max
0\t\1

j _xgðtÞj �M2

max
0\t\1

jxgðtÞj �M3

M4ðxÞ� jXgðxÞj�M5ðxÞ

ð6:8Þ

where XgðxÞ is the Fourier transform of the ground acceleration. Note that the
constraint on the earthquake energy E is related to the Arias intensity [19]
explained in Chaps. 4 and 5. The UBFAS and LBFAS constraints are introduced to
replicate the frequency content and amplitude observed in past earthquake records
on the critical earthquake. The ground velocity and displacement can then be
obtained from Eq. (6.5) in the following forms:

_xgðtÞ ¼
Xn

i¼1

Zt0

0

ei½sþ ði� 1ÞT�
Xm

j¼1

Rij cos½xijfsþ ði� 1ÞTg � uij�ds

8<
:

9=
;þ C1

xgðtÞ ¼
Xn

i¼1

Zt0

0

ei½sþ ði� 1ÞT�ðt0 � sÞ
Xm

j¼1

Rij cos½xijfsþ ði� 1ÞTg � uij�ds

8<
:

9=
;

þ C1t0 þ C2

ð6:9Þ

Substituting the ground-motion conditions xgð0Þ ¼ 0 and lim
t!1

_xgðtÞ ! 0; the

constants in Eq. (6.9) reduce to the following form [38]:

C2 ¼ 0; C1 ¼ �
Xn

i¼1

Z1

0

ei½sþ ði� 1ÞT�
Xm

j¼1

Rij cos½xijfsþ ði� 1ÞTg � uij�
( )

ds

ð6:10Þ

The constraints in Eq. (6.8) can be recast in terms of the variables Ri;/i; i ¼
1; 2; . . .;m as:
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a2
0

Pm
i¼1

R2
i

R1
0

t2e�2at cos2ðxit � uiÞ þ ðt þ TÞ2e�2aðtþTÞ cos2½xiðt þ TÞ � ui� þ . . .
n o

dt

� �1
2

�E

max
0\t\1

a0e�at
Pm
i¼1

Ri t cosðxit � uiÞ þ ðt þ TÞe�aT cos½xiðt þ TÞ � ui� þ . . .f g
� �����

���� � M1

max
0\t\1

a0

Xm

i¼1

Ri

Z t

0

e�as s cosðxis� uiÞ þ ðsþ TÞe�aT cos½xiðsþ TÞ � ui� þ . . .
� �

ds

������

� a0

Xm

i¼1

Ri

Z1

0

e�as s cosðxis� uiÞ þ ðsþ TÞe�aT cos½xiðsþ TÞ � ui� þ . . .
� �

ds

������ � M2

max
0\t\1

a0

Xm

i¼1

Ri

Z t

0

ðt � sÞe�as s cosðxis� uiÞ þ ðsþ TÞe�aT cos½xiðsþ TÞ � ui� þ . . .
� �

ds

������

�a0t
Xm

i¼1

Ri

Z1

0

ðt � sÞe�as s cosðxis� uiÞ þ ðsþ TÞe�aT cos½xiðsþ TÞ � ui� þ . . .
� �

ds

������ � M3

M5ðxÞ� a0
Pm
i¼1

Ri

R1
0

e�asfs cosðxis� uiÞ þ ðsþ TÞe�aT cos½xiðsþ TÞ � ui� þ . . .ge�jxsds

����
�����M4ðxÞ

ð6:11Þ

where j ¼
ffiffiffiffiffiffiffi
�1
p

: It is noted that the cross terms in the energy constraint vanish
since the envelope functions are not overlapped in this case. The constraints on E,
M1, M2, and M3 are introduced to replicate the energy, PGA, PGV and PGD of
available seismic data at the site. The bounds on Fourier amplitude can be esti-
mated from past records [15, 16] or using empirical expressions as proposed in
Ref. [39]. In this chapter the first alternative is adopted as will be explained in the
following section.

Now, the problem of modeling critical earthquake sequences for inelastic
structures reduces to estimating the optimization variables y ¼ fR1;R2; . . .;Rm;

/1;/2; . . .;/mgt so that the damage index given by Eq. (6.3) or (6.4) is maximized
subjected to the constraints of Eq. (6.11). This constrained nonlinear optimization
problem is solved using the sequential quadratic programing method [40]. The
convergence criteria jfj � fj�1j � e1 and jyi;j � yi;j�1j � e2 are adopted, where fj is
the objective function of jth iteration, yi;j is ith optimization variable of jth iter-
ation, and the parameters e1; e2 are small quantities to be defined. The inelastic
response of the structure is computed using the Newmark-b method built as a
subroutine in the optimization program. Note that the quantities lðtÞ and EHðtÞ
given by Eq. (6.3) attain their maximum values at different time instants.
Accordingly, the optimization is performed at discrete time points. The optimal
solution is taken as that producing the maximum damage index across all time
instants. Numerical illustrations on the formulation developed above will be
provided in the following section.
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6.4 Numerical Illustrations and Discussions

6.4.1 Bilinear Inelastic Single-Story Frame Structure

Consider a single-story frame building with mass = 9 9 103 kg, initial stiffness
k0 = 1.49 9 105 N/m (initial natural frequency = 4.1 rad/s), and viscous damp-
ing of 0.05 damping ratio as shown in Fig. 6.4a. The structural parameters are set
as the yield displacement = 0.10 m and the strain-hardening ratio (ratio of post-
yield stiffness to pre-yield stiffness c ¼ k1=k0Þ = 0.10. The parameters in Eq. (6.3)
are taken as b ¼ 0:15 and lu ¼ 8 [29]. These parameters are changed later to
examine their influences on the critical earthquake load and associated structural
damage. The parameters in the Newmark-b method are taken as d ¼ 1=2; a ¼ 1=6
and Dt ¼ 0:005 s.

In this example, the critical scenario is taken into account for the Western
Honshu earthquake. Unlike ordinary records, adequate/homogeneous recorded
ground-motion sequences reflecting the same number of sequences and local soil
conditions are not currently available. The bounds M4ðxÞ and M5ðxÞ on Fourier
amplitude are taken as the minimum and maximum Fourier amplitude spectra
across the three normalized records scaled by M1 [41]. The PGA was scaled to
0.40 g to ensure inelastic behavior. Critical earthquake accelerations with two and
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Fig. 6.4 Inelastic structures studied a single-story bilinear inelastic frame structure, b two-story
elastic–plastic frame structure ([49] with permission from Multi-Science Publishing)

Table 6.1 Constraint scenarios considered ([49] with permission from Multi-Science Publishing)

Case Constraints imposed

1 Energy and PGA
2 Energy, PGA, PGV, and PGD
3 Energy, PGA, and UBFS
4 Energy, PGA, UBFS, and LBFS
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three repeated sequences are derived here. The duration of each sequence is taken
as 30 s and the time interval separating each two consecutive sequences is also
taken as 30 s. The envelope parameters are a1 = 1.23, a2 = 1.31, a1 ¼ 0:30 and
a2 ¼ 0:28: This leads to envelope functions having peak values of unity at about
3.5 and 63.5 s. The convergence limits are set as e1 ¼ e2 ¼ 10�6 and the frequency
content of the ground acceleration is assumed to be (0–25) Hz. The frequencies
xi; i ¼ 1; 2; . . .;m are distributed in the interval (0–25) with some of these fre-
quencies taken to coincide with the initial natural frequency of the structure and
more frequencies are placed within the modal half-bandwidth. The constraint
scenarios treated here are listed in Table 6.1. The optimization problem is solved
using the Matlab optimization toolbox [42]. Several initial guesses, within the
feasible region, were examined and found to lead to the same optimal solution.
A parametric study on the number of frequencies in Eq. (6.5) is performed and
m = 150 was found to give satisfactory results.

The numerical results obtained are shown in Figs. 6.5, 6.6, 6.7 and Tables 6.2
and 6.3. The frequency content and Fourier amplitude of the critical acceleration
were found to be dependent on the constraints imposed (see Table 6.1 and
Figs. 6.4 and 6.5). If information about the critical earthquake is limited to energy
and PGA, the critical input is narrow-band and the structural deformation is high
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Fig. 6.5 Critical ground acceleration of two sequences and associated response for bilinear
inelastic structure (case 1) ([49] with permission from Multi-Science Publishing)
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(Table 6.2). Most of the Fourier amplitude is located close to the initial natural
frequency of the structure with secondary peaks located at higher frequencies
(Fig. 6.5). These amplitudes get redistributed at other frequencies when the
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constraints on the Fourier amplitude spectra are brought in (Fig. 6.6). These
observations are very useful for the seismic resistant design for ground motions
with multiple sequences.

Case 1 provides higher input energy to the structure that is mainly dissipated by
yielding (Fig. 6.5). The realism of the earthquake input is evident from the fre-
quency content, the inelastic deformation produced, and the value of the associated
damage index. For the two sequences scenario, the damage index for constraint
case 1 is 1.49 which implies the arrival to total collapse, while that for case 4 is
0.34 implying repairable damage. These quantities are about 5.7 and 1.3 times that
produced by the NS component of the Western Honshu record scaled to 0.40 g
PGA. The associated maximum ductility is 4.65 and 1.85, respectively (Table 6.2).
The constraints on PGV and PGD do not produce realistic earthquake ground
motions compared to the Fourier spectra bounds. Note that the resonant ground-
motion scenario of case 1 has been observed in actual recorded earthquakes, such
as, the 1985 Mexico, the 1995 Kobe, and the 2011 Tohoku (Japan) earthquakes
[43]. Resonant ground motions have also been observed in near-field records with
directivity or fling effects [44].

Our attention is focused now on the effect of multiple earthquake sequences on
the structural damage state and associated inelastic deformations. Table 6.3
summarizes the damage index and corresponding maximum inelastic displacement
for the critical ground accelerations with zero, two, and three sequences. The
numerical results reveal clearly the substantial effect of multiple earthquake
sequences on the structural damage state and associated inelastic deformations.
Thus, the values of the damage index and maximum inelastic displacement
increase remarkably for the critical acceleration with two and three sequences
compared with the case of critical input without sequences. As can be expected,
the input energy to the structure increases as the number of acceleration sequences
increases. The energy dissipated by yielding is substantially larger than that

Table 6.2 Response and damage parameters for the single-story frame structure (c ¼ 0:10;
g ¼ 0:05Þ ([49] with permission from Multi-Science Publishing)

Case xmax (m) lmax xp (m) Nyp DIPA RDI Damage status

1 0.43 4.33 0.08 120 1.49 5.73 Total collapse
2 0.37 3.71 0.06 1.29 4.97 Total collapse
3 0.31 3.12 0.04 94 0.93 3.58 Damaged beyond repair
4 0.19 1.85 0.03 50 0.34 1.31 Repairable damage

xp permanent deformation, Nyp number of yield points, RDI ratio of damage index from critical
input to that from 2007 Western Honshu NS record

Table 6.3 Effect of number of sequences on damage level for the single-story frame structure
(Case 4, g ¼ 0:05) ([49] with permission from Multi-Science Publishing)

Sequences scenario lmax DIPA Damage status

Zero sequences 1.27 0.25 Repairable damage
Two sequences 1.85 0.34 Repairable damage
Three sequences 2.38 0.57 Damaged beyond repair
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dissipated by damping. The kinetic and recoverable elastic strain energies are
remarkably small and diminish by the end of the ground-motion duration. This
observation agrees with the results obtained by one of the authors on critical
earthquake loads for elastic–plastic SDOF structures [41].

To examine effects of the strain-hardening ratio and the damping ratio on the
derived critical acceleration, limited parametric studies are carried out. The values
of these parameters are changed, each at a time, and the critical acceleration is
determined by solving a new optimization problem. Namely, c is taken as 0.20,
0.10, 0.05, and 0.01 and g ¼ 0:02; 0:05 and 0:10: It does not appear that the
strain-hardening ratio influences the frequency content of the critical input. The
structure with lower values of c yields more frequently compared to that with
higher c values. The cumulative hysteretic energy dissipated during multiple
sequences was observed to decrease for higher values of c; particularly at the end
of the earthquake duration. The damping ratio was also not seen to alter the
frequency content of the critical ground motion. The inelastic deformation and
damage index, however, increase for lower values of the damping ratio. For case 4,
the ductility ratio increases from 1.85 to 2.19 when the damping ratio is changed
from 0.05 to 0.02. The inelastic structure with higher damping ratios dissipates
more energy through damping.

To assess the structure damage level, Eq. (6.3) was used to estimate and
evaluate the damage index of the structure subjected to the critical earthquake
load. The effect of the parameter b on the damage index is examined. Based on the
results of experimental tests, it is reported that b ranges between 0.05 and 0.20
with an average value of 0.15 [5]. Figure 6.7 shows the influence of b on the
damage index for case 4 for two acceleration sequences. To study the effect of the
initial natural frequency of the structure on the damage index, the structure stiff-
ness was varied while other parameters are kept unchanged and the critical
earthquake is computed. The value of DIPA is then calculated. The parameters
b ¼ 0:15 and lu ¼ 8 are adopted. The numerical results reveal that the damage
index depends significantly on the structure initial natural frequency (Fig. 6.7).

In this chapter, the constraints quantities E, M1, M2, M3, M4ðxÞ; and M5ðxÞ are
introduced to define the energy, PGA, PGV, PGD, and upper and lower bounds on
the Fourier amplitude spectra of past recorded ground motions at the given site or
from other sites with similar soil conditions. The critical earthquake ground
motion by definition is the one that produces the maximum damage in the struc-
ture, and thus it turns out to be the excitation that matches the vibration property of
the structure under consideration. For instance, if the energy and PGA constraints
are only imposed (case 1: limited information), the optimal (critical) acceleration
has most of the energy located in a narrow-frequency band close to the structure
initial natural frequency (Fig. 6.5). Thus, the optimal (critical) acceleration, in this
case, reflects the resonance nature and produces conservative responses. The
influence of including further constraints, such as upper and lower bounds on the
Fourier spectra, forces the energy of the ground acceleration to get distributed at
frequencies other than the structure frequencies. This leads to the ground accel-
eration that is rich in frequency content and produces smaller responses (Fig. 6.6).
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6.4.2 Two-Story Elastic–Plastic Framed Structure

To demonstrate the formulation developed in this chapter for inelastic MDOF
structures, a two-story braced frame building shown in Fig. 6.4b is considered. The
braces are assumed to exhibit elastic–plastic behavior. The mass and initial stiff-
ness matrices of the structure are given by

M ¼ m1 0
0 m2

� �
; Kel ¼ E cos2 h

A1=L1 þ A2=L2 �A2=L2

�A2=L2 A2=L2

� �
: ð6:12Þ

The values of floor masses are taken as m1 ¼ m2 ¼ 1:75� 105 kg; the cross-
sectional areas of braces are A1 ¼ A2 ¼ 6:45� 10�4 m2; and the Young’s modulus
E ¼ 2:59� 1011 N=m2: When both braces behave elastically, the stiffness matrix
is K ¼ Kel: On the other hand, if brace 1 yields, the tangential stiffness matrix for
incremental analysis is K ¼ K1 and if brace 2 yields, the corresponding one is
K ¼ K2: If both braces yield, the corresponding one becomes K ¼ K12: These
matrices are given by

Kel ¼ D
2 �1

�1 1

� �
; K1 ¼ D

1 �1

�1 1

� �
; K2 ¼ D

1 0

0 0

� �
;

K12 ¼
0 0

0 0

� �
; D ¼ AE

L
cos2 h:

ð6:13Þ

The first two natural frequencies of the elastic structure are computed as 6:2 and
16:2 rad=s: A proportional damping C ¼ aMþ bK with a = 0.2683, b = 0.0027
is adopted (equivalent viscous damping ratio is 0.03 in the first two modes). The
yield strain of braces ey is taken as 0.002 for both tension and compression. The
braces yield at a displacement xy ¼ Ley= cos h ¼ 0:04 m: Brace 1 yields when
jx1j ¼ 0:04m and brace 2 yields when jx2 � x1j ¼ 0:04 m: The global damage
index of Eq. (6.4) with lu ¼ 10 and b ¼ 0:15 is taken as the objective function.
In this example, we model the critical ground motion for the 2004 Niigata-ken
Chuetsu earthquake with two and three sequences. The constraint bounds of
Eq. (6.11) are quantified across the three records with M1 = 0.45 g. The same
envelope functions and time durations of the previous example are adopted here.

The numerical results of this example are shown in Figs. 6.8 and 6.9 and
Table 6.4. The general features of critical ground-motion sequences observed in
the previous example were generally the same. Again, constraint scenario 1 pro-
duces higher damage than other cases since the input energy to the structure is
remarkably high (Figs. 6.8 and 6.9). Furthermore, the ground motion tends to have
more frequencies compared with the previous example due to influence of the
second vibration mode. The damage index and the maximum inelastic displace-
ment increase as the number of acceleration sequences increases. For constraint
case 4, two and three repeated sequences produce damage indices that are
respectively about 1.5 and 2.4 times that of the critical input without sequences
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(see Table 6.4 and Fig. 6.9). The maximum ductility factors for cases 1 and 4 are
2.8 and 1.5 times those produced by the Niigata NS record with PGA = 0.45 g.
Similarly, the damage index from the critical input for cases 1 and 4 are about 6.5
and 1.6 times that from the 2004 Niigata NS acceleration.

6.5 Summary

Repeated sequences of earthquake ground motions separated by short time intervals
have the potential of causing severe damage to structures due to accumulation of
inelastic deformations from multiple sequences and impossibility of repairing the
structure before the end of all sequences. This class of ground motion has been
observed in Japan and other parts of the world. Critical earthquake loads of repeated
sequences were modeled in this chapter for inelastic structures at sites having
limited earthquake data and (or) information. The method of critical excitation and
subsequent procedures provide a reliable tool for modeling possible future earth-
quake loads as inputs to important and influential structures. New damage
descriptors using energy concepts and damage indices have been employed in
deriving the critical earthquake loads. The quantification of the structure’s damage
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Fig. 6.8 Critical ground acceleration sequences for the two-story elastic–plastic structure a two
sequences, b three sequences ([49] with permission from Multi-Science Publishing)
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using damage indices facilitates assessing the structure’s performance by quanti-
fying its damage level. Critical repeated earthquake ground-motion sequences for
inelastic structures have been estimated by solving inverse dynamic problems using
nonlinear time history response analysis and nonlinear optimization techniques. It
has been explained that repeated sequences of critical ground motions produce
larger structural damage than critical ground motions without sequences. Several
aspects of the problem have been studied, such as, influences of the available
earthquake information, number of acceleration sequences, strain-hardening ratio,
and damping ratio on the derived critical earthquake loads and associated structural

Table 6.4 Response and damage parameters for the two-story frame structure (g ¼ 0:03Þ ([49]
with permission from Multi-Science Publishing)

Case xmax (m) lmax xp(m) DIPA RDI Damage status

1 0.21 5.25 0.06 1.18 6.48 Total collapse
2 0.18 4.40 0.04 0.89 4.89 Damaged beyond repair
3 0.15 3.75 0.03 0.76 4.18 Damaged beyond repair
4 0.11 2.74 0.03 0.28 1.54 Repairable damage

lmax is computed for displacement at second floor level, DIPA represents weighted damage in the
braces, RDI = ratio of damage index from critical input to that from 2004 Niigata NS record
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responses. Finally, the modeling of random critical acceleration sequences for
inelastic structures is also of great interest and is currently under investigation. In
this investigation, it seems that evolutionary power spectral density models can be
used along with stochastic equivalent linearization and nonlinear optimization
techniques to tackle the problem.

The formulation developed in this chapter has been explained for simple
structures with bilinear and elastic–plastic force–deformation laws. The applica-
tion of the explained method to more complex structures and the use of detailed
degradation models need to be investigated. Critical earthquake loads maximizing
the structural damage have been obtained using deterministic methods. Critical
earthquake loads can also be estimated based on hazard analysis using the prob-
ability of occurrence. Furthermore, the critical earthquake sequences explained in
this chapter belong to the class of engineering models that are consistent with
ground motion models commonly used by engineers. These models are introduced
to replicate gross features of recorded motions, such as, amplitude, frequency
content, non-stationarity trend, and local soil effects. Predictive ground-motion
models that account for several details, such as, fault dimension and orientation,
rupture velocity, earthquake magnitude, attenuation, stress drop, density of the
intervening medium, local soil condition, and epicentral distance, are also of great
interest and have been developed mainly by seismologists [26, 45–48]. Critical
earthquake ground motions can be formulated based on seismological models
where the model parameters can be optimized to produce the least favorable
conditions. In this case the class of admissible functions becomes additionally
constrained by the physical model adopted. In this sense, the approach explained in
this chapter is nonparametric in nature.
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Chapter 7
Response of Nonlinear SDOF Structures
to Random Acceleration Sequences

7.1 Introduction

In performance-based design, the structure is designed to behave linearly elastic
without damage under a moderate frequent earthquake and to undergo repairable
damage under a rare strong earthquake [1, 2]. Design earthquakes are specified in
current seismic codes as single events [3–5]. However, the structure may expe-
rience repeated accelerations in a short period of time. Ground accelerations of
multiple sequences could result in more damage to the structure than a single
ordinary event. This is because the structure gets damaged from the first sequence
and additional damage accumulates from secondary sequence before any repair is
possible. The evidence from recent earthquakes confirms this scenario. For
example, the 2004 Niigata earthquake recorded at Ojiya (NIG019) consisted of
two acceleration sequences (see Fig. 7.1). Multiple acceleration sequences result
from mainshock–aftershock earthquakes. For instance, the 2010 Haiti earthquake
had mainshock of 7.0 Mw followed by about 14 aftershocks of 5.0–6.1 magnitude
[6]. Repeated acceleration sequences separated by short-time intervals have also
been observed at other regions of the world as shown in Table 7.1 [7, 8]. Thus,
ground accelerations of repeated sequences represent a real situation that requires
special treatment in seismic design.

Elnashai et al. [9] reported the first evidence of repeated acceleration sequences
in the 1997 Umbria-Marche Italy earthquake. The response of inelastic steel
structures to simulated acceleration sequences was studied in [10, 11]. Das and
Gupta [12] used the spectrum of the force ratio in designing single-degree-of-
freedom (SDOF) structures to survive all possible earthquakes during their service
life without undergoing repairs. Recently, recorded accelerograms were used to
investigate the implication of repeated acceleration sequences on the inelastic
displacement ratio and the ductility demand of SDOF and MDOF structures
[13–16]. Extensive parametric studies were conducted in these studies to derive
expressions for the inelastic displacement ratio and the ductility demand in terms

I. Takewaki et al., Improving the Earthquake Resilience of Buildings,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-4144-0_7,
� Springer-Verlag London 2013
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of the period of vibration, the viscous damping ratio, the strain-hardening ratio, the
force reduction factor, and the soil class. More recently, the characteristics of
strong ground motion of multiple sequences were studied by Moustafa and
Takewaki [17]. The definitions of the effective number of sequences and the
effective strong duration were also introduced.

Dunbar and Charlwood [18] reported the significant difference in the frequency
content for the M6.2 earthquake and the M4.9 aftershock recorded at the C-00 of
the SMART array in Taiwan. The statistical properties of aftershock sequences
were studied in [19]. The study showed that aftershocks are associated with three
empirical scaling relations, namely, (1) Gutenberg-Richter frequency-magnitude
scaling, (2) Bath’s law for the magnitude of the largest aftershock, and (3) the
modified Omori’s law for the temporal decay of aftershocks. The probabilistic
seismic hazard analysis (PSHA) of aftershocks following a mainshock was studied
by Yeo and Cornell [20]. The study showed that aftershock occurrence rates
decrease with increased elapsed time from the initial occurrence of the mainshock,
and that the aftershock ground motion hazard at a site depends on the magnitude
and location of the causative mainshock. The same authors introduced a decision
analysis methodology based on the stochastic dynamic programming in the post-
quake aftershock environment by studying the damage sustained by the building
due to the mainsheet, time-varying aftershock rates and the potential for further
damage progression [21].

The modeling of strong ground motion is a crucial problem in earthquake
engineering. A state-of-the-art review on modeling random earthquake loads using
engineering models can be found in [22–28]. The Kanai-Tajimi model represents
one of the widely used models [30, 31]. The engineering models replicate observed
feature of acceleration records. The predictive (also known as physical or seis-
mological) models require information on the source properties and have been
developed by seismologists [32–34]. From a seismological perspective, the reason
for the occurrence of multiple acceleration sequences is that: the mainshock
increases the regional stresses resulting in the subsequent aftershocks [18]. The
strain accumulation and release produces regions of stress increase which also
contribute to the occurrence of repeated acceleration sequences. Furthermore, the
local stress concentrations resulting from asperities and barriers also contribute to
the generation of aftershocks in the vicinity of the mainshock rupture. Note that,
the simulation of repeated acceleration sequences using seismological models has
not been studied before.

This chapter proposes a simple model for representing random acceleration
sequences. Given that, most previous studies deal with the response analysis of
inelastic structures to deterministic acceleration sequences, this paper investigates
the response of nonlinear structures to random acceleration sequences using the
proposed model. Furthermore, the theory of statistical linearization is integrated
with structural reliability analysis to assess the structural safety under repeated
acceleration sequences. The next section provides a brief overview on the char-
acteristics of ground accelerations with repeated sequences.
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7.2 Characteristics of Acceleration Records of Repeated
Sequences

Some characteristics of the acceleration records and repeated sequences were
explained in Sect. 5.2. The notable points are stated in this section again.

Table 7.1 lists information on 60 records from 17 earthquakes of multiple
acceleration sequences. This information includes the soil type beneath the
recording station, the magnitude, the epicenter distance, and the total duration for
each earthquake. The table contains also the intensity, peak ground acceleration
(PGA), and the observed number of acceleration sequences. Figure 7.1 depicts one
horizontal and the vertical accelerations for two earthquakes from Table 7.1 [7, 8].
The important characteristics of repeated ground motion sequences can be sum-
marized as follows [17]:

1. Repeated acceleration sequences are recorded at sites with different soil types
(see Table 7.1).

2. The frequency content depends on the soil type, epicenter distance, and source
characteristics.

3. All the three accelerations have multiple sequences and the observed number of
sequences for the records listed in Table 7.1 is either 7.2 or 7.3.

0 200 400 600
-1

-0.5

0

0.5

1
A

cc
el

er
at

io
n 

/ g

NS

0 200 400 600
-1

-0.5

0

0.5

1

UD

A
cc

el
er

at
io

n 
/ g

0 50 100 150
-1

-0.5

0

0.5

1

0 50 100 150
-1

-0.5

0

0.5

1

Time (s) Time (s)

NS

UD

(a) (b)

Fig. 7.1 Recorded acceleration sequences for a 2004 Niigata (NIG028), b 2007 Honshu
(SIG012) [41]
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4. The individual sequences generally have sharp build up, short strong phase and
fast decay. Furthermore, they have different energy, duration (5–30 s), and
PGA (B1.33 g). In general, the first sequence has the largest energy, PGA, and
duration.

5. The total duration of repeated acceleration sequences for the earthquake records
listed in Table 7.1 ranges between 30 and 600 s. This duration can change
based on the earthquake records adopted. However, repair of the structure due
to damage resulting from the strong ground motion sequences reported in
Table 7.1 is not possible.

6. The three acceleration components of each earthquake exhibit significant cor-
relations (see Fig. 7.2). The corresponding sequences in the three records of the
same earthquake have similar durations and time instants of initial build up,
strong phase, and decay. Therefore, as can be expected, the cross-correlation
functions of the acceleration components are significant during the strong
shaking durations.

An additional important aspect is the frequency content of individual sequen-
ces. Figure 7.3 shows the Fourier amplitude spectra for the NS accelerations of the
2004 Niigata and the 2007 Honshu earthquakes (see Table 7.1). The plots in
Fig. 7.3b reveal that the frequency content and amplitude for the individual
sequences of the same record could be significantly different. This observation
agrees with the finding reported in Moustafa and Takewaki [17]. Thus, it may not
be accurate to consider that the acceleration sequences have identical frequency
content. The above properties need to be considered in modeling repeated accel-
eration sequences.

Secondary sequences can be viewed as earthquakes that occur due to repeated
rupture of the fault or because the fault that ruptured in the first sequence is still
readjusting itself. They typically occur within the same zone along a fault that
ruptured in the original event. The next section demonstrates the representation of
stochastic ground acceleration with repeated sequences.
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Fig. 7.2 Cross-correlation functions of ground accelerations a 2004 Niigata earthquake
(NIG028), b 1940 El Centro (El Centro #9) [41]
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7.3 Representation of Random Ground Acceleration
with Multiple Sequences

Based on the properties of repeated acceleration sequences presented in the
previous section, the nonstationary ground acceleration €xðtÞ of n sequences is
expressed as follows:

€xðtÞ ¼

e1ðtÞ €w1ðtÞ : 0� t� T1

0; T1� t� T1 þ T2

e2ðt � T1 � T2Þ€w2ðtÞ; T1 þ T2� t� T1 þ T2 þ T3

0; T1 þ T2 þ T3� t� T1 þ T2 þ T3 þ T4

� � �
� � �
� � �

enðt �
Pnþ1

i¼1
TiÞ€wnðtÞ;

Pnþ1

i¼1
Ti� t�

Pnþ2

i¼1
Ti

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð7:1Þ

where e1ðtÞ; e2ðtÞ; . . .; enðtÞ are the envelope functions associated with the
acceleration sequences 1, 2, …, n, €w1ðtÞ; €w2ðtÞ; . . .; €wnðtÞ are stationary random
processes, T1; T3; . . .; Tnþ2 are the time durations of the acceleration sequences
and T2; T4; . . .; Tnþ1 are the time intervals separating these sequences. Note that,
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€xðtÞ reduces to the stationary case when the envelope functions are replaced with
the Heaviside step functions.

The ground acceleration described in Eq. (7.1) belongs to the class of engi-
neering ground motion models. These models aim to replicate the gross features
observed in earthquake records and are used when adequate information on the
source properties is not available. The seismological models, on the other hand,
can be adopted when sufficient information on the source properties (e.g., fault
dimension, fault depth, rupture velocity, attenuation, stress drop, density of
intervening medium, etc.) is available [32–34]. Note also that, the special scenario
of identical repeated acceleration sequences is obtainable from Eq. (7.1) when
e1ðtÞ ¼ e2ðtÞ ¼ � � � ¼ enðtÞ; €w1ðtÞ ¼ €w2ðtÞ ¼ � � � ¼ €wnðtÞ and T1 ¼ T3 ¼ � � � ¼
Tnþ2: Additionally, when n = 1, the above expression reduces to the ordinary
ground motion without sequences.

To proceed further, the envelope function for the ith sequence is expressed as:

eiðtÞ ¼ Aiðt �
Xn

i¼1

TiÞ exp½�aiðt �
Xn

i¼1

TiÞ�;
Xnþ1

i¼1

Ti� t�
Xnþ2

i¼1

Ti ð7:2Þ

where Ai and ai are 2n positive constants that control the intensity and the non-
stationarity trend of the ith acceleration sequence. The power spectral density
function (PSDF) of the ith acceleration sequence can be shown to be given as [29]:

S€xiðx; tÞ ¼ e2
i ðtÞS€wiðxÞ ð7:3Þ

where S€wiðxÞ is the one-sided PSDF of the ith acceleration sequence €wiðtÞ: In this
paper, the stationary components €wiðtÞ; i ¼ 1; 2; . . .; n are modeled as Gaussian
random processes, and, thus, the ground acceleration €xðtÞ is a nonstationary
Gaussian random process. Therefore, €xðtÞ can be characterized in terms of the first
two moments of its PSDF.

Equation (7.1) implies that the ground acceleration €xðtÞ has zero mean when the
stationary components €wiðtÞ; i ¼ 1; 2; . . .; n have zero mean. Moreover, the vari-
ance of the ith acceleration sequence €xðtÞ is given by:

r2
€xi
ðtÞ ¼ e2

i ðtÞ
Z1

0

S€wiðxÞ dx ð7:4Þ

Note that, if the stationary components €w1ðtÞ; €w2ðtÞ; . . .; €wnðtÞ have unit
variance, the intensity of the sequences €xðtÞ can be controlled through the envelope
functions. Alternatively, the envelope functions can be normalized to unit peak
values and the variance of €xðtÞ is controlled through the variances of the stationary
components. Numerical illustrations on the response of nonlinear SDOF structures
to repeated acceleration sequences are provided in the next section.
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7.4 Numerical Examples

Equations (7.1–7.4) define repeated acceleration sequences that can be used as
input to the probabilistic response analysis of nonlinear systems. It can also be
used for simulating the input acceleration to the deterministic time-history
analysis of nonlinear systems. The envelope functions can be adjusted to
reflect the nonstationarity trend of past records. The stationary accelerations
€w1ðtÞ; €w2ðtÞ; . . .; €wnðtÞ can be adopted to replicate the frequency content and the
dominant frequency of the site soil. Without loss of generality, the PSDF of
the stationary components is taken to be given by the Kanai-Tajimi model. Thus,
the PSDF for the ith acceleration sequence is given by [34, 35]:

S€wiðxÞ ¼ s0
x2

g þ 4g2
gx

2x2
g

ðx2
g � x2Þ2 þ 4g2

gx
2x2

g

ð7:5Þ

where s0 is the intensity of the white noise process at the rock level, xg is the
dominant frequency of the soil site, and gg is the associated damping ratio of the
soil layer.

Figure 7.4 shows the PSDF for the ground acceleration €xðtÞ for medium soil
site. The soil parameters are taken as xg ¼ 3p rad=s, gg ¼ 0:40 and the number of
acceleration sequences n = 3. The intensities of the acceleration sequences are
taken as s0 = 0.02, 0.015 and 0.01 m2/s3, and the associated frequency contents
are (0–10), (0–8), and (0–5) Hz, respectively. The parameters of the envelope
functions are adopted as a1 ¼ 0:30; a2 ¼ 0:35 and a3 ¼ 0:40 (the time duration of
the sequences is about 25, 20, and 15 s, respectively) and the separating time
interval between the sequences is 40 s. The parameters A1;A2 and A3 are selected
so that the envelope functions have peak values of unity [see Eq. (7.2)]. Figure 7.4
shows also the variance of the ground acceleration. Figure 7.5 depicts a sample of
the simulated ground acceleration €xðtÞ.

The response of nonlinear SDOF structures to random acceleration sequences is
studied below.
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Fig. 7.4 a PSDF of Sðx; tÞ, b Variance of €xðtÞ ðxg ¼ 3p rad=s, gg ¼ 0:40; n ¼ 3Þ [41]
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7.4.1 Response of Elastic–Plastic Structure to Nonstationary
Random Acceleration Sequences

The response of an SDOF elastic–plastic structure driven by the ground acceler-
ation €xðtÞ described by the PSDF shown in Fig. 7.4a is studied. The first two
sequences are only considered. The structure parameters are taken as
m = 9 9 104 kg, k0 = 9 9 104 N/m, the yield force = 1 9 104 N, and the yield
displacement = 0.11 m. A viscous damping of 0.03 damping ratio is adopted.
Given that, the structure is inelastic and that the input acceleration is a Gaussian
random process of zero mean, the structural response uðtÞ is a non-Gaussian
random process of nonzero mean. The structural inelastic response is computed
using the Newmark integration technique and the Monte Carlo Simulation with
2,000 samples. The structural response is characterized in terms of the earthquake
input energy EI, the hysteretic yield energy EH, the ductility demand l and the
Park and Ang damage index DPA. These quantities are given as [36–38]:

EIðtÞ ¼ �
Z t

0

m €xðsÞ _uðsÞds ð7:6aÞ

EHðtÞ ¼
Z t

0

_uðsÞfsðsÞds� ½fsðtÞ�2 ð7:6bÞ

DPA ¼
lmax

lu

þ b
EH=ðfyuyÞ

lu

ð7:6cÞ

where m is the mass, €xðtÞ is the external acceleration, _uðtÞ is the velocity response,
fsðtÞ is the restoring force in the spring. Furthermore, fy; uy are the yield force and
yield displacement, lu is the ultimate ductility capacity under monotonic loading,
and b is a positive constant that weights the effect of cyclic loading on structural
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damage. Note that, b = 0 implies that the contribution to DPA from cyclic loading
is omitted.

Figure 7.6 shows the mean and variance of the input energy and displacement
response. The mean of the damage index and hysteretic energy dissipated by
damping is shown in Fig. 7.7. These plots reveal the significant influence of the
secondary sequence on the structural response. For example, the mean of the
maximum displacement response increases by about 25 % while that for the
damage index increases from 0.24 (repairable damage) to about 1.0 (total collapse)
due to the presence of the second sequence [39]. Similar effects on the input and
hysteretic energy can be observed (see Fig. 7.7).

7.4.2 Reliability of Nonlinear SDOF System to Random
Acceleration Sequences

This example investigates the response of SDOF nonlinear systems with cubic
force-deformation relation to random earthquake sequences. The ground acceler-
ation is modeled as a stationary random process of two repeated sequences. The
structure’s response is estimated using the equivalent linearization method [34].
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To do this, it is first noted that, the equation of motion for the displacement
response u(t) is given as:

€uðtÞ þ 2gnxn _uðtÞ þ x2
n½uðtÞ þ cu3ðtÞ� ¼ �€xðtÞ ð7:7Þ

where gn and xn are the damping ratio and the initial natural frequency of the
nonlinear system. The equation of motion for the equivalent linear system is given
by:

€yðtÞ þ 2geqxeq _yðtÞ þ x2
eq yðtÞ ¼ �€xðtÞ ð7:8Þ

Herein, geq and xeq are the equivalent damping ratio and the equivalent natural
frequency for the linear structure. These parameters are obtained by minimizing
the mean square error of the responses from Eqs. (7.7) and (7.8) and can be shown
to be given by:

xeq ¼ xn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6cffiffiffi

p
p r2

yC
3
2

� �s
; geq ¼

xn

xeq

gn ð7:9Þ

where r2
y is the response variance and Cð:Þ is the gamma function. Note that, the

estimation of the parameters geq and xeq involves iterative calculation of the

response variance r2
y until a convergence criterion is satisfied. In the numerical

calculation, the intensities of the acceleration sequences are taken as 0.03 and
0.03 m2/s3 and the frequency contents are (0–10) and (0–5) Hz, respectively. The
soil type is taken as soft soil with xg ¼ p rad=s and gg ¼ 0:20.

The parameters of the SDOF structure are taken as m = 9 9 104 kg, xn ¼
6:28 rad=s: Figure 7.8a shows the PSDF of the displacement response for the linear
and the equivalent linear systems from the first acceleration sequence ðc ¼ 1:0Þ.
The influence of the nonlinear parameter c on the PSDF of the displacement
response is shown in Fig. 7.8b. It can be seen that, as c increases the equivalent
natural frequency increases while the peak value of the PSDF decreases. The
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response variance r2
y from the first and the second acceleration sequences is

computed as 0.03 and 0.04 m2, respectively.
To assess the reliability of the system considered, the structural failure probability

is estimated. Since the input acceleration is a Gaussian process and the nonlinear
system is replaced with the equivalent linear system, any response quantity of the
structure (e.g., displacement or a linear transformation of the displacement) is
approximated by a Gaussian process. Following standard reliability terminology, the
structural response LðtÞ which is a time-variant quantity is denoted as the ‘‘load
effect.’’ The associated capacity or resistance of the structure (e.g., maximum per-
missible displacement or stress) is denoted by R. The determination of the structural
failure probability constitutes a time-variant reliability problem, given as:

Pf ¼
Z1

0

PRðlÞpLmðlÞdl ð7:10Þ

where PRðrÞ is the probability distribution function of the capacity R and pLmðlÞ is
the probability density function of the load effect Lm ¼ max

0\t\Td

jLðtÞj (Td is the

duration of the ground motion).
Let the load effect be the force in the spring of the equivalent linear system

Lm = keq y(t) where y(t) is the displacement. The structural capacity R is defined as
the maximum permissible yield force in the spring, modeled as a normal random
variable with lR ¼ 6:0� 104 N, and rR ¼ 6:0� 103 N. Assuming that, the ground
motion is modeled by Eq. (7.1) with the envelope function taken as the Heaviside
step functions H1(t), H2(t) and making use of the extreme value distribution for
stationary normal random processes, pLmðlÞ can be shown to be given as [40]:

pLmðlÞ ¼
Nþ0 lTd

k2r2
0L

exp � l2=k2 þ 2Nþ0 Tdr2
0L expð�l2=ð2k2r2

0LÞ
2r2

0L

� �
; 0� l�1

ð7:11Þ
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Herein, Nþ0 is the average rate of zero crossing of the response process LðtÞ
given as Nþ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

2L=r
2
0L

p
=ð2pÞ; in which, r2

0L and r2
2L are the zero and the second

spectral moments of LðtÞ. These moments are given in terms of the PSDF of the
ground acceleration as:

r2
iL ¼

Z1

0

xijHLðxÞj2S€xðxÞdx; i ¼ 0; 2 ð7:12Þ

where HLðxÞ is the frequency response function for LðtÞ. The probability of failure
under the two acceleration sequences was computed to be 3.14 and 4.21 9 10-3,
respectively. Note that, the failure probability from the second sequence is larger
than that from the first sequence. This could be attributed to the narrow frequency
content of the second sequence compared to the relatively wider frequency content
of the first sequence.

Strong ground motion of multiple sequences has been considered in this study.
The occurrence of ground accelerations of repeated sequences does not depend on
the soil type beneath the recording station or on the site source distance but on the
source properties. Accordingly, earthquake records recorded at different soil
conditions and site source distance have been considered in this study. It may be
noted that recorded ground motion sequences at a site depend on the source
properties, the path effects and also on the amplification of the amplitude, and
frequency of the seismic waves resulting from the local soil type. Accordingly, the
associated structural inelastic response under repeated ground motion sequences
could be significantly influenced by the amplification of the seismic waves at sites
of soft soils. Finally, it may be emphasized that the stochastic ground motion of
Eqs. (7.1–7.4) can be combined with standard reliability methods (e.g., FORM,
SORM, importance sampling technique and response surface method) to assess the
safety of inelastic structures to repeated acceleration sequences. In this case, the
exact evaluation of the structure’s failure probability is not obtainable in a closed
form as in Eq. (7.10), but the theory of reliability indices can be used to provide an
estimate of the notional failure probability for the structure.

7.5 Summary

Most previous studies have focused on the response analysis of inelastic structures
to repeated acceleration sequences. This paper has investigated the response of
nonlinear SDOF systems to random ground motion of repeated sequences. A novel
point of the paper is the combination of the theory of statistical linearization with
structural reliability analysis to assess the structural safety of inelastic structures. A
simple stochastic model for representing strong ground sequences is proposed in
this paper. The ground acceleration is represented as a product of a stationary
Gaussian random processes and an envelope function of repeated character.
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Numerical examples on the response analysis of nonlinear SDOF structures are
provided. The proposed acceleration model combined with structural reliability
methods (FORM, SORM, Importance Sampling Techniques, Monte Carlo Simu-
lation, and Response Surface Method) can be used in assessing the safety of
engineering structures under repeated ground motion sequences. The model can
also be used in simulating the acceleration sequences as input to the nonlinear time
history analysis of structures.

The representation of repeated ground accelerations proposed in this paper
belongs to the class of engineering models. Seismological models that are based on
attenuation of the seismic waves at the source could also be developed when
adequate information on the source properties is available.
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Chapter 8
Use of Deterministic and Probabilistic
Measures to Identify Unfavorable
Earthquake Records

8.1 Introduction

The robust design of structures toward earthquake loads is the key for the miti-
gation of the structure damage against earthquake hazards. The structural engineer
aims to design structures that are safe against possible future earthquakes and
economic at the same time. The selection of suitable design earthquake loads for
structural design is the first step to achieve this goal. The use of accurate nonlinear
model describing the inelastic behavior of the structure is the second step to
achieve this goal. Earthquake loads can be specified for seismic design of struc-
tures using the response spectrum method, using recorded accelerograms, or using
the random vibration theory. The method of the critical excitation has been
developed in the literature for specifying mathematical earthquake loads on
structures. The works of Takewaki [1, 2] and Abbas [3, 4] provide extensive
overviews on this method. The critical or most unfavorable earthquake load for a
given structure is derived by solving an inverse dynamic optimization problem
subject to predefined constraints reflecting known information on the seismic data
at the site. These earthquake loads are tailor-made to produce the maximum
structural response and are thus termed critical or worst-case input.

Many studies have attempted to identify unfavorable real ground motion records
[5, 6, 7, 8, 9, 10]. For instance, Anderson and Bertero [6] studied implications of
adjusted earthquake records on the maximum structural responses produced by near-
fault ground motions. Takewaki [8] used the critical excitation method to quantify
resonance and criticality of earthquake records for a given structure by comparing the
structural response produced by the critical input and that from the earthquake
record. Amiri and Dana [5] used the effective peak ground velocity to identify
resonant records at a given site. Dhakal et al. [7] utilized probabilistic methods to
identify critical earthquake records by relating them to the maximum design earth-
quake. The study by Zhai and Xie [10] employs the critical excitation concept to
identify most unfavorable earthquake records for structures of known frequency

I. Takewaki et al., Improving the Earthquake Resilience of Buildings,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-4144-0_8,
� Springer-Verlag London 2013
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range. A resonant ground motion possesses a narrow frequency content leading to its
energy being contained in one or a few pulses. Such an input is capable of producing
the highest response among other inputs if the resonant or dominant frequency is
close to the structure fundamental frequency. In this chapter, the term ‘‘resonant
ground motion’’ implies that the energy of the ground motion is concentrated in a
single or a few frequencies. This, in turn, implies that the ground motion has a narrow
frequency content or of pulse-like characteristics.

In the context of earthquake engineering, Abbas [3] and Abbas and Manohar
[11, 12] examined the significance of incorporating a lower bound on the entropy
rate of the ground acceleration in deriving critical random earthquake load models.
These authors proved the significance of the entropy rate constraint quantified
from actual recorded accelerograms in producing realistic earthquake loads that
are rich in frequency content.

In this chapter, the notion of the critical excitation method and the random
vibration theory are employed to introduce measures for identifying resonant or
unfavorable earthquake records among a set of records. The first measure is based
on the concept of the entropy of random processes. The second measure is the
dispersion index of the power spectral density function (PSDF) of the ground
acceleration and is based on the work of Vanmarcke [13, 14]. Deterministic
measures of the frequency content of the ground acceleration are also developed.
These measures can provide a basis for the selection of proper design earthquake
records for structures. The numerical illustrations demonstrate the identification of
resonance in random process and 110 earthquake records at various soil sites.

The following section explains a new measure using the entropy rate for
identifying resonance in random processes. Subsequently, the dispersion index and
central frequency measures developed by Vanmarcke [13] are discussed. The use
of these measures to identify resonant earthquake records is then demonstrated.
The development of deterministic measures for identifying frequency content of
ground motions is explained. The last section illustrates the use of these measures
for the selection of suitable acceleration records for seismic design of structures.

8.2 Use of Entropy as a Measure of Resonance/Criticality
of Probabilistic Earthquake Models

The use of entropy to measure the amount of information in random signals sent
along a transmission line was proposed by Shannon [15]. This idea has been
advocated as being a general principle of statistical inference and has been used in
the broad field of science, engineering, and economics. The literature on the use of
entropy in engineering is vast (see, e.g., [16, 17]). Entropy in its basic form is a
measure of uncertainty or missing information. For example, the entropy of a
random variable x is a measure of the uncertainty associated with that random
variable, which is given in terms of the probability density function pðxÞ and is
given in the following form [17]:
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Hx ¼
Z1

�1

pðxÞ ln pðxÞdx ð8:1Þ

When the quantity Hx is large, the uncertainty as to the value of x is also large. For
instance, the entropy of a normal random variable of ‘large coefficient of variation’
is also large. Note that, when the coefficient of variation is significantly large, the
normal distribution can approximate the uniform distribution that possesses the
largest entropy among all distributions. On the other hand, when the coefficient of
variation is very small, the distribution may approximate a deterministic quantity
which possesses zero entropy.

The use of entropy rate in earthquake engineering to model critical earthquake
loads was introduced by Manohar and Sarkar [18], Abbas [3], Abbas and Manohar
[11, 12]. These studies proved the crucial role of including the entropy in
producing realistic critical earthquake loads. The entropy rate of a zero-mean
stationary Gaussian random process €uðtÞ is given as [17]:

H ¼ ln
ffiffiffiffiffiffiffiffi
2pe
p

þ 1
2ðxu � x0Þ

Zxu

x0

ln SðxÞ dx ð8:2Þ

In Eq. (8.2), ðx0;xuÞ and SðxÞ define the frequency range and the one-sided
PSDF of the ground acceleration. The constant ln

ffiffiffiffiffiffiffiffi
2pe
p

(e: natural number) repre-
sents a reference level from which the entropy rate is measured. It can be understood
from Eq. (8.2) that the entropy rate of a stationary Gaussian process is constant. Thus,
when the entropy rate of €uðtÞ is large, the uncertainty as to the value of €uðtÞ at discrete
time instants is also large. On the other hand, the entropy of a harmonic signal with a
random amplitude and a single or very few frequencies (e.g., €uðtÞ ¼ A sinðxgtÞ) is
almost zero. In other words, the energy of the signal or the amplitude of the Fourier
transform of a sine or a cosine time series of a single or very few frequencies is well
ordered in the frequency range ðx0;xuÞ while a time signal composed of several
frequencies will be disordered. Note that two random processes with the same energy
(same area under the PSDF) need not possess the same entropy. This is because
entropy depends on the frequency bandwidth and the spectral amplitude of the PSDF
[Eq. (8.2)]. To gain more insights into the use of entropy in characterizing ground
motions, the entropy of probabilistic models of Gaussian ground motion models will
be derived in the following sections.

8.2.1 Stationary Narrow-Band White Noise Model

The narrow-band random process has been used extensively as an idealization for
random signals, noises, turbulences, and earthquakes (see, for example, [19, 20]).
Consider a stationary narrow-band signal of intensity s0 and central frequency xc:
Then, Eq. (8.2) leads to:
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H ¼ ln s0

2ðxu � x0Þ
ð8:3Þ

As seen from Eq. (8.3), the parameters s0;x0;xu define the entropy of the
narrow-band signal. Note that the term ln

ffiffiffiffiffiffiffiffi
2pe
p

of Eq. (8.2) was omitted.

8.2.2 Stationary Band-Limited White Noise Model

The band-limited white process has been frequently used as an approximation for
earthquake and wind loads. This process possesses finite energy, constant spectral
amplitude in the frequency range ðx0;xuÞ. Thus, Eq. (8.2) leads to:

H ¼ ln s0

2
ð8:4Þ

Therefore, the spectral parameter s0 defines the entropy of the band-limited
process. It can be observed from Eqs. (8.3) and (8.4) that entropy of the band-
limited ground acceleration model is significantly larger than that of the narrow-
band acceleration model.

8.2.3 Stationary Kanai-Tajimi Model

This model has been widely used in modeling strong ground motions in seismic
resistant design of structures and infrastructures [21, 22]. The PSDF of the ground
acceleration is obtained by passing a band-limited white noise through a filter that
represents the soil layer above the bedrock, given by

SðxÞ ¼ s0
x4

g þ 4g2
gx

2
gx

2

ðx2
g � x2Þ2 þ 4g2

gx
2
gx

2
ð8:5Þ

where s0; gg;xg are the intensity of the PSDF at the rock level, damping, and
frequency of the soil layer, respectively. The entropy of the Kanai-Tajimi model
can be estimated numerically instead of integrating Eq. (8.2) analytically.

8.2.4 Nonstationary and Evolutionary PSDF Models

Different earthquake acceleration models have been developed and proposed in the
literature to account for nonstationarity in time and frequency content. This class
of earthquake models is known as evolutionary PSDF models (see [20]). Herein,
the PSDF of the ground acceleration is a function of time and frequency and is
represented by
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Sðt;xÞ ¼ jAðt;xÞj2SðxÞ ð8:6Þ

In Eq. (8.6) Aðt;xÞ is a modulating envelope that could be a complex function and
SðxÞ is a stationary PSDF. When Aðt;xÞ is separable into a time function and a
frequency function, the model reduces to the uniformly modulated nonstationary
random process which possesses invariable PSDF at all time instants. Accordingly,
the entropy is constant and the computation follows the same procedures for
stationary acceleration models.

Consider the ground acceleration defined by the Kanai-Tajimi PSDF of Eqs.
(8.5) and (8.6) with Aðt;xÞ given by

Aðt;xÞ ¼ eðtÞgðt;xÞ ¼ A0½e�at � e�bt� eð�r x t
xm tm

Þ ð8:7Þ

In Eq. (8.7) A0; a; b; r;xm; tm are constants. Herein, the quantification of the
entropy can be carried out using numerical integration of the evolutionary PSDF at
discrete points of time. Figure 8.1 shows the evolutionary PSDF of the ground
acceleration and the associated entropy function for A0 ¼ 2:87; a ¼ 0:13;
b ¼ 0:35; r ¼ 1:0; xm ¼ 5:0 Hz; and tm ¼ 5:0 s.

The above sections explained the quantification of the entropy rate for proba-
bilistic earthquake models. It is shown that the entropy for stationary and uni-
formly modulated random processes is constant. Additionally, the entropy rate of
the band-limited acceleration is significantly larger than that of the narrow-band
acceleration. We explain the quantification of the relative entropy of two random
processes in the following section.

8.2.5 Relative Entropy Rate of Two Random Processes

To compare the entropy from alternative acceleration models, we measure the
entropy of the random process €uðtÞ with reference to a wide-band signal €zðtÞ of
spectral intensity s0: This is known as the relative entropy of two random
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Fig. 8.1 a Evolutionary Kanai-Tajimi PSDF, b Entropy function (Moustafa and Takewaki [23]
with permission from Springer)
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processes. Thus, under the assumption that €uðtÞ is independent of €zðtÞ; the increase
in entropy when €uðtÞ is added to €zðtÞ is given by the following expression:

DH ¼ 1
2ðxu � x0Þ

Zxu

x0

ln 1þ SðxÞ
s0

� �
dx ð8:8Þ

Let us calculate the entropy index DH for the narrow-band, the Kanai-Tajimi
and the band-limited acceleration models, described above, from a reference wide-
band signal of intensity 0.02 m2/s3. The PSDF for each of these three models is
normalized so that they possess unit area (see Fig. 8.2). This normalization implies
equality of the earthquake energy of the three models [24]. The parameters xg; gg

of the Kanai-Tajimi model are taken as p rad/s, 0.20 for soft soil, 3p rad/s, 0.40 for
medium soil, 6p rad/s, 0.60 for stiff soil, and 9p rad/s, 0.80 for rock soil (see,
Table 8.1). In addition, the spectral intensity at the rock level is taken as
s0 ¼ 0:02 m2/s3 and the central frequency of the narrow-band signal is taken as
xg ¼ p; 3p; 6p; 9p rad/s for soft, medium, stiff, and rock soil, respectively. The
numerical results are shown in Table 8.1. Based on careful examination of these
results, the following observations can be drawn.

1. The narrow-band acceleration possesses the smallest entropy. In other words, the
PSDF of this model is well ordered or the acceleration energy is concentrated at a
single frequency. Note that the central frequency of the acceleration does not
influence the entropy [see Table 8.1 and Eq. (8.3)]. Thus, the entropy of narrow-
band signals with the same energy is invariant regardless of the central frequency

2. The band-limited acceleration possesses the highest entropy among all models.
This is because the energy of the process is well represented at all frequencies

3. The Kanai-Tajimi acceleration is significantly disordered. This is expected
since the PSDF is reasonably distributed across a significant frequency range
(see Fig. 8.2a). The entropy for soft soil is small compared with that for rock
soil. This is not surprising since the PSDF for soft soil is narrow-band while
that for rock soil is distributed across a wider frequency range (see Fig. 8.2b).
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4. The entropy of the Kanai-Tajimi model is bounded between the entropy of the
narrow-band acceleration and that from the band-limited acceleration for all
soil conditions (see Table 8.1). This result is interesting since it provides lower
and upper bounds on the entropy of the Kanai-Tajimi acceleration model

Earthquake records often possess amplitude distributed across a significant
frequency range. This is because the energy released at the source gets amplified
and filtered by the soil layer above the rock level due to site and attenuation effects
caused by soil damping, geometric spreading, wave scattering, and local soil
profile. As discussed above, real accelerograms, however, exhibit the resonance
trend. Accordingly, the associated frequency range is narrow which can be char-
acterized in terms of the entropy rate.

This section explained the use of entropy rate as a measure of the frequency
content of probabilistic earthquake models. It is shown that the narrow-band and
the band-limited signals provide lower and upper bounds on the entropy of the
Kanai-Tajimi model. The entropy of recorded accelerograms will be estimated in
the following section.

8.3 Dispersion Index and Central Frequency

Vanmarcke [13, 14] introduced important measures for the frequency content of the
ground acceleration in terms of the geometric properties or the moments of the PSDF.
These measures are briefly outlined here. The ith moment of SðxÞ is given by

ki ¼ 2
Z1

0

xiSðxÞdx; i ¼ 0; 1; . . .; n ð8:9Þ

The zeroth moment defines the energy and the second moment defines the variance
of the velocity process. The ith frequency is defined by

xi ¼
ki

k0

� �1
i

; i ¼ 1; 2; . . .; n ð8:10Þ

Here x1 ¼ xc is the central frequency of the ground acceleration and x2

indicates where the spectral mass of the PSDF is located along the frequency
range. The radius of gyration of SðxÞ about the frequency origin xc is given by the
following form [13, 14]:

xs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2 � x2
1

q
ð8:11Þ

In Eq. (8.11) xs is a measure of dispersion of the PSDF about the central
frequency. Thus, when xs is small, it implies that the ground acceleration is
narrow-band and when xs is large, the ground acceleration is broadband or rich in
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frequency content. Table 8.1 summarizes the dispersion index for narrow-band,
Kanai-Tajimi, and band-limited random processes defined above. The numerical
values of the parameters of these models are given in the same table. It is evident
from these results that the narrow-band and the band-limited models provide lower
and upper bounds on the dispersion index of the Kanai-Tajimi model. The
following section explains how to use the measures developed in this section and
the previous section for identifying resonant earthquake records.

8.3.1 Use of Entropy Rate and Dispersion Index to Measure
Resonance of Earthquake Records

Consider an actual recorded earthquake acceleration €xðtÞ that is represented by

€xðtÞ ¼ eðtÞ€uðtÞ ¼ A0½e�at � e�bt� €uðtÞ ð8:12Þ

Herein €uðtÞ is a steady-state function and eðtÞ is an envelope function that
defines and characterizes the nonstationarity of €xðtÞ: The envelope parameters
A0; a and b can be estimated by matching the transient trend of the recorded
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earthquake acceleration. Subsequently, the stationary part €uðtÞ can be obtained by
dividing €xðtÞ by eðtÞ: The PSDF of €uðtÞ can then be calculated. This is followed by
the estimation of the entropy using Eq. (8.8).

Figure 8.3 shows the PSDFs for four ground acceleration models. The first
acceleration represents a sample narrow-band pseudo-sinusoidal signal €xðtÞ ¼
eðtÞA sin xgt; with random amplitude A; and central frequency xg ¼ 3p (medium

soil). The second acceleration represents a sample of a band-limited model, €xðtÞ ¼
eðtÞ

PN
i¼1 Ai cosðxitÞ þ Bi sinðxitÞf g; where Ai and Bi are uncorrelated normal

random variables of variance s0: The third signal is an acceleration simulated from
the Kanai-Tajimi model of Eq. (8.5) for the medium soil (xg ¼ 3p rad/s; gg ¼ 0:40Þ:
The fourth acceleration represents the first horizontal acceleration of the 1992 Cape
Mendocino (Petrolia) earthquake measured at medium soil site [25]. The stationary
components €uðtÞ for the first three models are modulated by the envelope function
that matches the transient trend of the actual record and all accelerations are nor-
malized to unit intensity.

The relative entropy for these accelerations from a wide-band acceleration of
spectral intensity 0.02 m2/s3 is determined. The numerical values were found to be
0.03 for the narrow-band acceleration, 0.56 for the band-limited acceleration, 0.19
for the simulated Kanai-Tajimi acceleration, and 0.32 for the Cape Mendocino
accelerogram (see Table 8.1). It can be observed from these results that entropy of
the Kanai-Tajimi model is bounded by the entropy of the narrow-band acceleration
and the entropy of the band-limited acceleration. Interestingly, the entropy of the
recorded acceleration is also bounded by the narrow-band and the band-limited
signals. Note that the narrow-band signal represents a resonant acceleration that is
poor in frequency content. The band-limited signal, on the other hand, represents
an acceleration that is rich in frequency content. Based on this observation, it can
be expected that the entropy of a resonant or a narrow-band acceleration will be
the smallest among a set of records, while the entropy of an acceleration that is
rich in frequency content will be large. The following section explains deter-
ministic measures to quantify the frequency content of ground motions.

8.3.2 Use of Deterministic Measures to Identify Resonance
in Earthquake Records

Consider an acceleration record of finite energy in time domain satisfying the
acceleration energy condition:

Et ¼
Z1

�1

€xðtÞ½ �2dt\1 ð8:13Þ

Under this condition, the Fourier transform of the ground acceleration is given by
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yðxÞ ¼
Z1

�1

€xðtÞ e�ixtdt ð8:14Þ

Equation (8.13) provides a measure of the acceleration energy computed in
time domain (see [24] and also Chaps. 3–7). Recalling Parseval’s theorem

(
R1
�1 €xðtÞ½ �2dt ¼ ð1=2pÞ

R1
�1 jyðxÞj

2dxÞ; a similar measure can be computed in
frequency domain:

Ex ¼
Z1

�1

jyðxÞj2dx ¼
Z1

�1

yðxÞ y�ð�xÞdx ð8:15Þ

Herein, y�ð�xÞ is the complex conjugate of yðxÞ. The frequency content, pre-
sented in this chapter, is taken within ðxa;xbÞ. The parameters xa and xb rep-
resent the frequencies at which a and b times the Fourier energy are attained,
respectively. Thus, the frequency bandwidth is given by xef ¼ xb � xa (see
Fig. 8.4). Typical values of a and b can be 0.05 and 0.95 (5 and 95 % of the
acceleration energy, see [26]), respectively, or any reasonable values (e.g., 0.01
and 0.99). When a = 0.05 and b = 0.95, the parameter xef can be viewed as a
measure of the frequencies contributing to the strong phase of the ground motion
(see, e.g. [26]). The effective frequency bandwidth can be further normalized to
provide a measure that is bounded between zero and one:

�xef ¼
xb � xa

Xu � X0
ð8:16Þ

The frequency range (X0;Xu) is generally in the range of 2p (0,10 * 50) rad/s
depending on the site soil condition. When �xef is close to zero, the ground
acceleration is narrow-band or poor in frequency content. An example of this
scenario is a harmonic signal of a single or a few frequencies. For example,
€xðtÞ ¼ A sinðxgtÞ; where A and xg are the acceleration amplitude and dominant
frequency, respectively. When �xef is significantly larger than zero, the ground
acceleration will be rich in frequencies. The band-limited acceleration model
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(constant amplitude at all frequencies) is an example of this scenario. The average
frequency of the ground motion is calculated as xav ¼ ðxb � xaÞ=2:

The central or dominant frequency of the ground acceleration reflecting the
influence of the local soil profile can be computed by

xc ¼
Z1

�1

xjyðxÞj2dx

, Z1

�1

jyðxÞj2dx ð8:17Þ

An additional frequency xmax that corresponds to the peak amplitude of yðxÞ can
also be estimated (see Fig. 8.4). The relevance of xmax becomes obvious by
comparing xmax with the fundamental frequency xn of the structure. Thus, when
the ratio xmax=xn is close to one, it can be expected that the input energy to the
structure will be large (see [27]).

It is believed that these measurers provide important information about the
nature of the ground motion, and thus, can be adopted in identifying the frequency
content of recorded accelerograms. It is proposed in this chapter that these mea-
sures be utilized in selecting recorded accelerations as design inputs to important
structures. Thus, if a set of n records are available and it is required to select a few
records (typically 3 * 10) for seismic design of a new structure of fundamental
circular frequency xn (obtainable using approximate or empirical expressions), the
following procedures can be adopted:

1. Normalize the set of available accelerograms to the same Arias intensity [24].
2. Calculate the central and effective frequencies for each record [Eqs.(8.16),

(8.17)].
3. Sort the records based on the central frequency and associated effective

frequency.
4. Select those records that have their xc close to xn and have the smallest �xef :

To demonstrate how to use the measures developed in this chapter in quanti-
fying resonant recorded accelerograms, the acceleration records listed in Table 8.2
[25] are considered. The numerical values of these measures are given in the same
table. These results reveal clearly the significant differences between these records.
It is seen that �xef for the Chi–chi record is the smallest and that for the Landers is
the largest. The Kobe record would govern the design of buildings of xn in the

Table 8.2 Frequency content measures for recorded ground motion (Moustafa and Takewaki
[23] with permission from Springer)

Earthquake (station, record) xc(Hz) xef (Hz) �xef
a xmax(Hz)

1940 El Centro (El Centro#9, H180) 13.53 43.92 0.88 5.88
1966 Parkfield (Cholame#2, C065) 8.18 28.85 0.58 8.24
1992 Landers (Lucerne, LCN000) 23.05 46.69 0.93 28.52
1995 Kobe (Takatori, TAK000) 6.75 31.49 0.63 4.03
1999 Chi-Chi (ALS, ALS0) 3.83 16.52 0.33 1.74
a Eq. (8.16), X0 ¼ 0; Xu ¼ 50 Hz
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range (0, 4) Hz. This observation is confirmed by the large Fourier amplitude of
the Kobe record that is about twice the amplitude of El Centro record and about
four times that of the Chi–chi record.

8.4 Identification of Resonant Accelerations and Selection
of Design Records

To examine the applicability of the measures explained in this chapter in identi-
fying resonant accelerograms at a site, four recorded earthquake groups shown in
Table 8.3 are considered. These records include accelerograms measured at rock,
stiff, medium, and soft soil sites [25]. The selection of these records is based on the
site soil classification adopted by the USGS in terms of the shear wave velocity vs

(see Table 8.3). The vertical and the two horizontal accelerations of the record
during each earthquake are considered in the numerical analyses. Table 8.3
provides information about magnitude, source-site distance, PGA, Arias intensity,
duration, and recording station for these 72 accelerograms considered. In numeri-
cal calculations, the dispersion index is normalized by x2 and all records are
scaled to the same Arias intensity.

The numerical results on entropy and dispersion indices for these records are
shown in Table 8.3. The mean and coefficient of variation for the entropy are
(0.58, 0.17), (0.52, 0.23), (0.47, 0.14), and (0.50, 0.28) for rock, stiff, medium, and
soft soil, respectively. The higher variation can be observed in the entropy for the
soft soil site which could be attributed to the differences in the source properties
and other characteristics (e.g., duration, magnitude, epicentral distance, fault
mechanism, etc.). If these 72 accelerograms are considered, the mean entropy and
coefficient of variation are calculated as (0.52, 0.22). Figures 8.5, 8.6, 8.7, 8.8
illustrate the PSDF for the stationary components of the vertical and the two
horizontal accelerations, respectively. The results reveal that the entropy and the
dispersion indices correlate well and that they successfully identify resonant ac-
celerograms. For instance, the vertical acceleration of the 1979 Imperial Valley
earthquake recorded at soft soil (El Centro #3) possesses the lowest entropy among
all records. Figure 8.5 confirms this result since the PSDF of this acceleration is
narrow-band and resembles a resonant signal with high amplitude at a single
frequency. On the other hand, the accelerations that are rich in frequency content
(e.g. 1999 Kocaeli (Arcelik) earthquake) possess the largest entropy. It is also
evident that three accelerations of the same earthquake have different entropy and
dispersion indices. These observations were confirmed by the Fourier transform of
these accelerations. The numerical results on the deterministic measures were also
seen to successfully identify resonant ground motions.

The numerical results reveal also that the Arias intensity and the peak ground
acceleration are not guaranteed as accurate parameters for selecting design ground
motions for structures. For instance, the vertical acceleration of the 1992 Landers
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Fig. 8.5 Power spectral density function for records at rock soil site shown in Table 8.3
(Moustafa and Takewaki [23] with permission from Springer)
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Fig. 8.6 Power spectral density function for records at stiff soil site shown in Table 8.3 (in order
from the top) a Vertical component, b First horizontal component, c Second horizontal
component (Moustafa and Takewaki [23] with permission from Springer)
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Fig. 8.7 Power spectral density function for records at medium soil site shown in Table 8.3 (in
order from the top) a Vertical component, b First horizontal component, c Second horizontal
component (Moustafa and Takewaki [23] with permission from Springer)
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Fig. 8.8 Power spectral density function for records at soft soil site shown in Table 8.3 (in order
from the top) a Vertical component, b First horizontal component, c Second horizontal
component (Moustafa and Takewaki [23] with permission from Springer)
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earthquake (Lucerne) measured at rock soil possesses high PGA (0.82 g) and high
Arias intensity (51.37 m2/s3). However, the spectral amplitude of this acceleration
is substantially small in the frequency range 2p(0, 9) rad/s. On the other hand, the
vertical acceleration of the 1992 Cape Mendocino (CM) measured at the same soil
condition has relatively lower PGA (0.75 g) and substantially smaller intensity
(8.59 m2/s3), but possesses significantly higher spectral amplitudes in the
frequency range 2p(0,2) rad/s. Thus, it can be expected that this record will
produce large deformations in a structure with short to moderate natural period
compared to the first acceleration. This observation will be verified below.

Consider three SDOF building models of natural frequency of 0.13, 0.21, and
0.41 Hz. The yield displacement and yield strength of these structures are taken as
uy ¼ 0:10 m and fy ¼ 104 N and a viscous damping of 0.05 damping ratio is
adopted. The material nonlinearity is modeled using an elastic–plastic relation.
Nonlinear dynamic analysis is carried out for each structure subjected to a single
acceleration using the Newmark-b method (a = 1/2, b = 1/6, Dt ¼ 0:004Þ: All
records were normalized to the same Arias intensity of 6.00 m2/s3. The Park and
Ang damage index for each structure driven by the ground acceleration is calcu-
lated as follows (see [28] and also Chaps. 5, 7):

DIPA ¼
umax

uu

þ b
EH

fyuu

¼ lmax

lu

þ b
EH

fyuylu

ð8:18Þ

In Eq. (8.18) umax and EH are the maximum displacement and dissipated hys-
teretic energy (excluding elastic energy) under the earthquake [4, 28]. The
parameter lu is the ultimate yield ductility capacity under monotonic loading and
b is a positive constant that weights the effect of cyclic loading on structural
damage (taken as 6 and 0.15). The numerical results on DIPA are provided in
Table 8.4. From the numerical results it is evident that the identified resonant
acceleration (Cape Mendocino) produces more damage than the Landers accel-
eration. In fact, these three structures are damaged beyond repair ðDIPA [ 0:40Þ
by the first acceleration while they sustain the second acceleration with repairable
damage ðDIPA\ 0:40Þ [28]. The same observation applies to the ductility factor.

Table 8.4 Ductility factor and damage index for SDOF inelastic structure subjected to ground
acceleration (Moustafa and Takewaki [23] with permission from Springer)

Earthquake (station) Structure fundamental frequency

f = 0.13 Hz f = 0.21 Hz f = 0.41 Hz

Ductility
factor

Damage
index

Ductility
factor

Damage
index

Ductility
factor

Damage
index

1992 Cape
Mendocino (CM)

4.39 0.74 7.09 1.05 1.41 0.19

1992 Landers
(Lucerne)

0.93 0.12 0.60 0.08 0.43 0.05
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Let us further examine the measures developed in this chapter for the four
groups of earthquake records listed in Table 8.5. These records include near-fault
accelerograms measured at rock and soil sites, and short- and long-duration
earthquakes [25]. The selection of records for different soil conditions and for
different earthquake durations is meant for examining the robustness of the
proposed measures to different earthquake characteristics. The two horizontal
accelerations are considered in the numerical analyses. Table 8.5 provides infor-
mation about these records. Note that all records are scaled to the same Arias
intensity.

The numerical results on entropy and dispersion indices for each of these
earthquake accelerations are provided in Table 8.5. The results demonstrate that
the entropy and the dispersion indices correlate well and that they both success-
fully identify resonant accelerograms. It is seen that the narrow-band records
possess the smallest entropy and dispersion indices (e.g., 1995 Kobe (OSAJ) and
1994 Northridge (Sylmar) earthquakes) while the accelerations that are rich in
frequency content (e.g. 1992 Landers and 1986 N. Palm Spring earthquakes)
possess the largest entropy and dispersion. It is also evident that the two accel-
eration components of the same earthquake have different entropy and dispersion
indices. This observation is consistent with the findings by Anderson and Bertero
[6]. The short-duration earthquakes are seen to possess higher entropy and dis-
persion indices and sharp energy jump compared to the long-duration earthquakes.
It is also remarkable that near-fault records measured on soil site have smaller
entropy and dispersion indices compared to near-fault records measured on rock
soil. This may be attributed to the site soil effects that can significantly filter the
amplitude and frequency content of the ground motion for soil sites. The same
observations hold for the effective frequency measure.

8.5 Summary

In seismic design of structures, it is essential to select the design ground motion,
among a set of available records, which produces the highest structural response.
In this chapter, measures that can be used to identify resonance/criticality of
earthquake ground motions are developed. The entropy rate and the dispersion
index are shown to identify resonance of probabilistic earthquake models and
earthquake records. It is shown that resonant accelerations exist regardless of soil
site conditions and source characteristics. In probabilistic earthquake models, it
was shown that the bandlimited and the narrow-band signals provide upper and
lower bounds on entropy rate and dispersion index of the Kanai-Tajimi acceler-
ation models. Similarly, narrow-band and broadband harmonic functions provide
bounds on the frequency content of recorded accelerograms. Measures that are
based on the deterministic approach are also shown to be suitable descriptors of
resonance of ground motions.
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The usefulness of the measures developed in this chapter is demonstrated by
identifying resonant acceleration records measured at sites with different soil
conditions and with different earthquake characteristics (e.g., total duration, fre-
quency content, site-source-distance, energy, etc.). Resonant ground accelerations
are shown to produce large structural response and damage when their dominant
frequency is close to the fundamental frequency of the structure. Numerical ver-
ifications using nonlinear dynamic analysis and Park and Ang damage indices are
also provided.
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Chapter 9
Damage Assessment of Inelastic
Structures Under Worst Earthquake
Loads

9.1 Introduction

Earthquakes continue to claim thousands of lives and to damage structures every
year [1]. In fact, each earthquake brings out new surprises and lessons with it. For
instance, the unexpected loss of lives and the severe damage of infrastructures and
buildings during past strong earthquakes (e.g., 1994 Northridge, 1995 Kobe, 2010
Haiti and the most recent 2011 Tohoku earthquakes) have raised significant
concern and questions on life safety and performance of engineering structures
under possible future earthquakes. The occurrence of strong earthquakes in den-
sely populated regions, especially in developing countries with vulnerable building
stock and fragile infrastructure, could lead to catastrophic consequences. A notable
example is the 2010 Haiti earthquake that killed 250,000 people and left a long-
term suffering for the residents of this developing country [2]. On the other hand,
the severe damage caused by the 2011 Tohoku earthquake in Japan has raised
significant challenges to one of the most developed countries as well [3]. Hence,
the assessment of seismic performance of structures under strong ground motions
is an important problem in earthquake engineering. Structures need to resist
unknown future earthquakes which add more complexity to the problem [4–11].
The consideration of the earthquake inherent uncertainty, the variability in the
structure parameters, and modeling the nonlinear behavior of the structure is
essential for the accurate prediction of the actual response of the structure.
Earthquake uncertainties include time, location, magnitude, duration, frequency
content and amplitude, referred to as aleatory uncertainties.

The earthquake-resistant design of structures has been an active area of research
for many decades [12]. The structural engineer aims to ensure safe performance of
the structure under possible future earthquakes while maintaining optimal use of
the construction material. The design objectives in current seismic building codes
are to ensure life safety and to prevent damage of the structure in minor and
moderate frequent earthquakes, and to control local and global damage (prevent

I. Takewaki et al., Improving the Earthquake Resilience of Buildings,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-4144-0_9,
� Springer-Verlag London 2013
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total collapse) and reduce life loss in a rare major earthquake. This can be achieved
through: (1) robust prediction of expected future strong ground motions at the site,
(2) accurate modeling of the material behavior under seismic loads, and (3)
optimal distribution of the construction material.

Early works on seismic design have dealt with the specification of earthquake
loads using the response spectrum method, the time history of the ground accel-
eration, or using the theory of random vibrations. The nonlinear time-history
analysis is recognized as the most accurate tool for dynamic analysis of structures
[13]. Many researchers have also established deterministic and probabilistic hazard
spectra for the site [14, 15]. The development of mathematical models to describe
the hysteretic nonlinear behavior of the structure during earthquakes has also been
pursued in several studies [16–18]. New design concepts and methods, such as
energy-, performance- and displacement-based design, base isolation, and struc-
tural control have been recently developed [19–21]. Similarly, the optimal design
of the structures under earthquake loads has been investigated in several studies
[19, 22–25]. The evaluation of the current procedures and present new, practical
procedures for ground motion selection and modification are provided in the recent
special issue on earthquake ground motion selection, and modification for non-
linear dynamic analysis of structures [26]. The two edited books by Papadrakakis
et al. [27] and Tsompanakis et al. [28] and the doctoral thesis by Plevris [25]
present the state-of-the-art on advances and applications of optimal seismic design
of structures considering uncertainties.

The definition of the worst or critical ground motion represents a major chal-
lenge in earthquake-resistance design of structures. This is because of the high
uncertainty involved in the occurrence of the earthquake phenomenon compared to
the relatively low variability in the structure’s properties. Strasser and Bommer
[29] pose an important question on whether we have seen the worst ground motion
yet, and the answer is no. They identify the worst ground motions as those having
large amplitude. It may be emphasized that the worst ground motion for a structure
may not be the worst input for a different structure. For example, the 2002
earthquake of magnitude 7.9 occurred along Alaska’s Denali fault killed no one
and did little serious damage, while the 1995 Kobe earthquake of 6.9 magnitude
killed 5,100 people and caused billion of dollars in structural damage. Early
studies on defining severity of strong ground motion and earthquake capability to
create large damage have focused on the earthquake intensity, peak values of
ground acceleration, velocity and displacement (PGA, PGV, PGD), effective PGV,
and so on [11, 30]. Near-field ground motion with pulse-like characteristic is a
phenomenon representing one scenario of severity in the near-field region. Other
scenarios of earthquake severity include repeated occurrence of ground motion in
sequences [31]. Deep soft soils can also amplify earthquake amplitudes and
modify frequency content. Secondary causes include also the travel path effects. In
reality, some of these causes could exist together.

To carry out nonlinear time-history analysis, a set of suitable accelerograms
need to be selected from available records (see, e.g., [32]). In this context, the
criteria based on which records are selected and scaled represent an interesting
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subject. A notable effort in this direction and other related subjects has been
extensively investigated by several researchers, especially at Stanford University
(e.g., [33–39]). If the number of the available records is small, records from other
sites with similar soil condition or artificially simulated ground motions could be
employed. The critical excitation method provides another alternative in the case
of scarce, inhomogeneous, or limited earthquake data for the site. This method has
been used to assess the structure’s response under mathematically simulated
earthquake inputs representing possible worst future earthquakes (e.g., [6, 10, 11]).
This method relies on the high uncertainty associated with the occurrence of the
earthquake phenomenon, associated characteristics and also on the safety
requirements of the important and lifeline structures (nuclear plants, storage tanks,
industrial installations, etc.). The critical earthquake input for a given structure is
computed by minimizing the structure’s performance while satisfying predefined
constraints observed in real earthquake records. The structural performance may
be described in terms of the structure’s response or in terms of reliability measures
or damage indices [4, 5, 8, 9]. The optimum design of the structure under varying
critical earthquake loads has also been studied (e.g., [40–42]). Several practical
applications have evolved from the concept of critical excitation. This includes
design of structures to critical excitations, deriving critical response spectra for a
site, estimating critical cross power spectral density functions of multi-point and
spatially varying ground motions, and reliability analysis of structures to partially
specified loads. This method of critical excitations has also been employed in
identifying resonant accelerations and in selecting critical recorded accelerograms
based on the notion of the entropy principle [5, 8, 9, 43–45]. Comprehensive
reviews on these aspects can be found in [6].

This chapter deals with the damage assessment of inelastic structures under
worst mathematical future earthquakes obtained using the critical excitations
method. The novelty of this research is in combining damage indices, with non-
linear optimization, and nonlinear time-history analysis in assessing the structural
performance under possible future ground motions. The use of damage indexes
provides a quantitative measure for damage and necessary repair for the structure.
Bilinear and elastic–plastic force–displacement relationships are taken to model
the material nonlinearity, and thus the present work is limited to nondeteriorating
structures. Numerical examples for one-story and two-storys plane frames without
irregularities are provided. Future practical applications of the proposed method-
ology in seismic analysis and design of structures are also discussed.

9.2 Damage Assessment for Inelastic Structures
Under Earthquakes

Damage assessment for structures is generally based on the nonlinear response
quantities under earthquake loads (see Table 9.1). The bilinear and the elastic–
plastic models are shown in Fig. 9.1. The evaluation of the structure’s damage is
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usually carried out using damage indices which are quantified in terms of the
structure’s response and the associated absorbed energy. Therefore, the quantifi-
cation of damage indices is carried out after performing nonlinear time-history
analysis for the structure. The nonlinear time-history analysis for the structure is
performed by solving the equations of motions using numerical integration
schemes [5, 8, 9, 46].

9.2.1 Energy Dissipated by Inelastic Structures

The energies dissipated by N multi-degree-of-freedom (MDOF) structures under
the ground acceleration €xðtÞ are computed by integrating the equations of motion
as follows [16, 47–50]:

EKðtÞ ¼
Z t

0

_X
TðsÞM€XðsÞds ¼ 1

2

XN

i¼1

mi _x
2
i ðtÞ ð9:1aÞ

EDðtÞ ¼
Z t

0

_X
TðsÞC _XðsÞds ¼

XN

i¼1

Z t

0

_xiðsÞfDiðsÞds ð9:1bÞ

Table 9.1 Response descriptors for inelastic buildings under earthquake ground motion
(Moustafa [6] with permission from ASCE)

Response parameter Definition

Maximum ductility lmax ¼ max
0� t� tf

j xðtÞxy
j

Number of yield reversals Number of times velocity changes sign
Maximum normalized plastic deformation range D�xp;i ¼ max

0� t� tf
j Dxp;i

xy
j

Normalized cumulative ductility
lac: ¼

PN
i¼1

jDxp;i j
xy
þ 1

Residual (permanent) ductility lres ¼ j
xðtf Þ

xy
j

Normalized earthquake input energy
�EI ¼ 1

fyxy

Rtf
0

EIðtÞdt

Normalized total hysteretic energy dissipated
�EH ¼ 1

fyxy

Rtf

0
EHðtÞdt

Ratio of total hysteretic energy to input energy rE ¼ �EH
�EI

Maximum rate of normalized input energy PI;max ¼ 1
fyxy

max
0� t� tf

dEI ðtÞ
dt

h i

Maximum rate of normalized damping energy PD;max ¼ 1
fyxy

max
0� t� tf

dEDðtÞ
dt

h i

Maximum rate of normalized hysteretic energy PH;max ¼ 1
fyxy

max
0� t� tf

dEH ðtÞ
dt

h i
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EHðtÞ ¼
XN

i¼1

Z t

0

_xiðsÞfsiðsÞds� EsðtÞ ð9:1cÞ

where, M, C, are the mass and damping matrices of the structure, respectively,
fsiðtÞis the ith hysteretic restoring force, X(t) is the structure displacement vector
and dot indicates differentiation with respect to time. The quantities EK(t), ED(t),
Es(t) and EH(t) represent the kinetic, damping, strain, and hysteretic energies,
respectively [5, 8, 9]. For viscous damping models, the damping energy reduces toPN

i¼1

PN
j¼1

R t
0 cij _xiðsÞ _xjðsÞds.

Note that Eq. (9.1) provides the relative energy terms. Note that, by the end of
the earthquake duration the kinetic and elastic strain energies diminish. Thus, the
earthquake input energy to the structure is dissipated by hysteretic and damping
energies. The next section demonstrates the use of the structure’s response and the
hysteretic energy in developing damage indices.

9.2.2 Damage Measures for Inelastic Structures

The literature work on damage measures in structures under earthquake loads is
enormous (see, e.g., [51, 52]). Damage indices are quantified using a single or a com-
bination of structural response parameters. Table 9.1 lists several damage measures that
are based on a single response parameter [51, 53]. For instance, the first measure
represents the ultimate ductility produced during the ground shaking. This measure does
not incorporate information on how the earthquake input energy is imparted on the
structure nor how this energy is dissipated. Earthquake damage occurs due to the

(a) Bilinear model (b) Elastic-plastic model

Fig. 9.1 Force–displacement relation for nonlinear materials. a Bilinear model. b Elastic-platic
model (Moustafa [6] with permission from ASCE)
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maximum deformation or ductility and the hysteretic energy dissipated by the structure.
Therefore, the definition of structural damage in terms of the ductility is inadequate. The
last three measures in Table 9.1 indicate the rate of the earthquake input energy to the
structure (how fast the input energy EI is imparted by the earthquake and how fast it
gets dissipated). Damage indices can be estimated by comparing the response
parameters demanded by the earthquake with the structural capacities.

Essential damage measures were explained in Chaps. 4–6, 8. For clear pre-
sentation of such damage measures, the definitions are shown again.

Powell and Allahabadi [53] proposed a damage index in terms of the ultimate
ductility (capacity) lu and the maximum ductility attained during ground shaking
lmax:

DIl ¼
xmax � xy

xu � xy
¼ lmax � 1

lu � 1
ð9:2Þ

However, DIl does not include effects from hysteretic energy dissipation.
Additionally, this damage index may not be zero for undamaged structures. A
damage index that overcomes this problem has been proposed by [54]:

DIK ¼
1� l�1

max

1� l�1
u

ð9:3Þ

Cosenza et al. [51] and Fajfar [55] quantified damage based on the structure
hysteretic energy EH:

DIH ¼
EH=ðfyxyÞ
lu � 1

ð9:4Þ

A robust damage measure should include not only the maximum displacement
response, but also the effect of repeated cyclic loading in terms of hysteretic
energy. Park and co-workers developed a simple damage index [56–58]. The index
can be expressed by

DIPA ¼
xmax

xu
þ b

EH

fyxu
¼ lmax

lu
þ b

EH

fyxylu
ð9:5Þ

Here, xmax and EH are the maximum absolute displacement and the dissipated
hysteretic energy excluding elastic energy. The parameter xu is the ultimate
deformation capacity under monotonic loading and b is a positive constant that
weights the effect of cyclic loading on structural damage. Note that, if b ¼ 0; the
contribution to DIPA from cyclic loading is omitted.

The state of the structure damage is defined as: (a) repairable damage, when
DIPA\0:40, (b) damaged beyond repair, when 0:40�DIPA\1:0, and (c) total or
complete collapse, when DIPA� 1:0. These criteria of damage state are based on
calibration of DIPA against experimental results and field observations in earthquakes
[58]. Note that Eq. (9.5) represents that both maximum ductility and hysteretic
energy dissipation contribute to the structure’s damage during earthquakes. Equation
(9.5) expresses damage mathematically as a linear combination of the damage

182 9 Damage Assessment of Inelastic Structures Under Worst Earthquake Loads

http://dx.doi.org/10.1007/978-1-4471-4144-0_4
http://dx.doi.org/10.1007/978-1-4471-4144-0_6
http://dx.doi.org/10.1007/978-1-4471-4144-0_8


caused by excessive deformation and that contributed by repeated cyclic loading
effect. Note also that the displacement and energy quantities xmax;EH depend on the
loading history while the quantities b; xu; fy are independent of the loading history
and are determined from experimental tests. It should also be emphasized that Eqs.
(9.2–9.5) can be used to estimate damage for a member in a structure which defines
the local damage. To estimate the global damage of the structure, a weighted sum of
the local damage indices need to estimated [58]. In this chapter, Eq. (9.5) is adopted
in quantifying the structural damage. The next section develops the mathematical
modeling of critical future earthquake loads.

9.3 Formulation of the Worst Case Scenario

The worst future ground motion acceleration is represented as a product of a
Fourier series and an envelope function:

€xgðtÞ ¼ eðtÞ
XNf

i¼1

Ri cosðxit � uiÞ

¼ A0½expð�a1tÞ � expð�a2tÞ�
XNf

i¼1

Ri cosðxit � uiÞ ð9:6Þ

where, A0 is a scaling constant and the parameters a1; a2 impart the transient trend
to €xgðtÞ. The parameters Ri and ui are 2Nf unknown amplitudes and phase angles,
respectively and xi; i ¼ 1; 2; . . .;Nf are the excitation frequencies presented in the
ground acceleration which are selected to span satisfactory the frequency range of
the ground motion acceleration €xgðtÞ. In constructing critical seismic inputs, the
envelope function is taken to be known. The information on energy E, peak ground
acceleration (PGA) M1, peak ground velocity (PGV) M2, peak ground displace-
ment (PGD) M3, upper bound of Fourier amplitude spectra (UBFAS) M4ðxÞ; and
lower bound of Fourier amplitude spectra (LBFAS) M5ðxÞ are also taken to be
available which enables defining the following nonlinear constraints [59, 60]:

Z1

0

€x2
gðtÞ dt

2
4

3
5

1
2

�E

max
0\t\1

j€xgðtÞj �M1

max
0\t\1

j _xgðtÞj �M2

max
0\t\1

jxgðtÞj �M3

M5ðxÞ� jXgðxÞj�M4ðxÞ

ð9:7Þ
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In Eq. (9.7), XgðxÞ is the Fourier transform of the ground motion acceleration
€xgðtÞ. Note that the constraint on the earthquake energy is related to the Arias
intensity [61] which was explained before. The spectra constraints aim to replicate
the frequency content and amplitude observed in past recorded accelerograms on
the future earthquake. Integrating Eq. (9.6) provides the ground velocity and
displacement as follows:

_xgðtÞ ¼
XNf

i¼1

Z t

0

RieðsÞ cosðxis� uiÞdsþ C1; xgðtÞ

¼
XNf

i¼1

Z t

0

RieðsÞðt � sÞ cosðxis� uiÞdsþ C1t þ C2 ð9:8Þ

Making use of the conditions xgð0Þ ¼ 0 and lim
t!1

_xgðtÞ ! 0 [62], the constants

C1 and C2 can be shown to be given as [60]:

C2 ¼ 0; C1 ¼ �
XNf

i¼1

Z1

0

RieðsÞ cosðxis� uiÞds ð9:9Þ

The constraints of Eq. (9.7) can be expressed in terms of the variables Ri;ui; i ¼
1; 2; . . .;Nf by

A2
0

XNf

m¼1

XNf

n¼1

RmRn

Z1

0

½expð�a1tÞ � expð�a2tÞ�2 cosðxmt � umÞ cosðxnt � unÞ dt

2
4

3
5

1
2

�E

max
0\t\1

jA0½expð�a1tÞ � expð�a2tÞ�
XNf

n¼1

Rn cosðxnt � unÞj �M1

max
0\t\1

jA0

XNf

n¼1

Z t

0

Rn½expð�a1sÞ � expð�a2sÞ� cosðxns� unÞds

� A0

XNf

n¼1

Z1

0

Rn½expð�a1sÞ � expð�a2sÞ� cosðxns� unÞdsj �M2

max
0\t\1

jA0

XNf

n¼1

Z t

0

Rn½expð�a1sÞ � expð�a2sÞ�ðt � sÞ cosðxns� unÞds

� A0t
XNf

n¼1

Z1

0

Rn½expð�a1sÞ � expð�a2sÞ� cosðxns� unÞdsj �M3

M5ðxÞ� jA0

XNf

n¼1

Z1

0

Rnfexp½�a1s� � exp½�a2s�g cosðxns� unÞ exp½�ixs�dsj �M4ðxÞ

ð9:10Þ
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In Eq. (9.10), i ¼
ffiffiffiffiffiffiffi
�1
p

. To quantify the constraints quantities E, M1, M2, M3,
M4ðxÞ; and M5ðxÞ, it is assumed that a set of Nr earthquake records denoted by
€vgiðtÞ; i ¼ 1; 2; . . .;Nr are available for the site under consideration or from other
sites with similar geological soil conditions. The values of energy, PGA, PGV, and
PGD are obtained for each of these records. The highest of these values across all
records defines E, M1, M2, and M3. The available records are further normalized so

that the Arias intensity of each record is set to unity (i.e.,½
R1

0 €v2
giðtÞdt�1=2 ¼ 1,

[61]), and are denoted byf€�vgigNr
i¼1. The bounds M4ðxÞand M5ðxÞ of Fourier

amplitude spectra are obtained from

M4ðxÞ ¼ E max
1� i�Nr

j�VgiðxÞj; M5ðxÞ ¼ E min
1� i�Nr

j�VgiðxÞj ð9:11Þ

Here �VgiðxÞ; i ¼ 1; 2; . . .;Nr denotes the Fourier transform of the ith normal-
ized accelerogram €vgiðtÞ. It should be noted that the bound M4ðxÞ of Fourier
amplitude spectra has been considered earlier [10, 42, 63, 64]. On the other hand,
the lower bound was considered by Moustafa [65] and Abbas and Manohar [60] to
make the candidates ground motions realistic.

Finally, the problem of deriving critical future earthquake loads on inelastic
structures can be posed as follows. Determine the optimization variables y ¼
fR1;R2; . . .;RNf ;u1;u2; . . .;uNf

gt such that the damage index DIPA is maximized

subject to the constraints of Eq. (9.10). The solution to this nonlinear constrained
optimization problem can be tackled by using the sequential quadratic program-
ming method [66]. For numerical purposes, the following convergence criteria are
adopted.

jfj � fj�1j � e1; jyi;j � yi;j�1j � e2 ð9:12Þ

In Eq. (9.12), fj is the objective function at the jth iteration, yi,j is the ith
optimization variable at the jth iteration and the parameters e1; e2 are small
quantities to be specified. The structure inelastic deformation is estimated using
the Newmark-b method which is built as a subroutine inside the optimization
program. The details of the optimization procedures involved in the computation
of the optimal (critical) earthquake and the associated damage index are shown in
Fig. 9.2. Further details can also be found in Abbas [59].

It may be emphasized that the ductility and hysteretic energy quantities lðtÞ and
EHðtÞdo not reach their respective maxima at the same time. Therefore, the
optimization is performed at discrete points of time and the optimal solution
y� ¼ ½R�1;R�2; . . .;R�Nf

;u�1;u
�
2; . . .;u�Nf

�t is the one that produces the maximum

DIPA across all time points. The critical earthquake loads are then characterized in
terms of the critical accelerations and associated damage indices, inelastic
deformations, and energy dissipated by the structure. The next section provides
numerical illustrations for the formulation explained in this section.

As mentioned before, in the numerical analysis, the constraints quantities E,
M1, M2, M3, M4ðxÞ; and M5ðxÞ are estimated using past recorded earthquake data.
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This approach is considered to be consistent with the aspirations of the ground
motion models that are commonly used by structural and earthquake engineers,
which, aim to replicate the gross features of recorded motions, such as amplitude,
frequency content, nonstationarity trend, local soil amplification effects, and
duration. It is therefore of interest to note in this context that, predictive or physical
models for ground motions, which take into account several details, such as fault
dimension, fault orientation, rupture velocity, magnitude of earthquake, attenua-
tion, stress drop, density of the intervening medium, local soil condition and
epicentral distance, have also been developed in the existing literature, mainly by
seismologists (e.g., [67–70]). The possibility has been explained in references [3,
71]. In these models, one needs to input values for a host of parameters and the
success of the model depends on how realistically this is done. It is possible to
formulate the optimal earthquake models based on the latter class of models in
which one can aim to optimize the parameters of the model so as to realize the
least favorable conditions. In this case, the class of admissible functions in esti-
mating the critical inputs, becomes further constrained by the choice of the
physical model. In this sense, the approach, adopted in this chapter, is nonpara-
metric in nature. A comparison of results based on this approach with those from
‘model-based’ approaches is of interest; however, these questions are not con-
sidered in this chapter.

9.4 Numerical Example

9.4.1 Bilinear Inelastic Frame Structure

Consider an SDOF frame structure with mass 9�103 kg, initial stiffness k0 =
1.49 9 105 N/m and viscous damping of 0.03 damping ratio (initial natural fre-
quency = 4.07 rad/s). The strain hardening ratio is taken as 0.05. These parameters
are changed later to study their influence on the estimated worst earthquake loads
and the associated damage. The yield displacement is assumed to be 0.10 m and
the structure is assumed to start from rest. The Park and Ang damage index DIPA

given by Eq. (9.5) is adopted as the objective function. The parameters of the
Newmark-b method are taken as d ¼ 1=2; a ¼ 1=6 and Dt ¼ 0:005s.

9.4.1.1 Quantification of Constraints

A set of 20 earthquake records is used to quantify the constraint bounds E, M1, M2,
M3, M4ðxÞand M5ðxÞ [72]. Table 9.2 provides data on these records. Based on
numerical analysis of these records, the constraints values were computed as E =
4.17 m/s1.5, M1 = 4.63 m/s2 (0.47 g), M2 = 0.60 m/s and M3 = 0.15 m and the
average dominant frequency was determined about 1.65 Hz. The envelope
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parameters were specified as A0 = 2.17, a1= 0.13, and a2 = 0.50. The convergence
limits e1; e2 were set as 10-6 and the convergence criterion on the secant stiffness
is taken as 10-3 N/m. The frequency content for €xgðtÞ is defined over (0.1-25) Hz.
Additionally, in distributing the frequencies xi; i ¼ 1; 2; . . .;Nf in the interval
ð0:1; 25Þ, it was found advantageous to select some of these frequencies xi to
coincide with the natural frequency of the elastic structure and also to place
relatively more points within the modal half-power bandwidth.

The constraint scenarios considered in deriving the worst earthquake inputs are
shown in Table 9.3. The constrained nonlinear optimization problem is solved

Fig. 9.2 Flowchart for
deriving optimal earthquake
loads (Moustafa [6] with
permission from ASCE)
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using the sequential quadratic optimization algorithm ‘fmincon’ of the Matlab
optimization toolbox [73]. In the numerical calculations, alternative initial starting
solutions, within the feasible region, were examined and were found to yield the
same optimal solution. This was done for checking the local/global optimization.
To select the number of frequency terms Nf , a parametric study was carried out and
the number Nf = 51 was found to give satisfactory results. Figure 9.3 illustrates the
influence of Nf on the convergence of the objective function for constraints sce-
narios 1 and 4 (see Table 9.3).

Table 9.2 Information on past recorded ground motion records for a firm soil site (Moustafa [6]
with permission from ASCE)
Earthquake M Ds

(km)
Comp-
onent

PGA (m/
s2)

PGV (m/
s)

PGD
(m)

Energya (m/
s1.5)

Site

Mamoth lakes 6.2 1.5 W 4.02 0.21 0.05 3.73 Convict Greek
05.25.1980 S 3.92 0.23 0.05 4.01
Loma prieta 7.0 9.7 W 3.91 0.31 0.07 3.82 Capitola
10.18.1989 S 4.63 0.36 0.11 2.61
Morgan hill 6.1 4.5 S60E 3.06 0.40 0.07 2.33 Halls valley
04.24.1984 S30 W 1.53 0.30 0.02 1.64
San Fernando 6.6 27.6 N69 W 3.09 0.17 0.04 2.07 Castaic old

ridge
02.09.1971 N21E 2.66 0.28 0.10 2.47 Parkfield fault
Parkfield 5.0 9.1 W 2.88 0.44 0.01 1.33
12.20.1994 S 3.80 0.10 0.01 1.74 Cantua creek
Caolinga 6.5 30.1 W 2.83 0.26 0.10 2.67
05.02.1983 N 2.20 0.26 0.10 2.14 Canoga park
Northridge 6.7 5.9 S74E 3.81 0.60 0.12 4.17
01.17.1994 S16 W 3.43 0.34 0.09 3.50 Petrolia general
Cape

Mendocino
7.0 5.4 W 3.25 0.45 0.15 2.44

04.25.1992 S 2.89 0.24 0.08 2.31 Westmorland
fire

Westmorland 5.0 6.6 E 4.35 0.33 0.11 3.26
04.26.1981 S 3.54 0.44 0.15 3.25 Calexico fire
Imperial valley 6.4 17.4 S45 W 2.68 0.22 0.10 2.30
10.15.1979 N45 W 1.98 0.19 0.15 2.14

a E ¼ ½
R1
0

€v2
gðtÞ dt�1=2 [61]

Table 9.3 Nomenclature of
constraint scenarios
considered (Moustafa [6]
with permission from ASCE)

Case Constraints imposed

1 Energy and PGA
2 Energy, PGA, PGV and PGD
3 Energy, PGA and UBFAS
4 Energy, PGA, UBFAS and LBFAS
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9.4.1.2 Numerical Results and Discussion

The numerical results obtained are presented in Figs. 9.4, 9.5, 9.6, 9.7, 9.8, 9.9,
and Table 9.4. Figure 9.4 shows results for constraint scenario 1 and similar
results for case 4 are presented in Fig. 9.5. Each of these figures shows the Fourier
amplitude spectrum of the worst ground acceleration, the inelastic deformation, the
hysteretic force, and the energy dissipated by the structure. Figure 9.6 presents the
time history of the ground acceleration. Based on extensive analysis of the
numerical results, the major observations can be summarized as follows.

The frequency content and Fourier amplitude of the worst earthquake ground
motion are strongly dependent on the constraints imposed (see Table 9.3). If
available information on earthquake data is limited to the total energy and PGA,
the worst input is narrow band (highly resonant to the structure natural frequency)
and the structure deformation is conservative (see Fig. 9.4 and Table 9.4). Fur-
thermore, most of the power (or intensity) of the Fourier amplitude are concen-
trated at a frequency close to the natural frequency of the elastic structure. This
amplitude gets shifted away from the natural frequency towards a higher frequency
when the strain hardening ratio increases. The Fourier amplitudes at other fre-
quencies are low and uniformly distributed. This result is substantially different
from that for the elastic structure where all power of the acceleration amplitude is
concentrated around x0 with no amplitude at other frequencies [60]. Additional
constraints on the Fourier amplitude spectra (see Table 9.3) force the Fourier
amplitude of the worst acceleration to get distributed across other frequencies. The
critical acceleration possesses a dominant frequency that is close to the average
dominant frequency observed in past records (see Fig. 9.5). The realism of the
earthquake input is also evident from the maximum damage index it produces. For
instance, the damage index for case 4 is 0.37 which is substantially smaller than
1.15 for case 1 (Table 9.4). The constraints on PGV and PGD were not found to be
significant in producing realistic critical inputs compared to the constraints on
UBFAS and LBFAS. Also, the realism of the optimal acceleration for case 4 can
be examined by comparing the Fourier amplitude spectra and frequency content of
the worst ground motions acceleration (Figs 9.4,9.5) with the Fourier amplitude
spectra of past recorded earthquakes (Fig. 9.7). Note that, while the constraint
scenario 1 leads to pulse-like ground motion (see Chaps. 3, 4), such scenario is
observable past earthquakes (e.g., 1971 San Fernando, 1985 Mexico, and 1995
Kobe earthquakes). Resonant or pulse-like earthquakes are also observable in near-
field ground motion with directivity focusing, known as forward- and backward-
directivity ground motion (see Chap. 3, 4 and [44, 74–76]). The realism of worst
earthquake loads can also be examined by comparing the maximum response from
these accelerations with those from past recorded ground motions. Thus, the
maximum ductility factor of the structure from the worst earthquake ground
motion is about 3.9 (case 1) and 2.6 (case 4) times that from the Kobe earthquake
and is 2.7 (case 1) and 1.5 (case 4) times that from the San Fernando earthquake.

To examine the effect of the strain hardening ratio on the derived worst
earthquake acceleration, limited studies were carried out. The value of a was
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changed and the critical acceleration was estimated by solving a new optimization
problem. Numerically, a was taken as 0.20, 0.10, 0.05, and 0.01. The numerical
results showed that the strain hardening ratio does not influence the frequency
content of the critical earthquake input significantly. However, the inelastic
structure with lower values of a was seen to yield more frequently compared to the
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same structure with higher a. Hence, the cumulative hysteretic energy dissipated
was observed to decrease for higher values of a (Fig. 9.8a). This feature was
particularly remarkable at the end of the earthquake duration. It was also remarked
that the results on critical earthquake accelerations for bilinear inelastic structure
with a = 0.01 are close to those for the elastic–plastic structure [59].

To examine the effect of the damping ratio on the computed critical earthquake
load, limited studies were carried out. The damping ratio was changed and three
cases of 0.01, 0.03 and 0.05 were treated, while all other parameters were kept
unchanged. The critical earthquake ground motion is computed by solving a new
optimization problem for each case. The effect of the change in g0 was seen to be
similar to that due to a. In other words, the value of the damping ratio was not seen
to significantly influence the frequency content of the earthquake acceleration. It
was observed, however, that the ductility ratio and the maximum inelastic
deformation for the structure decrease for higher damping ratios. Thus, the duc-
tility ratio decreases to 2.43 when the damping ratio is changed to 0.05 while the
ductility ratio increases to 2.89 when the damping ratio reduces to 0.01. It was also
observed that the inelastic structure with higher damping ratio dissipates more
energy through damping compared with the same structure with lower damping
ratio (see Fig. 9.8b). The damage index also reduces when the damping ratio
increases.
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Equation (9.7) was used to estimate the damage index of the structure under the
critical earthquake load. The influence of the parameter b on the damage index is
examined first. Previous experimental tests showed that b ranges between 0.05 and
0.20 with an average value of 0.15 (e.g., [58]). Figure 9.9a shows the effect of b on
the damage index. To investigate the influence of the initial natural frequency of
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the structure on the damage index, the structure stiffness was changed, keeping all
other parameters unchanged at their respective values and the critical earthquake
load was computed for each case. Subsequently, the value of DIPA was calculated
for each case. In the numerical calculations, b was taken as 0.15 and the param-
eters xmax; lmax are set to 0.10 m and 2.64, respectively. The value of lu was taken
as 6 in Figs. 9.9a and 9.8 and in Fig. 9.9b. It was found that the damage index for
the structure with the initial natural frequency smaller than 1.65 is higher than 0.40
and thus either total collapse or damage beyond repair of the structure is expected
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Table 9.4 Response parameters for alternative constraint scenarios (a = 0.05, f = 0.03)
(Moustafa [6] with permission from ASCE)

Case xmax (m) lmax xp (m) Nrv
a DIPA Damage status

1 0.47 4.65 0.07 60 1.15 Total collapse
2 0.45 4.53 0.06 54 0.97 Damaged beyond repair
3 0.41 4.14 0.07 49 0.72 Damaged beyond repair
4 0.26 2.64 0.05 44 0.37 Repairable damage
a Nrv number of yield reversals (see Table 9.1)
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in this case. The value of DIPA for the structure with x0 greater than about 1.70 Hz
is less than 0.40 and thus the structure does not experience total damage but
repairable damage in this case. This observation is consistent since the site
dominant frequency is around 1.65 Hz and since the Fourier amplitude of the
ground acceleration is seen to be located in the stiff side of the initial frequency of
the inelastic structure.

The numerical illustrations of the formulation explained in this chapter were
demonstrated for simple structures with bilinear and elastic–plastic force–
deformation laws. The application of the proposed method to more complex
structures and the use of more detailed degradation models (e.g., trilinear deg-
radation, Takeda and Clough models) need to be investigated (see [77]). Addi-
tionally, in this chapter the commonly used Park and Ang damage index DIPA

has been employed to assess the structure performance. It may be noted that this
damage index has some limitations [78, 79], namely: (1) the weak cumulative
component for practical cases given the typical dominance of the peak dis-
placement term over the accumulated energy term, (2) the use of a linear
combination of deformation and energy in spite of the obvious nonlinearity of
the problem and the inter-dependence of the two quantities, and (3) the lack of
considering the loading sequence effects in the cumulative energy term. Fur-
thermore, when EH = 0 (elastic behavior), the value of Park and Ang damage
index DIPA should be zero. However, the value of DIPA computed from Eq. (9.5)
will be greater than zero. Similarly, when the system reaches its maximum
monotonic deformation, while DIPA should be 1.0; however, Eq. (9.5) leads to
DIPA greater than 1.0. Chai et al. [80] proposed modification to DIPA to correct
for the second drawback only. The study, also, examined experimentally the
implication of the energy-based linear damage model of DIPA. Despite the
drawbacks of DIPA, it has been extensively used by many researchers, mainly
due to its simplicity and the extensive calibration against experimentally
observed seismic structural damage during earthquakes (mainly for reinforced
concrete structures). Bozorgenia and Bertero [78] proposed two improved
damage indices to overcome some of the drawbacks associated with DIPA. The
interested readers should check this reference.

In this chapter, the worst earthquake loads that maximize the structural damage
were obtained using the deterministic approach. The worst earthquake loads can be
formulated using stochastic processes, random vibration theory and reliability
analysis which provides a powerful alternative to the methodology developed here.
Interested readers can refer Abbas and Manohar [4, 81] and others [84, 89, 92, 93,
95, 103] for more details. Energy approaches are discussed in [82, 83, 85, 87, 88,
94, 97, 100, 104, 105, 107, 108] and inelastic design approaches are explained in
[86, 91, 101, 102, 106]. As for generation of design earthquake ground motions,
see [90, 96, 98, 99].
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9.4.2 Inelastic Two-Story Frame Structure

A two-story braced building frame is considered to demonstrate the formulation
for MDOF inelastic structures [5, 8, 9]. The material behavior of the braces is
taken as bilinear (k2 = c k1) as shown in Fig. 9.1a. The floor masses are taken as
m1 ¼ m2 ¼ 1:75� 105 Ns2/m, the cross-sectional areas of the braces are
A1 ¼ A2 ¼ 6:45� 10�4m2, the Young’s modulus = 2:59� 1011 N/m2, and the
strain hardening ratio = 0.10 (i.e., ratio of the postyield stiffness to the preyield
stiffness). When both braces are behaving elastically, the stiffness matrix
Ks ¼ Kel, if brace 1 yields Ks ¼ K1, if brace 2 yields Ks ¼ K2 and if both braces
yield Ks ¼ K12. These matrices are given in Moustafa [5, 8, 9]. The structure is
assumed to start from rest. The first two natural frequencies of the elastic structure
were computed as x1 ¼ 6:18 rad/s and x2 ¼ 16:18 rad/s. A Rayleigh proportional
damping C ¼ aMþ bKs with a = 0.2683, b = 0.0027 is adopted. These values are
selected such that the damping ratio in the first two modes is 0.03. This implies
that the damping forces in braces are nonlinear hysteretic functions of the
deformed shape of the structure. Let the yield strain of the braces ey ¼ 0:002 for
both tension and compression. The braces will yield at a relative displacement
xy ¼ Ley= cos h ¼ 0:0381 m. Thus, brace 1 yields when jx1j ¼ 0:0381 m and brace
2 yields when jx2 � x1j ¼ 0:0381 m. The objective function is taken as the
weighted damage indices in braces 1 and 2. In the numerical analysis,
the parameters of the Newmark b-method were taken as d ¼ 1=2; a ¼ 1=6and the
time step Dt ¼ 0:005 s.

The results of this example are shown in Figs. 9.10 and 9.11. In general, the
feature observed for the future earthquakes in the previous example was also
observed in this example. However, the inelastic deformation and the associated
damage were seen to depend on the two vibration modes. Thus, the maximum
ductility ratio l for case 1 is 4.34 while that produced from constraint case 4 is
2.27. Similarly, the maximum response reduces from 0.15 m to 0.08 m when the
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constraints on UBFS and LBFS are brought in. The earthquake input energy to
the inelastic system is mainly dissipated by yielding and nonlinear damping of
the structure. The hysteretic and damping energies are significantly higher than
the recoverable strain and kinetic energy. The kinetic and recoverable strain
energies are small and diminish near the end of the ground shaking. The energy
dissipated by yielding is significantly higher than that dissipated by damping. It
was also observed that the inelastic structure with Rayleigh damping dissipates
more energy through damping mechanism compared to the same system with
viscous damping. The weighted damage index for case 1 was about 0.96
implying total collapse while for case 4 the damage index was about 0.35
implying repairable damage.

9.5 Summary

Seismic design of structures requires that they resist possible future earthquakes
with repairable damage. A methodology for assessing damage in structures under
worst future earthquake loads has been explained in this chapter. The novelty of
this approach lies in combing damage indices, nonlinear optimization and non-
linear time-history analysis in assessing the structural performance, and making
the feature of critical ones clear under future earthquakes. Damage descriptors
have been introduced in deriving the worst earthquake ground motion. The
structural damage has been quantified in terms of the well-known and commonly
used Park and Ang damage indices. The damage indices describe the damage state
of the structure and it is well understood that the measure correlates well with the
actual damage displayed during earthquakes. The quantification of the structure’s
damage using such damage indices is of substantial importance in deriving critical
earthquake loads for inelastic structures. This is because damage indices imply that
the structure is damaged by a combination of repeated stress reversals and high
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stress excursions. This also facilitates assessing the safety of the structure by
providing a quantitative measure on the necessary repair to the structure.

In this chapter, the worst earthquake load has been derived based on available
information using inverse nonlinear dynamic analysis, optimization techniques,
and damage indices explained. It was seen that, if available information is limited
to the energy and PGA, the resulting earthquake is highly resonant to the structural
natural frequency and produces conservative damage. When extra or additional
information on the Fourier amplitude spectra is available, more realistic earth-
quake loads (in terms of frequency content, amplitude, inelastic deformations, and
damage indices produce) are obtained. The influences of the strain hardening and
damping ratios on the estimated critical design loads were studied. Critical damage
spectra for the site were also established. These spectra provide upper bounds on
the structural damage and directions of necessary repair under possible future
earthquakes. The formulation explained in this chapter was demonstrated for
inelastic frame structures modeled with bilinear and elastic–plastic force–defor-
mation laws. In other words, nondeteriorating structures were only considered.
Future extension requires the use of nonlinear degradation models that facilitate
the development of plastic hinges in the structure (see Chap. 10 and [77]). In this
case, the computations will increase considerably due to the complexity in esti-
mating the structural response. Finally, it may be emphasized that the structural
properties have been kept unchangeable. It may be possible to apply the explained
methodology for optimal design of the structure under future earthquakes. Herein,
an initial guess for the dimensions of the structure’s members needs to be assumed
and an iterative procedure has to be carried out leading to the optimal design of the
structure, the system-dependent worst earthquake and the associated damage
[11, 40–42].
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Chapter 10
Critical Earthquake Loads for SDOF
Inelastic Structures Considering
Evolution of Seismic Waves

10.1 Introduction

The damage of structures induced by earthquake ground motions depends pri-
marily on three parameters: (1) the characteristics of earthquake source properties
and ground motions (magnitude, epicentral distance, duration, frequency content,
amplitude and local soil type), (2) the properties of the structure (natural fre-
quencies, mode shapes, damping properties, material of construction, structural
system and ductility capacity), and (3) how close the structure’s fundamental
natural frequency to the dominant frequency of the ground motion (see [1, 2]). The
2011 off the Pacific coast of Tohoku earthquake has demonstrated these facts
clearly [3–5]. In general, the ground motion characteristics involve large inherent
uncertainties and cannot be controlled while the structure’s properties have smaller
variability and can be managed to some extent in general [6]. For instance, the
material and members of construction can be selected and the seismic-resistance of
the structure can be improved to fairly high levels through member detailing for
enhancement of ductility capacity.

The seismic waves arriving at a specific site depend on the source mechanism,
the travel path (site-source distance) and the local soil condition [7]. The ground
motion hitting the structure’s foundations is known to be composed of several
waves that have different phase velocities, arrival times, amplitudes, and frequency
contents [8]. Body waves consist of P (primary) and S (shear or secondary) waves
that have higher frequency components and arrive at the site first. Surface waves,
on the other hand, are composed of Rayleigh (R) and Love (L) waves which have
lower phase velocities, lower frequency components and reach the site next. P-
waves are compression waves while S-waves are transverse waves. Surface waves
result in rolling motion that constitutes the most destructive waves to structures
and infrastructures. Some of these waves could be of more damage to the structure
depending on their dominant frequency, amplitude and relation with the structure’s
natural frequencies (for example [3–5]). The attenuation of the seismic waves that

I. Takewaki et al., Improving the Earthquake Resilience of Buildings,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-4144-0_10,
� Springer-Verlag London 2013
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propagate at the source gives rise to variation of the ground motion in time and
space. Seismic waves attenuate due to natural causes (local soil amplification,
reflection, transmittance, refraction and energy dissipation of travelling waves) and
man-made obstacles, such as, cavities and underground structures [9]. Surface
waves are known to attenuate slower than body waves. Attenuation of seismic
waves depends largely on soil conditions. For instance, soft soils can significantly
amplify the amplitude and modify the frequency content of the ground motion.
This characteristic has been confirmed clearly during Mexico earthquake (1985)
and Tohoku/Japan (2011) earthquake. Attenuation modeling of the ground motion
is an attractive and active field of research in engineering seismology [10]. The
influence of the high-frequency components of the ground motion on the damage
of masonry structures has been investigated by Meyer et al. [11]. High frequencies
can cause vertical interstone vibrations resulting in irreversible relative displace-
ments of the stones, which may ultimately lead to collapse. The partial fluidifi-
cation and densification of the loose, granular inner core of some unreinforced
masonry walls may also increase the outward thrust.

The modeling of strong ground motion has been an interesting problem in the
field of earthquake engineering for many decades. A state of the art review on
modeling stationary/non-stationary deterministic/stochastic ground motion can be
found in the researches of He and Agrawal [12], Takewaki [6], Conte and Peng
[13], Der Kiureghian and Crempien [14], Lin and Yong [15]. This aspect is of
importance in seismic analysis and design of engineering structures. The well-
known Kanai-Tajimi model represents one of the most widely used ground motion
models [15]. The parameters of the ground motion model are usually estimated by
matching the model parameters with recorded accelerograms. Der Kiureghian and
Crempien [14] decomposed the 1971 Orion earthquake into seven acceleration
components of different frequency bands. On the other hand, Conte [16] employed
the ARMA stochastic models to study the effect of the frequency nonstationarity of
the ground motion on the response of inelastic structures. Furthermore Conte and
Peng [13] developed a fully non-stationary stochastic model for earthquake
accelerations that is composed of several seismic waves.

Strong ground motion involves several uncertainties including occurrence time,
location, duration, magnitude, frequency content, etc. (see [6]). On the other hand,
the structural engineer is often concerned with the worst case scenario that can
happen to the structure. This may result from many unexpected phenomena in the
former earthquake observations. The modeling of critical earthquake loads for
structures has attracted many researchers. Early research thoughts on this subject
have been provided by Drenick [17], Shinozuka [18] and Iyengar [19]. Extensive
reviews on modeling critical earthquake loads on elastic and inelastic structures
have been reported by Takewaki [6, 20, 21], Abbas and Manohar [22, 23], Abbas
[24] and Moustafa [25]. The notion of critical excitation has been employed
recently in identifying critical recorded accelerograms [26–30]. Mathematically,
the critical input for a given structure is computed by solving an inverse dynamic
problem such that a measure of the structural damage is maximized while the input
is constrained to predefined bounds that aim to replicate observed characteristics of

204 10 Critical Earthquake Loads for SDOF Inelastic Structures



recorded ground motions on the input. A sophisticated critical excitation method
for structures with variable parameters has also been developed [6, 31].

In this chapter, critical ground motion inputs are modeled for inelastic struc-
tures considering evolution of seismic waves in time and frequency. It is well-
recognized that inelastic responses of structures depend sensitively on the complex
combination of time and frequency contents. It is therefore meaningful to discuss
the effects of this complex combination on critical inelastic deformation. The
ground acceleration is represented as a combination of seismic waves that have
different characteristics. The amplitudes and phase angles of these waves are
optimized (or determined) to produce the highest damage in the structure subject
to constraints on the peak ground acceleration (PGA) and energy. The constraints
include restrictions on the non-stationary shape and the frequency content of each
wave, and bounds on the energy and PGA of the total acceleration. The material
nonlinearity is modeled using bilinear inelastic relation. The next section explains
the dynamic analysis of SDOF inelastic structures to earthquake loads.

10.2 Dynamic Analysis and Energies Dissipated
by Inelastic Structures

The displacement u(t) of a one-storey structure modeled as an SDOF inelastic
system, relative to the ground, driven by the ground acceleration €ugðtÞ is derived
from the equation of motion:

m €uðtÞ þ c _uðtÞ þ fsðtÞ ¼ �m €ugðtÞ ð10:1Þ

where m and c are the mass and the damping coefficient of the SDOF system and
fs(t) is the inelastic restoring force in the spring which is a nonlinear function of u(t).
In other words, the force–deformation relation is no longer a single valued function.
Thus, for a displacement u(ti), the restoring force depends upon prior history of
motion of the system and whether the velocity response _uðtiÞ is increasing or
decreasing. The above equation can be reduced to the following normalized one:

€uðtÞ þ 21x _uðtÞ þ x2uy
�fsðtÞ ¼ �€ugðtÞ ð10:2Þ

where, 1 is the damping ratio, x is the initial natural circular frequency for the
inelastic system and uy is the yield displacement. The function �fsðtÞ is the spring
restoring force in a dimensionless form. Referring to Eq. (10.2), the inelastic
response of the system for a given acceleration €ugðtÞ depends on the initial natural
circular frequency x of the system, the damping ratio 1 and the yield displacement
uyðuy ¼ fy=k; fy ¼ yield strength and k ¼ initial stiffnessÞ. The maximum
ductility demand (ductility response) is obtained by normalizing the maximum
absolute displacement by the yield displacement. The inelastic dynamic response is
obtained by solving the incremental equation of motion numerically (see [32]).
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The earthquake input energy and the energies stored or dissipated in the
structure have been investigated for a long time and can be quantified by inte-
grating Eq. (10.1). Thus, the energy balance for the structure is well known
[24, 33–36] and given as:

Zu

0

m €uðtÞduþ
Zu

0

c _uðtÞduþ
Zu

0

fsðtÞdu ¼ �
Zu

0

m €ugðtÞdu ð10:3Þ

The right hand side of Eq. (10.3) represents the total input energy to the structure.
Uang and Bertero [34] introduced a concept of relative kinetic energy (pseudo work)
and absolute kinetic energy (real work). The right hand side of Eq. (10.3) corresponds
to the former pseudo work. The first term in the left side is the kinetic energy EK(t):

EKðtÞ ¼
Zu

0

m €uðtÞdu ¼
Z t

0

m €uðsÞ _uðsÞds ¼ m
½ _uðtÞ�2

2
ð10:4Þ

The second term in the left side of Eq. (10.3) is the energy ED(t) dissipated by
damping:

EDðtÞ ¼
Zu

0

c _uðtÞdu ¼
Z t

0

c½ _uðsÞ�2ds ð10:5Þ

The third term in the left side of Eq. (10.3) is the sum of the recoverable elastic
strain energy ES(t) and the unrecoverable accumulated hysteretic energy EHðtÞ
dissipated by yielding. These quantities can be described by

ESðtÞ ¼
½fsðtÞ�2

2k
ð10:6aÞ

EHðtÞ ¼
Zu

0

fsðtÞdu� ESðtÞ ¼
Z t

0

_uðsÞfsðsÞds� ESðtÞ ð10:6bÞ

The next section explains the use of maximum ductility and hysteretic energy
demands in developing damage indices.

10.3 Quantification of Structural Damage
Using Damage Indices

The literature on damage measures of structures under strong ground motions is
versatile [37, 38]. Damage measures are often referred to as damage indices and such
damage indices are estimated by comparing the response parameters demanded by
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the earthquake with the corresponding structural ultimate capacities. Powell and
Allahabadi [39] proposed a damage index in terms of the ultimate ductility
(capacity) lu and the maximum ductility lmax demanded by the ground motion:

Dl ¼
lmax � 1
lu � 1

ð10:7Þ

On the other hand, Cosenza et al. [37] and Fajfar [40] proposed another damage
index based on the structure hysteretic energy EH:

DH ¼
EH=ðfyuyÞ

lu � 1
ð10:8Þ

As a combined version, Park and co-workers introduced a damage index based
on maximum ductility and hysteretic energy dissipated by the structure [41, 42]:

DPA ¼
lmax

lu

þ b
EH=ðfyuyÞ

lu

ð10:9Þ

Here, lmax and EH are the maximum ductility and hysteretic energy demands
(excluding elastic energy). lu is the ultimate ductility capacity under monotonic
loading and b is a positive constant that weights the effect of cyclic loading on
structural damage (b = 0 implies that the contribution to DPA from cyclic loading
is omitted). It should be remarked that the damage index by Park and co-workers is
a combination of ductility and hysteretic energy and can well simulate actual
damage states.

The state of the structure’s damage is defined as: (a) repairable damage
ðDPA\0:40Þ; (b) damage beyond repairable limit ð0:40�DPA\1:0Þ; and (c) total or
complete collapse ðDPA� 1:0Þ. These criteria are based on calibration of DPA against
experimental results and field observations after earthquakes [42]. Equation (10.9)
expresses damage as a linear combination of the damage caused by excessive
deformation and that contributed by repeated cyclic loading effects. Note that the
quantities lmax; EH depend on the loading history while the parameters b; lu; fy are
independent of the loading history and are determined from experimental data. The
next section explains critical earthquake loads for inelastic structures.

10.4 Critical Earthquake Loads Considering Evolution
of Seismic Waves

In this chapter, the ground acceleration is represented by a combination of Ns

seismic waves:

€ugðtÞ ¼
XNs

i¼1

eiðtÞ€uiðtÞ ¼
XNs

i¼1

eiðtÞ
XNf

j¼1

Rij cosðxijt � /ijÞ ð10:10Þ
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Herein, Rij and /ij are unknown amplitudes and phase angles, xij is the jth circular
frequency of the ith seismic wave and Nf is the number of frequencies considered
in each signal. Following Conte and Peng [13], the envelope function of the ith
seismic wave is taken to be given as:

eiðtÞ ¼ aiðt � fiÞbi e�kiðt�fiÞ ð10:11Þ

where ai and ki are positive constants, bi is a positive integer, fi is the arrival time
of the ith seismic wave. In view of realistic situations, the ground acceleration is
taken here to be composed of body waves and surface waves (Ns = 2).

In deriving critical earthquake loads, the envelope functions are taken to be
known while the amplitudes and phase angles [Eq. (10.10)] are treated as
unknowns. The treatment of the envelope functions as unknowns is challenging
and may open another door for general critical excitation problems. This problem
will be discussed elsewhere. The information on energy E and PGA (M) are also
assumed to be known, thus, defining the following constraints [22, 25]:

Z1

0

€u2
gðtÞdt

2
4

3
5

1
2

�E ð10:12aÞ

max
0\t\1 €ugðtÞ

�� ���M ð10:12bÞ

Note that the constraint on the earthquake energy, i.e. Eq. (10.12a), is related to
the Arias intensity [43]. It is also interesting to remark that the earthquake energy
related directly to the ground motion only has strong relationship with the earth-
quake input energy related to both the structure and the ground motion [6, 44].

The constraints of Eq. (10.12a) are further expressed in terms of the variables
Rij;/ij; i ¼ 1; 2; . . .;Ns; j ¼ 1; 2; . . .;Nf as:

XNs

i¼1

XNf

j¼1

XNs

m¼1

XNf

n¼1

RijRmn

Z1

0

eiðtÞemðtÞ cosðxijt � /ijÞ cosðxmnt � /mnÞ dt
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�E

ð10:13aÞ

max
0\t\1

XNs

i¼1

eiðtÞ
XNf

j¼1

Rij cosðxijt � /ijÞ
�����

������M ð10:13bÞ

To quantify the constraints quantities E and M, it is assumed here that a set of
acceleration records are available for the given site or from other sites with similar
soil conditions. The values of energy and PGA are obtained for each of these
records. The highest of these values across all records are taken to define E and
M. It may be noted that the constraints on the Fourier amplitude spectra developed
by Abbas and Manohar [22] require more information on recorded earthquakes at
the site and have not been considered here.
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The problem of deriving critical earthquake loads for inelastic structures can be

posed as determining the variables y ¼ fR11;R12; . . .;RNsNf
; /11;/12; . . .;/NsNf

gT

in the optimization problem such that DPA [Eq. (10.9) ] is maximized subject to
the constraints of Eq. (10.13a). This nonlinear constrained optimization problem is
solved using the sequential quadratic programming method [45]. The following
convergence criteria are adopted:

jfj � fj�1j � e1 ð10:14aÞ

jyi;j � yi;j�1j � e2 ð10:14bÞ

Herein, fj is the objective function value at the jth iteration, yi,j is the ith optimi-
zation variable at the jth iteration and e1; e2 are small positive quantities to be
specified. The structure inelastic deformation is estimated using the Newmark-b
method which is built as a subroutine inside the optimization program.

It may be emphasized that the quantities lðtÞ and EHðtÞ do not reach their
respective maxima at the same time. Hence, the damage index of Eq.( 10.9) is

maximized at discrete points of time and the optimal solution y� ¼
fR�11;R

�
12; . . .;R�NsNf

; /�11;/
�
12; . . .;/�NsNf

gT is the one that produces the maximum
structural damage at all time points. The next section provides numerical illus-
trations for the formulation explained above.

10.5 Numerical Results and Discussions

Consider a one-storey frame structure. The columns’ initial stiffness (storey
stiffness) is taken as 4 9 106 N/m and the girder carries a total load of 1 9 105 kg
(initial natural frequency = 1.0 Hz). The columns are assumed to behave elastic-
plastically (bilinear inelastic) with strain-hardening ratio c ¼ 0:05. The yield
strength in tension and compression are taken as 6 and -6 9 104 N, respectively
(yield displacements are 0.02 and -0.02 m). A viscous damping model with 0.02
damping ratio is adopted. The constraints of Eq. (10.13a) have been quantified
using a set of 20 earthquake records [25]. These records have been recorded at
sites with a firm soil condition. Specifically, the PGA and the energy are specified
as M = 4.63 m/s2 and E = 4.16 m/s1.5 [Eq. (10.12a)]. The envelope functions
adopted, i.e. Eq. (10.11), are shown in Fig. 10.1 [13]. The numerical values of the
parameters of these envelope functions are taken as a1 ¼ 2:0; f1 ¼ 5:0; b1 ¼
8; k1 ¼ 0:60 for body waves and a2 ¼ 8:0; f2 ¼ 2:0; b2 ¼ 6; k2 ¼ 0:45 for sur-
face waves. These envelope functions are normalized to unit peak values. Note
that the numerical values of the parameters fiði ¼ 1; 2Þ are used to control the
arrival time of each seismic wave. The numerical values of these parameters are
changed later to study the influence of the arrival time of the seismic waves on
the derived critical acceleration and the associated inelastic response. Note that the
envelope functions can be treated as unknowns and the optimal values of the
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envelopes parameters can be estimated using optimization techniques. In that case,
upper and lower bounds and other positivity constraints on these parameters need
to be specified. To quantify these constrains, the numerical values of these
parameters has to be calculated for each of the available records to match their
non-stationarity trends. The lowest and the highest values of these parameters
define the lower and the upper bound constraints. This approach, however, may
lead to an overly constrained optimization problem or could result in unrealistic
non-stationarity trend for the seismic waves, especially with the form of the
envelope functions adopted in this chapter (large number of envelope parameters).
Such approach can be considered for simple envelope functions as has been carried
out in some of our previous studies [46, 24]. In this chapter, the envelope functions
are taken to reflect the average nonstationarity trend of the past recorded accel-
erograms at the site.

The frequency content of the surface waves is defined in the range (0–1.0) Hz
and that for the body waves is defined in the range (1.0–10.0) Hz [47]. These
frequency ranges are discretized by the increment 0.10 Hz resulting in a total of
204 optimization variables [Nf = 102, see Eq. (10.10)]. The influence of the fre-
quency contents of the seismic waves on the estimated critical acceleration and the
associated structural response are also studied later. The structure’s inelastic
response is computed using the Newmark numerical integration scheme
(a ¼ 0:50; d ¼ 0:25; Dt ¼ 0:005s). The parameters b and lu of Eq. (10.9) are
taken as 0.15 and 6.0, respectively. The input energy and the hysteretic, damping,
kinetic and elastic strain energies dissipated by the structure are calculated using
Eqs. (10.3–10.6a) and the damage indices are computed using Eqs. (10.7–10.9).

The numerical results are shown in Figs. 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8,
and 10.9 and Tables 10.1, 10.2 and 10.3. Based on thorough investigations of the
numerical results obtained, the following observations are made:

1. Non-stationarity trend and effect of arrival time of seismic waves: The body
waves have different non-stationarity trend and different arrival time compared
with the surface waves (Fig. 10.2a, c). Body waves build up faster, have rel-
atively narrow strong phase (duration) and decay faster. Surface waves build up
at about 8.0 s, have longer strong phase (duration) and decay slower. These
features were observed clearly during the 2011 off the Pacific coast of Tohoku
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Fig. 10.1 Envelope funtions
of body waves and surface
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[49] with permission from
Techno Press)
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earthquake [48] and match well the assumed modulating envelope functions
and arrival times (see Fig. 10.1). The two acceleration components result in a
total acceleration that has broader strong phase of about 20.0 s. The PGA is
attained at the overlap time-interval region between the peaks of the body
waves and the surface waves (see Fig. 10.2e). To examine the influence of the
arrival times on the derived critical acceleration and associated structural
response, f2 in Eq. (10.11), that controls the arrival time of the surface waves,
has been changed to 2.5, shifting the arrival time and the peak amplitude by
about 2.0 s. This was seen to reduce the maximum ductility, the number of
yield reversals and the Park and Ang’s damage index from 1.91, 79 and 4.54 to
1.35, 64 and 2.43, respectively. This implies that, when the arrival times of the
different seismic waves are close, more energies are superposed. This results in
larger structural responses (e.g. case of near-field shallow ground motion).
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Fig. 10.2 Critical ground acceleration for bilinear inelastic structure a Body waves in time
domain, b Body waves in frequency domain, c Surface waves in time domain, d Surface waves in
frequency domain, e Total acceleration in time domain, f Total acceleration in frequency domain
(Moustafa et al. [49] with permission from Techno Press)
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Fig. 10.3 Short-time Fourier amplitude spectra for critical ground acceleration a Body waves,
b Surface waves, c Total acceleration (Moustafa et al. [49] with permission from Techno Press)
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When the arrival times are much different, the energy provided by the total
acceleration is distributed across a wider time duration (e.g. case of far-field
deep earthquakes). This leads to smaller responses.

2. Frequency content and effect of frequency range of seismic waves: The
frequency content of the body waves covers a broad frequency range with large
energy concentrated close to the initial fundamental natural frequency of the
structure. Lower energy is also distributed over higher frequencies (Fig. 10.2b).
A similar feature can also be observed in the surface waves where large energy

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30 35 40

D
is

pl
ac

em
en

t (
m

)

Time (s)

(a)

u
yt

 = 0.02m

u
yc

 = -0.02m

-3 10
5

-2 10
5

-1 10
5

0

1 10
5

2 10
5

3 10
5

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

R
es

to
rin

g 
fo

rc
e 

(N
)

Displacement (m)

(b)
N

y
 = 79

Fig. 10.4 Critical response of the inelastic structure under the critical acceleration a Inelastic
displacement, b Force–displacement hysteretic loops (Moustafa et al. [49] with permission from
Techno Press)
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Fig. 10.5 Force-displacement hysteretic loops for different time intervals a t = 0–10 s,
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is located close to the initial natural frequency of the structure and smaller
energy is located at the low frequency range of 0–0.5 Hz (Fig. 10.2d). The
resulting ground acceleration is fairly rich in the frequency content which
resembles actual recorded accelerograms (Fig. 10.2f). A peak amplitude is
observed at the system initial natural frequency and large amplitudes are
located at frequencies lower and higher than the system initial natural fre-
quency (at about half and twice of x). Figure 10.3 shows the short-time Fourier
transform of the body waves, the surface waves and the overall acceleration.
The transient trend of the ground motion both in time and frequency domains is
remarkable. To examine the effect of the frequency contents of the seismic
waves on the derived critical acceleration and corresponding structural
responses, the frequency contents of the surface and body waves have been
changed to (0–1.50) Hz and (0.50–10.0) Hz, respectively, keeping all other
parameters unchanged. This overlap in the frequency contents of the seismic
waves has been found to lead to ground acceleration richer in the frequency
content compared with the case studied above. The structural responses have
also been found to increase due to the overlap in the frequency contents of the
seismic waves.

3. Structural responses: The maximum inelastic response of about 0.39 m is
attained at about 16.0 s (Fig. 10.4a). The corresponding force–displacement
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Fig. 10.6 Input and dissipated energies for inelastic structures under critical acceleration
a fy = 6.0 9 104 N, b fy = 12 9 104 N (Moustafa et al. [49] with permission from Techno Press)
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hysteretic loops are shown in Fig. 10.4b. In order to disclose the detail of the
transient response, the relation is further divided into four time intervals (0–10,
10–20, 20–30 and 30–40 s). The relations in the four time intervals (0–10, 10–
20, 20–30 and 30–40 s) are shown in Fig. 10.5a–d (the end of each interval is
marked in these plots). It can be seen that the number of yield reversals is larger
for the period 10–20 s (Ny = 28). The number of yield reversals decreases
remarkably at the end of the ground motion (Ny = 4 for t = 30–40 s). Note
also that the hysteretic loops are wider during the interval t = 10–20 s and that
the maximum displacement is also attained during the same time period. Most
of the input energy to the structure (around 80 %) is provided during this period
and the maximum value is attained at about 25 s (Fig. 10.6). It may also be
noted that most of the input energy is dissipated by the hysteretic energy and
that the damping energy is significantly smaller (Fig. 10.6). The kinetic and
elastic strain energies are substantially small and diminish at the end of the
ground motion. The damage indices reveal that they increase during the strong
phase of the ground motion (Fig. 10.7). Park and Ang’s damage index reflects
that the structure is damaged beyond repair (DPA = 4.54). The damage index
DH demanded by the critical input [Eq. (10.8)] is significantly higher than other

0

5 10
4

1 10
5

1.5 10
5

2 10
5

0 5 10 15 20 25 30 35 40

Critical input
Kobe NS
El Centro NS
Chi-chi NS

E
ne

rg
y 

(N
 m

)

Time (s)

(a)

0

5 10
4

1 10
5

1.5 10
5

2 10
5

0 5 10 15 20 25 30 35 40

Critical input
Kobe NS
El Centro NS
Chi-chi NS

E
ne

rg
y 

(N
 m

)

Time (s)

(b)

Fig. 10.9 Input and hysteretic energies from critical acceleration and recorded ground
accelerations (all records are scaled to the same PGA of 4.63 m/s2) a Input energy, b Hysteretic
energy (Moustafa et al. [49] with permission from Techno Press)
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Fig. 10.8 Influence of yield strength on the frequency content of the surface waves
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two damage indices. The damage index based on ductility is the smallest
among the three damage indices (0.18).

4. Influences of the yield parameters (fy and c): The yield strength is seen to
influence the frequency content of the surface waves of the critical acceleration
and also the input and hysteretic energies of the structure. The frequency content
of the critical acceleration for the structure with lower yield strength
(6 9 104 N) is observed to get shifted towards the lower frequency range
(Fig. 10.8a). The structure with higher yield capacity (12 9 104 N) is seen to
have higher input energy demand and hysteretic energy demand (Fig. 10.6),
lower ductility demand and lower damage indices (Fig. 10.7). For instance,
when the yield strength increases from 6 to 12 9 104 N, Park and Ang’s damage
index decreases from 4.54 to 1.50. Similarly, the strain-hardening ratio was seen
to influence the critical input and the associated inelastic responses. Table 10.1
summarizes the response quantities for c ¼ 0:01; 0:05; 0:10 and 0:50: It can be
seen that, as the strain-hardening ratio decreases, the structure yields more
frequently and the maximum displacement decreases.

5. Effect of initial natural frequency of the structure: In order to examine the
influence of the structure’s initial natural frequency on the critical excitation
and the associated inelastic response, a parametric study has been carried out.
The structure’s initial natural frequency is varied, keeping all other parameters
unchanged, and the critical input was re-estimated by solving a new optimi-
zation problem. Table 10.2 shows the response parameters of the structure
under the critical excitation for three models of different initial natural fre-
quencies (0.50, 1.0 and 2.0 Hz) having the same yield characteristics and
damping ratio. It can be observed that the initial natural frequency has a

Table 10.1 Influence of the strain-hardening ratio on the response of the inelastic structure
(Moustafa et al. [49] with permission from Techno Press)

Strain-hardening ratio lmax Ny up (m) DPA DH Dl

0.01 1.33 111 0.72 3.24 24.2 0.07
0.05 1.91 79 0.18 4.54 33.8 0.18
0.10 5.77 92 0.11 5.70 37.9 0.95
0.50 11.20 55 0.01 3.90 16.3 2.03

lmax maximum ductility demand, Ny number of yield reversals, up residual defomration after
ground stops shaking, DPA Park and Ang damage index [Eq. (10.9)], DH Damage index based on
hysteretic energy dissipation [Eq. (10.8)], Dl damage index based on ductility [Eq. (10.7)]

Table 10.2 Influence of the initial natural frequency on the response of the inelastic structure
(Moustafa et al. [49] with permission from Techno Press)

Initial natural frequency(Hz) lmax Ny Up (m) DPA DH Dl

0.5 2.43 66 0.22 5.23 38.6 0.29
1.0 1.91 79 0.18 4.54 33.8 0.18
2.0 1.78 56 0.08 0.36 0.50 0.16
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significant effect on the critical responses. The structure with smaller initial
natural frequency produces larger ductility demand and damage indices.

6. Comparison with recorded accelerations: To examine the realism of the
critical accelerations, the structural responses have been estimated using the
critical acceleration and past recorded ground motions. All acceleration inputs
have been scaled to the same PGA of 4.63 m/s2. Figure 10.9 and Table 10.3
summarize the numerical results. The input energy from the critical input is
around 2.5, 4.6 and 16.6 times the associated values from Kobe (1995), El
Centro (1940) and Chi-chi (1999) earthquake records, respectively. On the
other hand, the hysteretic energy demand from the critical input is 2.8, 4.7 and
25.6 times those from Kobe (1995), El Centro (1940) and Chi-chi (1999)
records, respectively. It should be remarked that the input energy rate (input
energy per unit time) from the critical input is found to be substantially higher
than those from the actual earthquake records [21].

10.6 Summary

In this chapter it was assumed that strong ground motions are composed of seismic
waves that have different characteristics, such as, phase velocity, arrival time, non-
stationarity trend, duration, frequency content, energy and amplitude. The mod-
eling of critical earthquake loads has been explained for inelastic structures taking
into account the different characteristics of the seismic wave components of the
ground acceleration. The critical earthquake loads have been calculated by solving
inverse dynamic problems using a nonlinear optimization technique, inelastic
time-history response analysis and damage indices. The critical acceleration is
expressed in terms of superposition of seismic waves with unknown amplitudes
and phase angles. These unknown parameters have been computed so that a
measure of the structure’s damage (damage index) is maximized subject to the
constraints on predefined bounds on the ground motion.

Several specific aspects relating to the present problem have been explained.
The effects of non-stationarity trend, arrival time and frequency content of the
seismic waves on the critical ground acceleration and the associated inelastic
responses have been examined and discussed in detail. Similarly, the influences of
the structural parameters, such as, the initial fundamental natural frequency, the
yield strength and the strain-hardening ratio on the structural responses have also

Table 10.3 Response quantities for the inelastic structure under the critical acceleration and past
recorded ground motions (Moustafa et al. [49] with permission from Techno Press)

Input acceleration lmax Ny up (m) DPA DH Dl

Critical acceleration 1.91 79 0.18 4.54 33.8 0.18
1995 Kobe NS (Kobe University) 1.71 26 0.29 1.76 11.8 0.14
1940 El Centro NS (array #9) 1.98 65 0.08 1.24 7.26 0.20
1999 Chi-chi NS (TCU078) 1.03 21 0.15 0.34 1.33 0.01
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been studied. The structural response and performance have been characterized in
terms of the maximum ductility, input and hysteretic energies and damage indices.
It may be concluded that damage indices are accurate response descriptors because
they can account for structural damage due to repeated stress reversals and high
stress excursions. The critical earthquake load is found to possess large energy
around the structure’s initial natural frequency. Significant energy has also been
concentrated at lower frequencies than the natural frequency of the elastic struc-
ture. This is because the structure’s equivalent natural frequency decreases due to
its plastic deformation. When the seismic waves have comparable arrival times,
the critical acceleration has been found to produce larger damage in the structure.
The structure with lower strain-hardening ratio has been shown to yield more
frequently than the same structure with higher strain-hardening ratio. The hys-
teretic energy has also been found to increase for lower values of the strain-
hardening ratio. In other words, the elastic–plastic structure may be the most
vulnerable one. It should be remarked that the input energy rate (input energy per
unit time) from the critical input is found to be substantially higher than those from
actual records.

It was presumed that the ground acceleration is composed of two seismic
components, namely, body waves and surface waves. Implicit constraints on the
frequency contents and the arrival times of the seismic waves have been imposed.
Explicit constraints on the energy and PGA of the overall ground motion have also
been imposed. No constraint was imposed on the energies or the amplitudes of the
individual components of the seismic waves. Such constraints can be easily
incorporated in the formulation, but this information is not easily available. The
structures considered have been approximated using single-degree-of freedom
systems and the nonlinear behavior has been modeled using a bilinear force–
displacement relation. The application of the methodology explained in this
chapter to multi-degree-of-freedom structures and the use of nonlinear degrading
models are of interest and will be discussed elsewhere.
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Chapter 11
Critical Correlation of Bidirectional
Horizontal Ground Motions

11.1 Introduction

The ground motion is a realization in space and simultaneous consideration of
multiple components of ground motion is realistic and inevitable in the reliable
design of structures [1, 2]. It is often assumed practically that there exists a set of
principal axes in the ground motions [3, 4]. It is well recognized in the literature
that the principal axes are functions of time and change their directions during the
ground shaking. In the current structural design practice, the effect of the multi-
component ground motions is often taken into account by use of the SRSS method
(square root of the sum of the squares) or the CQC3 method (extended Complete
Quadratic Combination rule [5]).

In the SRSS method, the maximum responses under respective ground motions
are combined by the rule of SRSS. The SRSS method assumes the statistical
independence among the respective ground motions. However, the multi-compo-
nent ground motions have some statistical dependence.

On the other hand, the CQC3 rule is well known as a response spectrum method
which can take into account the effect of correlation between the components of
ground motions. Although an absolute value of a cross power spectral density (PSD)
function has been described by the correlation coefficient, the CQC3 rule cannot treat
directly, in the sense of direct treatment of both real and imaginary parts, the cross
PSD functions of multi-component ground motions. Menun and Der Kiureghian [6]
and Lopez et al. [7] employed the CQC3 method as the response evaluation method
and discussed the critical states, e.g., a critical loading combination or a critical
incident angle. Athanatopoulou [8] investigated the effect of incident angle of ground
motions on structural response without use of the Penzien–Watabe model [3] and
pointed out the significance of considering multiple inputs in the practical seismic
design. The approach is applicable only to a set of recorded motions. In this chapter,
the cross PSD function in terms of both real and imaginary parts will be discussed in
more detail from the viewpoint of critical excitation.

I. Takewaki et al., Improving the Earthquake Resilience of Buildings,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-4144-0_11,
� Springer-Verlag London 2013
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A problem of critical excitation is considered in this chapter for a one-story
one-span moment resisting three-dimensional (3-D) frame subjected to bidirec-
tional horizontal ground motions (2DGM). Because the horizontal ground motions
are known to be influential to most of ordinary building structures, only horizontal
ground motions are treated here. The two horizontal ground accelerations are
modeled as nonstationary random processes whose auto PSD functions are known.
A critical excitation problem is formulated such that the worst cross PSD function
of the 2DGM is determined for the maximum mean-squares extreme-fiber stress of
the column at the top. It is found that the real part (co-spectrum, e.g., see Nigam
[9]) and the imaginary part (quad-spectrum) of the worst cross PSD function can
be obtained by a devised algorithm including the interchange of the double
maximization procedure in the time and frequency domains.

The critical excitation problems have been treated extensively by many
researchers, e.g., Drenick [10], Shinozuka [11], Iyengar and Manohar [12], Ma-
nohar and Sarkar [13], Abbas and Manohar [14–16], Takewaki [17–22]. The
works by Sarkar and Manohar [23, 24], Abbas and Manohar [15, 16] are concerned
with the content of this chapter. Sarkar and Manohar [23, 24] and Abbas and
Manohar [15] formulated interesting problems and solved the problems via
sophisticated mathematical insights. In particular, they revealed that the critical
correlation occurs under the condition of perfect coincidence of the multiple-
support inputs with the corresponding transfer functions. Furthermore, Abbas and
Manohar [15] discussed a critical excitation problem of a stack-like structure
subjected to horizontal and vertical simultaneous inputs with the reliability index
as the objective function. They determined the critical PSD matrix using response
surface models. This chapter formulates a similar problem for a different model
(multi-component input) with different variables in the complex plane of the cross
PSD function of ground motions. Especially the relationship of the building
principal axes with the ground-motion principal axes produces an interesting
aspect.

11.2 Penzien–Watabe Model and Extended
Penzien–Watabe Model

11.2.1 Penzien–Watabe Model

The CQC3 rule is based on the Penzien–Watabe model (P–W model; [3]). The P–
W model assumes the existence of the principal axes Z1 and Z2 along which the
correlation coefficient of ground motions is zero. One principal axis in the hori-
zontal plane is directed to the fault and the other is perpendicular to the former
one.

Although the CQC3 rule is a known method of response analysis for 2DGM, the
correlation between 2DGM is fixed rigidly. In order to generalize the correlation
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between the 2DGM in a feasible complex plane of the cross PSD function, a new
ground input model is explained in this chapter. Then, the CQC3 rule can be
regarded as a special case of response evaluation using the input model explained
in this chapter. This will be explained later in Sect. 11.5. A brief explanation is
shown in Fig. 11.1 in the form of flow chart.

Consider a one-story, one-span 3 D frame. It is assumed that two axes X1 and X2

are perpendicular to each other and along the building structural axes. Let SZ1ðxÞ
and SZ2ðxÞ denote the auto PSD functions along the principal axes Z1, Z2 of ground
motions, respectively. According to the P–W model, 2DGM along Z1, Z2 are
regarded to be completely uncorrelated. The auto PSD functions of ground
motions along X1, X2 are determined from the auto PSD functions of 2DGM along
Z1, Z2. The auto PSD functions along X1, X2 are described by S11ðxÞ and S22ðxÞ;
respectively.

It can be shown (see Appendix 1) that the sum of SZ1ðxÞ and SZ2ðxÞ is to be
equal to the sum of S11ðxÞ and S22ðxÞ: Furthermore, the coherence function
between 2DGM along X1 and X2 is also denoted as

q12ðcorg; hÞ ¼
ð1� corgÞ sin 2hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ corgÞ2 � ð1� corgÞ2 cos2 2h
q ; ð11:1Þ

where corg ¼ SZ2ðxÞ=SZ1ðxÞ: h is the angle of rotation (incident angle) between the
two horizontal axes Z1, X1. Figure 11.2 shows the coherence function expressed by
Eq. (11.1) with various values of corg for varied rotation (incident) angle. In
Fig. 11.2, when corg is zero, the coherence function q12 is reduced to 1 at any h
except h = 0 and h ¼ p=2. This means that the components along X1 and X2 have
perfect correlation under unidirectional ground motion along the major principal
axis of ground motion.

11.2.2 Extended Penzien–Watabe Model

The P–W model is often used in the modeling of multi-component ground
motions. Although the coherence function of 2DGM along X1 and X2 can be given
in terms of corg and h as shown in Eq. (11.1), the cross PSD function cannot be
treated directly in the CQC3 rule. For that reason, it is supposed in this chapter that
the cross PSD function between 2DGM along X1 and X2 can take any value in the
feasible complex plane. From the definition of the coherence function, the co-
spectrum (real part of cross PSD) C12 xð Þ and quad-spectrum (imaginary part of
cross PSD) Q12 xð Þ must satisfy the following relation.

C12ðxÞ2 þ Q12ðxÞ2� q12ðcorg; hÞ
� �2

S11ðxÞS22ðxÞ ð11:2Þ
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Fig. 11.1 Comparison of extended P–W model with P–W model [25]
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This model is called the extended P–W model hereafter. It may be possible to
incorporate the extended P–W model into the stochastic response evaluation
method. In that case, a new critical excitation problem can be constructed in which
the critical cross PSD function is searched in the feasible complex plane repre-
sented by Eq. (11.2). This method can be regarded as an extended method of the
CQC3 rule based on the P–W model.

11.3 Stochastic Response to 2DGM Described by Extended
Penzien–Watabe Model

11.3.1 Definition of Nonstationary Ground Motion

It is assumed here that the one-directional horizontal motions can be described by
the following uniformly modulated nonstationary model.

€ugiðtÞ ¼ ciðtÞwiðtÞ ði ¼ 1; 2Þ ð11:3Þ

where ci tð Þ is an envelope function and wi tð Þ is a stationary random process. The
envelope function is given by

ciðtÞ ¼ ðt=t0Þ2 ð0� t� t0Þ
ciðtÞ ¼ 1:0 ðt0� t� t1Þ
ciðtÞ ¼ e�0:24ðt�t1Þ ðt1� t� tf Þ

ð11:4Þ

The auto PSD function of wi tð Þ in Eq. (11.3) is assumed to be given by
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Fig. 11.2 Coherence
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angles in the Penzien–Watabe
model [25]
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SiiðxÞ ¼ SðiÞ
2

V ;h¼0

�
2pT ciðtÞj jmax

� �
ði ¼ 1; 2Þ; ð11:5Þ

where T is the time duration and h is the damping ratio. SðiÞV ;h¼0 is the velocity
response spectrum for null damping ratio.

11.3.2 Stochastic Response Evaluation in Frequency Domain

11.3.2.1 Structure Model

Consider a 3D frame subjected to 2DGM €ug1; €ug2 along the building structural axes
X1 and X2. It is assumed that the center of mass is coincident with the center of
stiffness and the torsional response does not occur so long as there is no rotational
input. The columns have a square-tube cross-section and the beams have a wide-
flange cross-section as shown in Fig. 11.3. The story height is H and the span
length of the plane frame of interest in the first part of this section is L1. The span
length in the other direction is denoted by L2. Let E, Ib, Ic, Zc denote the Young’s
modulus of beam and column, the second moment of area of beam, that of column
and the section modulus of column, respectively. The mass on one plane frame is
denoted by m1.

Assume that each plane frame of the 3D model can be expressed by an SDOF
model. The equivalent horizontal stiffness of the SDOF model is expressed by (see
Appendix 2)

k1 ¼
12EIcf1þ 6ðIb=IcÞ � ðH=L1Þg

H3f2þ 3ðIb=IcÞ � ðH=L1Þg
ð11:6Þ

The extreme-fiber stress at the top of the column under one-directional hori-
zontal motion may be expressed by (see Appendix 2)

r1
BAðtÞ ¼ f6EIb=ðZcL1ÞghB ¼ Ar1u1ðtÞ; ð11:7Þ

where Ar1 � 18EIb= HL1Zcf2þ 3ðIb=IcÞ � ðH=L1Þg½ �:
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cI
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B C
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Fig. 11.3 One-story one-
span plane frame consisting
of beam of wide-flange cross-
section and column of square-
tube cross-section [25]
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Let x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
denote the fundamental natural circular frequency in the

horizontal vibration of the SDOF model. The horizontal displacement of the floor
can be derived as

u1 tð Þ ¼
Z t

0

f�€ug1 sð Þgg1ðt � sÞds; ð11:8Þ

where g1ðtÞ is the well-known unit impulse response function.
Using Eqs. (11.7) and (11.8), r1

BAðtÞ can be expressed as

r1
BAðtÞ ¼ Ar1

Z t

0

f�€ug1ðsÞgg1ðt � sÞds ð11:9Þ

Let r2
BAðtÞ denote the extreme-fiber stress at the top of the column under

another horizontal motion €ug2. The same equations as those in the direction X1 can
be used only by replacing L1 by L2 and other parameters in the direction X1 by
those in the direction X2. The sum of the extreme-fiber stresses at the top of the
column under 2DGM may be expressed by

f ðtÞ ¼ r1
BAðtÞ þ r2

BAðtÞ ð11:10Þ

11.3.2.2 Stochastic Response Evaluation in Frequency Domain

The auto-correlation function of f(t) defined in Eq. (11.10) can be expressed by

E f ðt1Þf ðt2Þ½ � ¼E r1
BAðt1Þr1

BAðt2Þ
� �

þ E r1
BAðt1Þr2

BAðt2Þ
� �

þ E r2
BAðt1Þr1

BAðt2Þ
� �

þ E r2
BAðt1Þr2

BAðt2Þ
� � ; ð11:11Þ

where E[ � ] denotes the ensemble mean. The mean-squares extreme-fiber stresses
in directions X1 and X2 derived from Eq. (11.11) may be expressed by (see
Appendix 3)

E½r1
BAðtÞ

2� ¼ A2
r1

Z1

�1

fBcðt; xÞ2 þ Bsðt; xÞ2gS11ðxÞdx ð11:12Þ

E½r2
BAðtÞ

2� ¼ A2
r2

Z1

�1

fCcðt; xÞ2 þ Csðt; xÞ2gS22ðxÞdx ð11:13Þ

Bcðt; xÞ;Bsðt; xÞ;Ccðt; xÞ;Csðt; xÞ are defined in Appendix 3.
The cross terms in Eq. (11.11) can be transformed into (see Appendix 4)
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E½r1
BAðtÞr2

BAðtÞ� þ E½r2
BAðtÞr1

BAðtÞ�

¼ 2Ar1Ar2

Z1

�1

ff1ðt; xÞC12ðxÞ þ f2ðt; xÞQ12ðxÞgdx;
ð11:14Þ

where C12 and Q12 are the co-spectrum and quad-spectrum of the cross PSD
function and

f1ðt; xÞ ¼ Bcðt; xÞCcðt; xÞ þ Bsðt; xÞCsðt; xÞ ð11:15aÞ

f2ðt; xÞ ¼ Bcðt; xÞCsðt; xÞ � Bsðt; xÞCcðt; xÞ ð11:15bÞ

Finally, the mean-squares of the sum of extreme-fiber stresses at the top of the
column under 2DGM may be expressed by

E½fr1
BAðtÞ þ r2

BAðtÞg
2�

¼ A2
r1

Z1

�1

fBcðt; xÞ2 + Bsðt; xÞ2gS11ðxÞdx

+ 2Ar1Ar2

Z1

�1

ff1ðt; xÞC12ðxÞ + f2ðt; xÞQ12ðxÞgdx

+ A2
r2

Z1

�1

fCcðt; xÞ2 + Csðt; xÞ2gS22ðxÞdx

ð11:16Þ

11.4 Critical Excitation Method for Worst Cross PSD
Function Between 2DGM

The critical excitation problem may be stated as: find the cross PSD function of
2DGM

S12ðxÞ ¼ C12ðxÞ þ iQ12ðxÞ ð11:17aÞ

so as to achieve

max
S12ðxÞ

max
t

E½fr1
BAðtÞ þ r2

BAðtÞg
2� ð11:17bÞ

When the time t is fixed and the frequency x is specified, the transfer functions
f1ðt; xÞ and f2ðt; xÞ defined in Eqs. (11.15a, b) can be regarded as coefficients, not
functions of t and x. Therefore, the integrand in the second term of Eq. (11.16) can
be regarded as the function zðC12;Q12Þ of C12 and Q12.
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zðC12;Q12Þ ¼ f1ðt; xÞC12ðxÞ þ f2ðt; xÞQ12ðxÞ ð11:17cÞ

Figure 11.4 illustrates the structure of the critical excitation problem. The
critical excitation problem is to maximize

z�ðC12;Q12Þ ¼ 2Ar1Ar2 f1ðt; xÞC12ðxÞ þ f2ðt; xÞQ12ðxÞf g ð11:18Þ

under the constraint Eq. (11.2). The critical co-spectrum and quad-spectrum can
then be obtained analytically as

C12ðxÞ ¼ q12ðcorg; hÞf1ðt; xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S22ðxÞS11ðxÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðt; xÞ2 þ f2ðt; xÞ2

q ð11:19aÞ

Q12ðxÞ ¼ q12ðcorg; hÞf2ðt; xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S22ðxÞS11ðxÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðt; xÞ2 þ f2ðt; xÞ2

q ð11:19bÞ

It should be noted that Eqs. (11.19a, b) include the coherence function
q12ðcorg; hÞ and are different from the equations derived in the reference (Fujita
et al. [26]). Abbas and Manohar [15] had obtained a similar result for a different
problem of multiple inputs.

Figure 11.5 indicates the solution algorithm. Substitution of Eqs. (11.19a, b)
into Eq. (11.14) leads to the expression of the cross term.

E r1
BAðtÞr2

BAðtÞ
� �

þ E r2
BAðtÞr1

BAðtÞ
� �

¼ 2q12ðcorg; hÞAr1Ar2

Z1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðt; xÞ2 þ f2ðt; xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S22ðxÞS11ðxÞ

p
dx

ð11:20Þ

co-spectrum and 
quad-spectrum
maximizing the 
cross term, Eq.(11.18)

function of Eq.(11.18)

co-spectrum

quad-spectrum

Eq.(11.2)

plane expressed 
by Eq.(11.18)

Fig. 11.4 Schematic
illustration of the present
critical excitation problem
[25]
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11.5 Numerical Example

11.5.1 Response to 2DGM with the Constraint of Sum
of Auto PSD Functions

In most of the current structural design practice, safety and functionality checks
are made with respect to one-directional earthquake input. This is because the
ground motion model for multi-component inputs is complicated and a well-
accepted model of practical use has never been presented except a few (e.g.,
Eurocode, IBC International Code). In addition, it may be understood that an
approximate safety margin is incorporated in the magnitude of one-directional
input. In this section, the effect of bidirectional input on the seismic response is
investigated through the comparison with the response by CQC3 rule (perfectly
correlated; although CQC3 does not correspond to the perfectly correlated case,
this terminology is used symbolically) or SRSS rule (uncorrelated). The effect of
correlation of 2DGM on the response is also clarified. Figure 11.6 shows the flow
chart of the aim in this section and the relationship with Sect. 11.5.2. The given
structural parameters are shown in Tables 11.1 and 11.2.

Consider the case where the auto PSD function ratio in two directions X1, X2 is
varied under the condition that the sum of the auto PSD functions in two directions
is constant. This is because the intensity of the unidirectional input as the com-
bined component of two-directional input should be regarded to be constant. For
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Fig. 11.5 Schematic diagram of the proposed procedure (order interchange of double
maximization procedure including subproblem optimization) [25]
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unidirectional input ðcorg ¼ 0Þ along the major principal axis of ground motion, the
coherence function between the ground motions along the building structural axes
is fixed to 1.0 [see Eq. (11.1)]. The auto PSD function ratios along the building
structural axes are chosen as c ¼ S22=S11 ¼ 0; 0:25; 0:75 and 1.0. The 2DGM
along the building structural axes with the auto PSD function ratio of 1.0 and
coherence = 1.0 coincides with the unidirectional input along the major ground
principal axis of h ¼ p=4. The common envelope function c1ðtÞ; c2ðtÞ is shown in
Fig. 11.7. The parameters in Eq. (11.4) are taken as c0 = 3 s, c1 = 12.5 s and

2

Fig. 11.6 Relationship between numerical analysis of Sects. 11.5.1 and 11.5.2 [25]
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cf = 40.0 s here. Figure 11.8a–c indicate the auto PSD functions of w1ðtÞ;w2ðtÞ
for various c with the constraint of sum of auto PSD functions. The simulated
ground acceleration using this PSD functions has the maximum value of about 1G.
The span length L2 is specified as 15 m and the span length L1 has been varied
continuously from 10 to 30 m.

Figure 11.9 shows the comparison of the response to critically correlated
2DGM along the building structural axes with the response to uncorrelated bidi-
rectional input. The curve indicated as ‘uncorrelated’ corresponds to the SRSS
response and the curve indicated as ‘critically correlated’ presents the critical
response derived in this chapter. In addition, the responses to 2DGM which have
fixed correlation functions, i.e. C12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
S11S22
p

and Q12 = 0 (‘‘Perfectly corre-
lated’’ without phase delay), C12 ¼ Q12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
S11S22
p

=
ffiffiffi
2
p

(case 2), C12 = 0 and
Q12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
S11S22
p

(case 3), are also plotted. It can be seen that the critical response
and the response to the input model with C12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
S11S22
p

and Q12 = 0 almost
coincide in the model with the span of L1 = 15 m.

Table 11.1 Structural member properties [25]

Column Beam

Cross-section (mm) h- 1,500 9 1,500 9 50 H – 1,200 9 600 9 40 9 32
Cross-sectional area (mm2) 2.90 9 105 8.57 9 104

Second moment of area (mm4) 1.02 9 1011 1.99 9 1010

Mass per unit length (kg/m) 2273 673

Table 11.2 Geometrical and structural parameters [25]

Span length (m) L2 = 15.0

Horizontal stiffness k1 (N/mm) 7.62 9 108

Horizontal stiffness k2 (N/mm) 7.62 9 108

Mass m1 (kg) 3.87 9 106

Mass m2 (kg) 3.87 9 106

Horizontal natural period T1 (s) 0.448
Horizontal natural period T2 (s) 0.448

0
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0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40
time (s)

c 
(t

)
Fig. 11.7 Envelope function
of horizontal ground motion
[25]
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It can be observed from Fig. 11.9 that the critical response is amplified around
L1 = 15 m where the lengths of span in two directions are equal and the natural
frequencies of the model in two directions are equal. It can also be observed that, as the
span length L1 becomes longer than 15 m, the critical response for the input model of
c = 0.25 becomes larger than those for c = 0.75, 1.0. This is because, as the span
becomes longer, a horizontal stiffness along the long span decreases. It can be con-
cluded that the critical incident angle of multi-component ground motions may exist
depending on the combination of structural stiffnesses due to difference in span lengths.

Figure 11.10 shows the increased ratio of the critical response to 2DGM of
various auto PSD function ratios from the SRSS response. In this case, the
increased ratio is about 40 % at L1 = 15 m. This implies that most of the present
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design code using only one-directional input (c = 0) for safety check are not
sufficient for extreme loading.

Figure 11.11 shows the co-spectrum and quad-spectrum of the critical cross
PSD function for c = 1 and L1 = 25 m.

11.5.2 Response to 2DGM Described by Extended Penzien–
Watabe Model: Analysis From the Viewpoint of Critical
Incident Angle

Since the analytical solution has been obtained as Eqs. (11.19a, b) the critical
incident angle can be searched parametrically in an efficient manner for which the
response quantity can be maximized for each combination of span length. The
right figure in Fig. 11.6 shows the flow chart indicating the aim in this section.
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While the auto PSD function ratio along the building structural axes has been
treated directly in Sect. 11.5.1, the auto PSD functions along the principal axes of
ground motions are treated directly in this section. In other words, the physical
meaning of ground motions is taken into account in detail in this section.

Consider the case where the ratio corg of the auto PSD functions along the
principal axes of ground motions is assumed to be fixed to 0.0, 0.05, 0.10, 0.25,
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Fig. 11.11 Co-spectrum and
quad-spectrum for c = 1 and
L1 = 25 m [25]
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0.75, 1.0, and the angle between the two sets of axes is varied continuously from
0 rad to p=2 rad. The structural plan is given as L1 = 15 m, L2 = 25 m.

Figure 11.12a–f show the comparison of the critical response with the corre-
sponding SRSS response in the case of six ratios corg under various incident angles.
The auto PSD functions along the building structural axes are determined from
those along the principal axes of ground motions in terms of h and corg (See
Appendix 1). Since the case of corg = 0.0 shown in Fig. 11.12a can be regarded as
the unidirectional input along the ground major principal axis, the coherence
function q12 corg; h

� 	
is 1.0 for any incident angle h. Furthermore, it can be

regarded that there is no phase delay between 2DGM along the building structural
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axes. For this reason, the critical excitation method presented in this chapter
provides the perfectly correlated one without phase delay in this case.

From Fig. 11.12b–e, it can be understood that there exists a critical incident angle
which maximizes the response quantity by considering the effect of critical correlation
between 2DGM along the building structural axes. It should be noted that, while Lopez
et al. [7] used the P–W model, this chapter introduced the extended P–W model and
took into account the critical cross PSD function between 2DGM. The critical response
and the corresponding SRSS response have the same value at h = 0.0 and h ¼ p=2 in
Fig. 11.12b–e. This is because, in the case of corg 6¼ 0:0; the coherence function

q12 corg; h
� 	

based on the P–W model is 0.0 at h = 0.0 or h ¼ p=2 and the cross term
of Eq. (11.11) does not exist. In Fig. 11.12f, there is no differences between the two
lines. This is because 2DGM along the building structural axes are uncorrelated due
to q12ðcorg; hÞ ¼ 0:0 for corg = 1.0. It can also be observed that the maximum value
of the response considering the critical correlation is large for the small value of corg.
This may result from the fact that (1) the coherence is 1.0 in Fig. 11.12a and is smaller
than 1.0 in Fig. 11.12b–d, and (2) the concentrated unidirectional input is more
effective in maximizing the extreme-fiber stress. Furthermore, comparing
Fig. 11.12a with Fig. 11.12b, c, the maximum value of the response to the 2DGM
along the principal axes of ground motions exceeds that to the unidirectional input
shown in Fig. 11.12a. From these results, it can be concluded that a larger upper
bound of the structural response can be evaluated by the proposed critical excitation
method for bidirectional ground motions based on the extended P–W model.

Under the constraint of sum of auto PSD functions along the principal axes of
ground motions, it may be concluded that the general response evaluation to the
unidirectional input along the principal axes of ground motions (corg = 0.0) is not
sufficient as far as the maximum value of response quantity is concerned.

11.5.3 Comparison of Response to Critically Correlated 2DGM
with that to Perfectly Correlated 2DGM

In order to understand the property of the critically correlated ground motions
more deeply, the comparison with the perfectly correlated ground motions without
time delay has been made. The structural plan is given as L1 = 15 m, L2 = 25 m.
Figure 11.13a shows two horizontal ground motions with the critical correlation
for input model of corg = 0 and h ¼ 0:106p½rad�ð¼ 19:0�Þ (critical incident angle
shown in Fig. 11.12a). This set has been generated by using random numbers. On
the other hand, Fig. 11.13b indicates two horizontal ground motions with the
perfect correlation without time delay for corg = 0 and h ¼ 0:106p½rad�ð¼ 19:0�Þ.
Figure 11.14 illustrates the root-mean-square of column-end extreme-fiber stress
to these two sets of horizontal ground motions. It can be observed that the response
to the critically correlated ground motions could become about 1.5 times larger
than that to the perfectly correlated ground motions without time delay.
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11.5.4 Analysis of Recorded 2DGM

The correlation between recorded 2DGM should be compared with the result of
the critical excitation method developed in this chapter. In this section, the
coherence function between the recorded 2DGM (El Centro NS and EW during
Imperial Valley 1940, SCT1 NS and EW during Mexico Michoacan 1985) is
calculated.
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Fig. 11.13 One sample set of Monte Carlo simulation of the 2DGM; a critically correlated,
b perfectly correlated [25]
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The auto PSD functions and cross PSD functions have been calculated from the
Fourier transforms by using the Welch-Bartlett’s method. The starting time of the
window with the duration T (5 s in El Centro and 10 s in SCT1) was changed
successively (time-lag of 0.02 s) and the corresponding set of data for the 100
windows was chosen to represent candidates of the ensemble mean. Then the
procedure of ensemble mean was taken of the functions computed from the Fourier
transforms.

Figure 11.15a shows the representative acceleration records of El Centro NS
and EW and Fig. 11.15b illustrates the cross PSD function of both motions. For
these data, Fig. 11.15c indicates the coherence function. It has been understood
from several parametric analyses that the coherence function is affected signifi-
cantly by the portion of ground motions. On the other hand, Fig. 11.16a–c illus-
trate the corresponding ones for SCT1 NS and EW. It can be seen that the cross
PSD function of SCT1 NS and EW has a peculiar characteristic due to the pre-
dominant period of these motions. In Fig. 11.16c, the cases of the numbers 200
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Fig. 11.15 a Acceleration records of El Centro NS and EW during imperial valley 1940, b Cross
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and 300 of windows have also been examined in using the Welch-Bartlett’s
method. It can be observed that the coherence strongly depends on the type of
earthquake ground motions. Furthermore, as stated, the coherence also depends on
the portion of ground motions (these data are not shown here due to page limit).
The prediction of the coherence function before its occurrence is quite difficult and
the critical excitation method will provide a meaningful insight even in these
circumstances.

As for the reality of critical excitation methods, a severe ground motion
attacked recently (July 16, 2007) the city of Kashiwazaki, Niigata Prefecture in
Japan, and many old wood houses were destroyed. It has been reported that a
peculiar ground motion as shown in Fig. 11.17a has been observed and the ground
motion had a predominant period of 2.5 s. This period is thought to be resonant
with the natural period of old wood houses with heavy roofs. This ground motion
is very similar to one, shown in Fig. 11.17b, predicted in Ref. [19]. It should be
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Fig. 11.16 a Acceleration records of SCT1 EW and NS during Mexico Michoacan 1985,
b Cross PSD function (co-spectrum and quad-spectrum), c Coherence function [25]
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noted that a large nuclear reactor facility is located in the city of Kashiwazaki and
that facility had relatively minor damage. Further damage investigation is being
conducted even now. This ground motion strongly supports the importance of
introducing the critical excitation methods especially for important structures.

11.6 Summary

An extended Penzien–Watabe (P–W) model has been explained in which the cross
PSD function of 2DGM can be treated in a more relaxed manner. While only the
coherence function, i.e., the absolute value of the cross PSD function, can be
treated in the P–W model, the direct treatment of the cross PSD function has been
made possible in the extended P–W model. The contents explained in this chapter
may be summarized as follows.

1. A critical excitation problem has been formulated for a one-story one-span
moment resisting 3D frame subjected to the 2DGM obeying the proposed
extended P–W model. The objective function is the corner-fiber stress at the
column-end. The extended P–W model is an extended version of the P–W
model including additional information on the cross PSD function as a complex
function.

2. The mean-squares corner-fiber stress at the column-end has been shown to be
the sum of the term due to the 2DGM and that due to their correlation. Since the
auto PSD functions of 2DGM are given and prescribed, the maximization in the
critical excitation problem means the maximization of the correlation term of
2DGM.

3. The real part (co-spectrum) and the imaginary part (quad-spectrum) of the
worst cross PSD function can be obtained by a devised algorithm including the
interchange of the double maximization procedure in the time and cross PSD
function dual domains.

4. Numerical examples indicate that the explained algorithm can work very well.
The root-mean-square corner-fiber stress at the column-end to the critical
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Fig. 11.17 a Critical-type ground motion in recent earthquake near nuclear reactor facilities,
b Corresponding theoretical one predicted before its occurrence [25]
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combination of the 2DGM becomes more than 10 % larger than that by the
SRSS estimate of corner-fiber stress at the column-end due to the 2DGM. When
the horizontal stiffnesses along the building structural axes coincide with each
other, the response to the critical excitation becomes about 40 % ð’

ffiffiffi
2
p
Þ larger

than that by the SRSS estimate.
5. Analytical solutions, Eqs. (11.19a, b), have enabled the efficient parametric

analysis of critical incident angle (see Fig. 11.12).
6. The coherence function between the 2DGM of recorded earthquakes has been

calculated. The coherence strongly depends on the type of earthquake ground
motions and the prediction of the coherence function before its occurrence is
quite difficult. The critical excitation method will provide a meaningful insight
even in these circumstances.

Appendix 1: Computation of Coherence Function
and Transformation of PSD Matrices

Let €ug1 and €ug2 denote the ground-motion accelerations along the building struc-
tural axes X1 and X2, respectively. Under the 2DGM along the principal axes of
ground motions in the P–W model, €ug1 and €ug2 are described by

€ug1

€ug2


 �
¼ cos h sin h
� sin h cos h

� 

€uz1

€uz2


 �
; ð11:21Þ

where €uz1 and €uz2 are the ground-motion accelerations along the principal axes of
ground motions. h denotes the angle between two sets of horizontal axes
(= incident angle).

Let S€Z€ZðxÞ denote the auto PSD matrix of the components along the principal
axes of ground motions. Then the PSD matrix, consisting of S11, S22, S12, S21, of
the components along the building structural axes may be described as

S€X€XðxÞ ¼
cos h sin h
� sin h cos h

� 

S€Z€ZðxÞ

cos h � sin h
sin h cos h

� 

ð11:22Þ

S€Z€ZðxÞ ¼
S€Z1 €Z1
ðxÞ 0

0 S€Z2 €Z2
ðxÞ

� 

ð11:23Þ

The coherence function between the components of ground motions along the
building structural axes is defined by

q12 ¼
E €ug1€ug2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E €u2

g1

h i
E €u2

g2

h ir ; ð11:24Þ
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where E[ � ] denotes the ensemble mean. It is assumed in the P–W model that there
is no correlation between the 2DGM along the principal axes of ground motions
(i.e. E½€uz1€uz2� ¼ 0). Let corg denote the ratio of the auto PSD functions
S€Z2 €Z2
ðxÞ=S€Z1 €Z1

ðxÞ along the principal axes of ground motions. Substitution of €ug1

and €ug2 in Eq. (11.21) into Eq. (11.24) and some manipulations provide

q12ðcorg; hÞ ¼
ð1� corgÞ sin 2hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ corgÞ2 � ð1� corgÞ2 cos2 2h
q ð11:25Þ

Appendix 2: Horizontal Stiffness of Frame

Let u1 and /AB denote the horizontal displacement of the upper node in the frame
and the angle of member rotation of column, respectively. When the horizontal
force is denoted by P1, the horizontal stiffness of the plane frame can be expressed
as

k1 ¼ P1=u1 ¼ P1=ðH � /ABÞ ð11:26Þ

The extreme-fiber stress at the top of the column under one-directional hori-
zontal input may be expressed by

r1
BA tð Þ ¼ f6EIb=ðZcL1ÞghB ð11:27Þ

From the moment equilibrium around the node B, the angle of rotation of the
node B can be expressed by

hB ¼ 3/AB=½2þ 3ðIb=IcÞ � ðH=L1Þ� ð11:28Þ

Equation (11.28) and the equation of story equilibrium provide

/AB ¼
P1H2f2þ 3ðIb=IcÞ � ðH=L1Þg
12EIcf1þ 6ðIb=IcÞ � ðH=L1Þg

ð11:29Þ

Then the story stiffness can be expressed by

k1 ¼
12EIcf1þ 6ðIb=IcÞ � ðH=L1Þg

H3f2þ 3ðIb=IcÞ � ðH=L1Þg
ð11:30Þ
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Appendix 3: Stochastic Response 1

The auto-correlation function of r1
BAðtÞ can be expressed by

E r1
BAðt1Þr1

BAðt2Þ
� �

¼ A2
r1

Zt1

0

Zt2

0

c1ðs1Þc1ðs2Þg1ðt1 � s1Þg1ðt2 � s2ÞE w1ðs1Þw1ðs2Þ½ �½ �ds1ds2

ð11:31Þ

The auto-correlation function of w1(t) can be described in terms of the auto PSD
function S11(x) by

E w1ðs1Þw1ðs2Þ½ � ¼
Z1

�1

S11ðxÞeixðs1�s2Þdx ð11:32Þ

Equation (11.31) can then be modified to

E r1
BAðt1Þr1

BAðt2Þ
� �

¼
Z1

�1

Ar1
Rt1

0
c1ðs1Þg1ðt1�s1Þðcos xs1 + i sin xs1Þds1

	Ar1
Rt2

0
c1ðs2Þg1ðt2�s2Þðcos xs2 - i sin xs2Þds2

2
6664

3
7775S11ðxÞdx

ð11:33Þ

By substituting t1 = t2 = t, s1 = s2 = s in Eq. (11.33), the mean-squares

E½r1
BAðtÞ

2� can be derived as

E½r1
BAðtÞ

2� ¼ A2
r1

Z1

�1

fBcðt; xÞ2 þ Bsðt; xÞ2gS11ðxÞdx ð11:34Þ

where

Bcðt; xÞ �
Z t

0

c1ðsÞg1ðt � sÞ cos xsds ð11:35aÞ

Bsðt; xÞ �
Z t

0

c1ðsÞg1ðt � sÞ sin xsds ð11:35bÞ

On the other hand, the component in the direction X2 may be transformed into

E r2
BAðt1Þr2

BAðt2Þ
� �

¼ A2
r2

Zt1

0

Zt2

0

c2ðs1Þc2ðs2Þg2ðt1 � s1Þg2ðt2 � s2ÞE w2ðs1Þw2ðs2Þ½ �½ � ds1ds2

ð11:36Þ
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The auto-correlation function of w2(t) can be described in terms of the auto PSD
function S22(x) by

E w2ðs1Þw2ðs2Þ½ � ¼
Z1

�1

S22ðxÞeixðs1�s2Þdx ð11:37Þ

The mean-squares E½r2
BAðtÞ

2� can be derived as

E½r2
BAðtÞ

2� ¼ A2
r2

Z1

�1

fCcðt; xÞ2 þ Csðt; xÞ2gS22ðxÞdx; ð11:38Þ

where

Ccðt; xÞ �
Z t

0
c2ðsÞg2ðt � sÞ cos xsds ð11:39aÞ

Csðt; xÞ �
Z t

0

c2ðsÞg2ðt � sÞ sin xsds ð11:39bÞ

Appendix 4: Stochastic Response 2

The cross-correlation function of r1
BAðtÞ and r2

BAðtÞ can be expressed as

E r1
BAðt1Þr2

BAðt2Þ
� �

¼ Ar1Ar2

Zt1

0

Zt2

0

c1ðs1Þc2ðs2Þg1ðt1 � s1Þg2ðt2 � s2ÞE w1ðs1Þw2ðs2Þ½ �½ �ds1ds2

ð11:40Þ

The cross-correlation function of w1(t) and w2(t) can be described in terms of
the cross PSD function S12(x) by

E w1ðs1Þw2ðs2Þ½ � ¼
Z1

�1

S12ðxÞeixðs1�s2Þdx ð11:41Þ

Let us introduce the definition of the cross PSD function
S12ðxÞ ¼ C12ðxÞ þ iQ12ðxÞ.

Then Eq. (11.41) can be expressed by

E½w1ðs1Þw2ðs2Þ� ¼
Z1

�1

fC12ðxÞ þ iQ12ðxÞgeixðs1�s2Þdx ð11:42Þ

The cross-term can be modified into
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E r1
BAðtÞr2

BAðtÞ
� �

¼ Ar1Ar2

Z1

�1

Z t

0

c1ðsÞg1ðt � sÞðcos xsþ i sin xsÞds

	
Z t

0

c2ðsÞg2ðt � sÞðcos xs� i sin xsÞds C12ðxÞ þ iQ12ðxÞf g

2
66666664

3
77777775

dx

¼ Ar1Ar2

Z1

�1

Bcðt; xÞ þ iBsðt; xÞf g Ccðt; xÞ � iCsðt; xÞf g C12ðxÞ þ iQ12ðxÞf g½ � dx

ð11:43Þ

Another cross-correlation function E½r2
BAðt1Þr1

BAðt2Þ� may be described by

E½r2
BAðtÞr1

BAðtÞ�

¼ Ar2Ar1

Z1

�1

fCcðt; xÞ þ iCsðt; xÞgfBcðt; xÞ � iBsðt; xÞgfC12ðxÞ � iQ12ðxÞg½ � dx

ð11:44Þ

By combining both cross terms, the corresponding term can be expressed finally
by

E½r1
BAðtÞr2

BAðtÞ� þ E½r2
BAðtÞr1

BAðtÞ�

¼ 2Ar1Ar2Re
Z1

�1

fBcðt; xÞ þ iBsðt; xÞgfCcðt; xÞ � iCsðt; xÞgfC12ðxÞ þ iQ12ðxÞg½ � dx

2
4

3
5

¼ 2Ar1Ar2

Z1

�1

ff1ðt; xÞC12ðxÞ þ f2ðt; xÞQ12ðxÞgdx

ð11:45Þ
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Chapter 12
Optimal Placement of Visco-Elastic
Dampers and Supporting Members Under
Variable Critical Excitations

12.1 Introduction

The concept of performance-based design has recently been introduced and is well
accepted in the current structural design practice of buildings. In earthquake-prone
countries, the philosophy of earthquake-resistant design to resist ground shaking
with sufficient stiffness and strength of a building itself has also been accepted as a
relevant structural design concept for many years. On the other hand, a new
strategy based on the concept of active and passive structural control has been
introduced rather recently in order to provide structural designers with powerful
tools for performance-based design.

In the early period of the research in passive structural control, the installation
itself of supplemental dampers was the main objective. It appears natural that, after
extensive developments of various damper systems, another target was refocused
on the development of smart and effective use of such dampers.

Although the motivation was inspired and focused on smart and effective
installation of dampers, the research on optimal damper placement has been very
limited. The following studies may deal with this subject. Constantinou and Tad-
jbakhsh [1] derived the optimum damping coefficient for a damper placed on the first
story of a shear building subjected to horizontal ground motions. Gurgoze and
Muller [2] investigated a numerical optimal design method for a single viscous
damper in a prescribed linear multi degree-of-freedom system. Zhang and Soong [3]
presented a seismic design method for finding the optimal configuration of viscous
dampers for a building with specified story stiffnesses. This study has been cited
many times because the algorithm is very simple and extendable to further studies.
Hahn and Sathiavageeswaran [4] performed parametric analyses on the effects of
damper distribution on the earthquake response of buildings, and showed that, for a
building of uniform story stiffnesses; dampers should be added to the lower half
floors of the building. De Silva [5] presented a gradient algorithm for the optimal
design of discrete dampers in the vibration control of a class of flexible systems.

I. Takewaki et al., Improving the Earthquake Resilience of Buildings,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-4144-0_12,
� Springer-Verlag London 2013
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Tsuji and Nakamura [6] proposed an algorithm to find both the optimal story stiff-
ness distribution and the optimal damper distribution for a shear building model
subjected to the spectrum-compatible ground motions. A series of the optimal
designs for various lower bounds of damping coefficients has been searched.

In the second period of the research, Takewaki [7, 8] developed another optimal
design method for the smart damper placement based on the concepts of inverse
problem approaches and optimal criteria-based design approaches. He tackled a
problem of optimal damper placement by deriving the optimality criteria first and
then by developing an original incremental inverse problem approach. Subse-
quently, Takewaki et al. [9, 10] and Takewaki [11–13] devised another approach
based on the concept of optimal sensitivity. The optimal quantity of passive
dampers is obtained automatically together with the optimal placement through
this innovative method. The essence of these approaches is summarized in the
monograph [14].

After or parallel to these researches, many works have been developed around
the world [15–40]. Most of them investigated new optimal design methods of
supplemental dampers and proposed effective and useful methods. Some of the
works are using the gradient-based approach proposed by Takewaki [7, 12].

In this chapter, an efficient method is explained for finding the optimal design of
both dampers and their supporting members to minimize an objective function of a
linear multi-story structure, modeled by a shear building model, subjected to
resonant ground input. The objective function is expressed in terms of the sum of
the mean squares of interstory drifts. A frequency-dependent visco-elastic damper
including the supporting unit is taken into account. Due to the added stiffness by
the visco-elastic damper, a resonant variable critical excitation [41, 42] needs to be
updated in every phase of optimal damper placement. This difficulty does not exist
in using viscous dampers without stiffness. Two different models of the whole
damper unit are investigated. One is a detailed model called the ‘‘3N model’’
where the relative displacement between each component of damper unit can be
defined. The other is a simpler model called the ‘‘N model’’ where the whole
damper unit is converted to an equivalent frequency-dependent Kelvin–Voigt
model. Numerical analyses are conducted and explained to show the ability of
these different models and the validity of the proposed optimal design method.

12.2 Structural Model with Visco-Elastic Dampers
and their Supporting Members

The building model is assumed to be a shear building model. This model is a
fundamental model for multi-storied buildings and is known to be a good model
for buildings with rather small aspect ratio (ratio of building height to building
width). The characteristics of general visco-elastic dampers (VED) are dependent
on frequency, temperature, and strain amplitude. Because of these complex
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features of VED, an appropriate VED model is necessary to describe these
characteristics. In this chapter, consider an N-story planar building with frequency-
dependent acrylic VED and their supporting members. The dependence on tem-
perature and strain amplitude is ignored in this chapter. This acrylic VED is
assumed to be described by a four-element model as shown in Fig. 12.1. kMi, kVi,
cMi, and cVi represent the stiffnesses and damping coefficients of each spring and
dashpot in VED in the ith story. In order to take into account the stiffness of
supporting members kbi, the four-element VED model is connected in series with
another spring. This whole damper unit may be converted to two different models
(Fig. 12.2).

The first model is a detailed model, as shown in Fig. 12.2a allocating small
lumped masses between the components of spring and dashpot. Let Ui, ui1 and ui2

denote the ith story displacement relative to ground and the displacements of the
lumped masses a and b relative to ground. This VED model has three DOF in each
story and the structure with this VED model is called the ‘‘3N model’’. The
stiffness and damping matrices of this VED model is independent of frequency.
The components of stiffness and damping matrices Kfull, Cfull are linear combi-
nations of stiffness coefficients kMi, kVi, kbi, and damping coefficients cMi, cVi.
Because of complex connection of each structural component, the overall stiffness
matrix is not a simple one (not triple type matrix). For this reason, it may be
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Fig. 12.1 Structural model
with visco-elastic damper
including supporting member
(Fujita et al. [45] with
permission from Techno
Press)
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disadvantageous to utilize the 3N model for a large-scale structure and a simpler
VED model is needed.

The second VED model is called the ‘‘N model’’. In this VED model, the whole
damper unit is converted to an equivalent frequency-dependent Kelvin–Voigt
model. The equivalent stiffness and damping coefficients may be expressed by

KEiðx; Sdi ; kbiÞ ¼
ðA� Bx2ÞðC � Dx2Þ þ EFx2

ðC � Dx2Þ2 þ F2x2
ð12:1Þ

CEiðx; Sdi ; kbiÞ ¼
ðBF � DEÞx2 þ CE � AF

ðC � Dx2Þ2 þ F2x2
ð12:2Þ

where the coefficients A–F are expressed as

A ¼ kbi kMi kVi

B ¼ kbi cMi cVi

C ¼ kbi kMi þ kMi kVi

D ¼ cMi cVi

E ¼ kbi kVi cMi þ kMi cMi þ kMi cVið Þ
F ¼ cMiðkbi þ kViÞ þ kMiðcMi þ cViÞ

ð12:3a� fÞ

The detailed derivation of Eqs. (12.1) and (12.2) can be found in Appendix 1.
In this chapter, a detailed comparison is made between these two models

(3N model and N model) for optimal damper placement.

EiC
EiK

N model

3N model 

iU

iU
1iu

2iu

4 elements+
supporting member

Viscoelastic
damper 

Supporting member
b

a

Fig. 12.2 Damper models
simplified as ‘‘N model’’ and
‘‘3N model’’ (Fujita et al. [45]
with permission from Techno
Press)
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12.3 Critical Excitation for Variable Design

In the seismic design of important structures, time history response analyses are
often required for a set of recorded and/or simulated ground motions. However,
it is well recognized that the ground motions include various uncertainties with
various levels. In order to take into account these uncertainties, more reliable and
robust structural design methods are desired and being investigated. The critical
excitation method is adopted in this chapter. The critical excitation method was
initiated by Drenick [43] and many subsequent researches have been accumu-
lated [42].

Takewaki [41] introduced a concept of variable critical excitation which has
a variable resonant circular frequency close to the natural circular frequency of
the structure with varied stiffnesses of supplemental dampers. Based on this
concept, a problem is posed such that the optimal placement of visco-elastic
dampers is found together with the optimal stiffness distribution of supporting
members.

Let Sg(x) denotes the power spectral density (PSD) function of the input base
acceleration €ug tð Þ. The constraints on Sg xð Þ are the power, i.e., integration of the
PSD function in frequency domain, described by

Z1

�1

Sg xð Þdx� �S ð12:4Þ

and that of the intensity, i.e. maximum value of the PSD function, expressed by

sup Sg xð Þ��s ð12:5Þ
�S and �s are the limits on power and intensity, respectively. These parameters

characterizing the critical excitation are determined from the analysis of recorded
ground motions. A shape of the PSD function as a solution to this problem is
assumed to be a Dirac delta function (when �s is infinite) or a band-limited white
noise (when �s is finite). The validity of this assumption has been demonstrated by
Takewaki [42]. A band-limited white noise is explained in Fig. 12.3 where a
frequency bandwidth X and upper and lower bounds xU, xL of frequency are
obtained from given parameters �S and �s.

In the following sections, the optimal placement of visco-elastic dampers is
considered where the fundamental natural frequency of the structure with different
damper placements may vary. In this case, xU, xL given for the critical excitation
will change. This concept is the critical excitation for variable design [41, 42].
A similar concept has been developed in [12, 13]. However, it should be noted
that, in [12, 13], a viscous damper has been treated and the variable design does
not necessarily lead to the change of xU, xL.
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12.4 Stochastic Response Evaluation in Frequency Domain

12.4.1 3N Model

Consider a 3N model first. Let Mfull, r ¼ 1; . . .; 1f gT denote the (3N 9 3N) system
mass matrix of the 3N model and the influence coefficient vector, respectively. The
imaginary unit is denoted by i ¼

ffiffiffiffiffiffiffi
�1
p

. The equations of motion of the building
with passive dampers in frequency domain can be expressed by

ð�x2Mfull þ ixCfull þKfullÞUfull xð Þ ¼ �Mfullr €UgðxÞ ð12:6Þ

where Ufull(x) and €UgðxÞ are the Fourier transforms of the nodal displacements
and the Fourier transform of the horizontal input acceleration €ug tð Þ. For simplicity
of expression, Eq. (12.6) can be described as

AfullUfull xð Þ ¼ Bfull
€UgðxÞ ð12:7Þ

In Eq. (12.7) Afull and Bfull are defined by

Afull ¼ �x2Mfull þ ixCfull þKfull;Bfull ¼ �Mfullr ð12:8a; bÞ

Fourier transforms D xð Þ ¼ D1; . . .;DNf gT of the interstory drifts can be
derived by

D xð Þ ¼ TfullUfull xð Þ ð12:9Þ

where Tfull is a constant transformation matrix consisting of 1, -1, 0. By
substituting Eq. (12.7) into Eq. (12.9), D(x) can be rewritten as
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D xð Þ ¼ TfullA
�1
fullBfull

€Ug xð Þ ð12:10Þ

In Eq. (12.10), the transfer functions Hfull
D ðxÞ ¼ fHDiðxÞg of interstory drifts

can be defined and expressed as

Hfull
D xð Þ ¼ TfullA

�1
fullBfull ð12:11Þ

By using the resonant PSD function of the input, the objective function f3N as
the sum of the mean-squares response rfull

Di
of the ith interstory drift for the

3N model can be evaluated by

f3N ¼
XN

i¼1

rfull
Di

� �2

¼
XN

i¼1

Z1

�1

Hfull
D1þ3ði�1Þ

xð Þ
���

���2Sg xð Þdx

¼
XN

i¼1

Z1

�1

Hfull
D1þ3ði�1Þ

xð ÞHfull�

D1þ3ði�1Þ
xð ÞSg xð Þdx

ð12:12Þ

where Hfull
Di

xð Þ is the ith row vector of Hfull
D xð Þ and ()*denotes the complex

conjugate.
It is well recognized that the stiffness of supporting members should be strong

enough to assure the effectiveness of the damper unit in the role of an energy
dissipation system. For this reason, the stiffness kb ¼ kbif g ði ¼ 1; . . .;NÞ of each
supporting member is treated as another design variable and the axial force of each
supporting member is required not to exceed the upper limit (e.g., the yield force)
determined from its material properties. In the 3N model, the maximum value of
the axial force of the supporting member can be evaluated by

Nbi ¼ qkbi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ1

�1

Tb HfullðxÞ½ �2þ3ði�1Þ

���
���2SgðxÞdx

vuuut ð12:13Þ

In Eq. (12.13), q is the peak factor for the maximum axial force of the sup-
porting member. In order to evaluate the maximum axial force of the supporting
member, the peak factor has been introduced. Tb is a transformation matrix from
the nodal displacements to the relative displacements between both ends of sup-
porting members (see Appendix 2).
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12.4.2 N Model

Consider an N model next. Let A, B denote the matrix and vector for the N model
corresponding to Eq. (12.8a,b). The equations of motion for the N model in the
frequency domain may be expressed simply by

AUðxÞ ¼ B €UgðxÞ ð12:14Þ

The objective function can then be described by

fN ¼
XN

i¼1

Z1

�1

HdiðxÞj j2SgðxÞdx ð12:15Þ

where HdiðxÞ is the ith component of the interstory transfer function vector
TA-1B for the N model.

The axial force of the supporting member can be evaluated in the N model as
the internal force of the frequency-dependent Kelvin–Voigt model.

Nbi ¼ q
Z1

�1

HNbi xð Þj j2Sg xð Þdx

0
@

1
A

1=2

ð12:16Þ

where q and HNbi xð Þ are the peak factor and the transfer function, respectively, of
the axial force. The peak factor may be different from that for the 3N model in
Eq. (12.13). The transfer function HNbi xð Þ of the axial force can be expressed by

HNbi xð Þ ¼ KEi xð Þ þ ixCEi xð Þð ÞHdi xð Þ ð12:17Þ

where KEi xð Þ þ ixCEi xð Þ represents the complex stiffness of the equivalent
Kelvin–Voigt model of the damper unit including a supporting member.

12.5 Optimal Design Problem

The problem of optimal damper placement of passive dampers and optimal stiff-
ness selection of supporting members for the N-story shear building model sub-
jected to variable critical excitation is stated as: find the distribution of both VED
areas Sd ¼ Sd1 ; . . .; SdNf g and supporting member stiffnesses kb ¼ kb1 ; . . .; kbNf g
subject to design constraints explained later.

The natural frequency xc of the building can vary according to the change of
the damper unit (damper area and stiffness of supporting member). The property of
the critical excitation Sg(x) is therefore dependent on the design variables Sd and
kb. The objective function f defined in Eq. (12.15) can then be regarded as a
function of xc, Sd, and kb. In this case the objective function can be expressed
explicitly as f(xc, Sd, kb).
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The first constraint on damper capacity is

XN

i¼1

Sdi ¼ �W ð12:18Þ

In Eq. (12.18) �W is a specified total damper area. Additional constraints on the
added damper’s area in each story are described as

0� Sdi � �Sdi ði ¼ 1; . . .;NÞ ð12:19Þ

where �Sdi is the upper bound of the damper area in the ith story.
On the other hand, the constraint on axial force of the supporting member may

be described as

Nbi Sd; kbð Þ� �Pyi
kbið Þ ði ¼ 1; 2; . . .;NÞ ð12:20Þ

In Eq. (12.20), �Pyi
is the yield force of the supporting member and a function of

kbi .

12.6 Optimality Conditions

The generalized Lagrangian L for the optimal design problem can be defined as

LðSd; kb; k; l; c; jÞ

¼ f þ kð
XN

i¼1

Sdi � �WÞ þ
XN

i¼1

li 0� Sdið Þ þ
XN

i¼1

ci Sdi � �Sdið Þ þ
XN

i¼1

ji Nbi � �Pyi

� �

ð12:21Þ

In Eq. (12.21) k, l = {li} and j = {ji} are the Lagrange multipliers. The
principal optimality conditions for this problem without active upper and lower
bound conditions on damper area and axial force of supporting member may be
derived from the stationarity conditions of L(l = 0, c = 0, j = 0) with respect to
Sd and kb.

f;j þ k ¼ 0 for 0\Sdj\�Sdj ; Nbj\�Pyj
ðj ¼ 1; . . .;NÞ ð12:22Þ

f ;j ¼ 0 for Nbj\�Pyj
ðj ¼ 1; . . .;NÞ ð12:23Þ

The symbols ð Þ;j and ð Þ;j denote the partial differentiation with respect to
Sdj and kbj , respectively.

In the process of allocating VED to each story, the axial force of the supporting
member usually increases. When the constraint on axial force of the supporting
member is active (satisfied with equality), the optimality conditions can be derived
by the stationarity conditions of L(l = 0, c = 0) as follows:
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f;j þ kþ
Xqn

i¼q1

jiNbi;j ¼ 0 for 0\Sdj\�Sdjðj ¼ 1; . . .;NÞ;Nbi ¼ �Pyi
ði ¼ q1; . . .; qnÞ

ð12:24Þ

f ;j þ
Xqn

i¼q1

jiðN ;j
bi
� �P;jyi

Þ ¼ 0 for Nbj ¼ �Pyj
j ¼ q1; . . .; qnð Þ ð12:25Þ

where n and qi denote the number of stories having active constraint on axial force
of the supporting member and location (story number) of those stories, respec-
tively. In Eq. (12.25), it is assumed that the partial differentiation of the ith story
axial force Nbi with respect to other story supporting member’s stiffness kbj can be

neglected (N ;j
bi
¼ 0 ði 6¼ jÞ). This assumption may be reasonable. In addition, the

yield force of each supporting member �Pyj
is a function of only the stiffness kbj of

the supporting member at that story. As a result, Eq. (12.25) can be replaced by

f ;j þ jj N ;j
bj
� �P;jyj

� �
¼ 0 ð12:26Þ

It is noted that the Lagrange multiplier jj can be evaluated directly from
Eq. (12.26). This assumption facilitates the sensitivity expression of the objective
function.

When the other constraints on upper and lower bounds of damper’s area are
active (satisfied with equality), the optimality conditions can be described by

f;j þ k� 0 for Sdj ¼ 0 ð12:27Þ

f;j þ kþ
Xqn

i¼q1

jiNbi;j� 0 for Sdj ¼ �Sdj ;Nbi ¼ �Pyi
ði ¼ q1; . . .; qnÞ ð12:28Þ

If there is no VED where the axial force of supporting member attains its yield
force, Eq. (12.28) should be replaced by

f;j þ k� 0 for Sdj ¼ �Sdj ð12:29Þ

12.7 Algorithm for Optimal Damper Placement

12.7.1 Algorithm for Optimal Damper Placement
and Optimal Design of Supporting Members

A gradient-based algorithm for the solution is introduced and explained for the
problem of optimal damper placement. The flow chart of this solution algorithm is
shown in Fig. 12.4. Furthermore, an instructive figure including the variation of
design variables Sd and kb in the optimal procedure is shown in Fig. 12.5.
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The step-by-step solution procedure is summarized as follows:

Step 0 Design the structural model (stiffness of shear building model) without
supplemental VED.
Step 1 Calculate the fundamental natural circular frequency x0 of the 3N model.

Fig. 12.4 Flowchart for optimal placement of visco-elastic dampers and supporting members
(Fujita et al. [45] with permission from Techno Press)
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Step 2 Create the critical PSD function Sg(x) as a band-limited white noise which
has a dominant frequency (central frequency) close to x0.
Step 3 Evaluate the axial force Nbi of the supporting member and count the number
n that Nbi reaches its yield axial force Nyi

.
Step 4 Find the location of story where the absolute value of the first-order sen-
sitivity of the objective function f reaches the maximum value along the story.
Step 5 Count the number m of stories where the maximum value of the absolute
values of the first-order sensitivity of the objective function coincides.

Domain D
Domain C

Domain A

b1k

b 2k

0n =

Domain D

1n =

b1 y1N P=

Domain B

Domain A

b ik

d1S

d 2S

d 3S

d iS
1m = 2m = 3m =

(a)

(b)

0n =

1m =

1n =

2m =

2n =

3m =

b1k

b 2k

d1S

d 2S

d 3S

b ik

d iS

b1 y1N P=

b2 y2N P=

Fig. 12.5 Evolution of
design variables by proposed
optimization procedure.
a Case including domains A,
C, D. b Case including
domains A, B, D (Fujita et al.
[45] with permission from
Techno Press)
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This procedure can be classified into four domains, called A, B, C and D (see
Fig. 12.5), by the combination of m and n. In order to find the optimal increment of
Sd and kb, an appropriate combination of the optimality conditions should be
selected from Eqs. (12.22)–(12.29). The relationship between the optimality
conditions and each classified domain is shown in Table 12.1.

Step 6A The case of m = 1, n = 0 corresponds to the domain A. The increment
DW of VED is added only to the specific story attaining max

j
f;j
�� ��.

Step 6B The case of m� 2; n ¼ 0 corresponds to the domain B. When the multiple
equality optimality conditions, Eq. (12.22), are satisfied, the optimal damper
distribution Sdi has to be computed and updated to keep the coincidence of the
multiple maximum first-order sensitivities.
Step 6C The case of m = 1, n = 1 corresponds to the domain C. The stiffness kbi

of the supporting member is increased to prevent Nbi from exceeding the yield
axial force �Pyi.
Step 6D The case of m� 2; n� 1 corresponds to the domain D. All the optimality
conditions have to be satisfied. This corresponds to the conditions that the multiple
maximum first-order sensitivities coincide due to Eq. (12.22) and the corre-
sponding kbi is increased to satisfy Nbi ¼ �Pyi.
Step 7 Update design variables Sd and kb according to the optimality conditions
summarized in Table 12.1.
Step 8 Repeat Step 1 through Step 7 until the constraint Eq. (12.18), i.e., total area
of supplemental VED, is satisfied.

The initial model is the model without supplemental VED, i.e.
Sdi ¼ 0 ði ¼ 1; . . .;NÞ. An additional VED is distributed to each story via the
steepest direction search algorithm [14]. The objective function is defined by the
sum of the interstory drifts as shown in Eq. (12.12). Let DSd ¼ DSdif g and
DW denote the increment of VED area in each story and the increment of the sum of
VED area, respectively. When DW is given, we need to find the most effective
placement of VED to decrease the objective function. For this purpose, the first- and
second-order sensitivities of the objective function with respect to the design vari-

ables Sd and kb are necessary. Those sensitivities f,j, f,j (first-order), f;jk, f ;k;j and f ;jk

(second-order) can be derived by differentiating Eq. (12.15) by the design variables.
Detailed expressions of the first and second-order sensitivities are shown later.

Table 12.1 Optimality conditions in each domain (Fujita et al. [45] with permission from
Techno Press)

Domain A (m = 1, n = 0) p1 Story Other story

Eqs. (12.22), (12.23) Eq. (12.27)

Domain B
(m = 1, n = 1)

p1(=q1)story Other story
Eqs. (12.24), (12.25) Eq. (12.27)

Domain C (m� 2; n� 1) q1� qnstory pnþ1� pmstory Other story
Eqs. (12.24), (12.25) Eqs. (12.22), (12.23) Eq. (12.27)
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For clarification, the steps 6C and 6D are explained in more detail below.
(Step 6C) When m = 1, VED is added only to a single specific story. When Nbj

attains its upper bound �Pyj, kbj has to be increased so as to keep the increment DNbj

coinciding with D�Pyj. This condition requires

dNbj ¼ d�Pyj )
Xqn

i¼q1

Nbj;iDSdi

� �
þ N ;j

bjDkbj ¼ �P;jyjDkbj ðj ¼ q1; . . .; qnÞ ð12:30Þ

Herein, the assumption discussed below Eq. (12.25) is employed again. When
n = 1, the increment Dkbj of the stiffness of the supporting member can be derived
by

Dkbq1 ¼
�Nbq1 ; q1

N ;q1
bq1
� �P;q1

yq1

DSdq1 ð12:31Þ

(Step 6D) When m� 2, an appropriate distribution of VED to more than two
stories should be employed for a given value of DW. In this case, the number of
unknown variables is m ? n. From Eq. (12.30), n equations with respect to kb can
be derived. We, therefore, need more m equations.

Successive satisfaction of Eq. (12.24) requires that

Xpm

i¼p1

f;jiDSdiþ
Xqn

i¼q1

f ;i;j Dkbi þ
Xpm

i¼p1

Xqn

k¼q1

ðjkNbk;jÞ;iDSdi þ
Xqn

i¼q1

Xqn

k¼q1

ðjkNbk;jÞ;
i

Dkbi ¼ 0

j ¼ q1; . . .; qnð Þ
ð12:32Þ

jk in Eq. (12.32) can be derived from Eq. (12.26) as

jk ¼
�f ;k

N ;k
bk � �P;kyk

ðk ¼ q1; . . .; qnÞ ð12:33Þ

It can be mentioned that, after the multiple optimality conditions are updated, the
first-order sensitivities should continue to be satisfied. To achieve this, the following
equation can be derived by substituting Eq. (12.33) into Eq. (12.32).

Ppm

i¼p1

f;ji �
Pqn

k¼q1

f ;kNbk;j=ðN ;k
bk � �P;kykÞ

n o
;i

" #
DSdi

" #

þ
Pqn

i¼q1

f ;i;j �
Pqn

k¼q1

f ;kNbk;j=ðN ;k
bk � �P;kykÞ

n o;i" #
Dkbi

" #
¼ const: ðj ¼ q1; . . .; qnÞ

ð12:34Þ

In case of using Eq. (12.22) in place of Eq. (12.24), the following equations
should be employed.
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Xpm

i¼p1

f;jiDSdi þ
Xqn

i¼q1

f ;i;j Dkbi ¼ const: ðj ¼ pnþ1; . . .; pmÞ ð12:35Þ

After some manipulation in Eq. (12.34), we can derive m - 1 equations to
determine the optimal solution Sd and kb.

The last condition with respect to design variables Sd is described by

Xpm

i¼p1

DSdi ¼ dW ð12:36Þ

where pi(i = 1, ���, m) denotes the ith story among multiple indices to be
concerned.

From Eqs. (12.30), (12.34)–(12.36), we can derive the following set of the
simultaneous linear equations for unknown design variables fDSdp1 � � �DSdpm

Dkbq1 � � �Dkdqng.

a11 � � � a1m b11 � � � b1n

..

. . .
. ..

. ..
. . .

. ..
.

am�1;1 � � � am�1;m bm�1;1 � � � bm�1;n
Nbq1;p1 � � � Nbq1;pm N ;q1

bq1
� �P;q1

yq1
� � � N ;qn

bq1
� �P;qn

yq1

..

. . .
. ..

. ..
. . .

. ..
.

Nbqn;p1 � � � Nbqn;pm N ;q1
bqn
� �P;q1

yqn
� � � N ;qn

bqn
� �P;qn

yqn

1 � � � 1 0 � � � 0

2
6666666664

3
7777777775

DSdp1

..

.

DSdpm

Dkbq1

..

.

Dkbqn

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼

0
..
.

..

.

..

.

0
dW

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð12:37Þ

In Eq. (12.37)aij i ¼ 1; 2; . . .;m� 1; j ¼ 1; 2; . . .;mð Þ and bij i ¼ 1; 2; . . .;m� 1;ð
j ¼ 1; . . .; nÞ are described by

aij¼ f;q1pj� f;qiþ1pj

þ
Xqn

k¼q1

1

Nbk
;k��Pyk

;k

�f ;k;pj
ðNbk;q1�Nbk;qiÞ� f ;kðNbk;q1pj�Nbk;qipjÞ

þf ;kNbk
;k
;pj
ðNbk;q1� f ;kNbk;qiÞ=ðNbk

;k��Pyk
;kÞ

8<
:

9=
;

ði¼1;...;n�1 j¼1;...;mÞ
aij¼ f;pnpj� f;piþ1pj ði¼n;...;m�1 j¼1;...;mÞ

ð12:38a;bÞ

bij ¼ f ;qj
;p1
� f ;qj

;piþ1

þ
Xqn

k¼q1

1

Nbk
;k � �Pyk

;k

�f ;kqjðNbk;q1 � Nbk;qiþ1Þ � f ;kðNbk
;qj
;q1
� Nbk

;qj
;qiþ1
Þ

þN
;kqj

bk ðf ;kNbk;q1 � f ;kNbk;qiþ1Þ=ðNbk
;k � �Pyk

;kÞ

8<
:

9=
;

ði ¼ 1; . . .; n� 1 j ¼ 1; . . .; nÞ
bij ¼ f ;qj

;pn
� f ;qj

;piþ1
ði ¼ n; . . .;m� 1 j ¼ 1; . . .; nÞ

ð12:39a; bÞ
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12.7.2 Sensitivity with Respect to Damper Area

The first- and second-order sensitivities of the objective function with respect to
design variables Sd and kb are explained and derived here.

The PSD function of the variable critical excitation has the power �S only
between xL and xU (like a band-limited white). The objective function in
Eq. (12.15) can be replaced by

f Sd; kbð Þ ¼ �S
XN

i¼1

WdiðxU ; Sd; kbÞ �WdiðxL; Sd; kbÞf g ð12:40Þ

where Wdi is defined by

Wdiðx̂; Sd; kbÞ ¼
Zx̂

0

HdiðxÞH�di
ðxÞdx ð12:41Þ

Note that xL and xU are dependent on the fundamental natural circular fre-
quency x0 of the building with supplemental VED. For this reason, the objective
function in Eq. (12.40) can be regarded as an implicit function of x0. The first- and
second-order sensitivities with respect to Sd can then be derived by

f;j ¼ 2�S
XN

i¼1

x0ð Þ;jfHdiðxUÞ � HdiðxLÞg

þ
Z xU

xL

fHdiðxÞg;jH�di
ðxÞ þ HdiðxÞfH�di

ðxÞg;jdx

2
64

3
75 ð12:42Þ

f;jk ¼ 2�S
XN

i¼1

xcð Þ;jk HdiðxUÞ � HdiðxLÞf g

þ xcð Þ;j
x0ð Þ;k oHdiðxUÞ=ox0 � oHdiðxLÞ=ox0ð Þ

þ HdiðxUÞ;k � HdiðxLÞ;k

( )

þ xcð Þ;kfHdiðxUÞ;j � HdiðxLÞ;jg

þ
ZxU

xL

HdiðxÞ;jkH�di
ðxÞ þ HdiðxÞ;jH�di

ðxÞ;k
þ HdiðxÞ;kH�di

ðxÞ;j þ HdiðxÞfH�di
ðxÞg;jk

" #
dx

2
6666666666664

3
7777777777775

ð12:43Þ

where the first and second sensitivities HdiðxÞ;j and HdiðxÞ;jk are derived as
follows.

HdiðxÞ;j ¼ Ti A�1
� �

;jB ð12:44Þ

Hdi
ðxÞ;jk ¼ Ti A�1

� �
;jkB ð12:45Þ

In Eq. (12.44), the first derivative of A-1 with respect to Sd can be computed by
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A�1
;j ¼ �A�1A;jA

�1

¼ �A�1 K;j þ ixC;j

� �
A�1

ð12:46Þ

Furthermore x0ð Þ;j and x0ð Þ;jk are evaluated by using the method of Fox and
Kapoor [44].

Referring to Eqs. (12.1) and (12.2), the first derivative of K and C with respect
to Sdj can be computed by the first derivative of the equivalent stiffness KEi and the
damping coefficient CEi described by

KEiðx; Sdi ; kbiÞ;j ¼ k2
bi

S2
di

c1c2 þ 2c1c3kbi Sdi þ c2c3k2
bi

ðc1S2
di
þ 2c2kbi Sdi þ c3k2

bi
Þ2

ð12:47Þ

CEiðx; Sdi ; kbiÞ;j ¼ k2
bi

c4ðc1S2
di
þ c3k2

bi
Þ

ðc1S2
di
þ 2c2kbi Sdi þ c3k2

bi
Þ2

ð12:48Þ

Equations (12.1) and (12.2) have been rewritten in terms of the parameters
kdM; cdM; kdV; cdV without {Sdj}. The coefficients c1 * c4 are defined as follows:

e1 ¼ kdMkdV � cdMcdVx2

e2 ¼ kdMcdM þ kdVcdM þ kdMcdV

c1 ¼ e2
1 þ e2

2x
2

c2 ¼ kdMe1 þ cdMe2x
2

c3 ¼ k2
dM þ c2

dMx2

c4 ¼ �cdMe1 þ kdMe2

ð12:49a� fÞ

On the other hand, in Eq. (12.45), the second derivative of A-1 with respect to
Sd can be computed by differentiating Eq. (12.46) with respect to Sdk .

A�1
;jk ¼ A�1 A;jA

�1A;k þ A;kA�1A;j

� �
A�1 � A�1A;jkA�1 ð12:50Þ

In Eq. (12.50), it should be remarked that in case of using viscous damper or
visco-elastic damper in a ‘‘3N model’’, A;jk ¼ 0. This is because the stiffness and
damping matrices consist of a linear combination of damper damping coefficients
and stiffnesses, i.e., all the components of A;j are constant values. On the other
hand, in the case of using the frequency-dependent ‘‘N model’’, A;jk 6¼ 0 ðj ¼ kÞ
because the first derivative of A contains Eqs. (12.47) and (12.48) which are also
the functions of design variables Sd and kb.

The second-order sensitivities of the equivalent stiffness and damping coeffi-
cient with respect to damper area are shown in Appendix 3.
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12.7.3 Sensitivity With Respect to Stiffness
of Supporting Member

The sensitivity of the objective function with respect to kb is also needed to
determine the optimal solution for the stiffness of supporting member. These
sensitivities can be derived in almost the same form as Eqs. (12.42) and (12.43).

f ;j ¼ 2�S
XN

i¼1

ZxU

xL

HdiðxÞ
;jH�di
ðxÞdxþ

ZxU

xL

HdiðxÞH�di
ðxÞ;jdx

2
4

3
5 ð12:51Þ

f ;jk ¼ 2�S
XN

i¼1

ZxU

xL

HdiðxÞ
;jkH�di

ðxÞdxþ
ZxU

xL

HdiðxÞ
;jH�di
ðxÞ;kdx

þ
ZxU

xL

HdiðxÞ
;kH�di
ðxÞ;jdxþ

ZxU

xL

HdiðxÞfH�di
ðxÞg;jkdx

2
66666664

3
77777775
ð12:52Þ

In Eqs. (12.51), (12.52) HdiðxÞ
;j ¼ Ti A�1

� �;j
B and Hdi

ðxÞ;jk ¼ Ti A�1
� �;jk

B.
The first derivative of A-1 with respect to kb can be computed by replacing K,j and

C,j with K;j and C;j whose components consist of K ;j
Ei

and C;j
Ei

described by

KEiðx; Sdi ; kbiÞ
;j ¼ S2

di

S2
di

c2
1 þ 2c1c2kbi Sdi þ ð2c2

2 � c1c3Þk2
bi

ðc1S2
di
þ 2c2kbi Sdi þ c3k2

bi
Þ2

ð12:53Þ

CEiðx; Sdi ; kbiÞ
;j ¼

2S2
di

kbi c4ðkbi c2 þ c1SdiÞ
ðc1S2

di
þ 2c2kbi Sdi þ c3k2

bi
Þ2

ð12:54Þ

Note that, the parameters KEi and CEi need to be evaluated only for j = i. In the
same way, the second derivative of A-1 with respect to kb can be evaluated from
A;j, A;jk and A�1.

The second-order sensitivities of the equivalent stiffness and damping coeffi-
cient with respect to the stiffness of the supporting members are shown in
Appendix 3.

12.7.4 Sensitivities of Axial Force of Supporting Member

The sensitivity of the axial force Nbi of the supporting member with respect to Sd

can be derived as follows by differentiating Eq. (12.16).
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Nbi;j ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�S

RxU

xL

HNbi xð Þj j2dx

vuuut
ZxU

xL

Re HNbi xð Þ;jH�Nbi
xð Þ

h i
dx ð12:55Þ

As defined before Eq. (12.17), HNbi xð Þ is obtained from the complex stiffness
of the equivalent ‘‘N model’’. In Eq. (12.55), the sensitivity of the axial force Nbi

of the supporting member with respect to Sd, i.e., ðHNbi xð ÞÞ;j, can be derived from
Eq. (12.17).

HNbiðxÞð Þ; j¼
K̂Ei HdiðxÞ;j þ K̂Ei;jHdiðxÞ ði ¼ jÞ
K̂Ei HdiðxÞ;j ði 6¼ jÞ

(
ð12:56Þ

In Eq. (12.56) K̂Ei is a complex stiffness of the equivalent whole damper unit as
an ‘‘N model ‘‘, defined by K̂Ei ¼ KEi þ iCEi .

The sensitivity of Nbi with respect to kb can be derived by replacing HNbi xð Þ;j in

Eq. (12.55) with HNbi xð Þ;j computed by substituting K̂ ;j
Ei

, i.e. K ;j
Ei
þ iC;j

Ei
, into

Eq. (12.56) instead of K̂Ei;j.

12.8 Numerical Examples

Numerical examples are presented for 3-story and 10-story building models to
demonstrate the usefulness and validity of the explained optimal design method.
In this chapter, two models, i.e., ‘‘3N model’’ and ‘‘N model’’ are proposed.
Detailed comparison between these two different models is shown to demonstrate
the validity of the explained models and method.

The structural parameters are shown in Table 12.2. The floor masses and
frame story stiffnesses have the same values in all the stories. The structural
damping ratio of the main frame is assumed to be 0.02 (Cf is calculated as
stiffness-proportional damping). The properties of each component in four ele-
ments of VED per unit VED area (thickness is fixed at 10 mm and area is 1 m2)
are shown in Table 12.3. The ratio rs ¼ kbi=kfi of the stiffness kbi of the addi-
tional damper to the stiffness kfi of the building frame is given from 0.5 to 3.0.
The initial stiffness of the supporting member is given by selecting an appro-
priate ratio rs. Total damper areas �W in each example are given by �W ¼ 51:2 m2

for the 3-story building model and �W ¼ 400 m2 for the 10-story building model,
respectively.

The critical PSD function of the ground motion defined as a variable critical
excitation is computed to have the central circular frequency resonant to the
fundamental natural circular frequency of the building model. In the process of
optimal damper placement where the stiffness and damping matrices are updated
according to the quantity of additional VED, eigenvalue analysis has to be
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executed in every step. It should be remarked that the 3N model, whose compo-
nents are independent of frequency, facilitates the computation of eigenvalues.

Figure 12.6a, b shows the variation of the first-order sensitivities of the
objective function with respect to Sd = {Sd1, ���, SdN} for (a) 3-story and (b) 10-
story models with rs. = 1.0. In the initial phase of the optimal solution which
corresponds to the domain A, the maximum absolute value of the first derivative is
attained only in the first story, i.e. f;1

�� ��. It is shown in Fig. 12.6 that, after the
multiple coincidence of the maximum absolute value of the first derivatives in
domain B, they continue to be satisfied in the optimal design process. This fact
indicates a continuing satisfaction of the stationarity conditions of Lagrangian as
the optimality conditions.

Figure 12.7a, b illustrates the distribution of the optimal areas Sd of VED with
respect to the varied total damper area and a variation of the lowest mode damping
ratio. It can be observed that the passive dampers are placed optimally in the
building model according to the variation of the first derivative of the objective
function shown in Fig. 12.6. Figure 12.7a presents the comparison of this result by
using different damper models, i.e., ‘‘N model’’ and ‘‘3N model’’. From this figure,
it can be observed that almost the same result can be obtained by using either of the
two damper models. This supports the validity of the explained two VED models.

Figure 12.8a, b shows the variation of the stiffness and axial force of supporting
members in the process of optimal damper placement. The initial yield force is
also indicated in Fig. 12.8a. It can be observed that, after the axial force Nbi

coincides with the initial yield force, the stiffnesses kb of supporting members are
updated according to the stationarity conditions.

Figure 12.9a, b presents the variation of the objective functions for the fol-
lowing three distributions. Case (1) optimal damper placement based on the
explained method, Case (2) uniform placement, Case (3) first-story concentrated
placement. It can be observed that the result of Case 1 perfectly coincides with that
of Case 3 in the early stage of the optimization procedure. However, as the total
damper area increases, the objective function is decreased most effectively by the
optimal placement.

Table 12.2 Structural parameters of main frame (Fujita et al. [45] with permission from Techno
Press)

3-Story model 10-Story model

Floor mass (kg) 512 9 103 1024 9 103

Story stiffness (N/mm) 6.02 9 108 1.20 9 109

Natural circular frequency without damper (rad/s) 15.268 5.125
Natural period without damper (s) 0.411 1.225

Table 12.3 Properties of acrylic visco-elastic damper per unit area (Fujita et al. [45] with
permission from Techno Press)

KdV 2756.3 (N/m3) KdM 5120.5 (N/m3)
CdV 221.7 (Ns/m3) CdM 254.8 (Ns/m3)
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12.9 Summary

The result explained in this chapter may be summarized as follows:

(1) An optimal placement and sizing method of visco-elastic dampers and sup-
porting members has been explained. The critical earthquake ground motion is
defined as the resonant input to the structure with visco-elastic dampers. As
the size or quantity of visco-elastic dampers becomes large, the force acting on
the supporting member increases and an appropriate cross-sectional size
(stiffness and strength) of the supporting member is required. Simultaneous
design of visco-elastic dampers and supporting members is a new aspect
which has never been considered in the literature.

(2) The sum of the mean-squares of interstory drifts is taken as an objective
function. The total quantity of visco-elastic dampers has been increased while
the constraint on the member force of the supporting member is satisfied.

(3) Two models have been introduced and used in the modeling of the visco-
elastic dampers. The first model is the four-element model of visco-elastic
dampers including a supporting member. Two masses have been considered in
this model. Then 3N degrees-of-freedom model for structural analysis has
been employed in the first model. The second model is an equivalent Kelvin–
Voigt model of visco-elastic dampers with a supporting member. There is no
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Fig. 12.6 First-order
sensitivity of sum of mean-
squares interstory drifts with
respect to VED area. a 3-
story model. b 10-story
model (Fujita et al. [45] with
permission from Techno
Press)

12.9 Summary 269



additional mass in the model of the equivalent Kelvin–Voigt model. Then an
N degrees-of-freedom model for structural analysis has been employed in the
second model.

(4) A gradient-based evolutionary optimization technique using a Lagrange multi-
plier method was explained. Simultaneous satisfaction of the optimality criterion
on placement of visco-elastic dampers and the constraint on forces of the sup-
porting members has been shown to be guaranteed through numerical examples.

Appendix 1: Equivalent Stiffness and Damping
Coefficient of Damper Unit Including Supporting
Member in N-Model (Eqs. (12.1) and (12.2))

Let dFi, d1i, d2i denote the interstory drift, the internal nodal displacement in the
Maxwell model in Fig. 12.2 relative to the (i-1)th floor and the displacement of
the node between the damper unit and the supporting member in the i-th story, i.e.
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dFi ¼ uFi � uFði�1Þ, d1i ¼ u1i � uFði�1Þ and d2i ¼ u2i � uFði�1Þ. The equations of
dynamic equilibrium of the 3N model can be derived as

kbid2i ¼ pi tð Þ ð12:57Þ

kMiðd1i � d2iÞ þ kViðdFi � d2iÞ þ cVið _dFi � _d2iÞ � kbid2i ¼ 0 ð12:58Þ

cMið _dFi � _d1iÞ � kMiðd1i � d2iÞ ¼ 0 ð12:59Þ

In Eq. (12.57) pi tð Þ denotes the internal force of the supporting member in the i-
th story. Let DFiðxÞ;D1iðxÞ;D2iðxÞ;PiðxÞ denote the Fourier transforms of dFiðtÞ,
d1iðtÞ, d2iðtÞand piðtÞ. From Eq. (12.57), D2iðxÞ can be described by PiðxÞ=kbi. By
substituting this equation into Eq. (12.59) expressed in frequency domain, we can
obtain D1iðxÞ as

D1iðxÞ ¼
ixkbicMiDFiðxÞ þ kMiPiðxÞ

kbi ixcMi þ kMið Þ ð12:60Þ
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Substitution of these equations for D1iðxÞ and D2iðxÞ into Eq. (12.58) in fre-
quency domain leads to the following relationship between DFiðxÞ and Pi xð Þ.

ixkbikMicMi

kMi þ ixcMi
þ kbikVi þ ixkbicVi

� 	
DFi xð Þ

¼ kbi þ kMi þ kVi þ ixcVið Þ � k2
Mi

kMi þ ixcMi


 �
Pi xð Þ

ð12:61Þ

After some manipulations, Eq. (12.61) can be rewritten as

kbikVik2
Miþx2kbic2

Mi kViþ kMið Þþ ixkbi k2
Mi cViþ cMið Þþx2cVic2

Mi

� 

ðkbiþ kViÞk2

Miþðkbiþ kMiþ kViÞx2c2
Mið Þþ ix k2

Mi cViþ cMið Þþx2cVic2
Mi

� 
DFi xð Þ

¼ Pi xð Þ
ð12:62Þ

On the other hand, the force–displacement relation of the general Kelvin–Voigt
model can be given by

KEi þ ixCEið ÞDFi xð Þ ¼ Pi xð Þ ð12:63Þ
where KEi and CEi are the equivalent stiffness and the damping coefficient of the
frequency-dependent Kelvin–Voigt model in the i-th story defined by Eqs. (12.1)
and (12.2). By comparing Eqs. (12.62) and (12.63), Eqs. (12.1) and (12.2) can be
derived.
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Appendix 2: Transformation Matrix from the Nodal
Displacements to the Relative Displacements Between
both Ends of Supporting Members

For evaluating the axial force of the supporting member, the relative displacements
ub between both ends of supporting members are expressed in terms of nodal
displacements ufull by

ub ¼ Tbufull ð12:64Þ

In Eq. (12.64) Tb denotes the transformation matrix. In the case of the 3-story
building model, Tb can be given by

Tb ¼

0 0 0
0 1 0 ½0� ½0�
0 0 0
0 0 0 0 0 0
�1 0 0 0 1 0 ½0�
0 0 0 0 0 0

0 0 0 0 0 0
½0� �1 0 0 0 1 0

0 0 0 0 0 0

2
66666666664

3
77777777775

ð12:65Þ

Appendix 3: Second-Order Sensitivities
of the Equivalent Stiffness and Damping Coefficient

The second-order sensitivities of the equivalent stiffness and damping coefficient
for the N model can be derived as follows.

KEi;jk ¼ �2k2
bi

c2
1c2S3

di þ 3c2
1c3kbiS2

di þ 3c1c2c3k2
biSdi þ c3ð2c2

2 � c1c3Þk3
bi

� �
ðc1S2

di þ 2c2kbiSdi þ c3k2
biÞ

3

K ;jk
Ei ¼ S2

di=k2
bi

� �
KEi;jk

K ;k
Ei;j
¼ 2kbiSdi

c2
1c2S3

di þ 3c2
1c3kbiS2

di þ 3c1c2c3k2
biSbi þ 2c2

2c3 � c1c2
2

� �
k2

biSdi

ðc1S2
di þ 2c2kbiSdi þ c3k2

biÞ
3

CEi;jk ¼ �2k2
bic5

c1c3k2
biSdi þ 2c2c3k3

bi þ c2
1S3

di

ðc1S2
di þ 2c2kbiSdi þ c3k2

biÞ
3

C;jk
Ei ¼ �2S2

dic5
3c1c3k2

biSdi þ 2c2c3k3
bi � c2

1S3
di

ðc1S2
di þ 2c2kbiSdi þ c3k2

biÞ
3

C;k
Ei;j ¼ �2kbiSdic5

2c2c3k3
bi þ c1c3k2

biSdi þ c2
1S3

di

ðc1S2
di þ 2c2kbiSdi þ c3k2

biÞ
3 ð12:66Þ

where c1, c2, c3 are given by Eq. (12.49c, d, e).
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Chapter 13
Earthquake Response Bound Analysis
of Uncertain Passively Controlled
Buildings for Robustness Evaluation

13.1 Introduction

The structural control using passive dampers has a successful history in the field of
mechanical and aerospace engineering. This may result from the characteristic that
these fields usually deal with predictable external loading and environment with
little uncertainty. On the other hand, in the field of civil engineering, it has a
different situation and history [1–11]. Building and civil structures are often
subjected to severe earthquake ground motions, wind disturbances, and other
external loading with large uncertainties [12]. It is therefore inevitable to take into
account of these uncertainties in their structural design and application to actual
structures.

While the structural control is a promising and smart tool for sustainable
building design [13, 14], it is also true that a lot of uncertainties should be
quantified for reliable implementation of these techniques [15]. The sustainable
building design under uncertain structural-parameter environment may be one of
the most challenging issues in the building structural engineering. Even if all the
design constraints are satisfied at the initial construction stage, some responses to
external loadings (earthquakes, strong winds, etc.) during service life may violate
such constraints due to various factors resulting from randomness, material dete-
rioration, temperature dependence, etc. To overcome such difficulty, response
evaluation methods for uncertain structural-parameter environments are desired.
By predicting the response variability accurately, the elongation of service life of
buildings may be possible.

In this chapter, it is shown that interval analysis (see, for example, [16–23]) in
terms of uncertain structural parameters is an effective tool for evaluating the
sustainability of buildings in earthquake-prone countries. All the combinations of
uncertain structural parameters become huge numbers and this difficulty can be
overcome by introducing the sensitivity or Taylor series expansion analysis.

I. Takewaki et al., Improving the Earthquake Resilience of Buildings,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-4144-0_13,
� Springer-Verlag London 2013
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In order to demonstrate the usefulness and reliability of the explained method
[24], a shear building model including passive viscous dampers with supporting
members is subjected to a set of scaled earthquake ground motions and the time-
history response analysis is used for simulating the earthquake response. The
critical combination of interval parameters is found by introducing an assumption
of ‘inclusion monotonic’ and the sensitivity information by Taylor series expan-
sion. It is demonstrated that the proposed method is actually useful for the
development of the concept of sustainable building design under uncertain
structural-parameter environments.

The design earthquake ground motions change from time to time when a new
class of ground motions (e.g. long-period ground motions due to surface waves) is
observed or a new type of damage appears during severe earthquakes. Because the
explained method can easily add these earthquake ground motions, the flexibility
of the explained method is expected to be high.

13.2 Concept of Sustainable Building Design Under
Uncertain Structural-Parameter Environment

The concept of sustainable building design under uncertain structural-parameter
environments is illustrated in Fig. 13.1 [24], where f , E and cd denote a structural
response as the objective function, Young’s modulus and a damping coefficient,
respectively. The member stiffness and strength of buildings are uncertain due to
various factors resulting from randomness, material deterioration, temperature
dependence, etc. The damping coefficients of structural members and/or passive
dampers may also be uncertain [15]. The time variation of Young’s modulus and
damping coefficients are shown in Fig. 13.1 as representative examples. Karbhari
and Lee [25] discusses the service life estimation and extension of civil engi-
neering structures from the viewpoints of material deterioration. These member
and/or damper uncertainties lead to response variability of buildings under
earthquake ground motions. Efficient and reliable methods are desired for pre-
dicting the upper bound of such building response.

13.3 Interval Analysis Methods for Uncertain
Structural Parameters

Figure 13.2 shows the relationship between the variation of the objective function
f (response quantity) and a structural parameter combination for the cases of
‘inclusion monotonic’ and ‘inclusion non-monotonic’. In the case of inclusion
monotonic as shown in Fig. 13.2a where �Xi;Xi ði ¼ 1; 2Þ denote the upper and
lower bounds of uncertain parameters, the maximum and minimum points occur at
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the top left and bottom right corner points, respectively, and the check only for the
corner points is sufficient. On the other hand, in the case of inclusion non-
monotonic as shown in Fig. 13.2b where X̂u

i , X̂l
i ði ¼ 1; 2Þ denote the uncertain

parameters which maximize or minimize the objective function, the maximum and
minimum points can occur in the inner region of uncertain parameters.

Based on the assumption of ‘‘inclusion monotonic’’, we can derive the upper
and lower bounds of f by iterative calculations with all end-point combinations
(2NX for NX interval parameters), i.e. the upper and lower bounds of interval
parameters. However, when the number NX of interval parameters is extremely
large, this primitive approach needs much computational time caused by a large
combination number of interval parameters.

From the practical point of view, a more efficient methodology is desired which
can estimate the upper and lower bounds of the objective function without a hard
computational task. The interval analysis methodology using the approximation
of Taylor series expansion has been developed so far [17, 18]. The formulation of
Taylor series expansion in the interval analysis and the achievements of second-order
Taylor series expansion proposed in [18] are explained in this section.
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13.3.1 Interval Analysis Method Based on Approximation
of First-Order Taylor Series Expansion

Let X ¼ fXig;Xc ¼ fXc
i g;DX ¼ fDXig denote the interval parameters, nominal

parameter values, and half intervals. Let ð ÞI and ½ a ; b � denote the definition of
an interval parameter, where a and b are the lower and upper bounds of the interval
parameter, respectively. Then XI

i ¼ ½Xc
i � DXi;Xc

i þ DXi�.
The upper and lower bounds �f ; f of the objective function by the interval

analysis method using first-order Taylor series expansion can be expressed as

�f ffi f Xcð Þ þ
XNX

i¼1

f;XiDXi

�� �� ð13:1Þ

f ffi f Xcð Þ �
XNX

i¼1

f;XiDXi

�� �� ð13:2Þ

where ð Þ;Xi
and NX denote differentiation of Xð Þ=oXijXi¼Xc

i
of the objective

function at the nominal value and the number of uncertain parameters, respec-
tively. Therefore f;Xi corresponds to a gradient of the objective function f with
respect to ith interval parameter Xi for the nominal model.
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Fig. 13.2 Relationship between the variation of objective function and the structural parameter
combination. a Example of ‘inclusion monotonic’. b Example of ‘inclusion non-monotonic’ [24]
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13.3.2 Interval Analysis Method Based on Approximation
of Second-Order Taylor Series Expansion

Although an approximation using first-order Taylor series expansion can be
achieved without hard task, the result by this approximation may include a large
error especially for a wide range of interval parameters. So as to enhance the
accuracy of the interval analysis method, an approximation using second-order
Taylor series expansion has been developed in [18]. An approximate objective
function f � using second-order Taylor series expansion around the nominal model
can be described as

f � Xð Þ ¼ f Xcð Þ þ
XNX

i¼1

f;Xi Xi � Xc
i

� �
þ 1

2

XNX

i¼1

XNX

j¼1

f;XiXj Xi � Xc
i

� �
Xj � Xc

j

� �
ð13:3Þ

where ð Þ;XiXj
denotes the second-order differentiation of the objective function at

the nominal value. Therefore, f;XiXj corresponds to the Hessian matrix of the
objective function f with respect to the ith and jth interval parameters Xi, Xj for the
nominal model. Based on the general interval analysis method, the upper and
lower bounds of Eq. (13.3) can be evaluated by calculating all the end point
combinations of interval parameters and judging whether the objective function is
the maximum or minimum value. The number of calculations in this approach is
also 2NX which is the same number of calculation as that in the primitive interval
analysis. However, the computational load for evaluating the objective function for
each combination of interval parameters can be greatly reduced by using sensi-
tivities around the nominal model.

By using the approximation of Taylor series expansion, iterative response
analyses can be avoided. However, the computation of full elements of the Hessian
matrix requires much time when NX is large, especially for numerical sensitivity
analysis, i.e. the finite difference analysis using gradient vectors. For this reason, a
more simple approach has been proposed in [18] where the non-diagonal elements
of the Hessian matrix are neglected. An approximate objective function f �� using
second-order Taylor series expansion with only diagonal elements can be rewritten
from Eq. (13.3) as

f �� Xð Þ ¼ f Xcð Þ þ
XNX

i¼1

f;Xi Xi � Xc
i

� �
þ 1

2
f;XiXi Xi � Xc

i

� �2
� �

ð13:4Þ

From Eq. (13.4), we can evaluate the increment of the objective function by
using first and second-order Taylor series expansion approximation as the sum of
the increments of the objective function in the 1D domain. If we regard all interval
parameters except Xi as nominal values in the incremental term in Eq. (13.4), the
perturbation Dfi Xð Þ of the objective function by the variation of Xi can be
described as
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Dfi Xc
1; � � � ;Xc

i�1;Xi;X
c
iþ1; � � � ;Xc

NX

� �
¼ f;Xi Xi � Xc

i

� �
þ 1

2
f;XiXi Xi � Xc

i

� �2 ð13:5Þ

In Eq. (13.5), the interval extension Df I
i of the 1D perturbation can be derived

as

Df I
i ¼

min Dfi Xc
1; � � � ; �Xi; � � � ;Xc

NX

� �
;Dfi Xc

1; � � � ;Xi; � � � ;Xc
NX

� �h i
;

max Dfi Xc
1; � � � ; �Xi; � � � ;Xc

NX

� �
;Dfi Xc

1; � � � ;Xi; � � � ;Xc
NX

� �h i
2
64

3
75 ð13:6Þ

Finally, substituting Df I
i ði ¼ 1; � � � ;NXÞ into Eq. (13.4), the interval extension

of the approximate objective function f �� can be obtained as

f XI
� �

� f Xcð Þ þ
XNX

i¼1

Dfi XI
i

� �
; f Xcð Þ þ

XNX

i¼1

Dfi XI
i

� �" #
ð13:7Þ

It is remarkable that the number of calculations in Eq. (13.7) is reduced to
2� NX compared with 2NX in Eq. (13.3). For this reason, the computational load
can be dramatically reduced by neglecting non-diagonal elements of the Hessian
matrix. Figure 13.3 shows the concept of the interval analysis method using Taylor
series approximation.
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Fig. 13.3 Concept of interval analysis method using Taylor series approximation [24]
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13.4 Advanced Interval Analysis Method Based
on the Information of the Approximation of Taylor
Series Expansion

When the degree of uncertainty of interval parameters is large, the result of the
interval analysis applying the approximation of Taylor series expansion of the
objective function may include numerical errors. On the other hand, a reliable
result can be derived by reanalyzing the objective function with the obtained
structural parameters. In this section, the advanced interval analysis method is
presented using reanalysis based on the information of interval parameter set
derived by the Taylor series approximation.

13.4.1 Reanalysis Approach Based on the Structural Parameter
Set Derived by the Taylor Series Approximation

From Eqs. (13.5) and (13.6), the combination of the end points X̂ of the interval
parameters X which maximizes the perturbation Dfi Xc

1; � � � ;Xc
i�1;

�
Xi;Xc

iþ1; � � � ;Xc
NX
Þ

ði ¼ 1; � � � ;NXÞ of the objective function can be derived as

X̂ ¼ Xi so as to max Dfi Xið Þ½ � ; i ¼ 1; � � � ;NXf g ð13:8Þ

The upper bound of the objective function can be evaluated using a reliable
response analysis method (time-history response analysis) for a regenerated
structural model with the critical combination of interval parameters set
[Eq. (13.8)]. It should be mentioned that the objective function evaluated by the
time-history response analysis method will not exceed the feasible domain of the
objective function. The flowchart of this proposed methodology is as follows.

Step 1 Calculate the gradient vector f;Xi ði ¼ 1; � � � ;NXÞ and diagonal element of
Hessian matrix f;XiXi ði ¼ 1; � � � ;NXÞ of the objective function for the nominal
model.
Step 2 Evaluate Eq. (13.6) for the upper and lower bounds of the interval
parameter Xi.
Step 3 Derive the target end point combinations X̂ of interval parameters corre-
sponding to the upper bound of Eq. (13.6).
Step 4 Evaluate the objective function by the time-history response analysis for
given structural parameters X̂.
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13.4.2 Varied Evaluation Point Method Considering
the Influence of Initial Value Dependency

In order to obtain the reliable result of the response variability by using the
proposed advanced interval analysis methodology in the previous section, it is
important that the assumption of ‘‘inclusion monotonic’’ is satisfied for the
objective function. If the objective function, e.g. the maximum interstory drift of a
damped structure subjected to a ground motion as shown in the numerical
examples (Sect. 13.5), has a property of non-monotonic variation for the variation
of the interval parameters, the interval analysis method using the first and second-
order sensitivities at the nominal model will not provide reliable response vari-
ability. To overcome this difficulty, an additional numerical procedure should be
introduced to search for the evaluation point set for the evaluation of first and
second-order sensitivities. In this chapter, it is shown in the later numerical
example that the evaluation point selected randomly for the combination of the
interval parameters is effective. This is called the varied evaluation point (VEP)
method. Figure 13.4 shows the concept of the VEP method.

13.4.3 Search of the Exact Solution

In numerical examples, an approximate candidate of the exact solution of the
maximum or minimum value of the objective function in a feasible domain of
interval parameters is calculated by solving the original problem with the
sequential quadratic programming (SQP) method. In this analysis for the exact
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Fig. 13.4 Concept of advanced interval analysis method using Taylor series approximation and
random search technique for initial evaluation point [24]
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solution, the approximation by Taylor series expansion is not employed and the
time-history response analysis for successive points of interval parameters is
conducted. The problem of finding an approximate candidate of the exact solution
of the maximum or minimum value of the objective function may be described by

Find X ¼ fcd1 ; . . .; cdN ; kb1 ; . . .; kbN ; kf1 ; . . .; kfNg
T

so as to maximize f ðXÞ
subject to X 2 XI

9=
; ð13:9Þ

13.5 Numerical Examples

Numerical examples are presented for 20-story shear building models with passive
viscous dampers to demonstrate the validity and accuracy of the proposed meth-
odology. Figure 13.5 presents the shear building model with passive viscous
dampers including supporting members. The properties of the nominal structural
parameters are shown in Table 13.1. The floor masses are identical in all the
storys. The frame stiffness distribution in the nominal model is given by
Eq. (13.10) which can be derived from the straight-line shape of fundamental
eigenmode of the main frame.

kfi ¼
1
2

N N þ 1ð Þ � i i� 1ð Þf gmx2
1 i ¼ 1; � � � ;Nð¼ 20Þð Þ ð13:10Þ
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Fig. 13.5 Structural model
with passive dampers
including supporting
members [24]

13.4 Advanced Interval Analysis Method 285



where x1 denotes the fundamental natural circular frequency of the frame and m is
the floor mass. The nominal values of damping coefficients of passive viscous
dampers are constant and are shown in Table 13.1. The ratio of the nominal value
of supporting member stiffness to the nominal value of frame stiffness is assumed
to be 1.0 in every story.

The structural parameters cd, kb and kf are dealt with as interval parameters and
the ratios of half the intervals to the nominal values are defined as follows.

fa1; . . .; b1; . . .; c1; . . .g ¼ Dcd1

cc
d1

; . . .;
Dkb1

kc
b1

; � � � ;Dkf1

kc
f1

; � � �
( )

ð13:11Þ

The degrees of uncertainties of interval parameters are given by ai ¼ bi ¼ 0:5
and ci ¼ 0:3 for all i. This means that the degree of performance of passive
dampers may be rather large and that of mainframe may be relatively small.

Figure 13.6 shows representative recorded ground motions, El Centro NS 1940,
Taft EW 1952, and Hachinohe NS 1968, whose maximum velocities are nor-
malized by 50 cm/s. These earthquake ground motions are used for structural
design (Level 2 of large earthquake ground motion) of high-rise and base-isolated
buildings in Japan.

Figure 13.7 illustrates the comparison of evaluated bounds of the top horizontal
displacement under uncertain structural parameters derived by Taylor series
approximations with those derived by the SQP method. The SQP method has been
applied to two cases. The first case has the nominal value as the initial value and the
second case has randomly generated parameter combinations giving the top three
maximum responses as the initial value. The second case has been introduced to
guarantee the search of global optimum one. The first-order Taylor and reanalysis
means that the critical combination is determined by the first-order Taylor series
expansion and the upper bound of response is evaluated by the time-history response
analysis for the determined combination. It can be observed from Fig. 13.7 that the
first-order Taylor and reanalysis provides an accurate estimate for the maximum top
horizontal displacement of all the three ground motions. Furthermore the result of
the SQP method with the nominal value as the initial value coincides fairly well with
that of the SQP method with randomly generated parameter combinations giving the
top three maximum responses as the initial value.

Table 13.1 Structural parameters of main frame [24]

20-storey building

Floor mass (kg) 1024 � 103

Storey stiffness (N/mm) Eq. (13.10)
Damper capacity (Ns/mm) 2.250 � 107

Supporting member stiffness (N/mm) Ratio 1.0 to frame storey stiffness
Structural damping ratio

(stiffness-proportional damping)
0.02

Fundamental natural circular frequencya with damper (rad/s) 3.927

a Complex eigenvalue analysis
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Figure 13.8 shows the comparison of critical interval parameters for the upper
bound of the top horizontal displacement derived by the first-order approximation
with those by the SQP method with the nominal value as the initial value. It can be
observed that, while a little difference is seen for El Centro and Hachinohe, most
parameters coincide well.
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Fig. 13.6 Recorded ground motions whose maximum velocities are normalized by 50 cm/s [24]
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Figure 13.9 presents the comparison of evaluated bounds of the maximum
interstory drift under uncertain structural parameters derived by Taylor series
approximations and reanalysis method with those derived by the SQP method
where the initial value is given by the nominal model. Furthermore, since the SQP
method is known as the gradient-based optimization algorithm, the result by the
SQP method may depend on the initial value and may attain a local maximum. For
confirming whether the result by the SQP method is the global optimum solution
or not as implemented in Fig. 13.7, the upper bound of the objective function for
El Centro NS (1940) is derived by the SQP method where the initial value is given
by three different randomly generated evaluation points making the objective
function maximum (top three). It can be seen that the method with the nominal
model as the initial model is not sufficient and another method is desired for the
maximum interstory drift.

Figure 13.10 illustrates the comparison of critical interval parameters for the
upper bound of the maximum interstory drift derived by the first-order approxi-
mation with those by the SQP method where the initial value is given by the
nominal model. It can be observed from Fig. 13.10b that some critical structural
parameters exist except at the end points of the interval. However, the critical
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structural parameters by the first-order approximation with the nominal value as
the initial value exhibit a distribution similar to those by the SQP method.

Figure 13.11 shows the comparison of the maximum interstory drifts under
uncertain structural parameter sets derived by first-order Taylor series approxi-
mation with those by the SQP method employing the nominal model as the initial
value combination for three ground motions, El Centro NS 1940, Taft EW 1952,
and Hachinohe NS 1968. It can be observed that the maximum interstory drift of
the nominal model occurs in the first storey for all the three ground motions. On
the other hand, while the varied maximum interstory drift under uncertain struc-
tural parameters occurs in the first story for El Centro NS 1940 and Taft EW 1952,
that occurs in the top story for Hachinohe NS 1968. In the case, where the story
indicating the maximum interstory drift changes from the nominal model like
Hachinohe NS 1968, the sensitivities of the objective function (maximum inter-
story drift in this case) with respect to uncertain parameters exhibit largely dif-
ferent values. This leads to large errors in evaluating the response variability (see
Fig. 13.9).

It can also be understood from Fig. 13.11 that, although the story indicating the
maximum interstory drift by first-order Taylor series approximation does not
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change from that by the SQP method, the solution by the SQP method employing
the nominal model as the initial value combination may drop into a local maxi-
mum. For such case, the VEP method introduced in Sect. 13.4.2 seems to be
effective. A numerical example using the VEP method will be shown in the
following.

Figure 13.12 shows the distribution of the maximum interstory drift for El
Centro NS (1940) of damped structures given by randomly generated structural
parameters. The horizontal axis indicates the lowest-mode damping ratio of the
model with a respective set of randomly generated structural parameters. The
number of samples is 10,000.

Figure 13.13a illustrates the comparison of interval parameters, i.e. initial
structural parameters (randomly generated one giving maximum response), critical
structural parameters by the VEP method (first-order Taylor approximation), and
critical structural parameters by the SQP method for randomly generated combi-
nations of uncertain structural parameters giving top three maximum interstory
drifts. It can be observed that the critical structural parameters by the VEP method
coincide fairly well with those by the SQP method. Figure 13.13b presents the
result of the maximum interstory drifts by the VEP method and the SQP method. It
can be seen that the maximum interstory drift by the VEP method coincides fairly
well with that by the SQP method. This indicates the reliability and accuracy of the
VEP method for the maximum interstory drift.

The degrees of uncertainties ai ¼ bi ¼ 0:5 and ci ¼ 0:3 are rather large and the
present numerical examples seem to give the upper bounds of errors of the pro-
posed method.

13.6 Summary

1. Interval analysis in terms of uncertain structural parameters is an effective tool
for evaluating the response variability, bound, and the sustainability of build-
ings in earthquake-prone countries. A shear building model has been used
including passive viscous dampers with supporting members for demonstrating
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the effectiveness and usefulness of the proposed interval analysis method. It has
been made clear that the proposed method is actually useful for the develop-
ment of the concept of sustainable building design under such uncertain
structural-parameter environment.

2. All the combinations of end points of uncertain structural parameters lead to
huge numbers and the evaluation of the upper and lower bounds of the
objective function requires elaborate manipulation. It has been explained that
this difficulty can be overcome by introducing the sensitivity or Taylor series
expansion analysis.

3. If the objective function has a property of non-monotonic variation for the
variation of the interval parameters, the interval analysis method using the first
and second-order sensitivities at the nominal model will not provide reliable
response variability. To overcome this difficulty, an additional numerical pro-
cedure has been introduced and explained for searching the evaluation point for
the evaluation of first and second-order sensitivities by selecting randomly the
combination of the interval parameters. This is called the VEP method. It has
been explained and demonstrated that the VEP method is a reliable method
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because the change of the evaluation point or the initial design point is nec-
essary for search of the global solution.

4. The necessity of use of the VEP method depends on the objective function.
When the objective function is a top floor displacement in the shear building
model, it may not be necessary. When the objective function is an interstory
drift, it appears necessary. It has been confirmed that the VEP method is an
accurate and reliable method for the estimation of the maximum interstory drift
of the shear building model under uncertain structural parameter environment.
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Chapter 14
Earthquake Response Bound Analysis
of Uncertain Base-Isolated Buildings
for Robustness Evaluation

14.1 Introduction

An efficient methodology is explained to evaluate the robustness (variability of
response) of an uncertain base-isolated building under various ground motions. It
is well known that base-isolated buildings have large structural uncertainties due to
wide variability of structural properties of base-isolation systems [1, 2]. The
variability resulting from temperature and frequency dependences, manufacturing
errors, and aging effect may be a representative one.

Under these circumstances, it is desired to evaluate the response variability
caused by such structural variability [3–5]. The method based on the convex model
may be one possibility [6]. Kanno and Takewaki [7] proposed an efficient and
reliable method for evaluating the robustness of structures under uncertainties
based on the concept of the robustness function [8, 9]. However, it does not seem
that an efficient and reliable method for evaluating the robustness of structures has
been proposed.

An interval analysis is believed to be one of the most efficient and reliable
method to respond to this requirement. While a basic assumption of ‘‘inclusion
monotonic’’ is introduced in usual interval analysis, the possibility is taken into
account for occurrence of the extreme value of the objective function in an inner
feasible domain of the interval parameters. It is shown that the critical combination
of the structural parameters can be derived explicitly so as to maximize the
approximate objective function by second-order Taylor series expansion. The
Updated Reference-Point (URP) method is presented to obtain such critical
combination of structural parameters [10].

In order to investigate the validity of the robustness evaluation methodologies,
numerical analyses are conducted for 20-story base-isolated building models with
natural rubber (NRB) isolators and passive dampers. The maximum displacement
in the base-isolation story and the maximum acceleration at the building top floor

I. Takewaki et al., Improving the Earthquake Resilience of Buildings,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-4144-0_14,
� Springer-Verlag London 2013
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are chosen as the objective function. By comparing the results with the exact
solution and those by other conventional methods, it is shown that the URP
method can provide a more accurate evaluation of response bounds without hard
computational effort.

14.2 Modeling of Base-Isolated Buildings
and Uncertainty of Isolators

Consider an N-story base-isolated shear building model as shown in Fig. 14.1. A
simple model is used here to present an essential feature of the robustness eval-
uation method. The isolator consists of NRB and is described by a linear model as
shown in Fig. 14.2. On the other hand, the damping is given by oil dampers.

It is necessary to take into account the response variability (robustness) of the
building under earthquake ground motions due to the variability of isolators,
dampers, and superstructural properties. As for temperature dependence of NRB,
the shear modulus of NRB becomes 10 % larger in -10 degrees centigrade and
several percent smaller in 40 degrees centigrade than the standard one in 20
centigrade. On the other hand, as for aging effect, it is known that about 10 %
increase of shear modulus of NRB can be seen.

14.3 Past Work on Interval Analysis for Uncertain
Input and Structural Parameters

Various methods have been proposed so far for evaluating the robustness of
structures with uncertain parameters under uncertain disturbances. (for example,
Ben-Haim [8], Takewaki and Ben-Haim [9], Zhao et al. [5], Rao and Berke [11],

f 1k
1Mfirst storey

NM

f1c

fNc

fNk

f2k

f2c

second storey f3c

Nth storey

1NM −

2M

N-1th storey

Fig. 14.1 N-story base-
isolated building model [10]
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Qiu and Elishakoff [12], Qiu et al. [13], Chen et al. [14]). Among them, an interval
analysis may be one of the most effective methods for the analysis under uncer-
tainty. The interval analysis is aimed at finding the upper and lower bounds of the
objective function for given widths of uncertain parameters.

Let X denote a set of uncertain parameters. The components of this set are
referred to as interval variables and expressed as:

XI ¼ Xc
i � DXi;X

c
i þ D�Xi

� �� �
ði ¼ 1; . . .;NxÞ ð14:1Þ

where ð ÞI denotes an interval variable and a; b½ � indicates that a and b are the
lower and upper bounds of the interval parameter. In Eq. (14.1), ð Þc; D�X; DX and
Nx indicate the nominal value, the upper side bandwidth, the lower side bandwidth,
and the number of interval variables, respectively. The following representation of
the objective function in terms of interval variables is called the interval extension.

f I Xð Þ ¼ f ðXIÞ ¼ f ½Xc
1 � DX1;X

c
1 þ D�X1�; . . .; ½Xc

Nx
� DXNx

;Xc
Nx
þ D�XNx �

� �

ð14:2Þ

Equation (14.2) implies to evaluate the upper and lower bounds of the objective
function for all the combinations of end points of interval variables and defines the
set of function values between these upper and lower bounds.

In usual interval analysis, a basic assumption of ‘‘inclusion monotonic’’ is
introduced and the following relation is assumed.

f Xð Þ : Xi 2 XI
i ; i ¼ 1; 2; . . .;Nx

� �
� f ðXI

1;X
I
2; . . .;XI

NX
Þ ð14:3Þ

The right-hand side of Eq. (14.3) indicates the interval extension of the
objective function as shown in Eq. (14.2). Equation (14.3) means that the maxi-
mum and minimum values of the objective function occur at the end points of
interval variables.

Figure 14.3a and b presents two-variable examples of distribution of objective
function for monotonic one and non-monotonic one. In the monotonic case
(inclusion-monotonic assumption holds) as shown in Fig. 14.3a, an exact solution
is included in the combination of end points of interval parameters. Therefore, an
exact solution can be obtained by conducting the response analysis for all the

Displacement

ForceFig. 14.2 Linear force–
displacement relation of NRB
isolator [10]
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combinations of end points �Xi ¼ Xc
i þ D�Xi and Xi ¼ Xc

i � DXi of interval
parameters. The computational load (number of repetition) is given by 2Nx :
However, this repetition becomes huge for a large number of interval parameters.
Furthermore, it is not appropriate to evaluate the objective function only at the end
points of interval parameters when the objective function is not monotonic as
shown in Fig. 14.3b.

In order to overcome this difficulty, some approaches have been proposed in the
interval analysis, e.g., a method of approximating the inverse of the stiffness
matrix by Neumann expansion, a method of approximating the objective function
by converged series expansion. Furthermore, Chen et al. [14] proposed a method
of using a first-order Taylor series expansion and a second-order Taylor series
expansion with diagonal components only in approximating the objective function.
However, when the objective function is nonmonotonic, a sequential quadratic
programming (SQP) method or a response surface method has to be introduced in
transforming the original problem of finding the upper and lower bounds of the
objective function into an optimization problem. This procedure causes a large
amount of computational work.

14.4 Interval Analysis Using Taylor Series Expansion

As stated before, it is often the case that the objective function becomes non-
monotonic ones. A general problem of interval analysis may be stated as follows:

Maximum point

Minimum point

1 2( , )f X X

1 2( , )f X X

1 2( , )f X X

1 2( , )f X X

1X

2X

(a)
Maximum point

Minimum point

1 2
ˆˆ( , )f X X

1 2
ˆ( , )f X X

2-dimensional rectangle
(feasible domain)

(b)

1X

2X

Fig. 14.3 Dependence of critical combination of uncertain parameters on properties of objective
function, a inclusion monotonic, b non-monotonic [10]
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Find X
so as to maximize or minimize

f ðXÞ ð14:4Þ

subject to X 2 XI

Equation (14.4) indicates a constrained optimization problem and various
methods can be used to solve this. However, there are many difficulties in the
computational time or convergence.

In this chapter, a new method is explained which can overcome the difficulty in
problems with non-monotonic properties of objective functions. For preparing this,
interval analysis using first- and second-order Taylor expansion is explained in
Sects. 14.4.1 and 14.4.2.

14.4.1 Interval Analysis Using First-Order Taylor Expansion

The upper and lower bounds of the objective function by the first-order Taylor
series expansion can be obtained as

�f ¼ f Xcð Þ þ
XNx

i¼1

f;XiDXi

�� ��; f ¼ f Xcð Þ �
XNx

i¼1

f;XiDXi

�� �� ð14:5a; bÞ

where the first-order sensitivity of the objective function with respect to an interval
parameter is to be evaluated numerically as

f;Xi ¼ ff ðXc
i þ dXiÞ � f ðXc

i Þg=dXi ði ¼ 1; . . .;NxÞ ð14:6Þ

14.4.2 Interval Analysis Using Second-Order
Taylor Expansion

An approximation of the objective function around the nominal value can be
expressed as the second-order Taylor series expansion as follows:

f � Xð Þ ¼ f Xcð Þ þ
XNx

i¼1
f;Xi Xi � Xc

i

	 

þ 1

2

XNx

i¼1

XNx

j¼1
f;XiXj Xi � Xc

i

	 

Xj � Xc

j

� �

ð14:7Þ

where the second-order sensitivity of the objective function with respect to interval
parameter is to be evaluated numerically as
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f;XiXj ¼
f ðXc

i þ dXi;Xc
j þ dXjÞ � f ðXc

i ;X
c
j þ dXjÞ

�f ðXc
i þ dXi;Xc

j Þ þ f ðXc
i ;X

c
j Þ

� �
=dXidXj ði 6¼ jÞ

f̂ ðXc
i þ 2dXiÞ � 2f̂ ðXc

i þ dXiÞ þ f̂ ðXc
i Þ

� �
=dX2

i ði ¼ jÞ

8<
: ð14:8Þ

Following Chen et al. [14], let us approximate the objective function around the
nominal value by the second-order Taylor series expansion with diagonal terms
only.

f ��ðXÞ ¼ f ðXcÞ þ
XNx

i¼1
f;XiðXi � Xc

i Þ þ
1
2

f;XiXiðXi � Xc
i Þ

2
� �

ð14:9Þ

In Eq. (14.9), each increment with each interval parameter is independent. For
example, the increment with respect to X1 may be expressed by

Df1 X1;X
c
2; . . .;Xc

Nx

� �
¼ f;X1 X1 � Xc

1

	 

þ 1

2
f;X1X1 X1 � Xc

1

	 
2 ð14:10Þ

In order to obtain the upper and lower bounds of the function of Eq. (14.9), it is
necessary to evaluate the maximum and minimum values of Dfi ði ¼ 1; . . .;NxÞ and
sum up those values. For example, the upper and lower bounds of Df1 can be
obtained as follows by doing the interval extension of Eq. (14.10).

Df I
1 XI

1;X
c
2; . . .;Xc

Nx

� �
¼

min Df1 �X1;Xc
2; . . .;Xc

Nx

� �
;Df1 X1;X

c
2; . . .;Xc

Nx

� �h i
;

max Df1 �X1;Xc
2; . . .;Xc

Nx

� �
;Df1 X1;X

c
2; . . .;Xc

Nx

� �h i
2
4

3
5

ð14:11Þ

From Eq. (14.11), the computation of Df1 for the upper and lower bounds �X1;
X1 of X1 can lead to the upper and lower bounds of Df1:

14.4.3 Interval Analysis Considering Non-Monotonic Property
of Objective Function

In the method explained in the previous sections, the monotonic property of the
objective function has been assumed. In other words, it was assumed that
the maximum and minimum values of the objective function can be obtained at the
end points of interval parameters. Furthermore, when the level of uncertainty is
large, the approximation by Taylor series expansion may lead to large errors. In
this section a method to overcome this difficulty will be shown.

If the critical combination of interval parameters maximizing the objective
function can be predicted, it becomes possible to evaluate the robustness accu-
rately. In this section, the Taylor series approximation with diagonal elements only
is used to predict this critical combination.

300 14 Earthquake Response Bound Analysis of Uncertain Base-Isolated Buildings



As for the variation Dfi dXið Þ for Xi; let us regard dXi ¼ Xi � Xc
i as a variable

satisfying �DXi� dXi�D�Xi: Then the variation Dfi dXið Þ can be expressed as

Dfi dXið Þ ¼ 1
2

f;XiXi dXi þ f;Xi=f;XiXi

	 
2�f 2
;Xi
=2f;XiXi ð14:12Þ

This function is different from the function defined in Eq. (14.10). However, the
same expression is used for simplicity. The function of Eq. (14.12) is a quadratic
function and the value dXi maximizing or minimizing Df can be obtained
explicitly. Consider the case f;XiXi\0: If the notation D�Xi ¼ DXi ¼ DXi is used, the
interval parameter giving max½Dfi� can be obtained as follows:

X̂i ¼
Xc

i � f;Xi=f;XiXi f;Xi=f;XiXi

�� ���DXi

	 

Xc

i þ DXi �f;Xi=f;XiXi � 0; f;Xi=f;XiXi

�� ��[ DXi

	 

Xc

i � DXi �f;Xi=f;XiXi\0; f;Xi=f;XiXi

�� ��[ DXi

	 


8><
>: ð14:13Þ

In order to determine dXi from Eq. (14.13), it is necessary to evaluate the
gradient f;Xi and Hessian (diagonal terms only) f;XiXi : In computing f;Xi and f;XiXi ; the
evaluation is usually made ordinary at the nominal model (reference point). It
should be noted that the correlation among interval parameters is not taken into
account.

In this chapter, a new method called the URP method is used. This method
updates the reference point step-by-step. The algorithm for finding the upper
bound of the objective function may be stated as follows:

Step 1 Compute the gradients f;Xi i ¼ 1; . . .;Nxð Þ at the nominal model.
Step 2 Reorder the absolute values of the gradients f;Xi

�� �� i ¼ 1; . . .;Nxð Þ from the
largest one. The corresponding interval variables are defined by XA ¼
fXA1; . . .;XANxg: This procedure makes it possible to find the effective
interval variables X affecting the objective function f :

Step 3 Compute the second-order sensitivities f;XAkXAk corresponding to XAk : For
k ¼ 1; the evaluation point is the reference point (nominal model). For
k� 2; the evaluation point has been changed to an updated one. Then
recompute f;XAk corresponding to XAk :

Step 4 Obtain X̂Ak maximizing Dfk XAkð Þ:
Step 5 Update the interval; variable from XAk to X̂Ak and update the evaluation

(reference) point. Update also the damping and stiffness matrices C; K:
Step 6 Set k ¼ k þ 1 and repeat Steps 3–6 until k ¼ Nx.
Step 7 After updating all the interval variables following the aforementioned

procedure, conduct the response analysis for this model.

In case of finding the lower bound of the objective function, it is sufficient to
find X̂Ak minimizing Dfk XAkð Þ in Step 4 and update the reference point. In the URP
method, the interval variables corresponding to the upper and lower bounds of the
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objective function are different. Therefore, the computational time in the URP
method becomes about triple of that in Sect. 14.4.2. The overview of the URP
method is shown in Fig. 14.4.

14.5 Numerical Verification of URP Method

Application of the URP method to the base-isolated building model treated in Sect.
14.2 is shown in this section. The usefulness of the URP method is demonstrated
through the comparison with other methods (first-order Taylor approximation,
second-order Taylor approximation, exact). The exact solution is replaced by the
one obtained by using the SQP method. The SQP method does not necessarily
provide the true exact one. However, it is regarded that a nearly or approximate
exact solution can be found by the SQP by changing initial values.

The damping coefficient c0 and the horizontal stiffness k0 of the base-isolation
story and the damping coefficient cf and the horizontal stiffness kf of the super-
structure are treated as interval variables in this example. The set of interval
variables is denoted by

XI ¼ cI
0; k

I
0; c

I
f ; k

I
f

� �
ð14:14Þ

It may be appropriate to assign the same variability in each group of several
stories in a building. The present formulation is applicable to such realistic case.
Let us define the ratios of the upper and lower variations of interval variables to the
corresponding nominal values as follows:

�a ¼ D�c0

cc
0

;
D�k0

kc
0

;
D�cf1

cc
f1

; . . .;
D�kf1

kc
f1

; . . .

( )
; a ¼ Dc0

cc
0

;
Dk0

kc
0

;
Dcf1

cc
f1

; . . .;
Dkf1

kc
f1

; . . .

( )

ð14:15a; bÞ
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Fig. 14.4 Outline of URP method [10]
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14.5.1 Property of Base-Isolated Building

Table 14.1 shows the parameters (superstructure and base-isolation story) of the
20-story base-isolated building (N = 20). The floor mass per story is 1,024 9 103

(kg). This corresponds to 32 9 32 m floor plan (1,000 kg/m2). When the floor
mass per story is denoted by m and the lowest mode of vibration of the super-
building with fixed base-isolation story is given by a straight line, then the story
stiffness can be expressed as

kfi ¼
1
2

N N þ 1ð Þ � i i� 1ð Þf gmx2
1 i ¼ 1; . . .;Nð Þ ð14:16Þ

where x1 is the fundamental natural circular frequency of the super-building with
fixed base-isolation story and is given by 3.93 rad/s (natural period = 1.6 s). The
super-building is assumed to behave elastically.

The horizontal stiffness of the base-isolation story is given by specifying the
natural circular frequency of the model with the rigid super-building as x0 ¼ 1:57
(natural period = 4.0 s). Then the horizontal stiffness of the base-isolation story k0

is determined by

k0 ¼ x2
0WE ð14:17Þ

For this model, the fundamental natural circular frequency is given by 1.5 rad/s
(natural period = 4.19 s).

In the selection of the base isolator, the diameter, thickness, and shear
modulus have to be determined. The required conditions are that (1) the stress
under dead load is within an allowable value and (2) the deformation capacity
and the fundamental natural period are appropriate. In the present numerical
analysis, the horizontal stiffness of the base-isolation story is given by
Eq. (14.17). Therefore it is required to satisfy the condition on the stress under
dead load. When NRBs are used, the horizontal stiffness of the base-isolation
story is determined by

k0 ¼ ARG=TR ð14:18Þ

Table 14.1 Parameters of base-isolated building [10]

Super-building Base-isolation story

Mass (�103 kg) 1,024 3,072
Stiffness (N/m) Eq. (14.16) 5.81 9 107

Damping coefficient (Ns/m) Stiffness-proportional:
lowest-mode damping
ratio = 0.02

1.48 9 107

14.5 Numerical Verification of URP Method 303



where AR; TR; and G denote the cross-sectional area, the thickness, and shear
modulus of the isolator. By equating Eqs. (4.17) and (4.18), the stress of the
isolator under dead load can be expressed as

rR ¼ gGTR=x
2
0 ð14:19Þ

where g denotes the acceleration of gravity. By substituting TR ¼ 0:2 ðmÞ and
G ¼ 0:49ðN/mm2Þ in Eq. (14.19), rR ¼ 9:74 ðN/mm2Þ can be derived. This is
smaller than an allowable stress under dead load of ordinary NRBs. At the same
time, the cross-sectional area of the isolators can be obtained from Eq. (14.18). In
this example, the diameter of the isolators is given by / 1,300 and 20 isolators are
installed.

The damping coefficient of the dampers in the base-isolation story is given by
specifying the damping ratio of the model with a rigid super-building as 0.2.

14.5.2 Input Ground Motions

Five ground motions are used in this example. Four recorded ground motions
and one simulated motion both scaled to the same maximum ground veloc-
ity = 0.5 m/s are taken. Table 14.2 shows the parameters of the adopted five
ground motions (ground motion number 1–5) and Fig. 14.5 presents those time
histories.

14.5.3 Interval Analysis for Interstory Drift of Base-Isolation Story

The uncertainty analysis is shown here for the maximum interstory drift of base-
isolation story. The level of variability in Eq. (14.15a, b) is given by

�a ¼

0:3 ði ¼ 1Þ
0:26 ði ¼ 2Þ
0:1 ði ¼ 3; . . .;N þ 2Þ
0:05 ði ¼ N þ 3; . . .; 2N þ 2Þ

; a ¼

0:3 ði ¼ 1Þ
0:15 ði ¼ 2Þ
0:1 ði ¼ 3; . . .;N þ 2Þ
0:05 ði ¼ N þ 3; . . .; 2N þ 2Þ

8>><
>>:

8>><
>>:

ð14:20a; bÞ

In Eq. (14.20a, b), i denotes the interval variable number. i = 1 corresponds to
the damping coefficient of oil dampers in the base-isolation story and i = 2 cor-
responds to the horizontal stiffness k0 of the base-isolation story. Here k0 is treated
as unsymmetrical in increasing and decreasing directions. This is due to the aging
effect (hardening) of isolators [2]. Furthermore, i ¼ 3; . . .;N þ 2 corresponds to
the damping coefficients cf of the super-building and i ¼ N þ 3; . . .; 2N þ 2 cor-
responds to the story stiffness kf of the super-building.
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Figure 14.6 shows the results, i.e., the upper and lower bounds of the maximum
interstory drift of base-isolation story, of interval analysis by various methods
(first-order Taylor approximation, second-order Taylor approximation, URP
method, exact). It can be observed that the result by the URP method coincides
fairly well with the exact value and this indicates the usefulness and reliability of
the URP method. From Fig. 14.6, it is also seen that, since Tomakomai motion
(ground motion number 4) includes large components of long-period motion, the
response is larger than those for other ground motions. Furthermore, the maximum
interstory drift of base-isolation story becomes about 0.5 m when considering the
variability of structural parameters and this value may exceed the upper limit. On
the other hand, for other ground motions, the maximum interstory drift of base-
isolation story does not exhibit much difference in the nominal model. However, it
is also true that the level of variability of the response results due to the variability

Table 14.2 Properties of input ground motions [10]

El Centro
(1940)

Taft
(1952)

Hachinohe
(1968)

Tomakomai
(2003)

BCJ
L2

Maximum ground
acceleration (m/s2)

4.59 5.07 3.32 0.90 2.41
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Fig. 14.5 Ground acceleration of input motions (maximum velocity = 0.5m/s) [10]
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of structural parameters shows different properties depending on ground motions
(ground motion number 1–3, 5). This may result from the fact that the effect of
variability of structural properties is correlated complicatedly with the frequency
contents of ground motions.

The accuracies of various interval analysis methods are compared. Figure 14.7
presents the errors of each method to the exact value. The difference of the result
by each method from the exact value is divided by the exact value and the result is
plotted in logarithmic scale. Although it may be said that the first-order and
second-order Taylor expansion methods can simulate the upper and lower bounds
approximately, the error attains 10 % in some ground motions. On the other hand,
the error of the URP method is within 0.1 % in most cases and the maximum is
within several percent at largest.

Figure 14.8 indicates the distribution of interval parameters for the second-
order Taylor expansion, the URP method, and the exact value. The abscissa
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Fig. 14.6 Prediction of upper and lower bounds of maximum interstory drift of base-isolation
story to five ground motions by various methods [10]

10-4 10-3 10-2 10-1 100 101 102

1

2

3

4

5

1st Taylor 2nd Taylor URP

Error rate [%]

G
ro

un
d 

m
ot

io
n 

nu
m

be
r

(a)

10-4 10-3 10-2 10-1 100 101 102

1

2

3

4

5

1st Taylor 2nd Taylor URP(b)

G
ro

un
d 

m
ot

io
n 

nu
m

be
r

Error rate [%]

Fig. 14.7 Computational errors by various methods for maximum interstory drift of base-
isolation story for five ground motions, a upper bound, b lower bound [10]
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indicates the ratio of variability of interval parameters to the nominal value
(-1 means the lower bound of interval parameter and 1 indicates the upper bound
of interval parameter). On the other hand, the ordinate presents the interval
parameter number defined in Eq. (14.14). i = 1 corresponds to the damping

(a) 2nd Taylor

(b) Proposed method (URP)

(c) Approximate reference solution (SQP)

Fig. 14.8 Critical combination of uncertain parameters for maximum interstory drift of base-
isolation story [10]
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coefficient of oil dampers in the base-isolation story and i = 2 corresponds to the
horizontal stiffness k0 of the base-isolation story. Furthermore, i ¼ 3; . . .; 22 cor-
responds to the damping coefficients cf of the super-building and i ¼ 23; . . .; 42
corresponds to the story stiffness kf of the super-building.

In the interval analysis method using the second-order Taylor expansion, the
variation of the objective functions is evaluated for various combinations of end
points of interval variables. For this reason, the critical interval parameters by the
second-order Taylor expansion do not attain intermediate values between the upper
and lower bounds of interval parameters. On the other hand, the critical interval
parameters by the URP method and the exact value could exhibit intermediate values
due to the non-monotonic properties of the objective function. It can be observed that
the critical parameter of the damping coefficient of the base-isolation story corre-
sponds to the lower bound of the interval parameter. On the other hand, the critical
parameter of the horizontal stiffness of the base-isolation story can exist in inter-
mediate regions for ground motions 1, 3, and 5. The results for ground motions 3 and
5 coincide fairly well with the exact value shown in Fig. 14.8c. Although some
critical parameters in the super-building by the URP method are different from the
exact one, this effect on the maximum interstory drift of base-isolation story is
negligible. This means that the effect of the horizontal stiffness of the base-isolation
story and the damping coefficient of the base-isolation story is significant.

Figure 14.9 shows the comparison of the computational times by various
methods. The SQP method (approximately exact) depends largely on the initial
values. Although the URP method requires slightly longer computational time
compared to the first- and second-order Taylor series expansion methods, it may
be said that the URP method can provide a reasonably accurate result with a
reasonable computational time.

14.5.4 Interval Analysis for Top-Story Maximum Acceleration

Figure 14.10 presents the results, i.e., the upper and lower bounds of the maximum
top-story floor acceleration, of interval analysis by various methods (first-order
Taylor approximation, second-order Taylor approximation, URP method, exact).

0 1 2 3 4 5 6
computational time [hour]

1st Taylor

2nd Taylor

SQP

URP

Fig. 14.9 Comparison of
computational times by
various methods [10]

308 14 Earthquake Response Bound Analysis of Uncertain Base-Isolated Buildings



It can be observed from Fig. 14.10 that the level of variability of the maximum
value into the increasing side is the largest in ground motion number 2 and the
ratio of that value to the nominal response is 1.43. There is no remarkable dif-
ference by any method for ground motion number 2. However, the first- and
second-order Taylor approximations exhibit a smaller upper bound for some
ground motions. On the other hand, the URP method provides a rather accurate
evaluation. This indicates the usefulness and reliability of the URP method.

Figure 14.11a and b shows the errors of each method to the exact value as in Fig. 14.7.
It can be observed that the error of the URP method is within 0.1 % in most cases of
ground motions. For ground motion number 3 in Fig. 14.11b, the critical combination by
the second-order Taylor approximation coincides perfectly with the exact result.

Figure 14.12 indicates the distribution of interval parameters for the second-
order Taylor expansion, the URP method, and the exact value. It can be confirmed
that the critical distribution by the URP method coincides well with that by the
exact one. Figure 14.12b and c demonstrates that, since the URP method provides
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Fig. 14.10 Prediction of upper and lower bounds of maximum acceleration at top story to five
ground motions by various methods [10]
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Fig. 14.11 Computational errors by various methods for maximum acceleration at top story for
five ground motions, a upper bound, b lower bound [10]
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an accurate combination of critical parameters for the horizontal stiffness and
damping coefficient of the base-isolation story, the URP method is reliable even
for the maximum top-story floor acceleration.

While, in usual structural design of base-isolated buildings, the variability of
base-isolation systems is often taken into account, the variability of super-building

(b) Proposed method (URP)

(c) Approximate reference solution (SQP)

(a) 2nd Taylor

Fig. 14.12 Critical combination of uncertain parameters for maximum interstory drift of base-
isolation story [10]
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parameters is not considered. As for the horizontal displacement of the base-
isolation story, the variability of the base-isolation systems is essential. On the
other hand, for the interstory drifts in super-buildings and top-story acceleration,
the variability of super-building parameters is also significant. Therefore a detailed
examination should be made carefully.

14.6 Summary

1. An efficient interval analysis methodology for robustness evaluation of a base-
isolated building has been presented to find the upper and lower bounds of the
dynamic response under several ground motions by using second-order Taylor
series expansion. The objective function is defined by the maximum interstory
drift of the base-isolation story or the maximum acceleration at the top story.
Since the critical combination of interval parameters in a feasible domain, not
only on the bounds but also in an inner domain of interval parameters, has been
derived explicitly by evaluating the extreme value of the objective function via
second-order Taylor series expansion, the upper and lower bounds of the
objective function can be obtained straightforwardly for the predicted structural
parameter set.

2. To evaluate the upper and lower bounds of the objective function more accurately
within a reasonable task, a different method has been presented even for large
intervals. The method is the URP method, where the reference point to calculate
first- and second-order sensitivities has been updated according to the variation of
structural parameters. By comparing the results by the proposed methodology
with those by other methods, it has been shown that a more accurate solution of the
bound of the objective function can be derived by the URP method.

3. Since several ground motions have been used as input motions, numerical
sensitivities have to be used in the URP method. It has been demonstrated that
this procedure can be feasible. By using these numerical sensitivities, the
objective function can also be approximated by second-order Taylor series
expansion including full elements. The SQP method has been applied to find
the upper and lower bounds of the objective function by second-order Taylor
series expansion with full elements.

4. Numerical examples of the robustness evaluation have been presented for a 20-
story base-isolated shear building by applying the URP method, the method
using first-order Taylor series expansion, the method using second-order Taylor
series expansion with diagonal elements only (method due to Chen et al. [14]),
the method using second-order Taylor series expansion with full elements
solved by the SQP method, and the primitive interval analysis method.

5. Comparison of computational time for the robustness analysis by the explained
methodology with those by various other methods has been conducted. It has
been shown that, since the second-order Taylor series expansion is used in the
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explained methodology to obtain a more accurate critical combination of
interval parameters efficiently, the number of times for the response analysis
can be reduced dramatically.

6. As for the maximum interstory drift of the base-isolation story, the long-period
ground motion becomes a key input which amplifies the response of the
nominal model. This is because the variation of natural period due to the
change of structural parameters affects the response at base-isolation story
sensitively. The critical response becomes 1.39 times the response of the model
with nominal parameters to Tomakomai (2003).

7. As for the maximum acceleration at the top story, the response variation tends
to become large to the ground motion with a large value of maximum ground
acceleration. The critical response becomes 1.43 times the response of the
model with nominal parameters to Taft (1952). It is often the case that a larger
stiffness of the base-isolation story causes a larger value of maximum ground
acceleration.
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Chapter 15
Future Directions

15.1 Earthquake Resilience

The word ‘‘resilience’’ may imply different meanings in each specific situation. In
the engineering aspect, it represents the positive ability of a system to adapt itself
to the consequences of a catastrophic failure caused by natural hazards (disasters),
terrorism attacks or system faults, and so on. The Committee on National Earth-
quake Resilience Research, Implementation, and Outreach [1] defines resilience as
‘‘The capability of an asset, system, or network to maintain its function or recover
from a terrorist attack or any other incident’’ [2].

Resilience is also defined as the capacity of a system, community, or society
potentially exposed to hazards to adapt, by resisting or changing in order to reach
and maintain an acceptable level of functioning and structure [3]. This is deter-
mined by the degree to which the social system is capable of organizing itself to
increase this capacity for learning from past disasters for better future protection
and to improve risk reduction measures.

Similarly, resilience is defined by the MCEER [4] as the ability of social units
(e.g., organizations, communities) to mitigate risk and contain the effects of
disasters, and carry out recovery activities in ways that minimize social disruption
while also minimizing the effects of future disasters. Disaster Resilience may be
characterized by reduced likelihood of damage to and failure of critical infra-
structure, systems, and components; reduced injuries, lives lost, damage, and
negative economic and social impacts; and reduced time required to restore a
specific system or set of systems to normal or pre-disaster levels of functionality
[4].

The catastrophic failure is generally followed by ‘‘progressive collapse.’’ The
progressive collapse is defined in Ref. [5, 6].

Spread of local damage, from an initiating event, from element to element
resulting, eventually, in the collapse of an entire structure or a disproportionately
large part of it; also known as disproportionate collapse (based on ASCE 7-05).

I. Takewaki et al., Improving the Earthquake Resilience of Buildings,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-4471-4144-0_15,
� Springer-Verlag London 2013
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15.2 Improving Earthquake Resilience Based
on Redundancy and Robustness

It is well recognized that ‘‘redundancy’’ and ‘‘robustness’’ are two major concepts
playing a central role in the upgrade of earthquake resilience [7–12]. To investi-
gate the redundancy and robustness, various examinations are necessary. One of
the effective examinations is the worst case approach [13–16]. The stress test in
nuclear power plant facilities may be one of the examinations.

15.3 Resonant Response and Random Response

In the seismic resistant design of structures, the 2011 off the Pacific coast of
Tohoku earthquake has shed light on a new structural design aspect, particularly
for high-rise buildings [17]. Specifically, Takewaki et al. [17] have reported that a
resonance phenomenon of high-rise buildings with long-period ground motions
was observed during the 11 March 2011 off the Pacific coast of Tohoku earth-
quake. These authors concluded that the conventional methods of seismic loads
specification, such as, the response spectrum method, the energy spectrum, and
damage indexes, may have some difficulties in dealing with such resonance phe-
nomenon. Uncertainties of duration and frequency in ground motions and those of
natural frequency and damping in structures have properties different from those
for random-type earthquake ground motions. With these uncertainties in mind, the
worst case approach may provide a useful and effective tool for earthquake load
specification for tall structures [18, 19]. Figure 15.1 explains schematically the
limitation of conventional approaches in resonance of structures to long-period
strong ground motions and the use of the worst case approach in this situation.

Figure 15.2 (Fig. 2.16) illustrates the comparison of the sensitivity of the
response amplification of structures in the resonant case and nonresonant case with
respect to damping reduction. It is useful to note that the amplification by damping
can be expressed by

Fig. 15.1 Difficulty of
conventional approaches in
resonance of structures to
long-period strong ground
motions and role of worst
case approach
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1=2 h for resonant long-period ground motion ð15:1aÞ

1:5=ð1þ 10hÞ for non-resonant conventional ground motion ratio to h¼ 0:05ð Þ
ð15:1bÞ

This implies the high sensitivity of the structural response to damping in res-
onant long-period ground motions. Since the damping ratio in super high-rise
buildings is generally small (smaller than 0.02) compared to low- and mid-rise
buildings, this high sensitivity needs to be taken into consideration in the structural
design of tall structures.

There is a report that a 55-story super high-rise building in Osaka
[height = 256 m: T1 = 5.8 s (long-span direction), 5.3 s (short-span direction)]
was shaken severely regardless of the fact that Osaka is located about 800 km from
the epicenter (about 600 km from the boundary of the fault region) and the JMA
instrumental intensity was 3 in Osaka. Afterwards, the natural periods of the
building were found to be longer than the design values reflecting the flexibility of
pile-ground systems and the damage to nonstructural partition walls, etc. It should
be pointed out that the level of velocity response spectra of ground motions
observed here (first floor) is almost the same as that at the Shinjuku station
(K-NET) in Tokyo and the top-story displacements are about 1.4 m (short-span
direction) and 0.9 m (long-span direction). Figure 15.3 shows the ground accel-
eration, ground velocity, and top-story displacement recorded or numerically
integrated in this building. It can be observed that a clear resonant phenomenon
occurs during about eight cycles. It seems that such clear observation has never
been reported in super high-rise buildings all over the world. This implies the need
for consideration of long-period ground motions in the seismic resistant design of
super high-rise buildings in mega cities even though the site is far from the
epicenter.

Figure 15.4 illustrates the total input energy from the ground motion at Osaka
bay area (NS) during the 2011 off the Pacific coast of Tohoku earthquake for
various damping ratios together with the corresponding energy spectrum.

Figure 15.5 shows the mechanism of increase of credible bound of input energy
[10] for the velocity power constraint due to uncertainties in input excitation
duration (lengthening) and in structural damping ratio (decrease). As for
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Fig. 15.2 Sensitivity of the
response amplification for
high-rise buildings in the
resonant case and
nonresonant case with respect
to the value of the damping
ratio
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uncertainties in excitation predominant period and in natural period of a structure,
the resonant case is critical.

15.4 Robustness Function for Seismic Performance

The convex models of uncertainty [20–22] and information-gap (info-gap) models
of uncertainty developed by Ben-Haim provide a nonconventional approach for
handling uncertainties compared to the probabilistic analysis of uncertainties using
the probability theory. In the info-gap model [7], the uncertain structural param-
eters are assumed to be given by an interval model. The interval parameter XI is
defined by

Ground acceleration

Ground velocity

Top displacement

about 8 cycles of 6-7 seconds

Long-period ground motion of about 
8 cycles is resonant with building

Fig. 15.3 Ground acceleration, velocity, and top-story displacement of a 55-story building in
Osaka
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damping ratios and energy spectrum
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XI ¼ XI
i

��½Xc
i � DXi;X

c
i þ DXi�; i ¼ 1; . . .;N

� �
ð15:2Þ

In Eq. (15.2), ð ÞI and ½a b� denote the definition of an interval parameter
where a and b are the lower and upper bounds of the interval parameter, respec-
tively. Furthermore, ð Þc; Dð Þ and N denote the nominal value of an interval
parameter, half the varied range of the interval parameter, and the number of
interval parameters, respectively. When the uncertainty of structural parameters is
given by the interval vector, the feasible domain of the interval parameters is
constrained to an N-dimensional rectangle.

In the info-gap model, the level of uncertainty is defined by a single uncertain
parameter a. Based on the definition of an uncertain parameter a in the info-gap
model, the feasible domain of the interval parameter XI can be regarded as an
uncertainty set XIðaÞ 2 RN described by

XIðaÞ ¼ XI
i

��½Xc
i � aDXi;X

c
i þ aDXi�; i ¼ 1; � � � ;N

� �
ð15:3Þ

In Eq. (15.3), DXi is a prescribed value of half the varied range of the interval
parameters. Therefore, the uncertainty level of the uncertainty set XIðaÞ varies
according to the variation of uncertain parameter a. Figure 15.6 shows the vari-
ation of 2D interval model with an uncertain parameter a. When a ¼ 0, the
uncertainty set XIð0Þ corresponds to a nominal vector of structural parameters.

The robustness function â for the design constraint of the seismic performance
can be defined as,

âðXc; fcÞ ¼ maxfa f � fcj ; f 2 UðXc; aÞg ð15:4Þ

Fig. 15.5 Increase of credible bound of input energy for velocity power constraint due to
lengthening of input excitation duration and decrease of damping ratio of structure
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where f , fc and UðXc; aÞ denote the objective function, the performance criterion
value and the set of the possible structural responses in the domain of the
uncertainty set XIðaÞ. In Eq. (15.4), the robustness function â is the maximum
value of the uncertain parameter a which satisfies the performance criterion. If the
nominal value f ðXcÞ of the objective function violates fc or just coincides with fc
without considering a safety factor, the robustness function â is regarded as zero,
which means that no variability due to the uncertainty of structural parameters can
be allowed. In the case of â1ðXc

1; fcÞ[ â2ðXc
2; fcÞ, a design more robust than Xc

2 can
be achieved by Xc

1.
Figure 15.7 illustrates the relationship between the robustness function and the

allowable domain of structural design to satisfy the performance criterion fc for 2D
interval parameters. The robustness function â is derived as the worst case of the
objective function, for example, the upper bound of the objective function �f in
UðXc; âÞ: However, when the number of the combinations of uncertain parameters
is huge, it may be a hard task to evaluate the worst case of the objective function
reliably. For this reason, an efficient uncertainty analysis method is desired which
can evaluate the upper bound of the objective function considering the uncertainty
of the structural parameters accurately and reliably.

The uncertainty of the structural response results from uncertainties involved in
the seismic load and variability in the structural properties. As is well known, the
uncertainty in the seismic load is relatively high compared to that in the structural
properties. To minimize the uncertainty in the structural response or to achieve the
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most accurate structural response, the structural engineer needs to accurately
model uncertainties in the earthquake loads, and the structural model describing
the behavior of the structure under seismic loads. Future research needs to focus
more on large structures, to include effects of nonstructural elements on the
structural response and to investigate the implication of different nonlinear models
and damping models on the structural response.

A different problem that has emerged during the last decade owing to the
accumulation of seismic data from recording networks (e.g. K-NET, KiK-net,
COSMOS, PEER, SMART arrays, Guerrero Network) which was not considered
in this book, is the selection and scaling of a proper earthquake records from a
given large set of ground motions for a specific site and a given structure.
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